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Abstract. An open problem is presented regarding the existence of pure strat-
egy Nash equilibrium (PNE) in network congestion games with a finite number 
of non-identical players, in which the strategy set of each player is the collec-
tion of all paths in a given network that link the player’s origin and destination 
vertices, and congestion increases the costs of edges. A network congestion 
game in which the players differ only in their origin–destination pairs is a po-
tential game, which implies that, regardless of the exact functional form of the 
cost functions, it has a PNE. A PNE does not necessarily exist if (i) the depend-
ence of the cost of each edge on the number of users is player- as well as edge-
specific or (ii) the (possibly, edge-specific) cost is the same for all players but it 
is a function (not of the number but) of the total weight of the players using the 
edge, with each player i having a different weight wi. In a parallel two-terminal 
network, in which the origin and the destination are the only vertices different 
edges have in common, a PNE always exists even if the players differ in either 
their cost functions or weights, but not in both. However, for general two-
terminal networks this is not so. The problem is to characterize the class of all 
two-terminal network topologies for which the existence of a PNE is guaranteed 
even with player-specific costs, and the corresponding class for player-specific 
weights. Some progress in solving this problem is reported. 

Keywords: Congestion games, network topology, heterogeneous users, exis-
tence of equilibrium. 

1   Introduction 

1.1   Background 

The theoretical study of congestion in networks began in the 1950’s, at which time it 
was concerned mostly with transportation networks. The traffic flow was postulated 
to be at a so-called Wardrop equilibrium [30], in which the travel time on all used 
routes is equal, and less than or equal to that of a single vehicle on any unused route. 
An important milestone was the publication of Beckmann et al.’s book [3], which 
(under certain simplifying assumptions) presented the equilibrium as the optimal solu-
tion of a certain convex programming problem. In these authors’ setting, users are 
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nonatomic in the sense that the effect of any single user on the others is negligible. 
Congestion games with a finite number of players, each with a non-negligible effect 
on the others, were first presented by Rosenthal [24]. He constructed what is now 
called an exact potential function on the space of strategy profiles and showed that 
every maximum point of the potential is a pure strategy Nash equilibrium (PNE) in 
the game. This is because, whenever a single player changes strategy, the change in 
that player’s payoff is equal to the change in the potential function. Monderer and 
Shapley [19] showed that Rosenthal’s games are in fact the only finite games for 
which an exact potential exists. Thus, any (finite) potential game can be presented as 
a congestion game, in which there is a finite set of common facilities and the strategy 
space of each player consists of subsets of facilities. The payoff from using each facil-
ity j depends only on the number of players whose chosen subset includes j. A special 
case of this is a network congestion game, in which the facilities correspond to the 
edges of a graph; the strategy space of each player is the collection of all directed 
paths, or routes, connecting two distinguished vertices, the player’s origin and desti-
nation vertices; and the cost, or disutility, of using each edge is determined as a non-
decreasing function by the flow on the edge. In Rosenthal’s setting, players may differ 
only in their origin or destination vertices. If they are (i) differently effected by 
congestion, that is, have different cost functions, or (ii) have different weights, or 
congestion impacts, then the game is generally not a potential game and hence not a 
congestion game in Rosenthal’s sense. For example, with player-specific costs, best-
response cycles can occur if there are at least three players and at least three edges in 
the network [1,15]. Such cycles cannot occur in a potential game. Nevertheless, a 
network congestion game with either player-specific costs or weights, but not both, is 
guaranteed to have a PNE in the important special case of a parallel two-terminal 
network, i.e., one in which all players have the same origin–destination pair (in other 
words, a single-commodity network), which are the only vertices any two edges have 
in common [15]. In the case of player-specific weights, the result holds even if the 
weights are also edge-specific (“unrelated machines” [6]), and more generally, if the 
cost of each edge is an arbitrary nondecreasing function of the set of players using it 
[7]. A PNE does not necessarily exist, even in a parallel network, if the players have 
both player-specific costs and weights or if they are positively affected by congestion 
and the effects are player-specific [12,15,16].   

The topological restriction on the network cannot be dispensed with. Libman and 
Orda [14] (see also [8]) gave an example of a two-terminal network with six edges for 
which there is a network congestion game with two players, one with twice the weight 
of the other, which does not have a PNE. They raised as an interesting subject for fur-
ther research the problem of identifying non-parallel networks in which this is not 
possible, adding that series-parallel networks can be especially interesting. Konishi 
[11] gave an example of a different two-terminal network for which there is a three-
player network congestion game with player-specific costs that does not have a PNE. 
He noted the similarity between the topological conditions for the existence of PNE 
and those for the uniqueness of the equilibrium in network congestion games with a 
continuum of non-identical players. (For such nonatomic games, existence of 
equilibrium is not an issue, since it is guaranteed by very weak assumptions on the 
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cost functions [29].) Specifically, a parallel network is a sufficient condition in both 
cases.  

The equilibrium existence problem that these authors point to is the identification 
of all two-terminal networks with the topological existence property: for any 
nondecreasing cost functions, with player-specific costs or weights (but not both), at 
least one PNE exists. This problem is substantially different from that of identifying 
classes of cost functions for which a PNE exists for all network topologies. An exam-
ple of such a class is linear (more precisely, affine) functions. Regardless of the net-
work topology, if all the players have identical, linear cost functions, a PNE always 
exists even with player-specific weights [8]. A similar distinction between the influ-
ences of the network topology and of the functional form of the cost functions applies 
also to the properties of efficiency and uniqueness, which are described below. 

Efficiency of the equilibrium in a network congestion game has more than one pos-
sible meaning. It may refer to Pareto efficiency, that is, the impossibility of altering 
the players’ route choices in a way that benefits them all, or to some aggregate meas-
ure of performance, such as the total cost or the cost of the worst route. In the latter 
case, the ratio between the chosen measure of performance at the worst Nash equilib-
rium and that at the social optimum is called the coordination ratio [13]. In nonatomic 
network congestion games with identical players, this ratio can be arbitrarily large for 
general cost functions, but it is bounded for certain families of functions, e.g., linear 
ones [28]. The least upper bound, dubbed the price of anarchy [22], is virtually inde-
pendent of the network topology [25]. By contrast, the Pareto efficiency of the equi-
libria in nonatomic congestion games strongly depends on the topology. For a two-
terminal network G, the equilibria are always Pareto efficient if and only if G has 
linearly independent routes, meaning that each route has an edge that is not in any 
other route [18]. In a sense, equilibria that are not Pareto efficient may occur in only 
three known two-terminal “forbidden” networks, which are the minimal ones without 
linearly independent routes. These results hold both with identical players and with 
player-specific cost functions. 

For network congestion games with an arbitrary but finite number of players, who 
have identical cost functions but possibly different weights, the network topology is 
still irrelevant for the cost of anarchy if the players may split their flow among multi-
ple routes [26]. However, if the flow is unsplittable and only pure strategies are al-
lowed [27], the (so-called pure) cost of anarchy for linear cost functions apparently 
does depend on the network topology [2]. It also depends on whether or not the 
weights are player-specific [4]. (In the weighted case, the pure cost of anarchy only 
refers to games in which a PNE exists.) The topological conditions for Pareto effi-
ciency of the equilibrium in the unsplittable, pure-strategy case were found by 
Holzman and Law-yone [10]. These conditions are very similar to those applying to 
nonatomic network congestion games if the players are identical. However, if the 
players have different cost functions, there are virtually no topological conditions that 
guarantee Pareto efficiency: Pareto inefficient (and non-unique) equilibria occur in all 
two-terminal networks with at least two routes. 

The problem of the topological uniqueness of the equilibrium is relevant for nona-
tomic network congestion games in which different players may have different cost 
functions. (With identical players, the equilibrium is always essentially unique. With 
a finite number of non-identical players and unsplittable flow, it is virtually 
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impossible to guarantee uniqueness.) The class of all two-terminal networks for which 
uniqueness is guaranteed is defined by five simple kinds of networks, called the 
nearly parallel networks [17]. The complementary class of all two-terminal networks 
for which player-specific costs can result in multiple equilibria consists of all the net-
works in which one of four known “forbidden” networks is embedded. These results 
can be extended to network congestion games with finitely many players and split-
table flow [23].  

1.2   Results 

This paper presents some partial results pertaining to the equilibrium existence prob-
lem, which is to identify the topological conditions guaranteeing the existence of at 
least one PNE in every network congestion game with player-specific costs or 
weights. The class of two-terminal network topologies for which the existence of a 
PNE is guaranteed is extended in a nontrivial manner beyond parallel networks. On 
the other hand, several new topologies are presented for which a PNE does not always 
exist. These results narrow the search for the problem’s solution. 

2   The Model 

A two-terminal network (network, for short) G is defined in this work as a directed 
graph together with a distinguished pair of distinct vertices, the origin o and destina-
tion d, such that each vertex and each edge belong to at least one (directed) path r = 

e1 e2  em linking o and d. Such a path is called a route. By definition, the terminal 

vertex of each edge ej in a path except for the last one coincides with the initial vertex 
of the next edge, and all the vertices (and necessarily all the edges) are distinct [5]. 
This implies that loops are not allowed in G.1 However, multiple edges are allowed.   

For a given network G, a (finite) network congestion game is an n-player game, 
with n ≥ 1, in which the strategy set of each player is the route set R of G, which con-
sists of all the routes in the network. A strategy profile specifies a particular choice of 
route for each player. Players may differ from each other in their weight or cost func-
tions.2 The weight wi > 0 of a player i is a measure of i’s congestion impact. For an 
edge e in G, the total weight of the players whose routes include e, denoted by fe, is 
the flow (or load) on e. The flow affects the cost of traversing e, which, for each 
player i, is given by a nonnegative, nondecreasing cost function ci

e : [0, ∞) → [0, ∞). 
Thus, if the flow on e is fe, its cost for i is ci

e(fe). If the players have identical cost func-
tions, this notation may be simplified to ce(fe). If they all have the same weight, it may 
be assumed without loss of generality that the weight is 1. The cost of each route in 
the network for a player is the sum of the costs of its edges. The player’s payoff in the 
game is the negative of this cost.  
                                                           
1 Not allowing loops and other edges that do not belong to any route essentially involves no 

loss of generality, since such edges either cannot possibly be used or can only make a user’s 
way unnecessarily long. 

2 Multi-commodity networks, in which players may also have different origin–destination pairs, 
and hence different strategy sets, are not considered in this paper. 
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Fig. 1. Two-terminal networks with the topological existence property. In each network, the 
possible routes are the paths linking the origin o and destination d. Gray curves indicate op-
tional edges. The directions of all the edges are unambiguous, except of those joining u and v in 
(e), which are assumed to be directed from u to v. 

The following game theoretic terminology, which is not all standard, is used in this 
paper. A strategy profile is a pure-strategy Nash equilibrium (PNE) if none of the 
players can increase his payoff by unilaterally shifting to some other strategy. In other 
words, in a PNE each player plays a best response to the other players’ strategies. The 
superposition of a finite number m of games with the same set of players is the game 
in which each of these players has to choose a strategy in each of the m games and his 
payoff is the sum of those in the m games [20]. Thus, the games are played simulta-
neously, but independently. Clearly, a strategy profile in the superposition of m games 
is a PNE if and only if it induces a PNE in each of these games. Two games Γ and Γ′ 
with the same set of players and the same strategy set are similar if each player’s pay-
off function in Γ is obtained from that in Γ′ by adding to (or subtracting from) the lat-
ter a payoff function that depends only on the strategies of the other players. Similar-
ity implies that the gain or loss for a player from unilaterally shifting from one 
strategy to another is the same in both games. Hence, it also implies that the games 
are best-response equivalent, i.e., a player’s strategy is a best response to the others’ 
strategies in one game if and only if this is so in the other game. Therefore, similar 
games have identical sets of PNEs. 
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3   Existence of PNE 

If the players in a network congestion game differ in both their weights and cost func-
tions, a PNE does not necessarily exist even in the case of a parallel network (Fig. 
1(a)), which consists of one or more edges connected in parallel [15]. Therefore, for 
the notion of topological existence to be non-trivial, it is necessary to restrict attention 
to games in which players differ in only one of these respects. Doing so leads to the 
following positive result.   

 
Theorem 1 [15]. If G is a parallel network, then every network congestion game with 
player-specific costs or weights (but not both) has at least one PNE.  

 
For later reference, we note that this result can be slightly extended. Suppose that for 
each edge e there is pair of cost functions ce and de (not necessarily different from 
zero) such that, for all players i and x ≥ wi, 

ci
e(x) = ce(x) + de(x − wi) . (1) 

Because of the second term in (1), if the players have different weights, they differ 
also in their cost functions. That term represents the effect of the other players using 
edge e on i; unlike the first term, it does not involve self-effect. Theorem 1 remains 
true if games with cost functions as in (1) are allowed. Such games will be referred to 
as network congestion games with player-specific weights in the wide sense. The ex-
istence of a PNE in this case can be proved by using the following algorithm (called 
greedy best response [9]). Players enter the game one after the other, ordered accord-
ing to their weights from the highest to the lowest. Each player i chooses a route that 
is a best response to the route choices of the preceding players. It is not difficult to see 
that i’s route remains a best response also after each of the remaining players i′ enters 
the game, because wi′ ≤ wi and the cost functions are nondecreasing. Therefore, the 
players’ route choices constitute a PNE.  

This constructive proof is specific to parallel networks; it cannot be extended in a 
straightforward manner to other network topologies. The same is true for all the other 
known proofs of Theorem 1, both for the case of player-specific costs and for player-
specific weights [6,14,15]. In this respect, these proofs differ from that for the 
existence of PNE in network congestion games with identical players, for which the 
topology is irrelevant. Implicitly or explicitly, the latter proof uses the fact that every 
network congestion game Γ with identical players is similar (see the definition of 
similarity in Section 2) to some game Γ′ in which the players have identical payoff 
functions, i.e., their payoffs are always the same [19,21,24]. This argument does not 
extend to network congestion games with player-specific costs. Even for parallel net-
works, such games are generally not similar, or even best-response equivalent, to 
games with identical payoffs. Indeed, best-response cycles may occur [15].  

Nevertheless, Theorem 1 can be extended to other network topologies. An imme-
diate extension is to allow the connection of several parallel networks in series. In this 
case, by Theorem 1, the “restriction” of every network congestion game with player-
specific costs or weights to any of the constituent parallel networks has a PNE. As the 
following lemma shows, this implies that the game itself has a PNE, since it is the su-
perposition of these “restricted” games (see Section 2).  
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Lemma 1. If a network G can be obtained by connecting a finite number m of net-
works in series, then every network congestion game Γ is the superposition of m net-
work congestion games, each of which is obtained by considering the edges in only 
one constituent network. If each of these games has a PNE, then so does Γ. 

Proof. This follows immediately from the fact that each route in G is the concatena-
tion of m paths, each of which is a route in one constituent network, and conversely, 
every such concatenation constitutes a route in G, whose cost for each player is the 
sum of the costs of its m parts.            ■  

Less obviously, Theorem 1 can be extended to networks that are not even series-
parallel, such as the Wheatstone network (Fig. 1(e)). This extension is based on the fol-
lowing result. 

Lemma 2. For each of the networks G in Fig. 1 there is a parallel network G ̃ such 
that, for every network congestion game Γ for G with player-specific costs or 
player-specific weights in the wide sense, there is a network congestion game Γ̃ for G ̃ 
with the same property that is similar to Γ. 

Proof. Suppose, first, that G is as in Fig. 1(e). Let G̃ be the parallel network obtained 
from G by contracting e1 and e4, that is, replacing each of these edges and its two end 
vertices with a single vertex [5]. There is a natural one-to-one correspondence be-
tween the route sets of G and G ̃, which allows network congestion games for these 
two networks to be viewed as having the same strategy set. For a given network con-
gestion game Γ for G, with weights (wi) and cost functions (ci

e), let Γ̃ be the game for 
G ̃ with the same weights (wi) and the cost functions (c ̃ie) defined as follows: If e = e2, 
then c ̃ie(x) = ci 

e2
(x) − ci 

e1
(wi + w − x) + c for all i, where w = ∑i wi is the players’ total 

weight and c is an arbitrary large constant (which serves to make the cost nonnega-
tive). If e = e3, then c ̃ie(x) = ci 

e3
(x) − ci 

e4
(wi + w − x) + c. Finally, if e ≠ e2, e3, then c ̃ie(x) 

= ci
e(x) + c. If Γ is a game with player-specific costs but identical weights, then Γ̃ 

clearly has the same property. The same is true if Γ is a game with player-specific 
weights in the wide sense, since (1) implies that c ̃ i e2

(x), for example, can be written as 
c  

e2
(x) − d  

e1
(w − x) + c ⁄ 2 + d  

e2
(x − wi) − c  

e1
(w − (x − wi)) + c ⁄ 2.  

It remains to show that the games Γ and Γ̃ are similar. That is, for every choice of 
routes by the players and every player i, the difference between the cost in Γ and that 
in Γ̃ depends only on the routes of the other players. If i’s route does not include e2 or 
e3, this difference is  

c i 
e1

(wi + w′−i) + c i 
e4

(wi + w″−i) − c , (2) 

where w′−i is the total weight of the players other than i whose route does not include 
e2, and w″−i is the corresponding weight for e3. The same expression gives the differ-
ence between the costs in Γ and Γ̃ also if i’s route includes either e2 or e3. Thus, the 
difference is independent of i’s route, as had to be shown. 

The above argument can easily be adapted for each of the other networks in Fig. 1. 
For networks G as in Fig. 1(b) and (c), G ̃ is obtained by contracting only one edge. 
The network in (d) can be reduced to either of the previous two by moving one of the 
edges incident with the terminal vertices so that it becomes adjacent with the other 
such edge. Clearly, this rearrangement of edges does not affect the cost of any route. 
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Alternatively, the validity of the conclusion of the lemma for each of the other net-
works in Fig. 1 can easily be deduced from that for (e).         ■ 

The assertion of Lemma 2 cannot be strengthened to identity, or isomorphism, be-
tween Γ and Γ̃. If the costs in Γ are player-specific, it may be qualitatively different 
from all network congestion games with the same property for parallel networks. For 
example, whereas games of the latter kind are always sequentially solvable [16], there 
are examples showing that Γ does not necessarily have this property. However, for 
present purposes, similarity is more than sufficient, since it implies that every PNE in 
Γ̃ is also a PNE in Γ. By Theorem 1 and the remark following it, at least one such 
PNE exists. Together with Lemma 1, this gives the following.  

Theorem 2. If G is one of the networks in Fig. 1 or can be obtained by connecting 
several of these networks in series, then every network congestion game with player-
specific costs or weights (but not both) has a PNE. 

It is not known whether Theorem 2 can be extended to include also networks similar 
to those in Fig. 1(e) but with the reverse directions for some of the edges joining u 
and v. These networks and those in Fig. 1 are the directed versions of the nearly par-
allel networks [17], which are essentially the only two-terminal networks for which 
uniqueness of the equilibrium in nonatomic network congestion games with player-
specific costs is guaranteed. This adds weight to Konishi’s [11] observation that the 
conditions for topological existence (for a finite number of players with different cost 
functions) are similar to the conditions for topological uniqueness (for a continuum of 
such players). However, Theorem 2 leaves open the question of whether for every 
two-terminal network that is not nearly parallel there is a network congestion game 
with player-specific costs that does not have a PNE. Some results concerning this 
question are presented below.  

4   Non-existence of PNE 

The network in Fig. 2(d), which is obtained by connecting the Wheatstone network 
(Fig. 1(e)) in parallel with a single edge, differs substantially from the former in that 
network congestion games with player-specific costs or weights do not necessarily 
have a PNE. An example showing this for the case of different weights was given by 
Libman and Orda [14], and another one by Fotakis et al. [8]. These two examples are 
very similar to each other and to the next one; the different examples differ only in the 
cost functions. 

Example 1. Two players simultaneously choose routes in the network in Fig. 2(d). The 
players have different weights, w1 = 1 and w2 = 2, but the same cost functions, given by 
ce1

(x) = 4x + 16, ce2
(x) = 45, ce3

(x) = 48, ce4
(x) = x3 − 9x2 + 28x, ce5

(x) = 16x and ce6
(x) = 

65x. For player 2, using e5 is never optimal, since its cost is at least 32 whereas the dif-
ference between the costs of e2 and e1 is always less than that. Using e6 is also never op-
timal for 2, since its cost is at least 130, which is always greater than ce1 + ce3. This 
leaves player 2 with only two routes to choose from, and implies that 1 is the only 
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player who may use e5. The cost of that edge for player 1 is therefore 16, which is al-
ways less than the difference between the costs of e2 and e1, as well as the difference 
between the costs of e3 and e4. Therefore, using e2 or e3 is never optimal for player 1, 
which leaves him with only two possible routes, r1 = e6 and r2 = e1 e5 e4. If player 1’s 
route is r1 or r2, the best-response route for 2 is r3 = e1 e3 or r4 = e2 e4, respectively. 
However, if player 2 uses r3 or r4, the best response for 1 is r2 or r1, respectively. There-
fore, a PNE does not exist. Note that this would be true also if the constant functions ce2

 
and ce3

 were replaced by sufficiently slowly increasing linear ones. However, if (the 
nonlinear) ce4

 were replaced by a linear function, a PNE would exist [8]. 

Essentially the same example shows that, in the network in Fig. 2(d), existence of a 
PNE is not guaranteed also with player-specific costs. This network is simpler than 
(i.e., it is a subnetwork of) the one used in Konishi’s [11] example.  

Example 2. This example is similar to the previous one, expect that the players differ 
not in their weights, which are given by w1 = w2 = 1, but in their cost functions, which 
are derived from those in Example 1 in the following manner: For each edge e, c1

e(1) = 
ce(1), c2

e(1) = ce(2), and c1
e(2) = c2

e(2) = ce(3). Clearly, the two-player game thus de-
fined is identical to that in Example 1, and hence it does not have a PNE. 
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Fig. 2. Networks without the topological existence property. For each network, there is a net-
work congestion game with player-specific cost functions or weights that does not have a pure-
strategy Nash equilibrium. The edge joining u and v in (d) is directed from u to v. 
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Network congestion games without a PNE exist also for certain series-parallel net-
works. It is not known, however, whether these networks are the same for the cases of 
player-specific costs and player-specific weights. For the networks in Fig. 2(b) and 
(c), a PNE does not necessarily exist if the players have different cost functions. The 
next example concerns the former. 

Example 3. Three players, all with weight 1, simultaneously choose routes in the 
network in Fig. 2(b). The cost of each edge for each player is given in Table 1. Effec-
tively, each player has only one possible short route s (of length 1) and one long route 
l (of length 2). Player 1’s l shares an edge (e4) with 2’s l, and his s coincides with 3’s 
s. For player 1, the cost of s is less or greater than that of l if player 3 takes his l or s, 
respectively. Similarly, for player 2, s is preferable to l or the other way around if 
player 1 takes his l or s, respectively; and for 3, s is preferable to l or the other way 
around if player 2 takes his l or s, respectively. Clearly, this implies that a strategy 
profile in which everyone’s route is optimal does not exist. 

The network in the next example is not only series-parallel but is even (“extension-
parallel” [10], or) a network with linearly independent routes [18].  

Table 1. Cost functions for Example 3. For each player, the cost of each edge as a function of 
the flow on it is shown. Blank cells indicate prohibitively high costs. 

 e1 e2 e3 e4 e5 e6 
Player 1  3x  3x  5x 
Player 2 x   3x 6x  
Player 3 x  x   x ⁄ 3 + 2 

Example 4. Three players, with weights w1 = 1, w2 = 2 and w3 = 4, choose routes in 
the network in Fig. 2(a). The players’ identical cost functions are given in Table 2. 
For player 3, there are effectively only two possible routes, e2 e4 e6 and e7. If the 
player chooses the former, then (regardless of what 1 does) player 2’s best response is 
e5, to which 1’s best response is e1 e4 e6. It is then better for player 3 to switch from 
e2 e4 e6 (whose cost is 14) to e7. However, if he chooses e7, then (regardless of what 1 
does) player 2’s best response is e3 e6, to which 1’s best response is e5. It is then better 
for player 3 to switch from e7 to e2 e4 e6 (whose cost is 12½). This proves that a PNE 
does not exist. 

Table 2. Cost functions for Example 4. For each value of the flow on an edge, its cost (for all 
players) is shown. Blank cells indicate prohibitively high costs. 

Flow e1 e2 e3 e4 e5 e6 e7 
1 1 6 5 ⅛ 1 1 13 
2  6 5½ ¼ 10 2 13 
3  6 6 ⅜ 11 3 13 
4  6  ½  4 13 
5    3  5  
6      6  
7      7  



 The Equilibrium Existence Problem in Finite Network Congestion Games 97 

These examples establish the possible non-existence of PNE also in many other 
networks, namely, those in which one or more of the four networks in Fig. 2 is em-
bedded. For example, adding edges to any of the four networks would not make any 
difference, since extra edges can be effectively eliminated by assigning a very high 
cost to them. “Embedding” is used here in a somewhat generic sense. There are at 
least two different meanings for this term that may be relevant in the present context 
[17,18]. Very roughly, they correspond to the notions of a minor and topological mi-
nor of a graph [5].    

Many two-terminal networks other than those mentioned above exist. Solving the 
equilibrium existence problem entails placing each of them either in the class of net-
works for which the existence of a PNE is guaranteed or in the class of those for which 
a network congestion game without a PNE exists. Whether this partition is the same for 
games with player-specific cost functions and for player-specific weights is not known.  
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