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Abstract. There are many situations in which a customer’s proclivity to
buy the product of any firm depends not only on the classical attributes
of the product such as its price and quality, but also on who else is buying
the same product. We model these situations as games in which firms
compete for customers located in a “social network”. Nash Equilibrium
(NE) in pure strategies exist and are unique. Indeed there are closed-
form formulae for the NE in terms of the exogenous parameters of the
model, which enables us to compute NE in polynomial time.

An important structural feature of NE is that, if there are no a priori
biases between customers and firms, then there is a cut-off level above
which high cost firms are blockaded at an NE, while the rest compete
uniformly throughout the network.

We finally explore the relation between the connectivity of a customer
and the money firms spend on him. This relation becomes particularly
transparent when externalities are dominant: NE can be characterized in
terms of the invariant measures on the recurrent classes of the Markov
chain underlying the social network.

1 Introduction

Consider a situation in which firms compete for customers located in a “social
network”. Any customer i has, of course, a higher proclivity to buy from firm
α, if α lowers its price relative to those quoted by its rivals. But another, quite
independent, consideration also influences i’s decision. He is keen to conform to
his neighbors in the network. If the bulk of them purchase firm β’s product,
then he is tempted to do likewise, even though β may be charging a higher
price than α. Customer i’s behavior thus involves a delicate balance between
the “externality” exerted by his neighbors and the more classical constituents
of demand — the price and the intrinsic quality of the product itself. Such
externalities arise naturally in several contexts (see, e.g., [1],[5],[6],[3],[8],[7]).

The externality in demand clearly has significant impact on the strategic in-
teraction between the firms. Firm α may spend resources marketing its product
to i, not because α cares about i per se as a client, but because i enjoys the
position of a “hub” in the social network and so wields influence on other po-
tential clients that are of value to α. This in turn might instigate rival firms to
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spend further on i, since they wish to wean i away from an excessive tilt toward
α; causing α to increase its outlay on i even more, unleashing yet another round
of incremental expenditures on i.

The scenario invites us to model it as a non-cooperative game between the
firms1. We take our cue from [1],[5] which explore the optimal marketing strategy
of a single firm, based on the “network value” of the customers. Our innovation
is to introduce competition between several firms in this setting. The model
we present is more general than that of [1],[5], though inspired by it. As in
[1],[5], the social network, specifying the field of influence of each customer, is
taken to be exogenous. Rival firms choose how much money to spend on each
customer. For any profile of firms’ strategies, we show that the externality effect
stabilizes over the social network and leads to unambiguous customer-purchases.
A particular instance of our game arises when firms compete for advertisement
space on different web-pages in the Internet (see Section 2.1).

Our main interest is in understanding the structure of the Nash Equilibria
(NE) of the game between the firms. Will they end up as regional monopo-
lies, operating in separate parts of the network? Or will they compete fiercely
throughout? Which firms will enter the fray, and which will be blockaded? And
how will the money spent on a customer depend on his connectivity in the social
network?

For ease of presentation, the focus of this paper is on the quasi-linear2 case
(which includes the model in [1], by setting # firms = 1). We show that NE are
unique and can be computed in polynomial time via closed-form expressions in-
volving matrix inverses. It turns out that, provided that there are no a priori bi-
ases between firms and customers, any NE has a cut-off cost: all firms whose costs
are above the cut-off are blockaded, and the rest enter the fray. Moreover there is
no “regionalization” of firms in an NE: each active firm spends money on every
customer-node of the social network. The money spent on node i is related to the
connectivity of i, but the relation is somewhat subtle, though expressible in precise
algebraic form. When externalities are dominant, however, this relation becomes
more transparent: NE can be characterized in terms of the invariant measures on
the recurrent classes of the Markov chain underlying the social network (see Sec-
tion 4). In particular suppose that the graph representing the social network is
undirected and connected, all the neighbors of any customer-node exert equal in-
fluence on him, and each company values all the nodes equally. Then, at the NE,
the money spent by a company on a node is proportional to the degree of the node.

2 The Model

There is a finite set A of firms and I of customers. We shall define a strategic
game Γ among the firms. The customers themselves are non-strategic in our
model and described in behavioristic terms.
1 Customers are not strategic in our model. As in [1],[5], they are described in behav-

ioristic terms.
2 For generalizations to the non-linear case, see Section 4.
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Firm α ∈ A can spend mα
i dollars on customer i ∈ I by way of marketing its

product to him. This could represent the discounts or special warranties offered
by α to i (in effect lowering, for i, the fixed price that α has quoted for its
product), or free add-ons of supplementary products, or simply the money spent
on advertising to i, etc. The strategy set of firm α may thus be viewed as3 RI

+,
with elements mα ≡ (mα

i )i∈I .
Consider a profile of firms’ strategies m ≡ (mα)α∈A ∈ RI×A

+ . The proclivity
of customer i to buy from any particular firm α clearly depends on the profile
m, i.e., not just the expenditure of α but also that of its rivals. We denote this
proclivity by pα

i (m). One can think of pα
i (m) as the quantity of α’s product

purchased by i. Or, interpreting i to be a mass of customers such as those who
visit a web page i, one can think of pα

i (m) as the fraction of mass i that goes to
α (or, equivalently, as the probability of i going to α). In either setting, we take
pi(m) ≡ (pα

i (m))α∈A ∈ [0, 1]A. (When pα
i (m) is a quantity, there is a physical

upper bound on customer i’s capacity to consume which, w.l.o.g., is normalized
to be 1).

The benefit to any particular firm α from its clientele pα(m) ≡ (pα
i (m))i∈I is∑

i∈I u
α
i p

α
i (m) and the cost of its expenditures mα is

∑
i∈I c

α
i m

α
i .

Thus α’s payoff in the game is given by

Πα(m) =
∑

i∈I
uα

i p
α
i (m) −

∑

i∈I
cαi m

α
i

It remains to define the map from m to p(m).
Customer i’s proclivity pα

i to purchase from firm α is clearly positively corre-
lated with α’s expenditure mα

i on i, and negatively correlated with the expen-
ditures m−α

i ≡ (mβ
i )β∈I\{α}, of α’s rivals.

In addition we suppose that there is a positive externality exerted on i by the
choice of any neighbor j: increases in pα

j may boost pα
i . Negative cross-effects of

pβ
j on pα

i , for β �= α, can be incorporated under certain assumptions (which we
make precise in [2]), but here we suppose that they are absent.

By way of an example of such an externality, think of firms’ products as spe-
cialized software. Then if the users with whom i frequently interfaces (i.e., i’s
”neighbors”) have opted for α’s software, it will suit i to also purchase predomi-
nantly from α in order to more smoothly interact with them. Or else suppose the
firms are in an industry focused on some fashion product. Denote by i’s neigh-
bors the members of i’s peer group with whom i is eager to conform. Once again,
pα

i is positively correlated with pα
j where j is a neighbor of i. Another typical

instance comes from telephony: if most of the people, who i calls, subscribe to
service provider α and if α-to-α calls have superior connectivity compared with
α-to-β calls, then i may have incentive to subscribe to α even if α is costlier
than β.

To define the map from m to p(m), we must turn to the social network. It
is represented by a directed, weighted graph G = (I, E, w). The nodes of G are
3 Budget constraints on expenditures can be incorporated via cost functions (see

Section 4).
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identified with the set of customers I. Each directed edge (i, j) ∈ E ≡ I ×I has
weights (wα

ij)α∈A, where wα
ij ≥ 0 is a measure of the influence j has on i, with

regard to purchases from α. Precisely, if pα = (pα
j )j∈I denotes the proclivities

of purchases, then the externality impact of pα on i is
∑

j∈I w
α
ijp

α
j . We assume

that
∑

j∈I w
α
ij ≤ 1, for all i ∈ I and α ∈ A. (One may view (I, Eα, wα) as the

social network relevant for firm α, with Eα = {(i, j) ∈ E : wα
ij > 0}).

Let us now make explicit how firms’ expenditures, in conjunction with the
externality effect, determine purchases in the social network.

Fix a profile m ≡ (mβ)β∈A ≡ ((mβ
j )j∈I)β∈A of firms’ strategies.

For any firm α and customer i, let γα
i (mi) ∈ [0, 1] denote the proclivity with

which i is initially impelled to buy from firm α on account of the direct “mar-
keting impact”, where (recall) mi ≡ (mβ

i )β∈A gives the expenditures induced on
i by m.

Denoting (mβ
i )β∈A\{α} by m−α

i , it stands to reason that the impact
γα

i (mα
i ,m

−α
i ) be strictly increasing in mα

i for any fixed m−α
i . We assume this

and a little bit more: γα
i is also concave in mα

i for fixed m−α
i , reflecting the

diminishing returns to α of incremental dollars spent on i.
A canonical example we have in mind is γα

i (mi) = mα
i /mi where mi ≡

(
∑

β∈Im
β
i ) (with γα

i (0) ≡ 0). In short, i’s probability of purchase from different
firms is simply set proportional to the money they spend on him4.

Customer i weights the two factors (i.e., the externality impact and the mar-
keting impact) by θα

i and 1 − θα
i , where 0 ≤ θα

i < 1. Thus, given a strategy
profile m, the final steady-state proclivities of purchase p(m) ≡ (pα(m))α∈A ∈
[0, 1]I×A, where pα ≡ (pα

j (m))j∈I , must satisfy.

pα
i (m) = (1 − θα

i )γα
i (mi) + θα

i

∑

j∈I
wα

ijp
α
j (m) (1)

for all α ∈ A and i ∈ I.
Define the |I| × |I|-matrices: I ≡ identity, Θα ≡ the diagonal matrix with

Θα
ii = θα

i and Wα ≡ the matrix with entries wα
ij . Then equation (1) reads

pα(m) = (I −Θα)γα(m) +ΘαWαpα(m).

Since I −ΘαWα is invertible (its row sums being less than 1), we obtain

pα(m) = (I −ΘαWα)−1(I −Θα)γα(m).

This gives

Πα(m) = [uα]�(I −ΘαWα)−1(I −Θα)γα(m) − [cα]�mα (2)

4 More generally, γα
i (mi) = (mα

i /mi)(mi)
r where 0 ≤ r < 1. We may think of (mi)

r

as the “market penetration”, which rises with the total money spent. (If γα
i (mi) is

to be a probability, one must amend (mi)
r to max{(mr

i ), 1} or a suitably smoothed
version of this function.)
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where uα ≡ (uα
j )j∈I ∈ RI

+ and cα ≡ (cαj )j∈I ∈ RI
++ are column vectors and �

stands for the transpose operation. Denote

vα ≡ [uα]�(I −ΘαWα)−1(I −Θα) (3)

Then (2) may be rewritten:

Πα(m) =
∑

i∈I
(vα

i γ
α
i (mi) − cαi m

α
i ) (4)

Our key assumption on γα
i (mi) is that it depends only on the variables mα

i and
m −α

i ≡∑β∈A\{α}m
β
i , i.e., firm α is affected only by the aggregate5 expenditure

of its rivals.
Assume γα

i (mα
i ,m

−α
i ) is continuous; and, furthermore, increasing and differ-

entiable w.r.t. mα
i whenever mi ≡

∑
β∈Am

β
i = mα

i +m −α
i > 0. Let

φα
i (mα

i ,m
−α

i ) ≡ ∂

∂mα
i

γα
i (mα

i ,m
−α

i )

and next define
λα

i (rα
i ,mi) ≡ φα

i (rα
i mi, (1 − rα

i )mi)

(Thus rα
i ≡ mα

i /mi.) We suppose that

λα
i is strictly decreasing in rα

i and in mi (5)

for fixed mi and rα
i respectively. This condition reflects the diminishing returns

on incremental dollars spent by α; it also states that an incremental dollar of α
counts for less when α’s rivals have put in more money.

We also assume that

lim
δ→0

γα
i (δ, 0)
δ

= ∞. (6)

Note that both conditions (5) and (6) are satisfied by our canonical example and
its variants in footnote 4.

Finally we assume that for each customer there exist at least two firms that
value him:

∀i ∈ I, ∃α, α′ ∈ A such that : α �= α′ and uα
i > 0 and uα′

i > 0. (7)

This will create enough competition in an NE to ensure that positive money is
bid on each client, enabling us to steer clear of possible discontinuity6 of γα

i at 0.
5 Aggregation is a form of anonymity that is common to many markets. It says, in

essence, that if a firm pretends to be two entities and splits its expenditure between
them, this has no effect on other firms. This form of “anonymity toward numbers”
is tantamount to aggregation.

6 As occurs in our canonical example.
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2.1 An Example: Competition for Advertisement on the Web

Think of the web as a set I of pages, each of which corresponds to a distinct
node of a graph. A directed arc (i, j) means that there is a link from page j to
page i.

At the beginning of any period, two kind of “surfers” visit page i. There are
those who transit to i from other pages j in the web. Furthermore, there are
“fresh arrivals”, entering the web for the first time, via page i at rate ψi.

At the end of the period, a fraction (1 − θi) of the population on the page
i exits the web, while the remaining fraction θi continues surfing (where 0 ≤
θi < 1). The weight on (i, j), which we denote ωij , gives the probability that a
representative surfer, who is on page j and who continues surfing, moves on to
page i (or, alternatively, the fraction of surfers on page j who transit to page i).
Thus

∑
i∈I ωij = 1 for all j ∈ I.

Companies α ∈ A compete for advertisement on the web pages. If they spend
mi ≡ (mα

i )α∈A dollars to place their ads on page i, they get “visibility” (time,
space) on page i in proportion to the money spent. Thus the probability that a
surfer views company α’s ad on page i is mα

i /mi = γα
i (mα

i ,mi).
The payoff of a company is the aggregate “eyeballs” of its advertisement

obtained, in the long run (i.e., in the steady state).
To compute the payoff, let us first examine the population distribution of

surfers across nodes in the unique steady state of the system.
Denote by φi denote the arrival rate of surfers (of both kinds) to page i. Then,

in a steady state, we must have

φi = ψi +
∑

j∈I
ωijθjφj

for all i ∈ I. In matrix notation, this is

φ = ψ +ΩΘφ

where φ ≡ (φi)i∈I and ψ ≡ (ψi)i∈I are column vectors, Θ is the diagonal I × I
matrix with entries θii = θi, and Ω is the I × I matrix with entries ωij . Hence

φ = (I −ΩΘ)−1ψ

The total eyeballs (per period) obtained by company α is then
∑

i∈I
φiγ

α
i (m)

which fits the format of (4).
More generally, suppose surfers have bounded recall of length k. Then firm

α will only care about any surfer’s eyeballs in the last k periods prior to the
surfer’s exit. When k = 1, α’s payoff is

∑

i∈I
(1 − θi)φiγ

α
i (m)
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The expression for vα
i will become complicated when the recall k > 1 (more so,

if discounting of past memory is incorporated). But the payoffs in all these cases
still fit the format of (4).

Generalizing in a different direction, suppose that surfers at page i, who have
spent t periods in the web, exit at rate θt

i for t = 1, 2 . . .. Denote by Θt the
diagonal matrix whose iith entry is θt

i . Then φ = (I +ΩΘ1 +ΩΘ2ΩΘ1 + . . .)ψ,
which is well-defined provided we assume θt

i ≤ Δ < 1 for some Δ (for all t, i).
This retains the format of (4) though the expression for vα

i becomes even more
complicated. One could also incorporate bounded recall in this setting, without
departing from (4).

Notice that the “externality” in the above examples is reflected in the move-
ment of traffic across pages in the web. Also notice that the games derived are
anonymous i.e. vα

i = vi for all α. Such games will be singled out for special
attention later.

2.2 Uniqueness of Nash Equilibrium

Recall that a strategy profile m is called a Nash Equilibrium7 (NE) of the
game Γ if

Πα(m) ≥ Πα(m̃α,m−α) ∀ m̃α ∈ RI
+

for all α ∈ A (where m−α ≡ (mβ)β∈I\{α}).

Theorem 1. Under hypotheses (5), (6), (7), there exists a unique Nash Equi-
librium in the quasi-linear model.

Proof: See [2].

2.3 Characterization of Nash Equilibrium

Theorem 2. Consider our canonical case: γα
i (mi) = mα

i /mi (other closed-form
expressions for the γα

i will lead to analogous characterizations). Fix customer i
and rank all the firms in A ≡ {1, 2, . . . , n} in order of increasing κα

i ≡ cαi /v
α
i

(see (3) for the definition of vα
i ). For convenience denote this order κ1

i ≤ κ2
i ≤

. . . ≤ κn
i . Let

ki = max

{

l ∈ {2, . . . , n} : (l − 2)κl
i <

l−1∑

α=1

κα
i

}

(8)

In the unique NE, firms 1, . . . , ki will spend money on customer i as follows:

mα
i =

(
ki − 1
∑ki

β=1 κ
β
i

)(

1 − (ki − 1)κα
i

∑ki

β=1 κ
β
i

)

(9)

Firms ki + 1, . . . , n put no money on customer i.
7 Throughout we confine attention to “pure” strategies.
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Proof: See [2].

According to Theorem 2, companies α can be ranked, at each customer-node i,
according to their “effective costs” κα

i . The money mα
i , spent by α on i, is a

strictly decreasing function of κα
i upto some threshold, after which it becomes

zero.
Theorem 2 confirms the obvious intuition thatmα

i = 0 if vα
i = 0 (i.e., κα

i = ∞,
recalling that cαi > 0 by assumption). It also brings to light a different, and more
important, feature of NE. First recall that, by (3), vα

i may well be highly positive
even though the direct value uα

i of customer i to company α is zero. This is
because vα

i incorporates the network value of i, stemming from the possibility
that i may be exerting a big externality on other customers whom α does directly
value. Now, since κα

i falls with vα
i , (9) reveals that α may be spending a huge

mα
i on i even when uα

i is zero, purely on account of the network value of i.

2.4 Impact of the Social Network on Nash Equilibrium

To get a better feel for Theorem 2, it might help to consider some examples.
Suppose there are five customers {1, 2, . . . , 5} and four firms {α1, α2, β1, β2}.

The customers are arranged in a linear network, with i connected to i+1 via an
undirected (i.e., directed both ways) edge, for i = 1, 2, 3, 4. Suppose each node is
equally influenced by its neighbors in the purchase of any firm’s product. Thus
(wγ

11, w
γ
12, w

γ
13, w

γ
14, w

γ
15) = (0, 1, 0, 0, 0), (wγ

21, w
γ
22, w

γ
23, w

γ
24, w

γ
25) = (0.5, 0, 0.5,

0, 0) etc., for any company γ. Further suppose θγ
i = 0.1 and cγi = 1 for all γ

and i. Finally let uα1 = uα2 = (1, 1, 0, 0.1, 0.1) and uβ1 = uβ2 = (0.1, 0.1,
0, 1, 1). Formula (3) yields vα1 = vα2 = (0.950, 0.998, 0.055, 0.102, 0.095) and
vβ1 = vβ2 = (0.095, 0.102, 0.055, 0.998, 0.950) and hence κα1 = κα2 = (1.053,
1.002, 18.182, 9.779, 10.514) and κβ1 = κβ2 = (10.514, 9.779, 18.182, 1.002,
1.053). It follows from Theorem 2 that firms α1 and α2 will put no money on
customers 4, 5 and positive money on the rest; while firms β1 and β2 will put
no money on customers 1, 2 and positive money on the rest. In effect, there will
“regionalization” of customers into α-territory {1, 2, 3} and β-territory {3, 4, 5}.
The only overlap is customer 3, who is of zero direct value uγ

3 to all firms γ and
yet is being equally targeted by them, purely on account of his network value.

The situation dramatically changes when the game is anonymous i.e., vα
i = vi

and cαi = cα for all α and i. (The first identity holds in particular — see (3) —
when wα

ij = wij , θα
i = θi, and uα

i = ui, for all α, i and j, i.e., there are no a priori
biases between firms and customers.) Our analysis in Section 2.3 immediately
implies that we can rank the firms, independently of i, by their costs; say (after
relabeling)

c1 ≤ c2 ≤ . . . ≤ cn

At the Nash Equilibrium a subset of low-cost firms {1, . . . , k} will be active
(see (8), while all the higher-cost firms {k + 1, . . . , n} will be blockaded, where

k = max

⎧
⎨

⎩
l ∈ {2, . . . , n} : (l − 2)cl <

l−1∑

β=1

cβ

⎫
⎬

⎭
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Each active firm α ∈ {1, . . . , k} will spend an amount mα
i > 0 on all the nodes

i ∈ I that is proportional to vi. Indeed, by (9), we have

mα
i =

vi(k − 1)
∑k

β=1 c
β

(

1 − (k − 1)cα
∑k

β=1 c
β

)

which also shows that mα ≥ mβ if α < β, i.e., lower cost firms spend more
money than their higher-cost rivals. Finally, adding across α we obtain

mi =
vi(k − 1)
∑k

β=1 c
β

Thus there is no regionalization of customer territory at NE, with firms operating
in disjoint pieces of the social network. Instead, firms that are not blockaded,
compete uniformly throughout the social network.

3 When Externalities Become Dominant

3.1 A Markov Chain Perspective

It is often is too expensive for a firm α to provide meaningful subsidies mα
i to

each customer i. Indeed the marketing division of firm α is typically allocated
a fixed budget Mα and, if there is a large population of customers, then the
individual expenditures mα

i must perforce be small. In this event, customers’
behavior is predominantly driven by the externality effect of their neighbors. We
can capture the situation in our model by supposing that all the θα

i are close
to 1.

Thus we are led to inquire about the limit of the NE as the θα
i −→ 1 for all α

and i. (In this scenario we will also obtain a more transparent relation between
NE and the graphical structure of the social network.)

To this end — and even otherwise— it is useful to recast our model in prob-
abilistic terms. Assume, for simplicity, that

∑
j∈I w

α
ij = 1 for all i and α. Let

us consider a Markov chain with I as the state space and Wα as the transi-
tion matrix (i.e., wα

ij is the probability of going from i to j.). Let it denote the
(random) state of the chain at date t = 0, 1, 2, . . .. Suppose that, upon arrival
in state it, a choice Lt ∈ {Stop,Move} is made with Prob(Lt = Move) = θα

it
.

Let T be the first time Lt = Stop and consider the random variable γα
iT

(m).
If φα(i) denotes the conditional expectation E[γα

iT
(m)|i0 = i], then clearly the

I-dimensional vector φα, substituted for pα(m), satisfies equation (1). Since this
equation has a unique solution, it must be the case that pα(m) = φα.

Recall that each vector uα is positive, and so we may write uα = yαξα, where
yα > 0 is a scaler and ξα is a probability distribution on I. The weighted sum
[uα]�p(m) is then equal to yα

∑
i∈I ξ

α
i φ

α(i) which in turn can be expressed as
yαE[γα

iT
(m)], provided we assume that the probability distribution of the initial

state i0 is ξα. Therefore the vector vα/yα is just the probability distribution of
iT initializing the Markov chain at ξα.
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We want to analyze the asymptotics of vα as the θα
i converge to 1 (since the

unique NE of our games are determined by vα). Let us first consider the simple
case when θα

i = θα for all i. Then the random time T becomes independent of
the Markov chain and we get easily that prob(T = t) = (1 − θα)(θα)t.

Therefore
vα

i /y
α = prob(iT = i)

=
∑∞

t=0 prob(T = t)prob(it = i|T = t)
=
∑∞

t=0 prob(T = t)prob(it = i)
=
∑∞

t=0 prob(T = t)E[11i(it)]
= E[

∑∞
t=0(1 − θα)(θα)t11i(it)]

where 11i is the indicator function of i: 11i(j) = 0 if j �= i and 11i(i) = 1.
Recall that a sequence {at}t∈IN of real numbers is said to

i) Abel -converge to a if limθ→1

∑∞
t=0(1 − θ)(θ)tat = a.

ii) Cesaro-converge to a if limN→∞N−1
∑N−1

t=0 at = a.
The Frobenius theorem (see, e.g., line 11 on page 65 of [4]) states that a

Cesaro-convergent sequence is Abel-convergent to the same limit. So, to analyse
the limit behavior of vα

i , it is sufficient to consider the Cesaro-convergence of
{11i(it)}t∈IN .

The finite state-set I of our Markov chain can be partitioned into recurrent
classes Iα

1 , . . . , I
α
k(α) and a set of transient states Iα

0 . Each recurrent class Iα
s is

the support of a unique invariant probability measure μα
s .

If the Markov process starts within a recurrent class Iα
s (i.e., i0 ∈ Iα

s ), then the
ergodic theorem states that, for an arbitrary function f on I, N−1

∑N−1
t=0 f(it)

converges almost surely to Eμα
s
[f ].

If it starts at a transient state i ∈ Iα
0 , then we may define the first time τ that

it enters ∪s≥1I
α
s . Let S be the index of the recurrence class iτ belongs to. The

ergodic theorem also tells us in this case that N−1
∑N−1

t=0 f(it) converges almost
surely to the random variable Eμα

S
[f ].

Let us define μ̂α,i as the expectation E[μα
S ], if i ∈ Iα

0 and as μα
s if i ∈ Iα

s

(s ≥ 1). Then we clearly get E[N−1
∑N−1

t=0 f(it)|i0 = i] −→ Eμ̂α,i [f ]. Therefore,
denoting μ̂α ≡∑i∈I ξ

α
i μ̂

α,i, the Frobenius theorem implies

Theorem 3. As θα tends to 1, vα
i converges to yαEμ̂α [11i] = yαμ̂α

i .

Corollary 1. Suppose that the graph of the underlying social network is undi-
rected and connected. Further suppose

θα
i = θ, wik′ = wik and

∑

j∈I
wij = 1

for all α ∈ A, i ∈ I and k, k′ such that wik > 0 and wik′ > 0 (i.e., all the nodes
connected to i have the same influence on i). Finally suppose that uα

i is invariant
of i for all α (i.e., each company values all clients equally), w.lo.g. uα

i = 1/|I|
for all α and i. Then as θ tends to 1, the money spent at NE by a company on
any node is proportional to the degree8 of the node.
8 Recall that the degree of a node in an undirected graph is the number of edges

incident on it.
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To verify the corollary note that the invariant measure is (obviously) propor-
tional to the degree. By Theorem 3, vα

i = vi converges to the degree of i as θ
tends to 1. But, by Section 2.4, mα

i is proportional to vi.
Let us now deal with the general case where θα

i are not all the same. We will
analyze the situation where θα

i is a function of a parameter θ going to 1 with
the following hypotheses:

lim
θ→1

θα
i (θ) = 1, for all i (10)

θα
i (θ) < 1, for all i and θ < 1. (11)

0 < lim
θ→1

1 − θα
i (θ)

1 − θα
1 (θ)

= δα
i <∞ (12)

For simplicity, we will also assume that I = Iα
1 , i.e., there is just one recurrent

class comprising all the vertices.

Theorem 4. Under (10), (11), (12), vα
i converges to yα δα

i μα
i∑

j∈I δα
j μα

j
as θ tends

to 1.

Proof: See [2].

4 Generalizations

We have reported on some of the key results in [2]. But as shown in [2], much of
the analysis can be extended to the case when externalities, utilities and costs
are not necessarily linear but satisfy certain concavity/convexity conditions. In
particular it can be shown that, if externalities form a “contraction”, the strategic
game between the firms is well-defined. Furthermore, under standard convexity
hypothesis, NE continue to exist in pure strategies (see Theorem 1 of [2]). The
important fixed-budget case

Cα(m) =
{

0 if
∑

i∈I m
α
i ≤Mα

−∞ otherwise

is admitted by us, as Cα is convex. (One may imagine here that the marketing
division of each company α has been allocated a budget Mα to spend freely as
it likes.)

It is no longer true that NE are unique (see the simple example in [2]). But
if there is “enough competition” between firms, in the sense that each firm has
“sufficiently many” rivals whose characteristics are “nearby”, uniqueness of NE
is restored. Uniqueness also holds if firms’ valuations of clients are anonymous
(i.e., there are no a priori biases between firms and clients), no matter how
heterogenous the costs of the firms (for details see Section 5 of [2]).

Finally in [2], we also show that cross-effects (of pβ
j on pα

i ) can be incorporated,
under some constraints, in our model without endangering the existence of NE.
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