
Assignment Problems in Rental Markets�

David Abraham1, Ning Chen2, Vijay Kumar3, and Vahab S. Mirrokni4

1 Department of Computer Science, Carnegie Mellon University
dabraham@cs.cmu.edu

2 Department of Computer Science & Engineering, University of Washington
ning@cs.washington.edu

3 Strategic Planning and Optimization Team, Amazon.com
vijayk@amazon.com

4 Microsoft Research, Redmond, USA
mirrokni@theory.csail.mit.edu

Abstract. Motivated by the dynamics of the ever-popular online movie
rental business, we study a range of assignment problems in rental mar-
kets. The assignment problems associated with rental markets possess a
rich mathematical structure and are closely related to many well-studied
one-sided matching problems. We formalize and characterize the assign-
ment problems in rental markets in terms of one-sided matching prob-
lems, and consider several solution concepts for these problems. In order
to evaluate and compare these solution concepts (and the corresponding
algorithms), we define some “value” functions to capture our objectives,
which include fairness, efficiency and social welfare. Then, we bound the
value of the output of these algorithms in terms of the chosen value
functions.

We also consider models of rental markets corresponding to static,
online, and dynamic customer valuations. We provide several constant-
factor approximation algorithms for the assignment problem, as well as
hardness of approximation results for the different models. Finally, we
describe some experiments with a discrete event simulator compare the
various algorithms in a practical setting, and present some interesting
experimental results.

1 Introduction

Online movie rental services such as Blockbuster.com, Netflix.com and Ama-
zon.co.uk are perhaps the most familiar instances of rental markets in the In-
ternet. The primary function of centralized rental markets such as these is to
repeatedly allocate a rental inventory in accordance with customer demand at
successive time instances. Customers return assigned items after some time steps
and a central authority reassigns the items to other customers. The basic model
behind these markets involves (partial) customer preferences over items, and the
rental service aims to satisfy these preferences within the constraints of available

� This work was done when the authors were visiting Amazon.com.

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 198–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Assignment Problems in Rental Markets 199

inventory. Other objectives include trying to maximize overall resource (inven-
tory) utilization and limiting (perceived) unfairness in the allocation process.

Given the collection of competing objectives, resource constraints and chal-
lenging business characteristics (popularity of movies tends to be highly
non-uniform and extremely short-lived; there is a deep catalog with very sparse
demand in the tail), it is natural that the allocation process involves complex
decisions. As we shall see, specific considerations involved in these tradeoffs are
to some extent captured by familiar matching problems from mathematical lit-
erature. Thus several natural questions of the following form arise: how well does
maximization of one objective (such as inventory utilization) serve another (such
as fairness)? How can one objective be generalized to include another? And when
one objective (such as fairness or popularity) does not have a unique maximum,
how do the different maxima compare under another objective? In this paper,
we consider a range of such issues, identify several interesting questions, and
(partly) answer many of them.

Formally speaking, a rental service repeatedly computes a matching between
the two sides of the market (i.e., customers and items), given the preference lists
of one (and only one) side of the market. This type of matching markets are
called one-sided matching markets as only one side of the market has preference
over the other side. This is contrast to two-sided matching markets in which both
sides of the market have preferences over the other side.

The preferences of customers are often ordinal in that they only explain the
relative ranking of the items for individual customers. As noted above, optimality
in allocation is not clearly defined as two matchings only based on the ordinal
preferences of customers may not be comparable. This nuance underlies several
notions of one-sided matching objectives studied in recent literature, such as
pareto-optimal matchings [1], fair matchings [15], rank-maximal matchings [11],
and so forth. In this context, we examine different measures that may be used
to choose between non-comparable matchings and analyze different one-sided
matching algorithms in terms of these measures.

Two leading criteria to measure the allocation performance of the rental ser-
vice are that of social welfare and the fairness of allocation. In this following, we
consider different algorithms for a single one-sided matching seeking a reasonable
social welfare and fairness and compare the value of the output of these algo-
rithms. For this purpose we require the measures of the value of the allocations,
which must be defined in respect to the preference lists of customers to cap-
ture the social welfare and the fairness of the output. Under different measurese,
we analyze the value of the output of different one-sided matchings for a single
assignment; and then extend the results to repeated matchings for the rental
market problem. Our metric to measure these matching algorithms is similar to
that of the competitive analysis. That is, we study the ratio of the value of the
matchings resulting from the one-sided matching algorithms over the value of
the optimal matching.

200 D. Abraham et al.

1.1 One-Sided Matching Markets

Consider the following classical one-sided matching problem: we are given a set
A of m customers and a set B of n items with one copy1 for each j ∈ B. Each
customer i ∈ A has a preference list Li = (b1

i , . . . , b
�i

i) over different items, where
�i = |Li| and bj

i ∈ B for all 1 ≤ j ≤ �i. In a matching, items are assigned to
customers so that each customer i gets at most one item and each item j is
assigned to at most one customer. Since the vertices of one (and only one) side
of the corresponding bipartite graph has a preference list, we call the matching
in this setting one-sided matching.

Roughly speaking, our goal is to assign the customers to items which are
among the top of their lists. More formally, let us consider associating a value
v(i, j) for assigning item j to customer i, and let our general goal be to find
one-sided matchings to maximize the total value of the assignments in terms of
the given valuations. We denote such valuations on the items to customers by v.

This valuation function, however, should have some desired properties. The
first natural property is that the function should be non-decreasing, i.e., v(i, b1

i)
≥ v(i, b2

i) ≥ · · · ≥ v(i, b�i

i) > 0 and v(i, j) = 0 for all other items j that are not on
the list Li, where equality only reflects ties among items. Secondly, the customers
tend to have stronger preference over the top choices in their preference list.
We can model this fact by considering the concave valuation functions, i.e.,
v(i, bj

i) − v(i, bj+1
i) ≥ v(i, bj+1

i) − v(i, bj+2
i), for 1 ≤ j < �i − 1. Moreover, in the

valuation function, we would not want to “favor” any customer too much. For
simplicity, let us say we would like to give the same value to the first choices
of all customers and the same value to the second choices of all customers and
so on. We call such functions satisfying the above conditions by the universal
ranking valuation functions.

In particular, we are interested in the following special universal ranking valu-
ation functions: for each customer i, the value of her jth-ranked item is (n−j+1)k

(i.e., v(i, bj
i) = (n − j + 1)k), for all 1 ≤ i ≤ n, 1 ≤ j ≤ �i, and some fixed con-

stant k ≥ 0. We denote this valuation vector by xk. Note that when k = 0, this
valuation function models the cardinality of the matching (i.e., v(i, bj

i) = 1).
In this paper, we consider and analyze several one-sided matching frameworks

that are listed below:

Maximum Weighted Matching. As described above, in the maximum wei-
ghted matching, we associate a valuation vector v to items and customers
and maximize the total value of the one-sided matching. The maximum
weighted matching associated with valuation vector v is denoted by
MaxWeightMatch(v).

Rank-Maximal Matching. The profile of a one-sided matching M is a vector,
where the jth element of the profile is the number of customers allocated
to their jth-ranked item by M . M is rank-maximal if it has the lexico-
graphically maximum profile. The rank-maximal matching M is denoted

1 Note that all our results in the paper apply to the multiple copies case.

Assignment Problems in Rental Markets 201

by RankMaxMatch. This solution concept for one-sided matching has been
suggested by Irving [12] and later explored by Irving et al. [11].

Weighted Rank-Maximal Matching. Given a valuation vector v, the wei-
ghted profile of a one-sided matching M for v is a vector, where the jth
element of the profile is the value of the jth largest value among the values
of the pairs of M . M is weighted rank-maximal for vector v if it has the lex-
icographically maximum weighted profile for the value vector v. A weighted
rank-maximal matching is denoted by WeightRankMaxMatch.

Fair Matching. A fair matching has the fewest number of unmatched cus-
tomers (i.e., it has maximum-cardinality), and subject to this, matches the
fewest number of customers to their nth-ranked item, and subject to this,
matches the fewest number of customers to their (n − 1)th-ranked item,
and so on. (This definition can be formalized in terms of lexicographically-
minimum reverse profiles, where we pad each customer’s preference list with
dummy items). The fair matching is denoted by FairMatch. Mehlhorn and
Michail [15] considered this solution concept for the one-sided matching prob-
lems.

Order-Based Matching. Consider an arbitrary ordering π : A → {1, . . . , m}
of customers, the order-based matching algorithm for the ordering π goes
over the list of customers according to π and for each customer i, it assigns
the first available item on i’s preference list to i. This algorithm is very sim-
ple and scalable to implement. Moreover, in order to achieve different goals
in the assignment, we could change the ordering of customers. For exam-
ple, in order to favor the new customers or the more profitable customers,
we can put them at the beginning of the ordering. A matching resulted
from the order-based matching algorithm for the ordering π is denoted by
OrderMatch(π).
Note that the ordering of customers may differ at different time steps and
may depend on the allocations of the previous time steps. For example, in
order to achieve some fairness properties, we can favor the customers who
did not get their first choices recently in the ordering and put them at the
beginning of the ordering.

Stable Matching. Stable matchings are the well-known solution concepts for
two-sided matching problems. In a two-sided matching problem, both sides
have preference lists over the elements of the other side. In order to extend
our setting from a one-sided matching to a two-sided matching problem, we
need to define a preference list over customers for each item. We define the
preference list for an item j by first listing the customers who have item
j as their first choice in an arbitrary order, then listing all customers who
have item j as their second choice, and so on. By defining these preference
lists for items, we can apply the stable matching algorithm on the two-sided
matching instance and output the resulting assignment. This matching is
denoted by StableMatch.

The above solutions are the main algorithms that we study in this paper.

202 D. Abraham et al.

1.2 The Rental Market Problem

Rental markets seek to compute one-sided matching, of course, but they also
have a time dimension. Roughly speaking, rental markets are frameworks for
repeated one-sided matching. More formally, let us say that we are given a set
B of n items and a set A of m customers with preference lists Li over items. In
the rental market problem, we need to assign a matching of items to customers
at each discrete time step t = 1, 2, . . . , T , where T is the common deadline.
We assume that customers use the items for one time step and items can be
reused after that. Besides the requirements that at each time, one customer can
be assigned at most one item and one item can be assigned to at most one
customer, the other requirement in the rental market problem is that one item
can be assigned to one customer at most once.

We associate a value vt(i, j) for assigning item j to customer i at time step t.
Our goal in the rental market problem is to find a set of matchings for all time
steps to maximize the total value. We consider three different types of valuations:
the static, online and the dynamic valuations. Roughly speaking, in the static
valuation model, the value vt(i, j) is determined at the beginning t = 1, whereas
in the dynamic valuation model, vt(i, j) directly depends on the position of j on
i’s preference list at time step t (i.e., it may change according to the assignments
of previous steps). On the other hand, in the online valuation model, customers
can update their preference lists (add new items or remove available items). We
will elaborate the details of these models in Section 3.

1.3 Our Contribution

In this paper, we formalize the rental market problem as a repeated one-sided
matching problem. We propose some value functions to measure the performance
of the assignments in the rental market problem to capture the fairness and the
social value of the output of different algorithms. We analyze several one-sided
matching algorithms and give (almost) tight bounds on the performance in terms
of those value functions for a single one-sided matching problem. These bounds
are summarized in Table 1.

Then, we formalize the rental market in three models: The static valuation
setting, online valuation setting and the dynamic valuation setting. In the static
valuation setting, we show that there exists a 2-approximation algorithm by a
reduction from the problem to the weighted 3-dimensional matching problem.
As a hardness result, we prove the APX-hardness of the rental market problem.
For the online valuation model, we derive a 2-competitive online algorithm to
maximize the total value of the assignments. For the dynamic valuation model,
we observe that the problems are similar to general variants of the job shop
scheduling problems. As a result, we get a constant-factor approximation for the
problem of minimizing the number of time steps to satisfy all the demand where
at each step, we are allowed to assign one of the few top choices of each customer
to her. We also give a hardness result of approximation for this model.

Assignment Problems in Rental Markets 203

Finally, we give a description of our discrete event simulator for measuring
the performance of most of these algorithms on a sample data (and will report
some practical evaluations of our algorithms). We conclude the paper with some
directions and open problems in the last section.

1.4 Related Work

As mentioned earlier, stable matchings are extensively studied as a solution
concept for two-sided markets in which both sides of the market have prefer-
ences over the other side [5,7]. For one-sided matchings, Irving [12] introduced
the concept of the rank maximal matchings and observed that they can be
found by computing the maximum weighted matching in an edge-weighted bi-
partite graph where the edge weights are exponentially decreasing with respect
to the preferences. Irving et al. [11] derived an algorithm with the running time
O(nm2

√
m + n) for this problem. Mehlhorn and Michail [15] studied fair match-

ings and gave some efficient algorithms to find them. To the best of our knowl-
edge, none of the above work analyzed the value of these one-sided matching
algorithms for their worst-case performance. The only related paper in this re-
gard is by Abraham et al. [1] in which the authors studied the structure of
pareto-optimal solutions and pareto-optimality of some of the one-sided match-
ing algorithms.

1.5 Notations

Recall that for a given valuation vector v, MaxWeightMatch(v) denotes the one-
sided matching with the maximum value. If the value of all items in the preference
list is one, i.e., v(i, bj

i) = 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ �i, the maximum-value
one-sided matching is indeed the maximum cardinality matching and denoted
by MaxCardMatch = MaxWeightMatch(1). In addition, the value of a one-sided
matching M for the valuation vector v is denoted by Val(M, v), and the cardi-
nality of a one-sided matching M is denoted by Card(M).

2 Single Matching Algorithms

To understand the performance of different one-sided matching algorithms in the
rental market problem, we need to define some universal objective functions to
evaluate these matching algorithms. In particular, we evaluate the performance
of a one-sided matching in terms of the value function over the pairs of customers
and items. As discussed in the Introduction, we are interested in the special
universal ranking valuation functions xk, for some fixed constant k ≥ 0, where
for each customer i, the value of its jth-ranked item is (n−j+1)k (i.e., v(i, bj

i) =
(n − j + 1)k), for all 1 ≤ i ≤ n and 1 ≤ j ≤ �i.

In this section, we prove several bounds on the ratio of the value of our
proposed algorithms by the worst-case analysis. We summarize the results of
this section in Table 1.

204 D. Abraham et al.

Table 1. The performance of one-sided matching algorithms

Approximation factor

Card Val(x) Val(x4) Val(xk)
Pareto-optimal Running time

MaxCardMatch 1∗ ε∗ ε∗ ε∗ Exist O(e
√

v) [9]

MaxWeightMatch(x) 0.5, 2
3 1∗ 0.2, 1 - Yes O(e

√
v log v) [4]

MaxWeightMatch(x4) 0.5, 4
7

n+1
4n , 1 1∗ - Yes O(e

√
v log v) [4]

MaxWeightMatch(xk′
) 0.5∗ n+1

4n , 1 0.1, 1 - Yes O(ek′√v log v) [15]

RankMaxMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(ev) [11]

WeightRankMaxMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(ev) [11]

FairMatch 1∗ n+1
2n

∗
- ε∗ Yes O(e

√
v log v) [15]

OrderMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Exist O(e + v)

StableMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(e + v) [5]

Notes: (i) The star symbol (∗) implies that the ratio is (almost) tight.
(ii) Two numbers a, b implies the best known lower and upper bound.
(iii) “ε” means that the ratio can be arbitrarily close to zero.
(iv) In the running time, v = max{m, n} and e =

∑ m
i=1 �i.

2.1 Approximation Factor: Lower and Upper Bounds

Due to space limit, we leave the discussions of the tight bounds for cardinality of
the maximum weighted matching, order-based matching, stable matching, and
(weighted) rank-maximal matching to the full version. In the following discus-
sions, we consider the bounds for the fair and maximum weighted matching. To
prove our bounds, We first establish the following two lemmas.

Lemma 1. Let M be either a FairMatch or a MaxWeightMatch w.r.t valuation
function x, and |M | = �. For any w, where n − � + 1 ≤ w ≤ n, we have

|{(ai, bi) ∈ M | v(ai, bi) ≤ w}| ≤ w − n + �.

Basically, the lemma says that in the FairMatch or MaxWeightMatch M w.r.t
valuation function x, there is at most one edge with value smaller than or equal
to n − � + 1, at most two edges with value smaller than or equal to n − � + 2,
and so on.

For any constant k ≥ 1, we can show similarly the following result.

Lemma 2. For any constant k ≥ 1, let M be a MaxWeightMatch(xk) and |M | =
�. For any w, where n − � + 1 ≤ w ≤ n, we have

∣
∣{(ai, bi) ∈ M | v(ai, bi) ≤ wk}∣∣ ≤ w − n + �.

Note that any FairMatch first try to minimize the number of unmatched cus-
tomers, thus it’s essentially a MaxCardMatch. To compare the FairMatch with
MaxWeightMatch(xk), we will first give an example to show the upper bound
for any k ≥ 1, and then study the lower bound for the case of k = 1.

Assignment Problems in Rental Markets 205

Assume there are n customers (a1, . . . , an) and n items (b1, . . . , bn). Each
customer ai prefers items bi, bi+1, . . . , bn on her list. For i = 1, . . . , n−1, customer
ai puts bi the last choice and bi+1 the first choice on her list, respectively. All
other items on the list can be ranked arbitrarily. Thus, {(a1, b1), . . . , (an, bn)}
is a FairMatch with total value 1k + 2k + · · · + nk. The MaxWeightMatch is
{(a1, b2), . . . , (an−1, bn)} with total value (n − 1)nk. Note that when k = 1, the
ratio is n+1

2n−2 ; when k = 4, the ratio approaches to 1/5 when n goes to infinity;
and when n and k are sufficiently large, the ratio can be arbitrarily close to zero.

Now let’s consider the FairMatch and MaxWeightMatch(x). Assume M is
a MaxWeightMatch(x) and |M | = �. Note that Val(M) ≤ �n. Let M∗ be a
FairMatch. Since the FairMatch is also a MaxCardMatch, we know |M∗| ≥ �. Due
to Lemma 1, we know Val(M∗) ≥ ∑n

w=n−�+1 w. Thus,

Val(M∗)
Val(M)

≥ (n − � + 1) + · · · + n

� · n =
2n− � + 1

2n
≥ n + 1

2n

We conclude the above analysis as the following proposition.

Proposition 1. For the universal ranking valuation function x, we have

Val(FairMatch, x) ≥ n + 1
2n

· Val(MaxWeightMatch(x))

Finally, we give some bounds for the value of the maximum weighted matching
algorithms with valuation functions x and x4. We first consider the valuation
function x. Let M be a MaxWeightMatch(x) where |M | = �. Due to Lemma 1,
we know that Val

(
M, x4

) ≥ ∑n
w=n−�+1 w4. On the other hand, consider the

MaxWeightMatch(x4) M∗, note that Val(M∗, x) ≤ Val(M, x) ≤ �n, which im-
plies that Val

(
M∗, x4

) ≤ �n4. Thus,

Val
(
M, x4

)

Val
(
M∗, x4

) ≥
∑n

w=n−�+1 w4

� · n4

≥
∑n

w=1 w4

n · n4

=
1/30 · n(n + 1)(2n + 1)(3n2 + 3n − 1)

n · n4

≥ 1/5

Proposition 2. Val(MaxWeightMatch(x), x4) ≥ 1/5 · Val(MaxWeightMatch
(x4), x4).

On the other hand, Let M be a MaxWeightMatch(xk) where |M | = �, for any
constant k > 1. Due to Lemma 2, we know that Val

(
M, x4

) ≥ ∑n
w=n−�+1 w4.

Consider the MaxWeightMatch(x4) M∗, it is easy to see that |M∗| ≤ 2|M | = 2�,
which implies that Val

(
M∗, x4

) ≤ 2�n4. Thus,

Val
(
M, x4

)

Val
(
M∗, x4

) ≥
∑n

w=n−�+1 w4

2� · n4
≥ 1/10

206 D. Abraham et al.

Proposition 3. Val
(
MaxWeightMatch(xk), x4

) ≥ 0.1 · Val (MaxWeightMatch

(x4), x4
)
, for any k > 1.

Consider another case: For any constant k ≥ 1, let M∗ be a MaxWeightMatch(xk)
where |M∗| = �. Due to Lemma 2, we know Val(M∗, x) ≥ ∑n

w=n−�+1 w. Let M
be a MaxWeightMatch(x). Again, note that |M | ≤ 2|M∗| = 2�, thus, Val(M, x) ≤
2�n. Therefore,

Val (M∗, x)
Val (M, x)

≥
∑n

w=n−�+1 w

2� · n =
�(2n− � + 1)

4� · n ≥ n + 1
4n

Proposition 4. For any k ≥ 1,

Val
(
MaxWeightMatch(xk), x

) ≥ n + 1
4n

· Val (MaxWeightMatch(x), x)

2.2 Pareto-optimality

We say an allocation of items to customers is Pareto-optimal if there is no other
allocation with some customers better and no one worse.

Proposition 5. There is a MaxCardMatch that is Pareto-optimal.

Proposition 6. For any universal ranking valuation function v,
MaxWeightMatch(v), RankMaxMatch, WeightRankMaxMatch, FairMatch,
OrderMatch, and StableMatch are Pareto-optimal.

Note that for the OrderMatch with ties, we can show similar to Proposition 5
that there exists a Pareto-optimal solution. But in general, the OrderMatch is
not Pareto-optimal. However, if it is not allowed to have ties, the OrderMatch
guarantees Pareto-optimal.

3 The Rental Market Problem

In this section, we study the rental market problem with a focus on static, online,
and dynamic valuations, respectively.

3.1 Static Valuation Model

In the following discussion, we study a static valuation model to evaluate the
performance of the rental market problem. In the static valuations model, at each
time t, t = 1, . . . , T , where T is the deadline that customers can get the items,
there is a valuation vt(i, j), which is determined at the beginning, associated with
the pair (i, j), for any (i, j) ∈ A×B, representing the valuation of the customer
i ∈ A for item j ∈ B at time step t. Our goal is to select one-sided matchings Mt

for each time t that maximizes
∑T

t=1

∑
e∈Mt

vt(e), given the condition that every

Assignment Problems in Rental Markets 207

pair is selected at most once, that is, each item can be assigned to each customer
at most once. We denote the rental market problem in the static valuation model
by StaticRentMark.

We reduce StaticRentMark problem with arbitrary valuation functions to the
weighted 3-dimensional matching problem (W3DM). This implies a local search
2-approximation algorithm for this problem. In an instance of W3DM, given a
subset D of triples in set X × Y × Z where X , Y , and Z are disjoint sets, and
a weight we for each triple of D, we need to find a set of triples C ⊆ D with
the maximum weight such that no two elements of C agree in any coordinate.
W3DM is APX-complete [13] and a local search two-approximation algorithm is
known for it [2].

Theorem 1. For any static valuation function v, there exists a 2-approximation
algorithm for the StaticRentMark problem.
Proof. Given an instance S(A, B; T, v) of the StaticRentMark problem, where T is
the deadline time and v is the valuation function, we construct an instance G(S)
of W3DM as follows: Let [T] = {1, . . . , T}. Define X = (A × B), Y = (A × [T])
and Z = (B × [T]). For any triple e = ((i, j), (i′, t), (j′, t′)) ∈ X × Y × Z, define
the weight

we =
{

vt(i, j) if i = i′, j = j′, t = t′

0 otherwise

Now, it is easy to check that there exists a set of T one-sided matchings as the
solution to the instance S with the total value w, if and only if, there exists a
weighted 3-dimensional matching of weight w in the instance G(S). As a result,
we can use the local search two-approximation algorithm of Arkin and Hassin [2]
to achieve a two-approximation algorithm for StaticRentMark with any valuation
function. �

Next, we complement this result by showing that StaticRentMark with arbitrary
valuation functions is APX-Hard.

Theorem 2. The StaticRentMark problem is APX-hard.

3.2 Online Valuation Model

The 2-approximation algorithm for StaticRentMark above is based on a local
search algorithm and does not provide an online algorithm. In this section, we
consider a online valuation model in which customers can arbitrarily update
their preference lists (add new items or remove available items2) for every time
step, and at time t, we only know the preference lists and the corresponding
valuations till this time. We denote this problem by OnlineRentMark.

Similar to the above models, our goal in OnlineRentMark is to assign items to
customers at each time step to maximize the total value of assignments. In order
2 For a more general setting in which users can change their preferences arbitrarily,

we cannot hope to get any bounded competitive ratio.

208 D. Abraham et al.

to evaluate the performance of the online the algorithm, we follow the approach
of the competitive analysis that compares the efficiency of the solution with a
global optimum (assuming the knowledge of the future in advance).

Before studying the online algorithm for OnlineRentMark, we need to specify
the valuation functions. In general, the valuations of customers over items de-
crease as time passes by. Therefore, it is reasonable to assume non-increasing
valuation functions, i.e., vt′(i, j) ≥ vt(i, j), for any 1 ≤ t′ < t ≤ T , when item j
is on customer i’s list at both time t′ and t.

A natural greedy strategy is that at each time t, we compute the current
maximum weighted matching in terms of the available pairs and valuations at
time t, and allocate the items to customers according to that matching. As the
following theorem shows, this greedy algorithm has a good competitive ratio.

Theorem 3. For any non-increasing valuation function v, the above greedy al-
gorithm gives a 2-competitive algorithm to the OnlineRentMark problem.
Proof. Let OPTt be the set of pairs selected by the optimal solution at time step
t, and ALGt be the set of pairs selected by the greedy online algorithm at time
t. Let

OPT ∗ =
T∑

t=1

∑

e∈OPTt

vt(e)

be the total value of the optimal offline solution, and

ALG∗ =
T∑

t=1

∑

e∈ALGt

vt(e)

be the total value of the greedy online algorithm. Let

Xt = OPTt ∩
(

t⋃

i=1

ALGi

)

.

That is, Xt is the set of selected pairs in the optimal solution at time t that appear
in the greedy online algorithm no later than time step t. Let Yt = OPTt − Xt.

For any e = (i, j) ∈ Xt, assume e ∈ ALGt′ , where t′ ∈ {1, . . . , t}. Note
that item j appears on customer i’s list at both time t′ and t. Due to the non-
increasing property, we have vt(e) ≤ vt′(e). Therefore,

T∑

t=1

∑

e∈Xt

vt(e) ≤
T∑

t=1

∑

e∈ALGt

vt(e) = ALG∗.

For the set Yt, note that all pairs in Yt are available in the greedy online
algorithm at time t. Thus, Yt is a feasible candidate set of the greedy algorithm.
Due to the maximum weighted matching strategy, we have

∑

e∈Yt

vt(e) ≤
∑

e∈ALGt

vt(e),

Assignment Problems in Rental Markets 209

for any t. Thus, we have

T∑

t=1

∑

e∈Yt

vt(e) ≤
T∑

t=1

∑

e∈ALGt

vt(e) = ALG∗.

Therefore,

OPT ∗ =
T∑

t=1

∑

e∈Xt

vt(e) +
T∑

t=1

∑

e∈Yt

vt(e) ≤ 2ALG∗,

which completes the proof of the theorem. �
Another advantage of the above greedy online algorithm is that it can be easily
modified by changing the one-sided matching algorithm at each time step to
get another competitive algorithm which may satisfy some extra desirable prop-
erties. We can combine the proofs of Section 2 and the above proof to bound
the efficiency of the assignments resulting from using one of the aforementioned
one-sided matching algorithms at each time step. For example, we could run a
stable matching algorithm to find an assignment at each time step. The result-
ing algorithm is thus a 1

4 -competitive online algorithm for any non-increasing
universal ranking valuation function.

3.3 Dynamic Valuation Model

A drawback of StaticRentMark and OnlineRentMark is that it ignores the effect
of allocations in the previous time steps on the valuations of later time steps
(OnlineRentMark essentially reflects the perspectives and changes of customers,
but not allocations). We illustrate this by the following example. Let the prefer-
ence list of customer i be (b1, b2, b3). If we assign items b1, b2, and b3 to customer
i at the first three time steps, respectively, we have assigned the first choice of i
to her every time step. In other words, the value of assigning b2 to i at time step
2 for customer i is larger if item b1 is assigned to i at time step 1. To capture
this aspect, we formalize the rental market problem with dynamic valuations,
denoted by DynamicRentMark, as follows: Let rt(i, j) be the jth-ranked item on
customer i’s preference list at time t. For every time step t, t = 1, . . . , T , the
value of assigning rt(i, j) to customer i at time t is g(i, j).

The main difference between DynamicRentMark and the other two models
is that the value of assigning an item in DynamicRentMark only depends on
the position of the item on the preference list of the customer at the time of
the assignment (that is, rt(i, j) is a dynamic function in terms of the previous
allocation), but in StaticRentMark and OnlineRentMark, the value depends on
the time step of the assignment and not directly on the position of the item at
the time of the assignment3.
3 A more general model is that of the combination of OnlineRentMark and

DynamicRentMark, where the value of assigning at item only depends on its cur-
rent position on the list and customers can update their preference lists. We do not
study this model in this paper.

210 D. Abraham et al.

First, we observe that a special case of the DynamicRentMark problem is
the job-shop scheduling problem with unit-length jobs on parallel machines
(JobShopSch) [14,17,6,18]. In the JobShopSch problem, we have a set of m jobs
and n machines. Each machine can run at most one job at a time. Each job i
consists of ni operations oi

j . Each operation oj
i has a type tji and can only be

scheduled on machine with tji . We need to schedule the operations of each job in
the order (o1

i , o
2
i , . . . , o

ni

i). There are two variations of this problem: In the min-
imization variant (MinJobShopSch [14]), we need to schedule all the operations
of all jobs in the minimum number of time steps, that is we need to minimize
the makespan of the schedule. In the maximization variant (MaxJobShopSch),
we want to maximize the number (or the total value) of the operations that are
scheduled before a deadline T . Constant-factor approximation algorithms are
known for MinJobShopSch [14], but no constant-factor approximation algorithm
is known for MaxJobShopSch.

JobShopSch is a special case of DynamicRentMark in which g(i, 1) = 1 and
g(i, j) = −M for any j > 1 and sufficiently large value M . Each machine cor-
responds to an item in DynamicRentMark. Jobs in JobShopSch correspond to
customers in DynamicRentMark and their operations correspond to the prefer-
ence list of customers. As a result, for this value function, the known results for
MinJobShopSch give a good approximation algorithm for the minimization ver-
sion of DynamicRentMark. Moreover, designing a constant-factor approximation
for the maximization version of DynamicRentMark will solve the open problem
of approximating MaxJobShopSch.

Here, we formalize a more general value function and prove similar results for
the DynamicRentMark problem. Consider the following dynamic value function:
Given any constant k ≥ 1, let g(i, j) = 1 for any j ≤ k and g(i, j) = −M for
any j > k and a sufficiently large value M . In other words, at each step, we
can assign only one of the first k choices of any customer to her. Our goal
is to minimize the number of time steps for assigning all the items to cus-
tomers (with the restriction of assigning only the first k choices). We call this
problem MinDynamicRentMark(k). The MinJobShopSch problem corresponds to
MinDynamicRentMark(1). We observe that the constant-factor approximation
for MinJobShopSch can be used to give a constant-factor approximation for
MinDynamicRentMark(k) for any k ≥ 1.

Corollary 1. For any constant k ≥ 1, there exists a polynomial-time constant-
factor approximation algorithm for MinDynamicRentMark(k) .

In the following, we give a hardness result for MinDynamicRentMark(2).

Theorem 4. It is NP-hard to approximate the MinDynamicRentMark(2) prob-
lem within a factor better than 1.2.

4 Practical Evaluation

In this section, we describe our discrete event simulator and report the perfor-
mance of different algorithms.

Assignment Problems in Rental Markets 211

4.1 Discrete Event Simulator

DVD rental businesses are more complicated than the theoretical models we have
analyzed here. For example, customers typically have a choice of subscription
plans, which determine, say, how many DVDs they can borrow at once and in
a given month. These plans have a big influence on the DVD return times -
i.e. the time between when a DVD is borrowed and returned. This complicates
matching decisions: should we allocate a DVD to a customer today, or wait until
tomorrow when we may be able to give them a better DVD?

In our theoretical models, there is a fixed collection of DVDs available for
rental. However, rental businesses have control over their inventory levels: if
there aren’t enough DVDs of a particular title, more can be purchased. Of course,
with this control comes the problem of determining optimum inventory levels,
which to some degree involves trading-off between customer satisfaction and
financial sustainability. Inventory levels must also take into account return times.
Customers with slower return times may keep a high-demand DVD for several
days beyond watching it. Knowing this, additional copies of the DVD must be
bought, even though only a fraction of the DVDs are actively being watched on
a given day.

These are just some of the complications dealt with by a real-world DVD
Rental business. We cannot hope to fully capture the underlying model and an-
alyze it theoretically. Instead, we have built a discrete event simulator to see the
effects of various subscription plans, matching algorithms, inventory planning
strategies and so on. The simulator can be seeded by real-world data, including
actual customer preference lists, distributions of return times and forecasts of de-
mand. This simulator is used by the DVD Rental business unit at Amazon.com.

4.2 Performance of Different Algorithms

The following table contains some sample results from our simulator. We con-
structed a small instance from real-world data containing 2000 customers (with
existing rental histories and preference lists), 150 DVD titles (5000 DVDs in
total) and two types of subscription plans (one with a maximum of 4 DVDs per
month, and at most 2 borrowed at any one time; the other with unlimited DVDs
per month, and at most 3 borrowed at any one time). Using forecast demand
data, we then ran the simulator for a (virtual) three-month period to test the
different matching algorithms.

The three objective functions are Val(x), Val(x4) and the total number of
skips. A skip occurs for each higher-ranked DVD a customer misses out on
when we perform a matching. If an eligible customer receives no DVD, a skip
is recorded for each DVD on his/her preference list. We report this value for
different matching algorithms as an alternative measure to compare the results.
Note that in Table 1, we report the worst case analysis for a single matching,
but in Table 2, we report the total value of matchings for several time steps.
As expected from the theoretical results in Table 1, the total value for different
algorithms are close to each other.

212 D. Abraham et al.

Table 2. Simulation results

Total skips Val(x) Val(x4)

MaxWeightMatch(x) 12,522 1,137,456 3.7921e+012

MaxWeightMatch(x4) 12,962 1,137,555 3.7963e+012

RankMaxMatch 15,802 1,139,654 3.8078e+012

FairMatch 12,316 1,135,668 3.7861e+012

OrderMatch 17,059 1,141,082 3.8148e+012

StableMatch 25,788 1,139,025 3.8126e+012

Although these objective functions capture the social welfare, they do not
reveal the utility variability amongst the customers. Figure 1 shows the number
of skips experienced by the 50 customers with the most number of skips. It is
of interest to note that fair matching is substantially better for these customers.
This is achieved with very little loss in utility w.r.t. Val(x) and Val(x4).

Fig. 1. The worst customer experience in each scenario

5 Conclusions

In this paper, we studied different algorithms for the rental market problem,
defined universal measures to compare these algorithms, and analyzed them
theoretically and practically. An open problem of this paper is to design a
constant-factor approximation algorithm for the maximization version of

Assignment Problems in Rental Markets 213

DynamicRentMark. Such a constant-factor approximation algorithm also gives
a constant-factor approximation for MaxJobShopSch.

Designing algorithms with extra fairness properties is an interesting subject of
study. For example, we would like to minimize the maximum number of skips that
any customer observes. Dealing with strategic agents is another interesting topic.
This can be done by proving that for random preference lists, the probability
that a customer has incentive to lie tends to zero as the number of customers
approaches to ∞.

References

1. D. Abraham, K. Cechlarov, D. F. Manlove and K. Mehlhorn. Pareto Optimality in
House-Allocation Problems. ISAAC 2004, 3-15.

2. E. M. Arkin and R. Hassin, On Local Search for Weighted Packing Problems. Math.
Oper. Res., V.10(3), 640-648, 1998.

3. D. Avis. A Survey of Heuristics for the Weighted Matching Problem. Networks,
V.13, 475C493, 1983.

4. H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems.
SIAM Journal on Computing, 18(5), 1013-1036, 1989

5. D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. Amer-
ican Mathematical Monthly, V.69, 9-15, 1962.

6. L. Goldberg, M. Paterson, A. Srinivasan and E. Sweedyk. Better Approximation
Guarantees for Job-Shop Scheduling. SODA 1997, 599-608.

7. D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

8. Holyer. The NP-Completeness of Some Edge Partitioning Problems. SIAM journal
of Computing, V.10(3), 713-717, 1981.

9. J. E. Hopcroft and R. M. Karp. An n5/2 Algorithm for Maximum Matching in
Bipartite Graphs. SIAM J. Computing, V.4, 225-231, 1973.

10. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Cycle Cover with Short Cycles.
STACS 2005, 641-653.

11. R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail and K. Paluch. Rank-Maximal
Matchings. SODA 2004, 68-75.

12. R. W. Irving. Greedy Matchings. Technical Report TR-2003-136, University of
Glasgow, 2003.

13. V. Kann. Maximum Bounded 3-Dimensional Matching is MAX SNP-Complete.
Inform. Process. Lett., V.37, 27-35, 1991.

14. F. T. Leighton, B. M. Maggs and S. B. Rao. Packet Routing and Job-Shop Schedul-
ing in O(Congestion +Dilation) Steps. Combinatorica, V.14(2), 167-180, 1994.

15. K. Mehlhorn and D. Michail. Network Problems with Non-Polynomial Weights and
Applications. Manuscript, 2005.

16. R. Preis. Linear Time 1/2-Approximation Algorithm for Maximum Weighted
Matching in General Graphs. STACS 1999, 259-269.

17. D. B. Shmoys, C. Stein and J. Wein. Improved Approximation Algorithms for Shop
Scheduling Problems. SIAM Journal of Computing, V.23, 617-632, 1994.

18. D. Williamson, L. Hall, J. Hoogeveen, C. Hurkens, J. Lenstra, S. Sevastianov and
D. Shmoys. Short Shop Schedules. Operations Research, V.45(2), 288-294, 1997.

	Introduction
	One-Sided Matching Markets
	The Rental Market Problem
	Our Contribution
	Related Work
	Notations

	Single Matching Algorithms
	Approximation Factor: Lower and Upper Bounds
	Pareto-optimality

	The Rental Market Problem
	Static Valuation Model
	Online Valuation Model
	Dynamic Valuation Model

	Practical Evaluation
	Discrete Event Simulator
	Performance of Different Algorithms

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

