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Abstract. We consider a scenario of distributed service installation in privately
owned networks. Our model is a non-cooperative vertex cover game for k players.
Each player owns a set of edges in a graph G and strives to cover each edge by an
incident vertex. Vertices have costs and must be purchased to be available for the
cover. Vertex costs can be shared arbitrarily by players. Once a vertex is bought, it
can be used by any player to fulfill the covering requirement of her incident edges.
Despite its simplicity, the model exhibits a surprisingly rich set of properties.
We present a cumulative set of results including tight characterizations for prices
of anarchy and stability, NP-hardness of equilibrium existence, and polynomial
time solvability for important subclasses of the game. In addition, we consider
the task of finding approximate Nash equilibria purchasing an approximation to
the optimum social cost, in which each player can improve her contribution by
selfish defection only by at most a certain factor. A variation of the primal-dual
algorithm for minimum weighted vertex cover yields a guarantee of 2, which is
shown to be tight.

1 Introduction

In this paper we consider a simple model for service installation in networks, e.g. high-
way or communication networks like the internet. Many networks including the inter-
net are built and maintained by a number of different agents with relatively limited
goals whereas others are centrally planned and operated – e.g. the system of interstate
highways in some countries is centrally owned and planned whereas in other countries
certain roads are owned privately. In particular, we consider a simple model in which
network owners have to make a concrete investment to establish a service at a location
in the network. Network connections are owned by different players, and each player
strives to establish a service point at different locations along her connections. These
service points could be resting facilities at highways or caching, buffering, or amplifi-
cation technology in telecommunication networks. We investigate the question of how
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the quality and density of these service locations changes when networks are owned pri-
vately vs. owned by a central authority. A player owning a set of connections has an in-
centive to cover all her connections with service. The motivation for this might either be
economical or lawfully enforced. If at a location a service point is already established,
the incident connections are covered. This might alter the motivation for some players
to invest. Formally we model this interaction with a non-cooperative game, which we
call the vertex cover game and analyze using notions from algorithmic game theory.

Our game is similar in spirit to the one considered in [2] for network creation. We
assume that a number of k non-cooperative players have to create service points in
a network. The network is modeled as a graph G = (V, E), in which edges represent
roads or connections and vertices represent possible service point locations. Each player
i owns a subset Ei ⊆ E of edges and strives to establish a service point at at least
one endpoint of each edge in Ei, but with minimum investment. For establishing a
service point at a vertex v, a cost c(v) has to be paid, which can be shared among
different players. A strategy for a player is an assignment of payments to vertices in
V , and once a vertex is bought – that is, when a total amount of c(v) is offered by
the players for a vertex v, this vertex can be used by all players to cover any of their
incident edges – no matter whether they contribute to the cost or not. In this game both
the problem of finding the optimum strategy for a player and the problem of finding
a centralized optimum cover for all edges of all players are the classic optimization
problem of minimum weighted vertex cover.

We investigate our non-cooperative game in terms of stable solutions, which are the
pure strategy Nash equilibria of the game. We do not consider mixed strategy equi-
libria, because our environment requires a concrete investment rather a randomized
action, which would be the result of a mixed strategy. We consider the price of anar-
chy [14, 16], which measures the ratio of the cost of the worst Nash equilibrium over
the cost of a minimum cost cover satisfying all requirements of all players for a game.
In addition, we investigate the price of stability [1], which measures the best Nash equi-
librium in terms of the optimum cost instead of the worst equilibrium. As in general
both of these ratios are in Θ(k), we investigate the question how to derive cheap covers
and cost distributions that provide low incentives to selfishly defect. We present an effi-
cient algorithm with small constant approximation ratios and provide tightness results.
In addition, we show that determining existence of Nash equilibria in the vertex cover
game is NP-hard.

1.1 Related Work

The vertex cover problem is a classic optimization problem in graph theory and has been
studied for decades. Recently, distributed variants of the problem have attracted interest
in the area of algorithmic game theory. Specifically, a cooperative vertex cover game
was studied in a more general context by Immorlica et al. [11]. In this coalitional game,
each edge is an agent and each coalition of players is associated with a certain cost value
- the cost of a minimum cover. In [11] cross-monotonic cost sharing schemes were in-
vestigated. For each coalition of players covered they distribute the cost to players in
a way that every player is better off if the coalition expands. The authors showed that
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no more than O(n− 1
3 ) of the cost can be charged to the agents with a cross-monotonic

scheme.
Closely related to cooperative games is the study of cost sharing mechanisms. Here a

central authority distributes service to players and strives for their cooperation. Starting
with [6] cost sharing mechanisms have been considered for a game based on set cover.
Every player corresponds to a single item and has a private utility (i.e. a willingness
to pay) for being in the cover. The mechanism asks each player for her utility value.
Based on this information it tries to pick a subset of items to be covered, to find a
minimum cost cover for the subset and to distribute costs to covered item players such
that no coalition can be covered at a smaller cost. A strategyproof mechanism allows no
player to lower her cost by misreporting her utility value. The authors in [6] presented
strategyproof mechanisms for set cover and facility location games. For set cover games
[18, 15] recently considered different social desiderata like fairness aspects and model
formulations with items or sets being agents.

Cooperative games and the mechanism design framework are used to capture situa-
tions with selfish service receivers who can either cooperate to an offered cost sharing
or manipulate. Players may also be excluded from the game depending on their utility.
A major goal has been to derive good cost sharing schemes that guarantee truthful-
ness or budget balance. Our game, however, is strategic and non-cooperative in nature
and allows players a much richer set of actions. In our game each player is motivated
to participate in the game. We investigate distributed uncoordinated service installation
scenarios rather than a coordinated environment with a mechanism choosing customers,
providing service and charging costs. Our study is, however, related to these develop-
ments – especially the singleton games, which we study in Section 5.

Our analysis uses concepts developed for non-cooperative games in the area of
algorithmic game theory, in particular prices of anarchy and stability characterizing
worst- and best-case Nash equilibria. The price of anarchy has been studied in a large
and diverse number of games, e.g. in areas like routing and congestion [14, 17, 3],
network creation [2, 8], or wireless ad-hoc networks [7, 9]. The price of stability [1]
has been introduced more recently and studied for instance in network creation games
[1, 10] or linear congestion games [5]. Characterizing selfish improvement possibilities
and social cost of a strategy combination in terms of multiplicative factors has been
recently introduced in the study of network creation games [2, 10].

1.2 Outline and Contributions

We study our vertex cover game with respect to quality of pure strategy exact and ap-
proximate Nash equilibria. Throughout the paper we denote a feasible cover by C and
the centralized optimum cover by C∗. All proofs omitted in this extended abstract will
be given in the full version of this paper. Our contributions are as follows.

– Section 2 presents the model and some initial observations. In Section 3 we show
that the price of anarchy in the vertex cover game is k, even when the underlying
graph is a tree. There exist simple unweighted and weighted games for two players
without Nash equilibria. They can be used to prove that the price of stability can
be arbitrarily close to k − 1. Determining existence of Nash equilibria for a given
game is NP-hard, even for unweighted games or two players.
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– In Section 4 we study a two-parameter optimization problem: Find covers that are
cheap and allow low incentives for players to deviate. We formalize this notion as
(x, y)-approximate Nash equilibria and propose a simple algorithm that finds (2,2)-
approximate Nash equilibria for any vertex cover game. In addition to this algorith-
mic result, we show that in general there are games without a (x, y)-approximate
equilibrium for x < 2. Recent progress on the complexity status of the minimum
vertex cover problem can be used to reasonably conjecture that there can be no
polynomial time algorithm with a better guarantee for the approximation ratio y as
well. For planar games our argument extends to a lower bound of 1.5 on x, which
can be increased close to 2 by forcing y to be close to 1 indicating a Pareto rela-
tionship between the ratios.

– Finally, in Section 5 we present games for which the price of stability is 1. For the
class of singleton games, in which each player owns exactly one edge, we relate
the results to recent work on mechanism design and cooperative game theory. For
bipartite games, in which the graph is bipartite, our proof is based on the max-
flow/min-cut technique for vertex cover. This provides new game-theoretic inter-
pretations of classic results from graph theory and polynomial time algorithms to
calculate cheap Nash equilibria.

2 The Model and Basic Results

The vertex cover game for k players is defined as follows. In an undirected graph G =
(V, E) with n = |V | and m = |E| each player i owns a set Ei ⊆ E of edges. We
denote by G[Ei] the graph induced by the edges in Ei, and by V (G[Ei]) the set of
vertices of G[Ei]. Each player strives to establish service at least one endpoint of each
of her edge. For each vertex v there is a nonnegative cost c(v) for establishing service
at this vertex. A strategy for a player i is a function pi : V → IR+

0 specifying an offer
to costs of each vertex. The cost of a strategy pi for player i is the sum of all money
she offers to the vertices. Once the sum of offers of all players for vertex v exceeds its
cost it is considered bought. Bought vertices can be used by all players to cover their
incident edges. Each player strives to minimize her cost, but insists on covering her
edges. A payment scheme is a vector p = (p1, . . . , pk) specifying a strategy for each
player. A Nash equilibrium is a payment scheme such that no player i can unilaterally
improve her payments by changing her strategy and still cover all her edges in Ei.
A (x, y)-approximate Nash equilibrium is a payment scheme purchasing a cover C for
which every player can improve her cost at most by a factor of x by switching to another
strategy, and such that c(C) ≤ yc(C∗). We will refer to the factor y as the approximation
ratio, and we term x as the stability ratio. The definitions of the approximation ratio and
the stability ratio coincide for single-player games. Finally, we call a game unweighted
if all vertices have equal costs, and weighted otherwise. We refer to games with a planar
graph G as planar games.

The following observations can be used to simplify a game. Suppose an edge e is
not included in any of the players edge sets. This edge is not considered by any player
and has no influence on the game. Hence, in the following w.l.o.g. we will assume that
E =

⋃k
i=1 Ei.
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For a player i assume the graph G[Ei] induced by the players edge set Ei is not
connected. The player has to cover edges in each component and her optimum strategy
decomposes to cover both components independently at minimum cost. Hence, we can
form an equivalent game in which the edges for each of the ki components are owned
by different subplayer i1, . . . , iki . Then any approximate Nash equilibrium from this
equivalent game can be translated to the original game, and eventually the stability
ratio improves. Hence, for deriving approximate Nash equilibria we can assume that
the edges of each player form only a single connected component.

Suppose an edge e ∈ E is owned by a player i and a set of players J , i.e. e ∈
Ei ∩ (

⋂
j∈J Ej). This is equivalent to one parallel edge for each player. Now consider

a Nash equilibrium for an adjusted game in which there is only one edge e owned only
by player i. In this equilibrium a player j ∈ J has no better strategy to cover the edges
in Ej − e. However, e is covered as well, potentially by a different player. If e is added
to Ej again j has no incentive to deviate from her strategy as her covering requirement
only increases. The Nash equilibrium for the adjusted game yields a Nash equilibrium
in the original game. Hence, in the following we will assume that all edge sets Ei are
mutually disjoint.

3 Quality and Existence of Nash Equilibria

In this section we consider the quality of pure Nash equilibria and the hardness of
determining their existence. In general it is not possible to guarantee their existence,
they can be hard to find or expensive. At first observe that the price of anarchy in the
vertex cover game is k.

Theorem 1. The price of anarchy in the vertex cover game is exactly k.

Proof. Consider a star in which each vertex has cost 1 and each player owns a single
edge. The centralized optimum cover C∗ is the center vertex of cost 1. If each player
purchases the vertex of degree 1 incident to her edge, we get a Nash equilibrium of
cost k. Hence, the price of anarchy is at least k. On the other hand, k is a simple upper
bound. If there is a Nash equilibrium C with c(C) > kc(C∗), there is at least one player
i that pays more than c(C∗). She could unilaterally improve by purchasing C∗ all by
herself. ��
Note that the price of anarchy is k even for very simple games in which every player
owns only one edge and G is a tree. Hence, we will in the following consider existence
and quality of the best Nash equilibrium in a game.

Lemma 1. There are planar games for two players without Nash equilibria.

Proof. We consider the game for two players in Fig. 1(a) for an ε > 0. For this game we
examine four possible covers. A cover including all three vertices cannot be an equilib-
rium, because vertex u is not needed by any player to fulfill the covering requirement.
Hence, any player contributing to the cost of u could feasibly improve by removing
these payments. Suppose the cover representing an equilibrium includes v1 and v2. If
player 1 contributes to v1, she can remove these payments, because she only needs v2
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(a) (b)

Fig. 1. Games for two players without Nash equilibria. (a) weighted game; (b) unweighted game.
Edge type indicates player ownership. For the weighted game numbers at vertices indicate vertex
costs.

to cover her edge. With the symmetric statement for v2 we can see that in equilibrium
player 1 could not pay anything. Player 2, however, cannot purchase both v1 and v2,
because buying u offers a cheaper alternative to cover her edges. Finally, suppose u
and v1 are in the cover. In equilibrium player 1 will not pay anything for u. Player 2,
however, cannot purchase u completely, because v2 offers a cheaper alternative to cover
the edge (u, v2). With the symmetric observation for the cover of u and v2, we see that
there is no feasible cover that can be purchased by a Nash equilibrium. With similar
arguments we can prove that the game on K4 depicted in Fig. 1(b) has no pure Nash
equilibria. This proves the lemma. ��

Fig. 2. A game with k=8, for which the cost of any Nash equilibrium is close to (k − 1)c(C∗).
Numbering of edges indicates player ownership. Indicated vertices have cost ε′ � 1, vertices
without labels have cost 1.

Theorem 2. For any ε > 0 there is a weighted game in which the price of stability is
at least (k − 1)− ε. There is an unweighted game in which the price of stability is k+2

4 .

Proof. Consider a game as depicted in Fig. 2. The centralized optimum cover includes
the center vertex of the star and three vertices of the K4-gadget yielding a total cost of
1 + 3ε′. If the center vertex of the star is in the cover and we assume to have a Nash
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equilibrium, no player can contribute anything to vertices of the K4-gadget incident
to edges of player 1 and 2. For this network structure, however, it is easy to note that
players 1 and 2 cannot agree on a set of vertices covering their edges. Hence, to allow
for a Nash equilibrium, the star center must not be picked which in turn requires all
other adjacent star vertices to be in the cover. Under these conditions the best feasible
cover includes the vertex that connects K4 to the star yielding a cost of k − 1 + 3ε′.
Note that we can derive a Nash equilibrium purchasing this cover by assigning each
player to purchase a star vertex - including the vertex that also belongs to K4. Players
1 and 2 are assigned to purchase one of the additional K4 vertices, respectively. With
ε = 3ε′(k−2)

1+3ε′ the first part of the theorem follows. For the unweighted case we simply
consider the game graph with all vertex costs equal to 1. A similar analysis delivers the
stated bound and proves the second part of the theorem. ��
Theorem 3. It is NP-hard to determine whether (1) an unweighted vertex cover game
or (2) a weighted vertex cover game for 2 players has a pure strategy Nash equilibrium,
even if the graphs G[Ei] are forests.

4 Approximate Equilibria

In the previous section we saw that in general cheap pure Nash equilibria can be absent
from the game. Hence, we study existence and algorithmic computation of solutions to
a two-parameter optimization problem. Recall that (x, y)-approximate Nash equilibria
are payment schemes that allow each player to reduce her payments by at most a factor
of x and approximate c(C∗) to a factor of y.

Algorithm 1: (2,2)-approximate Nash equilibria
pi(v)← 0 for all players i and vertices v
γi(e)← 0 for all players i and edges e
while there is an uncovered edge e = (u, v) ∈ E do

Let i be the player owning edge e, and let γi(e)← min(c(u), c(v))
Increase payments: pi(u)← pi(u) + γi(e) and pi(v)← pi(v) + γi(e)
Add all purchased vertices to the cover
Reduce vertex costs: c(u)← c(u)− γi(e) and c(v)← c(v)− γi(e)

Theorem 4. Algorithm 1 returns a (2,2)-approximate Nash equilibrium in O(k(n+m))
time.

The algorithm is an adaption of the primal-dual algorithm for minimum vertex cover. It
is also used to show that any socially optimum cover C∗ can always be purchased by a
(2, 1)-approximate Nash equilibrium.

Theorem 5. For every game there is a (2,1)-approximate Nash equilibrium.

For lower bounds on the ratios we note that any algorithm to find a (x, y)-approximate
Nash equilibrium in the vertex cover game can be used as an approximation algorithm
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for minimum weighted vertex cover with approximation ratio min(x, y). The argument
follows simply by considering a game with one player. This observation can be com-
bined with recent conjectures on the complexity status of the minimum weighted vertex
cover problem [13]. It suggests that if P 	= NP and the unique games conjecture
holds, there is no polynomial time algorithm delivering (x, y)-approximate Nash equi-
libria with x < 2 − o(1) or y < 2 − o(1). This bound applies only to polynomial
time computability in general games. We now show that 2 is also a lower bound for the
stability ratio, in a stronger sense.

Theorem 6. For any x < 2 there is an unweighted game without (x, y)-approximate
Nash equilibria for any y ≥ 1.

Fig. 3. From left to right the edges owned by the players in the first, second, and third classes
of players for K8. The first and second class consist of four players each, the third class of two
players. Players in the first class own a single edge, while players in other classes own cycles of
length 4.

Proof. The proof follows with a game on K4g with g ∈ IN. We assume the vertices
are numbered v1 to v4g and distribute the edges of the game to 2g2 + g players in
g + 1 classes as follows. In the first class there are 2g players. Every player i from this
class owns only single edge (vi, v2g+i). Then, for each integer j ∈ [1, g − 1] there is
another class of 2g players. A player i in one of the classes owns a cycle of four edges
(vi, vi+j), (vi+j , v2g+i), (v2g+i, v2g+i+j) and (v2g+i+j , vi). Finally, there are g players
in the last class. Each player i in this class also owns a cycle of four edges (vi, vg+i),
(vg+i, v2g+i), (v2g+i, v3g+i) and (v3g+i, vi). See Fig. 3 for g = 2 and the distribution
of the 10 players into 3 classes on K8.

Any feasible vertex cover of a complete graph is composed of either all or all but
one vertices. For a cover of all 4g vertices we can simply drop the payments to one
vertex. This reduces the payment for at least one player. In addition, it increases the
cost of some of the deviations as the players must now purchase the uncovered vertex
in total. The stability ratio of the resulting payment scheme can only decrease. Hence,
the minimum stability ratio is obtained by purchasing 4g − 1 vertices.

So w.l.o.g. consider a cover of 4g − 1 vertices including all but vertex v4g . Note
that some player subgraphs do not include v4g , and there are only two types of player
subgraphs - a single edge or a cycle of length 4. First, consider a player subgraph that
consists of a single edge and both endvertices are covered. If the player contributes
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Fig. 4. Players that include v8 in their subtree. Numbering of players as described in the text.
Edge labels indicate player ownership.

to the cost of the incident vertices, she can drop the maximum of both contributions.
Thus, if she contributes more than 0 to at least one of the vertices, her incentive to
deviate is at least a factor of 2. Second, consider a player subgraph that consists of a
cycle of length four. Label the four included vertices along a Euclidean tour with u1,
u2, u3 and u4. Let the contributions of the player to uj be xj for j = 1, 2, 3, 4, resp. To
optimally deviate from a given payment scheme, the player picks one of the possible
minimum vertex covers {u1, u3} or {u2, u4} and removes all payments outside this
cover. A factor of r bounding her incentives to deviate must thus obey the inequalities∑4

j=1 xj ≤ r(x1 +x3) and
∑4

j=1 xj ≤ r(x2 +x4). In order to find the minimum r that
is achievable we assume each player contributes only to vertices inside her subgraph.
Summing the two inequalities yields (2− r)

∑4
j=1 xj ≤ ∑4

j=1 xj , so either her overall
contribution is 0 or r ≥ 2. Hence, to derive a payment scheme with stability ratio of
less than 2, all 4g − 1 vertices in the cover must be purchased by the 2g players whose
subgraph includes v4g .

For the rest of the proof we will concentrate on these 2g players. We will refer to
player i, if she includes vi in her subgraph, for i = 1, . . . , 2g − 1. All these players
own cycle subgraphs. The player that owns the edge (v2g, v4g) is labeled player 2g.
See Fig.4 for an example on K8. We denote the contribution of player i to vertex vj by
pij for all i = 1, . . . , 2g and j = 1, . . . , 4g − 1. Observe that for each player the set
{v2g, v4g} forms a feasible vertex cover. To achieve a stability ratio r, we must ensure
that each player can only reduce her payments by a factor of at most r when switching
to this cover. In the case of player 2g only {v2g} is needed, so we must ensure that she
can reduce her payments by at most r when dropping all payments but p2g,2g . As v4g is
not part of the purchased cover its cost of 1 must be purchased completely by a player
that strives to use it in a deviation. This yields the following set of 2g inequalities:∑4g−1

j=1 pij ≤ r(pi,2g + 1), for i = 1, . . . , 2g− 1 and
∑4g−1

j=1 p2g,j ≤ rp2g,2g . We again
strive to obtain the minimum ratio r that is possible. Note that in the minimum case no
vertex gets overpaid, i.e.

∑2g
i=1 pij = 1 for all j = 1, . . . , 4g − 1. Using this property

in the sum of all the inequalities gives
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4g − 1 =
4g−1∑

j=1

2g∑

i=1

pij ≤ r

(

2g − 1 +
2g∑

i=1

pi,2g

)

≤ 2gr,

which finally yields r ≥ 2 − 1
2g . This proves that in the presented game no (x, y)-

approximate Nash equilibrium with x < 2 − 1
2g exists. Thus, for every ε > 0 we

can pick g ≥ (2ε)−1, which then yields a game without (2 − ε, y)-approximate Nash
equilibria for any y ≥ 1. ��
It would be interesting to see, whether this lower bound is due to the integrality gap
of vertex cover. Such a relation exists for approximate budget balanced core solutions
in the cooperative game [12]. In a core solution each possible player coalition S con-
tributes less than the cost of a minimum vertex cover for S. In our game, however,
players make concrete strategic investments at the vertices, which alter the cost of the
minimum cover for other players. In particular, our result is mainly due to the fact that
the majority of players is sufficiently overcovered leaving only a small number of con-
tributing players. This makes a relation to the integrality gap seem more complicated to
establish.

Some classes of the vertex cover problem can be approximated to a better extent.
For example, there is a PTAS for the vertex cover problem on planar graphs [4]. It
is therefore natural to explore whether for planar games we can find covers with ap-
proximation and stability ratio arbitrarily close 1. The bad news is that in general there
are also limits to the existence of cheap approximate Nash equilibria even on planar
games. In particular, Theorem 6 provides a lower bound of 1.5 on the stability ratio
for unweighted planar games. For weighted planar games there is an additional Pareto
relationship between stability and approximation ratios that yields a stability ratio close
to 2 for socially near-optimal covers.

Corollary 1. There is a planar unweighted game without (x, y)-approximate Nash
equilibria for any x < 1.5 and y ≥ 1. For any y < 7

6 there is a planar weighted
game without (x, y)-approximate Nash equilibria for x < 2/(2y − 1).

The better an algorithm is required to be in terms of social cost, the more it allows for
selfish improvement by a factor close to 2. Note that all our lower bounds apply directly
to any algorithm with or without polynomial running time.

5 Games with Cheap Nash Equilibria

In this section we present two classes of games that have cheap Nash equilibria: single-
ton games, in which each player owns only a single edge, and bipartite games, in which
the graph is bipartite.

5.1 Singleton Games

An exchange-minimal vertex cover is a cover which cannot be improved by replacing a
single vertex in the cover by a subset of its neighbors.



184 J. Cardinal and M. Hoefer

Lemma 2. In singleton games every exchange-minimal vertex cover for G allows a
distribution of vertex costs, such that no player can unilaterally improve her payments.

Proof. Suppose we are given an exchange-minimal cover C ⊂ V . For v ∈ C denote
the neighbors outside the cover by Nv(C) = {u ∈ V |(u, v) ∈ E, u 	∈ C}. Suppose
c(Nv(C)) < c(v); then we can form a new cheaper feasible cover C′ by replacing v
with Nv(C). This is a contradiction to C being exchange-minimal. Hence, for any v ∈ C
it follows that c(Nv(C)) ≥ c(v).

This property allows a very simple algorithm to construct a Nash equilibrium from a
given exchange-minimal cover C. First initialize all payments of all players to 0. Then
for each vertex v ∈ C iteratively consider all players owning an edge e = (u, v) with
u 	∈ C. For player i set her contribution to pi(v) = min(c(u), c(v)−∑

j �=i pj(v)). This
leaves her no chance for improvement. In addition, by the previous argument every
vertex v ∈ C gets paid for. ��
Clearly, the centralized optimum cover C∗ is an exchange-minimal cover, and hence
there is a Nash equilibrium as cheap as C∗. This proves that the price of stability
in singleton games is 1. It does not prove, however, that a (1, 2)-approximate Nash
equilibrium can be found in polynomial time, since a 2-approximation algorithm for
minimum vertex cover does not necessarily yield an exchange-minimal cover. We can
devise an algorithm that starts from such an approximate cover and performs exchange
operations to turn it into an exchange-minimal cover. In the weighted case, however,
the number of exchange operations is not necessarily polynomial, and our algorithm
could take exponential time. To circumvent this problem, we borrow a trick from An-
shelevich et al. [2]. In the proposed algorithm each exchange operation guarantees a
minimum improvement of the overall cost. The drawback is that we can only compute
(1 + ε, 2)-approximate Nash equilibria, for any constant ε.

Theorem 7. There is a polynomial time algorithm that finds (1 + ε, 2)-approximate
Nash equilibria for weighted singleton games and (1, 2)-approximate Nash equilibria
for unweighted singleton games.

Singleton games are similar in spirit to cooperative vertex cover games and mechanism
design, as we assume that each edge is a single player. It is known that the core of
the cooperative game contains only cost sharing functions that are at most 1/2 budget
balanced. Our result states that once players have an intrinsic motivation to participate
in the game and consider only selfish non-cooperative deviations, there is a cost-sharing
function to distribute the full costs of an optimum cover. In this interpretation our game
is close to a cooperative game that deals only with the global and singleton coalitions.
Furthermore, our game is strategic, i.e. it specifies exactly to which vertex a player pays
how much and in what way a player is motivated to reallocate her payments. This is a
feature that is not considered in the cooperative framework.

5.2 Bipartite Games

Lemma 3. In bipartite games there is an optimum vertex cover C∗ for G which allows
a distribution of vertex costs such that no player can unilaterally improve her payments.
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The proof relies on standard algorithmic techniques like maximum weight matching and
max-flow/min-cut calculations. This allows to construct Nash equilibria with optimum
social cost in polynomial time.

Theorem 8. The price of stability in bipartite games is 1. Nash equilibria purchasing
C∗ can be found in polynomial time.

References

1. E. Anshelevich, A. Dasgupta, J. Kleinberg, T. Roughgarden, É. Tardos, and T. Wexler. The
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