
On the Complexity of Pure-Strategy Nash

Equilibria in Congestion and Local-Effect Games

—Extended Abstract—

Juliane Dunkel and Andreas S. Schulz

Operations Research Center, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA

{juliane, schulz}@mit.edu

Abstract. Congestion games are a fundamental class of noncooperative
games possessing pure-strategy Nash equilibria. In the network version,
each player wants to route one unit of flow on a path from her origin to
her destination at minimum cost, and the cost of using an arc only de-
pends on the total number of players using that arc. A natural extension
is to allow for players sending different amounts of flow, which results
in so-called weighted congestion games. While examples have been ex-
hibited showing that pure-strategy Nash equilibria need not exist, we
prove that it actually is strongly NP-hard to determine whether a given
weighted network congestion game has a pure-strategy Nash equilibrium.
This is true regardless of whether flow is unsplittable (has to be routed
on a single path for each player) or not.

A related family of games are local-effect games, where the disutility
of a player taking a particular action depends on the number of players
taking the same action and on the number of players choosing related
actions. We show that the problem of deciding whether a bidirectional
local-effect game has a pure-strategy Nash equilibrium is NP-complete,
and that the problem of finding a pure-strategy Nash equilibrium in a
bidirectional local-effect game with linear local-effect functions (for which
the existence of a pure-strategy Nash equilibrium is guaranteed) is PLS-
complete. The latter proof uses a tight PLS-reduction, which implies the
existence of instances and initial states for which any sequence of selfish
improvement steps needs exponential time to reach a pure-strategy Nash
equilibrium.

1 Introduction

Game theory in general and the concept of Nash equilibrium in particular have
lately come under increased scrutiny by theoretical computer scientists. Com-
puting a mixed Nash equilibrium is a case in point. Goldberg and Papadim-
itriou (2006) showed only recently that finding a mixed Nash equilibrium in a
game of any constant number of players is reducible to solving a 4-player game.
Daskalakis, Goldberg, and Papadimitriou (2006) showed in turn that the latter
problem is PPAD-complete. Subsequently, Chen and Deng (2005) and Daskalakis
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and Papadimitriou (2005) proved that computing mixed Nash equilibria in games
with three players is PPAD-complete as well. Eventually, Chen and Deng (2006)
established the same result for the two-player case.

While Nash (1951) showed that mixed Nash equilibria do exist in any finite
noncooperative game, it is well known that pure-strategy Nash equilibria are in
general not guaranteed to exist. It is therefore natural to ask which games have
pure-strategy Nash equilibria and, if applicable, how difficult is it to find one. In
this article, we study these questions for certain classes of weighted congestion
and local-effect games.

Congestion games were introduced by Rosenthal (1973), who showed that
they are guaranteed to possess pure-strategy Nash equilibria. In a congestion
game, a player’s strategy consists of a subset of resources, and her disutility only
depends on the number of players choosing the same resources. An important
subclass of congestion games can be represented by means of networks. Each
player wants to route one unit of flow from her origin to her destination, at
minimal cost. The network arcs are the resources, and a player’s set of pure
strategies consists of the sets of arcs corresponding to paths connecting her
origin-destination pair. Fabrikant, Papadimitriou, and Talwar (2004) studied the
computational complexity of finding pure-strategy Nash equilibria in congestion
games. For symmetric network congestion games, where all players have the
same origin-destination pair, they presented a polynomial-time algorithm for
computing a pure-strategy Nash equilibrium. On the other hand, they proved
that this problem is PLS-complete for symmetric congestion games as well as
for asymmetric network congestion games. A simpler proof of the latter result
was given by Ackermann, Röglin, and Vöcking (2006a), who also showed that
this result still holds if the cost functions are affine-linear.

In (unweighted) network congestion games, each player routes exactly one
unit of flow along a single path. In weighted congestion games, players can have
different amounts of flow. Depending on whether players are allowed to split their
flows or not, a player’s strategy consists of a set of paths with corresponding
integer flow values between her origin-destination pair, or of a single path.

Fotakis, Kontogiannis, and Spirakis (2005) studied weighted network conges-
tion games with unsplittable flows. They constructed simple examples of sym-
metric instances that do not possess a pure-strategy Nash equilibrium. On the
other hand, they proved that for the special case of affine cost functions, a pure-
strategy Nash equilibrium is always guaranteed to exist. Awerbuch, Azar, and
Epstein (2005) derived a tight bound of (

√
5+3)/2 on the pure price of anarchy

for this special case. They also considered the case when the cost functions are
polynomials of fixed degree greater than 1. However, Goemans, Mirrokni, and
Vetta (2005) showed that a pure-strategy Nash equilibrium need not exist for in-
stances with cost functions that are polynomials of degree at most 2. Milchtaich
(1996) had earlier shown that weighted congestion games with player-specific
disutility functions on networks consisting of parallel arcs only do not always
have a pure-strategy Nash equilibrium.
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In this article, we show that the problem of deciding whether a weighted
network congestion game with simple, non-linear cost functions possesses a pure-
strategy Nash equilibrium is strongly NP-hard, regardless of whether we consider
splittable or unsplittable flows. In the unsplittable case, the problem remains NP-
hard even if all players have the same origin and the same destination. The same
is true for weighted congestion games with affine player-specific cost functions
in networks consisting of parallel arcs only.

Leyton-Brown and Tennenholtz (2003) introduced local-effect games as a tool
to model situations in which the use of one resource can affect the cost of other re-
sources. Local-effect games are in general not guaranteed to possess pure-strategy
Nash equilibria. However, Leyton-Brown and Tennenholtz showed that so-called
bidirectional local-effect games with linear local-effect functions belong to the
class of exact potential games, and therefore always have pure-strategy Nash
equilibria. The question of whether there exists a polynomial-time algorithm for
finding a pure-strategy Nash equilibrium for these games was left open.

We prove that computing a pure-strategy Nash equilibrium is PLS-complete.
Because the proof uses a tight PLS-reduction, our result implies the existence
of instances of these games that have exponentially long shortest improvement
paths. It also implicates that the problem of finding a pure-strategy Nash equi-
librium that is reachable from a given strategy state via selfish improvement
steps is PSPACE-hard. In addition, we show that, given an initial strategy pro-
file for a bidirectional local-effect game with linear local-effect functions and a
positive integer k (unarily encoded), it is NP-complete to decide whether there
is a sequence of at most k selfish steps that transforms the initial state into
a pure-strategy Nash equilibrium. We also prove that the problem of deciding
whether a bidirectional local-effect game with general, strictly increasing local-
effect functions has a pure-strategy Nash equilibrium is NP-complete.

For bidirectional local-effect games with linear local-effect functions (for which
a pure-strategy Nash equilibrium is guaranteed to exist), we also study the pure
price of stability w.r.t. the social objective that is given by the sum of the costs
of all players. In the case of linear cost functions, in which the worst-possible
ratio of the social cost of a pure-strategy Nash equilibrium to that of a social
optimum (i.e., the pure price of anarchy) is unbounded, we obtain a bound of 2
on the pure price of stability. Thus, there always exists a pure-strategy Nash
equilibrium whose cost is at most twice that of a socially optimal solution. For
the case of quadratic cost functions and linear local-effect functions we derive a
bound of 3 on the pure price of stability.

Before we present the details of our results on weighted congestion games and
local-effect games in Sections 2 and 3, respectively, let us end this introduction
by briefly discussing additional related work on the computational complexity of
pure-stratgey Nash equilibria. Gottlob, Greco, and Scarcello (2005) considered
restrictions of strategic games intended to capture certain aspects of bounded
rationality. Among other results, they proved that even in the setting where each
player’s payoff function depends on the actions of at most three other players
and where each player is allowed to play at most three actions, the problem
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of determining whether a strategic game has a pure-strategy Nash equilibrium
is NP-complete. This result was strengthened by Fischer, Holzer, and Katzen-
beisser (2006) who showed that this problem remains hard even if each player
has only two actions to choose from and her payoff depends on the actions of at
most two other players. Àlvarez, Gabarró, and Serna (2005) studied how various
representations of a strategic game influence the computational complexity of
deciding the existence of a pure-strategy Nash equilibrium. They showed that
this problem is NP-complete when the number of players is large and the num-
ber of strategies for each player is constant, while the problem is

∑p
2-complete

when the number of players is constant and the size of the sets of strategies
is exponential (with respect to the length of the strategies). Schoenebeck and
Vadhan (2006) analyzed the computational complexity of deciding whether a
pure-strategy Nash equilibrium exists in graph games and circuit games. Brandt,
Fischer, and Holzer (2006) studied the impact of various notions of symmetry in
strategic games on the computational complexity of finding pure-strategy Nash
equilibria. Expanding on a line of research started by Ieong et al. (2005), who
considered singleton congestion games, Ackermann, Röglin, and Vöcking (2006a)
proved that the lengths of all best-response sequences are polynomially bounded
in the number of players and resources in congestion games where the strategy
space of each player consists of the bases of a matroid over the set of resources.
This especially implies that pure-strategy Nash equilibria for congestion games
with the matroid property can be computed in polynomial time, even in the
case of player-specific costs (Ackermann, Röglin, and Vöcking 2006b). In the
latter paper, Ackermann et al. also showed the existence of pure-strategy Nash
equilibria in weighted congestion games with the same matroid property.

Due to space limitations, proofs are only sketched or omitted completely from
this extended abstract. Most details can be found in Dunkel (2005). A journal
version is forthcoming.

2 Weighted Congestion Games

An unweighted congestion game is a tuple 〈N, E, (Si)i∈N , (fe)e∈E〉, where N =
{1, 2, . . . , n} is the set of players, and E is a set of resources. For each player i ∈
N , her set Si of available strategies is a collection of subsets of the resources; that
is, Si ⊆ 2E. A cost function fe : N → R+ is associated with each resource e ∈ E.
Given a strategy profile s = (s1, s2, . . . , sn) ∈ S = S1 × S2 × · · · × Sn, the
cost (disutility) of player i is ci(s) =

∑
e∈si

fe

(
ne(s)

)
, where ne(s) denotes the

number of players using resource e in s. In other words, in a congestion game
each player chooses a subset of resources that are available to her, and the cost
to a player is the sum of the costs of the resources used by her, where the cost
of a resource only depends on the total number of players using this resource.

A network congestion game is a congestion game where the arcs of an under-
lying directed network represent the resources. Each player i ∈ N has an origin-
destination pair (ai, bi), where ai and bi are nodes of the network, and the set Si

of pure strategies available to player i is the set of directed (simple) paths from ai
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to bi. A symmetric network congestion game is also called a single-commodity
network congestion game because all players have the same origin-destination
pair.

In a weighted network congestion game 〈N, E, (wi)i∈N , (Si)i∈N , (fe)e∈E〉, each
player i ∈ N has a positive integer weight wi, which constitutes the amount of
flow that player i wants to ship from ai to bi. In the case of unsplittable flows, the
cost of player i adopting strategy si in a strategy profile s = (s1, s2, . . . , sn) ∈ S
is given by ci(s) =

∑
e∈si

fe

(
θe(s)

)
, where θe(s) =

∑
i:e∈si

wi denotes the total
flow on arc e in s. In integer-splittable network congestion games, a player with
weight greater than one can choose a subset of paths on which to route her flow
simultaneously; that is, player i’s strategy consists of the specification of the
ai-bi-paths used and the (integer) amounts of flow routed on them, which sum
up to wi.

In terms of the input size of a weighted network congestion game, we assume
that the cost functions are explicitly specified; that is, for each 0 ≤ x ≤ ∑

i∈N wi

and each arc e, the value fe(x) is given in binary encoding.
While every unweighted congestion game possesses a pure-strategy Nash equi-

librium (Rosenthal 1973), this is not true for weighted congestion games; see,
e.g., Fig. 1 in Fotakis, Kontogiannis, and Spirakis (2005). We can actually turn
their instance into a gadget to derive the following result.

Theorem 1. The problem of deciding whether a weighted symmetric network
congestion game with unsplittable flows possesses a pure-strategy Nash equilib-
rium is strongly NP-complete.

The proof is by a reduction from 3-Partition, and it is omitted from this
extended abstract. While the NP-hardness of the corresponding decision prob-
lem for weighted network congestion games with player-specific payoff functions
follows immediately, we can actually strengthen this result.

Theorem 2. The problem of deciding whether a weighted network congestion
game with parallel arcs and affine player-specific disutility functions possesses a
pure-strategy Nash equilibrium is strongly NP-complete.

For network congestion games with integer-splittable flows, we obtain the fol-
lowing result.

Theorem 3. The problem of deciding whether a weighted network congestion
game with integer-splittable flows possesses a pure-strategy Nash equilibrium is
strongly NP-hard. Hardness even holds if there is only one player with weight 2,
and all other players have unit weights.

Proof. Consider an instance of Monotone3Sat with set of variables X =
{x1, x2, . . . , xn} and set of clauses C = {c1, c2, . . . , cm}. We construct a game
that has one player px for every variable x ∈ X with weight wx = 1, ori-
gin x and destination x̄. Moreover, each clause c ∈ C gives rise to a player pc

with weight wc = 1, origin c, and destination c̄. There are three more play-
ers p1, p2, and p3 with weights w1 = 1, w2 = 2, w3 = 1 and origin-destination
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pairs (s, t1), (s, t2), (s, t3), respectively. For every variable x ∈ X there are two
disjoint paths P 1

x , P 0
x from x to x̄ in the network. Path P 0

x consists of 2 |{c ∈
C | x ∈ c}| + 1 arcs and P 1

x has 2 |{c ∈ C | x̄ ∈ c}| + 1 arcs with cost functions
as shown in Fig. 1. For each pair (c, c̄), we construct two disjoint paths P 1

c , P 0
c

from c to c̄. Path P 1
c consists of only two arcs. The paths P 0

c will have seven
arcs each and are constructed for c = cj in the order j = 1, 2, . . . , m as follows.
For a positive clause c = cj = (xj1 ∨ xj2 ∨ xj3) with j1 < j2 < j3, path P 0

c

starts with the arc connecting c to the first inner node v1 on path P 1
xj1

that
has only two incident arcs so far. The second arc is the unique arc (v1, v2) of
path P 1

xj1
that has v1 as its start vertex. The third arc connects v2 to the first

inner node v3 on path P 1
xj2

that has only two incident arcs so far. The fourth
arc is the only arc (v3, v4) on P 1

xj2
with start vertex v3. From v4, there is an

arc to the first inner node v5 on P 1
xj3

that has only two incident arcs so far,
followed by (v5, v6) of P 1

xj3
. The last arc of P 0

c connects v6 to c̄ (see Fig. 1). For
a negative clause c = cj = (x̄j1 ∨ x̄j2 ∨ x̄j3) we proceed in the same way, except
that we choose the inner nodes vi from the upper variable paths P 0

xj1
, P 0

xj2
, P 0

xj3
.

The strategy set of player px is {P 1
x , P 0

x}. We will interpret it as setting the

0/1
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0/10/1
0/1

0/1 0/1
0/1

0/1

0/1
0/1

0/10/1
0/1

0/1 0/1
0/1
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x1 P 0

x2 P 0
x3

P 1
x1 P 1

x2
P 1

x3
x1 x2 x3x̄1 x̄2 x̄3

P 1
c

P 0
c

c1 c̄1 c2

1
2

0/ 1
m

v1
v2

v3

v4

v5

v6

Fig. 1. Part of the constructed network corresponding to a positive clause c1 = (x1 ∨
x2 ∨ x3). The notation a/b defines a cost per unit flow of value a for load 1 and b for
load 2. Arcs without specified values have zero cost.

variable x to true (false) if px sends her unit of flow over P 1
x (P 0

x ). Note that
player pc can only choose between the paths P 1

c and P 0
c . This is due to the order

in which the paths P 0
cj

are constructed. Depending on whether player pc sends
her unit of flow over path P 1

c or P 0
c , the clause c will be satisfied or not.

The second part of the network consists of all origin-destination pairs and
paths for players p1, p2, p3 (see Fig. 2). Player p1 can choose between paths U1 =
{(s, t2), (t2, t1)} and L1 = {(s, t1)}. Player p2 is the only player who can split her
flow; that is, she can route her two units either both over path U2 = {(s, t2)},
both over path L2 = {(s, t1), (t1, t2}, or one unit on the upper and the other unit
on the lower path; i.e., S2 = {L2, U2, LU2}. Finally, player p3 has three possible
paths to choose from. The upper path U3 shares an arc with each clause path P 1

c

and has some additional arcs to connect these. The paths M3 = {(s, t2), (t2, t3)}
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Fig. 2. Part of the constructed network that is used by players p1, p2, and p3. A single
number a on an arc defines a constant cost a per unit flow for this arc.

and L3 = {(s, t1), (t1, t2), (t2, t3)} have only arcs with the paths of p1 and p2 in
common. The cost functions are defined in Fig. 2.

Given a satisfying truth assignment, we define a strategy state s of the game by
setting the strategy of player px to be P 1

x for a true variable x, and P 0
x otherwise.

Each player pc plays P 1
c . Furthermore, s1 = L1, s2 = U2, and s3 = M3. It is

easy to show that no player can decrease her cost by unilaterally switching to
another strategy; i.e., the defined strategy configuration is a pure-strategy Nash
equilibrium.

For the other direction, we first observe that any pure-strategy Nash equi-
librium s of the game has the following properties: (a) player p3 does not use
path U3, (b) for the cost of player p3 we have c3(s) ≥ 8, and (c) each player pc

routes her unit flow over path P 1
c . Property (a) follows from the fact that the sub-

game shown in Fig. 3 with players p1 and p2 only does not have a pure-strategy
Nash equilibrium. Property (a) implies (b), and property (c) can be proved by
contradiction assuming (a) and (b). We claim that the truth assignment that

s
0/6/7/13

5/7/9/13

L

U

9,34

0,30

7,11

6,15 7,14

5,12

LL LU UU

4/8/12/13

t1

t2

Fig. 3. Sub-game with two players without pure-strategy Nash equilibrium (Papadim-
itriou 2003)

sets a variable x to true if the corresponding player uses P 1
x , and x to false oth-

erwise, satisfies all clauses. Suppose for a positive clause c = (x1 ∨ x2 ∨ x3) that
all variables are false; i.e., sxi = P 0

xi
for i = 1, 2, 3. By property (c), player pc

uses P 1
c . Because of (a), her current cost is cc(s) = 1

2 . Choosing path P 0
c instead

would decrease the cost to zero, which contradicts the assumption of s being a
Nash equilibrium. A similar argument holds for a negative clause. ��
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3 Local-Effect Games

A local-effect game is a tuple 〈N, A,F〉 where N = {1, 2, . . . , n} is the set of
players, A is a common set of actions (strategies) available to each player, and
F is a set of cost functions. For each pair of actions a, a′ ∈ A, the function Fa′,a :
Z+ → R+ expresses the impact of action a′ on the cost of action a, which depends
only on the number of players that choose action a′. For a, a′ ∈ A with a 
=
a′, Fa′,a is called a local-effect function, and it is assumed that Fa′,a(0) = 0.
Moreover, the local-effect function Fa′,a is either strictly increasing or identical
zero. If Fa′,a is not identical zero, then this is also the case for Fa,a′ . In other
words, if action a has an effect on action a′, then the converse is also true. For a
given strategy state s = (s1, s2, . . . , sn) ∈ An, na denotes the number of players
playing action a in s. The cost to a player i ∈ N for playing action si in strategy
state s is given by ci(s) = Fsi,si(nsi) +

∑
a∈A,a�=si

Fa,si(na). If the local-effect
functions Fa′,a are zero for all a 
= a′, the local-effect game is equivalent to a
symmetric network congestion game with only parallel arcs.

A local-effect game is called a bidirectional local-effect game if for all a, a′ ∈
A, a 
= a′, and for all x ∈ Z+, Fa′,a(x) = Fa,a′(x). Leyton-Brown and Ten-
nenholtz (2003) gave a characterization of local-effect games that have an exact
potential function and which are therefore guaranteed to possess pure-strategy
Nash equilibria. One of these subclasses are bidirectional local-effect games with
linear local-effect functions. However, without linear local-effect functions, de-
ciding the existence is hard.

3.1 Computational Complexity

Theorem 4. The problem of deciding whether a bidirectional local-effect game
has a pure-strategy Nash equilibrium is NP-complete.

The proof will be given in the full version of this paper. The next result implies
that computing a pure-strategy Nash equilibrium for a bidirectional local-effect
game with linear local-effect functions is as least as hard as finding a local opti-
mum for several combinatorial optimization problems with efficiently searchable
neighborhoods.

Theorem 5. The problem of computing a pure-strategy Nash equilibrium for a
bidirectional local-effect game with linear local-effect functions is PLS-complete.

Proof. We reduce from PosNae3Flip (Schäffer and Yannakakis 1991): Given
not-all-equal clauses with at most three literals, (x1, x2, x3) or (x1, x2), where xi

is either a variable or a constant (0 or 1), and a weight for each clause, find a truth
assignment such that the total weight of satisfied clauses cannot be improved by
flipping a single variable.

For simplicity, we assume that we are given an instance of PosNae3Flip with
set C = C2 ∪̇C3 of clauses containing two or three variables but no constants, a
positive integer weight wc for each clause c ∈ C, and set of variables {x1, . . . , xn}.
We construct a bidirectional local-effect game with linear local-effect functions
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as follows: There are n players with common action set A that contains two
actions ai and ai for each variable xi, i = 1, 2, . . . , n. Let M = 2n

∑
c∈C wc + 1.

For each action a ∈ A, Fa,a(x) = 0 if x ≤ 1, and Fa,a(x) = M otherwise. If
Ci = {c ∈ C | xi ∈ c} denotes the subset of clauses containing variable xi, the
local-effect functions are given for i, j ∈ {1, 2, . . . , n}, i 
= j, by

Fai,aj (x) = Fai,aj (x) =
(

2
∑

c∈C2∩Ci∩Cj

wc +
∑

c∈C3∩Ci∩Cj

wc

)

x .

However, the local-effect functions Fai,aj and Fai,aj are zero if there is no clause
containing both xi and xj . Furthermore, Fai,ai(x) = Fai,ai(x) = M x for all i ∈
{1, 2, . . . , n}. All local-effect functions not defined so far are identical zero. For
any solution s = (s1, s2, . . . , sn), si ∈ A, of the game, we define the corresponding
truth assignment to the variables xi of the PosNae3Flip instance by xi = 1 if
|{j | sj = ai}| ≥ 1, and xi = 0 otherwise.

Now we show that for any pure-strategy Nash equilibrium s = (s1, s2, . . . , sn)
of the game, the corresponding truth assignment is indeed a local optimum of the
PosNae3Flip instance. The proof is demonstrated only for the case of flipping
a positive variable xi = 1 to x′

i = 0. First, observe that for all i ∈ {1, 2, . . . , n}
∣
∣{j | sj = ai}

∣
∣ +

∣
∣{j | sj = ai}

∣
∣ = 1 , (1)

since otherwise, because of the choice of M , there is always a player who can
decrease her cost by choosing another action.

Let X and X ′ denote the truth assignments before and after flipping vari-
able xi. Let the set of clauses that contain variable xi and are satisfied by truth
assignment X , X ′ be CX

i , CX′
i , respectively. Further, let C

X\X′

i (CX′\X
i ) be the

set of clauses containing xi that are satisfied by truth assignment X (X ′), but
not by X ′ (X). Then the difference in the total weight of satisfied clauses by X ′

and X can be written as

ΔW =
∑

c∈C2∩C
X′\X
i

wc +
∑

c∈C3∩C
X′\X
i

wc −
∑

c∈C2∩C
X\X′
i

wc −
∑

c∈C3∩C
X\X′
i

wc . (2)

For a clause c = (xi, xj) ∈ C
X′\X
i , it follows because of xi = 1 that xj = 1. Then,

by definition of X and by (1), naj = 1 and naj
= 0. If c = (xi, xj) ∈ C

X\X′

i ,
we have xj = 0, naj = 0, and naj = 1. Similarly, for a three-variable clause

c = (xi, xj , xk) ∈ C
X′\X
i , xi = 1 implies xj = xk = 1, naj = nak

= 1, and

naj
= nak

= 0. If c = (xi, xj , xk) ∈ C
X\X′

i , then xj = xk = 0, naj = nak
= 0,

and naj
= nak

= 1. Thus we can rewrite (2) as

ΔW =
n∑

j=1,j �=i

[(
∑

c∈C2∩C
X′\X
i ∩Cj

wc

)

naj −
(

∑

c∈C2∩C
X\X′
i ∩Cj

wc

)

naj

]

+
1
2

n∑

j=1,j �=i

[(
∑

c∈C3∩C
X′\X
i ∩Cj

wc

)

naj −
(

∑

c∈C3∩C
X\X′
i ∩Cj

wc

)

naj

]

.

(3)
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By the above observations on the numbers naj and naj
we have

n∑

j=1,j �=i

∑

c∈C2∩C
X\X′
i ∩Cj

wcnaj = −
n∑

j=1,j �=i

∑

c∈C2∩C
X′\X
i ∩Cj

wcnaj
= 0 , (4)

n∑

j=1,j �=i

∑

c∈C3∩C
X\X′
i ∩Cj

wcnaj = −
n∑

j=1,j �=i

∑

c∈C3∩C
X′\X
i ∩Cj

wcnaj = 0 . (5)

Now consider clauses c = (xi, xj , xk) ∈ (C3 ∩ Ci) \ (CX\X′

i ∪ C
X′\X
i ). Since

the case of clause c not being satisfied by both X and X ′ cannot happen, we
have c ∈ CX

i ∩ CX′
i . Then, either xj = 1, xk = 0 or xj = 0, xk = 1, and

therefore naj = 1, nak
= 0 or naj = 0, nak

= 1. By (1), we have in both cases
naj + nak

= naj + nak
= 1; i.e., wc(naj + nak

) − wc(naj + nak
) = 0. Thus

n∑

j=1,j �=i

(
∑

c∈C3∩CX
i ∩CX′

i ∩Cj

wc

)

naj −
n∑

j=1,j �=i

( ∑

c∈C3∩CX
i ∩CX′

i ∩Cj

wc

)

naj = 0 .

(6)
Adding the terms in (4), (5), and (6) to (3), we obtain

ΔW =
n∑

j=1,j �=i

[(
∑

c∈C2∩Ci∩Cj

wc

)

naj −
(

∑

c∈C2∩Ci∩Cj

wc

)

naj

]

+
1
2

n∑

j=1,j �=i

[(
∑

c∈C3∩Ci∩Cj

wc

)

naj −
(

∑

c∈C3∩Ci∩Cj

wc

)

naj

]

≤ 0 .

Here, the last inequality follows from the fact that the player i with action si = ai

cannot decrease her cost by switching to action ai. The described construction
is indeed a PLS-reduction. ��
Since the reduction actually is a tight PLS-reduction, we obtain the following
results.

Corollary 6. There are instances of bidirectional local-effect games with linear
local-effect functions that have exponentially long shortest improvement paths.

Corollary 7. For a bidirectional local-effect game with linear local-effect func-
tions, the problem of finding a pure-strategy Nash equilibrium that is reachable
from a given strategy state via selfish improvement steps is PSPACE-complete.

The following result underlines that finding a pure Nash equilibrium for bidirec-
tional local-effect games with linear local-effect functions is indeed hard.

Theorem 8. Given an instance of a bidirectional local-effect games with linear
local-effect functions, a pure-strategy profile s0, and an integer k > 0 (unarily
encoded), it is NP-complete to decide whether there exists a sequence of at most k
selfish steps that transforms s0 to a pure-strategy Nash equilibrium.
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3.2 Pure Price of Stability for Bidirectional Local-Effect Games

We derive bounds on the pure-price of stability for games with linear local-effect
functions where the social objective is the sum of the costs of all players.

Theorem 9. The pure price of stability for bidirectional local-effect games with
only linear cost functions is bounded by 2.

The proof is based on a technique suggested by Anshelevich et al. (2004) using
the potential function introduced by Leyton-Brown and Tennenholtz (2003). By
the same technique, we can derive the following bound for the case of quadratic
cost-functions and linear local-effect functions.

Theorem 10. The pure price of stability for bidirectional local-effect games
with Fa,a(x) = ma x2 +qa x, qa ≥ 0 for all a ∈ A and linear local-effect functions
is bounded by 3.
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