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Preface

OPODIS, the International Conference On Principles Of Distributed Systems, is
an annual forum for the exchange of state-of-the-art knowledge on principles of
distributed computing and systems among researchers from around the world.
The 10th anniversary edition of OPODIS was held during December 12–15, 2006,
in Bordeaux, France.

This year over 230 papers were submitted, out of which 28 papers were ac-
cepted as regular papers and 3 as brief announcements. The decisions were made
by the Program Committee during an electronic meeting held during the week
of September 10th, 2006, following a review period. The Program Committee
extends its thanks to all authors who submitted papers to OPODIS 2006. The
chair thanks the members of the Program Committee and the External Review-
ers for their hard work in reviewing and evaluating the submitted papers. We
are convinced that a very good set of papers was selected for presentation at
OPODIS 2006.

The symposium also featured keynote addresses by Amir Pnueli (Weizmann
Institute, Israel), Butler Lampson (Microsoft, USA), Michel Raynal (IRISA,
France), and Gerard Roucairol (Bull, France).

We believe that OPODIS has found its place among the conferences related
to principles of distributed computing, networks, and systems. We hope that the
10th edition of OPODIS will contribute to the growth and the development of
the conference and continue to increase its visibility.

October 2006 Alex Shvarsman
OPODIS 2006
Program Chair
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Eshcar Hillel
Phuong Ha Hoai
Colette Johnen
Ralf Klasing
Boris Koldehofe
Petr Kouznetsov
Dariusz Kowalski
Rastislav Kralovic
Evangelos Kranakis
Francine Krief
Danny Krizanc
Michael Kuhn
Ritesh Kumar
Andreas Larsson
Bill Leal
Pierre Lemarinier
Alessandro Leonardi
Thomas Locher
Euripides Markou
Ketan Mayer-Patel
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Lazy and Speculative Execution

in Computer Systems

Butler Lampson

Microsoft Research

Invited Talk Abstract

The distinction between lazy and eager (or strict) evaluation has been studied
in programming languages since Algol 60s call by name, as a way to avoid un-
necessary work and to deal gracefully with infinite structures such as streams.
It is deeply integrated in some languages, notably Haskell, and can be simulated
in many languages by wrapping a lazy expression in a lambda.

Less well studied is the role of laziness, and its opposite, speculation, in com-
puter systems, both hardware and software. A wide range of techniques can be
understood as applications of these two ideas. Laziness is the idea behind:

Redo logging for maintaining persistent state and replicated state machines:
the log represents the current state, but it is evaluated only after a failure
or to bring a replica online.

Copy-on-write schemes for maintaining multiple versions of a large, slowly
changing state, usually in a database or file system.

Write buffers and writeback caches in memory and file systems, which are lazy
about updating the main store.

Relaxed memory models and eventual consistency replication schemes (which
require weakening the spec).

Clipping regions and expose events in graphics and window systems.
Carry-save adders, which defer propagating carries until a clean result is needed.
“Infinity” and “Not a number” results of floating point operations.
Futures (in programming) and out of order execution (in CPUs), which launch

a computation but are lazy about consuming the result. Dataflow is a gen-
eralization.

“Formatting operators” in text editors, which apply properties such as “italic”
to large regions of text by attaching a sequence of functions that compute
the properties; the functions are not evaluated until the text needs to be
displayed.

Stream processing in database queries, Unix pipes, etc., which conceptually
applies operators to unbounded sequences of data, but rearranges the com-
putation when possible to apply a sequence of operators to each data item
in turn.

Speculation is the idea behind:

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 1–2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 B. Lampson

Optimistic concurrency control in databases, and more recently in transactional
memory. Prefetching in memory and file systems.

Branch prediction, and speculative execution in general in modern CPUs.
Data speculation, which works especially well when the data is cached but might

be updated by a concurrent process. This is a form of optimistic concurrency
control.

Exponential backoff schemes for scheduling a resource, most notably in LANs
such as WiFi or classical Ethernet.

All forms of caching, which speculate that its worth filling up some memory
with data in the hope that it will be used again.

In both cases it is usual to insist that the laziness or speculation is strictly a
matter of scheduling that doesnt affect the result of a computation but only im-
proves the performance. Sometimes, however, the spec is weakened, for example
in eventual consistency.

I will discuss many of these examples in detail and examine what they have
in common, how they differ, and what factors govern the effectiveness of laziness
and speculation in computer systems.



In Search of the Holy Grail: Looking for the Weakest
Failure Detector for Wait-Free Set Agreement

Michel Raynal and Corentin Travers

IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
{raynal, ctravers}@irisa.fr

Abstract. Asynchronous failure detector-based set agreement algorithms pro-
posed so far assume that all the processes participate in the algorithm. This means
that (at least) the processes that do not crash propose a value and consequently
execute the algorithm. It follows that these algorithms can block forever (pre-
venting the correct processes from terminating) when there are correct processes
that do not participate in the algorithm. This paper investigates the wait-free set
agreement problem, i.e., the case where the correct participating processes have
to decide a value whatever the behavior of the other processes (i.e., the processes
that crash and the processes that are correct but do not participate in the algo-
rithm). The paper presents a wait-free set agreement algorithm. This algorithm
is based on a leader failure detector class that takes into account the notion of
participating processes. Interestingly, this algorithm enjoys a first class property,
namely, design simplicity.

Keywords: Asynchronous algorithm, Asynchronous system, Atomic register,
Consensus, Leader oracle, Participating process, Set agreement, Shared object,
Wait-free algorithm.

1 Introduction

The consensus problem Consensus is a fundamental fault-tolerant distributed comput-
ing problem. As soon as processes cooperate, they have to agree in one way or another.
This is exactly what the consensus problem captures: it allows a set of processes to
agree on a critical data (called value, decision, state, etc.). Consensus can be informally
defined as follows. Each process proposes a value, and a process that is not faulty has
to decide a value (termination), such that there is a single decided value (agreement)1,
and that value is a proposed value (validity).

It is well-known that the consensus problem cannot be solved in asynchronous sys-
tems prone to even a single process crash, be these systems read/write shared memory
systems [13], or message-passing systems [5]. So, one way to circumvent this impos-
sibility is to enrich the asynchronous system with additional objects that are strong
enough to allow solving consensus.

1 We consider here the uniform version of the consensus problem. A faulty process that decides
has to decide the same value as the non-faulty processes.

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 3–19, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 M. Raynal and C. Travers

Shared memory systems equipped with objects defined with a sequential specifica-
tion and more powerful than traditional atomic read/write registers have been investi-
gated. This line of research has produced the notion of consensus number that can be
associated with each object type defined by a sequential specification [9]. The consen-
sus number of a type is the maximum number of processes for which objects of that
type (together with atomic registers) allows solving consensus. For example, the ob-
jects provided with a Test&Set() operation have consensus number 2, while the objects
provided with a Compare&Swap() operation have consensus number +∞. The con-
sensus number notion has allowed to establish a hierarchy among the objects (with a
sequential specification) according to the synchronization power of the operations they
provide to the processes [9].

Another research direction has been the investigation of objects that provide pro-
cesses with information on failures, namely, the objects called failure detectors [2]. A
failure detector class2 is defined by abstract properties that state which information on
failure is provided to the processes. According to the quality of that information, several
classes can be defined. Differently from an atomic register or a Compare&Swap object,
a failure detector has no sequential specification.

As far as one is interested in solving the consensus problem in an asynchronous sys-
tem prone to process crashes, it has been shown that Ω is the weakest failure detector
class that allows solving consensus in such a context [3]. “Weakest” means that any fail-
ure detector that allows solving consensus provides information on failures that allows
building a failure detector of the class Ω.

A failure detector of the class Ω provides the processes with a primitive, denoted
leader(), that returns a process identity each time it is called, and eventually always
returns the same identity that is the id of a correct process, i.e., a process that does
not crash when we consider crash failures. (Examples of message-passing Ω-based
consensus algorithms can be found in [7,12,16]. These algorithms assume a majority
of correct processes, which is a necessary requirement for Ω-based message-passing
consensus algorithms.)

The set agreement problem. The k-set agreement problem [4] generalizes the consensus
problem: it weakens the constraint on the number of decided values by permitting up
to k different values to be decided (consensus is 1-set agreement). While k-set agree-
ment can be easily solved in asynchronous systems where the number t of processes
that crash is < k (each of a set of k predetermined processes broadcasts its value,
and a process decides the first value it receives), this problem has no solution when
k ≥ t [1,11,19]. The failure detector approach to solve the k-set agreement problem in
message-passing systems has been investigated in [10,14,15,20].

While (as indicated before) it has been established that Ω is the weakest failure
detector class for solving consensus [3], let us remind that finding the weakest failure
failure detector class for solving k-set agreement for k > 1 is still an open problem.

The main question. Failure detector-based consensus algorithms implicitly consider
that all the processes participate in the consensus algorithm, namely, any process that

2 We employ the words “failure detector class” instead of “failure detector type”, as it is the
word traditionally used in the literature devoted to failure detectors.
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does not crash is implicitly assumed to propose a value and execute the algorithm. This
is also an implicit assumption in the statement that Ω is the weakest failure detector to
solve the consensus problem [3]. Basically, an Ω-based consensus algorithm uses the
eventual leader to eventually impose the same value to all the processes. As the algo-
rithm does not know when the leader is elected, its main work consists in guaranteeing
that no two different values can be decided before the eventual leader is elected. The
algorithm uses the eventual leader to help decide all the processes that do not crash.

The previous observation raises the following question: What does happen if the
process that is the eventual leader does not participate in the consensus algorithm? It
appears that the algorithm can then block forever, and consequently the termination
property can no longer be guaranteed.

So, a fundamental question is the following: What is the weakest failure detector
to solve the consensus (or, more generally, the k-set agreement) problem when only a
subset of the correct processes (not known a priori) propose a value and participate
in the agreement problem? This question can be reformulated as follows: What are the
weakest failure detector classes to wait-free solve the consensus and the k-set agreement
problems? Wait-free means here that a process that proposes a value and does not crash
has to decide, whatever the behavior of the other processes (they can participate or not,
and be correct or not). The previous observation on Ω shows that a failure detector of
that class cannot be the weakest to wait-free solve the consensus problem.

Content of the paper. Answering the previous question requires to investigate new
failure detector classes and show that one of them allows solving k-set agreement (suf-
ficiency part) while being the weakest (necessity part). This paper addresses the suf-
ficiency part. (On the necessity side, although we don’t have yet formal results, we
currently are inclined towards thinking that the failure detector class Ωk

∗ -see below- is
the weakest failure detector class for wait-free solving k-set agreement.)

More precisely, the paper presents a failure detector-based algorithm for shared
memory systems that wait-free solves the k-set agreement problem whatever the num-
ber p of participating processes, and their behavior, in a set of n processes3. This al-
gorithm assumes that, in addition to single-writer/multi-readers atomic registers, the
shared memory provides the processes with a failure detector object of a class that we
denote Ωk∗ . That class is an extension of the failure detector class introduced in [18],
and the failure detector classes recently introduced in [6] and [17].

The failure detector class Ωk introduced in [18] extends the classical Ω class [3]
by allowing a set of up to k leaders to be returned by each invocation of the leader()
primitive (Ω1 boils down to Ω). The set of k leaders that is eventually returned forever
includes at least one correct process. The aim of the class Ω∗ introduced in [6] is to
boost obstruction-free algorithms into non-blocking algorithms. That paper also shows

3 Let us remind that all the algorithms based on an object O with consensus number n allows
solving consensus whatever the number (p ≤ n) and the behavior of the participating pro-
cesses, i.e., they are wait-free consensus algorithms. (Such an object O has always a sequen-
tial specification.) In some sense, this paper looks for a failure detector class that, while being
as weak as possible, is as strong as the object O, i.e., a class that allows designing wait-free
failure detector-based set agreement algorithms. (Failure detectors cannot be defined from a
sequential specification.)
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that this failure detector class is the weakest for such a boosting. The failure detector
class introduced in [17] extends Ωk by explicitly referring to the notion of participating
processes. It has been introduced to circumvent the 2p−1 lower bound of the renaming
problem [11] (where p is the number of participating processes). Using such a fail-
ure detector, the proposed renaming algorithm provides the processes with a renaming
space whose size is reduced from 2p − 1 to 2p − � p

k� (where the value k comes from
“k”-set agreement).

Roadmap. The paper is made up of 6 sections. Section 2 presents the computation
model. Section 3 introduces the failure detector class Ωk∗ . Then, Section 4 presents
the Ωk

∗ -based k-set algorithm. This algorithm uses an underlying object denoted KA.
So, Section 5 presents an algorithm constructing a KA object from atomic read/write
registers. Finally, Section 6 concludes the paper.

2 Asynchronous System Model

2.1 Process and Communication Model

Process model. The system consists of n sequential processes that we denote p1, . . . ,
pn. A process can crash. Given an execution, a process that crashes is said to be faulty,
otherwise it is correct in that execution. Each process progresses at its own speed, which
means that the system is asynchronous. In the following, Correct denoted the set of
processes that are correct in the run that is considered.

Coordination model. The processes cooperate and communicate through two types of
reliable objects: two arrays of single-writer/multi-reader atomic registers and a shared
object that we call KA (as shown in Section 5, such an object can be built from single-
writer/multi-reader atomic registers). The processes are also provided with a failure
detector object of the class Ωk

∗ (see below).
Identifiers with upper case letters are used to denote shared objects. Lower case

letters are used to denote local variables; in that case the process index appears as a
subscript. As an example, parti[j] denotes the jth entry of a local array of the process
pi, while PART [j] denotes the jth entry of the shared array PART .

2.2 The KA Object

The KA object is a variant of a round-based object introduced in [8] to capture the safety
properties of Paxos-like consensus algorithms [8,12]. This object provides the processes
with an operation denoted alpha proposek(). That operation has two input parameters:
the value (vi) proposed by the invoking process pi, and a round number (ri). The round
numbers play the role of a logical time and allows identifying the invocations. The
KA object assumes that no two processes use the same round numbers, and successive
invocations by the same process use increasing round numbers. Given a KA object, the
invocations alpha proposek() satisfy the following properties (⊥ is a default value that
cannot be proposed by a process):
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– Termination (wait-free): an invocation of alpha proposek() by a correct process
always terminates (whatever the behavior of the other processes).

– Validity: the value returned by any invocation alpha proposek() is a proposed value
or ⊥.

– Agreement: At most k different non-⊥ values can be returned by the whole set of
alpha proposek() invocations.

– Convergence: If there is a time after which the operation alpha proposek() is in-
voked infinitely often, and these invocations are issued by an (unknown but fixed)
set of at most k processes, there is then a time after which none of these invocations
returns⊥.

A KA object can store up to k non-⊥ different values. A process invokes it with a
value to store and obtains a value in return. If it is permanently accessed concurrently by
more than k processes, the KA object might store anything. If there is a period during
which it is accessed concurrently by at most k′ ≤ k processes, it stores forever the
corresponding k′ proposed values.

3 The Failure Detector Class Ωk
∗

3.1 Definition

A failure detector of the class Ωk
∗ provides the processes with an operation denoted

leader(). (As indicated in the introduction, this definition is inspired by the leader failure
detector classes introduced in [6,17,18].) When a process pi invokes that operation, it
provides it with an input parameter, namely a set X of processes, and obtains a set of
process identities as a result4.

The semantics of Ωk
∗ is based on a notion of time, whose domain is the set of inte-

gers. It is important to notice that this notion of time is not accessible to the processes.
An invocation of leader(X) by a process pi is meaningful if i ∈ X . If i /∈ X , it is
meaningless. The primitive leader() is defined by the following properties:

– Termination (wait-free): Any invocation of leader() by a correct process always
terminates (whatever the behavior of the other processes).

– Triviality: A meaningless invocation returns any set of processes.
– Eventual multi-leadership for each input set X : For any X ⊆ Π , such that X ∩

Correct �= ∅, there is a time τX such that, ∀τ ≥ τX , all the meaningful leader(X)
invocations (that terminate) return the same set LX and this set is such that:
• |LX | ≤ k.
• LX ∩ X ∩ Correct �= ∅.

The intuition that underlies this definition is the following. The set X passed as input
parameter by the invoking process pi is the set of all the processes that pi considers as

4 The definition of Ωk
∗ is not expressed in the framework introduced by Chandra and Toueg

to define failure detector classes [2]. More precisely, in their framework, the failure detector
operation that a process can issue has no input parameter. It would be possible to express Ωk

∗
in their framework. We don’t do it in order to make the presentation simpler.



8 M. Raynal and C. Travers

being currently participating in the computation. (This also motivates the notion of
meaningful and meaningless invocations: an invoking process is trivially participating).

Given a set X of participating processes that invoke leader(X), the eventual multi-
leadership property states that there is a time after which these processes obtain the
same set LX of at most k leaders, and at least one of them is a correct process of X . Let
us observe that the (at most k−1) other processes of LX can be any subset of processes
(correct or not, participating or not).

It is important to notice that the time τX from which this property occurs is not
known by the processes. Moreover, before that time, there is an anarchy period dur-
ing which each process, as far as its leader(X) invocations are concerned, can obtain
different sets of any number of leaders. Let us also observe that if a process pi issues
two meaningful invocations leader(X1) and leader(X2) with X1 �= X2, there is no
relation linking LX1 and LX2, whatever the values of X1 and X2 (e.g., the fact that
X1 ⊂ X2 imposes no particular constraint on LX1 and LX2).

Let us consider an execution in which all the invocations leader(X) are such that
X = Π (the whole set of processes are always considered as participating). In that
case, Ωk

∗ boils down to the failure detector class denoted Ωk introduced in [18]. If
additionally, k = 1, we obtain the classical leader failure detector Ω introduced in [3].

When X ⊆ Π and k = 1, Ωk∗ boils down to the failure detector class introduced in
[6]. It is shown in [6] that Ω is weaker than Ω1

∗ that in turn is weaker than �P (the class
of eventually perfect failure detectors: after some finite but unknown time, an eventually
perfect failure detector suspects all the crashed processes and only them [2]).

3.2 The Family {Ωk
∗}1≤k≤n

It follows from the definition of Ωk
∗ , that the failure detector class family {Ωk

∗}1≤k≤n

is such that Ωk
∗ ⊂ Ωk+1

∗ .
Moreover, as just indicated, when all the leader(X) invocations are such that X =

Π , Ωk∗ boils down Ωk (as defined in [18]), from which it follows that we have Ωk ⊆
Ωk

∗ . More generally, the failure detector classes Ωk and Ωk
∗ are related as indicated in

Figure 1 where A→B means that any failure detector of the class A can be used to
build a failure detector of the class B, while A · · · >B means that it is not possible to
build a failure detector of the class B from a failure detector of the class A.

– The fact that Ωk ⊆ Ωk
∗ (top-down plain arrows) follows from the definitions of the

failure detector classes.
– The fact that Ωn and Ωn

∗ are the same class (top-down and bottom-up arrows at the
right) follows directly from their definitions.

Ω1∗ Ωk∗ Ωn−2∗ Ωn−1∗ Ωn∗

Ω1 Ωk Ωn−2 Ωn−1 Ωn

Fig. 1. Wait-free (ir)reducibility results between the families (Ωx
∗ )1≤x≤n and (Ωy)1≤y≤n
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– The fact that ∀k : 1 ≤ k < n − 1, ∀k′ : 1 ≤ k′ ≤ n, it is not possible to build
a failure detector of the class Ωk

∗ from a failure detector of the class Ωk′
(dotted

arrows) is established in Theorem 1.
– The fact that it is possible to construct a failure detector of the class Ωn−1

∗ from any
failure detector of the class Ωn−1 is established in Theorem 2.

Theorem 1. ∀k : 1 ≤ k < n− 1, ∀k′ : 1 ≤ k′ ≤ n, it is not possible to build a failure
detector of the class Ωk

∗ from a failure detector of the class Ωk′
.

Proof. To prove the theorem, it suffices to show that it is not possible to build a fail-
ure detector of the class Ωn−2

∗ (the weakest class in the family (Ωk
∗ )1≤k≤n−2) from

a failure detector of the class Ω1 (the strongest class in the family (Ωk)1≤k≤n). The
proof is by contradiction. Let us assume that there is an algorithm A that builds a fail-
ure detector of the class Ωn−2∗ from a failure detector of the class Ω1 (5). We construct
an infinite run in which at least one of the failure detectors Ω1 or Ωn−2

∗ fails to meet
its specification. The construction uses the following claim. Let LEADER() denote the
leader primitive of Ω1. Recall that leader(X) is the leader primitive of Ωn−2∗ .

Claim C. Let R be an arbitrary run in which each process is correct. Moreover, in run
R, each process pi periodically invokes leader(X) for each X such that i ∈ X ∧ |X | =
n − 1. Let τ be a time at which the leadership properties of both Ω1 and Ωn−2

∗ are
satisfied (i.e., all the invocations of LEADER() return the same process id, and, for any
set X , all the invocations leader(X) return the same set). We claim that there is a run
R1 of the algorithmA such that

– R1 is indistinguishable from R up to time τ .
– In R1, there is a process px and a time τ1 > τ such that (1) the outputs of Ω1 at

τ and τ1 are different, or (2) the outputs of Ωn−2∗ (for some set X) at τ and τ1 are
different.

– No process crashes in R1.

Proof of the claim. By the claim assumption, the leadership properties of both Ω1 and
Ωn−2∗ are satisfied at time τ in R. In particular, we have:

1. Ω1 outputs at each process the same leader identity �.
2. Let X = Π −{�}. At time τ , ∃L such that |L| ≤ n− 2, and, for each process pi ∈

X , leader(X) = L. Let L′ = L∩X . We have |L′| ≤ n− 2. As |X | = n− 1, there
is a process px such that x ∈ X − L′. Moreover, x �= � (because X = Π − {�}).

We show that, from the previous observations, we can build a run R1, identical to R
up to time τ , such that there exists a time τ ′ > τ at which we have:

– Ω1 outputs at some process a leader �1 �= � or,
– At process px, leader(X) �= L.

5 Let us recall that the output of Ω1 at a given process pi is local. This means that for the output
of Ω1 at pi be known by the thread implementing the algorithm A at pj , it is necessary that
that output be written in the shared memory.
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Let us consider the run R′ defined as follows. R′ is the same as R up to time τ . At
time τ +1, every process in L′ crashes. Moreover, from τ , all the invocations LEADER()
of Ω1 output � in R′. Due to the eventual multi-leadership property of Ωn−2∗ , there is a
time τ1 > τ+1 such that the invocations of leader(X) at process px return L1 �= L. This
is because the set that is returned (namely, L1) has to be such that L1∩X∩Correct �= ∅,
and, as the processes of L′ have crashed, we have L ∩ X ∩ Correct = ∅ (recall that
L′ = L ∩X).

Let us now consider the run R1 identical to R up to time τ + 1. During the interval
[τ + 1, τ1] the processes in L′ do not take any step as far the algorithmA is concerned.
The other processes behave exactly as in R′. If Ω1 outputs �′ �= � at some process py ,
the claim follows. Otherwise, let us observe that, for any process py (such that y /∈ L′),
R1 cannot be distinguished from R′. In particular, the algorithm A outputs, at process
px, L1 �= L at time τ1 when px issues leader(X). End of the proof of the claim.

Let us consider an arbitrary run R0 in which each process is correct. There is a time
τ1 (1) at which the leadership properties of both failure detectors Ω1 and Ωn−2

∗ are
satisfied, and (2) each process has taken at least one step. By Claim C, we can build a
run R1 identical to run R up to time τ1 and such that the output of Ω1 or Ωn−2∗ (for
some input parameter X) at some process has changed at time τ ′

1 > τ1.
In run R1, we can find a time τ2 > τ ′

1 such that each process has taken at least
one step between τ ′

1 and τ2 and the leadership properties of Ω1 and Ωn−2
∗ are satisfied

at time τ2. By applying Claim C, we can build a run R2 identical to R1 up to time
τ2, etc. By iterating this process, we obtain an infinite run R and an infinite sequence
of increasing times (τ1, τ

′
1, τ2, τ

′
2, . . .) such that ∀i > 0, ∃px(i) such that, at px(i) the

output of Ω1 or Ωn−2
∗ (for some parameter X) is not the same at time τi and τ ′

i . Due to
the eventual leadership property of Ω, there is a time after which the output of Ω1 does
not change at each process. Consequently, it follows that in run R algorithm A fails to
implement Ωn−2∗ . �Theorem 1

Theorem 2. Given any failure detector of the class Ωn−1, it is possible to build a
failure detector of the class Ωn−1∗ .

Proof. The proof is constructive. Let us consider any failure detector of the class Ωn−1,
and let LEADER() be its leader primitive. Let us consider the operation leader(X) de-
fined as follows:

operation leader(X): if X = Π then return
(

LEADER()
)

else return (X) end if.
We show that leader(X) satisfies the properties of the class Ωn−1

∗ .
Let us first consider the case where X = Π . Due to the properties of Ωn−1, there is

a time after which LEADER() always returns the same set LX such that |LX | = n − 1
and LX ∩Correct �= ∅. It trivially follows that X ∩LX ∩Correct �= ∅. Consequently,
the eventual multi-leadership property is satisfied for the invocations leader(Π).

Given any set X such that X �= Π , let us now consider the case of the invocations
leader(X). The definition of leader(X) indicates that the set LX = X is then returned
by these invocations, and we have |X | = |LX | ≤ n − 1. If X contains at least one
correct process, we have X ∩ LX ∩ Correct �= ∅, and the eventual multi-leadership
property is satisfied for the invocations leader(X). If X contains no correct process, the
set returned by leader(X) can be arbitrary. �Theorem 2
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4 Ωk
∗-Based k-Set Agreement

4.1 Wait-Free k-Set Agreement

The k-set agreement has been informally stated in the introduction. It has been defined
in [4]. The parameter k of the set agreement can be seen as the degree of coordination
associated with the corresponding instance of the problem. The smaller k, the more co-
ordination among the processes: k = 1 means the strongest possible coordination (this
is the consensus problem), while k = n means no coordination at all. More precisely,
in a set of n processes, each of a subset of p ≥ 1 processes proposes a value. These
processes are the participating processes. The wait-free k-set agreement is defined by
the following properties:

– Termination (wait-free): a correct process that proposes a value decides a value
(whatever the behavior of the other processes).

– Agreement: no more than k different values are decided.
– Validity: a decided value is a proposed value.

4.2 Principles and Description of the Algorithm

The k-set agreement algorithm is described in Figure 2. A process pi that participates
in the k-set agreement invokes the operation kset proposek(vi) where vi is the value it
proposes. If it does not crash, it terminates that operation when it executes the statement
return(decidedi) (line 11) where decidedi is the value it decides.

Shared objects The processes share three objects:

– A KA object. A process pi accesses it by invoking KA.alpha proposek(ri, vi)
where ri is a round number and the value vi proposed by pi (line 07). Due to the
properties of the KA object, the value returned by such an invocation is a proposed
value or⊥.

– An array of atomic single-writer/multi-reader boolean registers, PART [1..n]. The
register PART [i] can be updated only by pi; it can read by all the processes. Each
entry PART [i] is initialized to false . PART [i] is switched to true to indicate that
pi is now participating in the k-set agreement (line 01). PART [i] is updated at most
once.

– An array of atomic single-writer/multi-reader registers denoted DEC [1..n]. DEC
[i] can be written only by pi. It can read by all the processes. Each entry DEC [i]
is initialized to ⊥ (a value that cannot be proposed by the processes). When it is
updated to a non-⊥ value v, that value v can be decided by any process. It is updated
(to such a value v or ⊥) each time pi invokes KA.alpha proposek(ri, vi) to store
the value returned by that invocation (line 07).

The algorithm. The behavior of a process is pretty simple. As in Paxos, it decouples
the safety part from the wait-free/termination part. The safety is ensured thanks to the
KA object, while the liveness rests on Ωk

∗ .
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After it has registered its participation (line 01), a process pi executes a while loop
(lines 03-09) until it finds a non-⊥ entry in the DEC [1..n] array. When this occurs, pi

decides such a value (lines 03 and 10-11).
Each time it executes the while loop, pi first computes its local view (denoted parti)

of the set of the processes it perceives as being the participating processes (line 04). It
then uses this participating set to invoke Leader() (line 05). If it does not belong to the
set returned by Leader(parti), pi continues looping. Otherwise (it then belongs to set
of leaders), pi invokes the KA object (line 07) to try to obtain a non-⊥ value from that
object. The local variable ri is used by pi to define the round number it uses when it
invokes the KA object. It is easy to see from the management of ri at line 02 and line
06 that each process uses increasing round numbers, and that no two processes use the
same round numbers (a necessary requirement for using the KA object). The properties
of KA ensure that no more than k values are decided, while the properties of Ωk

∗ ensure
that all the correct participating processes do terminate.

operation kset proposek(vi):
(1) PART [i] ← true ;
(2) ri ← (i − n);
(3) while (∀j : DEC [j] = ⊥) do
(4) parti ← {j : PART [j] �= ⊥};
(5) leadersi ← Leader(parti);
(6) if (i ∈ leadersi) then ri ← ri + n;
(7) DEC [i] ← KA.alpha proposek(ri, vi)
(8) end if
(9) end while;
(10) let decidedi = any DEC [j] �= ⊥;
(11) return(decidedi)

Fig. 2. An Ωk
∗ -based k-set agreement algorithm (code for pi)

4.3 Proof of the Algorithm

Theorem 3. The algorithm described in Figure 2 wait-free solves the k-set agreement
problem whatever the number p of participating processes in a set of n processes (this
number p being a priori unknown).

Proof

Validity. The validity property follows from the following observations:

– The value⊥ cannot decided (lines 03 and 10).
– The DEC [1..n] array can contain only ⊥ or values that have been proposed to the

KA object (line 07).
– Any value vi proposed to the KA object is a value proposed to the k-set agreement.

Agreement. The agreement property follows directly from the agreement property of
the KA object (that states that at most k non-⊥ values can be returned from that object).
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Termination (wait-free). If an entry of DEC [1..n] is eventually set to a non-⊥ value, it
follows from the test of line 03 that any correct participating process terminates. So, let
us assume by contradiction that no entry of DEC [1..n] is ever set to a non-⊥ value. Let
us first observe that all the leader() invocations issued by the processes are meaningful.

If no correct participating process decides, there is a time τ0 after which we have the
following:

– All the participating processes have entered the algorithm, and consequently the
array PART [1..n] determines the whole set of participating processes. Let X be
this set of processes.

– all the leader() invocations have X as input parameter.

It follows from the eventual multi-leadership property associated with X , that there
is a time τX ≥ τ0 such that, for all the times τ ≥ τX , all the invocations of leader(X)
return the same set LX of at most k processes, and this set includes at least one correct
participating process.

As no process decides (assumption) and each alpha proposek() invocation issued by
a correct process returns (termination property of the KA object), the correct participat-
ing processes of the set X execute KA.alpha proposek() infinitely often (lines 06-07).
It then follows from the convergence property of the KA object that these processes
obtain non-⊥ values, and deposit these values in the array DEC [1..n]. A contradiction.

�Theorem 3

5 Building a KA Object from Registers

This section presents an implementation of a KA object from single-writer/multi-readers
atomic registers. As already indicated, this algorithm is inspired from Paxos-like algo-
rithms [8,12].

5.1 Implementing KA

An algorithm constructing a KA object is described in Figure 3. It uses an array of
single-writer/multi-reader atomic registers REG . As previously, REG[i] can be written
only by pi. A register REG[i] is made up of three fields REG[i].lre, REG [i].lrww and
REG[i].val whose meaning is the following (REG[i] is initialized to < 0, 0,⊥ >):

– REG[i].lre stores the number of the last round entered by pi. It can be seen as the
logical date of the last invocation issued by pi.

– REG[i].lrww and REG[i].val constitute a pair of related values: REG[i].lrww
stores the number of the last round with a write of a value in the field REG [i].val.
So, REG [i].lrww is the logical date of the last write in REG[i].val.

(To simplify the writing of the algorithm, we consider that each field of a register can
be written separately. This poses no problem as each register is single writer. A writer
can consequently keep a copy of the last value it has written in each register field and
rewrite it when that value is not modified.)
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operation alpha proposek(r, v):
(1) REG[i].lre ← r;
(2) for j ∈ {1, . . . , n} do regi[j] ← REG[j] end do;
(3) let valuei be regi[j].val where j is such that ∀x : regi[j].lrww ≥ regi[x].lrww;
(4) if (valuei = ⊥) then valuei ← v end if;
(5) REG[i].(lrww, v) ← (r, valuei);
(6) for j ∈ {1, . . . , n} do regi[j] ← REG[j] end do;
(7) if {j|regi[j].lre ≥ r} > k then return(⊥)
(8) else return(valuei) end if

Fig. 3. A KA object algorithm (code for pi)

The principle that underlies the algorithm is very simple: it consists in using a logical
time frame (represented here by the round numbers) to timestamp the invocations, and
answering ⊥ when the timestamp of the corresponding invocation does not lie within
the k highest dates (registered in REG[1..n].lre). To that end, the algorithm proceeds
as follows:

– Step 1 (lines 01-02): Access the shared registers.
- When a process pi invokes alpha proposek(r, v), it first informs the other pro-
cesses that the KA object has attained (at least) the date r (line 01). Then pi reads
all the registers in any order (line 02) to know the last values (if any) written by the
other processes.

– Step 2 (lines 03-05): Determination and writing of a value.
Then, pi determines a value. In order not to violate the agreement property, it selects
the last value (“last” according to the round numbers/logical dates) that has been
deposited in a register REG[j]. If there is no such value it considers its own value v.
After this determination, pi writes in REG[i] the value it has determined, together
with its round number (line 05.

– Step 3 (lines 06-08): Commit or abort.
- pi reads again the shared registers to know the progress of the other processes
(measured by their round numbers), line 07. If it discovers it is “late”, pi aborts
returning ⊥. (Let us observe that this preserves the agreement property.) “To be
late” means that the current date r of pi does not lie within the window defined by
the k highest dates (round numbers) currently entered by the processes (these round
numbers/dates are registered in the field lre of each entry of the array REG [1..n]).
- Otherwise, pi is not late. It then returns (“commits”) valuei (line 08). Let us
observe that, as the notion of “being late” is defined with respect to a window of k
dates (round numbers), it is possible that up to k processes are not late and return
concurrently up to k distinct non-⊥ values.

It directly follows from the code that the algorithm is wait-free. Moreover, in order
to expedite the alpha proposek() operation, it is possible to insert the statement

if
(∣∣{j|regi[j].lre ≥ r}

∣∣ > k
)

then return(⊥) end if
between the line 02 and the line 03. This allows the invoking process to return⊥ when,
just after entering the alpha proposek() operation, it discovers it is late.
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5.2 Proof of the KA Object

Theorem 4. The algorithm described in Figure 3 wait-free implements a KA object.

Proof

Termination (wait-free). This property follows directly from the code of the algorithm
(the only loops are for loops that trivially terminate when the invoking process is correct).

Validity. Let us observe that if a value v is written in REG[i].val, that value has been
previously passed as a parameter in an alpha proposek() invocation. The validity prop-
erty follows from this observation and the fact that only⊥ or a value written in a register
REG[i] can be returned from an alpha proposek() invocation.

Convergence. Let τ be a time after which there is a set of k′ ≤ k processes such that
each of them invokes alpha proposek() infinitely often. This means that, from τ , the
values of n − k′ registers REG[x] are no longer modified. Consequently, as the k′

processes pj repeatedly invoke alpha proposek(), there is a time τ ′ ≥ τ after which
each REG[j].lre becomes greater than any REG[x].lre that is no longer modified.
There is consequently a time τ ′′ ≥ τ ′ after which the k′ processes are such that their
registers REG[j].lre contain forever the k greatest timestamp values. It follows from
the test done at line 07 that, after τ ′′, no alpha proposek() invocation by one of these k′

processes can be aborted. Consequently, each of them returns a non-⊥ value at line 08.

Agreement. If all invocations returns⊥, the agreement property is trivially satisfied. So,
let us consider an execution in which at least one alpha proposek() invocation returns
a non-⊥ value. To prove the agreement property we show that:

– Before the first non-⊥ value is returned by an invocation, there is a time at which
the algorithm has determined a set V of at least one and at most k non-⊥ values6.

– Any value v �= ⊥ returned by an invocation is a value of V .

To simplify the reasoning, and without loss of generality, we assume that a process
that repeatedly invokes alpha proposek(), stops invoking that operation as soon as it
returns a non-⊥ value at line 08.

1. Invariants. ∀j ∈ {1, . . . , n}:
– REG[j].lre is increasing (assumption on the successive round numbers used

by pj).
– REG[j].lrww ≤ REG[j].lre (because pj executes line 05 after line 01).

2. Among all the invocations that execute the test of line 07, let I be the subset of
invocations for which the predicate

∣∣{j|regi[j].lre ≥ r}
∣∣ ≤ k is true. (This means

that any invocation of I either returns a non-⊥ value -at line 08-, or crashes after
it has evaluated the predicate at line 07, and before it executes line 08.) Among the
invocations of I, let I be the invocation with the smallest round number. Let pj1 be
the process that invoked I and r the corresponding round number.

6 According to the terminology introduced in [2], the set V defines the values that are locked.
This means that from now on the set of non-⊥ values that can be returned is fixed forever: no
value outside V can ever be returned.
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3. Time instants (see Figure 4).

– Let τ be the time at which I executes line 05 (statement REG[j1] ←< r, r,
v >).

– Let τ ′ be the time just after I has finished reading the array REG [1..n]. Without
loss of generality, we consider that this is the time at which I locally evaluates
the predicate of line 07.

– Let τ [j] be the time at which I reads REG[j] at line 06. We have τ < τ [j] < τ ′.

τ τ [j] τ ′

REG [j1]←< r, r, v > regj1 [j]← REG [j]
∣∣{j|regj1 [j] ≥ r}

∣∣ ≤ k is satisfied
line 05 line 06 line 07

Fig. 4. Time instants with respect to accesses to the registers REG[1..n]

4. From τ [j] < τ ′, the fact that predicate
∣∣{j|regj1 [j].lre ≥ r}

∣∣ ≤ k is true at τ ′, and
the monotonicity of REG[j].lre, we can conclude that a necessary requirement for
the predicate REG [j].lre ≥ r to be true at τ is that it is true at τ ′.
Let L = {j1, . . . , jx, . . . , j�} be the set of processes pj such that REG[j].lre ≥ r
is true at τ . As the predicate

∣∣{j|regi[j].lre ≥ r}
∣∣ ≤ k is true at τ ′, we have

1 ≤ � = |L| ≤ k.
5. From the previous item, we conclude that there are at least n− � ≥ n− k entries j

of the array REG[1..n] such that REG[j].lre < r at time τ . Let L denote this set
of processes (L and L define a partition of the whole set of processes).

6. Let the τ -time invocation of pj be the invocation issued by pj whose round number
is the value of REG[j].lre at time τ (assuming a fictitious initial invocation if
needed).

7. The τ -time invocations of the processes pj in L define a set, denoted V , including
at most � ≤ k values, such that these values are written in REG[1..n] with a write
timestamp (value of the field REG[j].lrww) that is ≥ r. This claim follows from
the following observation.

– The τ -time invocation by pj1 (namely I) writes a value and the round number
r in REG[j1].

– Let pjx ∈ L, pjx �= pj1 . From the definition of L, it follows that the round
number of the τ -time invocation issued by pjx is REG[jx].lre = r′ > r. When
it executes that invocation, pjx atomically executes REG[jx] ←< r′, r′, v′ >
(if it does not crash before executing the line 05).

– It is possible that, on one side, no process in L crashes before executing line 05,
and, on another side, all the values that are written are different. It consequently
follows that up to � ≤ k different values (with a write timestamp lrww ≥ r)
can be written in REG[1..n]. Hence, V can contain up to k values.

– Moreover, it is also possible that each process in L returns at line 08 the value
it has selected at line 05 (this depends on the value of the predicate evaluated
at line 07). Consequently each value of V can potentially be returned.
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8. Given an execution, the previous item has extracted a non-empty set V of at most
k non-⊥ values that can be returned. We now show that (1) from τ , only values of
V can be written in REG[1..n] with a timestamp field (lrww) greater than r, and
(2) a non-⊥ value returned by an invocation is necessarily a value of V .
(a) The τ -time invocation issued by any pj ∈ L has a round number REG [j].lre

that is smaller than REG[j1].lre = r (this follows from the definition of L). As
by definition, r is the smallest round number during which a process finds true
the predicate of line 07, it follows that any pj ∈ L needs to issue an invocation
with a round number greater than r to have a chance to return a non-⊥ value.

(b) Let I ′ be the set of all the invocations that have a round number greater than
r. They are issued by the processes of L or the processes of L whose τ -time
invocation has returned ⊥ at line 07. Let us observe that any invocation of I ′
starts after τ .
Let I ′ be the first invocation of I ′ that executes 05. I ′ (issued by some pro-
cess pj) selects (at line 03) a value valuej from a register REG[y] such that
REG[y].lrww ≥ REG[j1].lrww = r. As up to now, only processes of L have
written values in REG[1..n] with a write timestamp (lrww) ≥ r, it follows
that I ′ selects a value from V 7. Consequently, this invocation does not add a
new value to V .
Let I ′′ be the invocation of I ′ that is the second to execute line 05. The same
reasoning (including now I ′) applies. Etc. It follows from this induction that a
value written at line 05 by an invocation of I ′ is a value of V , which proves that
only values of V can be written in the array REG [1..n] with a write timestamp
greater than r.

(c) Finally, an invocation that returns a value at line 08, returns the value it has
written at line 05. Due to the definition of r, its round number r′ is ≥ r. It
follows that the non-⊥ value that is returned is a value of V . �Theorem 4

6 Conclusion

Considering asynchronous systems equipped with a failure detector object, this paper
focused on the set agreement problem when only a subset of the processes participate,
namely, the wait-free set agreement problem. Wait-free means here that a correct pro-
cess has to decide a value, whatever the behavior of the other processes (that can be
correct or not and participate or not).

A wait-free failure detector-based k-set agreement algorithm has been presented.
Its design principles follows the Paxos approach, decoupling the way the safety and
the termination properties are guaranteed. The algorithm safety is based on an object
denoted KA that can be built from single-writer/multi-reader atomic registers. The live-
ness property is based on a leader failure detector class, denoted Ωk

∗ , that takes into

7 It is possible that, when I ′ reads the array REG [1..n] at line 02, not all the values of
V have yet been written in that array. The important points are here that (1) at least one
value of V has already been written in the array (namely, REG[j1].val with the timestamp
REG [j1].lrww = r), and (2) any register REG[x] that currently contains a value not in V , is
such that REG [x].lrww < r.
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account the participating processes. The very existence of the algorithm shows that Ωk
∗

is sufficient to wait-free solve the k-set agreement problem. Showing that Ωk
∗ is also

necessary, or defining a class of weaker failure detectors solving the k-set agreement
problem, remains one of the greatest research challenges for the fault-tolerant asyn-
chronous computing theory community.
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Abstract. This paper considers the k-set-agreement problem in a syn-
chronous message passing distributed system where up to t processes can
fail by crashing. We determine the number of communication rounds
needed for all correct processes to reach a decision in a given run, as
a function of k, the degree of coordination, and f ≤ t the number
of processes that actually fail in the run. We prove a lower bound of
min(�f/k�+2, �t/k�+1) rounds. Our proof uses simple topological tools
to reason about runs of a full information set-agreement protocol. In
particular, we introduce a topological operator, which we call the early
deciding operator, to capture rounds where k processes fail but correct
processes see only k − 1 failures.

Keywords: Set-agreement, topology, time complexity, lower bound,
early global decision.

1 Introduction

This paper studies the inherent trade-off between the degree of coordination
that can be obtained in a synchronous message passing distributed system, the
time complexity needed to reach this degree of coordination in a given run of
the system, and the actual number of processes that crash in that run. We do
so by considering the time complexity of the k-set-agreement [3] (or simply set-
agreement) problem. The problem consists for the processes of the system, each
starting with its own value, possibly different from all other values, to agree on
less than k among all initial values, despite the crash of some of the processes.
The problem is a natural generalization of consensus [9], which correspond to
the case where k = 1.

Most studies of the time complexity of k-set-agreement focused on worst-case
global decision bounds. Chaudhuri et al. in [4], Herlihy et al. in [14], and Gafni
in [10], have shown that, for any k-set agreement protocol tolerating at most t
process crashes, there exists a run in which �t/k�+1 communication rounds are
needed for all correct (non-crashed) processes to decide. This (worst-case global
decision) bound is tight and there are indeed protocols that match it, e.g., [4].

This paper studies the complexity of early global decisions [5]. Assuming a
known maximum number of t processes that may crash, early-deciding protocols
are those that takes advantage of the effective number f ≤ t of failures in any
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run. In particular, for runs where f is significantly smaller than t, such protocols
are appealing for it is often claimed that it is good practice to optimize for the
best and plan for the worst.

More specifically, assuming a maximum number t of failures in a system of n+1
processes, we address in this paper the question of how many communication
rounds are needed for all correct (non-crashed) processes to decide (i.e., to reach
a global decision) in any run of the system where f processes fail. Interestingly,
there is a protocol through which all correct processes decide within min(�f/k�+
2, �t/k�+ 1) rounds in every run in which at most f processes crash [11].

We prove in this paper a lower bound of min(�f/k� + 2, �t/k� + 1) on the
round complexity needed to reach a global decision in any run in which at most
f processes crash. The bound is thus tight. Our result generalizes, on the one
hand, results on worst-case global decisions for set agreement [4,14], and on the
other hand, results on early global decisions for consensus [16,2]. As we discuss
in the related work section, our bound is also complementary to a recent result
on early local decisions for set-agreement [11] with an unbounded number of
processes.

To prove our lower bound result, we use the topological notions of connectivity
and pseudosphere, as used in [14], and we combine them with a mathematical
object which we introduce and which we call the early-deciding operator. This
combination provides a convenient way to describe the topological structure of
a bounded number of rounds of an early-deciding full information synchronous
message-passing set-agreement protocol.

We prove our result by contradiction. Roughly speaking, we construct the
complex (set of points in an Euclidean space) representing a bounded number of
rounds of the protocol, where k processes crash in each round, followed by a single
round in which k processes crash but no process sees more than k−1 crashes. In
a sense, we focus on all runs where processes see a maximum of k failures in each
round, except in the last round where they only see a maximum of k−1 failures.
Interestingly, even if all failures are different, all correct processes need to decide
in this round (to comply with the assumption, by contradiction, of (�f/k�+ 1).
We prove nevertheless that the connectivity of the resulting complex is high
enough, and this leads directly to show that not all correct processes can decide
in that complex, without violating the safety properties of k-set-agreement.

Roadmap. The rest of the paper is organized as follows. Section 2 discusses the
related work. Section 3 gives an overview of our lower bound proof. Section 4
presents our model of computation. Section 5 presents some topological pre-
liminaries, used in our lower bound proof. Section 6 presents the actual proof.
Section 7 concludes the paper with an open problem.

2 Related Work

The set-agreement problem was introduced in 1990 by Chaudhuri in [3]. Chaud-
huri presented solutions to the problem in the asynchronous system model where
k− 1 processes may crash, and gave an impossibility proof for the case where at
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least k processes might crash, assuming a restricted class of distributed protocols
called stable vector protocols.

In 1993, three independent teams of researchers, namely Herlihy and Shavit
[15], Borowsky and Gafni [1], and Saks and Zaharoglou [18], proved, concurrently,
that k-set-agreement is impossible in an asynchronous system when k processes
may crash. All used topological arguments for showing the results. (Herlihy
and Shavit later introduced in [15] a complete topological characterization of
asynchronous shared-memory runs, using the concept of algebraic spans [13] for
showing the sufficiency of the characterization.)

Chaudhuri et al. in [4], and Herlihy et al. in [14], then investigated the k-set-
agreement problem in the synchronous message-passing system, and established
that, any k-set-agreement protocol tolerating at most t process crashes, has at
least one run in which �t/k� + 1 rounds are needed for all processes to decide.
This is a worst-case complexity bound for synchronous set-agreement.

Dolev, Reischuk and Strong were the first to consider early-stopping protocols
(best-case complexity). In particular they studied in [5] the Byzantine agreement
problem, for which they gave the first early-stopping protocol. Keidar and Ra-
jsbaum in [16], and Charron-Bost and Schiper in [2], considered early-deciding
consensus and proved that f +2 rounds are needed in the synchronous message-
passing system for all processes to decide, in runs with at most f process crashes.

Early-deciding k-set-agreement was first studied by Gafni et al. in [11]. An
early-deciding k-set-agreement protocol was proposed, together with a matching
lower bound. As we discuss now, the bound we prove in this paper and that
of [11] are in a precise sense incomparable. On the one hand, the bound was
given in [11] for the case where the number n of processes is unbounded. It is in
this sense a weaker result than the one we prove here. Indeed, that lower bound
does not generalize the results on consensus where n + 1 (the total number of
processes), and t (the number of failures that may occur in any run) are fixed,
nor on the (worst-case) complexity of k-set-agreement. In the present paper,
we assume that n and t are fixed and known, and we present a global decision
lower bound result that thus generalizes the results on the time complexity of
early-deciding consensus and the worst-case time complexity of k-set-agreement
[4,14,16,2]. All considered global decision with a fixed number of processes.

On the other hand, the bound of [11] states that no single process may decide
within �f/k� + 1 rounds. In this sense, the result of [11] characterizes a local
decision [7] bound and is in this sense stronger than the bound of this paper.
Coming up with a bound on local decisions and a bounded number of processes
is an open question that is out of the scope of this paper.

3 Overview of the Proof

Our lower bound proof relies on some notions of algebraic topology applied
to distributed computing, following in particular the work of [15]. In short, an
impossibility of solving set-agreement comes down to showing that the runs, or
a subset of the runs, produced by a full-information protocol (a generic protocol
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where processes exchange their complete local state in any round), gathered
within a protocol complex, have a sufficiently high connectivity. Connectivity is
an abstract notion of algebraic topology which, when used in the context of
set-agreement, captures the fact that the processes are sufficiently confused so
that they would violate set-agreement if they were to decide some value; i.e.,
they would decide on more than k values in at least one of the runs. Basically,
0-connectivity corresponds to the traditional graph connectivity, whereas (k−1)-
connectivity means the absence of ”holes” of dimension k.

Our proof proceeds by contradiction. We assume that all processes decide by
the end of round �f/k�+ 1 in any run with at most f failures, and we derive a
contradiction in two steps. The first step concerns rounds 1 to �f/k�, whereas the
second part concerns round �f/k�+1. The second step builds on the result of the
first part. In both steps, we show that that a full information protocol P , remains
highly connected, thus preventing processes from achieving k-set-agreement.

In both steps, we only focus on a subset of all possible runs. In the first step,
we gather all the runs in which at most k processes crash in any round, starting
from the set of all system states where n + 1 processes propose different values
from a value range V . The protocol complex corresponding to this subset of
runs is (k − 1)-connected, at the end of any round r [14]. Roughly speaking,
the (k − 1)-connectivity of the protocol complex at the end of round �f/k� is
made by those runs in which k + 1 processes have k + 1 distinct estimate values
(potential decisions), and would thus decide on k + 1 distinct values if these
processes had to decide at the end of round �f/k�).

Then, in the second step, we focus on round �f/k� + 1, and we extend the
protocol complex obtained at round �f/k� with a round in which, as before, at
most k processes crash, but now every process observes at most k − 1 crashes.
In other words, in this additional round �f/k� + 1, every process that reaches
the end of the round receives a message from at least one process that crashes
in round r +1. The intuition behind this round is to force processes to decide at
the end of round �f/k�+ 1, and then obtain the desired contradiction with the
computation of the connectivity. Indeed, any process pi that receives, in round
�f/k�+ 1, at least one message from one of the k processes that crash in round
�f/k�+ 1, decides at the end of round �f/k�+ 1.

This is because the subset of runs that we consider is indistinguishable for
any process at the end of round �f/k�+1, from a run that has at most k crashes
in the first �f/k� rounds, and at most k − 1 crashes in round �f/k�+ 1: a total
of k �f/k� + (k − 1) crashes. In this case, processes must decide at the end of
round �f/k�+ 1.

We finally obtain our contradiction by showing that extending the protocol
complex obtained at the end of round �f/k�, with the round �f/k�+1 described
in the previous paragraph, i.e., where at most k processes crash but any process
observes at most k−1 crashes, preserves the (k−1)-connectivity of the protocol
complex, at the end of round �f/k� + 1. By applying the result relating high
connectivity and the impossibility of set-agreement, formalized in Theorem 3, we
derive the fact that not all processes may decide at the end of round �f/k�+ 1.
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The main technical difficulty is to prove that the connectivity of the complex
obtained at the end of round �f/k�+1 is high-enough. The approach here is sim-
ilar to that of [14] in the sense that we compute connectivity by induction, using
the topological notions of pseudosphere and union of pseudospheres. Basically,
the protocol complexes of which we compute the connectivity can be viewed as a
union of n-dimensional pseudospheres which makes it possible to apply (a corol-
lary of) the Mayer-Vietoris theorem [17]. We also use here a theorem from [12],
which itself generalizes Theorem 9 and Theorem 11 of [14].

The main originality in our work is the introduction of our early-deciding
operator, which is key to showing that the connectivity is preserved from round
�f/k� to round �f/k�+ 1, i.e., even if processes see less than k failures in the
last round.

4 Model

Processes. We consider a distributed system made of a set Π of n+1 processes,
p0, . . . , pn. Each process is an infinite state-machine. The processes communi-
cate via message passing though reliable channels, in synchronous rounds. Every
round r proceeds in three phases: (1) first any process pi sends a message to all
processes in Π ; (2) then process pi receives all the messages that have been sent
to it in round r; (3) at last pi performs some local run, changes its state, and
starts round r + 1.

Failures. The processes may fail by crashing. When a process crashes, it stops
executing any step from its assigned protocol. If any process pi crashes in the
course of sending its message to all the processes, a subset only of the messages
that pi sends are received. We assume that at most t out of the n + 1 processes
may crash in any run. The identity of the processes that crash vary from one
run to another and is not known in advance. We denote by f ≤ t the effective
number of crashes that occur in any run.

Problem. In this paper, we consider the k-set-agreement problem. In this prob-
lem, any process pi is supposed to propose a value vi ∈ V , such that |V | > k
(otherwise, the problem is trivially solved), and eventually decide on a value v′i,
such that the following three conditions are satisfied:

(Validity) Any decided value v′i is a value vj proposed by some process pj .
(Termination) Eventually, every correct process decides.
(k-set-agreement) There are at most k distinct decided values.

5 Topological Background

This section recalls some general notions and results from basic algebraic topol-
ogy from [17], together with some specific ones from [14] used to prove our result.
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5.1 Simplexes and Complexes

It is convenient to model a global state of a system of n + 1 processes as an
n-dimensional simplex Sn = (s0, ..., sn), where si = 〈pi, vi〉 defines local state vi

of process pi [15]. We say that the vertexes s0, ..., sn span the simplex Sn. We
say that a simplex T is a face of a simplex S if all vertexes of T are vertexes of S.
A set of global states is modeled as a set of simplexes, closed under containment,
called a complex.

5.2 Protocols

A protocol P is a subset of runs of our model. For any initial state repre-
sented as an n-simplex S, a protocol complex P(S) defines the set of final states
reachable from them through the runs in P . In other words, a set of vertexes
〈pi0 , vi0〉, ..., 〈pin , vin〉 span a simplex in P(S) if and only if (1) S defines the
initial state of pi0 , ..., pin , and (2) there is a run in P in which pi0 , ..., pin fin-
ish the protocol with states vi0 , ..., vin . For a set {Si} of possible initial states,
P(∪iSi) is defined as ∪iP(Si). If Sm is a face of Sn, then we define P(Sm) to be
a subcomplex of P(Sn) corresponding to the runs in P in which only processes
of Sm take steps and processes of Sn\Sm do not take steps. For m < n − t,
P(Sm) = ∅, since in our model, there is no run in which more than t processes
may fail.

For any two complexes K and L, P(K ∩ L) = P(K) ∩ P(L): any state of
P(K ∩ L) belongs to both P(K) and P(L), any state from P(K) ∩ P(L) defines
the final states of processes originated from K∩L and, thus, belongs to P(K∩L).

We denote by I a complex corresponding to a set of possible initial con-
figurations. Informally, a protocol P solves k-set-agreement for I if there ex-
ists a map δ that carries each vertex of P(I) to a decision value in such a
way that, for any Sm = (〈pi0 , vi0〉, ..., 〈pim , vim〉) ∈ I (m ≥ n − f), we have
δ(P(Sm)) ⊆ {vi0 , ..., vim} and |δ(P(Sm))| ≤ k. (The formal definition of a solv-
able task is given in [15].)

Thus, in order to show that k-set-agreement is not solvable in r rounds, it is
sufficient to find an r-round protocol P that cannot solve the problem for some
I. Such a protocol can be interpreted as a set of worst-case runs in which no
decision can be taken.

5.3 Pseudospheres

To prove our lower bound, we use the notion of pseudosphere introduced in [14]
as a convenient abstraction to describe the topological structure of a bounded
number of rounds of distributed protocol in our model. To make the paper self-
contained, we recall the definition of [14] here:

Definition 1. Let Sm = (s0, ..., sm) be a simplex and U0, ..., Um be a sequence of
finite sets. The pseudosphere ψ(Sm; U0, ..., Um) is a complex defined as follows.
Each vertex of ψ(Sm; U0, ..., Um) is a pair 〈si, ui〉, where si is a vertex of Sm and
ui ∈ Ui. Vertexes 〈si0 , ui0〉, ..., 〈sil

, uil
〉 define a simplex of ψ(Sm; U0, ..., Um) if
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and only if all sij (0 ≤ j ≤ l) are distinct. If for all 0 ≤ i ≤ m, Ui = U , the
pseudosphere is written ψ(Sm; U).

The following properties of pseudospheres follow from their definition:

1. If U0, ..., Um are singleton sets, then ψ(Sm; U0, ..., Um) ∼= Sm.
2. ψ(Sm; U0, ..., Um) ∩ ψ(Sm; V0, ..., Vm) ∼= ψ(Sm; U0 ∩ V0, ..., Um ∩ Vm).
3. If Ui = ∅, then ψ(Sm; U0, ..., Um) ∼= ψ(Sm−1; U0, ..., Ûi, ..., Um), where cir-

cumflex means that Ui is omitted in the sequence U0, ..., Um.

5.4 Connectivity

Computing the connectivity of a given protocol complex plays a key role in
characterizing whether the corresponding protocol may solve k-set-agreement.
Informally speaking, a complex is said to be k-connected if it has no holes in
dimension k or less. Theorem 3 below states that a protocol complex that is
(k − 1)-connected cannot solve k-set-agreement.

Before giving a formal definition of connectivity, we briefly recall the standard
topological notions of a disc and of a sphere. We say that a complex C is an m-disk
if |C| (the convex hull occupied by C) is homeomorphic to {x ∈ Rm|d(x, 0) ≤ 1}
whereas it is an (m− 1)-sphere if |C| is homeomorphic to {x ∈ Rm|d(x, 0) = 1}.
For instance, the 2-disc is the traditional two-dimensional disc, whereas the 2-
sphere is the traditional three-dimensional sphere.

We adopt the following definition of connectivity, given in [15]:

Definition 2. For k > 0, a complex K is k-connected if, for every m ≤ k, any
continuous map of the m-sphere to K can be extended to a continuous map of
the (m+1)-disk. By convention, a complex is (−1)-connected if it is non-empty,
and every complex is k-connected for k < −1.

The following corollary to the Mayer-Vietoris theorem [17] helps define the con-
nectivity of the result of P applied to a union of complexes:

Theorem 1. If K and L are k-connected complexes, and K ∩ L is (k − 1)-
connected, then K ∪ L is k-connected.

The following theorem from [12] generalizes Theorem 9 and Theorem 11 of [14],
and helps define the connectivity of a union of pseudospheres. The proof basically
reuses the arguments from [14]. Later in the paper, we use Theorem 2 to compute
the connectivity of a complex to which we apply our early-deciding operator.

Theorem 2. Let P be a protocol, Sm a simplex, and c a constant integer. Let
for every face Sl of Sm, the protocol complex P(Sl) be (l − c − 1)-connected.
Then for every sequence of finite sets {A0j}m

j=0, ..., {Alj}m
j=0, such that for any

j ∈ [0, m],
l⋂

i=0

Aij �= ∅, the protocol complex

P
(

l⋃
i=0

ψ(Sm; Ai0 , ..., Aim)

)
is (m− c− 1)-connected. (Eq. 1)
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Proof. Since for any sequence V0, ..., Vl of singleton sets, ψ(Sl; V0, ..., Vl) ∼= Sl,
we notice that P(ψ(Sl; V0, ..., Vl)) ∼= P(Sl) is (l − c− 1)-connected.

(i) First, we prove that, for any m and any non-empty sets U0, ..., Um, the pro-
tocol complex P(ψ(Sm; U0, ..., Um)) is (m− c− 1)-connected. We introduce
here the partial order on the sequences U0, ..., Um: (V0, ..., Vm) ≺ (U0, ..., Um)
if and only if each Vi ⊆ Ui and for some j, Vj ⊂ Uj . We proceed by induc-
tion on m. For m = c and any sequence U0, ..., Um, the protocol complex
P(ψ(Sm; U0, ..., Um)) is non-empty and, by definition, (−1)-connected.
Now assume that the claim holds for all simplexes of dimension less than m
(m > c). We proceed by induction on the partially-ordered sequences of sets
U0, ..., Um. For the case where (U0, ..., Um) are singletons, the claim follows
from the theorem condition. Assume that the claim holds for all sequences
smaller than U0, ..., Um and there is an index i, such that Ui = v ∪ Vi,
where Vi is non-empty (v /∈ Vi). P(ψ(Sm; U0, ..., Um)) is the union of K =
P(ψ(Sm; U0, ..., Vi, ..., Um)) and L = P(ψ(Sm; U0, ..., {v}, ..., Um)) which are
both (m− c− 1)-connected by the induction hypothesis. The intersection is:

K ∩ L = P(ψ(Sm; U0, ..., Vi ∩ {v}, ..., Um)) =
= P(ψ(Sm; U0, ..., ∅, ..., Um)) ∼=
∼= P(ψ(Sm−1; U0, ..., ∅̂, ..., Um)).

The argument of P in the last expression represents an (m− 1)-dimensional
pseudosphere which is (m − c − 2)-connected by the induction hypothesis.
By Theorem 1, K ∪ L = P(ψ(Sm; U0, ..., Um)) is (m− c− 1)-connected.

(ii) Now we prove our theorem by induction on l. We show that for any l ≥ 0 and
any sequence of sets {Aij} satisfying the condition of the theorem, Equation 1
is guaranteed. The case l = 0 follows directly from (i). Now assume that, for
some l > 0,

K = P
(

l−1⋃
i=0

ψ(Sm; Ai0 , ..., Aim)

)
is (m− c− 1)-connected. (Eq. 2)

By (i), L = P(ψ(Sm; Al0 , ..., Alm)) is (m−c−1)-connected. The intersection
is

K ∩ L = P
(

(
l−1⋃
i=0

ψ(Sm; Ai0 , ..., Aim)) ∩ ψ(Sm; Al0 , ..., Alm)
)

=

= P
(

l−1⋃
i=0

ψ(Sm; Ai0 ∩Al0 , ..., Aim ∩Alm)
)

.

By the initial assumption (Equation 2), for any j,
l−1⋂
i=0

(Aij∩Alj ) =
l⋂

i=0

Aij �= ∅.
Thus by the induction hypothesis,

K ∩ L = P
(

l−1⋃
i=0

ψ(Sm; Ai0 ∩Al0 , ..., Aim ∩Alm)

)
is (m− c− 1)-connected.

By Theorem 1, K ∪ L is (m− c− 1)-connected.
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5.5 Impossibility and Connectivity

The following theorem, borrowed from [14], is based on Sperner’s lemma [17]:
it relates the connectivity of a protocol complex derived from a pseudosphere,
with the impossibility of k-set-agreement:

Theorem 3. Let P be a protocol. If for every n-dimensional pseudosphere
ψ(p0, ..., pn; V ), where V is non-empty, P(ψ(p0, ..., pn; V )) is (k − 1)-connected,
and there are more than k possible input values, then P cannot solve k-set agree-
ment.

6 The Lower Bound

As we pointed out in Section 3, our lower bound proof proceeds by contradiction.
We assume that there is a full information protocol Pusing which all correct pro-
cesses can decide by round �f/k�+1. We construct a complex of Pthat satisfies
the precondition of Theorem 3: namely, for any pseudosphere ψ(p0, ..., pn; V ),
where V is non-empty, P(ψ(p0, ..., pn; V )) is (k − 1)-connected. Basically, the
(k − 1)-connectivity of the protocol complex at the end of round �f/k� + 1
is made by those runs in which k + 1 processes have k + 1 distinct estimate
values, and would thus decide on k + 1 distinct values if these processes had
to decide at the end of round �f/k� + 1. The protocol complex corresponding
to the subset of runs of Pwhere, in every run, at most k processes are allowed
to fail, is (k− 1)-connected, at the end of any round r, in particular �f/k�: this
follows from the use of the topological operator §, introduced in [14]. In round
�f/k�+1, we extend the protocol complex with a last round in which at most k
process crash, but every process observes at most k− 1 crashes. In other words,
in this last round, every process that reaches the end of the round receives a
message from at least one process that crashes in the round. We show that this
extension still preserves the (k − 1)-connectivity of the protocol complex at the
end of round r + 1. We use here a notion topological operator E . We conclude
by applying the result of Theorem 3, and derive the fact that not all processes
may decide at the end of round r + 1 = �f/k�+ 1.

6.1 Single Round and Multiple Round Operators

In the proof, we use the topological round operator §, which generates a set of
runs in a synchronous message-passing model, in which at most k processes may
crash in any round. Operator § was introduced in [14]. We recall some results
about § that are necessary for presenting our lower bound proof.

The protocol complex §1(Sl) corresponds to all single-round runs of our model,
starting from an initial configuration Sl, in which up to k processes can fail by
crashing. We consider the case where k ≤ t, otherwise the protocol complex is
trivial. §1(Sl) is the union of the complexes §1K(Sn) of single-round runs starting
from Sn in which exactly the processes in K fail. Given a set of processes, let
Sn\K be the face of Sn labeled with the processes not in K. Lemmas 1, 2 and 3
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below, are Lemmas 18, 21 and 22 from [14]. The first lemma says that §1K(Sn)
is a pseudosphere, which means that §1(Sn) is a union of pseudospheres.

Lemma 1. §1K(Sn) ∼= ψ(Sn\K; 2K).

Lemma 2. If n ≥ 2k and for all l, then §1(Sl) is (l − (n− k)− 1-connected.

The connectivity result over a single round is now used to compute the connec-
tivity over runs spanning multiple rounds.

Lemma 3. If n ≥ rk + k, and §r is an r-round, (n + 1)-process protocol with
degree k, then §r(Sl) is (l − (n− k)− 1)-connected for any 0 ≤ m ≤ n.

6.2 Early-Deciding Operator

So far, we have characterized runs in which at most k processes may crash in
a round, without being interested in how many of these crashes other processes
actually see. To derive our lower bound, we focus on runs where processes see
less than k failures in the last round.

We introduce for that purpose a new round operator, E1(Sn), which gener-
ates all single-round runs from the initial simplex Sn (obtained following the
construction of the previous paragraph), in which at most k processes crash,
and any process that does not crash misses at most k−1 messages from crashed
processes (in other words, any process that does not crash receives a message
from at least one crashed process). E1(Sn) is the complex of one-round runs of
an (n + 1)-process protocol with input simplex Sn in which at most k processes
crash and every non-crashed process misses at most k − 1 messages. It is the
union of complexes E1

K(Sn) of one-round runs starting from Sn in which exactly
the processes in K fail and any process that does not crash misses at most k− 1
messages.

We first show that E1
K(Sn) is a pseudo-sphere, which means that E1(Sn) is

a union of pseudo-spheres. In the following lemma, 2K
k denotes the set of all

subsets of K of size at most k − 1.

Lemma 4. E1
K(Sn) ∼= ψ(Sn\K; 2K

k ).

Proof. The processes that do not crash are those in Sn\K. Each process that
does not crash may be labeled with all messages from processes that do not crash
(processes in Sn\K), plus any combination of size at most k − 1 of the messages
from processes that crash, represented by the subsets in 2K

k . Hence, for any i ∈
ids(Sn\K), then label(i) concatenates Sn\K, plus a particular subset of K.

To compute the union of all pseudo-spheres, we characterize their intersection
and apply Theorem 2. We order the sets K in the lexicographic order of pro-
cess ids, starting from the empty set, singleton sets, 2-process sets, etc. Let
K0, . . . , Kl be the ordered sequence of process ids less than or equal to Kl, listed
in lexicographic order.
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Lemma 5

l−1⋃
i=0

E1
Ki

(Sn) ∩ E1
Kl

(Sn) ∼=
⋃

j∈Kl

ψ(Sn\Kl; 2
Kl−{j}
k ).

Proof The proof proceeds in two parts, first for the ⊆ inclusion, then for the ⊇
inclusion.

For the ⊆ inclusion, we show that any E1
Ki

(Sn) ∩ E1
Kl

(Sn) is included in

ψ(Sn\Kl; 2
Kl−{j}
k ) for some j in Kl:

E1
Ki

(Sn) ∩ E1
Kl

(Sn) ∼= ψ(Sn\Ki; 2Ki

k ) ∩ ψ(Sn\Kl; 2Kl

k ) (1)
∼= ψ((Sn\Ki) ∩ (Sn\Kl); (2Ki

k ) ∩ (2Kk

k )) (2)
∼= ψ(Sn\(Ki ∪Kl); 2Ki∩Kl

k ) (3)

⊆ ψ(Sn\Kl; 2
Kl−{j}
k ). (4)

Equation 1 follows from the definition. Equations 2 and 3 follow from basic
properties of pseudo-spheres. Equation 4 follows from the following observation:
since Ki precedes Kl in the sequence and Ki �= Kk, then there exists at least
one process pj ∈ Kl and pj /∈ Ki. Thus we have (i) Sn\(Ki ∪Kl) ⊆ Sn\Kl and
(ii) 2Kj∩Kl

k ⊆ 2Kl−{j}
k .

For the ⊇ inclusion, we observe that for any process pj , each set Kl − {j}
precedes Kl in the sequence. Hence for any process pj , we have:

E1
Kl−{j}(S

n) ∩ E1
Kl

(Sn) ∼= ψ(Sn\Kl − {j}; 2Kl−{j}
k ) ∩ ψ(Sn\Kl; 2Kl

k ) (5)

∼= ψ((Sn\Kl − {j}) ∩ (Sn\Kl); 2
Kl−{j}
k ∩ 2Kl

k ) (6)
∼= ψ(Sn\Kl; 2

Kl−{j}
k ). (7)

Equation 5 follows from the definition of the early-deciding operator. Equation 6
follows from basic properties of pseudo-spheres, presented in Section 5.3. Equa-
tion 7 follows from the fact that Kl − {j} ∩Kl = Kl − {j}.

We denote E1(Sn) the protocol complex for a one-round synchronous (n+1)-
process protocol in which no more than k processes crash, and every process
that does not crash misses at most k − 1 messages from processes that crash.

Lemma 6. For n ≥ 2k, then E1(Sm) is (k − (n−m)− 1)-connected.

Proof. We have three cases: (i) m = n, (ii) n− k ≤ m < n, and (iii) m < n− k.
For case (i), let K0, . . . , Kl be the sequence of sets of k processes that crash

in the first round ordered lexicographically, that are less or equal to Kl. Let Kl

be the maximal set of k processes, i.e., Kl = {pn−k+1, . . . , pn}. Then we have:

E1(Sn) =
l⋃

i=0

E1
Ki

(Sn).
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We inductively show on l that E1(Sn) is (k − 1)-connected. First, observe
that for l = 0, then E1

K0
(Sn) ∼= ψ(Sn; {∅}) ∼= Sn which is (n− 1)-connected. As

n ≥ 2k, n− 1 ≥ k − 1, and E1
K0

(Sn) is (k − 1)-connected.
For the induction hypothesis, assume that:

K =
l−1⋃
i=0

E1
Ki

(Sn)

is (k − 1)-connected. Let the complex L be:

L = E1
Kl

(Sn) = ψ(Sn\Kl; 2Kl

k ).

As dim(Sn\Kl) ≥ n− k, L is (n− k − 1)-connected by Corollary 10 of [14]. As
n ≥ 2k, L is (k − 1)-connected.

We want to show that K ∪ L is (k − 1)-connected, and for that, we need to
show that K ∩ L is at least (k − 2)-connected. We have:

K ∩ L =
l−1⋃
i=0

E1
Ki

(Sn) ∩ E1
Kl

(Sn) (8)

=
⋃

j∈Kl

ψ(Sn\Kl; 2
Kl−{j}
k ). (9)

Equation 8 follows from the definition of K and L. Equation 9 follows from
Lemma 5.

Now let Ai = 2Kl−{i}
k . We know that:⋂

i∈Kl

Ai = {∅} �= ∅.

and Sn\Kl has dimension at least n − k, so Corollary 12 of [14] implies that
K ∩ L is (n− k − 1)-connected. As n ≥ 2k, K ∩ L is (k − 1)-connected.

For case (ii), n−k ≤ m < n. Recall that E1(Sm) is the set of runs in which only
processes in Sm take steps. As a result, the corresponding protocol complex is
equivalent to the complex made of runs of m+1 processes, out of which k−n+m
may be faulty. If we now substitute m for n, and k − n + m for k, E1(Sm) is
(k − (n−m)− 1)-connected.

For case (iii), m < n− k, k − (n−m)− 1 < −1 and thus, E1(Sm) is empty.

Combining our one-round operator E and the round operator S corresponding
to the set of runs in which at most k processes crash in a round, we obtain the
following:

Lemma 7. If n ≥ (r +1)k + k, E1(Sr(Sm)) is an (r +1)-round, (n+1)-process
protocol with degree k, then E1(Sr(Sm)) is (k− (n−m)− 1)-connected, for any
0 ≤ m ≤ n.
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Proof. We prove the theorem by induction on r. For the base case r = 0, n ≥ 2k
and thus in this case, Lemma 6 proves that E1(Sm) is (k−(n−m)−1)-connected.
For the induction hypothesis, assume the claim holds for r − 1.

We first consider the case where m = n. We denote by K0, . . . , Kl the sequence
of all sets of processes less than or equal to Kl, listed in lexicographic order. The
set of r-round runs in which exactly the processes in Ki fail in the first round can
be written as §r−1

i (§1Ki
(Sn)), where §r−1

i is the complex of for an (r − 1)-round,
(t − |Ki|)-faulty, (n + 1 − |Ki|)-process full-information protocol. The §r−1

i are
considered as different protocols because the §1Ki

(Sn) have varying dimensions.
We inductively show that if |Kl| ≤ k, then:

l⋃
i=0

E1(§r−1
i (§1Ki

(Sn))) is (k − 1)-connected.

The claim then follows when Kl is the maximal set of size k.
For the base case, we have l = 0, K0 = ∅, and thus §1∅(Sn) is ψ(Sn; 2∅) ∼= Sn,

and E1(§r−1(Sn)) is (k − 1)-connected by the induction hypothesis on r.
For the induction step on l, assume that:

K =
l−1⋃
i=0

E1(§r−1
i (§1Ki

(Sn))) is (k − 1)-connected.

By Lemma 1, we have:

L = E1(§r−1
l (§1Kl

(Sn))) = E1(§r−1
l (ψ(Sn\Kl; 2Kl))).

We recall that E1(§r−1
l ) is a rk-faulty, (n + 1 − |Kl|)-process, r-round protocol,

where n + 1 − |Kl| ≥ rk, so by the induction hypothesis, for each simplex
Sd ∈ §1Kl

(Sn) = ψ(Sn\Kl; 2Kl), E1(§r−1
l (Sd)) is (k−(n−|Kl|−d)−1)-connected.

By Theorem 2, E1(§r−1
l (ψ(2\Kl; 2Kl))) = E1(§r−1

l (§1Kl
(Sn))) = L is (k − 1)-

connected.
We claim the following property:

Claim

K ∩ L =
l−1⋃
i=0

E1(§r−1
i (ψ(Sn\Ki; 2Ki))) ∩ E1(§r−1

l (ψ(Sn\Kl; 2Kl)))

= E1(̃§r−1
l

( ⋃
i∈Kl

ψ(Sn\Kl; 2Kl−{i})

)
),

where §̃r−1
l is a protocol identical to §r−1

l except that §̃r−1
l fails at most k − 1

processes in its first round.

Proof. For the ⊆ inclusion, in the exact same manner as we have seen in the
proof of Lemma 5 and, for each i, there is some j ∈ Kl such that:
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ψ(Sn\Ki ∩ Sn\Kl; 2Ki∩Kl) ⊆ ψ(Sn\Kl; 2Kl−{j}).

We still need to show how E1(§r−1
i ) and E1(§r−1

l ) intersect. Because pj has al-
ready failed in E1(§r−1

l ), the only runs E1(§r−1
i ) that are also present in E1(§r−1

l )
are ones in which pj fails without sending any messages to non-faulty processes.
But then E1(§r−1

i ), and therefore E1(§r−1
l ), can fail at most k− 1 processes that

do send messages to non-faulty processes. Any such run is also a run of E1(̃§r−1
l ).

For the reverse inclusion ⊇, we have seen in Lemma 5 that for each j ∈ Kl:

E1
Kl−{j}(S

n) ∩ E1
Kl

(Sn) ∼= ψ(Sn\Kl; 2
Kl−{j}
k ).

It turns out that the same argument also holds for the case:

§1Kl−{j}(S
n) ∩ §1Kl

(Sn) ∼= ψ(Sn\Kl; 2Kl−{j}).

The set of runs in which the two protocols overlap are exactly those runs in
which E1(§r−1

i ) immediately fails pj , and in which E1(§r−1
l ) fails no more than

k − 1 processes. These runs comprise E1(̃§r−1
l ).

While §r−1
l has degree k, §̃r−1

l has degree k− 1. By the induction hypothesis on
r, for any simplex Sn−k, §̃r−1

l (Sn−k) is (k− 2)-connected. Let Ai = 2Kl−{i}, for
i ∈ Kl. As ∩i∈Kl

Ai = {∅} �= ∅, K ∩ L is (k − 2)-connected by Claim 6.2 and
Theorem 2. The claim now follows from Theorem 1.

If n > m ≥ n−k, E1(§r(Sm)) is equivalent to an m-process protocol in which
at most k − (n − m) processes fail in the first round, and k thereafter. This
protocol has degree k − (n−m), so E1(§r(Sm)) is (k − (n−m)− 1)-connected.

When m < n − k, k − (n − m) − 1 < −1 and E1(§r(Sm)) is empty, so the
condition holds vacuously.

Theorem 4. If n ≥ k �t/k�+ k, then in any solution to k-set-agreement , not
all processes may decide earlier than within round �f/k�+ 2 in any run with at
most f failures, for 0 ≤ �f/k� ≤ �t/k� − 1.

Proof. Consider the protocol complex E1(S	f/k
(Sm)). We have k(�f/k�+ 1) +
1 ≤ k �t/k�+ k ≤ n, thus Lemma 7 applies. Hence E1(S	f/k
(Sm)) is (k − (n−
m)− 1)-connected for any f such that �f/k� ≤ �t/k� − 1, and 0 ≤ m ≤ n. The
result now holds immediately from Theorem 3.

7 Concluding Remark

This paper establishes a lower bound on the time complexity of early-deciding
set-agreement in a synchronous model of distributed computation. This lower
bound also holds for synchronous runs of an eventually synchronous model [8]
but we conjecture a larger lower bound for such runs. Determining such a bound,
which would generalize the result of [6], is an intriguing open problem.

As we discussed in the related work section, although, at first glance, the lo-
cal decision lower bound presented in [11] seems to imply a global decision on
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k-set-agreement, the model in which early-deciding k-set-agreement was inves-
tigated in [11] relies on the fact that the number of processes is not bounded.
In fact, the proof technique we used here is fundamentally different from [11]:
in [11], the proof is based on a pure algorithmic reduction whereas we use here
a topological approach. Unifying these results would mean establishing a local
decision lower bound assuming a bounded number of processes. This, we believe,
is an open challenging question that might require different topological tools to
reason about on-going runs.
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Renaming with k-Set-Consensus:
An Optimal Algorithm into n + k − 1 Slots
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Abstract. Recently Mostefaoui, Raynal, and Travers [1] showed that with the
use of k-set-consensus they can strongly rename n processors into the range of
2n − 	n/k
. That is the overhead is n − 	n/k
. Here we reduce the range to
n + k − 1, i.e. we reduce the overhead to k − 1. For k = c the improvement
in the overhead is O(n). We first argue that such an algorithm using topological
embedding does exist. We then come-up with a novel explicit algorithm that does
not require explicit embedding. The latter technique employed is of independent
importance and interest.

1 Introduction

The Strong Renaming Problem, also called Adaptive Renaming, on n processors [2] is
for all q ≤ n participating processors to output each a unique individual integer slot
in the range 1, . . . , M(q). It is known that if the system is read-write wait-free than
M(q) = 2q−1 is an upper and lower bound [2,21]. The Weak Renaming Problem on q
processors, also called Identical or Comparison Renaming [2], imposes the same range
constraint F (n) on participating sets of any size q ≤ n , while on the other hand it
imposes symmetry over the computation. This paper deals only with Strong Renaming.

In [14] it was shown that given any k-set-consensus object then for n > k the range
can be reduced to M(n) = 2n− 2. On the flip side, if n = k + 1 and one could rename
into M(n) = 2n − 2 than such a renaming object could be used to for (k + 1, k)-set-
consensus.

While [14] was mainly concerned with showing the equivalence of tasks, in the case
at hand between reduced range Strong Renaming, and set-consensus, recently Moste-
faoui, Raynal, and Travers [1] went further and investigated the quantification question
of how much can the renaming range be reduced given that any number of processors
can reach k-set-consensus. They give a nice, simple, clean variation of the algorithm in
[3], which reduces M(n) to 2n− �n/k�.

In this paper we observe that to achieve the result of [1] there is no need to use the
full power of set-consensus, and indeed a close scrutiny of the technique in the paper
reveals it was not used.

The k-set-consensus problem [12] is a variation of consensus, in which each pro-
cessor wait-free elects a participating processor, and the number of elected processor
should not exceed k. With k = 1 we get the standard consensus. A weaker problem,
the k-test-and-set problem [9], is a variation of test-and-set in which each processor

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 36–44, 2006.
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wait-free decides 0 or 1 and the number of participating processors which decide 0, is
greater than 1 and less or equal to k. The availability of k-test-and-set is equivalent to
being able to achieve k-set-consensus between k + 1 processors (denote by (k + 1, k)-
set-consensus), but not between k+2 processors. That (k+1, k) is strictly weaker than
(k + 2, k) is a simple consequence of the BG simulation [9,4].

It turns out that for the result of Mostefaoui, Raynal, and Travers [1] k-test-and-
set is sufficient rather than k-set-consensus. Consequently, they employ the power of
k-set-consensus for any number of processor, denoted by (∞, k), only for the case
n = k + 1. Yet, for n = k + 2 they do not take advantage of the full power of the
available object. Can one utilized that unused power? This paper answer the question
positively by showing that with k-set-consensus for any number of processors one can
get a strictly, order of magnitude, better result.

Mostefaoui, Raynal, and Travers [1] show that with k-set-consensus they can achieve
M(n) = 2n − �n/k�. For say k = 2 this will yield 1.5n. In contrast we reduce the
range to M(n) = n+ k− 1, which for k = 2 is n+1, i.e., just one extra slot overhead.
Resulting an O(n) improvement.

We do this using ideas from the simplex-agreement algorithm in [10,21]. For a task to
be solvable using k-set-consensus, the link of any simplex has to be k−1-connected. If
this is the case, the algorithm in [10] proceeds in round-by-round [6] phases. Implicitly
all processes agree on a sub-simplex s of processors that has converged. They then
using k-set-consensus decide on at most k starting vertices in the link of s, and they
then reach epsilon-agreement [7] on the link since it is k− 1-connected. Consequently,
at least one more processor can converge. In the case of renaming as we argue next, for
a link of a simplex to be k − 1-connected we need an overhead of at most k − 1 slots,
hence the result.

Doing epsilon-agreement [7] on the link of s in the renaming case, with at most
k − 1 slots overhead, and at most k actual starting points, is a task A that is solvable
if and only if the k − 1 overhead results in k − 1 connectivity. As we explain in the
body, this task A is derived from the renaming task. We call this task the colorless
renaming task. To show that k − 1 overhead results in k − 1 connectivity, we use a
rather novel approach. We define a task B on k processors whose first phase using the
general simplex-agreement algorithm in [10] is actually the epsilon-agreement problem
we want to solve. Thus if B is solvable then A is. To show that B is solvable we give
an algorithm, which in our case is a variation of the renaming algorithm in [2].

Yet, this scheme that relies on the solvability of an epsilon-agreement in a task A,
relies on some given embedding of a provably exiting protocol complex for the task B,
thus we call the resulting algorithm, an implicit algorithm.

The key to the explicit algorithm is the is this read-write wait-free solution to the
task B on k processors. While in the implicit algorithm we have used it existence to
argue the exitence of a solution to the colorless version, here we use the algorithm
itself.We then use the equivalence between regular shared-memory and Iterated Imme-
diate Snapshots (IIS) [10], and the explicit transformation given there to arrive at an
explicit algorithm for B in the IIS model. We then show how to solve the task A given
an IIS solution to B, by showing how any number of processors can solve the colorless
version of the task of Immediate Snapshots on k processors. The latter uses the idea
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of “shepherding-tokens” down the ladders of Immediate-Snapshot implementation [3].
The idea of “shepherding-tokens” is not new and has been employed by the author nu-
merous times in the past. Yet, combining the simulation of read-write by IIS, together
with a solution to the colorless IS, to produce a phase in a convergence algorithm, is a
new, major step, in deriving a general schema of solving tasks explicitly.

The paper is organized as follow: In the next section we outline the general scheme
by which both the implicit and explicit algorithm evolve. We then outline the implicit
algorithm followed by a section that outlines the explicit algorithm. Both sections are
divided into two subsections. Since both the implicit and explicit algorithm evolve in
round-by-round phases, we use the detailed explanation of the first simpler phase, as an
introduction to the more involved phases that follows. The first phase is simpler since
there a common-knowledge by all processors of the initial conditions of the phase -
something which is lost in all but the first phase. We finish with concluding remarks.

2 The Scheme

The algorithm evolves in round-by-round phases [6]. At the beginning of a round pro-
cessors select at most k distinct processors which have not been assigned a slot as yet,
using k-set consensus. With each selected processor pi there is an associated converge
set CSi whose elements are pairs (pj , slj), each consisting of a processor name pj and
a slot slj . The interpretation is that pi “suspects” that processors in tuples CSi have
terminated, each acquiring the associated slot. An invariant of the algorithm is that if pj

terminated acquiring slj then the pair (pj , slj) will belong to any set CSi. Similarly, if
slot slj is suspected by some processor to have been taken by processor pj , then that
slot is not suspected by any processor to have been taken by any other processor other
than pj .

At each phase we are guaranteed the progress that at least one new processor will ter-
minate acquiring a unique individual slot. The algorithm maintains the invariant that if
cumulatively until that phase, m distinct processors have been selected, then the largest
slot acquired is m + k − 1.

The first phase is easier than other phases since at the first phase all processors pi

start with CSi = ∅. The detailed description and analysis of the first phase is a good
introduction to the more involved generic phases that precede it, when the converge set
of different processors might differ.

3 The Implicit Algorithm

3.1 The First Phase

Using k-set consensus each processor selects a participating processor and consequently
the number of selected processor is at most k. At least one selected processor pi will
choose some slot sli and terminate in the first phase. All processors pj which will not
terminate and move to the next phase will have their suspected set CSj containing the
element (pi, sli) and sli ≤ 2k−1. To affect this outcome, we now face a new interesting
task which we call colorless family renaming:
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The task is as follows: Let all processor that select pi be considered to belong to the pi

family. Thus we have the processors partitioned into at most k families. If a processor
from the pi family participates in the task let us say that the family pi participates.
Thus, wait free, each processors has to decide a unique slot slj for some participating
family pj , such that no other processor decides another slot for pj , and no other family
pl is decided by any processor to slot slj . Moreover, if the number of families that
participate is m then the highest slot assigned is 2m − 1. This is similar to group-
renaming [15], with two distictions. In group-renaming a processor from family pi has
to decide a slot for family pi, while in colorless family renaming, it can decide a slot
for any participating family pj rather than its own, pi. The second distinction is that
while in group-renaming few slots may be decided for the same family, here a family if
decided is decided to the same slot by all processor who decide for that family.

Is colorless family renaming read-write wait-free solvable?
We answer on the affirmative through a rather general result that for any task T one

can define a new task called colorless family T , denoted by CF (T ), and that if T is
read-write wait-free solvable then CF (T ) is. If we take the colorless family renaming
task we can see it is the colorless family version of renaming. Since renaming is solv-
able, this will prove that the task of colorless family renaming is read-write wait-free
solvable.

3.2 The Implicit r/w Wait-Free Solvability of CF (T )

Let T be a task. We define a new task CF (T ) where for each processor pi in the task T ,
we now in CF (T ) have a family of processors, called family pi. If P is the participating
set of processors in CF (T ), we say that the family pi participates if a processor that
belong to the family pi also belongs to P . A participating processor in CF (T ) has to
output a pair (pj , Oj) such that pj is a participating family, and all the set of outputs
together can be completed to a valid tuple in T , for the processors in T that correspond
to the participating families in P .

Theorem 1. If T is r/w wait-free solvable then CF (T ) is.

Proof. This is a simple corollary of the simplex convergence algorithm in [10,21] and
the HS conditions of wait-free solvability [21]. In the first phase of the convergence
algorithm in [10] processors do epsilon-agreement, and the observation here. which
is not new, is that epsilon agreement is solvable for groups rather than just individual
processors.

3.3 Subsequent Phases

Above we have seen that there exist an algorithm for the first phase. We now describe the
process of transiting from phase to phase. This description is specialization to renaming
of the transition from phase to phase in the simplex convergence of [10].

After the first phase assume processor pj has output (pi, sli) in the colorless family
renaming. It posts its output in shared-memory. It then snapshots the posted pairs to get
the vector of pairs Sj . It then posts the vector Sj , and snapshot the posted vectors. Let
Smin be the smallest vector it snapshots in the posted vectors, and Smax be the largest.
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If a pair (pj , slj) ∈ Smin then processor pj terminates and quits with an output slj .
Else, it sets CSj = Smax and is ready to move to the second round. It is easy to see
that any maximum vector contains any minimum vector. The set of pairs in CSj are the
processors it suspects might have quit taking the associated slots.

We now make some observations: 1. If processor pj terminated with output slj , then
the pair (pj , slj) appears in CSl for all l, and 2. A processor pj which appears in a pair
within some set CSl, and does not appear in some smaller set CSl′ , has not quit.

In general, after solving the task within phase r assume pj outputs from the task is
(pi, sli). But it also has a set CSj carried over from phase r − 1. At the end of the
first phase, CSj carried over from the previous set is the empty set. Thus together with
choosing Smax and Smin as before, it also posts CSj . It then takes the intersection of
all CSi posted to get its temporary CSj . It then union this temporary CSj with Smax

to get it final CSj at the end of round r.
In the second phase processors propose to k-set-consensus an id of a processor that

has not terminated (say, their own), together with its CS snapshot. Thus, processors
divide themselves again into families. But, unlike the first phase, we now face a more
complex task. With each family pi we have an associated set of processors CSi with
the potential slots they terminated with. We want each processor to assign some family
to a slot as in phase 1. Yet now the assigned slot is not to contradict the possibility that
some processor has already acquired this slot in the previous phase and quit with it.
That is, the slot assigned has to be compatible with the intersection of all the CSs of
the participating families. Moreover, if m families participate in the phase, then the slot
assigned is at furtherest the 2m − 1 slot which is not suspected to have been taken in
the previous phase.

Call this task colorless family renaming with initial compatibility constraints,
CFRICC. We argue that CFRICC is read-write wait-free solvable. This can be seen
by looking at the single processor per family version, i.e. the standard renaming task
with initial constrains. It is easy to see that a “raising flags and ranking” algorithm a
la [2], solves the problem. Thus invoking the Colorless Family Theorem, we conclude
that the task is solvable.

4 An Explicit Algorithm

All that we change in order to get an explicit rather than implicit algorithm is the way
we solve the renaming subtask that needs to be solved in every phase. It was solved
implicitly by assuming embedding of the protocol complex and now we outline explicit
solution that does nor require embedding. The handling of the “suspect-set” CS remains
as in the implicit algorithm. As before, we now describe first an explicit solution to the
colorless family renaming without initial constraints. It will serve as a good introduction
to the explicit algorithm with the initial constraints.

4.1 An Explicit Solution to the Colorless Family Renaming with No Initial
Constraints

In [3] we have a renaming algorithm for m processors that uses at most m immediate
snapshots. Thus, it will suffice if we can solve the Colorless Family Immediate Snapshot
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problem. I.e. we have some m families of processors, and a processor has to output an
immediate snapshot for some participating family.

The Immediate-Snapshot (IS) task for a participating set P is for processor pi to
output a set Si ⊆ P such that:

1. pi ∈ Si

2. Si and Sj are related by containment, and
3. if pi ∈ Sj then Si ⊆ Sj .

The algorithm for pi to solve IS shepherding token q = i is as follows:
T [1, ..., m, 1, ..., m] initially ⊥

1. For L = m down to 1 do
(a) T [L, q] := 1
(b) Si = {j|T [L, j] = 1}
(c) if |Si| = L return Si

2. od

To solve the colorless family version we allow many processors to shepherd the same
token as follow:

TW [1, ..., m, 1, ...m], TR[1, ..., m, 1, ...., m] initially ⊥

1. For L = m down to 1 do
(a) TW [L, q] := 1
(b) Si = {j|TW [L, j] = 1}
(c) if |Si| = L then return (pj , Sj = Si) where j is such that j ∈ Si∧TR[Ll, j] =
⊥

(d) else
i. TR[L, q] := 1

ii. Si = {j|TW [L, j] = 1}
iii. if |Si| = L then return (pj , Sj = Si) where j is such that j ∈ Si ∧

TR[L, j] = ⊥
2. od

The interpretation is that a processor from one family can push a token for any par-
ticipating family. Renaming in [3] is a sequence of n immediate-snapshots. In the first
immediate-snapshot a processor can push the token of its own family. Yet he may be
able to determine a value only for another family rather than it own. Thus it goes to
the next immediate-snapshot simulating a token for another family for which the value
obtained in the first immediate-snapshot is known.

For a processor to get a value in an immediate snapshot all that we need is a full
level L containing L token in the immediate snapshot. Many processors shepherd the
same token down the level ladder. While one processor may observe a level full, another
processor which observed the memory earlier may have not seen the level full and may
take some token down. Thus, if a processor return a value for a token at some full level
it has to be sure that this token will not be dragged down later.
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To affect this we execute the level change in two sub-phases. The presence of a token
q at level L or below is signified by setting TW [L, q] := 1. It is exactly at level L if
TW [L, q] = 1 and TW [L − 1, q] = ⊥. A processor that observes token q at level L
and wants to take it down since L is not full yet, signals this by setting TR[L, q] := 1.
The observation we make is that were L to become full there will always be at least
one token such that TW [L, q] = 1 and TR[L, q] = ⊥. To see this, consider the last
token q to arrive at level L. Then no processor saw q at L when L was not full. Thus no
processor will set TR[L, q] := 1.

Using the observation it is then safe to return an immediate-snapshot for such q. Even
though later TR[L, q] may be set to 1, since we do not know really who the last one
was, then the processor that set TR[L, q] := 1, will again observe the level, will find it
full and not push the token down. Hence, anybody that will return a snapshot for q will
return the same value.

4.2 An Explicit Solution with Initial Constraints

We want to solve the Colorless Family Renaming with Initial Constraints. That is family
pi has a set CSi of suspected processors each with a slot that it allegedly acquired. The
sets CSj relate by containment, and we want processors to output each a unique slot
for some participating family such that this slot does not contradict the smallest CSj

for pj that participates.
We do not know of a simple variation of the renaming of [3] that solves CFRIC.

That algorithm evolves in round-by-round phases. The algorithm we have eluded to
before [2] to solve CFRIC is a regular shared-memory algorithm that relies heavily
on “side-effects.” How can we constructively get an IIS algorithm for CFRIC with-
out embedding? For that purpose we invoke the general transformation from shared-
memory to IIS in [10]. Thus we take the resulting algorithm in IIS, and now use the
shepherding above to solve it.

5 Conclusions

We have presented a renaming algorithm using k-set-consensus that is optimal (if there
are n processors and they rename into n + k − 2 then we can solve (k − 1, n)-test-and
set which is equivalent to (k − 1, k)-set-consensus, and k-set-consensus cannot im-
plemet (k − 1, k)-set-consensus). While the availability of consensus has no advantage
over test-and-set when renaming is concerned, both result in a minimal range renaming
possible, k-set-consensus is advantageous to k-test-and-set even for renaming. Like [1]
in the full paper we extend the result to a failure detector Ωk, by processor aborting a
phase once it realizes the participating set is more than k. Also, since k−1-resilient sys-
tem implement k-set-consensus, our algorithm is an alternative to show that l-resilient
system renames into n+ l slots [2]. The same technique here can be easily seen to solve
the open problem in [1] concerning t-resiliency affirmatively. The algorithms contains
a host of new ideas to be exploited in other contexts. Finally, our explicit algorithm uses
the transformation from shared-memory to IIS. It will be nice to get an IIS algorithm
directly.
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Abstract. This paper presents a self-stabilizing failure detector, asyn-
chronous consensus and replicated state-machine algorithm suite, the
components of which can be started in an arbitrary state and converge
to act as a virtual state-machine.

Self-stabilizing algorithms can cope with transient faults. Transient
faults can alter the system state to an arbitrary state and hence, cause
a temporary violation of the safety property of the consensus. New re-
quirements for consensus that fit the on-going nature of self-stabilizing
algorithms are presented. The wait-free consensus (and the replicated
state-machine) algorithm presented is a classic combination of a failure
detector and a (memory bounded) rotating coordinator consensus that
satisfy both eventual safety and eventual liveness.

Several new techniques and paradigms are introduced. The bounded
memory failure detector abstracts away synchronization assumptions
using bounded heartbeat counters combined with a balance-unbalance
mechanism. The practically infinite paradigm is introduced in the scope
of self-stabilization, where an execution of, say, 264 sequential steps is re-
garded as (practically) infinite. Finally, we present the first self-stabilizing
wait-free reset mechanism that ensures eventual safety and can be used
in other scopes.

Keywords: Failure Detector, Consensus, State-Machine, Wait-Free, Dis-
tributed Reset, Self-Stabilization.

1 Introduction

Self-stabilization. Self-stabilization [13,14] is a fundamental property of a sys-
tem that ensures automatic recovery of the system following the occurrence of

� Partially supported by the Israeli Ministry of Science, the Lynn and William Frankel
Center for Computer Sciences, and the Rita Altura Trust Chair in Computer
Sciences.

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 45–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



46 S. Dolev, R.I. Kat, and E.M. Schiller

faults. Self-stabilizing systems are designed to be started in an arbitrary state
and to converge to exhibit a desired behavior of the system. Recovery oriented
computing, autonomic computing and self-* computing, e.g., [24], are research
and industrial terms used extensively nowadays. The research and industrial ac-
tivities in these fields may greatly benefit from using the well-understood and
rigorous fundamentals of self-stabilization.

Consensus and failure detectors. Consensus is a fundamental and, in a sense,
a complete problem in distributed computing. A distributed task is reduced to
a centralized task by agreeing on the current distributed inputs (and the system
state) and by consequently computing the fitting outputs. Unfortunately, as
proved in [21] (and in [10,32] for shared memory) there is no asynchronous
consensus algorithm even in executions in which just one process may stop taking
steps. Fortunately, there are consensus algorithms, e.g., [29], that preserve safety
(i.e., processes never decide on different values). Liveness is achieved in well-
behaved executions (excluding, for instance, executions chosen according to [21]).
Failure detectors, e.g., [8], form a mechanism that captures the synchronization
requirements to obtain consensus liveness.

The consensus task is defined as a one-shot task, where the distributed sys-
tem is started with inputs for each process and every non-crashed process must
decide1 on a common value2 that appeared in one of the inputs3. In the scope of
self-stabilization it is possible that the processes are started in a state in which
each of them has already decided on a different value and does not take any
further steps. Hence, one-shot self-stabilizing consensus is impossible. The defi-
nition of the consensus task in the scope of self-stabilization should incorporate
the need for repeated invocations of the consensus, for example as the means
of implementing a replicated state-machine. In such a case, the requirements
for the self-stabilizing consensus must ensure eventual termination of initialized
or non-initialized execution, as well as, all the consensus requirements for the
set of processes that initialized a new session of the consensus execution. For
instance, when considering the elegant algorithm presented in [29], and allow-
ing an arbitrary state (and counters values), it is unclear whether there is a
set of executions starting in such a state that will ensure termination. This is
simply because, wrap around of counters is not considered. One may argue that
a counter of 64 bits is practically infinite. This argument does not hold in the
scope of self-stabilization since a single transient-fault may cause the counter
to reach its upper bound at once. However, as we discuss in the sequel, we do
consider an execution of 264 sequential steps as practically infinite.

Replicated state-machine. A bold application for consensus is an implemen-
tation of a fault-tolerant replicated state-machine, e.g., [29]. The abstraction of
a replicated state-machine has been proven important in several domains, e.g.,
[7,16,17].

1 This is a termination requirement for the largest possible set of executions.
2 The agreement requirement must hold in every execution.
3 The validity requirement must hold in every execution.
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Related work. The literature on failure detectors is rich; see for example the
recent surveys [22,35]. We focus on the eventual strong ♦S failure detector that
is known to be the weakest failure detector required to solve consensus [8,9] in
message-passing systems, when the majority of the processes are non-crashed.
The weakest failure detector for the case when more than half of the processes
may fail is considered in [12]. We note that the restriction on the number of
failed processes does not apply to the shared-memory settings. This is due to
the fact that a message can be delayed and the sending process can take addi-
tional steps, but a write to a register cannot be hidden from the other processes
when the writing process takes additional steps. The ♦S failure detector is an
unreliable mechanism for detecting crashes. The ♦S failure detector guarantees
that (1) eventually every process that has crashed is permanently suspected by
every non-crashed process (strong completeness property), and (2) there is a time
after which some non-crashed processes are never suspected by any of the non-
crashed processes (eventual weak accuracy property). The few self-stabilizing
failure detectors mentioned in the literature uses message-passing systems. In
[6] a self-stabilizing failure detector is presented in partial synchronous settings.
In addition to the fact that the failure detector of [6] is not designed for shared
memory systems, [6] does not handle the case of n − 1 crashed processes. The
algorithm in [27] uses randomization to construct a self-stabilizing perfect failure
detector. Recent research on failure detectors is focused in identifying the weak-
est synchrony requirements necessary for solving consensus. Aguilera et al [2]
presented a leader election algorithm (i.e., the Ω failure detector) that requires
n − 1 eventual timely outgoing links for at least one non-crashed process. In
[3] the requirements were weakened to f eventual timely outgoing links, where
f is the number of crashed processes. In [34] it is assumed that the outgoing
links may be moving (i.e., the destinations are not fixed). Note that [2,3,34] re-
quire unbounded counters while a self-stabilizing failure detector may use only
bounded counters.

Consensus is also an extensively studied topic in distributed computing, see,
for example, [5,33]. In the case of eventual (unreliable and non-randomized)
failure detectors there is a known bounded memory implementation for specific
settings. For example, in [23], the case of three processes, where only one may
fail, is considered. However, for the general case, to the best of our knowledge,
there is no memory bounded consensus algorithm for asynchronous systems.
The known algorithms require unbounded counters to preserve safety. We note
that a bounded consensus algorithm is known for the case in which failures are
instantly detected. Such failure detectors are inherently not self-stabilizing. A
self-stabilizing consensus algorithm eventually ensures safety (in the presence of
crash failures) and liveness (under reasonable synchronization assumptions for
the failure detector).

Using asynchronous reset with the purpose of circumventing unbounded val-
ues is discussed in [28]. This asynchronous reset is not wait-free and requires a
complete knowledge regarding failures of links and processes. That is, the algo-
rithm is notified when edges become either active or inactive. A resetable vector
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clocks that provide non-blocking resets in the absence of faults is presented in [4].
In case faults occur, the algorithm requires one blocking reset (i.e., a global re-
set) before the system stabilizes. Another solution for circumventing unbounded
values is self-stabilizing timestamps [1]. O(n) invocations of weak timestamps
procedures (each invocation requires O(n) operations) are used in [1] in order
to achieve bounded timestamps. We propose a wait-free reset that can be used
for implementing self-stabilizing bounded timestamps which requires only O(n)
operations per invocation (following the convergence of the wait-free reset).
Our contribution. We present a new self-stabilizing failure detector, consensus
and replicated state-machine algorithm suite in shared-memory settings. All com-
ponents can be started in an arbitrary state and converge to act as a virtual state-
machine. Thus, we gain a self-stabilizing infrastructure for the execution of self-
stabilizing applications. In addition, we present the first wait-free reset technique.

• Failure detector. Our self-stabilizing failure detector does not use randomiza-
tion and is designed for partial synchronous settings. In such settings, the inter-
leaving order of (non-crashed processes) steps is eventually somewhat restricted.
Roughly speaking, each process has a bounded heartbeat counter. The relative
advances of the counter are compared to other processes. To avoid confusion that
could arise due to the fact that the counters are bounded, we use wrap around flags
that indicate when a process has wrapped its counter. We show that bounded flags
are sufficient for computing of the relative speed of steps. This simple mechanism
identifies crashed processes and allows the active set of processes to continue in
their consensus task. Our failure detector uses synchronization assumptions that
are analogous to the settings assumed in [2]. Note that our algorithm uses shared
memory and not message-passing as in [2]. Moreover, our algorithm is memory
bounded while [2] requires unbounded counters.
• Consensus. Our self-stabilizing algorithm is able to achieve eventual safety (and
eventual liveness) using bounded memory. The consensus algorithm assumes the
existence of the obtained self-stabilizing ♦S failure detector. Generally speaking,
the algorithm is a rotating coordinator algorithm that is based on the (mem-
ory unbounded) algorithm in [31]. The processes are sequentially assigned to be
the consensus coordinator. A coordinating process that takes steps and is not
suspected as crashed, will successfully bring the system to a univalent configura-
tion (a configuration after which all decisions have the same value). A univalent
configuration is reached, once the coordinating process succeeds in writing the
proposed consensus value (which is one of the inputs) and at the moment that
every process reads this proposed value prior to becoming current coordinator.
The use of the eventual strong failure detector ensures that eventually one of
the processes (i.e., p) is never suspected. It is possible that a univalent configu-
ration is reached before the stage of the execution in which p is never suspected
as crashed. Otherwise, when p becomes the current coordinator, no other pro-
cess will become a new coordinator, and a univalent configuration is, therefore,
imposed by p.
• Replicated state-machine. We use epochs of consensus invocations for decid-
ing on the transition of the (distributed) state-machine. Note that due to the
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self-stabilizing nature of our replicated state-machine, the application executed
by the replicated state-machine should be self-stabilizing as well.

Our contribution is also in the modification made to the traditional replicated
state-machine, where the machine has to decide on a common state as well. Thus,
we tolerate an arbitrary initial configuration in which processes have different
notions regarding the current state of the state-machine. We suggest the use of
hash functions to avoid copying the entire state when possible.
• Practically infinite executions and self-stabilizing wait-free reset. We define a
set of executions that we call practically infinite executions. Practically infinite
executions are executions in which the time complexity measured by the longest
happened before chain [30] is longer than, lets say 264. Note that even if each
step takes a single nanosecond, no computer system will last such a long period
of time, and no client will wait for the last step in this sequence. In case the
suite of asynchronous consensus algorithm and failure detector does not reach
a decision within a period of time that corresponds to 264 sequential steps, the
decision value will clearly be obsolete.

The above argument is used in the scope of self-stabilization for the first time.
Rather than assuming that 264 counter is infinite, we argue regarding the amount
of time required for a chain of 264 sequential steps of counter increments. If due
to a transient fault the counter reaches its upper bound at once, a wait-free reset
takes place ensuring a subsequent practically infinite resetless execution.

Paper organization. The rest of the paper is organized as follows: The system
settings appear in Section 2; The self-stabilizing failure detector is described
in Section 3; The self-stabilizing consensus and state-machine algorithm appear
in Section 4; Concluding remarks appear in Section 5. Details and proofs are
omitted from this extended abstract and can be found in [18].

2 System Settings

We consider a shared memory system with a set of Π communicating entities
that we call processes. There are n processes in the system, with each process
having a distinct identifier in the range of 0, . . . , n−1. Each process p is associated
with a set of atomic multi-reader/single-writer registers. A process p ∈ Π can
write only in its associated register and can read any register. Process p writes
the value v to register R, by using the command write(R, v). Process pi reads
the value of register R by using the command read(R). We use capital letters
for register names, e.g., Rp. We use lower case letters, e.g., rp, for denoting the
local variables of processes that contain the values read by the process from the
register, i.e., rp contains the last value read from Rp.

Each process p is modeled by a state-machine. We use a program in pseudo
code to describe the state space and the transition function of p. In every given
instance, the state of a process p includes the process program counter, the
values of p’s local variables, and the values of the registers associated with p.
A state transition of a process p is defined by an (atomic) step. A step consists
of a sequence of internal (program) computations that ends in a single read or
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write operation to a register. A system configuration consists of the states of
all the processes. An execution is a sequence of configurations and steps E =
(c1, a1, c2, a2, . . .), where configuration ci+1 is reached by executing a step ai by
one process. A task is defined by a set of executions called legal executions (LE).
A configuration c is a safe configuration for an algorithm and task LE provided
that any execution that starts in c is a legal execution (belongs to LE). An
algorithm is self-stabilizing with relation to task LE if every infinite execution
of the algorithm reaches a safe configuration with relation to the algorithm and
the task. A process may fail by permanently stopping to execute steps. We say
that such a process crashed. Hence, it does not execute any step in a suffix of
the execution. Note that the output of a read command to a shared register of
crashed process p is constant, as only p can write to its registers. A process that
executes a step infinitely often is said to be non-crashed.

Our self-stabilizing consensus and wait-free reset algorithms are designed for
asynchronous systems (with a failure detector) and our self-stabilizing failure
detector algorithm assumes the existence of a (unknown to the processes) bound
on the (relative) execution speed of the processes.

3 Self-stabilizing Failure Detector

Fischer, Lynch and Paterson [21], (and then [10,32]) have shown that consen-
sus cannot be reached in message-passing (and then in shared memory) asyn-
chronous environments. A failure detector [8] is an oracle that identifies crashed
processes and helps to separate safety and liveness concerns in a way that may
lead to a feasible safe solution for consensus in which liveness depends only on
(synchronization or) scheduling of actions while safety always holds. We present
a self-stabilizing ♦S failure detector that satisfies the following properties:

Property 1 (Strong completeness). Every execution has a suffix in which (even-
tually) every process that has crashed is permanently suspected by every non-
crashed process.

Property 2 (Eventual weak accuracy). Every execution has a suffix in which some
non-crashed processes are never suspected by any of the non-crashed processes.

Partial Synchronous Settings and Requirements. We assume the existence
of a global clock t that is unknown to the processes. We use real time to argue
concerning progress during executions. We make no assumptions regarding local
clocks or clock synchronization.

We say that a source process is a process that executes any two successive
steps exactly δ time units (of the global clock) apart. Such a process is said to
be executing steps on time. The definition is similar to the notion of eventual
timely output links, in a message-passing model, of a process as in [2]. We also
assume that no process executes two successive steps faster than a source process
p. Namely, for every non-crashed process q and any two successive steps ai and
ai+1 of a process q, there are at least δ time units between the time in which the
communication actions of ai and ai+1 have taken place.
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We say that an infinite execution is admissible if it has at least one source
process p. Since no process is faster than p, process p executes at least one step
between any two successive steps of any process in an admissible execution.
The failure detector task is defined by a set of executions in which the strong
completeness (Property 1) and eventual weak accuracy (Property 2) hold.

The Failure Detector. The heart-beat mechanism is used for detecting crashed
processes. Processes that are not crashed signal the rest of the processes by
repeatedly changing a value in a register, read by the other processes. The failure
detector algorithm maintains a set of suspicious processes in the local variable
fd (failed detection). If process p suspects process q to have crashed, then q ∈ fd .
A non-crashed process p continuously advances a “heartbeat” counter (HBp) in
order to avoid being mistakenly suspected. Process p periodically compares the
other processes’ counters progress over time.

Since a crashed process q does not advance its heartbeat counter HBq, every
non-crashed process suspects q within a finite period of time. Process p uses a
cyclic history array hq for recording indications on the last k heartbeats (counter)
of q. If q increased its counter, p records 1 in an entry of hq. Otherwise, p records
0. Process q is suspected as crashed by p only if during the last k records of p, q
did not advance its heartbeat. Note that the “fastest process” (e.g., the source
process) is never suspected since every process marks the continuous progress of
the source process. A process that executes steps slowly may be falsely suspected
as crashed when the history size, k, is too small. A longer history provides a
more robust and accurate indication of crashed processes. However, the need for
accumulating a long history before making the decision delays failure indications.

Since a self-stabilizing failure detector has to use a bounded heartbeat counter,
each counter is incremented modulo m. In some cases, a slow process may (incor-
rectly) consider a process that has wrapped its counter, as crashed. Therefore, in
case the counter of process p wraps, p uses a balance/unbalance [15,20] protocol
to ensure that p is not considered as crashed. That is, p keeps a flag WRp,q for
every process q. Process q keeps a copy of p’s flag in LWRq,p and makes sure
that the copy always equals p’s value. When p wraps its counter, p assigns q’s
flag (WRp,q) a new value that is different from the value of LWRq,p (q’s copy
of WRp,q). Therefore, when q reads p’s flag (WRp,q), q notices the fact that p’s
counter has wrapped. The counter size (m) is chosen in a way that optimizes
the number of wraps around (to zero) with relation to balance/unbalance usage.
The registers WRp,q and LWRq,p contain a value of {0, 1, 2} in order to ensure
that p can introduce a new value and make sure that q notices the change. The
register has three values to ensure correct behavior given that processes p and
q keep a local variable for both WRp,q and LWRq,p. The value of the local
variable may differ from the value of the register. We say that p is unbalanced
towards q in case WRp,q �= LWRq,p. Otherwise, p is balanced towards q. We
use the predicate unbalance(q) to describe p’s view (indicated by the values of
wrp,q and lwrq,p) regarding its state (balanced/unbalanced) towards q. When
p’s counter is wrapped, p writes a value to WRp,q (for every q) in such a way
that the predicate unbalance(q) is true. In case wrp,q = lwrq,p, p increases lwrq,p
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Types:
HBvals = 0, . . . , m − 1 heartbeat values.
WRvals = 0, . . . , 2 (un)balanced values.
Dvals = 0, 1 process progress.

FDvals = 2Π suspects list.
Shared variables:
atomic HBp ∈ HBvals : p ∈ Π
atomic LWRp,q ∈ WRvals : p, q ∈ Π
atomic WRp,q ∈ WRvals : p, q ∈ Π
Local variables:
newhbp, lhbp,∈ HBvals : p ∈ Π
lwrp,q, wrp,q ∈ WRvals : p, q ∈ Π
hq [i] ∈ Dvals : q ∈ Π : 0 ≤ i < k
fd, newfd ∈ FDvals
procedure unbalance all():
f1. ∀q ∈ (Π − {p}) do
f2. lwrq,p ← read(LWRq,p)
f3. wrp,q ← read(WRp,q)
f4. if (wrp,q = lwrq,p)
f5. write(WRp,q, lwrq,p + 1 mod 3)
Macros:
unbalance(q) ≡ wrp,q �= lwrq,p

Do forever every Δ steps
1. newhbp ← newhbp + 1 mod m
2. write(HBp , newhbp)
3. if (newhbp = 0)
4. unbalance all()
5. i ← i + 1 mod k
6. newfd ← ∅
7. ∀q ∈ (Π − {p}) do
8. newhbq ← read(HBq)
9. wrq,p ← read(WRq,p)
10. lwrp,q ← read(LWRp,q)
11. if ((newhbq − lhbq) mod m > 0 ∨

unbalance(q))
12. hq [i] ← 1
13. else
14. hq [i] ← 0
15. if ( ∀i hq [i] = 0 )
16. newfd ← newfd ∪ {q}
17. lhbq ← newhbq

18. write(LWRp,q, wrq,p)
19. fd ← newfd

Fig. 1. Failure Detector for process p

by one modulo 3. A process q that no-
tices the wrap indication (i.e., the predi-
cate unbalance(q) is true) copies wrp,q ’s
value to LWRq,p.

In Figure 1 we present the algorithm
for the self-stabilizing failure detector.
In every iteration of the program, pro-
cess p increases the heartbeat counter
HBp (lines 1 and 2) and signals, by
executing the procedure unbalance all()
(lines 3 and 4), to all other processes
when the counter wraps around to zero.
In lines f1 through f5 process p flags
an unbalance indication towards every
other process q. In lines f2 and f3 pro-
cess p reads LWRq,p and WRp,q. If p is
balanced towards q, then process p un-
balances and writes to register WRp,q

(lines f4 and f5). A process p becomes
balanced towards q by reading register
WRq,p (line 9) and writing the value in
register LWRp,q (line 18).

Process p records the history of pro-
cess q in the cyclic history array hq.
Process p keeps the history of length
k for each process. In line 5 process p
moves to the next history entry. In line
6 process p initializes the list of new sus-
pects in newfd . In lines 8 through 14
process p reads the heartbeat counter
and the balance/unbalance indications
of every process q as well as records q’s
progress. If q increases its counter (i.e.,
q executed enough steps since p last read q’s counter), then p records 1; otherwise,
p records 0 in the history entry.

If every entry of q’s history is 0 (i.e., q did not execute enough steps during
the last k iterations), then q is suspected to have crashed (lines 15 and 16).
Otherwise, p does not suspect q. In lines 17 and 18, p keeps the last value of q’s
counter and writes the value of WRq,p to LWRp,q (i.e., balances towards q). In
line 19, process p updates its suspects list fd with the new computed suspicions.

Note that the requirement for the existence of a source process can be relaxed
to, say, the existence of a set of processes that are “fast enough”. A process p
is considered “fast enough” when no process suspects p as being crashed. Thus,
the proofs hold for a much larger set of executions, for example, executions
where a process p exists for which the history associated with p by every other
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process has at least one non-zero entry. That is, every other process increases
its heartbeat at most k times between any two successive heartbeat increases
of p. The following Theorem states the correctness of the algorithm. Details are
omitted from this extended abstract.

Theorem 1. Every admissible execution of the failure detector algorithm (Fig-
ure 1) has a suffix that satisfies the failure detector task. The suffix starts after
every non-crashed process executes (k + 3)Δ steps.

4 Self-stabilizing Consensus and Replicated State
Machine

We will now describe the self-stabilizing consensus and the replicated state-
machine algorithm using the eventual strong failure detector of the previous
section.

A self-stabilizing replicated state-machine is a collection of processes, each
of which independently implements a state-machine. Every non-crashed process
executes the same sequence of transitions and reaches the same state. In order
to guarantee that each process, eventually, executes the same transitions, we
employ a sequence of consensus instances, one for each transition. Each instance
has an epoch number, in which the processes decide on a single value (i.e., the
transition) from the possible transitions (i.e., inputs) suggested by each process.
We assume that the inputs are provided to the algorithm. The origin of the
inputs is outside the scope of our work. The self-stabilizing consensus satisfies
the following properties in the presence of the self-stabilizing ♦S failure detector:

Property 3 (Eventual termination). Every execution has a suffix in which every
non-crashed process decides on a value in every epoch.

Property 4 (Eventual Validity). Every execution has a suffix in which every non-
crashed process decides on the initial value of some non-crashed process in every
epoch.

Property 5 (Eventual Agreement). Every execution has a suffix in which no two
non-crashed processes decide on different values in every epoch.

We use the self-stabilizing consensus to implement a replicated state-machine.
The self-stabilizing replicated state-machine guarantees the following properties:

Property 6 (Eventual Coordination). Every execution has a suffix starting with
some epoch e such that for every epoch e′ > e, no two processes execute a
different transition.

Property 7 (Eventual Consistency). Every execution has a suffix starting with
some epoch e in which no two processes differ in their machine state in every
epoch.
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Asynchronous Settings and Requirements. The system is assumed to be
completely asynchronous, i.e., there are no timing assumptions. Moreover, pro-
cesses may be as slow (or fast) as one may choose them to be or they may stop
operating altogether. Processes cannot distinguish a slow process from a crashed
process. Each process is associated with a single multi-reader/single-writer reg-
ister Rp that holds O(n log n) bits.

The task of the self-stabilizing consensus is defined by a set of executions in
which eventual termination (Property 3), validity (Property 4) and agreement
(Property 5) hold. The task of the self-stabilizing replicated state-machine is
defined by a set of executions in which eventual coordination (Property 6) and
eventual consistency (Property 7) hold.

The Consensus and the State-Machine. Next we describe the consensus,
the replicated state-machine and the wait-free reset that along with the failure
detector form a bounded replicated state-machine that is self-stabilizing.

• Consensus with a rotating coordinator. The consensus ensures that no two
processes will decide on different values in an epoch. Every process (from the
set Π of processes) either follows the previous decision of others, or strives to
make a decision that the other processes would follow. A process, which does not
copy a decision value from a process that has already decided, must execute the
following sequence of scan (read from the registers of all processes) and write
operations: announce, scan, propose, scan, and decide. Each of such sequences is
identified by a unique sequence number that is called a round number.

The algorithm is based on the observation that there is no possible interleaving
of such atomic operations that allows different (transition) values for the decide
write operation. Consider a process p with the smallest round number r that
proposes and subsequently decides with round number r. The algorithm states
that any process with a round number r′ smaller than r will not decide with
r′. According to the algorithm, every process q with a higher round number
that proposes adopts the value proposed (and decided) by p. A process with a
higher round number that does not adopt p’s proposed value must scan prior to
p’s proposal. This implies that q announced before p proposed. In such a case,
p cannot decide since p finds q’s higher round number. The above observation
(i.e., that implies safety) is based on the assumption that the round numbers are
ever increasing. We assume that the round number counters do not wrap in an
execution that starts with counters initialized to zero. We show how to achieve
such an execution in the sequel.

The system achieves consensus when a single process p executes the above
sequence of steps without crashing. A process that tries to execute such a se-
quence of steps is said to be the coordinator. The failure detector assists in
moving the responsibility to the next process when a coordinator is suspected to
have crashed. The rotating coordinator paradigm [8] states that in every round
r there is a single coordinator p (i.e., p = r mod n) that carries out the above
sequence of steps. Every other process q (i.e., q is not a coordinator in r) waits
for p to decide within round r. Process q repeatedly performs scans until some
process decides, or until it is obvious (for q) that the coordinator will not decide
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within r. For example, the coordinator (of round r) is in a higher round number
than r or q’s failure detector suspects the coordinator of round r. In such cases,
q moves to a new round number, by increasing r by one.
• Self-stabilizing replicated state-machine. The replicated state-machine ensures
that every non-crashed process executes the same sequence of transitions and
reaches the same state. Each transition is associated with an instance (i.e., epoch
number) of the consensus. Every process computes the transition using the de-
cision value (in an epoch) and a fixed, hardwired, transition function (of com-
mands) in order to reach a new state.

Starting from an initial state, each process of the replicated state-machine
executes the same transitions due to the fact that the consensus decision values in
every epoch are the same. Periodically, process p compares its epoch number and
state with other processes. When p finds another process with a higher epoch,
p increases its epoch number to the highest epoch (p observed) and copies the
state (p read) from the process with the smallest identifier among the processes
in the highest epoch.

The state-machine for process p is represented by the tuple 〈ep, statep〉, where
ep is the current epoch number and statep is the state reached in the previous
epoch. When a decision is reached in epoch ep, p executes the decide() procedure,
computes the new state and increases its epoch number to ep + 1. We assume
that the epoch and the round numbers are practically unbounded (i.e., the real-
time needed to reach the highest value is practically infinite) when the system is
started from an initial state. In the case that the system starts from an arbitrary
state, we show that there is an execution suffix in which the epoch and the round
numbers are practically unbounded. That is, we allow the epoch and the round
numbers to be reinitialized to zero.
• Self-stabilizing wait-free reset. Next, we show how to resolve the contradiction
between safety, which requires that epoch and round numbers are ever increas-
ing, and the fact that the counters are bounded and may wrap around (to zero).
The fact that a counter of 64-bits (or more) is practically infinite does not hold
in the scope of self-stabilization. A single transient-fault (or incorrect initializa-
tion) may cause the counter to reach such a large value at once, not allowing the
consensus algorithm to have enough rounds to reach a decision in an epoch. A
similar argument applies to epoch numbers and the state-machine transitions.
The goal of the reset mechanism is to set all epoch and round number counters
(for every non-crashed process) to zero. Thus, following a reset, the consen-
sus and the replicated state-machine algorithm will have practically unbounded
number of rounds to reach a decision and an unbounded number of epochs to
perform transitions.

We denote by inf the maximal value of the epoch and the round number
counters (inf is related to the bounded size of the counter). In addition, we as-
sume that, when a process increases its counter beyond inf , the counter value is
not changed. We assume that the value inf is very big and is reached only when
a counter is initialized (or changed due to a transient fault) to some non-zero
(large) value.
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Whenever the epoch or the round number of process p reaches inf, p attempts
to set all counters to zero by performing a reset and by assigning zero to the epoch
and the round numbers. We associate every counter wrap with a reset sequence
number. When p performs a reset, p increases by one its reset sequence number
rseq. We will show that the reset sequence number should be in the range of 0 to
2n. Each process p keeps track of all the other processes reset sequence numbers
in the array rseq , and p’s reset sequence number is kept in rseq[p]. In addition
to the reset sequence number, p uses a balance/unbalance protocol instance with
every process q. The balance/unbalance protocol is used to identify slow or crashed
processes. When p performs a reset, p ensures that for every process q, it holds
that: wrp,q �= lwrq,p (unbalanced), by assigning a value to wrp,q if needed. That
is, if wrp,q = lwrq,p, then p increases lwrq,p by 1 modulo 3. Process p evaluates
the predicate isreset(q) to be true if in a configuration c the local variables of
process p indicate that the reset sequence number (rseqp[p] and rseqq[p]) and/or
the balance/unbalance flags (wrp,q and lwrq,p) of p and q differ.

We say that q is reset or q is flagged as reset in case the predicate isreset(q)
is true for process q. The flag indicates that q needs to set its counters to zero.
The goal of a process that performs a reset is to invalidate the values of the
epoch and the round counters of other process and signal them to assign zero to
these counters thereafter. A process q that is reset, does not strive to propose
and decide in the consensus algorithm (and is ignored by other processes). When
q notes that process p has flagged q as reset, process q acknowledges the reset by
copying the values of p’s flags and the reset sequence number and by resetting
the epoch/round number to 0. The acknowledgment indicates that q has set its
counters to zero according to the reset request.

Another possible function of the reset mechanism is to help maintaining the
common state of the replicated state-machine. We suggest using the output of
a hash function on the state instead of using the full state. Whenever a process
finds a conflict of hash values the process invokes a reset that will set the machine
state of each process to an initial, predefined state. In addition, we can enhance
the probabilistic nature of hash functions collisions by communicating the full
state (instead of the hash value) in every fixed number of epochs.

We now describe the consensus and the replicated state-machine algorithm.
Figure 2 describes the registers, variables and macros. Figure 3 contains the
procedures and Figure 4 describes the algorithm. The algorithm combines a
replicated state-machine that executes transitions and a consensus that decides
on the values of the transitions. A process p writes only to register Rp. The
register consists of a tuple 〈v, g, e, r, state, wr, lwr, rseq〉. v is p’s estimate of
the decision value in epoch e. The value of g is the consensus phase tag, which
can be either announce, propose or decide. e and r are the current epoch and
round numbers. state represents the last state of the state-machine. wr and lwr
are arrays (of size n) of the balance/unbalance values, where the value of wr[q] is
used for the unbalancing action by p and lwr[q] is used for the balancing action
by p towards q. Finally, rseq is an array of the reset sequence numbers (one reset
sequence number for each process). In the sequel, we compare instances of 〈e, r〉.
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We say that 〈e1, r1〉 > 〈e2, r2〉 if e1 > e2, or if e1 = e2 ∧ r1 > r2. We say that
a process has decided in epoch e if a non-reset process q with a higher epoch
number exists, or if a register (of a non-reset process) contains the tag decide
for epoch e. In such cases, the predicate decisionExists(e) is true.

Types:
vals = consensus decision values.
CSstate = announce, propose, decide.
CSnumber = −1, . . . , inf − 1 epoch/round number.
STMvals = Hash value on the-machine state.
WRvals = 0, . . . , 2 balance/unbalance.
RSEQvals = 0, . . . , 2n reset sequence number.
Shared variables:
atomic Rp = 〈vp, gp, ep, rp, statep, wrp, lwrp, rseqp〉
Local variables:
wrp[q], lwrp[q],∈ WRvals : p, q ∈ Π
ep, rp, rmax ∈ CSnumber
mp ∈ 〈P, vals, CSstate, CSnumber, CSnumber, STMvals〉
rseqp[q] ∈ RSEQvals : p, q ∈ Π
vp, initp ∈ vals : p ∈ Π
gp ∈ CSstate : p ∈ Π
statep ∈ STMvals : p ∈ Π
Macros:
wrp,q ≡ wrp[q]
lwrp,q ≡ lwrp[q]
unbalanced(p, q) ≡ wrp,q �= lwrq,p ∨ rsequ[u] �= rseqq [u]
isreset(q) ≡ ∃u ∈ P unbalanced(u, q)
decisionExist(e) ≡ ∃〈q, vq, decide, e, rq, ∗〉 ∈ mp :

¬isreset(q) ∨ (∃〈q, ∗, ∗, e′, ∗, ∗〉 ∈ mp : e′ > e∧
¬isreset(q))

Fig. 2. Definitions for process p

The procedure scan()
(Figure 3) reads the reg-
isters of all the pro-
cesses. The values that
are associated with the
consensus are stored in
the set mp and the
values for determining
if process q is reset
are stored in wrq , lwrq

and rseqq. The values
in mp are tuples of
〈q, vq, eq, rq, stateq〉, where
q represents the process
identifier, vq is the cur-
rent estimate of process
q, eq and rq are the
current epoch and round
numbers of q, and stateq

is the state of the state-
machine of process q.

The procedure next()
in Figure 3 advances p to a new round r + 1. First, p scans the registers (line
g1). In case p is flagged as reset, p repeats the scan (line g3), reading the reg-
isters values after the reset. Then, p resets its epoch and round number to
zero (line g4), obtains the estimate for the new epoch (line g5) and balances
any balance/unbalanced flags and reset sequence numbers (lines g6 through
g8). That is, p copies q’s unbalanced flag (wrq,p) to lwrp,q and copies q’s re-
set sequence number (rseqq [q]) to rseqp[q]. In case no process flagged p as re-
set, p checks if a process has reached an epoch/round number higher than p’s
epoch/round number and verifies the state consistency of the replicated state-
machine (lines g9 through g14). In lines g9 and g10 process p finds, using the
function index −max , a non-reset process q with the smallest identifier that has
the maximal epoch/round number 〈eq, rq〉. If 〈eq, rq〉 > 〈ep, rp〉, then p copies
〈eq, rq〉 (lines g11 and g12) and the state of q’s state-machine (line g13). In case
p does not copy an epoch or a round number from another process, p checks if
the epoch/round number reached inf. If ep or rp reached inf, then p performs a
reset (lines g15 through g19), by unbalancing (if the balance/unbalance instance
from p to q is not already unbalanced) all other processes and by increasing its
reset sequence number rseqp[p] as well. Otherwise, in lines g20 and g21, process
p increases its round number. The procedure decide() (Figure 3) computes the
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new state, advances to the next epoch and obtains the input for the new epoch.
Figure 4 describes the consensus and the replicated state-machine code. In lines
1 and 2, process p initializes the state-machine. In lines 3 through 5, process p
advances to the next round and announces its estimate. In case p is the coor-
dinator, process p executes lines 7 through 20. In lines 7 through 10 process p
checks if process q has already decided. If so, p decides after coping q’s decision
value and the state of q’s state-machine. If no process reached a higher round
than p, then in lines 13 through 16, p adopts the latest estimate that a process
has proposed. If no process has proposed, then p proposes its own estimate. In
lines 17 through 20, p verifies once more that no other process has reached a
higher round, and if so, p decides. In case p is not a coordinator (lines 22 through
29), p continuously reads the registers (i.e., the epoch/round numbers and the
reset indications) and waits for the coordinator to reach p’s round number. Due
to the fact that it is possible for the coordinator not to reach p’s round, p stops
waiting if (1) p waits for itself, or (2) p is reset, (3) a process has decided within
the epoch, or (4) the coordinator is suspected as a crashed process. In case p
exits the loop after a process has decided with p’s epoch number, then p copies
the decision value (lines 27 through 29).

procedure scan() :
f1. mp ← ∅
f2. ∀q ∈ Π do
f3. 〈vq, gq, eq , rq, stateq , wrq, lwrq, rseqq〉 ← read(Rq)
f4. mp ← mp ∪ {〈q, vq, gq, eq , rq, stateq〉}
procedure next() :
g1. scan()
g2. if (isreset(p))
g3. scan()
g4. 〈ep, rp〉 ← 〈0, 0〉
g5. vp ← new input(ep)
g6. ∀q ∈ P do
g7. lwrp,q ← wrq,p

g8. rseqp[q] ← rseqq [q]
g9. else if (∃〈q, ∗, ∗, eq , rq, stateq〉 ∈ mp :

(〈eq, rq〉 ≥ 〈ep, rp〉) ∧ ¬isreset(q))
g10. q ← index-max{〈eq, rq〉|〈q, ∗, ∗, eq , rq, stateq〉 ∈ mp :

¬isreset(q)}
g11. if (〈eq , rq〉 > 〈ep, rp〉)
g12. 〈ep, rp〉 ← 〈eq, rq〉
g13. statep ← stateq

g14. vp ← new input(ep)
g15. if (rp = inf ∨ ep = inf )
g16. ∀q ∈ P : wrp,q = lwrq,p do
g17. wrp,q ← lwrq,p + 1 mod 3
g18. rseqp[p] ← rseqp[p] + 1 mod 2n
g19. 〈ep, rp〉 ← 〈0, 0〉
g20. else
g21. 〈ep, rp〉 ← 〈ep, rp + 1〉
procedure decide() :
h1. statep ← new state(statep, vp)
h2. 〈ep, rp〉 ← 〈ep + 1,−1〉
h3. vp ← new input(ep)

Fig. 3. Procedures for process p

We use the following
in our proofs: a process
p, which executes steps in
epoch e (i.e., ep = e) and
writes a tuple with the
tag decide to register Rp,
is said to be decided in
epoch e. Note that a pro-
cess is decided after ex-
ecuting the step in lines
9, 19 or 28. A resetless
execution of the state-
machine is a practically
infinite execution, start-
ing in an arbitrary config-
uration, in which no pro-
cess flags another as re-
set.

Proof overview. First,
we show that there are
infinitely many steps in
which the round number
is increased in a resetless
execution. In the sequel,
we show that in every ex-
ecution a resetless execution exists. We prove that if there is a decision in a
certain epoch e, then there is a subsequent configuration in which a process has
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an epoch number that is at least e + 1 (assuming a resetless execution). Next,
we prove that eventually a process decides, using the eventual completeness and
eventual accuracy of the failure detector indications (that are guaranteed in ad-
missible executions). Note that this concludes the liveness arguments. Next, we
turn to prove the eventual safety property. We show that any resetless execution
has a suffix in which no two processes decide on different values with the same
epoch number.

1. 〈ep, rp〉 ← 〈0, −1〉
2. vp ← new input(ep)
do forever
3. next()
4. c ← rp mod n
5. write(Rp, 〈vp, announce, ep, rp, statep, wrp, lwrp, rseq〉)
6. if (p = c)
7. scan()
8. if (∃〈q, vq, decide, ep, rq, stateq〉 ∈ mp : ¬isreset(q))
9. write(Rp, 〈vq, decide, ep, rp, stateq , wrp, lwrp, rseq〉))
10. decide()
11. else
12. if (∀〈q, vq, ∗, eq , rq, ∗〉 ∈ mp : 〈ep, rp〉 > 〈eq, rq〉∨

isreset(q))
13. if (∃〈q, vq, propose, ep, rq, ∗〉 ∈ mp : ¬isreset(q))
14. rmax ← max{rq|〈q, vq, propose, ep, rq, stateq〉 ∈ mp :

¬isreset(q)}
15. 〈statep, vp〉 ← 〈stateq , vq〉 :

〈q, vq , propose, ep, rmax, stateq〉 ∈ mp : ¬isreset(q)
16. write(Rp, 〈vq, propose, ep, rp, statep, wrp, lwrp, rseq〉)
17. scan()
18. if (∀〈q, vq, ∗, eq , rq, ∗〉 ∈ mp : 〈ep, rp〉 > 〈eq, rq〉∨

isreset(q))
19. write(Rp, 〈vq, decide, ep, rp, statep, wrp, lwrp, rseq〉)
20. decide()
21. else
22. do
23. scan()
24. 〈ep, rp〉 ← 〈e, r〉 : 〈p, ∗, ∗, e, r, ∗〉 ∈ mp

25. c ← rp mod n
26. until {c = p ∨ isreset(p) ∨ decisionExist(ep) ∨ c ∈ fdp∨

∃〈c, vc, gc, ep, rc, ∗〉 ∈ mp : (〈ec, rc〉 > 〈ep, rp〉∧
¬isreset(c))}

27. if (∃〈q, vq, decide, ep, rq, stateq〉 ∈ mp : ¬isreset(q))
28. write(Rp, 〈vq, decide, ep, rp, stateq , wrp, lwrp, rseq〉)
29. decide()

Fig. 4. Replicated state-machine and consensus for process p

The rest of the
proof focuses on prov-
ing that practically
resetless executions
must exist. We prove
that eventually when
p invokes a reset, the
values of the regis-
ters that are used
for implementing the
reset are not equal,
and eventually, when
q notices the re-
set and acknowledges
(the reset), these val-
ues are equal. We use
the behavior of the
balance/unbalance
protocol and the re-
set sequence num-
bers to show that
eventually when a
process resets the sys-
tem, the reset is suc-
cessful. A successful
reset is the one af-
ter which every pro-
cess uses 0 as its
epoch/round number or uses a counter value that has been incremented from 0
due to steps, for which this reset has a happen-before relation. In fact, we show
that a successful reset takes place, when a process p manages (when writing a
reset indication) to introduce a new reset sequence number to every neighboring
process q and the first step of q, in which q balances, is the one that also assigns
0 to the epoch and the round numbers. We identify crashed processes by the
balance/unbalance protocol.

An important property of a successful reset is that following such a reset, in
every practically infinite execution, the epoch and the round numbers of every
process are always (much) smaller than inf . The proof is based both on the
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origin of any such epoch or round number, which is 0, and on the sequential
increment operations. The time needed to execute these sequential operations is
proportional to the value of the epoch/round numbers. Hence, reaching a value
of inf takes practically infinite time. Next, we prove that following a successful
reset of p, any process q may invoke reset at most once before acknowledging p’s
reset. We use the above small epoch and round numbers property to conclude
that no process q invokes reset after q balances, following a successful reset by
a process p. Then, we show that following a successful reset there are at most
n− 1 resets.

The final part of the proof shows that a successful reset takes place. The
proof uses the eventual behavior of the balance/unbalance and the reset sequence
numbers. The proof assumes to the contrary that there are (slightly less than)
2n2 unsuccessful resets. Every such reset, executed by a process p, is unsuccessful
due to the fact that there is at least one process q, with a large epoch or round
number, for which the unbalance attempt of p has not succeeded (i.e., q did
not reset its epoch and round numbers following the unbalance attempt of p)
and the other processes copied this large value. Note that this happens when
p does not know the actual state of the registers (i.e., when the values of the
registers and the local variables differ). When such a scenario occurs, we say that
q interferes with the reset of p. The use of reset numbers that are incremented
modulo 2n implies that q may interfere in the resets of p at most twice in every
2n sequential resets of p. Thus, when p executes 2n unsuccessful resets there is
at least one neighbor q that interferes three times. Since three interferences of
a process cannot happen, it holds that within at most 2n2 sequential resets (by
any process) at least one reset is successful.

Theorem 2 uses the above observations about the existence of a successful reset
to show that there is a practically infinite resetless execution. Moreover, assum-
ing failure detector indications in such a resetless execution, both the consensus
properties (eventual termination, validity and agreement) and the replicated
state-machine properties (eventual coordination and consistency) hold. The fol-
lowing Theorem states the correctness of the algorithm. Details are omitted from
this extended abstract.

Theorem 2. Every execution E of the consensus and the replicated state-machine
algorithm, with an eventual strong failure detector, has a practically infinite suf-
fix after at most 2n2 − n resets that satisfies the consensus and replicated state-
machine tasks.

5 Concluding Remarks

While the definition of the consensus task is a combination of the safety and the
eventual liveness properties, a self-stabilizing consensus ensures eventual safety
and eventual liveness. Moreover, the self-stabilizing consensus task is suitable
for on-going long-lived systems, in which there are repeated invocations of con-
sensus incarnations. The self-stabilizing consensus will ensure the safety and the
eventual liveness requirement starting from a consensus incarnation (epoch). In
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fact, when started in a predefined initial configuration (with epoch and round
numbers zero, and no resets or unbalance actions) safety is ensured as long as
no transient faults occur.

To the best of our knowledge our work is the first to introduce a complete
solution for a self-stabilizing asynchronous bounded memory consensus. Our so-
lution starts from the design of the self-stabilizing eventual strong failure detec-
tor. Then, we present the asynchronous bounded self-stabilizing consensus that
assumes an eventual strong failure detector. Finally, we expose all the details
required for using the self-stabilizing consensus algorithm for implementing the
self-stabilizing replicated state-machine, including stabilization of the bounded
consensus incarnation (epoch) numbers.

New consideration, namely unboundedness, is introduced and used in our al-
gorithm. One application of this work is extending the results in [11,19] to ensure
the eventual stability of the consensus output, and this time in asynchronous ex-
ecutions in the presence of transient faults and crashes.

Acknowledgments. We would like to thank Gregory Chockler and Seth Gilbert
for their fruitful discussions during the first stage of the research.
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Abstract. A distributed shared memory protocol is called memory-
adaptive, if all writes to MWMR registers are ”close to the beginning
of shared memory”, that is the indices of all MWMR registers processes
write to when executing the protocol are functions of the contention. The
notion of memory-adaptiveness captures what it means for a distributed
protocol to most efficiently make use of its shared memory. We previ-
ously considered a store/release protocol where processes are required to
store a value in shared MWMR memory so that it cannot be overwritten
until it has been released by the process. We showed that there do not
exist uniformly wait-free store/release protocols using only the basic op-
erations read and write that are memory-adaptive to point contention.
We further showed that there exists a uniformly wait-free store/release
protocol using only the basic operations read, write, and read-modify-
write that is memory-adaptive to interval contention and time-adaptive
to total contention. This left a significant gap which we close in this
paper. We show that no uniform store/release protocol can exist that
is memory adaptive to interval contention and only uses read/write (no
read-modify-write) registers. We furthermore illustrate the validity and
practicality of the concept of memory adaptiveness by providing a uni-
form, memory-adaptive to interval contention store/release protocol for
Network Attached Disks.

1 Introduction

Shared memory algorithms such as collect or renaming provide essential build-
ing blocks for many applications. Most often collect or renaming are designed
based on an a priori knowledge of an upper bound n on the number of partici-
pating processes or of an upper bound N on the ids of participating processes.
Algorithms such as collect or renaming, however, become inefficient if only few
of the n processes are actually participating. This motivated researchers to look
for adaptive algorithms whose step complexity only depends on the number of
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participating processes. Besides a possibly inefficient use of time, inefficient use
of space is also a potential drawback of many distributed algorithms. In par-
ticular many shared memory algorithms require memory space whose size is a
function of N (or n) even if only few of the processes are actually participating.
Hence to truly improve the efficiency of distributed algorithms the step com-
plexity should be made adaptive to the number of participating processes, i.e.
the contention, and the space requirements should (if possible) depend on the
number of participating processes or the contention. Following this approach
one obtains two possible kinds of adaptive algorithms: Algorithms where the
step complexity adapts to the contention are traditionally called adaptive. We
called such algorithms time-adaptive to distinguish them from algorithms where
the memory space consumption adapts to the contention that we called memory-
adaptive [27]. In memory-adaptive algorithms processes are only allowed to write
to a shared MWMR register whose index is a function of the contention (pos-
sibly point-, interval- or total contention) during the processes previous shared
memory access.

Time-adaptive algorithms have a worst case step complexity that is bounded
by a function of the number of concurrently participating, or actually active pro-
cesses [6]. Motivated by Lamport’s MX algorithm [34], many such time-adaptive
algorithms have since been designed [3,4,6,7,8,9,11,17,18,20,21,22,26,35].

With respect to memory consumption of time-adaptive renaming or collect
algorithms Afek, Boxer and Touitou [5] showed that the number of Multi-Writer
Multi-Reader (MWMR) registers used must be a function of N . They specifically
show that for any constant d there is a large enough Nd such that every long-
lived time-adaptive (to interval contention, and hence, point contention as well)
read/write implementation of collect (and renaming) with Nd processes must
use at least d MWMR registers. In their paper they use a simple object called
weak test and set [15] to derive their impossibility results. More recently Attiya,
Fich and Kaplan [19] significantly improved on [5]. They showed that if a collect
algorithm is time-adaptive to total contention, namely, its step complexity is
f(k), where k is the number of processes that ever became active during the
current execution, then it uses Ω(f−1(N)) MWMR registers, where N is the
total number of processes in the system.

In this paper we will remove the assumption of a known upper bound on the
number of participating processes and consider uniform protocols [16,29,33], i.e.,
protocols that do not require a priori knowledge of or an upper bound on the
number of processes that may participate. At the same time we will assume that
the number of participating processes is always finite.

The notion of memory-adaptiveness [27] requires that each(!) write operation
that a process makes must be close to the “front” of shared memory. The idea
here is that if protocols allow processes to write to registers whose index depends
say on the processes id and no upper bound on the number of participating
processes is known in advance then memory must be unpredictably large. On
the other hand, if we can guarantee that the memory required by each protocol
that runs on a shared memory system is a bounded function of the contention,
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then a distributed operating system can allocate large memory blocks to each
protocol on an ad hoc basis and, on rare occasions when needed, increase or
decrease the individual allocations as necessary.

Also, if processes are allowed to write to registers with arbitrary indices in
time-adaptive protocols they eventually must move the values they wrote close
to the beginning of memory for the protocol to stay time-adaptive during solo
executions. Hence ideally processes will want to register in a fixed finite subset
of the infinite set of MWMR registers that we called “close to the beginning of
shared memory” [27].

Consider the renaming problem [3,4,6,7,10,20,36] for example: processes are
allowed to use any shared MWMR register during the execution of the protocol,
even a register with an extremely large index, but the final result must lie within a
bounded distance from the front of shared memory. In the definition of memory-
adaptiveness, to capture the notion of having to write close to the front of shared
memory every time, we require processes to write to a MWMR register whose
index is a function of the contention during the previous operation of the same
process.

In [27] we investigated simple tasks, store and release, that require a given
process to store a value in shared MWMR memory that cannot be overwritten
by any other process and then to erase the value when no longer needed, freeing
the memory for other processes to use.

We studied whether these simple commands can be implemented memory-
adaptively under different assumptions about the contention of the protocol.

We showed that in a system with infinitely many MWMR registers and
infinitely many SWMR registers: 1. There is no uniform, long-lived memory-
adaptive to point-contention implementation of store/release that uses only
read/write registers. 2. There does exist a uniform, long-lived implementation
of store and release in the read-write model that is memory-adaptive to total
contention. 3. Allowing write-plus (read-modify-write) there exists a uniform,
long-lived implementation of store and release in the read-write model that is
memory-adaptive to interval contention.

The question remained, however, whether in this setting there exists a uni-
form, long-lived, memory-adaptive to interval contention store release protocol
that uses only read/write registers. This is of particular interest because one
could argue that with adaptiveness to interval contention ”true adaptiveness”
really starts, since adaptiveness to total contention allows for the memory re-
quirements to grow independent of the contention during operations. Moreover,
even though we were able to show that there exists a protocol memory-adaptive
to interval contention using read-modify-write registers, we were not able to jus-
tify the use of these stronger primitives. In this paper we will close this gap and
hence significantly strengthen our previous results.

1.1 Our Approach

To prove our impossibility result we will use a covering construction as in the
memory-adaptiveness to point contention impossibility proof in [27]. Our proof,
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however, will have to be more complex and requires greater care. In [27] we were
able to select all potentially participating processes in advance and construct
the run that produced the contradiction as a single run. Using the pigeonhole
principle we simply reduced the set of participating processes in pseudo solo runs
more and more until all MWMR registers at the beginning of shared memory
(that are accessed in solo runs) were covered. All processes that were covering
one of the MWMR registers at the end of the construction had been participating
from the beginning. If we want to obtain a contradiction to memory-adaptiveness
to interval contention, however, we cannot proceed in this manner. Every time
a new register is covered we must choose a new set of processes that never acted
before since otherwise processes could receive information about the increasing
interval contention allowing them to write to more (”new”) MWMR registers
and making it impossible for us to get a contradiction. In other words, when
we extend the covering from the first j to the first j + 1 MWMR registers that
processes write to during their pseudo solo runs, we first eliminate the traces of
the process that now covers the j+1st register. This is done by releasing covering
writes to overwrite this process. In [27] we were simply able to cover each of
the required MWMR registers with infinitely many processes and then release
covering writes as need be. Here we are not able to do this anymore. Instead
- to ensure that our construction is memory-adaptive to interval contention -
we must rebuild our covering after each time the covering writes have been
released. Otherwise it might be possible for processes to detect that some of the
processes involved in these covering writes were concurrently active with them
and hence allow them to write to MWMR registers outside the bounded (by a
constant) range of MWMR registers at the ”beginning of shared memory”. As
we would cover more registers, processes would be able to memory-adaptively
write to more ”new” MWMR registers outside the ”beginning of shared memory”
making it impossible to get a contradiction.

As a result, our construction is similar to the construction in [5], however we
note that the result there does not directly imply our result since it assumes a
finite number of available MWMR registers while we allow for infinitely many
available MWMR registers. Therefore we must always ensure that at all impor-
tant steps of our construction processes are only able to write to the bounded
set of registers at the ”beginning of shared memory”. We will do this by making
these processes believe that they execute the protocol solo. Also in [5] algorithms
are assumed to be time-adaptive allowing to bound the execution length of each
participating process since any time-adaptive protocol is by definition wait-free.
Here we do not assume that our protocols are time-adaptive. Instead to bound
the execution length (otherwise processes could simply keep reading each others
SWMR registers) we assume the protocol to be uniformly wait-free, that is that
the length of all executions is uniformly bounded. The covering techniques used
in our impossibility proofs first appeared in [24] to show some bounds on the
number of registers necessary for mutual exclusion. Similar covering arguments
were used in many recent papers to prove space and time lower bounds. For
example, see the survey by Fich and Ruppert [28].
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1.2 Network Attached Disks

In the second part of the paper we will consider an important and natural
application of memory-adaptive algorithms. Recent advances in storage tech-
nology [32] have enabled systems like Storage Area Networks [13,14,23,37,39],
which have network attached disks or NADs. A NAD is a simple device that
just executes requests to read and write blocks of data. It can be accessed by
any process in the system, so that the NADs effectively become a shared storage
medium that can be used to solve distributed problems such as consensus, as
in Disk Paxos [1,25,30]. Unlike message-passing systems, which typically require
a majority of processes to be correct to avoid partitioning, NADs allow proto-
cols that can withstand the crash of any number of processes. Therefore - like
conventional shared-memory models - the model allows uniform protocols. One
difficulty of this model is that a NAD can fail by crashing and thereby become
inaccessible.

In [12] Aguilera, Englert and Gafni showed that one cannot uniformly im-
plement a MWMR register on a NAD with a finite number of fail-prone base
registers, even if the implementation need not be wait-free. Therefore, one cannot
use the standard technique of implementing a MWMR register by first imple-
menting SWMR registers: doing so would blow up the space complexity.

These implies the need for infinitely many base registers. Since this is how-
ever an unrealistic assumption in real NAD’s, memory-adaptive algorithms are
of particular practical interest on such disks. If uniform protocols that require
infinitely many base registers and that run on NAD are memory-adaptive to in-
terval contention they will remain practical since they will allow us to efficiently
bound the memory requirements based on this contention.

Based on our impossibility result, we will show how store/release can be -
uniformly and memory-adaptively to interval contention - implemented on Active
Disks. This is possible since read-modify-write objects are available on Active
Disks [2,38].

1.3 Related Work

Uniform protocols have been studied (e.g., [16,33]), particularly in the context
of ring protocols. Adaptive protocols, i.e. protocols whose step complexity is a
function of the size of the participating set, have been studied in [6,7,8,26,35].
Long-lived adaptive protocols that assume some huge upper bound N on the
number of processes, but require the complexity of the algorithm to be a function
of the concurrency have been studied in [3,4,9,10,11,20,21,36].

1.4 Contributions

We summarize the contributions of our paper.

1. Interval contention: (Theorem 1) We show that in a system with infinitely
many MWMR registers and infinitely many SWMR registers, for any con-
stant d, there exists a number Nd such that if Nd processes are allowed to
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participate then there does not exist a memory-adaptive (to INTERVAL con-
tention) implementation of store/release. In other words we show that under
these conditions processes cannot memory-adaptively store a value in shared
memory. This closes a gap that remained open in [27] and implies the im-
possibility of uniform memory adaptive to point contention algorithms [27]
with all its consequences. Moreover it justifies the use of read-modify write
registers and similar stronger primitives to uniformly implement memory-
adaptive to interval contention store/release [27].

2. We present a uniform implementation of memory-adaptive to interval con-
tention store/release on Active Disks. While it was shown [12] that one can-
not uniformly implement a MWMR register on a NAD with a finite number
of fail-prone base registers, this results provides a realistic and practical
building block for algorithms on NAD where an upper bound on the interval
contention can be enforced.

Paper Organization: We will first in Section 2 review our model, followed by
our impossibility proof in Section 3. We conclude with a transfer of our algorithm
to NAD’s (Section 4) and some final remarks (Section 5).

2 Model and Preliminaries

For our impossibility result we use the standard shared-memory model of dis-
tributed computation. There are infinitely many processes each modeled by
infinite-state machines that are capable of unbounded computation. Processes
participate in a distributed deterministic asynchronous protocol and are indexed
by the positive natural numbers so that each process ”knows” its own “name.”
There are two areas of memory: the single-writer multi-reader (SWMR) space
and the multi-writer multi-reader (MWMR) space.

In the SWMR space each register is associated with a distinct process so that
only this process is allowed to write to this register while all other processes are
able to read it. Each SWMR register can store an unbounded number of bits.
The MWMR registers have all the same properties as the SWMR registers with
the exception that any process may both read and write to any register.

Processes access the memory space using basic atomic operations. The atomic
operations we will allow in this paper are read, write, and read-modify-write.

– READ: To execute a read command, a process specifies a register to be read
and upon completion of the read, the process has gained a snapshot of the
contents of the specified register.

– WRITE: A process specifies which register to write to (in either private or
shared memory) and the data to be written. Upon completion of the write
command, all previous data is overwritten with the new data specified by
the process. (Note that we do not allow a process to overwrite “part” of a
register.)

– READ-MODIFY-WRITE (RMW): The RMW command allows the un-
breakable execution of the following code (where X is a shared variable
and f is a mapping):
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function RMW(X,f)
begin

temp←X;
X←f(X);
return(temp);

end

A protocol is an algorithm that accomplishes a task using basic operations.
An adaptive protocol is one in which the resources consumed by the protocol are
functions of the number of processes that actually participate in the protocol
(a.k.a. active processes) rather than the total number of processes. In an adap-
tive protocols, the size of the resources (time or space) consumed is a function of
the contention. The contention can be measured in three different ways, effecting
the strength of adaptiveness of a protocol: Total contention refers to the total
number of processes that become active during the entire execution of the pro-
tocol. Interval contention during a given processes protocol is defined to be the
total number of processes that become active during the execution interval of a
processes protocol. Finally, point contention during a given processes protocol
refers to the maximum number of processes that are simultaneously active at
any point during the execution interval of a processes protocol.

A protocol is time-adaptive to a particular type of contention if the maximum
number of basic operations executed during the protocol by any given process
is a bounded function of the contention type. This type of definition has been
studied extensively [3,6,4,7,8,9,11,17,18,20,21,22,26,35].

We say that a basic operation is memory-adaptive [27] to a type of contention if
and only if the following is true. Whenever a process executes a basic operation, if
the next basic operation changes the state of a shared memory register, the index
of the register at which this change occurs is a bounded function of the contention
(point, interval or total) at the time of the previous basic operation. (In the asyn-
chronous model, without loss of generality, we may assume that the first basic
operation in any protocol is a read, which does not change the state of any regis-
ter.) In other words, a process can read wherever it wants, but it can only write to
places that are as close to the “front” of shared memory as possible. Most time-
adaptive algorithms that were presented [3,6,4,7,8,9,11,17,18,20,21,22,26,35] are
not memory-adaptive in this sense. They might however force that the final re-
sult of a computation lies within a bounded distance of the “front” of shared
memory.

The three protocols that we will focus on in this paper are store, release and
Weak Test and Set.

– STORE: A data value is specified in advance by the process. The goal is for
the process to store the data value in some shared register in such a way
that upon completion the process knows that the value will not be moved
or erased by any other process until the register is explicitly released.

– RELEASE: Assumes execution of a previous store protocol. Upon comple-
tion, the shared register occupied by the process is released.
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– WEAK TEST AND SET (WT&S): Based on a test&set object. WT&S
object guarantees safety - no two processes are able to concurrently ”set
the bit”. However liveness is only guaranteed in solo executions: if two or
more processes access a WT&S object concurrently it is possible that none
of them captures the bit (i.e. none of the participating processes reads 0 as
the bits value). We model the behavior of a weak test and set object with the
following program (Figure 1). Each process is in one of four possible states:
thinking, WT & Set, eating and RESET.

TS: object of type WT&S
Process p:
repeat forever

thinking sectionp

tbit:= WT&SETp(TS)
if tbit = 0 {

eating sectionp

RESETp(TS) }
end repeat forever

Fig. 1. Weak Test & Set algorithm

A WT&S object satisfies the following two properties:
• Exclusion: At most one process is eating at any system state of the

execution.
• If a process becomes hungry, that is leaves the thinking state, while

all other processes are thinking and it only takes steps then it must
eventually start eating.

Note that STORE and RELEASE are fundamental building blocks useful for
many distributed protocols (e.g. collect, mutual exclusion, consensus, approx-
imate agreement, and so on). WEAK TEST AND SET on the other hand is
useful in the proof of lower bounds.

We call a protocol uniformly wait-free if there exists a uniform bound applica-
ble to all processes on the number of basic operations that the protocol requires
before termination. All protocols considered in this paper will be uniformly wait-
free. We make the following definitions:

– A system state consists of the state of all processes and the value of all
registers in the system. A system has one or more initial system states in
which the system starts its execution.

– We say that a system state s is an idle-state, if all the processes are thinking
at s.

– A run α is a finite or infinite sequence of events, starting from an initial
system state. If the sequence is finite, we say that the run is finite.

– A run segment xα of a run α is a finite, continuous subsequence of events
of α.

– A solo run segment of p is a run segment starting at an idle-state, in which
only p takes steps.



72 B. Englert

– A run segment is called a p-segment if it starts in a state s in which p is
thinking, and in which only p takes steps. Note that a p-segment is not
necessarily a p-solo-segment.

– We say that a state s is transparent with respect to process p, if p is thinking
in s, and there is a p-segment starting in s, that p cannot distinguish from
some solo run segment of p starting at an idle-state and ending with p eating.
State s is transparent with respect to a set of processes Q, if s is transparent
∀p ∈ Q.

– A pseudo-solo run segment of p denoted solop, is a p-segment starting at
state s s.t., s is transparent with respect to p, and ending with p eating. Note
that by the definition of transparent, p cannot distinguish a pseudo-solo run
segment from some sole run segment starting at an idle-state and ending
with p eating.

– A register r is covered by process p at the end of run α, if a write operation
by p to r is enabled at the end of α.

– Given a run segment x and a state s, s · x denotes the concatenation of x
after some run α ending at s, assuming that α exists.

3 Interval Contention

In [27] we showed that there is no uniform, long-lived and memory-adaptive
to point contention store and release protocol. We will now strengthen this re-
sult by showing that there is no uniform and memory-adaptive to interval con-
tention weak test and set protocol. We begin by showing that we can implement
WT&S from memory-adaptive store and release. The reduction uses the fact
that store/release is uniformly wait-free.

Reduction from memory-adaptive and uniformly wait-free store and release
to memory-adaptive and uniformly wait-free WT&S: In the uniform memory-
adaptive store and release problem, processes repeatedly store and release values
in shared memory. The index of the MWMR registers to which they write must
be in the range {1, ..., f(k)} where k is the number of processes that are active
concurrently with the process that is trying to store or release a value. So when
a process runs solo the index of the MWMR registers it writes to must be
bounded by some constant f(1). In an implementation of WT&S from memory-
adaptive store and release we use one copy of the memory adaptive store and
release object. To perform the WT&S operation a process first attempts to
memory adaptively store the value ”active” in shared memory. If at any point
in time during the execution of the algorithm it writes to a MWMR register
with an index greater than f(1) it fails the WT&S and - if it already stored a
value - releases the value it stored. Otherwise it reads all other f(1) MWMR
registers to see if any other process was able to concurrently store a value in
shared memory. If it sees any other process as active it fails WT&S and releases
the value. Otherwise it wins the WT&S object. To release the WT&S object a
process releases the value it stored in shared memory. This clearly satisfies the
required properties and implements the desired object.
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We furthermore assume that each process has only one single-writer, single-
reader (SWMR) register: All SWMR registers of a process can always be replaced
by a single SWMR register.

A condition or property holds in a run if it holds at the end of that run (unless
we state otherwise).

It hence suffices to show that there is no uniform memory-adaptive to interval
contention (uniformly wait-free) Weak Test And Set implementation using only
read/write registers.

3.1 The Theorem

Clearly if an implementation of a weak test and set object is memory-adaptive
then there exists a constant i such that, no solo run segment writes to a MWMR
register with an index greater than i. We say that the algorithm is ”i-solo-
memory-adaptive”.

Theorem 1. For any constant i there is no long-lived, uniformly wait-free, i-
solo-memory-adaptive to interval contention implementation of Weak-Test & Set
in a system with infinitely many processes and infinitely many MWMR and
SWMR read/write registers.

Note that in contrast to [5] we do not require our algorithms to be time-adaptive.
Hence the result in [5] does not immediately imply our result. Moreover the
number of available MWMR registers is now unbounded, that is when covering
writes are released processes that detect contention can possibly write to more
than the first k MWMR registers. After addressing such issues our proof proceeds
in a similar manner as [5].

The proof is by way of contradiction. First, assume that there is a memory-
adaptive to interval contention WT&S implementation with infinitely many
MWMR registers for a system with infinitely many processes. Then we show
that under these conditions there is a run in which two processes p and q are in
the critical section, i.e. are eating at the same time.

1. We construct a run prefix α s.t., the state at the end of α is transparent with
respect to p, and every MWMR register that p writes in its pseudo-solo run
starting at α is covered. As in [5] we construct this cover inductively.

2. Let solop be the pseudo-solo run segment of process p starting after α. Hence
p is eating in α · solop. Let {r1, ..., ri′} be the set of MWMR registers written
by p in solop, where i′ ≤ i.

3. We now enable the covering writes and wait until all processes reach a think-
ing state. This is guaranteed by the fact that we are dealing with a uniformly
wait-free WT&S implementation.

4. We ensure that processes that are active do not detect each other by selecting
them in such a way that they do not read each others SWMR registers. (This
also follows from the protocol being uniformly wait-free. We show later in
detail that this is possible.)

5. We select a process q that does not read the SWMR register of p. This
process will enter the critical section together with p, a contradiction.
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3.2 Sketch of the Proof of the Main Lemma

The proof is based on [5]. We construct α by first, for explanatory reasons,
making strong assumptions. We then remove these assumptions to obtain the
claimed result.

We use the following notations. For an infinite set RMW of MWMR registers,
we consider W to be an i-solo-memory-adaptive implementation of WT&S in
the Read/Write shared memory model. Note that by the definition of memory-
adaptiveness i must be a constant.

Phase 1

Assumption A: There are no write operations to SWMR registers in all legal
runs. That is, we assume for the moment that there is a uniformly wait-free
WT&S protocol that is i-solo-memory-adaptive to interval contention and uses
no SWMR registers.
Assumption B: If G is a set of processes and s is a state that is transparent
with respect to G, then during their pseudo-solo runs starting at s all processes
in G write in the same MWMR registers in the same order.

These assumptions will later be removed. We will be able to remove assump-
tion B because of the i-solo-memory-adaptiveness of the algorithm, that is pro-
cesses can only write to a fixed number of MWMR registers in pseudo-solo runs
and the fact that our protocol is uniformly wait-free. Hence using a Ramsey
theoretic argument we can find a large enough set of processes that will write in
the same order into these registers.

In the following lemma α is denoted by s · β and satisfies the properties
of α: Property 1: the state at the end of s · β is transparent with respect to
some set of processes called Ge, and property 2: there is a cover on all the
MWMR registers written by processes in Ge in their pseudo-solo run segments,
starting after s · β. The size of Ge is a parameter and is determined in the full
proof.

Lemma 1. Let W be a long-lived, uniformly wait-free, i-solo-memory-adaptive
WT&S algorithm satisfying assumptions A and B. Then for any constant e there
exists a constant ne s.t., for any set of processes G, |G| ≥ ne and for any state
s transparent with respect to G, there is a run segment β and a set of processes
Ge ⊆ G s.t., the following holds: (1) |Ge| ≥ e, (2) the state at the end of s · β is
transparent with respect to Ge, and (3) all the MWMR registers written in the
pseudo-solo run segments of processes in Ge, after s · β, are covered in s · β.

Sketch of proof of lemma: The proof is by induction on i:

Lemma 2. Let W be a long-lived, uniformly wait-free, i-solo-memory-adaptive
WT&S algorithm satisfying assumption A and B. Then for every j, 0 ≤ j ≤ i
and for every constant e there exists a constant ne,j s.t., for any set of processes
G, |G| ≥ ne,j and for any state S transparent with respect to G, there is a run
segment βj and a set of processes Gj ⊆ G s.t., the following holds: (1) |Gj | ≥ e,
(2) the state at the end of run s · βj is transparent with respect to Gj, and
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(3) there exists a set Rj = {r1, ..., rj} of MWMR registers that are covered in
s · βj and r1, ..., rj are the first j MWMR registers written (in this order) in the
pseudo-solo run segments of processes in Gj, after s ·βj, or, the pseudo solo runs
starting at s · βj have less than j writes to a set Rj′ ⊂ Rj (in the same order)
of MWMR registers, where R′

j = {r1, ..., rj′}, 1 ≤ j′ < j and all these writes are
covered in s · βj.

Proof. In the full proof we show that ne = ne,i is a function of i, j and e. It is
similar to [5] and can be found in the full version of the paper. ��
Phase 2

We now relax assumption A. To do this we use techniques developed in [5]. The
run constructed in the previous lemma may not be valid anymore, as processes
are allowed to write to their SWMR registers. The argument presented above
may collapse in one of the following two ways:

1. The participating processes in any clean run segment may read the SWMR
registers of other active processes. In particular, they may read the SWMR
register of the processes whose traces their writes are supposed to eliminate.
They would then leave the system in a non-transparent state by writing
about the value they read.

2. After a clean run segment, a process q might start its q-segment execution
and may read the SWMR register of another concurrently active process p.
Hence, q will not perform a pseudo-solo run anymore, that is it may write
to a MWMR register with an index greater than i and it may stop without
covering the MWMR registers. Moreover, q may decide ”on the spot” to
write into different MWMR registers than what we originally planned.

As in [5] or [12], we will avoid the two dangerous situations by not allowing
processes, whose SWMR registers are later read to take part in the constructed
run. So, if in any given state in the run, if process q reads the SWMR register
of process p and p is active, we construct another run in which p is replaced
by another process p′. Process q will still read the same SWMR registers. The
behavior of p and p′ is in some sense “equivalent”. They both write and cover
the same MWMR registers. All we need to do is to show that a process like
p′ always exists since (1): There is a large enough set of processes to select p′

from s.t., p′ did not participate in the run before and has the same general
properties as p. We can do this since at any give point in time at most finitely
many processes participate in the execution while infinitely many processes are
available. (2): Process q can perform only a constant number of read operations,
since the number of concurrently active processes in the run is a function of d
and k and since the algorithm is uniformly wait-free.

We maintain a large enough set of ’equivalent’ runs, which allows us to replace
at any point in time at which we fail to reach a transparent state. This set will
shrink as the construction progresses.

Definition 1. Two runs β and β′ are equivalent with respect to a set of processes
G if (1) the state at the end of both runs β and β′ is transparent with respect to
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G, (2) the sets of MWMR registers covered in β and β′ are the same, and (3)
if process p participates in both β and β′ then p cannot distinguish between the
two runs.

In our construction, whenever a process p that was previously selected to partic-
ipate in the run is discovered by a covering process, we need to replace it with
some other process p′ that cannot be discovered. We achieve this by considering
an equivalent run in which p′ takes steps instead of p. This allows us to restate
the central inductive lemma as follows:

Lemma 3. Let W be a long-lived, uniformly wait-free, i-solo-memory-adaptive
WT&S algorithm. Then for every j, 0 ≤ j ≤ i and for every constant e there
exists a constant ne,j s.t., for any set of processes G, |G| ≥ ne,j and for any state
S transparent with respect to G, there is a run segment βj and a set of processes
Gj ⊆ G s.t., the following holds: (1) |Gj | ≥ e, (2) the state at the end of run
s ·βj is transparent with respect to Gj, and (3) there exists a set Ri = {r1, ..., rj}
of MWMR registers that are covered in s ·βj and r1, ..., rj are the first j MWMR
registers written (in this order) in the pseudo-solo run segments of processes in
Gj, after s ·β, or, the pseudo solo runs starting at s ·βj have less than j writes to
a set Rj′ ⊂ Rj (in the same order) of MWMR registers, where R′

j = {r1, ..., rj′},
1 ≤ j′ < j and all these writes are covered in s · βj. And in addition, there is
a large enough set of runs equivalent to βj with respect to a large enough set
G′

j ⊆ Gj.

Note that we also need to modify the proof of the Main Theorem along the lines
of the proof of this lemma.

Proof. Similar to [5]. For lack of space we leave it to the full paper. ��
It remains to remove Assumption B. During a WT&SET operation processes are
now allowed to write to different MWMR registers in different orders. This means
that the cover we constructed earlier might not be on the ”correct” registers
anymore since two processes p and q may write into the MWMR registers in
different orders.

To overcome this difficulty we first recall that we are only interested in pseudo
solo runs. We know, however, that processes executing such runs are only allowed
to write to the first i MWMR registers in shared memory. Hence in pseudo-solo
runs the number of MWMR under consideration is a constant. Second we recall
that our algorithm is uniformly wait-free that is the length of every pseudo
solo run is a constant. Hence we can consider the different sequences of write
operations to MWMR registers by the different pseudo-solo run segments of
processes in G. The number of these sequences is bounded by i and m where
m is the uniform bound on the length of a solo execution. Each such sequence
defines an equivalence class in G. Since G is infinite, we can always find a subset
of processes that in pseudo solo runs performs the same sequence of writes to
MWMR registers starting at s.

But since in two different states s and s′ that are transparent with respect to
G the sequence of MWMR registers that processes in G write to in pseudo-solo
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runs need not be the same, the required subset of processes cannot be computed
in advance. Instead it is computed iteratively in rounds as in [5].

We restate the main inductive lemma with assumption B removed.

Lemma 4. Let W be a long-lived, uniformly wait-free, i-solo-memory-adaptive
WT&S algorithm. Then for every j, 0 ≤ j ≤ i and for every constant e there
exists a constant ne,j s.t., for any set of processes G, |G| ≥ ne,j and for any
state s transparent with respect to G, there is a run segment βj and a set of
processes Gj ⊆ G s.t., the following holds: (1) |Gj | ≥ e, (2) the state at the end
of run s · βj is transparent with respect to Gj, and (3) either the first j MWMR
registers written in the pseudo-solo run segments of processes in Gj, after s ·βj,
are the same and covered in s ·βj , or the pseudo solo runs starting at s ·βj have
less than j writes to the same MWMR registers and all these writes are covered
in s · βj. And in addition, there is a large enough set of runs equivalent to βj

with respect to a large enough set G′
j ⊆ Gj.

Proof. We leave the complete proof to the full paper. It is similar to [5]. ��

4 Uniform Memory-Adaptive Algorithms for NAD’s

We will now discuss what our results imply for the design of memory adaptive
algorithms (e.g. store/release) for NAD’s. Earlier in this paper we showed that
there is no uniformly wait-free, uniform store/release protocol memory-adaptive
to interval contention that uses only read/write registers. In [12] it was shown
that one cannot uniformly implement a MWMR register on a NAD with a finite
number of fail-prone base registers, even if the implementation need not be
wait-free. This implies the need for infinitely many base registers. Since this is
however an unrealistic assumption, memory-adaptive algorithms are of particular
practical interest in the uniform setting on NAD’s. If uniform protocols that
require infinitely many base registers and that run on NAD are memory-adaptive
they will remain practical since they will allow us to efficiently bound the memory
requirements based on the contention. Hence memory-adaptive algorithms are
not only attractive but essential for uniform algorithms on NAD’s.

In [27] we provided a uniform memory-adaptive to interval contention imple-
mentation of store/release using stronger primitives namely an operation we
called write-plus which is weaker than the standard read-modify-write. The
write-plus command is equivalent to specifying that the function f in the defi-
nition of read-modify-write (see the model section) is required to be a constant
independent of X (the value read).

Active Disks [32] on the other hand are capable of supporting stronger seman-
tics that are not normally provided by disk drives. In particular they can provide
read-modify-write operations. Our results imply that to run realistic uniform al-
gorithms on a NAD - that is algorithms that are memory adaptive to interval
contention - read/write registers are not sufficient. Our results justify the use
of Active Disks in the uniform setting. We will now show how to implement
memory adaptive to interval contention store/release on active disks if disks and
hence registers may fail.
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Theorem 2. There exists a long-lived, uniformly wait-free, uniform store/release
protocol for Active Disks using only the operations read, write, and read-modify-
write that is memory-adaptive to interval cont., time-adaptive to total cont.

Proof. We first recall our memory-adaptive to interval contention algorithm using
read-modify write registers from [27]:

We assume that memory is arranged in the form of a two-dimensional grid,
this time indexed by N ×N . Whenever a process executes a read-modify-write
into shared memory, it keeps a copy of what was previously written there in its
private memory space along with whatever it writes into the register. As a result
the process always has a complete record of all of its operations starting from
the beginning till the current time in its private space along with the values that
it overwrites. During each store and with each write, the process keeps track
of the number of times it has stored a value in shared memory. Each write will
contain a field with this parameter. The algorithm uses splitters [36]. We assume
that splitters are able to hold values. Each process when executing the algorithm
attempts to capture a splitter so that it can store its value in this splitter.

Using these assumptions we showed in [27] that a process has the ability to
tell whether a splitter is “clean” or “dirty”. In other words, the process is able
to tell whether, given a splitter, there exists another process that has previously
written into the splitter’s slot #1 and yet has not either written into slot #2
or written into some other shared register. Based on this processes execute the
following protocol: Whenever a process executes a store, it begins at splitter
(1, 1) = (i, j). If the splitter is taken with a value, then the process moves to
(i + 1, 1). If the splitter is dirty, it moves to (i, j + 1). If the splitter is clean, it
competes. It writes his name into slot #1 and checks slot #2. If there is a “new”
name (i.e. a name that has been written in the splitter after the process started
competing) in slot #2, the process moves to (i + 1, 1). If there is no new name,
then the process writes its name into slot #2 and checks slot #1. If there is a
new name in slot #1, then the process moves to (i, j + 1). If the process’s name
is still written in slot #1, then the process has won the splitter and the right to
use its value register. It notes this in the register and writes its value.

In order to execute a release, the process simply indicates that the splitter is
now clean. Also in [27] we showed that this protocol is time-adaptive to total
contention and memory-adaptive to interval contention.

We now transfer this algorithm to Active Disks. To do so we use Active Disks
that provide Read-Modify-Write registers. Active Disks however may fail. So to
make this algorithm fault-tolerant assuming that at most t disks may fail we
simply let each process execute a store on 2t + 1 active disks. Each process is
guaranteed to receive responses from a majority of disks so it suffices to wait for
these responses when executing either store or release. ��

5 Conclusion and Open Problems

In this paper we showed that there are no uniform, memory-adaptive to interval
contention store/release protocols that use only read/write registers. This proves
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that to implement protocols that are memory-adaptive to interval contention in
this setting we must use stronger primitives such as read-modify-write registers,
validating our uniform and memory adaptive to interval contention protocol
from [27]. We furthermore show that Active Disks are an ideal environment
for the employment of such a protocol. It would be interesting to closer inves-
tigate the relationship between time-adaptive and memory-adaptive protocols.
What conditions must be met for a memory-adaptive protocol to be also time-
adaptive? How about the reverse? Answering these questions will allow us to
better understand the true cost of distributed protocols and if and when they
can be made adaptive.
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Abstract. In this paper, we study the problem of partial database repli-
cation. Numerous previous works have investigated database replication,
however, most of them focus on full replication. We are here interested
in genuine partial replication protocols, which require replicas to perma-
nently store only information about data items they replicate. We define
two properties to characterize partial replication. The first one, Quasi-
Genuine Partial Replication, captures the above idea; the second one,
Non-Trivial Certification, rules out solutions that would abort transac-
tions unnecessarily in an attempt to ensure the first property. We also
present two algorithms that extend the Database State Machine [8] to
partial replication and guarantee the two aforementioned properties. Our
algorithms compare favorably to existing solutions both in terms of num-
ber of messages and communication steps.

1 Introduction

Database replication protocols based on group communication have recently re-
ceived a lot of attention [5,6,8,13]. The main reason for this stems from the fact
that group communication primitives offer adequate properties, namely agree-
ment on the messages delivered and on their order, to implement synchronous
database replication. Most of the complexity involved in synchronizing database
replicas is handled by the group communication layer.

Previous work on group-communication-based database replication has fo-
cused mainly on full replication. However, full replication might not always be
adequate. First, sites might not have enough disk or memory resources to fully
replicate the database. Second, when access locality is observed, full replica-
tion is pointless. Third, full replication provides limited scalability since every
update transaction should be executed by each replica. In this paper, we ex-
tend the Database State Machine (DBSM) [8], a group-communication-based
database replication technique, to partial replication. The DBSM is based on
the deferred update replication model [1]. Transactions execute locally on one
database site and their execution does not cause any interaction with other sites.
Read-only transactions commit locally only; update transactions are atomically
broadcast to all database sites at commit time for certification. The certification
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test ensures one-copy serializability: the execution of concurrent transactions on
different replicas is equivalent to a serial execution on a single replica [1]. In
order to execute the certification test, every database site keeps the writesets of
committed transactions. The certification of a transaction T consists in check-
ing that T ’s readset does not contain any outdated value, i.e., no committed
transaction T ′ wrote a data item x after T read x .

A straightforward way of extending the DBSM to partial replication consists
in executing the same certification test as before but having database sites only
process update operations for data items they replicate. But as the certification
test requires storing the writesets of all committed transactions, this strategy
defeats the whole purpose of partial replication since replicas may store infor-
mation related to data items they do not replicate. We would like to define a
property that captures the legitimacy of a partial replication protocol. Ideally,
sites should be involved only in the certification of transactions that read or
write data items they replicate. Such a strict property, however, would force the
use of an atomic multicast protocol as the group communication primitive to
propagate transactions. Since existing multicast protocols are more expensive
than broadcast ones [4], this property restricts the performance of the protocol.
More generally, we let sites receive and momentarily store transactions unre-
lated to the data items they replicate as long as this information is shortly
erased. Moreover, we want to make sure each transaction is handled by a site
at most once. If sites are allowed to completely forget about past transactions,
this constraint cannot obviously be satisfied. We capture these two requirements
with the following property:

– Quasi-Genuine Partial Replication: For every submitted transaction T , cor-
rect database sites that do not replicate data items read or written by T
permanently store not more than the identifier of T .1

Consider now the following modification to the DBSM, allowing it to ensure
Quasi-Genuine Partial Replication. Besides atomically broadcasting transactions
for certification, database sites periodically broadcast “garbage collection” mes-
sages. When a garbage collection message is delivered, a site deletes all the write-
sets of previously committed transactions. When a transaction is delivered for
certification, if the site does not contain the writesets needed for its certification,
the transaction is conservatively aborted. Since all sites deliver both transactions
and garbage collection messages in the same order, they will all reach the same
outcome after executing the certification test. This mechanism, however, may
abort transactions that would be committed in the original DBSM. In order to
rule out such solutions, we introduce the following property:

– Non-Trivial Certification: If there is a time after which no two conflicting
transactions are submitted, then eventually transactions are not aborted by
certification.

1 Notice that even though transaction identifiers could theoretically be arbitrarily
large, in practice, 4-byte identifiers are enough to uniquely represent 232 transactions.
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In this paper we present two algorithms for partial database replication that
satisfy Quasi-Genuine Partial Replication and Non-Trivial Certification. Both
algorithms make optimistic assumptions to ensure better performance. Our first
algorithm is simpler and assumes spontaneous total order : with high probabil-
ity messages sent to all servers in the cluster reach all destinations in the same
order, a property usually verified in local-area networks. As a drawback, it pro-
cesses a single transaction at a time. Our second algorithm is able to certify
multiple transactions at a time and, as explained in Section 4, does not assume
spontaneous total order.

To the best of our knowledge, [5] and [12] are the only papers addressing
partial database replication using group communication primitives. In [5], every
read operation is multicast to the sites replicating the data items read; write
operations are multicast together with the transaction’s commit request. A fi-
nal atomic commit protocol ensures transaction atomicity. In [12], the authors
extend the DBSM for partial replication by adding an extra atomic commit
protocol. Each replica uses as its vote for atomic commit the result of the cer-
tification test. Both of our algorithms compare favorably to those presented in
[5] and [12]: they either have a lower latency or make weaker assumptions about
the underlying model, i.e., they do not require perfect failure detection.

2 System Model and Definitions

We consider a system Π = {s1 , .., sn} of database sites. Sites communicate
through message passing and do not have access to a shared memory or a global
clock. We assume the crash-stop failure model. A site that never crashes is
correct , and a site that is not correct is faulty . The system is asynchronous,
i.e., message delays and the time necessary to execute a step can be arbitrarily
large but are finite. Furthermore, the communication channels do not corrupt or
duplicate messages, and are (quasi-)reliable: if a correct site p sends a message
m to a correct site q, then q eventually receives m.

Throughout the paper, we assume the existence of a Reliable Broadcast prim-
itive. Reliable Broadcast is defined by primitives R-bcast(m) and R-deliver(m),
and satisfies the following properties [2]: if a correct site R-bcasts a message
m, then it eventually R-delivers m (validity), (ii) if a correct site R-delivers a
message m, then eventually all correct sites R-deliver m (agreement) and (iii)
for every message m, every site R-delivers m at most once and only if it was pre-
viously R-bcast (uniform integrity). Reliable Broadcast does not ensure agree-
ment on the message delivery order, that is, two broadcast messages might be
delivered in different orders by two different sites. In local-area networks, some
implementations of Reliable Broadcast can take advantage of network hardware
characteristics to deliver messages in total order with high probability [9]. We
call such a primitive Weak Ordering Reliable Broadcast, WOR-Broadcast.

Our algorithms also use a consensus abstraction. In the consensus problem,
sites propose values and must reach agreement on the value decided. Consensus
is defined by the primitives propose(v) and decide(v), and satisfies the following
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properties: (i) every site decides at most once (uniform integrity), (ii) no two
sites decide differently (uniform agreement), (iii) if a site decides v , then v was
proposed by some site (uniform validity) and (iv) every correct site eventually
decides (termination).

A database Γ = {x1 , .., xn} is a finite set of data items. Database sites have
a partial copy of the database. For each site si , Items(si) ⊆ Γ is defined as
the set of data items replicated on si . A transaction is a sequence of read and
write operations on data items followed by a commit or abort operation. For
simplicity, we represent a transaction T as a tuple (id , rs ,ws , up), where id is
the unique identifier of T , rs is the readset of T , ws is the writeset of T and up
contains the updates of T . More precisely, up is a set of tuples (x , v), where, for
each data item x in ws , v is the value written to x by T . For every transaction
T , Items(T ) is defined as the set of data items read or written by T . Two
transactions T and T ′ are said to be conflicting, if there exists a data item
x ∈ Items(T ) ∩ Items(T ′) ∩ (T .ws ∪ T ′.ws). We define Site(T ) as the site on
which T is executed. Furthermore, we assume that for every data item x ∈ Γ ,
there exists a correct site si which replicates x , i.e., x ∈ Items(si). Finally, we
define Replicas(T ) as the set of sites which replicate at least one data item
written by T , i.e., Replicas(T ) = {si | si ∈ Π ∧ Items(si) ∩T .ws �= ∅}.

3 The Database State Machine Approach

We now present a generalization of the Database State Machine approach. The
protocol in [8] is an instance of our generalization in the fully replicated context.
For the sake of simplicity, we consider a replication model where a transaction
T can only be executed on a site si if Items(T ) ⊆ Items(si). Moreover, to sim-
plify the presentation, we consider a client c that sends requests on behalf of a
transaction T to Site(T ). In the following, we comment on the states in which
a transaction can be in the DBSM.

– Executing: Read and write operations are executed locally at Site(T ) ac-
cording to the strict two-phase locking rule (strict 2PL). When c requests to
commit T , it is immediately committed and passes to the Committed state if
it is a read-only transaction, event which we denote Committed(T )Site(T ); if
T is an update transaction, it is submitted for certification and passes to the
Submitted state at Site(T ). We represent this event as Submitted(T )Site(T ).
In the fully replicated case, to submit T , sites use an atomic broadcast prim-
itive; in a partial replication context, the algorithms of Section 4 are used.

– Submitted: When T enters the Submitted state, its read locks are released
at Site(T ) and T is eventually certified. With full replication, the certifica-
tion happens when T is delivered; Section 4 explains when this happens in a
partially replicated scenario. Certification ensures that if a committed trans-
action T ′ executed concurrently with T , and T read a data i tem written by
T ′ then T is aborted. T ′ is concurrent with T if it committed at Site(T )
after T entered the Submitted state at Site(T ). Therefore, T passes the
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certification test on site si if for every T ′ already committed at si the fol-
lowing condition holds:

Committed(T ′)Site(T ) → Submitted(T )Site(T )

∨
T ′.ws ∩ T.rs = ∅,

(1)

where → is Lamport’s happened before relation on events [7].
In the fully replicated DBSM, transactions are certified locally by each site
upon delivery. In the partially replicated DBSM, to ensure Quasi-Genuine
Partial Replication, sites only store the writesets of committed transactions
that wrote data items they replicate. Therefore, sites might not have enough
information to decide on the outcome of all transactions. Hence, to satisfy
Non-trivial Certification, we introduce a voting phase where each site sends
the result of its certification test to the other sites. Site si can safely decide
to commit or abort T when it has received votes from a voting quorum for
T . Intuitively, a voting quorum VQ for T is a set of databases such that for
each data item read by T , there is at least one database in VQ replicating
this item. More formally, a quorum of sites is a voting quorum for T if it
belongs to VQS (T ), defined as follows:

V QS(T ) = {V Q|V Q ⊆ Π ∧ T.rs ⊆
⋃

s∈V Q

Items(s)} (2)

For T to commit, every site in a voting quorum for T has to vote yes . If a
site in the quorum votes no, it means that T read an old value and should be
aborted; committing T would make the execution non-serializable. Notice
that Site(T ) is a voting quorum for T by itself, since for every transaction T ,
Items(T ) ⊆ Items(Site(T )). If T passes the certification test at si , it requests
the write locks for the data items it has updated. If there exists a transaction
T ′ on si that holds conflicting locks with T ’s write locks, the action taken
depends on T ′’s state on si and on T ′’s type, read-only or update:
1. Executing: If T ′ is in execution on si then one of two things will happen:

if T ′ is a read-only transaction, T waits for T ′ to terminate; if T ′ is an
update transaction, it is aborted.

2. Submitted: This happens if T ′ executed on si, already requested commit
but was not committed yet. In this case, T ’s updates should be applied to
the database before T ′’s. How this is ensured is implementation specific.2

Once the locks are granted, T applies its updates to the database and passes
to the Committed state. If T fails the certification test, it passes to the
Aborted state.

– Committed/Aborted: These are final states.

2 For example, a very simple solution would be for si to abort T ′; if T ′ later passes
certification, its writes would be re-executed. The price paid for simplicity here is
the double execution of T ′’s write operations.
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4 Partially-Replicated DBSM

In this section, we present two algorithms for the termination protocol of the
DBSM in a partial replication context. These protocols ensure both one-copy
serializability [1] and the following liveness property: if a correct site submits
a transaction T , then either Site(T ) aborts T or eventually all correct sites
in Replicas(T ) commit T . The algorithms also satisfy Quasi-Genuine Partial
Replication and Non-Trivial Certification. The proof of correctness can be found
in [11].

4.1 The “One-at-a-time” Algorithm

Sites execute a sequence of steps. In each step, sites decide on the outcome of one
transaction. A step is composed of two phases, a consensus phase and a voting
phase. Consensus is used to guarantee that sites agree on the commit order of
transactions. In the voting phase, sites exchange the result of their certification
test to ensure that the commit of a transaction T in step K induces a serializable
execution.

The naive way to implement the termination protocol is to first use consensus
to determine the next transaction T in the serial order and then execute the
voting phase for T . We take a different approach: Based on the observation that
with a high probability messages broadcast in a local-area network are received in
total order [9], we overlap the consensus phase with the voting phase to save one
communication step. If sites receive the transaction to be certified in the same
order, they vote for the transaction before proposing it to consensus. Luckily,
by the time consensus decides on a transaction T , every site will already have
received the votes for T and will be able to decide on the outcome of T .

Algorithm 1 is composed of three concurrent tasks. Each line of the algorithm
is executed atomically. The state transitions of transactions are specified in the
right margin of lines 10, 28, and 30. Notice that the state transition happens
after the corresponding line has been executed. Every transaction T is a tu-
ple (id , site, rs ,ws , up, past , order). We added three fields to the definition of a
transaction (c.f. Section 2), namely site, past , and order : site is the database
site on which T is executed; past is the order of T ’s submission; and order is
T ’s commit order. The algorithm also uses five global variables: K stores the
step number; UNDECIDED and DECIDED are (ordered) sequences of, respec-
tively, pending transactions and transactions for which the outcome is known;
COMMITTED is the set of committed transactions; and the set VOTES stores
the votes received, i.e., the results of the certification test. We use the opera-
tors ⊕ and � for the concatenation and decomposition of sequences. Let seq1
and seq2 be two sequences of transactions. Then, seq1 ⊕ seq2 is the sequence
of transactions in seq1 followed by all the transactions in seq2 , and seq1 � seq2
is the sequence of transactions in seq1 that are not in seq2 . Transactions are
matched using their identifiers.

To take advantage of spontaneous total order, database sites use the WOR-
Broadcast primitive to submit transactions (line 10). When no consensus in-
stance is running and UNDECIDED is not empty, sites first execute the Vote
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Algorithm 1. The “One-at-a-time” algorithm - Code of database site s
1: Initialization
2: K ← 1, UNDECIDED ← ε, DECIDED ← ε,COMMITTED ← ∅, VOTES ← ∅
3: function Certify(T )
4: return ∀(id, order , ws) ∈ COMMITTED : order < T.past ∨ ws ∩ T.rs = ∅
5: procedure Vote(T )
6: if T.rs ∩ Items(s) �= ∅ then
7: send(Vote, T.id, K, Certify(T )) to all q in Replicas(T)

8: To submit transaction T {Task 1}
9: T.past ← K

10: WOR-Broadcast(VOTE REQ, T ) {Executing → Submitted}

11: When receive(Vote, T.id, K′, vote) from q {Task 2}
12: VOTES ← VOTES ∪ (T.id, q, K′, vote)

13: When WOR-Deliver(VOTE REQ, T ) ∧ T.id �∈ DECIDED {Task 3}
14: UNDECIDED ← UNDECIDED ⊕ T

15: When UNDECIDED �= ε
16: T ← head(UNDECIDED)
17: Vote(T )
18: Propose(K, T )
19: wait until Decide(K,T ′)
20: if T ′.id �= T.id then Vote(T ′)
21: UNDECIDED ← UNDECIDED � T ′

22: DECIDED ← DECIDED ⊕ T ′.id
23: if T ′.ws ∩ Items(s) �= ∅ then
24: wait until ∃V Q ∈ V QS(T ′) : ∀q ∈ V Q : (T ′.id, q, K, −) ∈ VOTES
25: if ∀q ∈ V Q : (T ′.id, q, K, yes) ∈ VOTES then
26: T ′.order ← K
27: COMMITTED ← COMMITTED ∪ (T ′.id, T ′.order, T ′.ws ∩ Items(s))

28: commit T ′ {Submitted → Committed}
29: else
30: if s = T ′.site then abort T ′ {Submitted → Aborted}
31: K ← K + 1
32: VOTES ← {(tid , q, K′, v) ∈ VOTES | K′ ≥ K}

procedure for T at the head of UNDECIDED (line 17) and then propose T
(line 18). In the Vote procedure, T is certified and the result of the certification
is sent in a message of type VOTE .

Notice that even though Site(T ) is a voting quorum for T by itself
(Items(T ) ⊆ Items(Site(T ))), in the algorithm, all sites replicating a data item
read by T vote. This is done to tolerate the crash of Site(T ). If only Site(T )
voted, the following undesirable scenario could happen: Site(T ) submits T and
crashes just after executing line 10. Databases WOR-Deliver T , propose T and
decide on T . In this execution, sites would wait forever at line 24, as Site(T )
crashed before voting for T .

Two further remarks concern the Vote procedure. First, to be able to certify
transactions, we need to implement the precedence relation → between events.
For two transactions T and T ′, this is done by comparing the value of their past
and order fields. If T .order < T ′.past , we are sure that T committed before
T ′ was submitted, because K is incremented after transactions commit. Second,
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notice that VOTE messages contain the step number K in which T was certified.
This information is necessary because a transaction can be certified in different
steps and the result of the certification test in steps K and K ′ might be different.
This is precisely why sites wait for VOTE messages coming from step number
K at line 24. Moreover, even if sites receive votes from different voting quorums,
they will agree on the outcome of the transaction. Intuitively, this holds because
we only take into account voting quorums that voted in step K , therefore they
consider the same sequence of committed transactions. Finally, by verifying that
transactions T and T ′ are the same at line 20, sites check if the spontaneous
total order holds. If it is not the case, sites need to vote for the transaction
decided by consensus.

4.2 The “Many-at-a-time” Algorithm

The previous algorithm certifies transactions sequentially. Thus, if many trans-
actions are submitted, an ever-growing chain of uncommitted transactions can
be formed. Algorithm 2 solves that problem by allowing a sequence of transac-
tions to be proposed in consensus instances and by changing the certification
test accordingly.

Algorithm 2 follows the same structure and uses the same global variables as
Algorithm 1. The difference lies in Task 3 and the auxiliary procedures used. In
the general case, when sites notice that there is a sequence of pending transac-
tions that have not been committed or aborted (“UNDECIDED �= ε” at line 25),
this sequence is voted for and proposed in consensus instance K (lines 26–27).
In the Vote procedure, every pending transaction is certified considering only
the previously committed transactions (lines 3–9). The results are gathered in a
set and later sent to all sites that have data items updated by some transaction
in the pending sequence (lines 10–12). The “VOTES �= ∅” condition at line 25 is
there for garbage collection purposes: it forces the proposal of empty sequences
in case there are votes for undelivered vote requests (a possible situation due to
failures that would violate Quasi-Genuine Partial Replication).

After the K-th instance of consensus has decided on a sequence SEQ of trans-
actions (line 28), sites verify whether they have voted for all transactions in SEQ ;
if it is not the case, they vote for the sequence SEQ (lines 29–30). Then, sites
replicating data items updated by one of the transactions in SEQ sequentially
certify all transactions in SEQ following their order (lines 35–45). The certifica-
tion of transaction T is divided into two parts. First, T is certified considering
the transactions committed in steps lower than K by taking into account the
votes of a voting quorum (line 37). Second, sites certify T considering committed
transactions that have been decided in the same consensus instance (line 38).
This is done by gathering committed transactions in a set called LCOMMIT
and by verifying that there does not exist a transaction T ′ in this set that writes
a data item read by T . If T passes both certifications and updates a data item
in Items(s), it is treated in exactly the same way as certified transactions in
Algorithm 1 (lines 41–43).
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Algorithm 2. The “Many-at-a-time” algorithm - Code of database site s

1: Initialization
2: K ← 1, UNDECIDED ← ε, DECIDED ← ε, COMMITTED ← ∅, VOTES ← ∅
3: function Certify(SEQ)
4: V ← ∅
5: for all T ∈ SEQ do
6: if ∀(id, order , ws) ∈ COMMITTED : order < T.past ∨ ws ∩ T.rs = ∅ then
7: V ← V ∪ (T.id, yes)
8: else V ← V ∪ (T.id, no)
9: return V

10: procedure Vote(SEQ)
11: if ∃T ∈ SEQ : T.rs ∩ Items(s) �= ∅ then
12: send (Vote, Strip(SEQ), K,Certify(SEQ)) to {q | ∃T ∈ SEQ : q ∈ Replicas(T )}
13: function Strip(SEQ)
14: RESULT ← ε
15: for all T ∈ SEQ in order do
16: RESULT ← RESULT ⊕ T.id
17: return RESULT

18: To submit transaction T {Task 1}
19: T.past ← K

20: R-bcast (Vote Req, T ) {Executing → Submitted}
21: When receive (Vote, IDSEQ , K′, V ) from q {Task 2}
22: VOTES ← VOTES ∪ (IDSEQ , q, K′, V )

23: When R-deliver (Vote Req, T ) ∧ T.id �∈ DECIDED {Task 3}
24: UNDECIDED ← UNDECIDED ⊕ T

25: When UNDECIDED �= ε ∨ VOTES �= ∅
26: Vote(UNDECIDED)
27: Propose(K,UNDECIDED)
28: wait until Decide(K,SEQ)
29: if ∃T : T ∈ SEQ ∧ T �∈ UNDECIDED then
30: Vote(SEQ)
31: DECIDED ← DECIDED ⊕ Strip(SEQ)
32: UNDECIDED ← UNDECIDED � SEQ
33: if ∃T ∈ SEQ : T.ws ∩ Items(s) �= ∅ then
34: LCOMMIT ← ∅
35: for all T ∈ SEQ in order do
36: wait until

∃V Q ∈ V QS(T ) : ∀q ∈ V Q : ∃(SEQq, q, K, Vq) ∈ VOTES : T ∈ SEQq

37: if (∀q ∈ V Q : ∃(SEQq, q, K, Vq) ∈ VOTES : T ∈ SEQq ∧ (T.id, yes) ∈ Vq)

38: ∧ ( � ∃T ′ ∈ LCOMMIT : T ′.ws ∩ T.rs �= ∅) then
39: LCOMMIT ← LCOMMIT ∪ {T}
40: if T.ws ∩ Items(s) �= ∅ then
41: T.order ← K
42: COMMITTED ← COMMITTED ∪ (T.id, T.order, T.ws ∩ Items(s))

43: commit T {Submitted → Committed}
44: else
45: if s = T.site then abort T {Submitted → Aborted}
46: K ← K + 1
47: VOTES ← {(tid , q, K′, v) ∈ VOTES | K′ ≥ K}

Differently from Algorithm 1, Algorithm 2 does not rely on spontaneous to-
tal order. This is because sequences of transactions are used when voting and
proposing values to a consensus instance, and the order of transactions in this
sequence does not matter when it comes to voting. Recall that the vote phase
in step K consists in independently certifying undecided transactions against
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transactions committed in previous steps (line 11 and function Certify at lines
3–9). This phase does not take into consideration conflicts within the sequence
itself since they are solved after the consensus instance is decided. Nevertheless,
votes are still optimistic in Algorithm 2 as they are sent before the consensus
instance has decided on its outcome.

The optimistic assumption that allows a transaction T to be certified as soon
as consensus instance K decides on a sequence containing T is that every member
of at least one correct voting quorum VQ for T has voted for any sequence
containing T before consensus instance K (line 26). Notice that the sequences
considered by different members of VQ do not have to be the same, the only
requirement is that they all contain T .

We could further relax the optimistic assumptions required at the price of
having a higher number of Vote messages. In the way both algorithms are
described, sites vote for a transaction only before it is proposed to the next
consensus instance (line 17 of Algorithm 1, line 26 of Algorithm 2). Consider a
scenario where the vote request for a transaction T is delivered by a site s right
after s has proposed transaction(s) to consensus. Site s will therefore have to
wait until the instance finishes to send its vote concerning T . However, T ’s vote
request might have been delivered earlier by some other site and might even
have been proposed to the current instance of consensus. If that is the case, and
T is part of the consensus decision, the optimistic assumptions will not hold and
the protocols might need an extra message step to certify T . This problem can
be avoided if sites are allowed to vote while solving a consensus instance. In our
example scenario, site s would vote for T even though it has already voted for its
consensus proposal. Both votes would then be received by other sites and they
would be used to decide on the outcome of T . This optimization relieves the need
for spontaneous total order in Algorithm 1 and relaxes even more the optimistic
assumption of Algorithm 2. As a secondary effect, it reduces the average latency
of transaction certification since votes are sent right after the vote request is
received.

5 Related Work and Final Remarks

In this section we compare our algorithms to the related work and conclude
the paper. We focus here on the related works satisfying Quasi-Genuine Partial
Replication.

In [5] the authors propose a database replication protocol based on group mul-
ticast. Every read operation on data item x is multicast to the group replicating
x ; writes are multicast along with the commit request. The delivered operations
are executed on the replicas using strict two-phase locking and results are sent
back to the client. A final atomic commit protocol ensures transaction atomic-
ity. In the atomic commit protocol, every group replicating a data item read or
written by a transaction T sends its vote to a coordinator group, which collects
the votes and sends the result back to all participating groups. The protocol
ensures Quasi-Genuine Partial Replication because a transaction operation on
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data item x is only multicast to the group replicating x and the atomic commit
protocol is executed among groups replicating data item read or written by the
transaction. In [12] the authors extend the DBSM to partial replication. They
use an optimistic atomic broadcast primitive and a variation of atomic commit,
called resilient atomic commit. In contrast to atomic commit, resilient atomic
commit may decide to commit a transaction even though some participants
crash. When a transaction T is optimistically delivered, replicas certify T and
execute a resilient atomic commit protocol using the result of the certification
test as their vote. If the optimistic order of T corresponds to the final order,
the protocol ends; otherwise when the final order is known, T is certified again
and a second resilient atomic commit protocol is executed. The protocol ensures
Quasi-Genuine Partial Replication, since only sites replicating data item written
by T keep T in their committed transaction sequence.

We now compare the cost of the protocols in [5,12] with the two algorithms
presented in this paper. We compare the number of communication steps and
the number of messages exchanged during the execution of a transaction T .
To simplify the analysis, we assume that all messages have a delay of δ. We
consider two cases, one where the algorithms’ respective optimistic assumptions
hold and one where they do not (c.f. Section 4). In both cases, we consider the
best achievable latency and the minimum number of messages exchanged, when
neither failures nor failure suspicions occur, the most frequent case in practical
settings. We first present in Figure 1 the cost of known algorithms used by the
protocols compared in this section. Variable k is the total number of participants
in the protocol.

Problem steps unicast msgs. broadcast msgs.

Non-Uniform R. Broadcast (RBcast) [2] 1 k(k − 1) + 1 k

Uniform Consensus (Consensus) [10] 2 2k(k − 1) 2k

Non-Blocking A. Commit (NBAC) [3] 3 2 2k(k − 1) 2k

Uniform A. Broadcast (ABcast) [2] 3 3k(k − 1) + 1 3k

Uniform A. Multicast (AMcast) [4] 4 4k(k − 1) + 1 4k

Fig. 1. Cost of different agreement problems

Figure 2 presents the cost of the different algorithms. To compute the cost of
the execution of T , we consider that T consists of a read and a write operation
on the same data item x . For all the protocols, we consider that d database sites
replicate data item x and that n is the total number of database sites in the
system.

In [5], one multicast is used to read x , d messages are sent containing the result
of the read, one multicast is used to send the write along with the commit request
and a final atomic commit protocol among d participants is executed. Notice

3 This cost corresponds to the case where all participants spontaneously start the
protocol. This assumption makes sense here because in [5] participants deliver a
transaction’s commit request before starting the atomic commit protocol.
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Algorithm steps unicast msgs. broadcast msgs.

[5] 11 10d2 − 9d + 2 11d

[12] 3 3n(n − 1) + d(d − 1) + 1 3n + d

Algorithms 1 & 2 3 3n(n − 1) + d(d − 1) + 1 3n + d

(a) Optimistic assumption holds

Algorithm steps unicast msgs. broadcast msgs.

[5] 11 10d2 − 9d + 2 11d

[12] 4 3n(n − 1) + 2d(d − 1) + 1 3n + 2d

Algorithms 1 & 2 4 3n(n − 1) + 2d(d − 1) + 1 3n + 2d

(b) Optimistic assumption does not hold

Fig. 2. Comparison of the database replication protocols

that none of the optimistic assumptions assumed by the algorithms in this paper
influence the cost of this protocol. In [12], the transaction is atomically broadcast
and one communication step later it is optimistically delivered. A resilient atomic
commit protocol is then executed among the d database sites. Resilient atomic
commit is implemented in one communication step, in which all participants
exchange their votes. To guarantee agreement on the outcome of a transaction,
the implementation requires perfect failure detection, an assumption that we do
not need in this paper. In the best-case scenario, i.e., spontaneous total order
holds, the number of communication steps is equal to max (2 , steps(ABcast)). If
the optimistic order is not the final order of the transaction, another resilient
atomic commit protocol is needed and therefore the number of communication
steps becomes steps(ABcast) + 1 .

For Algorithms 1 and 2, the cost is computed as follows. In the best-
case scenario, the number of communication steps is equal to steps(RBcast)
+ max (steps(Consensus), steps(vote phase)), where vote phase corresponds to
d broadcast messages. If the algorithms’ respective optimistic assumptions
do not hold, after deciding on T in consensus, another vote phase has
to take place and therefore the number of communication steps becomes
steps(RBcast)+steps(Consensus)+steps(vote phase). For simplicity, we assume
that in this second vote phase, all participants vote, generating an extra d(d−1)
messages.

Considering latency, Algorithms 1, 2, and [12] give the best results. However,
to achieve such latency, [12] uses perfect failure detection. In terms of the number
of messages generated, [5] is cheaper than the DBSM-based solutions if d is much
smaller than x . Nonetheless, this protocol has a serious drawback: its number of
communication steps highly depends on the number of read operations, as every
read operation adds 5 message steps (4 for the multicast and 1 to send back the
result). As a final remark, notice that in this analysis we consider the execution
of only one transaction. The cost of the protocols might however change if we
considered multiple transactions. In this scenario, the following observations can
be made. First, even though Algorithms 1 and 2 have equal costs in Figure 2,
the overhead might be higher for Algorithm 1 when multiple transactions are
submitted. This stems from the fact that in Algorithm 2, the cost of running
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consensus might be shared among a set of transactions, therefore reducing the
number of generated messages. Second, in [5,12], each transaction requires a
separate instance of atomic commit to decide on its outcome. In Algorithm 2,
however, at most two voting phases are needed to decide on the outcome of the
sequence of transactions decided in the same consensus instance. Therefore, the
longer this sequence, the cheaper Algorithm 2 will be compared to [5,12].
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Abstract. This paper1 introduces a simple real-time distributed
computing model for message-passing systems, which reconciles the dis-
tributed computing and the real-time systems perspective: By just re-
placing instantaneous computing steps with computing steps of non-zero
duration, we obtain a model that both facilitates real-time scheduling
analysis and retains compatibility with classic distributed computing
analysis techniques and results. As a by-product, it also allows us to
investigate whether/which properties of real systems are inaccurately
or even wrongly captured when resorting to zero step-time models. We
revisit the well-studied problem of deterministic internal clock synchro-
nization for this purpose, and show that, contrary to the classic model, no
clock synchronization algorithm with constant running time can achieve
optimal precision in our real-time model. We prove that optimal preci-
sion is only achievable with algorithms that take Ω(n) time in our model,
and establish several additional lower bounds and algorithms.

1 Motivation

Executions of distributed algorithms are typically modeled as sequences of atomic
computing steps that are executed in zero time. With this assumption, it does
not make a difference, for example, whether messages arrive at a processor si-
multaneously or nicely staggered in time: The messages are processed instanta-
neously when they arrive. The zero step-time abstraction is hence very convenient
for analysis, and a wealth of distributed algorithms, impossibility results and lower
bounds have been developed for models that employ this assumption [1].

In real systems, however, computing steps are neither instantaneous nor ar-
bitrarily preemptable: A computing step triggered by a message arriving in the
middle of the execution of some other computing step is usually delayed un-
til the current computation is finished. This results in queuing phenomenons,
which depend not only on the actual message arrival pattern but also on the
queuing/scheduling discipline employed. The real-time systems community has
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established powerful techniques for analyzing such effects [2], such that the re-
sulting worst-case response times and end-to-end delays can be computed.

This paper introduces a real-time distributed computing model for message-
passing systems, which reconciles the distributed computing and the real-time
systems perspective: By just replacing the zero step-time assumption with non-
zero step times, we obtain a real-time distributed computing model that admits
real-time analysis without invalidating standard distributed computing analysis
techniques and results.

Apart from making distributed algorithms amenable to real-time analysis, our
model also allows to address the interesting question whether/which properties
of real systems are inaccurately or even wrongly captured when resorting to
classic zero step-time models. In this paper, we revisit the well-studied prob-
lem of deterministic internal clock synchronization [3,4] for this purpose. Clock
synchronization is a particularly suitable choice here, since the achievable syn-
chronization precision is known to depend on the end-to-end delay uncertainty
(i.e., the difference between maximum and minimum end-to-end delay). Since
non-zero computing step times are likely to affect end-to-end delays, one may
expect that some results obtained under the classic model do not hold under
the real-time model. Our analysis confirms that this is indeed the case: We show
that no clock synchronization algorithm with constant running time can achieve
optimal precision in our real-time model. Since such an algorithm has been given
for the classic model [4], we have found an instance of a problem where the stan-
dard distributed computing analysis gives too optimistic results. Actually, we
show that optimal precision is only achievable with algorithms that take Ω(n)
time, even if they are provided with a constant-time broadcast primitive.

Lacking space does not allow us to present all our results and derivations here,
which can be found in [5].

2 Classic Computing Model

In clock synchronization research [6,7,8,9,4], system models are considered where
the uncertainty comes from varying message delays, failures, and drifting clocks.
Denoted “Partially Synchronous Reliable/Unreliable Models” in [3], such models
are nowadays called (non-lockstep) synchronous models in literature. In order
to solely investigate the effects of non-zero step-times, our real-time computing
model will be based on the simple failure- and drift-free synchronous model
introduced in [4]. Here it will be referred to as the classic computing model.

We consider a network of n failure-free processors, which communicate by
passing unique messages. Each processor p is equipped with a CPU, some local
memory, a hardware clock HCp(t) running at the same rate as real time, and
reliable, non-FIFO links to all other processors.

The CPU is running an algorithm, specified as a mapping from processor indices
to a set of initial states and a transition function. The transition function takes the
processor index p, one incoming message, receiver processor current local state and
hardware clock reading as input, and yields a list of states and messages to be sent,
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e.g. [oldstate, int.st.1, int.st.2, msg. m to q, msg. m′ to q′, int.st.3, newstate], as
output. A “message to be sent” is specified as a pair consisting of the message
itself and the destination processor the message will be sent to. The intermediate
states are usually neglected in the classic computing model, as the state transition
from oldstate to newstate is instantaneous. We explicitly model these states to re-
tain compatibility with our real-time computing model, where they will become
important.

Every message reception immediately causes the receiver processor to change
its state and send out all messages according to the transition function. Such a
computing step will be called an action in the following. The complete action
(message arrival, processing and sending messages) is performed in zero time.

Actions can actually be triggered by ordinary messages and timer messages:
Ordinary messages are transmitted over the links. The message delay2 δ is the
difference between the real time of the action sending the message and the real
time of the action receiving the message. There is a lower bound δ− and an
upper bound δ+ on the message delay of every ordinary message.

Timer messages are used for modeling time(r)-driven execution in our
message-driven setting: A processor setting a timer is modeled as sending a
timer message (to itself) in an action, and timer expiration is represented by the
reception of a timer message. Note that timer messages do not need to obey the
message delay bounds, since they are received when the hardware clock reaches
(or has already reached) the time specified in the timer message.

An execution in the classic computing model is a sequence of actions. An ac-
tion ac occurring at real-time t at processor p is a 5-tuple, consisting of the proces-
sor index proc(ac) = p, the received message msg(ac), the occurrence real-time
time(ac) = t, the hardware clock value HC(ac) = HCp(t) and the state transition
sequence trans(ac) = [oldstate, . . . , newstate] (including messages to be sent).
A valid execution must satisfy obvious properties such as conformance with the
transition function, timer messages arriving on time, and reliable message trans-
mission. To trigger the first action of a processor in an execution, we allow one
special init message to arrive at each processor from outside the system.

A classic system s is a system adhering to the classic computing model defined
in this section, parameterized by the system size n and the interval [δ−, δ+]
specifying the bounds on the message delay.

Let s = (n, [δ−, δ+]) be a classic system. An execution is s-admissible, if
the execution comprises n processors and the message delay for each ordinary
message stays within [δ−, δ+].

3 Real-Time Computing Model

Zero step-time computing models have good coverage in systems where message
delays are much higher than message processing times. There are applications like
2 To disambiguate our notation, systems, parameters like message delay bounds, and

algorithms in the classic computing model are represented by underlined variables
(usually s, δ−, δ+,A).
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high speed networks, however, where this is not the case. Additionally, and more
importantly, the zero step-time assumption inevitably ignores message queuing
at the receiver: It is possible, even in case of large message delays, that multiple
messages arrive at a single receiver at the same time. This causes the processing of
some of these messages to be delayed until the execution of their predecessors has
been completed. Common practice so far is to take this queuing delay into account
by increasing the upper bound δ+ on the message delay. This approach, however,
has two disadvantages: First, a-priori information about the algorithm’s message
pattern is needed to determine a parameter of the system model, which creates
cyclic dependencies. Second, in lower bound proofs, the adversary can choose an
arbitrary message delay within [δ−, δ+] – even if this choice is not in accordance,
i.e., not possible, with the current message arrival pattern. This could lead to
overly pessimistic lower bounds.

3.1 Real-Time System Model

The system model in our real-time computing model is the same as in the classic
computing model, except for the following change: A computing step in a real-
time system is executed non-preemptively within a system-wide lower bound μ−

and upper bound μ+. Note that we allow the processing time and hence the
bounds [μ−, μ+] to depend on the number of messages sent in a computing step.
In order to clearly distinguish a computing step in the real-time computing model
from a zero-time action in the classic model, we will use the term job to refer
to the former. Interestingly, this simple extension has far-reaching implications,
which make the real-time computing model more realistic but also more complex.
In particular, queuing and scheduling effects must be taken into account:

– We must now distinguish two modes of a processor at any point in real-time
t: idle and busy. Since computing steps cannot be interrupted, a queue is
needed to store messages arriving while the processor is busy.

– When and in which order messages collected in the queue are processed is
specified by some scheduling policy, which is, in general, independent of the
algorithm. Formally, a scheduling policy is specified as an arbitrary mapping
from the current queue state (= a sequence of messages), the hardware clock
reading, and the current local processor state onto a single message from
that message sequence. The scheduling policy is used to select a new message
from the queue whenever processing of a job has been completed. To ensure
liveness, we assume that the scheduling policy is non-idling.

– The delay of a message is measured from the real time of the start of the
job sending the message to the arrival real time at the destination processor
(where the message will be enqueued or, if the processor is idle, immediately
causes the corresponding job to start). Analogous to the classic computing
model, message delays of ordinary messages must be within a system-wide
lower bound δ− and an upper bound δ+. Like the processing delay, the
message delay and hence the bounds [δ−, δ+] may depend on the number of
messages sent in the sending job.
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– We assume that the hardware clock can only be read at the beginning of
a job. This restriction in conjunction with our definition of message delays
will allow us to define transition functions in exactly the same way as in the
classic computing model. After all, the transition function just defines the
“logical” semantics of a transition, but not its timing.

– Contrary to the classic computing model, the state transitions oldstate →
· · · → newstate in a single computing step need not happen at the same
time: Typically, they occur at different times during the job, allowing an
intermediate state to be valid on a processor for some non-zero duration.

Figure 1 depicts an example of a single job at the sender processor p, which
sends one message m to receiver q currently busy with processing another mes-
sage. Part (a) shows the major timing-related parameters in the real-time com-
puting model, namely, message delay (δ), queuing delay (ω), end-to-end delay
(Δ = δ + ω), and processing delay (μ) for the message m represented by the
dotted arrow. The bounds on the message delay δ and the processing delay μ
are part of the system model, although they need not be known to the algo-
rithm. Bounds on the queuing delay ω and the end-to-end delay Δ, however, are
not parameters of the system model—in sharp contrast to the classic computing
model (see Sect. 2), where the end-to-end delay always equals the message delay.
Rather, those bounds (if they exist) must be derived from the system parameters
(n, [δ−, δ+], [μ−, μ+]) and the message pattern of the algorithm, by performing
a real-time scheduling analysis. Part (b) of Fig. 1 shows the detailed relation
between message arrival (enqueuing) and actual message processing.

3.2 Real-Time Runs

This section defines a real-time run (rt-run), corresponding to an execution
in the classic computing model. A rt-run is a sequence of receive events and
jobs.

A receive event R for a message arriving at p at real-time t is a triple consisting
of the processor index proc(R) = p, the message msg(R), and the arrival real-
time time(R) = t. Recall that t is the enqueuing time in Fig. 1(b).

A job J starting at real-time t on p is a 6-tuple, consisting of the processor in-
dex proc(J) = p, the message being processed msg(J), the start time begin(J) =
t, the job processing time d(J), the hardware clock reading HC(J) = HCp(t),
and the state transition sequence trans(J) = [oldstate, . . . , newstate].

Figure 1 provides an example of a rt-run, containing three receive events and
three jobs on the second processor. For example, the dotted job on the second
processor q consists of (q, m, 7, 5, HCq(7), [oldstate, . . . , newstate]), with m being
the message received during the receive event (q, m, 4). Neither the actual state
transition times nor the actual sending times of the sent messages are recorded
in a job. Measuring all message delays from the beginning of a job and knowing
that the state transitions and the message sends occur in the listed order at
arbitrary times during the job is sufficient for proving that a rt-run satisfies a
given set of properties, as well as for performing time complexity analysis.
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(b) Relation of msg. arrival and msg. pro-
cessing, with enqueuing shown explicitly

Fig. 1. Real-time computing model

In addition to the properties required for valid executions, a valid rt-run
must also satisfy additional consistency constraints: Jobs on the same processor
must not overlap, and the execution must conform to some arbitrary non-idling
scheduling policy.

3.3 Systems and Admissible Real-Time Runs

A real-time system s is defined by an integer n and two intervals [δ−, δ+] and
[μ−, μ+]. Considering δ−, δ+, μ− and μ+ to be constants would give an un-
fair advantage to broadcast-based algorithms when comparing algorithms’ time
complexity: Computation steps would take between μ− and μ+ time units, in-
dependently of the number of messages sent. This makes it impossible to derive
a meaningful time complexity lower bound for systems in which a constant-time
broadcast primitive is not available. Corollary 15 will show an example.

Therefore, the interval boundaries δ−, δ+, μ− and μ+ can be either constants
or non-decreasing functions {0, . . . , n− 1} → IR+, representing a mapping from
the number of destination processors to which ordinary messages are sent during
that computing step to the actual message or processing delay bound.3

Example: During some job, messages to exactly three processors are sent. The
duration of this job lies within [μ−

(3), μ
+
(3)]. Each of these messages has a message

delay between δ−(3) and δ+
(3). The delays of the three messages need not be the

same.
Sending � messages at once must not be more costly than sending those

messages in multiple steps. In addition, we assume that the message delay
3 As message size is not bounded, we can make the simplifying assumption that at

most one message is sent to every other processor during each job. δ−(0) and δ+
(0) are

assumed to be 0 because this allows some formulas to be written in a more concise
form.
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uncertainty ε(�) := δ+
(�) − δ−(�) is also non-decreasing and, therefore, ε(1) is the

minimum uncertainty. This assumption is reasonable, as usually sending more
messages increases the uncertainty rather than lowering it.

Definition 1. Let s = (n, [δ−, δ+], [μ−, μ+]) be a real-time system. A rt-run is
s-admissible, if the rt-run contains exactly n processors and satisfies the following
timing properties: If � is the number of messages sent during some job J ,

– The message delay (measured from begin(J) to the corresponding receive
event) of every message in trans(J) must be within [δ−(�), δ

+
(�)].

– The job duration d(J) must be within [μ−
(�), μ

+
(�)].

3.4 Correctness and Impossibility

In the model presented so far, the scheduling policies are adversary-controlled,
meaning that, in the game between player and adversary, the player chooses the
algorithm and afterwards the adversary can decide on a scheduling policy that
is most unsuitable for the algorithm. Thus, correctness proofs are strong (as the
algorithm can defend itself against the most vicious scheduling policy), but im-
possibility proofs are weak (as the adversary has the scheduling policy on its side).

However, sometimes algorithms are designed for particular, a-priori-known
scheduling policies, or the algorithm designer has the freedom to choose the
scheduling policy which is most convenient for the algorithm. Thus, it is useful
to define as weak correctness the correctness of an 〈algorithm, scheduling policy〉
pair and, analogously, as strong impossibility the absence of any such pair. In
this paper, we only consider strong correctness and strong impossibility.

3.5 Transformations

The classic computing model and the real-time computing model are fairly equiv-
alent from the perspective of solvability of problems. In [5], we present two
transformations: One direction, simulating a real-time system on top of a classic
system (n, [δ−, δ+]), is quite straightforward: It suffices to implement an artificial
processing delay μ, the queuing of messages arriving during such a simulated job,
and the scheduling policy. This simulation allows to run any real-time computing
model algorithm A designed for a system (n, [δ−, δ+], [μ−, μ+]) with δ−(1) ≤ δ−,
δ+
(1) ≥ δ+ and μ− ≤ μ ≤ μ+ on top of it, thereby resulting in a correct classic

computing model algorithm. From this result (Theorem 3 in [5]), the following
lemma can be derived directly:

Lemma 2. Let s = (n, [δ−, δ+]) be a classic system. If there exists an algorithm
for solving some problem P in some real-time system s = (n, [δ−, δ+], [μ−, μ+])
with δ−(1) ≤ δ− and δ+

(1) ≥ δ+, then P can be solved in s.

The other direction, simulating a classic system (n, [δ− = Δ−, δ+ = Δ+]) on
top of a real-time system (n, [δ−, δ+], [μ−, μ+]), is more tricky: First, the class of
classic computing model algorithms A that can be transformed into a real-time
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computing model algorithm SA must be somewhat restricted. Second, and more
importantly, a real-time scheduling analysis must be conducted in order to break
the circular dependency of algorithm A and end-to-end delays Δ ∈ [Δ−, Δ+]
(and vice versa): On one hand, the classic computing model algorithm A, run
atop of the simulation, might need to know the simulated message delay bounds
[δ−, δ+], which are just the end-to-end delay bounds [Δ−, Δ+] of the underlying
simulation. Those end-to-end delays, on the other hand, involve the queuing
delay ω and are thus dependent on (the message pattern of) A and hence on
[δ−, δ+]. This circular dependency is “hidden” in the parameters of the classic
computing model, but necessarily pops up when one tries to instantiate this
model in a real system.

In our setting, this circularity can be broken as follows: Given some classic
computing model algorithmA with assumed message delay bounds [δ−, δ+], con-
sidered as unvalued parameters, a real-time scheduling analysis of the combined
algorithm SA (A and simulation algorithm) must be conducted. This provides
an equation for the resulting end-to-end delay bounds [Δ−, Δ+] in terms of the
real-time systems parameters (n, [δ−, δ+], [μ−, μ+]) and the algorithm parame-
ters [δ− = Δ−, δ+ = Δ+], i.e., a function F satisfying

[Δ−, Δ+] = F
(
n, [δ−, δ+], [μ−, μ+], [Δ−, Δ+]

)
. (1)

We do not want to embark on the intricacies of advanced real-time schedul-
ing analysis techniques here, see [2] for an overview. For the purpose of simple
problems like terminating clock synchronization (see below), quite trivial con-
siderations are sufficient: A trivial end-to-end delay lower bound Δ− is δ−(1). An
upper bound Δ+ can be obtained easily if, for example, there is an upper bound
on the number of messages a processor receives in total.

Anyway, if (1) provided by the real-time scheduling analysis can be solved for
[Δ−, Δ+], resulting in meaningful bounds Δ− ≤ Δ+, they can be assigned to the
algorithm parameters [δ−, δ+]. Our transformation in fact guarantees that any
timer-free algorithm designed for some classic system s solving some suitable
problem P can also solve that problem in the corresponding real-time system s
if such a feasible assignment for [δ−, δ+] exists.

Clock Synchronization: In the classic computing model, a tight bound of
(1 − 1

n )ε has been proved in [4] as the best achievable clock synchronization
precision. We can use Lemma 2 to show that clock synchronization closer than
(1− 1

n )ε(1) is impossible in the

Theorem 3. In the real-time computing model, no algorithm can synchronize
the clocks of a system closer than (1− 1

n )ε(1).

Proof. Assume for a contradiction that there is some algorithm that can provide
clock synchronization for some real-time system (n, [δ−, δ+], [μ−, μ+]) to within
γ < (1 − 1

n )ε(1). Applying Lemma 2 would imply that clock synchronization to
within γ < (1 − 1

n )(δ+ − δ−) can be provided for some classic system (n, [δ− =
δ−(1), δ

+ = δ+
(1)]). This, however, contradicts a well-known lower bound result [4].



102 H. Moser and U. Schmid

4 Algorithms Achieving Optimal Precision

Theorem 3 raises the question whether the lower bound of (1 − 1
n )ε(1) is tight

in the real-time computing model. In this section, we will answer this in the
affirmative: We show how the algorithm presented in [4] can be modified to
avoid queuing effects and thus provide optimal precision in a real-time system s.
We will first present an algorithm achieving a precision of (1− 1

n )ε(n−1) (which is
(1− 1

n )ε(1) if a constant-time broadcast primitive is available), and then describe
how to extend this algorithm so that it achieves (1− 1

n )ε(1) in the unicast case
as well. Two lemmata from [4] can be generalized to our setting:

Lemma 4. If q receives a timestamped message from p with end-to-end delay
uncertainty εΔ, q can estimate p’s hardware clock value within an error of at
most εΔ

2 . (Proof: See Lemma 5 of [4] or see [5].)

Lemma 5. If every processor knows the difference between its own hardware
clock and the hardware clock of every other processor within an error of at most
err
2 , clock synchronization to within (1− 1

n )err is possible. (Proof: See Theorem 7
of [4].)

4.1 Optimality for Broadcast Systems

Note: To ease presentation, we use the abbreviations ˙δ−, ˙δ+, μ̇−, μ̇+ and ε̇ to
refer to δ−(n−1), δ+

(n−1), μ−
(n−1), μ+

(n−1) and ε(n−1) in this subsection.
The Lundelius-Lynch clock synchronization algorithm [4] works by sending

one timestamped message from every processor to every other processor, and
then computing the average of the estimated clock differences as a correction
value. Any processor broadcasts its message as soon as its initialization message
arrives. This algorithm can easily be modified to avoid queuing effects by “seri-
alizing” the information exchange, rather than sending all messages (possibly)
simultaneously.

1 var estimates←{}
2

3 function process message(msg, time)
4 /∗ start alg . by sending (send) to proc. 0 ∗/
5 if msg = (send)
6 send (time, time) to all other processors
7 elseif msg = (time, remote time)

8 estimates.add(remote time − time +
˙δ−+ ˙δ+

2
)

9 if estimates.count = ID

10 send timer (send) for time + max(ε̇ − ˙δ− + μ̇+, μ̇+)
11 if estimates.count = n−1
12 set adjustment value to ( estimates)/n

Fig. 2. Clock-synchronization algorithm to within ε(n−1), code for processor ID
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The modified algorithm, depicted in Fig. 2, works as follows: The n fully-
connected processors have IDs 0, . . . , n − 1. The first processor (0) sends its
clock value to all other processors. Processor i waits until it has received the
message from processor i−1, waits for another max(ε̇− ˙δ−+ μ̇+, μ̇+) time units,
and then broadcasts its own hardware clock value. That way, every processor
receives the hardware clock values of all other processors with uncertainty ε̇,
provided that no queuing occurs (which will be shown below). This information
suffices to synchronize clocks to within (1− 1

n )ε̇.

Lemma 6. No queuing occurs when running the algorithm of Fig. 2.

Proof. By the design of the algorithm, processor i only broadcasts its message
after it has received exactly i messages. As processor 0 starts the algorithm and
every processor broadcasts only once, this causes the processors to send their
messages in the order of increasing processor number. For queuing to occur, some
processor p must receive two messages within a time window smaller than μ̇+.
It can be shown, however, that the following invariant holds for all t: All receive
events up to time t on the same processor i (a) occur in order of increasing
(sending) processor number (including the timer message from i itself), and (b)
are at least μ̇+ time units apart.

Assume by contradiction that some message from processor j > 0 arrives on
processor i at time t, although the message from processor j − 1 has arrived (or
will arrive) at time t′ > t − μ̇+. Choose t to be the first time the invariant is
violated.

Case 1 : j = i, i.e., the arriving message is i’s timer message. This leads to
a contradiction, as due to line 10, this message must not arrive earlier than μ̇+

time units after j − 1’s message, which has triggered the job sending the timer
message.

Case 2 : j �= i. As j’s broadcast arrived at t, it has been sent no later than
t − ˙δ−. Process j’s broadcast is triggered by a timer message sent by j’s job
starting max(ε̇ − ˙δ− + μ̇+, μ̇+) time units earlier, i.e., no later than t − ˙δ− −
(ε̇ − ˙δ− + μ̇+) = t − ε̇ − μ̇+. The job sending the timer message has been
triggered by the arrival of j − 1’s broadcast, which must have been sent no
later than t − ε̇ − μ̇+ − ˙δ−. If j − 1 = i, we have the required contradiction,
because i must have received its timer message at t′ ≤ t − ε̇ − μ̇+ − ˙δ− long
ago. Otherwise, if j − 1 �= i, process j − 1’s broadcast arrived at i no later than
t− ε̇ − μ̇+ − ˙δ− + ˙δ+ = t− μ̇+, also contradicting our assumption.

Theorem 7 (Optimal broadcast algorithm). The algorithm of Fig. 2
achieves a precision of (1 − 1

n )ε(n−1), which matches the lower bound in The-
orem 3 if communication is performed by a constant-time broadcast primitive,
i.e., if ε(n−1) = ε(1). It performs exactly n broadcasts and has a time complexity
that is at least Ω(n).

Proof. On each processor, the set estimates contains the estimated differences
between the local hardware clock and the hardware clocks of the other processes.
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As no queuing occurs by Lemma 6, the end-to-end delays are just the message
delays. Line 8 in the algorithm of Fig. 2 ensures that the estimates are calculated
as specified in the proof of Lemma 4. Thus, the estimates have a maximum error
of ε̇

2 . According to Lemma 5, this allows the algorithm to calculate an adjustment
value (in line 12) ensuring clock synchronization to within (1− 1

n )ε̇.
With respect to message and time complexity, the algorithm obviously per-

forms exactly n broadcasts, and the worst-case time between two subsequent
broadcasts is max( ˙δ+, 2ε̇)+μ̇+ (= the timer message delay max(ε̇− ˙δ−+μ̇+, μ̇+)
plus one message delay ˙δ+). Thus, the time complexity is at least linear in n,
and depends on the complexity of δ+

(�), ε(�) and μ+
(�) w.r.t. �.

4.2 Optimality for Unicast Systems

The algorithm of the previous section provides clock synchronization to within
(1 − 1

n )ε(n−1). However, unless constant-time broadcast is available, ε(1) will
usually be smaller than ε(n−1). The algorithm can be adapted to unicast sends
as shown in Fig. 3, however: Rather than sending all n − 1 messages at once,
they are sent in n − 1 subsequent jobs connected by “send” timer messages,
each sending only one message. These messages are timestamped with their
corresponding HC value, e.g. the message sent during the second job will be
timestamped with the hardware clock reading of this second job.

Theorem 8 (Optimal unicast algorithm). The algorithm of Fig. 3 achieves
a precision of (1 − 1

n )ε(1), which matches the lower bound given in Theorem 3.
It sends exactly n(n − 1) = O(n2) messages system-wide and has O(n) time
complexity.

Proof. Omitted due to size limitations; see [5].

1 var estimates←{}
2

3 function process message(msg, time)
4 /∗ start alg . by sending (send, 1) to proc. 0 ∗/
5 if msg = (send, target)
6 send (time, time) to target
7 if target + 1 mod n �= ID

8 send timer (send, target + 1 mod n) for time + μ+
(1)

9 elseif msg = (time, remote time)

10 estimates.add(remote time − time +
δ−
(1)

+δ+
(1)

2
)

11 if estimates.count = ID
12 send timer (send, ID + 1) for

13 time + max(ε(1) − δ−(1) + 2μ+
(1), μ

+
(1))

14 if estimates.count = n−1
15 set adjustment value to ( estimates)/n

Fig. 3. Clock-synchronization algorithm to within ε(1), code for processor ID
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5 Lower Bounds

In this section, we will establish lower bounds for message and time complexity
of (close to) optimal precision clock synchronization algorithms.

In particular, for optimal precision, we will prove that at least 1
2n(n − 1) =

Ω(n2) messages must be exchanged, since at least one message must be sent over
every link. This bound is asymptotically tight, since it is matched by Theorem 8.
A strong indication for this result follows already from the work of Biaz and
Welch [7]. They have shown that no algorithm can achieve a precision better than
1
2diam(G) for any communication network G, with diam(G) being the diameter
of the graph where the edges are weighted with the uncertainties: In the classic
computing model, a fully-connected network with equal link uncertainty ε can
achieve no better precision than 1

2ε, whereas removing one link yields a lower
bound of ε. Thus, after removing one link, the optimal precision of (1 − 1

n )ε
shown by [4] can no longer be achieved.

Unfortunately, the proof from [7] cannot be used directly in our context: While
they show that (1− 1

n )ε cannot be achieved if the system forbids the algorithm
to use one system-chosen link, we have to show that if the algorithm is presented
with a fully-connected network and decides not to use one algorithm-chosen link
(which can differ for each execution/rt-run) dynamically, this algorithm cannot
achieve optimal precision. A shifting argument similar to the one used in the
proof of Theorem 3 of [7] can be used, however. Shifting is a common technique
in the classic computing model for proving clock synchronization lower bounds.
Analogously, shifting a rt-run ru of n processors by (x0, . . . , xn−1) results in
another rt-run ru′, where

– receive events and jobs on processor pi starting at real-time t in ru start at
real-time t− xi in ru′,

– the hardware clock of pi is shifted such that all receive events and jobs still
have the same hardware clock reading as before, i.e. HC′

i(t) := HCi(t) + xi.

Environment: Let c ∈ IR+ be a constant and s = (n, [δ−, δ+], [μ−, μ+]) be a
real-time system with n > 2. Let A be an algorithm providing clock synchro-
nization to within c · ε(1) in s. Let ru be an s-admissible rt-run of A in s, where
the message delay of all messages is the arithmetic mean of the lower and up-
per bound. Thus, modifying the delay of any message by ±ε(1)/2 still results
in a value within the system model bounds. The duration of all jobs sending �
messages is μ+

(�).

Lemma 9. The message graph of ru has a diameter of 2c or less.

Proof. Let the message graph of a rt-run ru be defined as an undirected graph
containing all processors as vertices and exactly those links as edges over which
at least one message is sent in ru. Assume by contradiction that the message
graph has a diameter D > 2c. Let p and q be two processors at distance D. Let
Πd be the set of processors at distance d from p. Let ru′ be a new rt-run in
which processors in Πd are shifted by d · ε(1)/2, i.e., all receive events and jobs
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on some processor in Πd happen d · ε(1)/2 time units earlier although with the
same hardware clock readings. As processors in Πd only exchange messages with
processors in Πd−1, Πd and Πd+1, message delays are changed by −ε(1)/2, 0 or
ε(1)/2. Thus, ru′ is s-admissible.

Let Δ and Δ′ be the final (signed) differences between the adjusted clocks of
p and q in ru and ru′, respectively. As both rt-runs are s-admissible and A is
assumed to be correct, |Δ| ≤ c · ε(1) and |Δ′| ≤ c · ε(1).

By definition of shifting, HC′
p(t) = HCp(t) and HC′

q(t) = HCq(t)+D ·ε(1)/2.
Thus, Δ′ = HC′

p(t) + adjp − (HC′
q(t) + adjq) = HCp(t) + adjp − (HCq(t) + D ·

ε(1)/2 + adjq) = Δ−D · ε(1)/2.
Let ru′′ be ru shifted by −d · ε(1)/2. The same arguments hold, resulting in

Δ′′ = Δ + D · ε(1)/2. As |Δ|, |Δ′| and |Δ′′| must all be ≤ c · ε(1), we have the
inequalities |Δ| ≤ c · ε(1), |Δ + D · ε(1)/2| ≤ c · ε(1) and |Δ−D · ε(1)/2| ≤ c · ε(1),
which imply c ≥ D/2 and hence contradict D > 2c.

5.1 Message Complexity

For clock synchronization to within some γ < ε(1), Lemma 9 implies that there
is a rt-run with message graph diameter < 2, i.e., whose message graph is fully
connected, and, therefore, has n(n−1)

2 edges. This leads to the following theorem:

Theorem 10. Clock synchronization to within γ < ε(1) has a worst-case mes-
sage complexity of at least n(n−1)

2 = Ω(n2).

Section 4 presented an algorithm achieving optimal precision of (1− 1
n )ε(1) with

n(n− 1) = O(n2) messages, cp. Theorem 8. Theorem 10 reveals that this bound
is asymptotically tight. Obviously, a smaller lower bound can be given for subop-
timal clock synchronization. We will use the following simple graph-theoretical
lemma:

Lemma 11. In an undirected graph with n > 2 nodes and diameter D or less,
there is at least one node with degree ≥ D+1

√
n.4

Proof. Assume by contradiction that all nodes have a maximum degree of some
non-negative integer d < D+1

√
n. As n > 2, d = 0 or d = 1 would cause the graph

to be disconnected, thereby contradicting the assumption of bounded diameter.
Thus, we can assume that d > 1.

Fix some node p. Clearly, after D hops, the maximum number of nodes
reachable from p (including p at distance 0) is

∑D
i=0 di = dD+1−1

d−1 ≤ dD+1 <
D+1
√

nD+1 = n. As we cannot reach n nodes after D hops, we are done.

Combining Lemmata 9 and 11 shows that there is at least one processor in ru
which exchanges (= sends or receives) at least � 2c+1

√
n� messages. This implies

the following results:

4 A result with similar order of magnitude can be derived from the Moore bound.



Optimal Clock Synchronization Revisited 107

Theorem 12. When synchronizing clocks to within c·ε(1) in some real-time sys-
tem s, there is an s-admissible rt-run in which at least one processor exchanges
� 2c+1

√
n� messages.

Corollary 13. When synchronizing clocks to within c ·ε(1), there is no constant
upper bound on the number of messages exchanged per processor.

Note, however, that it is possible to constantly bound either the number of
received or the number of sent messages per processor (but not both): Section 6
presents an algorithm synchronizing clocks to within ε(1) where every processor
receives exactly one message, and an algorithm provided in [5] achieves this
precision with sending just 3 messages per processor.

5.2 Time Complexity

In the case of optimal precision, the following Theorem 14 states a time complex-
ity lower bound of Ω(n). This bound is asymptotically tight, since it is matched
by the optimal algorithm underlying Theorem 8.

Theorem 14. Clock synchronization to within γ < ε(1) has a worst-case time
complexity of at least Ω(n).

Proof. Theorem 10 revealed that n processors need to exchange at least
n(n−1)

2 messages. Therefore, no algorithm can achieve a run time better than
max

(
n−1

2 μ+
(0), δ

+

( n−1
2 )

)
, assuming optimal concurrency. This implies a time com-

plexity lower bound of Ω(n) as asserted.

On the other hand, Theorem 12 implies a lower bound on the worst-case time
complexity of any algorithm that synchronizes clocks to within c · ε(1): Some
process p must exchange � 2c+1

√
n� messages, some k of which are received and the

remaining ones are sent by p. Recalling δ+
(�) ≤ �δ+

(1) from Sect. 3.3, the algorithm’s

time complexity must be at least min� 2c+1√n�
k=0 (k · μ+

(0) + δ+
(n−k)). Clearly, kμ+

(0) is
linear in k, so the interesting term is δ+

(n−k). Consequently:

Corollary 15. If multicasting a message in constant time is impossible, clock
synchronization to within a constant factor of the message delay uncertainty
cannot be done in constant time.

6 Achievable Precision for Less than Ω(n2) Messages

Sometimes, Ω(n2) messages may be too costly if a precision of (1− 1
n )ε(1) is not

required. Clearly, every clock synchronization algorithm requires a minimum of
n− 1 messages to be sent system-wide; otherwise, at least one processor would
not participate. Interestingly, n − 1 messages (plus one external init message)
already suffice to achieve a precision of ε(1) by using a simple star topology-based
algorithm: Figure 4 is actually a simpler version of the algorithm presented in
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1 function s−process message(msg, time)
2 /∗ start alg . by sending (init) to some proc. ∗/
3 if msg = (init)
4 send time to all other processors
5 set adjustment value to 0
6 else

7 set adjustment value to (msg − time +
δ−(n−1)+δ+

(n−1)
2

)

Fig. 4. Star Topology-based Clock Synchronization Algorithm

Sect. 4. Rather than collecting the estimated differences to all other processors
and then calculating the adjustment value, this algorithm just sets the adjust-
ment value to the estimated difference to one designated master processor, the
one receiving (init). Lemma 4 shows that the error of these estimates is bounded
by ε(n−1)

2 . Thus, setting the adjustment value to the estimated difference causes
all clocks to be synchronized to within ε(n−1).

If δ−, δ+, μ− and μ+ are independent of n (i.e., if a constant-time broadcasting
primitive is available), ε(n−1) = ε(1) and the algorithm achieves this precision in
constant time (w.r.t. n). Otherwise, the following modification puts the precision
down to ε(1) in the unicast case as well:

– Do not send all messages during the same job but during subsequent jobs
on the “master” processor.

– Replace δ−(n−1) and δ+
(n−1) in Line 7 with δ−(1) and δ+

(1).

The algorithm still exchanges only n − 1 messages and has linear time com-
plexity w.r.t. n. As Theorem 10 has shown, ε(1) is the best precision that can
be achieved with less than Ω(n2) messages. As Corollary 15 has shown, this
precision cannot be achieved in constant time in the unicast case.

7 Conclusions and Future Work

We presented a real-time computing model, which just adds non-zero comput-
ing step times to the classic computing model. Since it explicitly incorporates
queuing effects, our model makes distributed algorithms amenable to real-time
scheduling analysis, without, however, invalidating classic algorithms, analy-
sis techniques, and impossibility/lower bound results. General transformations
based on simulations between both models were established for this purpose.

Revisiting the problem of optimal deterministic clock synchronization in the
drift- and failure-free case, we showed that the best precision achievable in the
real-time computing model is (1− 1

n )ε(1). This matches the well-known result in
the classic computing model; it turned out, however, that there is no constant-
time algorithm achieving optimal precision in the real-time computing model.
Since such an algorithm is known for the classic model, this is an instance of a
problem where the classic analysis gives too optimistic results. We also estab-
lished algorithms and lower bounds for sub-optimal clock synchronization in the
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real-time computing model. For example, we showed that clock synchronization
to within a constant factor of the message delay uncertainty can be achieved in
constant time only if a constant-time broadcast primitive is available.

Part of our current research is devoted to extending our real-time comput-
ing model to failures and, in particular, drifting clocks. Clearly, all our lower
bound results also hold for the drifting case. As time complexity influences the
actual precision achievable with drifting clocks, however, a simpler, less precise
algorithm might in fact yield some better overall precision than a more complex
optimal algorithm, depending on the system parameters. Apart from this, we are
looking out for problems and algorithms that involve more intricate real-time
scheduling analysis techniques.
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In centralized systems, priority inversions are usually handled using a protocol
from the priority inheritance family [26,15]. However, priority inheritance, and
synchronization in general, is significantly affected by concurrent execution. Even
though some variations of these centralized protocols have been proposed for
multiprocessors [15] and distributed systems [15,13], there is not yet a widely
accepted general scheme. We propose here a mathematically sound method to
deal with priority inversions in DRE architectures.

In this paper we consider DRE systems that consist of a set of sites, each of
which is capable of executing a predefined set of computations or methods, con-
nected using an asynchronous network. Processes, consisting of local and remote
method calls, are created dynamically. The relevant resources are the threads (or
execution contexts) to run the methods. We assume a WaitOnConnection [25]
thread-allocation policy, that is, each method requires its own thread, including
nested up-calls, and methods hold on to their thread until they finish.

Since resources are finite and we impose no restriction on the number of
processes, deadlocks are reachable unless there is a mechanism in place to control
those allocations. It is important to distinguish between two different kinds of
deadlocks: intra-resource (caused by parallel access to a single resource) and
inter-resource deadlocks (caused by interference across different allocations).

Intra-resource deadlocks: Absence of intra-resource deadlock is one of the re-
quirements of a solution to mutual exclusion, together with exclusive access
and, sometimes, lack of starvation. Several algorithms have been proposed for
distributed mutual exclusion, which can be classified (see [28,29,17]) into:

– Permission based: A process can access a resource if there is unanimity [19]
between the participants about its safety. Unanimity can be relaxed to ma-
jority quorums [8,31,12], or even majorities in coteries [7,1]. The message
complexities range from 2(N − 1) in the original Ricart-Agrawala algorithm
[19] to O(log N) in the best case (with no failures) in the modern coterie-
based approaches.

– Token-based: The system is equipped with a single token per resource, which
is held by the process that accesses it. A distributed data-type is maintained
to select the next recipient. For example, Suzuki-Kasami’s approach [30]
exhibits a complexity of O(N) messages per access, and Raymond’s [16]
and Naimi-Tehel’s [14] approaches, use spanning trees to obtain an average
case complexity of O(log N), still exhibiting a O(N) worst case.

However, the most efficient way (in terms of message complexity) to achieve
distributed mutual exclusion is to use a centralized algorithm, like a primary
site approach [2]. For every resource, a distinguished site arbitrates the accesses,
reducing the problem of distributed mutual exclusion to the centralized case.
Thus, allocations can be resolved with one message per request. This comes at
a price of lower resiliency because, if the site managing the resource fails, the
resource becomes inaccessible. However, in some cases, like DRE systems and
Flexible Manufacturing Systems [6,18] resources are indeed tightly coupled to
the sites where they reside, and therefore it is natural to use this site as the
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primary means to resolve each request contention. This is the basic approach
that we use for intra-resource arbitration.

Inter-resource deadlocks : A different kind of deadlock can be produced due to the
interleavings between accesses to different resources, when a set of processes is
waiting in a circular chain in which a process holds a resource needed by the next
process in the chain. The two mechanisms commonly used to ensure deadlock-
free assignment of resource allocation are deadlock prevention and deadlock
avoidance. A third mechanism, deadlock detection and resolution, is common
in databases, but not used in DRE systems, because it may lead to unbounded
worst-case execution times.

Deadlock prevention methods eliminate one of the necessary causes of the
circular contention at design time, at the price of decreasing the concurrency.
For example, “monotone locking”, widely used in practice [3], determines an
arbitrary total order on the set of resources that is followed at run-time to
acquire resources.

Deadlock avoidance methods check the current resource allocation at runtime
and grant a resource only if it is safe, that is, if there is a way for all processes to
eventually finish. This check is made possible by having processes that enter the
system announce their maximum resource usage, an approach first proposed by
Dijkstra in his Banker’s algorithm [5,9,10]. When resources are distributed across
multiple sites, however, deadlock avoidance is harder, because different sites may
have to consult each other to determine whether a particular allocation is safe.
Because of this need for distributed agreement, a general solution to distributed
deadlock avoidance is considered impractical [27]. Efficient solutions do exist,
however, for the type of systems considered here, namely DRE systems with
a WaitOnConnection thread-allocation policy. In [23,22] we demonstrated an
efficient distributed deadlock avoidance method for systems for which all the
possible sequences of invocations are known and available to analysis a priori.
In this paper we build on this algorithm to construct an efficient distributed
priority inheritance protocol.

Priority Inheritance Protocols: It is common in real-time systems to assign pri-
orities to processes. A priority inversion is produced when a process with high
priority is unnecessarily blocked by a process with lower priority. To bound pri-
ority inversions, the Priority Inheritance Protocol (PIP) and the Priority Ceiling
Protocol (PCP) were introduced, primarily applicable to hard real-time systems
with shared resources and static priorities [26]. Later, these methods were ex-
tended to dynamic priority scheduling algorithms such as Earliest Deadline First
(EDF) [4]. PIP can bound blocking times if a bound on the running time of each
process and all its critical sections is known. PIP does not, however, prevent
deadlocks, and therefore PCP was introduced to prevent inter-resource dead-
locks, at the price of some concurrency.

A distributed version of PCP was proposed in [13] to deal with priority inver-
sion and inter-resource deadlock in distributed systems. This protocol, however,
suffers from a high communication overhead: before a request is granted, the
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ceiling of each resource that is (globally) used must be queried. This requires
maintaining global views of the system. Having more information about the
system in the form of call graphs, however, we can use the simpler and more
efficient priority inheritance protocol (PIP) to deal with priority inversions and
use our deadlock avoidance algorithm to guarantee absence of inter-resource
deadlocks. Our priority inheritance protocol allows more concurrency and, more
importantly, it involves no communication overhead when priority inversions are
not present, which in our setting is locally testable (it requires no communica-
tion to detect a priority inversion). Moreover, when priority inversions do exist,
our protocol involves only one-way communication, without the need for return
messages. Once an inversion is detected and the priority inheritance protocol is
run—which may inject messages into the network—the local processes can pro-
ceed immediately without compromising deadlock freedom. This leads to a more
efficient solution, especially in scenarios where latencies are significant compared
to the running times of methods.

Our PIP protocol enables the computation of a bound on the number of
lower priority processes that can block a higher priority one. Consequently, the
blocking time of a process can also be bound if the maximum running time of
each method and the latency of each message is known. This solution enables
the following design methodology for DRE systems. A distributed system with
periodic and sporadic tasks with deadlines can be analyzed for schedulability:
(1) computing initial priorities of processes statically, and (2) showing a proof
that deadlines are met in all possible executions. In this paper we prove the
correctness of the distributed priority inheritance protocol, and leave distributed
schedulability analysis for future research.

The rest of this paper is structured as follows. Section 2 reviews our distributed
deadlock avoidance algorithms. Section 3 includes the distributed priority inher-
itance protocol and proves its correctness, and Section 4 presents our conclusions
and describes future work.

2 Distributed Deadlock Avoidance

We model a distributed system S : 〈R,G〉 by a set of sites and a call graph
specification. The sites R : {r1, . . . , r|R|} model distributed devices that per-
form computations and handle a necessary and scarce local resource, such as a
finite pool of threads. A call graph specification G : 〈N,→, I〉 consists of a di-
rected acyclic graph 〈N,→〉, which captures all the possible sequences of remote
calls that processes can perform. The set of initial nodes I ⊆ N contains those
methods that can be invoked when a process is spawned.

A call graph node abstracts both the computation to be performed at a site
and the resource needed. Each node has a unique name (the method name) and
a site associated with it, the site where the method will be executed at run-time.
If node n describes resource (f : r) we say that n executes computation f and
resides in site r. We use the predicate n ≡R m to represent that nodes n and m
reside in the same site. To simplify notation, if the method name is unimportant
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we use n : r instead of n = (f : r). We use r, s, r1, r2, . . . to refer to sites and
n, m, n1, m1, . . . to refer to call graph nodes.

An edge n → m in the call graph denotes a possible remote invocation; in
order to complete the computation modeled by n the result of a call to m may
be needed. If this call is performed, the resource associated with n will be locked
at least until the invocation of m returns. Note how this call semantics is not
equivalent to synchronous calls since we do not assume that the caller needs
a response to continue the computation but only needs a response to complete
its execution. For example, after initiating a remote method call, the caller can
immediately continue and perform more remote invocations before waiting for
the reply. All our results immediately cover synchronous semantics as a particular
case (in which callers do wait for a response before proceeding) and can be easily
adapted to totally asynchronous semantics (where processes are even allowed to
terminate without waiting for responses).

A run of a system consists of the execution of processes, created dynamically.
When a new process is spawned it announces an initial call graph node whose
outgoing paths capture the remote calls that the process may perform. Incoming
invocations require a new resource to run, while call returns release a resource.
We use the following terminology: every new method invocation is called a pro-
cess, and the context will disambiguate between subprocesses (created by remote
calls) and proper processes (corresponding to new instances entering the system).
Once a process has received a resource, it holds onto it until completion, that
is, there is no preemption once a resource is acquired. We also assume that all
computations terminate, if their demanded resources are granted.

Even though in principle our computational model can be regarded as non-
preemptive, methods that assume preemptive scheduling (the setting where clas-
sical priority inheritance with rate-monotonic scheduling was introduced [11]) are
also relevant. This is because in our model, all computations occur inside critical
sections (resources are nested).

Deadlocks can be reached if all resource requests are immediately granted,
since resources are finite and fixed a priori in each site and—in principle—we
impose no restriction on the topology of the call graph specification or the num-
ber of process instances. We use Tr for the total number of resources in site r,
and tr for a variable that keeps track of the number of resources available in r
at every instant. Initially, tr = Tr.

Example 1. Consider a system with sitesR = {r, s}, nodes N = {n1, n2, m1, m2}
with n1 and m1 initial nodes, and call graph

n1 r n2 s

m1 s m2 r

This system has reachable deadlocks if no controller is used. Let sites s and r
handle exactly two threads each. If four processes are spawned, two instances of
n1 and two of m1, all resources in the system will be locked after each process
starts executing its initial node. Consequently, the allocation attempts for n2
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n ::

when α(n) ≤ tr do
tr--

f()

tr++

Fig. 1. The deadlock avoidance protocol Basic-P

and m2 will be blocked indefinitely, so no process will terminate or return a
resource. A possible allocation sequence is shown below,

tr = 2
ts = 2

tr = 0
ts = 2

tr = 0
ts = 0

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

n1 r
••

n2 s

m1 s
••

m2 r

where a • represents an existing process that tries to acquire a resource at a node
(if • precedes the node) or has just been granted the resource (if • appears after
the node). It is easy to see that a deadlock can still occur even if the number of
threads in r and s is increased. We can simply spawn the corresponding number
of processes.

In our solution to deadlock avoidance, the assignment of resources is controlled
by two cooperating components: the allocation manager and the scheduler. The
allocation manager decides which subset of pending requests is safe (in the sense
that no continuation of the execution will reach a deadlock if granted); these
requests are called enabled. The scheduler then chooses a process among the
enabled ones, which receives the resource. This interaction between the allocation
manager and the scheduler is repeated until the set of enabled processes is empty.
Processes whose request is disabled are called waiting, while processes that hold
a resource are called active.

A deadlock avoidance algorithm is an allocation manager that guarantees that
no deadlock can be reached, independently of the scheduler used. Our deadlock
avoidance algorithms consist of two parts:

1. A computation of annotations of call graph nodes, carried out statically. We
consider maps from nodes to natural numbers α : N "→ N as annotations.

2. A protocol : a piece of code that ensures, at runtime, that allocations and
deallocations are safe. It consists of two stages: one that runs when the
resource is requested, and another when the resource is released. We are
seeking protocols that only inspect and modify local variables of the site.

The deadlock avoidance protocol Basic-P [23] for node n = (f : r) is shown
in Fig. 1. The entry section that precedes the access to the method call f()
consists of a guard and an action that operate on local variables of site r.
The guard captures the enabling condition of the request for node n. We as-
sume that the entry section is executed atomically, as a test-and-set operation.
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A requesting process executing node n : r is enabled if there are at least α(n)
resources available in r. Note, however, that only one resource is acquired. The
exit section is executed when the method terminates and consists of an action
that updates local variables, in this case increasing tr. The execution of the exit
section triggers the allocation manager to re-evaluate the entry condition of the
waiting processes. Those requests for resources found safe, if any, are handed
over to the scheduler, which chooses one to be granted.

The most important property that protocols must enforce is freedom from
deadlock. The following is a characterization of deadlock:

Definition 1 (Deadlock). A deadlock is a global state in which there is a non-
empty set of disabled processes that continue to be disabled even if all the other
processes in the system return their acquired resources.

Basic-P avoids deadlocks if the annotation is acyclic in the following sense.
Given a system 〈R,G〉 and an annotation α, the annotated call graph (N,→, ���)
adds to G one edge n ��� m for every pair of nodes n and m that reside in the
same site and α(n) ≥ α(m). A node n depends on a node m, represented as
n # m, if there is a path in the annotated graph from n to m that follows at
least one → edge. The annotated graph is acyclic if no node depends on itself,
in which case we say that the annotation is acyclic.

Theorem 1 (Annotation Theorem for Basic-P [23]). Given a system and
an acyclic annotation, if Basic-P is used in every node to control resource al-
locations then all executions of the system are deadlock free.

Example 2. Reconsider the system from Example 1. The left diagram below
shows an annotated call graph with α(n1) = α(n2) = α(m2) = 1 and α(m1) = 2.
It is acyclic, and thus by Theorem 1, if Basic-P is used with these annotations,
the system is deadlock free.

n1 r
1

n2 s
1

m1 s
2

m2 r
1

n1 r
1

n2 s
1

m1 s
1

m2 r
1

Let us compare this with Example 1 where a resource is granted simply if it
is available. This corresponds to using Basic-P with the annotated call graph
above on the right, with α(n) = 1 for all nodes. In Example 1 we showed that a
deadlock is reachable, and indeed this annotated graph is not acyclic; it contains
dependency cycles, for example n1 → n2 ��� m1 → m2 ��� n1. Therefore
Theorem 1 does not apply. In the diagram on the left all dependency cycles are
broken by the annotation α(m1) = 2. Requiring the presence of at least two
resources for granting a resource at m1 ensures that the last resource available
in s can only be obtained at n2, which breaks all possible circular waits.

The priority inheritance protocol presented in the next section is based on
Basic-P. Its correctness relies on the following property.
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Theorem 2 (Reachable state space [20]). The set of global states reachable
by Basic-P contains precisely those states in which, for all sites r and annota-
tions k

ϕ : Ar[k] ≤ Tr − (k − 1) ,

where Ar[k] denotes the number of active processes in site r executing call graph
nodes with annotation k or higher.

The global states that satisfy ϕ are called ϕ-states. Since Basic-P guarantees
deadlock free operation, Theorem 2 implies, for example, that if a system is
in a ϕ-state and Basic-P is used as an allocation manager in every site, then
there is some enabled process. In [21,20] we introduced more efficient protocols
(Efficient-P, k-Efficient-P and Live-P) and proved annotation theorems
similar to Theorem 1, but Basic-P is simpler and it is enough to illustrate the
present discussion. In the remainder of the paper we will assume that Basic-P
is used to allocate the resources.

3 Priority Inheritance

In this section we develop a priority inheritance mechanism and show how it
helps to alleviate priority inversions. A priority specification extends a system
specification with a description of the possible priorities at which processes can
run. The fixed set P of priorities is a finite and totally ordered set. Without loss
of generality, we take P = {1, . . . , pm}, where lower value means higher priority:
1 represents the highest priority and pm the lowest.

Definition 2. Given a system 〈R,G〉 and set of priorities P, a priority assign-
ment is a map from initial nodes I to sets of priorities:

Π : I → 2P .

A priority specification 〈R,G, Π〉 equips the system with a priority assignment.

In the prioritized setting, when a process is created, it declares both the initial
node i—as in the unprioritized case before— and its initial priority from Π(i),
called the nominal priority of the process. Informally, a process L will run at its
nominal priority, and “accelerate” to a higher priority when some higher priority
process H is waiting for some resource that L holds. This will prevent processes
running at intermediate priorities from making L wait and blocking H indirectly.
We now define the distributed priority inheritance protocol:

(PI.1) A process maintains a running priority, which is initially its nominal
priority.

(PI.2) Let P be a process, running at priority p, that is denied access to a
resource in site r, and let Q be an active process in r running at a priority
lower than p. Q and all its subprocesses set their priority to p or their
current running priority, whatever is higher. We say that Q is accelerated
to p.



118 C. Sánchez et al.

(PI.3) When a (sub)process is accelerated it does not decrease its running pri-
ority until completion.

(PI.2) may require sending acceleration messages for subprocesses running in
remote sites. (PI.2) does not require changing the priority of ancestor processes
since the acceleration of a caller cannot help the callee to finish earlier. (PI.3)
states that a (sub)process cannot decelerate. In general, decelerations compro-
mise deadlock freedom.

It is easy to see that a subprocess either runs at priority at least as high as
any of its ancestors, or there are undelivered acceleration messages.

We now calculate the sets of possible priorities at which a call graph node can
be executed. A node n :r can be executed at a priority p either if p ∈ Π(i) for
some initial ancestor of n, or if a process can execute n running at priority lower
than p and block another process running at p. This block can be produced either
if there is some node in r that can be executed at p, or if some ancestor of n can
block some process executing at p. Formally, the set of pairs (n, p) representing
priorities p at which a node n can run is the smallest set Npr ⊆ N×P containing:

1. (n, p) for every n that descends from i→∗ n, i ∈ I and p ∈ Π(i).
2. (n, p) for every (m, p) ∈ Npr with n ≡R m, and (n, q) ∈ Npr for some q ≥ p,

and
3. (n, p) for some ancestor m→+ n that can also run at p, (m, p) ∈ Npr .

Example 3. Consider the call graph

n r m u o1 r o2 u

and the priority assignment Π(n) = {1}, Π(m) = {2}, Π(o1) = {3}. The set of
potential priorities is:

n m o1 o2

{1} {1, 2} {1, 3} {1, 2, 3}
Node o1 can run at priority 1 because o1 resides in the same site as n and
n can run at 1. Since o2 is a descendant of o1, o2 can also run at 1, and
since m resides in the same site as o2, m can also run at 1. Moreover, m
can run at 2, higher than o2 running at 3, so o2 can also run at 2. Thus
Npr = {(n, 1), (m, 1), (m, 2), (o1, 1), (o1, 3), (o2, 1), (o2, 2), (o2, 3)}.

We extend the state transition system that models the global behavior of our
model of distributed systems [23] with a new transition called acceleration. When
an acceleration transition is taken, a process P running at priority p accelerates
to higher priority q (q < p). It is easy to see that, if the priority inheritance
protocol is used, and a process running in n can accelerate from priority p to q,
then both (n, p) and (n, q) are in Npr .

The notion of annotation can be adapted to prioritized specifications. A
prioritized annotation α is a map from Npr to the natural numbers. It re-
spects priorities if for every two pairs (n, p) and (m, q) in Npr , with n ≡R m,
α(n, p) > α(m, q) whenever p > q, that is, if higher priorities receive lower an-
notations. As with unprioritized call graphs, we define an annotated call graph
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by adding an edge relation
pr��� connecting (n, p)

pr��� (m, q) whenever n and m
reside in the same site and α(n, p) ≥ α(m, q). If there is a path from (n, p) to
(m, q) that contains at least a

pr→ edge we say that (n, p) depends on (m, q), and
we write (n, p) # (m, q). An annotation is acyclic if no pair depends on itself.

Example 4. The following diagram represents the annotated call graph of Ex-
ample 3 with ⇒ arrows representing accelerations. This annotated call graph is
acyclic.

(n, 1) r
1

(m, 1) u
1

(o1, 1) r
1

(o2, 1) u
1

(m, 2) u
2

(o2, 2) u
2

(o1, 3) r
2

(o2, 3) u
3

Example 5. This example shows how priority inheritance bounds the blocking
time caused by priority inversions. Reconsider the annotated call graph of Ex-
ample 4. Let the total number of resources be Tr = 3 and Tu = 3. Let σ be
a state in which two active processes are running in n at priority 1, one active
process M is running in m at priority 2, and one active process O is running in
o1 at priority 3. Thus the available resources in σ are given by tr = 0, tu = 2. Let
N be a new process spawned to run in n with nominal priority 1. The resulting
state is shown below.

(n, 1) r
1•

N
••

(m, 1) u
1

(o1, 1) r
1

(o2, 1) u
1

(m, 2) u
2•

M
(o2, 2) u

2

(o1, 3) r
3•

O

(o2, 3) u
3

N is blocked trying to access (n, 1). There is a priority inversion since O holds an
r resource in o1, while running at lower priority 3. If no acceleration is performed,
then the remote call of O to o2 is blocked until M completes, so N will be blocked
indirectly by M (see Fig. 2 (a)). Even worse, if there are several processes waiting
in (m, 2), all these processes will block O and indirectly N , causing an unbounded
blocking delay (see Fig. 2 (b)). With priority inheritance in place, O inherits
the priority 1 from N , and the resulting state after the acceleration is:

(n, 1) r
1•

N
••

(m, 1) u
1

(o1, 1) r
1•

O

(o2, 1) u
1

(m, 2) u
2•

M
(o2, 2) u

2

(o1, 3) r
2

(o2, 3) u
3

In this state, O will be granted the resource in o2 in spite of M (and potentially
other priority 2 processes waiting at m) and O will terminate, freeing the resource
demanded by N . In this case the blocking time of N is bounded by the running
time of O at priority 1, as shown in Fig. 3.
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t0 t1 t2 t3 t4 t5 t6 t7

O r
∗ u

M u

N ∗ r

t0 t1 t2 t3 t4 t5 t6 t7

O r
∗ · · ·

M u u u · · ·
N ∗ · · ·

(a) Blocking due to Priority Inversions (b) Unbounded Blocking

Fig. 2. Time diagram (a) shows an execution of the scenario in Example 5 with blocking
priority inversions. Diagram (b) shows an execution with unbounded blocking time
due to priority inversions. In both diagrams, at instant t0, process O is created, and its
request for an r-resource is granted. At t1, process N is created, but due to the existence
of O and two active processes in n1, its request is denied, indicated by ∗. At t2, M is
spawned to run m and its request for a u-resource is granted. This causes the request
of O to execute o2 at t3 to be denied. O can only execute o2 when some resource in u is
freed. Therefore M is blocking N indirectly. In diagram (a) this blocking is restricted
to the interval (t3, t4), while in diagram (b) the blocking delay is unbounded.

t0 t1 t2 t3 t4 t5 t6 t7

O r
�

u

M u

N ∗ r

(a) No Blocking with Priority Inheritance

Fig. 3. At time t1, process O inherits priority 1 from process N , depicted by �. This
allows O to acquire the u-resource and execute o2 at t3, in spite of the existence of
M or other processes trying to execute m at priority 2. Consequently, N can start
executing n at t5, with no blocking delay.

The following results hold in spite of when and how accelerations are produced:

Lemma 1. If an annotation respects priorities, then accelerations preserve ϕ.

Proof. Let P be a process that accelerates from priority p to q. If P is waiting,
the result holds immediately since the global state does not change. If P is active
at a node n : r, its annotation α(n, p) > α(n, q) decreases. Therefore, all terms
Ar[k] are either maintained or decreased, and ϕ is preserved. ��

Corollary 1. The set of reachable states of a prioritized system that uses Basic-
P as an allocation manager with an acyclic annotation that respects priorities is a
subset of the ϕ-states.

In the rest of this section we show that if Basic-P is used to control allocations,
and accelerations are produced according to the priority inheritance protocol,
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deadlocks are not reachable. When a process inherits a new priority, all its ex-
isting subprocesses, including those in other sites produced as a result of remote
invocations, must accelerate as well. A message is sent to all sites where a sub-
process may be running. When the message is received, if the process exists, then
it is accelerated. If it does not, the acceleration is recorded as a future promise.
We first show deadlock-freedom if all acceleration requests are delivered imme-
diately with global atomicity. Then, we complete the proof for asynchronous
delivery in general.

3.1 Priority Inheritance with Global Atomic Accelerations

Given a prioritized system S we build an (unprioritized) system and show that
if S has reachable deadlocks so does the derived one.

Definition 3 (Flat call graph). Given a priority specification 〈R,G, Π〉, a
flat call graph is G	 : 〈Npr ,

pr→, Ipr 〉, where Npr is the set of potential priorities,
there is an edge (n, p)

pr→ (m, q) if p ≥ q and n → m occurs in the original call
graph, and (i, p) ∈ Ipr if i is initial in G.

We use S	 : 〈R,G	〉 for the (unprioritized) flat system that results from the flat
call graph. It is easy to see that the set of reachable states of a process (the
resources and running priorities of the process and each of its active subpro-
cesses) is the same in a system and in its flat version. Moreover, if an annotation
α of a prioritized specification is acyclic and respects priorities then α, when
interpreted in the flat call graph, is acyclic.

Example 6. The flat call graph for the annotated specification in Example 3 is

(n, 1) r
1

(m, 1) u
1

(o1, 1) r
1

(o2, 1) u
1

(m, 2) u
2

(o2, 2) u
2

(o1, 3) r
2

(o2, 3) u
3

Theorem 3. Given a prioritized system S and an acyclic annotation that re-
spects priorities, every global state reachable by S is also reachable by S	, if
Basic-P is used as an allocation manager.

Proof. Follows directly from Corollary 1 and Theorem 2. ��

It is important to note that Theorem 3 states that for every sequence of requests
and accelerations that leads to state σ in S, there is a—possibly different but also
legal— sequence that leads to σ in S	. Theorem 3 does not imply, though, that
every transition in S can be mimicked in S	, which is not the case in general for
accelerations. A consequence of Theorem 3 is that deadlocks are not reachable
in S, since the same deadlock would be reachable in S	, which is deadlock free
by the Annotation Theorem.
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Corollary 2. If α is an acyclic annotation that respects priorities, and Basic-
P is used as a resource allocation manager in every node, then all runs of S
when accelerations are executed in global atomicity are deadlock free.

The following section shows that the requirement for global atomicity in the
previous corollary is actually not necessary.

3.2 Priority Inheritance with Asynchronous Communication

When an arbitrary asynchronous communication subsystem is assumed, with no
guarantees of globally atomic delivery of messages, the proof of deadlock freedom
is more challenging. In this case, the flat system does not directly capture the
reachable states of the system with priorities, since subprocesses may accelerate
later than their ancestors.

Theorem 4 (Annotation Theorem for Prioritized Specifications). If α
is an acyclic annotation that respects priorities, and Basic-P is used as a re-
source allocation manager for every call graph node, then all runs of S are dead-
lock free.

Proof (sketch). Assume, by contradiction, that deadlocks are reachable, and let
σ be a state in which a set {P} of processes forms a deadlock. Note that σ need
not be a reachable state of the flat system S	. Consider an arbitrary continuation
of the run, and let σ′ be the first state in which there is no undelivered message
containing an acceleration of a process in the set {P}. Such a state exists since the
set of possible accelerations is finite and all messages are eventually delivered. In
σ′ if all the processes not involved in the deadlock (i.e., not in {P}) return their
resources the resulting state becomes a ϕ-state, and therefore some process (in
{P}) can progress if Basic-P is used as an allocation manager. This contradicts
the assumption that σ is a deadlock state. ��

4 Conclusions and Further Work

We have presented a distributed priority inheritance protocol built using a dead-
lock avoidance mechanism, and proved its correctness. This protocol involves less
communication overhead than a distributed PCP, since inversions can be de-
tected locally, while PCP requires a global view of the resources allocated. Our
approach enables the calculation of bounds on the maximum blocking times,
which is necessary for schedulability analysis.

Message Complexity: The message complexity of a näıve implementation of the
priority inheritance protocol described here is given by the number of different
sites of the set of descendant nodes, which in the worst case is |R|. However,
this communication is one-way, in the sense that once the message is sent to
the network, the local process can immediately accelerate, increasing its running
priority. Moreover, broadcast can be used when available. Also, under certain
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semantics for remote calls this worst case bound can be improved. For example,
with synchronous remote calls (the caller is blocked until the remote invocation
returns), one can build, using a pre-order traversal of the descendant sub-tree,
an order on the visited sites. Then, a binary search on this order can be used to
find the active subprocess where the nested remote call is executing. This gives
a worst case (log |R|) upper-bound on the number of messages needed for each
priority inheritance.

Dynamic Priorities : Most dynamic priority scheduling algorithms, like EDF, re-
quire querying for the current status of existing processes to define their relative
priorities. Our priority inheritance mechanism can be used with dynamic priori-
ties if there is some static discretization of the set of priorities that processes may
run at. To ensure the correctness of the priority inheritance protocol shown here,
subprocesses must only increase (never decrease) their priorities while running.
Note that in this kind of scheduling algorithm, accelerations would not only be
caused by a priority inversion but also by the decision of a process to increase
its priority to meet a deadline.
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Abstract. The termination detection problem involves detecting whe-
ther an ongoing distributed computation has ceased all its activities. We
investigate the termination detection problem in an asynchronous dis-
tributed system under crash-recovery model. It has been shown that the
problem is impossible to solve under crash-recovery model in general. We
identify two conditions under which the termination detection problem
can be solved in a safe manner. We also propose algorithms to detect
termination under the conditions identified.

1 Introduction

The termination detection problem arises when a distributed computation ter-
minates implicitly, that is, once the computation ceases all its activities, no single
process knows about the termination [1]. Therefore a separate algorithm has to
be run to detect termination of the computation. To abstract from concrete ap-
plications in message-passing systems, the distributed computation is typically
modeled using the following four rules. First, a process is either active or passive.
Second, a process can send a message only if it is active. Third, an active process
may become passive at any time. Fourth, a passive process may become active
only on receiving a message. Intuitively, an active process is involved in some
local activity, whereas a passive process is idle. Roughly speaking, a termination
detection algorithm must detect termination once the computation which follows
these rules has ceased all its activities.

Termination detection has been studied quite extensively for the last few
decades, initially under the failure-free model (e.g., [2,3,4,5,6], see [7] for a sur-
vey). When both processes and channels are reliable, the termination condition
for a distributed computation can be defined as follows [2,3]: A computation is
said to have terminated if all processes have become passive and all channels
have become empty.

Termination detection has been studied relatively well in the crash-stop model
as well (e.g., [8,9,10,11,12]). In the crash-stop model, once a process crashes, it
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ceases all its activities. Moreover, any message in-transit towards a crashed pro-
cess can be ignored because the message cannot initiate any new activity. There-
fore, the termination condition for a distributed computation can be defined as
follows [8,9]: A computation is said to have terminated if all up processes have
become passive and all channels towards up processes have become empty.

Wu et al. [13] establish that, to be able to detect termination in the crash-stop
model, it must be possible to flush the incoming channel of an up process with a
down process. A channel can be flushed using either return-flush [8] or fail-flush
[9] primitive. Both primitives allow an up process to ascertain that its incoming
channel with the crashed process has become empty. In the absence of the two
primitives, Tseng suggests freezing the channel from a down process to an up
process [10]. When an up process freezes its channel with a down process, any
message that arrives after the channel has been frozen is ignored. (A process
can freeze a channel only after detecting that the process at the other end of
the channel has crashed.) In this case, a computation is said to have terminated
if all up processes have become passive, all channel between up processes have
become empty, all channels from down processes to up processes have been frozen
[10,11,12].

In this paper, we investigate the termination detection problem under a more
severe failure model, namely crash-recovery model. In the crash-recovery model,
processes can crash and later recover from a predefined state. To our knowl-
edge, Majuntke [14] was the first to give a definition of termination in the crash-
recovery model. Majuntke [14] shows that, if processes can restart in active state
on recovery, then it is impossible to detect termination without the ability to
predict future behavior of processes (e.g., whether a crashed process will remain
crashed forever or will recover in the future). The impossibility result holds even
if a process can restart in an active state only if it crashed in an active state. Ma-
juntke [14] also presents a stabilizing termination detection algorithm under the
condition that there is no process that crashes and recovers an infinite number
of times. The algorithm is stabilizing in the sense that it may falsely announce
termination and revoke it later. However, false termination announcements and
revocations can happen only a finite number of times even if the underlying
computation never terminates [14].

Our focus is on developing non-stabilizing safe termination detection algo-
rithms in the crash-recovery model, that is, unlike in [14], our termination de-
tection algorithms are not allowed to revoke a termination announcement (even
if the revocation occurs only a finite number of times). We identify two con-
ditions under which termination of a computation can be detected in a safe
manner, that is, it is possible to devise a termination detection algorithm that
never announces false termination.

1. The first condition requires every process to be eventually reliable, that is,
every process eventually stays up permanently.

2. The second condition requires a crashed process to always restart in a pas-
sive state (and rejoin the computation via a recovery operation). Further,
a process can deliver an application message only if it is sent to its current
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incarnation, that is, only if the sender is aware of all restarts of the des-
tination process. We ensure the latter by allowing a process to deliver an
application message only if the message is exchanged between current incar-
nations of the two processes (source and destination).

We present an algorithm to detect termination under each of the conditions. The
second algorithm uses a new failure detector suitable to solve the termination
detection problem in the crash-recovery model. Due to lack of space, proofs of
all lemmas and theorems, and formal descriptions of the two algorithms can be
found elsewhere [15].

The paper is organized as follows. We present our system model and notations
in Sect. 2, derive a definition of a perfect failure detector for the crash-recovery
model in Sect. 3 and formally define the termination detection problem in Sect. 4.
We identify the two conditions for safe termination detection in Sect. 5. The
algorithms for termination detection under the two conditions are described in
Sect. 6 and Sect. 7. Finally, we present our conclusions and outline directions
for future research in Sect. 8.

2 Model and Notation

2.1 Distributed System

We assume an asynchronous distributed system consisting of a set of processes,
given by Π = {p1, p2, . . . , pN}, in which processes communicate by exchanging
messages with each other over a communication network. A process changes its
state by executing an event. The system is asynchronous in the sense that there
is no bound on the amount of time a process may take to execute an event or
a message may take to arrive at its destination. We do not assume any global
clock or shared memory.

There are three kinds of events in the system: internal event, send event and
receive event. An event at a process causes the state of the process to be updated.
Additionally, a send event causes one or more messages to be sent, whereas a
receive event causes a message to be received. Sometimes, we refer to the state
of a process as local state and the state of a system as global state.

We assume that a process executes events sequentially. Therefore events on
a process are totally ordered. However, events on different processes are only
ordered partially. The partial order between events in the system is given by the
Lamport’s happened-before relation [16] defined as follows. An event e is said to
have happened-before an event f , denoted by e→ f , if

– e and f are events on the same process and e was executed before f , or
– e and f are send and receive events, respectively, of the same message, or
– there exists an event g such that e→ g and g → f .

We use → to denote the reflexive closure of →.
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2.2 Failure Model

We assume that processes are unreliable and may fail by crashing. Further, a
crashed process may subsequently recover and resume its operation. While a
process is crashed, it does not execute any events. This failure model is referred
to as crash-recovery model.

In the crash-recovery model, a process may be either stable or unstable. A
process is said to be stable if it crashes (and possibly recovers) only a finite
(including zero) number of times; otherwise it is unstable. A stable process can
be further classified into two categories: eventually-up or eventually-down [17].
A process is said to be eventually-up if the process eventually stays up after
crashing and recovering a finite number of times; otherwise it is eventually-down.
An eventually-up process is said to be always-up if it never crashes. Sometimes,
eventually-up processes are referred to as good processes, and eventually-down
and unstable processes are referred to as bad processes [17].

A process that is currently operational is called an up process, whereas a
process that is currently crashed is called a down process. We use the phrases
“up process” and “live process” interchangeably. Likewise, we use the phrases
“down process” and “crashed process” interchangeably.

In the crash-recovery model, in addition to processes, typically, channels are
also assumed to be unreliable. We assume eventually-reliable channels with finite
duplication in this paper. Such channels satisfy the following properties:

– No creation: pj delivers a message m only if m was sent earlier by pi,
– Finite duplication: pj delivers a message only a finite number of times, and
– Eventual-reliability: If pi sends a message m to pj, and neither pi nor pj

crashes, then pj eventually delivers m.

An eventually-reliable channel with finite duplication can be implemented on top
of a fair-lossy channel [18]—a type of unreliable channel providing very weak
guarantees—using retransmissions and acknowledgments. We refer to a channel
as eventually-reliable if it satisfies no creation, no duplication and eventual-
reliability properties. Unless otherwise stated, we assume all channels to be
eventually-reliable with finite duplication.

2.3 Volatile and Stable Storage

We assume that each process has access to two types of storage mediums: volatile
storage and stable storage. Any data that a process maintains in volatile storage,
such as main memory, is lost once the process crashes. On the other hand, data
stored in stable storage, such as magnetic disk, is persistent and survives any
crashes. However, this persistence comes at the expense of speed. Accessing
(reading/writing) stable storage is much slower than accessing volatile storage.
As a result, it is desirable to minimize access to stable storage so as to avoid
slowing down the system significantly.
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2.4 Process Incarnations

When a crashed process recovers, we say that the process has a new incarna-
tion. At the very least, we use stable storage to distinguish between various
incarnations of the same process. Each process maintains an integer in its stable
storage that keeps track of its incarnation number, that is, the number of times
the process has crashed and recovered. The integer is initially set to 0 for all
processes. Whenever a process recovers from a crash, before taking any other
action, it reads the value of the integer from its stable storage, increments the
value and writes the incremented value back to its stable storage. Observe that
it is possible that a process may crash before it is able to write the incremented
value back to its stable storage. Clearly, such a recovery is useless for all prac-
tical purposes. Therefore we consider a process to be down until it is able to
successfully update its incarnation number in its stable storage.

If a process pi crashes and the incarnation number of pi immediately before the
crash was x, then we say that “incarnation x of pi has crashed”. It is convenient
to view process crash and recovery as special kinds of events, namely crash event
and recovery event. We use crashi(x) (respectively, recoveryi(x)) to denote the
crash event (respectively, recovery event) for incarnation x of process pi. We refer
to crash and recovery events as operational events (as opposed to program events
that processes execute to change their states). The happened-before relation can
be extended to include operational events as well.

We denote the operational state of a process (as opposed to program state
which captures the values of all program variables on the process) using a tuple
〈s, x〉 containing two components. The first component, given by s, indicates the
status of the process, that is whether the process is up or down. The second com-
ponent, given by x, indicates the most recent incarnation number of the process.
The formal interpretation of the tuple 〈s, x〉 is as follows:

– If s = up, then the process is currently up and its current incarnation number
is x.

– If s = down, then the process is currently down and the most recent incar-
nation of the process to have crashed is x.

We assume that up < down. We can now define a less-than relation on op-
erational states of a process as follows: 〈s, x〉 < 〈t, y〉 if either (1) x < y, or
(2) x = y and s < t. Observe that the less-than relation as defined totally orders
all operational states of a process. As before, ≤ is a reflexive closure of <. For an
operational state u = 〈s, x〉, we use u.status to refer to the status s and u.number
to refer to the incarnation number x. Let opstatei(t) denote the operational state
of process pi at time t.

Note that it is possible to avoid delivering duplicate messages during an in-
carnation without using stable storage by logging received messages in volatile
storage only.
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3 Failure Detector for Termination Detection

To solve many important distributed computing problems such as consensus,
atomic broadcast and termination detection in an unreliable asynchronous dis-
tributed system, it is sometimes necessary for an up process to know the current
status (up or down) of other processes in the system. However, in an asyn-
chronous distributed system, it is not possible to distinguish between a down
process and a slow process. To overcome this problem, many solutions to these
problems assume the existence of a special device known as failure detector [19].
Using a failure detector, a process can maintain its view about the current status
(up or down) of other processes in the system. This view might be unreliable
and, at any given time, the views at different processes may be different as well.
For a failure detector to be useful, these views should eventually be “error-free”
and “converge” at good processes. A failure detector can be implemented by
making timing assumptions about speeds of processes and delays of messages
[19,20]. The notion of failure detector was originally defined for the crash-stop
model (once a process crashes, it never recovers) [19] but has been extended to
the crash-recovery model as well (see for example [17]). In this paper, we focus on
realistic failure detectors which are not capable of predicting the future behavior
of a process (e.g., whether a process will stay up forever) [21].

One of the termination detection algorithms we describe in this paper uses a
perfect failure detector [19] adapted to the crash-recovery model. Informally, a
perfect failure detector for the crash-recovery model is responsible for detecting
crashes of process incarnations. It satisfies the following properties: (1) Strong
Accuracy: a process suspects a process incarnation to have crashed only after
the incarnation has crashed, and (2) Strong Completeness: if a process incarna-
tion has crashed, then eventually every good process permanently suspects the
incarnation to have crashed.

The completeness property as stated above is hard to implement in practice.
A process may crash immediately after it has updated its incarnation number in
the stable storage (but before sending any messages) and no other process in the
system will know about the recovery (and hence about the incarnation). Clearly,
it is unreasonable to expect another process to be able to detect crash of such
an incarnation. To address this problem, we define what it means for a process
to know-about an incarnation. We say a process pi knows-about the incarnation
x of process pj if there exists an event e on pi such that recoveryj(x)→ e. We
assume that each process knows-about incarnation 0 of every other process.

Based on the above discussion, we modify the completeness property as fol-
lows. It now consists of two parts. First, if some always-up process knows-about
a process incarnation and the incarnation has crashed, then eventually every
good process permanently suspects the incarnation to have crashed. Second, if
some good process permanently suspects a process incarnation to have crashed,
then eventually every good process permanently suspects the incarnation to have
crashed. We formally model this behavior as follows. The local failure detector
at each process pi maintains a list, denoted by crash-listi, that contains all pro-
cess incarnations it suspects to have crashed. Each entry in the list is of the
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form 〈i, x〉, which means that incarnation x of process pi has crashed. Observe
that, in practice, it is sufficient for the local failure detector to maintain at most
one entry in the list for every process in the system, which corresponds to the
latest incarnation of the process that it suspects to have crashed. We assume
that crash-listi is prefix-closed, that is, if 〈j, x〉 ∈ crash-listi and x ≥ 1, then
〈j, x− 1〉 ∈ crash-listi.

Let crash-listi(t) denote the list at process pi at time t. We assume that if
pi is down at t, then crash-listi(t) = ∅. A perfect failure detector satisfies the
following properties:

– Strong Accuracy: A process suspects a process incarnation to have crashed
only if the incarnation has actually crashed. Formally, for all processes pi

and pj ,
〈j, x〉 ∈ crash-listi(t) ⇒ 〈down, x〉 ≤ opstatej(t)

– Strong Completeness: It consists of two parts:
1. If at least one always-up process knows-about a process incarnation, and

the incarnation has crashed, then eventually every good process perma-
nently suspects the incarnation to have crashed. Formally, for every good
process pi and for every process pj ,

(if some always-up process knows about recoveryj(x))∧
(〈down, x〉 ≤ opstatej(t))

⇒
〈∃u :: 〈∀v : v ≥ u : 〈j, x〉 ∈ crash-listi(v)〉〉

2. If some good process permanently suspects a process incarnation to have
crashed, then eventually every good process permanently suspects the
incarnation to have crashed. Formally, for all good process pi and pk and
for every process pj ,

〈∀w : w ≥ t : 〈j, x〉 ∈ crash-listk(w)〉
⇒

〈∃u :: 〈∀v : v ≥ u : 〈j, x〉 ∈ crash-listi(v)〉〉

The accuracy and completeness properties guarantee that if there are no un-
stable processes in the system, then eventually all good processes agree on which
process incarnations have crashed. Our definition of a perfect failure detector al-
lows a process to “lose” its knowledge about crashes of other processes, especially
due to its own crash. We do assume, however, that, once a process suspects a
process incarnation to have crashed, it continues to do so until it crashes. This
can be easily achieved using volatile storage only.

4 The Termination Detection Problem

There are many distributed programs which, when executed, generate distributed
computations that do not terminate explicitly but rather terminate implicitly [1].
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In other words, when the computation terminates, it is possible that no process
in the system knows that the computation has terminated. In this case, a sepa-
rate termination detection algorithm has to be run to detect termination of the
distributed computation. The distributed computation whose termination has to
be detected is typically modeled using the states active and passive for processes
and the rules mentioned in the introduction.

The termination detection problem involves determining whether the compu-
tation has ceased all its activities. In other words, no process is currently involved
in any activity, and, moreover, no process can become involved in any activity
in the future. Any termination detection algorithm should satisfy the following
properties:

– No false termination announcement (safety): If the termination detection
algorithm announces termination, then the computation has indeed termi-
nated.

– Eventual termination announcement (liveness): Once the computation ter-
minates, the termination detection algorithm eventually announces termina-
tion.

For every failure model, it is necessary to define what it means that a compu-
tation has terminated. In the crash-recovery model, a process may recover after
crashing and resume its activity. Clearly, if a process, on recovery, can restart
in any state—active or passive, then, once the termination condition becomes
true, no process can crash thereafter. Otherwise, the termination condition can
be simply falsified by a process crash and its subsequent recovery in an active
state. This definition is too restrictive. Therefore, we assume that a process can
restart in an active state on recovery only if it crashed in active state; other-
wise, it restarts in a passive state. A process is said to be forever-down if it is
currently crashed and never recovers from the crash. The termination condition
for a distributed computation can be defined as [14]:

Definition 1 (termination in crash-recovery model). A computation is
said to have terminated in the crash-recovery model if every process that is not
forever-down has become passive, and every channel towards such a process has
become empty.

Observe that the termination condition in the crash-recovery model, as stated
above, requires a failure detector to be able to predict the future behavior of
a down process, namely whether a down process will recover in the future or
stay down permanently. In fact, Majuntke shows in [14] that it is impossible to
detect termination of a computation in the crash-recovery model without using
a non-realistic failure detector. However, the definition is still reasonable since
Majuntke [14] also proves that the above definition of termination is equivalent
to the condition that termination is a stable property.

In the next section, we investigate conditions under which it is possible to
detect termination using only a realistic failure detector such as the one defined
in Sect. 3. In contrast to [14], our focus is on deriving termination detection
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algorithms that are (perpetually) safe and not eventually safe. Specifically, if the
termination detection algorithm announces termination, then the computation
has, in fact, terminated.

To avoid confusion, we refer to messages exchanged by a distributed compu-
tation as application messages and those exchanged by a termination detection
algorithm as control messages.

5 Conditions for Safe Termination Detection

One of the reasons why detecting termination in the crash-recovery model is
hard is because a crashed process, on recovery, may restart in an active state.

Lemma 1. Assume that: (1) a crashed process, on recovery, may restart in an
active state provided it failed in an active state, and (2) at most one process
in the system is bad. Then there is no termination detection algorithm that can
detect termination of every computation in a safe and live manner.

Lemma 1 implies that, to be able to detect termination of a computation in a
safe manner, we have to weaken at least one of two assumptions, that is, either
(1) a crashed process, on recovery, always restarts in a passive state, or (2) all
processes in the system eventually stay up permanently. We consider the two one
by one. First, assume that processes in the system eventually stay up forever, that
is, all processes are eventually reliable. In this case, the termination condition
for a distributed computation in the crash-recovery model becomes equivalent
to that in the failure-free model. Therefore the first condition under which we
investigate the termination detection problem is:

Condition 1 (eventually reliable processes). All processes in the system
are good processes.

Next, assume that a process, on recovery, always restarts in a passive state. In-
tuitively, this means that a process, on recovery, cannot start any activity on
its own but has to wait to receive an application message from another pro-
cess. Therefore the second condition under which we investigate the termination
detection problem is:

Condition 2 (passive recovery). A crashed process, on recovery, always re-
starts in a passive state.

However, the above condition, by itself, does not solve the problem completely.
For a message m, let snd(m) and rcv(m) denote the send and receive events,
respectively, of m. Suppose process pi sends an application message m to process
pj . We say that m is old with respect to incarnation x of pj, where x ≥ 1, if
recoveryj(x) �→ snd(m). In other words, when pi sent m, it did not know-about
incarnation x of pj . We show that such an old application message may create
a problem for a termination detection algorithm.
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Lemma 2. Assume that: (1) a crashed process, on recovery, always restarts in
a passive state, (2) at most two process in the system are bad, and (3) a process
can accept an old application message. Then there is no termination detection
algorithm that can detect termination of every computation in a safe and live
manner.

The main idea behind the proof of Lem. 2 is as follows. To tolerate eventually-
down processes, it is not sufficient to ensure that all channels towards up pro-
cesses are empty before announcing termination. It may also be necessary to
ensure that all channels between down processes are empty (unless, of course,
all down processes stay down permanently which requires knowledge about the
future). Clearly, it is reasonable to assume that the channel from pi to pj can
be tested for emptiness only by either pi or pj and not by any third process.
To address this problem, we take an approach that is analogous to freezing of a
channel in the crash-stop model.

The main difference is that instead of freezing channels between processes,
we now freeze channels between process incarnations. Specifically, if a process
suspects a process incarnation to have crashed, then it stops accepting applica-
tion messages from that incarnation. Further, it only accepts those application
messages that are sent to its current incarnation. To implement freezing of a
channel between process incarnations, each process has to maintain its view of
the most recent incarnation of other processes in the system. This can be ac-
complished by maintaining a vector analogous to Fidge/Mattern’s vector clock
[22,23]. We refer to this vector as view vector. The vector for process pi, denoted
by viewi, maintains the operational states of all processes in the system as per
pi’s view. The vector is piggybacked on every message (application as well as
control) a process sends. As in the case of vector clock, a process, on receiving a
message, updates its vector by taking a component-wise maximum of its vector
and the vector received. Additionally, a process updates its vector on recovery
and on detecting a crash. Like vector clocks, two view vectors are compared
component-wise. Figure 1 describes the actions for modifying view vector.

For a program event e on process pi, we use e.view to denote the view vec-
tor value on pi immediately after executing e. Note that, since a process has
up-to-date knowledge about its own operational state, e.view[i] represents the
operational state of pi immediately after executing e. If e is not a program event
(that is, it is a crash or recovery event of pi), we define the ith entry of e.view,
given by e.view[i], as the operational state of pi immediately after executing e.
For instance, if e = crashi(x) for some x, then e.view[i] = 〈down, x〉. Likewise,
if e = recoveryi(x) for some x, then e.view[i] = 〈up, x〉. All other entries of
e.view are assumed to be set to their lowest values. Specifically, the jth entry of
e.view with j �= i has the value 〈up, 0〉. Clearly, the ith entry of the view vector
of process pi is monotonically non-decreasing even across crashes and recoveries.

We assume that the view vector of a process is stored in volatile storage but
may be flushed to stable storage periodically while the process is up. Therefore,
the view vector of a process is monotonically non-decreasing as long as the
process does not crash.
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Rules for updating view vector on process pi:

Variables:
viewi: vector [1..n] of operational states;

(A0) Initialization:
for each j in [1, n] do viewi[j] := 〈up, 0〉; endfor;

(A1) On sending a message m:
piggyback viewi on m;

(A2) On receiving a message m carrying view vector:
for each j in [1, n] do

viewi[j] := max{viewi[j],m.view[j]};
endfor;

(A3) On detecting crash of incarnation x of process pj :
viewi[j] := max{viewi[j], 〈down, x〉};

(A4) On starting new incarnation x after recovery:
viewi[i] := 〈up, x〉;
// other entries of viewi may be initialized using stable storage, if applicable

Fig. 1. Rules for updating view vector on a process

For a message m, let m.view denote the vector piggybacked on m. We say
that pi believes pj to be currently up if viewi[j].status = up. We now formally
define what it means to freeze a channel between two process incarnations.

Condition 3 (channel freezing). Consider an application message m sent by
process pi to process pj. Then pj accepts m if and only if both the following
conditions hold:

1. viewj [j] = m.view[j] and
2. viewj [i] ≤ m.view[i].

We present two algorithms for safe termination detection. The first algorithm de-
tects termination when Cond. 1 holds. The second algorithm detects termination
when Cond. 2 and Cond. 3 hold.

6 Termination Detection with Eventually Reliable
Processes

In this section, we present a termination detection algorithm assuming eventually
reliable processes.

As explained before, when all processes are eventually reliable, detecting ter-
mination of a distributed computation becomes equivalent to detecting that all
processes are passive and all channels are empty. In the crash-free model, testing
whether a channel is empty is relatively easy. To test whether a channel from
process pi to process pj is empty, it is sufficient to test that the number of mes-
sages that pi has sent to pj so far is equal to the number of messages that pj has
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received from pi so far. However, in the crash-recovery model, a message that pi

sends to pj may arrive at pj while pj is down and is, therefore, lost. As a result,
when comparing pi and pj ’s states, if pj is missing a message sent to it by pj ,
we cannot distinguish between the case when the message has been lost and the
case when the message has been simply delayed.

Therefore, to detect termination, we need some other mechanism to test for
emptiness of a channel. To that end, we define a special operation on a channel,
which we refer to as flush. A flush operation is defined using two events: start flush
and end flush. A process pi initiates a flush operation on its outgoing channel
with another process, say process pj , by executing the start flush event. A flush
operation initiated by pi ends when pi executes a matching end flush event. A
flush operation should satisfy the following two properties:

– No old message delivery after flush (safety): Once pi executes an end flush
event, pj does not deliver any application message that pi sent before exe-
cuting the corresponding start flush event.

– Eventual flush completion (liveness): If neither pi nor pj crashes, then even-
tually pi executes a matching end flush event.

We provide an implementation of the flush operation later in this section. We
now describe a scheme that enables a process to test if the underlying compu-
tation has terminated. The scheme consists of two phases. In the first phase,
the process, which is testing for termination, requests all processes to flush their
outgoing channels and also send their local states to it. A process sends a local
state of passive if it is passive at the time of receiving the request and stays
passive until all its outgoing channels have been flushed; otherwise it sends a
local state of active. If local states of all processes indicate that all processes are
passive, then the scheme proceeds to the second phase. In the second phase, the
process again contacts all processes to determine if any one of them became ac-
tive since sending its previous response. If no such process exists and no process
fails during the entire execution of the scheme, then the process infers that the
computation has terminated. We prove that the scheme is safe, that is, a process
detects termination only if the computation has terminated.

To ensure liveness, a process uses an instance of the scheme to test whether
the computation has terminated whenever it becomes passive or recovers from a
crash. We show that once the computation terminates, some process eventually
detects termination. Different instances of the scheme are differentiated using an
instance identifier, which consists of (1) the identifier of the initiating process,
(2) its incarnation number and (3) a sequence number. The sequence number
helps differentiate between various instances of the scheme initiated by the same
incarnation of a process. The sequence number can be stored in the volatile
storage. We refer to the termination detection algorithm described in this section
as TDA-ER. We show that:

Theorem 1 (TDA-ER is safe and live). If TDA-ER announces termination,
then the computation has already terminated. Further, once the computation
terminates, TDA-ER eventually announces termination.



138 N. Mittal, K.L. Phaneesh, and F.C. Freiling

Let R denote the sum of (1) the number of active-to-passive transitions in the
computation and (2) the number of recovery events in the execution. Then there
are at most R invocations of the testing scheme in total.

6.1 Implementing Flush Operation

To implement flush operation, we assume that all channels are eventually reliable
(no duplication) and, moreover, satisfy FIFO property. On initiating a flush
operation on an outgoing channel (that is, on executing a start flush event), a
process sends a flush message to the neighbor of the channel. The neighbor,
on receiving the flush message, sends an acknowledgment message back to the
process. On receiving the acknowledgment message, the process executes the
end flush event.

Another way to implement the flush operation is to use stable storage.
A process logs every application message it sends and receives in stable stor-
age. Further, it periodically retransmits every message in stable storage until it
receives an acknowledgment for it. When a flush operation is initiated, it exe-
cutes the end flush event once all messages sent before the start flush event have
been acknowledged.

7 Termination Detection with Passive Recovery and
Channel Freezing

In this section, we present a termination detection algorithm assuming passive
recovery and channel freezing. Unlike in the previous case, in this case, a process
may eventually crash and never recover. Therefore, as is usually the case, we
need some kind of a failure detector to aid processes in determining the current
status of other processes in the system. Specifically, we use a perfect failure
detector defined in Sect. 3 to solve the termination detection problem. We do
assume, however, that there is at least one always-up process in the system.

Due to passive recovery and channel freezing, when a crashed process recovers,
it has to execute a recovery operation to rejoin the computation. Otherwise, it
can never become active again. Intuitively, as part of the recovery operation,
a process informs other operational processes in the system about its recovery.
This serves two purposes. First, other processes can start sending it application
messages which can now be accepted by the process since they will carry its
latest incarnation number. Second, if the process crashes again, then the failure
detector is obligated to detects its crash due to the strong completeness property.

We use the following recovery operation. A crashed process, on recovery,
broadcasts a restart message to all processes in the system. It then waits to
receive an acknowledgment from all those processes that it believes have not
crashed even once. This ensures that at least one always-up process knows
about the recovery. Note that all messages exchanged in the recovery operation
(namely, restart and acknowledgment) are piggybacked with the incarnation vec-
tor of the sending process. Any application message received before the recovery
operation has completed is buffered and processed later.
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As in the previous algorithm, we now describe a scheme that enables a process
to test if the underlying computation has terminated. The process, which is
testing for termination, requests all processes in the system to send their current
local states to it. The local state of a process includes: (1) the view vector, (2) the
state with respect to the application, (3) the number of application messages
it has sent to the latest incarnation of each process, and (4) the number of
application messages it has received from the latest incarnation of each process.
The process waits until it has received a local state from each process that it
believes to be currently up. It then infers that the computation has terminated
if both the following conditions hold:

1. all processes currently up in its view have identical view vectors, and
2. all processes currently up in its view are passive and all channels between

them are empty.

We show that the scheme is safe, that is, a process detects termination only if
the computation has terminated. To ensure liveness, a process uses an instance of
the scheme to test whether the computation has terminated whenever it becomes
passive or its view vector changes. We show that once the computation termi-
nates, some process eventually detects termination. As before, different instances
of the scheme can be differentiated using an appropriate instance identifier.

Theorem 2 (TDA-CF is safe and live). If TDA-CF announces termination,
then the computation has already terminated. Further, once the computation
terminates, TDA-CF eventually announces termination.

Let Rc denote the number of active-to-passive transitions in the computation
and Ro denote the number of crash and recovery events in the execution. Then
there are at most Rc + NRo invocations of the testing scheme in total.

8 Conclusions

We have identified two conditions under which the termination detection problem
can be solved in a safe manner when processes can crash and recover. We have
also proposed a termination detection algorithm to solve the problem under each
of the two conditions.

Our algorithm for the second condition uses a perfect failure detector which
is strictly stronger than the failure detector used to solve consensus in the crash-
recovery model [17]. When processes do not recover after crashing, the set of
assumptions for our second algorithm become identical to those under crash-
stop model. Since a perfect failure detector is necessary to detect termination
in the crash-stop model [13,12], we believe that a perfect failure detector is
necessary to detect termination in the crash-recovery model as well when two or
more processes may be bad. We plan to prove this rigorously in the future.
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Abstract. We present a first lock-free design and implementation of
a dynamically resizable array (vector). The most extensively used con-
tainer in the C++ Standard Template Library (STL) is vector, offer-
ing a combination of dynamic memory management and constant-time
random access. Our approach is based on a single 32-bit word atomic
compare-and-swap (CAS) instruction. It provides a linearizable and
highly parallelizable STL-like interface, lock-free memory allocation and
management, and fast execution. Our current implementation is designed
to be most efficient on multi-core architectures. Experiments on a dual-
core Intel processor with shared L2 cache indicate that our lock-free vec-
tor outperforms its lock-based STL counterpart and the latest concurrent
vector implementation provided by Intel by a large factor. The perfor-
mance evaluation on a quad dual-core AMD system with non-shared L2
cache demonstrated timing results comparable to the best available lock-
based techniques. The presented design implements the most common
STL vector’s interfaces, namely random access read and write, tail inser-
tion and deletion, pre-allocation of memory, and query of the container’s
size. Using the current implementation, a user has to avoid one particu-
lar ABA problem.

Keywords: lock-free, STL, C++, vector, concurrency, real-time sys-
tems.

1 Introduction

The ISO C++ Standard [18] does not mention concurrency or thread-safety
(though it’s next revision, C++0x, will [4]). Nevertheless, ISO C++ is widely
used for parallel and multi-threaded software. Developers writing such programs
face challenges not known in sequential programming: notably to correctly ma-
nipulate data where multiple threads access it. Currently, the most common
synchronization technique is to use mutual exclusion locks. A mutual exclusion
lock guarantees thread-safety of a concurrent object by blocking all contending
threads except the one holding the lock. This can seriously affect the perfor-
mance of the system by diminishing its parallelism. The behavior of mutual
exclusion locks can sometimes be optimized by using fine-grained locks [17] or
context-switching. However, the interdependence of processes implied by the use
of locks – even efficient locks – introduces the dangers of deadlock, livelock, and
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priority inversion. To many systems, the problem with locks is one of difficulty
of providing correctness more than one of performance.

The widespread use of multi-core architectures and the hardware support for
multi-threading pose the challenge to develop practical and robust concurrent
data structures. The main target of our design is to deliver good performance for
such systems (Section 4). In addition, many real-time and autonomous systems,
such as the Mission Data Systems Project at the Jet Propulsion Laboratory [8],
require effective fine-grained synchronization. In such systems, the application
of locks is a complex and challenging problem due to the hazards of priority
inversion and deadlock. Furthermore, the implementation of distributed par-
allel containers and algorithms such as STAPL [2] can benefit from a shared
lock-free vector. The use of non-blocking (lock-free) techniques has been sug-
gested to prevent the interdependence of the concurrent processes introduced
by the application of locks [13]. By definition, a lock-free concurrent data struc-
ture guarantees that when multiple threads operate simultaneously on it, some
thread will complete its task in a finite number of steps despite failures and
waits experienced by other threads. The vector is the most versatile and ubiq-
uitous data structure in the C++ STL [26]. It is a dynamically resizable array
that provides automatic memory management, random access, and tail element
insertion and deletion with an amortized cost of O(1).

This paper presents the following contributions:

(a) A first design and practical implementation of a lock-free dynamically resiz-
able array. Our lock-free vector provides a set of linearizable [15] STL vector
operations, which allow disjoint-access parallelism for random access read
and write.

(b) A portable algorithm. Our design is based on the word-size compare-and-
swap (CAS) instruction available on a large number of hardware platforms.

(c) A fast and space-efficient implementation. On a variety of tests executed on
an Intel dual-core architecture it outperforms its lock-based STL counterpart
and the concurrent vector provided by Intel by a factor of 10. The same tests
executed on an 8-way AMD architecture with non-shared L2 cache indicate
performance comparable to the best available lock-based techniques.

(d) An effective incorporation of non-blocking memory management and mem-
ory allocation schemes.

The rest of the paper is structured like this: 2: Background, 3: Implementation,
4: Performance Evaluation, and 5: Conclusion.

2 Background

As defined by Herlihy [13] [14], a concurrent object is non-blocking if it guaran-
tees that some process in the system will make progress in a finite number of
steps. An object that guarantees that each process will make progress in a finite
number of steps is defined as wait-free. Non-blocking (lock-free) and wait-free
algorithms do not apply mutual exclusion locks. Instead, they rely on a set of
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atomic primitives such as the word-size CAS instruction. Common CAS imple-
mentations require three arguments: a memory location, Mem, an old value, Vold,
and a new value,Vnew . The instruction atomically exchanges the value stored in
Mem with Vnew , provided that its current value equals Vold. The architecture
ensures the atomicity of the operation by applying a fine-grained hardware lock
such as a cache or a bus lock (e.g.: IA-32 [16]). The use of a hardware lock does
not violate the non-blocking property as defined by Herlihy. Common locking
synchronization methods such as semaphores, mutexes, monitors, and critical
sections utilize the same atomic primitives to manipulate a control token. Such
application of the atomic instructions introduces interdependencies of the con-
tending processes. In the most common scenario, lock-free systems utilize CAS
in order to implement a speculative manipulation of a shared object. Each con-
tending process speculates by applying a set of writes on a local copy of the
shared data and attempts to CAS the shared object with the updated copy.
Such an approach guarantees that from within a set of contending processes,
there is at least one that succeeds within a finite number of steps.

2.1 Pragmatic Lock-Free Programming

The practical implementation of lock-free containers is known to be difficult: in
addition to addressing the hazards of race conditions, the developer must also
use non-blocking memory management and memory allocation schemes [14].
As explained in [1] and [6], a single-word CAS operation is inadequate for the
practical implementation of a non-trivial concurrent container. The use of a
double-compare-and-swap primitive (DCAS) has been suggested by Detlefs et
al. in [6], however it is rarely supported by the hardware architecture.

A software implementation of a multiple-compare-and-swap (MCAS) algo-
rithm, based on CAS, has been proposed by Harris et al. [11]. This software-based
MCAS algorithm has been effectively applied by Fraser towards the implementa-
tion of a number of lock-free containers such as binary search trees and skip lists
[7]. The cost of this MCAS operation is relatively expensive requiring 2M+1 CAS
instructions. Consequently, the direct application of this MCAS scheme is not
an optimal approach for the design of lock-free algorithms. However, the MCAS
implementation employs a number of techniques (such as pointer bit marking
and the use of descriptors) that are useful for the design of practical lock-free
systems. As discussed by Harris et al., a descriptor is an object that allows an
interrupting thread to help an interrupted thread to complete successfully.

2.2 Lock-Free Data Structures

Recent research into the design of lock-free data structures includes linked-lists
[10], [20] double-ended queues [19], [27], stacks [12], hash tables [20], [25] and
binary search trees [7]. The problems encountered include excessive copying, low
parallelism, inefficiency and high overhead. Despite the widespread use of the
STL vector in real-world applications, the problem of the design and implemen-
tation of a lock-free dynamic array has not yet been discussed. The vector’s
random access, data locality, and dynamic memory management poses serious
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challenges for its non-blocking implementation. Our goal is to provide an efficient
and practical lock-free STL-style vector.

2.3 Design Principles

We developed a set of design principles to guide our implementation:

(a) thread-safety: all data can be shared by multiple processors at all times.
(b) lock-freedom: apply non-blocking techniques for our implementation.
(c) portability: do not rely on uncommon architecture-specific instructions.
(d) easy-to-use interfaces: offer the interfaces and functionality available in the

sequential STL vector.
(e) high level of parallelism: concurrent completion of non-conflicting operations

should be possible.
(f) minimal overhead: achieve lock-freedom without excessive copying [1], mini-

mize the time spent on CAS-based looping and the number of calls to CAS.

The lock-free vector’s design and implementation provided follow the syntax
and semantics of the ISO STL vector as defined in ISO C++ [18].

3 Algorithms

In this section we define a semantic model of the vector’s operations, provide a
description of the design and the applied implementation techniques, outline a
correctness proof based on the adopted semantic model, address concerns related
to memory management, and discuss some alternative solutions to our problem.
The presented algorithms have been implemented in ISO C++ and designed
for execution on an ordinary multi-threaded shared-memory system supporting
only single-word read, write, and CAS instructions.

3.1 Implementation Overview

The major challenges of providing a lock-free vector implementation stem from
the fact that key operations need to atomically modify two or more non-colocated
words. For example, the critical vector operation push back increases the size of
the vector and stores the new element. Moreover, capacity-modifying operations
such as reserve and push back potentially allocate new storage and relocate all
elements in case of a dynamic table [5] implementation. Element relocation must
not block concurrent operations (such as write and push back) and must guar-
antee that interfering updates will not compromise data consistency. Therefore,
an update operation needs to modify up to four vector values: size, capacity,
storage, and a vector’s element.

The UML diagram in Fig. 1 presents the collaborating classes, their program-
ming interfaces and data members. Each vector object contains the memory loca-
tions of the data storage of its elements as well as an object named ”Descriptor”
that encapsulates the container’s size, a reference counter required by the ap-
plied memory management scheme (Section 3.4) and an optional reference to a
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Fig. 1. Lock-free Vector. T denotes a data structure parameterized on T.

”Write Descriptor”. Our approach requires that data types bigger than word
size are indirectly stored through pointers. Like Intel’s concurrent vector [24],
our implementation avoids storage relocation and its synchronization hazards by
utilizing a two-level array. Whenever push back exceeds the current capacity, a
new memory block twice the size of the previous one is added.

The semantics of the pop back and push back operations are guaranteed by
the ”Descriptor” object. The use of a ”Descriptor” and ”WriteDescriptor”
(Barnes-style announcement [3]) allows a thread-safe update of two memory
locations thus eliminating the need for a DCAS instruction. An interrupting
thread intending to change the descriptor will need to complete any pending
operation. Not counting memory management overhead, push back executes
two successful CAS instructions to update two memory locations.

3.2 Operations

Table 1 illustrates the implemented operations as well as their signatures, de-
scriptor modifications, and runtime guarantees.

Table 1. Vector - Operations

Operations Descriptor (Desc) Complexity

push back V ector × Elem → void Desct → Desct+1 O(1) × congestion

pop back V ector → Elem Desct → Desct+1 O(1) × congestion

reserve V ector × size t → V ector Desct → Desct O(1)

read V ector × size t → Elem Desct → Desct O(1)

write V ector × size t × Elem → V ector Desct → Desct O(1)

size V ector → size t Desct → Desct O(1)

The remaining part of this section presents the generalized pseudo-code of the
implementation and omits code necessary for a particular memory management
scheme. We use the symbols ^, &, and . to indicate pointer dereferencing, ob-
taining an object’s address, and integrated pointer dereferencing and field access
respectively. The function HighestBit returns the bit-number of the highest bit
that is set in an integer value. On modern x86 architectures HighestBit corre-
sponds to the BSR assembly instruction. FBS is a constant representing the size
of the first bucket and equals eight in our implementation.
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Push back (add one element to end). The first step is to complete a
pending operation that the current descriptor might hold. In case that the stor-
age capacity has reached its limit, new memory is allocated for the next memory
bucket. Then, push back defines a new ”Descriptor” object and announces
the current write operation. Finally, push back uses CAS to swap the previ-
ous ”Descriptor” object with the new one. Should CAS fail, the routine is
re-executed. After succeeding, push back finishes by writing the element.

Pop back (remove one element from end). Unlike push back, pop back
does not utilize a ”Write Descriptor”. It completes any pending operation
of the current descriptor, reads the last element, defines a new descriptor, and
attempts a CAS on the descriptor object.

Non-bound checking Read and Write at position i. The random access
read and write do not utilize the descriptor and their success is independent of
the descriptor’s value.

Algorithm 1. pushback vector, elem
1: repeat
2: desccurrent ← vector.desc
3: CompleteWrite(vector,desccurrent.pending)
4: bucket ← HighestBit(desccurrent.size + FBS) − HighestBit(FBS)
5: if vector.memory[bucket] = NULL then
6: AllocBucket(vector, bucket)
7: writeop ← new WriteDesc(At(desccurrent.size)^, elem, desccurrent.size)
8: descnext ← new Descriptor(desccurrent.size + 1, writeop)
9: until CAS(&vector.desc, desccurrent, descnext)

10: CompleteWrite(vector,descnext.pending)

Algorithm 2. AllocBucket vector, bucket

1: bucketsize ← FBSbucket+1

2: mem ← new T [bucketsize]
3: if not CAS(&vector.memory[bucket],NULL, mem) then
4: Free(mem)

Algorithm 3. Size vector

1: desc ← vector.desc
2: size ← desc.size
3: if desc.writeop.pending then
4: size ← size − 1
5: return size

Reserve (increase allocated space). In the case of concurrently executing
reserve operations, only one succeeds per bucket, while the others deallocate
the acquired memory.
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Algorithm 4. Read vector, i

1: return At(vector, i)^

Algorithm 5. Write vector, i, elem

1: At(vector, i)^ ← elem

Algorithm 6. popback vector
1: repeat
2: desccurrent ← vector.desc
3: CompleteWrite(vector,desccurrent.pending)
4: elem ← At(vector, desccurrent.size − 1)^
5: descnext ← new Descriptor(desccurrent.size − 1, NULL)
6: until CAS(&vector.desc, desccurrent, descnext)
7: return elem

Algorithm 7. Reserve vector, size

1: i ← HighestBit(vector.desc.size + FBS− 1) − HighestBit(FBS)
2: if i < 0 then
3: i ← 0
4: while i < HighestBit(size + FBS− 1) − HighestBit(FBS) do
5: i ← i + 1
6: AllocBucket(vector, i)

Algorithm 8. At vector, i
1: pos ← i + FBS

2: hibit ← HighestBit(pos)
3: idx ← pos xor 2hibit

4: return &vector.memory[hibit− HighestBit(FBS)][idx]

Algorithm 9. CompleteWrite vector, writeop

1: if writeop.pending then
2: CAS(At(vector,writeop.pos), writeop.valueold, writeop.valuenew)
3: writeop.pending ← false

Size (read number of elements). The size operations returns the size
stored in the ”Descriptor” minus a potential pending write operation at the
end of the vector.

3.3 Semantics

The semantics of the vector’s operations is based on a number of assumptions.
We assume that each processor can execute a number of the vector’s operations.
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This establishes a history of invocations and responses and defines a real-time
order between them. An operation o1 is said to precede an operation o2 if o2’s
invocation occurs after o1’s response. Operations that do not have real-time or-
dering are defined as concurrent. The vector’s operations are of two types: those
whose progress depends on the vector’s descriptor and those who are indepen-
dent of it. We refer to the former as descriptor-modifying and to the latter as
non-descriptor modifying operations. All of the vector’s operations in the set of
concurrent descriptor-modifying operations S1 are thread-safe and lock-free. The
non-descriptor modifying operations such as random access read and write are
implemented through the direct application of atomic read and write instruc-
tions on the shared data. In the set of non-descriptor modifying operations S2,
all operations are thread-safe and wait-free. In this section, we omit the discus-
sion of ABA problem related issues, typical to all CAS-based implementations.
There are a number of well known techniques to overcome these problems, see
section 3.5.

Correctness. The main correctness requirement of the semantics of the vec-
tor’s operations is linearizability [15]. A concurrent operation is linearizable if it
appears to execute instantaneously in some moment of time between the time
point tinv of its invocation and the time point tresp of its response. Firstly, this
definition implies that each concurrent history yields responses that are equiv-
alent to the responses of some legal sequential history for the same requests.
Secondly, the order of the operations within the sequential history must be
consistent with the real-time order. Let us assume that there is an operation
oi ∈ Svec, where Svec is the set of all the vector’s operations. We assume that oi

can be executed concurrently with n other operations {o1, o2..., on} ∈ Svec. We
outline a proof that operation oi is linearizable.

Linearization Points. For all non-descriptor-modifying operations the lin-
earization point is at the time instance ta when the atomic read (Algorithm
4, line 1) or write (Algorithm 5, line 1) of the element is executed. Assume oi

is a descriptor-modifying operation. It is carried out in two stages: modify the
”Descriptor” variable and then update the data structure’s contents. Let us
define time points tdesc (Algorithm 1, line 10; Algorithm 6, line 6) and twritedesc

(Algorithm 9, line 2) denote the instances of time when oi executes an atomic up-
date to the vector’s ”Descriptor” variable and when oi’s ”Write Descriptor”
is completed by oi itself or another concurrent operation oc ∈ {o1, o2..., on},
respectively. Similarly, time point treadelem (Algorithm 1, line 7; Algorithm 6,
line 4) defines when oi reads an element. oi is either a pop back or push back
operation. The linearization point is either treadelem or tdesc for the former case
and treadelem, tdesc, or twritedesc for the latter case.

Sequential Semantics. Let Sc be the set of all concurrent operations
{o1, ..., on} in a time interval [tα, tβ ]. If ∀oi ∈ Sc, DescriptorModifying(oi),
the linearization point for each operation is tdesc(oi). Similarly, if ∀oi ∈ Sc,
NonDescriptorModifying(oi), the linearization point for each operation is
ta(oi). In these cases, the resulting sequential histories are directly derived from
the temporal order of the linearization points. In the remaining cases, the
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derivation of a sequential history is significantly more complex. It is possible
to transform all non-descriptor modifying operations into descriptor modifying
in order to simplify the vector’s sequential semantics. Given our current imple-
mentation, this can be achieved in a straightforward manner. We have chosen
not to do so in order to preserve the efficiency and wait-freedom of the current
non-descriptor modifying operations. Table 2 determines the linearization points
for each pair of concurrent operations (o1, o2) where DescriptorModifying(o1)
and NonDescriptorModifying(o2).

Table 2. Linearization Points of o1, o2

o1\o2 read write

push back twritedesc(o1), ta(o2) treadelem(o1), ta(o2)

pop back tdesc(o1), ta(o2) treadelem(o1), ta(o2)

We emphasize that the presented ordering relations are not transitive. Con-
sider an example with three operations o1 (push back), o2 (write), and o3

(read), which access the same element. We assume that time points ta(o2), ta(o3)
occur between treadelem(o1) and twritedesc(o1) as well as that o2 returns before
the invocation of o3. The resulting sequential history is o1, o2, o3. It is derived
from the real-time ordering between o2 and o3, and the pair-wise ordering rela-
tion between push back and write in Table 2. A thorough linearizability proof
for even the simplest data structure is non trivial and a further detailed elabo-
ration is beyond the scope of this presentation.

Non-blocking. We prove the non-blocking property of our implementation
by showing that out of n threads at least one makes progress. Since the progress
of non-descriptor modifying operations is independent, they are wait-free. Thus,
it suffices to consider an operation o1, where o1 is either a push back or pop back.
A ”Write Descriptor” can be simultaneously read by n threads. While one of
them will successfully perform the ”Write Descriptor”’s operation (o2), the
others will fail and not attempt it again. This failure is insignificant for the
outcome of operation o1. The first thread attempting to change the descriptor
will succeed, which guarantees the progress of the system.

3.4 Memory Management

Our algorithms do not require the use of a particular memory management
scheme. A garbage collected environment would have significantly reduced the
complexity of the implementation (by moving key implementation problems in-
side the GC implementation). However, we do not know of any available general
lock-free garbage collector for C++.

Object Reclamation. Our concrete implementation uses reference counting
as described by Michael and Scott [23]. The major drawback of this scheme is
that a timing window allows objects to be reclaimed while a different thread is
about to increase the counter. Consequently, objects cannot be freed but only
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recycled. Alternatives such as Michael’s hazard pointers [21] and Herlihy et al.’s
pass the buck [14] overcome the problem.

Allocator. Recent research by Michael [22] and Gidenstam [9] presents im-
plementations of true lock-free memory allocators. Due to its availability and
performance, we selected Gidenstam’s allocator for our performance tests.

3.5 The ABA Problem

The ABA problem is fundamental to all CAS-based systems [21]. The seman-
tics of the lock-free vector’s operations can be corrupted by the occurrence of
the ABA problem. Consider the following execution: assume a thread T0 at-
tempts to perform a push back; in the vector’s ”Descriptor”, push back stores
a write-descriptor announcing that the value of the object at position i should
be changed from A to B. Then a thread T1 interrupts and reads the write-
descriptor. Later, after T0 resumes and successfully completes the operation, a
third thread T2 can modify the value at position i from B back to A. When T1

resumes its CAS is going to succeed and erroneously execute the update from A
to B. There are two particular instances when the ABA problem can affect the
correctness of the vector’s operations:

(1) the user intends to store a memory address value A multiple times.
(2) the memory allocator reuses the address of an already freed object.

A universal solution to the ABA problem is to associate a version counter
to each element on platforms supporting CAS2. However, because of hardware
requirements of our primary application domain, we cannot currently assume
availability of CAS2.

To eliminate the ABA problem of (2) (in the absence of CAS2), we have
incorporated a variation of Herlihy et al.’s pass the buck algorithm [14] utilizing
a separate thread to periodically reclaim unguarded objects.

The vector’s vulnerability to (1) (in the absence of CAS2), can be eliminated
by requiring the data structure to copy all elements and store pointers to them.
Such behavior complies with the STL value-semantics [26], however it can incur
significant overhead in some cases due to the additional heap allocation and ob-
ject construction. In a lock-free system, both the object construction and heap
allocation can execute concurrently with other operations. However, for signif-
icant applications, our vector can be used because the application programmer
can avoid ABA problem (1). For example, a vector of unique elements (e.g. a vec-
tor recording live or active objects) does not suffer this problem. Similarly, a vec-
tor that has a ”growth phase” (using push back) that is separate from a “write
phase” (using assignment to elements) (e.g., an append-only vector) is safe.

3.6 Alternatives

In this section we discuss several alternative designs for lock-free vectors.
Copy on Write. Alexandrescu and Michael present a lock-free map, where

every write operation creates a clone of the original map, which insulates mod-
ifications from concurrent operations [1]. Once completed, the pointer to the
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map’s representation is redirected from the original to the new map. The same
idea could be adopted to implement a vector. Since the complexity of any write
operation deteriorates to O(n) instead of O(1), this scheme would be limited to
applications exhibiting read-often but write-rarely access patterns.

Using Software DCAS. Harris et al. present a software multi-compare and
swap (MCAS) implementation based on CAS instructions [11]. While conve-
nient, the MCAS operation is expensive (requiring 2M + 1 CAS instructions).
Thus, it is not the best choice for an effective implementation.

Contiguous storage. Techniques similar to the ones used in our vector im-
plementation could be applied to achieve a vector with contiguous storage. dif-
ference is that the storage area can change during lifetime. This requires resize
to move all elements to the new location. Hence, storage and its capacity should
become members of the descriptor. Synchronization between write and resize
operations is what makes this approach difficult. A straightforward solution is
to apply descriptor-modifying semantics as discussed in section 3.3.

We discussed the descriptor- and non-descriptor modifying writes in the con-
text of the two-level array and the contiguous storage vector. However, these
write properties are not inherent in these two approaches. In the two-level array,
it is possible to make each write operation descriptor-modifying, thus ensure
a write within bounds. In the contiguous storage approach, element relocation
could replace the elements with marked pointers to the new location. Every
access to these marked pointers would get redirected to the new storage.

4 Performance Evaluation

We ran performance tests on an Intel IA-32 SMP machine with two 1.83GHz
processor cores with 512 MB shared memory and 2 MB L2 shared cache running
the MAC OS 10.4.6 operating system. In our performance analysis, we compare
the lock-free approach (with its integrated lock-free memory management and
memory allocation) with the most recent concurrent vector provided by Intel
[17] as well as an STL vector protected by a lock. For the latter scenario we ap-
plied different types of locking synchronizations - an operating system dependent
mutex, a reader/writer lock, a spin lock, as well as a queuing lock. We used this
variety of lock-based techniques to contrast our non-blocking implementation to
the best available locking synchronization technique for a given distribution of
operations. We utilize the locking synchronization provided by Intel [17].

Similarly to the evaluation of other lock-free concurrent containers [7] and [20],
we have designed our experiments by generating a workload of various operations
(push back, pop back, random access write, and read). In the experiments, we
varied the number of threads, starting from 1 and exponentially increased their
number to 32. Every active thread executed 500,000 operations on the shared
vector. We measured the CPU time (in seconds) that all threads needed in
order to complete. Each iteration of every thread executed an operation with
a certain probability; push back (+), pop back (-), random access write (w),
random access read (r). We use per-thread linear congruential random number
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generators where the seeds preserve the exact sequence of operations within a
thread across all containers. We executed a number of tests with a variety of
distributions and found that the differences in the containers’ performances are
generally preserved. As discussed by Fraser [7], it has been observed that in
real-world concurrent application, the read operations dominate and account to
about 70% to 75% of all operations. For this reason we illustrate the performance
of the concurrent vectors with a distribution of +:15%, -:5%, w:10%, r:70% on
Figure 2A. Similarly, Figure 2C demonstrates the performance results with a
distribution containing predominantly writes, +:30%, -:20%, w:20%, r:30%. In
these diagrams, the number of threads is plotted along the x-axis, while the
time needed to complete all operations is shown along the y-axis. Both axes use
logarithmic scale.

Fig. 2. Performance Results - Intel Core Duo

The current release of Intel’s concurrent vector does not offer pop back or
any alternative to it. To include its performance results in our analysis, we ex-
cluded the pop back operation from a number of distributions. Figure 2B and
2D present two of these distributions. For clarity we do not depict the results
from the QueuingLock and SpinLock implementations. According to our ob-
servations, the QueuingLock performance is consistently slower than the other
lock-based approaches. As indicated in [17], SpinLocks are volatile, unfair, and
not scalable. They showed fast execution for the experiments with 8 threads or
lower, however their performance significantly deteriorated with the experiments
conducted with 16 or more active threads. To find a lower bound for our exper-
iments we timed the tests with a non-thread safe STL-vector with pre-allocated
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memory for all operations. For example, in the scenario described in figure 2D,
the lower bound is about a 1

10 of the lock-free vector.
Under contention our non-blocking implementation consistently outperforms

the alternative lock-based approaches in all possible operation mixes by a sig-
nificantly large factor. It has also proved to be scalable as demonstrated by the
performance analysis. Lock-free algorithms are particularly beneficial to shared
data under high contention. It is expected that in a scenario with low contention,
the performance gains will not be as considerable.

Fig. 3. Performance Results - Alternative Memory Management

As discussed in section 3.4, we have incorporated two different memory man-
agement approaches with our lock-free implementation, namely Michael and
Scott’s reference counting scheme (RefCount) and Herlihy et al.’s pass the buck
technique (PTB). We have evaluated the vector’s performance with these two
different memory management schemes (Fig. 3).

Fig. 4. Performance Results - AMD 8-way Opteron

On systems without shared L2 cache, shared data structures suffer from per-
formance degradation due to cache coherency problems. To test the applicability
of our approach on such architecture we have performed the same experiments on
an AMD 2.2GHz quad dual core Opteron architecture with 1 MB L2 cache and
4GB shared RAM running the MS Windows 2003 operating system. (Fig.4). The
applied lock-free memory allocation scheme is not available for MS Windows.
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For the sake of our performance evaluation we applied a regular lock-based mem-
ory allocator. The experimental results on this architecture lack the impressive
performance gains we have observed on the dual-core L2 shared-cache system.
However, the graph (Fig.4) demonstrates that the performance of our lock-free
approach on such architectures is comparable to the performance of the best
lock-based alternatives.

5 Conclusion

We presented a first practical and portable design and implementation of a
lock-free dynamically resizable array. We developed an efficient algorithm that
supports disjoint-access parallelism and incurs minimal overhead. To provide a
practical implementation, our approach integrates non-blocking memory man-
agement and memory allocation schemes. We compared our implementation to
the best available concurrent lock-based vectors on a dual-core system and have
observed an overall speed-up of a factor of 10. An essential direction in our future
work is to further optimize the effectiveness of our approach on various hardware
architectures and to eliminate the remaining ABA problem. In addition, it is our
goal to precisely specify the concurrent semantics of the remaining STL vector
interface and incorporate them in our implementation.

Acknowledgements

We thank Kirk Reinholtz, Herb Sutter, Olga Pearce, Yuriy Solodkyy, Luke Wag-
ner, and the anonymous referees for their helpful suggestions as well as the Adobe
Photoshop team for providing us with access to their multi-core machines.

References

1. A. Alexandrescu and M. Michael. Lock-free data structures with hazard pointers.
C++ User Journal, November 2004.

2. P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Am-
ato, and L. Rauchwerger. STAPL: A Standard Template Adaptive Parallel C++
Library. In LCPC ’01, pages 193–208, Cumberland Falls, Kentucky, Aug 2001.

3. G. Barnes. A method for implementing lock-free shared-data structures. In SPAA
’93: Proceedings of the fifth annual ACM symposium on Parallel algorithms and
architectures, pages 261–270, New York, NY, USA, 1993. ACM Press.

4. P. Becker. Working Draft, Standard for Programming Language C++, ISO
WG21N2009, April 2006.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-
rithms. MIT Press, Cambridge, MA, USA, 2001.

6. D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin, N. Shavit, and G. L. Steele.
Even better DCAS-based concurrent deques. In DISC ’00, pages 59–73, 2000.

7. K. Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, Univer-
sity of Cambridge, Computer Laboratory, Feb. 2004.



156 D. Dechev, P. Pirkelbauer, and B. Stroustrup

8. D. Garlan, W. K. Reinholtz, B. Schmerl, N. D. Sherman, and T. Tseng. Bridging
the gap between systems design and space systems software. In SEW ’05, pages
34–46, Washington, DC, USA, 2005. IEEE Computer Society.

9. A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Allocating memory in a lock-
free manner. In ESA 2005: LNCS, volume 3669, pages 329–342, 2005.

10. T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC
’01, pages 300–314, London, UK, 2001. Springer-Verlag.

11. T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap
operation. In DISC ’02, 2002.

12. D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In
SPAA ’04: Proceedings of the sixteenth annual ACM symposium on Parallelism in
algorithms and architectures, pages 206–215, New York, NY, 2004. ACM Press.

13. M. Herlihy. A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst., 15(5):745–770, 1993.

14. M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory man-
agement support for dynamic-sized data structures. ACM Trans. Comput. Syst.,
23(2):146–196, 2005.

15. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concur-
rent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

16. Intel. Ia-32 intel architecture software developer’s manual, volume 3: System pro-
gramming guide, 2004.

17. Intel. Reference for Intel Threading Building Blocks, version 1.0, April 2006.
18. ISO/IEC 14882 International Standard. Programming languages C++. American

National Standards Institute, September 1998.
19. M. Michael. CAS-Based Lock-Free Algorithm for Shared Deques. In Euro-Par ’03,

LNCS volume 2790, pages 651–660, 2003.
20. M. M. Michael. High performance dynamic lock-free hash tables and list-based sets.

In SPAA ’02: Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 73–82, New York, NY, USA, 2002. ACM Press.

21. M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

22. M. M. Michael. Scalable lock-free dynamic memory allocation. In PLDI ’04:
Proceedings of the ACM SIGPLAN 2004 Conf. on Programming language design
and implementation, pages 35–46, New York, NY, USA, 2004. ACM Press.

23. M. M. Michael and M. L. Scott. Correction of a memory management method for
lock-free data structures. Technical Report TR599, 1995.

24. A. Robison, Intel Corporation. Personal communication, April 2006.
25. O. Shalev and N. Shavit. Split-ordered lists: lock-free extensible hash tables. In

PODC ’03: Proceedings of the twenty-second annual symposium on Principles of
distributed computing, pages 102–111, New York, NY, USA, 2003. ACM Press.

26. B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2000.

27. H. Sundell and P. Tsigas. Lock-Free and Practical Doubly Linked List-Based
Deques Using Single-Word Compare-and-Swap. In OPODIS 2004: Principles of
Distributed Systems, 8th Int. Conf., LNCS, volume 3544, pages 240–255, 2005.



Distributed Spanner Construction in Doubling

Metric Spaces

Mirela Damian1, Saurav Pandit2, and Sriram Pemmaraju2

1 Department of Computer Science, Villanova University, Villanova, PA 19085
mirela.damian@villanova.edu.

2 Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419
{spandit, sriram}@cs.uiowa.edu.

Abstract. This paper presents a distributed algorithm that runs on an
n-node unit ball graph (UBG) G residing in a metric space of constant
doubling dimension, and constructs, for any ε > 0, a (1 + ε)-spanner H
of G with maximum degree bounded above by a constant. In addition,
we show that H is “lightweight”, in the following sense. Let Δ denote the
aspect ratio of G, that is, the ratio of the length of a longest edge in G
to the length of a shortest edge in G. The total weight of H is bounded
above by O(log Δ)·wt(MST ), where MST denotes a minimum spanning
tree of the metric space. Finally, we show that H satisfies the so called
leapfrog property, an immediate implication being that, for the special
case of Euclidean metric spaces with fixed dimension, the weight of H
is bounded above by O(wt(MST )). Thus, the current result subsumes
the results of the authors in PODC 2006 that apply to Euclidean metric
spaces, and extends these results to metric spaces with constant doubling
dimension.

1 Introduction

A unit ball graph (UBG) is a graph whose vertices reside in some metric space
and whose edges connect pairs of vertices at distance at most 1. The doubling
dimension of a metric space is the smallest ρ such that any ball in this metric
space can be covered by 2ρ balls of half the radius. It is easy to verify that the
d-dimensional Euclidean space, equipped with any of the Lp norms, has doubling
dimension Θ(d). If ρ is a fixed constant (independent of the size of the UBG),
then we call the UBG a doubling UBG. A t-spanner of a graph G is a spanning
subgraph H of G such that, for all pairs of vertices u, v ∈ V , the length of a
shortest uv-path in H is at most t times the length of a shortest uv-path in G.
In this paper we present a distributed algorithm for constructing a low-weight,
(1 + ε)-spanner of bounded degree for doubling UBGs.

Precisely stated, our result is this: for any fixed ε > 0, our algorithm runs in
O(log∗ n) communication rounds on an n-node doubling UBG G, to construct
a (1 + ε)-spanner H of G with maximum degree bounded above by a constant.
This constant depends on ε and ρ, the doubling dimension of the metric space
in which G resides. Recall that log∗ n = min{t | log(t) n ≤ 2}, where log(0) n = n

and log(i) n = log(log(i−1) n) for any positive integer i. In addition, we show

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 157–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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that H is “lightweight,” in the following sense. Let Δ denote the aspect ratio
of G, that is, the ratio of the length of a longest edge in G to the length of a
shortest edge in G. We show that the total weight of H is bounded above by
O(log Δ) ·wt(MST ), where MST denotes a minimum spanning tree of G. Thus
we obtain a spanner that provides an O(log Δ)-approximation to a spanner of G
of minimum weight. Finally, we also show that H satisfies the so called leapfrog
property [8], which informally says that any uv-path in H that does not include
{u, v} must have length greater than {u, v} by a constant factor. An immediate
implication of this property is that, for the special case of Euclidean metric
spaces with fixed dimension, the weight of H is bounded above by O(wt(MST ))
[7]. Thus, our current result subsumes the results in [6] that apply to Euclidean
metric spaces, and extends these results to metric spaces with constant doubling
dimension.

1.1 Topology Control

Our result is motivated by the topology control problem in wireless ad-hoc net-
works. For an overview of topology control, see the survey by Rajaraman [16].
Since an ad-hoc network does not come with fixed infrastructure, there is no
topology to start with and informally speaking, the topology control problem
is one of selecting neighbors for each node so that the resulting topology has a
number of useful properties such as sparseness, small weight, or maximum ver-
tex degree bounded above by a constant. Most topology control protocols that
provide worst case guarantees on the quality of the topology assume that the
network is modeled by a unit disk graph (UDG) (see [14] for a recent example).
The results in this paper apply to the more general model of doubling unit ball
graphs (UBG). Doubling metric spaces have received a great deal of attention
recently [4,11,12,13,17], partly because they are thought to capture real-world
phenomena such as latencies in peer-to-peer networks and in the Internet. Also,
doubling metrics are robust in the sense that the doubling dimension is roughly
preserved under distortion (see Proposition 3 in [17]). Thus distorted versions
of low dimensional Euclidean space also have small doubling dimension. Con-
sequently, doubling UBGs can model wireless networks in which nodes have
non-uniform transmission ranges or have erroneous perception of distances to
other nodes. Finally, doubling metrics imply the following “bounded growth”
phenomenon that seems to be characteristic of large scale wireless ad-hoc and
sensor networks: the number of nodes that are far away from each other and yet
are all in the vicinity of a particular node, is small. In other words, no node can
have an arbitrarily large independent set in its neighborhood.

1.2 Net Trees

Let (V, d) be a metric space with |V | = n and doubling dimension ρ. In a
recent paper, Chan, Gupta, Maggs, and Zhou [2] show how to construct, via a
sequential, polynomial-time algorithm, a (1+ε)-spanner of (V, d) with maximum
degree bounded above by

(
1
ε

)O(ρ)
. We will refer to this algorithm as the CGMZ
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algorithm. The problem of constructing a spanner for a metric space can be
thought of as a special case of our problem, in which the given UBG is a complete
graph. Underlying the result in [2] is the notion of net trees, independently
proposed by Har-Peled and Mendel [10]. Let B(u, r) denote the ball of radius r
centered at point u. A subset U ⊆ V is an r-net of V if it satisfies two properties:

r-packing: For every u and v in U , d(u, v) > r.
r-covering: The union ∪u∈UB(u, r) covers V .

Such nets always exist for any r > 0, and can be easily computed using a
greedy algorithm. Assume without loss of generality that the largest pairwise
distance in V is exactly 1 (this can be achieved by appropriate scaling). Let
α, with

√
1 + ε ≤ α, and γ = 2α

α−1

(
1 + 4α

ε

)
be constants (we use the fact that√

1 + ε ≤ α in the proof of Lemma 7). Let h be the smallest positive integer such
every pairwise distance is greater than 1

αh . Let r0 = 1
αh and let ri = α · ri−1, for

i > 0. A net tree is a sequence of subsets 〈V0, V1, V2, . . . , Vh〉, such that V0 = V
and Vi is an ri-net of Vi−1, for i > 0. Note that every Vi, including V0, is an
ri-packing. Also note that Vh, which is a 1-net of Vh−1, is a singleton, since
the maximum separation between any pair of points is 1. To view the sequence
〈V0, V1, V2, . . . , Vh〉 as a tree, let i(v) = max{i | v ∈ Vi} for each v ∈ V . Then, for
each v ∈ V , i(v) + 1 copies of v appear as nodes in the tree. These are denoted
(0, v), (1, v), . . . , (i(v), v), where (i, v) represents the occurrence of v in Vi. For
each 0 ≤ i < i(v), the parent of node (i, v) is (i+1, v). Node (i(v), v) has no parent
and is the root of the net tree, if i(v) = h; otherwise, vertex v �∈ Vi(v)+1 and there
is some vertex u ∈ Vi(v)+1 such that B(u, ri(v)+1) contains v. Arbitrarily pick
one such u and let (i(v) + 1, u) be the parent of (i(v), v). Informally speaking,

V0

V1

V2

V3

V4

V5

Fig. 1. A net tree with six levels

higher levels in the net tree (leaves are at level 0) represent the structure of V
at lower resolution. Figure 1 shows an example of a net tree with 6 levels. Below
we present the CGMZ algorithm [2]. For any two points u, v ∈ V , we use d(u, v)
to denote the distance between u and v in the underlying metric space.
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The CGMZ Algorithm

1. Build a net tree 〈V0, V1, . . . , Vh〉 of V .
2. Let γ = 2α

α−1

(
1 + 4α

ε

)
. Construct the edge sets

E0 = {{u, v} ∈ V0 × V0 | d(u, v) ≤ γ · r0},

and
Ei = {{u, v} ∈ Vi × Vi | γ · ri−1 < d(u, v) ≤ γ · ri},

for each i = 1, . . . , h and let Ê = ∪iEi.
3. Replace some edges in Ê by other edges to obtain a new edge set Ẽ.

Chan and coauthors [2] work with the version of the algorithm for α = 2. They
show that the graph H = (V, Ê) obtained after Step (2) is a (1 + ε)-spanner
of the metric space and has linear number of edges, but may not satisfy the
bounded degree requirement. Short paths in H can be obtained from the net
tree in a natural manner. A uv-path in H whose length is at most (1+ε) ·d(u, v)
can be obtained by traveling up the net tree from the leaf u and from the leaf
v until some level i is reached, such that the ancestors of u and v at level i are
connected by an edge in H . In Step (3), a subset of the edges in Ê is considered
and each edge in this subset is replaced by at most one new edge. This step,
which will be described in detail in Section 2.2, redistributes the edges so that all
vertex-degrees are bounded above by a constant. The techniques used by Chan
and coauthors for bounding vertex degrees play a critical role in this paper as
well. In [6] we also describe an algorithm for constructing a bounded-degree
(1 + ε)-spanner for Euclidean UBGs, but our results rely on purely geometric
arguments to bound the vertex degree of the constructed spanner. Chan and
coauthors [2] obtain the following theorem.

Theorem 1. [Chan, Gupta, Maggs, Zhou] Let (V, d) be a finite metric with
doubling dimension bounded by ρ. For any ε > 0, there is a (1 + ε)-spanner for
(V, d), with maximum degree bounded above by

(
1
ε

)O(ρ).

Our algorithm is a modification of the CGMZ algorithm [2] that takes into
account the fact that pairs of points separated by a distance greater than 1 are
not connected by an edge and therefore such edges cannot be used in the spanner.
A high level view of our algorithm is that it uses a slightly modified version of
the CGMZ algorithm and constructs a graph H that may contain some virtual
edges, that is, edges of length more than 1. H has all the desired properties
with respect to the input UBG G. Subsequently, we show how to replace each
virtual edge in H by at most one real edge, that is, an edge of length at most 1.
The resulting graph is a (1 + ε)-spanner of G with degree bounded above by a
constant.

To obtain a distributed implementation of the above idea in O(log∗ n) rounds,
we use an algorithm due to Kuhn, Moscibroda, and Wattenhofer [13]. For a
given doubling n-node UBG G, the algorithm in [13] deterministically computes
a (1, O(1))-network decomposition, that is, a partition of G into clusters such
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that each cluster has diameter 1 and the resulting cluster graph has chromatic
number O(1). We use the same algorithm to compute a net tree. After computing
the net tree, we require a constant number of additional rounds to construct the
spanner.

2 Spanners for Doubling UBGs

Let (V, d) be a metric space with doubling dimension ρ. Let G = (V, E) be the
UBG induced by this metric space. Thus, for all u, v ∈ V , u �= v, {u, v} ∈ E if and
only if d(u, v) ≤ 1. For a fixed ε > 0, let the quantities h, ri, α and γ be defined
as in Section 1.2. Run Steps (1) and (2) of the CGMZ Algorithm to construct
a set of edges Ê. Let H = (V, Ê). Note that Vh may not be a singleton since
V may contain points whose pairwise distance is more than 1. So the sequence
〈V0, V1, . . . , Vh〉 should be viewed as a forest of net trees, rooted at points in Vh.
Recall that Ê = ∪h

i=0Ei and further recall that for i > 0, Ei consists of edges
connecting all pairs of points u, v ∈ V such that d(u, v) ∈ (γ · ri−1, γ · ri]. Note
that there are values of i for which the right endpoint of the interval (γ ·ri−1, γ ·ri]
may be greater than 1 and for such values of i, Ei may contain edges that are
not in E. Thus H is not necessarily a subgraph of G. Let δ = �logα γ�. It is easy
to verify that for 0 ≤ i ≤ h− δ, Ei ⊆ E; for i = h− δ + 1, the edge-set Ei may
contain some edges in E and some edges not in E; and for i > h−δ+1, all edges
in Ei are outside E. We call edges in H that also belong to E, real edges. Any
edge in H that is not real is a virtual edge. Clearly, a spanner for G may not
contain virtual edges, however virtual edges in H do carry important proximity
information that will provide clues on how to replace them with real edges.

2.1 Properties of H

We will now prove some important properties of H . Let dH be the distance metric
induced by shortest paths in H . Specifically, we will show that H satisfies the
following three properties:

(1) For every {u, v} ∈ E, dH(u, v) ≤ (1 + ε) · d(u, v) (Lemma 4).
(2) Edges of H can be oriented in such a way that the out-degree of H is bounded

by
(

1
ε

)O(ρ) (Lemma 5).

(3) The weight of H is wt(H) = O(log Δ) ·
(

1
ε

)O(ρ) · wt(MST ) (Lemma 6).

Property (1) implies that H is connected, since G is assumed to be connected.
Property (2) implies that H has a linear number of edges, though it does not
imply that H has bounded maximum degree. In Section 2.2 we describe a method
to alter H so as to bound the in-degree of H as well, while maintaining all
the properties listed above. The proofs of these properties are based on some
intermediate results, that we now establish. Proofs of Lemma 4 and Lemma 5
are similar to those in [3]. The next observation follows immediately from the
definition of the doubling dimension of a metric space.
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Proposition 1. If (X, d) is a metric with doubling dimension ρ and Y ⊆ X is
a subset of points with aspect ratio Δ, then |Y | ≤ 2ρ·�log2 Δ�.

For any point u ∈ Vi, let Ni(u) = {v ∈ Vi | {u, v} ∈ Ei} denote the set of points
connected to u by edges in Ei. We now show an upper bound on the size of
Ni(u).

Lemma 1. For each u ∈ Vi, |Ni(u)| ≤
(

1
ε

)O(ρ).

Proof. That the aspect ratio of Ni(u) is bounded by 2γ follows from two obser-
vations: (1) any two points in Ni(u) are more than distance ri apart, and (2)
any point in Ni(u) is at distance at most γ · ri from u and therefore, by using
the triangle inequality, any two points in Ni(u) are at most 2γ · ri apart. Then
Proposition 1 implies the lemma.

Lemma 2. Suppose u, v ∈ Vi and d(u, v) ≤ γ · ri. Then {u, v} ∈ Ê.

Proof. If γ·ri−1 < d(u, v) ≤ γ·ri, then by definition of Ei, {u, v} ∈ Ei. Otherwise,
(a) d(u, v) ≤ γ · r0 or (b) for some j < i, γ · rj−1 < d(u, v) ≤ γ · rj . Since Vi ⊆ Vj

for all 0 ≤ j ≤ i, in case (a), {u, v} ∈ E0 and in case (b), {u, v} ∈ Ej .

Lemma 3. For each u ∈ V and for each i, there exists v ∈ Vi such that
dH(u, v) ≤ α

α−1 · ri.

Proof. The proof is by induction on i. For i = 0, u ∈ V0 = V and dH(u, u) =
0 < α

α−1 · r0, proving this case true. For i > 0, apply the inductive hypothesis to
infer that there exists w ∈ Vi−1 such that dH(u, w) ≤ α

α−1 · ri−1. Furthermore,
since Vi is an ri-net of Vi−1, there exists v ∈ Vi ⊆ Vi−1 such that d(w, v) ≤
ri ≤ γ · ri−1. This along with Lemma 2 shows that {w, v} ∈ Ê and therefore
dH(w, v) = d(w, v) ≤ ri. By the triangle inequality we have that dH(u, v) ≤
dH(u, w) + dH(w, v) ≤ α

α−1 · ri−1 + ri = α
α−1 · ri.

In addition to proving the existence of a vertex v at each level i, Lemma 3 implies
a certain path from vertex u to v ∈ Vi. Start from node (0, u) in the tree (that is,
the copy of u corresponding to a leaf) and follow the path through a sequence of
parents, until a level-i node (i, v) is reached. Lemma 3 shows that the distance
in H along this path is at most α

α−1 · ri.

Lemma 4. [Property 1] For any edge {u, v} ∈ E, dH(u, v) ≤ (1+ ε) ·d(u, v).

Proof. For ease of presentation, let λ = α
α−1 . Let q be the smallest integer such

that 4λ
αq ≤ ε < 8λ

αq . Thus q = �logα
4λ
ε �. Let i be such that ri ≤ d(u, v) < ri+1,

and assume first that i ≤ q − 1. Then d(u, v) < αq · r0 ≤ 8λ
ε · r0 ≤ γr0, since

γ = 2λ
(
1 + 4α

ε

)
> 8λ

ε . Also since both u and v belong to V0, by Lemma 2, we
have that {u, v} ∈ Ê. This implies that dH(u, v) = d(u, v), proving the lemma
true for this case. Assume now that i ≥ q and let s = i − q ≥ 0. Note that
ri = αq · rs. By Lemma 3, there exist x, y ∈ Vs such that dH(u, x) ≤ λ · rs and
dH(v, y) ≤ λ · rs. By the triangle inequality,



Distributed Spanner Construction in Doubling Metric Spaces 163

d(x, y) ≤ d(x, u) + d(u, v) + d(v, y)
≤ λ · rs + d(u, v) + λ · rs (d(x, u) ≤ dH(x, u), d(v, y) ≤ dH(v, y))
< λ · rs + α · ri + λ · rs (since d(u, v) < ri+1)
= rs(2λ + α · αq) (since ri = αq · rs)
≤ rs(2λ + α8λ

ε )
= γ · rs

Hence, by Lemma 2, {x, y} ∈ Ê and therefore dH(x, y) = d(x, y). Using the
triangle inequality again, we get

dH(u, v) ≤ dH(u, x) + dH(x, y) + dH(y, v)
≤ 2λ · rs + d(x, y)
≤ 4λ · rs + d(u, v) (from the upper bound derivation of d(x, y))
≤ (1 + 4λ

αq ) · d(u, v) (since ri = αq · rs ≤ d(u, v))
≤ (1 + ε) · d(u, v)

This completes the proof.

Lemma 4 also identifies a uv-path in H of length at most (1 + ε) · d(u, v).
Simply follow the sequence of parents, starting at the node (0, u) in the tree and
similarly, starting at the node (0, v). At a certain level (denoted s in the proof),
the ancestor of u and the ancestor of v at that level are connected by an edge
in H .

We now prove Property (2) of H . Recall the notation: for each point u, i(v) =
max{i | v ∈ Vi}. For each edge {u, v} ∈ Ê, direct {u, v} from u to v, if i(u) < i(v).
If i(u) = i(v), pick an arbitrary orientation. This edge orientation is identical to
the one used in [2]. Call the resulting digraph −→H .

Lemma 5. [Property 2] The out-degree of −→H is bounded above by (1
ε )O(ρ).

Proof. Let {u, v} ∈ Ê be an arbitrary edge directed from u to v, and let i be
such that {u, v} ∈ Ei. Then d(u, v) ≤ γ · ri. Now note that ri+δ = αδ · ri ≥ γ · ri

(recall that δ = �logα γ�). This, along with the fact that Vi+δ is an ri+δ-net,
implies that it is not possible for both u and v to exist in Vi+δ. Since i(u) ≤ i(v)
(by our assumption), it follows that i(u) ≤ i + δ. On the other hand, u ∈ Vi and
so i(u) ≥ i.

Summarizing, we have that i(u)− δ ≤ i ≤ i(u). This tells us that there are at
most δ + 1 = O(logα γ) values of i for which Ei may contain an edge outgoing
from u. For each such i, by Lemma 1 there are at most |Ni(u)| ≤

(
1
ε

)O(ρ) edges
in Ei outgoing from u. It follows that the total number of edges in Ê outgoing
from u is

(
1
ε

)O(ρ) ·O(logα γ) =
(

1
ε

)O(ρ).

We now prove Property (3) of H , showing that H has bounded weight.

Lemma 6. [Property 3] The total weight of H is wt(H) = O(log Δ) ·
(

1
ε

)O(ρ) ·
wt(MST ), where MST is a minimum spanning tree of V , and Δ is the aspect
ratio of G.
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Proof. We show that, for each i, wt(Ei) =
(

1
ε

)O(ρ) · wt(MST ). This along with
the fact that there are h+1 = logα

1
r0

+1 = O(logα Δ) levels i, proves the claim
of the lemma.

Let Ui ⊆ Vi be the points in Vi incident to edges in Ei, and let t = |Ui|. Recall
that any edge {u, v} ∈ Ei satisfies ri < d(u, v) ≤ γ · ri. Thus, any spanning
tree of a set of points containing Ui has weight at least (t − 1) · ri, implying
that wt(MST ) ≥ (t − 1) · ri. Also note that the weight of Ei is bounded by
Σu∈Ui |Ni(u)| · γ · ri ≤

(
1
ε

)O(ρ) · t · γ · ri, using the upper bound on |Ni(u)| given
by Lemma 1. Using the lower bound on wt(MST ), we see that the weight of Ei

is bounded above by
(

1
ε

)O(ρ) · γ · (wt(MST )+ ri). Summing this expression over
all Ei, yields the upper bound claimed in the lemma.

2.2 Altering H for Bounded Degree

In this section we show how to modify H so as to bound the degree of each
vertex by a constant. Lemma 5 shows that an oriented version of H , namely −→H ,
has bounded out-degree. Next we describe a method that carefully replaces some
directed edges in −→H by others so as to guarantee constant bound on the in-degree
as well, without increasing the out-degree. The replacement procedure is similar
to the one used in [2], slightly adjusted to work with UBGs. Assume without
loss of generality that ε ≤ 1

2 ; otherwise, if ε > 1
2 , we proceed with ε = 1

2 . We
use the fact that ε ≤ 1

2 in the proof of Lemma 9. Let � be the smallest positive
integer such that 1

α�−1 ≤ ε. Thus � = O(logα
1
ε ).

Edge Replacement Procedure. Let u be an arbitrary point in V and let M(u, i)
be the set of all vertices v ∈ Vi such that {v, u} is an edge in Ei directed from v

to u in −→H . Let I(u) = 〈i1, i2, . . .〉 be the increasing sequence of all indices ik for
which M(u, ik) is nonempty. For 1 ≤ k ≤ �, we do not disturb any of the edges
from points in M(u, ik) to u. For each k > � such that ik ≤ h−δ−2, edges {v, u}
connecting v ∈ M(u, ik) to u are replaced by other edges. Specifically, an edge
{v, u}, with v ∈M(u, ik), is replaced by an edge {v, w}, where w is an arbitrary
vertex in M(u, ik−�). The replacement can be equivalently viewed as happening
in either H or its oriented version −→H . In −→H , we replace the directed edge (v, u)
by the directed edge (v, w). In the next two lemmas, our arguments will use −→H
or H , as convenient.

Let Ẽ be the resulting set of edges. By our construction, |Ẽ| ≤ |Ê|. An
important observation here is that the replacement procedure above is carried
out only for edges in Ei, with i ≤ h − δ − 2 (that is, only edges of length no
greater than 1/α2). This is to ensure that only real edges get replaced and no
virtual edges get added, a guarantee that is shown in the following lemma.

Lemma 7. Ẽ \ Ê contains no virtual edges.

Proof. Let {v, u} be an edge that gets replaced by {v, w}, with v ∈M(u, ik) and
w ∈ M(u, ik−�). Recall that k > � and ik ≤ h − δ − 2. Using the definitions of
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Eik
and Eik−�

and the fact that 1
α�−1 ≤ ε, it follows that d(w, u) ≤ ε · d(v, u).

By the triangle inequality, d(v, w) ≤ d(v, u)+ d(w, u) ≤ (1+ ε)d(v, u). Now note
that d(v, u) ≤ 1/α2. This is because edges in Eik

have length no greater than
γ · rik

≤ 1/α2, for any ik ≤ h − δ − 2. Therefore d(v, w) ≤ (1 + ε)/α2 ≤ 1, for
any α2 ≥ (1 + ε).

Let J = (V, Ẽ). First we show that J indeed has bounded degree (Lemma 8).
Second we show that the metric distance dJ induced by shortest paths in J is a
good approximation of dH (Lemma 9). A consequence of this is that J remains
connected, and maintains spanner paths between endpoints of real edges.

Lemma 8. Every vertex in J = (V, Ẽ) has degree bounded by (1
ε )O(ρ).

Proof. Let A be the maximum out-degree of a vertex of −→H . By Lemma 5,
A ≤ (1

ε )O(ρ). Let B be the largest of |Ni(u)|, for all i and all u. By Lemma 1,
B ≤ (1

ε )O(ρ). The edge-replacement procedure replaces a directed edge (v, u)
by a directed edge (v, w). So the out-degrees of vertices remain unchanged by
the edge-replacement procedure, and continue to be bounded above by (1

ε )O(ρ).
Thus, we can simply focus on the in-degrees of vertices. We bound these by ac-
counting for the in-degree of an arbitrary vertex x with respect to old edges (in
Ẽ ∩ Ê) and with respect to new edges (in Ẽ \ Ê); we show that both in-degrees
are bounded above by (1

ε )O(ρ).

In-degree of x with respect to Ẽ ∩ Ê. Out of the edges in −→H that come into
x, at most B(� + δ + 2) remain in Ẽ. More specifically, at most B edges at
each of the first � levels i1, i2, . . . , i� in I(x), plus at most B edges in each of
Ei, i = h − δ − 1, h − δ, . . . , h, remain in Ẽ. Any other edge directed into x
gets replaced by an edge not incident to x. We end this case by noting that
B(� + δ + 2) = (1

ε )O(ρ).

In-degree of x with respect to Ẽ\Ê. Vertex x has a new in-coming edge whenever
it plays the role of w in the edge-replacement procedure. Recall that in the edge-
replacement procedure, w and v are both in-neighbors of u. For each edge (w, u),
there are at most B edges (v, u) directed into u that may get replaced by (v, w).
Furthermore, there are A edges (w, u) outgoing from w. This gives an upper
bound of AB = (1

ε )O(ρ) on the in-degree of x.

It remains to show that dJ is a good approximation of dH . Intuition for this is
provided by the proof of Lemma 7. In that proof, it is shown that when {v, w}
replaces {v, u}, d(w, u) ≤ ε · d(v, u) and d(v, w) ≤ (1 + ε) · d(v, u). Thus, if the
path 〈v, w, u〉 existed in Ẽ, this path would have length at most (1+2ε) ·d(v, u).
However, edge {w, u} may not exist in Ẽ, since it may itself have been replaced.
Thus a shortest path from w to u in Ẽ may be longer than d(w, u). However,
since d(w, u) ≤ ε · d(v, u), the extra cost of replacing {w, u} is marginal and the
eventual sum of all of these lengths is still bounded above by (1+2ε)·d(v, u). Thus
we have the following lemma, whose proof we skip (due to space restrictions).

Lemma 9. dJ ≤ (1 + 2ε)dH.
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2.3 Eliminating Virtual Edges

The only impediment in having J = (V, Ẽ) serve as a spanner for the input
UBG G is the presence of virtual edges in J . Recall that these are edges of
length greater than 1 and clearly do not exist in G. In this section we show that
there exist real edges that can take over the role of virtual edges in J , without
violating the properties J is expected to have.

Let {u, v} ∈ E be an arbitrary edge and let i be such that ri ≤ d(u, v) < ri+1.
Let q be as in the proof of Lemma 4: the smallest integer such that α

α−1 ·
4

αq ≤ ε <
α

α−1 ·
8

αq . As mentioned before, the proof of Lemma 4 implies a certain uv-path
of length at most (1+ ε) ·d(u, v) in H = (V, Ê). If i ≤ q− 1, this path is just the
edge {u, v}, because {u, v} is guaranteed to exist in Ê. The Edge Replacement
Procedure (Section 2.2) ensures that only real edges are replaced, and each real
edge is replaced by a path consisting only of real edges. This along with Lemma 9
ensures that even in Ẽ there is a uv-path of length at most (1 + 2ε) · d(u, v),
consisting of real edges only. If i ≥ q, the uv-path in H implied by Lemma 4
may have more than one edge. Let s = i− q and (s, u∗) (respectively, (s, v∗)) be
the level-s ancestor of the leaf (0, u) (respectively, the leaf (0, v)) in the net tree
〈V0, V1, . . . , Vh〉. Then the edge {u∗, v∗} is guaranteed to be present in Ê and the
uv-path implied by Lemma 4 starts at (0, u), goes up to the net tree via parents
to (s, u∗), then to (s, v∗), and then follows the unique path down the tree from
(s, v∗) to (0, v). It is easy to check that of all the edges in this path, only {u∗, v∗}
may be virtual. Specifically, when the edge {u, v} is long enough to guarantee
that i ≥ h − δ + 1 + q, then s = i − q ≥ h − δ + 1 and the edge {u∗, v∗} may
belong to Es. Recall that for j ≥ h− δ + 1, edges in Ej may not be real and in
particular {u∗, v∗} may be a virtual edge. Since the uv-path implied by Lemma
4 passes through edge {u∗, v∗}, one has to be careful in replacing {u∗, v∗} by a
real edge. Our virtual edge replacement procedure is given below.

For any node (i, v) in the net tree, let T (i, v) denote the set of all vertices
u ∈ V , such that the subtree of the net tree rooted at (i, v) contains a copy of u.
In other words, T (i, v) = {u ∈ V | (i, v) is an ancestor of (j, u) for some j ≤ i}.

Virtual Edge Replacement Procedure. For a virtual edge {u, v} ∈ Ei, if there is a
real edge {x, y} already in the spanner H , with x ∈ T (i, u) and y ∈ T (i, v), then
simply delete {u, v}. Similarly, if there is no such real edge {x, y} in the input
graph G with x ∈ T (i, u) and y ∈ T (i, v) then simply delete {u, v}. Otherwise,
find a real edge {x, y} ∈ E, x ∈ T (i, u) and y ∈ T (i, v), and replace {u, v} by
{x, y}.

The reason why this replacement procedure works can be intuitively explained
as follows. A virtual edge {u, v} ∈ Ei is important for pairs of vertices {a, b}, with
a ∈ T (i, u) and b ∈ T (i, v), for which all ab-paths of length at most (1+ε)·d(a, b)
pass through {u, v}. Replacing {u, v} by {x, y} provides the following alternate
ab-path that is short enough: starting at the leaf a, go up the tree rooted at (i, u)
via parents until an ancestor common to a and x is reached, then come down to
x, take edge {x, y}, go up the tree rooted at (i, v) until an ancestor common to
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x y

a

b

u
v

T(i, u) T(i, v)

real edge

virtual edge

Fig. 2. A short ab-path passes through virtual edge {u, v}. After replacing virtual edge
{u, v} by real edge {x, y}, there is a short ab-path through {x, y}.

b and y is reached, and finally go down to b. Figure 2 illustrates this alternate
path. Note that this entire path consists only of real edges.

We finally state our main result. Let G′ be the graph obtained from J by
replacing virtual edges using the Virtual Edge Replacement Procedure.

Theorem 2. G′ = (V, E′) is a (1 + ε)-spanner of G with degree bounded above
by (1

ε )O(ρ) and weight bounded above by O(log Δ) · (1
ε )O(ρ) · wt(MST ).

A proof similar to that of Lemma 4 can be used to show the spanner property
of G′. The fact that G′ is lightweight simply follows from the fact that a virtual
edge of length greater than 1 in J , either gets eliminated, or gets replaced by
at most one real edge of length at most 1 in G′. The constant degree bound
follows from the observation that, for a vertex x to acquire a new incident edge,
there is an ancestor of x in the net tree at level h − δ + 1 or higher, that loses
an incident edge at that level. There are a constant number of such ancestors
and from Lemma 1, we know that any vertex has a constant number of incident
edges at any particular level.

We conclude this section with a summary of our algorithm.

Algorithm SPANNER((V, d), ε)

Let
√

1 + ε < α be a constant, γ = 2α
α−1

1 + 4α
ε

, and δ = 	logα γ
.
Let h be the smallest such that 1

αh is smaller than the minimum inter-point distance.
Let r0 = 1

αh and let ri = α · ri−1, for all i > 0.

Constructing a linear size (1 + ε)-spanner H = (V, E).
1. Construct the net tree 〈V0, V1, . . . , Vh〉.

[Let i(u) = max{i | u ∈ Vi}.]
2. Construct the sets

E0 = {{u, v} ∈ V0 × V0 | d(u, v) ≤ γ · r0},
Ei = {{u, v} ∈ Vi × Vi | γ · ri−1 < d(u, v) ≤ γ · ri}, for 1 ≤ i ≤ h.

[Let E = ∪iEi and H = (V, E).]

Replacing edges to obtain a constant degree bound.

3. Orient each edge {u, v} ∈ E from u to v if i(u) ≤ i(v), breaking ties arbitrarily.

[Let M(u, i) denote the set of vertices v ∈ Vi, with {v, u} ∈ E.
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4. For each u ∈ V , construct the increasing sequence I(u) = 〈i1, i2, . . . , 〉 of all ik
with M(u, ik) �= ∅. [Let 	 be the smallest integer with 1

α�−1 ≤ ε.]
5. For each u ∈ V and each ik ∈ I(u), with k > 	 and ik ≤ h − δ − 2, do
6. Replace directed edge (v, u), v ∈ M(u, ik) by edge (v, w),

for arbitrary w ∈ M(u, ik−�).

[Let J = (V, E) be the resulting graph, with distance metric dJ .]

Replacing virtual edges by real ones.
[Let T (i, v) = {x ∈ V | (i, v) is an ancestor of (j, x) for some j ≤ i}.]

7. For each i ≥ h − δ + 1 and each virtual edge {u, v} ∈ Ei do

8. If there is a real edge {x, y} ∈ E, x ∈ T (i, u) and y ∈ T (i, v), then do nothing.
9. Otherwise, if there is a real edge {x, y} ∈ E, with x ∈ T (i, u) and y ∈ T (i, v),

replace {u, v} by {x, y}.
[Let E′ be the set of resulting edges. Output is G′ = (V, E′).]

3 Leapfrog Property

In Lemma 6, we showed that H = (V, Ê) has total weight bounded above by
O(log Δ) ·

(
1
ε

)O(ρ) · wt(MST ), where Δ is the aspect ratio of G. Thus, for fixed
ε and constant doubling dimension ρ, the upper bound is within O(log Δ) times
the optimal value. In an attempt to show a bound that is within O(1) times the
optimal value, we use a tool that is widely used in the computational geome-
try literature [8,5,9]. In the context of building lightweight (1 + ε)-spanners for
Euclidean spaces, Das and Narasimhan [8] have shown that, if the set of edges
in the spanner satisfy a property known as the leapfrog property, then the total
weight of the spanner is bounded above by O(wt(MST )). Below we state the
leapfrog property precisely.

Leapfrog Property. For any t ≥ t′ > 1, a set F of edges has the (t′, t)-leapfrog
property if, for every subset S = {{u1, v1}, {u2, v2}, . . . , {us, vs}} of F ,

t′ · d(u1, v1) <

s∑
i=2

d(ui, vi) + t ·
( s−1∑

i=1

d(vi, ui+1) + d(vs, u1)
)
. (1)

Informally, this definition says that, if there exists an edge between u1 and
v1, then any u1v1-path not including {u1, v1} must have length greater than
t′ ·d(u1, v1). Das and Narasimhan [8] show the following connection between the
leapfrog property and the weight of the spanner.

Lemma 10. Let t ≥ t′ > 1. If the line segments F in d-dimensional space
satisfy the (t′, t)-leapfrog property, then wt(F ) = O(wt(MST )), where MST is
a minimum spanning tree connecting the endpoints of line segments in F . The
constant in the asymptotic notation depends on t, t′ and d.

It is well known that, if a spanner is built “greedily”, then the set of edges in
the spanner satisfies the leapfrog property [8,5,9]. In [6] we showed that even a
“relaxed” version of the greedy algorithm would ensure that the spanner edges
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have the leapfrog property. This was critical to showing that the spanner con-
structed in a distributed manner for UBGs in Euclidean spaces [6] had total
weight bounded above by O(wt(MST )). Here we ask if it is possible to do the
same for UBGs in metric spaces with constant doubling dimension. In an at-
tempt to answer this question we show that, using a variant of the SPANNER
algorithm (outlined at the end of Section 2), we can build, for a given doubling
UBG G, a (1 + ε)-spanner with degree bounded above by a constant and with
the (t, t′)-leapfrog property, for some constants t ≥ t′ > 1. Note that this does
not give us the desired O(wt(MST )) bound on the weight of the constructed
spanner because we do not know if the equivalent of Lemma 10 holds for non-
Euclidean metric spaces. The proof of Lemma 10 in [8] is quite geometric and
does not suggest an approach to its generalization to metric spaces of constant
doubling dimension.

To guarantee that the output spanner satisfies the (t′, t)-leapfrog property, we
need to make two modifications to the SPANNER algorithm. Let Hi denote the
spanning subgraph of G induced by E0 ∪ E1 ∪ · · · ∪ Ei.

1. We modify Step (2) of the algorithm and place an edge {u, v} into Ei only if
{u, v} ∈ Vi×Vi, γ · ri−1 < d(u, v) ≤ γ · ri, and there is not already a uv-path
of length at most (1 + ε) · d(u, v) in Hi−1.

2. Two edges {u, v} and {u′, v′} in Ei are said to be mutually redundant if both
of the following conditions hold:
(a) dHi−1(v, u′) + d(u′, v′) + dHi−1(v

′, u) ≤ (1 + ε) · d(u, v)
(b) dHi−1(v′, u) + d(u, v) + dHi−1 (v, u′) ≤ (1 + ε) · d(u′, v′)
Note that these conditions imply that Hi\{u, v} contains a uv-path of length
at most (1 + ε) · d(u, v) and Hi \ {u′, v′} contains a u′v′-path of length at
most (1+ ε) ·d(u′, v′). Thus, one of these can potentially be eliminated from
Hi, without compromising the (1 + ε)-spanner property of Hi. In fact, such
mutually redundant pairs of edges need to be eliminated from Hi in order
to show that H satisfies the leapfrog property.

These ideas and how they lead to a spanner that has the leapfrog property are
discussed in detail in [6].

4 Distributed Implementation

In this section, we show that the SPANNER algorithm (Section 2) and its variant
that ensures the leapfrog property (Section 3), both have distributed implemen-
tations that run in O(log∗ n) rounds of communication. Here we focus on the
SPANNER algorithm. It turns out that Step (1) of this algorithm takes O(log∗ n)
rounds, whereas the remaining steps take O(1) additional rounds. We first ex-
amine Steps (2)-(9) of the algorithm.

It is easy to verify that in Steps (2)-(9), a node u needs to communicate only
with other nodes that are either neighbors of u in G, or to which u is connected
by a virtual edge. The main difficulty here is that the endpoints of a virtual edge
{u, v} may not be neighbors in the network. Consider a virtual edge {u, v} ∈ Ei.
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By definition of Ei, d(u, v) ≤ γ ·ri ≤ γ. Even though the distance between u and v
in the underlying metric space is bounded above by a constant, it is not necessary
that the hop distance between u and v in G be similarly bounded above. Let us
call a virtual edge {u, v} ∈ Ei, useful , if there exist x ∈ T (i, u) and y ∈ T (i, v)
such that {x, y} ∈ E. Notice that only useful virtual edges need to be considered
by our algorithm. If a virtual edge {u, v} is not useful, then even though it is added
in Step (2), it is eliminated in Steps (7)-(9). In the following lemma we show that
the hop distance between endpoints of useful virtual edges is small.

Lemma 11. The hop distance in G between the endpoints of any useful virtual
edge {u, v} ∈ Ei is at most 2( 2α

α−1 + 1).

Proof. By definition of a useful virtual edge, there are points x ∈ T (i, u) and
y ∈ T (i, v) such that {x, y} is an edge in G. Thus a path in G between u and
v is the following: start at node (i, u) in the net tree and travel down to a copy
of x, follow the edge {x, y}, and then travel up to node (i, v). Note that the
edge {x, y} ∈ E, but it may not belong to Ẽ. The length of this path is at most
2(1+ 1

α + 1
α2 + . . .)+1, implying that dG(u, v) ≤ 2α

α−1 +1. Now consider a shortest
uv-path in G, say 〈w0 = u, w1, . . . , wk+1 = v〉. Because G is a UBG and due to
the triangle inequality, d(wi, wi+2) > 1 for all 0 ≤ i ≤ k − 1 (otherwise wi+1

could be eliminated from the uv-path to obtain an even shorter uv-path in G).
This yields a lower bound of k/2 on d(u, v), and since dG(u, v) ≥ d(u, v), we
have that dG(u, v) ≥ k/2. Combining this with the upper bound of 2α

α−1 + 1, we
obtain that k ≤ 2( 2α

α−1 + 1).

Thus, in Steps (2)-(9) of the SPANNER algorithm, a node only needs to commu-
nicate with nodes that are at most O( 1

α−1 ) hops away. This suggests a simple
way of implementing Steps (2)-(9): after Step (1) is completed, each node u
gathers neighborhood information and the values of i(v) from all nodes v that
are O( 1

α−1 ) hops away. After this, node u can do all of its computation with no
further communication.

The fact that Step (1) can be implemented in O(log∗ n) rounds of communi-
cation follows from a clever argument in [13]. Suppose that we have computed
the set Vi−1. The computation of the set Vi, which is an ri-net of Vi−1, reduces
to a maximal independent set (MIS) computation on a degree-bounded graph.
To see this, create a graph, say Gi, whose vertex set is Vi−1 and whose edges
connect any pair of vertices u, v ∈ Vi−1, if d(u, v) ≤ ri. Then it is easy to see that
an MIS in Gi is an ri-net of Vi−1. Furthermore, the fact that Gi has bounded
degree follows from the fact that the underlying metric space has bounded dou-
bling dimension. There is a well-known deterministic algorithm due to Linial
[15] for computing an MIS, that runs in O(log∗ n) communication rounds on
graphs with bounded degree. Using this algorithm, one can compute the ri-net
Vi of Vi−1 in O(log∗ n) rounds. Since there are h + 1 = O(log Δ) such sets to
compute, it seems like this approach will take O(log Δ · log∗ n) rounds. However,
in [13] it is shown that in this algorithm, each node uses information only from
nodes that are at most O(log∗ n) hops away in G. Therefore, this algorithm has a
O(log∗ n)-round implementation in which each node u first gathers information
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from nodes that are at most O(log∗ n) hops away and then performs all steps of
the SPANNER algorithm locally, using the collected information.
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Abstract. A value-passing, asynchronous process calculus and its as-
sociated theory of confluence are considered as a basis for establishing
the correctness of distributed algorithms. In particular, we present an
asynchronous version of value-passing CCS and we develop its theory of
confluence. We show techniques for demonstrating confluence of complex
processes in a compositional manner and we study properties of conflu-
ent systems that can prove useful for their verification. These results
give rise to a methodology for system verification which we illustrate by
proving the correctness of two distributed leader-election algorithms.

1 Introduction

Distributed systems present today one of the most challenging areas of research
in computer science. Their high complexity and dynamic nature and features
such as concurrency and unbounded nondeterminism, render their construc-
tion, description and analysis a challenging task. The development of formal
frameworks for describing and associated methodologies for reasoning about dis-
tributed systems has been an active area of research for the last few decades and
is becoming increasingly important as a consequence of the great success of
worldwide networking and the vision of ubiquitous computing.

Process calculi, otherwise referred to as process algebras, such as CCS [8],
the π-calculus [10], and others, are a well-established class of modeling and
analysis formalisms for concurrent and distributed systems. They can be con-
sidered as high-level description languages consisting of a number of operators
for building processes including constructs for defining recursive behaviors. They
are accompanied by semantic theories which give precise meaning to processes,
translating each process into a mathematical object on which rigorous analysis
can be performed. In addition, they are associated with axiom systems which
prescribe the relations between the various constructs and can be used to rea-
son algebraically about processes. During the last two decades, they have been
extensively studied and they have proved quite successful in the modeling and
reasoning about system correctness. They have been extended for modeling a va-
riety of aspects of process behavior including mobility, distribution, value-passing
and asynchronous communication.

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 172–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Verification Techniques for Distributed Algorithms 173

Confluence arises in a variety of forms in computation theory. It was first
studied in the context of concurrent systems by Milner in [8]. Its essence, to
quote [9], is that “of any two possible actions, the occurrence of one will never
preclude the other”. As shown in the mentioned papers, for pure CCS processes
confluence implies determinacy and semantic-invariance under internal compu-
tation, and it is preserved by several system-building operators. These facts make
it possible to reason compositionally that a system is confluent and to exploit
this fact while reasoning about its behavior. Work on the study of confluence
in concurrent systems was subsequently carried out in various directions. In [2]
various notions of confluence were studied and the utility of the ideas was illus-
trated for state-space reduction and protocol analysis. Furthermore, the theory
of confluence was developed for value-passing CCS in [16,18]. In the context
of mobile process calculi, such as the π-calculus and extensions of it, notions
of confluence and partial confluence were studied and employed in a variety of
contexts including [5,11,13,14,15].

The aims of this paper is to study the notion of confluence in an asynchronous,
value-passing process calculus and to develop useful techniques for showing that
complex asynchronous processes are confluent. Based on this theory, we develop
a methodology for the analysis of distributed algorithms. We illustrate its utility
via the verification of two distributed leader-election algorithms.

The extension of the theory of confluence to the asynchronous setting is at
most places pretty straightforward. Thus, due to the lack of space, we omit the
proofs of the results and draw the attention only to significant points pertain-
ing to the ways in which the presence of asynchrony admits a larger body of
compositional results. We then take a step from the traditional definition of
confluence in value-passing process calculi, and we introduce a new treatment of
input actions, motivated by the notion of “input-enabledness” often present in
distributed systems. Our main result shows that the resulting notion allows an
interesting class of complex processes to be shown as confluent by construction.
These compositional results and other confluence properties are exploited in the
verification of both of the algorithms we consider. We illustrate the application
of the theory for the algorithm verification in detail.

The remainder of the paper is structured as follows. In the next section we
present our asynchronous extension of value-passing CCS while, in Sect. 3, the
theory of confluence is developed. Section 4 contains application of our verifi-
cation methodology for establishing the correctness of two distributed leader-
election algorithms and Sect. 5 concludes the paper.

2 The Calculus

In this section we present the CCSv process calculus, an amalgamation of value-
passing CCS [8,18], with features of asynchronous communication from the asyn-
chronous π-calculus [1,4] and a kind of conditional agents.

We begin by describing the basic entities of the calculus. We assume a set of
constants, ranged over by u, v, including the positive integers and the boolean
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values and a set of functions, ranged over by f , operating on these constants.
Moreover, we assume a set of variables ranged over by x, y. Then, the set of
terms of CCSv, ranged over by e, is given by (1) the set of constants, (2) the set
of variables, and (3) function applications of the form f(e1, . . . en), where the ei

are terms. We say that a term is closed if it contains no variables. The evaluation
relation � for closed terms is defined in the expected manner. We write r̃ for a
tuple of syntactic entities r1, . . . , rn.

Moreover, we assume a set of channels, L, ranged over by a, b. Channels pro-
vide the basic communication and synchronization mechanisms in the language.
A channel a can be used in input position, denoted by a, and in output position,
denoted by a. This gives rise to the set of actions Act of the calculus, ranged
over by α, β, containing

– the set of input actions which have the form a(ṽ) representing the input
along channel a of a tuple ṽ,

– the set of output actions which have the form a(ṽ) representing the output
along channel a of a tuple ṽ, and

– the internal action τ , which arises when an input action and an output
action along the same channel are executed in parallel.

For simplicity, we write a and a for a(〈〉) and a(〈〉), where 〈〉 is the empty
tuple. We say that an input and an output action on the same channel are
complementary actions, and, for a non-internal action α, we denote by �(α) the
channel of α. Finally, we assume a set of process constants C, ranged over by C.

The syntax of CCSv processes is given by the following BNF definition:

P ::= 0 | a(ṽ) |
∑
i∈I

ai(x̃i).Pi | P1 ‖ P2 | P\L

| cond(e1 � P1, . . . , en � Pn) | C〈ṽ〉

Process 0 represents the inactive process. Process a(ṽ) represents the asyn-
chronous output process. It can output the tuple ṽ along channel a. Process∑

i∈I ai(x̃i).Pi represents the nondeterministic choice between the set of pro-
cesses ai(x̃i).Pi, i ∈ I. It may initially execute any of the actions ai(x̃i) and then
evolve into the corresponding continuation process Pi. It is worth noting that
nondeterministic choice is only defined with respect to input-prefixed processes.
This follows the intuition adopted in [1,4] that, if an output action is enabled, it
should be performed and not precluded from arising by nondeterministic choice.
Further, note that, unlike the summands ai(x̃i).Pi, the asynchronous output
process does not have a continuation process due to the intuition that an out-
put action is simply emitted into the environment and execution of the emitting
process should continue irrespectively of when the output is consumed.

Process P‖Q describes the concurrent composition of P and Q: the component
processes may proceed independently or interact with one another while execut-
ing complementary actions. The conditional process cond(e1 � P1, . . . , en � Pn)
offers a conditional choice between a set of processes: assuming that all ei are
closed terms, it behaves as Pi, where i is the smallest integer for which ei � true.
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In P\F , where F ⊆ L, the scope of channels in F is restricted to process
P : components of P may use these channels to interact with one another but
not with P ’s environment. This gives rise to the free and bound channels of a
process. We write fc(P ) for the free channels of P , and fic(P ), foc(P ) for the free
channels of P which are used in input and output position within P , respectively.

Finally, process constants provide a mechanism for including recursion in the
process calculus. We assume that each constant C has an associated definition
of the form C〈x̃〉 def= P , where process P may contain occurrences of C, as well
as other process constants.

Each operator is given precise meaning via a set of rules which, given a process
P , prescribe the possible transitions of P , where a transition of P has the form
P

α−→ P ′, specifying that process P can perform action α and evolve into process
P ′. The rules themselves have the form

T1, . . . , Tn
T φ

which is interpreted as follows: if transitions T1, . . . , Tn, can be derived, and
condition φ holds, then we may conclude transition T . The semantics of the
CCSv operators are given in Table 1.

Table 1. The operational semantics

(Sum) i∈I ai(x̃i).Pi
ai(ṽi)−→ Pi{ṽi/x̃i} (Out) a(ṽ)

a(ṽ)−→ 0

(Par1) P1
α−→ P ′

1

P1‖ P2
α−→ P ′

1‖P2

(Par2) P2
α−→ P ′

2

P1‖P2
α−→ P1‖P ′

2

(Par3)
P1

a(ṽ)−→ P ′
1, P2

a(ṽ)−→ P ′
2

P1‖P2
τ−→ P ′

1‖P ′
2

(Res)
P

α−→ P ′, 	(α), �∈ F

P\F α−→ P ′\F

(Cond) Pi
α−→ P ′

i

cond(e1 � P1, . . . , en � Pn)
α−→ Pi

ei � true, ∀j < i, ej � false

(Const)
P{ṽ/x̃} α−→ P ′

C(ṽ)
α−→ P

C(x̃)
def
= P

We discuss some of the rules below:

– (Sum). This axiom employs the notion of substitution, a partial function from
variables to values. We write {ṽ/x̃} for the substitution that maps variables
x̃ to values ṽ. Thus, for all i ∈ I, the input-prefixed summation process can
receive a tuple of values ṽi along channel ai, and then continue as process
Pi, with the occurrences of the variables x̃i in Pi substituted by values ṽi.

For example: a(x, y). b(x)+c(z).0
a(2,5)−→ b(2) and a(x, y). b(x)+c(z).0

c(1)−→ 0.
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– (Par1). This axiom (and its symmetric version (Par2)) expresses that a com-
ponent in a parallel composition of processes may execute actions indepen-

dently. For example, since a(3)
a(3)−→ 0, a(3) ‖ a(v).b(c)

a(3)−→ 0 ‖ a(v).b(c).
– (Par3). This axiom expresses that two parallel processes executing comple-

mentary actions may synchronize with each other producing the internal
action τ : a(3) ‖ a(v).b(v) τ−→ b(3).

– (Cond). This axiom formalizes the behavior of the conditional operator. An

example of the rule follows: cond(2 = 3 � b(3), true � c(4))
c(4)−→ 0.

– (Const). This axiom stipulates that, given a process constant and its as-
sociated definition C〈x̃〉 def= P , its instantiation C〈ṽ〉 behaves as process
P with variables x̃ substituted by ṽ. For example, if C〈x, y〉 def= cond(x =

y � b(x), true � c(y)), then C(2, 2)
b(2)−→ 0.

An additional form of process expression derivable from our syntax and used
in the sequel is the following: ! P def= P ‖ ! P , usually referred to as the replicator
process, represents an unbounded number of copies of P running in parallel.

We recall some useful definitions. We say that Q is a derivative of P , if there
are α1, . . . , αn ∈ Act, n ≥ 0, such that P

α1−→ . . .
αn−→ Q. Moreover, given

α ∈ Act we write =⇒ for the reflexive and transitive closure of τ−→, α=⇒ for the
composition =⇒ α−→=⇒, and α̂=⇒ for =⇒ if α = τ and α=⇒ otherwise.

We conclude this section by presenting a notion of process equivalence in
the calculus. Observational equivalence is based on the idea that two equivalent
systems exhibit the same behavior at their interfaces with the environment. This
requirement was captured formally through the notion of bisimulation [8,12].
Bisimulation is a binary relation on states of systems. Two processes are bisimilar
if, for each step of one, there is a matching (possibly multiple) step of the other,
leading to bisimilar states. Below, we introduce a well-known such relation on
which we base our study.

Definition 1. Bisimilarity is the largest symmetric relation, denoted by ≈,
such that, if P ≈ Q and P

α−→ P ′, there exists Q′ such that Q
α̂=⇒ Q′ and

P ′ ≈ Q′.

Note that bisimilarity abstracts away from internal computation by focusing on
weak transitions, that is, transitions of the form â=⇒ and requires that bisimilar
systems can match each other’s observable behavior. We also point out that,
while two bisimilar processes have the same traces, the opposite does not hold.

Bisimulation relations have been studied widely in the literature. They have
been used to establish system correctness by modeling a system and its spec-
ification as two process-calculus processes and discovering a bisimulation that
relates them. The theory of bisimulation relations has been developed into two
directions. On one hand, axiom systems have been developed for establishing
algebraically the equivalence of processes. On the other hand, proof techniques
that ease the task of showing two processes to be equivalent have been proposed.
The results presented in the next section belong to the latter type.
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3 Confluence

In [8,9], Milner introduced and studied a precise notion of determinacy of CCS
processes. The same notion carries over straightforwardly to the CCSv-calculus:

Definition 2. P is determinate if, for every derivative Q of P and for all
α ∈ Act, whenever Q

α−→ Q′ and Q
α̂=⇒ Q′′, then Q′ ≈ Q′′.

This definition makes precise the requirement that, when an experiment is con-
ducted on a process, it should always lead to the same state up to bisimulation.
As in pure CCS, a CCSv process bisimilar to a determinate process is deter-
minate, and determinate processes are bisimilar if they may perform the same
sequence of visible actions. The following lemma summarizes conditions under
which determinacy is preserved by the CCSv operators.

Lemma 1

1. 0 and a(ṽ) are determinate processes.
2. If P is determinate so is P\F .
3. If, for all i ∈ I, each Pi is determinate and the ai are distinct channels,∑

i∈I ai(x̃i). Pi is also determinate.
4. If, for all i ∈ I, each Pi is determinate so is cond(e1 � P1, . . . , en � Pn).
5. If P1 and P2 are determinate and fic(P1) ∩ fc(P2) = ∅, fic(P2) ∩ fc(P1) = ∅,

then P1‖P2 is also determinate.

Proof: The interesting case is Clause (5). The proof consists of a case analysis
on all pairs of actions that can be taken from a derivative of P1‖P2 and it
takes advantage of the asynchronous-output mechanism. Intuitively, since output
actions have no continuation, if two identical outputs are concurrently enabled
within a system, it does not matter which one is fired first. �

Note that, in the case of parallel composition, previous results in CCS and
the π-calculus apply a stronger side-condition than the one of Clause (5) above.
Namely, these side-conditions require that the parallel components P1 and P2

have no channels in common. Here, however, the asynchronous nature of output
actions allows us to weaken the condition as shown.

According to the definition of [9], a CCS process P is confluent if it is de-
terminate and, for each of its derivatives Q and distinct actions α, β, given the
transitions to Q1 and Q2, the following diagram can be completed.

Q
α−→ Q1

β ⇓ β̂ ⇓
Q2

α̂=⇒ Q′
2 ∼ Q′

1

Let P be the CCSv-calculus process P
def= a(x). b(x).0 and consider the tran-

sitions P
a(2)−→ b(2).0 and P

a(3)−→ b(3).0. Clearly, the two transitions cannot be
‘brought together’ in order to complete the diagram above. Despite this fact,
it appears natural to classify P as a confluent process. Indeed, investigation of
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confluence in the context of value-passing calculi resulted in extending the CCS
definition above to take account of substitution of values [16,18]. The definitions
highlight the asymmetry between input and output actions by considering them
separately. Here we express this separation as follows:

Definition 3. A CCSv process P is confluent if it is determinate and, for each
of its derivatives Q and distinct actions α, β, where α and β are not input actions
on the same channel, if Q

α−→ Q1 and Q
β

=⇒ Q2 then, there are Q′
1 and Q′

2 such

that Q2
α̂=⇒ Q′

2, Q1
β̂

=⇒ Q′
1 and Q′

1 ≈ Q′
2. �

We may see that bisimilarity preserves confluence. Furthermore, confluent
processes possess an interesting property regarding internal actions. We define a
process P to be τ-inert if, for each derivative Q of P , if Q

τ−→ Q′, then Q ≈ Q′.
By a generalization of the proof in CCS, we obtain:

Lemma 2. If P is confluent then P is τ -inert.

As observed in [2], τ -inertness implies confluence for a certain class of pro-
cesses. An analogue result also holds in our setting, as stated below.

Lemma 3. Suppose P is a fully convergent process. Then P is confluent iff P
is τ -inert and for all derivatives Q of P

1. if α ∈ Act and P
α−→ P1, P

α−→ P2, then P1 ≈ P2, and
2. if α, β are distinct actions and are not input actions on the same channel,

if Q
α−→ Q1 and Q

β−→ Q2 then, there are Q′
1 and Q′

2 such that Q2
α̂=⇒ Q′

2,

Q1
β̂

=⇒ Q′
1 and Q′

1 ≈ Q′
2.

Note that this is an alternative characterization of confluence for fully convergent
systems which is useful in that the original transitions to be matched are single
transitions. The proof of the result is a simple modification of the one found in [2].
We proceed with a result on the preservation of confluence by CCSv operators.

Lemma 4

1. 0 and a(ṽ) are confluent processes.
2. If P is confluent so are P\F and a(x̃).P .
3. If, for all i ∈ I, each Pi is confluent so is cond(e1 � P1, . . . , en � Pn).
4. If P1 and P2 are confluent and fic(P1)∩ fc(P2) = ∅, fic(P2)∩ fc(P1) = ∅, then

P1‖P2 is also confluent.
5. if P is confluent and fic(P ) ∩ foc(P ) = ∅, then !P is confluent.

Of course, here, the guarded summation clause is missing.
A main motivation in [8] for studying confluence was to strengthen determi-

nacy to an interesting property preserved by a wider range of process-calculus
operators. Here, we are also interested in such compositional results in the set-
ting of asynchronous processes. To achieve this, we observe that, despite the
rational behind the treatment of input actions in the definition of confluence, it
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is often the case that distributed systems are input-enabled. This notion, which
has been fundamental in the development of the I/O-Automata of Lynch and
Tuttle [7], captures that input actions of a system are not under the control of
the system and are always enabled. This suggests that the execution of an input
along a certain channel does not preclude the execution of another input along
the same channel. As such, a confluence-type property can be expected to hold
for input actions which we formulate as follows:

Definition 4. A CCSv process P is F i-confluent, where F ⊆ L, if, for all deriva-

tives Q of P and for all a ∈ F , if Q
a(ṽ)−→ Q1 and Q

a(ũ)−→ Q2 then, there are Q′
1

and Q′
2 such that Q2

a(ṽ)
=⇒ Q′

2, Q1
a(ũ)
=⇒ Q′

1 and Q′
1 ≈ Q′

2. �

We may see that F i-confluence implies that, if at some point during execution
of a process an input action becomes enabled, then it remains enabled. For the
case that F = L we simply write i-confluence for Li-confluence. F i-confluence
is preserved by the following operators.

Lemma 5

1. 0 and a(ṽ) are i-confluent processes.
2. If P is F i-confluent and a ∈ F , P\L, !P , a. P and !a(x̃). P are also F i-

confluent.
3. If Pi, i ∈ I, are F i-confluent so is cond(e1 � P1, . . . , en � Pn).
4. If P1 and P2 are F i-confluent so is P1‖P2.

We conclude with our main result:

Theorem 1. Suppose P = (P1 ‖ . . . ‖ Pn)\L, where (1) each Pj is confluent,
(2) each Pj is F i

j -confluent, where Fj = fic(Pj) ∩ (
⋃

k �=i foc(Pk)), and Fj ⊆ L,
and (3) fic(Pi) ∩ fic(Pj) = ∅, for all i �= j. Then P is confluent.

Proof: The proof, which is too long to include here in its full technical detail,
employs Lemma 3. We show that any derivative Q of P is τ -inert by a case
analysis on the possible internal actions of Q. Suppose that this arises by a

communication of the form Qi
a(ṽ)−→ Q′

i and Qj
a(ṽ)−→ Q′

j. Then, the {a}i-confluence
of Qi and the confluence of Qj imply that any action enabled by Qi and Qj is still
possible by Q′

i and Q′
j. Further, since a �∈ fic(Pk), for all k �= i, this transition

cannot be precluded from arising. Then, Clause (1) of the lemma is easy to
establish using the assumption that fic(Pi) ∩ fic(Pj) = ∅, for all i �= j, whereas
Clause (2), employs similar arguments and the fact that Fj ⊆ L for all j. �

4 Two Applications

We proceed to illustrate the utility of the CCSv framework and its theory of
confluence via the analysis of two distributed algorithms for leader-election in
a distributed ring. We assume that n processes with distinct identifiers, chosen
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from a totally-ordered set, are arranged around a ring. They are numbered 1
to n in a clockwise direction and they can communicate with their immediate
neighbours in order to elect as the leader the node with the maximum identifier.

Our verification methodology consists of the following steps. First, we describe
an algorithm and its specification as CCSv processes, our aim being to establish
that the two processes are bisimilar. We achieve this as follows: (1) We show
that the process representing the algorithm contains at least one specification-
respecting execution. (2) We show that this process is confluent. By confluence
properties we then obtain the required result. We point out that the first of
the algorithms we consider here was also proved correct in [6] using the I/O-
Automata framework.

4.1 The LCR Algorithm

The LCR algorithm [6] is a simple, well-known algorithm for distributed leader-
election with time complexity O(n2). Communication between the nodes of the
ring can only take place in a clockwise direction. Figure 1 presents the algorithm
architecture. Each node of the ring executes the following:

It sends its identifier to its right neighbour. Concurrently, it awaits to
receive messages from its left neighbour. For each incoming message, if
it contains an identifier greater than its own, it forwards the message in
a clockwise direction. If it is smaller it discards it and, if it is equal, it
declares itself to be the leader.

P1

P2

P3

P4

P5

Pn

c1

c2

c3

c4c5

cn

cn-1

Fig. 1. The LCR-algorithm architecture

This informal description can be formalized in CCSv: We assume a set of
channels c1, . . . , cn, where channel ci connects processes Pi and Pi+1, for 1 ≤
i < n, and cn connects processes Pn and P1. For simplicity, hereafter, we write
i + 1 for 1 if i = n, and i + 1 otherwise, and, similarly, i− 1 for n if i = 1, and
i− 1, otherwise. The behavior of a node-process is described as follows:

Pi〈ui〉 def= Si〈ui〉 ‖Ri〈ui〉
Si〈ui〉 def= ci(ui)
Ri〈ui〉

def= ! ci−1(x). cond(x < ui � 0,
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x > ui � ci(x),
true � leader (ui))

In Pi〈ui〉, ui is the unique identifier of the process. The process has ci−1 as
its input channel and ci as its output channel. It is composed of two parallel
processes: a sender, Si〈ui〉, and a receiver, Ri〈ui〉. The function of the sender
process is to emit the node’s identifier along channel ci, whereas, the receiver is
continuously listening along the input port of channel ci−1 for messages. On a
receipt of a message, it discards it in case it is smaller than ui, it forwards it
in a clockwise direction in case it is larger (as expressed by the clause ci(x)),
and it declares itself the leader along the common channel leader , if the received
identifier is equal to its own.

The network is represented by as the parallel composition of the n nodes

LCR = (P1〈u1〉 ‖ . . . ‖Pn〈un〉)\L

where L = {c1, . . . , cn} contains all channels whose use is restricted within the
system. The intended behavior of the algorithm is that the node with the maxi-
mum identifier is elected as the leader. In process-calculus terminology, we prove
the following correctness result:

Theorem 2. LCR ≈ leader (umax), where umax = max(u1, . . . , un).

The proof is carried out in two steps. First, we show that LCR is capable of
producing the required leader output and terminate. Then, we establish that it
is confluent. The required result then follows easily from properties of confluence.

Lemma 6. LCR =⇒leader(umax)−→ =⇒≈ 0

Proof: Without loss of generality, we assume that node P1 is the owner of
umax. Let us write LCR1 = (R1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖ (Pn〈un〉 ‖ cn(u1)))\L. From
the definitions, it can be seen that LCR =⇒ LCR1 in n−1 transitions where, in
the ith transition, processes Pi and Pi+1 communicate on channel ci forwarding
u1 from the former to the latter. Clearly, these communications are enabled due
to the fact that u1 > ui for all i �= 1. Consequently, we may derive:

LCR1
τ−→ (Q1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖Pn〈un〉)\L

leader(u1)−→ (R1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖Pn〈un〉)\L

where Q1〈u1〉 = leader(u1) ‖ R1〈u1〉. Let us now consider the remaining pro-
cesses. For P2, we have that u2 can be forwarded for at most n− 2 steps. That
is, there is a transition

(R1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖Pn〈un〉)\L =⇒ (R1〈u1〉 ‖R2〈u2〉 ‖ . . . ‖Pn〈un〉)\L

and, similarly, all ui, i > 2, can proceed up to at most node P1, and then become
blocked:
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(R1〈u1〉 ‖R2〈u2〉 ‖ . . . ‖Pn〈un〉)\L =⇒ LCR2 = (R1〈u1〉 ‖ . . . ‖Rn〈un〉)\L

By observing the definitions of the processes, we conclude that, since all processes
are only willing to receive, but none is ready to send, the resulting process is a
deadlocked process, that is, a process bisimilar to 0. This completes the proof.

�

We now have our key observation:

Lemma 7. LCR is confluent.

Proof: This follows from Theorem 1 of the previous section. We check its
hypotheses: Each Pi is clearly a composition of two confluent components. Thus,
by Lemma 4(4), it is confluent. Since, in addition, (1) by Lemma 5 all processes
are i-confluent, (2) exactly one process takes input from each channel ci and (3)
each ci ∈ L, by Theorem 1, we may conclude that LCR is a confluent process.

�

From the two previous results, and since confluence implies τ -inertness, we have
that LCR ≈ LCR1, LCR1 ≈ leader (umax).LCR2 and LCR2 ≈ 0. Consequently,
LCR ≈ leader (umax), as required.

4.2 The HS Algorithm

The second algorithm that we study is the HS algorithm of Hirschberg and Sin-
clair [3]. It is distinguished from the LCR algorithm in that here communication
between the ring nodes is bidirectional, and the time complexity is O(n lg n).

In the HS algorithm, execution at a node proceeds in phases. In phase k, a
node forwards its identifier in both directions in the ring. The intention is that the
identifier will travel a distance of 2k, assuming that it does not encounter a node
with a greater identifier and, then, it will follow the opposite direction returning
to its origin node. If both tokens return to their origin, the node enters phase
k + 1 and continues its execution. If the identifier completes a cycle and reaches
its origin in the outbound direction, then, the node declares itself as the leader.
For the correct execution of the algorithm, messages transmitted in the ring are
triples of the form 〈id, dir, dist〉, where id is a node identifier, dir ∈ {in, out}
is the direction of the message (in represents the inward direction and out the
outward direction) and dist is the distance the node has still to travel.

Let us describe the precise behavior of an HS-node in CCSv. The architecture
considered is shown in Fig. 2. We assume a set of channels {ci,i−1, ci,i+1 | 1 ≤
i ≤ n}, where channel ci,j connects process Pi to process Pj . (Note that we
employ the same interpretation of the summation and substraction operators as
described in Sect. 4.1.)

A node-process is then modeled as follows, where ui is the identifier of the
process and φi the phase of the process, initially set to 0.

Pi〈ui, φi〉 def= (Si〈ui, φi〉 ‖ Ri〈ui〉 ‖ Ei〈ui〉)\{cph, elect}
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Fig. 2. The HS-algorithm architecture

Thus Pi is the parallel composition of three components responsible for send-
ing and receiving messages and for electing a leader:

Ei〈ui〉
def= elect. leader(ui)

Si〈ui, φi〉 def= ci,i+1(ui, out, 2φi)
‖ ci,i−1(ui, out, 2φi)
‖ cph. cph. Si〈ui, φi + 1〉

Ri〈ui〉 def= ! ci−1,i(x, d, h).
cond((x < ui) � 0,

(x > ui ∧ d = out ∧ h �= 1) � ci,i+1(x, out, h− 1),
(x > ui ∧ d = out ∧ h = 1) � ci,i−1(x, in, 1),
(x �= ui ∧ d = in) � ci,i+1(x, in, 1),
(x = ui ∧ d = in) � cph,
true � elect )

‖ ! ci+1,i(x, d, h).
cond((x < ui) � 0,

(x > ui ∧ d = out ∧ h �= 1) � ci,i−1(x, out, h− 1),
(x > ui ∧ d = out ∧ h = 1) � ci,i+1(x, in, 1),
(x �= ui ∧ d = in) � ci,i−1(x, in, 1),
(x = ui ∧ d = in) � cph,
true � elect )

Thus, Ei awaits a notification (triggered by process Ri) that a leader-event
should be produced. Si emits the message (ui, out, 2φi) in both directions along
the ring. Concurrently, it waits the receipt of two confirmations via channel
cph (emitted by process Ri) that the token has successfully travelled in both
directions through the ring, in which case it increases the phase by 1. On the
other hand, process Ri is listening on ports ci,i−1 and ci,i+1. The first summand
of the process deals with the former channel, and the second with the latter. We
consider the first summand, the second one is symmetric. If a message (x, d, h)
is received on channel ci−1,i, six cases exist:
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1. If x < ui, the message is ignored.
2. If the message is travelling in the outbound direction and h > 1, it is for-

warded to node i + 1 with h decreased by 1.
3. If the message is travelling in the outbound direction and h = 1, it is sent

back to node i− 1 to begin its inward journey.
4. If x �= ui and the message is travelling its inward journey, it is forwarded

towards its origin.
5. If the node’s own identifier is received by the process while travelling its

inward journey, process Ri emits a notification along channel cph.
6. Finally, if none of the above holds, implying that x = ui and d = out (that

is the identifier has survived performing a cycle around the ring), the node
produces a notification (to be received by process Ei) that the node should
be declared ring leader.

The network is represented by the parallel composition of the n nodes

HS = (P1〈ui, 0〉 ‖ . . . ‖Pn〈un, 0〉)\L

where all channels in L = {ci,i−1, ci,i+1 | 1 ≤ i ≤ n} are restricted within the
system. The correctness criterion is expressed, again, as the following equivalence
between the algorithm and its specification:

Theorem 3. HS ≈ leader (umax), where umax = max(u1, . . . , un).

As before, the proof is carried out in two steps: We show that HS is capable of
producing the required leader output and terminate, and that it is confluent.

Lemma 8. HS =⇒leader(umax)−→ =⇒≈ 0

Proof: Without loss of generality, we assume that node P1 is the owner of
umax. Let us write HSi = (P1〈u1, i〉 ‖ P2〈u2, 0〉 ‖ . . . ‖ Pn〈un, 0〉)\L. From the
definitions, it can be seen that

HS =⇒ HS1 =⇒ HS2 =⇒ . . . =⇒ HSk

where k = �lg n�. Specifically, the transition HSi =⇒ HSi+1 consists of 2 · 2 · 2i

internal actions pertaining to the outward and inward journey of distance 2i, of
identifier u1 in the clockwise and anticlockwise direction within the ring. Clearly,
these communications are enabled due to the fact that u1 > ui for all i �= 1.
Then, we may derive:

HSk ( τ−→)n+1 HSk+1 = (P1,1〈u1, k〉 ‖P2〈u2, 0〉 ‖ . . . ‖Pn〈un, 0〉)\L
leader(u1)−→ HSk+2 = (P1,2〈u1, k〉 ‖P2〈u2, 0〉 ‖ . . . ‖Pn〈un, 0〉)\L

where P1,2〈u1, k〉 = (ci,i−1(ui, out, 2k) ‖ cph. cph. S〈u1, k〉 ‖R1〈u1〉)\{cph, elect}
and P1,1〈u1, k〉 = P1,2〈u1, k〉 ‖ leader(u1). These n + 1 internal steps correspond
to a cycle of u1 in a clockwise direction, and its return to its origin node while in
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the outbound direction. This triggers R1 to produce the message elect , received
by process Ei which in turn proceeds to declare the node as the leader.

Let us now consider the remaining enabled communications. First note that
the prefix ci,i−1 (u1, out, 2k) can trigger a cycle of u1 in the anticlockwise direc-
tion, while all other processes will forward their identifiers in the clockwise and
anticlockwise direction. It is easy to show that the journey of each of these iden-
tifiers will eventually become blocked, on reaching a node with a larger identifier,
possibly P1. This gives rise to the transition

HSk+2 =⇒ HSk+3 = (P1,3〈u1, k〉 ‖Q2〈u2〉 ‖ . . . ‖Qn〈un〉)\L

where P1,3〈u1, k〉 = (cph. cph. S〈u1, k〉 ‖R1〈u1〉‖elect)\{cph, elect}, and for 2 ≤
i ≤ n, Qi〈ui〉 = S′

i〈ui, φi〉 ‖Ri〈ui〉 ‖Ei〈ui〉)\{cph, elect} where S′
i〈ui, φi〉 is one

of the processes cph. cph. Si〈ui, φi〉 and cph. Si〈ui, φi〉. By observation, no com-
munication is enabled in the resulting process, a fact that renders it bisimilar to
0. This completes the proof. �

We now have our key observation:

Lemma 9. HS is confluent.

Proof: This follows from a multiple application of Theorem 1. To establish
the confluence of a Pi we observe that, by Lemma 5, each of Ei, Si and Ri is
i-confluent. Lemma 4 and simple observation leads to the conclusion that the
components are also confluent. Since the components share between them only
the names cph and elect , which are hidden at the top level of the process, and
no two components share an input name, by Theorem 1, each Pi is confluent.

Since, in addition, (1) all Pi are i-confluent, (2) exactly one process takes input
from each channel ci,j , and (3) each ci,j ∈ L, by Theorem 1, we may conclude
that HS is a confluent process. �

From the two previous results, and since confluence implies τ -inertness, we have
that HS ≈ HSk+1, HSk+1 ≈ leader (umax).HSk+2 and HSk+2 ≈ 0. Conse-
quently, HS ≈ leader (umax), as required.

5 Conclusions

We have considered an asynchronous process calculus and we have developed
its associated theory of confluence. In doing this, our main objective has been
the elaboration of concepts and techniques useful in proving the correctness of
distributed algorithms. Specifically, we have given results for establishing the
confluence of systems in a compositional manner and we have exploited the
property of τ -inertness possessed by confluent systems for showing that systems
are correct. Using these ideas, we have illustrated the correctness of two leader-
election algorithms. As we have already mentioned, these two algorithms were
also proved correct in [6] using the I/O-Automata framework. In our view, our
proofs offer additional interesting insights in that the use of confluence aids
towards the algorithms’ understanding and simplifies their analysis.
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Regarding the applicability of the proposed methodology, initially, it appears
that it can be useful in a variety of contexts were confluent computations are
running in parallel, e.g., parallel and distributed algorithms for function com-
putation. In future work, we plan to further investigate the applicability of the
methodology and, especially, the notion of F i-confluence. (We are currently con-
sidering application of the results to verify distributed leader-election algorithms
in networks of arbitrary topological structures). Further, we would like to ex-
tend the theory to a setting with mobility and location primitives. Naturally, the
property of confluence is not satisfied in general by distributed algorithms, thus,
a final research direction is the development of analogous results for algorithm
verification which employ weaker partial-confluence properties.
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Abstract. In this paper, we are interested in the computational power of a
mobile agent system and, more particularly, in the comparison with a message
passing system. First we give formal definitions. Then we explain how a mobile
agent algorithm can be simulated by a message passing algorithm. We also prove
that any message passing algorithm can be implemented by a mobile agent algo-
rithm. As a consequence of this result, known characterisations of solvable tasks
by message passing algorithms can be translated into characterisations of solv-
able tasks by mobile agent algorithms. We illustrate this result with the election
problem.

1 Introduction

The mobile agent paradigm has been developed to solve problems in dynamic and
heterogeneous environment [8]. The agent model of this paper is quite general.
It is based on the concepts of agents, communication links and places. An agent
is an entity which executes an algorithm: it can move from place to place (with
some data and its algorithm) through communication links and it can make
local computations on a place (a place provides tools for local computations:
data, memories and process). Thus a mobile agent system is defined:

– by a network or equivalently by an undirected labelled graph (the vertices
correspond to the places) with a port numbering function,

– by a set of agents, and
– by an initial placement of the agents on the graph.

As a particular case of our model the network and the mobile agents may be
anonymous: identities are available neither for the vertices of the network nor
for the agents. A mobile agent (based) algorithm is defined by a mobile agent
system where each agent is endowed with its proper algorithm. Classical prob-
lems for mobile agents include: election, naming, locating agents, rendez-vous,
stabilisation, termination detection of agents, exploring, topology recognition.
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There exist a lot of results for these problems assuming different properties of
the environment [2,4,5,6,10,11,12]. A message passing system is a set of processes
and a communication subsystem. It corresponds to the standard models given
in [1,16]. The communication model is a point-to-point communication network
which is represented as a simple connected undirected graph where the vertices
represent processes and two vertices are linked by an edge if the corresponding
processes have a direct communication link. Processes communicate by message
passing, and each process knows from which channel it receives a message or it
sends a message. We consider the asynchronous message passing model: processes
cannot access a global clock and a message sent from a process to a neighbor
arrives within some finite but unpredictable time. A message passing algorithm
is a collection of local algorithms, one for each process. The anonymous case
corresponds to the case where all local algorithms are the same.

In this paper we are interested in the computational power of a mobile agent
system and, more particularly, in the comparison with a message passing system.
It is easy to verify that a message passing system can simulate a mobile agent
system (Section 4); it has been already indicated in [3]. But, given a mobile
agent system, can mobile agents be used to implement arbitrary message passing
algorithms? We give a positive answer in Section 5; and we obtain a theorem
stating the equivalency of the two models (Theorem 10). Our result establishes
a useful bridge between message passing systems and mobile agent systems. In
Section 6, we give an example of consequence of this result with a translation of
known results in message passing computing for the election problem into the
mobile agents setting. In [10], it is proved that a leader can be elected among k
agents on a graph having n vertices if k and n are co-prime; this result becomes a
consequence of the characterisation given in [17] and of Theorem 10. Theorem 2
and Theorem 3 of [5] become corollaries of results presented in [13]. The same
method can be applied for other classical problems such as the naming, the
topology recognition, the spanning tree construction, etc.

2 Graphs and Labelled Graphs

We consider finite undirected connected graphs. A graph G = (V (G), E(G)) (or
G = (V, E) for short) is defined by a set V (G) of vertices and a set E(G) of
edges; in this paper graphs are without multiple edges or self-loop. Two vertices
u and v are said to be adjacent or neighbors if {u, v} is an edge of G (thus
u and v are necessarily distinct since no self-loop is admitted) and NG(v) will
stand for the set of neighbors of v; u and v are the endvertices of e. An edge
e is incident to a vertex v if v ∈ e and IG(v) will stand for the set of all the
edges incident to v. A homomorphism between graphs G and H is a mapping
γ : V (G)→ V (H) such that if {u, v} ∈ E(G) then {γ(u), γ(v)} ∈ E(H). We say
that γ is an isomorphism if γ is bijective and γ−1 is a homomorphism.

Throughout the rest of this paper we will consider graphs whose vertices are
labelled with labels from a recursive set L. A graph labelled over L will be
denoted by (G, λ), where G is a graph and λ : V (G)→ L is the vertex labelling



Mobile Agent Algorithms Versus Message Passing Algorithms 189

function. The graph G is called the underlying graph and the mapping λ is a
labelling of G. Labelled graphs will be designated by bold letters like G, H, . . .
If G is a labelled graph, then G denotes the underlying graph.

A mapping γ : V (G)→ V (G′) is a homomorphism from (G, λ) to (G′, λ′) if γ
is a graph homomorphism from G to G′ which preserves the labelling, i.e., such
that λ′(γ(v)) = λ(v) holds for every v ∈ V (G).

3 The Formal Models

3.1 The Message Passing Model

Definitions given in this subsection follow [16] (p. 45-47) or [1] (p. 10-12).

Message Passing System. A message passing system (P, C) consists of a
collection P of processes and a communication subsystem C. It is described by
a simple connected undirected graph G = (V, E), where the vertices represent
the processes and the edges represent the bidirectional channels. The system
is asynchronous: no global time is available; messages can arrive at arbitrary
times and processes can take steps at arbitrary speeds. Processes communicate
by asynchronous message passing and each process knows from which channel it
receives a message or it sends a message: an edge between two processes p1 and
p2 (or vertices v1 and v2) represents a channel connecting a port i of p1 (or v1) to
a port j of p2 (or v2). Let δ be the port numbering function, we assume that for
each vertex u (or process p) and each adjacent vertex v (or process q), δu(v) (or
δp(q)) is a unique integer belonging to [1, deg(u)]. Finally, the communication
subsystem is described by C = (V, E, δ). Each process has an initial state defined
by a labelling function λ. Thus the message passing system is defined by (P, C, λ)
or equivalently by (V, E, δ, λ).
Remark 1. The labelling λ of processes may encode anonymous network (all the
vertices have the same label) or any initial process knowledge. Examples of such
knowledge include: (a bound on) the number of processes, (a bound on) the
diameter of the communication subsystem, the topology of the communication
subsystem, identities or partial identities of processes, distinguished processes,
sense of direction.

Message Passing Algorithm. To each process is associated a transition sys-
tem which can interact with the communication subsystem. The events which
are associated with a process are internal events, send events and receive events.
In a send (resp. receive) event a message is produced (resp. consumed). This
definition contains the particular case where every processor executes the same
algorithm.

Remark 2. In general, names are not available to the processes themselves. Nev-
ertheless, for ease of exposition, a message m in transit is denoted by (p, m, p′)
where p is the sending process and p′ is the receiving process.
Let M be the set of possible messages. Let p be a process. The local algorithm
of the process p, denoted by Dp, is defined by:
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– the (recursive) set Q of possible states of p,
– the subset I of Q of initial states,
– the initial state of p equals to λ(p),
– a relation (p of events (internal events, send events or receive events).

Let p be a process. Let M be the multiset of messages in transit (initially
M is empty). The state associated to p is denoted by state(p). The transition
associated to the process p is denoted by:

(c, in, m) (p (d, out, m′),

(where c and d are states, in and out are integers, and m and m′ are messages)
means that:

– if in = out = 0 then m = m′ = ⊥ (m and m′ are undefined): it is an internal
event, the new state of the process p is d (it was c before);

– if in �= 0 then out = 0 and m′ = ⊥ (m′ is undefined): it is a receive event,
the state of the process p was c, p has received the message m through the
port in and its new state is d; an occurence of m (of the form (p′, m, p) where
δp(p′) = in) is removed from M ;

– if out �= 0 then in = 0 and m = ⊥ (m is undefined): it is a send event,
initially the state of the process p is equal to c; after the transition it is
equal to d and the message m′ is sent via the port out; an occurence of m′

(of the form (p, m′, p′) where δp(p′) = out) is added to M.

A message passing algorithm D for the message passing system (P, C, λ) is a
collection of local algorithms Dp, one for each process p ∈ P. It is denoted by
D = (Dp)p∈P . An event of the message passing algorithm is defined by an event
on a process.

Execution of a Message Passing Algorithm. An execution E of the message
passing algorithm is defined by a sequence (state0, M0), (state1, M1), . . . ,
(statei, Mi), . . . such that:

– for each i, Mi is the multiset of messages in transit,
– M0 = ∅,
– for each i and for each process p, statei(p) denotes the state of the process

p,
– for each process p, state0(p) = λ(p) ∈ I,
– for each i, there exists a unique process p such that:

• if p′ �= p then statei+1(p′) = statei(p′),
• statei+1(p) and Mi+1 are obtained from statei(p) and Mi by an event

on the process p.

By definition, (statei, Mi) is a configuration. The execution E of the message
passing algorithm is defined by:

E = (statei, Mi)i≥0.
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A terminal configuration is a configuration for which no more event is appli-
cable. We can note that in a terminal configuration the multiset M of messages
in transit is empty. In this case the length of the execution is the length of the
sequence.

Termination Detection. Definitions given in this section are in [16] (Chapter
8). A state q of a process p is active if an internal or send event of p is applicable
in q, and passive otherwise. In a passive state q only receipts are applicable, or
no event is applicable at all, in which case q is a terminal state of p. Process p
is said to be active if it is in an active state, and process p is said to be passive
otherwise.

As it is explained in [16] (p. 270), some assumptions are made in order to
simplify the description (any process can be easily modified to satisfy these
assumptions) : an active process becomes passive only in an internal event, a
process always becomes active when a message is received, the internal events
in which p becomes passive are the only internal events of p (internal events in
which p moves from one active state to another active state are ignored).

A message passing algorithm has terminated when all processes are passive
and no message is in transit. In this case, termination is said to be implicit if
the processes are not aware that the algorithm has terminated.

Termination is said to be explicit if at least one process detects the termi-
nation of the message passing algorithm in the sense that all processes have
computed their final values. It then can call an algorithm which floods a termi-
nation message to all processes. Only after explicit termination can the result
of a computation be regarded as final and variables used in the computation
discarded.

3.2 The Mobile Agent Model

Mobile Agent System. A mobile agent system consists of :

– a collection P of execution places (or places for short),
– a navigation subsystem S,
– a collection A of mobile agents,
– an injection π0 : A −→ P describing the initial placement of the agents,
– an initial labelling λ of the places and the agents.

Remark 3. The labelling λ of the places and of the agents may encode anony-
mous places (all the places have the same label), anonymous agents (all the
agents have the same label) or any initial agent knowledge. Examples of such
knowledge include: (a bound on) the number of places, (a bound on) the number
of agents, (a bound on) the diameter of the navigation subsystem, the topology
of the navigation subsystem, the topology of the placement of the agents, identi-
ties or partial identities of places or agents, distinguished places or agents, sense
of direction.

The navigation subsystem is described by a simple undirected connected graph
G = (V, E), where the vertices V represent execution places and the edges



192 J. Chalopin et al.

represent bidirectionnal navigation channels operating between them. In the
sequel, we identify the places and the corresponding vertices, and we identify
the edges and the corresponding channels.

Each agent which migrates from a place to another place knows through which
channel it migrates, that is, for each place port numbers are assigned to its
ports : let u be a vertex, let δu be the port numbering function which assigns to
each adjacent vertex v of u a unique integer δu(v) belonging to [1, deg(u)]. Thus
the navigation subsystem is defined by S = (G, δ).

The system is asynchronous: no global clock is accessible; a migration is asyn-
chronous: an agent which migrates arrives within some finite but unpredictable
time on a place.

Mobile Agent Algorithm. Given a mobile agent system, we define a mobile
agent algorithm. To each mobile agent is associated a transition system that can
interact with the execution places and the navigation subsystem.

Let QP be a (recursive) set of states associated to the execution places, and
let QA be a (recursive) set of states associated to the mobile agents. The initial
state of each mobile agent a is λ(a) and the initial state of each execution place
p is λ(p).

Let p be a place. We denote by state(p) the state associated to p. Let a be
an agent. We denote by state(a) the state associated to a.

The transition associated to the mobile agent a in the state s on the place p
in the state q, transforms s into s′, q into q′ and either a does not move or it
migrates on an adjacent place through the port out. We denote the transition
by :

(s, q, in) (a
p (s′, q′, out),

it means that the mobile agent a has migrated on the place p through the port
in or after the transition it leaves the place p through the port out, with the
convention that if the agent was already on the place and it does not move
after the transition then in = 0 and out = 0; furthermore in and out cannot be
simultaneously different from 0.

Remark 4. In general, names are not available to the places themselves. Never-
theless, for ease of exposition, an agent a in transit is denoted by (p, a, p′) where
p is the place of departure and p′ is the place of arrival.

A configuration of the mobile agent system consists of the state of each place, the
state of each agent, the collection M of agents in transit (initially M is empty)
and a mapping π describing the placement of the agents which are not in a
channel (several agents can be on the same place).

An event in the mobile agent system is defined by a transition associated to
an agent a on a place p, it has the form :

(s, q, in) (a
p (s′, q′, out),

the state of each agent different from a is not affected, the state of each place
different from p is not affected, the new state of a is s′ (it was s before the
event), the new state of p is q′ (it was q before the event), and:
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– if in = 0 and out = 0 then π and M are not affected by the event,
– if in = 0 and out �= 0 then the set of agents in transit after the event is

M ∪ {(p,a,p′)} (where p′ is the adjacent place of p corresponding to the
port out,) and π is no more defined for a and unchanged for the other agents,

– if in �= 0 and out = 0 then the set of agents in transit after the event is
M \ {(p′,a,p)} (where p′ is the adjacent place of p corresponding to the
port in), π(a) = p and π is unchanged for the other agents.

Execution. An execution of the mobile agent algorithm is defined by a sequence
(state0, M0, π0), (state1, M1, π1), ..., (statei, Mi, πi), ... such that :
– M0 = ∅,
– for each agent a, state0(a) = λ(a) is an initial state,
– for each place p, state0(p) = λ(p) is an initial state,
– π0 is the initial placement of agents,
– for each i there exists a unique place p and a unique agent a such that:

• if p′ �= p then statei+1(p′) = statei(p′),
• if a′ �= a then statei+1(a′) = statei(a′),
• (statei+1(a), statei+1(p), Mi+1, πi+1) is obtained from

(statei(a), statei(p), Mi, πi) by an event of the form :

(s, q, in) (a
p (s′, q′, out).

A configuration is defined by (statei, Mi, πi). A terminal configuration is a
configuration for which no more event can appear; we can note that in this
case the collection of agents in transit is empty. By definition, the length of the
sequence is the length of the execution.

A place which is the initial place of an agent is called an homebase. The
initial placement of the agents can be encoded in the state of the place (it can
be the first action of each mobile agent) thus we assume that the state of a place
enables to know whether it is a homebase or not. Nevertheless, in general, an
agent cannot know whether a homebase is its own homebase.

Finally, the mobile agent system is defined by:

(A, P, S, π0, λ),

the mobile agent algorithm is defined by:

A = ((a
p)a∈A,p∈P,

and an execution E is defined by :

E = (statei, Mi, πi)i≥0.

Termination Detection. An agent a in state s on the place p in state q is
said passive if no transition is associated to this configuration. In a terminal
configuration all the agents are passive. Termination is said implicit if no agent
is aware that the mobile agent algorithm has terminated. Termination is said
explicit if at least one agent detects the termination of the mobile agent algorithm
in the sense that all places have their final values. If at least one agent detects the
termination then a termination annoucement algorithm using the agents which
have detected termination can be activated.
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3.3 Equivalent Executions

We consider mobile agent algorithms and message passing algorithms such that
the graph corresponding to the navigation subsystem and the graph correspond-
ing to the communication subsystem are equal.

Various kinds of equivalences between mobile agent algorithms and message
passing algorithms can be defined. In this work, we consider algorithms which
always terminate.

A mobile agent algorithm and a message passing algorithm are equivalent for
the terminal configurations if the set of graphs corresponding to the navigation
subsystem labelled by the final states of places and the set of graphs correspond-
ing to the communication subsystem labelled by the final states of processes are
equal and if the termination of the two algorithms is implicit or the termination
of the two algorithms is explicit.

4 Simulating a Mobile Agent Algorithm Through a
Message Passing Algorithm

The purpose of this section is to verify that, given a mobile agent algorithm, it is
possible to implement the same algorithm through a message passing algorithm.
To reach this goal, we intend to prove that all the agents basic computation
steps can be effectively simulated in the asynchronous message passing system.
The main idea of this proof appears in [3].

Let (A, P, S, π0, λ) be a mobile agent system and let A = ((a
p)a∈A,p∈P be

a mobile agent algorithm implemented on this system. Let S = (V, E, δ) be
the corresponding navigation subsystem. We assume that the system contains
k agents. We define an additional labelling χπ0 of the vertices of G such that
χπ0(v) = 1 if there exists an agent a such that π0(a) = v, and χπ0(v) = 0
otherwise. Starting from the mobile agent system we build up a message pass-
ing system (P, C, λ′) = (V, E, δ, λ′). On each vertex v which corresponds to an
execution place p we install a process p. Let � be a new label. The labelling
function λ′ encodes on each process p the label of the corresponding place p,
whether the place is a homebase and, in the case of a homebase, the label of
the corresponding mobile agent a, i.e., if v corresponds to the homebase of a
λ′(v) = (λ(v), 1, λ(a)) and if not λ′(v) = (λ(v), 0, �)).

Now we build a message passing algorithm D such that each execution E of
A can be simulated by an execution E ′ of D. A state of a process is defined by: -
the state of the corresponding place, - the presence of a mobile agent is encoded
by a token and the state of the corresponding mobile agent is encoded by the
value of the token. Finally, the set of possible states of the processes is the set
of possible states defined by the places, the presence of the token and if there is
a token by the state of the corresponding agent.

The presence of an agent a at a given vertex u is represented by the token
t(a) located at u. Each token has a homebase that corresponds to the initial
location of the corresponding mobile agent. To each token is associated a state:
the current state of the token t(a) is equal to the state of the agent a.



Mobile Agent Algorithms Versus Message Passing Algorithms 195

The translation of the event:

(s, q, in) (a
p (s′, q′, out)

of the mobile agent algorithm into an event of the message passing algorithm is
done according to the following rules.

The state of each token different from the token which is associated to a is
not affected, the state of each process different from p is not affected, the new
state of the token associated to a, i.e., t(a), is s′ (it was s before the event), the
new state of p is q′ (it was q before the event), and

– if in = 0 and out = 0 then the token t(a) does not move,
– if in = 0 and out �= 0 then the token t(a) is sent via the port out,
– if in �= 0 and out = 0 then the token t(a) is received by the process p via

the port in.

Let Dp be the algorithm induced by this construction on the process p. Let D =
(Dp)p∈P . By an induction on the length of the executions, we prove that if the
mobile agent algorithm has the termination property then the message passing
algorithm defined above has also the termination property. The message passing
algorithm D terminates explicitly if and only if A terminates explicitly. A graph
corresponding to the navigation subsystem labelled by the final states of places
is obtained with A if and only if it can be obtained as a graph corresponding to
the communication subsystem labelled by the final states of processes with D.
Finally:

Proposition 5. Let (A, P, S, π0, λ) be a mobile agent system.
Let A = ((a

p)a∈A,p∈P be a mobile agent algorithm implemented on this system.
Let (P, C, λ′) be the message passing system built above. Let D = (Dp)p∈P be the
message passing algorithm defined above. Then the executions of D are equivalent
to the executions of A.

5 Simulating a Message Passing Algorithm Through a
Mobile Agent Algorithm

As it is mentionned by Tel ([16] p. 46), the transition systems serve as a theo-
retical model and algorithms are not necessarily described by an enumeration of
their states and events but by means of variables and a convenient pseudocode
(see [16], Appendix A).

In this section we turn our attention to the presentation of a procedure that,
given a message passing algorithm D over the message passing system (V, E, δ, λ)
and a number k ≥ 1 , generates an equivalent mobile agent algorithm A with k
agents over a mobile agent system.

Our procedure works as follows. The navigation subsystem corresponds to
(V, E, δ). The state of the place p which corresponds to the process p and (which
is identified to the vertex v) is defined by the state of the process p (with the
same initialisation) and by the values of the variables defined below. The states
and the algorithms associated to the mobile agents are defined in the sequel.
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Procedure 1

Step 1: On wake-up, an agent a constructs a tree Ta using a partial traversal
of the graph. This leads to a spanning forest of k trees where each tree is
constructed by exactly one agent.

Step 2: The agent a executes the algorithm D on the vertices of Ta. This exe-
cution is performed in rounds, where, in each round, Ta is traversed and, if
possible, d (d ≥ 1) computation steps of D are executed at each vertex of Ta.
Thus, a is responsible for the computation steps performed on the vertices
that belong to its constructed tree.

Due to the fact that the vertices and the agents are possibly anonymous and
because of a lack of global orientation in the network, it may be difficult for an
agent to find its way through the graph. To overcome this problem, the agents
have to make use of the local edge labelling informations in order to keep track
of their way. Therefore, we must keep in mind that each edge e = {u, v} has two
labels δu(v) and δv(u) that respectively correspond to the labels of e at u and
v. Whenever an agent traverses the graph, it stores in its memory the ordered
sequence of the labels of the traversed edges. In the rest of this section ePath
(exploration path) will refer to this sequence. When the edge e is traversed by
an agent a from u to v, then the label δv(u) is appended to the path associated
to the agent a. This enables a to return back to the previously visited vertex
(i.e., u) whenever it wants to. When it does so, the label δv(u) is deleted from
ePath. Thus, at any time during the computation, ePath contains the sequence
of the labels of the edges that a has to traverse (in reverse order) to return to
its homebase from the current vertex.

The Tree Computation by an Agent. Each agent a computes its tree Ta

by executing the following. Starting from its homebase, a performs a partial
traversal of the graph. During this traversal, it marks all the unmarked vertices
that are visited for the first time. At each vertex w marked by a, a arbitrarily
chooses an unexplored link incident to w and traverses it. This technique has
been employed in [10].

Whenever a traverses an edge e to reach an unmarked vertex v, it marks v as
visited and marks e as a T edge. On the other hand, when it reaches a vertex
u that is already visited (the vertex u is already marked), the edge leading to u
is marked as an NT edge and the agent immediately backtracks to the previous
vertex (marked by it) and tries the other unexplored edges incident to that
vertex. When there is no more unexplored edges, the agent backtracks to the
previous visited vertex (by taking the last link in the ePath sequence) and then
tries to explore any unexplored link at that vertex. Finally, when the agent has
returned to its homebase and there is no more unexplored link at the current
vertex, it stops the tree computation.

Remark 6. A mark on an edge can be done with marks on the corresponding
ports on the endvertices of the edge.

The tree computation procedure executed by each agent is given in Algorithm1.
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Mark the homebase;
Set ePath to empty;

3: while there is an unexplored edge e = (u, v) at the current vertex u, do
traverse e to reach vertex v;
if v is already marked or v contains an agent a1, then

6: return back to u and mark the link e with the label NT ;
else

mark the link e as T and mark v as explored;
9: end if

end while
if there are no more unexplored links at the current vertex, then

12: if ePath is not empty, then
remove the last link from ePath, traverse that link and go to line 3;

else
15: Stop the tree computation;

end if
end if

Algorithm 1. The tree construction by a mobile agent

Fact 1. Every vertex in the graph is marked by exactly one agent. If two vertices
u1 and u2 are marked by the same agent then there exists exactly one simple path
of T edges joining them. If two vertices u1 and u2 are marked by two different
agents, then each path joining them contains at least one NT edge. There is no
cycle consisting of only T edges.

Encoding Message Passing Actions. Among the computation steps inherent
to the message passing system, the operations send a message via the port j and
receive a message from the port j are surely the most important. To encode
these operations, we require that at each place there is a variable called in-buf,
where received messages are stored. In this framework, the first part of a message
always contains the port from which it was received.

Send message m via port j. Let e = {u, v} and let a be an agent located at
u with δu(v) = j. The execution of the operation Send message m via port j
by the agent a consists in traversing the edge e, writing the composed message
〈δv(u), m〉 in the in-buf of v and backtracking the edge e.

Receive message m from port j. Let e = {u, v} and let a be an agent located at
u with δu(v) = j. The execution of the operation Receive message m from port
j by the agent a consists in looking for the first message arrived from port j in
the in-buf of u (if the initial algorithm needs the FIFO property of channels,
i.e., it requires that messages are received in the same order as they have been
sent; if it is not the case then we take any message in in-buf ). Once this message
is found, it is deleted from the in-buf and stored in a temporary variable for
purpose of computation.

Internal events. It suffices to apply the transformation corresponding to the
transformation of the state of the process to the state of the place.
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Remark 7. The execution of the send and receive operations allows an agent a
to write informations in the in-buf of vertices that do not necessary belong to Ta.
Moreover, the simulation executed by Procedure 1 can be viewed as a distributed
computation in a network whose processes are decomposed in clusters, and where
processes, of the same cluster, execute their computation steps in turn.

Remark 8. Suppose that at each round of Step 2 of Procedure 1, we ask that
each time a computation step can be performed on a vertex belonging to the tree
of an agent, it simulates it within a finite number of rounds. Then any global
state of the message passing system obtained by the message passing algorithm
can be obtained by the mobile agents simulation.

Transforming a Terminating Message Passing Algorithm into a Mo-
bile Agent Algorithm That Terminates. We are now interested in showing
that if D is a terminating algorithm, then the mobile agent algorithm A has
also the termination property. For this reason, we have adapted the behavior
of each agent to this new goal. In fact, we add on each place two variables fa-
therLink and fState. The fatherLink of a vertex u, contains the port number
through which an agent a, located at u, can reach the father of u in the tree
that contains u. Let u be the homebase of the agent a, the fState of u indicates
to a that it has to perform one more computation round on the tree Ta. The
fState is either the token Finished or the token NotFinished. Initially the fa-
therLink of each homebase contains 0 and the fState of each homebase is set to
NotFinished. The fatherLink of the other vertices is 0 and the fState of the other
vertices is Finished. All these changes lead to the following adapted version of
Procedure1.

Procedure 2

Step 1: On wake-up, each agent a constructs a tree Ta using a partial traversal
of the graph. This leads to a spanning forest of k trees where each tree is con-
structed by exactly one agent. During this construction, the fatherLinks of all
the vertices, other than the homebase, that were marked by a are actualized.

Step 2: The agent a executes the events of D on the vertices of Ta. This execu-
tion is performed in rounds. The agent a is allowed to execute round r if and
only if at the beginning of the round r the fState of its homebase has the value
NotFinished and it has simulated all the possible steps in the former round
otherwise it falls asleep. In each round, a sets the fState of its homebase to
Finished, afterward Ta is traversed and, if possible, d (d ≥ 1) computation
steps of D are executed at each vertex of Ta. If an agent mimics the fact of
sending a message to a vertex u, the agent takes advantage of the fatherLink
to find the homebase w of the agent that has constructed the tree containing
u. Once it arrives at w, it sets the fState of w to NotFinished (if there is a
sleeping agent, it wakes it up) and goes back to u.

One has to take notice of the fact that if the algorithm D terminates, then there
exists a time t1 such that no more computation step is performed after the time



Mobile Agent Algorithms Versus Message Passing Algorithms 199

t1 in D. Let St1
D be the state of the network at time t1. Due to Lemma 9, there

also exists a time t2, during the execution of A, such that St1
D = St2

A . It is then
quite simple to see that there exists a time t3 ≥ t2 such that at time t3 the
fState of any homebase is empty. Thus Procedure 2 and A stop. Furthermore,
the algorithm D terminates explicitly if and only the mobile agent algorithm A
constructed as defined by the Procedure 2 terminates explicitly. Finally:

Lemma 9. The mobile agent algorithm A, constructed as defined by Procedure
2, is equivalent to the algorithm D.

From these two kinds of equivalences, we can give our main theorem, stating the
equivalency of the two models considered in this paper.

Theorem 10. There exists a mobile agent algorithm A that solves a problem
P on a mobile agent system (G, δ, λ) with an initial placement π0 if and only if
there exists a message passing algorithm D that solves the problem P on (G, δ, λ′)
(λ′ is defined in Section 4).

6 Applications

In this section, we will use our main theorem to give a characterisation of the mo-
bile agent systems where we can solve two equivalent problems that are election
and rendez-vous. The same method can be applied for other classical problems
such as the topology recognition, the naming, the spanning tree construction,
etc.

Election and Rendez-vous. The election problem is one of the paradigms
of the theory of distributed computing. It was first posed by LeLann [14]. A
message algorithm solves the election problem if it always terminates and in the
final configuration exactly one process is marked as elected and all the other
processes are non-elected. Moreover, it is supposed that once a process becomes
elected or non-elected then it remains in such a state until the end of the al-
gorithm. Yamashita and Kameda [17] characterise the graphs for which there
exists an election algorithm in the message passing model (see also [7,9]). In
the mobile agents setting, the aim of a mobile agent election algorithm is to
elect one agent. The elected agent enters a final state leader, whereas all other
agents enter a final state follower. Another important problem in this setting is
the rendez-vous problem. The aim of a rendez-vous algorithm is to arrive in a
configuration where all the mobile agents gather in a same vertex of the graph.
Another interpretation of a rendez-vous algorithm A is that the aim of A is to
elect a vertex of the network. These two problems are equivalent, since once an
agent has been elected, all the agents can gather in the homebase of the elected
agent. Reversely, once all the agents gather in some node, the first agent on
this node becomes the leader, whereas all the others become followers. Agent
election and rendez-vous have been studied in [5,3,10]. Consequently, from our
main theorem, there exists an algorithm that solves the rendez-vous and the
mobile agent election in a mobile agent system (A, P, S, π0, λ) with S = (V, E, δ)
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if and only if there exists an election algorithm in the message passing system
(V, E, δ, λ′) (λ′ is defined in Section 4).

From Message Passing Computations to Mobile Agent Computations.
The characterization of Yamashita and Kameda given in [17] is based on the
notion of view. Given a labelled graph G = (V, E, δ, λ) and an integer d, the
d-view Td

G(v0) of a node v0 ∈ V (G) is a tree of height d that can be defined
recursively as follows.

– T0
G(v0) is a single-vertex graph whose node is denoted x0 and λ′(x0) = λ(v0),

– To define Td+1
G (v0), we take a copy of Td

G(vi) for each neighbor vi of v0 in G.
The root of the new tree is a vertex x0 labelled by λ(v0) and there is an edge
between x0 and the root xi of each tree Td

G(vi), such that δx0(xi) = δv0(vi)
and δxi(x0) = δvi(v0).

The view TG(v0) of a node v0 is an infinite rooted labelled tree that can
be defined recursively in the same way. The root of the tree is a vertex x0

that corresponds to v0 and is labelled by λ(v0). For each neighbor vi of v0 in
G, there is an edge between x0 and the root xi of the tree TG(vi), such that
δx0(xi) = δv0(vi) and δxi(x0) = δvi(v0). The view of a vertex v in a graph G can
also be obtained by considering all labelled walks in G starting from v. Clearly,
the d-view of a vertex v is its view truncated at distance d. In [17], the following
theorem is given:

Theorem 11 ([17]). There exists an election algorithm over a graph (G, δ, λ)
if and only if ∀v, v′ ∈ V (G) (v �= v′), the labelled trees TG(v) and TG(v′) are
not isomorphic.

Norris shows in [15] that TG(v) and TG(v′) are isomorphic if and only if Tn
G(v)

and Tn
G(v′) are isomorphic, where n = |V (G)|. Each vertex can compute its

2n-view, and then it will know all the n-views of the other vertices. Once each
vertex knows the views of all the other nodes, the vertex with the weaker view
is elected. From our main result, we can therefore give the following corollary
for the mobile agent election problem. Let λ′ the labelling function defined at
the beginning of Section 4.

Corollary 12. There exists an agent election algorithm or a rendez-vous algo-
rithm in a mobile agent system (A, P, S, π0, λ) with S = (V, E, δ) if and only
if for all vertices v, v′ ∈ V (G), the labelled trees Tn

G′(v) and Tn
G′(v′) are not

isomorphic, where G′ = (G, δ, λ′) and n = |V (G)|.

In the sameway, using the results of Flocchini et al. [13], we can obtain similar char-
acterizations for these problems in the mobile agent system where there is a sense
of direction, and the results of [5] become corollaries of these characterizations.
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Abstract. Given a graph G, a k-dominating set of G is a subset S of
its vertices with the property that every vertex of G is either in S or
has at least k neighbors in S. We present a new incremental distributed
algorithm to construct a k-dominating set. The algorithm constructs a
monotone family of dominating sets D1 ⊆ D2 . . . ⊆ Di . . . ⊆ Dk such
that each Di is an i-dominating set. For unit disk graphs, the size of
each of the resulting i-dominating sets is at most six times the optimal.

Keywords: unit disk graph, dominating set, maximal independent set,
approximation algorithms, distributed algorithms, fault-tolerance.

1 Introduction

An ad hoc network is a special type of wireless network where no node has a priori
knowledge about the other nodes. Constructing and maintaining a structure
allowing nodes to communicate with each other is one of the main challenges
of ad hoc networks. Sensor networks are a specific type of ad hoc networks
dedicated to a specific task: sensing (light, temperature, humidity, etc.). The
dominating set structure helps ad hoc and sensor networks to perform routing.
In sensor networks, dominating sets also help the sensing task itself. Since nodes
located close to each other sense similar values, only a dominating set of the
nodes is needed to monitor an area. This helps prolonging the network’s lifetime
by turning off the nodes that are not in the dominating set, thereby extending
the battery life of these nodes.

Sensor networks typically contain more nodes and each node has less memory
than in general ad hoc networks. Therefore, it is important to design algorithms
with low memory complexity. An algorithm is distributed if the information
needed by a node to perform its computation only concerns its direct neighbors.
The amount of memory needed by each node to execute a distributed algorithm
only depends on the number of its neighbors and not on the network size.

Sensor nodes are more error-prone than nodes in general ad hoc networks.
They have limited energy resources and need to be periodically redeployed by
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adding new nodes to the network. The fact that they are error-prone calls for
fault-tolerance in the design of algorithms for such networks.

We address the problem of distributively constructing k-dominating sets on
unit disk graphs. Unit disk graphs are the standard structure used to model
ad hoc and sensor networks. A k-dominating set is a dominating set where each
node is either in the dominating set or has at least k neighbors in the dominating
set.

We generalize dominating set algorithms based on the idea of maximal inde-
pendent sets [1, 9, 13] to obtain k-dominating sets. A subset S of the nodes of a
graph G is said to be independent if it does not contain two adjacent nodes. It is
maximal if it does not have a proper independent superset. It is straightforward
to show that a maximal independent set is also a dominating set. Our algorithm
is distributed and, on unit-disk graphs, has a deterministic performance ratio of
six. The performance ratio of a k-dominating set algorithm is defined as the ratio
of the size of the k-dominating set it produces over the size of an optimal (mini-
mum) k-dominating set. It is not position-aware, which means that nodes do not
need to know their coordinate in the plane. It also constructs the k-dominating
set incrementally. More specifically, it constructs a monotone family of domi-
nating sets D1 ⊆ D2 . . . ⊆ Di . . . ⊆ Dk such that each Di is an i-dominating
set. Incremental construction of k-dominating sets is helpful when redeploying
sensor networks. When senor nodes in the k-dominating set run out of batteries
or experiment failure for diverse reasons, the k-dominating set has to be recon-
structed. With an incremental algorithm, reconstruction of a k-dominating set
can be done by keeping the current dominators.

The k-dominating set problem has been addressed by Dai and Wu [3] and
Kuhn et al. [8]. However, our algorithm is the only one which has a constant de-
terministic performance ratio. It is also the only one to provide an explicit incre-
mental construction. The rest of this paper is organized as follows: in Section 2,
we present our algorithm. In Section 3, we analyze its performance ratio. In
Section 4, we present some simulation results. We draw conclusions in Section 5.

2 Algorithm

Alzoubi et al. [1] and Wan et al. [13] addressed construction of a connected
dominating set. Their algorithm consists of two phases. The first phase constructs
a maximal independent set. A maximal independent set is also a dominating set.
In this section, we generalize that first phase of the algorithm presented in [1, 13]
to obtain a k-dominating set. Our generalization augments a (k−1)-dominating
set in order to obtain a k-dominating set. More specifically, we want to construct
a monotone k-dominating family.

Definition 1. A k-dominating family is a sequence D1, D2, . . . , Dk of subsets
of vertices of the unit disk graph such that for all i = 1, 2, . . . , k, Di is an i-
dominating set. A monotone k-dominating family is a k-dominating family with
the additional property that the sequence of dominating sets is monotonically
increasing under inclusion, i.e. D1 ⊆ D2 ⊆ · · · ⊆ Dk.
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The key idea of our algorithm is that we first construct a 1-dominating set by
constructing a maximal independent set. Then, we construct a maximal inde-
pendent set of the nodes that are not 2-dominated, which gives a 2-dominating
set. We repeat the procedure until we have a k-dominating set. The construction
of each dominating set is similar to the approach in [1, 13].

We now present an overview of our algorithm. Every node has a unique identi-
fier. In initialization phase, each node sends its identifier to its immediate neigh-
bors. After initialization, two types of messages are used: join(id, i) and give-
up(id, i), where id is the identifier of the sending node and i = 1 . . . k identifies
a round. These messages are only sent to immediate neighbors. The join(id, i)
message means that the sender joins the j-dominating sets for j = i . . . k. Such
a node is said to be marked in round i. The give-up(id, i) message means that

Algorithm 1. Dominating Set(id, N, k)
Input: id, the node identifier

N , the list of the neighbors identifiers
k, the required number of dominators for a non-dominating node

Output: dominator, a boolean indicating whether the node is a dominator
Local Variables: round, the current round

candidate, a lookup table indicating whether or not a node n is a candidate to be
a dominator in round r (all initial values are true)

1: dominator ← false
2: round ← 1
3: if id < min(N) then
4: dominator ← true
5: send join(id, 1)
6: exit
7: end if
8: while round ≤ k do
9: receive message

10: if message is join(n, r) then
11: send give-up(id, round)
12: round ← round + 1
13: for i = r to k do
14: candidate[n, i] ← false
15: end for
16: end if
17: if message is give-up(n, r) then
18: candidate[n, r] ← false
19: end if
20: if id < min{n ∈ N |candidate[n, round]} then
21: dominator ← true
22: round ← k + 1
23: send join(id, round)
24: exit
25: end if
26: end while
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Fig. 1. Marking Process Example for k = 1 (above) and k = 2 and 3 (below)

the sender is excluded of the i-dominating set. After transmitting a join message,
the sender remains silent. A node is said to be a candidate for round i if it is
not part of the (i − 1)-dominating set and it has never sent the give-up(id, i)
message. Following the completion of the initialization phase, every node that
has an identifier lower than the ones of all its immediate neighbors sends the
join(id, 1) message. The rest of the algorithm is message driven. Algorithm 1
specifies how each node should behave. Note that different nodes may execute
simultaneously different rounds.

Figure 1, illustrates the marking process for k = 1, 2 and 3. Nodes in black are
dominators. Nodes in grey are k-dominated. Nodes in white are not k-dominated.
For k = 1, nodes 1, 2, 3 and 5 have the smallest identifier among their (0-
dominated) neighbors and thus declare themselves dominators. Initially, node
10 can not declare itself a dominator because of nodes 7, 8 and 9. However, after
node 2 has declared itself a dominator, nodes 7, 8 and 9 become 1-dominated.
Node 10 is then allowed to declare itself a dominator. The same reasoning applies
to nodes 1 and 14. The 1-dominating set is then {1, 2, 3, 5, 10, 14}. For k = 2,
there is only one new dominator, node 15. For k = 3, the new dominators are
nodes 4, 7, 11 and 18.

3 Theoretical Properties

In this section, we give an overview of the theoretical properties of our algo-
rithm. We first show that our algorithm computes a valid k-dominating set and
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a monotone k-dominating family. Then, we analyze the worst case performance
ratio of our algorithm. In the latter part, we follow the general idea of Kuhn
et al. [8]. More precisely, we first show that no unit disk can contain more than
a given number of dominators (i.e. 5k). Then, we use properties of k-dominating
sets to show that this leads to a constant performance ratio.

Proposition 1. Let Si be the set of nodes that are marked in rounds j = 0 . . . i
of Algorithm 1. Then Si is an i-dominating set.

Proof: We proceed by induction on i. To make the things simpler, we say that i
ranges from 0 to k. The round zero chooses the empty set as a 0-dominating set.
The base case is trivial, since all nodes of the graph have at least zero neighbors
in the empty set. For the induction case, we have to show that if Si is a valid
i-dominating set, then Si+1 is also valid (i + 1)-dominating set. In order to do
this, we proceed by contradiction. Let n1 be a node that is not (i+1)-dominated
by Si+1. This means that it has not sent a join(id, i+1) message. Consequently,
it must have a neighbor n2 with a lower identifier that is still a candidate for
round i + 1 (line 20), meaning that it is not (i + 1)-dominated either (line 11 in
n2, and 17 in n1). Since n2 is not (i+1)-dominated, by the same reasoning, there
must have a node n3 that is not (i + 1)-dominated and has a lower identifier
than the one of n2. This process allows to construct a path n1, n2, . . . , nj , . . . , nk

such that none of the nj is (i + 1)-dominated, id(n1) > id(n2) > . . . > id(nj) >
. . . > id(nk), and nk does not have any neighbor with a lower identifier that
is not (i + 1)-dominated. Then, nk should have elected himself as a dominator,
contradicting the fact that it is not (i + 1)-dominated. Therefore, every node is
(i + 1)-dominated, which completes the inductive case. �

Proposition 2. For i = 1 . . . k, let Si be defined as above. Then for all i =
0 . . . k − 1, Si ⊆ Si+1.

Proof: The monotonicity property claimed in the statement of the proposition
is true by construction. That is, let n ∈ Si. Then, it has been marked in some
round j ≤ i < i + 1 and by definition of Si+1, we have n ∈ Si+1. �

Proposition 3. In any given round, the nodes marked by Algorithm 1 form an
independent set.

Proof: Suppose that in the same round, two adjacent nodes n1 and n2 declare
themselves dominators. Without loss of generality, suppose n1 has a lower iden-
tifier than n2. This means that as long as n1 did not send a give-up message,
n2 can not elect itself a dominator. But since n1 never sends such a message
(no node sends both a give-up and a join message), n2 can never declare itself
a dominator. This means that no two adjacent nodes can declare themselves
dominators. �

Proposition 4. Let G = (V, E) be a unit disk graph, C be a unit disk and
S ⊆ V be the set of nodes marked by Algorithm 1. Then |S ∩ C| ≤ 5k.
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Proof: By proposition 3, S is the union of k independent sets. Since no unit
disk can contain more than 5 independent nodes [9], S∩C can not contain more
than 5k nodes. �

Proposition 5. Let G = (V, E) be a graph, S a subset of V , t an integer and
OPTk = {v1, . . . , v|OPTk|} an optimal k-dominating set of G. If |S| > t|OPTk|,
then there is at least one node v ∈ OPTk such that |N(v)∩ S| > k(t− 1), where
N(v) is the set formed by v and its neighbors.

Proof: Let S′ be S \OPTk. Since |S′| ≥ |S| − |OPTk| > t|OPTk| − |OPTk|, we
have |S′| > (t − 1)|OPTk|. For each vi ∈ OPTk, define Si as N(vi) ∩ S′. Since
each node in S′ is adjacent to at least k nodes in OPTk, we have that

optk∑
i=1

|Si| ≥ k|S′| > k(t− 1)|OPTk|

Therefore, by the pigeonhole principle, one of the Si contains more than k(t−1)
nodes. The result follows from the fact that Si ⊆ N(vi) ∩ S. �

Theorem 1. Let G = (V, E) be a unit disk graph, S ⊆ V the set of nodes marked
by Algorithm 1 and OPTk an optimal k-dominating set. Then |S| ≤ 6|OPTk|.
In other words, the performance ratio is not greater than six.

Proof: Suppose |S| > 6|OPTk|. By proposition 5, there is at least one node v ∈ V
such that |N(v) ∩ S| > 5k. But this contradicts proposition 4, and therefore
|S| ≤ 6|OPTk|. �

We now show that for any k, there exists graphs for which our algorithm has a
performance ratio of five. It is an open question whether or not it is possible to
close the gap between five and six. First, we need the following lemma:

Lemma 1. Let )ABC be an isosceles triangle such that ∠BAC = ∠ACB = φ,
p be a point located on the line AB such that A is between p and B, and q be a
point located on the line CB such that C is between q and B. Then |pq| > |AC|.

Proof: If |pB| = |qB|, then )pBq is similar to )ABC, and |pB| > |AB|
implies |pq| > |AC|. Suppose now that |pB| < |qB|, and let q′ be the point
located on the line CB such that C is between q′ and B and |q′B| = |pB|. By
the first case, |pq′| > |AC|. Now, since )ABC is isosceles, φ < π

2 , and since
∠pq′q = π − φ, we have that ∠pq′q > π

2 . Therefore, ∠pq′q is the largest angle
of )pq′q, meaning that its opposite side, pq, is the largest side. In particular,
we have |pq| > |pq′| > |AC|. The case where |pB| > |qB| is identical, which
completes the proof of the lemma. �

Proposition 6. The worst case performance ratio of Algorithm 1 is at least
five.
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Fig. 2. Lemma 1

Fig. 3. Lower bound of five for Algorithm 1

Proof: For k = 1 and n = 6, place five nodes equally spaced on the boundary
of a circle of radius 1, and place one other node in the center of that circle.
Since the circle has radius 1, the center node shares an edge with all the other
nodes. Also, since the distance between every pair of nodes on the circle is at
least 2 sin π

5 > 1, there is no other edge in the unit disk graph. In the remainder
of the proof, this basic structure will be referred to as a star, the node placed in
the center of the circle will be referred to as the center of the star and the five
nodes on the boundary of the circle will be referred to as the branches of the
star. The center of a star forms a dominating set of the whole star. However, if
the center happens to be given a higher identifier than one of the branches, all
branches would be marked as dominators, leading to a performance ratio of five.

Figure 3 depicts how to connect several stars to build cases with n as large as
desired. More precisely, we show how to construct examples of size 14 + 8m, for
any given m (in Figure 3, m = 1). The construction goes as follows: place m + 2
stars on a horizontal line such that their centers are placed at x-coordinates
0, 3, 6, . . . , 3(m+1) and no branch lies on the horizontal line. Since the circles in
which the stars are inscribed are at distance at least 1 from each other, the only
edges of the graph so far are the ones linking the branches of the stars to their
centers. All that remains is to connect the graph. In order to do so, add nodes
on the intersection of the inscribing circles with the horizontal line. These nodes
will be referred to as bridging nodes. Since the centers of two consecutive stars
are at distance 3 from each other, the two bridging nodes between them are at
distance 1 from each other. Therefore, there is an edge between two bridging
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nodes which are between the centers of two consecutive stars, making the whole
network connected. To see how the performance ratio of five can be reached,
notice that the star centers form a dominating set of size m + 2. However, since
the set of all branches form an independent set, it could be that those nodes
would be marked as dominators, leading to a dominating set of size 5(m + 2),
which gives a performance ratio of at least five.

2π
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s5

v1
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v3
v4
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Fig. 4. Widget for k > 1

For k > 1, Figure 4 shows how to generalize the star structure. The goal is to
map to each node of the star a set of k nodes such that:

1. nodes mapped to the center share an edge with every other node and
2. nodes mapped to the branches only share edges with nodes mapped to the

center and nodes mapped to the same branch.

In order to achieve this, draw a regular pentagon having side length of 1. Let
C be the inscribing circle of that pentagon and r = 1

2 sin( π
5 ) be the radius of C.

Now, let C1 and C2 respectively be the circles having the same center as C and
radii r1 = 1−r

2 and r2 = r + r1. For each vertex vi of the pentagon (i from 1
to 5), let si be the half-line from the center of C through vi. Now, let p be a
point located inside C1, and p1 and p2 be two points located on some si and sj

(i �= j), between C2 and C. Then, Lemma 1 tells us that

|p1, p2| > |v1, v2| ≥ 1

and from the triangle inequality, we have

|p, p1| ≤ r1 + r2 = 2(
1− r

2
) + r = 1.
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Similarly, |p, p2| ≤ 1. The construction we need is then the following: place k
points inside C1 and k points on each of the si between C and C2. We call the
result of that construction a generalized star. The points located inside C1 form
a k-dominating set, but the algorithm may mark all nodes located on the si.
Since there are 5k such points, the performance ratio is five in that case. To
construct a lower bound example with k > 1 for large n, we link the generalized
stars in a similar fashion as for the case k = 1. �

4 Simulation Results

We have generalized an existing independent set-based algorithm [1, 9, 13] in or-
der to incrementally construct a k-dominating set. We have chosen to generalize
this specific algorithm because it is distributed and has constant performance
ratio. By simulation, we compare our algorithm with k-generalized versions of
other available algorithms. Stojmenovic et al. [12] suggested the following heuris-
tic to improve the independent set algorithm of [1, 9, 13]: instead of ordering
the nodes according to their identifier, order them according to their degree first
and then their identifier. Higher priority is granted to nodes having higher de-
gree. The performance ratio is still at most five, but it has not been proven it
is actually better than that. For the k-dominating set problem, it is not desir-
able to favor higher degree nodes. The reason is that nodes having degree less
than k cannot have k dominating neighbors, so they must necessarily be in the
k-dominating set.

Selecting nodes of higher degree is the same idea that is behind the greedy
set-cover algorithm [4]. The greedy set-cover algorithm first favors nodes that
dominate the largest number of nodes not yet dominated. Although this is a
global selection criterion, it still has to be examined. At first sight, since it does
not have constant performance ratio (its performance ratio is H(Δ), where Δ is
the maximum degree of a node in the network and H is the harmonic function),
one would believe that it would not perform as well as our algorithm. However,
it turns out that in order to have H(Δ) > 5, we need Δ to be at least 83, and to
reach six, we need Δ to be at least 226. Since it is not likely to have nodes having
that many neighbors in real situations, this algorithm still deserves attention.

In this section, we discuss simulation results comparing Algorithm 1 with
k-generalized versions of both the algorithm presented in [12] and the greedy
algorithm. We also compare it with the greedy construction of a maximal in-
dependent set. The k-generalized versions of those algorithms work the same
way we generalized the maximal independent set algorithm: for k = 1, we run
the standard algorithm on all nodes. For k ≥ 2, we run the standard algorithm
on nodes that are not yet k-dominated. We ran our simulations 200 times for
networks of 200 nodes. We have chosen a communication range such that with
high probability, the network is connected. According to Penrose [10, 11], for
any integer k ≥ 0 and real constant c, if the nodes have identical radius r given
by the formula:

r =

√
lnn + k ln lnn + ln(k!) + c

nπ
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Fig. 5. Average dominating set size for 200 nodes

then the network is (k+1)-connected with probability e−e−c

as n goes to infinity.
For n = 200, choosing k = 1 and c = 5, we then obtain that for a radius of
r ≈ 0.138, the network is 2-connected with probability 0.99.

Figure 5 shows the simulation results we have obtained. The algorithm which
performed the best is the one in which we greedily constructed an independent
set. Not far behind is the greedy algorithm. It is worth noting that even if those
algorithms perform slightly better, neither of the two are distributed. This is
because the greedy choice of the next node to be marked is based on global
criteria. For the two distributed algorithms, it is interesting to note that the one
using the ordered pair degree-id only performs better for small values of k (5
and less). After that, it is the one simply based on identifiers which performs
better. With a 95% certainty, the expected values of the size of the dominating
sets was at most ±0.67 node.

Unfortunately, Figure 5 does not show the optimal solution. Since the domi-
nating set problem is NP-complete, only exponential time algorithms are known
to solve the problem. This is why only small instances of the problem can be
addressed by simulation. Figure 6 compares the same algorithms with the op-
timal solution for a network of 35 nodes. We ran over 200 simulation cases. In
that case, with a 95% certainty, the actual expected values of the dominating
sets size was at most ±0.28 nodes. Figure 7 shows the average performance ratio
we obtained for each algorithm. For small values of k, the two global greedy
algorithms are the best, followed by the distributed algorithm granting prior-
ity to high degree nodes. The algorithm simply based on identifiers performs the
worst. However, as k grows, the results change completely. The algorithm simply
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based on identifiers becomes the best, and the basic greedy algorithm becomes
the worst. The algorithm constructing independent sets by granting priority to
high degree nodes performs slightly better than the greedy construction of an
independent set.
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Exact simulation values can be found in the technical report version of this
paper [2].

5 Conclusion

In this paper, we have introduced a new algorithm to address the k-dominating
set problem. Our algorithm has a deterministic performance ratio of six. The
previously best algorithm had an expected performance ratio of O(k) for an
unspecified constant [8]. We have shown that the size of the k-dominating set
our algorithm produces may be five times bigger than the optimal one. However,
it is an open issue whether or not the gap between five and six can be closed.
The expected performance ratio is also unknown.

Simulation results have shown that in some cases, the k-generalized version
of the greedy dominating set algorithm performs better than ours. Besides their
worst-case performance ratio, an other important difference between the greedy
dominating set algorithm and ours is that one is global while the other is dis-
tributed. We believe that differences between the performance of global, dis-
tributed and local algorithms is an interesting research avenue. Important work
in that field has been done by Kuhn et al. [6, 7] and Kuhn [5].
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Abstract. How efficiently can a malicious device disrupt communica-
tion in a wireless network? Imagine a basic game involving two honest
players, Alice and Bob, who want to exchange information, and an ad-
versary, Collin, who can disrupt communication using a limited budget
of β broadcasts. How long can Collin delay Alice and Bob from com-
municating? In fact, the trials and tribulations of Alice and Bob capture
the fundamental difficulty shared by several n-player problems, including
reliable broadcast, leader election, static k-selection, and t-resilient con-
sensus. We provide round complexity lower bounds—and (nearly) tight
upper bounds—for each of those problems. These results imply bounds
on adversarial efficiency, which we analyze in terms of jamming gain and
disruption-free complexity.

1 Introduction

Ad hoc networks of wireless devices hold significant promise for the future of
ubiquitous computing. Unfortunately, such networks are particularly vulnerable
to adversarial interference due to their use of a shared, public communication
medium and their deployment in unprotected environments. For example, a com-
mitted adversary can disrupt an ad hoc network by jamming the communication
channel with noise. Continuous jamming, however, might be unwise for the ad-
versary: it depletes the adversary’s energy, allows the honest devices to detect
its presence, and simplifies its localization—and subsequent destruction. The ad-
versary, therefore, would rather be more efficient, disrupting the protocol using
a minimal number of transmissions.

Jamming Gain. The efficiency of the adversary can be quantified, roughly speak-
ing, by comparing the duration of the disruption to the adversary’s cost for
causing the disruption. In the systems literature, this metric has been informally
referred to as jamming gain (e.g., [1]). In the context of round-based protocols
(time-slotted wireless radio channels), the jamming gain can be defined as fol-
lows. Let DP (t) be the minimal number of broadcasts needed by the adversary
to delay protocol P from terminating for t rounds, for some initial value. Then
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the jamming gain of protocol P is: JG(P ) = limT→∞ T
max(DP (T ),1) . For exam-

ple, if the adversary must broadcast in every round, the jamming gain is 1. By
contrast, if the adversary need never broadcast to prevent termination, then the
jamming gain is infinite.

Disruption-Free Complexity. A second metric, disruption-free complexity, mea-
sures how long the adversary can disrupt a protocol without performing even one
broadcast. The uncertainty introduced by the possibility of adversarial broad-
casts is sufficient to slow down many protocols. This is defined as: DF(P ) =
max{t : DP (t) = 0} . If a protocol has large disruption-free complexity, then
the adversary can significantly reduce the throughput of multiple consecutive
executions, while avoiding the disadvantages of actually jamming.

This paper is the first theoretical examination of the efficiency of malicious
disruption in a wireless ad hoc network. We begin by analyzing a 3-player game
that captures many of the fundamental difficulties of wireless coordination. We
then extend these results to several classical problems: reliable broadcast, leader
election, static k-selection and consensus. For each problem, we present funda-
mental limits on the robustness to malicious interference, and we present algo-
rithms that match these standards of robustness.

The 3-Player Game. The 3-player game consists of two honest players—Alice
and Bob, and a third malicious player, Collin (the Collider). All three players
share a time-slotted single-hop wireless radio channel. Alice and Bob each begin
with a value to communicate. Colin is determined to prevent them from commu-
nicating, in either direction, for as long as possible. Collin can broadcast in any
time slot (i.e., round), potentially destroying honest messages or overwhelming
them with malicious data. In order to precisely measure the efficiency of a mali-
cious adversary, we endow Collin with a budget of β messages, and analyze how
long Alice and Bob can be disrupted. The size of β is not known a priori to
Alice and Bob. (If it were, then Alice and Bob could communicate reliably by
repeating each message 2β + 1 times.)

3-Player Lower Bound. We show that Collin can delay Alice and Bob’s commu-
nication for 2β +lg |V |/2 rounds, where V is the set of possible values that Alice
and Bob may communicate. An immediate corollary is that no protocol for Alice
and Bob can achieve a jamming gain better than 2. This result is surprising as it
implies that every protocol has some semantic vulnerability that the adversary
can exploit to gain extra efficiency. A second corollary is that the disruption-free
complexity is Θ(lg |V |). Therefore for large V , the passive presence of Collin can
significantly reduce Alice and Bob’s communication throughput. We prove these
lower bounds (in Section 4) by exhibiting a strategy for Collin to delay Alice
and Bob, exploiting the fact that they can never trust any message, since Collin
could have overwhelmed it with a fake message.

3-Player Upper Bound. For our upper bound (Section 5), we consider a (harder)
setting where Alice needs to transmit a value to Bob, who does not broadcast any
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messages. We exhibit a protocol that allows Alice—using β + Δ broadcasts—
to transmit her value to Bob in 2β + max{2Δ2

lg |V |
Δ , 4 lg |V |} rounds. (Notice

that if Δ < 1, we show that Alice’s task is impossible.) For Δ = Ω(lg |V |),
the protocol matches our lower bound. For Δ < lg |V |, however, Collin can
delay the communication more efficiently. For example, if Δ = 1, the disruption-
free complexity of our protocol increases to |V |. We show that a disruption-free
complexity of max{2Δ2

lg |V |
Δ , 4 lg |V |} is unavoidable, highlighting an inherent

tradeoff between Alice’s message complexity and her throughput. Finally, we
consider a variant of the 3-player game in which Alice and Bob do not start in
the same round; Bob is activated asynchronously by the adversary. We present
a protocol that solves this problem and still terminates within 2β + Θ(lg |V |)
rounds (assuming Alice has an unrestricted message budget).

The n-Player Implications. The trials and tribulations of Alice and Bob cap-
ture something fundamental about how efficiently malicious devices can disrupt
wireless coordination. In Section 6, we derive new lower bounds—via reduction
to our 3-player game—for several classical n-player problems: reliable broadcast:
2β+Θ(lg |V |); leader election: 2β+Ω(log n

k ); static k-selection: 2β +Ω(k lg |V |
k ).

For the latter two cases, k represents the number of participants contending
to become leader and to transmit their initial value, respectively. As before,
we draw immediate corollaries regarding the jamming gain and disruption-free
complexity, resulting in a jamming gain of 2, and disruption-free complexity of
Θ(lg |V |), Ω(log n

k ), and Ω(k lg |V |
k ), respectively.

We next consider a more general framework that also includes crash failures:
the malicious adversary can both broadcast β messages and also crash up to
t honest devices. We study binary consensus as an archetypal problem in this
framework, and derive a lower bound of 2β + Θ(t) rounds. The Θ(t) factor is
established by a technique that maintains the indistinguishability of two uni-
valent configurations for t rounds. The 2β factor then follows from a (partial)
reduction to consensus. This shows a jamming gain of 2, as before. By contrast,
the disruption-free complexity, Θ(t), is significantly larger than for the crash-free
models. (Notice that if the adversary is benign, then crash failures have no effect
on the complexity.)

Finally, in Section 7, we present tight upper bounds for reliable broadcast and
consensus and nearly tight bounds for leader election and static k-selection.

Assumptions and interpretations. Underlying our results on jamming gain and
disruption-free complexity is an analysis of how long the adversary can disrupt
communication given a limited broadcast budget. This interpretation is inter-
esting in its own right: a limited broadcast budget models the (limited) energy
available to a set of malicious devices.

Clearly, authentication—for example, using cryptographic keys—impacts our
lower bounds. With authentication, the 3-player communication game completes
in β + 1 rounds, resulting in a jamming gain and disruption-free complexity of
1. Intuitively, a jamming gain arises from semantic vulnerabilities in the protocol;
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cryptographic techniques can eliminate this vulnerability. In general, however,
deploying cryptographic solutions in wireless networks can be difficult. Public
key authentication schemes are often expensive both in computation and, to
some extent, communication. Symmetric key schemes (such as MACs) have been
deployed in wireless networks (see, e.g., [2, 3]), yet the focus has generally been
link-level security, rather than authenticated broadcast, and there remain issues
with key distribution. For example, if only a single key is used, the system is
easily compromised by a single corrupted node; if multiple keys are used, then
keys must be exchanged and communication is complicated. One interpretation
of our bound is that authentication should be deployed only if its cost is less
than the cost of waiting an additional β + Θ(lg |V |) rounds.

2 Related Work

This paper explores the damage that can be caused by a genuinely malicious
(Byzantine) device that can reliably disrupt communication in a wireless ad
hoc network. Koo [4], Bhandari and Vaidya [5], as well as Pelc and Peleg [6],
study “t-locally bounded” Byzantine failures in wireless networks, in which the
number of Byzantine nodes in a region is bounded. In these papers, the Byzan-
tine devices are required to follow a strict TDMA schedule, thus preventing
them from interfering with honest communication. Others have considered mod-
els with probabilistic message corruption [7, 8]. Wireless networks with crash
failures (but not Byzantine failures) have also been studied extensively in both
single hop (e.g., [9, 10]) and multihop (e.g., [11, 12]) contexts. By contrast, we
consider a malicious adversary that can choose to send a message in any round,
potentially destroying honest messages or overwhelming them with malicious
data.

Simultaneous to this work, Koo, Bhandari, Katz, and Vaidya [13] have also
considered a model where the adversary has a limited broadcast budget and can
send a message in any round, overwhelming honest messages. A key difference,
however, is that they assume that the adversary’s budget is fixed a priori and
known to all participants. By contrast, we do not assume that β is known in
advance. (Thus it is no longer sufficient to repeat each message 2β + 1 times.)
Moreover, they focus primarily on feasibility, that is, determining the thresh-
old density of dishonest players for which multihop broadcast is possible. By
contrast, our paper focuses on the time complexity of the protocols and the effi-
ciency of the adversary. Furthermore, we also consider the impact of combining
crash failures with a malicious adversary.

Adversarial jamming of physical layer radio communication is a well studied
problem in the electrical engineering community (see, e.g., [14]). In the con-
text of wireless ad hoc networks, there has been recent interest in studying the
jamming problem at the MAC layer and above. See, for example, [1, 15, 16, 17],
which analyze specific MAC and network layer protocols, highlighting semantic
vulnerabilities that can be leveraged to gain increased jamming efficiency.
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3 Preliminaries

We assume a synchronous round-based Multiple Access Channel (MAC) model
with collision detection (as in, e.g. [18, 19, 20]). We consider n honest devices,
the players, named from the set [1, n], and one additional malicious device in-
carnating the adversary. In each round, each device can decide to broadcast a
message or listen. If there are no broadcasts in a round, then none of the players
receive a message. If exactly one message is broadcast, then all players receive
the message. If two or more messages are broadcast, then each player can either:
(1) receive exactly one of the broadcast messages; or (2) detect noise on the
channel, i.e., a collision. (This channel behavior represents the unpredictability
of real networks, for example, shadowing effects [21].) Without loss of generality,
we assume that the adversary determines for each honest player whether op-
tion 1 or 2 occurs; in case of option 1 the adversary’s message is systematically
received.

Throughout this paper, we endow the adversary with a budget of β broadcast
messages, where β is a priori unknown to the players. Also, we assume no mes-
sage authentication capabilities. That is, a player cannot necessarily distinguish
a message sent from the adversary from a message sent by a fellow honest player.

The basic game we consider involves two honest players, Alice and Bob, and
an adversary, Collin. Alice is initialized with value va ∈ V and Bob with vb ∈ V ,
where |V | > 1 and V is known to all. The players can output(v) for any v ∈ V
such that the following are satisfied. Safety: Bob only outputs va and Alice only
outputs vb; and Liveness: Eventually, either Alice or Bob outputs a value.

4 Lower Bound for the 3-Player Game

We prove in this section a lower bound on the round complexity of the 3-player
communication game. Our lower bound holds even if Alice and Bob have an
unlimited budget of messages.

To prove our lower bound, we describe a strategy for Collin to frugally use his
β messages to prevent communication. Two assumptions are key to this strategy:
(1) Collin’s budget of messages β is unknown to Alice and Bob; (2) Alice and
Bob cannot distinguish a message sent by Collin from an honest message. A
silent round, on the other hand, cannot be faked: if Bob (for example) receives
no message and no collision notification, then he can be certain that Alice did
not broadcast a message. Therefore, in order to prevent Alice and Bob from
communicating, it is sufficient, roughly speaking, for Collin to disturb silence.

Theorem 1. Any 3-player communication protocol requires at least 2β+lg |V |/2
rounds to terminate.

Assume, for contradiction, a protocol, A, that defies this worst-case performance.
Consider any value v ∈ V and denote by γ(v) the lg |V |/2− 1 round (good) exe-
cution of A where Alice and Bob begin with initial value v, and Collin performs
no broadcasts. If Alice and Bob both broadcast in the same round, assume both
messages are lost. We begin with the following lemma:



220 S. Gilbert, R. Guerraoui, and C. Newport

Alice Bob Collin
α(v) α(w) α(v) α(w) α(v) α(w)

1 m - - - - m

2 - m - - m -

3 - - m - - m

4 - - - m m -

5 m - m′ - - m′

6 - m - m′ m′ -

7 m - - m′ - m

8 - m m′ - m -

(a) α Rules

Alice Bob Collin
α(v) ρ(w, v) α(w) ρ(w, v) ρ(w, v)

1 m m′ - - m

2 - - m′ m m′

3 m - - - m

4 - - m - m

5 m - m′ - m

6 - m m′ - m′

7 m m′ m′′ - m

8 m - m′′ m′ m′′

(b) ρ(w, v) Rules

Fig. 1. Collin’s behavioral rules for α and ρ(w, v) executions

Lemma 1. There exist two values v, w ∈ V (v �= w), such that Alice (resp.
Bob) broadcasts in round r of γ(v) if and only if Alice (resp. Bob) broadcasts in
round r of γ(w).

Proof. In each round, there are four possibilities: (1) Alice broadcasts alone, (2)
Bob broadcasts alone, (3) Alice and Bob both broadcast, and (4) neither Alice
nor Bob broadcasts. Accordingly, for a sequence of c rounds, there are 4c possible
patterns of broadcast behavior. Thus, there are at most 4lg |V |/2−1 = |V |

4 possible
broadcast patterns that result from the |V | possible γ executions. It follows by
the pigeonhole principle that at least two such executions have the same pattern.

For the rest of this proof, we fix v and w to be the two values identified by
Lemma 1. We define α(v) (resp. α(w)) to be the execution of A in which Alice
and Bob both begin with initial value v (resp. w) and Collin applies the α-rules
described in Figure 1(a). In this table, “-” indicates silence and m and m′ both
represent a message broadcast. Each row matches a specific set of broadcast
behaviors of Alice and Bob in two executions, with the corresponding broadcast
behavior followed by Collin in these executions. Since Alice and Bob’s algorithm
is deterministic, Collin can predict their behavior in each round.

For example, Rule 1 from Figure 1(a) specifies that for any given round, if
Alice broadcasts in exactly one α execution, and Bob is silent in both, then Collin
replicates Alice’s broadcast in the execution where she is silent. For any pattern
of broadcast behavior not described in the table, assume that Collin performs no
broadcasts. Also, assume that in any round where both Collin and Alice (resp.
Bob) broadcast, only Collin’s message is received by Bob (resp. Alice). We claim:

Lemma 2. Neither Alice nor Bob can output during α(v) or α(w).

Proof. We show that Bob cannot output in α(v) and Alice cannot output in
α(w). The argument for Bob in α(w) and Alice in α(v) is symmetric.

We first define a third execution ρ(w, v), of A, in which Alice starts with initial
value w and Bob starts with initial value v. The behavior of Collin in execution
ρ is defined by the rules in Figure 1(b). Notice that, in all three executions, we
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assume that Collin has an unlimited broadcast budget. This is without loss of
generality because Alice and Bob do not know the value of β, and we will later
concern ourselves only with the prefixes of the α executions in which Bob has
not yet broadcast more then β times.

We show, by induction on the round number, r, that ρ(w, v) is indistinguish-
able from α(v) with respect to Bob, and that ρ(w, v) is indistinguishable from
α(w) with respect to Alice. The lemma follows immediately from this indistin-
guishability and the safety requirement of the communication game.

Since Bob begins with value v in both ρ(w, v) and α(v), and Alice begins with
value w in both ρ(w, v) and α(w), the base case (r = 0) is immediate. We now
consider the possible behaviors of Alice and Bob during round r + 1.

– Case 1: Alice broadcasts in α(w). By induction, this implies Alice also broad-
casts in ρ(w, v), therefore these two executions remain indistinguishable with
respect to Alice (as broadcasters cannot listen). We turn our attention to
Bob, bypassing the sub-case of Bob broadcasting in α(v) as this is Case 2.
Two sub-cases: (1) Alice is silent in α(v). If Bob is also silent in α(w), then,
by α-Rule 2, Collin broadcasts Alice’s α(w) (and ρ(w, v)) message in α(v). If
Bob broadcasts in α(w), then, by α-rule 6, Collin broadcasts Bob’s message
in α(v) and, by ρ-rule 6, Collin also broadcasts Bob’s message in ρ(w, v).
(2) Alice broadcasts in α(v). By ρ-Rule 1 or 7 (depending on whether Bob
broadcasts in α(w)) Collin replicates Alice’s α(v) message in the ρ execution.
In all cases, Bob receives the same message in α(v) and ρ(w, v).

– Case 2: Bob broadcasts in α(v). This argument is symmetric to Case 1.
– Case 3: Alice does not broadcast in α(w) and Bob does not broadcast in

α(v). There are four sub-cases. (1) Alice and Bob don’t broadcast in α(v)
and α(w), respectively. Collin does nothing and the executions are clearly
indistinguishable. (2) Alice broadcasts in α(v) and Bob is silent in α(w).
By α-rule 1, Collin broadcasts Alice’s message in α(w). By ρ-rule 3, Collin
broadcasts Alice’s message in ρ(w, v). Therefore, Bob receives Alice’s mes-
sage in α(v) and ρ(w, v), and Alice receives her message (from Collin) in α(w)
and ρ(w, v). (3) Alice is silent in α(v) and Bob broadcasts in α(w). By α-rule
4, Collin broadcasts Bob’s message in α(v). By ρ-rule 4, Collin broadcasts
Bob’s message in ρ(w, v). Therefore, Alice receives Bob’s message in α(w)
and ρ(w, v), and Bob receive his message (from Collin) in α(v) and ρ(w, v).
(4) Alice broadcasts in α(v) and Bob broadcasts in α(w). By α-rule 7, Collin
broadcasts Alice’s message in α(w). By ρ-rule 5, Collin broadcasts Alice’s
message in ρ(w, v). Therefore, Alice receives her message (from Collin) in
α(w) and ρ(w, v), and Bob receives Alice’s message in α(v) and ρ(w, v).

We now show that one of these two indistinguishable α executions requires only
β broadcasts by Collin during the first 2β + lg |V |/2− 1 rounds.

Proof (Theorem 1). By Lemma 2, Alice and Bob do not produce an output
in either α(v) or α(w) as long as Collin continues to follow the α rules. It suf-
fices to show that, in at least one of the two executions α(v) and α(w), Collin
broadcasts in no more than β of the first 2β + lg |V |/2− 1 rounds.
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Algorithm 1: Bit Broadcast Sub-Protocol

1 bcast-Alice(b)
2 active ← true
3 while (active) do
4 if (b=1) then
5 bcast(vote) � Data round broadcast
6 m ← recv() � Data round receive
7 if (b=0) and (m �= ⊥) then
8 bcast(veto) � Veto round broadcast
9 m ← recv() � Veto round receive

10 if (m = ⊥) then
11 active ← false
12 return

1 recv-Bob()
2 active ← true
3 while (active) do
4 votes ← recv() � Data round receive
5 vetos ← recv() � Veto round receive
6 if (vetos = ⊥) then
7 active ← false
8 if (votes = ⊥) then
9 return 0

10 else
11 return 1

Algorithm 2: Sequence Broadcast Protocol

1 SEQ-Alice(s ∈ {0, 1}k,k)
2 count ← 1
3 while (count ≤ k) do
4 bcast-Alice(s[count ])
5 count ← count + 1

1 SEQ-Bob(k)
2 count ← 1
3 while (count ≤ k) do
4 s[count ] ← recv-Bob()
5 count ← count + 1
6 output(s)

We first consider rounds 1 through lg |V |/2 − 1 of α(v) and α(w). We know
by Lemma 1 that Alice and Bob broadcast on the same schedule for these initial
rounds when they start both with v or both with w. Notice, however, that Collin
broadcasts (according to the α rules) only in situations of asymmetric silence,
i.e. when Alice and Bob are not on the same schedule. It follows that Collin does
not broadcast in either α(v) or α(w) for the first lg |V |/2− 1 rounds.

Now we turn our attention to the 2β rounds that follow. For a given round,
Collin only broadcasts in α(v) or α(w), but not both, since he only fills in asym-
metric silent rounds. Therefore, by a simple counting argument, it is impossible
for Collin to broadcast in more than half of the rounds in both executions. We
therefore choose the execution in which Collin broadcasts in no more than half
of the following 2β rounds. This delays both Alice and Bob from outputting for
2β + lg |V |/2− 1 rounds. �

We conclude with an immediate corollary of Theorem 1:

Corollary 1. Any 3-player communication protocol has a jamming gain of at
least 2, and a disruption-free complexity of Ω(lg |V |). ��

5 Upper Bounds for the 3-Player Game

We prove in this section that our (round complexity) lower bound is tight, by
showing that there is a protocol that matches it. To strengthen our upper bound
result, we consider the seemingly harder problem of Alice transmitting her value
to Bob in a setting where Bob does not broadcast. Specifically, we give a protocol
that, assuming Alice has a budget of β + Δ messages, transmits Alice’s input
value to Bob in 2β + max{2Δ2

lg |V |
Δ , 4 lg |V |} rounds. For Δ = Ω(lg |V |), this

protocol matches our lower bound. For Δ = o(lg |V |) the round complexity
grows. We show this to be unavoidable.

Our protocol broadcasts a sequence of bits (Algorithm 2), using a sub-protocol
for each bit. Alice to Bob (Algorithm 1). The basic idea of Algorithm 1 is to
alternate data rounds and veto rounds. In a data round, Alice transmits a message



Of Malicious Motes and Suspicious Sensors 223

if b = 1 and remains silent otherwise. If Collin interferes with the data round
(i.e. by broadcasting in the case where b = 0), Alice indicates this interference
by broadcasting in the veto round. At this point, Alice and Bob try again with a
new pair of rounds. Of course, Collin can also interfere by broadcasting in a veto
round. This too causes Alice and Bob to try again with a new pair of rounds.
The sub-protocol continues until the first silent veto round.

Alice and Bob both know that Alice has a broadcast budget of β+Δ. Typically,
Alice would broadcast a binary encoding of her value, which might require lg |V |
broadcasts. If Δ < lg |V |, we encode the value as bit strings of length k containing
at most Δ 1’s. We choose k to be the minimum value such that

(
k
Δ

)
≥ |V |, that

is, the smallest value that allows us to express all V values. Alice then transmits
this encoding as described above. This is summarized in the following theorem,
whose proof is in the full version:

Theorem 2. There exists a protocol through which Alice transmits her initial
value to Bob, within 2β+max{2Δ2

lg |V |
Δ , 4 lg |V |} rounds, using a budget of β+Δ

messages. This protocol thus has a jamming gain of 2, and a disruption-free
complexity of max{2Δ2

lg |V |
Δ , 4 lg |V |}

Notice that Theorem 2 assumes Alice has a message budget that is strictly
larger than Collin’s budget (as indicated by the constraint Δ > 0). This is
in fact necessary, and it is impossible to communicate a value from Alice to
Bob if Alice’s budget is ≤ β since, in this case, Collin can successfully simulate
Alice’s behavior (see the full version). Notice that the round complexity grows
significantly as Δ decreases below lg |V |. We show this trade-off to be inherent:

Theorem 3. Let k = max{Δ2lg (|V |)/Δ

e −Δ, lg|V |
2 }. If Alice has a budget of size

β + Δ (Δ > 0), then there exists no protocol through which Alice can transmit
her initial value to Bob in less than 2β + k rounds. Thus every such protocol has
a disruption-free running time of Ω(k).

The Wake-Up Case. We have assumed that Alice and Bob begin in the same
round. Consider the case where Bob is activated at an unknown point in the
execution. Thus, Bob no longer has round numbers synchronized with Alice. This
models the situation where Alice represents a base station that needs to transmit
a value to intermittently awake tiny devices (i.e., Bob). There is (in the full
version) a variant of our protocol that solves the problem in 2β+Θ(lg |V |) rounds
after Bob awakes, asymptotically matching our lower bound from Section 4,
despite the extra synchronization challenges. This variant requires Alice to never
terminate, which is inevitable given that she can never distinguish between Bob
and Collin pretending to be Bob (while Bob is still sleeping).

6 Lower Bounds for n-Player Problems

We generalize here our results to n-player coordination problems. We then con-
sider the impact of combining malicious behavior with crash failures.
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6.1 n-Player Reductions

We show here how Alice and Bob can together simulate an arbitrary n-player
protocol. We then use this simulation to derive lower bounds, via reduction from
the 3-player communication game, for several n-player problems. None of our
round-complexity lower bounds restricts the message budget of honest players.

A simulation by Alice and Bob is defined by a 5-tuple: {A, n, SA, SB, I}, where:
(1) A is the n-player protocol being simulated; (2) SA and SB partition the n
players into two non-empty and non-overlapping sets; (3) I is a mapping of
players to their respective initial values.

Alice simulates the players in SA, initializing them according to I. (Alice is
provided only the initial values for nodes in SA, i.e., I|SA.) In each round, if any
of the players in SA choose to broadcast, Alice arbitrarily chooses one of their
messages to broadcast. She then delivers to each simulated player any messages
or collision notifications from that round. Bob simulates the players in SB in an
equivalent manner. The following can be proved by straightforward induction:

Theorem 4. Consider simulation {A, n, SA, SB, I}. For all r-round executions
of the simulation, there exists an r-round execution α of A, initialized according
to I, where the outputs of Alice and Bob are equivalent to the outputs in α, and
Collin broadcasts the same number of messages in the simulation and α.

Reliable Broadcast. In reliable broadcast, one player—the source—is provided
with an input value v0 ∈ V . Each player must receive this initial value. Safety
requires that each player output only v0, i.e., perform output(v) only if v = v0.
Liveness requires that all players eventually perform an output.

Theorem 5. Any reliable broadcast protocol requires at least 2β+lg |V |/2 rounds
to terminate.

Proof. Assume by contradiction that A is a reliable broadcast protocol that
terminates in R < 2β + lg |V |/2 rounds for all initial values. We reduce 3-player
communication, for value domain V , to A. Alice and Bob simulate A for n
players, where: (1) SA contains the source, SB contains all other players, and
(2) I maps the source to va, Alice’s initial value. Bob outputs the first value
output by a simulated player. By Theorem 4, Bob always outputs v0 = va by
round R, contradicting Theorem 1.

Leader Election. In leader election, k ≤ n participants contend to become the
leader. All n players should learn the leader, i.e., perform output(�), for some �.
Safety requires that the leader be a participant, and that there be only one
leader. Liveness requires every player to perform an output.

Theorem 6. Any leader election protocol requires at least 2β+lg �n−1
k �/2 rounds

to terminate.

Proof. Assume by contradiction that A is a leader election protocol that termi-
nates in R < 2β + lg �n−1

k �/2 rounds for all choices of k participants. We reduce
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to leader election, the 3-player game defined over the value space V , where V
contains every integer between 1 and �n−1

k �, to A.
Alice and Bob simulate A for n players where: (1) SA contains players 1

through n − 1, SB contains player n, and (2) I activates player i ∈ SA if and
only if (i mod �n−1

k �) + 1 = va and fewer than k nodes have been activated
so far in IA. Let i be the leader output by Bob’s simulated player. Bob outputs
va = (i mod �n−1

k �) + 1, as required. By Theorem 4 Bob always outputs va

within R rounds, contradicting Theorem 1, since 2β + lg V/2 = 2β + lg �n−1
k �/2.

Static k-Selection. In static k-Selection, k participants are provided with values
vi ∈ V . Each player must receive all values. Safety requires that the first k out-
puts of a player equal the k values. Liveness requires that all players eventually
perform at least k output actions. The protocol terminates when all players have
performed at least k output actions. (The selection problem is well-studied in
radio networks, e.g., [22, 23].)1

Theorem 7. Any static k-selection protocol requires at least 2β + Ω(k lg |V |
k )

rounds to terminate.

Proof. Assume by contradiction that A is a protocol that terminates in R <
2β + o(k lg |V |/k) rounds, for all initial values and choices of participants. We
reduce to k-selection, the 3-player game for the value space V ′, where V ′ contains
one entry for every multiset of k values drawn from V , to A.

Alice and Bob simulate A for n players where: (1) SA contains players 1
through k, SB contains the remaining players, and (2) I activates players 1
through k, and provides each a different value from the multiset described by
va ∈ V ′. Given k simulated outputs, Bob can reconstruct and output the unique
multiset described by these values. By Theorem 4 Bob will always output va

in R rounds, contradicting Theorem 1, since 2β + lg |V ′|/2 = 2β + lg |V |k
k! /2 =

2β + Θ(k lg |V |
k ) rounds.

Corollary 2. Any protocol for reliable broadcast, leader election or static k-
selection has a jamming gain of at least 2 and a disruption-free running time of
Ω(log |V |), Ω(lg n−1

k ), and Ω(k lg |V |
k ), respectively. ��

6.2 Combining Malicious and Crash Behavior

We now study the impact of combining malicious behavior with crash failures.
We assume that the adversary, in addition to having a budget of β messages,
can also crash up to t players. We consider the problem of binary consensus.
The n honest players each propose a value. Liveness requires that all non-crashed
players eventually decide a value. Agreement requires all players that decide to
choose the same value. Validity requires that if all non-crashed players propose
the same value, then all deciding players choose that value.
1 Often k-selection is oblivious to initial values. We allow a dependence on the initial

values, strengthening the lower bound.
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By a simple indistinguishability argument, it is easy to see that consensus
is impossible if n ≤ 2t: it is impossible to distinguish a correct player from a
crashed player that is simulated by the adversary; thus no player can decide in
an execution in which t players propose ‘0’ and t propose ‘1’.

We therefore assume that n = 2t+1, and establish a lower bound of 2β+Θ(t)
on the round complexity of consensus. Our bound reveals the interesting fact
that the possibility of crashed honest devices increases the power of the malicious
adversary. This is perhaps surprising as, if there is no malicious adversary, crash-
failures have no effect on termination (in a synchronous broadcast network).

As before, we use a simulation by Alice and Bob of the (t-resilient) n-player
consensus protocol. The simulation, however, is more challenging than those
used for the n-player problems studied previously as we must compensate for
the crash failures. We do not start the simulation from the initial configuration,
but instead from one of two univalent configurations arising after t rounds. These
configurations are constructed in Lemma 3, which is interesting in its own right as
it exhibits executions in which information (about initial values) is transmitted
at most one bit per round. By combining it with valency arguments, we show
how the 3-player game can aid the construction of involved lower bounds.

Theorem 8. Any t-resilient binary consensus protocol requires at least 2β + t
rounds to terminate.

We fix the environment such that if multiple messages are sent in a round, and
the adversary does not broadcast, then the message sent by the player with the
smallest id is received by everyone. An execution (or prefix) is failure-free if it
includes no crashes or broadcasts by the adversary.

Given these assumptions, it is clear that each initial configuration results in
a deterministic failure-free execution. We represent all of these possible failure-
free executions as a tree T . Every execution begins at the root, and a node at
depth r represents the execution at the beginning of round r. Each node at
depth r contains one outgoing edge for every possible message m that may be
received in round r, and one outgoing edge for a silent round (labeled ⊥). Thus,
every failure-free execution of A is represented by a single path in T . Accordingly,
for each initial configuration c, we say that a node x ∈ T is reachable from c—
with respect to A—if the path associated with c’s failure-free execution includes
node x. We define the tree T (A) to be T pruned to contain only reachable
nodes. That is, if x ∈ T (A), then there exists some initial configuration c for
which x is reachable. Notice that if a depth r node x is reachable for two initial
configurations c and c′, and some player i has the same initial value in c and c′,
then at the beginning of round r, player i cannot distinguish c from c′. If c is
0-valent, and c′ is 1-valent, then i cannot decide prior to round r.

Lemma 3. There exists a path of length t in T (A), ending at node Rt, where
Rt is reachable from two initial configurations, c0 and c1, such that some player
pt has the same initial value in c0 and c1, and every crash-free extension of c0

is 0-valent and every crash-free extension of c1 is 1-valent, with respect to A.
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Proof. Starting at the root of T (A), given an initial configuration c0, construct
a path of length t by applying the following: (1) If there exists ≥ 1 outgoing
message edges, choose the message from the player with the smallest id. (2)
Otherwise, follow the ⊥ edge. Let Rt be the node reached after t iterations.

Configuration c0 contains either a majority of ‘0’s or a majority of ‘1’s. Notice
that a majority contains at least t+1 players, since n = 2t+1. Assume without
loss of generality that a majority of players (i.e., at least t + 1) propose ‘0’ in
c0. This implies that any crash-free extension of c0 must decide ‘0’, since any
such execution is indistinguishable from one in which all players propose ‘0’, and
those ≤ t players proposing ‘1’ are crashed nodes emulated by the adversary—in
which case a decision of ‘1’ violates validity.

We now construct an initial configuration c1. Denote by P the set of players
that broadcast messages which were received along the path to Rt. Note that
P contains ≤ t players. Choose c1 such that the players in P propose the same
initial value as in c0, and the remaining players (at least t + 1) all propose ‘1’.
Choose some pt ∈ P . (If |P | = 0, then arbitrarily choose one player pt to have
the same initial value in c0 and c1.) It is clear, by the same reasoning applied
to c0, that all crash-free extensions of c1 must decide ‘1’. It follows that Rt is
reachable from c1, by a straightforward induction argument.

Proof (Theorem 8). Let α0 (resp. α1) denote the failure-free execution pre-
fix starting from c0 (resp. c1) and ending at Rt. Executions α0 and α1 are
indistinguishable with respect to pt; hence pt has not decided prior to round
t. To this point, the adversary has used zero broadcasts. To achieve a further
2β delay, we defer to Alice and Bob, who can solve the binary communication
game by performing a crash-free simulation of the n-player protocol, in which
Alice begins in the final state of α0 or α1, and Bob simulates pt. This simulation
cannot terminate in fewer than 2β round, implying the desired bound. �

Corollary 3. Any t-resilient binary consensus protocol has a jamming gain of
at least 2 and a disruption-free complexity of Ω(t). ��

7 Upper Bounds for the n-Player Problems

We now present protocols for reliable broadcast, leader election, static k-selection,
and binary consensus. Our reliable broadcast and consensus protocols match the
lower bounds. Those for leader election and k-selection leave a gap.

Reliable Broadcast. An algorithm for reliable broadcast follows from the algo-
rithm in Section 5. The source runs Alice’s protocol, and all other players run
Bob’s protocol, resulting in a running time of 2β +O(lg |V |), matching the lower
bound. This protocol requires the source to have a budget of β + lg |V |.
Binary Consensus. Assuming t crashes, consensus can be achieved using reliable
broadcast: each of 2t + 1 players transmits their initial value sequentially. (No-
tice that a crashed player, if there is no malicious interference, transmits a ‘0’,
according to the protocol.) Everyone decides the majority value. The running
time is 2β + Θ(t). Each player needs a budget of β + 1 broadcasts.
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Leader Election. In order to elect a leader, we use a tournament tree, a binary
tree with n leaves, each labeled with a player’s id. Assume c ≥ 1 is an integer
parameter. The protocol begins at the root, and at each step descends to a child
or ascends to the parent. At each step, the protocol determines whether there are
any participants in the left or right subtrees. First, each participant in the left
subtree broadcasts up to c times. If all of these rounds are non-silent, the protocol
descends to the left subtree. Otherwise, the first time a silent round occurs, it
skips the remaining rounds and checks the right subtree: each participant in
the right subtree broadcasts up to c times. If all of these rounds are non-silent,
the protocol descends to the right subtree. Otherwise, on the first silent round,
the protocol ascends to the parent. On reaching a leaf, the identified node uses
reliable broadcast to transmit a ‘1’ if it is participating and a ‘0’ otherwise. In the
latter case, the protocol ascends to the parent and continues. Each participant
needs a budget of 2c lg n + β + 1 broadcasts.

Theorem 9. The leader election protocol terminates after 2β c+1
c + 2c lg n + 2

rounds, for all c ≥ 1. ��

k-Selection. A protocol for static k-selection can be obtained by repeating the
leader election protocol k times, each time using reliable broadcast to trans-
mit the initial value. The protocol completes when leader election finds no
further contenders. Each participant needs a budget of 2c lgn + β + log |V |
broadcasts.

Theorem 10. The k-selection protocol terminates in 2β c+1
c +2kc lgn+k lg V +

2k + 2, which equals 2β c+1
c + O(ck lg |V |) if lg n = O(lg |V |), for all c ≥ 1. ��

8 Concluding Remarks

Interestingly, our lower bounds hold for weaker games. Lemmas 1 and 2 imply
that calculating equality, bitwise-and or bitwise-or have the same round com-
plexity as the 3-player game. We also conjecture that even for a randomized
algorithm, 2β + Θ(lg |V |) rounds are needed. A future research direction is to
extend our results to multihop environments.
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Abstract. Self-stabilization ensures automatic recovery from an arbitrary state;
we define self-organization as a property of algorithms which display local at-
tributes. More precisely, we say that an algorithm is self-organizing if (1) it con-
verges in sublinear time and (2) reacts “fast” to topology changes. If s(n) is
an upper bound on the convergence time and d(n) is an upper bound on the
convergence time following a topology change, then s(n) ∈ o(n) and d(n) ∈
o(s(n)). The self-organization property can then be used for gaining, in sub-
linear time, global properties and reaction to changes. We present self-stabilizing
and self-organizing algorithms for many distributed algorithms, including dis-
tributed snapshot and leader election.

We present a new randomized self-stabilizing distributed algorithm for cluster
definition in communication graphs of bounded degree processors. These graphs
reflect sensor networks deployment. The algorithm converges in O(log n) ex-
pected number of rounds, handles dynamic changes locally and is, therefore, self-
organizing. Applying the clustering algorithm to specific classes of communica-
tion graphs, in O(log n) levels, using an overlay network abstraction, results in a
self-stabilizing and self-organizing distributed algorithm for hierarchy definition.

Given the obtained hierarchy definition, we present an algorithm for hierarchi-
cal distributed snapshot. The algorithms are based on a new basic snap-stabilizing
snapshot algorithm, designed for message passing systems in which a distributed
spanning tree is defined and in which processors communicate using bounded
links capacity. The combination of the self-stabilizing and self-organizing dis-
tributed hierarchy construction and the snapshot algorithm form an efficient self-
stabilizer transformer. Given a distributed algorithm for a specific task, we are
able to convert the algorithm into a self-stabilizing algorithm for the same task
with an expected convergence time of O(log2 n) rounds.

1 Introduction

The availability and robustness, as well as the possibility for on-demand reconfiguration
of large systems, are in many cases vital; be it clusters of servers that support commer-
cial activity, a grid of computers that participate in a complicated computation or a
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dynamic sensor network. In particular, an important aspect for large on-going systems
is the ability to automatically recover from an inconsistent state, namely to be self-
stabilizing ([11]) or in other words, to have a system that can be started in an arbitrary
state.

To capture the need of the industry in autonomic and self-* systems, we propose
combining self-stabilization (in fact SuperStabilization [12]) with self-organization.
While self-stabilization is well defined, the self-organization property has no widely
agreed upon definition. We propose to define self-organization as satisfying two main
properties: locality and dynamicity. Namely, we require that (1) the algorithm stabilizes
in sublinear time with regards to the number of processors and that (2) the addition and
removal of processors influences a small number of other processors’ states. In other
words, if s(n) represents the stabilization time and d(n) represents an upper bound
on the stabilization time (and number of state changes) following a dynamic topology
change, then: s(n) ∈ o(n) and d(n) ∈ o(s(n)).

In this work, we enable algorithms to define (on the fly) and then use hyper com-
munication links, which are overlay links that are constructed of communication links
along a path. We regard the time that a message travels over such a link as one time
unit, as (almost) no processing is involved in forwarding messages over these links
(e.g., [13, 26], MPLS [6]).

Main Contribution. We define the self-organization property to capture locality and
dynamicity. We present a clustering algorithm (in fact, a distributed maximal indepen-
dent set algorithm) which is both self-stabilizing and self-organizing. To realize the
clustering algorithm in an asynchronous system we present a scheme of local synchro-
nization, achieved by using a local snapshot protocol. We employ the aforementioned
clustering algorithm to define a graph hierarchy which can be used to convert any dis-
tributed task to be self-stabilizing incurring only a sublinear time overhead.
• Self-Stabilizing and Self-Organizing hierarchy definition. The hierarchy of subsys-
tems is defined by partitioning the communication graph into small clusters, after which
clusters are merged to form bigger clusters and so on. The partition can be done accord-
ing to a designer’s input, using an automatic off-line clustering algorithm or even an
on-line clustering algorithm that reflects the system’s current behavior. In particular,
we suggest a randomized self-stabilizing and self-organizing partition that is based on
periodical collection of local topology (up to a certain distance). The collected local
topology supports a randomized local leader election, in which a non leader proces-
sor that does not identify a leader within a certain distance x tries to convert itself to
a leader. Leaders within distance x from each other are eliminated, until there are no
leaders that are within distance x or less from each other. Higher level partitions, using
larger distances and overlay network abstraction between leaders, are constructed in a
similar way.

In asynchronous systems, our clustering algorithm uses (for each processor) a (local)
self-stabilizing snapshot algorithm for obtaining local synchronization of actions.
• Self-Stabilizing snapshots. We present a snap-stabilizing (e.g., [7]) snapshot algo-
rithm for distributed systems, that uses message passing with bounded link capacity, in
which a spanning tree is distributively defined. Our snapshot algorithm is designed for
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a message passing system in which any initial state of link contents is considered and
in which the possibility of messages overflow (due to sending a message through a full
link) is incorporated into the model.

Our snapshot algorithm can also be applied to systems with a general communica-
tion graph in which a rooted spanning tree is distributively defined by another self-
stabilizing algorithm. The spanning tree may be an output of a self-stabilizing (BFS)
rooted tree construction algorithm. In this case, however, we obtain only on-demand
stabilization rather than snap-stabilization. On-demand stabilization ensures that re-
gardless of the number of new requests (for snapshots), the system reaches a state, such
that eventually any new request results in a correct output (snapshot). In other words,
stabilization does not rely on repeated invocations of new (snapshot) requests. Our on-
demand self-stabilizing snapshot algorithm serves us as a basic building block in order
to obtain our hierarchical snapshot schemes.
• Overlay network based snapshot. We suggest an approach for hierarchical snapshot
based on an (fifo preserving) overlay networks abstraction. We enable each subsystem
to perform an independent snapshot, and further enable each level of the hierarchy to
perform a local snapshot. We suggest the use of overlay communication links which “di-
rectly” connect leaders of clusters. It is worthwhile noting that an (fifo) overlay network
link may be in fact a path of physical links. It is also evident that the communication
over an overlay link is much faster than the sum of the single hop communication links
that implement the overly link1.

Leaders of subsystems are defined, and the communication between processors in
different subsystems traverses the overlay communication links between the leaders of
the subsystems. Thus, there is no need for recording the messages over physical links
between subsystems unless they are part of an overlay communication link. When a
snapshot is invoked by a leader of a subsystem (possibly due to a request forwarded
to the leader by another processor), the leader uses the overlay network to notify (send
snapshot markers to) the leaders of the subsystems that belong to its subsystem. These
leaders, in turn, are responsible for performing a snapshot in their subsystem in the
same manner.

Related Work

• Self-organization. In recent years, the concept of self-organization has been widely
mentioned in the scope of distributed computing and peer to peer networks. Many works
have claimed being self-organizing, but a mere fraction of these works also tries to give
a specific definition of what self-organization really is. In [2] a framework for self-
organization is proposed, including formal definitions of the self-organization concept
and complementary proof techniques which can be used to prove that algorithms are
indeed self-organizing.

Each algorithm is required to have an associated evaluation criterion, which operates
on the immediate neighborhood of a process. This evaluation criterion does not take
into account the influence of other local neighbors, say those that are within a constant
distance.

1 In some cases, preassigned frequencies or/and supporting switching hardware can be used.
e.g.,MPLS–[6].
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• Fault containment. Fault containment, using persistent bits, voting on replicated bits
(usually for non reactive systems) is another way of addressing locality (e.g., [20, 16,
1, 4]). The idea is to repair transient faults starting from a safe global system configu-
ration. In such a case, it is possible (unlike in the case of topology changes) to change
the state of the affected processors back to the state prior to the fault. In this context,
our algorithm is self-stabilizing and when started in a safe configuration can handle k
transient faults as well as topology changes occurring approximately at the same time,
in expected O(log k) rounds. Moreover, our scheme is the first to support many core
distributed tasks, such as self-stabilizing leader election algorithm and snapshots algo-
rithms in O(log2 n) expected rounds.
• Cluster and hierarchy construction. Self-stabilizing and self-healing constructions of
hierarchies, in the domain of sensor networks, appear in [28]. The authors divide the
plane into hexagonal cells. In each cell a head that corresponds with a cluster leader is
elected. The existence of a unique processor, the big node, which acts as an initiator is
assumed. The big node determines the center of the first hexagon, fixating the location
of its own cluster. The big node elects heads in adjacent hexagonal cells which will
subsequently elect heads in their adjacent cells. The time complexity of this algorithm
is obviously proportional to the diameter of the communication graph. Our algorithm
does not assume a leader and converges within O(log n) expected number of rounds and
reacts to dynamic changes locally. A constant time clustering algorithm is presented in
[8]. The algorithm assumes that processors can measure time and therefore does not fit
asynchronous systems.

Our clustering algorithm is in fact a maximal independent set algorithm. A classical
maximal independent set algorithm is presented in [24]. The algorithm is designed for
a synchronous system and converges (from a pre-defined initial state) within O(log n)
expected convergence time. Our algorithm is designed for asynchronous systems, is
self-stabilizing and self-organizing and converges within expected O(log n) rounds for
constant degree graphs.

A recent work by Wattenhofer and Moscibroda [25] presents an algorithm for com-
puting a maximal independent set in radio networks. The system model is fundamen-
tally different from the one presented here: Processors can broadcast their messages
asynchronously, but no collusion detection mechanism is provided. The algorithm pre-
sented converges in (expected) polylogarithmic time, and processors which join the
algorithm are promised to be covered in (expected) polylogarithmic time.

In [21], the authors present lower bounds on distributed approximation algorithms
for the minimum vertex cover problem. Their bounds can also be applied to the max-
imum independent set problem. We do not seek a maximum independent set, and our
algorithm defines a maximal independent set.

Applications of hierarchy in the self-stabilization domain are described in [15]. The
authors argue that the hierarchical construction can be used to shorten the conver-
gence time of various self-stabilizing distributed algorithms. As an example, the au-
thors present an application to spanning tree construction. However, the authors do not
present an algorithm for defining the hierarchy but assume it is defined beforehand.
• Snap-stabilization. Snap-stabilizing algorithms were first introduced in [3]. A pro-
tocol is said to be snap-stabilizing if, upon the first invocation of the protocol by one
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processor, the protocol behaves according to its specifications. The snapshot algorithm
we present is snap-stabilizing, provided specific preconditions are met; Namely, a tree
structure is defined and a leader is present beforehand. When the leader invokes a snap-
shot, the snapshot terminates with a correct answer.
• Dynamic graph algorithms. Extensive research on distributed dynamic algorithms
appeared in the literature (e.g., [13] and the references therein). Still, our algorithm
is the first self-stabilizing and self-organizing distributed (graph) algorithm. Another
related aspect of our work is related to dynamic (graph) data structures (e.g., [17] and
the reference therein). We achieve a committing time (logarithmic and polylogarithmic)
in (fault tolerance) distributed settings for an important class of graphs.

Paper organization. In Section 2 we present the system model and in Section 3 the
basic on-demand snapshot algorithm. Hierarchy construction schemes are described in
section 4. Conclusions appear in Section 5. More details and most of the proofs are
omitted from this extended abstract and can be found in [14].

2 System Model

The system consists of n processors, denoted by p1, p2, . . . , pn. The processors are
connected by communication links. Each processor is modeled by a state machine that
can send and receive frames (or low level messages) to/from a subset of the processors.
We use a uni-directed communication graph G = (V, E) to represent the system, where
each processor pi is represented by a vertex vi ∈ V and each communication link used
for transferring frames from pi to pj is represented by an edge (i, j) ∈ E. We further
assume that the existence of the edge (i, j) ∈ E implies the existence of an opposite
directed edge (j, i) ∈ E and that the number of edges attached to a processor is bounded
by a constant. We define the dist of two processors p and q, dist(p, q), as the length of
the shortest path between p and q in the graph. For a processor p and a constant x, we
denote fp(x) as the number of processor q such that dist(p, q) ≤ x. We further define
fG(x) (or just f(x) where G is clear from the context) as the maximal fp(x) over all
processors p in the graph.

Overlay edges. We use the term overlay edge to denote a path of edges that connects
two processors in the system. When the path is predefined and fixed, it acts as a virtual
link in which almost no processing is required by intermediate processors in order to
forward the message from source to destination. We allow processors to define and
use, on the fly, overlay edges to other processors, when the underlying path is known.
We regard the time it takes a message to traverse such an overlay link as the time for
traversing a link that directly connects two neighboring processors. The definition is
motivated by (e.g., telephony) systems, where switches along a path are configured for
a session and the path is essentially a wire. In such a case, messages are buffered only
at the endpoints, resulting in an overly link of the same capacity as the original links.

We assume class of graphs for which a correlation exists between the number of
edges along a shortest path and the geographical distance of the path’s end-points.

The system is asynchronous, meaning that there is no correlation between the non
constant rate of steps taken by the processors. We assume that the capacity of the com-
munication channels (equivalently the number of items in the fifo queues that represent
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the links) is bounded, by the constant lc. Whenever a processor pi sends a frame to a
neighbor pj , when the link (i, j) already contains lc frames, we assume that one of the
frames (not necessarily the new one) is lost while the fifo order of the rest of the frames
is preserved. In fact, since frames can always be lost, we restrict the pattern of frame
loss steps to be such that if frames are sent infinitely often, frames are also received
infinitely often.

We further abstract the activity of communication links by assuming an underline
snap-stabilizing ARQ data link algorithm that transfers frames in order to ensure that
high level messages transfer respects the following: (1) messages sent from pi to pj are
received by pj in a finite (but yet unbounded) time (2) and message delivery respects
the exactly once delivery and fifo ordering policies. We note that the ARQ algorithm
performed on one link of a processor pi does not block the receive operations (and
corresponding steps) from the links attached to pi. We assume that eventually when pi

sends a message m to pj (and pi does not send further messages), pi receives acknowl-
edgment for m after pj received m.

A configuration c of the system is a tuple c = (S, L); S is a vector of states,
〈s1, s2, · · · sn〉, where the state si is a state of processor pi; L is a vector of link states
〈li,j , · · · 〉 for each (i, j) ∈ E. A link li,j is modeled by a fifo queue of frames that
are waiting to be received by pj and the contents of the queue is the state of the link.
Whenever pi sends a frame f to pj , f is enqueued in li,j . Also, whenever pj receives
a frame f from pi, f is dequeued from li,j . A processor changes its state according to
its transition function (or program). A transition of processor pi from a state sj to state
sk is called an atomic step (or simply a step) and is denoted by a. A step a consists of
local computation and of either a single send or a single receive operation.

We model our system using the interleaving model. An execution is a sequence of
global configurations and steps, E = {c0, a0, c1, a1, . . .}, so that the configuration ci

is reached from ci−1 by a step ai of one processor pj . The states changed in ci, due to
ai, are the one of pj (which is changed according to the transition function of pj) and
possibly that of a link attached to pj . The content of a link state is changed when pj

sends or receives a frame during ai. An execution E is fair if every processor executes a
step infinitely often in E and each link respects the bounded capacity loss pattern. In the
scope of self-stabilization we consider executions that are started in an arbitrary initial
configuration.

A task is defined by a set of executions called legal executions and denoted LE. A
configuration c is a safe configuration for a system and a task LE if every fair execution
that starts in c is in LE. A system is self-stabilizing for a task LE if every infinite
execution reaches a safe configuration with relation to LE. We sometimes use the term
“the algorithm stabilizes” to note that the algorithm has reached a safe configuration
with regards to the legal execution of the corresponding task.

The snapshot task S for a system is defined by a set of executions ES started in
an arbitrary configuration, so that if a snapshot starts in an atomic step ar, there is a
configuration cs, that follows ar, in which a processor receives a global snapshot gs.
Moreover, assuming r is minimal, there exists an execution E ′ that starts immediately
before ar, reaches gs and then continues to the configuration cs. E ′ may be different
from the execution which actually took place.
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We use the notion of asynchronous rounds to measure the time complexity of an algo-
rithm. The first asynchronous round in execution E is the shortest prefix of E in which
each processor (or process) communicates with all of its neighbors (either through a
directly connecting communication link or through an overlay edge). The second asyn-
chronous round in E is the first asynchronous round of the suffix of E that immediately
follows the first asynchronous round in E . The time complexity of an algorithm is the
number of asynchronous rounds (or simply rounds) that are required to achieve the task
of the algorithm.

3 On-Demand (Snap-) Stabilizing Message Passing (Tree-)
Snapshot Algorithm

Our starting point is the unbounded snapshot algorithm presented in [18] and the snap-
stabilizing algorithm presented in [7] which we modify to a bounded message passing
snap-stabilizing algorithm. Namely, we ensure that any new request for a snapshot will
result in a correct snapshot. This requirement differs from the one presented in [18]
where snapshots must be continuously and infinitely often invoked. In our case, the
algorithm is ready for future requests even when no snapshot requests are made.

The snapshot algorithm uses, as a building block, a snap-stabilizing data link algo-
rithm which is specifically designed for bounded capacity links (the data link algorithm
appears in [14]. The algorithm uses three variables to control the data flow on the link.
current[q] holds the current value which is sent to q. next[q] holds the next value
to be sent, which is suspended until an acknowledgment on current[q] arrives. last[q]
holds the last acknowledged message. The snapshot algorithm then uses next[q] to send
messages to a neighbor q, and waits for an acknowledgment in last[q]. To ensure self-
stabilization, a sequence number is attached to each message sent, and is incremented
by one modulo two times the link capacity plus one for each new message. To ensure
snap-stabilization, each message is sent repeatedly two times the link capacity plus one
– a step that ensures that the message had arrived and that the acknowledgment is valid;
if lc is the link capacity, then there can be at most 2 · lc messages in transit on the link.
By using 2 · lc+1 labels, one label is guaranteed to be a new label, which does not exist
in the link. This, in turn, ensures that a correct acknowledgment is received.

The algorithm is designed for a system in which a rooted spanning tree is distribu-
tively defined. It is based on performing two consecutive tree-PIFs (propagation of in-
formation with feedback using a spanning tree) and then employing the original snap-
shot algorithm of [5]. Each PIF uses the rooted tree in order to propagate a command
(initialize and then prepare) and receive feedback on the completion of the propaga-
tion (of the initialize and prepare commands, respectively). A processor that receives
a command from its parent, propagates it to its children and also “cleans” the non-tree
edges attached to it. Once a processor p receives an acknowledgment from all its chil-
dren that their subtree received the command and once p finishes cleaning the attached
non-tree links, p sends an acknowledgment to its parent regarding the completion of
the command propagation. Both tree-PIFs are completed within O(d) rounds (assum-
ing a BFS tree is used). When the first (initialize) tree-PIF is completed, no marker of
previous incarnations of the snapshot algorithm is present in the system and processors
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disregard all incoming snapshot markers. After the second (prepare) tree-PIF is com-
pleted, processors do not ignore markers and the root may then initiate the original
snapshot algorithm of [5].

A detailed description of the algorithm, as well as the correctness proof and com-
plexity analysis, appears in [14]. We mention here the main properties of the snapshot
algorithm:

Theorem 1. Once the root of the tree initiates a snapshot cycle, a correct snapshot will
be obtained in O(h) rounds, where h is the height of the tree.

4 Hierarchical Construction Schemes

A hierarchical system is represented by a communication graph, G = (V, E) and a hier-
archy treeHT = (Vh, Eh). Each node inHT , li, represents a set of nodes in V , called a

Predicates:
leader(Cp) :=

∃q ∈ Cp|q �= p ∧ leader(q)

1 (leaderp ⊕ leader(Cp)) = true:
/* do nothing (stable). */

2 leaderp = false ∧ leader(Cp) = false:
3 rtpp ← random()
4 candidatep ← true
5 C′

p ← new snapshot
6 if leader(C′

p) = true then
7 candidatep ← false
8 leaderp ← false
9 else if ∀q ∈ C′

p candidateq! = true∨
10 (〈rtpq, idq〉 < 〈rtpp, idp〉) then
11 leaderp ← true
12 else
13 candidatep ← false
14 leaderp ← false
15 end

16 (leaderp = true ∧ leader(Cp) = true):
17 candidatep ← false
18 leaderp ← false

Fig. 1. Asynchronous Leader Election Algorithm
for Processor p

subsystem, so that if li and lj are at the
same level of HT , then li ∩ lj = ∅.
Furthermore, if K is a set of nodes at
level i of HT , then ∪j∈K lj = V . The
nodes of the graph are processors and
the edges are their communication chan-
nels. We require that each subsystem is
a connected component of G.

Next we present a self-stabilizing and
self-organizing algorithm for construct-
ing clusters. In general, the clustering al-
gorithm builds clusters of size smaller
than a fixed parameter. Furthermore,
each cluster is defined by a “native”
leader.
•Cluster construction. The clustering al-
gorithm wepresent isamaximal indepen-
dent set algorithm, where each dominator
is denoted as a leader and each dominatee
joins the closest dominator (ties are bro-
ken by, say, leaders identifiers).

Each processor p uses several key
variables: leaderp, candidatep, idp and
rtpp. leaderp denotes whether p is cur-
rently a leader. candidatep is set to true
if p is trying to become a leader. idp

is the identifier each processor has, and
rtpp is a random temporary identifier
used to break the symmetry between
processors.
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One may try using the processors’ identifiers in order to break symmetry. However,
occasionally an unfortunate order of id’s may lead to a convergence time which is pro-
portional to the diameter of the graph. We use randomness to break ties in order to
overcome such a scenario.

The construction algorithm is composed of several parts. All processors participate in
an (asynchronous) update algorithm up to distance x. The update algorithm is designed
for an asynchronous system. Each processor p holds a table of tuples, each of the form
〈idq, distq, parentq〉. Each tuple represents a processor q in the communication graph.
idq is the unique identification of q, distq is the minimal distance between p and q and
parentq is the id of a neighboring processor of p, which is the first on a shortest path
from p to q. Repeatedly, p combines all the tables of its neighbors and for each of the
conflicting tuples (in which the id is the same), p chooses the tuple with the minimal
dist (further ties are broken using the parent value). Next, p chooses only entries with
dist = k ≤ x, such that there exist entries with dist = j for all j < k. All other entries
are deleted. The removal of entries ensures fast stabilization [12], as an entry which is j
hops away from p must be connected to p by a path, so there must exists entries which
are 1, 2, . . . , j− 1 hops from p. Afterwards, p adds 1 to the distance field of every tuple
and finally adds the tuple 〈idp, 0, nil〉 to form the new table.

We adapt the aforementioned update algorithm to our system in several manners.
First, each tuple will hold two extra values, leaderp, rtpp. Next, each processor p con-
tinuously sends its table to all neighboring processors. In addition, p maintains an in-
ternal array which consists of the most recent topology tables p received from each
neighboring processor. The computation of p’s topology table is done on the basis of
this array. Furthermore, in the validation phase we also delete entries with dist > x.
Consequently, p’s table will reflect its neighborhood up to distance x from p. The cor-
rectness of the revised update algorithm is trivially preserved, and the convergence time
is O(x) rounds.

Based on the update tables, each processor p constructs a tree rooted at p and of
depth not exceeding x. Using the tree, each processor invokes the snapshot algorithm
to collect the state of its neighborhood. We use the snapshot algorithm to perform a
PIF algorithm, and by adding information to the markers used in the snapshot process
we achieve the desired PIF effect. The number of trees and snapshot protocols each
processor must participate in can be calculated from the topology collected earlier.

Constantly (this is to say that the time frame is not important), each processor p will
take a snapshot of the surrounding neighborhood (up to distance x). After the snap-
shot is collected, the algorithm in Figure 1 is invoked. Since the snapshot algorithm
is guaranteed to be finished in each invocation (although the result might be incorrect,
since the rooted tree has not stabilized yet), we are guaranteed that future invocations
of the snapshot algorithm will take place. For a snapshot obtained at p, Cp, we denote
leader(Cp) = true if there exists a processor q �= p in Cp, such that leaderq = true.

Let us assume that a complete snapshot Cp is obtained at p. The four combinations of
leaderp and leader(Cp) determine the course of actions p must follow. First, consider
the most simple cases where leaderp = false ∧ leader(Cp) = true or leaderp =
true ∧ leader(Cp)= false. In these cases, p should avoid taking any action, since, as
far as p can tell, the situation is correct. The complex cases are when there are no leaders
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in p’s vicinity and p is not a leader itself or when p is a leader and can see another leader
within a distance of x from itself. In case leaderp =false∧ leader(Cp)=false, p will
first choose a random number (from a predetermined range) and store it in rtpp. Then,
p will assign true to candidatep (Figure 1 lines3-4). The next operation is propagating
the information that p wishes to become the leader of its neighborhood. This is achieved
through the use of the snapshot protocol which results in a new snapshot at p, C′

p (line
5); such propagation can be achieved by piggy-backing information on the markers
of the snapshot. Now, if C′

p does not contain information about a leader or another
candidate, p can safely place itself as a leader and set leaderp = true. However, if
leader(C′

p) = true holds, p should set candidatep to false, since there is now a
leader in p’s neighborhood. Last, if there are other candidates in C′

p, p will become a
leader if (and only if) the tuple 〈rtpp, idp〉 is larger than all other candidate’s tuples in
C′

p (line 10).
The last case is when leaderp = true∧ leader(Cp)= true (line 16). Upon detecting

such a condition, p will immediately assign leaderp and candidatep with false and
will start a new cycle of the algorithm..

The correctness proof, as well as the time complexity analysis, appears in [14]. We
only mention the following corollary.

Corollary 1. In every fair execution, each processor has a positive probability of be-
coming stable in every O(x) rounds and it holds by [19] that within O(log n) expected
number of rounds, the algorithm converges to a stable state.

• Hierarchy construction Constructing the hierarchy is achieved by a repeated appli-
cation of the clustering algorithm. We suggest using the clustering algorithm on the
original graph G, constructing clusters with x > 1 (in essence, a minimal x-dominating
set). We then propose to dynamically define an overlay network between the leaders of
each cluster and apply the same scheme to the resulting graph. The process is completed
after a single cluster, composed of the entire graph G, is finally defined. The resulting
hierarchy is of O(log n) levels, and in each level i (level 0 is the original graph, G)
there exist at most n

2i processors. This bound arises from the fact that each leader p has
at least one processor directly connected to p, which is not directly connected to any
other leader. Since there exist O(log n) levels in the hierarchy and since communica-
tion on overlay edges is considered non expensive, the hierarchy construction algorithm
stabilizes within O(log2 n) expected rounds (O(log n) for each level, times O(log n)
levels), assuming the degree of each of the hierarchy levels is bounded.

Next, we describe the construction of the overlay network and present a graph class
in which the degree of each hierarchy level is bounded.
• Overlay network construction. Let G = G0 = (V0, E0) be the original graph, to

which we apply our clustering algorithm. We define Gi = (Vi, Ei) so that Vi = {p ∈
V0| p is a leader in Vi−1} and (p, q) ∈ Ei iff the length of the shortest path between
p and q in G0 is at most 2 · xi + xi−1 (where x is the parameter of the clustering
algorithm). This construction can be easily achieved by each leader p by extending the
update algorithm to include processors up to distance x+1 (instead of x) and adding the
list of leaders at distance x to each processor p to p’s tuple. We then apply the clustering
algorithm on Gi, so that leaders will dominate processors up to distance xi+1 in G0.
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Note that the criteria for distance among leaders is expressed in terms of G0 and the
original x, namely; xi+1 for level i of the hierarchy.

Lemma 1. Each resulting graph Gi is a connected graph.

Next, we describe the geographically affined class of graphs such that the clustering
algorithm and the overlay construction, applied on these graphs, produces an overlay
graph of bounded degree. This class is implied by a typical deployment of sensor net-
works.
• Geographically affined graphs. In this class of graphs we wish to explore the relation
between the Euclidean distance between processors and the length of the shortest path
between them. This definition is similar to the embedding schemes presented in [23].
We first define the geographically affined class of graphs.

Definition 4.1. Let G = (V, E) be a graph embedded in the Euclidean plane. For p, q ∈
V , define ‖(p, q)‖2 as the Euclidean distance between p and q, and dist(p, q) as the
number of hops in a shortest path from p to q in G. G is Geographically affined iff there
exist a constant c ≤ 1 such that ∀p, q ∈ V : c · dist(p, q) ≤ ‖(p, q)‖2 ≤ dist(p, q).
In [14], we show that each geographically affined graph has a bounded degree. Further-
more, we also show that the hierarchy construction algorithm presented above produces
a bounded degree graph in each level of the hierarchy. The proof of the next Lemma
appears in [14].

Lemma 2. Let G0 = (V0, E0) be an Euclidean graph, such that G0 is geographically
affined. Each graph in the series {Gi}log n

i=0 , resulting from the consecutive application
of the clustering algorithm with parameter xi+1, has a degree at most 16

c2 · (2 · x + 1)2.

Self-organization properties. Next, we prove that our algorithms are self-organizing.
Firstly, for the clustering algorithm, it is worthwhile noting that locality holds since the
algorithm stabilizes within expected O(log n) rounds. Thus, we focus our discussion
on dynamic changes of the communication graph — namely, on addition and removal
of communication links. We wish to draw the readers’ attention to the fact that addition
(or removal) of processors can be modeled by the addition (or removal) of their com-
munication links (which is a bounded number of operations). When we discuss addition
of processors, we consider addition of processors in a predefined state or in an arbitrary
state. We only consider topology changes after the algorithm has stabilized (otherwise,
the global stabilization time applies).

Lemma 3. Starting in a safe configuration of the clustering algorithm, if the update
table of processor p has changed due to a channel (respectively, processor) addition
or removal in configuration ci and the channel (respectively, processor) is attached (a
neighbor) to p, then within expected O(x+log f(x)) = O(1) rounds, a safe configura-
tion is reached. Furthermore, for each processor q, such that dist(p, q) > 2 · x, q will
remain stable.

We now consider the effects that channel additions have on the clustering algorithm.
Let us assume that a new (bi-directional) channel, (p, q), is added between processors
p and q. We argue that any stable processor distanced more than 2 · x from either p or
q will remain stable. Furthermore, within an expected constant number of rounds, the
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algorithm will stabilize. This clearly follows from Lemma 3. Let us now assume that
a channel (p, q) is removed. Let NL be the set of all processors, so that the removal of
(p, q) leaves them leaderless or unstable. We argue that the constant number of proces-
sor in NL are at most at distance x from either p or q and that stable processors which
are distanced farther than x will remain stable. Processor removal is easily reduced to
the removal of all channels attached to this processor from the communication graph.

We also discuss additions and removals of processors. We argue that stable proces-
sors which are farther than 2 · x from the removed/added processor will remain stable.
This also clearly follows from Lemma 3.

Thus, our clustering algorithm is self-organizing, since the expected convergence
time is O(log n) ∈ o(n) and the number of processors which change state due to a
dynamic topology change is constant. In fact, when k changes occur approximately at
the same time, the expected convergence time is O(log k) following the last change
occurrence.
• Application to hierarchy. Let us examine a dynamic change at G0. There are two pro-
cessors, p and q, which are involved in the change ((p, q) was either added or removed).
We first concentrate on p. From Lemma 3 we infer that only processors within a dis-
tance of 2 ·x+1 hops from p can be affected in G0. The dynamic change can influence
the state of leaders within this range, which can be regarded as a new dynamic change
in G1. The radius of the corresponding influenced region from p in G1 is therefore
(2 · x2 + 2 · x + 1) + (2 · x + 1) around p in G0. In a similar way, the radius of the
influenced region from p in Gi is 2 · xi + 2 · xi−1 + xi−2+ (the radius of influence
in Gi−1). Overall, the area of effect around p in G0 is less than 4 · xi+2. Since G0 is
geographically affined, the Euclidean radius of such a circle is smaller than 4 · xi+2.
The minimal distance in G0 between processor in Gi is at least xi (when counting real
edges, not virtual ones), since they are leaders in Gi−1. Again, since G0 is geograph-
ically affined, the Euclidean distance between leaders is at least c · xi. Using simple
geometric arguments (see [14]) it is evident that the number of processors affected at

Gi because of p is at most 16·(4·xi+2)2

(xi)2 = 256 · x4 = O(1). Since we have to consider q

as well, we double the total number of changes to have a total of O(1) changes in each
level.

To conclude, the hierarchy construction algorithm is self-organizing, since the ex-
pected stabilization time is O(log2 n) ∈ o(n) and dynamic topology changes affect
only O(log n) ∈ o(log2 n) processors. Similarly, when k changes occur approximately
at the same time, the expected convergence time is (O(log2 k) rounds following the last
occurring change.

5 Conclusions

We have given a simple and intuitive definition of self-organization. Furthermore, we
have displayed the relevance of self-stabilization with regards to self-organization. Our
self-stabilizing and self-organizing snapshot algorithm implies sublinear time algo-
rithms in the overlay network model for many core distributed tasks.

Self-stabilizing and self-organizing leader election. The hierarchy construction al-
gorithm which is, by itself, a self-stabilizing and self-organizing algorithm, naturally
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defines a leader for each subsystem. Thus, the topmost subsystem (which contains the
entire system) also has a leader, which we define to be the output of the leader election
algorithm. Hence, the output of the hierarchy construction algorithm can be used to de-
fine a self-stabilizing leader election algorithm which converges in O(log2 n) expected
number of rounds and handles topology changes gracefully in O(log n) rounds.

Self-stabilizing and self-organizing snapshots. Building on top of the hierarchy con-
struction algorithm, we have presented in [14] a self-stabilizing snapshot scheme, where
a global snapshot can be collected in O(log2 n) rounds (in fact, if the hierarchy was pre-
viously defined, only O(log n) rounds are necessary).

Self-stabilizing converter. Our self-stabilizing and self-organizing snapshot algorithm
implies a new efficient tool for converting distributed (reactive, or fixed output) algo-
rithms to self-stabilizing algorithms in sublinear time; the leader of the system can take
repeated snapshots and verify each snapshot for correctness. When a snapshot indicates
an illegal state, a global reset procedure may be initiated, using the infrastructure cre-
ated by the hierarchy definition algorithm, to reach a predefined (and safe) state.

Acknowledgments. Many thanks to Noga Alon and Boaz Patt-Shamir for helpful
discussions.
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Abstract. Distance-sensitivity guarantee in querying is a highly desir-
able property in wireless sensor networks as it limits the cost of executing
a “query” operation to be within a constant factor of the distance to the
nearest node that contains an answer. However, such a tight guarantee
may require building an infrastructure for efficient resolution of queries,
and the cost of maintaining this infrastructure may be prohibitive. Here
we show that it is possible to implement distance-sensitive querying in
an efficient way by exploiting the geometry of the network. Our query-
ing service Glance ensures that a “query” operation invoked within d
distance of an event intercepts the event’s “advertise” operation within
d ∗ s distance, where s is a “stretch-factor” tunable by the user.

1 Introduction

A major application area for wireless sensor networks (WSNs) is environmental
monitoring [1, 2, 3, 4, 5]. The grand vision for these applications is to scatter
thousands of wireless sensor nodes across an area of interest upon which the
nodes self-organize into a network and enable monitoring and querying of events
in the area. An example application is a disaster evacuation scenario where the
rescue workers query the network to learn about fire or chemical threats in the
area.

There are two main modes of operation in most WSN monitoring applica-
tions. The first mode is “centralized monitoring and logging”. For monitoring
and logging purposes it is important to gather information about events in the
network [6, 7]. This can be easily satisfied by enforcing events to exfiltrate data
to a basestation that could forward the data to a monitoring and control center.
In our disaster evacuation scenario, the control and command center needs to
get data about events for logistical purposes, such as deciding how many rescue
workers to send to each region and coordinating the rescue efforts. These data
are also valuable for keeping logs and statistics of events.

The second mode of operation is “in-network querying” or “location-dependent
querying”. In the context of the evacuation scenario, the rescue workers in each
region would need to query the network for nearby events, such as fire/chemical
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threats, and vital statistics from victims. It is inefficient and unscalable, for most
cases, to force the queriers to learn about events only from the basestation, since
it would compel a querier that is very close to an event to communicate all the
way back to a basestation to learn about that event. The inefficiency of the sce-
nario is amplified if the querier needs to get a stream of data from the event.
Using long routes for forwarding data not only increases the latency but also
depletes the battery power of the relaying nodes in the network quickly. Using
the basestation for every query also leads to a communication bottleneck for the
network. For these reasons it is important to be able to discover short (local)
paths from queriers to nearby events.

The desirability of quick resolution of in-network queries via shortest possible
paths is formalized by the distance-sensitivity property. Distance-sensitivity lim-
its the cost of executing a query operation to be within a constant factor (we call
this as the stretch-factor) of the distance to the nearest node that contains an
answer. However, such a tight guarantee may require building an “in-network ad-
vertisement infrastructure” (such as a hierarchical partitioning of the network [8]
or a network-wide advertisement tree [9, 10]) for efficient resolution of queries,
and the cost of maintaining this infrastructure may be prohibitive. In fact many
work on in-network querying [11,12,13] choose to avoid such a guarantee in favor
of best-effort resolution of the queries.

Contributions of the paper. Here we show that it is possible to implement
distance-sensitive querying in an efficient way–using minimal infrastructure– by
exploiting the geometry of the WSN. Our main insight is to combine both modes
of operation in WSN monitoring applications in a synergistic manner. As part
of the data exfiltration mode, any interesting event detection is sent toward the
basestation node, and so the basestation can act as a last resort for resolving
an in-network query. As part of in-network querying mode, queries are also sent
toward the direction of the basestation with the intention that the in-network
advertisements of nearby events (if any) will intercept the query and answer it
in a distance-sensitive manner, or else the query is answered at the basestation
by default. It is at this point that using the geometry of the network comes
handy. By using geometry, we determine the minimum area required for in-
network advertisement for satisfying the distance-sensitivity requirement. More
specifically, we observe that the local advertisements of events can safely ignore a
majority of directions/regions while advertising and still satisfy a given distance-
sensitivity requirement tightly.

As a result, we present a simple (using minimal infrastructure) and lightweight
(cost efficient) distance-sensitive querying service, Glance. The distance-
sensitivity of Glance, is easily tunable. Glance ensures that a query operation
invoked within d distance of an event intercepts the event’s advertisement in-
formation within d ∗ s distance, where s is a “stretch-factor” tunable by the
user. By selecting appropriate values for s, the user can trade-off between query
execution cost and advertisement cost.

Overview of Glance. Let C be a distinguished basestation node in the
network. Let dq be the Euclidean distance between a querying node q and C,
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de the distance between an event e and C, and finally d the distance between q
and e. We observe that for the cost of query operations there are two possible
cases with respect to the angle z formed by locations of q, C, and e. Figure 1
illustrates these two cases, with respect to querying nodes q′ and q′′.

Fig. 1. Two cases with respect to z Fig. 2. Advertise operation for s=2

1. z is larger than a threshold: A large z implies that d is large relative to dq

and de. Thus, it is acceptable for the query to go to C to learn about the
event, since the stretch-factor s can still be satisfied this way. For example,
in Figure 1, z′ is larger than the threshold angle and hence q′ can still satisfy
s by learning about e at C since dq′ ≤ d′ ∗ s.

2. z is smaller than the threshold: A small z implies that d is small relative
to dq and de. Thus, it is unacceptable for the query to go to C, since this
violates the stretch-factor property. For example, in Figure 1, z′′ is smaller
than the threshold angle and hence q′′ cannot satisfy s by going to C since
dq′′ > d′′ ∗ s.

Our advertise operation in Glance (see Figure 2) seeks to optimize for the
above two cases by combining both modes of operation in WSN monitoring
applications:

– Data exfiltration to C proves useful in answering some in-network queries at
C since that would still satisfy the stretch-factor for potential queriers with
a large angle z′ as in case 1 above.

– The advertise operation advertises the event in the network only along a
cone boundary for some distance. The angle x for the advertisement cone is
calculated based on the the stretch-factor s as arcsin(1/s) (as described in
Section 3.2). This cone-advertisement accounts for potential queriers q with
a small angle z′′, whose dq > d′′ ∗ s.
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The query operation is simply a glance to the direction of the basestation;
it progresses as a straight path from the querying node toward C. Once an in-
network advertisement for a matching event is found, the query operation stops
forwarding the query any further and informs the querying node about the match
by sending a reply. (In the worst case, the query reaches C and C sends a reply
back to the querying node.) The querying node can then use the event location
information included in the reply to learn more about the event.

By involving the basestation partially in answering of in-network queries and
by exploiting geometry of the network, we observe that the advertise operation
can constrain itself to a small region as in Figure 2 and still satisfy a given
distance-sensitivity requirement tightly.

Outline of the paper. Next, we discuss related work. In Section 3 we present
Glance. In Section 4, we analyze the performance of Glance. We conclude the
paper with a discussion of future work in Section 5.

2 Related Work

Recently there has been much research on in-network querying. Early work
includes adaptation of publish-subscribe tree structures from the Internet do-
main to the wireless ad hoc networks [14]. Although the basic ideas in publish-
subscribe services may still be applicable for in-network querying problem in
WSN, certain assumptions in the publish-subscribe model does not apply in
WSN. For example, in contrast to the subscriptions that are long-lived, short-
lived ad hoc queries is an important class of querying in WSN. These ad hoc
queries may appear sporadically at any node in the network, as in our fire evacu-
ation scenario. The event sources may be equally unpredictable in WSN, so it is
unclear as to which nodes the subscription trees should be rooted at. Also typical
network sizes considered in WSN are much larger than that of ad hoc network
deployments and battery constraints are more severe in WSN, and hence scala-
bility and inefficiency are a more critical concern for WSN querying services.

Rumor routing [11] provides a novel and tunable in-network querying mech-
anism without any need for localization information. In this approach, an event
employs a set of advertising agents to do a random walk of the network creating
paths that lead to the event. Querying node also sends out query agents which
randomly traverse the network. Whenever a query agent encounters a path set up
by an advertising agent with a matching interest, a route is established between
the query and the event. The scheme is tunable in that for guaranteeing higher
reliability it is possible to increase the number of agents sent from each event and
query, however, rumor routing does not provide any distance-sensitivity guaran-
tees or any deterministic guarantees for querying. Glance improves over rumor
routing by providing a more structured approach to advertising and querying.
Since both the advertise and query operations now target a common node, C,
their meeting distance is shortened greatly compared to a random walk strat-
egy. In addition, using the stretch-factor idea and the cone-advertisement, the
meeting distance of the advertise and query are optimized. Glance also avoids
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wasting energy by not advertising the event in the regions where meeting at C
is already an acceptable solution for the query and event.

Combs and needles algorithm [9] maintains an advertisement infrastructure
over the network for efficient resolution of in-network queries. More specifically,
the event advertisement builds a network-wide routing structure that resembles a
comb, and the query operation searches for an event using a structure resembling
a needle. The paper shows that due to the shapes of these structures the event
and query are guaranteed to intersect. By arranging the distance between the
teeth of the comb structure, Combs&Needles tunes the minimum length for
the needle structure to guarantee that query operation intersects the advertise
operation. Combs&Needles protocol forces the user to fix the cost of querying
to be a constant cost in advance, and compels the advertise operation to do as
much work as necessary to guarantee the fixed cost for querying. In contrast,
in Glance, the cost of querying is designed to be within a constant factor of
the distance to the nearest event, not within a fixed constant cost per se. By
allowing the cost of querying to increase linearly when there is no event nearby
(of course within the constraints of distance-sensitivity), Glance reduces the cost
for advertise operation significantly. Also by using a common node C to focus
the dissemination of information and forwarding of the queries, Glance is able
to construct a very lightweight structure for advertising.

A simple and lightweight solution to in-network querying problem is to use
Geographic Hash Tables (GHT) [12], which store and retrieve information by us-
ing a geographic hash function on the type of the information. However, the basic
GHT protocol is not distance-sensitive since it can hash the event information
far away from the nearby event-query pair and thus violates the stretch-factor. In
contrast to GHT protocol, Glance provides distance-sensitivity guarantees and
also tunability of stretch-factors. The distance-sensitivity problem of GHT can
be alleviated by using hierarchies: either by a structured replication at different
levels of a hierarchical partitioning [12], or by using geographically bounded hash
functions at increasingly higher levels of a hierarchical partitioning as employed
in DIFS protocol [15]. Hierarchical clustering of the network (via a quadtree)
is also employed by another in-network querying protocol, Geographic Location
System (GLS) [16]. Hierarchical GHT and GLS protocols still cannot achieve
distance-sensitivity for all query-event pairs due to the multi-level partitioning
problem: In a hierarchical partitioning it is possible that a query-event pair
nearby in the network might be arbitrarily far away in the hierarchy due to
multi-level partitioning between them.

Stalk [17], a WSN tracking protocol for mobile objects, also uses a hierarchical
partitioning, but to account for the multi-level partitioning effects a querying
node performs lateral searches to neighboring clusterheads (in addition to its
own clusterhead) at increasingly higher levels of the hierarchy to reach the event
information in a distance-sensitive manner. Recently, Distance Sensitive Infor-
mation Brokerage (DSIB) protocol [8] achieved distance-sensitivity in a hierar-
chically partitioned network by using a similar technique for querying of static
events. Instead of adapting a pull-based approach and using lateral searches to
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neighbors as in Stalk, DSIB adapts a push-based approach: an event advertises
to neighboring clusterheads as well as its clusterhead at every level of the hier-
archy. Accordingly, the responsibility of the query is decreased: querying node
contacts immediate clusterheads at increasingly higher levels until it hits the
event information.

3 Glance Algorithm

3.1 Model

We assume a dense, connected, and multihop WSN and the availability of lo-
calization information at the nodes. We use dist(j, k) to denote the Euclidean
distance between two nodes j and k. We assume an underlying geographic rout-
ing protocol, such as greedy perimeter stateless routing (GPSR) [18] or crossing
link detection protocol (CLDP) [19], that achieves O(d) cost for communication
over d distance.

We assume a distinguished basestation node C in the network. We denote the
distance between a querying node q and C as dq, and event e and C as de. We
use d to refer to the distance between q and e. zq,e denotes the angle formed by
location of q, C, and the location of e. We use a calculational proof notation [20]
where a proof of K ≡M can be expressed as:

K
≡ { reason why K ≡ L}

L
≡ { reason why L ≡M}

M

3.2 Details of the Glance Algorithm

Here we explain the cone-advertisement needed for the advertise operation in
detail, and discuss how the advertise operation ensures distance-sensitivity for a
given stretch-factor, s.

Areas where stretch-factor is readily satisfied. We mentioned in the
Introduction that there are two possible cases for the cost of a query operation
invoked at a node q, for an event e, with respect to the angle zq,e. To account
for the case where zq,e is less than the threshold angle x, the advertise operation
needs to advertise on a cone boundary. For zq,e greater than x no advertising is
required as the stretch-factor is readily satisfied even when q contacts C directly,
incurring a dq cost. In order to be able to determine the boundaries of the
advertisement cone precisely, we first need to calculate the threshold angle x for
a given stretch-factor s. Here we show how we calculate x by determining the
areas for which stretch-factor is readily satisfied.

As a simple example, let’s take s = 1. We calculate the region where the
stretch-factor is readily satisfied by taking successively larger circles centered
at e and C and intersecting them. Figure 3 illustrates this method. There the
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Fig. 3. Area where s=1 is readily sat-
isfied

Fig. 4. Areas where s=2 is readily sat-
isfied

dashed line consists of points obtained from intersecting circles with equal radii,
r, r ≥ de/2, centered at e and C. Thus, any point on the dashed line is equidistant
to e and C. It follows that, any point in A2 is closer to C than it is to e, and
hence, for any querying node in A2 stretch-factor s = 1 is readily satisfied by
contacting C directly.

For s > 1, the same method is used for calculating the areas where stretch-
factor is readily satisfied: we let a circle with radius r centered at e intersect with
a circle with radius s ∗ r centered at C. Figure 4 shows an example for s = 2.
Note that a circle centered at e with radius r intersects with the circle centered
at C with radius 2r for de/3 ≤ r ≤ de. This is because for r < de/3 there is a
gap of de − 3r between the two circles, and for r > de all the circles centered at
e are subsumed by circles with radius 2 ∗ r centered at C. Thus, the dashed line
closes on itself and forms a bounded area A1. From our construction it follows
that for s = 2 any point on the dashed line is twice as far away from C than it is
from e. Also, for any point in A2 the distance to C is always less than twice as
that to e. Hence, the stretch-factor s = 2 is readily satisfied for area A2. On the
other hand, for area A1 stretch-factor may be violated, and cone-advertisement
should account for the querying nodes in this region. From Figure 4 we observe
that event e can safely ignore a majority of directions/regions advertising and
still satisfy the given distance-sensitivity requirement tightly.

In Figure 4 consider a point H on the dashed line such that ĤeC forms a
right angle. Since any point on the dashed line is twice as far from C than it
is from e, |CH | = 2 ∗ |eH |, and hence êCH is calculated as 30◦ from the HeC

right triangle. Since ĤeC is 90◦, H determines the maximum angle between any
intersection point and e with respect to C, so the threshold angle xfor s = 2 is set
as 30◦. In general x is calculated as arcsin(1/s), since x = arcsin(|eH |/|CH |).
For s > 1 (which we consider in this paper), we always have 90◦ > x > 0. For
s = 1 there is no feasible solution since x = 90◦. For s = 2, x = 30◦, and s = 4,
x = 14.5◦. So, as s increases the threshold angle decreases rapidly. The area A1
that the advertise operation has to account for is extremely small for s = 4.
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The algorithm for query. Before we give the details of the advertise operation
and prove its correctness, we present the query operation briefly. The query
operation progresses as a straight path from the querying node toward C. For
routing of the query toward C, GPSR is employed with the destination of the
query packet set as C. During relaying of this query message hop-by-hop, if a
node j with the advertisement information of a matching event is reached, j
stops forwarding the query any further. (At worst the query will be answered
at C, hence j = C in that case.) To inform the querying node, whose address
is included in the query message, about this matching event, j sends a reply
to the querying node using the GPSR service. This reply contains advertised
metadata about the event, such as its location, type, and time. By using the
location information in the reply, the querying node can then contact the node
that detected the event directly to learn more about the event.

For the cost of a query operation, we only include the communication cost of
forwarding the query until it reaches a node j that has an answer to the query.
We do not include the cost of j’s reply to the query cost for the Glance protocol
as well as for the other in-network querying protocols we consider in the analysis
section (Section 4).

The algorithm for advertise. The advertise operation for s = 2 is depicted in
Figure 5 with solid dark lines. Roughly speaking the advertisement is performed
on the boundaries of a cone that is rooted at the event location and that widens
toward C. The progress of the cone stops when the threshold angle is reached
with respect to a straight line between the event and C, as there is no need to
advertise outside the threshold angle. The idea behind this cone advertisement
is to intercept any query that may be originating at A1 in a distance-sensitive
manner. Note that without this cone advertisement the queries originating in A1
would go all the way to C violating the distance-sensitivity requirement. The
angle for the cone advertisement for both the left-hand side cone boundary and
the right-hand side cone boundary is selected to be equal to the threshold angle
x = arcsin(1/s). The reason behind this selection is to accommodate for varying
threshold angles (those close to 90◦ as well as those close to 0◦) using a uniform
strategy for the advertisement. The user may want to define different stretch-
factor requirements (which lead to varying threshold angles) with respect to the
type (i.e., severity) of events. As we prove in Lemma1, selecting the angle for cone
advertisement to be equal to the threshold angle satisfies the distance-sensitivity
requirement for any stretch factor greater than 1.

Beside the advertisement on the cone boundary, there is a need for some lateral
advertisements within the boundaries of the cone. These lateral advertisements
are needed for intercepting any query originating within the cone boundaries in
area A1. (Recall that those queries that are originating in A1 and outside the
cone boundaries are intercepted by the advertisement on the cone boundary.)
Consider a query within unit distance of e and that falls between e and C. By
drawing the first lateral link at distance s from e, the stretch-factor is satisfied
for this query. Moreover this first lateral link suffices for intercepting all queries
within distance s of e inside the cone boundaries in a distance-sensitive manner.
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Fig. 5. Local advertisement for s=2 Fig. 6. Advertise operation

The second lateral link is drawn at distance s2 and it handles queries within
distance s–s2 of e inside the cone boundaries. Proceeding in the same fashion
other lateral links are drawn within area A1 inside the cone boundaries. The final
lateral link is drawn at the boundary of A1, which is de/(s + 1) distance away
from e. Figure 6 recaps the above discussion and shows the advertise operation
for a given stretch-factor s.

For the implementation of the cone advertisement we exploit GPSR again.
The event uses the angle of cone advertisement (defined as arcsin(1/s)), its dis-
tance de from C, and its own coordinates to calculate the coordinates of the
two endpoints of the cone and sends a “cone-boundary advertisement” message
destined to each endpoint. While this message is being relayed hop-by-hop, each
node it visits stores the metadata advertisement included in the message. Lateral
link advertisement is performed similarly. The event calculates starting and end-
ing points of lateral link advertisements, and sends a pair of “start lateral link”
message to the calculated starting points on the eC line (i.e., 1, s, s2, . . . ,de/s+1
away from e). The lateral link start points, when they receive these messages,
repackages them into “lateral-link advertisement” messages, and send them to
the endpoints precalculated by e. Each node relaying a lateral-link advertisement
message stores the metadata about e included in the message.

Lemma 1. A query operation invoked in A1 within d distance of an event
intercepts the event’s advertise information within d ∗ s distance.

Proof: There are three cases. In the first case, the querying node q in A1
falls inside the boundaries of cone advertisement, whereas in the remaining two
cases q is outside the cone advertisement boundaries. In case 2, the angle ÊQC
between the evader location, location of q, and that of C is less than 90◦ as
depicted in Figure 7. And, in case 3 ÊQC is greater than or equal to 90◦ as in
Figure 8.

Case 1: In this case the querying node q falls within the cone boundaries. The
lateral links advertisement within the cone satisfy the stretch-factor for these
queries as discussed above.
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Fig. 7. Advertisement, case 2 Fig. 8. Advertisement, case 3

Case 2 (see Figure 7): In order to prove that distance-sensitivity is satisfied for
a query originating at Q, we need to show that the query is intercepted on its
path from Q to C by the cone advertisement before the query travels more than
s ∗ d distance. In other words, we need to prove that |QK| < s|QE| in Figure 7.
|QK| < s|QE|

≡ { |QK|= |QL|+|LK| and |LK|= |LE|cot(x + x′)}
|QL|+ |LE| cot(x + x′) < s|QE|

≡ { |QL| = |QE| cos(w) and |LE| = |QE| sin(w)}
|QE| cos(w) + |QE| sin(w) cot(x + x′) < s|QE|

≡ { sin(x) = 1/s (multiply both sides with sin(x)) also eliminate |QE| }
sin(x) cos(w) + sin(x) sin(w) cot(x + x′) < 1

≡ { Definition of cot(α) }
sin(x) cos(w) + sin(x) sin(w) cos(x+x′)/ sin(x+x′) < 1

≡ { Definition of cos(α + β) and sin(α + β)}
sin(x) cos(w) + sin(x) sin(w)(cos(x) cos(x′)− sin(x) sin(x′))
/(sin(x) cos(x′) + cos(x) sin(x′)) < 1

≡ { Arithmetic }
sin2(x) cos(w) cos(x′) +sin(x) cos(x) cos(w) sin(x′)+sin(x) cos(x) sin(w) cos(x′)
−sin2(x) sin(w) sin(x′) < sin(x + x′)

≡ { Arithmetic }
sin2(x)(cos(w) cos(x′)− sin(w) sin(x′))
+ sin(x) cos(x)(sin(w) cos(x′) + cos(w) sin(x′)) < sin(x + x′)

≡ { Definition of cos(α + β) and sin(α + β)}
sin2(x). cos(w + x′) + sin(x) cos(x) sin(w + x′) < sin(x + x′)

≡ { Arithmetic, definition of sin(α + β)}
sin(x) sin(x + w + x′) < sin(x + x′)

≡ { Arithmetic }
sin(x + w + x′) < sin(x + x′)/ sin(x)
Note that 0 ≤ x′ ≤ x ≤ 90◦, also x + x′ + w < 180◦ as they are in a triangle.

There are two cases.
Case A (x + x′ ≤ 90◦): Then, sin(x + x′)/ sin(x) > 1 is satisfied due to

property of sine for angles between 0◦ − 90◦. Since sin(α) ≤ 1, for any α, we
have sin(x + w + x′) < sin(x + x′)/ sin(x).

Case B (90◦ ≤ x + x′ < 180◦): Note that, sin(x + x′)/ sin(x) > sin(x + x′),
since sin(x) ≤ 1, for any x. Also, sin(x + x′) > sin(x + w + x′), since 90◦ <
x + w + x′ < 180◦ and as angle increases sine decreases in that interval.
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Case 3 (see Figure 8): Similar to Case 2, in order to prove that distance-sensitivity
is satisfied, we need to prove here that |QK| < s|QE| in Figure 8.
|QK|= |LK|−|QL|. Note that |QL|= |QE| cos(180− w) = − cos(w)|QE|.
|QK| < s|QE|
≡ { |QK| = |LK| − |QL|}
|LK| − |QL| < s|QE|
≡ { |QL| = |QE| cos(180− w) = − cos(w)|QE|}
|LK|+ |QE| cos(w) < s|QE|
≡ { |LK| = |LE| cot(x + x′) and |LE| = |QE| sin(180− w) = |QE| sin(w)}
|QE| sin(w) cot(x + x′) + |QE| cos(w) < s|QE|
≡ { Same inequality as in Case 1}
sin(x + w + x′) < sin(x + x′)/ sin(x)

Since 0 ≤ x′ ≤ x ≤ 90 both subcases in Case 2 apply without modification. +
Theorem 1. A query operation invoked within d distance of an event intercepts
the event’s advertise information within min(d∗s, dq) distance, where dq is the
distance between the querying node and C.

Proof: There are two cases. If querying node is in A1, due to Lemma 1, the
cost of querying is given as d∗s. From the construction of A1, we have d∗s ≤ dq

for any point q in A1, hence the querying cost = min(d∗s, dq) for this first case.
If the querying node is in A2, then from construction dq < d∗s, and querying
cost = min(d∗s, dq) is readily satisfied even in the worst case (when query goes
dq distance to C). +

4 Performance Evaluation

We analyze the cost of advertise and query operations as well as tradeoffs in-
volved in these costs in Section 4.1. Then, in Section 4.2, we compare the per-
formance of Glance with other in-network querying protocols in the literature.

4.1 Cost of Advertise and Query

From Figure 6, we calculate the cost of advertise operation as follows. Since
we choose the angle for cone advertisement to be equal to the threshold an-
gle x = arcsin(1/s), the cone meets the threshold angle halfway through de,
and the length of the cone boundary is calculated as (de/2)/ cos(x). Thus, the
two cone boundaries induce 2 ∗ (de/2)/ cos(x) = de/ cos(arcsin(1/s)) cost. We
also need to account for the cost of lateral explorations inside the cone bound-
aries. Recall from Section 3.2 that lateral explorations are performed with ex-
ponentially increasing intervals between subsequent explorations and for up to
distance de/(s + 1) away from the event. The height of a lateral link is ob-
tained by multiplying the distance between the lateral link and the event with
tan(x), and doubling the result. Thus, the cost for the lateral explorations is
calculated as 2 ∗

∑logs(de/(s+1))
i=0 si ∗ tan(x). Hence, the overall cost for advertise-

ment comes up to de/ cos(arcsin(1/s)) + 2 ∗
∑logs(de/(s+1))

i=0 si ∗ tan(arcsin(1/s)).
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Fig. 9. Advertisement cost vs. de Fig. 10. Advertisement cost vs. s

We can simplify this term by using the formula for sum of geometric series as:
de

cos(arcsin(1/s)) +
2∗tan(arcsin(1/s))∗( s∗de

s+1 −1)

(s−1) .
As seen in Figure 9, the advertisement cost for an event e increases linearly

with respect to the distance de of the event from the basestation C. The slope
of this linear increase is determined by s. For s very close to 1, that is, for x
close to 90◦, the cost of advertisement can get high as cos(x) decreases, (s − 1)
gets close to 0, and tan(x) increases. For example, for s=1.15 (i.e., x=60◦), the
cost of advertise is around 14 ∗ de. However, as s increases, the cost of advertise
drops significantly fast. For example, s=1.4 (i.e., x=45◦), the cost of advertise
is less than 4.3 ∗ de, and for s = 2 (i.e., x = 30◦) the cost is less than 1.92 ∗ de,
and for s = 4 (i.e., x = 14.5◦) the cost is around 1.16 ∗ de. Figure 10 illustrates
the relation between s and the cost of advertisement.

As proved in Theorem 1, the worst case cost of querying is min(d∗s, dq).
Analysis of tradeoffs in stretch-factor selection. In Glance, by tuning

the stretch-factor s, the user specifies the level of distance sensitivity desired for
answering queries. The cost of querying is directly proportional to s: by selecting
small values for s, the cost is reduced. On the other hand, Figure 10 shows that
the cost of advertise operation is inversely proportional to s: by selecting larger
values for s, the cost of advertising is reduced. Thus, by tuning the value of s
appropriately, the user can achieve tradeoffs between the cost of querying and
advertising.

The user can define different stretch-factor requirements with respect to the
type (i.e., importance) of events. One way to approach this tradeoff issue is to
take a query-centric view. The user can first decide the highest tolerable stretch-
factor in the application (e.g., based on real-time requirements of the query), and
use this for the value of s. However, if there are no query-centric hard deadlines
for the stretch-factor or the constraints for energy and communication efficiency
dominates the design decisions, then it is possible to take an advertisement-
centric approach. Here the user can first decide on the desired communication
cost for advertising an event and then reverse engineer s using this cost. For
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example after deciding that 1.92 ∗ de is suitable for advertising cost, the user
may select s = 2 and x = 30◦ accordingly.

Analysis of scalability with respect to multiple events and queries.
In the presence of multiple events and queries, Glance can be easily extended to
use geographic hashing [12] and multiple basestations to improve load-balancing
among basestations and achieve scalability with respect to the number of events
and queries. The idea here is to partition events to multiple basestations based
on the types of events so that network contention and bottlenecks are avoided at
a basestation. Moreover, the user can define different stretch-factor requirements
with respect to the type of events.

4.2 Performance Comparison

In our comparisons we add to the cost of our advertise operation in Glance an
extra de cost: the cost of data exfiltration to C which is in fact a part of the
centralized monitoring mode operations. We do this so as not to put the other
protocols at a disadvantage.

Comparison with GHT and hierarchical GHT. GHT hashes an event
and a query for the event to a common broker. For comparing GHT and Glance,
we assume that this broker is C located in the middle of the network. The cost
of storing an event at C corresponds to the cost of exfiltration of information to
C in Glance. Hence, the cone advertisement in Glance remains as an extra cost
over that of the advertise operation in GHT. For example, for s = 2, Glance pays
an extra 1.92 ∗ de cost for cone advertisement. The query operation in GHT, on
the other hand, is more costly than that of Glance, since GHT does not satisfy
distance-sensitivity. For a square network with diameter D, the average cost
of querying (averaged over distance dq of all querying nodes to C) in GHT is
calculated as D/3. Note that this corresponds to the cost of going to C for the
resolution of all queries. However, since Glance is distance-sensitive, queries are
resolved in min(d∗s, dq) distance, where d is the distance to the nearest event, and
a typical value for s is 2. Hence, the average cost of querying in Glance is lower
than that of GHT. Especially, for a setup where the number of queriers are more
than that of events, Glance would be more energy efficient than GHT, because
the queries are answered locally. Also, Glance is preferable to GHT when there
is a hard deadline (such as a real-time requirement) for the query operation.

Comparison with Stalk and DSIB. In Stalk, the advertisement cost of
an event is calculated as 2 ∗ de. With this cost for the advertise operation, it
is possible to achieve a stretch-factor of 4 for the querying cost in Glance. In
contrast, the stretch factor in Stalk is given as 4 ∗ w, where w is the number of
neighbors at any level of the hierarchy and ranges between 6 and 12. Thus, the
cost of querying in Stalk is several times more than that calculated for Glance.
However, we note that Stalk can achieve distance-sensitive tracking of mobile
objects, whereas Glance does not address the mobility of events.

In DSIB, to achieve distance-sensitivity an event advertises to w, 6 ≤ w ≤ 12
neighboring clusterheads as well as its clusterhead at every level of the hierar-
chy [8]. The cost of this advertisement is calculated as 2 ∗w ∗D, where D is the
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diameter of the network.1 In turn DSIB proves a stretch factor of 4 for the query
operation. For s = 4 the advertisement cost in Glance corresponds to 2.16 ∗ de,
including the cost of data exfiltration to C. Since de is the distance between the
event and C, it is guaranteed to be less than D. Hence, Glance is able to achieve
the same cost for querying as DSIB with around 1/9th of the cost required for
advertisement in DSIB. On the other hand, an advantage of DSIB is that it can
be implemented using the discrete centric hierarchy method [21] in the absence
of localization information.

5 Concluding Remarks

In this paper we showed that it is possible to devise a simple and lightweight
solution for distance-sensitive in-network querying in WSN by exploiting basic
geometry concepts. Our main insight was to use the basestation node in an
opportunistic manner for answering of some in-network queries. The knowledge
that all queries target the basestation by default, combined with the geometry of
the network, was useful in determining the minimum area required for in-network
advertisements to satisfy a given distance-sensitivity requirement. We observed
that in-network advertisements can safely ignore a majority of directions/regions
and focus their advertisement to a small cone to be able to satisfy a given
distance-sensitivity requirement.

As a result, we presented a simple and lightweight querying service Glance,
that ensures that a query invoked within d distance of an event intercepts the
event’s advertisement within d∗ s distance, where s is a “stretch-factor” tunable
by the user. The user may define different stretch-factor requirements (which
lead to varying angles for cone advertisement) with respect to the type (i.e.,
severity) of events. By selecting appropriate values for s it is possible to achieve
trade-offs between query execution cost and advertisement cost. Glance is also
robust with respect to node failures and holes in the network.

It is possible to avoid the need for localization in the Glance protocol. The
idea here is to use an approximation for the direction to the basestation node
C. In this scheme, in the initialization phase C starts a one-time flood that
annotates each node in the network with its hopcount from C and creates a
spanning tree rooted at C. To send the query as a straight line to C, it is enough
to route the message to the parent node along a branch in this tree. Since it is
infeasible to draw cone borders as in Figure 5 in the absence of localization, our
scheme approximates that with occasional lateral exploration inside the cone by
visiting the nodes with same hopcount at predefined distances from the event.
Due to reasons of space we relegate the details of this discussion to our technical
report [22].

As a broader research direction, we will further investigate the adaptation of
geometric ideas and techniques for devising distributed network algorithms. We
note from our previous experience [17, 23, 24] that when the problem domain
1 This cost is equal to the sum of 20w + 21w + . . . + 2log(D)w, as the number of levels

in the hierarchy is log D.
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is constrained to geometric networks it is possible to devise simpler and more
efficient algorithms than those designed for arbitrary graph topologies. With
the recent advances in directional antenna technology and the availability of
directional communication in WSN, we believe that the application of geometric
ideas to the distributed WSN domain may yield new research opportunities.
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Abstract. Radio networks model wireless data communication when bandwidth
is limited to one wave frequency. The key restriction of such networks is mutual
interference of packets arriving simultaneously to a node. The many-
to-many (m2m) communication primitive involves p participant nodes of a dis-
tance at most d between any pair of them, from among n nodes in the net-
work, and the task is to have all participants get to know all input messages.
We consider three cases of the m2m communication problem. In the ad-hoc
case, each participant knows only its name and the values of n, p and d. In
the partially centralized case, each participant knows the topology of the net-
work and the values of p and d, but does not know the names of other partic-
ipants. In the centralized case each participant knows the topology of the net-
work and the names of all the participants. For the centralized m2m problem, we
give deterministic protocols, for both undirected and directed networks, work-
ing in O(d + p) time, which is provably optimal. For the partially centralized
m2m problem, we give a randomized protocol for undirected networks working
in O((d + p + log2 n) log p) time with high probability (whp), and we show that
any deterministic protocol requires Ω(p logn/p n+d) time. For the ad-hoc m2m
problem, we develop a randomized protocol for undirected networks that works
in O((d + log p) log2 n + p log p) time whp. We show two lower bounds for the
ad-hoc m2m problem. One states that any m2m deterministic protocol requires
Ω(n logn/d+1 n) time when n− p = Ω(n) and d > 1; Ω(n) time when n− p = o(n);
and Ω(p logn/p n) time when d = 1. The other lower bound states that any m2m

randomized protocol requires Ω(p+d log(n/d +1)+ log2 n) expected time.

1 Introduction

Radio networks model wireless communication when the bandwidth consists of one
wave frequency. Packets arriving simultaneously to a node interfere with one another.
To have the notion of simultaneity meaningful, radio networks are typically assumed
to be fully synchronous, in that an execution of a communication protocol is structured
as a sequence of global rounds. A packet transmitted to node v is heard by v if the
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transmission is received by v in its correct form rather than garbled from interference
with other transmissions. Radio networks are characterized by the following properties:

(i) A node can transmit at most one packet at a round.
(ii) All the out-neighbors of a transmitting node receive the packet in the same round

when it was transmitted.
(iii) The recipient of a packet can hear it when the packet is the only one delivered at

the round.

A natural algorithmic goal for radio networks is to implement useful communication
primitives. Broadcast is an algorithmic task to disseminate a message originated at some
source node to all the remaining nodes. Gossiping is an algorithmic task in which each
node v has its input message, called rumor, and the goal is to have all nodes get to
know all rumors. Gossiping is a special case of the general many-to-many communica-
tion (m2m) primitive, which involves a subset of nodes as participants and is specified
as follows: each participant has its input message (rumor) and the goal is to have all
participants get to know all participant rumors. Participants are the only nodes initially
active, while the remaining nodes may join in with the purpose to help in forwarding
packets.

We use letter n to denote the number of nodes in a network, letter p to denote the
number of participant nodes, and letter d to denote the maximum distance between a
pair of participants. Nodes are assigned unique names from the set [n] = {1, . . . ,n}.
Each node knows its own name and the values of n, p and d, in the sense that they can
be used as a part of code run by the node.

Cases of many-to-many communication problem. We distinguish between “algorithms”
and “protocols” in the following sense. The nodes of a network execute a protocol to
perform a communication task at hand. A protocol is always executed by the nodes
concurrently, and in this sense it is a priori distributed. The protocol is found earlier by
a sequential algorithm. A protocol obtained as the output of algorithm A on an input
network G is said to be explicit if the algorithm A runs in time that is polynomial in the
size of G. All communication protocols that we develop are explicit.

When a complete specification of a network is given as an input to a sequential
algorithm, then the communication problem is said to be centralized. A communication
problem is ad-hoc when the code of a protocol run by a node is the same for all networks
of the same size and may include the size of the network and the unique name of the
node as a part of code run by the node. We consider three variants of the m2m problem,
which are defined by the information that nodes initially have about the network and
participants.

Centralized m2m problem: each participant knows the topology of the network and the
names of all the participants.

Partially centralized m2m problem: each participant knows the topology of the net-
work, numbers p and d and its own status of being among the participants, but
it does not know the name of any other participant.

Ad-hoc m2m problem: all participants have only the minimum amount of knowledge
we assume, that is, they know the values of n, p and d.
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All participant nodes are initialized with (1) a sequential algorithm they are to per-
form in order to find the m2m protocol and (2) the round when the m2m protocol is to
start. For a node v of the network that is not a participant, we assume that initially v
knows only its name. Such a node v remains dormant until it receives a message from
its in-neighbor, which brings sufficient information allowing v to join the execution.

To improve on the message complexity, it is advantageous to combine as many input
messages as it is feasible into one transmitted packet. If there is no bound on the number
of input messages that can be combined into one packet, then the model is of combined
input messages. The opposite model, which requires a separate transmission to forward
one input message, is of separate input messages. Many-to-many communication has
either the flavor of routing, in the model of separate messages, or that of gossiping, in the
model of combined messages. We work with the model of combined input messages.
Both models have been studied in the literature. Bar-Yehuda, Israeli and Itai [3] con-
sidered multiple instances of point-to-point communication and broadcast in the model
of separate messages. They developed randomized protocol for undirected networks.
The problem of m2m communication was abstracted for radio networks by Gąsieniec,
Kranakis, Pelc and Xin [13], who studied deterministic protocols for undirected net-
works in the model of combined messages, in the case that we call partially-centralized
in this paper.

We say that an event holds with high probability, denoted whp, if it holds with prob-
ability of at least 1− p−c, for some constant c > 0 and for sufficiently large p. We
say that a randomized protocol is correct, if it completes the specified task with high
probability.

Our results. We now overview our contributions in more detail.

I. Centralized m2m problem: We give deterministic protocols, for both undirected
and directed networks, working in O(d + p) time, which is provably optimal.

Such protocols are generalizations of gossiping in O(n) time; a centralized O(n) time
broadcast protocol for undirected networks given in [6] can be interpreted as a gossiping
protocol in the model of combined messages. Our protocols have transmission structure
resembling that of the protocols used in [14] as subroutines in an O(n polylog n)-time
gossiping protocol for undirected networks.

II. Partially centralized m2m problem: We give a randomized protocol for undirected
networks working in O((d + p+ log2 n) log p) time whp. We show that any random-
ized protocol requires Ω(p + d) expected time, and that any deterministic protocol
requires Ω(p logn/p n + d) time.

The problem of m2m communication in the partially-centralized case was considered
by Gąsieniec, Kranakis, Pelc, and Xin [13], who developed an explicit deterministic
protocol for undirected networks working in O(d log2 n + p log3 n) time.

III. Ad-hoc m2m problem: We develop a randomized protocol for undirected networks
that works in O((d + log p) log2 n+ p log p) time whp. We show two lower bounds.
One states that any deterministic protocol requires Ω(n logn/d+1 n) time, for any
p such that n− p = Ω(n) and d > 1; when n− p = o(n), then the time is Ω(n),
and when d = 1, then the time is Ω(p logn/p n). It follows that randomization
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helps in ad-hoc m2m communication in undirected networks, when both 1 < d =
o(n/(logn loglogn)) and p = o(n/ logn) hold. The other lower bound states that
any randomized protocol requires Ω(p + d log(n/d + 1) + log2 n) time, for suffi-
ciently large d.

Previous work. The model of radio communication was introduced by Chlamtac and
Kutten [4]. Subsequent work considered various communication problems and kinds of
protocols. The most popular categorizations distinguish (1) centralized problems from
ad-hoc ones, (2) deterministic protocols from randomized ones, and (3) explicit proto-
cols from existential ones. Let the maximum distance between any pair of nodes in a
(strongly) connected graph be denoted by D, while Δ is the maximum in-degree in a
network.

We start a review of the most relevant previous work with centralized problems.
Chlamtac and Kutten [4] showed that the problem to find an optimal broadcast
schedule for a given network is NP-complete. A centralized explicit broadcast pro-
tocol for directed networks working in O(D log2(n/D)) time was given by Chlam-
tac and Weinstein [5]. Clementi et al. [8] developed an explicit protocol working in
O(D logΔ log(n/D)) time, and recently Kowalski and Pelc [23] have shown an explicit
protocol working in O(D + log2 n) time. This last protocol is asymptotically optimal
because Alon, Bar-Noy, Linial and Peleg [1] proved that nondeterministic broadcast in
networks with D = Θ(1) requires Ω(log2 n) time. Centralized gossiping with combined
messages in undirected networks was considered by Gąsieniec, Potapov and Xin [17],
and next by Gąsieniec, Peleg and Xin [15] who gave a deterministic explicit protocol
of time performance O(D+Δ logn). Centralized gossiping with separate messages was
studied by Gąsieniec and Potapov [16]. The primitive of many-to-many communication
for radio networks was first abstracted by Gąsieniec, Kranakis, Pelc, and Xin [13], who
considered it only in the scenario that we call the partially-centralized m2m problem in
this paper. They developed an explicit protocol for a given undirected network in the
model of combined messages that terminates in O(d log2 n + p log3 n) time.

Next we review the work that has been done on ad-hoc communication problems.
The unique names of nodes are often assumed to be from a range larger than the size of
the network. If this is the case, then a leader is not automatically identifiable, and neither
the round-robin paradigm to learn the neighbors nor the token-traversal approach are
immediately applicable in undirected networks.

The first ad-hoc randomized broadcast protocols of sub-quadratic expected time per-
formance were given by Bar-Yehuda, Goldreich and Itai [2] and Bar-Yehuda, Israeli and
Itai [3]. The first ad-hoc deterministic explicit broadcast protocols with sub-quadratic
time performance were given by Chlebus et al. [6]. They were improved to time perfor-
mance O(n3/2) by Chlebus, Gąsieniec, Östlin and Robson [7], and then by Indyk [20]
to O(n1+o(1)). See [2,10,22,24] for discussion of the impact of knowledge and random-
ness on efficiency of ad-hoc radio broadcast. Bar-Yehuda, Israeli and Itai [3] considered
point-to-point communication and broadcasts in the model of separate messages. They
developed an ad-hoc randomized Las Vegas protocol, which is preceded by preprocess-
ing performed in O((n + D logn) logΔ) expected time; then a set of k point-to-point
transmissions can be performed in O((k + D) logΔ) expected time, while k broadcasts
can be achieved in O((k + D) logΔ logn) expected time.
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The fastest explicit deterministic ad-hoc broadcast protocol for undirected networks
of time performance O(n logn) was given by Kowalski and Pelc [22]. The fastest exis-
tential deterministic ad-hoc broadcast protocol running in O(n log2 D) time was given
by Czumaj and Rytter in [10]. The lower bound Ω(n logn/ log(n/D)) on time of de-
terministic broadcast protocols for undirected networks was proved by Kowalski and
Pelc [22]. The fastest known ad-hoc deterministic broadcast for directed networks of
time performance O(n log2 D) was given by Czumaj and Rytter [10]; this protocol is
not explicit. The lower bound Ω(n logD) for deterministic protocols in directed net-
works was proved by Clementi, Monti and Silvestri [9].

The fastest known ad-hoc randomized broadcast for both directed and undirected net-
works are of the same expected time complexity. The best randomized protocols work-
ing in O(D log(n/D)+ log2 n) expected time were developed independently by Czumaj
and Rytter [10] and by Kowalski and Pelc [22]. The lower bound Ω(D log(n/D)) on the
expected time of broadcast protocols was shown by Kushilevitz and Mansour in [25].
This bound combined with lower bound Ω(log2 n) from [1] shows that D log(n/D)+
log2 n is the asymptotically optimal time complexity of a randomized broadcast.

The fastest ad-hoc deterministic gossiping for directed networks of time complex-
ity O(n4/3polylog n) was given by Gąsieniec, Radzik and Xin [18]. The fastest ad-hoc
randomized gossiping for directed networks of time performance O(n log2 n) was de-
veloped in [10]. For undirected networks, an O(n)-time ad-hoc deterministic gossiping
was shown in [6].

In this paper we are interested in protocols whose complexity bounds are given in
terms of asymptotic notation. An alternative approach, as exemplified by the work of
Elkin and Kortsarz [11,12], is to develop algorithms producing explicit protocols opti-
mized for time measured in terms of approximation ratios.

Model of radio networks. A network is modeled as a graph G = (V,E), which is di-
rected in general, but may be restricted to be symmetric, that is, undirected. Nodes in V
represent processing units. A directed arc x→ y in E represents a possibility for node x
to send a packet directly to y. For any such an arc, node x is an in-neighbor of y and
node y is an out-neighbor of x. Graphs are assumed to be sufficiently connected. For
the problem of broadcasting, we assume that every node is reachable from the source.
For the gossiping and m2m problems, a graph is assumed to be connected, if it is undi-
rected, and strongly connected, if it is directed. The distance from node x to node y is
the length of the shortest path from x to y; these paths are directed when the graph under
consideration is directed.

When more than one packets are received at a round at a node v, then they interfere
with each other and none can be heard. Such interference is called a collision. There
is no mechanism to notify a sender if collisions occurred at the receiving nodes. When
a recipient of packets can detect a collision, in the sense of distinguishing it from the
situation when no packet was received, then we say that the network is with collision
detection. We work with the weaker model without a collision-detection mechanism.

A direct multicast to neighbors performed by a node of a radio network is called
a transmission. When a number of nodes perform a multicast in a round, then all of
them are also called a transmission. Phrases “node performs a transmission” and “node
belongs to a transmission” are considered equivalent.
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A sequence of transmissions is called a schedule. A sequential algorithm solving an
instance of a centralized communication task returns a set of transmissions. They form
a schedule by being sequenced in the same order in which they were returned, unless
stipulated otherwise.

Logarithms are to the base 2, unless stated otherwise.

2 A Template of Many-to-Many Protocols for Undirected
Networks

We give in Figure 1 a generic m2m protocol for undirected networks, which consists of
4 stages. The protocol resorts to other generic protocols, which are called ELECTION,
FIND-BFS, CONVERGECAST-BFS and BROADCAST. All our m2m protocols for undi-
rected networks are instances of this generic m2m protocol. We give the specification
of the subroutines, and then show that the generic m2m protocol is correct in that it
completes the m2m task whp.

ELECTION : after an execution of this protocol, exactly one participant has the status
of a leader.

FIND-BFS(v) : there is a BFS tree rooted at the node v such that after an execution of
this routine each node w of distance at most d maintains the path from w to v along
edges of this tree.

CONVERGECAST-BFS(v) : there is a BFS tree rooted at the node v such that when
this routine is called, then each node w of distance at most d maintains the path
from w to v along edges of this tree; during an execution of this routine the node v
receives the rumors of all participant nodes.

BROADCAST(v) : node v broadcasts to all the nodes of distance at most d from v.

The notations TE(n,d, p), TBFS(n,d, p), TC(n,d, p), and TB(n,d, p) denote the num-
ber of rounds that protocols ELECTION, FIND-BFS, CONVERGECAST-BFS, and
BROADCAST take, respectively. Algorithms producing these protocols need to know the

stage 1: each participant node runs ELECTION routine, during exactly TE(n,d, p)
rounds

stage 2: each leader v initiates FIND-BFS(v) routine to broadcast its name and
paths in some BFS tree to all the nodes of distance at most d from v, during
exactly TBFS(n,d, p) rounds

stage 3: each participant node w which received only one name v in stage 2 trans-
fers its name, rumor and flag v to node v by executing CONVERGECAST-BFS(v)
protocol with the received leader v as the sink, during exactly TC(n,d, p) rounds

stage 4: each leader v which received all p rumors of participant nodes with flag v
during process CONVERGECAST-BFS(v) in stage 3 broadcasts its name and all
the collected rumors of participant nodes using BROADCAST(v) protocol to all
the nodes of distance at most d from v; it is done during exactly TB(n,d, p) rounds

Fig. 1. Generic m2m protocol M2M-GENERIC for undirected network
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lengths of executions of these protocols, that is, the numbers TE(n,d, p), TBFS(n,d, p),
TC(n,d, p), and TB(n,d, p). The nodes executing (an instance of) protocol M2M-
GENERIC will therefore know when one stage ends and the next one begins. Protocol
M2M-GENERIC works in TE(n,d, p)+TBFS(n,d, p)+TC(n,d, p)+TB(n,d, p) time. Its
correctness is clear when all the subroutines are deterministic: exactly one participant
v is elected in stage 1 as a leader, v receives the input messages from the other partici-
pants in stage 3, and all input messages are broadcast from v to the other participants in
stage 4.

Theorem 1. If protocols ELECTION, FIND-BFS, CONVERGECAST-BFS, and
BROADCAST used in protocol M2M-GENERIC complete their tasks whp, then protocol
M2M-GENERIC completes the m2m task whp.

Observe that the broadcasting in stage 4 of protocol M2M-GENERIC is executed only
in the case when there is exactly one leader v, and it has received all input messages dur-
ing stage 3. In this case all the participants receive the broadcast message from v in stage
4 by arranging broadcasting along the edges of the BFS tree used by CONVERGECAST-
BFS(v) in stage 3. With this modification, the participant nodes can keep iterating
protocol M2M-GENERIC until they receive a message in stage 4. The obtained pro-
tocol would always complete the m2m task and with high probability would work in
O(TE(n,d, p)+ TBFS(n,d, p)+ TC(n,d, p)+ TB(n,d, p)) time.

Our instances of protocol M2M-GENERIC for the centralized, partially central-
ized, and ad-hoc m2m problems will be named M2M-C, M2M-PC, and M2M-
AH, respectively. For the names of instances of protocols ELECTION, FIND-BFS,
CONVERGECAST-BFS, and BROADCAST, we will use prefixes C, PC, and AH to indi-
cate which case is considered (for example, AH-CONVERGECAST-BFS).

3 Centralized Protocols

In this section we consider the centralized m2m problem. The participants know ini-
tially the network and the names of all participants. All routines, and therefore the re-
sulting protocols as well, are deterministic. We consider first the undirected networks.

Routines C-ELECTION and C-FIND-BFS(v). The first routine always selects the par-
ticipant with the lowest name as the leader, and the second routine selects the lexico-
graphically first BFS tree rooted at v. Both routines work in O(1) time since they do not
require any transmissions.

Protocol C-CONVERGECAST-BFS(v). The algorithm computing protocol C-
CONVERGECAST-BFS(v) is given in Figure 2. It returns this protocol as a sequence
of transmissions P, where each transmission is a set of one or more pairs of nodes
(z,x). If transmission i in P contains pairs (z1,x1), . . . ,(zq,xq), then in round i of the
execution of the protocol all the nodes z1, . . . ,zq transmit together. The second node in
a pair (z,x) included in a transmission is a node which correctly receives the message
from z, and is used only to simplify description and analysis. The algorithm takes a
minimal BFS tree T rooted at v and containing all participants, and considers the nodes
in T level by level, starting from the last level h ≤ d. Let Lk denote the set of nodes in
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set L̄h = Lh;
for k = h−1 downto 0 do

{ L̄k+1 is the set of nodes in Lk+1 which should transmit to Lk }
set L̄k to the set of participants which belong to Lk;
for each x ∈ Lk with at least 2 neighbors in L̄k+1 do

for each neighbor z of x in L̄k+1 do
append {(z,x)} to P as the next transmission; remove z from L̄k+1;

add x to L̄k;
let z1,z2, . . . ,zq be all the nodes still in L̄k+1;
let xi be an arbitrary neighbor of zi in Lk;
append {(z1,x1), (z2,x2), . . . , (zq,xq)} to P as the next transmission;
add x1,x2, . . . ,xq to L̄k;

return P.

Fig. 2. Algorithm for finding protocol C-CONVERGECAST-BFS(v)

T at distance k from v, where L0 = {v}. In iteration k, for k = h− 1,h− 2, . . .,0, the
algorithm schedules transmissions to pass messages from Lk+1 to Lk.

The iteration consists of two parts. First the algorithm finds a node x in Lk that has
at least two neighbors in the set L̄k+1 of the nodes in Lk+1 that should transmit but have
not had a transmission scheduled yet. For each neighbor z of x in L̄k+1, a transmission
{(z,x)} is scheduled. In the second part of the iteration, for all the nodes z1,z2, . . . ,zq

still remaining in L̄k+1, a single transmission {(z1,x1), (z2,x2), . . . , (zq,xq)} is sched-
uled, where xi is an arbitrary neighbor of zi in Lk. It can be shown that the network
cannot have any “cross edges” {zi,x j}, i �= j, so that messages from nodes zi’s can be
correctly sent to nodes xi’s in a single round. Moreover, messages from nodes xi can be
sent to nodes zi in a single round as well (this property will be used in the broadcasting
protocol).

Lemma 1. The algorithm in Figure 2 returns a correct O(p + d)-round protocol C-
CONVERGECAST-BFS(v).

Proof. (Sketch) The correctness of the computed protocol is based on the following
invariant of the main “for” loop.

For each k = h−1,h−2, . . .,0, at the beginning of iteration k, for each partici-
pant w which belongs to h

j=k+1 Lj, either w belongs to L̄k+1 or the sequence P
contains some transmissions t1 < t2 < · · ·< tq such that transmission ti includes
a pair (yi,yi+1), where y1 = w, and yq+1 ∈ L̄k+1.

This invariant can be proven by induction. The other component of the proof of cor-
rectness is the property that for any two pairs (z′,x′) and (z′′,x′′) which are added to the
same transmission in P, there are no cross edges in the network. This can be shown by
analyzing one iteration and observing that at the end of the loop “for each x ∈ Lk”, each
node in Lk can have only one neighbor in L̄k+1.

To show the bound on the number of rounds in the computed protocol P, let H be
the transmission tree of P. The edges of H are the pairs (z,x) contained in P, and H is
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rooted at v. Tree H is a BFS tree rooted at v and the leaves are participant nodes, but
H may not be the same as T . The number of transmissions in P that contain more than
one pair (z,x) is at most h ≤ d: at most one such transmission per one iteration of the
main loop. Each transmission in P which contains only one pair (z,x) contributes 1 to
the degree of node x in H, and this degree must be at least 2. The sum of the degrees of
the nodes in H with degree at least 2 is at most twice the number of leaves in H. Thus
the number of transmissions in P is O(d + p). �
Protocol C-BROADCAST(v). It is sufficient to take the reverse of protocol C-
CONVERGECAST-BFS(v), because of the property of this protocol that if two pairs
of nodes (z′,x′) and (z′′,x′′) are included in one transmission, then the network does not
contain any of the cross edges {z′,x′′} and {z′′,x′}.

For directed networks, protocols C-ELECTION, C-FIND-BFS, and C-
CONVERGECAST-BFS are analogous, while protocol C-BROADCAST is obtained
from protocol C-CONVERGECAST-BFS for the network with all edges reversed.

Theorem 2. Both versions of protocol M2M-C, one for undirected networks and one
for directed networks, are correct and terminate in O(d + p) rounds.

Lemma 2. For any positive integers p and d, there is a specific undirected net-
work G(p,d) of p participants and with the maximum distance d between a pair of
participants, such that any m2m protocol for undirected networks, possibly random-
ized, requires time Ω(p + d) when executed on G(p,d).

Proof. Let the network G(p,d) be a path of length d connecting a star of p−1 partic-
ipants at one end, with one participant at the other end of the path. The center of the
star will learn all input messages eventually, because it lies on the unique path con-
necting any pair of distinct participants. It takes p− 1 rounds for the rumors of the
star-connected nodes to be learned by the center of the star, because each of them has
to be heard separately. It takes d− 1 rounds for the center of the star to hear the input
message of the node at the other end of the long path, because of the distance. �

4 Ad-Hoc Protocol for Undirected Networks

In this section we show how to instantiate the generic protocol M2M-GENERIC for the
ad-hoc case. It is sufficient to show how to implement the subroutines. We start with
protocol AH-BROADCAST(v) since it will be used later as a sub-routine in protocols
AH-ELECTION and AH-CONVERGECAST-BFS(v).

Randomized ad-hoc broadcast routine AH-BROADCAST(v). We use an explicit ran-
domized broadcasting protocol given in [10,22].

Fact 1 ([10,22]). There is an explicit randomized broadcasting protocol AH-
BROADCAST which completes broadcast to all the nodes of distance at most d from
the source in TB(n,d, p) = O(d log(n/d)+ log2 n) time with probability 1− 1/n, for
sufficiently large n.
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Election routine AH-ELECTION. Protocol AH-ELECTION proceeds through 6log p
phases. Each phase takes exactly TB(n,d, p) rounds. The whole routine AH-ELECTION

takes TE(n,d, p) = O(TB(n,d, p) log p) rounds. Every node has a certain node distin-
guished as its preferred leader, which can be modified in the course of the protocol.
Eventually all these local variables stabilize to the same value with a large probability.
In the very beginning, each participant has this value initialized to itself. Just before
a phase starts, each participant decides if it is to be a promoter for this phase. A par-
ticipant decides on ‘yes’ with probability of 1/p, all these decisions are independent
over participants and phases. A promoter v for a phase executes AH-BROADCAST(v)
in the phase, with itself as the source. Nodes that are not promoters join in the ex-
ecution of AH-BROADCAST(v) as soon as they hear a transmission in the execution
of AH-BROADCAST(v). A node joins at most one instance of AH-BROADCAST(v) in
a phase. A promoter broadcasts its preferred leader. A node that joins an instance of
AH-BROADCAST(v) after hearing some message m, resets its preferred leader to the
one propagated by m. When the protocol terminates, then each participant considers its
current preferred leader to be the leader.

Lemma 3. The probability that there is exactly one participant as the preferred leader
among all participants, when protocol AH-ELECTION terminates, is at least 1− 1/p.
The time complexity is

TE(n,d, p) = O(TB(n,d, p) log p) = O((d log(n/d)+ log2 n) log p) .

Proof. There is exactly one promoter during a phase with probability of

p · 1
p
·
(

1− 1
p

)p−1
≥ p

p−1
·4−1 ≥ 1

4
.

The broadcast of this unique promoter is completed in TB(n,d, p) time with probability
of at least 1−1/n≥ 1/2 for n≥ 2. Therefore with probability of at least 1/4 ·1/2 = 1/8
a phase ends with exactly one preferred leader. The probability that none among 6log p
phases achieves this is at most (1− 1/8)6 log p, which is smaller than 1/p. The time
complexity follows directly from the design of the protocol AH-ELECTION and bound
TB(n,d, p) = O(d log(n/d)+ log2 n) for broadcast time in this model as in Fact 1. �

Building BFS tree: routine AH-FIND-BFS(v). Suppose there is a node v designated as
a leader. Let G(v,d) be the subgraph of G induced by the nodes of distance at most d
from v. The problem is to determine some BFS tree T of G(v,d) rooted at v and make
each node of G(v,d) know the path from the root v to itself in T . We develop a ran-
domized protocol AH-FIND-BFS(v) to solve this problem. The protocol is related to a
randomized broadcasting protocol given in [2], however that protocol does not construct
a BFS tree.

Protocol AH-FIND-BFS proceeds through d logn phases. Phase i, for 1≤ i≤ d logn,
is given in Figure 3. A local instance of variable X stored by node w is denoted by Xw.
At the start of protocol AH-FIND-BFS, the local instance of activev of root v is set
to 0, while the remaining nodes have their local instances of this variable set to −∞. A
node w is said to be active when activew �=−∞. All random decisions on transmissions
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initialize pathw to the empty string

execute 24log n times

for k = 0 through k = logn do
– if activew = i−1 then transmit pathw with probability 2−k

else attempt to hear a message
– if active=−∞ and transmission α heard from node x then

• set activew = i
• set pathw to α with x appended at the end

Fig. 3. Phase i of protocol AH-FIND-BFS(v) Code for node w in G(v,d)

in phases are independent. A broadcasted packet carries the sequence of nodes visited
by its predecessors. If a node w2 is activated by a packet carrying such a path α sent
from some node w1, then w2 appends w1 to path α and includes the obtained extended
path in packets it transmits.

Lemma 4. Protocol AH-FIND-BFS makes every node of G(v,d) active after at most
O(d log2 n) rounds with probability of at least 1−1/n.

Proof. During phase i each node that has at least one neighbor activated in phase i−1
hears a packet with probability of at least

1− (1−1/8)24 logn ≥ 1−1/n3 ,

since (7/8)6 ≤ 1/2. It follows that each node of distance i from the root receives a
packet successfully in phase i, but not before phase i, which follows directly from the
specification of the protocol, with probability of at least 1−ni · i ·1/n3, where ni denotes
the number of nodes of distance i to the root. Consequently, each node of distance at
most d from the root receives a packet successfully in a phase whose number is equal
to its distance, with probability of at least

1−∑
i≤d

nii/n3 ≥ 1−1/n .

Note that if such an event holds, then each node receives a shortest path from the root
when activated. Additionally, this path is an extension of the path from the root to the
node from which it receives a first (activation) message, and which is also a predecessor
of this node in the path from the root. It follows that these shortest paths constitute a
BFS tree on nodes at distance at most d from the root. �

Convergecast along BFS tree: routine AH-CONVERGECAST-BFS(v). We need to
solve the following problem. There is a BFS tree of a size at least p and of a depth
at most d with p− 1 distinguished nodes (participants) holding rumors. The tree is
rooted at the leader v of the network, who is the remaining participant. Actually any
node in the network of distance at most d from the leader is in the tree as a node. The
goal is to have the leader get to know all these rumors. The BFS tree is not assumed
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to be known by the nodes, but each node in the tree knows its path to the root. Denote
the path from node w to the leader, as known by w, by sw = 〈sw(0),sw(1), . . . ,sw(δw)〉,
where δw is the distance from w to the leader v, sw(0) = w and sw(δw) is the leader.

Protocol AH-CONVERGECAST-BFS(v) consists of 24p log p+d steps. Each partic-
ipant w other than the leader, for each i = 1,2, . . . ,8p log p, launches a packet for the
leader in step (3i− 2)+ (d− δw) with probability 1/(p− 1). The packet contains the
rumor of w and sequence sw. If the packet launched by node w in step t is in node sw( j)
at the beginning of step t + j, then node sw( j) transmits it in step t + j to the next node
sw( j + 1). This packet either reaches the leader in step t + δw−1, or is lost somewhere
on the way due to a collision.

Lemma 5. Protocol AH-CONVERGECAST-BFS solves the convergecast problem in
O(d + p log p) time with probability of at least 1− p−1.

Proof. A packet P launched by a participant w in step (3i− 2)+ (d− δw) reaches the
leader if no other participant u launches its packet in step (3i− 2) + (d − δu). The
distance between packet P and a packet P′ launched by u in step (3k−2)+(d−δu) for
k �= i, is always at least 3, so these two packets cannot collide. Thus the probability that
a participant w launches a packet in step (3i−2)+(d−δw) and this packet reaches the
leader is at least

1
p−1

·
(

1− 1
p−1

)p−2
≥ 1

4p
.

Hence the probability that there is a participant which has not succeeded sending any
of its packets to the leader is at most

p ·
(

1− 1
4p

)8p log p
≤ 1

p
. �

Combining the bounds on the running time from Fact 1 and Lemmas 3, 4, 5 with The-
orem 1 yields the following result.

Theorem 3. Protocol M2M-AH works in O((d + log p) log2 n + p log p) time whp.

To show the efficiency of our algorithm, we prove lower bounds for randomized and
deterministic protocols.

Theorem 4. Any m2m randomized protocol requires Ω(p + d log(n/d + 1) + log2 n)
expected time, for sufficiently large d.

Proof. (Sketch) Part Ω(p) follows directly from Lemma 2. For part Ω(log2 n) we use
the lower bound of Ω(log2 n) for broadcasting time given in [1]. The analysis given
in [1] implies that there is a network Hn with n nodes and radius 2 such that for any ran-
domized broadcasting protocol running on this network, there is a node which requires
time Ω(log2 n) to receive a source message with constant probability. Call this node
long-waiting. Assume that the number of participants p is at most n/2. Take two copies
H ′ and H ′′ of H(n−p)/2, and attach half of the participants to the source node in H ′ and
the other half to the source node in H ′′. Networks H ′ and H ′′ are joined by one edge.
Consider now any randomized m2m protocol in the obtained network. This protocol
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defines (partial) broadcasting protocols in H ′ and H ′′, and gives a long-waiting node w′

in H ′ and a long-waiting node w′′ in H ′′. If H ′ and H ′′ are joined by edge (w′,w′′), then
with constant probability the randomized m2m protocol runs in Ω(log2 n) time.

To show the Ω(d log(n/d + 1)) term in the lower bound claimed in the lemma, we
use the Ω(D log(n/D)) lower bound shown in [25] on expected running time of ad-hoc
randomized broadcasting protocols for networks with D layers (there are D layers and
each node is connected with all the nodes in the preceding and the succeeding layers).
This lower bound holds for any randomized protocol, where we are interested in the
expected time of the first successful transmission to the last layer of the layered network.
We can generalized this lower bound to m2m randomized protocols in a similar way as
above by taking two suitable layered networks. �

Theorem 5. Any m2m ad-hoc deterministic protocol requires Ω(n logn/d+1 n) time, for
any parameter p such that n− p = Ω(n) and d > 1; when n− p = o(n), then the lower
bound is Ω(n), and when d = 1, then the lower bound is Ω(p logn/p n).

Proof. First consider n− p = Ω(n) and d > 1. The lower bound Ω(n logn/d+1 n) on
time of deterministic m2m protocols with p ≥ 2 can be shown by adapting the tech-
nique given in [22] in case of broadcasting protocols. More precisely, for any ad-hoc
deterministic broadcasting protocol there exists an undirected layered-like graph of di-
ameter D, where consecutive layers are organized as a line such that if the source node
in the first layer broadcasts then Ω(n logn/D+1 n) rounds are needed to propagate the
message to any node in the last layer. Similarly as in the proof of the lower bound in
Theorem 4, we take two such networks and join them together.

If n− p = o(n), then Lemma 2 implies the Ω(n) lower bound on any m2m protocol.
For the case d = 1 the lower bound is Ω(p logn/p n) [19]. �

5 Partially Centralized Protocol for Undirected Networks

We show how to instantiate the generic protocol M2M-GENERIC in the model when
the participants know the topology but initially do not know other participants. As in
the previous section, we show how to implement the routines.

Broadcast routine PC-BROADCAST(v). We use a centralized deterministic broadcast
protocol given in [23]. In this protocol node v computes the broadcast schedule to all the
nodes of distance at most d from him, and then initiates this schedule. Every message
sent during the broadcast contains a schedule pre-computed by v.

Fact 2 ([23]). There is an explicit centralized deterministic broadcasting protocol PC-
BROADCAST(v) which completes broadcast to all the nodes of distance at most d from
the source v in TB(n,d, p) = O(d + log2 n) time.

Routine PC-ELECTION. It is sufficient to consider the procedure AH-ELECTION

and change the AH-BROADCAST(v) into PC-BROADCAST(v). Since TE(n,d, p) =
O(TB(n,d, p) log p) as in Lemma 3, we have the following property.

Lemma 6. Routine PC-ELECTION is correct and takes O((d + log2 n) log p) time whp.



On Many-to-Many Communication in Packet Radio Networks 273

Routine PC-FIND-BFS(v). Since the nodes know the topology, the participants com-
pute locally, in a single round, the same BFS tree (for example, the lexicographically
first BFS tree).

Lemma 7. Routine PC-FIND-BFS(v) is correct and takes O(1) time.

Routine PC-CONVERGECAST-BFS(v) is routine AH-CONVERGECAST-BFS(v).
Combining Theorem 1 with Fact 2 and Lemmas 5, 6 and 7, we obtain the following
result.

Theorem 6. Protocol M2M-PC works in O((d + p + log2 n) log p) time whp.

Finally, the following lower bounds follow from Lemma 2 and from the lower bound of
Ω(p logn/p n) on deterministic protocols for the p-selection problem proven in [19].

Theorem 7. Consider the partially-centralized model. Any m2m randomized protocol
performs the expected Ω(p+d) number of rounds, and any m2m deterministic protocol
performs Ω(p logn/p n + d) rounds.

References

1. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, A lower bound for radio broadcast, Journal of
Computer and System Sciences, 43 (1991) 290 - 298.

2. R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time complexity of broadcast in radio
networks: an exponential gap between determinism and randomization, Journal of Computer
and System Sciences, 45 (1992) 104 - 126.

3. R. Bar-Yehuda, A. Israeli, and A. Itai, Multiple communication in multihop radio networks,
SIAM Journal on Computing, 22 (1993) 875 - 887.

4. I. Chlamtac, and S. Kutten, On broadcasting in radio networks - problem analysis and proto-
col design, IEEE Transactions on Communications, 33 (1985) 1240 - 1246.

5. I. Chlamtac, and O. Weinstein, The wave expansion approach to broadcasting in multihop
radio networks, IEEE Transactions on Communications, 39 (1991) 426 - 433.
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16. L. Gąsieniec, and I. Potapov, Gossiping with unit messages in known radio networks, in
Proc., 2nd IFIP International Conference on Theoretical Computer Science (TCS), 2002,
pp. 193 - 205.
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Abstract. We consider the problem of designing an efficient and robust
distributed random number generator for peer-to-peer systems that is easy
to implement and works even if all communication channels are public. A
robust random number generator is crucial for avoiding adversarial
join-leave attacks on peer-to-peer overlay networks. We show that our new
generator together with a light-weight rule recently proposed in [4] for
keeping peers well-distributed can keep various structured overlay net-
works in a robust state even under a constant fraction of adversarial peers.

1 Introduction

Due to their many applications, peer-to-peer systems have recently received a
lot of attention both inside and outside of the research community. Most of the
structured peer-to-peer systems are based on two influential papers: a paper by
Plaxton et al. on locality-preserving data management in distributed environ-
ments [20] and a paper by Karger et al. on consistent hashing and web caching
[13]. The consistent hashing approach is a very simple and elegant approach that
assigns to each peer a (pseudo-)random point in the [0, 1)-interval. Based on this
approach, various local-control rules have been proposed to decide how to inter-
connect the peers so that they form a well-connected network with good routing
properties that is easy to maintain (see, e.g., [18] for a general framework).

In open peer-to-peer systems, the presence of adversarial peers cannot be
avoided. Hence, not only scalability but also robustness against adversarial be-
havior is an important issue. The key to scalability and robustness for peer-to-
peer networks based on the consistent hashing approach is to keep the honest
and adversarial peers well-distributed in the [0, 1)-interval. However, just assign-
ing a random or pseudo-random point to each new peer (by using some random
number generator or cryptographic hash function) does not suffice to keep the
honest and adversarial peers well-spread [2]. People in the peer-to-peer commu-
nity are aware of this problem [8,9] and various solutions have been proposed
that may help alleviating it in practice [6,7,19,26,27,29] but until recently no
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mechanism was known that can provably keep the peers in a well-distributed
state without sacrificing the openness of the system.

Various light-weight perturbation rules that can keep the honest and adver-
sarial peers well-distributed have recently been proposed in [4,10,25]. These rules
do not need to be able to distinguish between the honest and adversarial peers,
but a crucial prerequisite for them to work is a robust distributed random num-
ber generator. This random number generator has to work correctly in a system
without mutual trust relationships and must be robust against arbitrary adver-
sarial behavior to be applicable to peer-to-peer systems. Certainly, designing
such a random number generator is not an easy task.

1.1 Robust Distributed Random Number Generation

How can we generate random numbers in a peer-to-peer system with adversarial
presence? The most naive approach is to let every peer generate its own random
numbers. This approach is problematic since in a dynamic peer-to-peer system
it is impossible to collect sufficient statistical evidence to accuse a particular
peer of generating non-random numbers. Yet, somewhat surprisingly, it is still
possible to use this approach to maintain a robust peer-to-peer network, but at
the cost of losing scalability [3]. So a different approach is needed.

A more reasonable approach is the following. Suppose that we need a random
number generator that generates a number by selecting a binary string uniformly
at random out of {0, 1}s for some s. Consider the situation that a group P of the
peers wants to generate a random number. Each (honest) peer p in P may then
select a random number xp ∈ {0, 1}s and commit to it to all other peers in P
using a bit commitment scheme (a particularly secure one-way hash function h
for which h(x) does not reveal anything about x) [12,17]. Once all commitments
have been made, the peers will reveal their random numbers, and if they all
do, every peer computes x =

⊕
p∈P xp, where ⊕ is the bit-wise XOR operation.

The XOR operation has the nice property that as long as at least one xp is
chosen uniformly at random and the other numbers are independent of it, x is
distributed uniformly at random in {0, 1}s. Hence, if the scheme succeeds and
at least one honest peer participates in it, a random number x will be generated.
But the adversarial peers can easily let the scheme fail, and this not only in an
oblivious manner but also in an adaptive manner (by just waiting for enough
numbers xp to be revealed before revealing their own numbers). Thus, in order
to avoid a significant bias on the successfully generated random numbers, the
fraction of adversarial peers in the system would have to be so small that no
adversarial peer will be present in most of the groups P that are used for the
random number generation. Such an approach was pursued in [2].

To avoid the problems above, we recently proposed a distributed random
number generator that is based on verifiable secret sharing [4]. This random
number generator can still fail if the peer initiating it does not behave correctly,
but it has the advantage that if the peer initiating it is honest, then the random
number generation is guaranteed to succeed, and whenever the random number
generation succeeds, the number generated will be random.
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Yet, using this scheme is not completely satisfying. First of all, an adversary
can let it fail in an adaptive manner (i.e., it can let it fail after knowing the
final key), which is sufficient to create a significant bias, even though the ad-
versary cannot undermine the randomness of the generated key. It just has to
run sufficiently many attempts until a key is generated that falls into a desired
range. Furthermore, the scheme is not easy to implement and private channels
are needed between the peers. So the question that led to this paper was:

Is it possible to design an elementary and sufficiently unbiased distributed
random number generator that even works for public channels and a constant
fraction of adversarial peers?

Remarkably, this paper shows that this is possible.

1.2 Related Work on Random Number Generation

Surprisingly little has been published about robust random number generators
for distributed systems. Random number generators have mostly been studied
in the context of pseudo-random number generators (PRNGs) with small seed
or cryptographically secure random number generators (CSRNG). The main
difference between a PRNG and a CSPRNG is that a CSPRNG should be in-
distinguishable from random on any examination, whereas a PRNG is normally
only required to look random to standard statistical tests. For foundations and
surveys on random number generators see, e.g., [11,16,23,31].

There are many protocols for distributed systems with adversarial presence
that need random numbers for atomic broadcasting, leader election and almost-
everywhere agreement (e.g., [14,21] for recent results), but in these it is sufficient
that every peer chooses its own random numbers.

Unbiased random numbers can be computed via verifiable secret sharing or
secure multiparty computation schemes (e.g., [5,28]), but these are not easy to
implement (since they need error correction techniques), and they require private
channels.

1.3 Details of Our Random Number Generator

The basic idea behind our random number generator is the insight that gener-
ating a single random number is difficult with public channels but generating
a batch of random numbers is doable. An m-random number generator (or m-
RNG) is a random number generator that generates a batch of up to m random
numbers. We assume that every random number is represented as a binary string
in {0, 1}s for some fixed s. Given an m-RNG G and any subset S ⊆ {0, 1}s, let
EG(S) be the expected number of keys y generated by G with y ∈ S. Ideally,
G should satisfy EG(S) = m · |S|/2s for all S ⊆ {0, 1}s. Let E(S) = m · |S|/2s.
Then we define the bias β(G) of G as

β(G) = max
S⊆{0,1}s

max
{

EG(S)
E(S)

,
E(S)

EG(S)

}
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The m-RNG that we present in this paper is called round-robin random number
generator (or short round-robin RNG). Let P be the group of m peers this
protocol is applied to. The basic ideas of the protocol can be summarized as
follows:

– When correctly initiated, every peer in P will supervise the generation of
one random number in {0, 1}s. A peer whose random number generation
fails can send an accusation to the peers in P in which it can accuse exactly
one other peer. Honest peers will run the random number generation one
after the other (using a proper timing scheme) so as to maximize the effect
of the accusations and thereby minimize the number of times an adversarial
peer can cause the failure of a random number generation supervised by an
honest peer.
dealer and the others being a group of players. Both the players and the
dealer commit to a key. However, as we will see, the dealer key is a special
master key that is committed first and revealed last. In this way, the dealer
is the only one that can adaptively decide whether to let the random number
generation fail or not. However, this is the only way in which the dealer can
bias the random number generation. It cannot make its probability distri-
bution non-uniform if at least one honest player is participating in it.

More details are given in Section 2. For this protocol, the following theorem is
shown.

Theorem 1. Suppose that |P | = m and there are t < m/6 adversarial peers
in P . Then the round-robin RNG generates random keys y1, y2, . . . , yk ∈ {0, 1}s

with m − 2t ≤ k ≤ m and the property that for all subsets S ⊆ {0, 1}s with
σ = |S|/2s,

E[|{i | yi ∈ S}|] ∈ [(m− 2t)σ, m · σ]

The worst-case message complexity of the protocol is O(m2).

Hence, the bias of our m-RNG is just 1 + 2t
m−2t , which is a constant. It turns

out that this bias is small enough in order to maintain a scalable and robust
peer-to-peer network.

1.4 Application to Robust Peer-to-Peer Networks

In the area of peer-to-peer systems, work on robustness in the context of overlay
network maintenance has mostly focused on how to handle a large fraction of
faulty peers (e.g., [1,24,30]) or churn, that is, peers frequently enter and leave
the system (e.g., [15,22]). However, none of these approaches can protect a peer-
to-peer network against adaptive join-leave attacks. In an adaptive join-leave
attack, adversarial peers repeatedly join and leave a network in order to occupy
certain areas of the network. To prevent them from doing this, proper join and
leave protocols have to be found so that the honest and adversarial peers are kept
well-spread in the [0, 1)-interval. More precisely, what we would like to aim for
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is that at any time point with n peers in the system the following two conditions
can be met for every interval I ⊆ [0, 1) of size at least (c log n)/n for a constant
c > 0:

– Balancing condition: I contains Θ(|I| · n) peers.
– Majority condition: the honest peers in I are in the majority.

If this is the case, then proper region-based overlay networks and routing rules
can be defined to guarantee connectivity and correct routing (e.g., [4]). However,
maintaining the two conditions under adaptive adversarial join-leave attacks
turns out to be quite tricky. Just assigning a random or pseudo-random point to
each new peer (by using some random number generator or cryptographic hash
function) does not suffice to preserve the balancing and majority conditions [2].
Fortunately, just recently we found a join operation, called cuckoo rule, that can
solve this problem [4].

1.5 The Cuckoo Rule

In the following, a region is an interval of size 1/2r in [0, 1) for some integer r
that starts at an integer multiple of 1/2r. Hence, there are exactly 2r regions of
size 1/2r. A k-region is a region of size (closest from above to) k/n, and for any
point x ∈ [0, 1), the k-region Rk(x) is the unique k-region containing x.

Cuckoo rule: If a new node v wants to join the system, pick a random x ∈ [0, 1).
Place v into x and move all nodes in Rk(x) to points in [0, 1) chosen uniformly
and independently at random (without replacing any further nodes).

Suppose that we have n honest peers and εn adversarial peers in the system
for some ε < 1. For the situation that the adversary adaptively rejoins the
system with its peers in a one-by-one fashion, it was shown [4] that as long as
ε < 1−1/k, the k-cuckoo rule satisfies the balancing and majority conditions for
a polynomial number of rejoin operations, with high probability. However, for
the cuckoo rule to be implementable in a distributed system, a robust distributed
random number generator is needed. Furthermore, the cuckoo rule may need up
to O(log2 n) random bits in the worst case (for O(log n) peers that need to be
replaced).

1.6 The Round-Robin Cuckoo Rule

The problem with O(log2 n) bits is solved by proposing a slight adaptation of
the cuckoo rule that we call the de Bruijn cuckoo rule. The new rule has the
benefit that only O(log n) random bits are needed in the worst case (for two
random points in [0, 1)).

In order to solve the problem with the random number generator, we combine
the round-robin RNG with the de Bruijn cuckoo rule to the so-called round-
robin cuckoo rule. It works in a way that for every successful random number
generation in the round-robin RNG, the de Bruijn cuckoo rule is used. The
protocol has the following performance.
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Consider adversarial join-leave attacks in a system with n honest peers and
εn adversarial peers. Let β be the bias of the round-robin RNG. Then it holds:

Theorem 2. For any constants ε, k and β with ε < 1/β − 1/k, the round-
robin cuckoo rule satisfies the balancing and majority conditions for a polynomial
number of rounds, with high probability, for any adversarial strategy within our
model.

Hence, Theorem 2 is a natural extension of the result in [4].

1.7 Structure of the Paper

In Section 2, we present the round-robin random number generator, and in Sec-
tion 3 we show how to use it to counter join-leave attacks in peer-to-peer net-
works. The paper ends with conclusions.

2 Robust Random Number Generation

In this section we consider the situation that we have a set P of m players de-
noted p1, . . . , pm. We distinguish between honest and adversarial players. The
honest players follow the protocol in a correct and timely manner, whereas the
adversarial players may behave in an arbitrary way, including arbitrary collusion
among the adversarial players. Our goal is to find elementary protocols that con-
struct random numbers with a uniform distribution in {0, 1}s for some given s,
even under adversarial presence.

First, we state some assumptions, and then we present the round-robin ran-
dom number generator. After its analysis, we discuss some extensions for peer-
to-peer systems.

2.1 Assumptions

We assume that only point-to-point communication is available and that all
information sent out by a player can be seen by the adversary. Thus, no broad-
casting primitive and no private channels are given, which is often the case in
other robust distributed protocols like verifiable secret sharing. We just need a
mechanism that allows the players to verify the sender of a message. For this, we
assume the existence of a non-repudiable signature scheme. A message m signed
by player p will be denoted as (m)p.

Honest players are supposed to act not only in a correct but also a timely
manner (which is important to maintain dynamic systems such as peer-to-peer
networks). We assume that any message sent from one honest player to another
honest player needs at most δ time steps to be received and processed by the
recipient for some fixed δ, and we assume that the clock speeds of the honest
players are roughly the same. But the clocks do not have to be synchronized (i.e.,
show the same time) nor do we require the protocols to run in a synchronous
mode (i.e., all players must send their messages at exactly the same time). The
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latter assumption makes it hard to generate unbiased random keys even though
there is a notion of time because the adversarial players can always choose to be
the last to send out messages, thereby maximizing the control they have on the
generation of the random number.

For the random number generation, we need a bit commitment scheme h, i.e., a
scheme where h(x) does not reveal anything about x. In practice, a cryptographic
hash function might be sufficient for h so that the protocols below can be easily
implemented. Furthermore, we assume that all honest players have a perfect
random number generator. In practice, pseudo-random number generators that
pass a certain collection of statistical tests (such as the diehard tests) might be
sufficient here.

2.2 Round-Robin Random Number Generator

Suppose that we have a set P of m players, p1, . . . , pm, that mutually know each
other and the indexing, with any t of them being adversarial for some t < m/6.
The round-robin random number generator works as follows for some player
p∗ ∈ P initiating it.

1. p∗ sends a signed request to initiate the random number generation to all
players in P .

2. Once player pi ∈ P receives p∗s signed initiation request for the first time
(from anywhere), it forwards it to all other players in P . Afterwards, it sets
Pi := P \ {pi} and waits for i · 8δ time steps. Each time it receives an
accusation (pk)pj from a player pj ∈ P it has not received an accusation
from yet, it sets Pi := Pi \ {pk}. Once the i · 8δ steps are over, pi initiates
step (3). pi terminates after (m + 1)8δ steps.

3. If |Pi| ≥ 2m/3, then pi chooses a random xi ∈ {0, 1}s and sends (h(xi), Pi)pi

to all players in Pi. Otherwise, pi aborts the protocol (which will not happen
if t < m/6).

4. Each player pj ∈ Pi receiving a message (h(xi), Pi)pi for the first time from
pi with Pi ≥ 2m/3 chooses a random xj ∈ {0, 1}s and sends the message
(pi, h(xj), Pi)pj to pi. Otherwise, it does nothing.

5. If all players in Pi reply within 2δ time steps, then pi sends ({(pi, h(xj), Pi)pj |
pj ∈ Pi})pi to all players in Pi. Otherwise, pi sends an accusation (pj)pi for
any pj ∈ Pi that did not reply correctly or in time to all players in P and
stops its attempt of generating a random number.

6. Once pj ∈ Pi receives ({(pi, h(xk), Pi)pk
| pk ∈ Pi})pi from pi, pj sends

(xj)pj to pi.
7. If pi gets a correct reply back from all players in Pi within 2δ time steps,

then it sends (xi, {(xj)pj | pj ∈ Pi})pi to all players in Pi and computes
yi = xi ⊕

⊕
pj∈Pi

xj where ⊕ is the bit-wise XOR operation. Otherwise, pi

sends an accusation (pj)pi to all players in P for any pj ∈ Pi that did not
reply correctly or in time and stops.

8. Once pj ∈ Pi receives (xi, {(xk)pk
| pk ∈ Pi})pi , pj verifies that all keys are

correct. Then pj computes y
(i)
j = xi ⊕

⊕
qk∈Pi

xk and sends the message

(y(i)
j )pj to pi.
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9. If pi receives yi from at least 2m/3 players in P within 2δ time steps, it
accepts the computation and otherwise sends an accusation (pj)pi to all
players in P for any pj ∈ Pi that did not reply correctly or in time.

We define the random number generation of pi to be successful if pi receives
the same key from at least 2m/3 many players in step (9). This is important
for pi since it will need the support of at least 2m/3 other players for further
operations that we will discuss in the next section.

2.3 Analysis of the Round-Robin RNG

The round-robin RNG has the following performance.

Theorem 3. Suppose that |P | = m and there are t < m/6 adversarial players
in P . Then the round-robin RNG generates random keys y1, y2, . . . , yk ∈ {0, 1}s

with m − 2t ≤ k ≤ m and the property that for all subsets S ⊆ {0, 1}s with
σ = |S|/2s,

E[|{i | yi ∈ S}|] ∈ [(m− 2t)σ, m · σ] .

The worst-case message complexity of the protocol is O(m2).

In order to prove the theorem, we start with some simple claims.

Some basic facts. Because of the flooding strategy in step (2) and the definition
of δ it holds:

Claim. No matter whether p∗ is adversarial or not, all honest players start the
protocol within δ steps.

Since each honest player pi needs at most 7δ time steps to complete the protocol
from step (3) to (9) and starts after waiting for i · 8δ steps, the claim above
implies the following claim.

Claim. No two honest players execute their random number generation scheme
(steps (3) to (9)) at the same time.

Hence, honest player pi can make use of the accusations of all honest players pj

with j < i in order to keep its own problems with the random number generation
as small as possible.

Next, we bound the size of any Pi for an honest player pi. Recall that honest
players are supposed to work in a correct and timely manner. Hence, honest
players will never accuse other honest players of any wrongdoing but only adver-
sarial players. Since every adversarial player can issue at most one accusation,
there will be at least m−2t honest players left in every set Pi of an honest player
pi throughout the protocol. Hence, we get:

Lemma 1. If t < m/6 then |Pi| ≥ 2m/3 throughout the protocol for every
honest player pi.
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Moreover, every player pi can only be successful for one key. This is because all
players in Pi have to see commitments to the same Pi for all players in Pi and
|Pi| ≥ 2m/3 before revealing their random keys in step (6). Since t < m/6, this
means that there must be more than m/2 honest players in Pi, which can only
be possible for at most one Pi. Hence, we get.

Lemma 2. If t < m/6 then every player can be successful for at most one key.

Analysis of steps (3) to (9). Next, we focus on the execution of steps (3) to
(9) by some fixed peer pi. First, we consider the case that pi is honest, and then
we consider the case that pi is adversarial.

Lemma 3. If pi is honest and |Pi| ≥ 2m/3, then no matter how many adver-
sarial players there are in Pi, if the protocol terminates successfully, then the key
yi generated by pi is distributed uniformly at random in {0, 1}s and all honest
players in Pi compute the same key as pi.

Proof. pi will not reveal xi before the keys in Pi have all been revealed. Hence,
the probability distribution on z =

⊕
pj∈Pi

xj must be independent of xi. But
for any probability distribution on z =

⊕
pj∈Pi

xj that is independent of xi it
holds that if xi is chosen uniformly at random in {0, 1}s, then also yi = xi ⊕ z
is distributed uniformly at random in {0, 1}s. Moreover, also the decision of the
adversarial players to let the random number generation fail must be independent
of xi and can only be a function of z because xi will not be revealed before. Hence,
it holds for any adversarial strategy and any y∗ ∈ {0, 1}s that

Pr[yi = y∗ | generation of yi successful] = Pr[yi = y∗] =
1
2s

If pi succeeds with computing yi, then it informed all players in Pi about the
revealed keys, and all honest among them will accept these keys since they match
the message sent out by pi in step (5). Hence, all honest players in Pi compute
the same key as pi. ��

Notice that if the adversarial players knew about xi before deciding to let the
random number generation fail, they can create a significant bias, even if the
other keys were chosen independent of xi. A simple example for this would be:

Focus on any fixed y∗ ∈ {0, 1}s. If yi = y∗, then let the attempt fail, and
otherwise let it be successful.

It is easy to see that this would make it very unlikely for the round-robin
RNG to generate y∗ (since it would have to be generated more than t times to
be successful at least one). Hence, it is crucial that xi is only revealed after all the
other keys have been revealed. Next, we consider the case that pi is adversarial.

Lemma 4. If pi is adversarial, then no matter what pi and the other adversarial
players in Pi do, whenever an honest player pj reveals its key xj , y

(j)
i has a

uniform distribution on {0, 1}s.



284 B. Awerbuch and C. Scheideler

Proof. An honest player pj will only reveal xj once it receives ({(pi, h(xk), Pi)pk
|

pk ∈ Pi})pi from pi and pj ∈ Pi (so that y
(i)
j is well-defined). In this case, xj is a

random number that is independent of z = xi ⊕
⊕

pk∈Pi\{pj} xk, and since xj is

independent of z and chosen uniformly at random, y
(i)
j = xj ⊕ z has a uniform

distribution. ��

Notice, however, that pi can commit to different sets Pi to different honest players
without being detected, so the keys y

(i)
j can differ among the honest players.

Nevertheless, if pi wants to be successful (i.e., collect commitments to the same
key from at least 2m/3 many players), it must let more than m/2 honest players
pj succeed with computing the same y

(i)
j , which has a uniform distribution.

Still, the adversarial players can create a bias on the successfully computed
keys since after knowing yi, an adversarial player pi still has the option to let the
key generation be successful or not. Fortunately, this bias cannot be too large,
as shown in the following lemma.

Analysis of the entire protocol

Lemma 5. If t < m/6 then at least m − 2t of the m − t random number gen-
erations initiated by the honest players are successful, irrespective of whether
p∗ is adversarial or not. Furthermore, it holds for all subsets S ⊆ {0, 1}s with
σ = |S|/2s that E[|{i | yi ∈ S for a successful yi}|] ∈ [(m− 2t)σ, m · σ]

Proof. According to Lemma 4, every key y that an honest player p commits
to must be distributed uniformly at random in {0, 1}s. However, whereas the
adversarial players can adaptively abort the random number generation initiated
by adversarial players, it follows from Lemma 3 that they can only do this in an
oblivious way for the honest players. We know that the adversarial players can
only sabotage the random number generation of at most t honest players. Hence,
at least m−2t random number generations of honest players pi will be successful,
and their success does not depend on their values. Thus, the probability for any
of these players pi that yi ∈ S is equal to σ and, therefore, the expected number
of successful pi’s with yi ∈ S is at least (m− 2t)σ.

On the other hand, at most m key generations can be successful, and since
every successfully generated key yi is distributed uniformly at random in {0, 1}s,
the probability for any yi to be in S is equal to σ. Hence, the expected number
of successful pi’s with yi ∈ S is at most m · σ. ��

The next lemma follows immediately from the protocol.

Lemma 6. The message complexity of the round robin-random RNG is O(m2).

2.4 Extensions

In our random number generator we assumed that the players in P know each
other and the indexing. This assumption can be problematic in peer-to-peer
systems since there might be disagreement among the honest players about the
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set of adversarial players in P . However, if at least all the honest players know
each other and there are, for example, less than m/8 adversarial players in P ,
this can easily be fixed. Suppose that every honest player pi uses a threshold of
3mi/4 instead of 2m/3, where mi is the number of players that pi knows in P and
m = |P |. Then all results above still hold since 3mi/4 ≥ (3/4) · (7m/8) > m/2.

Another problem is how to fix the indexing issue. When there is disagreement
about P , it will not be possible for the honest players to agree on a common
indexing scheme. Instead, they can use the following simple trick. Each player
pi picks a random slot out of c ·mi many slots for generating a random number,
where c is a fixed constant. Then it is easy to calculate that the number of
slots occupied by the honest players is at least (1− 1/(2c))mh, where mh is the
number of honest players. Hence, the adversarial players could manage now to
let up to t + mh/(2c) random number generations of honest players fail instead
of just t, which is still acceptable if c is sufficiently large.

3 Application to Robust Peer-to-Peer Networks

In this section we show how to use the round-robin random number genera-
tor above to satisfy the balancing and majority conditions for any adversarial
join-leave strategy for a polynomial number of rejoin operations, with high prob-
ability. We start with a formal model. Then we present the de Bruijn cuckoo rule,
and afterwards we combine it with the round-robin RNG to obtain the round-
robin cuckoo rule.

3.1 Model

Recall that we want to associate all peers with points in [0, 1). These points
can be encoded as binary strings from {0, 1}s (in a sense that b = (b1, . . . , bs)
represents xb =

∑
i≥1 bi/2i) for a sufficiently large s (in SHA-1, which is used

by the Chord system, for example, s = 160).
There are n blue (or honest) nodes and εn red (or adversarial) nodes for some

fixed constant ε < 1. There is a rejoin operation that, when applied to node v,
lets v first leave the system and then join it again from scratch. The leaving is
done by simply removing v from the system and the joining is done with the help
of a join operation to be specified by the system. We assume that the sequence of
rejoin requests is controlled by an adversary. The adversary can only issue rejoin
requests for the red nodes, but it can do this in an arbitrary adaptive manner.
That is, at any time it can inspect the entire system and select whatever red
node it likes to rejoin the system. The goal is to find an oblivious join operation,
i.e., an operation that does not distinguish between the blue and red nodes, so
that for any adversarial strategy above the balancing and majority conditions
can be kept for any polynomial number of rejoin requests.

3.2 The de Bruijn Cuckoo Rule

Recall the original cuckoo rule in Section 1.5. We present a slight but crucial
modification to this rule, called the de Bruijn cuckoo rule, which only needs two
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random numbers in {0, 1}s, irrespective of k. The prefix de Bruijn was chosen
because the rule can be easily implemented in dynamic de Bruijn graphs (e.g.,
[18]).

de Bruijn cuckoo rule: If a new peer v wants to join the system, pick ran-
dom x, y ∈ [0, 1). Place v into x and replace all peers in Rk(x) in the following
way. If |Rk(x)| = 0, we are done, and if |Rk(x)| = 1, then the peer in Rk(x)
is moved to position y. Otherwise, let b = �log |Rk(x)|�. Given that y is repre-
sented by a binary string (y1, . . . , ys) ∈ {0, 1}s, peer i ≥ 0 in Rk(x) is moved to
position ((ys−b+1, . . . , ys)⊕ (i)2)◦ (y1, . . . , ys−b) where (i)2 represents the binary
representation of i and ◦ the concatenation.

For example, suppose that y = 0100110 and |Rk(x)| = 3. Then the new
positions of the three peers are (10 ⊕ 00) ◦ 01001 = 1001001 for peer 0, (10 ⊕
01) ◦ 01001 = 1101001 for peer 1, and (10 ⊕ 10) ◦ 01001 = 0001001 for peer 2.
This rule of mapping peers to new points has the following property:

Lemma 7. Every replaced peer is moved to a position that is distributed uni-
formly at random in {0, 1}s.

Proof. Consider peer i in Rk(x) for any fixed i and suppose that y is distributed
uniformly at random in {0, 1}s. Then (ys−b+1, . . . , ys) ⊕ (i)2 is distributed uni-
formly at random in {0, 1}b and (y1, . . . , ys−b) is distributed uniformly at random
in {0, 1}s−b, resulting in the lemma. ��

Moreover, any two peers in a region Rk(x) with p peers have a distance of at
least (1/2)log p−1 ≥ 1/(2p) of each other. Hence, when looking at the analysis in
[4], it turns out that all results still hold when using a perfect random number
generator (though in Lemma 2.6 and Lemma 2.10 the independence property
of the new node positions has to be replaced by negative correlation, but the
negative correlation is so small that it is negligible).

Theorem 4. For any constants ε and k with ε < 1− 1/k, the de Bruijn cuckoo
rule with parameter k satisfies the balancing and majority conditions for a poly-
nomial number of rounds, with high probability, for any adversarial strategy
within our model. The inequality ε < 1− 1/k is sharp as counterexamples can be
constructed otherwise.

3.3 The Round-Robin Cuckoo Rule

Finally, we show how to combine the de Bruijn cuckoo rule and the round-robin
random number generator into a simple and efficient join protocol called round-
robin cuckoo rule that achieves a result similar to Theorem 4.

Recall the definition of a region in Section 1.5. Given a node v ∈ [0, 1), we
define its quorum region Rv as the unique region of size closest from above to
(γ log n)/n, for a fixed constant γ > 1, that contains v.

We demand that whenever a new node u wants to join the system, it has to
do so via a node v already in the system. v then initiates the following protocol:
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1. v initiates the round-robin RNG in Rv (i.e., v acts as p∗).
2. For each successful node vi ∈ Rv, vi initiates the de Bruijn cuckoo rule by

sending a message (yi, {(y(i)
j )pj | vj ∈ Pi})pi with 1 + 2m/3 signed keys to

all nodes in Rv.
3. Once node w ∈ Rv receives a correctly signed (yi, {(y(i)

j )pj | vj ∈ Pi})pi

containing more than 2m/3 keys, it forwards it to all other nodes in Rv and
initiates the de Bruijn cuckoo rule.

In the de Bruijn cuckoo rule, majority decision is done to execute the proper
actions (see [4] for more details). Since step (3) ensures the “all or nothing” prin-
ciple concerning the honest nodes, the de Bruijn cuckoo rule can be guaranteed
to be executed in a correct and timely manner. The new node u can choose to
assume any one of the new positions of a successfully executed de Bruijn cuckoo
rule. It just needs to commit to one to Rv. If the node v just wants to rejoin
the system (like in the adversarial strategies considered here), then we identify
v with u.

3.4 Perturbation with Biased Randomness

Recall that we consider adversarial join-leave attacks in a system with n honest
nodes and εn adversarial nodes. Let β be the bias of the round-robin RNG. Then
it holds:

Theorem 5. For any constants ε, k and β with ε < 1/β− 1/k, the round-robin
cuckoo rule with the round-robin RNG with bias β satisfies the balancing and
majority conditions for a polynomial number of rounds, with high probability,
for any adversarial strategy within our model.

Proof. (Sketch) Recall the Lemmas in Section 2 of [4]. Let δ > 0 be a small
constant. Lemma 2.4 holds as before. In Lemma 2.5, the age range of a region
R consisting of c logn k-regions has to be adjusted to [(1 − δ)(c log n)(n/k),
(1+ δ)β(c logn)(n/k)], where the age of R is the sum of the ages of its k-regions
and the age of a k-region is defined as the number of RNG attempts back in time
till that region was last hit by a new node. Lemma 2.6 still holds. In Lemma 2.9,
the range for the number of evicted honest nodes in a time interval of size T has
to be adjusted to [((1− δ)/β)T ·k, (1+ δ)T ·k], and the range for the adversarial
nodes has to be adjusted to [((1−δ)/β)T ·εk, (1+δ)T ·εk]. With these bounds, we
obtain a worst-case ratio between honest and adversarial nodes if R has an age of
(1− δ)(c log n)(n/k). In this case, there are at least ((1− δ)2/β)(c log n)k honest
nodes and at most (1−δ)(1+δ)(c logn)εk+c logn adversarial nodes in R, w.h.p.
In order to satisfy the majority condition, it must hold that ε < 1/β − 1/k. ��

4 Conclusions

In this paper, we presented a simple and robust random number generator suffi-
cient for keeping honest and adversarial peers well-distributed in [0, 1). We only
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proved our results assuming a sequential execution of rejoin operations (see our
model) though we expect that as long as not too many rejoin operations are
executed concurrently, there should be only insignificant side effects (see also
the comments in [25]).

Interesting problems for future work are, how to extend our results to general
β-biased m-RNGs and how to extend our rejoin operation so that we can even
make a peer-to-peer network robust against adaptive join-leave behavior by both
honest and adversarial peers.
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Abstract. In this paper we analyze the ability of peer to peer networks
to deliver a complete file among the peers. Early on we motivate a broad
generalization of network behavior organizing it into one of two successive
phases. According to this view the network has two main states: first cen-
tralized - few sources (roots) hold the complete file, and next distributed -
peers hold some parts (chunks) of the file such that the entire network has
the whole file, but no individual has it. In the distributed state we study
two scenarios, first, when the peers are “patient”, i.e, do not leave the sys-
tem until they obtain the complete file; second, peers are “impatient” and
almost always leave the network before obtaining the complete file.

We first analyze the transition from a centralized system to a dis-
tributed one. We describe the necessary and sufficient conditions that
allow this vital transition. The second scenario occurs when the network
is already in the distributed state. We provide an estimate for the sur-
vival time of the network in this state, i.e., the time in which the network
is able to provide all the chunks composing the file. We first assume that
peers are patient and we show that if the number of chunks is much
less than en, where n is the number of peers in the network, then the ex-
pected survival time of the network is exponential in the number of peers.
Moreover we show that if the number of chunks is greater than log n

n+1
en+1,

the network’s survival time is constant. This surprisingly suggests that
peer to peer networks are able to sustain only a limited amount of in-
formation. We also analyze the scenario where peers are impatient and
almost always leave the network before obtaining the complete file. We
calculate the steady state of the network under this condition. Finally a
simple model for evaluating peer to peer networks is presented.
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1 Introduction

Over recent years, peer to peer (P2P) networks have emerged as the most popu-
lar method for sharing and streaming data (see for instance [1]). There has been
popular adoption and widespread success due to the high efficiencies that these
networks obtain for broadcast data. Apart from personal usage, many compa-
nies, like for instance redhatR©, provide links in order to download their free
distributions in a P2P fashion. In doing so, companies avoid the problem of too
many clients connected to their server. This solves bottleneck or high concen-
trated transmission cost on a single node with a significant chance of failure at
peak loads. On the other hand, companies are not the only benefactor. Indeed,
it makes things much faster from the point of view of the user even though at
the expense of “being used” by other users.

Another very interesting application where such networks are highly successful
concerns the distribution of data for storage purposes. The idea, in fact, to
collect data among users spread over all the world is increasing more and more.
Instead of having (for each one) a full copy of everything, a community can
share resources hence obtaining a distributed storage device. This permits them
to collectively maintain more and more data and it increases also the reliability.
It ensures, in fact, that data will not disappear due to the malfunction of a small
number of devices.

The main differences among the two applications we have just outlined are a
more collaborative environment and a lower percentage of disappearing pieces
of data, with the second being the more reliable in this sense. For downloading
purposes, in fact, the aim is sometimes to download the required data as fast as
possible and then leave the network. This implies also a higher frequency in peers
disappearing. On the other hand, in an ideal world where people collaborate for
a common final purpose, we like to imagine both the applications are quite
equivalent.

We consider the following processes. A file is divided into k chunks. The
network contains a large number of nodes. We distinguish among peers, i.e.,
nodes with a number of chunks less than k and roots, i.e., nodes owning all the
chunks. We assign to peers a probability α for which they may disappear. This
means that peers live on average 1

α rounds. For the roots we chose a probability
αR ≥ α. We consider closed network, i.e., every time a peer or a root leaves
the network a new peer will join with no chunks. For the sake of simplicity we
consider a synchronous model. During a round each node can receive or send
one chunk; and at the end of each round any node disappears with respect to
the related probability. We study the following three scenarios:

Spreading or Centralized Scenario: Peers contain no chunks and there are
R roots. We wonder if the file is spread into the network. This happens if all the
chunks are sent from the roots inside the network where they multiply them-
selves. This can give us a measure for the file length with respect to the life of
the last surviving root. After the last root leaves the network, in fact, either the
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file has been spread or it is not possible to build it back. We say in this case,
the network (or the file) is “dead”.

Distributed Scenario: The chunks are widely spread in the network. There is
not a fixed amount of roots, R can be also zero, we only require that the whole
chunks composing the file are there. We wonder if the network life is long or
short. As we are going to see, the network life is long when some almost steady
state is reached. This can give us a measure about the conditions ensuring a
long life for the network, and, when this happens, how often a full download is
completed.

Survivability Scenario: In this scenario we are interested in studying the
network behavior under extreme conditions. We consider, in fact, the case in
which a file is almost never downloaded since peers have a very high volatility.
They almost never stay in the network long enough to perform a full download.
However, it is still very interesting to note that the network is able to survive.
We recall that a network is said to survives whenever it still contains all the k
chunks composing the original file, no matter where they reside.

Given some parameter settings, our aim is to answer the question of how
long we can expect a network to continue producing new completed downloads.
For all the previous three scenarios we provide a stochastic formulation. We
show how parameters should be set up in order to obtain the desired results
concerning network survivability and file downloading rate. It turns out that the
eventual fate of the network is mainly dependent on the number of nodes n and
the number of chunks k in which the file is split. We show how the network may
pass through the previous three scenarios before eventually dying.

1.1 Related Work

A lot of work has been devoted to the area of file sharing in P2P networks.
Many experimental papers provide practical strategies and preliminary results
concerning the behavior of these kind of networks. In [2] for instance, the authors
essentially describe properties like liveness and downloading rate by means of
extended experiments and simulations under several assumptions.

Concerning analytical models it is very difficult to capture suitable features
in order to describe what happens and why protocols like BitTorrent [3] are so
powerful in practice. Suitable models are hard to find that describe what some-
times is easily observable by simulations. One of the main assumption made in
the literature in order to describe the behavior of such networks at a top level
concern Flow models [4,5], Queueing theory [6], Network Coding [7] and Coupon
Collector aspects [8]. This latter paper mainly focuses on systems in which peers
owning some chunks (usually one at random) appear in the network with some
probability and disappear as soon as they complete their download. Recently
in [9], the distribution of k chunks on a network with diameter d and maximum
degree D has been proved to require at most O(D(k + d)) rounds of concurrent
downloads with high probability. This is tight within a factor of D. They also
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specialized to the networks used by BitTorrent improving the bound to O(k ln n)
rounds where n is the number of nodes.

1.2 A First Thought

Such results are quite interesting from a theoretical point of view but sometimes
not truly representative of the real life. The main assumption that collides with
practical aspects is that the number of peers participating in the protocol is
assumed to be huge, hence obtaining asymptotically optimal results in terms of
network survivability and spreading speed of the desired file. Moreover, different
from our model many of the previously cited papers do not assume the possibility
for a peer to leave the network before it completes the whole file. This aspect is
indeed introduced also in [5]. On the other hand we should immediately point
out that if there is at least one root that stays indefinitely, then the file will
always be available in the network, if a peer is willing to wait. We call such a
scenario “trivial” since there is no question about the behavior of the network.
In contrast, if all the original R roots disappear (at some time t) then there are
many possibilities. We say a chunk is present in the network if at least one peer
has that chunk. If there exists a chunk that is not present on the network, then
no more full downloads are possible. Therefore, the most interesting case is when
no roots are persistent (t <∞).

When using BitTorrent [3] or similar programs in order to download desired
files, usually such networks look quite different. The assumption for which a huge
number of nodes is participating in the protocol given in [7,8,5] is indeed too
strong. Moreover, in practice, the number of chunks is usually much bigger than
the number of nodes composing the network. This is due to the fact that even if
a file is spread among thousands of users, they do not participate concurrently
in the protocol. At any given time the network is usually quite small if compared
to the actual number of downloads.

Figure 1 shows a standard screenshot of the advanced BitTorrent window
while downloading a file of size roughly 272Mb. As it is described in the figure,
there are 38 peers participating in the protocol with 15 roots and 23 peers while
the number of chunks is 546 that is 512Kb per chunk1. It is worth noting that
under those circumstances the success of these protocols has to reside in the
adopted strategies, in contrast with that outlined in [8]. In such a setting, for
instance, the “rarest pieces” distribution becomes quite important. This is the
peculiarity in BitTorrent for which once an empty peer appears in the network it
is provided with the least common chunk among the network. Also the “altruistic
user behavior” is quite crucial from the point of view of the network survivability.
It is based on the observable fact for which peers that terminate their download
do not immediately disappear. In [2] for instance, it is pointed out how friendly
users usually behave in the network. They do not disappear as soon as their
download is finished thus ensuring that all the chunks are available. Indeed most

1 Indeed in the BitTorrent specifications [3], the default size of a chunk is 256Kb,
hence obtaining 1092 chunks.
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Fig. 1. Screenshot of the advanced properties of BitTorrent during a downloading phase

of the time this happens since whoever is downloading has just left the computer
unattended but working.

1.3 Outline

The remainder of the paper is organized as follows. In the next section we give our
first insight of P2P networks by introducing the so called Spreading Scenario. We
show under which conditions a file is successfully spread over the network, hence
remains alive. Section 3 describes the so called Distributed Scenario. We show
under which conditions a file spread over the network can survive according to the
number of peers composing the network and the number of chunks in which the
file is split. Section 4 is devoted to the so called Survivability Scenario. In this case
the behavior of the network is studied under critical circumstances like the high
volatility of peers persistence. Section 5 provides a simple model for P2P net-
works in order to obtain numerical results about peers volatility, chunks distribu-
tions and downloading rate. Finally, Section 6 provides some conclusive remarks.

2 Spreading Scenario

In this section we study our first scenario in which a file must be distributed
among the network by spreading its k chunks. Our model is synchronous. At
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round t the network is composed by Rt roots that disappear with probability
αR. In this scenario we do not take into account the number of peers. Usually
peers are much more than roots but for our analysis we just consider that a
root can provide one chunk to one single peer at each round. This can be seen
also by considering at round t a number of peers equal to Rt since we are just
analyzing the number of rounds needed by the roots in order to spread the
file. At a generic round t each peer asks a root for one random chunk. A root
answers with a random chunk that has never been spread inside the network
before. This implements the previously described “rarest pieces” issue. After
each round, roots coordinate with each other in order to maintain the list of
chunks that have been sent across the network.

The process is then similar to a coupon collector problem [8]. All the k chunks
have to be collected, but a chunk can be collected several times during a round.
Moreover the number of roots from which one can collect a coupon decreases
exponentially. Let Kt be the number of chunks to be collected at time t, i.e.,
chunks that have not been distributed until round t.

For a given chunk x:

Pr(x is not collected) =
(

1− 1
Kt

)Rt

=
(

1− 1
Kt

)Kt
Rt
Kt

≈ e−
Rt
Kt

hence E[Kt+1|Kt] ≈ e−
Rt
Kt Kt. Assuming for now that Kt = E[Kt] with proba-

bility 1 we get E[Kt+1] ≈ e−
Rt
Kt E[Kt].

For Rt the situation is simpler since Rt is just the sum of R independent
variables, (each one being described by the series

∑
Pr(Rt+1 = i)zi = (αR +

z(1 − αR))Rt , and Rt is concentrated around its mean (1 − αR)Rt. So we have
E[Rt+1] = αRE[Rt].

Let ρt = E[Rt]/E[Kt], we get

ρt+1 = (1− αR)eρtρt.

From this, two situations can follow. If (1 − αR)eρ0 ≥ 1, then ρt always
increases, and this increase is faster and faster. This implies that the spreading
will easily succeed since the number of chunks not spread decreases much faster
than the number of roots that leave the network. Conversely, if (1−αR)eρ0 < 1,
ρ decreases and keep doing it faster and faster. This means that the process dies
soon.

In the first situation we almost always collect all the chunks otherwise never.
Of course, either at some point the chunks are all distributed or there are no roots
that can provide the missing chunks. We can conclude from this first analysis
that the file gets spread whenever αR < 1 − e−

R
k . Note that when k >> R this

actually means αR < R
k and this is usually the case. For k = R we get αR ≤ e−1

e
but, in real world scenarios, this usually does not happen.
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3 Distributed Scenario

In the previous section we gave a necessary and sufficient condition to describe
the asymptotic behavior of the network. That is, the network must move from
the initial state to the distributed state. In this section we study the behavior
of P2P networks in the distributed state, that is, there are no roots, yet every
chunk is available on the network after time t. In the following we refer to [10]
for the applied probabilistic tools.

3.1 Upper Bound

Our next goal is to show that networks that are in the distributed state will not
survive if the number of chunks is exponentially big in the number of peers. In
order to show this we assume the following model. In each time step each peer
asks a random chunk among all the chunks that the peer is missing. We assume
that if the chunk is anywhere on the network then the peer will get this chunk
in the next time step. Clearly this assumption is optimistic and will help the
survival of the network. Importantly, this makes the network’s gross behavior
deterministic and thus we can say with certainty that every peer stays precisely
k timesteps before leaving, since he gets exactly 1 chunk per timestep. When a
new peer enters, it has no chunks and we may use the variable i, with 0 ≤ i < n,
to indicate its ordering when all peers are sorted according to their number
of chunks. This ordering is equivalent to the chronological ordering. After k

n
time steps, each peer is promoted to the next ordinal position. We point out
that nothing changes in the network viability unless a peer leaves, and further
the only peer that may leave is the last one, or the one with the most chunks;
eventually the last peer will have k chunks when the file has been completely
downloaded. We wish to bound the probability that a chunk will be missing.
Therefore the number of chunks that each peer i has is k(i−1)

n whenever a peer
is leaving.

To be precise, we imagine the total network state at any time to be given by
a binary vector of length kn; that is,

Ω =
(
{0, 1}k

)n
.

In Ω, the first k coordinates describe the chunks held by the first peer. In this
first part, the first coordinate is 1 if and only if the first peer holds the first
chunk, otherwise, it is 0. The next coordinate indicates the next chunk, and so
on for all k chunks.

We will define an event G on Ω such that ∀i = 1..n, peer i has exactly ik
n

chunks. Let Aj
i be the event that peer i has chunk j. Let Xj

i be the indicator
variable of Aj

i . Let Y j = max{Xj
1 , Xj

2 ..., Xj
n}, i.e., Y j is the indicator variable

of the event that chunk j is in the system. We define the random variable Z =
min{Y 1, ..., Y k} as follows: it is the indicator variable of the event that there is
a missing chunk in the network. In other words, Z = 0 means the network has
died, and Z > 0 means it continues to distribute the file.
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Lemma 1. Let n and k be the number of peers and chunks in the system respec-
tively. For n > 2, the probability that there is a missing chunk can be bounded
by Pr[Z = 0] ≤ kne−n.

Proof. by the Union bound over all k chunks,

Pr[Z = 0] < k Pr[Y 1 = 0] = k

n∏
i=1

i

n
= k

n!
nn

and by Sterling’s approximation,

k
n!
nn

< kne−n. �

The next corollary shows that if the number of chunks is small the probability
for the network to die approaches 0.

Corollary 1. For all k < en

n log n ,

lim
n→∞Pr[Z = 0] = 0.

The next corollary shows that if the number of chunks is small the system
survives for a long time.

Corollary 2. If the number of chunks is a polynomial Poly(n) then the expected
survival time is at least en

nPoly(n) .

3.2 Lower Bound

The main problem in proving the lower bound is the dependence between the
random variables Y j and Y j′ . To remove this technical difficulty we use a differ-
ent model, the binomial model. The idea is to make Y j and Y j′ i.i.d. variables.
In order to prove a lower bound on the previous model we increase the expected
number of chunks that peer i has at the time the last peer leaves the network. I.e.,
we relax the assumption that, at the time the last peer leaves the network, the
number of chunks in the peer i is k(i−1)

n . Moreover we assume that the number
of chunks is a binomial random variable. This assumption is legitimate since the
binomial distribution is highly concentrated. The problem with this approach
is that now we are no longer sure that each peer has enough chunks. The way
we solve this problem is by strengthening the peer capabilities by increasing the
chance that a peer has received chunk i. Since in a normal file sharing system
chunks are correlated and peers have a smaller number of chunks, our lower
bound also captures the behavior of these systems. This is justified since both
assumptions (increasing the number of packets and the fact that packets are
i.i.d) decrease the probability of failure. We do not offer a method to achieve
this, but rather we use this approach to prove a lower bound with high probabil-
ity. We posit this property (the binomial distribution) for the proof. We assume
that the peers i = 1, ..., n have ki

n+1 chunks on average. More precisely, let X j
i
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be a Bernoulli random variable such that E[X j
i ] = i

n+1 . Let Gi =
∑k

j=1 X
j
i be

a random variable that counts the number of chunks that peer i has. Note that
E[Gi] = ki

n+1 . The next lemma bounds the probability that peer i will have less

than (i−1)k
n chunks.

Lemma 2. Let Gi be the number of different chunks belonging to peer i. For all
1 ≤ i ≤ n, Pr[Gi < (i−1)k

n ] < e
− k

2n3(n+1) .

Proof.

Pr
[
Gi <

k(i− 1)
n

]
= Pr

[
Gi <

(
1− n + 1− 1

in

)
ki

(n + 1)

]
<

< e−
(

n+1−i
in

)2
ki

2(n+1) < e
− k

2n3(n+1)

The first equality follows from algebra, and a Chernoff bound yields the next
inequality. �
If k >> n4 we get that the probability that the i-peer (Bernoulli process) has
less than (i−1)k

n chunks is exponentially small.
Let Q =

⋂n−1
i=0 {Gi ≥ (i−1)k

n }. Note that Q is the event that all peers have
more chunks than they are supposed to have, i.e., for all i, Gi ≥ (i−1)k

n .

Lemma 3. For all log k > n, Pr[Q] > 1− ne
− k

2(n+1)n3 .

Proof.

Pr[Q] =
n∏

i=1

Pr
[
Gi ≥

k(i− 1)
n

]
=

=
n∏

i=1

(
1− Pr

[
Gi <

k(i− 1)
n

])
≥

n∏
i=1

(
1− e

− k
2(n+1)n3

)
.

We apply Lemma 2 to derive the last inequality above. We choose the smallest
term in the product and raise it to the n power for the bound:

Pr[Q] ≥
(
1− e

− k
2(n+1)n3

)n

> 1− ne
− k

2(n+1)n3 . �
Using the previous lemma it follows that the probability for which Q holds is
exponentially small.

Corollary 3. For all log k > n, Pr[Q] < ne
− k

2(n+1)n3 .

After bounding the probability that all the Bernoulli peers will have more
chunks than the discrete peers, we analyze the probability that the Bernoulli
peers will fail, i.e., some chunk is missing. Let Yj = max{X j

1 ,X j
2 ...,X j

n}, Z =
min{Y1, ...,Yk}. Note that Z = 0 is equivalent to say that the Bernoulli peers
will fail.

The following lemmata lead to the last corollary that shows under which
condition the network goes to miss some chunk, i.e., it is not able to deliver any
further complete download.
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Lemma 4. The probability that the Bernoulli peers will fail is,

Pr[Yj = 0] >
1

en+1
.

Proof. The proof follows from the following computation.

Pr[Yj = 0] =
n∏

i=1

i + 1
n + 1

=
(n + 1)!
(n + 1)n

>
(n+1)n+1

en+1

(n + 1)n+1
=

1
en+1

. �

Lemma 5.
Pr[Z > 0] < e−

k(n+1)
en+1 .

Proof. In order to prove the claim we make use of Lemma 4, followed by the
limit definition of e and then Sterling’s approximation, hence obtaining

Pr[Z > 0] =
k∏

j=1

(
1− Pr[Yj = 0]

)
=
(

1− (n + 1)!
(n + 1)n

)k

∼= e−
k(n+1)!
(n+1)n < e−

k(n+1)
en+1 .

�

Lemma 6. For log k > n,

Pr[Z = 0] ≥ 1− e−
k(n+1)
en+1 − ne

− k
2(n+1)n3 .

Proof. From Bayes Law and the complementary events property,

Pr[Z = 0] > Pr[Z = 0|Q] = Pr[Z = 0]− Pr[Q] Pr[Z = 0|Q] >

> Pr[Z = 0]− Pr[Q] ≥ 1− e−
k(n+1)
en+1 − ne

− k
2(n+1)n3 . �

Corollary 4. For all k ≥ log n
n+1 en+1,

lim
n→∞Pr[Z = 0] = 1.

From the previous corollary it follows that if the number of chunks k is bigger
than or equal to log n

n+1 en+1, then the expected survival time is constant.

4 Survivability Scenario

In this section we study how likely the network is to survive in extreme condi-
tions. With extreme conditions we mean that a file is almost never downloaded
since peers have a very high volatility and almost never stay in the network long
enough to perform a full download. However, it is still very interesting to note
that the network is able to survive. We remind that a network survives when-
ever it still contains all the k chunks composing the original file, no matter where
they reside. We will assume that peers leave the system with probability α while
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roots or experts (peers that succeed at the full download) leave the network with
probability αR.

During the process chunks are duplicated and hence created while others
disappear because of nodes leaving the system. Let us denote by N the number
of nodes (peers plus experts, assuming roots as experts) in the network and by
Pi the probability (percentage of peers) that a peer has i chunks. The number
of chunks lost during one time step is then:

N

(
α

k−1∑
i=0

iPi + αRPk

)
.

The amount C of chunks created, depends on how many successful download
are performed during a step. This strongly depends on the chosen protocol.
In any case this amount cannot be more than the number of peers with one
packet N(1 − P0) multiplied by the probability to stay inside the network, i.e.,
C ≤ (1− α)N(1 − P0).

Hence a necessary condition for the network survival is that

N(1− P0)(1 − α) ≥ N

(
α
∑
i=0

k − 1iPi + αePk

)
≥ Nα(1− P0)

and this leads to have 1− α ≥ α, i.e., α ≤ 1
2 .

When α = 1
2 the stationary distribution is as follows P0 = P1 = 1

2 , after each
communication step all the nodes have a chunk, but then half of them die (reset
to zero chunks). Note that such a network dies quite quickly, from deviations.
However, as soon as α > 1

2 the network lives almost forever.
Our process is very similar to a birth and death process, each node lives on

average 1
1−α rounds. And at each round it generates 1 − α chunks, hence its

average number of children is 1−α
α . It holds that when this number is strictly

greater than 1 the network survives.
Let us assume the network to be in some random state with P0 = P1 = 1

2 ,
with k chunks regularly spread across the peers with one chunk each. Let Fi,t

be a random variable that denotes the percentage of peers with the i-th chunk
at time t. Fi,0 is deterministic with value N

2k .
After the first step of the protocol, we have:

P [Fi,1 = k] =
(

2F0,t

k

)
/22Fi,0

So after the initial step, chunks are distributed as the sum of N
2k random bits.

We study this phenomenon at the critical point in its most canonical form. At
time t we have a number St of chunks alive, we double each chunk and randomly
destroy half of the chunks.

First we consider the future of a single chunk. Let Ft(z) denote the generating
series at time t associated with the future of chunk z.
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Considering one time step we have: with probability 1
4 the process dies, with

probability 1
2 the process restarts with 1 chunk and t−1 time units remain, with

probability 1
4 we get two chunks and t− 1 time units remain.

Ft(z) =
1
4

+
1
2
Ft−1(z) +

1
4
F 2

t−1(z) =
(

Ft−1(z) + 1
2

)2

Note that by setting εt(z)t = Ft(z)− 1, we obtain

εt(z) = εt−1(z) +
(

εt−1(z)
2

)2

and εt(0) is the probability to stop before time t. So the probability to have the
process alive at time t is about t

ln t , and if one considers n bits one needs n lnn
time units to kill all of them.

This scenario is quite optimistic since one assumes that the network exchanges
N(1−P0) chunks during a round which corresponds to a perfect situation. This
happens, in fact, by means of a perfect matching between the nodes that meet
their necessities. Indeed, if we make use of a non optimal strategy, i.e., matching
the node in a perfectly arbitrarily way, it is worth noting that this does not affect
and degrade the process too much.

A typical way to marry the nodes is to choose randomly for each node a
server, and to elect a node randomly for each server. Despite the simplicity of
this process (nodes which have all the chunks still demand some, and nodes with
no chunks are considered as able to provide some), it does not affect the network
survivability as we are going to see.

Note that, by means of a simple matching algorithm, the number of edges
is already of order (1− 1

e )N . Among those edges some are unable to duplicate
chunks (if the server does not have any chunks that the client needs). A critical
stage occurs when almost all the nodes with chunks have almost no chunks, so
the probability for an edge to be useful is indeed exactly (1 − P0). In such a
situation the number of chunks replicated is(

1− 1
e

)
(1− P0) (1− α)

while the number of chunks destroyed is at least α(1− P0). This implies that
the network survives when α ≤ 1− 1

e

2− 1
e

/ .3873.

5 Simple Evaluation Model for P2P Networks

To better understand the behavior of this kind of network we propose a simplified
model and protocol. Such a model can be easily applied and modified in order
to find preliminary results on P2P networks. We have also compared our easy
model’s results to the outputs of more sophisticated simulators. Even though
the comparison is outside the scope of this paper, it is worth mentioning that
the deviation from the simulations is negligible.
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- At the beginning of each time slot, each peer chooses another peer randomly.
An inquired peer randomly selects one of its customers. We call this customer
lucky. Next the uploading peer delivers to its lucky customer a useful random
chunk, i.e., a chunk that he has and that this customer has not. The unlucky
customers do not get any chunk at this round.

- In order to get a stable situation, each peer that disappears (with probability
α) is immediately replaced by a new empty peer (i.e., with no chunks).

The probability luck that a customer gets lucky is indeed equal to the pro-
portion of customers served, which is the number of peers having at least one
customer. Hence, luck = 1− 1

e .
We first compute the probability that a node with i chunks gets a new useful

one. To do this we make a strong assumption that chunks remains almost identi-
cally distributed, i.e., a random node with i chunks contains a given chunk with
probability i

k .
To get a chunk, a node needs first to be lucky, then the probability that it

gets a chunk depends on the number of chunks of its uploading peer. Assume
that a customer with i chunks contacts an uploading peer with j chunks, its
probability to receive a chunk is

Δi,j = 1−
(

i
j

)(
k
j

)
Note that we use the standard convention

(
i
j

)
= 0 whenever j ≥ i, but in the

case i = j = 0 we have Δi,j = 0, so we consider
(
0
0

)
= 1. It follows that a lucky

node in state i that does not vanish (i.e., conditioned on all those events) moves
to states i + 1 with probability

k∑
j=0∗

ΔijPj

From that it follows that a peer in state i �= 0 moves to:

- State i + 1 with probability Ti,i+1 = (1− α)luck
∑k

j=0 Δi,jPj

- State i with probability Ti,i = (1− α)− Ti,i+1

- State 0 with probability α

To summarize we have:

P0 = α

k∑
i=0

Pj + (1− α)

⎛⎝1− luck

k∑
j=0

Δ0,jPj

⎞⎠ ,

∀i > 0,

Pi = (1− α)

⎛⎝Pi

⎛⎝1− luck

k∑
j=0

Δi,jPj

⎞⎠+ Pi−1

⎛⎝luck

k∑
j=0

Δi−1,jPj

⎞⎠⎞⎠ .

For the aim of preliminary and experimental results such a model is already
enough in order to get an idea of the general behavior of this class of networks.
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6 Conclusion

In this paper we have studied the behavior of P2P networks. We have considered
three main scenarios. In the first one there are some peers owning all the chunks
(roots) composing a file and the aim is to study the time required to ensure that
every chunk is spread out on the network. This is very important to understand
since, of course, it reflects the required behavior for peers that want to share their
information. We have shown that the success of the spreading phase depends on
two main parameters. Namely, the number of roots in the network and the
number of chunks in which the file is divided. The probability αR for which
R roots can leave the network should be smaller than 1 − e−

R
k where k is the

number of chunks. In the second scenario, we have started with a configuration
in which many peers have subsets of the whole chunk set and the aim is to study
the probability for the network to survive, i.e., every chunk must belong to some
peer. This is also very important since it gives a measure of the behavior that
peers should exhibit in order to maintain the viability of their download and
archival capabilities. We have shown that if k is much less than en, with n being
the number of peers in the network, the expected survival time of the network is
exponential in n. Moreover, if the number of chunks is greater than log n

n+1 en + 1,
the network survival time is constant. The third proposed scenario concerns the
critical setting for the peers in terms of volatility. We have shown how under this
setting the network is still able to survive. Namely, our estimated maximum value
of the probability α for which a peer can leave the network while guaranteing
its survivability is α ≤ .3873. From the point of view of experimental results, we
have also proposed a simple way for analyzing and modeling P2P networks.

Our study has raised many open questions that might be investigated for
further research. Many variations of our proposed models are possible and in-
teresting. An important issue, for instance, concerns file sharing protocols that
cope with security aspects. Deep analysis of tit-for-tat strategies for avoiding
the so called free-riders problem is of primary interest to better understand the
success of these protocols (see [11] for preliminary results). Free-riders are users
that download files from the network but do not share their own chunks. In
BitTorrent, those kind of users are allowed even though the performance of their
downloads is much slower than for “friendly” users.
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Abstract. In this paper, we address the problem of designing a robust reputation
mechanism for peer-to-peer services. The mechanism we propose achieves high
robustness against malicious peers (from individual or collusive ones) and pro-
vides incentive for participation. We show that the quality of the reputation value
of trustworthy and participating peers is always better than the one of cheating
and non participating ones. Finally we formally prove that, even when a high
fraction of peers of the system exhibits a collusive behavior, a correct peer can
still compute an accurate reputation mechanism towards a server, at the expense
of a reasonable convergence time.

Keywords: Reputation, credibility, free-riding, collusion, peer-to-peer systems.

1 Introduction

With the emergence of e-commerce in open, large-scale distributed marketplaces, repu-
tation systems are becoming attractive for encouraging trust among entities that usually
do not know each other. A reputation system collects, distributes, and aggregates feed-
back about the past behavior of a given entity. The derived reputation score is used to
help entities to decide whether a future interaction with that entity is conceivable or not.
Without reputation systems, the temptation to act abusively for immediate gain can be
stronger than the one of cooperating. In closed environments, reputation systems are
controlled and managed by large centralized enforcement institutions. Designing repu-
tation systems in P2P systems has to face the absence of such large and recognizable but
costly organizations capable of assessing the trustworthiness of a service provider. The
only viable alternative is to rely on informal social mechanisms for encouraging trust-
worthy behavior [9]. Proposed mechanisms often adopt the principle that ”you trust the
people that you know best”, just like in the word-of-mouth system, and build transitivity
trust structures in which credible peers are selected [19,20,21]. However such structures
rely on the willingness of entities to propagate information. Facing free-riding and more
generally under-participation is a well known problem experienced in most open infras-
tructures [2]. The efficiency and accuracy of a reputation system depends heavily on the
amount of feedback it receives from participants. According to a recognized principle
in economics, providing rewards is an effective way to improve feedback. However re-
warding participation may also increase the incentive for providing false information.
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Thus there is a trade-off between collecting a sizable set of information and facing un-
reliable feedback [7]. An additional problem that needs to be faced with P2P systems,
is that peers attempt to collectively subvert the system. Peers may collude either to
discredit the reputation of a provider to lately benefit from it (bad mouthing), or to ad-
vertise the quality of service more than its real value to increase their reputation (ballot
stuffing). Lot of proposed mechanisms break down if raters collude [8].

In this paper we address the robust reputation problem. Essentially this problem aims
at motivating peers to send sufficiently honest feedback in P2P systems in which peers
may free-ride or be dishonest. This work has been motivated by a previous one in which
the proposed architecture is built on top of a supervising overlay made of trusted peers
[3]. The mechanism we propose achieves high robustness to attacks (from individual
peers or from collusive ones), and provides incentive for participation. This is accom-
plished by an aggregation technique in which a bounded number of peers randomly
selected within the system report directly observed information to requesting peers.
Observations are weighted by a credibility factor locally computed. Incentive for partic-
ipation is implemented through a fair differential service mechanism. It relies on peer’s
level of participation, a measure of peers’ contribution over a fixed period of time, and
on the credibility factor, assessing the confidence one has in a peer.

Our results are promising: We prove that through sufficient and honest cooperation,
peers increase the quality of their reputation mechanism. We show that the reputation
estimation efficiently filters out malicious behaviors in an adaptive way. Presence of
a high fraction of malicious peers does not prevent a correct peer from computing an
accurate reputation value, at the expense of a reasonable convergence time. Further-
more, the trade-off between the sensitivity of the mechanism facing up malicious peers
and the duration of the computation is tuned through a single input parameter. These
properties, combined with the incentive scheme, makes our mechanism adapted to P2P
networks. Finally, we provide a full theoretical evaluation of our solution. For space
reasons proofs of correctness are given in the full version of the paper [4].

The rest of the paper is organized as follows. In Section 2 related work is reviewed.
Section 3 presents the model of the environment, and the specification of the robust rep-
utation problem. Section 4 presents the incentive-based mechanism. Section 5 analyses
its asymptotic behavior, its resistance to undesirable behavior and its convergence time.

2 Related Work

There is a rapidly growing literature on the theory and applications of reputation sys-
tems, and several surveys offer a large analyze of the state of art in reputation systems
[15,11,8]. According to the way ratings are propagated among entities and the extent
of knowledge needed to perform the needed computations, reputation systems fall into
two classes, namely centralized or distributed. An increasing number of online commu-
nities applications incorporating reputation mechanisms based on centralized databases
has recently emerged. The eBay rating system used to find traders allows partners to
rate each other after completion of an auction. Despite its primitive reputation sys-
tem, ebay is the largest person-to-person online auction with more than 4 millions auc-
tions open at a time [16]. Regardless of this success, centralized approaches (see for
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example, [21,18]) often pay little attention to misbehaving entities by assuming that
entities give honest feedback to the requesting entity. More importantly, they rarely
address non-participation and collusive behaviors.

Regarding decentralized p2p architecture, several research studies on reputation-
based P2P systems have emerged. Among the first ones, Aberer and Despotovic [1]
propose a reputation mechanism in which trust information is stored in P-Grid, a dis-
tributed hash table-based (DHT) overlay. Their mechanism is made robust by guaran-
teeing that trust information is replicated at different peers, and thus can be accessed
despite malicious entities. However, the efficiency of their approach relies on peers
propensity to fully cooperate by forwarding requests to feed the P-Grid overlay. Addi-
tionally, as for most of the DHT-based approaches, peers have to store data they are not
concerned with. Thus, malicious peers may discard it to save private resources, leading
to a loss of information. Other systems relying on the trust transitivity approach face
false ratings by assuming the presence of specific faithful and trustworthy peers (e.g.
[13]), or by weighting second-hand ratings by senders’ credibility [7,19,20]. Opposed
to the aforementioned works, Havelaar reputation system [10], exploits long-lived peers
by propagating reports between sets of well defined peers identified through hash func-
tions. A report contains the observations made during the current round, the aggregated
observations made by the predecessors during the previous round, and so on for the
last r rounds. By relying on such an extensive aggregation, false reports hardly in-
fluence the overall outcome. Furthermore by using hash functions collusion is mostly
prevented. The efficiency of their approach mainly relies on the readiness of peers to
store and propagate large amount of data, and to remain in the system for relatively
long periods of time. To motivate peers to participate, Jurca and Faltings [12] propose
an incentive-compatible mechanism by introducing payment for reputation. A set of
brokers, the R-agents, buy and sell feedback information. An entity can receive a pay-
ment only if the next entity reports the same result. Weakness of such an approach is
the centralization of the whole information at R-agents, and its robustness against ma-
licious R-agents. Finally, Awerbuch et al. [5,6] give lower bounds on the costs of the
probes made by honest peers to find good objects in eBay-like systems, and propose
algorithms that nearly attain these bounds.

In contrast to these works, we propose a fully distributed mechanism based on lo-
cal knowledge that provides malicious and non-participating entities an incentive for
participation and honest behavior.

3 Model

3.1 A P2P Service Model

We consider a P2P service system where service providers (or servers) repeatedly offer
the same service to interested peers. We assume that the characteristics of a server
(capabilities, willingness to offer resources, etc) are aggregated into a single parameter θ
called type. This type influences the effort exerted by the server through a cost function
c. The effort determines the Quality of the Service (QoS) provided by the server. We
assume that the effort exerted by a server is the same for all the peers that solicit him
and takes its value within the interval [0, 1].
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Definition 1 (Effort ). The effort of a service provider s is a value q∗s that determines
the quality of the service offered to the peers that interact with s.

After each interaction with server s, each client (or peer) has an imperfect observation of
the effort exerted by s. Peers may have different tastes about a server QOS. But basically
these observations are closely distributed around s’s effort. Thus, we reasonably assume
that an observed quality of service takes its value within the interval [0, 1] and follows
a normal distribution of mean q∗s and variance σ∗

s .

Definition 2 (Observed Quality of Service Level ). The Observed Quality of Service
Level of a service provider s observed by peer p at time t is a value obss

p(t) which
is drawn from a normal distribution over [0, 1] with mean q∗s . The value 1 (resp. 0)
characterizes the maximal (resp. minimal) satisfaction of p.

Estimation of the expected behavior of a server is based on its recent past behavior, that
is, its recent interactions with the peers of the system. Such a restriction is motivated by
game theoretic results and empirical studies on ebay that show that only recent ratings
are meaningful [8]. Thus, in the following, only interactions that occur within a sliding
window of width D 1 are considered. This approach is also consistent with Shapiro’s
work [17] in which it is proven that in an environment where peers can change their
effort over time the efficiency of a reputation mechanism is maximized by giving higher
weights on recent ratings and discounting older ratings. Using a sliding time window is
approximately equivalent to this model. Every time a peer p desires to interact with a
server s, p asks for feedback from peers that may have directly interacted with s during
the last D time units. We adopt the terminology witness to denote a peer solicited for
providing its feedback. If Ps

p(t) represents the set of peers k whose feedback has been
received by peer p by time t, then the reputation value of a server is defined as follows:

Definition 3 (Reputation Value ). The reputation value rs
p(t) of server s computed by

peer p at time t is an estimation of the effort q∗s exerted by s based on the feedbacks
provided by the peers in Ps

p(t).

3.2 Specification of Undesirable Behaviors

In practice, peers may not always reveal their real ratings about other peers. They can
either exaggerate their ratings (by increasing or decreasing them), or they can simply
reveal outright ratings to maximize their welfare. This behavior is usually called mali-
cious, and can either be exhibited by a node independently from the behavior of other
peers, or be emergent of the behavior of a whole group. By providing false ratings,
malicious peers usually try to skew the reputation value of a server to a value which
is different from its true effort. Let q be this value, and d be the distance between the
true effort of the server and the false rating (d = |q∗s − q|). Then, we characterize the
behavior of a peer by ws

q = 1 − dα, with α a positive real value which represents the
sensitivity of ws

q to the distance between the effort and the expected observation given
by q. A malicious peer tries to skew the reputation value to q by sending ratings that are
distributed around q.

1 D can have any pre-defined length of time, i.e., a day, a week or a month. In the sequel, we
suppose that D is insensitive to clock drift.
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Definition 4 (Malicious). A peer p is called malicious if it lies on the reputation of
peer s or creates s’s reputation out of thin air. Formally :

E(obss
p(t)) = q �= q∗s , ∀t.

Definition 5 (Collusive Group). A group of peers is called a collusive group if all the
peers of this group behave maliciously towards a same goal. Formally, the set C is a
colluding group if :

E(obss
k(t)) = q �= q∗s , ∀t, k ∈ C.

Another common behavior in P2P systems is peers non-participation. There are two
main reasons why peers may not participate: either because they believe that their work
is redundant with what the others in the group can do, and thus their participation can
hardly influence the group’s outcome, or because they believe that by not contribut-
ing they maximize their own welfare (note that information retention could be another
pretense of not participating, however this is out of the scope of the paper). The latter
behavior depicts what is typically called free-riding, while the first one is described in
the Collective Effort Model (CEM) as social loafing [14]. Note that although effects of
both behaviors are similar, i.e., “non-participation”, their deep cause is different. Peers
exhibiting one of these two behaviors are called in the following non-participating peers
and are characterized as follows:

Definition 6 (Non Participating). A peer is called non participating if it exerts less
effort on a collective task than it does on a comparable individual task or consumes
more than its fair share of common resources.

A peer is called correct if during the time it is operational in the system it is neither
malicious nor non-participating. Note that a malicious peer may not participate, on the
other hand, a non participating one is not malicious.

3.3 Specification of the Robust Reputation Problem

Within this context, we address the problem of evaluating the reputation of a service
provider in a dynamic environment in which peers are not necessary correct. This prob-
lem is referred in the sequel as the robust reputation problem. A solution to this prob-
lem should guarantee the following two properties. The first one states that eventually
correct peers should be able to estimate the reputation value of a target server with
a good precision. The second one says that with high probability, correct peers have
a better estimation of the reputation value of a target server than non correct ones.
Formally:

Property 1 (Reputation Value ε-Accuracy). Eventually, the reputation of server s, eval-
uated by any correct peer reflects s’s behavior with precision ε. That is, let β ∈]0, 1[ be
some fixed real, called in the sequel confidence level, then:

∃t s.t. ∀t ≥ t, Prob(|rs
p(t)− q∗s | ≤ ε) ≥ 1− β
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Let |E(rs
p(t)) − q∗s | be the bias of the reputation value rs

p(t) estimated by peer p. Sup-
pose that two peers p and q interact with the same target servers at the same time, solicit
the same witnesses, and get the same feedbacks at the same time. That is from the point
of view of their interaction p and q are indistinguishable. However p is correct while q
is not. Then, we have:

Property 2 (Incentive-Compatibility). Eventually, the bias of the reputation value of
server s estimated by p is greater than or equal to the one estimated by peer q. That is,
for a given level of confidence β, we have:

∃t s.t. ∀t ≥ t, Prob(|E(rs
p(t))− q∗s | ≥ |E(rs

q(t))− q∗s |) ≥ 1− β

4 The Reputation Mechanism

We propose a distributed reputation service which builds a social network among peers.
Briefly, every peer records the opinion about the late experiences it has had with a tar-
get server. Peers provide their information on request from peers willing to interact
with that server. Providing a feedback based on direct observations (also called first-
hand observations) prevents the rumors phenomenon, i.e., the propagation of opinions
about others, just because they have been heard from someone else [19], however is bet-
ter adapted to applications with modest churn. Upon receipt of ”enough” feedback, the
requesting peer aggregates them with its own observations (if any) to estimate the rep-
utation of the target server, and provides this estimation to its application. Information
is aggregated according to the trust the requesting peer has in the received feedback.
Pseudo-code of the reputation mechanism is presented in Algorithm 1. The efficiency
of the reputation mechanism fully depends on i) the number of received feedbacks (i.e.,
aggregating few feedbacks is not meaningful and thus not helpful), and ii) the quality
of each of them (i.e., the trustworthiness of the feedback). The contribution of this work
is the design of a reputation mechanism that enjoys both properties. The analysis pre-
sented in Section 5 shows the importance of each factor on the convergence time and
accuracy of the reputation mechanism.

The solution we propose is a reputation mechanism, and therefore independent of
the rewarding strategy used by the application built on top of this mechanism. That is,
the willingness of a peer to interact with a server results from the application strategy,
not from the peer’s one. Clearly, the strategy of the application is greatly influenced by
the reputation value but other factors may also be taken into account.

4.1 Collecting Feedbacks

When a peer decides to evaluate the reputation value of a service provider, it asks
first-hand feedback from a set of witnesses in the network. Finding the right set of
witnesses is a challenging problem since the reputation value depends on their feed-
back. Our approach for collecting feedbacks follows the spirit of the solution proposed
by Yu et al [20], in which feedbacks are collected by constructing chains of referrals
through which peers help one another to find witnesses. We adopt the walking principle.
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However, to minimize the ability of peers to collude, witnesses are randomly chosen
within the system. We assume, in the following, that the network is regular. Specifically,
our approach is based on a random walk (RW) sampling technique. We use the random
walk technique as shown in Algorithm 1. Function query is invoked by the requesting
peer that wishes to solicit x witnesses through r random walks bounded by ttl steps.
The requesting peer starts the random walks at a subset of its neighbors, and runs them
for ttl steps. Each peer p involved in the walk is designated as witness, and as such
sends back to the requesting peer its feedback. When a peer q receives a request from p
to rate server s, it checks whether during the last sliding window of length D, it has ever
interacted with s. In the affirmative, p sets its feedback to F s

p (t) ={(obss
p(t0), t0),. . .,

(obss
p(tl), tl)} with obss

p(ti) the QoS of s observed at time ti, where ti ∈ [max(0, t −
D), t]. In case p has not recently interacted with s, p sends back to q a default feedback
F s

p (t) = {(obsmax,⊥)}. As will be shown later, this feedback prevents p from being
tagged “non participant” by q.

Because of non-participation (volunteer or because of a crash), random walks may
fail: it suffices that one of the peers in the walk refuses to participate or crashes to
prevent the walk from successfully ending. If we assume that among its d neighbors, a
fraction μ of them do not participate, then among the r initial peers that start a random
walk, the expected number of peer that may ”fail” their random walk is μr. Then during
the next step, μ(1− μ)r walks may ”fail”, and so on until the TTL value is reached. In
consequence, only x feedbacks may be received, with x =

∑ttl
t=1(1−μ)tr. By setting r

to x
ttl
t=1(1−μ)t the requesting peer is guaranteed to receive at least x feedbacks (see line

5 in Algorithm 1). In addition to its feedback, each peer sends to the requesting peer
p (through the witness message, see lines 19 and 46) the identity of the next potential
witness on the walk, i.e., the peer it has randomly chosen among its neighbors. Sending
this piece of information allows p to know the identity of all potential witnesses. As will
be shown in Section 4.4, this allows to detect non participants (if any) and so to motivate
their participation through a “tit-for-tat” strategy. As for feedbacks, non participation
may prevent the requesting peer from receiving witness messages. A similar analysis to
the preceding one shows that if r random walks are initiated then y =

∑ttl−1
t=0 (1−μ)tr

witness messages will be received.
Note that a requesting peer can adapt its collect policy according to its knowledge

of the target server, or of its neighborhood. Specifically, to get x witnesses, a peer can
either increase ttl and restrict r, or increase r and lower ttl (assuming that r > μd
holds). Enlarging ttl would be more sensitive to colluding peers that bias the random
walk. However, this technique would increase the set of crawled witnesses, and thus
would afford new peers the opportunity to be known by other peers and consequently
to increase both their participation and their credibility. Conversely, enlarging r would
crawl only peers in the neighborhood of the requesting peer. However, this technique
would increase the chance to find a path that does not contain colluding peers 2.

2 Remark that selecting peers according to their credibility should be more efficient in the sense
that only “highly” credible peers would be selected, however, newcomers may be penalized by
this filtering. Furthermore, the resilience of the crawling technique to collusion highly relies
on the way the graph of witnesses is constructed. Studying these issues is part of our future
work.
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4.2 Reputation of a Server

Estimation of the reputation value of a target server is based on the QoS directly ob-
served at the server (if any) and on the feedbacks received during the collect phase.
The accuracy of the estimation depends on the way these informations are aggregated.
The aggregation function we propose answers the following qualitative and quantita-
tive preoccupations: First, to minimize the negative influence of unreliable information,
feedbacks are weighted by the credibility of their senders. Briefly, credibility is eval-
uated according to the past behavior of peers and reflects the confidence a peer has
in the received feedback. Credibility computation is presented in the next subsection.
Second, to prevent malicious nodes from flooding p with fake feedback and thus from
largely impacting the accuracy of its estimation, p keeps only a subset of each received
feedback. More precisely, among the set of observations sent by each witness over
the last D time units, only the last f ones are kept, with f the size of the smallest
non-empty set of non-default feedbacks received by p (i.e., f = mink∈Ps

p(t)(|F s
k (t)|)

with t ∈ [max(0, t − D), t]). Finally, if among all the witnesses (including p) none
has recently directly interacted with s (i.e., f = 0), then p affects a maximal value
obsmax to s’s reputation value. Affecting a maximal value reflects the key concept of
the Dempster-Shafer theory of evidence which argues that ”there is no causal relation-
ship between a hypothesis and its negation, so lack of belief does not imply disbelief”.
In our context, applying this principle amounts in fixing an an priori high reputation to
unknown servers, and then updating the judgment according to subsequent interactions
and observations [20].

We can now integrate these principles within the aggregation function we propose.
Let us first introduce some notations: Let Fs

k(t) be the union of the last f non-default
feedbacks received from k during the last D time units (t ∈ [max(0, t−D), t]); Ps

p(t)
be the set of witnesses k for which Fs

k(t) is non empty; ρs
k(t) represent the mean value

of the observations drawn from Fs
k(t); and cs

p,k(t) the credibility formed by p at time t
about k regarding s. Then, at time t, p estimates s’s reputation value as follows:

rs
p(t) =

{
1

k∈Ps
p(t) cs

p,k(t)

∑
k∈Ps

p(t) cs
p,k(t).ρs

k(t) if f �= ∅
obsmax otherwise

(1)

with, ρs
k(t) = 1

f

∑
(obss

k(t′),t′)∈Fs
k(t) obss

k(t′)

4.3 Trust in Witnesses

In this section, we tackle the issue of malicious peers. As remarked in the Introduc-
tion, malicious peers may alter the efficiency of the reputation mechanism by sending
feedbacks that over-estimate or sub-estimate the observed QoS of a server to inflate or
tarnish its reputation. This is all the more true in case of collusion. We tackle this issue
by evaluating peers credibility. Credibility is a [0,1]-valued function which represents
the confidence formed by peer p about the truthfulness of q’s ratings. This function is
local and is evaluated on the recent past behavior of both p and q peers. It is locally
used to prevent a false credibility from being propagated within the network. Specif-
ically, peer p estimates at time t how credible q is regarding server s as a decreasing
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function of the distance between q’s feedbacks on s’s effort and p’s direct observations
on s’s QoS. As for the reputation value computation, the distance is computed on the
last f observations made by both p and q during the last D time units. Note that in case
p has not recently observed s’s QoS, then credibility of all its witnesses are set to a de-
fault value c0. Indeed, p cannot evaluate the distance between its own observations and
those observed by witnesses. Determining c0 value needs to solve the following trade-
off: by affecting a high value to the default credibility one increases the vulnerability
of the system to the whitewashing phenomenon, that is, the fact that peers change their
identity in order to reset their credibility to the default value. However, by setting this
variable to a low value the mechanism tends to filter out new witnesses and thus, loses
the benefit of the potential information a new peer can afford, which clearly decreases
the usefulness of the reputation mechanism. In order to cope with that, we set c0 to
the value of a decreasing function of φ, with φ an estimation of the number of white-
washers in the network. By adopting the notations of Equation 1, cs

p,q(t) represents the
credibility formed by p at time t about q regarding the target server s, and is given by:

cs
p,q(t) =

{
1− |ρs

q(t)− ρs
p(t)|α if f �= ∅

c0 otherwise
(2)

where |ρs
q(t) − ρs

p(t)|α represents the distance between q and p’s observations. Note
that α is the variable introduced in Section 3. Then we have the following lemma:

Lemma 1. (Credibility Accuracy) Eventually, credibility of a peer q evaluated by any
correct peer p reflects q’s behavior with a precision ε. That is, let β ∈]0, 1[ be some
fixed real, there exists t such that, for all t ≥ t,

Prob(|cs
p,q(t)− ws

q(t)| ≤ ε) ≥ 1− β.

4.4 Incentive for Participation

Non participation may jeopardize the efficiency of the reputation mechanism. A cer-
tain amount of participation is required before reputation can induce a significant level
of cooperation. Facing non-participation in the reputation problem is challenging and
has deserved few attention [20]. To motivate peers to send their feedback we adopt a
“tit-for-tat” strategy. We introduce the level of participation notion as the propensity of a
peer for replying to a rating request. It is described by function lsp,q such that lsp,q(t) rep-
resents the percentage of times q provided its feedback to p’s queries regarding server
s’s QoS over the last D time units, with lsp,q(t = 0) = l0 = 1. Its computation is per-
formed after p’s collect phase (see line 10 of the algorithm. Note that factor μ prevents
correct peers from being penalized by walking breaks.).

We apply the tit-for-tat strategy during the collect phase. When a peer p receives a
rating request for s from peer q, then with probability lsp,q(t) p provides its feedback
to q, otherwise it sends a default feedback (⊥,⊥) to prevent p from being tagged as
non-participant. By providing this default feedback, p lets q knows that its recent non-
participation has been detected. Consequently, by not participating, requesting peers
drive correct witnesses providing them worthless feedback, which clearly makes their
reputation mechanism useless. Hence there is a clear incentive for non participating
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peers to change their behavior. The following lemma proves that participation decreases
the bias of the reputation value. As previously, let us consider two peers p and q such
that both peers are indistinguishable from the point of view of the servers with which
they interact, that is both p and q observe the same QoS from these servers at the very
same time, solicit and are solicited by the same set of peers at the same time; However,
p is correct while q is non participating. Then we claim that:

Lemma 2. Participation decreases the bias of the reputation value. That is,

|E(rs
p(t))− q∗s | ≤ |E(rs

q(t))− q∗s |

4.5 Incentive for Truthful Feedbacks

We now address the problem of motivating peers to send truthful feedbacks. So far
we have presented strategies aiming at improving the quality of the reputation value
estimation by aggregating more feedbacks and by weighting feedback according to the
credibility of their sender. We have shown that by using both strategies, utility of correct
peers increases. However, none of these solutions have an impact on the effort devoted
by a witness to send a truthful feedback. To tackle this issue we use the credibility
as a way to differentiate honest peers from malicious ones. As for non-participating
peers, when peer p receives a request to rate server s from a requesting peer q then p
satisfies q’s request with probability cs

p,q(t). By doing so, p satisfies q’s request if it
estimates that q is trustworthy, otherwise it notifies q of its recent faulty behavior by
sending it the (⊥,⊥) feedback. As previously, by cheating, a malicious peer penalizes
itself by pushing correct witnesses to send meaningless feedbacks to it, leading to its
effective isolation. We claim that this social exclusion-based strategy motivates q to
reliably cooperate.

Lemma 3. High credibility decreases the bias of the reputation value. That is,

|E(rs
p(t))− q∗s | ≤ |E(rs

q(t))− q∗s |

Finally, to elicit sufficient and honest participation, both strategies are combined,
i.e., upon receipt of a rating request from peer q, with probability min(cs

p,q(t), lsp,q(t))
p provides its feedback, otherwise it sends the default feedback (⊥,⊥) (see line 31 in
Algorithm 1).

Theorem 1. The reputation mechanism described in Algorithm 1 is Incentive-
Compatible in the sense of Property 2.

5 Analysis

Computing the reputation of a peer reduces to estimating, in the statistical sense, its
effort. Our algorithm falls into the category of robust estimation algorithms. Indeed,
robust estimation techniques consider populations where a non-negligible subset of data
deliberately pollute the system. This analysis describes the asymptotic behavior of the
reputation mechanism and its convergence time according to undesirable behaviors. In
the following, we assume that a fraction γ of witnesses are malicious.
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5.1 Asymptotic Behavior

In this section we determine the accuracy of the reputation mechanism with respect to
parameters α and ε. Thus for the purpose of this analysis, we assume that the number
of aggregated feedbacks f is infinite. Recall that wq denotes the characterization of
q’s behavior, with wq = 1 if q is correct, and wq = 1 − dα otherwise. By Lemma 1,
cs
p,q(t) = wq , when t→∞. Moreover, the expected number of correct witnesses is (1−

γ)n+1 while the expected number of malicious ones is γn, with n the expected number
of witnesses (Figures are plotted for n = 10). Thus, by replacing cs

p,q(t) with their
asymptotic values in Equation 1, the expected reputation value of a server s estimated
by a correct peer p when t→∞ is given by Equation 3:

rs
p(t)t→∞ =

1
1− γdα + 1

n

((
1− γ +

1
n

)
q∗s + γ (1− dα) q

)
. (3)

The bias of the reputation value, when t→∞ is given by the following equation:

|rs
p(t)t→∞ − q∗s | = γd

1− dα

1− γdα + 1
n

. (4)

Figures 1 and 2 show the bias of the reputation value with respect to d for increasing
values of γ (resp. increasing values of α). Recall that d = |q∗s − q| reflects colluders’
behavior. Unlike mean-based reputation value estimation for which the bias linearly
increases with d (as shown by the crossed curves in Figure 1), our algorithm bounds the
power of colluders whatever their percentage (dotted curves). Indeed, witnesses’ ratings
are weighted by a decreasing function of d which filters out false ratings.

Figure 2 shows the impact of α on the bias of the reputation value. As can be ob-
served, the bias decreases with decreasing values of α, reflecting the sensitivity of the
reputation value to the distance between direct observations and received feedbacks.
Thus, decreasing values of α makes the reputation mechanism very sensitive to false
feedbacks.

Theorem 2. The reputation value is ε-accurate, with ε > γd 1−dα

1−γdα+ 1
n

.

From the above, assuming an upper bound on γ, by setting the maximal bias to ε and
solving the corresponding equation one can derive an upper bound on α under which
the reputation value converges to the true effort with an accuracy level of ε. Hence, for



316 E. Anceaume and A. Ravoaja

α with α ≤ α, the reputation value converges to the true effort with an accuracy level
of ε, with α given by:

α =
ln
(

n+1−
√

(1−γ)n2+(2−γ)n+1

γn

)
ln(ε)

(5)

To conclude, one can always find a value of α such that eventually the reputation value
is accurate. This parameter, however, significantly influences the convergence time of
the algorithm. The next Section addresses this issue.

5.2 Convergence

In this section, we study the convergence time of the reputation mechanism. To do so,
we assume that the ratings of a malicious peer are drawn from a normal distribution with
mean q and variance σ over [0, 1]. This assumption includes a wide range of possible
behaviors. Indeed, a small value of σ depicts peers that try to rapidly skew the reputation
value to q by giving reports tightly distributed around q. In contrast, a high value of σ
depicts peers that try to hide their mischievous behavior to other peers by giving sparse
reports. While the first behavior is easily detected, the second one hardly skew the
reputation value to q.

Recall that the reputation value is estimated by aggregating the last f interactions
witnesses have had with the target server during a sliding time window of length D.
Finding the optimal value of D is important. Indeed, it determines the resilience of the
mechanism to effort changes and the confidence level in the estimation. The optimal
value of D is the one for which the estimation is at most ε-far from the true effort
with a given confidence threshold β. To determine such a value, let us first assume
that f is known, and determine a lower bound on Prob(|rs

p(t) − q∗s | ≤ ε) ∀t ∈ D.
Suppose that the credibility cs

k(t) is ε′-far from ws
k for all the witnesses k. Then, because

of Bayes’ Theorem, we know that Prob(|rs
p(t) − q∗s | ≤ ε) ≥ Prob(|rs

p(t) − q∗s | ≤
ε||cs

k(t)−ws
k(t)|≤ε′,∀k∈Ps

p(t)) · Prob(|cs
k(t) − ws

k(t)| ≤ ε′, ∀k ∈ Ps
p(t)). Remark that,

assuming that the witnesses’ credibility are ε′-far from ws
k , the probability that rs

p(t)
is ε-far from q∗s is maximal under the following condition (C): credibility of correct
witnesses is minimal, i.e., equal to 1 − ε′, and the one of malicious ones is maximal,
i.e., equal to ε′. Then, we have:

Prob(|rs
p(t)− q∗s | ≤ ε) ≥ Prob(|rs

p(t)− q∗s | ≤ ε|(C))·
Prob(cs

k(t) ≥ 1− ε′|kcorrect)(1−γ)n · Prob(cs
k(t) ≤ ε′|kmalicious)γn (6)

By Lemma 1, the probability that the witness’s credibility is at most ε′-far from ws
k con-

verges to 1 when t, and thus f , increase. Thus, this bound approaches Prob(|rs
p(t) −

q∗s | ≤ ε) when f increases. Knowing the probability distribution of the reports, deriving
a closed form of the lower bound can be done. Then, given a desired confidence thresh-
old β for α ≥ α, solution of Equation 7 provides two threshold values of d (d1 and d2
on Figure 2) beyond which the false reports are eliminated:

ε = γd
1− dα

1− γdα + 1
n

within [0, 1]. (7)
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input : p: requesting peer; s: target server; x: expected number of feedbacks
output: rs

p: estimation of s reputation value

r ← x
ttl
l=1(1−μ)l ; y ← ttl−1

l=0 (1 − μ)lr;1

ttl ← default value; t ← getTime(); let D be the the time interval [max(t-D,0),t];2

query(p,s,ttl,r,t);3

wait until ((F s
q (t) messages are received from x peers) and (witness(s,w, t) messages55

are received from y peers));
P s(t) ← {q such that a feedback message is received from q};6

F s(t) ← {F s
q (t) for all q ∈ P (t)};7

W s(t) ← {w for all witness(s,w, t) that have been received};8

foreach k ∈ W (t) do1010

lsp,k(t) ← min( t∈D(|P|k(t)|
t∈D |W|k(t)| (1 − μ) + μ.l0, 1);11

end12

return rs
p(t) to application;13

query(p,s,ttl,r,t) begin14

New ← pick a random subset of r peers from p’s neighbors;15

forall (next ∈ New) do16

send a rw (p, s, ttl − 1,t) message to next;17

send a witness (s,next,t) message to p;1919

if p has interacted with s at time t0, . . . , tl in the last D time units then2121

F s
p (t) ← {(obss

p(t0), t0), . . . , (obs
s
p(tl), tl), p};22

else23

F s
p (t) ← {(obsmax,⊥), p};24

end if25

send F s
p (t) to p;26

end27

end28

upon (receipt of a rw (p,s,ttl,t) message at peer q) do29

with (probability min(lsp,q(t), c
s
p,q(t)) do3131

if q has interacted with s at time t0, . . . , tl in the last D time units then3333

F s
q (t) ← {(obss

q(t0), t0), . . . , (obs
s
q(tl), tl), q};34

else35

F s
q (t) ← {(obsmax,⊥), q};36

end if37

otherwise38

F s
q (t) ← {(⊥,⊥), q};39

end do40

send F s
q (t) to p;41

if (ttl �= 0) then42

next ← pick one of q’s neighbor with probability 1
d

, d = q’s neighbors #;43

send a rw (p,s,ttl − 1,t) message to next;44

send a witness (s,next,t) to p;4646

end if47

end do48

Algorithm 1. Estimation of the reputation value of server s by peer p
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Using Equation 6, we can see the effect of α on the convergence time of the reputa-
tion mechanism to reach the exact effort exerted by the server (see Figure 3). Decreasing
values of α significantly increases the convergence time while it decreases the bias of
the reputation mechanism as shown in Figure 2. Thus a trade-off exists between the
robustness of the mechanism and its convergence time. By setting the value of D, the
application designer may derive the corresponding minimal number of interactions f
and finally tune the value of α such that the desired confidence level is achieved within
f steps through Equation 6. The resulting reputation estimation is less sensitive to false
reports, but still eliminates peers that try to skew the reputation of the server to a value
that is far from the true effort, by filtering out extreme values of d (see Figure 2).

Finally, Figure 4 shows the impact of malicious peers on the convergence time. As
can be seen, a relatively small percentage of malicious peers has a minor impact on the
convergence time since the number of correct feedbacks is hardly influenced by false
ones. On the other hand, whenever a requesting peer has to face a large proportion of
malicious peers, it can only rely on its own feedback to estimate the effort exerted by
the target server which clearly takes longer than when helped by correct witnesses. The
same result applies for non-participating peers.

6 Conclusions

In this paper we have proposed a reputation mechanism that achieves high robustness
to attacks and provides incentive for participation. This is achieved by an aggregation
function in which a subset of the information provided by randomly chosen peers is
kept and weighted by a confidence factor locally computed. We have proposed a simple
and local incentive mechanism that guarantees a better quality of the reputation value
estimation. Lessons learned from simulations are twofold: first, decreasing values of α
guarantees a greater sensibility of the mechanism to false ratings. It however increases
the number of required feedbacks as well, and thus the time to get an accurate estima-
tion of the effort exerted by the target server. Second, the presence of a large number
of malicious and non-participating peers does not prevent the mechanism from being
accurate, however has an impact on its convergence time.
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Abstract. We consider a fixed communication network where (soft-
ware) agents can move freely from node to node along the edges. A
black hole is a faulty or malicious node in the network such that if an
agent enters this node, then it immediately “dies.” We are interested in
designing an efficient communication algorithm for the agents to iden-
tify all black holes. We assume that we have k agents starting from the
same node s and knowing the topology of the whole network. The agents
move through the network in synchronous steps and can communicate
only when they meet in a node. At the end of the exploration of the
network, at least one agent must survive and must know the exact loca-
tions of the black holes. If the network has n nodes and b black holes,
then any exploration algorithm needs Ω(n/k + Db) steps in the worst-
case, where Db is the worst case diameter of the network with at most b
nodes deleted. We give a general algorithm which completes exploration
in O((n/k) log n/ log log n+bDb) steps for arbitrary networks, if b ≤ k/2.
In the case when b ≤ k/2, bDb = O(

√
n) and k = O(

√
n), we give a re-

fined algorithm which completes exploration in asymptotically optimal
O(n/k) steps.

Keywords: Graph exploration, mobile agent, black hole faults.

1 Introduction

The network search problem which we consider in this paper is motivated by
the following scenario. Mobile (software) agents can move through a network of
computers, but some host, called black holes terminate any agent visiting it. The
problem of protecting mobile agents from such malicious hosts has been studied
in [6,7,10,11]. We assume that agents are a limited resource, so they should first
locate black holes to avoid entering them and dying.

Initially, the agents are at the same start node s and know the topology of
the whole network, but do not know the number and the location of black holes.
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Also, no information about black holes is available in the safe nodes of the
network (the nodes which are not black holes). Thus, in order to locate a black
hole, at least one agent must visit it. An agent entering a black hole disappears
there, so later this agent cannot show up where expected by the other agents,
or communicate with them in any other expected way. On this basis, the other
agents may be able to deduce the exact location of a black hole. We want to
design an efficient communication algorithm for the agents to identify all black
holes reachable from the start node. (If black holes disconnect the network into
separate components, then we can only hope to explore the component which
contains the start node.)

The black hole search was studied in [3,4,5] under the scenario of totally
asynchronous networks, that is, without assuming any bound on the ratio of the
times of two different edge traversals. The authors considered the case of two
agents and one black hole. To solve the problem in this setting, the network
must be 2-connected. The complexity measure considered is the total number of
moves performed by the agents. For arbitrary networks of n nodes, it is shown
in [5] that Θ(n log n) moves are necessary and sufficient.

We consider synchronous networks and assume that agents can communicate,
and exchange their knowledge, only when they meet. They cannot leave any
messages in the nodes of the network. In one synchronized step, each agent can
either stay in its current host or move to a neighbouring one. An agent X may
infer the location of a black hole, if it expects to meet another agent Y , but agent
Y does not show up. This model, but with the added restriction that there are
only two agents and at most one black hole, has been previously studied in
[1,2,8,9]. Those papers give NP-hardness results and approximation algorithms
for the problem of calculating an optimal (shortest) traversal schedules.

In this paper, we show two efficient algorithms for black hole search with mul-
tiple agents. That is, the number k of initially available agents is an independent
parameter. At the beginning of the computation all agents are at a start node s.
Let Db be the maximum distance from s to a node reachable from s in a network
obtained from the given network by deleting up to b nodes (the maximum over all
possible deletions). If the network has b ≤ k−2 black holes (see the next section
for justification of considering this bound on the number of black holes), then a
black hole search with k agents must have Ω((n/k)+Db) steps in the worst case.
If b ≤ k/2, then our first algorithm takes O((n/k) log n/ log log n+ bDb) steps in
the worst case, while our second algorithms takes O(n/k) steps, provided that
additionally k = O(

√
n) and bDb = O(

√
n). Our algorithms are the first algo-

rithms for searching for black holes with multiple agents with non-trivial upper
bounds on the number of steps. Note that k agents can trivially discover up
to k − 1 black holes in O(n) steps by exploring the network using edges of an
arbitrary spanning tree.

In the running time of a black hole search algorithm we count only the number
of “traversal” steps, but do not count the computational time of deciding which
traversals the agents should take in the current step. In our algorithms, this
computational time is polynomial.



322 C. Cooper, R. Klasing, and T. Radzik

2 Preliminaries

The input to our black-hole search problem is an undirected connected graph
G = (V, E), a subset of nodes S ⊆ V known to be safe, a start node s ∈ S, and
a positive integer k. The objective of the problem is to identify black holes in
V \S using k agents. The agents are numbered from 1 to k and they are initially
at the start node s. The agents move in synchronized steps. In each step, each
agent can either wait in its current position v ∈ V , or move to a node adjacent
to v. Agents communicate, exchanging their whole knowledge, when they are at
the same node at the same step.

For a subset of nodes W ⊆ V and a node v ∈W , G[W ] denotes the subgraph
of G induced by W , and Gv[W ] denotes the connected component of Gv[W ]
containing node v.

An exploration algorithm works correctly, if it terminates, and at the termi-
nation there is at least one surviving agent, all surviving agents know the set of
identified black holes B ⊆ V \S, and they all know that all nodes in Gs[V \B] are
safe. Observe that a node can be identified as a black hole or as a safe node only
if it can be reached from s along a path of safe nodes. Thus, it is not possible to
find out anything about the nodes in other components of G[V \ B]. Note that
in our notation in this paper (unlike in some previous papers on this topic) B
stands for the set of identified black holes, which is not necessarily the whole set
of black holes in the network.

We assume that k ≥ 3. If there was initially only one agent, then no explo-
ration would be possible since the agent would risk entering a black hole by
attempting any movement. The black-hole search problem with two agents has
been comprehensively studied before.

Our exploration algorithms work correctly, if there are at most k − 2 black
holes in G, losing only one agent for each identified black hole. If there are k− 1
or more black holes in the network, then the algorithms (slightly modified to
stop when only one agent remains) return a set B of k − 1 black holes, but the
surviving agent may not know whether all nodes in Gs[V \ B] are safe (some
nodes in Gs[V \B] may be left unexplored, so can be additional black holes, and
cannot be explored with one agent).

The running time of an exploration algorithm is the number of steps executed
until its termination. We define Db to be the maximum diameter of Gs[V \ B]
over all B ⊆ V , |B| ≤ b. Any exploration algorithm runs in the worst case
placement of the black holes in Ω(n/k) time , if |V \ S| = Ω(n), and in Ω(Db)
time, if b black holes are identified. The asymptotic bounds on the performance
of our algorithms include this parameter Db, but we do not consider in this paper
the problem of estimating Db.

For a graph H , V [H ] denotes the set of nodes in H . A subtree of a rooted tree
T is a connected subgraph of T . The root of a subtree H of T is the node in H
closest to the root of T . We say that J is the subtree of T spanned by a vertex
set X , if J is the smallest subtree of T containing the vertex set X . For a node
v in T , the subtree of T rooted at v contains v and all its descendants in T .
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3 Procedures Used in the Main Algorithms

Let P be a path with node s as one end. Two agents can explore P in the following
simple way. The agents move together along the path probing unexplored nodes
(nodes not known to be safe). That is, if they are to move from a node u to an
unexplored node w then one agent moves from u to w and back to u, while the
other agent waits in u. If the agent which has moved to w comes back to u, then
both agents learn that u is a safe node, so they move there together in the next
step. If the probing agent does not come back to u from w, then the waiting
agent learns that u is a black hole and goes back to s. The whole exploration
takes at most 4d steps, where d is the length of P . Next, we describe a natural
extension of this simple algorithm from paths to trees. Note that by exploring a
path or a tree we mean here a partial exploration, as no nodes in the path/tree
which are “behind” the black holes are reached (even if in the overall network
there are other edges than the path/tree edges leading to those nodes).

Let T be a tree rooted in a start node s, and S be the set of known safe nodes
in T (s ∈ S). Let h denote the height of T and l denote the number of leaves
in T . Procedure ExploreTree(T, s, S) explores T in O(h) steps using 2l agents
starting from s. (If there are more than 2l agents available at the beginning of
the computation of this procedure, then still only 2l agent are used and the
remaining agents wait in s.) The agents are assigned to the leaves of T , two
agents per each leaf. The agents move from s towards their leaves probing each
unexplored node. More precisely, if a number of agents are to move from a node
u to an unexplored node w on their way towards the leaves in the subtree of T
rooted at w, then one of the agents moves from u to w and back to u, while the
others wait in u. If the selected agent comes back to u, then the waiting agents
know that w is safe, so they all move there together. If the selected agent does
not come back to u, then the waiting nodes learn that w is a black hole and go
back to s. When two agents reach the leaf assigned to them, then they go back
to s.

Procedure ExploreTree(T, s, S) returns the set B of discovered black holes,
runs in at most 4h steps, loses only |B| agents, and establishes that all nodes in
the subtree of T obtained by removing the subtrees rooted in B are safe. At the
termination, all surviving agents are back at the start node s. We use procedure
ExploreTree(T, s, S) as a subroutine in our exploration algorithms for general
graphs.

Another procedure which we use is ExploreSubtrees(T, s, S′,H). Here T
is a tree rooted in a start node s, S′ is the set of initially known safe nodes in T
(s ∈ S′), and H is a family of rooted subtrees of T with the following properties.

1. H covers all nodes in V [T ] \ S′, that is, for each v ∈ V [T ] \ S′, there is a
subtree H ∈ H containing v.

2. If a node belongs to two subtrees in H, then it is the root of one or both of
them.

3. For each subtree H ∈ H, each node on the path in T between s and the root
of H , including the root of H , belongs to S′ (that is, is initially known to be
safe).
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Procedure ExploreSubtrees(T, s, S′,H) explores T using 2|H| agents in
the following way. For each subtree in H, two agents are assigned to explore
it, and the exploration of all subtrees is conducted in parallel. The two agents
assigned to a subtree H ∈ H first walk from s to the root of H (this path is safe
by condition 3 above), and then walk along an Euler tour of H probing nodes not
in S′. If they have found a black hole in H , then the surviving agent goes back to
s. If they explore the whole subtree without finding a black hole, then they both
go back to the root. Condition 2 and 3 implies that exploration of all subtrees
in H can be done in parallel and independently, since a possible common node
of two trees must be safe. Procedure ExploreSubtrees(T, s, S′,H) terminates
in O(h + maxH∈H |H |) steps, where h is the height of T , and returns the set B
of found black holes and the set S′′ of established safe nodes (S′ ⊆ S′′). Observe
that for each H ∈ H, this procedure finds a black hole in H (leaving some nodes
in H unexplored) or establishes that all nodes in H are safe.

In our algorithms for exploration of arbitrary graphs, we consider only bal-
anced families of subtrees. For T , S′ ⊆ V [T ], s ∈ S′, and a positive integer x,
an x-balanced family H of subtrees of tree T contains at most x subtrees, satis-
fies conditions 1 and 2 above, and for each H ∈ H, |V [H ]| = O(|V [T ]|/x) and
|V [H ] ∩ U | = O(|U |/x), where U = V [T ] \ S′. An x-balanced family of subtrees
is returned by procedure BalancedSubtrees(T, s, U, x). We present details of
this procedure in Section 6.

4 Algorithm for Arbitrary Networks

We describe our algorithms using the following notation:

– B̄ – the set of nodes already identified as black holes,
– Ḡ = Gs[V \ B̄] – the current network,
– S̄ – the set of nodes already known to be safe, S ⊆ S̄ ⊆ V [Ḡ],
– k̄ - the number of live agents.

Initially, B̄ = ∅, Ḡ = G, S̄ = S, and k̄ = k. The details of our first graph
exploration algorithm ExploreGraph1 are given in Figure 1. The algorithm
consists of a number of rounds. In each round, the algorithm tries to explore
more nodes. Analysing how the number of unexplored nodes decreases in each
round will be the basis for bounding the total running time.

Each round consists of two parts. The first part, the “repeat” loop in lines 3–
9, establishes a shortest path tree T in Ḡ to all nodes in V [Ḡ] \ S̄ and a bal-
anced family H of �k̄/2� subtrees which meets also condition 3 given in Sec-
tion 3. This is done by an iterative process of computing a shortest path tree
T , taking the �k̄/2�-balanced family H of subtrees of T returned by the proce-
dure call BalancedSubtrees(T, s, V [Ḡ]\ S̄, �k̄/2�), and checking if this family
satisfies condition 3. This checking is done by calling ExploreTree(J, s, S̄ ∩
V [J ]) for the subtree J of tree T containing only the tree paths from s to the
roots of the subtrees in H. If all nodes in subtree J turn out to be safe, then
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ExploreGraph1(G, s, S, k):

1: (Ḡ, S̄, k̄, B̄) ← (G, S, k, ∅);
{ the current graph, the current set of known safe nodes, the number of

agents which are still alive, and the current set of known black holes; }
2: while S̄ �= V [Ḡ] do

{ one round }
3: repeat

{ all live agents are in the start node s }
4: T ← a shortest path tree in Ḡ from s to all nodes in V [Ḡ] \ S̄;

5: H ← BalancedSubtrees(T, s, V [Ḡ] \ S̄, �k̄/2�);
{ H is a balanced family of at most �k̄/2� subtrees of T covering

all nodes not in S̄; }
6: J ← the subtree of T spanned by s and the roots of subtrees in H;

7: BJ ← ExploreTree(J, s, S̄ ∩ V [J ]);

8: update Ḡ, S̄, k̄, and B̄;

9: until V [J ] ⊆ S̄; {that is, all nodes in tree J are safe }
10: (BH, SH) ← ExploreSubtrees(T, s, S̄,H);

11: update Ḡ, S̄, k̄, and B̄;

12: end while;

13: return B̄.

Fig. 1. ExploreGraph1– a graph exploration algorithm with O(log n/ log log n)
rounds

we have found required T and H. If a black hole has been found in J , then the
process continues by computing new T and H.

For T and H established in the first part of a round, in the second part the
subtrees in H are explored by calling procedure ExploreSubtrees(T, s, S̄,H)
(line 10). The algorithm proceeds to the next round, if there are still nodes left
in V [Ḡ] \ S̄ (unexplored nodes).

If the number of black holes in G is b ≤ k − 2, then algorithm
ExploreGraph1 terminates correctly, and at the termination there are k − b
surviving agents and all nodes in V [Ḡ] have been identified as safe. The running
time, however, can be as high as Θ(n), even if Db is small. We show next a
bound on the running time of ExploreGraph1, if b ≤ k/2.

Theorem 1. Let G = (V, E) be an n-node connected graph, S ⊆ V be the set
of known safe nodes in G, s ∈ S, and an integer k ≥ 3. If there are initially
k agents at node s and the number of black holes in G is b ≤ k/2, then the
algorithm ExploreGraph1(G, s, S, k) completes the search for black holes in
O((n/k) log n/ log log n + bDb) steps.
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Proof. We refer to the description of algorithm ExploreGraph1 given in Fig-
ure 1. At each point of the computation of algorithm ExploreGraph1, the
number of live agents is k̄ ≥ k − b ≥ k/2. The agents walk through the
network only when executing procedure ExploreTree in line 7 and proce-
dure ExploreSubtrees in line 10. All other computation, including procedure
BalancedSubtrees, is done locally from the knowledge of the network and
already located black holes, and is therefore not counted in the time complexity.

One execution of procedure ExploreTree in line 7 takes O(h) steps, where
h is the height of tree J . Since J is a shortest path tree in Ḡ and the diameter
of Ḡ is at most Db, so h ≤ Db. If no black hole is found during the current
execution of procedure ExploreTree, then the inner (“repeat”) loop ends and
procedure ExploreSubtrees is executed. If no black hole is found during this
execution of ExploreSubtrees, then the black-hole search is completed and
the whole algorithm terminates. Thus, if the current execution of procedure
ExploreTree is not the last one, then between the beginning of the current
execution of procedure ExploreTree and the beginning of the next execution
of this procedure at least one black hole is found. Hence there are at most
b+1 executions of procedure ExploreTree throughout the whole execution of
algorithm ExploreGraph1.

Since procedure ExploreSubtrees is applied in line 10 to subtrees of sizes
O(n/k̄), then the general bound on the running time of this procedure implies
that its execution in line 10 takes O((n/k̄)+ Db) = O((n/k) +Db) steps. Proce-
dure ExploreSubtrees is executed once in each round (each iteration of the
outer “while” loop) of algorithm ExploreGraph1. Let q denote the number of
rounds. At least one new black hole is found in each round other than the last
one, so q ≤ b + 1. We show that we also have q = O(log n/ log log n).

For round i, let Hi denote the family of subtrees used in procedure
ExploreSubtrees in line 10, and let bi denote the number of black holes
found by this procedure call. We have

∑q
i=1 bi ≤ b. Let Ui = V [Ḡ]\ S̄, ui = |Ui|,

and ki = k̄ before the last call to procedure BalancedSubtrees in this round
(in line 5), which calculates Hi. A node v belongs to Ui+1, only if v belongs to
Ui, v belongs to a subtree in Hi containing a black hole, and v is not the root
of this subtree. There are exactly bi subtrees in Hi which have black holes, and
each of these subtrees contains at most 6ui/�ki/2� nodes other than the root
which belong to Ui (see Lemma 1, part 3). Since ki ≥ k/2 and k ≥ 3, then
�ki/2� ≥ k/6, so

ui+1 ≤ bi
6ui

�ki/2� ≤
36bi

k
ui. (1)

This implies

1 ≤ uq ≤
(

36
k

)q−1
(

q−1∏
i=1

bi

)
u1 ≤

(
36b

k(q − 1)

)q−1

u1 ≤
(

18
q − 1

)q−1

u1, (2)

using
∏q−1

i=1 bi ≤ [(
∑q−1

i=1 bi)/(q − 1)]q−1. Inequalities (2) and u1 ≤ n imply that
q = O(log n/log log n).
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Thus, all executions of procedure ExploreTree take together O(bDb)
steps and all executions of procedure BalancedSubtrees take together
O((n/k + Db)min{b, logn/ log log n}) steps. Hence the execution of algorithm
ExploreGraph1 takes O((n/k) log n/ log log n + bDb) steps. ��

5 An Algorithm for Networks with Bounded Diameter

The running time of algorithm ExploreGraph1 is O((n/k) log n/ log log n),
if there are at most k/2 black holes and Db is small. Our second algorithm
ExploreGraph2 has asymptotically optimal O(n/k) running time, provided
that some bounds on k and Db are satisfied.

The details of algorithm ExploreGraph2 are given in Figure 2. This algo-
rithm has only one round (lines 2–16), instead of O(log n/ log log n) rounds of
algorithm ExploreGraph1. The nodes which remain unexplored after this sin-
gle round are then explored in the second part of the algorithm using procedure
ExploreTree (lines 17–21). To guarantee that not too many unexplored nodes
are left for the second part of the algorithm, in the first part of the algorithm
we consider x-balanced families of subtrees for a parameter x ≥ k. The number
of subtrees in such a family H can be greater than k/2, so we cannot check if
H satisfies condition 3 by only one call to procedure ExploreTree, and we
cannot explore subtrees in H by only one call to procedure ExploreSubtrees,
as we did in one round of algorithm ExploreGraph1. Instead the first task
is accomplished by a sequence of calls to procedures ExploreTree (lines 6–
10), and the second task is accomplished by a sequence of calls to procedure
ExploreSubtrees (lines 12–16).

If the number of black holes in G is b ≤ k − 2, then algorithm
ExploreGraph2 terminates correctly, and at the termination there are k − b
surviving agents and all nodes in V [Ḡ] have been identified as safe. We show
next a bound on the running time of ExploreGraph2, if b ≤ k/2.

Theorem 2. Let G = (V, E) be an n-node connected graph, S ⊆ V be the set
of known safe nodes in G, s ∈ S, and integers x ≥ k ≥ 3. If there are initially k
agents at node s and the number of black holes in G is b ≤ k/2, then algorithm
ExploreGraph2(G, s, S, k, x) terminates in O((n/k)+(bDb/k)(x + (n/x)))
steps.

Proof. We refer to the description of algorithm ExploreGraph2 given in Fig-
ure 2. Throughout the computation of algorithm ExploreGraph2, the number
of live agents is k̄ ≥ k − b ≥ k/2. We bound the total number of steps taken by
procedures ExploreTree and ExploreSubtrees. All other computation is
done locally and is not counted in the time complexity.

Each execution of procedure ExploreTree in lines 8 and 19 takes O(Db)
steps. The outer “repeat” loop in lines 2–11 has at most b + 1 iterations, since
at least one black hole is found in each iteration other than the last one. In each
iteration of this loop, there are at most O(x/k) iterations of the inner “repeat”



328 C. Cooper, R. Klasing, and T. Radzik

ExploreGraph2(G, s, S, k, x):

1: (Ḡ, S̄, k̄, B̄) ← (G, S, k, ∅);
2: repeat

{ all live agents are in the start node s }
3: T ← a shortest path tree in Ḡ from s to all nodes in V [Ḡ] \ S̄;

4: H ← BalancedSubtrees(T, s, V [Ḡ] \ S̄, x);

5: J ← the subtree of T spanned by s and the roots of the subtrees in H;

6: repeat

7: Q ← subtree of J spanned by s and next �k̄/2� leaves in J ;

8: BQ ← ExploreTree(Q, s, S̄ ∩ V [Q]);

9: update Ḡ, S̄, k̄, and B̄;

10: until V [J ] ⊆ S̄ or BQ �= ∅;
11: until V [J ] ⊆ S̄; {that is, all nodes in tree J are safe }
12: repeat

13: F ← next �k̄/2� subtrees in H;

14: (BF , SF ) ← ExploreSubtrees(T, s, S̄,F);

15: update Ḡ, S̄, k̄, and B̄;

16: until all subtrees in H have been considered;

17: while S̄ �= V [Ḡ] do

18: T ← a shortest path tree in Ḡ from s to �k̄/2� nodes in V [Ḡ] \ S̄;

19: BT ← ExploreTree(T, s, S̄ ∩ V [T ]);

20: update Ḡ, S̄, k̄, and B̄;

21: end while;

22: return B̄.

Fig. 2. ExploreGraph2: a graph exploration algorithm with a single round followed
by an additional “cleaning-up” process using algorithm ExploreTree

loop. Thus, all executions of procedure ExploreTree in line 8 take together
O(xbDb/k) steps.

Since procedure ExploreSubtrees is applied in line 14 to subtrees of sizes
O(n/x), then the general bound on the running time of this procedure im-
plies that its one execution takes O((n/x) + Db) steps. There are O(x/k) it-
erations of the “repeat” loop in lines 12–16, so all executions of procedure
ExploreSubtrees take together O((n/k) + (x/k)Db) steps.

At the termination of the loop in lines 12–16, each node in V [Ḡ]\S̄ belongs to a
subtree inH which has a black hole. There are at most b subtrees inH which have
black holes, and each of these subtrees contains O(n/x) nodes. Hence |V [Ḡ]\S̄| =
O(bn/x) at the beginning of the “while” loop in lines 17–21. Each execution of
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procedure ExploreTree in line 19 other than the last one decreases the number
of nodes in V [Ḡ] \ S̄ by at least �k̄/2� or finds at least one new black hole.
Therefore there are O((bn)/(xk)+ b) executions of procedure ExploreTree in
line 19, and all these executions take together O(Db((bn)/(xk) + b)) steps.

We conclude that the number of steps required by algorithm
ExploreGraph2 is

O

(
xbDb

k

)
+ O

(
n

k
+

xDb

k

)
+ O

(
bnDb

xk
+ bDb

)
= O

(
n

k
+

bDb

k

(
x +

n

x

))
.

��

Corollary 1. Let G = (V, E) be an n-node connected graph, S ⊆ V be the
set of known safe nodes in G, s ∈ S, and an integer k such that 3 ≤ k =
O(
√

n). If there are initially k agents at node s, the number of black holes
in G is b ≤ k/2, and bDb = O(

√
n), then for x = max{k, �√n�}, algorithm

ExploreGraph2(G, s, S, k, x) terminates in O(n/k) steps.

6 Computing a Family of Balanced Subtrees

For a tree T rooted at node s, a subset of nodes U ⊆ V [T ] and a positive integer
x, procedure BalancedSubtrees(T, s, U, x) computes an x-balanced family H
of subtrees of T . The computation proceeds in iterations. In each iteration, a
subtree H is cut off from the tree and added to H.

Let T̄ denote the current tree, and for a node v ∈ T̄ , let size(v) and weight(v)
denote the number of nodes in the subtree of T̄ rooted at v and the number of
nodes in this subtree which belong to U , respectively. Similarly, for a subtree H
of tree T , let size(H) and weight(H) denote the number of nodes in H and the
number of nodes in H which are in U , respectively. In one iteration of procedure
BalancedSubtrees, a node v in T̄ is selected, which is a lowest (furthest from
the root) node in T̄ such that size(v) ≥ 3n/x or weight(v) ≥ 3u/x. Thus, for each
child w of v, size(w) < 3n/x and weight(w) < 3u/x. Order the children of node
v in an arbitrary way. The subtree H selected in this iteration is obtained by
taking node v as the root and adding the subtrees rooted in the first q children
of node v which make size(H) ≥ 3n/x or weight(H) ≥ 3u/x. This subtree H is
added to H and all nodes in H other than the root node v are removed from T̄ .
Node v is also removed from T̄ , if v becomes a leaf. The computation continues
until the remaining tree T̄ has less than 3n/x nodes and less than 3u/x nodes
in U . If the final tree T̄ is not empty, then it is added to H.

Next, we show that the family H of subtrees of T computed by
BalancedSubtrees(T, s, U, x) is indeed x-balanced.

Lemma 1. For an n-node tree T rooted at a node s, a subset U of u nodes in T ,
and a positive integer x < u, procedure BalancedSubtrees(T, s, U, x) returns
a family H of subtrees of T with the following properties.

1. The subtrees in H cover all nodes in U , that is, for each v ∈ U , there is a
subtree H ∈ H containing v.



330 C. Cooper, R. Klasing, and T. Radzik

BalancedSubtrees(T, s, U, x):

1: (n, u) ← the number of nodes in T and U , respectively;

2: H ← empty family of subtrees of T ;

3: T̄ ← T ; { the remaining tree to be covered }
4: while |V [T̄ ]| ≥ 3n/x or |V [T̄ ] ∩ U | ≥ 3u/x do

5: let size(v) and weight(v) be the number of nodes in the subtree of T̄
rooted at v and the number of nodes in this subtree which are in U ;

6: v ← a lowest (furthest from the root) node in T̄ such that size(v) ≥ 3n/x
or weight(v) ≥ 3u/x (thus for each child w of v, size(w) < 3n/x
and weight(w) < 3u/x);

7: H ← a subtree of T̄ obtained by taking node v as the root and adding sub-
trees rooted at children of v until size(H) ≥ 3n/x or weight(H) ≥
3u/x;

{ thus size(H) ≤ (6n/x) + 1 and weight(H \ {v}) ≤ 6u/x; }
8: add H to H;

9: update T̄ :

remove from T̄ all nodes in H other than the root node v;
remove also v, if it becomes a leaf;

10: end while;

11: if T̄ is not empty then add T̄ to H;

12: return H.

Fig. 3. Computing balanced subtrees of a tree T covering the nodes in a given set U

2. If a node belongs to two subtrees in H, then it is the root of one or both of
them.

3. Each subtree in H has at most (6n/x) + 1 nodes and at most 6u/x nodes
other than the root which belong to U .

4. There are at most x subtrees in H.

Proof. Parts 1, 2, and 3 of the lemma are easy consequences of the way procedure
BalancedSubtrees constructs the subtrees in H. We give a detailed argument
only for part 4 of the lemma.

Let H1 be the family of subtrees in H with sizes at least 3n/x, H2 be the
family of subtrees in H with weights at least 3u/x, h1 = |H1|, and h2 = |H2|.
Since each subtree in H, except possibly the last one added in line 11, has size
at least 3n/x or weight at least 3u/x, then |H| ≤ h1 + h2 + 1. We have

3n

x
h1 ≤

∑
H∈H1

|H | ≤ h1 + |
⋃
H′| ≤ h1 + n, (3)
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where the second inequality holds because each node can be a non-root node in
at most one tree in H. Similarly we have

3u

x
h2 ≤

∑
H∈H2

weight(H) ≤ h2 + u. (4)

Inequality (3) implies that

h1 ≤
x

3− x/n
<

x

2
,

so h1 ≤ (x − 1)/2, as x is an integer. Similarly (4) implies that h2 ≤ (x− 1)/2.
Therefore,

|H| ≤ h1 + h2 + 1 ≤ x. ��

7 Conclusions

We showed two efficient algorithms for black hole search with multiple agents.
If there are k agents and the network has n nodes and b black holes, then any
exploration algorithm needs Ω(n/k + Db) steps in the worst-case, where Db is
the worst case diameter of the network with at most b nodes deleted. We gave a
general algorithm which completes exploration in O((n/k) log n/ log log n+ bDb)
steps for arbitrary networks, if b ≤ k/2. In the case where b ≤ k/2, bDb = O(

√
n)

and k = O(
√

n), we gave a refined algorithm which completes exploration in
asymptotically optimal O(n/k) steps. Our algorithms are the first algorithms
for searching for black holes with multiple agents with non-trivial upper bounds
on the number of steps.

Even though our second algorithm is asymptotically optimal for restricted
values of k in networks with bounded diameter, it remains a question for further
research whether an algorithm can be devised that is asymptotically optimal for
general k and/or for arbitrary networks. Another important issue is to derive
good bounds on the involved constants for practical implementations. Moreover,
in this paper, we only considered the case when the topology of the whole network
is known in advance. It would be interesting to consider the case when initially
no, or only partial, information about the network is available.
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Abstract. This paper considers a system of asynchronous autonomous
mobile robots that can move freely in a two-dimensional plane with no
agreement on a common coordinate system. Starting from any initial
configuration, the robots are required to eventually gather at a single
point, not fixed in advance (gathering problem).

Prior work has shown that gathering oblivious (i.e., stateless) robots
cannot be achieved deterministically without additional assumptions. In
particular, if robots can detect multiplicity (i.e., count robots that share
the same location) gathering is possible for three or more robots. Simi-
larly, gathering of any number of robots is possible if they share a com-
mon direction, as given by compasses, with no errors.

Our work is motivated by the pragmatic standpoint that (1) compasses
are error-prone devices in reality, and (2) multiplicity detection, while be-
ing easy to achieve, allows for gathering in situations with more than two
robots. Consequently, this paper focusses on gathering two asynchronous
mobile robots equipped with inaccurate compasses. In particular, we pro-
vide a self-stabilizing algorithm to gather, in a finite time, two oblivious
robots equipped with compasses that can differ by as much as π/4.

1 Introduction

Background. The problem of reaching agreement among autonomous robots
has attracted considerable attention within the last few years. One problem of
particular interest is the gathering problem, where robots are required to meet
at a single location not predetermined in advance, and without agreement on
a common coordinate system. This problem has been studied extensively in
the literature, under different models and various assumptions [3,4,9,17]. In
fact, several factors render this problem difficult to solve. In particular, in all
these studies, the problem has been solved only by making some additional
assumptions regarding robots’ capabilities.
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In this paper, we focus on solving the gathering problem in asynchronous
models. In the asynchronous model CORDA [12], Prencipe [13] has shown that
there exists no deterministic algorithm to solve the gathering problem in finite
time with oblivious robots. Cieliebak et al. [4] have introduced multiplicity, and
have shown that gathering is possible for three or more robots, when they are
able to detect multiple robots at a single point.

Flocchini et al. [9] have solved the gathering problem for any number of robots
when they share a common direction, as provided by a compass1. However,
their result holds when compasses are perfectly consistent (i.e., with no errors).
Yet, in practice sensors are error-prone and sensitive to magnetic interference.
Consequently, in this paper, we concentrate on the gathering of two asynchronous
mobile robots when their compasses are subject to errors.

This work is motivated by the facts that: (1) in practice, compasses are rather
inaccurate sensors, and (2) with multiplicity detection, the gathering is solvable
only for more than two robots. For example, the accuracy of compasses typically
varies from 1 degree to over 10 degrees, depending on sensor quality (cost) and
environment conditions. Therefore, our aim is to fill the gap of solving the gath-
ering problem for two robots relying on oblivious computations, and to provide
effective answers to the following two questions. First, is it possible to gather
two asynchronous mobile robots when their compasses are inaccurate by some
unknown angle? Second, what is the bound of that angle?

Contribution. The main contribution of this paper is to study the solvability
of the gathering of two asynchronous mobile robots in the face of compass in-
accuracies. In particular, we address the problem when robots are oblivious (or
memoryless), meaning that they can not remember their previous states, their
previous actions or the previous positions of the other robots. While this is a
somewhat over-restrictive assumption, developing algorithms in this model is
interesting because any algorithm that works correctly for oblivious robots is
intrinsically self-stabilizing2. We thus provide an algorithm that gathers in a
finite number of steps, two asynchronous oblivious mobile robots equipped with
compasses that can differ by as much as π/4.

Difficulty of the problem. In the asynchronous model CORDA, where robots are
equipped with inaccurate compasses, it is difficult to gather two robots or com-
pare them in a consistent manner. This is mainly due to the issue of breaking the
symmetry between these robots. Let us illustrate this point using a simple exam-
ple. Assume that there exists a naive algorithm for comparing two asynchronous
robots A and B in a consistent manner when their compasses are inaccurate.
First, consider that A and B are equipped with accurate compasses, and place
them at the two endpoints of a horizontal diameter of a unit circle. Then, a naive
algorithm can be based on the comparison of the angles that A and B form re-
spectively with some global North N (i.e., they share the same north) and the
1 A compass does not only indicate the North direction, but also gives a unified clock-

wise orientation.
2 Self-stabilization is the property of a system which, starting in an arbitrary state,

always converges toward a desired behavior [7,14].
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segment AB in clockwise direction. For instance, if the angle is less than or equal
to π/2, the robot wins. Otherwise, if the angle is greater than π/2, the robot
loses. Then, a robot, say A, wins. Then, we rotate the diameter to exchange the
positions of A and B. Now B wins. We thus, color the perimeter of the circle by
Win and Lose, where at any point which is colored Win or Lose, A wins or loses.
Then, there is a point p that is a boundary between a Win and a Lose segment.
By introducing error to their compasses, at p, we can derive a contradiction.
That is, we can not decide which robot wins, and which one loses.3

Related Work. In their SYm model [17], referred to a semi-synchronous model,
Suzuki and Yamashita proposed an algorithm to solve the gathering problem
deterministically in the case where robots have unlimited visibility. For a system
with two robots, they have proven that it is impossible to achieve the gathering of
two oblivious mobile robots that have no common orientation under their semi-
synchronous model, in a finite time. The difficulty of the problem is inherent in
breaking the symmetry between the two robots.

Using the same model, Ando et al. [2] proposed an algorithm to address
the gathering problem in systems wherein robots have limited visibility. Their
algorithm converges toward a solution to the problem, but it does not solve it
deterministically. The gathering problem also has been studied in the presence of
faulty robots by Agmon and Peleg [1] in synchronous and asynchronous settings.
In particular, they proposed an algorithm that tolerates one crash-faulty robot
in a system of three or more robots. They also showed that in an asynchronous
environment, it is impossible to perform a successful gathering in a 3-robot
system with one Byzantine4 failure. Later on, Défago et al. [6] strengthen the
impossibility of gathering in systems with Byzantine robots by showing that
it still holds in stronger models. They also show the existence of randomized
solutions for systems with Byzantine-prone robots.

In some of our recent work [15], we introduced the notion of unreliable com-
passes for robots, and we studied the solvability of the gathering problem in the
face of compass instabilities. In particular, we proposed a gathering algorithm
that solves the problem in the semi-synchronous model SYm for many robots,
with compasses that are eventually stabilizing.

Recently, Cohen and Peleg [5] addressed the issue of analyzing the effect of
errors in solving gathering and convergence problems. In particular, they studied
imperfections in robot measurements, calculations and movements. They showed
that gathering cannot be guaranteed in environments with errors, and illustrated
how certain existing geometric algorithms, including ones designed for fault-
tolerance fail to guarantee even convergence in the presence of small errors. One
of their main positive results is an algorithm for convergence under bounded
measurement, movement and calculation errors. However, their work does not
relate to compasses.
3 The argument is similar to the bi-valent argument in the impossibility result of the

consensus problem [8].
4 A robot is said to be Byzantine if it executes arbitrary steps that are not in accor-

dance with its local algorithm [18].
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While preparing the print-ready version of this manuscript, it came to our
attention that a similar result has been presented by Imasu et al. [10] at a
domestic workshop in Japan.

Structure. The remainder of this paper is organized as follows. In Sect. 2, we
describe the system model and the basic terminology. Sect. 3 describes the algo-
rithm to gather two asynchronous oblivious mobile robots under compass inac-
curacies, and Sect. 4 proves its correctness. Finally, Sect. 5 concludes the paper.

2 System Model and Definitions

2.1 System Model

In this paper, we consider the CORDA model of Prencipe [12,11], which is
defined as follows. The system consists of a set of autonomous mobile robots
R = {r1, · · · , rn}. A robot is modelled as a unit having computational capabili-
ties, and which can move freely in the two-dimensional plane. In addition, robots
are equipped with sensor capabilities to observe the positions of other robots,
and form a local view of the world. The robots are modelled and viewed as points
in the Euclidean plane.5 The local view of each robot includes a unit of length,
an origin and the directions and orientations of the two x and y coordinate axes
as given by a compass.

The robots are completely autonomous. Moreover, they are anonymous, in
the sense that they are a priori indistinguishable by appearance, and they do
not have any kind of identifiers that can be used during their computations.
Furthermore, there is no direct means of communication among them.

We further assume that the robots are oblivious, meaning that they keep
information neither on previous observations nor on past computations.

The cycle of a robot consists of four states: Wait-Look-Compute-Move.

– Wait. In this state, a robot is idle. A robot cannot stay permanently idle
(see Assumption 2) below. At the beginning all robots are in Wait state.

– Look. Here, a robot observes the world by activating its sensors, which will
return a snapshot of the positions of all other robots with respect to its local
coordinate system. Since each robot is viewed as a point, the positions in
the plane are just the sets of robots’ coordinates.

– Compute. In this state, a robot performs a local computation according to its
deterministic, oblivious algorithm. The algorithm is the same for all robots,
and the result of the compute state is a destination point.

– Move. The robot moves toward its computed destination. If the destination
is its current location, then the robot is said to perform a null movement ;
otherwise, it is said to execute a real movement. The robot moves toward the
computed destination, but the distance it moves is unmeasured; neither infi-
nite, nor infinitesimally small (see Assumption 1). Hence, the robot can only
go towards its goal, but the move can end anywhere before the destination.

5 We assume that there are no obstacles to obstruct vision. Moreover, robots do not
obstruct the view of other robots and can ”see through” other robots.
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The (global) time that passes between two successive states of the same robot
is finite, but unpredictable. In addition, no time assumption within a state is
made. This implies that the time that passes after the robot starts observing
the positions of all others and before it starts moving is arbitrary, but finite.
That is, the actual movement of a robot may be based on a situation that was
observed arbitrarily far in the past, and therefore it may be totally different from
the current situation.

In the model, there are two limiting assumptions related to the cycle of a
robot.

Assumption 1. It is assumed that the distance travelled by a robot r in a move
is not infinite. Furthermore, it is not infinitesimally small: there exists a constant
δr > 0, such that, if the target point is closer than δr, r will reach it; otherwise,
r will move towards it by at least δr.

Assumption 2. The time required by a robot r to complete a cycle (Wait-Look-
Compute-Move) is not infinite. Furthermore, it is not infinitesimally small; there
exists a constant εr > 0, such that the cycle will require at least εr time.

2.2 Definitions

Definition 1 (Absolute north). An absolute north
−→N is a vector that indi-

cates a fixed north direction. The absolute north is collocated with an absolute y
positive axis.

It is important to stress that the absolute north is not known to the robots, and
is used only for the sake of explanation.

Definition 2 (Compass). A compass is a function of robots and time. The
function outputs a relative north direction

−→
Nr(t) for some robot r at time t.

Definition 3 (γ∗-Inaccurate compasses). Informally, compasses are γ∗-
Inaccurate iff., for every robot r, the absolute difference between the north indi-
cated by the compass of r and

−→N is at most γ∗ at any time t (also referred to as
error of the compasses). In addition, for every robot r, the error of its compass
is consistent or invariant, i.e., the error of the compass does not fluctuate over
time. In other words, a pair of γ∗-Inaccurate compasses can differ by as much as
2γ∗ at any time t, and the difference is invariant. The special case when γ∗ = 0
represents perfect compasses.

Formally, compasses are γ∗-Inaccurate iff., the following two properties are
satisfied:

1. γ∗-Inaccuracy: ∀r ∈ R, ∀t, |�−→N−→Nr(t)| ≤ γ∗,
2. Invariance: ∀r, ∀t, t′,−→Nr(t) =

−→
Nr(t′).
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2.3 Notations

Given some robot r, r(t) is the position of r at a time t. Let A and B be two
points, with AB, we indicate the segment starting at A and terminating at B,
and ‖AB‖ is the length of such a segment. Given three distinct points A, B, and
C, we denote by )(A, B, C), the triangle having them as corners, and by B̂AC,
the angle formed by A, B and C, and centered at A. Finally, given a region X(t)
at time t, we denote by |X(t)|, the number of robots in that region at time t.
The parameter t is omitted whenever clear from the context.

3 Gathering with Inaccurate Compasses

The basic intuition behind the algorithm is to break the symmetry between two
robots, that is, to forbid symmetric configurations of two robots. More precisely,
with a perfect compass, it is easy to break the symmetry between two robots. For
instance, by making one robot move and the other remain stationary. However,
with inaccurate compasses, it is difficult to design an algorithm that breaks the
symmetry between the two, as they can end up in a situation in which neither
do move, which results in a deadlock situation or in situation inc which both
move in such a way they cycle forever. In order to avoid such situations, it is
first necessary to ensure that the two robots do not see each other on the same
zone.

The main idea of our algorithm is to make each robot partition the plane into
four different zones, so that two similar zones for two different robots should
not overlap. Then, depending on the different possible configurations (resulting
from the partitions) of the two robots, we design their movements such that a
configuration is transformed to gathering, or to an intermediate configuration
leading to the gathering, without introducing cycles between configurations or
deadlock situations.

Before we describe the algorithm in more detail, we will first explain how
robots divide the plane.

3.1 Partitions

First, a robot needs to partition the plane into four sectors that do not over-
lap, namely the North, South, East and West sectors. Let αN , αS , αE and
αW be the respective angular measurements of these sectors. Also, by ΛN , ΛS ,
ΛE and ΛW , we denote the rays delimiting these sectors, respectively (refer to
Fig. 1).

Now, let us assume there exits a constant γ∗ ≥ 0 that represents the maximum
angle inaccuracy between the relative north

−→
Nr of some robot r and the absolute

north
−→N . Then, the following conditions must be satisfied in order to avoid a

situation in which both robots see each other in the same sector because of
compass inconsistencies.
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Fig. 1. The four sectors North , South , East and West for robot r

αN ≤ π − 2γ∗ (1)
αS ≤ π − 2γ∗ (2)
αE ≤ π − 2γ∗ (3)
αW ≤ π − 2γ∗ (4)

We further set the following conditions on the sectors. These conditions will help
to avoid the occurrence of infinite executions, i.e., having robots looping in the
same configuration.

αE + αS ≤ π (5)
αN + αW ≤ π (6)

By summation of Equation (1) and Equation (5), we get:

αN + αE + αS ≤ 2π − 2γ∗ then,
αN + αE + αS + αW ≤ 2π − 2γ∗ + αW

2π ≤ 2π − 2γ∗ + αW

2γ∗ ≤ αW

After finding the condition in the West sector, we choose the minimal value for
αW . That is, αW = 2γ∗. Then, by summation of Equation (1), and Equation (2),
we get:

αN + αS ≤ 2π − 4γ∗ then,
αN + αS + αE ≤ 2π − 4γ∗ + αE

By hypothesis, αN + αS + αE ≤ 2π then, by subtraction, we get:
0 ≤ −4γ∗ + αE then,

4γ∗ ≤ αE

Thus, we choose αE = 4γ∗ = αS = π/2 (From Equation (5)). This means that
γ∗ = π/8. It follows that, αW = 2γ∗ = π/4. Finally, from Equation (1), and the
fact that the sum of the four sectors is equal to 2π, we get, αN = π−2γ∗ = 3π/4.
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We have derived the condition that γ∗ ≤ π/8. Thus, in the remainder of the
paper, we consider the largest inaccuracy value of γ∗, i.e., γ∗ = π/8.

We now describe in more detail the features of each sector, as follows:

– East(r) sector: it is centered at r, has the East direction (indicated by its
compass)

−→
Er as bisector, and its angular sector αE is equal to 4γ∗, which

is π/2. Note that East(r) is delimited by ΛN (r) and ΛE(r). However, only
ΛE(r) is a part of East(r).

– South(r) sector: it is adjacent to East(r) in clockwise direction, and its an-
gular sector αS is equal to αE , which is equal to 4γ∗ (i.e., π/2). Note that
South(r) is delimited by ΛE(r) and ΛS(r). However, only ΛS(r) is included
in South(r).

– West(r) sector: it is adjacent to South(r) in clockwise direction and its an-
gular sector αW is equal to 2γ∗, that is π/4. Note that West(r) is delimited
by ΛW (r) and ΛN (r). However, only ΛW (r) is a part of West(r) sector.

– North(r) sector: this is the remaining sector, and its angular sector αN is
equal to 6γ∗, that is 3π/4. Note that North(r) is delimited by ΛN(r) and
ΛW (r). However, only ΛN (r) is included in North(r) sector.

In the following, we will describe the possible configurations of the two robots,
given the above partitions.

3.2 Valid Configurations

We consider two robots r and r′ that are equipped with compasses that can di-
verge by as much as 2γ∗, that is π/4. Let r and r′ divide the plane as described in
Sect. 3.1. Then, r and r′ can only be in one of the following valid configurations,
or a symmetric configuration:

1. Configuration North/South: r′ ∈ South(r) (i.e., robot r sees r′ on its South
sector) and r ∈ North(r′), or vice versa.

2. Configuration North/East : r′ ∈ East(r) and r ∈ North(r′), or vice versa.
3. Configuration North/West : r′ ∈West(r) and r ∈ North(r′), or vice versa.
4. Configuration East/West : r′ ∈West(r) and r ∈ East(r′), or vice versa.
5. Configuration East/South: r′ ∈ South(r) and r ∈ East(r′), or vice versa.

Based on the partitions described in Sect. 3.1, Table 1 summarizes possible and
impossible configurations when robots’s compasses are inaccurate by at most
γ∗ = π/8, with respect to some global north. By design, the partitions prevent
the occurrence of some undesirable configurations, such as North/North, that
could lead to a deadlock situation by using the algorithm6(see Sect. 3.3).

6 It is important to mention that when γ∗ is equal to zero, i.e., when the compasses
of r and r′ are consistent or, the configurations East/South and North/West are
impossible.
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Algorithm 1. Gathering Two Robots with π/8-Inaccurate Compasses
1: Robot r divides the plane into four sectors: North, South , East and West (see Sect. 3.1);
2: r′ := the other robot visible to r at some time t;
3: if (r sees only itself) then {gathering terminated}
4: Do nothing();
5: else
6: if (|South(r)| > 0) then {r′ is to the South : direct move}
7: Move(r′);
8: else if (|East(r)| > 0) then {r′ is to the East : side move up}
9: ΨE(r) := the parallel axis to ΛE(r) passing through r′;
10: H := ΛN (r) ∩ ΨE(r) (see Fig. ??);

11: Goal := p ∈ ΛN (r) such that ‖rGoal‖ > ‖rH‖ and ̂rGoalr′ ≥ ̂rr′Goal;
12: Move(Goal);
13: else if (|West(r)| > 0) then {r′ is to the West : side move down}
14: ΨW (r) := the parallel axis to ΛW (r) passing through r′;
15: H′ := ΛS(r) ∩ ΨW (r) (see Fig. ??);

16: Goal := p ∈ ΛS(r) such that ‖rGoal‖ > ‖rH′‖ and ̂rGoalr′ ≥ ̂rr′Goal;
17: Move(Goal);
18: else {r′ is to the North : no movement.}
19: Do nothing();
20: end if
21: end if

Table 1. Different configurations and movements of robot r and r′ (γ∗ = π/8)

Robot r
North South East West

Robot r′ (no movement) (direct move) (side move up) (side move down)
North no © © ©
(no movement)
South © no © no
(direct move)
East © © no ©
(side move up)
West © no © no
(side move down)

3.3 Movements

The algorithm is given in Algorithm 1, and Table 1 summarizes the different
movements of robot r and r′ (the table is symmetrical). Let us consider the
movement of robot r. First, robot r creates the four sectors, and then it de-
cides its movement based on the sector in which it has locates robot r′, as
follows:

– No movement (Algorithm1:line 18): If r′ ∈ North(r), then r does not move.
That is, if r sees r′ in its North sector, it remains stationary.

– Direct move (Algorithm1:line 6): If r′ ∈ South(r), then r moves directly in
a linear movement to r′.

– Side move up (Algorithm1:line 8): If r′ ∈ East(r), then r performs a side
move up. The need for such a move is explained as follows: given the valid
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Fig. 2. Principle of the algorithm

configurations described in Sect. 3.2, if r′ ∈ East(r), then r ∈ South(r′)
or r ∈ North(r′) or r ∈ West(r′). Robot r (also r′) cannot figure out in
which configuration they are, for instance the East/South or North/East
configuration. Then, if we let robot r make a direct move toward r′, then
in the case when both robots are in the configuration East/South, they will
swap their positions endlessly. Also, if we make robot r stay still, then, if
both robots are in the configuration North/East , none of the robots will ever
move and they will always remain in a deadlock situation. Therefore, the aim
of this side move up is to bring both robots eventually into the configuration
North/South, where one robot can move and the other remains stationary,
which can lead to gathering by our algorithm.
A side move up is computed by robot r as follows: let H be the intersection
of ΛN (r) and the axis ΨE(r), with ΨE(r) parallel to ΛE(r) passing through
robot r′. Then, the destination Goal of robot r is any point that belongs to
ΛN (r), such that the distance ‖rGoal‖ > ‖rH‖, and the angle ̂rGoalr′ is
greater than or equal to the angle ̂rr′Goal (refer to Fig. 2(a)).

– Side move down (Algorithm1:line 13): If r′ ∈ West(r), then r performs a
side move down. The aim of this move is similar to the side move up, and it
is computed by robot r as follows: let H ′ be the intersection of ΛS(r) and the
axis ΨW (r), with ΨW (r) parallel to ΛW (r) passing through robot r′ (refer to
Fig. 2(b)). Then, the destination Goal of robot r is any point that belongs
to ΛS(r), such that the distance ‖rGoal‖ > ‖rH ′‖, and the angle ̂rGoalr′ is
greater than or equal to the angle ̂rr′Goal (refer to Fig. 2(b)).

4 Correctness

In this section, we will prove that our algorithm solves the problem of gathering
two robots in a finite time, assuming π/8-Inaccurate compasses. Due to space
limitations, we only give the complete proof of two lemmas that are central to
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Fig. 3. Different configurations allowed by Algorithm 1, and their transformation to
gathering

the paper. For all other lemmas, we give an outline of the idea behind the proof.
All the complete proofs can be found in the technical report version [16]. We
first state some lemmas, to illustrate that some incompatible configurations are
ruled out by the algorithm. Second, we show how any possible configuration by
the algorithm is transformed into gathering in a finite time. Fig. 3 summarizes
the different possible configurations, and their transformation to gathering.

Under the partitions described in Sect. 3.1 and by considering γ∗ = π/8,
trivially, we derive the following two lemmas:

Lemma 1. Under the partitions, and assuming π/8-Inaccurate compasses, the
system can not be in the configuration North/North or East/East or South/South
or West/West at any time t.

Lemma 2. Under the partitions, and assuming π/8-Inaccurate compasses, the
system can not be in the configuration West/South at any time t.

From the above two lemmas, we derive the following theorem:

Theorem 1. By the algorithm, the possible configurations are North/South,
North/East, North/West, East/West and East/South, and their symmetric
ones (i,e. South/North, East/North, West/North, West/East and South/East).

Lemma 3. Given a robot r and its target point H with r �= H, r reaches its
target in a finite number of steps.

Proof (Lemma 3). The proof derives from Assumption 1. In one cycle, r travels
at least δr > 0 of the desired distance. Besides, by Assumption 2, the cycle of
a robot is finite. Thus, the number of steps required for robot r to reach its
destination H is at most �‖rH‖/δr�, which is finite, and the lemma holds.
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Lemma 4. Given two robots r and r′ that are in the configuration North/East
or East/West or East/South at some time t0, with r′ ∈ East(r) and r is either
in North(r′) or West(r′) or South(r′). Then, the destination Goal computed by
robot r (resulting from its side move up) is on the North(r′).

Proof (Lemma 4).
We will prove the North/East configuration only. The East/West and East/

South configurations can be proved in a similar way.
Assume that r′ ∈ East(r) and r ∈ North(r′) at time t0. First, observe that

if ΛN (r) ∩ ΛN (r′) = ∅ (i.e., ΛN (r) and ΛN(r′) are parallel or do not intersect),
then Goal ∈ North(r′) because r ∈ North(r′), and Goal ∈ ΛN(r).

Now assume that, ΛN (r) ∩ ΛN(r′) = M . Let H = ΨE(r) ∩ ΛN(r) (refer to
Fig. 4). To show that Goal ∈ North(r′), we will show that, always, Goal ∈
)(r, r′, M). In other words, we need to show that H ∈ )(r, r′, M) and the
distance ‖HM‖ �= 0.

Consider the triangle )(r, r′, M). Let α, β, and μ denote the angles at r, r′

and M that are within the triangle )(r, r′, M), respectively. First, if all three
angles α, β, and μ are acute, then obviously the foot H of the perpendicular
starting from r′ is inside )(r, r′, M), and ‖HM‖ �= 0. Second, if the angle β at
r′ is obtuse, then again the foot H of the perpendicular starting from r′ is inside
)(r, r′, M), and ‖HM‖ �= 0. Now consider the angle α at r. By hypothesis, αE

is equal to π/2. This means that α cannot be an obtuse angle, and it is at most
π/2. In this later case where α = π/2, we have the foot H of the perpendicular
starting from r′ equal to r (in this case ΛE(r) passes by r′), and the triangle
)(r′, r, M) has a right angle at r. Consequently, ‖rM‖ = ‖HM‖ �= 0 and
Goal ∈ )(r, r′, M).

Now, we will prove that the angle μ at M can not be an obtuse angle (because
if μ is an obtuse angle, H is outside )(r, r′, M)). Let K = ΛE(r) ∩ ΛW (r′) and
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κ be the angle at K. We also denote by β′ the angle at r′ formed by ΨE(r) and
ΛW (r′). Consider the quadrilateral formed by r, H , r′ and K. Then, we have: (1)
κ+β′ = π since the respective angles at r and H are equal to π/2. Consider now
the quadrilateral formed by r, K, r′ and M . Then, we have: (2) κ + μ = 3π/4
since αE(r) is equal to π/2, and αN (r′) is equal to 3π/4 by hypothesis. By
subtraction of (1) from (2), we get: (3) β′−μ = π/4. By assumption, β′ < 3π/4
because ΨE(r) can not be equal to ΛN (r′) as ΛN (r′) can not be perpendicular to
ΛN(r) by the partitions described in Sect. 3.1. Consequently, the angle μ at M
is less than π/2. Thus, μ can not be an obtuse angle. As a result, in all cases the
foot H of the perpendicular starting from r′ is inside the triangle )(r, r′, M),
and ‖HM‖ �= 0. Then, ∀p ∈ HM , p ∈ North(r′). We have by the algorithm,
̂rGoalr′ ≥ ̂rr′Goal . Since μ is not an obtuse angle and r̂r′M can be an obtuse

angle, then the triangle)(r, r′,Goal) is included in)(r, r′, M). This proves that
Goal ∈ )(r, r′, M), and thus Goal ∈ North(r′). This completes the proof.

In the following, we will show the different possible transitions that each valid
configuration can take, in order to reach gathering in a finite time. The impossible
transitions can be derived implicitly, so we do not prove them explicitly.

4.1 Transition of North/South Configuration to Gathering

Lemma 5. Let r and r′ be two robots that are in the configuration North/South
with r′ ∈ South(r) at some time t0. Then, there is a time t̄ > t0 when r and r′

gather at the same point. Moreover, r and r′ can not shift to any other configu-
ration except gathering.

Proof (Lemma 5). By the algorithm, r will perform a direct move toward r′. Also,
during the movement of r, r′ is unable to move. Consequently, by Lemma 3, r
reaches r′ in a finite time. This terminates the proof.

4.2 Transition of North/East Configuration to Gathering

Lemma 6. Let r and r′ be two robots that are in the configuration North/East
with r′ ∈ East(r), and r ∈ North(r′) at some time t0. Then, there is a finite
time t̄ at which this configuration is transformed into North/South configuration
with r′ ∈ South(r). Moreover, r and r′ can not shift to any other configuration
except the North/South configuration.

Proof (Lemma 6). The proof is a direct consequence from Lemma 4. Let Goal be
the destination of r. Initially, r ∈ North(r′). Besides, by Lemma 4, ∀p ∈ rGoal ,
p ∈ North(r′). Then, r′ is unable to move during the movement of r to Goal .
When r reaches its destination Goal , ΛE(r) is above r′, thus r′ ∈ South(r).
Consequently, r and r′ enter the configuration North/South in a finite time.

From Lemma 5 and Lemma 6, we conclude that:

Theorem 2. Any North/East configuration of two robots equipped with π/8-
Inaccurate compasses is transformed after a finite time to gathering.
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4.3 Transition of East/West Configuration to Gathering

Lemma 7. Given two robots r and r′ at some time t0, where r and r′ are in
the configuration East/West, with r ∈ West(r′) and r′ ∈ East(r), then the
destination Goal ′ of r′ (resulting from its side move down) belongs to East(r)
or South(r).

Proof (Lemma 7). Let H ′ = ΨW (r′) ∩ ΛS(r′). Consider the triangle )(r, r′,
Goal ′), and let α, α′ and β be the angles at r, r′ and Goal ′, respectively. By
hypothesis, α′ ≤ αW = π/4. Then, α+β ≤ 3π/4. By the algorithm, α ≤ β. Thus,
α ≤ 3π/8 < π/2. Let M = ΛE(r) ∩ ΛS(r′). Then, the angle r̂′rM ≤ π/4 since r
and r′ are in the configuration East/West . It follows that if Goal ′ ∈ H ′M , then
Goal ′ ∈ East(r). Otherwise, Goal ′ ∈ South(r).

Lemma 8. Let r and r′ be two robots that are in the configuration East/West,
with r′ ∈ East(r), and r ∈West(r′) at some time t0. Then, there is a finite time
t̄ in which this configuration is transformed into North/East or North/South
configuration. Moreover, r and r′ cannot enter any other configuration except
the North/East or North/South configuration.

Proof (Lemma 8). We distinguish several cases depending on the movement of
each robot. We assume that both r and r′ always reach their final destinations.
All other cases where r or r′ end their moves before destination are easy to
deduce from previous lemmas.

1. r moves/ r′ does not move: By the algorithm, r will perform a side move
up. Let Goal be the destination of r and t̄ be the time when r reaches its
target. At t̄, we have r′ ∈ South(r) (since at t̄, r′ becomes below ΛE(r)). In
addition, by Lemma 4, Goal ∈ North(r′). Then, at t̄, r ∈ North(r′). Conse-
quently, r and r′ become in the configuration North/South in a finite time.

2. r′ moves/ r does not move: By the algorithm, r′ will perform a side move
down. Let Goal ′ be its destination and t̄′ be the time when r′ reaches Goal ′.
At time t̄′, r is above ΛW (r′), thus r ∈ North(r′). In addition, by Lemma 7,
r′ ∈ East(r) or r′ ∈ South(r) at t̄′. Consequently, r and r′ leave the configura-
tion East/West in a finite number of steps, and become in the configuration
East/North or North/South.

3. both r and r′ move: By the algorithm, r will perform a side move up and
r′ will perform a side move down. Let Goal and Goal ′ be their respective
destinations and t̄ and t̄′ be the time when they end their moves, respectively.
At t̄, ∀p that is below ΛE(r(t̄)), p ∈ South(r). Since, at t̄, r′ ∈ r′Goal ′, and by
Lemma 7, Goal ′ ∈ East(r(t0)) or Goal ′ ∈ South(r(t0)). Thus, r′ ∈ South(r)
at t̄ because ΛE(r(t̄)) is above Goal ′ and r′.
When r′ reaches Goal ′, r is above ΛW (r′). Consequently, at t̄′, r ∈ North(r′).
Since, r and r′ reach their respective target in a finite time, we hence con-
clude that they become in the configuration North/South in a finite time.

From Lemma 8, Lemma 5 and Theorem 2, we conclude:
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Theorem 3. Any East/West configuration of two robots equipped with π/8-
Inaccurate compasses is transformed after a finite time to the gathering.

4.4 Transition of North/West Configuration to Gathering

Lemma 9. Given two robots r and r′ at some time t0, where r and r′ are in
the configuration North/West, with r ∈ West(r′) and r′ ∈ North(r), then the
destination Goal ′ of r′ (resulting from its side move down) belongs to East(r).

The proof is very similar to the proof of Lemma 7, thus omitted here.

Lemma 10. Let r and r′ be two robots that are in the configuration North/West,
with r ∈ West(r′), and r′ ∈ North(r) at some time t0. Then, there is a finite
time t̄ in which this configuration is transformed into North/East or East/West
or North/South configuration. Moreover, r and r′ can not enter any other con-
figuration except the North/East or East/West or North/South configuration.

Proof (Lemma 10).
By the algorithm, r′ will make a side move down. Let Goal ′ be its destination.

Then, by Lemma 9, Goal ′ ∈ East(r). As long as r′ ∈ North(r), r remains station-
ary. While r′ is moving toward its target, it crosses East(r) sector. Then, r and
r′ become in the configuration East/West if ΛW (r′) is still above r. Otherwise,
they enter the configuration North/East , with r ∈ North(r′) if r′ reaches Goal ′

and r still did not move. Finally, r and r′ enter the configuration North/South
if r performs a look operation when r′ ∈ East(r), and moves to it destination.
From Lemma 3, these transformations are done in a finite time, and the lemma
holds.

From Lemma 10, Theorem 2 and Theorem 3, we conclude:

Theorem 4. Any North/West configuration of two robots equipped with π/8-
Inaccurate compasses is transformed after a finite time to gathering.

4.5 Transition of East/South Configuration to Gathering

Lemma 11. Let r and r′ be two robots that are in the configuration East/South
at some time t0, with r′ ∈ East(r) and r ∈ South(r′) Then, there is a finite time
t in which this configuration is transformed into North/South or North/East or
East/West or the gathering.

Proof (Lemma 11). By the algorithm, r′ will make a direct move toward r, and
r will make a side move up. Then, we distinguish several cases, depending on
where each robot sees the other one, and where it ends its move. By using similar
arguments as in previous lemmas, it is easy to show that r and r′ shift to the
North/South or North/East or East/West configuration or the gathering in a
finite time.

From Lemma 5, Lemma 11, Theorem 2 and Theorem 3, we conclude that:
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Theorem 5. Any East/South configuration of two robots equipped with π/8-
Inaccurate compasses is transformed in a finite time to gathering.

Theorem 6. In a system, with 2 anonymous, oblivious mobile robots relying
on inaccurate compasses, the gathering problem is solvable in a finite time for
π/8-Inaccurate compasses.

Proof (Theorem 6).
Theorem 1 states the different valid configurations by the algorithm. Also,

from Lemma 5, Theorem 2, Theorem 3, Theorem 4 and Theorem 5, any valid
configuration is transformed into gathering in a finite time (see Fig. 3), thus the
theorem holds.

5 Conclusion

In this paper, we concentrate on the gathering of autonomous mobile robots
when their compasses are subject to errors. In particular, we have studied the
solvability of the gathering of two asynchronous mobile robots in the face of
compass inaccuracies, and relying on oblivious computations. We thus provided
an algorithm that gathers in a finite number of steps, two asynchronous oblivious
mobile robots equipped with compasses that can differ by as much as π/4.

The benefit of our algorithm is that we solve the problem with inaccurate
compasses. Moreover, our algorithm is self-stabilizing and tolerates any number
of transient errors. We can also argue that even with weaker compasses that
fluctuate for some arbitrary periods, and eventually they become constant with
bounded errors that are less than or equal to π/4, our algorithm is still valid
and solves the problem in a finite time.
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Abstract. Autonomous identical robots represented by unit discs move
deterministically in the plane. They do not have any common coordinate
system, do not communicate, do not have memory of the past and are
totally asynchronous. Gathering such robots means forming a configu-
ration for which the union of all discs representing them is connected.
We solve the gathering problem for at most four robots. This is the first
algorithmic result on gathering robots represented by two-dimensional
figures rather than points in the plain: we call such robots fat.

1 Introduction

1.1 The Background and the Problem

Using teams of simple, low-cost robots is an important way of accomplishing
large mechanical tasks in dangerous or hostile environments. Systems of such
autonomous robots have been extensively studied in the robotics and artificial
intelligence community [3,4,11,12,13,14,15]. Recently, algorithmic aspects of dis-
tributed coordination of teams of robots freely moving in the plane have been
investigated by many researchers [1,2,5,6,7,8,9,10,17,18,19,20]. Models of per-
ception and motion of robots aimed at grasping the intuition that these are
weak-performance devices that can be cheaply mass-produced. One of the most
extensively studied is the asynchronous model of [6,7,8,9,18]. In this model ro-
bots are identical, anonymous, do not have any common coordinate system, do
not communicate, do not have memory of the past and operate asynchronously
in Look-Compute-Move cycles. Each robot, represented as a point in the plane,
wakes up at times controlled by the adversary, observes positions of all other
robots at this time then computes a target point and starts moving towards it
at a speed controlled by the adversary. The adversary may also stop the robot
before it reaches its target point, thus finishing the cycle. The aim is gathering
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all robots in one point of the plane. Gathering is one of the basic primitive op-
erations in controlling teams of autonomous moving robots and has been also
studied in robotics and artificial intelligence [3,11,12].

This scenario is indeed very weak and thus can be potentially applied to a
large class of autonomous moving devices. However, the model is not realistic in
one aspect: representation of robots by points. In reality, even very small robots
occupy some space, which results in two important complications: some robots
may prevent full visibility of others and some robots may mechanically obstruct
the motion of others, staying or getting in their line of move. The aim of the
present paper is to study the gathering problem in the asynchronous model, at
the same time addressing the above-mentioned issues. We represent robots as
unit discs in the plane (we call them “fat” robots to distinguish our scenario from
the previous point representation). We keep the Look-Compute-Move paradigm
but add the two aspects resulting from the “fatness” of robots. First, robot R1

can see robot R2, if there exist points x and y in circles bounding R1 and R2,
respectively, such that the segment xy does not contain any point of any other
robot. Second, if a robot R touches another robot (i.e., the circles representing
these robots become tangent) then both robots stop and this ends their current
cycle.

Since for fat robots it is impossible to gather them in one point (robots stop
at a touch and thus cannot penetrate each other) we change the definition of
gathering accordingly. Gathering fat robots means forming a configuration for
which the union of all discs representing them is connected. Moreover, all robots
must have full visibility to be aware that gathering is accomplished.

It turns out that adding the realistic aspect of fatness significantly complicates
the task of gathering. To see this, consider a team of 4 robots whose centers are
situated on intersecting non-perpendicular lines, one robot in each of the four
halflines. This is what is called in [7] a biangular configuration . The center of
biangularity (which in this case is the intersection point x of the lines) is invari-
ant under straight moves in its direction of all robots, regardless at what relative
speed they move towards it. Hence if robots are represented by points, a gath-
ering algorithm in this particular case is straightforward: each robot computes
the point x and moves towards it. Eventually, all robots will reach the point x.
However, for fat robots, this is not a correct algorithm. Indeed, since lines are
not perpendicular, the adversary may control the speed of robots so that two
pairs of robots are formed, the robots in each of them obstructing each other’s
moves, without forming a connected configuration.

The above example shows how mechanical obstruction of one robot by another
may cause problems. Visibility issues also significantly complicate gathering al-
gorithms. For example, it was proved in [8] that when robots are represented by
points then the algorithm consisting in always going towards the gravity center
converges, i.e., permits to get all robots inside an arbitrarily small circle. How-
ever, for fat robots the center of gravity of the entire system may be impossible
to compute by some robots that do not have full visibility. Even when forming a
connected configuration is possible using a variant of this algorithm, consisting
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in going towards the gravity center of the visible part of the configuration, some
robots may never be aware that the task is accomplished. This is the case for 3
robots in a straight line. They will eventually form a connected configuration by
a sequence of moves along this line but the two external robots will never know
when this is done.

The aim of this paper is to present a gathering algorithm for three and for
four robots (gathering one or two fat robots is straightforward). We first describe
our model in detail, recalling features of the Look-Compute-Move paradigm and
emphasizing differences between our model and the point-representation model
from [6,7,8,9,18]. Then we present the gathering algorithm for three robots, which
is much simpler than for four robots and provides a good introduction to it, as it
already has to cope with some of the main difficulties in an easier situation. Most
of the paper is devoted to the design and analysis of the gathering algorithm for
4 robots. The remaining challenge is to generalize it to an arbitrary number of
robots. We were unable to do it.

1.2 Related Work

A heuristic approach to the gathering problem, from the point of view of ro-
botics and artificial intelligence was presented in [3,4,11,12,13,14,15]. In most
of the algorithmic literature robots were represented by points and full visibil-
ity was assumed. Gathering algorithms in the semi-synchronous model, where
robots operate in synchronous cycles but some robots may skip some cycles,
were investigated in [20]. The asynchronous model was first described in [9]. In
[7] the authors showed a gathering algorithm for n > 2 robots assuming multi-
plicity detection, i.e., the capability of a robot to tell if a given point contains
one or more robots. In [18] it was proved that without multiplicity detection
the gathering problem is unsolvable. In [8] it was proved that the gravitational
algorithm consisting in moving towards the center of gravity enables getting all
robots in an arbitrarily small circle. Fault-tolerant algorithms for gathering were
studied in [1]. The gathering problem was also studied with limited visibility
[2,10]. However, limitation was not caused by other robots obstructing the view
but by imposing for each robot a radius of vision. In [2] the authors provide
theoretical analysis of a gathering algorithm with robots represented by points
and then perform simulations in the more realistic setting where robots are rep-
resented by discs. To the best of our knowledge ours is the first paper presenting
a provably correct gathering algorithm for fat robots.

2 The Model

Robots are represented by closed unit discs in the plane. Robots are identical,
anonymous and undistinguishable. Since all robots have radius 1, they have
a common measure of unit (unlike in the model from [9]) but do not have any
common system of coordinates, similarly as in this model. Robot R1 can see robot
R2, if there exist points x and y in circles bounding R1 and R2, respectively,
such that the segment xy does not contain any point of any other robot. (In
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particular, each robot can see itself). Notice that if a robot R1 can see robot
R2, it can always see some non-zero arc of its bounding circle and thus it may
compute its center. This definition of visibility results from the “fatness” of our
robots and differs from [9], where full visibility of robots represented by points
was assumed. We say that a robot has full visibility if it can see all the robots,
and we say that there is full visibility in a given position of robots, if all of them
have full visibility.

Each of the robots Ri in the system executes asynchronously simple cycles
consisting of three steps.

– Look: Identify locations of all robots visible to Ri. The result of this step is
a set P of centers of these robots, called a configuration.

– Compute: Execute the algorithm on input P , and output a target point p.
– Move: Move on a straight line towards point p. If during this motion the

robot touches some other robot, it stops and finishes the current cycle. (This
is another difference from the model in [9], where robots modeled by points
could “pass through each other” not noticing it. This is hardly the case in a
physical environment). The adversary may also stop the robot at any point
before the target (thus finishing the current cycle), as long as at least a
specified distance ε has been traversed. The robots do not know ε. If the
robot does not encounter another robot on its way and the adversary does
not stop it, the robot stops when its center reaches point p, and finishes the
current cycle.

Notice that the above asynchronous cycle paradigm imposes inherent limi-
tations on the perception, computing and moving capabilities of the robots. A
robot computes a target point on the basis of a previously perceived config-
uration and may start moving towards it when the configuration has already
changed. In fact, a robot R1 can see robot R2 while R2 is moving, and R1 does
not realize this fact. Also robots do not have any memory from the past cycles.
For example, two robots at some distance cannot accomplish the simple task of
meeting in the middle of the segment joining them because they may be stopped
on the way to it and, not remembering their previous positions, are unable to
recompute this middle point. Moreover, robots cannot communicate directly:
their only way of communication is by observing the positions of others, which,
as we mentioned, may become obsolete at the time of moving.

The adversary in this model has a lot of power and is restricted only in two
ways. First, each of the steps takes an unspecified but finite time. This is the
usual restriction on adversaries in asynchronous systems, otherwise no task can
be accomplished in finite time. The other restriction is that the adversary has
the obligation to let the robot traverse at least a distance ε during a move step,
unless the target point was closer. Otherwise no gathering is possible because
the adversary could exercise its stopping prerogative in consecutive cycles after
1, 1

2 , 1
4 , . . ., thus keeping each robot from traversing a distance of more than 2

(which reminds the Achilles and tortoise paradox).
A connected configuration of robots is their position in the plane, such that

between any two points of any two robots there exists a polygonal line each of
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whose points belongs to some robot. Robots accomplish gathering, if they get
to some connected configuration and all of them can see all robots (and thus be
aware that a connected configuration is achieved). A gathering algorithm for n
robots stops if robots accomplish gathering. (We assume that robots know n).
A gathering algorithm is correct if it accomplishes gathering starting from any
initial position of the robots, i.e. any configuration in which no pair of robots
shares an internal point.

Note that look and move steps in each cycle do not depend on the gathering
algorithm. A given algorithm prescribes only how to compute the target point p
depending on any possible configuration P .

In the sequel we will often identify robots with their centers, thus saying, e.g.,
“robots form a triangle” instead of “centers of robots form a triangle”, “robots
are at distance D” instead of “centers of robots are at distance D”, etc.

3 Gathering Three Robots

In this section we design an algorithm for gathering three robots in the plane.
As we will see, this is a much easier task, nevertheless it already exhibits some of
the difficulties with which we will have to cope later for four robots. First notice
that at each time one of two situations may happen: either robots form a triangle
and then full visibility of all robots is assured, or robots are collinear, and then
all robots are aware of it, although two of them do not have full visibility.

We will use the following geometric fact.

Fact 3.1. Inside every triangle abc with all angles smaller than 120◦, there exists
a unique point R such that all angles ∠ARB, ∠BRC, ∠CRA are exactly 120◦.

Algorithm ThreeRobots
if robots form a triangle with all angles smaller than 120◦

then compute the point R such that ∠ARB = ∠BRC = ∠CRA = 120◦

and compute target point p between your center and R,
at distance 2

√
3/3 from R

else
if robots form a triangle with an angle ∠ABC at least 120◦

then compute the target point p on the segment between your center
and B, at distance 2 from B {B remains idle}

else {robots are collinear and their centers form line L}
if two other robots are visible
then compute target point at distance 1, such that the segment

between this point and your center is perpendicular to L.
else compute target point equal to your own center

Remark. Note that, when the three robots are aligned along line l, the algorithm
sends the middle robot perpendicularly to l at distance 1. By symmetry the robot
may choose each of the two directions to move away from l. We assume that in
such circumstances the robot breaks the symmetry individually by using its local
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system of coordinates, unknown to other robots. Similar situation will occur in
the case of the algorithm for four robots.

Theorem 1. Algorithm ThreeRobots is a correct gathering algorithm for three
robots.

Proof. If robots form a triangle with all angles smaller than 120◦ then the unique
point R from Fact 3.1 can be computed by all robots. Robots move towards this
point until they get at distance 2

√
3/3 from R. Note that the point R remains

the same during the whole process and the characteristic of the triangle that all
of its angles are smaller than than 120◦ remains unchanged during the process.
(This is important because it implies that all robots execute the same clause of
the algorithm, regardless of their relative speeds and possible interruptions of the
moves, controlled by the adversary.) In this way robots get at distance 2

√
3/3

from R. Since all angles between trajectories of robots are 120◦, one robot cannot
obstruct another one on its way to the target point, regardless of their relative
speed. When all robots get at distance 2

√
3/3 from R, they form a connected

configuration and the algorithm stops. During the entire process all robots have
full visibility, hence when they eventually form a connected configuration, all of
them are aware of it. Note that, in case some robot is initially closer that 2

√
3/3

from R, because of the asynchrony of the process the gathering configuration is
not deterministic. Indeed, if the robot which is closer than 2

√
3/3 to R is slow

in reaching its target point, the other two robots may bump on it, preventing it
from terminating its move step.

If robots form a triangle with an angle ∠ABC at least 120◦, such an angle
must be unique. Robot B is then unique (known to all) and it stays idle. Other
robots move towards it and stop at distance 2 from it. Notice that, regardless of
the relative speed of the robots, the property ∠ABC ≥ 120◦ is satisfied during
the entire process, hence the same clause of the algorithm is executed by all
robots. Since the angle is large, moving robots do not obstruct each other on
their way to the target. Again, during the entire process all robots have full
visibility, thus they notice when gathering is completed.

Finally, if robots are collinear, only one of them (call it central) has full visibil-
ity (can see two other robots). This robot departs perpendicularly from the line
L of the robots, at distance 1. Before it starts moving, the two other robots stay
idle. After it started moving, other robots, after seeing it, start moving towards
it. Notice an important subtlety. The move of the central robot may be slow.
In the meantime, other robots may execute their look step. Seeing the central
robot “on its way” to the target point, they start moving towards its temporary
location and not towards its final destination. Thus the trajectory of the other
robots will in general be a polygonal convex line whose final segment will be
towards the final destination of the central robot. This final destination does
not need to be the initially calculated point at distance 1 from line L because
one of the other robots may hit the central one on its way to this point, thus
stopping it for good. The crucial observation is that, due to the initial choice
of distance 1 from line L, the triangle formed by the robots will have one angle
(at the central robot) at least 120◦. Thus, while the central robot still executes
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the third clause of the algorithm (perpendicular departing from line L), the two
other robots may already execute the second clause (going towards the robot
at the large angle). Since the robot at the large angle is always the central one,
other robots eventually hit it and the algorithm stops.

4 Gathering Four Robots

4.1 Overview of the Algorithm

The rest of the paper is devoted to the design and analysis of a gathering algo-
rithm for four robots. As we will see, this task is incomparably more complicated
than for three robots, and the algorithm is accordingly more complex. Thus it
would not be convenient to present it at a low level, indicating which target
point is computed for which configuration (as we did in the simple case of three
robots). Instead, we identify nine situations which form a partition of all pos-
sible positions in which robots can be. These situations are not configurations
seen by the robots because in some cases some robots do not have full visibility.
However, for each situation, we indicate what a robot should do depending on
what it sees. More precisely, for each situation we describe a procedure treating
this situation. In most cases, the procedure applied in a given situation brings
robots to the same situation (in a different position of the robots, monotoni-
cally approaching a specific configuration), until some condition is met, defining
a new situation. Hence, most often, all robots execute the same procedure in
any moment of the algorithm execution. There are, however, a few important
exceptions from this rule, when some robots still execute a procedure treating
situation A, while other robots already treat situation B because they have seen
robots executing procedure treating situation A, on their way to a target, and
perceived the configuration as already satisfying conditions of situation B. This
complication, due to the asynchrony of the process, could be already seen for
three robots, when one robot was still in the process of departing from a line
(situation A) and the other robots (already seeing a triangle) perceived the sit-
uation as B. In the case of four robots, a lot of care will be needed in the design
of the algorithm, to guarantee that these seemingly incoherent actions do not
prevent robots from finally gathering.

The idea of the algorithm is the following. Intuitively speaking, two most
general situations are: all robots form a convex quadrilateral, or three robots
form a triangle with the fourth robot inside it. In the latter case, the idea is to
gather robots forming the triangle around the internal robot. The correspond-
ing procedure makes the internal robot wait, while the robots at the vertices
of the triangle move towards the internal robot until they meet it. However,
because of the fatness of the robots, external robots may not succeed in becom-
ing tangent to the internal one, unless the angles between the trajectories of
the external robots are large enough. Some special preparation is then neces-
sary. In the case of quadrilateral configuration, robots move along diagonals of
the quadrilateral until they form a rectangle consisting of two symmetric pairs
tangent to the same line L and tangent to the other robot in the pair. (For some
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angles between diagonals and some positions of robots this may be complicated
by mutual obstructions of robots on their way.) In the special case of perpendic-
ular diagonals, gathering is already achieved. In other cases, however, the two
pairs are far apart and they must approach each other by “sliding” along line L.
Hence there is a situation sliding and a procedure to treat it. The task is further
complicated by the fact that the initial position of the robots may prevent full
visibility. Such is the case, for example when three or all four robots are aligned,
or two robots prevent visibility of the other two (the corresponding situations are
three aligned, four aligned and partial visibility). In the case of the four aligned
situation, the external robots wait and the internal robots move perpendicularly
to the line of their alignment. However, because of symmetry, it is impossible to
predict in which of the two possible directions the robots that are to move will
decide to go. Moreover, in the case when the two internal robots decide to go in
the same direction, in view of asynchronicity the robots could reach a quadrilat-
eral or triangle configuration in uncontrollable way. This nondeterminism made
us introduce for this case an intermediate situation leaving line. Finally, a special
situation, occurring at the end of the gathering process is when two robots are
very close to each other and two others try to “lock” the position by touching
them from both sides. This is the locking situation.

The most difficult problem in the design of the algorithm is to prevent robots
from “unexpectedly” transiting to a situation B while treating situation A. Sup-
pose that when treating the situation quadrilateral robots momentarily enter in
situation sliding. Then a robot that performs the look step at this point, starts
treating situation sliding and the other robots keep treating situation quadri-
lateral. This can potentially lead to complete disintegration of the process. In
order to synchronize the behavior of the robots, we will attempt to define some
specific positions, at which the moving robots must stop. Arriving at such posi-
tions, the moving robots may change the procedure they perform or even their
function (i.e. whether they move or wait immobile). However, to design such
synchronizing positions is not always possible and sometimes a robot may still
perform a procedure corresponding to some situation while other robots may
already recognize a subsequent situation. Such events, when they happen, will
be carefully monitored and the movement of the robots momentarily performing
different procedures will be coordinated.

4.2 Description of Situations

We define the following 9 situations.

1. gathering
– robots form a connected configuration
– there is full visibility

2. four aligned
– centers of all four robots belong to the same line

3. partial visibility
– robots form a convex quadrilateral
– two robots collectively obstruct visibility of two other robots
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4. locking
– no partial visibility situation
– robots form a convex quadrilateral
– one of the diagonals has length d ≤

√
8

5. leaving line
– no situation 2-4
– there are two robots A and D (we call them external) and we suppose,

without loss of generality, that segment P , joining the centers of external
robots is horizontal.

– each other robot B and C (the two robots B and C are called internal)
intersects the convex hull of A and D

– The distance of each external robot from the vertical projection on P of
the center of each internal robot equals at least 2

– the following positions are excluded: (1) each internal robot has exactly
one point in common with the convex hull of external robots and (2)
segments AD and BC are perpendicular.

Observe that if four robots are in leaving line situation the distance d between
the external robots is strictly greater than the distance of any other pair of
robots.

6. three aligned
– no four aligned or leaving line situation
– centers of some three robots belong to the same line

7. sliding
– no locking situation
– the bounding circles of the four robots are tangent to a line s (called

sliding line)
– there are two pairs of robots A, B and C, D, such that in each pair,

robots (called partners) are separated by the line s, and in each pair the
distance of their tangency points with s is at most 1/3

In this situation there is full visibility.
8. quadrilateral

– no situation 2-7
– robots form a convex quadrilateral

In this situation there is full visibility.
9. triangle

– no leaving line situation
– the center of one of the robots (called the internal robot) belongs to

the interior of the triangle formed by the centers of the remaining three
robots (called the external robots)

In this situation there is full visibility. The three angles ∠APB, ∠BPC,
∠CPA, where P is the internal robot, are called internal angles.
Moreover, in each situation 2-9 the conditions of the gathering situation do
not occur, as all robots are to wait when the gathering is accomplished.

Lemma 1. Situations 1 – 9 form a partition of all possible positions of robots.
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Proof. It is easy to check that each situation excludes the conditions of all
smaller-numbered situations, either by definition or by exclusiveness of the con-
ditions. Hence situations are disjoint. On the other hand, in any possible config-
uration either at least three robots are aligned, or the convex hull of the robots
forms a triangle or a quadrilateral. Hence, each configuration is classified into
one of the situations three aligned, quadrilateral or triangle, unless it has been
classified into some smaller-numbered situation. Thus each configuration must
belong to some of the situations 1 – 9.

4.3 Description and Correctness of the Algorithm

The algorithm consists of eight procedures, treating each of the situations 2 – 9,
and can be shortly formulated as follows

Algorithm FourRobots
loop

i := current situation;
if i > 1 then treat situation i;

else STOP;
end-loop

In Figure 1 we show a diagram of all possible transitions between situations.
An arrow from situation i to situation j means that procedure treat situation
i may lead to situation j. Notice that the diagram in Figure 1 is an acyclic graph
with a single sink in node gathering.

triangle

gathering

locking

 four
aligned

partial
visib.

leaving
  line

quadri−
lateral

 three
aligned

sliding

Fig. 1. Diagram of transitions between situations. Circles depict situations 1 – 9 and
arrows depict possible transitions between them.

The proof of correctness of Algorithm Four Robots is done by showing that
each procedure treat situation i ends after a finite number of cycles arriv-
ing at a new situation according to some outgoing arc from Figure 1. Due to
lack of space we present only two of these procedures: treat four aligned
and treat triangle. The remaining procedures and a detailed proof of cor-
rectness of Algorithm Four Robots will appear in a full version of this paper.
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Situation four aligned is the only one which is quit instantaneously, i.e. as soon
as the first robot starts moving. Hence, during this movement, while some ro-
bots may perform procedure treat four aligned other robots may already
recognize some further situation and they act accordingly. We suppose, without
loss of generality, that the line containing the centers of four robots is horizontal.
In this situation we can identify two external robots, each one seeing only one
other robot and two internal robots, each of them seeing two other robots. The
procedure treat four aligned keeps external robots immobile, while each
internal robot moves vertically by a small distance called a notch. By symmetry
and because of asynchronicity we cannot say whether each internal robot decides
to move up or down. The value of notch is defined in such a way that, in case
internal robots decide to move in opposite directions, the full visibility is never
achieved during this movement. Moreover, during the movement, the distance
between the internal robots will never be equal to

√
8. We have the following

geometric lemma.

Lemma 2. Suppose that the four robots are aligned at line l. Then there exists
a function f : R+ × R+ −→ R+ such that, if each internal robot that sees two
neighbor robots at distances x and y, moves perpendicularly to the line joining
all centers, at distance at most f(x, y) from this line, and both internal robots
move on different sides of this line then during this movement

1. full visibility of external robots is never obtained, regardless of the initial
positions of the robots

2. the distance of the two internal robots never equals
√

8 during the movement

Proof. Suppose that four robots A, B, C and D appear in this order on a horizon-
tal line l. Let xB and yB denote the distances of the internal robot B to the two
other robots visible by B. Similarly we define xC and yC for the internal robot
C. Let dB = max(xB , yB) and dC = max(xC , yC). We prove first that if robot B
moves vertically by the distance g(xB, yB) = 4/

√
d2

B + 8dB + 4, while robot C

moves in the opposite direction by the distance g(xC , yC) = 4/
√

d2
C + 8dC + 4,

the full visibility is never achieved. The external robots would obtain full visibil-
ity at the earliest opportunity if they were touching internal robots, i.e. xB = 2
and yB = 2. In other words, if we prove that our values for g(x, y) are work-
ing for this case, they will work for any other configuration. Suppose then, that
|AB| = |CD| = 2 and |BC| = d. Suppose that B moves downwards and C
moves upwards by the same distance. Consider the critical moment when the
full visibility is being obtained. It corresponds to the situation when B and C
are becoming tangent to the line l′, which is the separating tangent of A and B
having negative slope −α. Note that sin α = 2/d+4 and tan α = x/2, where x is
the distance of each of the internal robots from line l. By solving these equations
we obtain x = 4/

√
d2 + 8d + 4.

Let eB = min+(
√

8−xB ,
√

8−yB, +∞), where min+(
√

8−xB,
√

8−yB, +∞)
denotes the smallest positive value among

√
8 − xB ,

√
8 − yB and +∞. Sim-

ilarly eC = min+(
√

8 − xC ,
√

8 − yC , +∞). We prove, that if the internal
robots go vertically in different directions, each one traversing the distance
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h(x, y) = 1/4
√

e(4
√

2− e), the distance between the internal robots can never
be equal to

√
8. Note that, if the original distance of B from C is larger or

equal to
√

8, since the robots move in the opposite directions, this distance in-
creases and the second claim of the lemma is obviously true. Suppose now that
e = eB = eC =

√
8− xB =

√
8− yC , i.e. the value of

√
8− e equals the distance

between B and C. If each internal robot traverses equal length, starting from
their original positions, their distance achieves

√
8 when each of them traverses a

vertical segment of length 1/2
√

e(4
√

2− e). Since h(x, y) equals half that value,
the distance of

√
8 between the internal robots will never be reached. If the orig-

inal distance of the internal robots is smaller than
√

8− eB and/or
√

8− eC the
second claim of the lemma is verified even more so.

By setting f(x, y) = min(g(x, y), h(x, y)) we assure that both claims of the
lemma are verified at the same time.

Call the distance obtained for an internal robot in Lemma 2, the notch of this
robot.

Procedure treat four aligned;

– the external robots do not move
– each internal robot moves by a notch

Lemma 3. In a final number of cycles the procedure treat four aligned
brings a set of four robots into one of the situations: leaving line, locking or
partial visibility.

Proof. If both internal robots move vertically in the same direction or if only
one of them moves, the leaving line conditions are immediately met. Suppose
then that the internal robots move simultaneously in the opposite directions.
If their original distance was less than

√
8, by lemma 2 and by the continuity

argument they stay at distance less than
√

8 through this movement. The locking
situation is reached. If the original distance of the internal robots was greater
or equal to

√
8 and they start moving in the opposite directions, the partial

visibility situation is achieved. Note that, since the leaving line situation is quit
instantaneously, as soon as any robot starts moving, the other robots recognize
already the subsequent situation, while the first robot still completes its residual
movement of the procedure treat four aligned. As it will be seen later, this
residual movement is consistent with the behavior of this robot in the subsequent
situation.

We now introduce the procedure treat triangle. The goal of this procedure
is to achieve gathering in a finite number of cycles while remaining in triangle
situation throughout the execution of the procedure. Some care must be taken
in order not to inadvertently achieve the situation leaving line in which a robot
may also be centered inside the convex hull of the other three robots.
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Procedure treat triangle;

1 if all internal angles are equal 120◦ then internal robot waits and each
external robot moves towards the internal robot

2 else
2.1 if the triangle formed by the external robots has a unique longest

side (call it AB) then the third external robot C moves perpendicu-
larly to AB until some other pair of robots, say A, C are at distance
|AB|

2.2 else [the triangle formed by the external robots has two longest
sides AB and AC]

2.2.1 robot C moves perpendicularly to line AB until it is at distance
|AB|

√
3/6 + 2 from line AB or further

2.2.2 all external robots wait and internal robot D moves to the point
of triangle ABC for which all internal angles become equal 120◦

Remarks. Note that the height |AB|
√

3/6 + 2 in the isosceles triangle ABC
is the smallest one permitting the internal robot D to reach the point of equal
internal angles of 120◦.

Lemma 4. In a final number of cycles the procedure treat triangle ends up
in gathering.

Proof. Since throughout this procedure the internal robot D remains in the
interior of triangle ABC, the only other situation which may "unexpectedly"
arise is leaving line.

If all internal angles are equal to 120◦ the robots perform step [1]. Since
throughout this step the internal angles stay the same, and each external robot
remains outside the convex hull of the other two external robots, the leaving line
condition will never come up. This step finishes in gathering. To achieve equal
internal angles the internal robot moves to a special, unique point of the triangle
ABC in step [2.2.2]. Since the triangle ABC remains isosceles with two longer
sides equal, the condition of leaving line will not arise. In order that D can reach
a point of equal interior angles, a preparation is made in steps [2.1] and [2.2.1].
In step [2.1] one of the external robots moves so that the triangle ABC becomes
isosceles. Note that the moving robot is going along the line perpendicular to the
longest side of the triangle so the leaving line condition will not come forth. In
step [2.2.1] the moving external robot C converts the original isosceles triangle
ABC into another isosceles triangle which admits the internal point of equal
internal angles. It is easy to see that a triangle admits such a point if all triangle
angles are smaller than 120◦, i.e. in the case of isosceles triangle ABC the height
CX must be greater than |AB|

√
3/6. In our case of fat robots, a constant of

2 has to be added so that robots C and D will not overlap. Since during step
[2.2.1] the triangle ABC remains isosceles with maximal sides equal, the leaving
line condition is prevented.

Theorem 2. Algorithm FourRobots is a correct gathering algorithm for four
robots.
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Proof. Consider any initial configuration of four robots. By Lemma 1, this con-
figuration corresponds to a unique situation (a node of the diagram from Figure
1). By a corresponding lemma, in a finite number of cycles this node will be left
according to one of the outgoing arcs. It is also easy to observe, that a deadlock
is never possible, since in any configuration at least one robot was programmed
to make a move. By acyclicity of the diagram the sink node (gathering) must be
eventually reached.

5 Conclusion

We presented gathering algorithms for three or four robots represented as unit
discs in the plane, in a realistic model featuring visibility and move constraints
due to the non-zero size of the robots, and at the same time keeping the whole
generality of the asynchronous look-compute-move paradigm from [9]. The nat-
ural problem of generalizing our algorithm to the case of an arbitrary finite
number of robots remains open. Another related problem is to obtain full visi-
bility among an arbitrary finite set of robots. As we have seen in the case of four
robots, achieving full visibility may be a natural first step towards gathering.
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Abstract. We present a secure routing protocol that is immune to Sybil
attacks, and that can tolerate initial collusion of Byzantine routers, or
runtime collusion of non-adjacent Byzantine routers in the absence of
collusion between adjacent routers. For these settings, the calculated
distance from a destination to a node is not smaller than the actual
shortest distance from the destination to the node. The protocol can
also tolerate initial collusion of Byzantine routers and runtime collusion
of adjacent Byzantine routers but in the absence of runtime collusion
between non-adjacent routers. For this setting, there is a bound on how
short the calculated distance is compared to the actual shortest distance.
The protocol makes very weak timing assumptions and requires synchro-
nization only between neighbors or second neighbors. We propose to use
this protocol for secure localization of routers using hop-count distances,
which can be then used as a proof of identity of nodes.

1 Introduction

In peer-to-peer networks, physical entities (or hosts) communicate with each
other using pseudonyms or logical identities. Logical identities are assumed by
software processes that execute on the hosts to provide or request services from
other hosts. To the outside world, a host is identified with the software process
that provides the logical functionality. In the absence of direct physical knowl-
edge of a remote host, or certification by a central authority, it is not possible
to tell whether or not two distinct logical identities reside on the same host
(physical entity) and it is possible for one entity to appear in the system under
different names or counterfeit identities. Douceur [4] was the first to thoroughly
study this problem, and he says that an entity launches a Sybil attack when it
appears under different identities. He claims that in the absence of a central
certifying authority, the Sybil attack cannot be solved in practice.

Bazzi and Konjevod [2] proposed the use of geometric techniques to determine
how many identities amongst a group of identities belong to distinct entities and

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 365–379, 2006.
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thereby reducing the harm due to Sybil attack. Their work is based on existing
evidence that roundtrip delays in the Internet exhibit geometric properties [9].
They provided solutions under a variety of adversarial assumptions including
colluding entities and beacons without assuming a central certifying authority
with direct knowledge of entities in the system. While the work of Bazzi and
Konjevod is a significant step forward, it makes some restricting assumptions.
For instance, the results about the geometry of roundtrip delays apply to systems
in which routers are honest and they are not necessarily applicable in systems in
which routers are corrupt. Also, their solutions require accurate measurements
of roundtrip delays and clock synchronizations between routers that can be far
apart physically. This is not always possible given the variability of network load
and delays.1

In this work, our goal is to present a solution to the Sybil attack problem under
the weakest possible system assumptions and in the absence of a central authority
with direct knowledge of entities in the system. Our solution can tolerate stronger
adversarial settings while making weaker system assumptions. In particular, we
assume that routers can be dishonest and we allow for more collusion between
the routers. Also, we require very rough synchronization between non-adjacent
routers (in a sense that we will define precisely later). For some settings, we
require synchronization, but only between adjacent (or almost adjacent) routers,
which means that the synchronization we require is local. Relaxing the synchrony
and synchronization assumptions is a major improvement over the results of [2]
and we believe that it is an improvement that brings the results closer to a
practical setting.

At the heart of our approach is a secure distance vector routing protocol that
can tolerate Byzantine routers, Sybil attack by routers and collusion between
routers. The protocol assumes that there are no shared keys between any two
nodes, and that only the destination’s public key is known a priori by nodes in
the network. Under the assumption of no collusion between corrupt nodes, a first
version of the protocol guarantees that no node can have a calculated hop-count
distance, or simply distance, to destination that is shorter than its real or actual
shortest hop-count distance to destination. In the presence of initial collusion,
in which corrupt nodes can share information initially, but not afterwards, the
second version of protocol guarantees that no honest router can have a calculated
hop-count distance to destination that is shorter than its real or actual shortest
hop-count distance to destination. In the presence of initial collusion between
any two nodes and runtime collusion between adjacent corrupt nodes, in which
corrupt nodes can communicate with each other at any time, the second protocol
guarantees the following: for any path P from destination to an honest node u,
the calculated hop-count distance of node u is not less than the number of honest
nodes on P plus the number of corrupt components of P (a corrupt component is
a maximal subpath that contains corrupt nodes). In other words, every sequence
of adjacent corrupt nodes on a path can appear to be one node. In the presence

1 In their work, they propose approaches to handle inaccuracies, but these approaches
are incomplete.
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of remote collusion between nodes and if there are no colluding adjacent nodes,
then a further modification guarantees that the hop-count distance calculated
by an honest node is not shorter than the shortest distance from destination to
the node. The protocol has two basic components. The first is a practical and
simple protocol that enables a node to determine if another node is its physical
neighbor. The second is a novel use of key chains, which we call hop-chains, that
enable the destination to certify remotely its distance to nodes in the network.
To tolerate initial collusion, we introduce mistrust hop-chains to prevent nodes
from cheating by initially agreeing on keys. This secure routing protocol we
present is a significant contribution on its own. The protocol is more secure and
requires less assumptions than other secure routing protocols in the literature
(see Section 9).

Our solution to the Sybil attack problem proposes to use the secure routing
protocol in order to come up with a secure localization protocol for networks in
which hop-count distances from a number of beacons (or anchor points) can be
used to localize nodes. This is along the lines of the approach of [2], but replacing
roundtrip delays with hop-count distance.

2 Identities and Public Keys

In our model, only the destination has a public key that needs to be known by all
other nodes. Other nodes need to have identities that cannot be forged by faulty
nodes. This can be achieved by having each node randomly choose its own public
key and corresponding private key. We assume that the keys are large enough so
that corrupt nodes can with negligible probability guess or generate keys identical
to those of honest nodes. Also, correct honest nodes generate different keys with
high probability. This guarantees that with high probability nodes cannot forge
messages, but does not rule out that corrupt nodes can replay messages.

In our framework, the identity of a node is its public key. For an honest node,
this identity is unique and does not change over time. For a corrupt node, there
can be multiple identities, one for each public key that the node chooses. We
spell out our assumptions about keys in Section 5.

3 Neighbor Computation

The ability of a node to determine whether another node is its neighbor is an
important ingredient for our secure routing protocol. Before we explain how
that determination can be done, we need to precisely define what we mean by
“determining if a node is the neighbor of another node”.

We say that a node is the neighbor of another node if the two nodes can com-
municate directly and not through an intermediate node. In wireless networks,
this requires that the nodes are in each other’s range. In wired networks, this
requires that the nodes either have access to a shared communication link or
share a private link. In our model, nodes are known to other nodes through their
public keys. So, determining whether a node is the neighbor of another node
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reduces to determining if the owner of the private key corresponding to a given
public key is in the neighborhood of the node. What we determine is something
subtly different from the foregoing. We determine if a node with access to the
private key corresponding to a given public key is in the neighborhood of the
node. The distinction is subtle, but important. A node has access to the private
key if it has the private key or it is in collusion with a node that has the pri-
vate key. If there is no collusion other than initial collusion between nodes, then
having access to a key and having a key are the same thing.

3.1 Immediate Neighbors

A first step in neighbor determination is to broadcast a message requesting from
neighbors to provide their public keys. The goal of neighbor determination is to
determine if a neighbor of the node has access to the private key corresponding
to the provided public key.

A naive approach for determining whether a node is the neighbor of another
node is to send a request message and wait for a reply within a short period of
time. The reply should allow for the transmission time, roundtrip delay and any
local computation at the node to encrypt and decrypt messages exchanged to
prevent third parties for interfering with the communication. Unfortunately, the
time for computations can be substantial especially if public key encryption is
involved which makes the approach vulnerable to a man-in-the-middle attack.

A better approach is similar to the one taken by [3] in which communication is
done in the clear to eliminate high processing time. In a first phase, a node sends
a random bit in a message encrypted with the destination’s key. The destination
decrypts the message and recovers the bit. In a second phase, the node broadcasts
a message in the clear to all its neighbors. Upon receipt of the message, the
destination performs XOR on the first bit of the message with the random bit
and resends the message in the clear to the sender. The extra processing time is
minimal. The probability that the destination sends the correct answer without
knowing the random bit is 1/2. This probability can be made arbitrarily small by
repeating the two phases multiple times. A corrupt node B cannot compromise
this scheme by launching a man-in-the-middle attack in a timely manner. But,
a corrupt node B can execute the first phase by colluding with another node
C, which decrypts the first phase message and provides the value of the bit to
B. This way, B can execute the second phase. Thus, this two-phase approach
guarantees that B has access to the private key corresponding to the public key
it sends to A.

3.2 Neighbors of Neighbors

To tolerate runtime collusion between non-adjacent nodes and if there are no
colluding adjacent nodes, our routing protocol requires the ability for a node
to determine if another node is the neighbor of its neighbor. We propose to
use the same approach we propose for determining neighbors to also determine
neighbors of neighbors by allowing more time for the message to be forwarded
to a neighbor of a neighbor and then sent back.
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3.3 Effects of Congestion

If twonodeshaveadedicate linkbetween them, then thedeterminationofneighbors
can be done without interference by other nodes. In a wireless medium, other nodes
can interfere in the communicationby launchingdenial of service attacks.Wedonot
address denial of service attacks in this paper. Our assumption about congestion
is fundamentally different from the assumptions in [2]. In our work, we make the
realistic and practical assumption that two adjacent (immediate neighbors) nodes
can communicate with no congestion for some periods of time, whereas in [2], a
similar assumption is made for nodes that are many hops apart.

3.4 Timing Consideration

In our neighbor computations, we assume that the dominant factor in the delay
is due to transmission and processing, but not propagation delay. The transmis-
sion rate between two adjacent nodes is determined by their hardware and it is
not unreasonable that the nodes can measure time to an accuracy of 1 bit. In
wireless networks, speeds of 100 Mbps can be considered high. At this speed, a
4 KByte frame takes around 0.32 msec. During that time a signal can propagate
up to 96 km which is way beyond the range of node to node transmission in
ad-hoc networks. In wired networks, propagation delay can be substantial for
transatlantic communication, but such communication has to go through known
entities that charge for their services and cannot be part of any ad-hoc network.

4 Distance Vector Routing and Its Vulnerabilities

In a traditional distance vector routing protocol, nodes in a network collaborate
to build a spanning tree whose root is the ultimate destination node d. Initially,
no node u other than d has a parent in the routing tree, and the distance of
node u is infinite. Only the ultimate destination node d is in the routing tree,
and it periodically broadcasts an advertisement message of the form adv(d, 0)
to its neighbors.

When a node u whose current distance is greater than s + 1 receives an
adv(v, s) message, node u makes node v its parent in the tree, and sets its dis-
tance to be s+1. Once node u has a parent in the tree, node u becomes connected
to the tree and starts sending an adv(u, s′) message periodically, where s′ is the
current distance of u. When u stops receiving advertisement messages from its
parent for a certain time period, it stops sending advertisement messages.

A node can cause harm if it drops packets it is supposed to forward2 or if it
reports a false (shorter) distance to destination. Such misbehavior is illustrated in
Figure 1 where the ultimate destination is node (0,0) and node (8,8) misbehaves.
The left side of the figure illustrates the case where node (8,8) drops packets and
the right side illustrates the case where node (8,8) reports a distance of 2 to

2 There are techniques to detect nodes that do not forward messages [1], but in this
paper we do not consider the problem of detecting such nodes.
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Fig. 1. Routing tree when (8,8) does not lie (left) and when (8,8) lies (right)

destination. The black circles illustrate the affected nodes and node (8,8) (in
general, the number of affected nodes depends on the difference between the
reported distance and the real distance). Our goal for a secure distance vector
routing protocol is to prevent corrupt nodes from reporting distances that are
smaller than their actual distances to destination. The proposed secure routing
protocol tolerates strong adversaries. We consider the following failures.

Byzantine failures. Corrupt nodes can behave arbitrarily. In particular, they
can advertise multiple public keys (attempt Sybil attacks) and they can replay
or resend messages received from others.

Initial collusion of nodes. Corrupt nodes that initially collude can share in-
formation before the execution of the protocol, but they cannot communicate
information that they learn during the execution of the protocol. To our knowl-
edge, this model has not been considered by others. It makes sense to consider
it in our setting because nodes are known to others through their public keys.
It is not clear how a node can find or trust another node to collude with. If a
node is corrupted with a virus, for example, then two corrupted nodes share the
common information that the virus carries and therefore they initially collude.

Runtime collusion of adjacent nodes. Even though it is not clear how nodes
can find other nodes to collude with, it makes sense to consider adjacent nodes
that are colluding at runtime. In fact, if two adjacent nodes are initially collud-
ing, they could discover that they have the same keys by communicating with
each other and then decide to collude. Our protocol tolerates run-time collusion
between adjacent nodes (or connected component consisting of corrupt colluding
nodes).

Runtime collusion of non-adjacent nodes. We consider runtime collusion
between non-adjacent nodes, but in the absence of collusion between adjacent
nodes. We assume that non-adjacent corrupt nodes can communicate informa-
tion with each other at any time.

5 Tolerating Non-colluding Byzantine Failures

Every node u in the network creates its own public key(s) (BKu), and corre-
sponding private key(s) (RKu). The public key BKd is known by all nodes.
We denote a message m encrypted with a key BKu with BKu〈m〉. Similarly,
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BKu〈m〉 is the decryption of m using the public key of u, and BKu〈RKu〈m〉〉 =
m. To reduce the size of messages, we assume the existence of a message di-
gest, or one way hash, function MD. The use of MD is not needed for the
correctness of the protocol. If a node receives a message (m, m′) such that
BKu〈m′〉 = BKu〈RKu〈m〉〉, then m′ must have been encrypted by u, which
has RKu. Similarly if a node receives a message (m, m′) such that BKu〈m′〉 =
BKu〈RKu〈MD(m)〉〉, then m′ must have been encrypted by u.

In the protocol, each node u that is connected to the routing tree maintains
a hop-chain that verifies its hop-count distance to destination. The hop-chain
contains a sequence of public keys and a sequence of certificates. The public keys
are supposed to be keys of a sequence of nodes d = u0, u1, . . . , uk = u that form
a path from d to u. The certificates vouch that every node in the sequence is the
neighbor of the next node in the sequence. Finally, a hop-chain has a date dt
that specifies the period of validity of the chain. The date changes infrequently
relative to the communication delays in the network, and it does not require any
tight synchronization between the nodes. A hop-chain has the following format:
〈dt, BKu0 , BKu1 , . . . , BKuk−1 , BKuk

, Cu0 , Cu1 , . . . Cuk−1 , Cuk
〉, where Cu0 =

RKu0〈MD(dt, BKu0)〉, and Cui = RKui−1〈MD(dt, BKui)〉, 0 < i ≤ k.

Definition 1. The length of a hop-chain Hu of a node u, denoted len(Hu), is
the number of certificates in Hu. 3

It is straightforward to see that only a node that has RKu0 can generate Cu0 ,
and only a node that has RKui−1 can generate Cui . We say that a hop chain is
valid if it is of the form 〈dt, K0, K1, . . . , Kk, C0, C1 , . . . , Ck〉 and

– K0 = BKd and BKd〈C0〉 = MD(dt, BKd)
– BKi−1〈Ci〉 = MD(dt, Ki), 0 < i ≤ k.

A node u that receives a hop-chain can locally check its validity. The protocol en-
sures that the owners of successive keys in the sequence are neighbors or the same
node (creating successive bogus nodes). It will follow that the hop-chain length of
node u minus one cannot be less than the shortest distance from u to d.

Initially, no node u other than d has a parent in the routing tree, and the dis-
tance of node u is infinite. Only node d is initially connected to the routing tree.

Each hop-chain contains a date field dt that indicates the date (time) at
which the chain is generated. The root of the routing tree, node d, periodically
updates dt every P seconds. Thus, node d periodically recomputes its chain
〈dt, BKd, RKd〈MD(dt, BKd)〉〉 every P seconds. The period of time P is chosen
to be larger than the delay between nodes in the network.

A node u that is connected to the tree periodically broadcasts an advertise-
ment message to its neighbors every p seconds where p0 P . The advertisement
message of node u has the form adv(BKu, dt, Hu), where dt is the latest date
that u is aware of, and Hu is the latest chain that u has.

When a node u receives an advertisement message, adv(bk, t, h), where bk is a
public key, t is a date, and h is a hop-chain, u ignores the message if t is smaller
3 Note that len(Hu) minus one is equal to the hop-distance from destination to u.
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1: var dt : integer, // date
2: Hu, ph : integer, // current/potential hop-chain
3: ds : 0..dmax+1, // distance, initially dmax+1
4: BKp : integer, // parent’s permanent public key
5: trc : 0..tmax, // time to remain connected
6: wait : boolean, // wait for ack msg or not, init. false
7: pdt, t : integer, // potential and received date
8: h, c : integer, // received hop-chain/certificate
9: bk, bk′ : integer // received keys

Fig. 2. Variables of a node u

than the latest date u is aware of – the message is too old. If the message has
a date that is more recent than the latest date at node u, u verifies that the
message is valid. If the message is valid, u tentatively decides to use the received
hop-chain to calculate its distance to destination. An adv message is valid, if
bk is the public key of a neighbor of u, the date of the message is the same as
the date of the hop-chain h, the hop-chain h is valid, and the last key in the
chain is equal to bk. In the case that the date of the message is the same as
the most recent date u is aware of, if the message is valid, and the length of h
is smaller than the current distance of u to destination, u tentatively decides
to use the received hop-chain to calculate its distance to destination. When a
node u tentatively decides to use the received chain to calculate its distance to
destination, u makes bk its potential parent, assigns h to the potential chain
ph, and assigns t to the potential date pdt. Finally, u sends a reply message to
node bk and waits to receive a certificate from bk – its potential parent. The
reply message is of the form rpl(bk, BKu, t). While node u is waiting to receive
a certificate, u ignores any advertisement messages u receives until u receives a
certificate or u times out. (This is only to keep our code easy to follow.)

There is no loss in ignoring advertisement messages, since advertisement mes-
sages will be sent periodically, and so node u can receive them later.

When a node u that is connected to the routing tree receives a reply mes-
sage rpl(bk, bk′, t), where bk = BKu, and t equals to dt in its own hop-chain,
node u first computes a certificate c = RKu〈MD(dt, bk′)〉, and then u sends an
acknowledgment message ack(bk′, t, c) to node bk′.

When a node u that is waiting to receive a certificate from its potential parent
receives an acknowledgment message ack(bk′, t, c), where bk′ = BKu, and t =
pdt, node u checks the validity of the certificate in the message. The certificate
c is valid if it is encrypted with the corresponding private key of the last key
tpbk in the potential hop-chain ph (the key of its potential parent) and so c =
tpbk〈MD(dt, BKu)〉. If the certificate in the message is valid, u makes node tpbk
its parent in the routing tree and updates its distance to destination. Finally,
u computes its (new) hop-chain by adding BKu and c to the hop-chain of its
parent, ph.

When a node u has a parent and does not receive any valid advertisement
message from its parent for a time period of tmax× p seconds, u concludes that
it is not connected to its parent anymore. Thus, u disconnects from the tree by
making its distance infinite, and stops sending advertisement messages.
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After node u sends a reply message to its potential parent v, u starts a timer
and times out after w seconds, at which time u no longer considers v as its
potential parent. The value of w is chosen to be large enough to accommo-
date roundtrip delay to a neighbor including time for public key encryption and
decryption. The protocol variables and specification of a node u are given in
Figures 2 and 3. We state without proof the properties of the protocol.

Lemma 1 (len(hop-chain) ≥ len(shortest path)). For every honest node
u, len(Hu) ≥ len(S), where S is the shortest path from node d to node u and
len(S) is the number of nodes in path S.

Lemma 2 (len(hop-chain) ≤ len(good path)). For every honest node u, if
there exists a “good” path G from node d to node u such that each node in the
path is honest, then eventually len(Hu) ≤ len(G) holds.

6 Tolerating Initial Collusion

The protocol of the previous section is vulnerable to initial collusion. Consider
two nodes u and v that share the public and private keys BKu and RKu. Assume
that v is a farther node from the destination. Since v has u’s keys, the neighbors
of v will consider the owner of the private key RKu to be their neighbor. If at
some point, node v receives an advertisement message with a chain that contains
the public key of u, v can cut the chain, only keep the portion of the chain that is
identical to u’s chain, and present that portion to its neighbors. Node v can then
advertise u’s chain to its neighbor, and the neighbors of v will find the received
chain to be valid, in effect v manages to claim a distance to destination that is
shorter than its actual distance to destination.

The reason for the success of this attack is that a node is certified based only
on the initial information of the node, and initially colluding nodes share all their
initial information. To get around this difficulty, we need to certify nodes based
on information that they do not have initially. This can be achieved by having
a parent in the routing tree create public/private key pairs for its children.

These temporary keys will be used alongside the permanent keys of a node.
We say that they are temporary because their values depend on the identity of
the parent of a node at a given time. For a node u, we denote these keys with
TBKu and TRKu. For the destination node d, we really need no temporary
keys, but we introduce them to make the protocol more uniform.

In the modified protocol, nodes use temporary keys and permanent keys to
check the validity of a certificate and therefore of a chain. The mistrust hop-
chain of a node has the format: 〈dt, (BKu0 , TBKu0), . . . , (BKuk

, TBKuk
), Cu0 ,

Cu1 , . . . , Cuk−1 , Cuk
〉, where Cu0 = RKu0〈TRKu0〈MD(dt, BKu0 , TBKu0)〉〉,

and Cui = RKui−1〈TRKui−1〈MD(dt, BKui , TBKui)〉〉, 0 < i ≤ k.
It is straightforward to see that only a node that has RKu0 and TRKu0 can

generate Cu0 , and only a node that has RKui−1 and TRKui−1 can generate Cui .
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1: timeout DATE expires → // d periodically updates date
2: if (u = d) then
3: dt := UPDATE DT;
4: Hu := 〈dt, BKu, RKu〈MD(dt, BKu)〉〉;
5: timeout DATE after P

6: [] timeout ADV expires → // u periodically sends advertisement
7: if (u = d) then
8: send adv(BKu, dt, Hu);
9: timeout ADV after p
10: elseif (u �= d) then
11: trc := MAX(trc − 1, 0);
12: if (trc > 0) then
13: send adv(BKu, dt, Hu);
14: timeout ADV after p
15: elseif (trc = 0) then
16: ds := dmax+1

17: [] timeout RPL expires→ // no longer wait for ack from potential parent
18: wait := false

19: [] rcv adv(bk, t, h) → // if valid adv received from a node closer to d
20: // update potential parent and reply to sender
21: if ¬wait ∧ (t > dt ∨ (t = dt ∧ len(h) < ds))

∧ valid(adv(bk, t, h)) then
22: pdt := t; ph := h;
23: wait := true;
24: send rpl(bk, BKu, t) to bk;
25: timeout RPL after w
26: // if valid advertisement received from parent
27: // stay connected for a longer period
28: if ((trc > 0) ∧ (bk = BKp) ∧ (len(h) = ds)

∧ valid(adv(bk, t, h))) then
29: trc := tmax

30: [] rcv rpl(bk, bk′, t) → // if valid reply received from a node
31: // compute a certificate and send it to sender
32: if ((BKu = bk) ∧ (t = dt) ∧ (trc > 0) then
33: send ack(bk′, dt, RKu〈MD(dt, bk′)〉) to bk′

34: [] rcv ack(bk, t, c) → // if valid ack received from potential parent
35: // update its parent, distance, chain, and send adv
36: if wait ∧ (BKu = bk) ∧ (pdt = t)

∧ valid(ack(bk, t, c)) then
37: dt := pdt;
38: Hu := COMP CERT(ph, c);
39: ds := len(ph);
40: BKp := GET BKP(ph);
41: wait := false;
42: trc := tmax;
43: send adv(BKu, dt, Hu);
44: timeout ADV after p

Fig. 3. A specification of a node u

We say that a mistrust hop-chain is valid if the chain is of the form 〈dt,
(K0, T0), (K1, T1), . . . , (Kk, Tk), C0, C1 , . . . , Ck〉 and

– K0 = BKd and TBKd〈BKd〈C0〉〉 = MD(dt, K0, T0)
– TBKi−1〈BKi−1〈Ci〉〉 = MD(dt, Ki, Ti), 0 < i ≤ k.

Using permanent and temporary keys, the protocol ensures that the owner of
every pair of permanent and temporary public keys in the sequence encrypted
the certificate of the owner of the next pair of public keys in the sequence. Thus,
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1: [] rcv rpl(bk, bk′, t) → // if valid reply received from a node
2: // choose temp. keys and send a cert. to sender
3: if ((BKu = bk) ∧ (t = dt) ∧ (trc > 0) then
4: (tcbk, tcrk) := GEN KEYS;
5: send ack((bk′, tcbk), dt, bk′〈tcrk〉,

RKu〈TRKu〈MD(dt, bk′, tcbk)〉〉) to bk′

6: [] rcv ack(bk, bk′, t, r, c) → // if valid ack received from potential parent
7: // update its parent, distance, chain, and send adv
8: if wait ∧ (BKu = bk) ∧ (pdt = t)∧

valid(ack(bk, bk′, t, r, c)) then
9: dt := pdt;
10: TBKu := bk′; TRKu := RKu〈r〉;
11: Hu := COMP CERT(ph, c);
12: ds := len(ph);
13: BKp := GET BKP(ph);
14: wait := false;
15: trc := tmax;
16: send adv(BKu, dt, Hu);
17: timeout ADV after p

Fig. 4. rpl and ack processing to handle initial collusion

a corrupt node u that initially colludes with another node v closer to destination
cannot use the hop-chain of v, since u has no access to the temporary private
key of v.

In the modified protocol, rpl and ack processing is modified as in Figure 4.
When a node u that is connected to the routing tree receives a reply message
rpl(bk, bk′, t), where bk = BKu, and t equals to dt in its own hop-chain, node
u randomly chooses temporary public/private key pair (tcbk, tcrk) for node bk′.
Node u then computes a certificate c = RKu〈TRKu〈MD(dt, bk′, tcbk)〉, and
also computes an encrypted temporary private key r = bk′〈tcrk〉. Finally, node
u sends an acknowledgment message ack((bk′, tcbk), t, r, c) to node bk′.

When a node u that is waiting to receive a certificate from its potential parent
receives an acknowledgment message ack((bk′, bk′′), t, r, c), where bk′ = BKu,
and t = pdt, node u first checks the validity of the certificate in the message.
The certificate c is valid if it is encrypted with the corresponding permanent and
temporary private keys of the last key pair (pbk, tpbk) in the potential chain ph
(the key of its potential parent) and so tpbk〈pbk〈c〉〉 = MD(t, BKu, bk′′). If the
ack message is valid, u makes node pbk its parent in the routing tree and updates
its distance to destination. Finally, u computes its temporary public and private
keys, TBKu and TRKu by assigning bk′′ to TBKu, and RKu〈r〉 to TRKu, and
then computes its (new) hop-chain by adding (BKu, TBKu) and c to the hop
chain of its parent, ph. We state without proof the properties of the protocol.

Lemma 3 (Initial collusion: len(hop-chain) ≥ len(shortest path)). For
every honest node u, len(Hu) ≥ len(S), where S is the shortest path from node
d to node u.
Lemma 4 (Initial collusion + Collusion of adjacent nodes). For every
honest node u, if there exists a path P from node d to node u, then len(Hu) ≥
len(P )− (|cor(P )| − |cor comp(P )|), where cor(P ) is the set of corrupt nodes
in P and cor comp(P ) is the set of maximal connected components of P whose
elements are all corrupt.
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7 Tolerating Runtime Collusion of Non-adjacent Nodes

The protocol in the previous section will not work if two colluding nodes can
share both their permanent as well as their temporary keys provided by the
parent of a node. In order to tolerate runtime collusion of non-adjacent nodes,
we make the parent of a node u keep the temporary private key of node u.
However, implementing this idea is not straightforward. Consider the following
modification. The hop-chain format does not change, except that the temporary
private key of u is kept at the parent of u. The rpl message sent by u contains
a nonce that the potential parent v of u should forward to its parent to encrypt
with the temporary private key of v. When v receives this rpl message, v forwards
the nonce to its parent (the potential grandparent of u). Later when v receives
the encrypted nonce from its parent, v forwards it to u. Clearly, this will not
work because two non-adjacent colluding nodes v and v′ can cheat as follows. The
farther node v forwards the nonce sent by u to node v′ closer to destination, and
in turn v′ forwards it to its parent. When the parent of v′ sends the encrypted
nonce to v′, v′ forwards it to v that forwards it to u.

In the above modification, we need to ensure that the parent of v, the grand-
parent of u, is a neighbor of v. Thus, we need to run the neighbor of neighbor
determination protocol described in Section 3 for the owner of the temporary
private key of v, which should be a neighbor of a neighbor of u.

The protocol is modified as follows. First, an ack message sent from u to v
does not contain the temporary private key of v generated by u. Second, when
u receives an adv(bk, t, h) message, u needs to check that the owner of the last
temporary private key in the chain is a neighbor of a neighbor of u, as well as
the validity of the received hop-chain.

Lemma 5 (Collusion: len(hop-chain) ≥ len(shortest path)). For every
honest node u, len(Hu) ≥ len(S), where S is the shortest path from node d to
node u.

8 Preventing and Mitigating the Sybil Attack

We say that a solution prevents Sybil attacks if no entity can successfully pretend
to have more than one identity. We say that a solution mitigates Sybil attacks
if the solution limits the number of identities that an entity can have. This is
done under the assumption that nodes have vast resources, but we assume that
corrupt nodes cannot break the public key encryption scheme in use. In the
following sections, we show how the routing protocol can be used to mitigate or
prevent Sybil attacks under various assumptions about the network. We start
by considering restricted settings, and then we consider a general network.

8.1 Sybil Attack in an Immediate Neighborhood

In the simplest setting, we are interested in determining if two identities that
are the immediate neighbors of a node reside on distinct nodes. If the nodes
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are connected with physical links, then it is easy to distinguish nodes because
identities that appear on the same link can be considered to be identical. In this
case, the number of physical links determines the number of neighbors.

If the nodes are connected through a wireless link, then the situation is similar
to the situation described in Douceur’s work [4]. Roundtrip delays cannot be used
to differentiate two nodes and it seems that the only way to distinguish nodes is
through an approach similar to that of Douceur [4], namely requiring the node
to prove that it has the resources of multiple nodes.

8.2 Sybil Attack in a Line

In this section, we consider a number of nodes connected in a line. This case
is the basis for our treatment of Sybil attacks in general networks. We only
consider how to detect multiple identities that correspond to the same entity or
how to detect that a number of identities above some threshold correspond to
the same entity. We are not concerned with a corrupt node that drops messages
from nodes on its two sides thereby disconnecting them. The result of the section
will be to determine conditions under which corrupt node can successfully launch
Sybil attack in a line. We only describe the approach for the case of initial
collusion and collusion between adjacent nodes.

Initial collusion. Consider a sequence of nodes A = A0, A1, . . . , An = B. These
nodes are such that the actual distance from A to Ai is equal to i. Also, the
minimum distance from Ai to B is n− i. We assume that A and B are honest,
the distance between A and B is n, and their public keys are known by all nodes
in the line. Nodes A and B are beacons used to locate nodes in the line. Finally,
we assume that only initial collusion exists in the network.

Under these assumptions, by Lemma 3, it follows that the length of a hop-
chain from beacon A to Ai, lenA(HAi) is greater than or equal to i. Similarly, the
length of a hop-chain from beacon B to Ai, lenB(HAi) ≥ n− i. If there are no
corrupt nodes, then lenA(HAi) + lenB(HAi) = n. It follows that a corrupt node
cannot insert any bogus nodes on a hop-chain without being detected because
adding bogus nodes will make the sum greater than n.

If the distance between A and B is not known, and only a lower bound nlow

and an upper bound nhigh on the distance are known, any node Ai such that
lenA(HAi) + lenB(HAi) ≤ nhigh would be accepted. If the actual distance be-
tween A and B is nlow, then a corrupt node can insert up to nhigh−nlow bogus
nodes without being detected. The corrupt nodes as a group cannot insert more
than nhigh − nlow bogus nodes (identities) without being detected. Since nodes
are colluding only initially, this should also create a dilemma as to which nodes
should be the ones to insert the bogus identities.

Initial collusion and collusion of adjacent nodes. Consider adjacent col-
luding nodes. In this case, using the protocol of Section 6, the nodes can shrink
the path, but only by the number of corrupt nodes minus the number of cor-
rupt components. This will not affect the above results, because the number of
identities that can be created by corrupt nodes would still be nhigh − nlow. The
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disappeared corrupt nodes can be replaced by other corrupt nodes that appear
elsewhere on the line, but the corrupt nodes cannot add more bogus identities
than nhigh − nlow.

We summarize the results of these sections with the following lemma.

Lemma 6. On a line, the number of new identities that can be added is not
more than nhigh − nlow, where nhigh and nlow are upper and lower bounds on
the hop-count distance between the end nodes assumed honest.

8.3 Sybil Attack in a Network

In a general network, under the assumption of no collusion between adjacent
nodes, the path from a beacon node to any node cannot be made shorter than
it really is. Also, the length of a path from a beacon to any node is not more
than the length of the shortest good path. If the network has enough redundant
paths, then the distances between nodes are not affected by corrupt routers. In
this case, we propose to use hop-count distances of a node from a number of
beacons as the identity of the node. There is already a good amount of work on
hop-count based coordinates (see [5] for example), and it is not our goal in this
paper to study this topic. We simply propose to use our secure routing protocol
in conjunction with hop-count based coordinates in order to assign identities to
nodes. If the number of corrupt nodes is not large, then corrupt nodes cannot
practically affect changes in the location of other nodes.

9 Secure Routing Related Work

Secure distance vector routing protocols have been proposed by many researcher
[11,10,12,6,7]. Existing protocols are based on assumptions that are stronger than
the ones we make. The protocol proposed in [11] uses a set of the intrusion de-
tection sensors to detect routing attacks, and requires knowledge of the network
topology and sensor positions. SEAD [6] does not prevent corrupt nodes from re-
plying advertisement messages, and does not consider colluded attackers. In [7],
nodes are assigned to unique identifiers (by a central authority), the destination
knows all these identifiers, and the clocks of all nodes are tightly synchronized
(to use [8]). RIP-RT [10] assumes that corrupt nodes cannot modify the value of
the time-to-live field in a probing message and that any two nodes share a key.
Moreover, this protocol assumes that each node knows the identifiers of adja-
cent nodes. The problem of detecting misbehaving nodes was considered in [1],
which also proposes an on-demand secure routing protocol. Our routing protocol
focuses on reducing harm caused by corrupt nodes that lie their distances, and
does not consider to detect such nodes.
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Abstract. We study the partially eponymous model of distributed com-
putation, which simultaneously generalizes the anonymous and the epony-
mous models. In this model, processors have identities, which are neither
necessarily all identical, nor necessarily unique; processors receive inputs
and must reach outputs that respect a relation. We focus on the partially
eponymous ring R, and we are interested in the computation of circularly
symmetric relations on it.

• We distinguish between solvability and computability: in solvability,
processors must always reach outputs that respect the relation; in com-
putability, they must reach outputs that respect the relation whenever
possible, and report impossibility otherwise.
– We provide an efficient characterization of solvability of an arbitrary

(circularly symmetric) relation on an arbitrary set of rings. The
characterization is topological and can be expressed as a number-
theoretic property that can be checked efficiently.

– We present a universal distributed algorithm for computing any ar-
bitrary (circularly symmetric) relation on any set of rings.

• Towards obtaining message complexity bounds, we derive a distributed
algorithm for a natural generalization of Leader Election, in which a (non-
zero) number of leaders are elected. We use this algorithm as a subroutine
of our universal algorithm for collecting views; hence, we prove, as our
main result, an upper bound on the message complexity of this particular
instantiation of our universal algorithm to compute an arbitrary (circu-
larly symmetric) relation on an arbitrary set of rings. The shown upper
bound demonstrates a graceful degradation with the Least Minimum
Base, a parameter indicating the degree of topological compatibility be-
tween the relation and the set of rings. We employ this universal upper
bound to identify two interesting cases where an arbitrary relation can
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be computed with an efficient number of O(|R| · lg |R|) messages: The set
of rings is universal (which allows the solvability of Leader Election), or
logarithmic (where each identity appears at most lg |R| times).

1 Introduction

Motivation and Framework. Two of the best studied models in Distributed
Computing Theory are the eponymous model and the anonymous model. In both
models, processors may receive inputs and must reach outputs that are related
to the inputs according to some (recursive) relation.
• In the eponymous model, processors have unique identities. This availability

enables the computability of all relations: processors first solve Leader Election
[11] to elect a leader among them; then, the leader undertakes computation of
the relation and communicates the solution to the other processors.
• In the anonymous model, processors have identical identities and they run

the same local algorithm. The impossibility of breaking this initial symmetry
retains many relations unsolvable in the anonymous model; the prime example
is the impossibility of solving Leader Election on an anonymous ring [1].

This long-known separation between the eponymous model and the anony-
mous model invites the investigation of an intermediate model, where there are
identities available to the processors, but these are neither necessarily unique,
nor necessarily all identical. Call this intermediate model the partially eponymous
model. We consider a particular case of the partially eponymous model, that of
the (asynchronous) partially eponymous ring R with bidirectional communica-
tion and orientation. Which relations are solvable on the partially eponymous
ring? For which message complexity can an arbitrary relation be computed? (Bit
complexity remains beyond the scope of this work.)

We focus on circularly symmetric relations, the broadest class of relations that
are natural to consider for rings. Roughly speaking, in a circularly symmetric
relation, shifting any output vector for a given input vector must yield a correct
output vector for the correspondingly shifted input vector.

An essential attribute of most previous work on anonymous networks has been
the requirement that the distributed algorithm for a particular relation runs on
all networks and occasionally reports impossibility (exactly, of course, when it is
impossible to return admissible outputs — ones that respect the relation). This
concept will be called computability in this work. An orthogonal viewpoint is to
actually isolate the subclass of networks on which it is always possible to return
admissible outputs, in order to obtain tailored algorithms that are possibly more
efficient (in terms of message complexity) than those running on all networks.
This motivation leads to the concept of solvability: a relation is solvable on a set
of networks if there is a distributed algorithm which, when run on any network
in the set, leads all processors to reach admissible outputs (and never report
impossibility).

Previous Work. Computation on anonymous networks was first studied in the
seminal work of Angluin [1], where the impossibility of solving Leader Election
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was first established. Yamashita and Kameda [12,13] have considered the solv-
ability of several representative distributed computing problems on anonymous
networks and characterized the class of (anonymous) networks on which each
problem is solvable under different assumptions on the network attributes (e.g.,
size, topology, etc.) that are made available to the processors.

The more general model of an arbitrary partially eponymous network has been
first considered by Yamashita and Kameda [15]. They focused on Leader Election
and provided a graph-theoretic characterization of its solvability under different
assumptions on the communication mode and the available (a)synchrony. Fur-
ther work on the partially eponymous ring has been carried out in [6,7]. Chalopin
et al. [6] very recently considered some specific generalizations of Leader Elec-
tion in an arbitrary partially eponymous network. Under the assumption that
processors have an approximate knowledge of the ring size, Dobrev and Pelc
[7] presented both lower and upper bounds on message complexity for both the
synchronous and the asynchronous cases of a partially eponymous ring.

Boldi and Vigna [3] have considered the more general solvability problem for
an arbitrary relation on an arbitrary network and for any level of knowledge and
anonymity (or eponymity) of the processors.

Attiya et al. [2] initiated the study of computing functions on the asynchronous
anonymous ring. Flocchini et al. [8] consider the problems of Leader Election,
Edge Election and Multiset Sorting on the asynchronous anonymous ring R
where processors are distinguished by input values that are not necessarily dis-
tinct. So, input values are treated in the partially eponymous model of Flocchini
et al. [8] as either identities or as inputs. We emphasize that the partially epony-
mous model of Flocchini et al. [8] does not simultaneously consider identities and
inputs. Under the assumptions that input values are binary and |R| is prime,
Flocchini et al. [8, Theorems 4.1 and 4.2] provide lower and upper bounds on
message complexity for these three problems. The lower and upper bounds are
Ω(
∑

j(z
2
j + t2j)) and O(

∑
j(z

2
j + t2j) + |R| · lg |R|), respectively, where zj and tj

are the lengths of consecutive blocks of 1’s and 0’s, respectively, in the vector of
binary inputs.

The first efficient algorithm for Leader Election in the eponymous ring is based
on the intuitive idea of domination in neighborhoods with progressively doubling
size, which is due to Hirschberg and Sinclair [9]; it achieves an O(|R|·lg |R|) upper
bound on message complexity. A corresponding lower bound of Ω(|R| · lg |R|)
has been established in [5].

Contribution. We start by studying solvability and computability.
• We discover (Theorem 1) that solvability is equivalent to compatibility, a

new abstract, topological concept we introduce to capture the possibility that
symmetries present in the initial configuration, comprised of the identities and
the inputs, persist to the reached outputs.

To measure the initial symmetry, we use the period of a vector consisting of the
identities and the inputs; the smaller the symmetry, the longer the period, and
we call it the Minimum Base. It turns out that Minimum Base enjoys an elegant
number-theoretic expression allowing for its efficient evaluation. Similarly, we
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measure the symmetry in an output vector using its period. The possibility of
persistence of initial symmetries to the final symmetries amounts to demanding
that the period of some admissible output vector divides that of the initial
vector, and this is our definition of compatibility. Compatibility can be checked
efficiently (since it reduces to a number-theoretic property that can be checked
efficiently); hence, our characterization of solvability is an efficient one.

• We present a universal algorithm for computing any arbitrary (circularly
symmetric) relation on any set of rings (Theorem 2). This algorithm is comprised
of any distributed algorithm for collecting views at each processor, followed by
local steps specific to the particular relation.
• As an application of our characterization of solvability, we derive a partic-

ular characterization of solvability for (circularly symmetric) aperiodic relations
(Theorem 3); Leader Election is an example of such relations. So, this deter-
mines a topological characterization of the class of relations that are equivalent
to Leader Election with respect to solvability.

We then study message complexity (with respect to computability).
• As our chief algorithmic instrument, we present a distributed algorithm for a

natural generalization of Leader Election in which a (non-zero) number of leaders
must be elected; call it Multiple Leader Election (Proposition 2). This algorithm
works correctly on a given configuration when advised with a lower bound k on
the Minimum Base for that configuration. This distributed algorithm exploits
the idea of doubling neighborhoods from the distributed algorithm of Hirschberg
and Sinclair [9] for solving Leader Election on the eponymous ring; it achieves
message complexity O(|R| · lg k) (Proposition 1) for any advice k.
• In turn, we use the distributed algorithm for Multiple Leader Election to

construct a universal algorithm to compute an arbitrary (circularly symmetric)
relation Ψ on a set of rings ID (consisting of all rings with the same, arbitrarily
chosen, identity multiplicities). The universal algorithm has message complex-
ity O

(
(n2/LMB(ID, Ψ)) + n · lg LMB(ID, Ψ)

)
, where LMB(ID, Ψ) is the Least

Minimum Base — the least value of Minimum Base over all configurations with
rings coming from ID and input vectors coming from the domain of Ψ (Theo-
rem 4). Here, LMB(ID, Ψ) is used as the advice k for the distributed algorithm to
solve Multiple Leader Election. (Note that this is permissible when designing a
distributed algorithm to compute the relation Ψ on the set of rings ID.) Interest-
ingly, the established upper bound demonstrates that the message complexity
on rings of size n degrades gracefully with the Least Minimum Base, ranging
from O(n · lg n) for the eponymous ring to O(n2) for the anonymous ring. So,
our universal upper bound is tight for these two extreme models.
• We are finally interested in determining sets of rings on which the universal

upper bound on message complexity from Theorem 4 is low. In particular, on
which sets of rings (of size n) is an upper bound of O(n · lg n) possible? We
identify two such (incomparable) classes of sets:

– Say that a set of rings is universal if Leader Election is solvable on it. So,
every relation is solvable on such a universal set. We prove that a relation is
computable with O(n ·lg n) messages on a universal set of rings (Theorem 5).
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Hence, surprisingly, Leader Election is either unsolvable on a given set of
rings, or efficiently computable on the given set with O(n · lg n) messages.

– Say that a set of rings is logarithmic if each identity appears at most lg n
times. We prove that a relation is computable with O(n · lg n) messages on a
logarithmic set of rings (Theorem 6); note that this holds even if the relation
is not solvable on that set of rings.

Comparison to Directly Related Work. Whereas Boldi and Vigna [3] pro-
vide an effective characterization of anonymous solvability for any arbitrary
relation on any arbitrary network, our work provides the first efficient char-
acterization of partially eponymous solvability for any arbitrary relation on the
ring (Theorem 4.1). It is not evident how the effective graph-theoretic character-
ization from [3] (involving graph coverings and graph fibrations) could yield an
efficient characterization for the special case of the partially eponymous ring. In
fact, our main goal has been to derive a direct solvability characterization for the
particular case of the partially eponymous ring that bypasses the complex frame-
work of graph coverings and graph fibrations developed in [3] for the general case
of an arbitrary network. Although the work in [3] invests a great effort in trans-
lating concepts of Distributed Computing into some complex graph-theoretic
form, our proof techniques for the solvability characterization are elementary.

Theorem 4 improves [8, Theorem 4.2] in three fronts. First, it works for an
arbitrary ring size |R|, while [8, Theorem 4.2] assumes that |R| is prime. Second,
[8, Theorem 4.2] assumes binary inputs, while Theorem 4 makes no assumption
on either inputs or identities. Third, and most important, Theorem 4 applies
to any arbitrary relation, while [8, Theorem 4.2] is tailored to three specific
relations (Leader Election, Edge Election and Multiset Sorting). We remark,
however, that the worst-case message complexity in both Theorem 4 and [8,
Theorem 4.2] is Θ(|R|2). Note also that [8, Theorem 5.1] is the special case of
Theorem 3 where Ψ is the Leader Election Relation.

Our definition for Least Minimum Base is built on top of Minimum Base,
originally defined in [4,10] and used in [3,6] to obtain characterizations of solv-
ability in anonymous networks. However, we exploit the very simple structure
of the ring network to derive and use a particularly simple version of Minimum
Base. For the case of the anonymous ring, Attiya et al. [2] defined the Symmetry
Index to measure the symmetry in an initial configuration (containing only in-
puts); in contrast, (Least) Minimum Base measures asymmetry, while also taking
identities into account.

Dobrev and Pelc [7, Theorem 3.1] prove an Ω(M ·n) lower bound on message
complexity for the computability of Leader Election on the partially eponymous
ring, where M is an upper bound on the ring size known to the processors; this
implies a corresponding Ω(n2) lower bound when the ring size is known exactly.
This lower bound applies to the class of all rings; hence, it does not contradict
the upper bound in Theorem 4, which applies to a set of rings ID.
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2 Mathematical Preliminaries

Denote N = {0, 1, 2, . . .}, Z+ = {1, 2, 3, . . .}, and [n] = {0, 1, . . . , n− 1} for each
integer n ≥ 1. Denote GCD and LCM the functions mapping a set of integers to
their Greatest Common Divisor and Least Common Multiple, respectively. We
assume a global, possibly infinite set Σ (containing 0 and 1), and we consider
a vector x = 〈x0, x1, . . . , xn−1〉 ∈ Σn. λ denotes the empty vector, while x + y
denotes the concatenation of vectors x and y. With each vector x, we associate
a multiset M(x) with the multiplicities of the entries of x. We use the function
M to partition Σn into equivalence classes, where all vectors in an equivalence
class have the same image under M. Denote X the equivalence class containing
the vector x. By abuse of notation, M(X) will denote M(x) for any x ∈ X.

For any integer k ∈ [n], the (cyclic) shift σk(x) of vector x is the vector
〈xk, xk+1, . . . , xk+n−1〉, with indices taken modulo n; so, σk shifts x, k places
anti-clockwise. The definition is extended to all integers k in the natural way.

The period T(x) of vector x is the least integer k, 0 < k ≤ n, such that
σk(x) = x. Say that x is T(x)-periodic; x is aperiodic if T(x) = n, and x
is uniperiodic if T(x) = 1. Say that x is eponymous if each entry of x is
unique; clearly, an eponymous vector is aperiodic, but not vice versa. Say that
x is anonymous if all entries of x are identical; so, a vector is anonymous if
and only if it is uniperiodic. Clearly, the period of a vector is invariant under
shifting. So, the period captures the degree of circular asymmetry of a vector:
the smaller the period, the more circular symmetries the vector has. We prove:

Lemma 1. For each vector x ∈ Σn, and l, m ∈ N, σl(x) = σm(x) if and only
if l ≡ m (mod T(x)).

Call a vector x̃ ∈ X a min-period vector of X if it minimizes period among all
vectors in X. We prove:

Lemma 2. For each equivalence class X ⊆ Σn, (1) T(x̃) = n/GCD(M(X)), and
(2) for each vector x ∈ X, T(x̃) divides T(x).

Say that X is aperiodic if each vector x ∈ X is aperiodic; say that X is uniperi-
odic if each vector x ∈ X is uniperiodic. Say that X is k-periodic if the min-
period vector x̃ of X is k-periodic. (So, aperiodic and uniperiodic are identified
with n-periodic and 1-periodic, respectively.) Clearly, Lemma 2 (condition (1))
implies that X is (n/GCD(M(X)))-periodic. Hence, X is aperiodic if and only if
GCD(M(X)) = 1, and X is uniperiodic if and only if GCD(M(X)) = n. Say that
X is anonymous if all vectors x ∈ X are anonymous; say that X is eponymous
if all vectors x ∈ X are eponymous.

We use the standard lexicographical ordering 1 on Σn. We write x ≺ y to
mean x 1 y and x �= y. For each k ∈ [n+1], the prefix of order k of x, denoted
Pk(x), is given by Pk(x) = 〈x0, x1, . . . , xk−1〉, with P0(x) = λ. Clearly, for k < l,
Pk(x) ≺ Pk(y) implies Pl(x) ≺ Pl(y) (and, in particular, x ≺ y). The shuffle of
two vectors x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉, denoted by x‖y,
is the vector x‖y = 〈(x0, y0), (x1, y1), . . . , (xn−1, yn−1)〉. We observe:
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Lemma 3. For each pair of vectors x,y ∈ Σn, T(x‖y) = LCM(T(x), T(y)).

A (recursive) relation is a subset Ψ ⊆ Σn × Σn. For a vector x ∈ Σn, Ψ(x) =
{y | (x,y) ∈ Ψ}; every vector y ∈ Ψ(x) is an image of x under Ψ . The set
Dom(Ψ) of all vectors x ∈ Σn with at least one image under Ψ is the do-
main of Ψ ; the set of all images of all vectors x ∈ Σn is the image of Ψ ,
denoted as Im(Ψ). The relation Ψ is total if Dom(Ψ) = Σn. Given two rela-
tions Ψ1, Ψ2 ⊆ Σn × Σn, their composition is the relation Ψ1 ◦ Ψ2 = {(x,y) |
(x, z) ∈ Ψ2 and (z,y) ∈ Ψ1 for some z ∈ Σn}. For a relation Ψ ⊆ Σn × Σn,
note that σ1 ◦ Ψ = {(x,y) | y = σ1(z) for some z ∈ Ψ(x)}; note also that
Ψ ◦ σ1 = {(x,y) | y ∈ Ψ(z) where z = σ1(x)}. In other words, for a vector
x, σ1 ◦ Ψ(x) = {y | y = σ1(z) for some z ∈ Ψ(x)} and Ψ ◦ σ1(x) = {y | y ∈
Ψ(σ1(x))}. Thus, σ1 ◦Ψ maps inputs to shifts of their images, while Ψ ◦σ1 maps
inputs to images of their shifts. The relation Ψ is circularly symmetric if
σ1 ◦ Ψ ⊆ Ψ ◦ σ1. Intuitively, in a circularly symmetric relation, shifts of images
are always images of shifts. A direct induction implies that σk ◦ Ψ ⊆ Ψ ◦ σk for
any circularly symmetric relation Ψ and for all integers k ∈ N.

The relation Ψ ⊆ Σn ×Σn is aperiodic if each vector in Im(Ψ) is aperiodic;
so, each image under Ψ has no circular symmetries. On the other extreme, the
relation Ψ ⊆ Σn ×Σn is uniperiodic if each vector in Im(Ψ) is uniperiodic; so,
each image under Ψ is constant. In the middle, the relation Ψ ⊆ Σn ×Σn is k-
periodic if each vectors in Im(Ψ) is k-periodic. Thus, n-periodic and 1-periodic
relations are precisely the aperiodic and uniperiodic relations, respectively.

In the Leader Election Relation LE ⊆ Σn × Σn, the set of images of an
input vector x is the set of all vectors with exactly one 1 and n − 1 0’s; 1 and
0 correspond to “elected” and “non-elected”, respectively. Clearly, the Leader
Election Relation is both circularly symmetric and aperiodic.

We now discuss a generalization of the Leader Election Relation. Consider a
function Φ : Σn → Z+. In the Φ-Leader Election Relation Φ-LE ⊆ Σn×Σn,
the set of images of an input vector x is the set of all binary output vectors
with the number of 1’s ranging from 1 to Φ(x) (both inclusive). The special case
where Φ(x) = 1 for all vectors x ∈ Σn is precisely the Leader Election Relation.
A Multiple Leader Election Relation is a Φ-Leader Election Relation for
some such function Φ.

3 The Partially Eponymous Ring

General. We start with the standard model of an asynchronous, anonymous
ring as studied, for example, in [2,8]. We assume that the ring is oriented and
bidirectional. We augment this model so that processors have identities that
are neither necessarily all identical, nor necessarily unique. Call it a partially
eponymous ring. In the anonymous ring identities are all identical, while
in the eponymous ring identities are unique.

A ring R is a cyclic arrangement of |R| identical processors 0, 1, . . . , |R| − 1.
Processor j has an identity idj and receives an input inj. The identity vector
is id = 〈id0, id1, . . . , id|R|−1〉; the input vector is in = 〈in0, in1, . . . , in|R|−1〉.
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Note that for the anonymous ring, T(id) = 1; for the eponymous ring, T(id) =
|R|. The (initial) configuration of the ring R is the pair 〈id, in〉. Each proces-
sor must reach an output outj by running a local algorithm and communicating
with its two neighbors. The output vector is out = 〈out0, out1, . . . , out|R|−1〉.

There is a single local algorithm A run by all processors; A is represented
as a state machine. Each computation step of A at processor j is dependent
on the current state of j, the messages currently received at j and on the local
identity idj and input inj. A distributed algorithm A is a collection of local
algorithms, one for each processor. We restrict our attention to non-uniform
distributed algorithms, where the size of the ring is “hard-wired” into the sin-
gle local algorithm. So, we consider rings of a certain size n. The distributed
algorithm A induces a set of (asynchronous) executions.

Each identity vector id ∈ Σn specifies a single ring; by abuse of notation,
denote as id the specified ring. An equivalence class ID ⊆ Σn induces a set of
rings, each corresponding to some particular identity vector id ∈ ID; by abuse
of notation, denote as ID the induced set.

Solvability and Computability. Consider a configuration 〈id, in〉. Say that
the distributed algorithm A solves the set of output vectors OUT on the
configuration 〈id, in〉 if each execution of A on the ring id with input in
results to an output vector out ∈ OUT . Say that the set of output vectors OUT
is solvable on the configuration 〈id, in〉 if there is a distributed algorithm A
that solves OUT on 〈id, in〉. Say that the relation Ψ is solvable on the set of
rings R if there is a distributed algorithm A such that for each configuration
〈id, in〉 ∈ ID× Dom(Ψ), A solves Ψ(in) on 〈id, in〉.

Say that the distributed algorithm A computes the set of output vectors
OUT on the configuration 〈id, in〉 if the following holds: if OUT is solvable on
the configuration 〈id, in〉, then A solves OUT in 〈id, in〉; else A solves {⊥n} on
〈id, in〉 (an unsolvability output). We now develop the notion of a distributed
algorithm working for a set of rings and on the entire domain of the relation
Ψ ; intuitively, the set of rings represents the “knowledge” that the algorithm
requires. Formally, the distributed algorithm A computes the relation Ψ on
a set of rings R with g(n) messages if for each configuration 〈id, in〉 ∈
ID×Dom(Ψ), A computes Ψ(in) on the configuration 〈id, in〉. The relation Ψ is
computable on a set of rings R with g(n) messages if there is a distributed
algorithm A that computes Ψ on ID with g(n) messages. Note that solvability
of a relation Ψ on a set of rings ID implies computability of Ψ on ID (with some
number of messages). However, the inverse does not necessarily hold.

The Least Minimum Base. The Minimum Base MB(id, in) of a config-
uration 〈id, in〉 is defined by MB(id, in) = T(id ‖ in) (cf. [4,10]). For a set of
rings ID with a common input vector in, the Min-Period Minimum Base
MB(ID, in) is defined by MB(ID, in) = MB(ĩd, in), where ĩd is the min-period
vector of ID. Recall that T(ĩd) = n/GCD(M(ID)). Hence, Lemma 3 implies that
MB(ID, in) = LCM(T(ĩd), T(in)) = LCM (n/GCD(M(ID)), T(in)). By Lemma 2
(condition (2)), T(ĩd) divides T(id) for each ring id ∈ ID. Thus, it follows that
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MB(ID, in) divides LCM(T(id), T(in)) for each ring id ∈ ID. Note that if ID
is the set of anonymous rings, then MB(ID, in) = LCM(1, T(in)) = T(in); if ID
is the set of eponymous rings, then MB(ID, in) = LCM(T(ĩd), T(in)) ≥ T(in).
So, intuitively, the Minimum Base is an indicator of computability. The Least
Minimum Base LMB(ID, Ψ) of a set of rings ID and a relation Ψ is defined
by LMB(ID, Ψ) = min{MB(id, in) | 〈id, in〉 ∈ ID× Dom(Ψ)}.

Views. We conclude with a definition that extends one in [15, Section 3] to a
ring where processors receive inputs. Given a ring id with input vector in, the
view of processor j is viewj(id, in) = σj(id ‖ in) = σj(id) ‖ σj(in). Clearly,
views of processors are cyclic shifts of each other. There is a direct, non-uniform
distributed algorithm ACV with message complexity Θ(|R|2) that allows each
processor to construct its own view on a ring R. It is simple to prove:

Lemma 4. Consider a ring id with input in and two processors j and k with
viewj(id, in) = viewk(id, in). Then, in a synchronous execution of a distributed
algorithm with output vector out, outj = outk.

4 Solvability and Computability

Preliminaries. We provide a definition of compatibility between a set of output
vectors OUT and a configuration 〈id, in〉. The set of output vectors OUT is
compatible with the configuration 〈id, in〉 if there is an output vector out ∈
OUT such that T(out) divides MB(id, in). We prove:

Lemma 5. Assume that a set of output vectors OUT is solvable on a configu-
ration 〈id, in〉. Then, OUT is compatible with 〈id, in〉.

Proof (sketch). By assumption, there is a distributed algorithm A that solves
OUT on 〈id, in〉. Fix a synchronous execution of A on 〈id, in〉, and consider
the associated vector out ∈ OUT . Recall that viewj(id, in) = σj(id ‖ in), so
that viewj+T(id‖in)(id, in) = σj+T(id‖in)(id ‖ in). By Lemma 1, it holds that
σj(id ‖ in) = σj+T(id‖in)(id ‖ in). So viewj(id, in) = viewj+T(id‖in)(id, in), and
Lemma 4 implies that outj = outj+T(id‖in). Since j was chosen arbitrarily, this
implies that σT(id‖in)(out) = out. By definition of period, Lemma 1 implies that
T(out) divides T(id‖ in) = MB(id, in). ��

We now introduce the distributed (non-uniform) algorithm AΨ associated with
an arbitrary circularly symmetric relation Ψ ∈ Σn × Σn; the algorithm is de-
scribed in Figure 1. Note that the distributed algorithm AΨ does not specify
how the views are constructed in Step 2. The views can be constructed by in-
voking, for example, the distributed algorithm ACV which collects the identities
and inputs of processors using n2 messages. All remaining steps are local. Steps
3–6 enable processors to choose a common output vector, while Step 6 enables
processor j to output its individual coordinate in this vector. The set Choices
contains all candidates for the common output vector; in Step 6, processors use
a common function (e.g., min) to single out one of the candidates. We prove:
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AΨ : code for processor j with identity idj and input inj

1: Upon receiving message 〈wake〉 do
2: Construct viewj(id, in) = vidj ‖vinj . \∗ vidj = σj(id), vinj = σj(in) ∗\
3: V iewsj [i] := 〈σi(vidj), σi(vinj)〉 for each i ∈ [|R|].
4: Choices := {(x,y, z) | 〈x,y〉 ∈ V iewsj ; z ∈ Ψ(y); T(z) divides MB(x,y)}.
5: If Choices = ∅ then outj := ⊥ and terminate.
6: (a) (x,y, z) := min(Choices); (b) kj := min{i ∈ [|R|] | V iewsj [i] = 〈x,y〉}.
7: Set outj to be the first entry of σ−kj (z) and terminate.

Fig. 1. Algorithm AΨ : code for processor j

Lemma 6. For a configuration 〈id, in〉, either AΨ solves Ψ(in) on 〈id, in〉, or
AΨ solves {⊥n} on 〈id, in〉.

The proof of Lemma 6 requires Ψ to be circularly symmetric. It is not evident
whether this assumption is essential for the partially eponymous ring, although
it is known to be so for computing functions on the anonymous ring [2].

Main Results. Our first result concerns the solvability of an arbitrary (cir-
cularly symmetric) relation on an arbitrary set of rings ID. We provide a def-
inition of compatibility between a relation Ψ ⊆ Σn × Σn and a set of rings
ID ⊆ Σn. The relation Ψ is compatible with the set of rings ID if for each
input vector in ∈ Dom(Ψ), there is some output vector out ∈ Ψ(in) such that
T(out) divides MB(ID, in). Recall that MB(ID, in) can be computed efficiently;
thus, compatibility can be checked efficiently. We prove:

Theorem 1 (Partially Eponymous Solvability Theorem). A circularly
symmetric relation Ψ is solvable on a set of rings ID if and only if Ψ is
compatible with ID.

Proof (sketch). Assume that Ψ is solvable on ID. By definition of solvability,
there is a distributed algorithmA such that for each configuration 〈id, in〉 ∈ ID×
Dom(Ψ), A solves the set of vectors Ψ(in) on 〈id, in〉. So, fix the configuration
〈ĩd, in〉 for an arbitrary vector in ∈ Dom(Ψ). If follows that the set of vectors
Ψ(in) is solvable on 〈ĩd, in〉. By Lemma 5, this implies that Ψ(in) is compatible
with 〈ĩd, in〉. By definition of compatibility between a set of output vectors and a
configuration, it follows that there is some output vector out ∈ Ψ(in) such that
T(out) divides MB(ĩd, in) = MB(ID, in) (by definition of Min-Period Minimum
Base). By definition of compatibility, the claim follows.

Assume now that Ψ is compatible with ID. By definition of compatibility,
for each input vector in ∈ Dom(Ψ), there is an output vector out ∈ Ψ(in)
such that T(out) divides MB(ID, in). Fix an arbitrary configuration 〈id, in〉 ∈
ID× Dom(Ψ). Recall that MB(ID, in) divides MB(id, in). It follows that there
is some output vector out ∈ Ψ(in) such that T(out) divides MB(id, in). Recall
the distributed algorithm AΨ . Clearly, 〈id, in〉 is an entry of V iewsj for each
processor j ∈ [n]. Since out ∈ Ψ(in) and T(out) divides MB(id, in), it follows
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that (id, in,out) ∈ Choices; so Choices �= ∅. By the algorithm AΨ (Step 5),
it follows that the algorithm does not solve {⊥n} on 〈id, in〉. Hence, Lemma 6
implies that AΨ solves Ψ(in) on 〈id, in〉. Since the configuration 〈id, in〉 ∈ ID×
Dom(Ψ) was chosen arbitrarily, it follows that Ψ is solvable on ID. ��

Since compatibility is efficiently checkable, Theorem 1 provides an efficient
characterization of solvability for the partially eponymous ring. We now prove:

Theorem 2 (Partially Eponymous Computability Theorem). Algo-
rithm AΨ computes the circularly symmetric relation Ψ on a set of rings ID.

Proof (sketch). Fix an arbitrary configuration 〈id, in〉 ∈ ID × Dom(Ψ). We
will prove that AΨ computes Ψ(in) on 〈id, in〉. We proceed by case analysis:
Assume first that Ψ(in) is solvable on 〈id, in〉. By Lemma 5 it follows that
Ψ(in) is compatible with 〈id, in〉. By definition of compatibility of a set of out-
put vectors with a configuration, this implies that there is some output vector
out ∈ Ψ(in) such that T(out) divides MB(id, in). From the distributed algo-
rithm AΨ , 〈id, in〉 is an entry of V iewsj for each processor j ∈ [n]. Since, out ∈
Ψ(in) and T(out) divides MB(id, in), it follows that (id, in,out) ∈ Choices; so
Choices �= ∅. By the algorithm AΨ (Step 5), it follows that AΨ does not solve
{⊥n} on 〈id, in〉. Hence, Lemma 6 implies that AΨ solves Ψ(in) on 〈id, in〉, as
needed. Assume now that Ψ(in) is not solvable on 〈id, in〉. This implies that AΨ
does not solve Ψ(in) on 〈id, in〉. By Lemma 6, AΨ solves {⊥n} on 〈id, in〉. ��

Applications. For uniperiodic relations, Theorem 1 immediately implies that
every circularly symmetric, uniperiodic relation is solvable on any set if rings
ID. As a natural application of Theorem 1 on aperiodic relations, we prove:

Theorem 3 (Solvability of Aperiodic Relations). A total, circularly
symmetric, aperiodic relation Ψ is solvable on a set of rings ID if and only
if ID is aperiodic.

Actually, Theorem 3 applies more generally to a non-total, circularly symmetric,
aperiodic relation Ψ , as long as there is at least one constant vector in Dom(Ψ).
Many relations from the literature assume no inputs, so that their domain con-
sists of a single, constant input vector; Theorem 3 applies to all such relations.
Finally, note that Theorem 3 can be further generalized to prove that a circularly
symmetric, k-periodic relation Ψ , with at least one constant vector in Dom(Ψ),
is solvable on a set of rings ID if and only if ID is l-periodic, and k divides l.

5 Message Complexity

Multiple Leader Election as a Tool. We present an asynchronous distributed
algorithm AMLE(k) with advice k. Here, k is an integer that is available to each
processor (e.g., it is “hard-wired” into its local algorithm much in the same way
the ring size is in a non-uniform distributed algorithm). k will act as a parameter
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to AMLE(k): AMLE(k) will satisfy a particular correctness property for certain
specific advices k; furthermore, the message complexity of AMLE(k) will depend
on k. The algorithm AMLE(k) is similar in spirit to the well-known (neighbor-
hood doubling) asynchronous distributed algorithm of Hirschberg and Sinclair
[9] that computes Leader Election on the eponymous ring R. (Recall that the
algorithm of Hirschberg and Sinclair uses O(|R| · lg |R|) messages.) So, each pro-
cessor explores neighborhoods around it whose size doubles in each phase; in
phase r, the processor collects identities of other processors in the neighborhood
that are 2r to the left (counter-clockwise) of it, or 2r+1 − 1 to the right (clock-
wise) of it. It then uses these identities to locally compute the prefixes of length
2r of the views of all processors that are 2r to the left or to the right of it.
Then, the processor compares the prefix of length 2r of its own view to those
prefixes it has computed; it survives the phase (so that it can proceed to the
next phase) if and only if its own prefix is the lexicographically least among all
2r+1 prefixes of the views of its neighbors that it has computed. Note that by
Step 21, r ≤ �lg k� − 1; thus, k determines the size of the largest neighborhood
that each processor will explore before terminating. Also, note that the major
difference between our algorithm for the partially eponymous ring and the clas-
sical algorithm of Hirschberg and Sinclair to compute Leader Election on the
eponymous ring is that our algorithm awards processors to proceed to the next
phase on the basis of the computed prefixes of processors’ views (which change
across phases), as opposed to processors’ identities (that remain constant across
phases). Note that the lexicographic ordering provides the property that views
and their corresponding prefixes are consistently ordered. Hence, the compari-
son of prefixes in Step 20 is essentially a comparison of views (hence, an efficient
one since it avoids the full construction of views). This is an essential feature
of our algorithm, and its achieved message efficiency is due to this feature. The
distributed algorithm AMLE(k) appears in pseudocode in Figure 2. We proceed
to prove certain message complexity and correctness properties of AMLE(k).

Using an analysis similar to the analysis of the message complexity for the
algorithm of Hirschberg and Sinclair [9], we prove an upper bound on the message
complexity of the distributed algorithm AMLE(k). Since k determines the size
of the largest neighborhood that each processor will explore before terminating,
the message complexity of the distributed algorithm AMLE(k) increases with k.

Proposition 1. Algorithm AMLE(k) uses O(|R| · lg k) messages on the ring R.

We continue with a correctness property of the algorithm AMLE(k) for specific
advices k. For any k that divides n consider the function Φk : Σn → Z+ such
that Φk(in) = 2n/k for each input vector in ∈ Σn. We continue to prove:

Proposition 2. Algorithm AMLE(k) with advice k, 1 ≤ k ≤ MB(id, in) solves
the set of output vectors Φk-LE(in) on the configuration 〈id, in〉.
Intuitively, we wish to elect as few leaders as possible, since each leader will be
subsequently asked to undertake an additional (message intensive) distributed
computation. Proposition 2 establishes that the larger the advice k is, the less
leaders are elected; on the other hand, k cannot be chosen to be arbitrarily large.
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AMLE(k): code for processor j with identity idj and input inj

Initially, labelj = segmentj = left segmentj = right segmentj = λ.

1: Upon receiving message 〈wake〉 do
2: Send message 〈probe, 0, 1〉 to left.

3: Upon receiving message 〈probe, r, d〉 from right do
4: If d < 2r then send message 〈probe, r, d + 1〉 to left.
5: If d = 2r then send message 〈reply, 〈(idj , inj)〉, r, 1〉 to right.

6: Upon receiving message 〈reply, s, r, d〉 from left do
7: If d < 2r then send message 〈reply, s � 〈(idj , inj)〉, r, d + 1〉 to right.
8: If d = 2r then do
9: left segmentj := s.

10: Send message 〈probe, r, 1〉 to right.

11: Upon receiving message 〈probe, r, d〉 from left do
12: If d < 2r+1 − 1 then send message 〈probe, r, d + 1〉 to right.
13: If d = 2r+1 − 1 then send message 〈reply, 〈(idj , inj)〉, r, 1〉 to left.

14: Upon receiving message 〈reply, s, r, d〉 from right do
15: If d < 2r+1 − 1 then send message 〈reply, 〈(idj , inj)〉 � s, r, d + 1〉 to left.
16: If d = 2r+1 − 1 then do
17: right segmentj := s.
18: segmentj := left segmentj � 〈(idj , inj)〉 � right segmentj.
19: labelj := P2r (σ2r (segmentj)).
20: If labelj ≺ P2r (σi(segmentj)) and labelj � P2r (σ2r+i+1(segmentj)),

for all i ∈ [2r] then do
21: If 2r+1 ≥ k then terminate as a leader.
22: Else send message 〈probe, r + 1, 1〉 to left.
23: Else terminate as a non-leader.

Fig. 2. Algorithm AMLE(k): code for processor j

A Universal Upper Bound on Message Complexity. Recall that we have
established correctness guarantees for the algorithm AMLE(k) only when k ≤
MB(id, in) on configuration 〈id, in〉. Recall also that we wish to maximize k, so as
to minimize the number of elected leaders. Furthermore, if algorithmAMLE(k) is
to be used for electing a number of leaders, the value of k must be “known” to the
processors. This raises the natural question of what such an appropriate value for
k is. In what follows, we choose k = LMB(ID, Ψ), the least upper bound imposed
on k by Proposition 2, across all configurations 〈id, in〉. We next ask how this
advice k relates to the message complexity of computing an arbitrary (circularly
symmetric) relation Ψ ⊆ Σn ×Σn on an arbitrary set of rings ID ⊆ Σn; recall
that Ψ is computable on ID with O(n2) messages (Theorem 2). We prove:

Theorem 4 (Partially Eponymous Message Complexity Theorem).
The circularly symmetric relation Ψ is computable on a set of rings ID with
O
(
(n2/LMB(ID, Ψ)) + n · lg LMB(ID, Ψ)

)
messages.
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Proof (sketch). Here is a distributed algorithm A (which is an instantiation
of AΨ) to compute Ψ on ID with that many messages. Consider an arbitrary
configuration 〈id, in〉 ∈ ID×Σn. A proceeds as follows:

• On top, the distributed algorithm AΨ (see Figure 1) is invoked to compute Ψ
on ID. Step 2 is implemented by the following steps:
– First, the processors run the distributed algorithm AMLE(k) with advice

k = LMB(ID, Ψ) ≤ MB(id, in) using O (n · lg LMB(ID, Ψ)) messages (by
Proposition 1); by Proposition 2, there are now elected at least 1 and at
most O (n/LMB(ID, Ψ)) leaders.

– All elected leaders run the algorithm ACV (see Section 4) to collect their
views, for a total of O ((n/LMB(ID, Ψ)) · n) = O

(
n2/LMB(ID, Ψ)

)
mes-

sages. Then, the leaders communicate the collected views to all processors
for a total of O ((n/LMB(ID, Ψ)) · n) = O

(
n2/LMB(ID, Ψ)

)
messages. Now,

each processor locally derives its view, which it returns to top.

So, the message complexity of A is as claimed. ��

Applications. For which sets of rings ID is the upper bound on message com-
plexity from Theorem 4 low? We identify two such classes of sets.

Say that a set of rings ID ⊆ Σn is universal if Leader Election is solvable on
ID. Clearly, every (circularly symmetric) relation is solvable on a universal set
of rings. Recall that Leader Election is both circularly symmetric and aperiodic.
Hence, Theorem 3 implies that ID is aperiodic. Thus, for each 〈id, in〉 ∈ ID ×
Dom(LE), MB(id, in) = n. Hence, LMB(ID, LE) = min{MB(id, in) | 〈id, in〉 ∈
ID× Dom(LE)} = n. Theorem 4 now immediately implies:

Theorem 5 (Message Complexity on Universal Set of Rings). A cir-
cularly symmetric relation is computable on a universal set of rings ID with
O(n · lg n) messages.

Consider an arbitrary circularly symmetric relation Ψ . Consider a ring id ∈
Σn where each identity has multiplicity at most lg n; call it a logarithmic ring.
The corresponding set of rings ID will be called a logarithmic set of rings.
Lemma 2 (condition (1)) implies that T(ĩd) = n/GCD(M(ID)) ≥ n/ lg n. So,
for each input vector in ∈ Dom(Ψ), MB(ĩd, in) = LCM(T(ĩd), T(in)) ≥ n/ lg n.
This implies that LMB(ID, Ψ) ≥ n/ lgn. Since also LMB(ID, Ψ) ≤ n, Theorem 4
immediately implies:

Theorem 6 (Message Complexity on Logarithmic Set of Rings). A
circularly symmetric relation is computable on a logarithmic set of rings ID
with O(n · lg n) messages.

We can obtain additional upper bounds on the message complexity of computing
a circularly symmetric relation by further generalizing Theorem 6. Towards this
end, we generalize the definition of a logarithmic set of rings to a set of rings with
an upper bound m on the multiplicity of each identity in any ring from the set.
The corresponding upper bound on message complexity is O(n ·max{m, lg n}).
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6 Epilogue

We presented a comprehensive study of solvability, computability and message
complexity for the partially eponymous ring. Several interesting questions re-
main. For example, is there a matching lower bound to the universal upper
bound on message complexity from Theorem 4? Can we characterize the class of
sets of rings of size n for which this (universal) upper bound becomes O(n · lg n)?
Finally, a challenging task is to extend our theory for the partially eponymous
ring to other network architectures (such as hypercubes and tori).
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Self-stabilizing Leader Election in

Networks of Finite-State Anonymous Agents

Michael Fischer and Hong Jiang�
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Abstract. This paper considers the self-stabilizing leader-election prob-
lem in a model of interacting anonymous finite-state agents. Leader elec-
tion is a fundamental problem in distributed systems; many distributed
problems are easily solved with the help of a central coordinator. Self-
stabilizing algorithms do not require initialization in order to operate
correctly and can recover from transient faults that obliterate all state
information in the system. Anonymous finite-state agents model systems
of identical simple computational nodes such as sensor networks and bi-
ological computers. Self-stabilizing leader election is easily shown to be
impossible in such systems without additional structure.

An eventual leader detector Ω? is an oracle that eventually detects
the presence or absence of a leader. With the help of Ω?, uniform self-
stabilizing leader election algorithms are presented for two natural classes
of network graphs: complete graphs and rings. The first algorithm works
under either a local or global fairness condition, whereas the second re-
quires global fairness. With only local fairness, uniform self-stabilizing
leader election in rings is impossible, even with the help of Ω?.

Keywords: anonymous, failure detector, fairness, finite-state, impos-
sibility result, leader election, population protocols, ring network, self-
stabilization, sensor networks.

1 Introduction

Leader election is a fundamental problem in distributed systems. Many prob-
lems that are hard otherwise become easy to solve once a central coordinator
is available. In reality, the availability and reliability of a leader both depend
on a variety of factors: the feasibility to deploy or elect a leader, the possibility
that an existing leader crashes, and the possibility that transient faults generate
multiple leaders.

In many scenarios, a reasonable expectation is that when the network even-
tually becomes well-behaved and remains so, a leader is elected and remains
reliable. This behavior is captured by failure detector Ω [1] also known as an
eventual leader elector. With Ω, every process i has a local oracle leaderi. When
invoked, leaderi returns a process ID which process i considers to be its current
leader. Ω guarantees that there is a time after which all processes have the same
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non-faulty leader. Ω is important because it was shown to be the weakest failure
detector required to solve consensus in the conventional model of asynchronous
distributed systems [1], and it has been used in many other algorithms.

Ω presupposes a model in which agents have unique process ID’s. In this pa-
per, we study a model of distributed systems called population protocols which
was developed in a series of papers [2,3,4]. A network consists of an unbounded
but finite population of identical anonymous finite-state agents. The protocols
we present are uniform over natural classes of networks: They are independent
of the network size, and the agents do not need to know the size of the network.
The agents in our model are strongly anonymous. Not only do agents lack unique
process ID’s, but an agent cannot even determine whether two distinct messages
are from the same process, nor can it direct two outgoing messages to the same
recipient. By way of contrast, some related work on anonymous networks assumes
an underlying port-to-port communication model in which processes are perma-
nently assigned to ports, and a process sends and receives messages through
distinguished ports. Such a model gives agents the ability to tell whether a set
of messages come from different neighbors and to direct messages to the same or
distinct neighbors, which is generally impossible in our model. Identical devices
are easy to manufacture in large quantity. In addition, population protocols use
O(1) space per node, which is highly desirable in networks of memory-limited
devices such as ad hoc mobile networks.

We introduce Ω?, an analog of Ω appropriate to anonymous networks, which
we call an eventual leader detector. Instead of electing a leader, Ω? simply reports
to each agent a guess about whether or not one or more leaders are present in
the network. The guess may be correct or not, and different inconsistent guesses
may be reported to different agents. The only guarantee is that from some point
onward in any infinite execution, if there is continuously a leader, or if there is
continuously no leader, Ω? eventually accurately reports that fact to each agent.

Using Ω?, we give uniform self-stabilizing leader election algorithms for fully
connected networks (assuming local fairness) and for rings (assuming global
fairness). We also show that uniform leader election is impossible in rings with
only local fairness, even with the help of Ω?. The different fairness conditions
are defined in section 3.1

2 Related Work

A self-stabilizing algorithm does not depend on initialization of process states,
and an execution of a self-stabilizing algorithm converges to a set of pre-defined
stable configurations starting from any arbitrary configuration. The first self-
stabilizing algorithms are introduced by Dijkstra[5]. Schneider[6] presents a sur-
vey on early research on self-stabilization.

Itkis, Lin, and Simon [7] present a deterministic constant-space self-stabilizing
protocol for leader election on uniform bidirectional asynchronous rings of prime
size. In their model, there is a central daemon that picks an enabled proces-
sor each time to make an atomic move. The chosen processor can read the
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states of its two neighbors at the same time to determine its next state. Higham
and Myers [8] give a randomized self-stabilizing algorithm that solves token
circulation and leader election on anonymous, uniform, synchronous, and uni-
directional rings of arbitrary but known size, in which each processor state and
message has size in O(log n). Dolev, Israeli, and Moran [9] present a random-
ized self-stabilizing leader election protocol that tolerates addition or deletion
of processors and links. Their protocol uses O(log n) bits per node. Beauquier,
Gradinariu, and Johnen [10] present a silent and deterministic self-stabilizing
leader-election protocol requiring constant memory space on unidirectional, ID-
based rings where the ID values are bounded. They also prove that a non-
constant lower bound on space is required by a (deterministic or randomized)
self-stabilizing leader-election protocol on unidirectional anonymous rings under
an unfair daemon. Based on the observation that in a stabilized system, a tran-
sient fault usually affect a small number of processes, Ghosh and Gupta [11]
introduce a self-stabilizing leader-election algorithm that recovers quickly from
small scale transient faults. Their algorithm assumes the existence of unique
IDs. Fernández, Jiménez, and Raynal [12] present two eventual leader-election
algorithms in networks where nodes have limited global information. Their al-
gorithms are implementations of Ω in a hybrid model and require unique and
totally-ordered IDs. Angluin et al. [4] present a non-uniform leader-election al-
gorithm for rings in the population protocols model. They also show in the
same paper that there does not exist a self-stabilizing leader-election protocol
for general connected networks.

Chandra and Toueg [13] introduce the concept of unreliable failure detectors
and study how they can be used to solve the asynchronous consensus problem
with crash failures. In a related paper, Chandra, Hadzilacos, and Toueg [1] prove
that one of the failure detectors in [13] is the weakest failure detector for solving
asynchronous consensus with a majority of reliable processes. They also show
that Ω is a weakest failure detector with which one can solve consensus. Aguilera
et al. present an algorithm to implement Ω and to solve consensus in partially
synchronous systems [14]. Ω can be implemented in a system with up to f
process crashes, if there exists some correct process with f outgoing links that
are eventually timely. The focus of these papers is the consensus problem, so the
underlying network is assumed to be fully connected.

3 Model and Definitions

We introduce the population-protocol model to the extent required to present
the results in this paper. A more detailed description is available in [4].

We represent a network by a directed graph G = (V, E) with n vertices
numbered 0 through n−1 and no multi-edges or self-loops. Each vertex represents
a finite-state sensing device called an agent, and an edge (u, v) indicates the
possibility of a communication between u and v in which u is the initiator and
v is the responder. An “undirected” network refers to a communication graph
in which edge (v, u) is present if and only if edge (u, v) is present. The number
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associated with each node is used solely for the ease of description and is not
known to the agents.

A protocol P (Q, C, X, Y, O, δ) consists of a finite set of states Q, a set of initial
configurations C, a finite set X of input symbols, an output function O : Q→ Y ,
where Y is a finite set of output symbols, and a transition function δ mapping
each element of (Q×X)× (Q×X) to a nonempty subset of Q×Q. If (p′, q′) ∈
δ((p, x), (q, y)), we call ((p, x), (q, y)) → (p′, q′) a transition. A transition does not
necessarily cause either of the nodes to change its state. The transition function,
and the protocol, is deterministic if δ((p, x), (q, y)) always contains just one pair
of states. The inputs provide a way for a protocol to interact with an external
entity, be it the environment, a user, or another protocol. In this paper, an agent
i interacts with its leader detector through the input port.

A configuration is a mapping C : V → Q specifying the state of each device in
the network, and an input assignment is a mapping α : V → X . A trace TG(Z)
on a graph G(V, E) is an infinite sequence of assignments from V to the symbol
set Z: TG = λ0, λ1, . . . where λi is an assignment from V to Z. The set Z is
called the alphabet of TG. If Z = X , then each λi is an input assignment, and
we say TG is an input trace of the protocol.

An action is a pair σ = (r, e), where r is a transition ((p, x), (q, y)) → (p′, q′)
of δ and e = (u, v) is an edge of G. Let C and C′ be configurations, α be an
input assignment, and u, v be distinct nodes. We say that σ is enabled in (C, α)
if C(u) = p, α(u) = x, C(v) = q, and α(v) = y. We say that (C, α) goes to C′

via σ, denoted (C, α) σ→ C′, if σ is enabled in (C, α), C′(u) = p′, C′(v) = q′,
and C′(w) = C(w) for all w ∈ V −{u, v}. In words, C′ is the configuration that
results from C by applying the transition rule r to the node pair e. Finally, we
say that (C, α) can go to C′ in one step, denoted (C, α) → C′, if (C, α) σ→ C′

for some action σ, and we say that σ is taken during that step. It is possible for
more than one action to be taken during the same step.

Given an input trace IT = α0, α1, . . . we write C
∗→ C′ if there is a sequence

of configurations C = C0, C1, . . . , Ck = C′, such that (Ci, αi) → Ci+1 for all i,
0 ≤ i < k, in which case we say that C′ is reachable from C given input trace
IT .

An execution is an infinite sequence of configurations and input assignments
(C0, α0), (C1, α1), . . . such that C0 ∈ C and for each i, (Ci, αi) → Ci+1. In the
rest of this paper, all occurrences of “execution” refer to an infinite sequence
as defined here. We extend the output function O to take a configuration C
and produce an output assignment O(C) defined by O(C)(v) = O(C(v)). Let
E = (C0, α0), (C1, α1), . . . , (Ci, αi), . . . be an execution of P . We define the
output trace of an execution as OT (E) = O(C0), O(C1), . . . , O(Ci), . . ..

3.1 Fairness

We consider fairness conditions of different strengths. Let E = (C0, α0), (C1, α1),
. . ., (Ci, αi), . . . be an execution. The following conditions apply to E.

Strong global fairness. For every C, α, and C′ such that (C, α) → C′, if
(C, α) = (Ci, αi) for infinitely many i, then (Ci, αi) = (C, α) and Ci+1 = C′
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for infinitely many i. (Hence, the step (C, α) → C′ is taken infinitely many
times in E.)

Strong local fairness. For every action σ, if σ is enabled in (Ci, αi) for in-
finitely many i, then (Ci, αi)

σ→ Ci+1 for infinitely many i. (Hence, the
action σ is taken infinitely many times in E.)

Global fairness asserts that each step (C, α)→ C′ that can be taken infinitely
often is actually taken infinitely often. By way of contrast, local fairness only
asserts that each action σ that can be taken infinitely often is actually taken
infinitely often. This differs from global fairness in the case of an action that is
enabled infinitely often in more than one context. Global fairness would insist
that it be taken infinitely often in all such contexts, whereas local fairness only
requires that it occur infinitely often in one such context. For example, if σ is
enabled in both (C1, α1) and (C2, α2), where (C1, α1) �= (C2, α2), an execution
in which σ was never taken from (C2, α2) would not be globally fair, but it would
be locally fair if σ were taken infinitely often from (C1, α1).

Theorem 1. Global fairness implies local fairness.

Proof. Suppose E satisfies strong global fairness. Because there are only finitely
many distinct (Ci, αi) pairs in E, if σ is enabled in (Ci, αi) for infinitely many i,
then σ is enabled in some particular (C, α) that occurs infinitely often in E. Let
(C, α) σ→ C′. By strong global fairness, the step (C, α) → C′ is taken infinitely
many times in E; hence, E satisfies strong local fairness.

These fairness definitions talk about certain steps that must be taken infinitely
many times in E. For many purposes, it is immaterial whether a goal configura-
tion C′ is reached in one step or in many. This leads us to define corresponding
weak fairness conditions.

Weak global fairness. For every C, α, and C′ such that (C, α) → C′, if (C, α)
occurs infinitely often in E, then C′ occurs infinitely often in E.

Weak local fairness. For every action σ, if σ is enabled infinitely often in E,
then there exist C, α, C′ such that (C, α) σ→ C′, (C, α) occurs infinitely often
in E, and C′ occurs infinitely often in E.

The weak forms of fairness do not insist that particular steps occur infinitely
often in E but only that the configurations that would result from those steps
occur infinitely often. Thus, whereas strong fairness insists that a particular
action occurs in a single step, weak fairness allows the configuration that would
result from that action to be reached in many steps.

Obviously, the weak forms of fairness are implied by the corresponding strong
forms. But the relationship between the weak and strong forms is even closer.

Theorem 2. Every execution sequence that satisfies weak global (resp. local)
fairness has an infinite subsequence that satisfies strong global (resp. local) fair-
ness. Moreover, the sets of infinitely occurring pairs (C, α) are the same in both
sequences.
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Proof (Sketch). The intuition is that if (Ci, αi)→ Cj for j > i, then the segment
(Ci+1, αi+1), . . . , (Cj−1, αj−1) can be removed from E and the result is still an
execution sequence. In the new sequence, (Ci, α) is adjacent to Cj , so (Ci, αi)→
Cj occurs as a single step as required by strong fairness. Details are left to the
full paper.

Discussion. A fair question to ask is, “Which is the ‘right’ definition of fair-
ness?” In light of Theorem 2, it makes little difference whether one works with
the strong or weak forms of fairness, for a weakly fair execution has embed-
ded in it a corresponding strongly fair execution. In subsequent sections, we do
not explicitly distinguish between the strong and weak versions of the fairness
conditions when the difference is immaterial.

Whether global or local fairness is more realistic depends on how scheduling
decisions are made. If the next step to take is chosen randomly, with each possible
step having a non-zero probability of being chosen, then a globally fair execution
will result with probability 1.

However, systems are often viewed as consisting of a collection of semi-
autonomous components. The scheduler activates each component infinitely of-
ten, but the scheduling decision is not assumed to be independent of the states
of the other components. Thus, component A might be permitted to execute
when component B is in state 1 but not when it is in state 2. As long as A is
given infinitely many chances to run, the scheduler would be considered to be
fair, even though A never gets to run at a time when B is in state 2. For such a
system, local fairness (in one of its many varieties) is the appropriate notion of
fairness.

3.2 Behavior, Implementation and Self-stabilization

A self-stabilizing system can start at an arbitrary configuration and eventually
exhibit “good” behavior. We define a behavior B on a network G(V, E) to be a set
of traces on G that have the same alphabet. We write B(Z) to be explicit about
the common alphabet Z. A behavior B is constant if every trace in B is con-
stant. If the output trace of every fair execution of a protocol P (Q, C, X, Y, O, δ)
starting from any configuration in C is in some behavior Bout(Y ), we say P is an
implementation of output behavior Bout. Given a behavior B(Z), we define the
corresponding stable behavior Bs(Z): T ∈ Bs if and only if Z is T ’s alphabet,
and there exists T ′ ∈ B such that T ′ is a suffix of T . Thus, an execution in
a stable behavior may have a completely arbitrary finite prefix followed by an
execution with the desired properties. If P (Q, C, X, Y, O, δ) is an implementa-
tion of Bs, and C is the set of all possible configurations, we say that P is a
self-stabilizing implementation of B.

The leader-election behavior LE on graph G = (V, E) is the set of all constant
traces β, β, . . . such that for some v ∈ V , β(v) = L and for all u �= v, β(u) = N .
Informally, there is a static node with the leader mark L, and all other nodes
have the non-leader mark N in every configuration.
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3.3 Eventual Leader Detector Ω?

A failure detector is a kind of oracle that provides some information to the
system that it is unable to compute on its own, thereby extending the power
of the system. Traditionally, failure detectors have been viewed as diagnostic
devices that test nodes and inform the system when failures are detected, hence
the name. However, failure detectors are a more general concept. In this paper,
we use them to supply global semantic information about the protocol, namely,
whether or not a leader is present in the system. Our failure detectors are weak
in the sense that they do not respond immediately to the presence or absence of
a leader but only after some indeterminate delay. Moreover, they do not report
their findings to all nodes simultaneously, so some nodes might learn of the loss or
gain of a leader before others do. Traditionally, failure detectors are modeled as
local procedure calls in each process. In this paper we model a failure detector as
a black box. Instead of each node invoking a local procedure, the failure detector
feeds inputs to each node at each step.

The eventual leader detector Ω? supplies a Boolean input to each process at
each step so that the following conditions are satisfied by every execution E:

1. If all but finitely many configurations of E lack a leader, then each process
receives input false at all but finitely many steps.

2. If all but finitely many configurations of E contain one or more leaders, then
each process receives input true at all but finitely many steps.

3.4 Implementation of Ω?

The weak guarantees of Ω? allow it to be simply implemented in practice using
timeouts. Each leader periodically propagates a “keep-alive” signal. Each agent
keeps a timer and resets the timer whenever it receives a signal from a leader.
On timeout, the agent sets the leader detector flag to false to indicate the
absence of a leader. It sets the flag back to true whenever it receives a signal
from a leader. In a good environment where the links are reliable and timely,
each agent will eventually detect the absence or presence of leaders correctly. In
an adverse environment where nodes malfunction and links may drop or unduly
delay messages, the leader detector may give incorrect answers and the system
may become unstable. (For example, multiple leaders may be generated.) How-
ever, eventually after the environment becomes good again, the leader detector
will produce correct information and the system will become stable.

4 Leader Election in Complete Network Graphs

We give a simple leader-election algorithm for complete network graphs using a
leader detector Ω?. Each node has a memory slot that can hold either a leader
mark “ x ” or nothing “−” for a total of two states. Each node receives its current
input true (T) or false (F) from Ω?. A non-leader becomes a leader, when the
leader detector signals the absence of a leader, and the responder is not a leader.
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When two leaders interact, the responder becomes a non-leader. Otherwise, no
state change occurs.

We formally describe the algorithm by pattern rules which are matched
against the state and input of the initiator and responder, respectively. If the
match succeeds, the states of the two interacting nodes are replaced by the re-
spective states on the right side of the rule. In performing the match, “ ∗ ” is a
“don’t care” symbol that always matches the slot or the input. On the right hand
side, “ ∗ ” specifies that the contents of the corresponding slot do not change. If
no explicit rules match, a null transition in which neither node changes state is
implied. Therefore every (configuration, input assignment) pair has an admissi-
ble successor.

Algorithm 1

Rule 1. (( x , ∗ ), ( x , ∗ ))→ (( x ), (−))
Rule 2. ((−, F), (−, ∗ )) → (( x ), (−))
Rule 3. ((−, T), (−, ∗ )) → ((−), (−))

Each node outputs L when it holds a x , otherwise it outputs N .

To establish the correctness of a self-stabilizing algorithm, we define a notion
of “safe configuration” and prove two things:

1. Starting from an arbitrary configuration, a safe configuration will eventually
be reached.

2. Starting from an arbitrary safe configuration, the output traces of all possible
executions have a suffix in the desired behavior.

For Algorithm 1, the desired behavior is the leader-election behavior LE, and
the safe configurations are those in which at least one agent outputs L.

Lemma 1. Let E be an execution of Algorithm 1 starting from an arbitrary
configuration. Then E contains a safe configuration.

Proof. Suppose no configuration of E is safe. This means there are no leaders in
E, so from some point on, every node receives false from the leader detector.
By rule 2, the initiator of the next interaction will declare itself a leader, a
contradiction. Hence, E contains a safe configuration.

Lemma 2. Let E be an infinite globally or locally fair execution of Algorithm 1
starting from an arbitrary safe configuration. Then the output trace of E has a
suffix in LE.

Proof. Notice that the only way for the number of leaders to decrease is via
rule 1. The number of leaders decreases by one only when two leaders interact,
so there is always at least one leader in subsequent configurations. Eventually all
agents will receive true from the leader detector, after which new leaders cease
being generated. By either local or global fairness, every two agents interact with
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each other infinitely often, so eventually the number of leaders will decrease to
one. The last leader cannot disappear, no new leaders are created, and the leader
status cannot be transferred to another agent. Hence, the output trace of the
suffix of E from this point on is in LE.

Theorem 3. Given Ω?, Algorithm 1 is a self-stabilizing implementation of the
leader-election behavior LE that is correct under both global and local fairness.

Proof. The correctness of Theorem 3 follows from Lemma 1 and Lemma 2.

5 Leader Election in Rings

The ring is an important network topology. The leader-election problem in rings
has been extensively studied in the literature [4,7,8,10,11]. Most of those results
assume local fairness or a similar fairness condition. It has been shown that there
is no uniform1 self-stabilizing leader-election algorithm in anonymous rings under
the assumption of local fairness.

We refine these results in two ways. First, we show that uniform leader elec-
tion in anonymous rings remains impossible under local fairness, even with the
help of the leader detector Ω?. Second, we exhibit a uniform self-stabilizing
leader election algorithm using Ω? that works in rings of arbitrary size under
the assumption of global fairness. We leave open the question of whether such
an algorithm exists without the help of Ω?.

5.1 Impossibility Under Local Fairness

Theorem 4. No uniform leader-election algorithm exists in a ring assuming
local fairness, even with the help of leader detector Ω?

Proof. Assume to the contrary that there is a uniform leader-election algorithm
for rings that works under local fairness with the help of Ω?. We consider the
type of ring that is the most powerful in terms of computation: The ring is a
directed cycle, so each node in an interaction knows whether it is talking to its
next or previous neighbor in clockwise order around the ring.

For any n ≥ 2, we look at two rings: R1 has n nodes labeled 0, 1, . . . , n − 1
and R2 has 2n nodes labeled 0, 1, . . . , 2n− 1. Given a locally fair execution E1

of R1, we describe a locally fair execution E2 of R2 such that all but finitely
many configurations of E2 have exactly two leaders. Hence, any algorithm with
correct leader-election behavior on R1 fails to have leader-election behavior on
R2, showing that there is no uniform leader-election algorithm.

Intuitively, we regard R2 as two copies of R1 spliced together into a single
ring, as is shown in Figure 1. Each step of E1 is applied separately to the two
copies of R1 in R2. After every such pair of steps, the two copies of R1 that
comprise R2 will be in the same configuration as each other and as R1. Hence,
if R1 has one leader, then R2 has two leaders.
1 An algorithm is uniform if it works in rings of all sizes.
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Fig. 1. The rings R1 and R2

Formally, node u of R1 corresponds to the two nodes u and u + n of R2. An
edge e = (u, v) of R1 corresponds to the two edges e′ = (u′, v′) and e′′ = (u′′, v′′)
of R2 such that u corresponds to u′ and u′′ and v corresponds to v′ and v′′. For
example, if n = 7, then (2, 3) of R1 corresponds to (2, 3) and (9, 10) of R2, and
(6, 0) of R1 corresponds to (6, 7) and (13, 0) of R2.2 We say that configurations
C of R1 and D of R2 are compatible if C(u) = D(u) = D(u + n) for each
u = 0, . . . , n− 1, i.e., the states of corresponding nodes are the same.

Let E1 = (C0, α0), (C1, α1), . . . be a fair execution of R1. Let D0 be a config-
uration of R2 that is compatible with C0. We construct an execution

E2 = (D0, α0), (D′
0, α0), (D1, α1), (D′

1, α1), . . .

of R2 such that Ct and Dt are compatible for all t. We then argue that E2

is locally fair and satisfies Ω?, from which we derive a contradiction to the
assumption that a uniform leader-election algorithm exists.

At each stage t of the construction, we assume that Ct and Dt are compatible.
Let σt = (rt, et) be an action such that (Ct, αt)

σt→ Ct+1, where rt is a transition
of δ and et = (ut, vt) is an edge of R1. Let σ′

t = (r, e′) and σ′′
t = (r, e′′) be

actions, where e′t = (u′
t, v

′
t) and e′′t = (u′′

t , v′′t ) are the two edges of R2 that
correspond to et. Both σ′

t and σ′′
t are enabled in Dt. This is because σt is enabled

in Ct, and since Ct is compatible with Dt, Dt(u′
t) = Dt(u′′

t ) = Ct(ut) and
Dt(v′t) = Dt(v′′t ) = Ct(vt).

Let D′
t be the unique configuration such that (Dt, αt)

σ′
t→ D′

t. Because n ≥ 2,
the nodes u′, u′′, v′, v′′ are all distinct, so the states of u′′ and v′′ are the same
in Dt and in D′

t. Hence, σ′′
t is also enabled in D′

t. Let Dt+1 be the unique

configuration such that (D′
t, αt)

σ′′
t→ Dt+1. It is easily shown that Ct+1 and Dt+1

are compatible. By induction, Ct and Dt are compatible for all t.
It remains to show that E2 is a locally fair execution of R2. It is obviously

an execution (since each configuration follows from the previous one by a legal
action). We must argue that it is locally fair and that the inputs are consistent
with Ω?. Local fairness follows from the correspondence between steps of R2

2 Note that (6, 0) does not correspond to pairs (6, 0) and (13, 7) obtained by inter-
changing the second components since these latter pairs are not edges of R2.
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and R1. If some action σ′ of R2 is infinitely often enabled in E2, then the corre-
sponding action σ of R1 is infinitely often enabled in E1. By local fairness of E1,
σ is taken infinitely often in E1. By the above construction, σ′ is taken infinitely
often in E2.

Finally, we argue that the inputs in E2 satisfy the conditions for Ω?. For each
t, if configurations Ct and Ct+1 both have leaders, then Dt, D′

t, and Dt+1 all
have leaders. Similarly, if Ct and Ct+1 both lack leaders, then Dt, D′

t, and Dt+1

all lack leaders. Hence, if all but finitely many configurations of E1 lack leaders,
then all but finitely many configurations of E2 lack leaders, and similarly, if all
but finitely many configurations of E1 have leaders, then all but finitely many
configurations of E2 have leaders. Hence, the sequence of input assignments
α0, α0, α1, α1, . . . in E2 is correct for Ω?.

It follows that E2 is a locally fair execution of R2 with leader detector Ω?.
However, the output trace of E2 is not in LE since all but finitely many config-
urations of E2 have two leaders. Thus, the assumed algorithm is not a uniform
leader-election algorithm.

5.2 Leader Election Under Global Fairness

A non-uniform self-stabilizing leader-election algorithm assuming global fairness
was given in [4]. Here we give a uniform algorithm with the help of Ω?.

We assume that the ring is directed, which means each node has a sense of
“forward” (clockwise) and “backward” (counter-clockwise), and every interac-
tion takes place between the initiator and its forward neighbor. A self-stabilizing
algorithm to direct an undirected ring was given in [4], so our algorithm can be
applied to any weakly connected cycle, whether directed or not.

Each node can store zero or one of each of three kinds of tokens: a bullet
“¶”, a leader mark “ x ”, and a shield “ ”, for a total of eight possible states.
Corresponding to each kind of token is a slot which is empty if the corresponding
token is not present, and full if it is present. An empty slot is denoted by “−”;
a full slot is denoted by the corresponding token. The slots in each node are
ordered with the bullet first, leader mark second, and shield third. Extending
this to a clockwise ordering of all slots in the ring, the shield slot of one node is
followed by the bullet slot of the next node in clockwise order.

Algorithm 2

Rule 1. (( ∗ ∗ ∗ , F), ( ∗ ∗ ∗ , ∗ )) → ((¶ x ), ( ∗ ∗ ∗ ))
Rule 2. (( ∗ − , T), ( ∗ ∗ ∗ , ∗ ))→ (( ∗ −−), (− ∗ ))
Rule 3. (( ∗ x , T), ( ∗ ∗ ∗ , ∗ ))→ ((¶ x −), (− ∗ ))
Rule 4. (( ∗ x −, T), (− ∗ ∗ , ∗ ))→ ((¶ x −), (− ∗ ∗ ))
Rule 5. (( ∗ ∗ −, T), (¶ ∗ ∗ , ∗ ))→ ((¶−−), (− ∗ ∗ ))

Each node outputs L when it holds a x , otherwise it outputs N .

When two nodes interact and the initiator’s input is false (F), a leader and
a shield are created. At the same time, a bullet is fired (rule 1). This is the only
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way for leaders and shields to be created. When the initiator’s input is true (T),
the following rules apply: Shields move forward around the ring (rules 2 and 3),
and bullets move backward (rule 5). Bullets are absorbed by any shield they
encounter (rules 2 and 3) but kill any leaders along the way (rule 5). If a bullet
moves into a node already containing a bullet, the two bullets merge into one.
Similarly, when two shields meet, they merge into one. A leader fires a bullet
whenever it is the initiator of an interaction (rules 3 and 4).

A node i in a configuration is called a protected leader, and node j is called
its protecting shield, if i has a leader mark, j has a shield, and all of the slots
between i’s leader mark and j’s shield in clockwise order are empty. A node
can be both a protected leader and its own protecting shield. We show that
eventually there is exactly one protected leader, one protecting shield, and no
unprotected leader.

Let E be an execution. Define SE to be the maximal suffix of E such that
every (configuration, input assignment) pair in SE occurs infinitely often. SE is
well-defined and infinite since there are only finitely many distinct (configuration,
input assignment) pairs. Define IRCE

3 to be the set of configurations that occur
in SE .

The follows lemmas are all qualified by “for any execution E”.

Lemma 3. If any configuration in IRCE has a protected leader, then every con-
figuration in IRCE has a protected leader.

Proof. Let C ∈ IRCE be a configuration with a protected leader, and suppose
(C, α) → C′. We show that C′ has a protected leader, regardless of which tran-
sition rule was applied.

– Rule 1 creates a new protected leader.
– Rule 2 moves the shield forward. If the responder is a leader, it becomes

protected. If not, the protected leader is still protected after the move.
– Rule 3 fires a bullet and moves the shield forward. If the responder is a

leader, it becomes protected. If not, the initiator remains a protected leader.
– Rule 4 fires a bullet. This does not affect the protected leader, for the bullet

cannot be the only non-empty slot between the protected leader and its
protecting shield.

– Rule 5 moves a bullet from the responder to the initiator. If the initiator is
a leader, it is killed by the bullet. However, the initiator was not protected
beforehand since there was no shield between the leader mark and the bullet
token. This rule does not affect the protected status of any other leader.

Thus, every configuration in SE following the first one having a protected leader
also has a protected leader. Because every pair in SE occurs infinitely often, all
configurations in IRCE have a protected leader.

Let αF and αT be input assignments such that αF assigns false and αT assigns
true to every node.
3 IRC stands for Infinitely Recurring Configurations.
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Lemma 4. If no configuration in IRCE has a leader, then every input assign-
ment in SE is αF. If every configuration in IRCE has a leader, then every input
assignment in SE is αT.

Proof. Immediate from the definition of leader detector and the fact that every
pair in SE occurs infinitely often.

Lemma 5. Every configuration in IRCE has at least one leader.

Proof. Suppose some configuration C ∈ IRCE lacks a leader. There are two
cases: If no configuration in IRCE has a leader, then by Lemma 4, every input
assignment in SE is αF, so every step in SE is via rule 1. On the other hand,
if some configuration C′ ∈ IRCE has a leader, then there is a sequence of steps
in SE that goes from (C, α) to (C′, α′) for some input assignments α and α′

since both C and C′ occur infinitely often in SE . One of the steps must be via
rule 1 since it is the only leader-creating rule. In either case, the application of
rule 1 creates a configuration with a protected leader. Lemma 3 then implies that
all configurations in IRCE have protected leaders, contradicting the assumption
that C lacks a leader.

Lemma 6. Every input assignment in SE is αT.

Proof. By Lemma 5, every configuration in IRCE has a leader. The result follows
from Lemma 4.

Lemma 7. Suppose C ∈ IRCE, C = C0, C1, . . ., Cr = C′ are configurations,
and (Ci, αT)→ Ci+1, for i = 0, . . . , r − 1. Then C′ ∈ IRCE.

Proof. An easy induction shows that each Ci ∈ IRCE . Suppose Ci ∈ IRCE .
By Lemma 6, every pair in SE has input assignment αT. Since (Ci, αT) occurs
infinitely often in SE , Ci+1 ∈ IRCE by global fairness.

Lemma 8. Every configuration in IRCE contains the same number of leaders
and the same number of shields.

Proof. By Lemma 6, every input assignment in SE is αT, so rule 1 is never
applied in SE . Therefore, no step can increase the number n of leaders or the
number m of shields. But also, no step can decrease n or m since otherwise
SE would contain only finitely many configurations with n leaders or m shields,
a contradiction to the definition of SE . Hence, no step changes n or m, so all
configurations have the same number of leaders and the same number of shields.

Lemma 9. No configuration in IRCE contains an unprotected leader.

Proof. Suppose C ∈ IRCE contains an unprotected leader. By Lemma 6, (C, αT)
occurs in SE . From (C, αT), there exists a finite sequence of steps to kill the
unprotected leader by applying the rules 3, 4, and 5. By Lemma 7, the resulting
configuration C′ is in IRCE . By Lemma 6, no step in SE can create a new leader,
so C′ has fewer leaders than C. This contradicts Lemma 8.
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Lemma 10. Every configuration in IRCE contains exactly one shield and ex-
actly one leader.

Proof. By Lemmas 5 and 9, every configuration in IRCE contains at least one
protected leader. This implies that each configuration contains at least one shield.
There must be exactly one, for if any configuration has two or more shields,
there exists a finite sequence of steps to merge two shields by applying rules 2
and 3 (possible by Lemma 6), resulting in a configuration C′ with fewer shields.
By Lemma 7, C′ ∈ IRCE , contradicting Lemma 8. Finally, each shield is the
protecting shield of at most one leader, so each configuration contains exactly
one leader.

Theorem 5. Given Ω?, Algorithm 2 is a self-stabilizing implementation of the
leader-election behavior LE in rings under global fairness.

Proof. By Lemma 10, every configuration in IRCE has exactly one leader. The
same node is leader in every such configuration since none of the five rules
can move the leader mark from one node to another in a single step. Hence,
OT (SE) ∈ LE, and Theorem 5 follows.

Algorithm 2 is at the same time a self-stabilizing token-circulation algorithm.
After an execution stabilizes, there is exactly one shield moving around the ring,
which could provide a token-circulation service.

6 Conclusion

We study the problem of self-stabilizing leader election in a model of finite-state
anonymous agents. We consider this problem under two fairness conditions and
with two interaction graph topologies. Our protocols utilize a leader detector
Ω? that eventually correctly detects the presence or absence of a leader in the
network. We show that the difficulty of leader election in the population-protocol
model is due to the difficulty of detecting the presence and absence of leaders. It
is an open problem for future research whether Ω? can be implemented in rings
and other families of network graphs in the population-protocol model.
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12. Fernández, A., Jiménez, E., Raynal, M.: Eventual leader election with weak as-
sumptions on initial knowledge, communication reliability, and synchrony. In: 2006
International Conference on Dependable Systems and Networks. (2006)

13. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

14. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proceedings
of the Twenty-third ACM Symposium on Principles of Distributed Computing.
(2004) 328–337



Robust Self-stabilizing Clustering Algorithm

Colette Johnen and Le Huy Nguyen
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Abstract. Ad hoc networks consist of wireless hosts that communicate
with each other in the absence of a fixed infrastructure. Such networks
cannot rely on centralized and organized network management. The
clustering problem consists in partitioning network nodes into groups
called clusters, giving a hierarchical organization of the network. A self-
stabilizing algorithm, regardless of the initial system configuration, con-
verges to legitimates configurations without external intervention. Due
to this property, self-stabilizing algorithms tolerate transient faults.

In this paper we present a robust self-stabilizing clustering algorithm
for ad hoc network. The robustness property guarantees that, starting
from an arbitrary configuration, in one round, network is partitioned into
clusters. After that, the network stays partitioned during the convergence
phase toward a legitimate configuration where the clusters partition en-
sures that any neighborhood has at most k clusterheads (k is a given
parameter).

Keywords: Self-stabilization, Distributed algorithm, Clustering, Ad hoc
networking.

1 Introduction

An ad hoc network is a self-organized network, especially those with wireless
or temporary plug-in connections. Such a network may operate in a standalone
fashion, or may be connected to the larger Internet [1]. In these networks, mo-
bile routers may move arbitrary often; thus, the network’s topology may change
rapidly and unpredictably. Ad hoc networks cannot rely on centralized and orga-
nized network management. Significant examples include establishing survivable,
efficient, dynamic communication for emergency/rescue operations, disaster re-
lief efforts, and military networks. Meetings where participants aim at creating a
temporary wireless ad hoc network is another typical example. Quick deployment
is needed in these situations.

Clustering means partitioning network nodes into groups called clusters, pro-
viding the network with a hierarchical organization. A cluster is a connected
subgraph of the global networks composed of a clusterhead and ordinary nodes.
Each node belongs to only one cluster. In addition, a cluster is required to obey
to certain constraints that are used for network management, routing methods,
resource allocation, etc. By dividing the network into non-overlapped clusters,
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intra-cluster routing is administered by the clusterhead and inter-cluster rout-
ing can be achieved in a reactive manner between clusterheads. Clustering-based
routing reduces the amount of routing information propagated in the network.
Clustering facilitates the reuse of resources, which improves the system capacity.
Members of a cluster can share resources such as software, memory space, printer,
etc. Moreover, clustering can be used to reduce the amount of information that
is used to store the network state. Distant nodes outside of a cluster usually
do not need to know the details of specific events occurring inside this cluster.
Indeed, an overview of the cluster’s state is generally sufficient for those distant
nodes to make control decisions. Thus, the clusterhead is typically in charge of
collecting the state of nodes in its cluster and constructing an overview of its
cluster state.

For the above mentioned reasons, it is not surprising that several distributed
clustering algorithms have been proposed during the last ten years [2,3,4,5,6,7,8].
The clustering algorithms in [2,6] construct a spanning tree. Then the clusters
are constructed on top of the spanning tree. The clusterheads set do not nec-
essarily form a dominating set (i.e., a node can be at distance greater than 1
from its clusterhead). Two network architectures for MANET (Mobile Ad hoc
Wireless Network) are proposed in [7,8] where nodes are organized into clusters.
The clusterheads form an independent set (i.e., clusterheads are not neighbors)
and a dominating set. The clusterheads are selected according to the value of
their IDs. In [5], a weight-based distributed clustering algorithm taking into ac-
count several parameters (node’s degree, transmission and battery power, node
mobility) is presented. In a neighborhood, the selected nodes are those that are
the most suitable for the clusterhead role (i.e., a node optimizing all the param-
eters). In [4], a Distributed and Mobility-Adaptive Clustering algorithm, called
DMAC, is presented. The clusterheads are selected according to a node’s param-
eter (called weight). The higher is the weight of a node, the more suitable this
node is for the role of clusterhead. An extended version of this algorithm, called
Generalized DMAC (GDMAC), is proposed in [3]. In this latter algorithm, the
clusterheads do not have to form an independent set. This implies that, when,
due to the mobility of the nodes, two or more clusterheads become neighbors,
none has to resign. Thus, in highly mobile environment the clustering manage-
ment with GDMAC requires less overhead than the clustering management with
DMAC. A self-stabilizing version of DMAC and GDMAC is presented in [9].

A system is self-stabilizing when regardless of its initial configuration, it is
guaranteed to reach a legitimate configuration in a finite number of steps. A
system which is not self-stabilizing may stay in an illegitimate configuration
forever. The correctness of self-stabilizing algorithms does not depend on ini-
tialization of variables, and a self-stabilizing algorithm converges to some prede-
fined stable configuration starting from an arbitrary initial one. Self-stabilizing
algorithms are thus inherently tolerant to transient faults in the system. Many
self-stabilizing algorithms can also adapt dynamically to changes in the net-
work topology or system parameters (e.g., communication speed, number of
nodes). A new configuration resulting from a topological changes is viewed as an
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inconsistent configuration from which the system will converge to a configuration
consistent with the new topology. [10] presents a self-stabilizing algorithm that
constructs a maximal independent set (i.e., members of the set are not neighbors,
and the set is maximal to this property). Note that a maximal independent set
is a good candidate for the clusterheads set because a maximal independent set
is also a dominating set (i.e., any node is member of the dominating set or has
a neighbor that is member of the set). In [11], a self-stabilizing algorithm that
creates a minimal dominating set (i.e., if any member of the set leaves the set,
the set is no more a dominating set) is presented. Note that a minimal dominat-
ing set is not necessarily an independent set. Several self-stabilizing algorithms
for cluster formation and clusterhead selection have been proposed [9,12,13,14].
In [12], a self-stabilizing link-cluster algorithm under an asynchronous message-
passing system model is presented (no convergence proofs are presented). The
definition of cluster is not exactly the same as ours: an ordinary node can be
at distance two of its clusterhead. The presented clustering algorithm requires
three types of messages, our algorithms adapted to message passing model re-
quire one type of message. A self-stabilizing algorithm for cluster formation is
presented in [13]. A density criteria (defined in [14]) is used to select clusterhead:
a node v chooses in its neighborhood the node having the highest density. A v’s
neighborhood contains all nodes at distance less or equal to 2 from v. Therefore,
to choose clusterhead, communication at distance 2 is required. Our algorithms
build clusters on local information; thus it requires only communication between
nodes at distance 1 of each others.

In this paper, we present a robust and self-stabilizing version of GDMAC.
The obtained clusters satisfy the “ad hoc clustering properties”:

(1) each node is at most at distance 1 from the clusterhead of its cluster.
(2) in a neighborhood there are at most k clusterheads (k being a given
parameter).
(3) the clusterhead of a node is nearly the best choice: its clusterhead
was a nearly optimal weight.

These properties are formally defined in section 3. Starting from an arbitrary
configuration, the system satisfies the safety predicate in one synchronous com-
putation step. Once the system satisfies the safety predicate, the system performs
correctly its task (i.e., the network is partitioned into clusters). The partition
may have to change to get a partition satisfying the ad hoc clustering properties.
During the construction of the final clusters the safety predicate stay verified:
the networks is always partitioned. That is why we call this algorithm robust.
The algorithm in [9] is not robust: a node may not belong to a cluster during the
stabilization phase even if it belongs initially to a well-formed cluster. In [15],
a robust self-stabilizing version of DMAC is presented under the synchronous
schedule.

Our algorithm is designed for the state model. Nevertheless, it can be easily
transformed into an algorithm for the message-passing model. For this purpose,
each node v periodically broadcasts to its neighbors a message containing its
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state. Based on this message, v’s neighbors decide to update or not their vari-
ables. After a change in the value of v’s state, node v broadcasts to its neighbors
its new state.

The paper is organized as follows. In section 2, the formal definition of self-
stabilization is presented. The clustering problem is discussed in the section 3.
A robust version of [9] is described in section 4. The self-stabilization proof is
presented in section 5. Section 6 discusses about the robustness of our algorithm.
Finally, the time complexity is analyzed in section 7.

2 Model

We model a distributed system by an undirected graph G = (V, E) in which V ,
is the set of nodes and there is an edge {u, v} ∈ E if and only if u and v can
communicate u and v are said neighbors. The set of neighbors of a node v ∈ V
will be denoted by Nv. Every node v in the network is assigned an unique iden-
tifier (ID). For simplicity, here we identify each node with its ID and we denote
both with v. We assume the locally shared memory model of communication.
Thus, each node i has a finite set of local variables such that the variables at a
node i can be read by i and any neighbors of i, but can be only modified by i.
The nodes execute their programs - code asynchronously. We assume that the
code of each node i consists of a finite set of guarded statements of the form
Rule : Guard→ Action, where Guard is a boolean predicate involving the local
variables of i and the local variables of its neighbors, and Action is an assign-
ment that modifies the local variables in i. A rule is executed by node p only if
the guard rule evaluates to true, in which case we say the node p is enabled. The
state of a node is defined by the values of its local variables. A configuration of
a distributed system G is an instance of the node states. A computation e of a
system G is a sequence of configurations c1, c2, ... such that for i = 1, 2, ..., the
configuration ci+1 is reached from ci by a single step of one or several enabled
nodes. A computation is fair if any node in G that is continuously enabled along
the computation, will eventually perform an action. Let C be the set of possible
configurations and E be the set of all possible computations of a system G. The
set of computations of G starting with the particular initial configuration c ∈ C
will be denoted Ec. The set of computations of E whose initial configurations are
all elements of B ∈ C is denoted as EB.

In this paper, we use the notion attractor [16] to define self-stabilization.

Definition 1. (Attractor). Let B1 and B2 be subsets of C. Then B1 is an at-
tractor for B2 if and only if:

1. ∀e ∈ EB2 , (e = c1, c2, ...), ∃i ≥ 1 : ci ∈ B1 (convergence).
2. ∀e ∈ EB1 , (e = c1, c2, ...), ∀i ≥ 1, ci ∈ B1 (closure).

The set of configurations matching the specification of problems is called the set
of legitimate configurations, denoted as L. C\L denotes the set of illegitimate
configurations.
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Definition 2. (Self-stabilization). A distributed system S is called self-
stabilizing if and only if there exists a non-empty set L ⊆ C such that the follow-
ing conditions hold:

1. L is an attractor for C.
2. ∀e ∈ EL, e verifies the specification problem.

One motivation for our robust stabilization is that a system should react grace-
fully to the input changes - preserving a safety predicate in the presence of the
input changes. The safety predicate is chosen to ensure that the system still
perform correctly its task during the period of convergence. A self-stabilizing
protocol is robust with respect to input changes, if starting from a legitimate
configuration followed by input changes, the safety predicate holds continuously
until the protocol converges to a legitimate configuration.

Definition 3. (Robustness under Input Change [16]). Let SP be a predi-
cate on configurations called safety predicate, let IC be a set of input changes in
the system. A self-stabilizing distributed system S is robust under IC if and only
if a set of configurations satisfying SP (i) is closed, and (ii) is closed under any
input change of IC.

3 Clustering for Ad Hoc Network

Clustering an ad hoc network means partitioning its nodes into clusters, each one
with a clusterhead and some ordinary nodes. In order to meet the requirements
imposed by the wireless, mobile nature of these networks, nodes in the same
cluster has to be at distance at most 1 of their clusterhead. Thus, the following
clustering property has to be satisfied:

1. Every ordinary node has at least a clusterhead as neighbor (domi-
nance property).

We consider weighted networks, i.e., a weight wv is assigned to each node v ∈ V
of the network. In ad hoc networks, amount of bandwidth, memory space or
battery power of a node could be used to determine weight values. For simplicity,
in this paper we assume that each node has a different weight. Note that if
several nodes have the same weight, one may use the couple (weight, ID) to
give distinct ‘weights’ to each node. The choice of the clusterheads is based on
the weight associated to each node: the higher the weight of a node, the better
this node is suitable to be a clusterhead.

Assume that the clusterheads are bound to never be neighbors. This implies
that, when due to the mobility of the nodes two or more clusterheads become
neighbors, those with the smaller weights have to resign and affiliate with the
now higher neighboring clusterhead. Furthermore, when a clusterhead v becomes
the neighbor of an ordinary node u whose current clusterhead has weight smaller
than v’s weight, u has to affiliate with (i.e., switch to the cluster of) v. These
“resignation” and “switching” processes due to node’s mobility are a consistent
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part of the clustering management overhead that should be minimized in ad
hoc network where the topology changes fairly often. To overcome the above
limitations, in [3] Basagni introduced a generalization of the previous clustering
property called Ad hoc clustering properties defined as follow:

1. Every ordinary node always affiliates with a neighbor that is cluster-
head and which has higher weight than the weight of the ordinary node
(affiliation condition).
2. For every ordinary node v, for every clusterhead z ∈ Nv : wz ≤
wClusterheadv + h (clusterhead condition).
3. A clusterhead has at most k neighboring clusterheads (k being an
integer, 0 ≤ k < n) (k-neighborhood condition).

The first requirement ensures that each ordinary node has direct access to at
least one clusterhead (the one of the cluster to which it belongs), thus allowing
fast intra and inter cluster communications. The second requirement guaran-
tees that each ordinary node always stays with a clusterhead that gives it a
“good” service. By varying the threshold parameter h it is possible to reduce
the switching overhead associated to the passage of an ordinary node from its
current clusterhead to a new neighboring one when it is not necessary. When
h = 0 we simply obtain that each ordinary node affiliates with the neighboring
clusterhead with the highest weight. Finally, the third requirement allows us to
have up to k neighboring clusterheads, 0 ≤ k < n. When k = 0 we obtain that
two clusterhead can not be neighbors.

Safety property for clustering algorithm. The safety property has to ensure
that the network is partitioned into clusters and each cluster has a leader that
performs clusterhead tasks. In a clustered network, the role of clusterhead is to
act as a local coordinator within a cluster, performing information aggregation
and exchange to neighboring clusters.

4 Robust Self-stabilizing Clustering Algorithm

In this section, we present a clustering algorithm (variables, predicates and rules
are formally presented in Algorithm 1). This algorithm is self-stabilizing and
robust to the input changes. Even during the stabilization phase, it is desired
that network is correctly partitioned, i.e., each node belongs to only a cluster.
This property, called “safety”, guarantees functioning of the applications using
the hierarchical structure established by Algorithm 1, because each node belongs
to a cluster.

A node has 3 possible states. It can be a truly clusterhead, in this case its Ch
value is T . It can be an ordinary node, in this case its Ch value F . Otherwise,
it can be a nearly ordinary node, in this case its Ch value is NF .

After the R1 action, v is a truly clusterhead. After the R2 action, v is an
ordinary node. After the R3 action, v is a nearly ordinary node.
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A truly clusterhead v checks the number of its neighbors that are clusterheads.
If this number is lesser or equal to k then SRv should have the value 0 (R4

action).

Constants
wv : N; // the weight of node v

Local variables of node v
Chv: {T, F, NF}; // indicates the role of node v
Clusterheadv : IDs; // the clusterhead of node v

SRv : N ;// the highest weight which violates the 3th condition in v’s
neighbor

Macros
N+

v = {z ∈ Nv : (Chz = T ) ∧ (wz > wv)}; // the set of v’s neighboring
clusterhead that has higher weight than v’s weight
Clv = |N+

v |; // the number of v’s neighboring clusterhead that has higher
weight than v’s weight

Predicates
G1(v) = G11(v) ∨G12(v)
G11(v) ≡ (Chv �= T ) ∧ (N+

v = ∅)
G12(v) ≡ (Chv = T ) ∧ (Clusterheadv �= v) ∧ (∀z ∈ N+

v : wv > SRz)
∧(Clv ≤ k)

G2(v) = G21(v) ∨G22(v)
G21(v) ≡ (Chv = F ) ∧ {(∃z ∈ N+

v : wz > wClusterheadv + h)
∨(Clusterheadv /∈ N+

v )}
G22(v) ≡ (Chv = NF ) ∧ {(∀z ∈ Nv : Clusterheadz �= v) ∧ (N+

v �= ∅)
G3(v) = G31(v) ∨G32(v)
G31(v) ≡ (Chv = T ) ∧ {(∃z ∈ N+

v : (wv ≤ SRz)) ∨ (Clv > k)}
G32(v) ≡ (Chv = NF ) ∧ (Clusterheadv �= v)

G4(v) ≡ (Chv �= T ) ∧ (SRv �= 0)
G5(v) ≡ (Chv = T ) ∧ (SRv �= max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T )}))

Rules
R1(v) : G1(v)→ Chv := T ; Clusterheadv := v;

SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T )})
R2(v) : G2(v)→ Chv := F ; Clusterheadv := maxwz{z ∈ N+

v }; SRv := 0
R3(v) : G3(v)→ Chv := NF ; Clusterheadv = v; SRv := 0
// update the value of SRv

R4(v) : (¬G1(v) ∧ ¬G2(v) ∧ ¬G3(v)) ∧G4(v)→ SRv := 0
R5(v) : (¬G1(v) ∧ ¬G2(v) ∧ ¬G3(v)) ∧G5(v)→

SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T )})

Algorithm 1. Robust Self-stabilizing Clustering Algorithm
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If this number is greater than k, then the clusterhead sets up the value of SRv

to the weight of the first neighbor clusterhead having to resign, the one having
the (k+1 )th highest weight (R5 action). All clusterheads having smaller and
equal weight than SRv will have to resign to ensure k -neighborhood condition.
SRv value of an ordinary node is 0 or R4 is enabled.

A truly clusterhead (Chv = T ) has to resign its role iff it violates the k-
neighborhood condition. A clusterhead v having to resign takes the nearly ordi-
nary state (Chv = NF ) - it performs R3 action. v stays in this nearly ordinary
state until all of nodes in its cluster have joined another cluster.

A node v that has the state “nearly ordinary” is requiring that the members
of its cluster join another cluster. Thus, the members of v’s cluster are enabled
(G11 or G21 predicate is verified), till v is nearly ordinary. As the scheduler is
fair, the members of v’s cluster will perform the rule R1 or R2. Thus, they will
leave the v’s cluster. Eventually v’s cluster contains one member: v. (∀z ∈ Nv :
Clusterheadz �= v). After that time, v will become an ordinary node (rule R2)
if v has at least a neighbor clusterhead whose weight is higher than v’s weight.
Otherwise, v will become a clusterhead (rule R1).

Due to an incorrect initial configuration, a node v may have to correct the
value of Clusterheadv and/or SRv. In this case it verifies one of the following
predicates: G12, G32, G4.

The safety predicate SP is defined as follow:

SP ≡ ∀v ∈ V : (Clusterheadv ∈ Nv ∪ {v}) ∧ (ChClusterheadv �= F ).

SP predicate ensures that (i) each node belongs to a cluster and that (ii) each
cluster has a clusterhead that performs its tasks correctly. Because a nearly
ordinary node and truly clusterhead node acts as a clusterhead. Thus, the hier-
archical structure exists if the SP is verified.

We denote z the clusterhead of node v. The safety predicate SP ensures that
z is a neighbor of v and z is not an ordinary node. Thus, the safety predicate
SP is only violated in cases of a z’s removal (or a crash of z), a failure of link
between v and z. Therefore, the safety predicate SP is preserved in the following
input changes:

1. Change of node’s weight (illustrated in Figure 1).
2. Crash of ordinary nodes.
3. Joining of subnetworks that verify SP .
4. Failures of link between two ordinary nodes or between two cluster-
head nodes.

After proving that SP is closed we conclude that Algorithm 1 is robust under
input changes presented above.

Algorithm 1 is illustrated in Figure 1, in this example, k = 1. Initially, node
5 has 2 clusterheads in its neighborhood. It assigns its SR to 9. 9 is the weight
of the first clusterhead which violates the 1-neighborhood condition in node 5’s



418 C. Johnen and L.H. Nguyen

h

:  Nearly ordinary node :  Clusterhead node:  Ordinary node

R1(2)

R3(4)R2(6)R2(4)

= 9w1 = 9w
1 = 9w1 = 9w1

= 9w1= 9w
1= 9w

1= 9w
1

R5(5) 3(1), R 2(1)R

w

w

ww

= 15

3

5

4 = 10

6 = 7= 82

w

node 4 changes
its weight

w

w

w

w

= 15

3

5

4

62w

= 7

= 5= 8

ww
6= 82 = 5

w

w

w

= 12

= 15

3

5

4 = 7

w

w

w

ww

= 15

3

5

4

6 = 5= 82
ww

6= 82

w

w

w

= 15

3

5

4 = 7

w

w

w

ww

= 15

3

5

4

6= 82 = 5

= 7

w

w

w

ww

3

5

4 = 10

6 = 7= 82

w

w

w

ww

= 15

3

5

4 = 10

6 = 7= 82

c

= 7

= 5

= 15(SR=5)

= 5 = 5 = 5 = 5

= 5= 5= 5

a b d

efg

Fig. 1. Convergence to a legitimate configuration in the case k = 1, h = 0

neighborhood (Figure 1.b). Node 1 does not stay clusterhead because SR5 ≥ w1 :
node 1 resigns to nearly ordinary state. No node has chosen node 1 as clusterhead
(i.e., node is in the cluster led by node 1). Thus, during the next computation
step, node 1 can join the cluster led by node 5 (Figure 1.c). Due to the change of
the weight of node 4 (Figure 1.d), node 2 cannot stay ordinary : all clusterheads
in the node 2’s neighborhood have a weight that is smaller than node 2’s weight.
Thus, node 2 becomes clusterhead (Figure 1.e). Node 4 resigns to nearly ordinary
state (Figure 1.f). It cannot keep the state ‘truly clusterhead’, because it violates
the 1-neighborhood condition: there are two clusterheads in its neighborhood
which have a higher weight than its weight (node 2 and 5). Node 6 does not
verify the affiliation condition (Chclusterhead6 = Ch4 = NF ). Node 6 switches of
cluster, it goes int eh cluster led by node 2 (Figure 1.g). After that, node 4 can
take the state ‘ordinary’ and stop to behave as a clusterhead. Node 4 joins the
cluster led by 5 (Figure 1.h). The network is stabilized. During the convergence
phase, the safety property SP is always verified: at any time the network is
partitioned into cluster, and each cluster has a leader ready to do the leadership
tasks (i.e., a leader which has the state truly clusterhead or nearly ordinary).
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5 Proofs of self-stabilization

5.1 Proof of Convergence

We first prove that the system reaches a terminal configuration.

Lemma 1. Let v be a node. The value of Chv cannot be NF forever.

Proof: We prove by contradiction. Assume that Chv = NF is verified forever.
Assume that there is a node u ∈ Nv such that Clusterheadu = v.

Case 1. Chu = F . Since Chv = NF then Clusterheadu /∈ N+
u (see the

definition of N+
u ). Thus, G21(u) is verified. As all computations are fair, u will

perform R2. After doing R2, Clusterheadu �= v is verified forever.
Case 2. Chu = T . Since Clusterheadu = v �= u. Thus, G12(u) or G31(u) is

verified. As all computations are fair, u will perform R1 or R3. After doing R1

or R3, Clusterheadu �= v is verified forever.
Case 3. Chu = NF . Since Clusterheadu = v �= u. Thus, G32(u) is verified.

As all computations are fair, u will perform R3. After doing R3, Clusterheadu �=
v is verified forever.

Therefore, ∀u ∈ Nv, Clusterheadu �= v is verified. Thus, G11(v) or G22(v) is
verified. As all computations are fair, v will perform R1 or R2. After doing R1

or R2, Chv = NF is not verified. That is a contrary. �
Lemma 2. A1 = {C | ∀v : (G12(v) = F ) ∧ (G32(v) = F )} is an attractor.

Proof: If v verifies predicate G12 (resp G32) then v is enabled and will stay
enabled up to the time where v performs R1 (resp R3). As all computations
are fair, v eventually performs R1 (resp R3). After that G12 (resp G32) is never
verified. �
Lemma 3. In A1, once v had performed the rule R1, v does not perform R1,
R2 or R3 unless a node u such that wu > wv had performed R1.

Proof: In A1, G12(v) and G32(v) = F is never true.
Once v had performed the rule R1, we have that Chv = T and Clusterheadv = v.
Thus, the next rule performed by v will be R3.
Before doing R1, G11(v) is verified, we have N+

v = ∅. At time where v performs
R3, G31(v) is verified, implies that N+

v �= ∅. Thus in meantime, a node u ∈ Nv,
wu > wv performed the rule R1. �
Lemma 4. In A1, once v had performed the rule R2, v does not perform R1,
R2 or R3 unless a node u such that wu > wv had performed a rule R1 or R3.

Proof: Once v had performed the rule R2, we have that Chv = F and Cluster
headv := maxwz{z ∈ N+

v }. Denote u the clusterhead of v, we have u ∈ N+
v and

wu = maxwz{z ∈ N+
v } > wv. Next time that v will perform a rule, G11(v) or

G21(v) is verified.
Case 1. G11(v) is verified. At time where v performs R1, N+

v = ∅, implies
that u performed the rule R3 in meantime.

Case 2. G21(v) is verified. We have (∃z ∈ N+
v : wz > wu + h) ∨ (u /∈ N+

v ),
implies that in meantime u performed R3 or a node z ∈ Nv such that wz >
wu + h > wu performed R1. �
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Corollary 1. In A1, once v had performed the rule R3, v will certainly perform
R1 or R2.

Lemma 5. Every fair computation e that starts in A1 has a suffix where in any
reached configuration ∀v ∈ V : (Gi(v) = F ), i = {1..3}.

Proof: We will prove by contradiction. Assume that e has not a suffix in which
∀v ∈ V : (Gi(v) = F ), i = {1..3}. A node cannot verify forever G1(v) ∨G2(v) ∨
G3(v) (this node would be enabled forever and never performs a rule). Thus
along a maximal computation there is a node v that infinitely often verifies
G1(v), G2(v) or G3(v) and also infinitely often does not verify G1(v), G2(v)
and G3(v). Meaning that v executes infinitely often R1, R2 or R3. Following
Corollary 1, if v executes infinitely often R3 then v executes also infinitely often
R1 or R2. Following Lemma 2, 3 and 4, once v have performed a rule R1, R2 or
R3, it will perform R1, R2 or R3 again if there exists a node u (wu > wv) that
performs R1, R2 or R3(u). Since the set of nodes is finite, then v performs R1,
R2 or R3 infinitely often only if there exists a node u (wu > wv) that performs
R1, R2 or R3 infinite many times. Using a similar argument we have a infinite
sequence of nodes having increasing weight that performs R1, R2 or R3 infinitely
often. Since the number of nodes is finite, this is a contrary. Hence our hypothesis
is false, and for every node v, Gi(v) : i = 1, 2, 3 becomes false forever. �

Theorem 1. The system eventually reaches a terminal configuration.

Proof: By Lemma 5, Gi(v), i = {1..3} is not verified, node v would only update
of SRv one time if necessary. When Gi(v) = F, i = {1..5} for every node v, the
system reaches a terminal configuration. �

5.2 Proof of Correctness

Theorem 2. Once a terminal configuration is reached, the ad hoc clustering
properties are satisfied.

Proof: In a terminal configuration, for every node v, we have Gi(v) = F : i =
{1..5}. Following Lemma 1, in a terminal configuration there is not a node v
such that Chv = NF .
Case 1. Chv = F .
G1(v) = F implies N+

v is not empty. G2(v) = F implies (�z ∈ N+
v : (wz >

wClusterheadv +h)) and (Clusterheadv ∈ N+
v ). Thus v satisfies property 1 and 2.

Case 2. Chv = T .
(G2(v) = F ) ≡ (∀z ∈ N+

v : wv > SRz) ∧ (Clv ≤ k). G1(v) = F implies that
Clusterheadv = v. We now prove that v has at most k neighboring clusterheads.
Since Clv ≤ k, then v has at most k neighboring clusterheads with higher weight
than v’s weight. Assume that v has more than k neighboring clusterheads, thus
there exits at least a neighboring clusterhead u of v such that wu ≤ SRv < wv.
Hence, G22(u) = T because v ∈ N+

u (wu ≤ SRv), that is a contrary. �
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6 Robustness

On a configuration that satisfies SP , the clusterhead of any node performs its
task correctly, because it is not an ordinary node. Thus, the hierarchical structure
is kept up. Let us remind the definition of SP : SP ≡ ∀v ∈ V : (Clusterheadv ∈
Nv ∪ {v}) ∧ (ChClusterheadv �= F ).

Let v a node. We define SPv as the safety predicate SP on v.

SPv ≡ (Clusterheadv ∈ Nv ∪ {v}) ∧ (ChClusterheadv �= F ).

Lemma 6. SPv is closed.

Proof: Assume that we have a computation step c1
cs→ c2, we will prove that if

SPv is verified in c1, then in c2, SPv is verified.
We will prove by contrary. Assume that in c2, (Clusterheadv /∈ {Nv ∪ v}) ∨
(ChClusterheadv = F ). Thus, in cs there are two possibilities.

Case 1. v changed its clusterhead during the execution cs. Note that the rules
R4 and R5 do not change the value of clusterhead of v. If v performs R1 or R3 in
cs then SPv is always verified because after doing R1 or R3, (Clusterheadv =
v) ∧ (Chv �= F ). Thus, v performed R2 during the execution of cs. We denote z
the clusterhead selected by v in cs. In c1, Chz = T and in c2, Chz = F . In cs,
z cannot perform R2. Thus, there is a contrary because R2 is the only rule that
changes the Chz value to F .

Case 2. v did not change its clusterhead during the execution of cs. Denote
z the clusterhead of v. In c1, SPv is verified implies that Chz �= F . In c2,
SP(v) is not verified implies that Chz = F . Thus, during the execution cs, z
performed R2. But z can perform R2 only when G22(z) is verified, that implies
Clusterheadv �= z in cs. That is a contrary. �

Theorem 3. SP is closed.

Proof: The theorem follows directly from Lemma 6. �

7 Time Complexity

We consider synchronous computation, in which every process performs its code
simultaneously. Thus, all enabled process perform a rule in a computation step.

Theorem 4. The system verifies SP in one round under a synchronous sched-
ule.

Proof: Assume that we have a computation step c1
cs→ c2. There are two possi-

bilities:

Case 1. In c1, Gi(v) = F, ∀i ∈ {1..3}. We denote z = Clusterheadv in c1.
1. If Chv = T . Since G12(v) and G31(v) are not verified, that implies
z = v, thus SPv is verified in c1.
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2. If Chv = F . Since G21(v) is not verified, that implies z ∈ N+
v , thus

SPv is verified in c1.
3. If Chv = NF . Since G11(v) and G22(v) are not verified, that implies
z = v, thus SPv is verified in c1.

Thus, in c1, SPv is verified. Since SPv is closed (Lemma 6), then in c2, SPv is
verified.

Case 2. In c1, ∃i ∈ {1..3} : Gi(v) = T .
1. If G1(v) = T . v will performs R1(v) in cs. After performing R1(v),
(Clusterheadv = v) ∧ (Chv = T ), thus SPv is verified in c2.
2. If G3(v) = T . v will performs R3(v) in cs. After performing R3(v),
(Clusterheadv = v) ∧ (Chv = NF ), thus SPv is verified in c2.
3. If G2(v) = T . v will performs R2(v) in cs. We denote z’ the cluster-
head selected by v in cs. Using the same argument in case 2 of Lemma
6: z’ could not perform R2 in cs. Therefore, SPv is verified in c2.

�
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Fig. 2. Stabilization time

The stabilization time is the maximum number of computation steps needed
to reach a stabilized configuration from an arbitrary initial one. Figure 2 presents
a scenario to measure stabilization time in the case k = 1, h = 0. Note that
this example can be generalized at any value of k and the initial configuration
is the worst one. We have a configuration C composed by m blocs as depicted
in Figure 2(a). Each bloc Bi includes two clusterheads Xi, Yi and an ordinary
node Zi. We assume that the weight of nodes are ordered as the following:
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Xi > Yi > Zi > Yi+1. A clusterhead node Z ′, Z ′ > Y1 is a neighbor of Y1. The
largest convergence time under any weight-based clustering algorithm happens
with this initial configuration. We denote N the number of nodes in the system
S, N = m(k + 2) + 1. Following Algorithm 1, from the initial configuration,
each bloc Bi will one after another takes two computation steps to reconstruct.
Thus, 2m + 1 rounds are needed to converge under the synchronous schedule.
The stabilization time is O(2N/(k + 2)).
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Abstract. We propose the correctness proofs and the complexity anal-
ysis for the first self-stabilizing constructions of connected overlays for
wireless networks (eg. MANETs, WSN) based on the computation of
Connected Dominating Set (CDS). The basic idea is to construct an over-
lay that contains a small number of nodes, but still obtain full connectiv-
ity of the network while only relying on local exchanges of information
and knowledge. We adopt two methodologies of construction: the first
methodology consists of two parallel tasks, namely, computing a maximal
independent set (MIS) and then adding bridge nodes between the MIS
nodes. The second methodology computes a connected dominating set
using the observation that a dominator is a bridge between nodes that
do not share the same neighborhood.

The proposed algorithms are fully decentralized and are designed in
a self-stabilizing manner in order to cope with transient faults, mobility
and nodes join/leave. In particular, they do not need to be (re)initialized
after a fault or a physical topology change. That is, whatever the initial
configuration is, the algorithms satisfy their specification after a stabi-
lization period. The convergence time of our algorithms is linear in the
size of the network and they use only one extra bit of memory. We also
present an optimization of our algorithms that reduces the number of
nodes in the cover. However, the optimization increases the convergence
time with a constant factor.

1 Introduction

Wireless adhoc or sensor networks, unlike cellular networks, do not rely on a
pre-existing cellular infrastructure. In these networks it is beneficial to set-up an
overlay (backbone) that will help economizing the energy of the system while
routing, clustering, deploying replicas or scheduling the execution of nodes in
order to avoid collisions. It is folklore nowadays that the computation of con-
nected dominating sets is the basis of such backbones. A dominating set of a
graph is a subset of the graph nodes such that every node in the graph is either
member of the dominating set or adjacent to a member of the dominating set.
A dominating set is connected if there is a path between any two nodes in the
dominating set that includes only nodes in the dominating set.
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In a large scale network deployed in a fault prone environment a connected
backbone should verify additional properties such as: consume the minimum
resources in the system, have a decent size and finally to be able to self-organize
and recover from transient or permanent failures.

One way to construct a connected overlay is to exploit the common need of the
applications that will share the local resources of each node in the network. Max-
imal independent sets (MIS) are often used in order to design efficient clustering,
provide collision free transmission, address scheduling or resource allocation is-
sues. Therefore, a service that provides a maximal independent set is mandatory
in the future middlewares dedicated to wireless networks. This service can also be
exploited in order to obtain connected overlays by simply connecting the nodes
selected to be part of the maximal independent set. Therefore, one of the design
methods proposed in our paper uses the above approach. However, in systems
that are designed to respond to very simple tasks like for example gathering and
transmission of data, the middleware part may not include a maximal indepen-
dent set service. Consequently, in these systems, it is more interesting to compute
connected overlays based on the construction of dominating sets from scratch.
Therefore in our work we also explore the fault-tolerance and self-stabilization
issues of this second design methodology.

Related Work. A first algorithm that computes a weakly connected overlay based
on the idea of connecting MIS nodes was proposed in [1]. The proposed algorithm
performs first a leader election then constructs a spanning tree rooted at the
leader. Then the leader starts a coloring process. In this phase the levels of the
tree color alternately gray and black (the black nodes form a MIS while the
gray nodes are the bridges). The proposed solution uses inefficiently the network
resources since it requires a leader election and the construction of a spanning
tree. Additionally it introduces an unique point of failure (the leader). Moreover,
the solution is not fault-tolerant. A distributed local, fault tolerant and self-
healing solution for the computation of a weakly connected overlay based on
connecting MIS nodes via bridges was proposed in [12]. The proposed solution
is only evaluated via simulations, no correctness proofs are provided.

Several algorithms have been proposed for finding connected dominating sets
in adhoc networks or sensor networks [19,23,4,5,21,3,12,18,16]. All these solu-
tions are distributed and apply the pruning strategy: a subset of nodes is se-
lected to be part of the connected cover and from this set all redundant nodes
are removed. However none of the above algorithms is self-stabilizing 1 or fault-
tolerant. Self-organizing issues in the construction of connected dominating sets
is addressed in [20]. The fault tolerance issues are addressed in [25] by the study of
k-coverage and k-connectivity. The proposed solution involves the computation
of a Voronoi diagram for independent sensor nodes. Neither the implementa-
tion of local Voronoi diagrams nor the transient faults are addressed. In [6,7,8]
self-stabilizing solutions are proposed for computing connected covers of query

1 An algorithm is said to be self-stabilizing if started in any arbitrary state, the algo-
rithm reaches some predefined legitimate state in a finite number of steps.
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regions in sensor networks. As stated in [8] the above problem is not equivalent
to computing a connected overlay. However, solutions proposed in [6,8] use as
building blocks in our solutions to the connected overlays proposed in [12].

To the best of our knowledge the first self-stabilizing algorithm for the com-
putation of connected dominating sets was proposed in our previous work [12] in
the context of designing efficient lookup algorithms for MANETs. In this work
several overlays are experimentally evaluated with respect to the lookup specific
metrics. However the proposed overlays are not proved correct neither analyzed
from the complexity perspective. In [2] the authors proposed and prove correct
a solution for connected dominating sets based on the self-stabilizing minimum
domination protocol proposed in [24]. The solution proposed in [2] needs a syn-
chronous scheduler and converges in a polynomial time. In parallel with our work,
[17] proposed an algorithm for computing a self-stabilizing minimal dominating
set algorithm with safe convergence. The algorithm works under a synchronous
scheduler.

Contributions. In this paper we propose novel self-stabilizing and fault-tolerant
algorithms for the computation of connected overlays in wireless networks. Unlike
the solutions proposed in [2,17], our algorithms do not make use of any synchrony
(i.e. they work in asynchronous environments). Additionally, they are able to self-
organize, self-heal and cope with both transient and permanent faults. Therefore
they are appealing for large scale networks. Two methodologies of design are
used. The fist one uses as basis a maximal independent set overlay and computes
in a self-stabilizing manner bridges between MIS nodes, while the second one
computes a connected dominating set from scratch. We proposed two different
algorithms that follow the first strategy. The convergence time of both of them
is linear in the size of the network. The first algorithm converges quicker while
the second algorithm provides a smaller overlay. Both algorithms need only one
additional state provided a MIS. Additionally, we prove correct and analyze
the complexity of the self-stabilizing algorithm we first proposed in [12] that
computes a connected dominating set. The algorithm needs only 2 states and
converges under an asynchronous scheduler in a linear time in the size of the
network. Due to space limitation the detailed proofs of our results are available
in [11].

2 System Model and Definitions

Network Model. In this work we focus on wireless mobile systems. A node in the
system is a device that uses wireless communication. A transmission of a node
p is received by all nodes within a disk centered on p whose radius depends on
the transmission power, referred to in the following as the transmission disk; the
radius of the transmission disk is called the transmission range. Thus, there is a
single communication primitive, send(m), allowing a node to transmit a message
m to all nodes inside its transmission disk. The combination of the nodes and the
transitive closure of their transmission disks forms a wireless ad-hoc network.



428 V. Drabkin, R. Friedman, and M. Gradinariu

The network described above can also be modeled as a graph G = (V, E)
where V is the set of network nodes and E models the one-to-one neighboring
relations. A node q is a neighbor of another node p if q is located within the
transmission disk of p. In the following, N (p) refers to the set of neighbors of a
node p. By considering N (p) as a relation (defining the set N (p)), we say that a
node p has a path to a node q if q appears in the transitive closure of the N (p)
relation.

Finally, we assume an abstract entity called an overlay, which is simply a
collection of nodes. Nodes that belong to the overlay are called overlay backbone
nodes. Additionally we consider a generic function which associates with each
node some value from an ordered domain, which represents the node’s appro-
priateness to serve in the overlay. We call this value the goodness number. This
way, it is possible to compare any two nodes using their goodness number and to
prefer to elect the one whose value is higher to the overlay. For example, it is easy
to evaluate and compare the battery level of nodes, or to obtain and compare
the number of objects for which a node is proxy. In the following, ei denotes
the goodness number of node i. In order to simplify the algorithms presentation
we introduce the goodness relation denoted in the following by ≺. Node j is
better than node i according to the ≺ relation if either the goodness number of
i is superior to the goodness number of j or the nodes have the same goodness
number but the identifier of j is greater than the identifier of i. Formally, i ≺ j
iff ei < ej ∨ ei = ej ∧ idi < idj . Note that ≺ defines a total order on the nodes
when the goodness values are comparable. Part of what we do in this paper is
investigating various protocols for deciding which nodes should be in the overlay.

Program. In this paper, we consider the local shared memory model of com-
munication as used by Dijkstra [9]. The program of every processor consists of
a set of shared variables (henceforth, referred to as variables) and a finite set
of actions. Every processor (or sensor) can only write to its own variables, but
can read its own variables and the variables owned by the neighboring nodes.
The above can be easily implemented in a wireless environment using a pool or
push strategy and the assumption that each node locally maintains a copy of the
shared variables of its neighbors. With the pool strategy each node periodically
synchronizes its local copies with the real variables of its neighbors. In the push
strategy a node, whenever its local variables change, pushes the changes to its
neighborhood.

Each action is of the following form: < label >::< guard >−→ < statement >.
The guard of an action in the program of p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard evaluates to
true.

The state of a node is defined by the values of its variables. The state of a
system is the product of the states of all nodes. We will refer to the state of a
node and system as a (local) state and (global) configuration, respectively.

Let a distributed protocol P be a collection of binary transition relations
denoted by "→, on C, the set of all possible configurations of the system. A
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computation of a protocol P is a maximal sequence of configurations e = γ0, γ1

, ..., γi, γi+1, ..., such that for i ≥ 0, γi "→ γi+1 (a single computation step) if
γi+1 exists, or γi is a terminal configuration 2. The Maximality means that the
sequence is either infinite, or it is finite and no action of P is enabled in the
final configuration. All computations considered in this paper are assumed to be
maximal. The set of all possible computations of P in system S is denoted as E .
A node p is said to be enabled in γ (γ ∈ C) if there exists an action A such that
the guard of A is true in γ. Similarly, an action A is said to be enabled (in γ) at
p if the guard of A is true at p (in γ).

We assume a weakly fair and distributed daemon(scheduler) also referred in the
following as asynchronous or arbitrary scheduler. Weak fairness means that if a
node p is continuously enabled, then p will be eventually chosen by the daemon
to execute an action. A distributed daemon implies that during a computation
step, if one or more nodes are enabled, then the daemon chooses at least one
(possibly more) of these enabled nodes to execute an action.

Fault Model. This research deals with the following types of faults: (i) The
state or configuration of the system may be arbitrarily corrupted. However, the
program (or code) of the algorithm cannot be corrupted. (ii) Nodes may crash.
That is, faults can fail-stop nodes. (iii) Nodes may recover or join the network.
The topology of the network may change due to these faults. Faults may occur
in any finite number, in any order, at any frequency, and at any time.

Self-stabilization [10]. Let LA be a non-empty legitimacy predicate3 of an algo-
rithm A with respect to a specification predicate Spec such that every configu-
ration satisfying LA satisfies Spec. Module A is self-stabilizing with respect to
Spec iff the following two conditions hold:
(i) Every computation of A starting from a configuration satisfying LA preserves
LA (closure).
(ii) Every computation of A starting from an arbitrary configuration contains a
configuration that satisfies LA (convergence).

We require the algorithms to be self-organizing, self-stabilizing and self-healing
[10]. That is, regardless of the initial state (wrong initialization of the local
variables, memory or program counter corruptions) nodes self-configure/self-
organize using only local information in order to make the system self-stabilize
to a legitimate state. The legitimate state is defined with respect to a connected
cover formed out of the nodes that can communicate with each other either
directly or indirectly. The nodes in this set are the only nodes that remain active.
Moreover, under various perturbations, such as node joins, failures (due to crash
or energy loss), state corruptions, or weakening of power, the connected cover
should be able to self-heal without any external intervention and the impact
should be confined within a tightly bounded region around the perturbed area.

2 In a terminal configuration no action is enabled.
3 A legitimacy predicate is defined over the configurations of a system and is an

indicator of its correct behavior.
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3 Self-∗ MIS-Based Connected Overlay

We start this section by giving a formal definition of a Maximal Independent Set
(MIS) and then discuss how to obtain an MIS-based connected overlay.

Let G = (V, E) be a communication graph. Two nodes i and j in G are said
to be independent if (i, j) �∈ E. A subset S ⊆ V of nodes is independent if every
pair of nodes in S are independent. A set S is a maximal independent set (MIS)
if S is independent, yet for any node k ∈ V \ S, S ∪ {k} is not independent.

The MIS-based connected overlay proposed in this paper is constructed in two
phases that may be executed in parallel. In the first phase, the MIS is computed.
Since by definition, the set of nodes in an MIS cannot directly communicate with
each other, a second phase identifies bridge nodes that connect the MIS nodes.
Of course, the goal is to find as few bridges as possible, yet to do this in a
completely decentralized manner.

Several self-stabilizing constructions of MIS overlays are proposed in the lit-
erature ([14,15,12]). In the next section we analyze the self∗ properties and the
complexity of the solution we first proposed in [12]. This solution extends the
algorithm proposed in [15] to systems where the selection of MIS nodes is based
on their goodness number. The time complexity of our solution is O(n) and it
uses only one memory bit which is the optimal memory requirement for com-
puting a MIS. Nodes with respect to the MIS can be active or passive. An active
node is a node part of the MIS while a passive node is not member of the
MIS.

3.1 Self-stabilizing Maximal Independent Set (MIS)

We are interested in a distributed algorithm for computing a MIS in such a
way that every node makes local calculations based only on the knowledge of
its neighbors. Recall that the neighbors of p are the nodes that appear in the
transmission disk of p, and thus p can communicate directly with them, and
every message p sends is received by all of them. Additionally, we would like to
influence the overlay construction process such that the overlay nodes will be the
“best” nodes under a given metric. For example, since in mobile systems nodes
are often battery operated, we may wish to use the energy level as the metric,
in order to have the nodes with highest energy levels members of the overlay.
Alternatively, we might use the number of objects for which a node is proxy
as the metric, in order to reduce the average number of hops a search message
has to travel. Similarly, we might use bandwidth, transmission range, or local
storage capacity, or some combination of several such metrics. This is achieved
by the goodness number.

The MIS algorithm consists of computation steps that are taken periodically
and repeatedly by each node. In each computation step, each node makes a local
computation about whether it thinks it should be in the MIS or not, and then
exchanges its local information with its neighbors. For simplicity, we concentrate
below on the local computation steps only.
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Module 1. Goodness-based MIS executed by node i

Input Parameters: N (i): set of i’s neighbors (including i itself);
statusj, ∀j ∈ N (i), j �= i: the status of each i neighbor;
ej ,∀j ∈ N (i): the goodness number of neighbor j;

InOut Parameters: statusi: the status of node i
Predicates: i ≺ j ≡ ei < ej ∨ ei = ej ∧ idi < idj

MAXE(i) ≡ ∀j ∈ N (i), j �= i, j ≺ i
Actions:

R1 : MAXE(i) ∧ statusi �= active → statusi := active
R2 : statusi = active ∧ ∃j ∈ N (i), statusj = active∧ i ≺ j → statusi := passive
R3 : ¬MAXE(i) ∧ ∀j ∈ N (i), statusj �= active → statusi := active

The local state of each node includes a status, which is either active or passive,
its goodness number, and its knowledge of the local states of all its neighbors
(based on the last local state they reported to it), and for each neighbor, the list
of its active neighbors. The active status means that the node believes it is in
the MIS, while passive means that it believes that it is not part of the MIS.

The local execution of the MIS part of the protocol includes the rules R1,
R2, and R3 of Module 1. The first rule, R1, is used to elect nodes that have
the maximal goodness number in their neighborhood. The second rule, R2, is
used to ensure that we do not have a situation in which two neighboring nodes
are in the MIS. This could happen, for example, due to movement of nodes,
which changes their neighborhood. Thus, if an active node i finds that one of
its neighbors is active and has higher goodness number, then i gives up and
becomes passive. The third rule, R3, is executed by not active nodes that do
not have an active neighbor even though they do not have the highest goodness
number. This situation can occur, for example, if all neighbors of i that have
higher goodness number than i gave up being active due to the fact that they
had other neighbors with even higher goodness numbers.

Rules R1 and R3 are based on the evaluation of the maximal goodness num-
ber in a neighborhood. In case two nodes have the same goodness number, the
symmetry is broken using ids. In the following, ei denotes the goodness number
of node i. In order to simplify the algorithms presentation we introduce the good-
ness relation denoted in the following by ≺. Node j is better than node i accord-
ing to the ≺ relation if either the goodness number of i is superior to the goodness
number of j or the nodes have the same goodness number but the identifier of j
is greater than the identifier of i. Formally, i ≺ j iff ei < ej ∨ ei = ej ∧ idi < idj .
Note that ≺ defines a total order on the nodes when the goodness values are
comparable. Also, MAXE(i) is a boolean predicate that evaluates to true if and
only if i is maximal in its neighborhood w.r.t. the relation ≺ defined above.

Definition 1 (legitimate configuration for Module 1). A legitimate con-
figuration of Module 1 is a configuration where active nodes define a maximal
independent set. Let LMIS be the set of legitimate configurations of Module 1.
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Module 2. Local Asynchronous Bridge Construction executed by node i

InOut Parameters: statusi : the status of i
Input Parameters: N (i): set of i’s neighbors;
Predicates: i ≺ j ≡ ei < ej ∨ ei = ej ∧ idi < idj

BridgeCandidate(i) ≡ ∃j ∈ N (i), statusj = active ∧ ¬(N (i) ⊆ N (j))
Covered(i) ≡ ∃j ∈ N (i), j �= i, N (i) ⊂ N (j) ∨ (N (i) = N (j) ∧ i ≺ j)

Actions:
R1 : statusi = passive∧BridgeCandidate(i)∧¬Covered(i) → statusi := bridge
R2 : statusi = bridge ∧ (¬BridgeCandidate(i) ∨ Covered(i)) → statusi :=

passive

Note that once in a legitimate configuration none of the rules of Module 1 are
enabled.

Lemma 1 (convergence of Module 1). Let S be a system executing Module
1 under an arbitrary scheduler. Any execution of S converges to a configuration
in LMIS .

Lemma 2 (convergence time of Module 1). The convergence time of Mod-
ule 1 is O(n) steps under an arbitrary weakly fair scheduler.

In the next two sections we propose and prove correct self-stabilizing construc-
tions of MIS-based connected overlays.

3.2 Local Asynchronous MIS-Based Connected Overlay

The algorithm shown as Module 2 provides the bridges between the active nodes
computed by an underlying self-stabilizing MIS algorithm (recall that MIS nodes
are not neighbors). An example of a MIS algorithm can be Module 1. Module
2 has two rules and is designed to work on top of a self-stabilizing algorithm
that computes a maximal independent set. The local state of each node includes
a status, which is either active, passive or bridge, its goodness number, and its
knowledge of the local states of all its neighbors (based on the last local state
they reported to it), and for each neighbor, the list of its active neighbors. The
active status means that the node believes it is in the MIS, bridge means that
it is acting as bridge, and passive means that it is neither.

The first rule, R1, is used to designate nodes that potentially connect two
nodes in the MIS. Specifically, if node i is passive, and has at least one neighbor
which is active, then i becomes a bridge node only if it is not covered by other
node. Rule R2 is used to eliminate redundant bridge nodes (covered by other
bridges). That is, whenever there are two neighboring bridge nodes i and j such
that the set of neighbors of i is included in the set of j’s neighbors, or both have
the same neighbors but i has lower goodness number than j, then i switches
back to passive. Rule R2 also acts as a correction rule. Whenever, bridges are
erroneously initialized (they are not neighbors of an active node or are covered
by an active neighbor) they are demoted to passive.
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Fig. 1. Topology Example

Example 1. In the following we show via an example an asynchronous execution
of Module 2 under a weakly fair arbitrary scheduler.

The topology of the network in Figure 1 is as follows: p, v are active; t, t′, s, s′ are
passive; t, t′ ∈ N (p); p, t′ ∈ N (t); p, t, s′ ∈ N (t′); s, s′ ∈ N (v); v, s′ ∈ N (s); v, s, t′

∈ N (s′). Let t′, t passive and let s and s′ passive as well. Since the scheduler is
weakly fair, t′ eventually executes rule R1 of Module 2 and becomes bridge. t is
covered by t′, t will not execute rule R1 of Module 2 and remains passive. In a
similar way, s′ becomes bridge and s stays passive.

Definition 2 (legitimate configuration for Module 2). A legitimate con-
figuration of Module 2 is a configuration where any good neighbor of an active
node is a bridge. A good neighbor is a neighbor that is not covered by any other
neighbor. Let LBRIDGE be the set of legitimate configurations of Module 2.

Lemma 3 (convergence of Module 2). Let S be a system executing Module
2 under an asynchronous scheduler. Any execution of S converges to a configu-
ration in LBRIDGE.

Lemma 4. The convergence time of Module 2 started from a configuration ver-
ifying LMIS is (n-m) steps in the worst case, where m is the size of the MIS.

Let WCMIS be the hierarchical composition [13] of a self-stabilizing maximal
independent set (eg. Algorithm shown as Module 1) and Module 2.

Definition 3 (legitimate configuration for WCMIS). A legitimate con-
figuration of WCMIS is a configuration where active nodes define a maximal
independent set and the subgraph containing only active and bridge nodes is con-
nected. Let LWCMIS be the set of legitimate configurations of WCMIS.

Lemma 5 (convergence of WCMIS). Let S be a system executing WCMIS
under an asynchronous scheduler. Any execution of S converges to a configura-
tion in LWCMIS.

Lemma 6. Let O(f(n)) be the convergence time of a self-stabilizing MIS algo-
rithm. The convergence time of WCMIS is O(f(n)+n) steps. The convergence of
WCMIS obtained as the hierarchical composition between Module 1 and Module
2 is O(n).
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Module 3. Asynchronous Bridge Construction executed by node i

InOut Parameters: statusi : the status of i
Input Parameters: N (i): set of i’s neighbors;

ActiveNd(i): set of i’s active neighbors up to distance d;
Predicates: i ≺ j ≡ ei < ej ∨ ei = ej ∧ idi < idj

BridgeCandidate(i) ≡ ∃j ∈ N (i), statusj = active
Covered(i) ≡ ∃j ∈ N (i), j �= i, statusj = bridge∧ (ActiveN2(i) ⊂ ActiveN2(j))∨

(ActiveN2(i) = ActiveN2(j) ∧ i ≺ j)
Actions:

R1 : statusi = passive∧BridgeCandidate(i)∧¬Covered(i) → statusi := bridge
R2 : statusi = bridge ∧ (Covered(i) ∨ ¬BridgeCandidate(i)) → statusi :=

passive

t’ s’

vp
q

m

st

Fig. 2. Topology Example

3.3 Self∗ MIS-Based Connected Overlay with Restricted Knowledge

The algorithm shown as Module 2 stabilizes under an weakly fair scheduler and
is fault tolerant. Unfortunately, the cover may include almost all the nodes in the
network. In the following we propose a slightly modification of this algorithm,
Module 3, that reduces via pruning the size of the overlay. The essential difference
between the two algorithms is the choice of redundant bridges via the Cover
predicate. A bridge i is covered by another bridge j if j has as neighbors all
the active neighbors of i up to distance two. The algorithm idea is as follows. A
node, neighbor of an active node, promotes to bridge via R1 if it has no neighbor
bridge that cover it. A bridge is demoted to passive via R2 if it is covered by
another bridge or it has no active neighbor.

Example 2. In the following we show via two examples an asynchronous execu-
tion of Module 3 under a weakly fair arbitrary scheduler.

Consider first the topology showed in Figure 1. Assume t′ and t passive (assume
s and s′ passive as well). Since the scheduler is weakly fair, t and t′ eventually
execute rule R1 of Module 3 and become bridge. Since t′ covers t then t can
execute R2 and demotes to passive. The same scenario is true for the node s



Self-stabilizing Wireless Connected Overlays 435

that is covered by the node s′. So, s can execute R2 and demotes to passive. t′

and s′ cannot execute their actions. So, the system is stabilized.
Consider now Figure 2 with the following topology: p, v active; t, t′, s, s′, m, q

passive; t, t′, m, q ∈ N (p); p, t′, q ∈ N (t); p, t, s′, q ∈ N (t′); s, s′, m, q ∈ N (v);
v, s′, q ∈ N (s); v, s, t′, q ∈ N (s′). p, t′, s′, v, t, s, m ∈ N (q) p, v, q ∈ N (m). Assume
m ≺ q, t ≺ t′ and s ≺ s′. Assume all nodes but p and v passive. Since the
scheduler is weakly fair, t and t′ eventually execute rule R1 of Module 3 and
become bridge. Since t′ covers t, t will execute rule R2 of Module 3 and will
demote to passive. In a similar way, s becomes passive. Finally, m, q execute R1.
So, m, s′, t′ are enabled for R2 (m ≺ q and s′, t′ are covered by q). The overlay
stabilizes and each node executes its actions a finite number of steps.

Lemma 7 (convergence of Module 3). Let S be a system executing Module
3 under an asynchronous scheduler. Any execution of S converges to a configu-
ration in LBRIDGE.

Lemma 8. The convergence time of Module 3 started from a configuration ver-
ifying LMIS is Δ(n −m)) steps, where m is the size of the MIS and Δ is the
diameter of the network.

Let WCMIS be the hierarchical composition of Modules shown as Module 1 and
Module 3. Using Lemmas 2 and 8 and the same arguments as for the proof of
Lemma 5 we obtain the following results.

Lemma 9 (convergence of WCMIS). Let S be a system executing WCMIS
under an asynchronous scheduler. Any execution of S converges to a configu-
ration in LWCMIS . The convergence time of WCMIS is (Δ + 2)n steps in the
worst case or O(Δn).

Optimization. The convergence time of Module 3 can be reduced (for the worst
case) with a slightly modification of the Coverage predicate.

CoveredModified(i) ≡ ∃j ∈ N (i), j �= i, statusj = bridge ∧(
(Active or BridgeN(i) ⊂ Active or BridgeN(j)) ∨ (Active or BridgeN(i) =

Active orBridgeN (j) ∧ i ≺ j)
)

where Active or BridgeN(i) is the set of ac-
tive i’s neighbors up to distance 2 and bridge neighbors up to distance 1,
Active or Bridge(i) = ActiveN2(i)

⋃
BridgeN1(i) where BridgeNd(i) denotes

the bridge neighbors of the node i up to distance d.

Lemma 10. In each execution of Module 3 where Covered predicate is replaced
by CoveredModified predicate a non active process executes its actions at
most 2 times. The convergence time of Module 3 is 2(n−m) steps in the worst
case, where m is the size of the MIS.

Corolary 1. The convergence time of WCMIS obtained as the composition of
Module 3 optimized and Module 1 is 2n steps in the worst case or O(n).
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4 Self-∗ Connected Dominating Set (DS) Based Overlay

We start this section by giving a formal definition of a Connected Dominating
Set (DS), and then discuss how to obtain a DS based overlay.

Let G = (V, E) be a communication graph. A set S ⊂ V is a dominating set
if any node in V is a member of S or has a neighbor in S. S is connected if for
any two nodes in S there is a communication path between them including only
nodes in S.

In the following, we present a self-stabilizing version of the DS-algorithm
construction of [22,23]. The algorithm (Module 4) requires each node to know
about its neighbors at distance two, or in other words, the neighbors of its
direct neighbors. The protocol also uses the neighbors independence predicate,
as defined below:

Definition 4 (independent neighbors). Let G = (V, E) be the communica-
tion graph and let i ∈ V . Independent Neighbors(i) ≡ ∃y, k ∈ N (i), y �= k �=
i, k �∈ N (y) ∧ y �∈ N (k).

Intuitively, the predicate Independent Neighbors(i) evaluates to true if there
are two neighbors of i, y and k, that are not direct neighbors of each other. If
this predicate is true, then i should be in the dominating set, unless there is
another node j that is a neighbor of both y and k and has a higher goodness
number.

Thus, a node i executes the rule R1 if the predicate Independent Neighbors
is true for i and i is not dominated by another node then i becomes active.
However, by the rule R2, if an active node i finds another active neighbor j and
both share the same neighbors or the set of i’s neighbors is included in the set of
j’s neighbors, yet the other node has a higher goodness number, then i gives up.
Note that at the beginning of the protocol all nodes might be passive. Also, if
the graph is fully connected (a clique), then no node will become active by R1.
This is taken care of by the rule R3, in which if all the nodes in i’s neighborhood
are passive and i has the maximal goodness number, then i becomes active.

The system is in a legitimate configuration if the set of nodes is split in two
classes: the class of active nodes and the class of passive nodes. The active nodes
form a connected overlay and each passive node has an active neighbor.

Definition 5 (legitimate configuration for Module 4). A legitimate con-
figuration of Module 4 is a configuration where active nodes define a connected
overlay and each passive node has an active neighbor. Let LCDS be the set of
legitimate configurations of Module 4.

Lemma 11. Let e be an arbitrary execution of Module 4. e converges to a ter-
minal configuration in a finite number of steps. The set of active nodes in the
terminal configuration is connected.

Lemma 12. A terminal configuration for Module 4 is in LCDS .

Lemma 13. Module 4 converges in n steps.
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Module 4. Goodness based DS executed by node i

Input Parameters: N (i): set of i’s neighbors;
statusj, ∀j ∈ N (i), j �= i: active,passive;
ej ,∀j ∈ N (i): the goodness number of neighbor j;
N (j), ∀j ∈ N (i): the set of neighbors of neighbor j of i;

InOut Parameter: statusi: the status of node i
Predicates:

Independent Neighbors(i) ≡ ∃y, k ∈ N (i), y �= k �= i, k �∈ N (y) ∧ y �∈ N (k)
i ≺ j ≡ ei < ej ∨ ei = ej ∧ idi < idj

MAXE(i) ≡ ∀j ∈ N (i), j �= i, j ≺ i
Dominator(j, i) ≡ (N (i) ⊂ N (j)) ∨ (N (i) = N (j) ∧ i ≺ j)

Actions:

R1: statusi = passive ∧ Independent Neighbors(i)∧ � ∃j ∈
N (i), Dominator(j, i) → statusi := active

R2: statusi = active∧∃j ∈ N (i), statusj = active∧Dominator(j, i) → statusi :=

passive

R3: statusi = passive∧∀j ∈ N (i), N (j) = N (i)∧MAXE(i) → statusi := active

5 Self-healing Properties of the Proposed Algorithms

Note 1. Note that Module 1 converges despite local fluctuations of the goodness
value.

– If an active node suffers a drop in its goodness value then it will be auto-
matically demoted and replaced by the node with the maximal goodness in
its neighborhood.

– If the goodness value of a passive node increases such that it becomes max-
imal in its neighborhood then the node is promoted active and replaces the
current active node.

– If in a neighborhood a new node is injected and this node has the maximal
goodness then the new node is promoted active and replaces the existing
active node in its neighborhood.

Lemma 14. WCMIS obtained as the composition of Module 2 and Module 1
self-heals under an asynchronous scheduler.

Lemma 15. WCMIS obtained as the composition of Module 3 and Module 1
self-heals under an asynchronous scheduler.

Lemma 16. Module 4 self-heals.

6 Conclusions

In this paper we proposed the correctness proofs and analyzed the stabiliza-
tion time and the memory cost of the fist three self-stabilizing algorithms that



438 V. Drabkin, R. Friedman, and M. Gradinariu

compute connected overlays in wireless network under asynchronous schedulers.
These algorithms are designed following two different methods: the first two algo-
rithms use an underlying maximal independent set while the third one constructs
a connected dominating set from scratch. The first method may be tempting in
systems where a maximal independent service already exists and only local com-
putations are required (eg. byzantine prone environments). However, this method
generates a coverage set that may include (in sparse topologies) almost all nodes
in the network (see Module 2). Therefore we proposed Module 3 that computes
a better connected overlay using pruning strategies. However, the pruning pro-
posed in this paper increase the convergence time with a constant factor and need
communications at two hops distance. The most appealing approach is Module
4 with a linear convergence time in the worst case and a cost of one memory bit.
However, in order to execute this algorithm each node has to know the neighbors
of their neighbors. An open question is to find self-stabilizing solutions to the
connected overlays problem that converge in a sub-linear time. Another open
question would be to find a relation between the cost of pruning and its impact
on the drop of the coverage size. Finally, a third open question is to design the
byzantine robust version of the proposed algorithms.
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