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Abstract. Unlike standard congestion games, weighted congestion
games and congestion games with player-specific delay functions do not
necessarily possess pure Nash equilibria. It is known, however, that there
exist pure equilibria for both of these variants in the case of singleton
congestion games, i. e., if the players’ strategy spaces contain only sets
of cardinality one. In this paper, we investigate how far such a property
on the players’ strategy spaces guaranteeing the existence of pure equi-
libria can be extended. We show that both weighted and player-specific
congestion games admit pure equilibria in the case of matroid congestion
games, i. e., if the strategy space of each player consists of the bases of
a matroid on the set of resources. We also show that the matroid prop-
erty is the maximal property that guarantees pure equilibria without
taking into account how the strategy spaces of different players are in-
terweaved. In the case of player-specific congestion games, our analysis
of matroid games also yields a polynomial time algorithm for computing
pure equilibria.

1 Introduction

Congestion games are a natural model for resource allocation in large networks
like the Internet. It is assumed that n players share a set R of m resources.
Players are interested in subsets of resources. For example, the resources may
correspond to the edges of a graph, and each player may want to allocate a
spanning tree of this graph. The delay (cost, negative payoff) of a resource
depends on the number of players that allocate the resource, and the delay of a
set of allocated resources corresponds to the sum of the delays of the resources in
the set. A well known potential function argument of Rosenthal [11] shows that
congestion games always possess Nash equilibria1, i. e., allocations of resources
from which no player wants to deviate unilaterally.

The existence of Nash equilibria gives a natural solution concept for congestion
games. Unfortunately, this property does not hold anymore if we slightly extend
the class of considered games towards congestion games with player-specific delay
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functions, i. e., a variant of congestion games in which different players might
have different delay functions, and weighted congestion games, i. e., a variant
of congestion games in which the delay of a resource depends on a weighted
number of players. For both of these classes one can easily construct examples
of games that do not possess Nash equilibria (cf. Fotakis et al. [4] in the case of
weighted network congestion games). In this paper, we study which conditions
on the strategy spaces of individual players guarantee the existence of Nash
equilibria. We only consider games with non-decreasing delay functions since
otherwise one can construct examples of weighted and player-specific singleton
congestion games, i. e., games in which the players’ strategy spaces contain only
sets of cardinality one, that do not possess Nash equilibria.

It is known, however, that there exist pure equilibria for both of these vari-
ants in the case of singleton congestion games with non-decreasing delay func-
tions [10,2]. We extend these results and show that both player-specific and
weighted congestion games admit pure equilibria in the case of matroid conges-
tion games, i. e., if the strategy space of each player consists of the bases of a
matroid on the set of resources. We also show that the matroid property is the
maximal condition on the players’ strategy spaces that guarantees Nash equi-
libria without taking into account how the strategy spaces of different players
are interweaved. In the case of player-specific matroid congestion games, our
analysis also yields a polynomial time algorithm for computing pure equilibria.
Let us remark that the best response dynamics may cycle for player-specific sin-
gleton congestion games [10]. For weighted matroid congestion games we do not
have an efficient algorithm for computing a Nash equilibrium, but we show that
players playing “lazy best responses” converge to a Nash equilibrium.

Related Work. Milchtaich [10] considers player-specific singleton congestion
games and shows that every such game possesses at least one Nash equilibrium.
Additionally, he shows that players iteratively playing best responses in such
games do not necessarily reach a Nash equilibrium, that is, the best response
dynamics may cycle. However, he implicitly describes an algorithm for comput-
ing an equilibrium. Our work generalizes Milchtaich’s analysis from singleton
congestion games towards matroid congestion games. Gairing et al. [6] consider
player-specific singleton congestion games with linear delay functions without
offsets and show that the best response dynamics of these games do not cy-
cle anymore. Milchtaich [10] also addresses the existence of Nash equilibria in
congestion games which are both player-specific and weighted. In this case, a
Nash equilibrium does not necessarily exist in singleton congestion games. How-
ever, Georgiou et al. [7] and Garing et al. [6] conjecture that these games pos-
sess Nash equilibria in the case of linear player-specific delay functions without
offsets.

Even-Dar et al. [2] consider a load balancing scenario with weighted jobs.
They show that in this scenario at least one Nash equilibrium always exists and
that players iteratively playing best responses converge to such an equilibrium.
A similar result can also be found in [10] and [3]. Our proof that every weighted
matroid congestion game possesses at least one Nash equilibrium reworks the
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proof in [2]. Even-Dar et al. [2] also consider the convergence time in the case
of unrelated, related, and identical machines, and different types of job weights.
They show that players do not necessarily converge quickly in any of these sce-
narios. Fotakis et al. [4] consider weighted network congestion games in which
the strategy space of each player corresponds to the set of all paths between
possibly different sources and sinks in a network. First they show that a Nash
equilibrium does not necessarily exist. However, they are able to show that in
the case of l-layered networks with delays equal to the congestion every weighted
network congestion game possesses at least one Nash equilibrium. This shows
that if we consider more than the combinatorial structure of the strategy spaces
of the players, then one can identify larger classes of weighted congestion games
possessing Nash equilibria.

It is interesting to relate the results about the existence of Nash equilibria in
player-specific and weighted matroid congestion games to our recent work about
the convergence time of standard congestion games: In [1] we characterize the
class of congestion games that admit polynomial time convergence to a Nash
equilibrium. Motivated by the fact that in singleton congestion games players
converge quickly [9], we show that if the strategy space of each player consists
of the bases of a matroid on the set of resources, then players iteratively playing
best responses reach a Nash equilibrium quickly. Furthermore, we show that the
matroid property is a necessary and sufficient condition on the players’ strategy
spaces for guaranteeing polynomial time convergence to a Nash equilibrium if
one does not take into account the global structure of the game.

Formal Definition of Congestion Games. A congestion game Γ is a tuple
(N ,R, (Σi)i∈N , (dr)r∈R) where N = {1, . . . , n} denotes the set of players, R =
{1, . . . , m} the set of resources, Σi ⊆ 2R the strategy space of player i, and
dr : N → N a delay function associated with resource r. We call a congestion
game symmetric if all players share the same set of strategies, otherwise we
call it asymmetric. We denote by S = (S1, . . . , Sn) the state of the game where
player i plays strategy Si ∈ Σi. Furthermore, we denote by S ⊕ S′

i the state
S′ = (S1, . . . , Si−1, S

′
i, Si+1, . . . , Sn), i. e., the state S except that player i plays

strategy S′
i instead of Si. For a state S, we define the congestion nr(S) on

resource r by nr(S) = |{i | r ∈ Si}|, that is, nr(S) is the number of players
sharing resource r in state S. Players act selfishly and like to play a strategy
Si ∈ Σi minimizing their individual delay. The delay δi(S) of player i in state S
is given by δi(S) =

∑
r∈Si

dr(nr(S)). Given a state S, we call a strategy S∗
i a best

response of player i to S if, for all S′
i ∈ Σi, δi(S⊕S∗

i ) ≤ δi(S⊕S′
i). Furthermore,

we call a state S a Nash equilibrium if no player can decrease her delay by
changing her strategy, i. e., for all i ∈ N and for all S′

i ∈ Σi, δi(S) ≤ δi(S ⊕ S′
i).

Rosenthal [11] shows that every congestion game possesses at least one Nash
equilibrium by considering the potential function φ : Σ1 × · · · × Σn → N with
φ(S) =

∑
r∈R

∑nr(S)
i=1 dr(i).

There are two well known extensions of congestion games, namely player-
specific congestion games and weighted congestion games. In a player-specific
congestion game every player i has its own delay function di

r : N → N for



Pure Nash Equilibria in Player-Specific and Weighted Congestion Games 53

every resource r ∈ R. Given a state S, the delay of player i is defined as δi(S) =∑
r∈Si

di
r(nr(S)). In a weighted congestion game every player i ∈ N has a weight

ωi ∈ N. Given a state S, we define the congestion on resource r by nr(S) =∑
i:r∈Si

ωi, that is, nr(S) is the weight of all players sharing resource r in state S.

Matroids and Matroid Congestion Games. We now introduce matroid
congestion games. Before we give a formal definition of such games we shortly
introduce matroids. For a detailed discussion we refer the reader to [12].

Definition 1. A tuple M = (R, I) is a matroid if R = {1, . . . , m} is a finite set
of resources and I is a nonempty family of subsets of R such that, if I ∈ I and
J ⊆ I, then J ∈ I, and, if I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J
with J ∪ {i} ∈ I.

Let I ⊆ R. If I ∈ I, then we call I an independent set, otherwise we call it
dependent. It is well known that all maximal independent sets of I have the same
cardinality. The rank rk(M) of the matroid is the cardinality of the maximal
independent sets. A maximal independent set B is called a basis of M. In the
case of a weight function w : R → N, we call a matroid weighted, and seek to
find a basis of minimum weight, where the weight of an independent set I is
given by w(I) =

∑
r∈I w(r). It is well known that such a basis can be found by

a greedy algorithm. Now we are ready to define matroid congestion games.

Definition 2. We call a congestion game Γ = (N ,R, (Σi)i∈N , (dr)r∈R) a ma-
troid congestion game if for every player i ∈ N , Mi := (R, Ii) with Ii = {I ⊆
S | S ∈ Σi} is a matroid and Σi is the set of bases of Mi. Additionally, we
denote by rk(Γ ) = maxi∈N rk(Mi) the rank of a matroid congestion game Γ .

The obvious application of matroid congestion games are network design prob-
lems in which players compete for the edges of a graph in order to build a
spanning tree [13]. There are quite a few more interesting applications as even
simple matroid structures like uniform matroids, that are rather uninteresting
from an optimization point of view, lead to rich combinatorial structures when
various players with possibly different strategy spaces are involved. Illustrative
examples based on uniform matroids are market sharing games with uniform
market costs [8] and scheduling games in which each player has to injectively
allocate a given set of tasks (services) to a given set of machines (servers).

Let us remark that, in the case of matroid congestion games, the assumption
that all delays are positive is not a restriction. Since all strategies have the same
size, one can easily shift all delays by the same value in order to obtain positive
delays without changing the better and best response dynamics.

2 Player-Specific Matroid Congestion Games

In this section, we consider player-specific matroid congestion games with non-
decreasing player-specific delay functions and prove that every such game pos-
sesses at least one Nash equilibrium. Moreover, the proof we present implicitly
describes an efficient algorithm to compute an equilibrium.
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Theorem 3. Every player-specific matroid congestion game Γ with non-de-
creasing delay functions possesses at least one Nash equilibrium.

Proof. Recall that since the strategy space of player i corresponds to the set
of bases of a matroid Mi, all strategies of player i have the same size rk(Mi).
In the following, we represent a strategy of player i by rk (Mi) tokens that the
player places on the resources she allocates. Suppose that we reduce the number
of tokens of some of the players, that is, player i has ki ≤ rk(Mi) tokens that
she places on the resources of an independent set of cardinality ki. Observe that
the independent sets of cardinality ki form the bases of a matroid M′

i whose
independent sets correspond to those independent sets of Mi with cardinality
at most ki. Hence, a game in which some of the players have a reduced number
of tokens is also a matroid congestion game.

We prove the theorem by induction on the total number of tokens τ =∑
i∈N rk(Mi) that the players are allowed to place, that is, we prove the ex-

istence of Nash equilibria for a sequence of games Γ0, Γ1, . . . Γτ , where Γ�+1 is
obtained from Γ� by giving one more token to one of the players. Γ0 is the game
in which each player has only the empty strategy. Obviously, Γ0 has only one
state and this state is a Nash equilibrium.

As induction hypothesis assume that player i has placed ki ≥ 0 tokens, for
1 ≤ i ≤ n, and this placement corresponds to a Nash equilibrium of the player-
specific matroid congestion game Γ� = (N ,R, (Σki

i )i∈N , (di
r)i∈N ,r∈R) with � =

∑
i∈N ki, in which the set of strategies Σki

i coincides with the set of independent
sets of size ki of the matroid Mi.

Now assume that some player i0 has to place an additional token t0. We show
how to compute a Nash equilibrium for the game Γ�+1 obtained from a Nash
equilibrium of Γ� by changing i0’s strategy space to the set of independent sets
of size ki0 +1. Due to the greedy property of matroids, there exists a resource r0

such that placing the token t0 on r0 gives an independent set of size ki0 +1 with
minimum delay among all independent sets of the same size. Thus, assuming
that the tokens of the other players are fixed, an optimal strategy for player
i0 is to place t0 on r0 and leave all other tokens unchanged. However, as the
congestion on r0 is increased by one, other players might want to move their
tokens from r0 in order to obtain a better independent set. We now use matroid
properties to show that a Nash equilibrium of Γ�+1 can be reached with only
n · m · rk(Γ ) moves of tokens.

Lemma 4. Let M be a weighted matroid and Bopt be a basis of M with minimum
weight. If the weight of a single resource ropt ∈ Bopt is increased such that Bopt is
no longer of minimum weight, then, in order to obtain a minimum weight basis
again, it suffices to exchange ropt with a resource r∗ of minimum weight such that
Bopt ∪ {r∗} \ {ropt} is a basis.

Proof. In order to prove the lemma we use the following property of a matroid
M = (R, I). Let I, J ∈ I with |I| = |J | be independent sets. Consider the
bipartite graph G(IΔJ) = (V, E) with V = (I \ J) ∪ (J \ I) and E = {{i, j} |
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i ∈ I \ J, j ∈ J \ I : I ∪ {j} \ {i} ∈ I}. It is well known that G(IΔJ) contains a
perfect matching (cf. Lemma 39.12(a) from [12]).

Let B′
opt be a minimum weight basis w. r. t. the increased weight of ropt. Let

P be a perfect matching of the graph G(BoptΔB′
opt) and denote by e the edge

from P that contains ropt. For every edge {r, r′} ∈ P \{e}, it holds w(r) ≤ w(r′)
as, otherwise, if w(r) > w(r′), the basis Bopt ∪ {r′} \ {r} would have smaller
weight than Bopt.

Now denote by r′opt the resource that is matched with ropt, i. e., the resource
such that e = {ropt, r

′
opt} ∈ P . As w(r) ≤ w(r′) for every {r, r′} ∈ P \ {e}, the

weight of Bopt \ {ropt} is bounded from above by the weight of B′
opt \ {r′opt}.

By the definition of the matching P , Bopt ∪ {r′opt} \ {ropt} is a basis. By our
arguments above, the weight of this basis is bounded from above by the weight
of B′

opt . Hence, this basis is optimal w. r. t. the increased weight of ropt. 	


After placing token t0 of player i0 on resource r0, resource r0 has one additional
token in comparison to the initial Nash equilibrium S of the game Γ�. Since
we assume non-decreasing delay functions, only the players with a token on r0

might now have an incentive to change their strategies. Let i1 be one of these
players. It follows from Lemma 4 that i1 has a best response in which she moves
a token t1 from resource r0 to another resource that we call r1. Now r1 is the
only resource with one additional token in comparison to S. Suppose we have
not yet reached a Nash equilibrium. Only those players with a token on r1 might
have an incentive to change their strategies. Again applying Lemma 4, we can
identify a player i2 that has a best response in which she moves a token t2 from
r1 to a resource r2, which then is the only resource with one additional token.

The token migration process described above can be continued in the same
way until it reaches a Nash equilibrium of the game Γ�+1. The correctness of the
process is ensured by the following invariant.

Invariant 1. For every j ≥ 0, after player ij moves token tj onto resource rj ,

a) only players with a token on rj might violate the Nash equilibrium condition,
b) the Nash equilibrium condition of all players would be satisfied if one ignores

the additional token on rj, that is, if each player calculates the delay on rj

as if there would be one token less on this resource.

The invariant follows by induction on j: For player ij the invariant is satisfied as
this player plays a best response according to Lemma 4. Thus she satisfies the
Nash equilibrium condition even without virtually reducing the congestion on
rj . For all other players, the validity of the invariant for j follows directly from
the validity of the invariant for j − 1 as these players do not move their tokens.

Thus, in order to show the existence of a Nash equilibrium for Γ�+1, it suffices
to show that the token migration process is finite. Consider an arbitrary token
t of any player i. For a resource r, let Di(r) denote the delay of i on r if r has
one more token than in the initial state S. Observe, whenever t is moved by the
migration process from a resource r to a resource r′ then Di(r) > Di(r′). Hence,
the token t can visit each resource at most once during the token migration
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process. As there are at most n · rk(Γ ) tokens, the migration process terminates
after at most n · m · rk(Γ ) steps in a Nash equilibrium of Γ�+1. 	

The proof of Theorem 3 implicitly describes an efficient algorithm to compute a
Nash equilibrium with at most n2 · m · rk2(Γ ) moves of tokens.

Corollary 5. There exists a polynomial time algorithm to compute a Nash equi-
librium of a player-specific matroid congestion game with non-decreasing player-
specific delay functions.

3 Weighted Matroid Congestion Games

In this section we consider weighted matroid congestion games with non-decreas-
ing delay functions and show that every such game possesses at least one Nash
equilibrium. Moreover, we show that players find such an equilibrium if they
iteratively play “lazy best responses”. Formally, given a state S we call a best
response S∗

i of player i lazy if it can be decomposed into a sequence of strategies
Si = S0

i , S1
i , . . . , Sk

i = S∗
i with |Sj+1

i \ Sj
i | = 1 and γi(S ⊕ Sj+1

i ) < γi(S ⊕ Sj
i )

for 0 ≤ j < k. The existence of such a best response is guaranteed since given
a weighted matroid M = (R, I), a basis B ∈ I is an optimal basis of M if
and only if there exists no basis B∗ ∈ I with |B \ B∗| = 1 and w(B∗) < w(B)
(cf. Lemma 39.12(b) from [12]). In particular, a best response which exchanges
the least number of resources compared to the current strategy Si is a lazy best
response.

Theorem 6. Every weighted matroid congestion game Γ with non-decreasing
delay functions possesses at least one Nash equilibrium which is reached after a
finite number of lazy best responses.

Proof. Let S be a state of Γ . With each resource r, we associate a pair zr(S) =
(dr(nr(S)), nr(S)) consisting of the delay and the congestion of r in state S. For
two resources r and r′ and states S and S′, let zr(S) ≥ zr′(S′) iff dr(nr(S)) >
dr′(nr′(S′)) or dr(nr(S)) = dr′(nr′(S′)) and nr(S) ≥ nr′(S′). Let zr(S) > zr′(S′)
iff zr(S) ≥ zr′(S′) and zr(S) �= zr′(S′). Let z̄(S) denote a vector containing the
pairs zr(S) of all resources r ∈ R in non-increasing order, that is, z̄j(S) ≥
z̄j+1(S), where z̄j(S) denotes the j-th component of z̄, for 1 ≤ j < |R|.

We denote by ≤lex the lexicographic order among the vectors z̄(S), i. e.,
z̄(S1) ≤lex z̄(S2) if there exists an index l such that z̄k(S1) = z̄k(S2), for all k ≤ l,
and z̄l(S1) ≤ z̄l(S2). Additionally, we define z̄(S1) <lex z̄(S2) if z̄(S1) ≤lex z̄(S2)
and z̄(S1) �= z̄(S2).

Now given a state S, let player i play a lazy best response S∗
i . Since S∗

i is a
lazy best response, there exists a sequence of strategies Si = S0

i , . . . , Sk
i = S∗

i

such that, for every 0 ≤ j < k, |Sj+1
i \ Sj

i | = 1 and

γi(S) = γi(S ⊕ S0
i ) > γi(S ⊕ S1

i ) > . . . > γi(S ⊕ Sk
i ) = γi(S ⊕ S∗

i ) .

We claim that z̄(S ⊕ Sj+1
i ) <lex z̄(S ⊕ Sj

i ), for every 0 ≤ j < k. Let rj be the
unique resource in Sj

i that is not contained in Sj+1
i and let r∗j be the resource
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that is contained in Sj+1
i but not in Sj

i . Since the delay decreases strictly with
the exchange, we have

drj (nrj (S ⊕ Sj
i )) > dr∗

j
(nr∗

j
(S ⊕ Sj+1

i )) .

Additionally, since we assume non-decreasing delay functions,

drj (nrj (S ⊕ Sj
i )) ≥ drj (nrj (S ⊕ Sj+1

i )) = drj (nrj (S ⊕ Sj
i ) − ωi) .

Furthermore, nrj(S⊕Sj
i ) > nrj (S⊕Sj+1

i ). Combining these inequalities implies
zrj(S⊕Sj

i ) > zrj(S⊕Sj+1
i ) and zrj(S⊕Sj

i ) > zr∗
j
(S⊕Sj+1

i ). Combined with the
observation that zrj(S⊕Sj

i ) > zr∗
j
(S⊕Sj

i ), this yields z̄(S⊕Sj
i ) >lex z̄(S⊕Sj+1

i ),
that is, the lexicographic order decreases with every exchange and, hence, with
every lazy best response. This concludes the proof of the theorem. 	


In the full version of this paper we show that playing lazy best responses is a
necessary assumption in order to obtain convergence to a Nash equilibrium, that
is, we present a weighted matroid congestion game in which the best response
dynamic cycles if players are not restricted to lazy best responses. The delay
functions in this congestion game are non-decreasing but not strictly increasing.
We leave open the questions whether players playing arbitrary best responses
converge to a Nash equilibrium if each delay function is strictly increasing and
whether there is an efficient algorithm for computing a Nash equilibrium in
weighted matroid congestion games in general. To the best of our knowledge
the only positive result is known in the case of weighted singleton matroid con-
gestion games with identical resources, i. e., all resources have identical, non-
decreasing delay functions. In this case, Gairing et al. [5] show how to compute
a Nash equilibrium in polynomial time. If additionally the players are symmet-
ric, Even-Dar et al. [2] show that if one assigns the players in non-increasing
order of their weights to the resources, then the resulting assignment is a Nash
equilibrium.

Finally, we like to comment on the convergence time. Theorem 6 implies that
players iteratively playing lazy best responses reach a Nash equilibrium after at
most min

{
(
∑n

i=1 ωi)
m

,
(

m
rk(Γ )

)n
}

strategy changes. The first term is an upper
bound on the maximal number of different vectors z̄(S) and the second one
bounds the number of different states of a matroid congestion game. Even-Dar
et al. [2] establish an exponential lower bound in the case of weighted singleton
congestion games with symmetric players and identical resources. However, they
use exponentially large weights to show this. In the full version of this paper
we present an infinite family of weighted singleton congestion games possessing
superpolynomially long best response sequences although every player has either
weight one or two and all delays are polynomially bounded in the number of
players and resources. This immediately implies that players do not necessarily
reach a Nash equilibrium in pseudopolynomial time.
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4 Non-matroid Strategy Spaces

In this section, we show that the matroid property is the maximal property on
the individual players’ strategy spaces that guarantees the existence of Nash
equilibria in player-specific and weighted congestion games with non-decreasing
(player-specific) delay functions. For this, let Σ be a set system over a set R
of resources. We call Σ inclusion-free if for every X ∈ Σ, no proper superset
Y ⊃ X belongs to Σ. Moreover, we call Σ a non-matroid set system if the tuple
(R, {X ⊆ S | S ∈ Σ}) is not a matroid. In [1] we show that every inclusion-free,
non-matroid set system possesses the (1, 2)-exchange property. Here we need a
variant of this property with positive (instead of non-negative) delays.

Definition 7 ((1, 2)-exchange property). Let Σ be an inclusion-free set sys-
tem over a set of resources R. We say that Σ satisfies the (1, 2)-exchange prop-
erty if we can identify three distinct resources a, b, c ∈ R with the property that
for any given k ∈ N with k > |R|, we can choose a delay d(r) ∈ {1, k + |R|}
for every r ∈ R \ {a, b, c} such that for every choice of the delays of a, b,
and c with |R| ≤ d(a), d(b), d(c) ≤ k, the following property is satisfied: If
d(a) + |R| ≤ d(b) + d(c), then for every set S ∈ Σ with minimum delay, a ∈ S
and b, c /∈ S. If d(a) ≥ d(b)+d(c)+ |R|, then for every set S ∈ Σ with minimum
delay, a /∈ S and b, c ∈ S.

Lemma 8. Let Σ be an inclusion-free set system over a set of resources R.
Furthermore, let I = {X ⊆ S |S ∈ Σ}, and assume that (R, I) is not a matroid,
i. e., that Σ is not the set of bases of some matroid. Then Σ possesses the (1, 2)-
exchange property.

Proof. Since (R, I) is not a matroid, there exist two sets X, Y ∈ Σ and a resource
x ∈ X \ Y such that for every y ∈ Y \X , the set X \ {x} ∪ {y} is not contained
in Σ (cf. Theorem 39.6 from [12]).

Let X and Y be such sets and let x ∈ X be such a resource. Consider all
subsets Y ′ of the set X ∪Y \ {x} with Y ′ ∈ Σ. Every such set Y ′ can be written
as Y ′ = X \ {x = x1, . . . , xl} ∪ {y1, . . . , yl′} with xi ∈ X \ Y and yi ∈ Y \ X
and l + l′ > 2. This is true since l as well as l′ are both larger than 0 as Σ is
inclusion-free. Furthermore l and l′ cannot both equal 1 as otherwise we obtain
a contradiction to the choice of X, Y , and x. Among all these sets Y ′, let Ymin

denote one set for which l′ is minimal. Observe that we can replace Y by Ymin

without changing the aforementioned properties of X , Y , and x. Hence, in the
following, we assume that Y = Ymin, that is, we assume that Y \X = Y ′ \X for
all of the aforementioned sets Y ′.

We claim that we can always identify resources a, b, c ∈ X∪Y such that either
a ∈ X \Y and b, c ∈ Y \X or a ∈ Y \X and b, c ∈ X \Y with the property that
for every Z ⊆ X ∪ Y with Z ∈ Σ, if a �∈ Z, then b, c ∈ Z. In order to see this,
we distinguish between the cases l′ = 1 and l′ ≥ 2:

1. Let Y \ X = {y1} and hence X \ Y = {x = x1, . . . , xl} with l ≥ 2. Then we
set a = y1, b = x1, and c = x2. Consider a set Z ⊆ X ∪ Y with Z ∈ Σ and
a �∈ Z. Then Z = X since Σ is inclusion-free, and hence b, c ∈ Z.
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2. Let Y \X = {y1, . . . , yl′} with l′ ≥ 2. Then we set a = x, b = y1, and c = y2.
Consider a set Z ⊆ X ∪ Y with Z ∈ Σ and a �∈ Z. Since we assumed that
Y = Ymin, it must be b, c ∈ Z as otherwise Z \ X �= Y \ X .

Now we define delays for the resources in R\{a, b, c} such that the properties
in Definition 7 are satisfied. Let k ∈ N be chosen as in Definition 7, that is,
d(a), d(b), d(c) ∈ {|R|, . . . , k}. We set d(r) = k+ |R| for every resource r /∈ X∪Y
and d(r) = 1 for every resource r ∈ (X ∪ Y ) \ {a, b, c}. First of all, observe that
in the first case the delay of Y equals d(a) + |Y | − 1 < k + |R| and that in the
second case the delay of X equals d(a) + |X | − 1 < k + |R|. Hence, a set Z ∈ Σ
that contains a resource r /∈ X ∪ Y can never have minimum delay as its delay
is at least k + |R|. Thus, only sets Z ∈ Σ with Z ⊆ X ∪ Y can have minimum
delay. Since for such sets, a /∈ Z implies b, c ∈ Z, we know that every set with
minimum delay must contain a or it must contain b and c.

Consider the case d(a) + |R| ≤ d(b) + d(c) and assume for contradiction that
there exists an optimal set Z∗ with a /∈ Z∗. Due to the choice of a, b, and c, the set
Z∗ must then contain b and c. Hence d(Z∗) ≥ d(b)+d(c). Furthermore, again due
to the choice of a, b, and c, there exists a set Z ′ ⊆ X∪Y with a ∈ Z ′ and b, c /∈ Z ′.
The delay of Z ′ is d(Z ′) = d(a) + |Z ′| − 1 < d(a) + |R| ≤ d(b) + d(c) ≤ d(Z∗),
contradicting the assumption that Z∗ has minimum delay. Hence every optimal
set Z∗ must contain a. If Z∗ additionally contains b or c, then its delay is at least
d(a)+ |R| > d(Z ′). Hence, in the case d(a)+ |R| ≤ d(b)+ d(c) every optimal set
Z∗ contains a but it does not contain b and c.

Consider the case d(a) ≥ d(b) + d(c) + |R| and assume for contradiction
that there exists an optimal set Z∗ with b /∈ Z∗ or c /∈ Z∗. Then Z∗ must
contain a and hence its delay is at least d(a). Due to the choice of a, b, and
c, there exists a set Z ′ ⊆ X ∪ Y with a /∈ Z ′ and b, c ∈ Z ′. The delay of
Z ′ is d(Z ′) = d(b) + d(c) + |Z ′| − 2 < d(b) + d(c) + |R| ≤ d(a) ≤ d(Z∗),
contradicting the assumption that Z∗ has minimum delay. Hence every optimal
set Z∗ must contain b and c. If Z∗ additionally contains a, then its delay is at
least d(b) + d(c) + |R| > d(Z ′). Hence, in the case d(a) ≥ d(b)+ d(c) + |R| every
optimal set Z∗ contains b and c but it does not contain a. 	

Theorem 9. For every inclusion-free, non-matroid set system Σ over a set of
resources R there exists a weighted congestion game Γ with two players whose
strategy spaces are isomorphic to Σ that does not possess a Nash equilibrium.
The delay functions in Γ are positive and non-decreasing.

Proof. Given an inclusion-free, non-matroid set system we describe how to con-
struct a weighted congestion game with the properties stated in the theorem. We
will first describe how the strategy spaces are defined and then how the delay
functions are chosen.

Let Σ1 and Σ2 be two set systems over sets of resources R1 and R2, respec-
tively. In the following we assume that both sets are isomorphic to Σ and that Σi

is the strategy space of player i, for i = 1, 2. Due to the (1, 2)-exchange property
we can, for every player i, identify three distinct resources ai, bi, ci ∈ Ri with
the properties as in Definition 7. Since we have not made any assumption on
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the global structure of the resources, we can arbitrarily decide which resources
from R1 and R2 coincide. The resources Ri \ {ai, bi, ci} are exclusively used
by player i. Hence, we can assume that their delays are chosen such that the
(1, 2)-exchange property is satisfied. Thus, to simplify matters we can assume
that

Σ1 = {{a1}
︸︷︷︸

S1
1

, {b1, c1}
︸ ︷︷ ︸

S2
1

} and Σ2 = {{a2}
︸︷︷︸

S1
2

, {b2, c2}
︸ ︷︷ ︸

S2
2

} .

In the following, we assume that a1 = b2, b1 = a2 and c1 = c2. Thus we can
rewrite the strategy spaces as follows: Σ1 = {{x}, {y, z}} and Σ2 = {{y}, {x, z}}.

We set ω1 = 2 and ω2 = 1 and define the following non-decreasing delay
functions for the resources x, y and z, where m = |R|:

nr = 1 nr = 2 nr = 3
dx(nx) m 20 · m 21 · m
dy(ny) 5 · m 12 · m 15 · m
dz(nz) 3 · m 4 · m 10 · m

One can easily verify that |δi(S⊕S1
i )−δi(S⊕S2

i )| ≥ m, for i = 1, 2, regardless of
the choice of the other player. Hence, for every player, one of the inequalities in
Definition 7 is always satisfied. This game does not possess a Nash equilibrium
since player 1 prefers to play strategy S2

1 if player 2 plays strategy S1
2 , and S1

1 if
player 2 plays strategy S2

2 . Additionally, player 2 prefers to play strategy S2
2 if

player 1 plays strategy S2
1 , and S1

2 if player 1 plays strategy S1
1 . 	


Theorem 10. For every inclusion-free, non-matroid set system Σ over a set of
resources R there exists a player-specific congestion game Γ with two players
whose strategy spaces are isomorphic to Σ that does not possess a Nash equilib-
rium. The delay functions in Γ are positive and non-decreasing.

Proof. The proof is similar to the proof of Theorem 9. In particular, the construc-
tion of the strategy spaces of the players is identical. The player-specific delay
functions are obtained from the delay functions in the proof of Theorem 9 as
follows: For the first player d1

r(nr) = dr(nr + 1), for every resource r ∈ {x, y, z}
and every congestion nr ∈ {1, 2}. For the second player d2

r(1) = dr(1) and
d2

r(2) = dr(3), for every resource r ∈ {x, y, z}. 	

Summarizing, every inclusion-free non-matroid set system can be used to con-
struct a player-specific or weighted congestion game with positive delay functions
that does not posses a Nash equilibrium. Observe that this result also holds if
the system is not inclusion-free but the pruned set system, i. e., the set system
obtained after removing all supersets, is not the set of bases of a matroid because
supersets cannot occur in a Nash equilibrium in the case of positive delay func-
tions. Correspondingly, our results presented in Theorems 3 and 6 show that a
player-specific or weighted congestion game in which all players’ strategy spaces
correspond to the bases of a matroid after pruning the supersets possesses a
Nash equilibrium with respect to the pruned and, hence, also with respect to
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the original strategy spaces as supersets are weakly dominated by subsets in the
case of non-negative delay functions. Thus, the matroid property (applied to the
pruned strategy spaces) is necessary and sufficient to show the existence of Nash
equilibria.

Corollary 11. The matroid property is the maximal property on the pruned
strategy spaces of the individual players that guarantees the existence of Nash
equilibria in weighted and player-specific congestion games with non-negative,
non-decreasing delay functions.
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