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Abstract. We consider a communications network in which users trans-
mit beneficial information to each other at a cost. We pinpoint conditions
under which the induced cooperative game is supermodular (convex).
Our analysis is in a lattice-theoretic framework, which is at once simple
and able to encompass a wide variety of seemingly disparate models.
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1 Introduction

A cooperative game w : 2N → R (with w(φ) = 0) on the player set N describes
what each coalition can obtain by itself. The core C(w) is the set of all payoffs1

x ∈ RN such that
∑

i∈N xi = w(N) and
∑

i∈S xi ≥ w(S) for all S ⊂ N . In
short, the core consists of divisions of the maximal proceeds w(N) in the game
such that no coalition has incentive to break away and get more on its own.

On the other hand, the Shapley value Φ(w) ∈ RN defines a “fair” allocation
of w(N) among the players (see [6]) for details.

The problem is that often these two concepts are at odds with each other: the
Shapley value Φ(w) is not in the core C(w).

In a seminal paper [7], Shapley showed that if w is supermodular2 (i.e., w(S∪
T ) + w(S ∩ T ) ≥ w(S) + w(T ) for all S ⊂ N, T ⊂ N) then Φ(w) is not only
in C(w) but in fact is the “center of gravity” of C(w) (see [6] for the precise
details). In such games the plausibility of the Shapley value as a solution concept
is considerably bolstered because it is not only fair but also (coalitionally) stable.

In this paper we pinpoint conditions under which certain games of connec-
tivity are supermodular. Players in our model are located at the vertices of a

1 The component xi represents what player i gets.
2 Shapley called such games “convex” and pointed out that the “snowball effect”

i.e., w(T ∪ {i}) − w(T ) ≥ w(S ∪ {i}) − w(S) whenever S ⊂ T ⊂ N and i �∈ T ,
is equivalent to convexity. The snowball effect enables us to interpret supermodular
(convex) games as those that exhibit increasing returns to cooperation: the marginal
contribution of a player to a coalition goes up as the coalition is enhanced.
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communications network and can stand to gain a lot by sharing disparate bits
of information that they initially hold. Indeed information is more amenable to
sharing than standard commodities. Commodities are typically lost to the per-
son who gives them away. Information in contrast has “the quality of mercy”,
blessing him that gives and him that takes, since the giver retains all his informa-
tion even as he sends it out. Nevertheless it is not automatic that all information
will be shared. This is because, though costlessly duplicable, information may be
costly to transmit (e.g., on account of setup costs of links in the communications
network). Any coalition must do a careful cost-benefit analysis, choosing that
pattern of information transmission which minimizes the total net benefit to its
members.

It should be pointed out that our model is inspired by a multicast transmission
game presented in [5], though the focus there was on using the Shapley value (or
else the marginal cost rule) to define a mechanism that is group-strategyproof
and has other desirable properties. The approach in [2] and [1] is similar, in
that cost-sharing schemes (such as the Shapley value), are invoked to construct
non-cooperative games on networks. In contrast, we here analyze network games
from a purely cooperative point of view.

An important feature of our approach is that we formulate information in
terms of a lattice. This leads to a framework that is at once universal and sim-
ple. We can encompass a wide variety of seemingly different models, involving
unicast and multicast modes of transmission, setup and variable costs in the
communications network, and information that comes in various guises (from fi-
nite dimensional vectors, to partitions of a set, to layered encoding). The lattice
framework makes for a remarkably transparent analysis in all cases.

The paper is organized as follows. In Section 2 we present some motivating
examples, starting with the model in [5]. The abstract lattice-theoretic frame-
work is presented in in Section 3. In Section 4 we establish our main result which
states that games of connectivity are supermodular. Section 5 points out a mono-
tonicity property of optimal transmissions. Finally, in Section 6, we show how to
fit the examples into our lattice-theoretic framework; and we also examine the
tightness of our assumptions and indicate some generalizations of the model.

2 Examples

We present a series of examples of information transmission in a network, all of
which yield supermodular games, as we shall see in Sections 4 and 6.

2.1 Multicast Transmission

First let us recall the game presented in [5]. There is a finite tree Γ with a sender
δ located at its root and and a distinct receiver at each leaf (terminal vertex).
Any receiver α can get information from δ if α is connected to δ using the edges
of Γ . The tree Γ is viewed as a digital network which carries a public broadcast
by δ, and it is assumed that information flowing into any vertex of the tree can
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be costlessly duplicated and sent out (multicast) on any subset of the outgoing
edges. But the edges of Γ do have setup costs associated to them. Offsetting
these costs are benefits B(α) to α when he receives information from δ.

A cooperative game is induced on the player-set N of receivers in a natural
manner. Any coalition S ⊂ N can use an arbitrary subtree Γ ′ of Γ at the
cost C(Γ ′) of all the edges of Γ ′. The benefit S derives from Γ ′ is B(S, Γ ′) =∑

α B(α), where the summation runs over all α in S which are connected to δ
via Γ ′. Thus the “worth” w(S) of coalition S (i.e., the most S can guarantee
to itself) is obtained by maximizing the net benefit B(S, Γ ′) − C(Γ ′) over all
possible subtrees Γ ′.

There can be several senders located at different vertices of the tree, each
with its own distinctive information to transmit. Moreover not all senders need
be “dummies” as in [5]. Some of them could be bona fide players in the game
with the power to withhold their information. One could also imagine them to
have different transmission trees, possibly with significant overlap.

In spite of these complications, the game remains supermodular and so the
Shapley value continues to be centrally located in the core (but its computation
may no longer be as felicitous as in [5]).

2.2 Unicast Transmission

Imagine a set of users connected to each other through a hierarchical network
(as in telephony). Again suppose they are located on the leaves of a tree Γ with
other vertices acting as relays. But the communication is private rather than
public, and the users transmit information to each other on a one-to-one basis.

The user at leaf α can choose the amount of information ταβ ∈ [0, m], m > 0,
to be sent to β. The total benefit derived at β is

∑
α Bαβ(ταβ), where Bαβ is an

arbitrary non-decreasing function. As before, it costs to use the tree. Each edge
now has not only a setup cost, but also an arbitrary non-decreasing variable cost
for every α−to-β flow on it. (The variable costs here add across flows, but the
setup cost is invariant of them.)

This unicast scenario also gives rise to a cooperative game in an obvious way.
Any coalition S chooses τ = {ταβ : α ∈ S, β ∈ S}, and a subforest of Γ to carry
τ , so as to maximize the net benefit.

It turns out that this game is also supermodular.

2.3 Transmission of Layered Information

We turn to a situation where information is encoded or organized in layers (e.g.,
as in a video transport system, see [8]). To be precise, suppose layer Li consists
of “ information bricks” numbered by integers mi−1 + 1, mi−1 + 2, . . . , mi. The
bricks in L = ∪k

i=1Li are, however, distributed arbitrarily among the n players
located at the vertices of a communication tree Γ , with no duplication. So,
denoting by Σα the set of bricks held at vertex α, we have Σα ∩ Σβ = φ if
α �= β. Players wish to receive bricks in order to build a “knowledge pyramid”,
but they cannot construct layer Li unless all previous layers L1, L2, . . . , Li−1 are
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in place. Of course, since these bricks are not standard commodities but signify
information, no player loses any of his own bricks by sending them to others. The
player at vertex α may transmit any subset Qe ⊂ Σα on any edge e emanating
from α. Then for any edge e′ that follows from e, he can send Qe′ ⊂ Qe, and so
on. In short he can contemplate multicast transmission on Γ with α as the root.

There is a set-up cost for every edge e as earlier, and additional flow costs
Ce,α(x) for x ∈ Σα.

Benefits accrue as follows. Denoting by Qβα ⊂ Σβ the subset of bricks that α
receives from β, the benefit to α is fα(n), where

n = max{j : Li ⊂ Σα ∪ (∪βQβα)∀i ≤ j}

and f(n) is an arbitrary non-decreasing function.
The idea here, as was said, is that information is organized in pyramidical

form. Information of layer Li is not usable unless all layers L1, L2, . . . , Li are
complete.

The cooperative game, arising in this setup, is once again supermodular.

2.4 Transmission of Information Partitions

As before, Γ is a tree with players located at its vertices. Let Q = {1, 2, . . . , k}
be the set of states of nature, and let {Qα : α ∈ V } be a partition of Q. (Here V
denotes the set of vertices of Γ and Qα is understood to be the empty set if no
player is located at α.) Further let Pα be a partition of Qα. The interpretation is
that {Pα, Q\Qα} is the private information initially held by the player at vertex
α. Notice that private information is disjoint across players, i.e., each player is
in the dark about states that other players can distinguish.

For simplicity every player α has a state-contingent endowment
(a1(α), . . . , ak(α)) of a single non-tradeable resource (such as his skill), to be
used as input in his individual production. He must, of course, use the same in-
put in states that he cannot distinguish. But since expected profit of any player
depends on his state-contingent vector of inputs, there are inherent gains from
sharing information. The precise model is as follows.

Each player can transmit its information partition (or any coarsening thereof)
to other vertices prior to the production stage. If the player at vertex α winds
up with the partition P of Q, his profit (via production) is

max fα(x1, x2, . . . , xk)

Subject to: xi ≤ ai(α)
xi ≥ 0

and i ∼P j ⇒ xi = xj

where i ∼P j means that i and j are in the same cell of the partition P . We
assume that the production function fα is supermodular on Rk

+, i.e., (assuming
differentiability):

∂

∂xi

∂fα

∂xj
≥ 0
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for all i, j and α. In other words the inputs x1, x2, . . . , xk are weakly complemen-
tary: if α increases his input in some state, this does not diminish his marginal
productivity in any state.

When a coalition S forms, its members can transmit information to each other
through any subforest of Γ after paying the setup costs, and then they can pool
their profits.

This, too, induces a game that is supermodular.

2.5 General Network with Controlled Edges

Let G be an arbitrary undirected graph with edge set E and vertex set V . For
each vertex α ∈ V , let Γ (α) ⊂ G be a tree rooted at α on which α is constrained
to transmit its information. Further suppose that edges of G are subject to the
control of coalitions.

Thus when a coalition S forms, each α ∈ S has access to only those edges in
Γ (α) whose controllers are contained in S.

In this setup, players who are neither senders nor receivers of information, may
nevertheless have a vital role to play in the game on account of their control of
edges (such as cable operators or monopoly network providers).

All of our preceding examples can be embedded in this larger framework. The
games induced will still be supermodular.

3 The Abstract Model

We build an abstract lattice-theoretic model of information and its transmis-
sion, which unifies the above (and more) examples and makes for a particularly
transparent analysis.

3.1 The Communications Network

Let G = (V, E) be a graph where V is a finite set of vertices and E is a set of
undirected edges.

For every α ∈ V there is a tree Γ (α) ≡ (V (α), E(α)) ⊂ G, rooted at α, that
can be used by α to transmit its information to other vertices.

3.2 Information

Information is modeled as a lattice L with ≥ denoting the partial order and ∨,∧
the join and the meet operators3. We assume that 0 ≡ ∧{x : x ∈ L} exists in L
and that that ∧ distributes over ∨, i.e.,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

3 Recall (see e.g. [3]) that for and x and y in L, there exists a greatest lower bound
w.r.t. ≥ (denoted x ∧ y) and a least upper bound (denoted x ∨ y).
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for all x, y, z ∈ L. This property holds in a variety of contexts and is well-known
(see [3]).

The canonical examples we have in mind is that L is the power set of a finite
set with ≥ corresponding to the set-theoretic notion of ⊃; or that L is the set
of all partitions of a finite set with ≥ corresponding to refinement; or that L is
a closed interval of the real line with ≥ corresponding to the standard order; or
that L is the product lattice of finitely many such lattices. In all of these cases
0 exists in L and the distributive property holds.

Any vertex α ∈ V can transmit information from a sub-lattice L(α) of L.
A key assumption we make is that the information held at different vertices is
disjoint, i.e.,

x ∈ L(α), y ∈ L(β), α �= β ⇒ x ∧ y = 0

We also assume that each vertex can opt to send no information, i.e., 0 ∈ L(α)
for all α ∈ V .

3.3 Location of Players and Public Facilities

Let N = {1, 2, . . . , n} be the set of players. There is an additional dummy player,
labeled n+1, used to model public facilities available to all players in N . Denote
Ñ = N ∪ {n + 1}.

Each vertex is occupied by a player4 as specified by a location map

η : V → Ñ

where η(α) denotes the player (possibly, dummy) at vertex α. Let V (S) represent
the set of all the vertices occupied by players in S ∪ {n + 1} i.e.,

V (S) = {α ∈ V : η(α) ∈ S ∪ {n + 1}}

3.4 Control of Edges

Edges are controlled by coalitions of players in accordance with a control map

κ : E → 2N

where κ(e) denotes the coalition that controls5 the use of edge e. (If κ(e) = φ,
then e is accessible to everyone.)

3.5 The Transmission of Information

Each vertex α can transmit information x ∈ L(α) to other vertices on its tree
Γ (α) ≡ (V (α), E(α)). Concatenating across vertices, the total transmission may
be viewed as a map τ : E × V → L with the interpretation that τ(e, α) is the
4 The case where several players occupy a vertex is included in our set-up (see remark

3 in Section 6).
5 A natural case: if e = (α, β), then κ(e) = (η(α) ∪ η(β)) ∩ N .
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information transmitted by the vertex α on the edge e. Some natural conditions
must be imposed on this map τ . Any vertex α can send information only out of
L(α) i.e.,

τ(e, α) ∈ L(α) (1)

for all α ∈ V and e ∈ E(α). Moreover, no vertex α can send any (except null)
information on edges outside its tree i.e.,

τ(e, α) = 0 if e �∈ E(α) (2)

for all α ∈ V and e ∈ E. Finally, the join of all the information of α that flows
out of a vertex must be no more than the information of α that arrives at it,
i.e.,

τ(e, α) ≥ ∨{τ(e′, α) : e′ ∈ F (e, α)} (3)

for all α ∈ V and e ∈ E(α), where F (e, α) denotes the set of immediate offspring
edges of e in the tree Γ (α).

Let T denote the set of all possible transmissions, i.e.,

T = {τ : E × V → L : τ satisfies (1), (2) and (3)}

The set T itself forms a lattice under the natural definitions: τ ≥ τ ′ if τ(e, α) ≥
τ ′(e, α) for all e, α; (τ ∨ τ ′)(e, α) = τ(e, α) ∨ τ ′(e, α) for all e, α; (τ ∧ τ ′)(e, α) =
τ(e, α) ∧ τ ′(e, α) for all e, α.

For any coalition S ⊂ N , define the subset T (S) ⊂ T of transmissions feasible
for S as follows:

T (S) = {τ ∈ T : for any e and α, τ(e, α) > 0 ⇒ κ(e) ⊂ S and α ∈ S∪{n+1}}

In other words, only members of S or public vertices can transmit information
in T (S); and only the edges under the control of S may be used.

3.6 The Reception of Information

A transmission τ ∈ T induces a reception σ(τ, α) ∈ L at every vertex α ∈ V as
follows:

σ(τ, α) = (x∗(α)) ∨ (∨{τ(e(β, α), β) : β ∈ V \{α} and α ∈ Γ (β)})

where e(β, α) is the edge coming into α from β in Γ (β) and x∗(α) ≡ ∨{x : x ∈
L(α)}.

Here x∗(α) represents the maximum information in L(α). Since α can cost-
lessly receive its own information, and since information is valuable, we suppose
that α always “sends” x∗(α) to itself. The total reception at α is obtained by
joining x∗(α) with the bits of information τ(e(β, α), β) sent to α by other ver-
tices β.
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3.7 The Cost of a Transmission

The cost of transmitting information (originating at different vertices) on any
edge is given by6 ce : LV → R+, where ce((x(α))α∈V ) ≡ the cost of the flow
(x(α))α∈V on e. We postulate that ce is submodular on LV , i.e.,

ce(x ∨ y) + ce(x ∧ y) ≤ ce(x) + ce(y)

for all e ∈ E and x, y ∈ LV . Such costs can arise in several ways. For instance,
suppose there is a set-up cost f(e) for e, and a further set-up cost f(e, α) for
every vertex α that uses e, i.e.,

ce((x(α))α∈V ) =
{

0, if x(α) = 0 for all α
f(e) +

∑
x:x(α)>0 f(e, α), otherwise

It is evident that this cost function is submodular, and that it remains so
if we add variable costs

∑
α∈V gα(x(α)) provided each gα : L → R+ is itself

submodular (i.e., evinces economy of scale).
The cost of transmission τ ∈ T is the sum of the costs incurred on all the

edges, i.e.,
C(τ) =

∑

e∈E

ce((τ(e, α))α∈V )

It is easy to verify that C is submodular on T , i.e.,

C(τ) + C(τ ′) ≥ C(τ ∨ τ ′) + C(τ ∧ τ ′) (4)

3.8 The Benefit from a Transmission

For every vertex β ∈ V , there is a benefit function Bβ : L → R+, where Bβ(x)
represents the benefit to β from receiving information x ∈ L. We assume that
Bβ is supermodular and non-decreasing for all β ∈ V i.e.,

Bβ(x ∨ y) + Bβ(x ∧ y) ≥ Bβ(x) + Bβ(y)

and
x ≥ y ⇒ Bβ(x) ≥ Bβ(y)

The benefit to a coalition S ⊂ N from transmission τ ∈ T is given by

B(S, τ) =
∑

β∈V (S)

Bβ(σ(τ, β))

It is again easy to verify that B is supermodular on T (with S fixed). But the
supermodularity of B and the submodularity of C do not immediately lead to
the supermodularity of the game w defined in the next section.

6 Note that LV is a finite product of L with itself (V times) and is a product lattice.
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4 The Connectivity Game

We consider the cooperative game that arises from the communications network.
A non-empty coalition S ⊂ N can choose any τ ∈ T (S) to transmit information
between its members or to receive information from public vertices. The coalition
obtains total benefit B(S, τ) but at a cost C(τ). The maximum net benefit that
S can guarantee is therefore given by

w(S) = max
τ∈T (S)

B(S, τ) − C(τ)

(with w(φ) understood to be 0). We call w the connectivity game.
Recall that a game w : 2N → R is called supermodular (or, as in [7], convex)

if w is supermodular on the lattice 2N , i.e.,

w(S ∪ T ) + w(S ∩ T ) ≥ w(S) + w(T )

for all S ⊂ N and T ⊂ N . Our main result is:

Theorem 1. The connectivity game w is supermodular.

For the proof see [4].

5 The Growing Transmissions Property

It is worth noting that optimal transmissions grow with the coalitions in the
sense made precise by Theorem 2 below.

Theorem 2. Let S ⊂ T ⊂ N and let τ1 ∈ T (S) be an optimal transmission for
S. Then there exists an optimal transmission τ ∈ T (T ) for T such that τ ≥ τ1.

For the proof see [4].

6 Remarks

Remark 1 (Embedding the examples). We briefly indicate how to fit our
examples (from Section 2) into the abstract model.

For Section 2.1, take Γ (α) = Γ rooted at α, κ(e) = φ for all e, L(δ) = {0, 1},
L(α) = {0} for all α �= δ, L = the cross product of all these lattices, Bδ = 0,
Bα(0) = 0 and Bα(1) = B(α) for all α �= δ. Finally the cost of an edge is its
setup cost if there is a non-zero transmission on it and zero otherwise.

For Section 2.2, let L(α) = [0, m]V , each of whose elements specifies the in-
formation sent by α to all the other vertices. The lattice operations ∨ and ∧
are obtained by taking component-wise maximum and minimum. L as usual is
the cross product of all the L(α). The cost functions are obvious. The rest of
the construction is as before. (Notice that despite the fact that the components
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of the benefit and cost functions have no supermodularity or concavity assump-
tions on them, the benefit/cost functions are supermodular/submodular in our
lattice framework. This follows from the fact that they are additive over their
components and that super or sub-modularity is no constraint on a function of
one variable.)

For the example in Section 2.3, take L(α) to be the totally ordered set {0}∪Σα,
and L to be the cross product. We leave it to the reader to verify that the benefit
function is supermodular.

Finally, for the example in Section 2.4, take L(α) to be the lattice of all par-
titions of Q which are coarser than {Pα, Q\Qα}. The supermodularity of the
benefit functions follows from that of fα, α ∈ V .

Remark 2 (Acyclicity). Cycles in the transmissions network Γ (α) can cause
our result to breakdown. Consider the network in Figure 1 in which players 1, 2,
3, 4, each have access to the whole graph, with costs as shown and with ε < 1.

1+ε 1+ε

1+ε 1+ε

2

1

2 4

3

Fig. 1. Cycles in the communications network

Further suppose that 1, 2, 3 each derive benefit B > 2(1+ε) from being connected
to 4. Then it is clear that

w(2, 4) = B − 2
w(2, 3, 4) = 2B − 2(1 + ε)
w(1, 2, 4) = 2B − 2(1 + ε)

w(1, 2, 3, 4) = 3B − 3(1 + ε)

But then

w(1, 2, 3, 4) + w(2, 4) = 4B − 5 − 3ε ≤ 4B − 4 − 2ε = w(1, 2, 4) + w(2, 3, 4)

showing that w is not supermodular.

Remark 3 (Multiple players at a vertex). Our model allows for many
players to be located at the same vertex α. Indeed, by creating a new vertex for
each player present at α, and joining these with zero-cost edges to α, we create
an expanded graph which fits our model (see Figure 2).



196 P. Dubey and R. Garg

j

α

0 00

η(α) = {i, j, k}

i k

Fig. 2. Modeling multiple players at a vertex

Remark 4 (Control of vertices). Our model also permits coalitions to control
vertices by the graph expansion shown in Figure 3. Every edge incident at α is
intercepted with a zero-cost edge controlled by the coalition controlling α.

κ(  ) = κ(  ) = κ(   ) = κ(α) = {i, j, k} e         f          g        {i, j, k}

αα f
e

g

Fig. 3. Modeling control of vertices

Remark 5 (Veto players). A more general control of edges by veto play-
ers renders our results invalid. Consider a player set {1, 2, 3} and suppose that
there is common tree available to everyone, which consists of just one zero-cost
edge connecting player 1 to a public vertex. The edge can be sanctioned by
player 1 (the veto player), in conjunction with any player in {2, 3}. The only
benefit B is obtained by player 1 when he gets connected to the public ver-
tex. In this game w(1) = 0 and w(1, 2) = w(1, 3) = w(1, 2, 3) = B. Hence
w(1, 2, 3) + w(1) = B < 2B = w(1, 2) + w(1, 3), showing that w is not super-
modular.

Remark 6 (Dropping distributivity). In the special case where L is the cross
product of the lattices L(α) over α ∈ V , our results hold without postulating
that ∧ distributes over ∨. But in general distributivity is indispensable.
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Remark 7 (Enhancement of information). So far we have taken informa-
tion to be fixed a priori. But it could well happen that the information of an
agent gets enhanced by virtue of the information he receives from others. He
can turn around and send his enhanced information back to them, enhancing
theirs’, and so on. Even in this setting, under suitable hypotheses, the induced
cooperative game is well-defined (i.e., the enhancement sequence converges) and
is supermodular, as we shall show in a sequel paper.
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