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Abstract. In this paper we address the question of designing truthful
mechanisms for solving optimization problems on dynamic graphs. More
precisely, we are given a graph G of n nodes, and we assume that each
edge of G is owned by a selfish agent. The strategy of an agent consists
in revealing to the system the cost for using its edge, but this cost is not
constant and can change over time. Additionally, edges can enter into
and exit from G. Among the various possible assumptions which can be
made to model how these edge-cost modifications take place, we focus on
two settings: (i) the dynamic, in which modifications are unpredictable
and time-independent, and for a given optimization problem on G,
the mechanism has to maintain efficiently the output specification and
the payment scheme for the agents; (ii) the time-sequenced, in which
modifications happens at fixed time steps, and the mechanism has to
minimize an objective function which takes into consideration both
the quality and the set-up cost of a new solution. In both settings, we
investigate the existence of exact and approximate truthful mechanisms.
In particular, for the dynamic setting, we analyze the minimum spanning
tree problem, and we show that if edge costs can only decrease, then
there exists an efficient dynamic truthful mechanism for handling a
sequence of k edge-cost reductions having runtime O(h log n + k log4 n),
where h is the overall number of payment changes.

Keywords: Algorithmic Mechanism Design, On-line Problems, Dy-
namic Algorithms, Approximate Mechanisms.

1 Introduction

Algorithmic mechanism design (AMD) is concerned with the computational com-
plexity of implementing, in a centralized fashion, truthful mechanisms for solv-
ing optimization problems in multi-agents systems [13]. AMD is by now one of
the hottest topic in theoretical computer science, especially since of the game-
theoretic nature of Internet. As a result, many classic network optimization
problems have been resettled and solved under this new perspective [3,4,7,8,9].
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Apparently, however, the canonical approach is that of dealing with these prob-
lems by means of one-shot mechanisms, whose natural computational counter-
part are static graph problems. This is in contrast with the intrinsic dynamicity
of Internet’s infrastructure, where links and node can rapidly appear, disappear,
or even change their characteristics. Thus, surprisingly enough, there is a lack
of modeling for those situations in which agents need to adapt their strategies
over time, according to sudden changes in their owned components. To the best
of our knowledge, the only effort towards this direction has been done in the
framework of the so-called on-line mechanism design (OMD) [6,14]. There, the
dynamic aspect resides in the fact that agents arrive and depart once over time,
and their strategy consist of a single announcement of a bidding value for a
time interval included between the arrival and the departing time. However, the
limitation of OMD is that agents are not allowed to play different strategies over
time, thus preventing to model those situations in which bidding values need to
be continuously adjusted.

In this paper, we aim exactly to fill this gap, by exploring the difficulties and
the potentialities emerging in this new challenging scenario. In doing that, we
combine some of the theoretical achievements of the AMD with techniques which
are proper of dynamic and on-line algorithms. The result of this activity is what
we call as dynamic mechanism design (DMD). As a paradigmatic framework, we
consider the situation in which each agent owns an edge of a given underlying
graph G of n nodes, and its strategy consists in revealing to the system the cost
(which can change over time) for using its edge. We focus on two main realistic
scenarios:

1. In the first scenario, we consider the case in which edge costs are subject
to sudden changes, due to boundary conditions alterations. In the extreme
case, an edge might become unavailable to the system, due to a failure for
instance. On the opposite side, some new edge might become available. All
these variations are presented on-line to the system, which is completely
unaware of possible future changes. Moreover, we will assume that each
agent is unaware about other agents’ types and strategies, and thus it can-
not observe the global status of the system.1 We feel that this is particu-
larly attractive in an Internet setting, where an agent may not even know
which other agents are participating to the mechanism. From an algorith-
mic point of view, this translates into a continuously evolving input graph,
over which a solution to a given optimization problem has to be main-
tained. In other words, we need to design a fully dynamic mechanism which
updates efficiently both the output specification and the corresponding pay-
ment scheme for the agents. In the rest of the paper, we will refer to this as
the dynamic scenario. What is interesting here is that while classic dynamic
graph algorithms can be used for the maintenance of the output specifi-
cation, as far as the payment scheme updating is concerned, this defines

1 Notice that the case in which an agent can observe the strategies of the other
agents transforms our problem into a repeated game, for which the existence of a
dominating strategy is unknown.
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novel dynamic graph problems, which would make no sense in a canonical
centralized framework. In this paper, as a starting point, we deal with a
basic graph problem that has served as a case study for several papers on
AMD, namely the minimum spanning tree (MST) problem. After observ-
ing that efficient dynamic MST algorithms in [10] can be turned into an
efficient dynamic mechanism for handling a sequence of k edge-cost mod-
ifications having runtime O(k n log4 n), we will show that for the case in
which edges can only become less expensive, then the mechanism runtime
drops to O(h log n + k log4 n), where h is the overall number of payment
changes. We emphasize that this edge-cost lowering scenario is interesting
because of the competitive nature of Internet.

2. In the second scenario, we consider the case in which the graph evolves in
a sequence of time steps, and every agent has a specific cost for using its
edge in each of these steps. Here, the time-depending modifications of the
graph suggest that the mechanism’s goal should now be the composition of
two objectives: maintaining a good (not necessarily optimal) solution at a
low (not necessarily minimal) cost of setting it up. Thus, on a sequence of
graph changes, the objective function is now given by the overall cost of the
sequence of solutions, plus the overall set-up cost. This approach is inspired
to that proposed in the past in [11] to model the fact that on an on-line
sequence of changes, it is important to take care of the modifications on
the structure of the solution, since radical alterations might be too oner-
ous in terms of set-up costs. In the rest of the paper, we will refer to this
as the time-sequenced scenario. Here, on a positive side, we will show that:
(i) if each set-up cost is upper bounded by the initial one and changes are
presented on-line to the system, then a ρ-approximate monotone algorithm
for a given optimization problem Π on G, translates into an approximate
truthful mechanism for Π which on a sequence of graph changes of size k
has an approximation ratio of max{k, ρ}; (ii) if the underlying graph opti-
mization problem is utilitarian and polynomial-time solvable, and changes
are presented off-line to the system, then there exists a VCG-like truthful
mechanism for solving optimally the sequence, which can be computed in
polynomial time by means of a dynamic programming technique. On the
other hand, on a negative side, we will show that even if graph changes
are presented off-line to the system and set-up costs are uniform, then any
truthful mechanism which solves the problem by means of a divide et impera
paradigm (as explained in more detail in Section 6) cannot achieve a better
than k approximation ratio.

The paper is organized as follows: in Section 2 we give preliminary definitions;
after, in Section 3 we present the dynamic mechanism for the MST problem,
while in Section 4 we define formally the time-sequenced model; finally, in the last
two sections we give, respectively, positive and negative results on the existence
of time-sequenced truthful mechanisms.
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2 Preliminaries

Let a communication network be modeled by a graph G = (V, E) with n
nodes and m edges. We will deal with the case in which each edge e ∈ E is
controlled by a selfish agent ae holding a private information te, namely the
true type of ae. Only agent ae knows te. Each agent has to declare a public
bid be to the mechanism. We will denote by t the vector of types, and by b
the vector of bids.

For a given optimization problem Π defined on G, let Sol(Π) denote the
corresponding set of feasible solutions. We will assume that Sol(Π) does not
depend on the agents’ types. For each x ∈ Sol(Π), an objective function is
defined, which depends on the agents’ types. A mechanism for Π is a pair M =
〈g(b), p(b)〉, where g(b) is an algorithm that, given the agents’ bids, computes
a solution for Π , and p(b) is a scheme which describes the payments provided
to the agents. For each solution x, ae incurs a cost νe(te, x) for participating
to x (also called valuation of ae w.r.t. x). Each agent tries to maximize its
utility, which is defined as the difference between the payment provided by the
mechanism and the cost incurred by the agent w.r.t. the computed solution. On
the other hand, the mechanism aims to compute a solution which minimizes the
objective function of Π w.r.t. to the agents’ types, but of course it does not
know t directly. In a truthful mechanism this tension between the agents and
the system is resolved, since each agent maximizes its utility when it declares its
type, regardless of what the other agents do.

Given a positive real function ε(n) of the input size n, an ε(n)-approximate
mechanism returns a solution whose measure comes within a factor ε(n) from the
optimum. A mechanism has a runtime of O(f(n)) if g(·) and p(·) are computable
in O(f(n)) time. Moreover, a mechanism design problem is called utilitarian if
the objective function of Π is equal to

∑
e∈E ν(te, x). For utilitarian problems,

there exists a well-known class of truthful mechanisms, i.e., the Vickrey-Clarke-
Groves (VCG) mechanisms.

In [2], Archer and Tardos have shown how to design truthful mechanisms for
another well-known class of mechanism design problems called one-parameter.
A problem is said one-parameter if (i) the true type of each agent ae can be
expressed as a single parameter te ∈ R, and (ii) each agent’s valuation has the
form νe(te, x) = te ωe(b), where ωe(b) is called the work curve for agent ae, i.e.,
the amount of work for ae depending on the output specified by the mechanism
algorithm, which in its turn is a function of the bid vector b. When, for each
agent ae, ωe(b) can be either 0 or 1, then the problem is also called binary
demand [12]. In [2] it is shown that for one-parameter problems, a sufficient
condition for truthfulness is given by a monotonicity property of the mechanism
algorithm. In particular, for a binary demand problem, such property reduces
to the following. Let b be the vector of bids of the agents, and let b−e denote
the vector of all bids besides be; the pair (b−e, be) will denote the vector b. If
we fix b−e, a monotone algorithm A defines a threshold value θe(b−e,A) such
that if ae bids no more than θe(b−e,A), then e will be selected, while if ae bids
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above θe(b−e,A), e will not be selected.2 Sometimes, we will write θe(b−e) when
the algorithm A is clear from the context. The results in [2] imply that the only
truthful mechanism for a binary demand problem using an algorithm A is the
one-parameter mechanism M = 〈A, pA(·)〉, where A is required to be monotone,
and the payment pAe (b) for each agent ae is defined as its threshold value if it
owns a selected edge, and 0 otherwise.

3 An Efficient Dynamic Mechanism for the MST
Problem

We start by addressing the problem of designing an efficient mechanism for
the fully dynamic MST problem. Since we assume that agents’ types change
over time, we allow the agents to declare a new bid to the mechanism at any
time. Recall that edge-cost changes are presented on-line to the system, which
is unaware of possible future changes, and that the agents do not know other
agents’ bids. The mechanism works as follows. At any time, whenever it receives
a new bid from an agent, it computes a new MST w.r.t. the new bid profile, and
it updates the payments exactly as the one-parameter mechanism for the MST
problem. Concerning the truthfulness of the mechanism, this follows from the
truthfulness of the one-parameter mechanism for the MST problem, and from
the fact that every agent is completely unaware of other agents’ bids.

On the other hand, concerning the time complexity, the mechanism has to
maintain: (i) an MST of G, and (ii) the corresponding payments. Moreover,
it has to support a payment query in O(1) time. To dynamically maintain an
MST, one can use the algorithm proposed in [10], which takes O(k log4 n) time
for processing k edge-cost updates (deletions of edges are simulated by setting to
+∞ the cost of an edge). Thus, it remains to manage the payment scheme. We
remind that for binary demand problems, the payment provided to ae is equal
to θe(b−e) if e is selected, and zero otherwise. This means it suffices to maintain
the threshold value θe(b−e) for each e belonging to the current solution. We
emphasize that the algorithm in [10] can be straightforwardly used to accomplish
such a task, and from this it follows that there exists a truthful mechanism for the
fully dynamic MST which runs in O(k n log4 n) time for processing k updates.
Improving this latter result is a challenging open problem. In the following, we
show that for the edge-cost decreasing case, in which edge costs are only allowed
to decrease, a significant improvement is possible. We argue this is not a very
special case, as it includes the well-known partially dynamic scenario, where only
edge insertions are allowed.

How to Maintain the Payments. Let G be a graph, and let T be an MST of
G. For each non-tree edge f = (u, v) ∈ E \E(T ), T (f) will denote the set of tree
edges belonging to the (unique) path in T between u and v. For each e ∈ E(T ),

2 As usual, we will assume that there always exists a feasible solution not containing
e, which implies that θe(b−e,A) is bounded.
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let CT (e) = {f ∈ E \ E(T ) | e ∈ T (f)}. We denote by swap(e) the cheapest
non-tree edge in CT (e).3 Note that θe(b−e) = bswap(e).

Clearly, if a tree edge decreases its cost, no payment changes. Consider now
the situation in which a non-tree edge f decreases its cost from bf to b′f . Denote
by T ′ the new MST, i.e., the MST computed w.r.t. the cost profile b′ = (b−f , b′f).
We have two cases:

Case 1: T ′ = T . Clearly, only the threshold of edges in T (f) may change, since
for each e′ /∈ T (f), no edge in CT (e′) has changed its cost. Moreover, the
threshold of e changes iff θe(b−e) > b′f , and in this case the new threshold
value becomes θe(b′−e) = b′f .

Case 2: T ′ �= T . Clearly T ′ = T \ {e} ∪ {f}. Moreover, the payment for ae

becomes 0, while that for af will be θf (b′−f) = be, since CT ′(f) ⊆ CT (e)∪{e}.

Lemma 1. For every e′ ∈ E(T ′) \ T ′(e), θe′(b′−e′) = θe′(b−e′).

Proof. The lemma trivially follows from the fact that for each e′ ∈ E(T ′)\T ′(e),
CT ′(e′) = CT (e′) and f /∈ CT (e′). 	


Lemma 2. The threshold of an edge e′ ∈ T ′(e) changes iff θe′(b−e′) > be. In
this case, θe′(b′−e′) = be.

Proof. Let e′ ∈ T ′(e) be such that θe′(b−e′) > be. Since e ∈ CT ′(e′), then
θe′(b′−e′) ≤ be. We have to show that �f ′ ∈ CT ′(e′) with bf ′ < be. For the sake
of contradiction, suppose that ∃f ′ ∈ CT ′(e′) such that bf ′ < be. Then, we show
T was not an MST by proving that f ′ ∈ CT (e). Suppose that f ′ /∈ CT (e); then
T (f ′) = T ′(f ′), which implies θe′(b−e′) < be.

It remains to show that if θe′(b−e′) ≤ be, then θe′(b′−e′) = θe′(b−e′). Notice
that if swap(e′) ∈ CT (e), then θe′(b−e′) ≥ be from the minimality of T , which
implies θe′ (b−e′) = be. Otherwise, swap(e′) ∈ CT ′(e′). In both cases θe′(b′−e′) ≤
θe′(b−e′). Moreover, since CT ′(e′) ⊆ CT (e′) ∪ CT (e) ∪ {e}, then

θe′(b′−e′) = min
f∈CT ′(e′)

{bf} ≥ min
f∈CT (e′)∪CT (e)∪{e}

{bf}

= min{bswap(e′), be} = θe′(b−e′). 	


Implementation. To update the payments, we use a top tree, a data structure
introduced by Alstrup et al. [1] to maintain information about paths in trees.
More precisely, a top tree represents an edge-weighted forest F with weight
function c(·). Some operations defined for top trees are:

– link((u, v), x), where u and v are in different trees. It links these trees by
adding the edge (u, v) of weight c(u, v) = x to F .

– cut(e). It removes the edge e from F .
– update(e, x), where e belongs to F . It sets the weight of e to x.
– max(u, v), where u and v are connected in F . It returns the edge with max-

imum weight among the edges on the path between u and v in F .
3 If there are more than one such cheapest edges, we pick one of them arbitrarily.
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In [1,5,15], it is shown how to implement a top tree (by using O(n) space) for
supporting each of the above operations in O(log n) time.

To our scopes, we use a top tree T as follows. T maintains the current MST
where the cost of each edge e ∈ E(T ) is θe(b−e). Concerning Case 1, we only
need to update the threshold of some edges in T (f). So, let f = (x, y) be the
edge which has decreased its cost. While c(e′) > b′f , where e′ =max(x, y), then
we (i) update the payment for ae′ to b′f , and (ii) perform update(e′, b′f). For
what concerns Case 2, let e = (x, y) be the edge in T not in T ′. First, we update
the MST by performing cut(e) and link(f, be). Next, we update the payment
for ae (resp., af ) to 0 (resp., be). Finally, while c(e′) > be, where e′ =max(x, y),
then (i) we update the payment for ae′ to be, and (ii) we perform update(e′, be).

The above discussion yields the following:

Theorem 1. There exists a dynamic mechanism supporting a sequence of k
edge-cost decreasing operations in O(h log n+k log4 n) time, where h is the overall
number of payment changes. 	


4 Time-Sequenced Scenario: Problem Statement

Let G = (V, E) be a graph with a positive real weight w(e) associated with
each edge e ∈ E. Henceforth, unless stated otherwise, by Π we will denote a
communication network problem on (G, w), which asks for computing a subgraph
H ∈ Sol(Π) of G by minimizing an objective function φ(H, w) of the form

φ(H, w) =
∑

e∈E(H)

w(e) · μH(e),

where μH(e) depends only on the topology of H . Notice that this definition
embraces the quasi-totality of communication network problems, like the MST
problem, the shortest-paths tree problem, and so on.

Let k be a positive integer. We assume that the type of each agent ae is
te = 〈t1e, . . . , tke〉, while its bid is be = 〈b1

e, . . . , b
k
e〉. Intuitively, tie represents the

true cost incurred by ae for using its link e at time i. We will denote by ti ∈ R
m

the vector of agents’ types at time i, and by t the vector 〈t1, . . . , tk〉.
Given a communication network problem Π , we want to design a truthful

mechanism for the optimization problem that we will denote by Seq(Π). This
latter problem asks for computing a sequence H = 〈H1, . . . , Hk〉, where Hi ∈
Sol(Π), i = 1, . . . , k, by minimizing the following objective

Ψ(H, t) = Φ(H, t) + Γ (H),

where Φ(H, t) is a function measuring the quality of the solution H, and Γ (H)
is a function measuring the overall set-up cost. For a given sequence H, we will
naturally assume that the valuation of ae w.r.t. H is:

νe(H, te) =
k∑

i=1

νi
e(Hi, t

i
e), where νi

e(Hi, t
i
e) =

{
tie if e ∈ E(Hi);
0 otherwise.
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Depending on the cost model to be adopted, the functions Φ(·) and Γ (·) can
be defined accordingly. In this paper, we will consider the prominent additive
cost model, in which

Φ(H, t) =
k∑

i=1

φ(Hi, t
i), Γ (H) =

k∑

i=1

γ(i,H),

where

γ(i,H) =

⎧
⎪⎨

⎪⎩

γ1 ∈ R
+ if i = 1;

γi ∈ R
+ if Hi �= Hi−1,

0 otherwise.
i = 1, . . . , k;

For any 1 ≤ i ≤ j ≤ k, by [i, j] we will denote the interval {i, . . . , j}. We
will write [i, j) instead of [i, j − 1]. Given two intervals [i, j], [i′, j′], we write
[i, j] ≺ [i′, j′] if j < i′. An interval vector s = 〈I1, . . . , Ih〉 is a vector of pairwise
disjoint intervals whose union is {1, . . . , k}, and such that I1 ≺ · · · ≺ Ih. Given
an interval I, let bI be the vector defined as bI

e =
∑

i∈I bi
e, for each edge e ∈ E.

Moreover, we will denote by H∗
I an optimum solution for Π when the input is

(G, bI). Finally, given two sequences H = 〈H1, . . . , Hi〉,H′ = 〈H ′
1, . . . , H

′
j〉, by

H�H′ we denote the sequence 〈H1, . . . , Hi, H
′
1, . . . , H

′
j〉.

5 Time-Sequenced Mechanisms: Positive Results

In this section we first define the class of time-sequenced single-parameter (TSSP)
mechanisms, and we prove that any mechanism in this class is truthful for
Seq(Π). Moreover, for the case in which each set-up cost is upper bounded by γ1,
we show that there exists an on-line max{k, ρ}-approximate TSSP mechanism,
where ρ is the approximation ratio of a monotone algorithm for Π . Then, we
turn our attention to the special case in which Π is utilitarian and polynomial-
time solvable, and we show that if the graph changes are presented off-line to the
system, then there exists a VCG-like truthful mechanism for solving optimally
Seq(Π), which can be computed in polynomial time by means of a dynamic
programming technique.

5.1 On-Line Sequences with Bounded Set-Up Costs

From now on, by s̃ we will denote the interval vector 〈[1, 1], . . . , [k, k]〉.

Definition 1. Given a communication network problem Π, and a monotone
algorithm A for Π, a TSSP mechanism M(s) = 〈gs(b), p(b)〉 with interval vector
s = 〈I1, . . . , Ih〉 for Seq(Π) is defined as follows:

1. gs(·) returns a sequence H = H1 � · · · � Hh, in which

∀j = 1, . . . , h, Hj = 〈Ĥj , . . . , Ĥj〉 has size |Ij |,

where Ĥj is the solution returned by A with input (G, bIj );
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2. For each agent ae

pe(b) =
h∑

j=1

pAe
(
bIj

)
,

where pAe (bIj ) is the payment provided to ae by the one-parameter mechanism
〈A, pA(·)〉 for the problem Π when the input is (G, bIj ).

Notice that, by definition, M(s̃) is the only on-line TSSP mechanism.

Proposition 1. M(s) is a truthful mechanism for Seq(Π).

Proof. The mechanism breaks the problem in h instances (G, bI1 ), . . . , (G, bIh)
which are independent each other. Then it uses the one-parameter mechanism
〈A, pA(·)〉 for each of them in order to locally guarantee the truthfulness. 	


The main result of this section, whose proof is omitted due to lack of space, is
the following:

Theorem 2. Given a ρ-approximate monotone algorithm A for Π, the mecha-
nism M(s̃) applied to Seq(Π) with the assumption that each set-up cost is upper
bounded by γ1, has a performance guarantee of max{k, ρ}. 	


5.2 Off-Line Utilitarian Problems

In this section we show how to design an exact off-line mechanism when Π is
utilitarian. Before defining our mechanism, we show how to compute an optimal
sequence by using dynamic programming.

Let H∗ denote an optimal solution for Seq(Π), and let H∗
[1,i] be an optimal

solution for Seq(Π) when the input is restricted to the interval [1, i], i.e. we have
i time steps and the bid vector is 〈b1, . . . , bi〉. In order to lighten the notation, we
will write Ψ(H[1,i], b) instead of Ψ(H[1,i], 〈b1, . . . , bi〉), where H[1,i] is a solution
for Seq(Π) restricted to the interval [1, i]. Notice that H∗

[1,1] = 〈H∗
[1,1]〉, and

Ψ(H∗
[1,1], b) = φ(H∗

[1,1], b
1) + γ1. Moreover, H∗

[1,k] = H∗.
The dynamic programming algorithm computes H∗

[i,j], for every 1 ≤ i ≤ j ≤ k.
Next, starting from i = 1 to k, it computes H[1,i] = H[1,hi) � 〈H∗

[hi,i]
〉, with

hi = arg min
h=1,...,i

{
Ψ ′(b, h, i) := Ψ(H[1,h), b) + φ

(
H∗

[h,i], b
[h,i]

)
+ γh

}
,

where H[1,1) is the empty sequence, and Ψ(H[1,1), b) is assumed to be 0.
The following lemma, whose proof is omitted due to lack of space, holds:

Lemma 3. For any i = 1, . . . , k, the dynamic programming algorithm computes
a solution H[1,i] such that Ψ(H[1,i], b) = Ψ(H∗

[1,i], b). 	


We are now ready to define our VCG-like mechanism. Let Mvcg be a mechanism
defined as follows:
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1. The algorithmic output specification selects an optimal sequence (w.r.t. the
bids b) H∗

G;
2. Let G−e = (V, E\{e}), and let H∗

G−e be an optimal solution (w.r.t. the bids
b) in G − e. Then, the payment function for ae is defined as

pe(b) = Ψ(H∗
G−e, b) − Ψ(H∗

G, b) + νe(H∗
G, be).

From the above discussion, it is easy to prove the following

Theorem 3. Let Π be utilitarian and solvable in polynomial time. Then, Mvcg

is an exact off-line truthful mechanism for Seq(Π) which can be computed in
polynomial time. 	


6 Time-Sequenced Mechanisms: Inapproximability
Results

In this section we consider a natural extension of TSSP mechanisms named adap-
tive TSSP mechanisms, and we prove a lower bound of k to the approximation
ratio that can be achieved by any truthful mechanism in this class.

Definition 2. Let δ be a function mapping bid vectors to interval vectors. An
adaptive time-sequenced single-parameter (ATSSP) mechanism Mδ for Π is the
mechanism which, for a given vector bid b, is defined exactly as M(δ(b)).

Lemma 4. Let ti be a type profile for Π, and let A be an optimal algorithm for
Π. Then, ∀η ∈ R

+, θi
e(η · ti−e) = η · θi

e(t
i
−e).

Proof. Observe that ∀H ∈ Sol(Π)

φ(H, η · ti) =
∑

e∈E(H)

η · tie μH(e) = η
∑

e∈E(H)

tie μH(e) = η · φ(H, ti).
	


Theorem 4. For any mapping function δ, for any optimal algorithm A for Π,
and for any c < k, there exists no c-approximate truthful ATSSP mechanism
using A for Seq(Π), even when set-up costs are uniform.

Proof. The proof is by contradiction. Let M = γ1 = · · · = γk. Let Mδ be a c-
approximate truthful ATSSP mechanism for Seq(Π). For the sake of clarity, we
denote by H(w) an optimum solution for Π with input (G, w). Let t1 = (t1−e, t

1
e),

with t1−e = 〈0, . . . , 0〉, and t2 = (t2−e, 0) be two type vectors for Π such that the
following three conditions hold:

(i) 2t1e < θ2
e , t1e > 0, where θ2

e = θe(t2−e);
(ii) φ(H(t2−e, +∞), (t2−e, +∞)) ≥ (k2 − 1)M ;
(iii) φ(H(t2−e, x), (t2−e, x)) does not depend on M , for any x < θ2

e not depending
on M .

Lemma 5. There always exist t1e and t2−e satisfying the above conditions.
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Proof. Let H ∈ Sol(Π) be such that E(H ′) �⊂ E(H), ∀H ′ ∈ Sol(Π). Let e be
an edge of H . Now for each e′ ∈ E(H) \ {e}, let t2e′ = 1

μH (e′) . Moreover, for each
e′ ∈ E \ E(H), let t2e′ be defined as follows

t2e′ = max
H′∈Sol(Π)

(k2 − 1)M
μH′(e′)

.

By construction, condition (ii) holds. For M large enough, it is easy to see that
θ2

e is at least (k2 − 1)M − |E(H)| > 0, from which (i) follows as well. Finally,
condition (iii) follows by observing that μH(e) does not depend on M . 	


Let t be the type profile defined as follows:

∀i = 1, . . . , k, ti =

{
t1 if i is odd;
t2 otherwise.

Lemma 6. For M large enough, δ(t) �= s̃.

Proof. The proof is by contradiction. Let H be the solution computed by the
mechanism corresponding to the interval vector s̃. Notice that Ψ(H, t) ≥ kM ,
since H(t1) �= H(t2). Consider now the solution H′ corresponding to the in-
terval vector 〈[1, k]〉. It is easy to see that for t1e small enough, Ψ(H′, t) =
M + φ

(
H

(
t[1,k]

)
, t[1,k]

)
≤ M + k φ(H(t2−e, t

1
e), (t

2
−e, t

1
e)). It follows that the ap-

proximation ratio achieved by the mechanism is at least

Ψ(H, t)
Ψ(H′, t)

≥ kM

M + k φ(H(t2−e, t
1
e), (t2−e, t

1
e))

,

which, from (iii), goes to k when M goes to +∞. This contradicts the fact that
Mδ is c-approximate. 	


Lemma 7. For M large enough, the utility of ae in the solution gδ(t)(t) com-
puted by the mechanism Mδ is less than

⌊
k
2

⌋
θ2

e.

Proof. Let δ(t) = 〈I1, . . . , Ih〉 be the interval vector computed by δ, and let H
be the corresponding solution. For each j = 1, . . . , h, let Ij = [xj , yj] be the j-th
interval, and let ηj be the number of occurrences of t2 in 〈txj , . . . , tyj 〉. Notice
that tIj = (ηj t2−e, (|Ij | − ηj) t1e). It is easy too see that (|Ij | − ηj) ≤ ηj + 1.
Moreover, notice that e belongs to H

(
tIj

)
iff ηj > 0. Indeed, whenever ηj > 0,

(ηj + 1) t1e < ηj θ2
e holds from (i), and from Lemma 4 this implies that e belongs

to H
(
tIj

)
. Finally, notice that whenever |Ij | > 1, ae incurs a cost of at least t1e.

Then, from Lemma 4, the payment provided to ae is
∑h

j=1 ηj θ2
e =

⌊
k
2

⌋
θ2

e ,
while concerning the cost incurred by ae, it is at least t1e > 0, since from Lemma 6
there must exist an index j∗ such that |Ij∗ | > 1. 	


Consider now the following new type profile t̂ which is equal to t except for t̂ie
that is set to +∞ for every odd i.
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Lemma 8. For M large enough, δ(t̂ ) = s̃.

Proof. For the sake of contradiction, assume that δ(t̂) �= s̃. Then, there must
exist an index j for which the solution H computed by the mechanism does not
change at time j. Hence, since either t̂je = +∞ or t̂j−1

e = +∞, from (ii) it must
be Ψ(H, t̂) ≥ k2M . Consider the solution H′ corresponding to the interval vector
s̃. Then, the approximation ratio achieved by the mechanism is at least

Ψ(H, t̂)
Ψ(H′, t̂)

≥ k2M

kM + k φ(H(t2), t2)
,

which, from (iii), goes to k when M goes to +∞. This contradicts the fact that
Mδ is c-approximate. 	


To conclude the proof, observe that when the type profile is t, ae has convenience
to bid be defined as

∀i = 1, . . . , k, bi
e =

{
t2e if i is even;
+∞ otherwise.

Indeed, in this case, from Lemma 8, its utility becomes equal to
⌊

k
2

⌋
θ2

e , which
is better than the utility it gets by bidding truthfully (see Lemma 7). 	


Notice that, since in the uniform set-up cost case each set-up cost is upper
bounded by γ1, and since M(s̃) belongs to the class ATSSP, then Theorem 4
implies that the upper bound in Theorem 2 is tight, when A is optimal (i.e.,
ρ = 1).
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