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Abstract. We study both the time constant for first-passage percolation, and
the Vickery-Clarke-Groves (VCG) payment for the shortest path, on a width-2
strip with random edge costs. These statistics attempt to describe two seemingly
unrelated phenomena, arising in physics and economics respectively: the first-
passage percolation time predicts how long it takes for a fluid to spread through
a random medium, while the VCG payment for the shortest path is the cost of
maximizing social welfare among selfish agents. However, our analyses of the
two are quite similar, and require solving (slightly different) recursive distribu-
tional equations. Using Harris chains, we can characterize distributions, not just
expectations.

1 Introduction

The general topic of this paper is the random structure produced when a fixed graph
is assigned edge costs independently at random. We will focus on a particular fixed
graph, the n-long width-2 strip (defined below), and study some aspects of a minimum-
cost path. In particular, we will consider the time constant for first-passage percolation,
and the Vickery-Clarke-Groves (VCG) payment. These statistics attempt to describe
two seemingly unrelated phenomena arising in physics and economics, respectively.
However, our analyses of the two are quite similar.

First-passage percolation: First-passage percolation is a model of the time it takes
a fluid to spread through a random medium [BH57, HW65, Kes87]. Mathematically, it
is described by the shortest edge-weighted paths from an origin to every other point in
a graph. For our purposes, the “time constant” is the limiting ratio of this length to the
unweighted shortest path length n, as n tends to infinity. Previous research has derived
upper and lower bounds for the time constant of first-passage percolation on the grid
[SW78, Jan81, AP02] and on the random graph Gn,p [HHM01]. For the easier case
of the width-2 strip, we provide a method of exactly calculating the time constant for
any discrete edge-length distribution; the method can also be used to provide arbitrarily
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good bounds for any well-behaved continuous distribution, as we illustrate for the uni-
form distribution on [0, 1]. Our method is similar in spirit to to the Objective Method (or
Local Weak Convergence) [Ald01, GNSar, AS04], and is also based on constructing a
certain recursive distributional equation. The model in the present paper is considerably
simpler due to the structure of the width-2 strip, which makes the underlying recursive
distributional equation simply a Markov chain.

Because it is a Markov chain, the analysis for discrete edge-length distributions is
straightforward: for a Bernoulli edge-length distribution Be(p) the incremental cost
γ(n) to go from stage n − 1 to n has a unique stationary distribution with a simple,
closed-form expression, and its expectation is the time constant in question. When
the edge-length distribution is continuous (uniform, for example), replacing it with a
rounded-down (respectively, rounded-up) discretized equivalent gives a lower (resp.,
upper) bound on the time constant, but no information about the incremental cost γ(n).
A subtly different approach gives stochastic lower and upper bound bounds on the in-
cremental cost, and, separately, an analysis via Harris chains shows it to have a unique
stationary distribution. The Harris-chain approach is well known in probability theory,
but is worthy of greater attention in tangential fields.

VCG Payment: The Vickery-Clarke-Groves (VCG) mechanism applies to a setting
in economics where each edge of a graph is controlled by a different selfish agent, and
each agent has some private value describing the cost of using her edge [Vic61, Cla71,
Gro73]. Anyone interested in buying a path in such a network is faced with the problem
that an agent will lie about her edge cost if such a lie will yield her a higher payment.
The VCG mechanism provides a solution to this problem in which payments to agents
are structured to yield a cheapest path (maximizing social welfare) and so that each
agent finds it in her best interest to reveal her true edge cost. The VCG mechanism was
first applied to the shortest-path problem explicitly in [NR99].

Unfortunately, the VCG mechanism may pay more than the cost of the shortest path,
and the overpayment can be large. The VCG overpayment can be large even in the case
where the second-best path has cost close to that of the best path. See [AT02] for a
detailed study of the worst-case behavior of the overpayment. Additional investigations
of shortest paths in this setting appear in [MPS03, ESS04, CR04, Elk05].

It is possible that the worst-case bounds on the cost of the VCG mechanism are
overly pessimistic. To investigate this, we compare the cost of the VCG mechanism with
the shortest-path cost in the average-case setting (for the width-2 strip with random edge
costs). Other average-case studies for completely different graphs appear in [MPS03,
CR04, KN05], and real-world measurements appear in [FPSS02].

Generalizations: We rely on no special properties of the uniform distribution; the
methods we use to analyze this edge-length distribution could equally well be applied
to any well-behaved, bounded distribution.

For the 2 × n strip, we show that it is not important whether edges parallel to the
long direction must be traversed left-to-right or whether they can be traversed in ei-
ther direction. Even for the 3 × n strip, however, the distinction is important. For any
fixed m ≥ 3, our methods apply to the m × n strip in the left-to-right model (with
more complicated recursive equations replacing (1) and (2)), but not to the undirected
model.
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2 The Model

Departing slightly from the usual convention, let [n] denote {0, 1, . . . , n − 1}. Define
the infinite width-2 strip to be the infinite graph whose vertex set is [2] × Z, and whose
edges join vertices at Hamming distance 1, i.e., edges join (j, i) and (j′, i′) where (|j−
j′|, |i − i′|) is either (0, 1) or (1, 0). The half-infinite strip is the subgraph induced by
[2] × Z

0,+, and an n-long strip is the (finite) subgraph induced by [2] × [n + 1].
Let each edge e have a non-negative real weight w(e). For each vertex v let P(v) be

the “shortest” (minimum-weight) path from (0, 0) to v, and let �(v) be the weight of this
path. We consider two models: the “general-path” (GP) model where PGP(v) may be
any path from (0, 0) to v, and the “left-right” (LR) model where PLR(v) is restricted to
be a left-to-right path. That is, PLR(v) is the shortest path to v which does not traverse
any edge from right to left, or, still more precisely, which contains no successive pair of
vertices (j, i), (j, i − 1).

Suppose that the edge weights are drawn independently from some given distribu-
tion, such as Be(p) (the Bernoulli distribution with parameter p, where X = 1 with
probability p and X = 0 w.p. 1 − p) or U [0, 1] (the uniform distribution over the in-
terval [0, 1]). Our first-passage percolation problem is simply to determine, for each of
three types of strips, for a given distribution, and under the general-path or left-right
model, the existence and value of the limiting time constant or “rate” of percolation,

lim
n→∞

E�(0, n)
n

.

We will also show that �(0, n)/n almost surely converges to this value, and that the
same statements hold for �(1, n), with the same rate. Note that for all our purposes it
suffices to determine path lengths up to an additive constant.

For convenience, for a ≤ b, define trunc(x; a, b) := max{min{x, b}, a}. Thus,
trunc(x; a, b) is the “truncation” of x to the interval [a, b]: x if a ≤ x ≤ b; a if x < a;
and b if x > b.

3 Shortest Paths

The following lemma shows that, up to an additive error of at most 2, distances to (0, n)
or to (1, n), under any of the three graph models and the two distance models, are all
equivalent.

Lemma 1. Let G denote the infinite width-2 strip with an arbitrary, fixed set of edge
weights in the range [0, 1] (resp., random i.i.d. non-negative weights with expectation
≤ 1). Let H be the half-infinite restriction of G, and, for any n ≥ 0, let K be the n-
long restriction. Then, for any j ∈ [2] and i ∈ [n + 1], the distances (resp., expected
distances) �LR(j, i) and �GP(j, i), measured in the three graphs G, H , and K , span a
range of at most 2.

Proof. We will argue only the case of fixed edge weights; the random case proceeds
identically. The cheapest GP path in G from (0, 0) to whichever of (0, i) and (1, i) is
cheaper is at most as expensive as any of the paths under consideration, because this
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Xi

Yi

Zi

Δ(i − 1) Δ(i)

0

Fig. 1. Moving from Δi−1 to Δi

path is the least constrained; denote this path PG
GP(i). Fixing j = 0 (the j = 1 case

is treated identically), the most constrained problem version is to find the cheapest LR
path in K from (0, 0) to (0, i); the resulting path PK

LR(0, i) is the most expensive one
under consideration. By the nature of the width-2 strip, the restriction of PG

GP(i) to K ,
unioned with the edges {(0, 0), (1, 0)} and {(1, i), (0, i)}, is or includes a LR path in
K from (0, 0) to (0, i). Thus �G

GP(i) ≤ �K
LR(0, i) ≤ �G

GP(i)+2, and all the other lengths
must also lie in this range. �

Because of Lemma 1, we will henceforth consider only LR paths, on the half-infinite
strip H , to points (0, n) and (1, n). For convenience, we will write �H

LR(1, i) simply as
�(1, i) and �H

LR(0, i) as �(0, i) or just �(i). Define

Δ(i) = �(1, i) − �(0, i).

For any i > 0, let Xi be the cost of the edge {(0, i − 1), (0, i)} and Yi the cost of
{(1, i − 1), (1, i)}, and for any i ≥ 0 let Zi be the cost of {(0, i), (1, i)}. (See Figure 1
for visual reference.)

Observe that for i > 0,

γ(i) := �(i) − �(i − 1) = min{Xi, Δ(i − 1) + Yi + Zi} (1)

Δ(i) = trunc(Δ(i − 1) + Yi − Xi; −Zi, Zi). (2)

Since Δ(i − 1) depends only on values of X , Y , and Z with indices i − 1 and smaller,
the four random variables Δ(i − 1), Xi, Yi, and Zi are mutually independent.

4 The Bernoulli Case

Suppose that all the random variables Xi, Yi, and Zi are i.i.d. with distribution Be(p),
i.e., each is 1 with probability p and 0 w.p. 1 − p.

A “stationary distribution” for equation (2) is a distribution for Δ(i − 1) giving rise
to Δ(i) with the same distribution (though typically not independent).

Lemma 2. When the edge weights are i.i.d. with distribution Be(p), 0 ≤ p < 1, Δ(i)
is a Markov chain on {−1, 0, 1} with a unique stationary distribution, namely Δ = 1
w.p. q; Δ = −1 w.p. q; and Δ = 0 w.p. 1 − 2q, where q = p2

1+3p2 .
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Proof. All values in question are integral, and each Δ(i) ≤ 1, since (1, i + 1) may at
worst be reached via (0, i + 1) at an additional cost of at most 1. Symmetrically, each
Δ(i) ≥ −1. By the independence of Δ(i − 1) from (Xi, Yi, Zi), Δ(i) is a Markov
chain on the state space {−1, 0, 1}.

By definition, the stationary distribution of the Markov chain is independent of its
initial state, so we may assume that Δ(0) = 0. In this case, the initial state is symmetric,
and so is the transition rule, so the distribution of Δ(i) is symmetric for every i.

From (2), if Zi = 0 (which occurs w.p. 1 − p) then Δ(i) = 0. Otherwise we have
the following table of possibilities, their probabilities (including the probability p that
Zi = 1, and defining q := P[Δ(i−1) = 1] = P[Δ(i−1) = −1]), and the corresponding
values of Δ(i):

Δ(i − 1) Xi Yi P Δ(i)
1 0 0 pq · (1 − p)2 1
1 0 1 pq · p(1 − p) 1
1 1 0 pq · p(1 − p) 0
1 1 1 pq · p2 1
0 0 0 p(1 − 2q) · (1 − p)2 0
0 0 1 p(1 − 2q) · p(1 − p) 1
0 1 0 p(1 − 2q) · p(1 − p) −1
0 1 1 p(1 − 2q) · p2 0

−1 0 0 pq · (1 − p)2 −1
−1 0 1 pq · p(1 − p) 0
−1 1 0 pq · p(1 − p) −1
−1 1 1 pq · p2 −1

If Δ(i − 1) = 1 and Δ(i) = 1 are both to have probability q, we must have

q = pq · (1 − p)2 + pq · p(1 − p) + pq · p2 + p(1 − 2q) · p(1 − p),

whose solution is q = p2/(1+3p2). Thus if Δ is to be stationary, we must have, for this
value of q, Δ = 1 w.p. q; by symmetry Δ = −1 w.p. q; and thus Δ = 0 w.p. 1 − 2q.

The Markov chain’s transition matrix, which corresponds to the table above (plus
the 12 omitted cases when Zi = 0), is easily seen to be ergodic and aperiodic as long
as 0 < p < 1, and thus has a unique stationary distribution. When p = 0, Δi = 0,
deterministically, for all i ≥ 0, which still happens to fit the same form. (When p = 1,
Δi = 1 deterministically: the sole exception.) �

Lemma 3. When the edge weights are i.i.d. random variables with distribution Be(p),
0 < p < 1, γ(i) = �(i) − �(i − 1) is a Markov chain on {−1, 0, 1} with a unique
stationary distribution: it is −1 w.p. p2(1−p)2/(3p2+1); 1 w.p. 2p2(1+p2)/(3p2+1);
and 0 with the remaining probability, giving E(γ(i)) = p2(1 + p)2/(3p2 + 1).

Proof. That γ(i) is a Markov chain, and is ergodic and aperiodic, follows as in the proof
of the preceding lemma. Since γ(i) depends on four independent random values all of
whose distributions are known, calculating it is straightforward. Instead of presenting
a table as above we divide it into a few cases. It is −1 iff Δ(i) = −1, Yi = 0, and
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Zi = 0 (the value of Xi is irrelevant), which occurs w.p. q(1 − p)2. It is 1 iff Xi = 1
and Δ(i) + Yi +Zi ≥ 1, the latter of which is satisfied if Δ(i) = −1 and Yi = Zi = 1,
if Δ(i) = 0 and (Yi, Zi) is anything but (0, 0), or if Δ(i) = 1, giving total probability
p

[
qp2 + (1 − 2q)(1 − (1 − p)2) + q

]
. The rest of the calculation is routine. �

Theorem 4. When the edge weights are i.i.d. Be(p) random variables, for any p with
0 < p < 1, we have limn→∞

E�(n)
n = limn→∞ Eγ(n) = p2(1 + p)2/(3p2 + 1), and

almost surely, limn→∞
�(n)

n exists and has the same value.

Proof. We have established that γ(i) is an ergodic Markov chain with the unique sta-
tionary distribution described in Lemma 3. The ergodicity implies that almost surely

lim
n→∞

�(n)
n

= lim
n→∞

∑

1≤i≤n

�(i) − �(i − 1)
n

= lim
n→∞

∑

1≤i≤n

γ(i)
n

= lim
n→∞ E(γ(n))

= p2(1 + p)2/(3p2 + 1).

Since the values γ(n) are bounded almost surely (in fact surely, by unity, in absolute
value), the almost sure convergence implies the convergence in expectation. �

5 Uniform Case: Expectation, Distribution, and Stationarity

What if Xi, Yi, and Zi have uniform distribution, U [0, 1]? As in the previous sections,
γ(i) and Δ(i) are again Markov chains, but now with continuous state space. To avoid
working with a continuous state space we will discretize it. First, for any (large) inte-
ger k, define Uk (resp., Uk) to be the uniform distribution on the set {0, 1/k, . . . , (k −
1)/k} (resp., {1/k, . . . , (k − 1)/k, 1}). Note that rounding a random variable X ∼
U [0, 1] down and up to multiples of 1/k gives variables X ∼ Uk and X ∼ Uk.

It is a simple observation that rounding all values X , Y and Z down or up gives (re-
spectively) lower and upper bounds on any length �(i). This allows bounds E�k(i) ≤
E�(i) ≤ E�k(i) to be computed much as in the Bernoulli case, via a finite Markov
chain. By analogy with Theorem 4 and its proof (see full paper for details of the ap-
proach summarized in this paragraph), the first-passage percolation time constant can
then be bounded by limn→∞ E[�k(n)/n] ≤ E[γ(n)] ≤ limn→∞ E[�k(n)/n]. How-
ever, it is not true, for example, that γ(i) ≥ �k(i)− �k(i− 1), and this natural approach
thus characterizes γ’s expectation but fails to say anything about its distribution. The
distribution of γ may be of interest in itself, and that of Δ (which is essentially equiv-
alent under (1)) is essential for computing quantities such as the expected VCG over-
payment in the uniform model (paralleling its computation in the Bernoulli model in
Section 6).

A different way of obtaining a finite Markov chain does provide us with random
variables Δ(n) ≤ Δ(n) ≤ Δ(n), where Δ(n) and Δ(n) are given by finite Markov
chains, allowing us to characterizes the distribution of Δ(n) and thereby giving access
to any quantity of interest. Conceptually this method is quite different from the “make
everything shorter / longer)” approach of the previous paragraph, but it is no harder: we
simply derive what we want from the recurrence (2).
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Letting W = Y − X , from (2),

Δ′ = trunc(Δ + (Y − X); −Z, Z)
= trunc(Δ + W ; −Z, Z)

≥ trunc(Δ + W ; −Z, Z),

where Z , Z , etc. are any lower and upper bounds on their respective quantities. Specif-
ically, taking Z , Z , and W to be the rounded-down and rounded-up discretizations of
the respective variables, for any Δ ≤ Δ, and for convenience defining ε = 1/k, we
have

Δ′ ≥ trunc(Δ + W ; −Z − ε, Z)
= W + trunc(Δ; −Z − W − ε, Z − W ).

Thus,

Δ′ := W + trunc(Δ; −Z − W − ε, Z − W ) (3)

ensures Δ′ ≥ Δ′, and is thus a recursive formula for lower bounds. Similarly,

Δ
′
:= W + ε + trunc(Δ; −Z − W − ε, Z − W ) (4)

defines a recursion for upper bounds. As initial conditions we set Δ(0) = −1 and
Δ(1) = 1 (deterministically), ensuring Δ(0) ≤ Δ(0) ≤ Δ(0), whereupon following
equation (3) to define Δ(n) = Δ′ from Δ(n − 1) = Δ and likewise for equation (4)
ensures that for all n, Δ(n) ≤ Δ(n) ≤ Δ(n). From (1), trivially,

γ(i) ≥ min{Xi, Δ(i − 1) + Y + Zi} (5)

γ(i) ≤ min{Xi, Δ(i − 1) + Y + Zi} (6)

Theorem 6 will show that γ(n) itself has a unique stationary distribution. Mean-
while, for any fixed k, the Markov chains for Δ(n) and Δ(n) are both well-behaved
finite Markov chains, with stationary distributions we will call Δ and Δ. Substituting Δ
and Δ into (5) and (6) defines corresponding random variables γ and γ, which are then
stochastic lower and upper bounds on γ(n). Distribution functions for γ and γ are plot-
ted in Figure 2. By construction, the two curves never cross; the bounds are sufficiently
good that they are largely visually indistinguishable. Of course, Eγ ≤ Eγ ≤ Eγ, and
with k = 150 we obtain 0.4215 < Eγ < 0.4292. Computational aspects are discussed
in the full paper.

This method allows us to get arbitrarily good estimates of the distribution of Δ(n),
for n large (and thus, by Theorem 6, of the stationary distribution of Δ). It suffices to
show that, for k large, the stationary random variables Δ and Δ are arbitrarily near to
one another: d(Δ, Δ) = O(1/k), where we define the distance between continuous
random variables X and Y as the area between their CDFs (cumulative density func-
tions). (For any coupling of two variables X and Y , E[|X − Y |] ≥ d(X, Y ), with an
optimal coupling giving equality.) Recall that ε = 1/k.
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Fig. 2. Distribution functions for the stationary distributions of γ and γ given by k = 150. For
any n > 10, the true incremental-length distribution γ(n) lies between the two (incidentally
proving that 0.4215 < Eγ < 0.4292).

Theorem 5. The stationary random variables Δ and Δ for equations (3) and (4) satisfy
d(Δ, Δ) = O(ε).

The proof is given in the full paper.
Arbitrarily good bounds on the stationary distribution of γ(n), for n large, follow as

a corollary. From (1), a random variable γ
i

:= min{Xi, Δ(i − 1)} provides a lower

bound γ
i
� γi. Similarly, an upper bound is given by γi := min{Xi, Δ(i − 1)} ≤

min{Xi + ε, Δ(i − 1)}. In the coupling, the random variables’ values always satisfy
0 ≤ γi − γ

i
≤ ε + (Δ(i − 1) − Δ(i − 1)). Taking expectations over the stationary

distributions we know to exist (these are finite-state Markov chains, with Δ, Δ, γ, and
γ all discrete random variables) gives d(γ, γ) = E(γ − γ) ≤ ε + E(Δ − Δ) = O(ε).

Finally, we show that Δ has a unique well-defined stationary distribution; from (1)
it is then immediate that γ does as well.

Theorem 6. The continuous Markov chain Δ(i) defined by (2) has a unique stationary
distribution.

Proof. Per the remarks after Definition 7, any recurrent Harris chain possesses a unique
stationary distribution, and Lemma 8 shows that Δ(i) is a recurrent Harris chain. �

Definition 7. A discrete time Markov chain Φ(t) with state space Ω is defined to be
a recurrent Harris chain if there exist two sets A, B ⊂ Ω satisfying the following
properties:

1. Φ(t) ∈ A infinitely often w.p. 1.
2. There exists a non-zero measure ν with support contained in B such that for every

x ∈ A and C ⊂ B, P(Φ(t + 1) ∈ C | Φ(t) = x) ≥ ν(C).
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(See [Dur96] Section 5.6 pages 325-326 for a Harris chain, and page 329 for recurrent
Harris.) It is known (see Durrett [Dur96]) that the recurrent Harris chain possesses a
unique stationary distribution. Our next goal is to show that our chain Δ(i) is indeed
recurrent Harris.

Lemma 8. Δ(i) is a recurrent Harris chain, with A = [−0.1, 1], B = [0, 0.4], and ν
the uniform probability distribution on B multiplied by 0.2.

Proof. To show that the chain is a recurrent Harris chain, we observe that when Δ(i) ∈
A, that is Δ(i) ≥ −0.1, if in addition Wi+1 ≥ 0.5 and Zi+1 ≤ 0.4, then Δ(i + 1) =
trunc(Δ(i) + Wi+1; −Zi+1, Zi+1) = Zi+1. Let Vi+1 = 1{Zi+1 ≤ 0.4}. Note that,
conditioned on Vi+1 = 1, Zi+1 is distributed uniformly on [0, 0.4]. Let p = P(Wi+1 ≥
0.5, Vi+1 = 1) = 0.2. Then for every C ⊂ B and x ∈ A we have

P(Δ(i + 1) ∈ C | Δ(i) = x)
≥ P(Wi+1 ≥ 0.5, Vi+1 = 1) · P(Zi+1 ∈ C | Wi+1 ≥ 0.5, Vi+1 = 1)
= pP(Zi+1 ∈ C | Vi+1 = 1) = pμ(C) = ν(C),

where μ is the uniform measure on B and we define ν by ν(C) = pμ(C). Therefore,
Δ(i) satisfies condition (2) of Definition 7. We now prove condition (1), that w.p. 1 the
set A is visited infinitely often. This is a simple corollary of the fact that if Zi ≤ 0.1
then Δ(i) = trunc(Δ(i − 1) + Wi; −Zi, Zi) ≥ −0.1, that is Δ(i) ∈ A. Clearly this
happens infinitely often w.p. 1. �

6 An Auction Model

Suppose that in the half-infinite width-2 strip, each edge is provided by an independent
agent who incurs a cost for supplying it (or for allowing us to drive over it, transmit
data over it, or whatever). In this setup, agents have an incentive to lie: their true cost is
not the cost they will sensibly tell us. A popular way to deal with potentially dishonest
agents is to assume that each agent will act independently to maximize her own utility,
and to design a mechanism where this behavior will result in every agent acting truth-
fully. The VCG mechanism finds an outcome that maximizes social welfare in a truthful
fashion. For buying an (s, t)-path, the VCG mechanism is the following: An “auction-
eer” finds a cheapest path, and, for each edge on that path, pays the corresponding agent
the difference between the cost of a cheapest path avoiding the edge and the cost of a
cheapest path if the edge cost were 0. (The mechanism is truthful because by inflating
her cost, an agent does not affect the amount she gets paid, until the point when she
inflates the price so much that her edge is no longer in a shortest path and she gets paid
nothing.)

Unfortunately, the VCG mechanism may result in the auctioneer paying much more
than the cost of the shortest path. The simplest example comes from a source and sink
connected by two parallel edges, one with cost 1 and the other with cost c > 1. The
shortest path is the edge with cost 1, and the payment made to it is c − 0 = c; the ratio
between this VCG cost and the simple shortest-path cost of 1 is unbounded if c is much
larger than 1. In fact, even in the case where the second-best path has cost close to that
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Xi

Yi

Zi

Ui

ViΔ Δ′

0 0

Fig. 3. The VCG cost at step i, working in from the left and the right, and assuming both sides
are in stationarity

of the best one, the VCG overpayment can be large; see [AT02] for a detailed study of
the worst-case behavior of this overpayment. An example from [AT02] consists of two
disjoint (s, t)-paths, with costs C and C(1 + ε), and with the cheaper path containing k
edges; the total payment is C(1 + kε).

It is natural to wonder how the cost of the VCG mechanism compares with the
shortest-path cost in the average-case setting. We will study the cost on the width-2
strip with random edge weights. (Average-case studies on other distributions of net-
works appear in [MPS03, CR04, KN05].)

Theorem 9. When the edge weights are i.i.d. Be(p) random variables, with 0 < p < 1,
the VCG path cost satisfies

lim
n→∞

1
n

E(�VCG(n)) =
p (2 + 5 p + 4 p2 + 8 p3 + 11 p4 − 3 p6 + p8)

(1 + 3 p2)2
. (7)

Proof. With reference to Figure 1, we compute the contribution of the ith triple of
edges (Xi, Yi, Zi) to the expected VCG cost. Let ω(n) be any function tending to infin-
ity much slower than n itself, i.e., with 1 � ω(n) � n. Note that any edge’s contribu-
tion to the VCG cost is at most 3: we can circumvent any horizontal edge with a “loop”
of 3 edges around it, each edge costing at most 1, and we can bypass any vertical edge
at worst by going one more step to the right and traversing the next vertical edge, for a
cost of at most 2. Thus the contribution of the first and last ω(n) edges to the limit is at
most 6ω(n)/n, which tends to 0.

Now, for any i, a shortest path between (0, 0) and (0, n) may be found by taking
the shortest paths from (0, 0) to both (0, i) and (1, i), and also the shortest paths from
(0, n) to both (0, i + 2) and (1, i + 2), and finding the cheapest total way of joining
one of the first paths to one of the second. The first two paths depend only on variables
with indices less than i, and without loss of generality (up to an additive constant) we
may consider their two costs to be 0 and Δ. Likewise, the second two paths depend
only on variables with indices i + 2 or more, and their costs may be given as 0 and Δ′.
For ω(n) < i < n − ω(n), Δ and Δ′ are independent random variables drawn from
a distribution asymptotically equal to the stationary distribution. Thus, with reference
to Figure 3, we consider the payments we must make for the edges Xi, Yi, and Zi,
when Δ and Δ′ are i.i.d. random variables drawn from the stationary distribution, and
Xi, Yi, Zi, Ui, and Vi are i.i.d. Be(p) random variables. Since, over all i, such groups
(Xi, Yi, Zi) cover each edge exactly once (except for the single edge Z0), the total of
the expected payments for one such group is precisely the limiting expectation called
for in (7).
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Fig. 4. VCG and usual shortest-path rates

This is a straightforward calculation. Dropping the subscripts for convenience, let
A = X + U be the cost of the path using X, U ; B = X + Z + V + Δ′ that of the path
using X, Z, V ; C = Δ + Y + V + Δ′ that using Y, V ; and D = Δ + Y + Z + U that
using Y, Z, U . If we break ties in favor of lower letters (A in favor of B in favor of C
in favor of D), the payment to X is

C(X) = 1{min(A, B) ≤ min(C, D)} · [min(C, D) − (min(A, B) − X)],

that is, it is 0 unless the edge X is used, and then it is the cost of the cheapest path
avoiding X less the cost of the cheapest path if X were 0, which in this case is the
cheapest path using X , minus X . Similarly, the payment to Y is

C(Y ) = 1{min(C, D) < min(A, B)} · [min(A, B) − (min(C, D) − Y )].

The payment to Z follows similarly, with slightly more complicated tie-breaking:

C(Z) = 1{(B < A) ∨ (B ≤ min(C, D))
∨ (D < min(A, B, C))} · [min(A, C) − (min(B, D) − Z)].

Where the stationary probabilities for Δ and Δ′ are written as PΔ(·), and the Bernoulli
probabilities as Be(1) = p and Be(0) = 1 − p, the expected total payments for X , Y ,
and Z is

∑

X,Y,Z,
U,V,Δ,Δ′

Be(X) Be(Y ) Be(Z) Be(U) Be(V )PΔ(Δ)PΔ(Δ′) · [C(X)+C(Y )+C(Z)],

the sum taken over the 2532 possible values of the variables. This is a small finite sum
of an explicit expression, and is calculated (by Mathematica) to be the value shown in
expression (7). �

A plot of the VCG cost rate limn→∞ E�VCG(n)/n, along with the corresponding
shortest-path cost rate, is given in Figure 4.
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