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Abstract. In this paper we construct fixed finite tile systems that as-
semble into particular classes of shapes. Moreover, given an arbitrary
n, we show how to calculate the tile concentrations in order to ensure
that the expected size of the produced shape is n. For rectangles and
squares our constructions are optimal (with respect to the size of the
systems). We also introduce the notion of parallel time, which is a good
approximation of the classical asynchronous time. We prove that our tile
systems produce the rectangles and squares in linear parallel time (with
respect to the diameter). Those results are optimal. Finally, we introduce
the class of diamonds. For these shapes we construct a non trivial tile
system having also a linear parallel time complexity.

1 Introduction

The tile assembly model was introduced by Rothemund and Winfree [5,7]. This
model, based on the classical one of Wang [6], includes a mechanism of growth (a
dynamics) which takes into account global parameters such as the temperature
and the tile concentrations.

The individual components are square tiles. These tiles “float” on the two
dimensional plane. They can not be rotated. Each side of a tile has a specific
“glue”. When two tiles collide they stick if their abbuting sides have the same
glue and, crucially, if the strength of the glue is “high enough” with respect to
the temperature.

The dynamics of such a tile system is modeled as a Markov process. The pre-
cise process we consider here was introduced by Adleman et al. [1]. It is, however,
a simplification of the reversible version proposed by Winfree [7]. Roughly speak-
ing, the higher the concentration of a particular tile the higher the rate at which
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it is encountered. And, when encountered, the particular tile can eventually be
incorporated into the growing structure. At the end of the process, which begins
with a “seed” tile placed at the origin of the plane, a given shape S will be pro-
duced. Aggarwal et al. [2] proved that the minimal number of tiles that uniquely

produces the m × n rectangle is Ω(n
1
m

m ) if m � n and Θ( log n
log log n ) otherwise. In

[1] it is shown that the average time complexity for uniquely producing an n×n
square is Θ(n).

Of course, besides the assembly time, some other random variables are also
relevant. In fact, in this work we focus our attention on the random variable that
corresponds to the “size” of the produced shape. We therefore explore a new
direction by searching for tile systems producing languages of shapes. We tackle
the problem of producing three natural languages of shapes: squares, rectangles
and diamonds.

Let us consider, for instance, the class of all squares. In our construction we
fix the tile system in such a way that each time we run the Markov chain a
(different) square is produced. Let us call N the random variable corresponding
to the size of the produced square. If n is a fixed positive integer, then we will
show how to calculate the tile concentrations in order to ensure that E(N) = n.
To our knowledge, the tile concentrations, a parameter of the original model,
has never been seriously considered before. In other words, it is therefore not
necessary to construct the tiles (which in fact are model representations of tiny
molecules) for each shape we are asked to assemble.

We construct tile systems for rectangles and squares. Each of them turn out to
be optimal with respect to its size. On the other hand we introduce the notion of
parallel time. It is defined as the time needed to assemble a shape when all possible
transitions are performed at once. Our constructions for squares and rectangles
are also optimal in terms of the parallel time. In fact we get, with respect to the
diameter of the shapes, a linear parallel time. We also show that the parallel time
gives lower and upper bounds for the average time of the Markov process.

Finally we introduce the class of diamonds. A first approach gives a tile system
with quadratic parallel time complexity (linear with respect to the surface).
Nevertheless, by using a “firing squad” approach, we get the optimal linear
parallel time complexity (linear with respect to the diameter).

2 Tile Systems

A tile system is a 5-tuple T =< T, t0, τ, g, P >. Each of these variables is defined
in the following.

The set of tiles. T is a finite set of tiles. Each of these tiles is an oriented unit
square with the north, east, south and west edges labeled from some alphabet
Σ of glues (or colors). For each t ∈ T , the labels of its four edges are canonically
denoted σN (t), σE(t), σS(t) and σW (t).

The seed. t0 ∈ T is a particular tile known as the seed.
The temperature. τ is a positive integer called the temperature.



Self-assemblying Classes of Shapes 47

The strength function. The (glue) strength function g goes from Σ × Σ
to N. We assume that g(α, β) = 0 for all α, β in Σ such that α �= β. The
value g(α, α) is called the strength of α. We also assume that the set of glues Σ
contains a special one, denoted by null, such that for all α in Σ, g(null, α) = 0.
The tiles are represented as in Figure 1: the number of lines in front of the glue
corresponds to the strength of it. There is one exception to that convention: no
lines also mean strength 1.

The concentration. The concentration P associates to each tile t ∈ T a
positive value P (t). The concentration function P satisfies Σt∈T P (t) = 1.

a
a

b

c
a

a

b

c

Fig. 1. Two ways of representing the same tile

In order to define the asynchronous and parallel dynamics we need to intro-
duce the following concepts.

T-transitions. A configuration is a map from Z
2 to (T ∪ {empty}), where

the tile empty is the one having in its four sides the glue null. Let A and B be
two configurations. Suppose that there exist t ∈ T and (x, y) ∈ Z

2 such that
A = B except for (x, y) with A(x, y) = empty and B(x, y) = t. If also

g(σE(t), σW (A(x + 1, y)) + g(σW (t), σE(A(x − 1, y))+

g(σN (t), σS(A(x, y + 1)) + g(σS(t), σN (A(x, y − 1)) ≥ τ

then we say that the position (x, y) is attachable in A, and we write A →z B
with z = (t, (x, y)). We write A →T B when such a z exists. Informally, this
means that B can be obtained from A by adding a tile t in such a way that the
total strength of the interaction between A and t is at least τ . Let →∗

T denote
the transitive closure of →T.

Derived supertiles. The seed configuration, Γt0 , is the one that satisfies Γt0

(0, 0) = t0 and, for all (x, y) �= (0, 0), Γt0(x, y) = empty. The derived supertiles
of the tile system T are those configurations X such that Γt0 →∗

T X .
Production of shapes. A shape is a 4-connected finite subset of Z

2. The
shape of a derived supertile A will be denoted by [A] and corresponds to {(x, y) ∈
Z

2 : A(x, y) �= empty}.

2.1 The Asynchronous Dynamics

The dynamics of the tile system T is modeled as a continous time Markov
process where the states are in one-to-one correspondence with the derived
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supertiles and the initial state corresponds to the seed coniguration Γt0 . There
is a transition from state A to state B if A →T B. If B is obtained from A
by adding the tile t, then the rate of the transition is P (t). More precisely,
it is assumed that the time for the occurence of such a transition follows an
exponential law of parameter P (t), and, consequently, the average time necessary
to make this transition is 1/P (t).

Suppose that in state A there are k possible transitions to states B1, . . . , Bk.
And suppose that the transition rates are P1, . . . , Pk. Then, the probability to
jump to state Bi equals Pi

P1+...+Pk
. Finally, the time spent in state A follows an

exponential law of parameter P1 + . . . + Pk.
A derived supertile A is called terminal if it is a sink state of the Markov

process. In other words, if there is no supertile B such that A →T B. The set
of shapes produced by the tile system is S(T) = {[A] : A is terminal}.

Let C be a set of shapes. We say that the tile system T uniquely produces the
set C if on one hand S(T) = C and, on the other hand, the event “the structure
grows indefinitely” has probability zero of ocurrence. This notion is a natural
generalization of the one of Winfree where the set C was a singleton.

2.2 The Parallel Dynamics

Here, at each step, all possible transitions are performed at once. This parallel
dynamics is deterministic. Sometimes it is easy to compute and it allows us to
obtain bounds for the assembly time of the asynchronous model.

Let A be a derived supertile, and let Trans be a set of transitions. Trans is a
set of independent transitions if, for any z, z′ ∈ Trans such that A →z Az and
A →z′ Az′ , z′ is a possible transition from Az and z is a possible transition from
Az′ .

There can be several maximal sets of independent transitions from a given
supertile. Nevertheless, given a terminal supertile F and a derived supertile
A, one can define a unique ‖ T-transition from A to a A′ such that F can
be derived from A′. This parallel transition is given by taking the set of all
attachable positions in A, and attaching to each of them the corresponding tile
of F , when it is already attachable: let Trans = {t1, . . . , tk} be a maximal set
of independent transitions from A which are compatible with F . Let Ak be
such that A →t1 A1 . . . Ak−1 →tk

Ak. We say that there is a parallel transition
between A and Ak, and we note A →‖T Ak.

Thus, the sequence of parallel transitions by which F is built is unique.
The parallel time πA to assemble a derived supertile A is the number of

parallel transitions needed to produce A. We will see that the parallel time is
closely related to τA, the expected (asynchronous) assembly time of A. The
parallel instant of a position (x, y) is the number of the parallel transition that
puts a tile at (x, y).

This notion of parallel time is the adequate notion to compute the time effi-
ciency of tilesets, as it is easier to compute than the expected time to complete
the Markov process, but is a good approximation.
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Proposition 1. For every tile system T and every production P of T, we have
(1/χmax)πP ≤ τP , and τP = O(πP /χmin), where χmin and χmax are the mini-
mal and maximal tile concentrations. When all the concentrations are 1/k, with
k the number of tiles in T, we have τP = Θ(πP k).

We only give an idea of the proof, which is an extension of the proof of Adleman
and Cheng[1]. They stated a version of this prosposition for cases where there
is an order of dependency between the positions. But this order does not exist
in every case; when it does not exist, we take the order induced by the parallel
instants. This order has the properties of fairness that allow us to prove the
proposition: any order that is compatible with the assembly contains a chain of
length at least πp.

3 Rectangles and Squares

Let m, n be positive integers. Let Rm,n = {(x, y) |0 ≤ x < m, 0 ≤ y < n} be the
rectangle of width m and height n. Let us fix the temperature τ = 2. With this
temperature, by generalyzing the result of [1], it has been proved in [2] that the

minimal number of tiles that uniquely produce the rectangle Rm,n is Ω(n
1
m

m ) if
m � n and Θ( log n

log log n ) otherwise.
Let us fix the set of tiles that appears in Figure 2. Let us consider tSW as the

seed. It is easy to notice that this set of tiles uniquely produces rectangles. If
A, B, C are arbitrary positive values satisfying A + B + C = 1, then we fix the
concentrations as follows:

P (tS) = A(m−2)
m−1 P (tSE) = A

m−1 P (tW ) = B(n−2)
n−1

P (tNW ) = B
n−1 P (tβ) = C P (tSW ) = 0.

NW
t

W
t

SW
t

S
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t

β
t
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Fig. 2. The set of tiles used for producing rectangles

If we want to produce squares it is rather natural to create diagonals. Infor-
mally, we use three tiles in order to construct the diagonal. These three tiles
-tD, tDdown

, tDup- appear in Figure 3. We need two more tiles in order to fill the
square: tβ2 for the northwest half and tβ1 for the southeast half. We need to have
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β2 �= β1, in order to avoid final productions which are not squares. The seed is
tD and the temperature is τ = 2.

Fig. 3. The set of tiles used for producing squares

For arbitrary positive values A, B, C, D such that A + B + C + D = 1, we fix
the concentrations as follows:

P (tD) =
A(n − 2)

n − 1
, P (tβ1) =

A

n − 1
, P (tDdown

) = B, P (tDup) = C, P (tβ2) = D

Fig. 4. An example of square production

Proposition 2. The tile systems defined above uniquely produce rectangles and
squares. In the case of rectangles, if M is the random variable correspond-
ing to the width and N the random variable corresponding to the height, then
E(M) = m and E(N) = n. In the case of squares, if N is the random variable
corresponding to the length of the side then E(N) = n.

Proof. Just for M in the case of rectangles. The other cases are very similar. Let
ε = (m− 1)−1. The random variable M follows a geometric law. More precisely,
Pr{M = k} = (1 − ε)k−2ε. So E(M) = ε−1 + 1 = m.
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Proposition 3. The tile systems which we defined above are the smallest ones
that uniquely produce the set of all rectangles and the set of all squares. In the
case of rectangles, each set of tiles whose set of final productions is formed by
the m × n rectangles, with m ≥ 2 and n ≥ 2, contains at least six tiles. In the
case of squares, each set of tiles whose set of final productions is formed by the
n × n squares, with n ≥ 2, contains at least five tiles.

Proof. We just need to focus on glues of strength 2. With respect to that property
there are 16 tiles.

Squares. Let us consider the set of all possible tilings of 2 × 2 squares. We
have 8 cases (see Figure 5). Since we are assuming the seed to be in the leftmost
position of the bottom the number of cases can be reduced to 5 (up to symmetry
1=3, 2=4, 6=7). In each case, we have at least three or four tiles. More precisely,
2 of cardinality three and 3 of cardinality four.

Fig. 5. The possible tilings of the 2 × 2 square

We want to prove that four tiles are not enough to generate squares. We have
to test sets of four tiles which contain one of the previous sets which produce
2 × 2 squares. Each of the two cases of cardinality 3 may be completed with 13
tiles. Therefore, there are at most 2 × 13 + 3 = 29 cases to test. We first try to
produce a 3×3 square with each set of tiles. In any exploration, we can easily see
the impossibility for all the completions with the exception of the set numbered
by 8.

For this latter case, we study the only (hypothetical) possible tiling of a 4× 4
square obtained by self-assembly. Let t be the tile which has no glue of strength
2. Notice that t must be placed at the lower right corner and at the upper left
corner of the square. Moreover, the opposite glues of t must be equal (in order
to assemble any k-square with k > 2). Let t′ be the tile with glue of strength
2 in its southern side. A t-tile of the left upper part of the square must touch
a t′-tile below and another t-tile must touch a t′-tile in its right. Therefore, a
t′-tile could be placed in the lower right corner of the square. A contradiction.

Rectangles. For rectangles we consider set of tiles which can produce the 2× 2
square (i.e. containing a set of tiles obtained in Figure 5), the 3 × 2 rectangle,
2 × 3 rectangle.

We first assume that the only glue of strength 2 of the seed is on its northern
side. In this case, we have 12 possible tilings of the 3 × 2 rectangle induced by
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successive productions, 7 with six tiles, 4 with five tiles, and 1 with four tiles.
An obvious analysis proves that sets of 5 tiles obtained are not sufficient to tile
the 2 × 3 rectangle.

For the set of four tiles, we can remark that another tile is necessary to
tile the 2 × 3 rectangle and, furthermore, there exists two tiles with only a
glue of strength 2 on their northern side which have the same strength 2 glue.
Otherwise, some productions which are not in the upper right quarter of plane
appear.

The case when the only glue of strength 2 of the seed is on its eastern side
can be treated in a symmetric way. We now assume that the seed has two sides
(the northern and the eastern one) with glues of strength 2. We study tilings
of the 3 × 2 rectangle induced by successive productions We have two subcases
according to the glues of strength 2 of the tile in position (0, 1).

– When this tile has two sides (the southern and the eastern one) with glues
of strength 2, we also have 12 cases: 7 with six tiles, 4 with five tiles, and 1
with four tiles. An obvious analysis proves that the sets of 5 tiles obtained
are not sufficient to tile the 2 × 3 rectangle.

– When this tile has only one side (the southern one) with a glue of strength
2, we also have 12 cases (symmetric to the case when the seed has a unique
side with glue of strength 2): 7 with six tiles, 4 with five tiles, and 1 with
four tiles. An obvious analysis proves that the sets of 5 tiles obtained are not
sufficient to tile the 2 × 3 rectangle.

Thus, we have a tricky case only when there exists a set of five tiles, such that
four of them are enough to tile the 3× 2 rectangle, and four of them are enough
to tile the 2 × 3 rectangle (see figure 6). We have (up to symmetry) only one
set of five tiles satisfying this condition. But, according to the number of glues
of strength 2, this set either has final productions which are not rectangles, or
does not produce all rectangles. This finishes the proof.

Fig. 6. The possible tilings with four tiles for the 3×2 rectangle and the 2×3 rectangle,
with a seed with two glues of strength 2. A union of two tiling sets (one for each
rectangle) contains at least 5 tiles. Moreover, the only set (up to symmetry) of 5 tiles
obtained by this way is formed by tiles used in the highest 3 × 2 rectangle and in the
rightmost 2 × 3 rectangle.
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Proposition 4. With the tile systems defined above, the parallel time needed to
assemble an m× n rectangle is m + n while the parallel time needed to assemble
an n × n square is 3n − 5.

Proof. We give a proof for the squares (rectangles are similar). Notice first that
for any shape S with a marked position (x, y), the parallel time to assemble S
with the seed at (x, y) is at least max(x′,y′)∈S{d((x, y), (x′, y′)}, no matter which
tileset is used. The parallel time needed to put the tile at (n − 1, n) is at least
2n− 3 since that is the distance l1 between (0, 0) and (n, n− 1). This tile is the
only one in the line {(x, n), 0 ≤ x ≤ n} with a glue of strength 2 on its south
side, thus it has to be put before any other in this line. Thus, the tile at (n, 0)
cannot be put before the step 2n − 3 + n − 2 = 3n − 5. It is then easy to see
that this bound is in fact reached, and that the square can be assembled in time
3n − 5.

4 Diamonds

Notice that a square corresponds to the set {(x, y) | d∞[(x, y), (0, 0)] ≤ n}, with
d∞[(x, y), (x′, y′)] = max{|x−x′|, |y− y′|}. If we change the metrics towards the
more “natural” d1[(x, y), (x′, y′)] = |x − x′| + |y − y′|, then the induced shape is
the diamond Dn that appears in Figure 7. The problem of producing diamonds
is much more complicated than those we tackled before. Any naive approach
seem not to work.
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Fig. 7. An n-diamond

A first possible approach is given by the tileset of Figure 8(a). This tileset
assembles the upper halves of diamonds. By using this set and its mirror image,
one can assemble the set of all diamonds. The tileset works by “knitting” the half-
diamond row after row, going back and forth (see Figure 8(b)). The sequentiality
of this approach is the cause of the quadratic parallel time n2/4. We are going
to show how to lower this bound. More precisely, we are going to construct
diamonds in linear parallel time with the help of a very particular and non-
trivial cellular automaton called “the firing squad”.
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(a) The tileset for assembling half-
diamonds

(b) The assembly of a half-diamond

Fig. 8. Knitting diamonds

4.1 Simulating the Firing Squad CA by Self-assembly

The firing squad automaton, detailed in [3], is a cellular automaton which, from
a line of n cells, such that the first and n-th cells are in special states Gl and
Gr, and the other in initial state s, evolves in such a way that they all enter the
final state F for the first time at time n, and all other cells remain in a quiescent
state ρ.

We will represent, for simplicity, the tiles rotated in 45◦. Let us first consider
the set of six tiles of Figure 9. The tiles are, from left to right, tα (the seed),
tGl

, tβ , ts, tGr and tγ . The colors α, β, γ /∈ QFS . The color null is omitted. For
instance, σN (tα) = σS(tα) = σW (tα) = null.

α β β γ

s

β β

s

βα
lG G r

β γ

α γ

Fig. 9. The set of six tiles that codifies the initial configuration

As it is schematically explained in Figure 10, the assemblying process of these
tiles is such that the structure they produce represents the initial configuration
. . . ρρρGlsss . . . sssGrρρρ . . . .

The size of the initial structure of Figure 10 determines the size of the diamond
the tile system is going to produce. This part of the self-assembly process is, in
fact, the only nondeterministic one. Therefore, the expected size of the diamond
can be calculated as a function of the concentrations of the previously introduced
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s s s s s s s s s s s s s slG s s G rα γ

Fig. 10. The way the initial configuration . . . ρρρGlsss . . . sssGrρρρ . . . is assembled

tiles. Moreover, the only concentrations relevant for the process are those of ts
and tGr . Let 0 < A < 1. Let us define the concentrations as follows:

P (ts) = A(1 − (n − 1)−1), P (tGr) = A(n − 1)−1.

The only requirement for the concentrations of the other tiles (the four already
introduced and those to come) is that they must be positives with their sum being
1 − A.

There are two other classes of tiles: transmission tiles and transition tiles.
The transmission tiles are divided into six subclasses: left-border, internal, right-
border, upper-left-border, upper-border, upper-right-border. More precisely, for
all a, b ∈ QFS \ {F}, the transmission tiles are constructed in Figure 11.

FF

upper−border

ρ

γ

right−border right−upper−border

ρ

α

left−border

ab ab

ba

internal

F

left−upper−border

* F *

Fig. 11. Transmission tiles

The transition tiles are divided into five subclasses: left-border, internal, right-
border, upper-left-border and upper-right-border.

More precisely: let a, b, c, d, e, f, g ∈ QFS be such that δFS(ρ, a, b) �= F and
δFS(f, g, ρ) �= F. The (a, b)-left-border, (c, d, e)-internal and (f, g)-right-border
tiles are constructed in Figure 12(a).

Finally, let a, b, c, d ∈ QFS be such that δFS(ρ, a, b) = δFS(c, d, ρ) = F . The
upper-left-border and upper-right-border tiles are constructed in Figure 12(b).

From the previously defined construction follows the last propositions.

α ρab

ρ ab decd

cdecde fgh

fg gh

fgh

(a) Left-border, internal, right-border.

F∗ F

ρ ab cd ρ

F∗F

(b) Upper-left-border, upper-
right-border.

Fig. 12. Transition tiles; xyz represents δF S(xyz)
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Proposition 5. The tile system defined above uniquely produces diamonds. If N
is the random variable corresponding to the length of the diagonal, then E(N) =
2n + 1; and the parallel time needed by the above tile system to assemble a
diamond of size n is 4n − 6.

Proof. The parallel assembly follows the simulation of the CA, as shown on
Figure 13. By induction one gets that the last tile of the kth row is added in the
2n + k − 4 parallel transition for k > 0. As the assembly is complete when the
(2n − 2)th row of the simulation is complete, the parallel time for the assembly
is 4n − 6.

Fig. 13. Parallel assembly of a diamond
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