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Abstract. The study of congestion games is central to the interplay
between computer science and game theory. However, most work in this
context does not deal with possible deviations by coalitions of players,
a significant issue one may wish to consider. In order to deal with this
issue we study the existence of strong and correlated strong equilibria
in monotone congestion games. Our study of strong equilibrium deals
with monotone-increasing congestion games, complementing the results
obtained by Holzman and Law-Yone on monotone-decreasing congestion
games. We then present a study of correlated-strong equilibrium for both
decreasing and increasing monotone congestion games.
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1 Introduction and Overview of Results

A congestion game (Rosenthal, [7]) is defined as follows: A finite set of players1,
N = {1, ..., n}; A finite non-empty set of facilities, M ; For each player i ∈ N
a non-empty set Ai ⊆ 2M , which is the set of actions available to player i (an
action is a subset of the facilities). We denote by A the set of all possible action
profiles (A =

∏

i∈N

Ai). With every facility m ∈ M and integer number 1 ≤ k ≤ n

a real number vm(k) is associated, having the following interpretation: vm(k) is
the utility to each user of m if the total number of users of m is k. Let a ∈ A; the
(|M | dimensional) congestion vector corresponding to a is σ(a) = (σm(a))m∈M

where σm(a) = |{i|m ∈ ai}|. The utility function of player i, ui : A → R is
defined as follows: ui(a) =

∑

m∈ai

vm(σm(a)). It is assumed that all players try to

maximize their utility. Therefore, equilibrium analysis is typically used for the
study of these settings.

Congestion games have become a central topic of study in the interplay be-
tween computer science and game theory (see e.g. [1,9,8,6]). Congestion games
possess some interesting properties. In particular, Rosenthal [7] showed that ev-
ery congestion game possesses a pure strategy Nash equilibrium. In this paper we
would like to explore the possibility of replacing Nash equilibrium with stronger
solution concepts.
1 We will use the terms player and agent interchangeably.
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One particular weakness of Nash equilibrium is its vulnerability to deviations
by coalitions of players. This issue is addressed in the solution concept known as
strong equilibrium (Aumann, [2]): Let us denote the projection of a ∈ A on the
set of players S ⊆ N (resp. on N\S) by aS (resp. by a−S). We say that a profile of
actions a∗ ∈ A is a strong equilibrium (SE) if for no non-empty coalition S ⊆ N
there is a choice of actions ai ∈ Ai, i ∈ S such that ∀i ∈ S ui(aS , a∗

−S) > ui(a∗).
Such profiles are indeed much more stable than simple Nash equilibria, and

therefore their existence is a very desirable property; however, simple examples
show that congestion games in general need not possess a strong equilibrium
(in fact, the well-known Prisoner’s Dilemma may be obtained as a congestion
game).

The above definition applies to the case where the players may use only pure
strategies. A natural extension of Aumann’s definition of strong equilibrium to
settings where mixed strategies are available is to apply the original definition
to the mixed extension of the original game. Formally, we say that a profile
of actions a∗ ∈ ∏

i∈N

Δ(Ai) is a mixed strong equilibrium (MSE) if for no non-

empty coalition S ⊆ N there is a choice of actions ai ∈ Δ(Ai), i ∈ S such that
∀i ∈ S Ui(aS , a∗

−S) > Ui(a∗). Here, by Δ(Ai) we mean the set of all probability
distributions overAi, and Ui denotes the expected utility of player i.

There are two important things to note when considering the definition of
MSE. First, notice that unlike the extension of Nash equilibrium to mixed strate-
gies, this definition yields a stronger solution concept even when applied to pure
strategy profiles; i.e., a pure profile of actions may be a strong equilibrium, but
not a mixed strong equilibrium. A second point to notice is that in the definition
of MSE we assume that the players cannot use correlated mixed strategies, i.e.
choose their actions using a joint probability distribution. However, in many set-
tings this assumption is too restrictive: if we assume that a coalition of players
has the means to choose a coordinated profile of actions, it is natural to assume
that they have means of communication that would also allow them to coor-
dinate their actions using joint coin flips. The above leads us to the following
definition: we say that a∗ ∈ Δ(A) is a correlated strong equilibrium (CSE) if for
no non-empty coalition S ⊆ N there is a choice of actions aS ∈ Δ(

∏

i∈S

Ai), such

that ∀i ∈ S Ui(aS , a∗
−S) > Ui(a∗). This definition is strictly stronger than the

previous one: every CSE is also an MSE, but not vice versa.2

The aim of this article is to explore the conditions for existence of strong and
correlated strong equilibria within two most interesting and central subclasses
of congestion games:

We call a congestion game monotone-increasing (or simply increasing) if ∀m ∈
M, 1 ≤ k < n vm(k) ≤ vm(k + 1). These games model settings where congestion

2 Notice that although we allow a∗ to be a correlated profile, CSE doesn’t extend the
notion of correlated Nash equilibrium [3] to the context of deviations by coalitions:
our solution concept is weaker, since we assume that the deviators cannot see the
”signals” that result from the current realization. However, in the scope of this
article, generalizing Aumann’s definition would yield the same results.
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has a positive effect on the players, e.g. settings in which the cost of using a
facility is shared between its users.

We call a congestion game monotone-decreasing (or simply decreasing) if ∀m ∈
M, 1 ≤ k < n vm(k) ≥ vm(k + 1). These games model settings where congestion
has a negative effect on the players, e.g. routing games, where cost represents
latency.

Ron Holzman and Nissan Law-Yone [5,4] explored the conditions for existence
of strong equilibria in monotone decreasing congestion games. They start by ob-
serving that a strong equilibrium always exists in the case where all strategies
are singletons. Following that, they explore the structural properties of the strat-
egy sets that are necessary and sufficient to guarantee the existence of strong
equilibria. These structural properties may, for example, refer to the underlying
graph structure in route selection games.

In this paper we first explore the conditions for existence of strong equilibria
in monotone increasing congestion games. Then, we extend the study of both the
decreasing and increasing settings to the solution concept of correlated strong
equilibrium. Our contributions can therefore be described by the following table:

Main results
Throughout this paper, when we refer to strong equilibrium, we present the

results of Holzman and Law-Yone [5] for the decreasing setting alongside our
results for the increasing setting. This is done for the sake of viewing the complete
picture and ease of comparing between the two settings.

In section 2 we explore the case of singleton strategies, i.e. resource selection
games where each player should choose a single resource from a set of resources
available to him. In the decreasing setting Holzman and Law-Yone observe that
every Nash equilibrium of the game is, in fact, a strong equilibrium. For the
increasing setting, we present an efficient algorithm for constructing a strong
equilibrium; however, unlike in the decreasing setting, we show that not every
Nash equilibrium of the game is strong.

In section 3 we develop a notation, congestion game forms, that allows us to
speak about the underlying structure of congestion games; using this notation
we will be able to formalize statements such as “a certain structural property is
necessary and sufficient for the existence of SE in all games with that underlying
structure”. We define two substructures, which we call d-bad configuration and
i-bad configuration and prove some simple properties of strategy spaces that
avoid bad configurations. These properties will serve as a technical tool in some
of our proofs.
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Section 4 explores the conditions for existence of strong equilibrium. In the
decreasing setting, [5] shows that a SE always exists if and only if d-bad config-
urations are avoided. In the increasing setting we show that a SE always exists
if and only if i-bad configurations are avoided, in which case the equilibrium can
be efficiently computed. As we will show, our results imply that avoiding i-bad
configurations makes the games essentially isomorphic to the case of singleton
strategies.

Section 5 deals with the concept of correlated strong equilibrium. We show
that a CSE might not be achievable even in simple (two players, two strategies)
examples of the decreasing setting. In the increasing setting, though, we show
that all our results regarding SE still hold with CSE, namely that a CSE always
exists if and only if i-bad configurations are avoided, in which case it can be
efficiently computed. Moreover, we show that in this case every SE of the game
is also a CSE (a claim which doesn’t hold if i-bad configurations are not avoided).

Together, our results provide full characterization for the connection between
the underlying game structure and the existence of SE and CSE for both the
decreasing and the increasing cases.

2 SE: The Case of Singleton Strategies

Here we investigate the case in which only singleton strategies are allowed, i.e.
resource selection games where each player should choose a facility from among
a set of facilities available to him.3

First, recall the result for the decreasing case:

Theorem 1. [5] Let G be a monotone decreasing congestion game in which all
strategies are singletons. Then G possesses a strong equilibrium; moreover, every
Nash equilibrium of G is SE.

We now address the existence of SE in monotone-increasing congestion games:

Theorem 2. Let G be a monotone increasing congestion game in which all
strategies are singletons. Then G possesses a strong equilibrium; moreover, a
SE can be efficiently computed.

Proof (sketch): Consider the following algorithm for computing a strong equi-
librium: at each step, we assign a facility to a non empty subset of the remaining
players, in the following way: for each facility m ∈ M , we compute vm(k), where
k is the maximal number of the remaining players that can choose {m} as their
strategy. We choose m for which such vm(k) is maximal, and assign {m} to all
the players that can choose it. We continue in the same fashion until all players
are assigned a facility.
3 In particular, this classical setting can model simple route selection games. In a

simple route selection game each player has to select a link for reaching from source
to target in a graph consisting of several parallel links. In general, each player may
have a different subset of the links that he may use.
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We claim that the resulting strategy profile is a SE. We prove by induction on
the steps of the algorithm, that no player can belong to a deviating coalition in
which his payoff strictly increases: in the first step of the algorithm, this is obvious
because each assigned player gets the highest possible payoff in the game (due to
monotonicity); at subsequent steps, we use the induction hypothesis and assume
that all players from the previous steps don’t belong to the deviating coalition,
i.e. all of them use the facilities they were assigned; but this means that the
game is effectively reduced to the remaining players and the remaining facilities,
so the same reasoning applies: due to monotonicity, each assigned player gets
the highest possible payoff in the (new) game. Regarding the complexity of the
algorithm, it is trivial to verify that the most straightforward implementation
runs in O(m2n2); it is also a simple exercise to construct an implementation that
runs in O(mn). �	
Unlike in the decreasing setting, not every Nash equilibrium (NE) of the decreas-
ing game is a SE. Consider, for example, an instance with two facilities {m1, m2}
and two players, where the cost of a facility is shared equally between its users.
The cost of m1 is 2, and the cost of m2 is 1. Both facilities are available to both
players. Then, the profile (m1, m1) is a NE, since each player cannot decrease
his cost of 1 by deviating alone; but it is not a SE, since if both players deviate
to m2, their cost decreases to 0.5.

We will now illustrate why our proof of Thm. 2 wouldn’t hold in the general
case (where the strategies don’t have to be singletons). The situation is best
illustrated by an example. Fig.1 presents a graph of an instance of a network

Fig. 1. SE doesn’t exist
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design game in the increasing setting: there are two agents, who both need
to construct a path from s to t, using the edges available in the graph. The
construction cost of each edge (the number near the edge) is shared equally
between the agents. Each agent wants to minimize his construction cost; however,
agent 1 cannot use edge a, and agent 2 cannot use edge b.

Our algorithm assigns {c, d} to 1 and {c, d} to 2, with a payoff of 3 each. This
however is not an SE; in fact there is no SE in this game; to see this observe that
playing {c, b} is dominant for agent 1, and given that playing {a} is dominant for
agent 2, which leads to a payoff of (4,3.5), which is smaller than (3,3). Therefore,
a SE does not exist in this instance.

3 Congestion Game Forms, Bad Configurations and Tree
Representations

In this section we extend upon the definitions and notations introduced in [5]
in order to provide some basic tools that will be useful for our characterization
results.

A congestion game form is a tuple F = (M, N, A) where M is the set of
facilities, N = {1, ..., n} is the set of players, and A ⊆ 2M . A congestion game
G = (M, N, {Ai}, {vm(k)}) is said to be derived from F if A =

⋃

i∈N

Ai. Given a

congestion game form F , one can derive from it a whole family of (monotone,
increasing or decreasing) congestion games by assigning (monotone, increasing
or decreasing) utility levels to the facilities and assigning specific strategy sets to
the players. The congestion game form represents the underlying structure of the
strategy spaces; for example, in the network design setting, it is the game graph.
We say that a congestion game form F is strongly consistent if every monotone
congestion game derived from F possesses a SE (we will always specify which
setting, increasing or decreasing, is under discussion). We say that a congestion
game form F is strong-Nash equivalent if in every monotone congestion game
derived from F every NE is a SE. Similarly, we say that a congestion game form
F is correlated strongly consistent if every monotone congestion game derived
from F possesses a CSE; F is correlated-strong equivalent if in every monotone
congestion game derived from F every SE is a CSE.

In this terminology, the results of section 2 state: if F = (M, N, A) is a con-
gestion game form in the decreasing setting in which A contains only singletons,
then F is strong-Nash equivalent; if F = (M, N, A) is a congestion game form
in the increasing setting in which A contains only singletons, then F is strongly
consistent.

We are interested in a property of A which is both necessary and sufficient
for F to be strongly consistent.

Let A ⊆ 2M . A d-bad configuration in A is a tuple (x, y; X, Y, Z) where:

x, y ∈ M
X, Y, Z ∈ A
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and the following relations hold:

x ∈ X y /∈ X
x /∈ Y y ∈ Y
x ∈ Z y ∈ Z

Thus, two facilities x, y give rise to a d-bad configuration if there is a strategy
that uses both x and y, there is a strategy that uses x without y, and there is a
strategy that uses y without x. We call A ⊆ 2M d-good if it does not contain a
d-bad configuration.

An i-bad configuration in A is a tuple (x, y; X, Y, Z) where:

x, y ∈ M
X, Y, Z ∈ A

and the following relations hold:

x ∈ X y /∈ X
x /∈ Y
x ∈ Z y ∈ Z

Thus, two facilities x, y give rise to an i-bad configuration if there is a strategy
that uses both x and y, there is a strategy that uses x without y, and there is
a strategy that avoids x (with, or without using y). In Fig.1, for example, the
edges c, d give rise to a i-bad configuration. We call A ⊆ 2M i-good if it does not
contain an i-bad configuration. In particular, a d-bad configuration is an i-bad
configuration, so A is i-good implies that A is d-good.

By an M -tree, we shall mean the following:

– a tree with a root r
– a labeling of the nodes of the tree (except r) by elements of M ; not all

elements of M must appear, but each can appear at most once
– a designated subset D of the nodes, which contains all terminal nodes (and

possibly other nodes as well).

An example of an M -tree appears in Fig. 2.
Given an M -tree T , we associate with it a set A of strategies on M , as follows:

to each node in D there corresponds a strategy in A consisting of the labels which
appear on the path from r to that node. For instance, if T is the M -tree depicted
in Fig. 2, then A={{a, b}, {a, b, c}, {a, d}, {a, e, f}, {a, e, g}, {h}, {h, i}, {h, j, k}}.
If r ∈ D, it means that ∅ ∈ A. If A is obtained from T in this way, we say that
T is a tree-representation of A.

Lemma 1. [5] Let A be a nonempty set of strategies on M. Then A is d-good if
and only if it has a tree-representation.

Given a congestion game form F = (M, N, A), a tree representation of A gives
us a convenient method of reasoning about equilibria, since in this case any
congestion game derived from F is isomorphic to a tree-game: a game where
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Fig. 2. An M -tree. The labels appear to the left of the nodes; the nodes in D are
blackened.

given an M -tree, players must build a path from r to one of the nodes in D, and
the strategies of each player can be represented by the subset of D that he is
allowed to use.

Given a tree representation of A, a non-leaf node v is called split if v ∈ D or v
has more than one child (intuition: a path from r that reaches v has more than
one way to be extended to a path leading to a node in D). A tree representation
of A is called simple if no path from r to a node in D contains more than one
split node. The general case of a simple tree representation is depicted in Fig. 3.

We can now prove:

Lemma 2. Let A be a nonempty set of strategies on M. Then A is i-good if and
only if it has a simple tree-representation.

Fig. 3. The general case of a simple M -tree. The grayed node v can belong to D and
can be outside of D; The dots represent chains of nodes (could be empty), where no
intermediate node belongs to D.
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Proof: Suppose A has a simple tree representation, and suppose, for contradic-
tion, that A also has an i-bad configuration (x, y; X, Y, Z). Since x, y ∈ Z, both
x and y appear on the path from r to a node in D that corresponds to Z; also,
x must occur above y on this path, since a path that corresponds to X contains
x, but not y. This means that a split node v must exist between x and y on the
path of Z; but since the path corresponding to Y doesn’t include x, this means
another split node v′ must exist above x as well. So, the path of Z contains two
split nodes – contradiction.

Suppose now that A is i-good. Then, it is also d-good, so by Lemma 1 A has
a tree representation. Suppose, for contradiction, that this tree representation
is not simple; i.e. there exists a path (corresponding to some strategy Z in
A) with two split nodes, x and x′. W.l.o.g., suppose x′ is above x. Since x
is split, it has a child, y. Since x′ is split and is above x, there exists a path
(corresponding to some strategy Y ) that doesn’t contain x. Since x is split,
there exists a path (corresponding to some strategy X) that contains x, but not
y. Thus, (x, y; X, Y, Z) is an i-bad configuration – contradiction. �	

4 Structural Characterization of Existence of SE

Recall the following:

Theorem 3. [5] Consider the monotone decreasing setting, and let F be a con-
gestion game form with n ≥ 2. Then, F is strongly consistent if and only if A is
d-good.

We now show:

Theorem 4. Consider the monotone increasing setting, and let F = (M, N, A)
be a congestion game form, with n ≥ 2. Then, F is strongly consistent if and
only if A is i-good; moreover, if A is i-good, a SE can be efficiently computed.

Proof: Let F = (M, N, A) be a congestion game form, and suppose A is i-
good. As we know from Lemma 2, A has a simple tree representation. In the
general case, a simple M-tree has the form depicted in Fig. 3: a single chain
descending from r to a single split node v, from which descend several chains to
nodes in D. Each such chain (including the one from r to v) might be empty.
What it means in terms of strategies in A, is that: ∃C ⊆ M s.t. ∀S1 �= S2 ∈ A :
S1 ∩S2 = C; i.e. except one common subset of facilities that all players have to

choose, their allowed strategies are either equal or disjoint. We claim that this
case is strategically isomorphic to the case of singleton strategies. First, since all
users must choose all the facilities in C, these facilities don’t influence the game
and can be removed. Then, A becomes pair wise disjoint collection of subsets
of facilities; therefore, each such subset S ∈ A can be replaced by a single new
facility mS , with vmS (k) =

∑

m∈S

vm(k) for every k. Now, we have an equivalent

game with only singleton strategies allowed; as we know from Thm. 2, such game
has a strong equilibrium which can be efficiently computed.
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Now suppose F = (M, N, A) is a congestion game form where n ≥ 2 and
A contains an i-bad configuration (x, y; X, Y, Z). We must show that F is not
strongly consistent; i.e. there exists a monotone increasing congestion game G
derived from F which doesn’t possess a SE. To construct such game, we must
specify the exact strategy spaces A1, ..., An so that A =

⋃

i∈N

Ai, and specify

monotone increasing vm(k) for each m ∈ M . We can express A as a union of
four disjoint sets A = AX ∪ AY ∪ AZ ∪ A∅, where:

AX = {S ∈ A|S ∩ {x, y} = {x}},
AY = {S ∈ A|S ∩ {x, y} = {y}},
AZ = {S ∈ A|S ∩ {x, y} = {x, y}},
A∅ = {S ∈ A|S ∩ {x, y} = ∅}

From the i-bad configuration definition, we know that AX , AZ and AY ∪A∅ are
not empty (since X ∈ AX , Z ∈ AZ and Y ∈ AY ∪A∅). We consider two distinct
cases:

1. A∅ = ∅. In this case, G is specified as follows:

A1 = AX ∪ AZ , A2 = AY ∪ AZ , A3 = ... = An = AZ

vm (k) =

⎧
⎨

⎩

−3, m ∈ {x, y} , k < n
−1, m ∈ {x, y} , k = n
0, m /∈ {x, y}

Since both facilities x,y have negative utility no matter how many players choose
them, it is a strictly dominant strategy for players 1,2 to choose a subset that
contains only one facility among x,y. Therefore, in any NE of the game (pure or
mixed) player 1 will choose a strategy in AX and player 2 will choose a strategy
in AY , so both will gain -3. However, if both players deviate to a strategy in AZ ,
both will gain -2. Therefore, any NE of the game is not strong, i.e. SE does not
exist.

2. A∅ �= ∅. In this case, G is specified as follows:

A1 = AX ∪ AZ , A2 = AY ∪ AZ ∪ A∅, A3 = ... = An = A∅

vm (k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, m = x, k < 2
4, m = x, k ≥ 2
-5, m = y, k < 2
-1, m = y, k ≥ 2
0, m �= x, y

Since the facility y always yields a negative utility, it is strictly dominant for
player 1 to choose a strategy in AX . Therefore, in any NE player 2 will choose a
strategy in A∅; so, in any NE (pure or mixed) they will gain 2 and 0 respectively.
But then, if both players deviate to a strategy in AZ , they will gain 3; So in this
case too a SE does not exist, which completes our proof. �	
The above results suggest that in the monotone increasing setting there are (in
a sense) strictly less games which possess SE than in the monotone decreasing
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setting (unless we consider the symmetric case). In the setting where congestion
has a negative effect, the whole class of ”tree games” is guaranteed to have a SE;
in the increasing setting, where congestion has a positive effect on the players,
SE is guaranteed to exist only in a strict subset of the corresponding structures.
As shown in the proof of Thm. 4, this set of structures is strategically isomor-
phic to the singletons setting. This result is (perhaps) a bit surprising, since it
contradicts the intuition – the players ”help” each other instead of ”harming”
each other, but despite of that the setting is less stable, in the sense that there
are less strong equilibria. Nevertheless, as we will later see, the decreasing case
is not more stable than the increasing case when we consider CSE.

5 Structural Characterization of Existence of CSE

When we attempt to replace the notion of SE with the much stronger notion of
CSE, many of the previous results no longer hold. It is easy to see that in the
monotone decreasing setting even the following simple example with two players
in a symmetric singleton strategies game doesn’t possess a CSE. Consider two
facilities {m1, m2} with v1(m1) = −2, v2(m1) = −4, v1(m2) = −5, v2(m2) =
−10. Both facilities are available to both players. Here, playing m1 is a strictly
dominant strategy for both players; however, (m1, m1) is not a CSE, since a
deviation to the correlated profile { 1

2 (m1, m2), 1
2 (m2, m1)} strictly increases the

payoff of both players (each player will suffer a cost of 3.5 instead of a cost of
4). Therefore, a CSE doesn’t exist in this example (which is a variant of the
Prisoner’s Dilemma). In fact, we can generalize this example to the following
statement:

Proposition 1. Consider the monotone decreasing setting, and let F =
(M, N, A) be a congestion game form with n ≥ 2 and |A| ≥ 2. Then, F is
not correlated strongly consistent.

Proof (sketch): The proof is in the same spirit as the proof of Theorem 4. It
is therefore omitted due to lack of space.
In the increasing setting, however, we see that our results still hold; moreover,
we can prove the following strong claim:

Theorem 5. Consider the monotone increasing setting, and let F = (M, N, A)
be a congestion game form. Suppose A is i-good. Then F is correlated-strong
equivalent.

Proof: From our previous observations we know that if A is i-good, we can
assume w.l.o.g. that A has only singleton strategies. So we must show that
any SE of a monotone increasing congestion game where all strategies are sin-
gletons is also a CSE. Suppose, for contradiction, that a∗ ∈ A is a SE of a
monotone increasing congestion game with singleton strategies, and it is not
a CSE. Therefore, there exists a non-empty coalition S ⊆ N and a correlated
mixed strategy aS ∈ Δ(

∏

i∈S

Ai) such that ∀i ∈ S Ui(aS , a∗
−S) > Ui(a∗). Let
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i be a player in S with maximal utility in a∗: ∀j ∈ S ui(a∗) ≥ uj(a∗).
Since Ui(aS , a∗

−S) > Ui(a∗), there must be a realization bS ∈ ∏

j∈S

Aj of aS

such that ui(bS , a∗
−S) > ui(a∗). Since the game contains only singleton strate-

gies, ui(bS , a∗
−S) = vm(σm(bS , a∗

−S)) for a resource m such that bi = {m}.
Let T = {j ∈ S|bj = bi}. T is non-empty, since i ∈ T . From the definition
of T and since T ⊆ S it holds that σm(bS , a∗

−S) ≤ σm(bT , a∗
−T ); therefore,

since the game is monotone-increasing, ui(bT , a∗
−T ) ≥ ui(bS , a∗

−S) > ui(a∗).
Since ∀j ∈ T, uj(bT , a∗

−T ) = ui(bT , a∗
−T ), we have that ∀j ∈ T, uj(bT , a∗

−T ) =
ui(bT , a∗

−T ) ≥ ui(bS , a∗
−S) > ui(a∗) ≥ uj(a∗), which contradicts our assumption

that a∗ is a SE. �	
This brings us to the following result:

Theorem 6. Consider the monotone increasing setting, and let F = (M, N, A)
be a congestion game form, with n ≥ 2. Then, F is correlated strongly consistent
if and only if A is i-good; moreover, if A is i-good, a CSE can be efficiently
computed.

Proof: ⇐ Follows from Thms. 4 and 5.
⇒ The proof is similar to the proof of this direction in Thm. 4, observing that

the counter examples given there are solved via elimination of strictly dominated
strategies, and therefore don’t posses a CSE. �	
Notice that while the set of congestion game forms that are strongly consistent in
the increasing case is a strict subset of the set of congestion game forms that are
strongly consistent in the decreasing case, we get inclusion in the other direction
when considering correlated-strong consistency.

6 Further Work

One interesting question is whether further common restrictions, e.g. linearity, on
the utility functions may have significant effects on the existence of SE and CSE.
A related aspect has to do with restrictions on the utility functions to be only
positive or only negative. Our initial study suggests that using such assumptions
(in addition to monotonicity) one can slightly expand the set of situations where
SE and/or CSE exist, but only in a very esoteric manner. Other aspects of SE
and CSE, such as uniqueness and Pareto-optimality are also under consideration.
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