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Preface

Welcome to the proceedings of the 26th annual conference on the Foundations of
Software Technology and Theoretical Computer Science (FSTTCS). FSTTCS is
organized by the Indian Association for Research in Computer Science (IARCS)
which it helped create by bringing together academic computer scientists from
various parts of India. Over the years several changes have taken place in the
conference, beginning with the first Springer LNCS edition in 1984. The first
three proceedings were printed and published in India by the Tata Institute of
Fundamental Research. Since then other changes, such as an international Pro-
gramme Committee and pre-conference and post-conference workshops, have
helped nurture and enhance the status of this conference among computer sci-
entists interested in foundational research.

Along with these changes there are quite a few invariant properties this con-
ference enjoys. It has always been held in India, and always in the second or third
week of December, which is a good time to travel to and within the country. It is
also the most convenient time to meet Indian researchers, most of whom would
be temporarily free of teaching and administrative commitments.

This year for the first time in its history, FSTTCS was held in the historic city
of Kolkata (formerly Calcutta) at the Indian Statistical Institute (ISI). FSTTCS
is one of the events to commemorate the Platinum jubilee year of ISI and we are
happy to be part of this celebration. Subhas C. Nandy of ISI Kolkata took full
responsibility as chairman of the Organizing Committee.

The conference attracted 155 submissions with authors from 29 countries. We
thank the authors for their interest in this conference. The reputation of a con-
ference is effectively determined by its Programme Committee, the refereeing
process and the Invited talks. This year, as in the past, we were able to get
highly respected researchers to serve on our Programme Committee. The refer-
eeing process too has been of a very high quality. The Programme Committee
deliberated on each of the submitted papers and the accompanying referee re-
ports and finally decided to select 34 submissions as being worthy of publication.

The invited speakers this year were Gordon Plotkin of the University of Ed-
inburgh, UK, Emo Welzl of ETH Zurich, Switzerland, Gérard Boudol of INRIA,
Sophia Antipolis, France, David Shmoys of Cornell University, USA and Eugene
Asarin of Université Paris 7, France.

In keeping with what has now become tradition, two workshops on recent
advances in areas of current interest to the community were also organized.
The themes this year were Timed Systems (organized by Deepak D’Souza and
Supratik Chakraborty) and Approximation Algorithms (organized by Anupam
Gupta and Amit Kumar).

We would like to thank the authors who submitted papers and the Programme
Committee for helping us maintain the standard of this conference. We especially
thank the authors of the selected papers which form the bulk of this volume. We
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would like to thank Springer for agreeing to publish these proceedings in their
prestigious Lecture Notes in Computer Science series, which has in no small way
contributed to the status of this conference in academic circles.

We would also like to thank ISI Kolkata and Subhas Nandy’s team for hosting
FSTTCS, IIT Delhi and MPI-Informatik for providing support and of course,
IARCS, the parent organization that FSTTCS gave birth to!

December 2006 Naveen Garg
S. Arun-Kumar

Programme Chairs
FSTTCS 2006
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Shared-Variable Concurrency: A Proposal

(Abstract)

Gérard Boudol

INRIA Sophia Antipolis

In this talk I discuss the semantics of shared-variable concurrency, aka multi-
threading. There are two well-known ways of managing concurrent threads: one
either uses a preemptive or a cooperative scheduling discipline. In the former,
a program, or more precisely its executable version, can be interrupted at any
time during its execution by an external device, the scheduler, and the resources
needed for execution are then given to another concurrent component for a while.
This is perfect for executing concurrent processes, which do not share memory.
In this case, the programmer does not have to care about the relative perfor-
mance of the various processes in the system: this is the task of the scheduler.
Unfortunately, it is very difficult to program multi-threaded applications with
this model. The main difficulty is with data races, that is conflicting concurrent
accesses to the memory. Although it is very easy to provide a formal “interleav-
ing” semantics for preemptive multi-threading, this semantics usually does not
coincide with what is actually implemented. In particular, the grain of atom-
icity is generally not preserved by the implementation, and a program may be
time-sliced at some points of its execution which make no sense at the user
level, and the consequence is that there is no clear semantics for the race condi-
tions (see [14] for instance). It is therefore necessary to complement preemptive
multi-threading with elaborate synchronization techniques, that require a real
expertise from the programmer to be used (see [3]), and to design methods to
analyze concurrent programs in order to make them “thread safe”, avoiding or
detecting race conditions [1,6,11]. We shall not follow the preemptive approach
in our proposal for shared-memory concurrency semantics.

In the cooperative programming model, a thread decides, by means of specific
instructions (like yield for instance), when to leave its turn to another concurrent
thread, and the scheduling is therefore distributed among the components. This
model, in which there is no data race, has been advocated as a better model
than the preemptive one for programming some modern, massively concurrent
applications. However, this model also has its drawbacks, the main one being
that if the active thread runs into an error, or raises an uncaught exception,
or diverges, then the model is broken, in the sense that no other component
will have a chance to execute. In particular, in cooperative programming, we
have to avoid divergence in some way. Still, we need to be able to program non-
terminating applications. Any server for instance should conceptually have an
infinite life duration, and should not be programmed to stop after a while. Such a

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 1–3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 G. Boudol

server should not enter into an infinite loop however, it should rather be infinitely
often waiting for a new request. In other words, in cooperative programming,
programs must be cooperative, or fair, that is, they should be guaranteed to either
terminate or suspend themselves infinitely often. Since we would also like to be
able to reuse sequential code in a multi-threaded context, a challenge is: can we
design a concurrency semantics that would be basically cooperative, in order to
avoid data races, but where any thread – and in particular purely sequential
code – is guaranteed to be fair?

Dealing with a higher-order imperative programming model à la ML for se-
quential code (some other choices are obviously possible), our proposal to solve
the above mentioned challenge is to introduce a touch of preemptive scheduling
into the cooperative model. The idea is very simple: it is to consider that every
recursive call to a function should be regarded as a suspensive operation, that
yields the scheduler for a while. We think that this is a natural and intuitive idea,
since recursion appears to be the source of non-termination. Moreover, this does
not introduce any data race. However, we then have to face a technical problem,
which is that recursion, or more accurately non-termination, may occur in in-
direct ways in a ML-like, or, for that matter, a Scheme-like language. Indeed,
it is well-known that, on the one hand, recursion can be encoded in the pure
λ-calculus, and, on the other hand, that recursion can also be encoded using
circular reference (this is indeed the way it is implemented), as shown by Landin
long ago [8]. The well-known method to recover from the first difficulty is to use
a type system. In this talk I show that we can use a type and effect system [9]
for dealing with the second difficulty.

To preclude circular references, we stratify the memory into regions, in such
a way that functional values stored in a given region may only have a latent
effect, such as reading a reference, in strictly “lower” regions. This allows us
to define, by induction on the stratification, a realizability interpretation of the
types and effects, for which the type and effect system is sound. From this we
conclude that typable expressions can only diverge if they perform an infinite
number of recursive calls, that is, if they suspend infinitely often, in our mixed
cooperative/preemptive model. This termination argument is quite classical and
general (see [2,5]): it was first used by Tait in [15], under the name of “con-
vertibility”, and then by Girard (see [5]) with his “candidats de réductibilité”,
and by Tait again [16] who called it the “realizability” technique, since it re-
lies on an interpretation of types closely related to Kleene’s original recursive
realizability interpretation [7]. The realizability interpretation is also a special
case of a “logical relation” [10,13]. As far as I can see, this technique has not
been previously used for higher-order imperative languages: the work that is
technically the closest to ours, and which was our main source of inspiration, is
the one by Pitts and Stark [12], but their logical relation (intended to provide a
means to prove observational equivalence of programs, not to prove termination)
is restricted to a language where the memory can only contain values of basic
types. In the talk I mention another application of typing termination, namely
in typing “termination leaks” in information flow control (see [4]).
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Hennessy-Plotkin-Brookes Revisited�

Gordon Plotkin

Laboratory for the Foundations of Computer Science, School of Informatics,
University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland

gdp@inf.ed.ac.uk

In [3] Hennessy and Plotkin gave a domain-theoretic semantics fully abstract
for SIP (the Simple Imperative Programming language) + parallelism together
with a certain unnatural synchronisation construct, but not, unfortunately, ab-
stract without that construct. Later, in [1], Brookes gave a fully-abstract trace
semantics for a slight variation on SIP + parallelism. In his semantics, mean-
ings of programs are sets of traces subject to certain closure conditions, namely
‘stuttering’ and ‘mumbling’; traces are sequences of pairs of states.

We revisit these results in the light of the recent Plotkin, Power, et al algebraic
theory of effects, a development of Moggi’s monadic account of computational
effects [6,2]. In the algebraic approach one considers semantic domains as free
algebras for equational theories of the operations giving rise to the effects at
hand, see, for example [5,4]. The original Hennessy-Plotkin semantics can be
given by such a theory including a ‘computation suspension’ operator d; it is also
isomorphic to the trace semantics where one does not impose closure conditions.
It turns out that one can obtain an improved variant of Brookes’ semantics by
adding two natural equations for the suspension operator; these correspond in a
one-to-one manner with a slight variant of Brookes’ closure conditions on traces.
The resulting semantics is fully abstract for SIP + parallelism.
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Abstract. Stochastic optimization is a leading approach to model op-
timization problems in which there is uncertainty in the input data,
whether from measurement noise or an inability to know the future. In
this survey, we outline some recent progress in the design of polynomial-
time algorithms with performance guarantees on the quality of the solu-
tions found for an important class of stochastic programming problems
— 2-stage problems with recourse. In particular, we show that for a num-
ber of concrete problems, algorithmic approaches that have been applied
for their deterministic analogues are also effective in this more challeng-
ing domain. More specifically, this work highlights the role of tools from
linear programming, rounding techniques, primal-dual algorithms, and
the role of randomization more generally.

1 Introduction

Uncertainty is a facet of many decision environments and might arise due to vari-
ous reasons, such as unpredictable information revealed in the future, or inherent
fluctuations caused by noise. Stochastic optimization provides a means to handle
uncertainty by modeling it by a probability distribution over possible realizations
of the actual data called scenarios. The field of stochastic optimization or stochas-
tic programming, has its roots in the work of Dantzig [4] and Beale [1] in the 1950s,
and has increasingly found application in a wide variety of areas, including trans-
portation models, logistics, financial instruments, and network design.

An important and widely used model in stochastic programming is the 2-stage
recourse model: first, given only distributional information about (some of) the
data, one commits on initial (first-stage) actions. Then, once the actual data
is realized according to the distribution, further recourse actions can be taken
(in the second stage) to augment the earlier solution and satisfy the revealed
requirements. The aim is to choose the initial actions so as to minimize the
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expected total cost incurred. Typically the recourse actions entail making deci-
sions in rapid reaction to the observed scenario, and are therefore more costly
than decisions made ahead of time. Thus there is a trade-off between commit-
ting initially having only imprecise information while incurring a lower cost, and
deferring decisions to the second–stage when we know the input precisely but
the costs are higher. Many applications come under this setting, and much of
the textbook of Birge and Louveaux [2] is devoted to models and algorithms for
this class of problems.

A commonly cited example involves a setting where a company has to decide
where to set up facilities to serve client demands. Typically the demand pattern
is not known precisely at the outset, but one might be able to obtain, through
simulation models or surveys, statistical information about the demands. This
motivates the following 2-step decision process: in the first-stage, given only
distributional information about the demands (and deterministic data for the
facility opening costs), one must decide which facilities to open initially. Once
the actual input (the client demands) is realized according to this distribution,
we can extend the solution by opening more facilities, incurring a recourse cost,
and we have to assign the realized demands to open facilities. This is the 2-stage
stochastic uncapacitated facility location problem. The recourse costs are usually
higher than the original ones (because opening a facility later would involve
deploying resources with a small lead time), could be different for the different
facilities, and could even depend on the realized scenario.

The formal model. The 2-stage recourse model can be formalized as follows:
we are given a probability distribution over possible realizations of the data called
scenarios and we construct a solution in two stages. First, we may take some deci-
sions to construct an anticipatory part of the solution, x, incurring a cost of c(x).
Then a scenarioA is realized according to the distribution, and in the second-stage
we may augment the initial decisions by taking recourse actions yA, (if necessary)
incurring a certain cost fA(x, yA). The goal is to choose the initial decisions so as
to minimize the expected total cost, c(x)+EA

[
fA(x, yA)

]
, where the expectation

is taken over all scenarios according to the given probability distribution.

An important issue that we have left unspecified above is the question of how
the scenario-distribution is represented. One simple approach is to assume that
we are given as part of the input description a list that explicitly enumerates each
scenario (occurring with non-zero probability) and its probability of occurrence.
However, this causes a significant blow-up in the input size, since the distribution
can easily have support size that is exponential in the other input parameters,
that is, the non-stochastic portion of the input; for example, in stochastic facility
location, consider the case where the demand of each client is set independently.
Thus, to ensure that a “polynomial-time” algorithm in this model has running
time polynomial in the other input parameters, one must restrict oneself to
distributions with a polynomial-size support, which is a severe restriction; we
shall call this the polynomial-scenario model to reflect this fact. The distribution
mentioned above is captured by the independent-activation model introduced by
Immorlica et al. [11], where the scenario-distribution is a product of independent



Approximation Algorithms for 2-Stage Stochastic Optimization Problems 7

distributions (described in the input). Typically, there is an underlying set of el-
ements (clients) and a scenario is generated by independent choices (setting the
demands) made for each element. Independent distributions allow one to suc-
cinctly specify a class of distributions with exponentially many scenarios, and
have been used in the Computer Science community to model uncertainty in
various settings [13,18,5]. However, many of the underlying stochastic applica-
tions often involve correlated data (e.g., in stochastic facility location the client
demands are expected to be correlated due to economic and/or geographic fac-
tors), which the independent-activation model clearly does not capture. A more
general way of specifying the distribution is the black-box model, where the dis-
tribution is specified only via a procedure (a “black box”) that one can use to
independently sample scenarios from the distribution. In this model, each pro-
cedure call is treated as an elementary operation, and the running time of an
algorithm is measured in terms of the number of procedure calls. The black-
box model incorporates the desirable aspects of both the previous models: it
allows one to specify distributions with exponentially many scenarios and corre-
lation in a compact way that makes it reasonable to talk about polynomial-time
algorithms.

Stochastic optimization problems are often computationally quite difficult,
and often more difficult than their deterministic counterparts, both from the
viewpoint of complexity theory, as well as from a practical perspective. In many
settings the computational difficulty stems from the fact that the distribution
might assign a non-zero probability to an exponential number of scenarios, lead-
ing to considerable increase in the problem complexity, a phenomenon often
called the “curse of dimensionality.” Thus, many stochastic problems that are
easy to solve in the polynomial-scenario model due to the expansive input en-
coding become NP-hard in the black-box model. For example, stochastic linear
programming problems (i.e., stochastic problems that can be formulated as lin-
ear programs) are polynomial-time solvable in the polynomial-scenario model
but become #P -hard in the black-box model [8]. In other settings, even with
polynomially many scenarios, the stochastic problem gives rise to a more com-
plex problem than its deterministic counterpart and is NP-hard, whereas the
deterministic problem is solvable in polynomial time.

In this survey, we focus on the design of approximation algorithms for stochas-
tic optimization problems. Throughout, we use a ρ-approximation algorithm to
denote a polynomial-time algorithm that always returns a feasible solution with
objective function value within a factor ρ of the optimum; ρ is called the ap-
proximation ratio or performance guarantee of the algorithm.

There is an abundance of literature in the stochastic programming commu-
nity that deals with computational aspects of solving 2-stage stochastic pro-
grams, especially 2-stage linear programs (LPs), which we shall not cover here;
the reader is referred to [2,22] for more information. Many of these methods are
only suitable in the polynomial-scenario model and cannot handle the burden of
an exponential number of scenarios. One appealing approach in the black-box
model is to sample a certain number of times from the scenario-distribution,
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estimate the probability of a scenario by its frequency in the sampled set, and
solve the 2-stage problem determined by this approximate distribution. This is
known as the sample average approximation (SAA) method. The SAA method
is a widely used heuristic in practice and has been empirically shown to work
well in various settings (see, e.g., [15,28]). The main question here is: how many
samples does one need to ensure that an optimal solution to the sample-average
problem is a near-optimal solution to the original problem (with high probabil-
ity)? While there are results that prove asymptotic convergence to the optimal
solution (to the original problem) in the limit as the number of samples goes to
infinity, fewer results are known about the rate of convergence, or equivalently,
about worst-case bounds on the sample size required to obtain a near-optimal
solution. Ideally one would like to show that a polynomial number of samples
always suffice. Such a result would show that the SAA method gives a reduction
from the black-box problem to a polynomial-scenario problem, thereby reducing
the complexity of the stochastic problem, while losing a factor in the approxi-
mation guarantee. In particular, this would immediately give an approximation
algorithm for stochastic linear programming problems in the black-box model.
The work that most closely considers the aspect of worst-case bounds is a pa-
per of Kleywegt, Shapiro and Homem-De-Mello [14] (see also [23]). Kleywegt et
al. prove a sample-size bound for 2-stage programs that is independent of the
number of scenarios, but depends on the variance of a certain quantity (calcu-
lated using the scenario-distribution) which need not be polynomially bounded,
even for very structured programs. We shall return to this question of proving
polynomial sample-size bounds for the SAA method in Section 4.

There are other sampling-based approaches where instead of sampling just
once initially, the algorithm used to solve the stochastic problem contains a
sampling subroutine that is called whenever one needs to estimate some quantity,
such as the function value or the gradient. Dyer, Kannan and Stougie [7] use
such an approach for a stochastic maximization LP, where samples are used to
estimate the objective function value at a given point. This yields a sample size
that is only polynomial in the maximum value attained by any scenario (due to
the high variance in the values of the different scenarios). Nesterov and Vial [20]
employ stochastic subgradients, estimated via sampling, in a subgradient-descent
algorithm, and require a sample size that is polynomial in the maximum variation
in the objective function value in the feasible region.

The design and analysis of algorithms with provable worst-case guarantees for
2-stage stochastic integer programs is a relatively recent research direction. The
first such result appears to be due to Dye, Stougie and Tomasgard [6] who give a
constant-factor approximation algorithm for a resource provisioning problem in
the polynomial-scenario model. Subsequently, a series of papers [21,11,10,25] ap-
peared on this topic in the Computer Science literature, and showed that one can
obtain guarantees for a variety of stochastic combinatorial optimization problems
by adapting the techniques developed for the deterministic analogue. Gupta,
Pál, Ravi and Sinha [10], who were the first to consider the black-box model
(under a certain cost assumption), make such a connection explicit. Shmoys and
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Swamy [25], who give algorithms in the black-box model with arbitrary costs,
show an even more explicit correspondence. They showed that one could derive
approximation algorithms for most of the problems considered in [21,11,10] by
adopting a natural LP rounding approach that, in effect, converted an LP-based
approximation guarantee for the deterministic analogue into a guarantee for the
stochastic generalization with a small loss in the approximation factor. Thus,
if we can solve the stochastic LP (even approximately), which is a #P -hard
problem, then we will have essentially reduced the stochastic problem to its
deterministic analogue.

This survey is organized as follows: in Section 2 we describe an approxima-
tion scheme for solving a large class of 2-stage stochastic LPs. In Section 3 we
describe some techniques for devising approximation algorithms for stochastic
integer programming problems. We focus mainly on the black-box model, but
also sometimes consider the polynomial-scenario model; in Section 4 we consider
the SAA method and establish a concrete connection between these two models.

2 Stochastic Linear Programs

We now describe the fully polynomial approximation scheme (FPAS) of Shmoys
and Swamy [25] that can be applied to a rich class of 2-stage stochastic LPs. The
algorithm returns a solution of value within (1 + κ) times the optimum (with
high probability), for any κ > 0, in time polynomial in the input size, 1

κ , and
a parameter λ, which is the maximum ratio between the second- and first-stage
costs. As we show in Section 3, this provides us with a powerful and versatile
tool for designing approximation algorithms for stochastic integer optimization
problems in much the same way that linear programming has proved to be
immensely useful in the design of approximation algorithms for deterministic
optimization problems.

We shall consider a stochastic generalization of the set cover problem as an
illustrative problem to explain the main ideas. In the 2-stage stochastic set cover
(SSC) problem, we are given a ground set U of n elements, a collection of subsets
of U , S1, . . . , Sm, and a distribution over subsets of U that specifies the target
set of elements to cover. In stage I, we can pick some sets paying a cost of
wI

S for each set S. Then, a scenario materializes which specifies a target set
A ⊆ U of elements to be covered and the costs {wA

S } of picking sets in that
scenario, and one can pick additional sets to ensure that A is contained in the
union of the sets selected in the two stages. The aim is to minimize the expected
cost of the sets picked. Denoting the probability of scenario A by pA (which
we do not know explicitly, and could be 0), we can formulate the problem as
an integer program and relax the integrality constraints to obtain the following
linear program: minimize{∑

S

wI
SxS +

∑
A⊆U,S

pAw
A
S rA,S :

∑
S:e∈S

(xS + rA,S)≥1 ∀A, e∈A; xS , rA,S≥0 ∀A,S.
}

(SSC-P1)
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Variable xS indicates whether set S is chosen in stage I, and rA,S indicates if
set S is chosen in scenario A. The constraint says that in every scenario A, every
element in that scenario has to be covered by a set chosen either in stage I or in
stage II. Notice that (SSC-P1) is an LP with an exponential number of variables
and constraints, and it seems difficult to efficiently compute an (near-) optimal
solution to (SSC-P1), since even writing out a solution can take exponential
space (and time). However, if we fix the first-stage decisions, i.e., the xS variables,
then the scenarios become separable, so we can reformulate (SSC-P1) as follows:
minimize

h(x) :=
∑
S

wI
SxS +

∑
A⊆U

pAfA(x) subject to 0 ≤ xS ≤ 1 ∀S, (SSC-P2)

where (1)

fA(x) := min
{∑

S

wA
S rA,S :

∑
S:e∈S

rA,S ≥ 1−
∑

S:e∈S

xS ∀e ∈ A; rA,S ≥ 0 ∀S.
}

Here the second-stage decisions only appear in the minimization problem fA(x),
which denotes the recourse problem that one needs to solve for scenario A. It
is easy to show that (SSC-P2) is equivalent to (SSC-P1), and that its objective
function is convex. Although we now have a compact convex program, the com-
plexity of the problem resurfaces as follows: in general, it is #P -hard to even
evaluate the objective function h(.) at a given point [8]. Nevertheless, we can
leverage convexity and adapt the ellipsoid method to solve (SSC-P2).

In the ellipsoid method, we start by containing the feasible region within
a ball and then generate a sequence of ellipsoids, each of successively smaller
volume. In each iteration, one examines the center of the current ellipsoid and
obtains a specific half-space defined by a hyperplane passing through the cur-
rent ellipsoid center. If the current ellipsoid center is infeasible, then one uses a
violated inequality as the hyperplane, otherwise, one uses an objective function
cut to eliminate (some or all) feasible points whose objective function value is no
better than the current center, and thus make progress. A new ellipsoid is then
generated by finding the minimum-volume ellipsoid containing the half-ellipsoid
obtained by the intersection of the current one with this half-space. Continuing
in this way, using the fact that the volume of the successive ellipsoids decreases
by a significant factor, one can show that after a polynomial number of itera-
tions, the feasible point generated with the best objective function value is a
near-optimal solution.

Let P = P0 denote the polytope
{
x ∈ Rm : 0 ≤ xS ≤ 1 for all S

}
, and xi

be the current iterate. Define λ = max(1,maxA,S w
A
S /wI

S), which we assume is
known. It is trivial to determine if xi is feasible, so we only need to describe how
to obtain an objective function cut. One option is to simply add the constraint
h(x) ≤ h(xi), which is not a “linear” cut, but would preserve the convexity
of the feasible region. But then in subsequent iterations, without the ability
to evaluate (or even estimate) h(.) at a given point, we would not even be
able to decide if the current point is feasible (or even almost-feasible), which
poses a formidable difficulty. Alternatively, one could use cuts generated by a
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subgradient, which is the analogue of gradient for a non-differentiable function:
d ∈ Rm is a subgradient of a function g : Rm �→ R at point u, if g(v) − g(u) ≥
d · (v − u) for every v ∈ Rm. If di is a subgradient at point xi, one can add the
subgradient cut di · (x− xi) ≤ 0 and proceed with the (smaller) polytope Pi+1 =
{x ∈ Pi : di · (x − xi) ≤ 0}. Unfortunately, even computing a subgradient is
hard to do in polynomial time for the objective functions that arise in stochastic
programs. We circumvent this obstacle by using an approximate subgradient:

Definition 1. We say that d̂ ∈ Rm is an (ω,D)-subgradient of a function g :
Rm �→ R at point u ∈ D, if for every v ∈ D, we have g(v)− g(u) ≥ d̂ · (v − u)−
ωg(u).

We abbreviate (ω,P)-subgradient to ω-subgradient. An extremely useful prop-
erty of ω-subgradients is that one can compute them efficiently by sampling. If
d̂i is an ω-subgradient at xi, one can add the inequality d̂i · (x − xi) ≤ 0 and
obtain the polytope Pi+1 = {x ∈ Pi : d̂i · (x − xi) ≤ 0}. Since we use an ap-
proximate subgradient, this might discard points with h(.) value less than h(xi).
But for any point y ∈ Pi \ Pi+1, we have that h(y) ≥ (1 − ω)h(xi), so no such
point has h(.) value much smaller than h(xi). Continuing this way, we obtain a
polynomial number of points x0, x1, . . . , xk such that xi ∈ Pi ⊆ Pi−1 for each
i, and the volume of the ellipsoid centered at xk containing Pk, and hence that
of Pk is small. Now if h(.) has a bounded Lipschitz constant (h has Lipschitz
constant at most K if |h(v)− h(u)| ≤ ‖v − u‖2 ∀u, v ∈ Rm) then one can show
that mini h(xi) is close to the optimal value OPT with high probability. The
entire procedure is summarized below.

FindOpt(γ, ε) [Returns x̄ ∈ P such that h(x̄) ≤ OPT/(1 − γ) + ε. Assume γ ≤ 1
2 . K

is the Lipschitz constant.]

O1. Set k ← 0, y0 ← 0, N ← �2m2 ln
( 16KR2

V ε

)
�, n ← N log

( 8NKR
ε

)
, and ω ← γ/2n.

Let E0 ← B(0, R) and P0 ← P.
O2. For i = 0, . . . , N do the following.

a) If yi ∈ Pk, set xk ← yi. Let d̂k be an ω-subgradient of h(.) at xk. Let H denote
the half space {x ∈ Rm : d̂k · (x−xk) ≤ 0}. Set Pk+1 ← Pk ∩H and k ← k+1.

b) If yi /∈ Pk, let a · x ≤ b be a violated inequality, that is, a · yi > b, whereas
a · x ≤ b for all x ∈ Pk. Let H be the half space {x ∈ Rm : a · (x − yi) ≤ 0}.

c) Set Ei+1 to be the ellipsoid of minimum volume containing the half-ellipsoid
Ei ∩ H .

O3. Set k ← k − 1. Return the point in {x0, . . . , xk} with minimum h(.) value.

There are a few details needed to complete the algorithm description. First,
since we cannot compute h(x) we will not be able to compute the point arg mini

h(xi) in step O3. Instead, by using ω-subgradients we will find a point x̄ in the
convex hull of x0, . . . , xk, such that h(x̄) is close to mini h(xi). We repeatedly
perform a bisection search on the line segment joining x̄ (initialized to x0) and
xi for i = 1, . . . , k, using an ω-subgradient to infer which direction to move
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along the segment. Each time the search returns a point y such that h(y) is close
to min(h(x̄), h(xi)), and we update x̄ to y. Second, to convert the performance
guarantee of procedure FindOpt into a purely multiplicative (1+κ)-guarantee, we
need to obtain a lower bound on OPT (and set ε, γ accordingly). Under the mild
assumption that the cost of every set S, in stage I and in every stage II scenario,
is at least 1, one can do this by sampling initially O(λ) times. Essentially, one
can detect by sampling O(λ) times, whether the probability that some scenario
A 
= ∅ occurs is at least 1

λ ; if so, then OPT ≥ 1
λ , otherwise x = 0 is an optimal

solution. Finally, we specify how to compute an ω-subgradient at a point x ∈ P
efficiently. Let z∗A be an optimal solution to the dual of fA(x).

Lemma 1. (i) the vector d with components dS =
∑

A pA(wI
S−
∑

e∈A∩S z
∗
A,e) is

a subgradient of h(.) at x; (ii) for every scenario A and set S, |wI
S−
∑

e∈A∩S z
∗
A,e|

≤ λwI
S ; and (iii) if d̂ ∈ Rm is such that dS − ωwI

S ≤ d̂S ≤ dS for every S, then
d̂ is an ω-subgradient of h(.) at x.

Parts (i) and (ii) of Lemma 1 show that each component of the subgradient vector
is the expectation of a random variable (according to the scenario-distribution)
with bounded variance. (Part (ii) also yields a bound on the Lipschitz con-
stant of h.) So, with probability at least 1 − δ, one can estimate this expecta-
tion to within an additive error of ωwI

S simultaneously for each S, using sam-
ple size poly

(
input size, λ

ω , ln(1
δ )
)
. This yields an ω-subgradient, by part (iii) of

Lemma 1. We compute an ω-subgradient at a polynomial number of points,
with a polynomially small ω, so overall we get a sample size that is polynomial
in the input size, λ, and 1

κ . This sample-size bound is tight up to polynomial
factors in the black-box model: one can construct examples where Ω(λ/ρ) sam-
ples are needed in the black-box model to obtain a performance guarantee of
ρ [25], and the dependence on κ is also unavoidable due to the #P -hardness
result.

Shmoys and Swamy showed that the arguments above, especially Lemma 1,
can be generalized to yield an approximation scheme for a broad class of 2-stage
stochastic LPs which includes the fractional versions of a variety of stochas-
tic combinatorial optimization problems such as (stochastic) covering problems
(e.g., set cover, network design, multicut), facility location problems, multicom-
modity flow.

3 Stochastic Integer Programs

We now consider some stochastic combinatorial optimization problems, modeled
as stochastic integer programs, and describe some methods that can be used to
design approximation algorithms for these problems.

A general rounding technique. We first describe a simple, but powerful rounding
framework due to [25], using stochastic set cover (SSC) as an illustrative exam-
ple. Recall the relaxation (SSC-P2) for SSC. We will show that an LP-based
approximation guarantee for the deterministic set cover (DSC) problem yields a
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corresponding guarantee for the stochastic problem. Given a DSC instance with
a universe U of n elements, a family of subsets S1, . . . , Sm with set S having
weight wS , consider the following LP relaxation of the integer problem of pick-
ing a minimum weight collection of sets to cover U .

OPTDet := min
∑
S∈S

wSxS subject to
∑

S∈S:e∈S

xS ≥ 1 ∀e; xS ≥ 0 ∀S.

(SC-P)

Theorem 2. Given an algorithm that for every DSC instance produces a solu-
tion of cost at most ρ ·OPTDet , one can convert any solution x to (SSC-P2) to
an integer solution of cost at most 2ρ · h(x).

Proof. Let r∗A be an optimal solution to the recourse problem fA(x), so fA(x) =∑
S w

A
S r∗A,S . Observe the following simple fact: an element e is covered to an

extent of at least 1
2 either by the variables xS , or by the variables r∗A,S in every

scenario A containing e. Let E = {e :
∑

S:e∈S xS ≥ 1
2}. Then (2x) is a fractional

set cover solution for the instance with universe E, so one can obtain an integer
set cover x̃ for E of cost at most 2ρ ·

∑
S w

I
SxS . These are our stage I sets.

Similarly, for any scenario A, (2r∗A) is a fractional set cover for A \ E, since for
each such element e we have

∑
S:e∈S r∗A,S ≥ 1

2 . Therefore, one can cover these
elements at a cost of at most 2ρ ·

∑
S w

A
S r∗A,S . So the cost of the solution x̃ is at

most 2ρ · h(x). �

Combined with the FPAS of Section 2, this yields approximation guarantees for
various stochastic covering problems, e.g., we obtain guarantees of 2 logn+ ε for
SSC, and 4 + ε for stochastic vertex cover.

Stochastic facility location. In the deterministic uncapacitated facility location
(UFL) problem, given a set of candidate facilities F and a set of clients D, we
have to select a subset of facilities to open and assign each client to an open
facility. Each facility i has an opening cost of fi and each client j has demand
dj , and the cost of assigning client j to facility i is given by djcij , where cij is
the distance between i and j and these distances form a metric. The goal is to
minimize the sum of the facility opening and client assignment costs. In the 2-
stage stochastic version of the problem, abbreviated SUFL, the demand of a client
is a random variable (the demands may be correlated), and we can open facilities
either in stage I, or after the scenario A with demands dA

j is revealed, paying
a cost of f I

i or fA
i respectively for opening facility i. We first consider SUFL in

the polynomial-scenario model and show that one can design an approximation
algorithm by dovetailing an approach used for UFL. Then we show that the
above rounding technique can be adapted to derive an approximation algorithm
for SUFL in the black-box model. For simplicity, we will assume that dA

j ∈ {0, 1}
for every j, A, so a scenario now specifies a set of clients that need to be assigned
to facilities.

Let A denote the collection of all scenarios, which is explicitly described in the
input in the polynomial-scenario model. Consider the following LP relaxation for
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SUFL. We use i to index the facilities, j to index the clients, and A to index the
scenarios. Variables yi and yA,i indicate whether facility i is opened in stage I
or in scenario A respectively, and xA,ij indicates if client j is assigned to facility
i in scenario A.

min
X

i

f I
i yi+

X
A

pA

“P
i

fA
i yA,i +

P
j∈A,i

cijxA,ij

”

(P)

s.t.
X

i

xA,ij ≥ 1 ∀A, j ∈ A

xA,ij ≤ yi + yA,i ∀i, A, j ∈ A

yi, xA,ij , yA,i ≥ 0 ∀i, A, j ∈ A.

max
X

A,j∈A

pAαA,j (D)

s.t. αA,j ≤ cij+βA,ij ∀i, A, j ∈ A
(2)

X
j∈A

βA,ij ≤ fA
i ∀A, i (3)

X
A,j∈A

pAβA,ij ≤ f I
i ∀i (4)

αA,j , βA,ij ≥ 0 ∀i, A, j ∈ A.

(D) is the dual program. We briefly sketch a primal-dual 3-approximation
algorithm due to Mahdian [16], which closely resembles the Jain-Vazirani (JV)
algorithm for UFL [12]. All dual variables are initially set to 0. It is easy to
imagine the dual-ascent process: we uniformly increase all αA,j variables at rate
1 until one of the constraints becomes tight. If constraint (2) goes tight for some
(j, A) and facility i, we also start increasing βA,ij at rate 1. If constraint (3) goes
tight for some A, i, then we tentatively open facility i for scenario A and freeze
(i.e., stop increasing) all αA,j , βA,ij variables for which αA,j ≥ cij . If (4) goes
tight for a facility i, we tentatively open i for stage I, and for every scenario
A, we freeze the αA,j, βA,ij variables for which αA,ij ≥ cij . The process ends
when all αA,j variables are frozen. Now we perform a clean-up step for stage I,
and for each scenario, to decide which facilities to open. For stage I, we open a
maximal subset F of the tentatively open stage I facilities, such that for every
(j, A), there is at most one facility i ∈ F with βA,ij > 0. In every scenario A, we
open a maximal subset FA of the tentatively open facilities for scenario A, such
that for every j ∈ A, there is at most one facility i ∈ F ∪ FA with βA,ij > 0.
The analysis proceeds as in the JV algorithm, by showing that for every (j, A),
if the facility that caused αA,j to freeze is not open, then there must be a facility
opened in stage I or in scenario A that is at most 3αA,j distance away from j.
This proves an approximation ratio of 3.

We now consider SUFL in the black-box model. We compactify (P) to ob-
tain the convex program: minimize h(y) :=

∑
i f

I
i yi +

∑
A∈A pAgA(y), where

gA(y) is the minimum of
∑

i f
A
i yA,i +

∑
j∈A,i cijxA,ij subject to the constraints∑

i xA,ij ≥ 1 for all j ∈ A, xA,ij ≤ yi, yA,i for all i, j ∈ A, and xA,ij , yA,i ≥ 0
for all i, j ∈ A. Note that this is not a stochastic covering program. While UFL
admits a star-covering relaxation (clients have to be covered by stars, a star is
a facility and a set of clients assigned to it), the corresponding stochastic cov-
ering program does not model SUFL, because in SUFL when we open a facility
in stage I we do not fix then the set of clients it will serve; this is decided in
stage II, and will typically be scenario-dependent. Yet, the above rounding tech-
nique can be adapted here, by applying decoupling to the covering constraint
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i xA,ij ≥ 1. Let ρUFL denote the integrality gap of UFL, which is at most

1.52 [17].

Theorem 3. The integrality gap of (P) is at most 2ρUFL.

Proof. Let y be any feasible solution to the convex program and let (x∗A, y
∗
A) be

an optimal solution to gA(y). We write x∗A,ij = xI
A,ij + xII

A,ij for each scenario
A and client j ∈ A, where xI

A,ij ≤ y∗i and xII
A,ij ≤ y∗A,i. This is always possible

since x∗A,ij ≤ y∗i + y∗A,i. So either
∑

i x
I
A,ij ≥ 1

2 or xII
A,ij ≥ 1

2 . For a client j,
define Sj = {A � j :

∑
i x

I
A,ij ≥ 1

2}. For the stage I decisions, we construct
a feasible fractional solution for a UFL instance where the facility costs are f I

i ,
the assignment costs are cij , and the “demand” of client j is set to

∑
A∈Sj

pA,
and then round this using an algorithm for UFL. If we treat each (j, A) where
A ∈ Sj as a separate client with demand pA, we obtain a feasible solution by
setting ŷi = min(1, 2y∗i ) and x̂A,ij = min(1, 2xI

A,ij). yields a feasible solution for
this instance. But since the ŷi facility variables do not depend on the scenario,
we can re-optimize the assignment for each (j, A) to obtain an assignment that
does not depend on A. Thus, we can coalesce all the (j, A) clients into one,
with demand

∑
A∈Sj

pA. 2(
∑

i f
I
i y

∗
i +
∑

j,i,A∈Sj
pAcijx

I
A,ij). Since the integrality

gap is ρUFL, there is an integer solution (x̃, ỹ) of cost at most 2ρUFL(
∑

i f
I
i y

∗
i +∑

j,i,A∈Sj
pAcijx

I
A,ij); this determines which facilities to open in stage I. In any

scenario A, each client j such that A ∈ Sj is assigned to the stage I facility
given by the assignment x̃. For each remaining client j, since

∑
i x

II
A,ij ≥ 1

2 , the
solution ŷA,i = min

(
1, 2y∗A,i

)
, x̂A,ij = min

(
1, 2xII

A,ij

)
yields a feasible solution

for the UFL instance with client set {j ∈ A : A /∈ Sj}. Again the ρUFL integrality
gap shows that there is an integer solution with “low” cost. Overall, we get that
the total cost of the solution ỹ is at most 2ρUFL · h(y). This shows that the
integrality gap is at most 2ρUFL (and gives a 3.04-approximation algorithm in
the polynomial-scenario model (taking ρUFL = 1.52).) �

The rounding approach does not yet yield the strongest performance guarantee
currently known. We will return to this problem in Section 4.

Stochastic Steiner tree. We now describe the boosted sampling technique of
Gupta et al. [10] that shows that for certain stochastic problems, an approxi-
mation algorithm for the deterministic problem that satisfies some cost-sharing
properties, can be used to derive performance guarantees for the stochastic prob-
lem. We focus on the stochastic rooted Steiner tree (SST) problem: we have a
graph G = (V,E), a fixed root r ∈ V , and a distribution that specifies a random
set of terminals to connect to the root. We can buy edges either in stage I or
after the terminal set A ⊆ V has been revealed, paying a cost of ce or cAe respec-
tively for edge e, so as to connect all the nodes in A to r. It is worth noting that
we can formulate a fractional version of SST as a stochastic covering problem,
where each cut separating a terminal from the root must be covered by edges
bought in the two stages. One can therefore obtain a (1 + ε)-optimal fractional
solution in polynomial time. However the rounding procedure detailed above
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does not work, because the cut-covering problems obtained after decoupling the
two stages need not correspond to Steiner tree instances (and may not even fall
into the Goemans-Williamson framework [9]). We can use boosted sampling to
devise a 4-approximation algorithm, under the cost restriction cAe = λAce for ev-
ery edge e in every scenario A. This reflects a limitation of the boosted sampling
approach. In the case of SST, without such a restriction the problem becomes
Group-Steiner-tree-hard [21], but for other problems such as stochastic {vertex
cover, facility location}, one can obtain good guarantees without imposing any
cost restrictions by using other techniques.

Here we assume for simplicity that cAe = λce for every A, e. Let ST(S) denote
the cost of an optimal Steiner tree on S ∪ {r} wrt. costs {ce}. We say that an
algorithm A for the Steiner tree problem admits a β-strict cost sharing if there
is a function ξ : 2V ×V �→ R≥0 such that for every S, T ⊆ V with S ∩ T = ∅, (i)
ξ(S, u) = 0 for u /∈ S; (ii)

∑
u∈S ξ(S, u) ≤ ST(S); and (iii) there is a procedure

AugA that augments the tree A(S) constructed by A on input S to a tree on
S∪T∪{r} incurring cost c

(
AugA(S, T )

)
≤ β

∑
u∈T ξ(S∪T, u). Intuitively ξ(S, u)

stands for u’s share in the cost of a Steiner tree on S.
We may assume that G is complete and the edge costs form a metric. We

use the MST heuristic as algorithm A. This is a 2-approximation algorithm that
admits a 2-strict cost sharing. Procedure AugA consists of contracting S into the
root, and building an MST on T ∪{r} in the contracted graph. Rooting the MST
on S∪{r} at r, we set ξ(S, u) = 1

2 (cost of the edge joining u to its parent). This
satisfies properties (i) and (ii) above, and it is not hard to show that it satisfies
(iii) with β = 2. The algorithm for SST is quite simple and extremely elegant:
we draw λ samples A1, . . . , Aλ from the distribution and build the tree A(S)
where S =

⋃
iAi, as our first-stage solution. Intuitively, this tries to account for

the λ inflation factor by sampling each scenario A, in expectation, λpA times.
In the second-stage, if scenario A is realized, we use AugA to augment A(S) and
connect A \S to the root. A nice feature of the algorithm is that only λ samples
are required.

Let E∗
1 and E∗

A be the edges purchased in stage I and in scenario A by an
optimal (integer) solution to SST, and let OPT = c(E∗

1 ) + λEA

[
c(E∗

A)
]

be the
cost incurred. Let ξ(X,Y ) denote

∑
u∈Y ξ(X,u). The first-stage cost can be

bounded by noting that ST(S) is at most the cost of ZS = E∗
1 ∪
(⋃λ

i=1 E
∗
Ai

)
since ZS connects S to r. The expected first-stage cost is at most 2ES

[
ST(S)

]
≤

2ES

[
c(ZS)

]
which is at most 2·OPT , since each scenario A is sampled λpA times

in expectation. The expected second-stage cost is given by λES,A

[
c(AugA(S,A \

S))
]

which is at most 2λES,A

[
ξ(S ∪ A,A \ S)

]
by property (iii). We can treat

scenarioA as an extra sampleAλ+1, and since the Ai’s are identically distributed,
we have that ES,A

[
ξ(S∪A,A\S)

]
≤ 1

λ+1ES,A

[
ξ(S∪A,S∪A)

]
≤ 1

λ+1ES,A

[
ST(S∪

A)
]
. Finally, by arguing as we did for stage I, one can bound ES,A

[
ST(S ∪ A)

]
by λ+1

λ ·OPT . Thus the expected second-stage cost is at most 2 ·OPT , and the
total cost is at most 4 ·OPT .

Gupta et al. showed that boosted sampling can be applied to any stochastic
problem satisfying a certain sub-additivity condition, if we have an approximation
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algorithm for the deterministic version that admits a β-strict cost-sharing (which
is now defined more abstractly). They show that an α-approximation algorithm
with a β-strict cost sharing gives an (α + β)-approximation algorithm for the
stochastic problem. In all known cases, such an approximation algorithm is ob-
tained via the primal-dual schema and the cost shares are derived from the dual
variables. Thus, boosted sampling can be viewed as a primal-dual approach for
designing approximation algorithms for stochastic problems.

4 The Sample Average Approximation Method

The sample average approximation (SAA) method is a natural approach for com-
puting solutions in the black-box model. Here we replace the original stochastic
problem by a sample-average problem obtained by sampling scenarios some N
times and estimating the scenario probabilities by their frequencies of occurrence
in the sampled set, and solve this problem. If one can show that a polynomially
bounded N suffices to obtain a (1+ε)-optimal solution (to the original problem),
then one would obtain a reduction from the black-box problem to a polynomial-
scenario problem while losing a (1 + ε) factor. As mentioned earlier, Kleywegt
et al. [14] prove a sample-size bound for general 2-stage programs that depends
on the variance of a certain quantity, which need not be polynomially bounded.
Although this bound is tight in the black-box model for general 2-stage pro-
grams [24], for structured programs such as the class of 2-stage LPs considered
in [25], one can prove better bounds that do not follow directly from the bound
in [14]. Swamy and Shmoys [27] gave a polynomial bound for this class by build-
ing upon ideas used in the ellipsoid-based FPAS of Section 2. More recently,
Nemirovskii & Shapiro [19] showed that for the stochastic set cover problem,
additional analytical insights yield similar bounds as a further consequence of
the results of [14]. Thus, the SAA method yields a simpler, more efficient scheme
for this class of programs.

The proof in [27] uses (approximate) subgradients to identify a notion of close-
ness between the sample-average and true objective functions. Loosely speaking,
this notion captures the property that the ellipsoid-based FPAS can be made to
run identically on both the sample-average and the true problems, which intu-
itively suggests that optimizing the sample-average function is nearly equivalent
to optimizing the true function. Subsequently Charikar, Chekuri and Pál [3] gave
a different proof for roughly the same class of programs. While [27] only shows
that any optimal solution to the sample-average LP is a (1 + ε)-optimal solution
to the true LP (with high probability), Charikar et al. argue that by slightly
modifying the “standard” SAA approach, one can prove that any α-optimal
solution to the sampled problem is an (α+ ε)-optimal solution to the true prob-
lem. This implies the remarkable consequence that one can, in effect, reduce
the black box model (for a class of 2-stage recourse minimization problems) to
the polynomial-scenario model. In Section 3, we gave a 3-approximation algo-
rithm for SUFL in the polynomial-scenario model. Likewise, by mimicking the
primal-dual algorithm for vertex cover one can obtain the same guarantee of
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2 for the stochastic problem in the polynomial-scenario model [21]. The above
result shows that these guarantees also extend to the black-box model.

We have described a variety of techniques for the design of approximation
algorithms for 2-stage stochastic linear and integer programs. This thread of al-
gorithmic analysis of stochastic optimization approximation algorithms has the
potential to bring together the insights and approaches from several disjoint re-
search communities: (traditional) stochastic programming, theoretical computer
science, and machine learning (where the flavor of learning a distribution based
on a limited number of samples plays a central role). There is much more work
remaining than has already been done, since the bulk of the work done thus far
in such black box settings does not extend to a variable number of stages, or to
settings beyond the simple expectation minimization objective.
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Abstract. We consider the family of crossing-free geometric graphs of
a certain type—most notably triangulations, but also spanning (Hamil-
tonian) cycles, spanning trees, matchings, etc.—on a given point set in
the plane. In particular, we address the question of how large these fam-
ilies can be in terms of the number of points. After the issue was raised
for Hamiltonian cycles by Newborn and Moser, and for triangulations by
Avis, it was shown in 1982 by Ajtai, Chvátal, Newborn, and Szemerédi
that for any set of n points the number of all crossing-free geometric
graphs on is at most cn for c = 1013 (as opposed to the previously known
bounds of the form cn log n). We report on some of the developments since
then, e.g. a 43n bound on the number of triangulations whose proof takes
a detour via random triangulations.

While this problem seems elusive despite of some progress, related
algorithmic questions are even less understood: For example the com-
plexity of determining or approximating the number of triangulations of
a point set, or generating a triangulation uniformly at random from all
triangulations of a point set.
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Abstract. We consider the problem of approximating normal and fea-
ture sizes of a surface from point cloud data that may be noisy. These
problems are central to many applications dealing with point cloud data.
In the noise-free case, the normals and feature sizes can be approximated
by the centers of a set of unique large Delaunay balls called polar balls. In
presence of noise, polar balls do not necessarily remain large and hence
their centers may not be good for normal and feature size approxima-
tions. Earlier works suggest that some large Delaunay balls can play the
role of polar balls. However, these results were short in explaining how
the big Delaunay balls should be chosen for reliable approximations and
how the approximation error depends on various factors. We provide new
analyses that fill these gaps. In particular, they lead to new algorithms
for practical and reliable normal and feature approximations.

1 Introduction

Recently, a number of algorithms have been designed for processing point cloud
data. Often these algorithms, as a basic step, estimate the normals and features
of the sampled surface from the given point cloud. For example, some algo-
rithms [1,8,11] need a normal estimation step for surface reconstruction, and
others estimate the scale of local geometry also called the local feature size to
handle non-uniform samples [9,14]. In the noise-free case the problem of normal
and feature size approximations have been well studied [2,4,6]. In the case of
noise, optimization based techniques [1,13] are known for normal approxima-
tions though they do not have theoretical guarantees. It is known that results
from the noise-free case can be extended by using big Delaunay balls that can
help in estimating normals [8] with theoretical guarantees. However, it is not
known how the error of approximation depends on different noise components,
and more importantly, how the big Delaunay balls should be chosen for reliable
approximations. The problem for feature approximations in presence of noise is
much less understood. No reliable and practical algorithm is known for it. In
this paper we address these open issues.
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Motivation and results. Amenta and Bern [2] introduced the concept of poles.
These are the furthest Voronoi vertices from the respective sites on the two sides
of the sampled surface. In terms of the Delaunay triangulation, poles are the
centers of the largest Delaunay balls incident to the sample points on both sides
of the sampled surface. These balls are also called the polar balls. Amenta and
Bern showed that, in the noise-free case, the normals can be estimated by the
poles. Further, Amenta, Choi, Kolluri [4] and Boissonnat, Cazals [6] proved that
the poles also approximate the medial axis and hence local feature sizes can be
estimated by distances to the poles.

Fig. 1. Top row: Left: noise-free case, poles are approximating the medial axis and
normals well. Middle: A small noise disturbs the poles significantly resulting in poor
normal and medial axis approximation with all poles. Right: only a subset of big Delau-
nay balls are chosen, normals though not medial axis are well approximated. Bottom
row: Left: Delaunay balls of bigger size are chosen to exclude unwanted poles, some
significant parts of the medial axis are not approximated. Right: Centers of polar balls
chosen with our algorithm approximate the medial axis everywhere. Approximated
feature sizes are indicated in the highlighted boxes.

In the presence of noise, the above results do not hold since some of the
polar balls can be arbitrarily small with their centers being arbitrarily close
to the surface. See the top-middle picture in Figure 1. Nevertheless, Dey and
Goswami [8] observed that, under a reasonable noise model, many Delaunay
balls remain big and their centers can help in approximating the normals. The
error in the normal approximation by big Delaunay balls obviously depends on
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the sampling density (ε) and also on the size of the chosen Delaunay balls. A
detailed analysis on these dependencies is missing in earlier works. First, our
analysis provides an error bound that unifies earlier results. Second, it tells
us how to choose big Delaunay balls in practice for reliable normal and, in
particular, feature size approximations for noisy point clouds.

In the noise-free case the choice of the Delaunay balls is not an issue in nor-
mal and feature size approximations as they are approximated from polar balls
which are almost as big as medial balls. However, in the case of noise, the choice
of Delaunay balls is an issue as all polar balls are not big. To remain scale inde-
pendent one can choose Delaunay balls whose radii are larger than a threshold
determined by some nearest neighbor distances of the sample points incident on
the Delaunay balls. In order to gauge the viable values of the threshold, it is im-
portant to know how the normal and feature size approximation errors depend
on the radii of the Delaunay balls. Our new analysis provides this relation. We
show that normals can be estimated from Delaunay balls that are not necessarily
as big as local feature sizes (f(·)). In fact, Delaunay balls with radii as small
as ε

1
2 f(·) are also good for normal estimations. See top row in Figure 1 for an

illustration.
The case for feature estimations in presence of noise is far more difficult.

This is because, unlike normal approximations, not all centers of Delaunay balls
chosen with a reasonable threshold approximate the medial axis. Choosing the
right ones is hard. If the threshold is relatively small, a number of centers remain
which do not approximate the medial axis. See top-right picture in Figure 1. On
the other hand if the threshold is large, the medial axis for some parts of the
models may not be approximated at all; see bottom-left picture in Figure 1. As a
result no threshold may exist for which large Delaunay balls’ centers approximate
the medial axis, the Dog data in Figure 1 and the Horse data in Figure 4 are
two such examples in two and three dimensions respectively.

We propose a different algorithm to choose the Delaunay balls for approxi-
mating the medial axis. We consider k-nearest neighbors for some k and take
the largest polar ball’s center among these neighbors to approximate the medial
axis. Our analysis leads to this algorithm which frees us from the burden of
choosing a size threshold. Our experiments suggest that k can be chosen fairly
easily, generally in the range of 5 to 10. The most important thing is that a k
can be found for which the medial axis is well approximated where no such size
threshold may exist. The bottom row of Figure 1 illustrates this point.

Previous results. Amenta, Bern and Eppstein [3] introduced the ε-sampling
for noise-free case. This requires each point on the surface to have a sample point
within a distance of ε times the local feature size. When noise is allowed, the
sample points need not lie exactly on the surface and may scatter around it.
Therefore, the sampling model needs to specify both a tangential scatter, i.e.,
the sparseness of the sampling along tangent directions of the surface and also
a normal scatter, i.e., the sparseness of sampling along the normal directions.
Dey and Goswami [8] introduced a noise model that uses the same sampling
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parameter ε for both scatters. Kolluri [11] and later Dey and Sun [9] modified
the normal scatter to have ε2 dependence. The errors of normal and feature
approximations depend on both tangential and normal scatters. Therefore, we
introduce two independent parameters ε and δ for these two scatters to reveal
the dependence of the approximation errors on these two parameters separately.

Normal approximation: Dey and Goswami [8] and Mederos et al. [12] showed that
when both tangential and normal scatters are O(ε) times the local feature size,
the normals can be approximated with an O(

√
ε) error if the chosen Delaunay

balls have radius almost as big as the local feature size. Dey and Sun [9] showed
that the error is O(ε) if the normal scatter is only O(ε2) times the local feature
size. None of these results specify how the error depends on the radii of the
chosen Delaunay balls.

In this paper we provide a simple elegant analysis which shows that the error
is 2( 1

λ +1)O(ε+
√
δ) where λ is the radius of the Delaunay ball. Previous results

under different noise models can be derived from this unified result. One impli-
cation of this result is that Delaunay balls as small as O(ε

1
2 + δ

1
4 )f(·) can help

in estimating the normals. This relaxes the burden on setting the parameter for
the normal estimation algorithm.

Feature approximation: Amenta, Bern and Eppstein [3] defined the local feature
size of a point x on the surface as the distance of x to the medial axis. Obviously,
the local feature size can be estimated if the medial axis can be approximated.
An algorithm for approximating the medial axis from noisy point clouds ex-
ists [7]. This algorithm approximates the medial axis with Voronoi faces under a
stringent uniform sampling condition. Selecting Voronoi faces to approximate the
medial axis is not a simple task in practice even for noise-free case [5,10] and it is
not clear how this algorithm works in practice when noise is present. Moreover,
for estimating the local feature size a continuous approximation with Voronoi
faces is an overkill. A discrete approximation of the medial axis with a set of
Voronoi vertices serves the purpose equally well. For the noise-free case, such an
approximation was proposed by Amenta et al. [4] and Boissonnat and Cazals [6].
Recently, Mederos et al. [12] derived some results for noisy point clouds that have
some connections to the local feature size approximations though the approx-
imation factor depends on a surface related constant which can be potentially
huge.

Our analysis is free of any surface dependent constant and it relates the
approximation error to the tangential and normal scatters separately. Most
importantly, the analysis justifies our choice of polar balls based on nearest
neighbors to approximate the medial axis. Figure 1 and 4 show that this choice
is far more superior than the big Delaunay ball strategy. Experiments with our
implementation [16] of the algorithm confirm this claim for other models. Due to
the space limitation, the proofs of our results cannot be included in this paper.
An extended version including all the proofs is available from authors’ webpages
[15].
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2 Preliminaries

2.1 Definitions

For a set Y ⊆ R3 and a point x ∈ R3, let d(x, Y ) denote the Euclidean distance
of x from Y ; that is,

d(x, Y ) = inf
y∈Y

{‖y − x‖}.

The set Bc,r = {y | y ∈ R3, ‖y − c‖ ≤ r} is a ball with radius r and center c.

Voronoi and Delaunay diagram. For a finite point set P ⊂ R3, we will denote the
Voronoi diagram and its dual Delaunay triangulation of P by VorP and DelP
respectively. The Voronoi cell for a point p is denoted as Vp.

Sampled surface. Let Σ ⊂ R3 be a compact smooth surface without boundary
from which the input sample is derived possibly with noise. Also, assume that
Σ is connected. The bounded and unbounded components of R3 \Σ are denoted
ΩI and ΩO respectively. The normal at any point x ∈ Σ is denoted nx which is
directed locally inward, i.e., toward ΩI .

The medial axis M of Σ is the locus of the centers of the maximal balls whose
interiors are empty of points in Σ. These balls meet Σ only tangentially. We call
each such ball Bm,r a medial ball where r = d(m,Σ). Barring some pathological
cases, we can assume M ∩ Σ is empty if Σ is smooth. The subsets of M in
ΩI and ΩO are called inner and outer medial axis respectively. For each point
x ∈ Σ, there are two medial balls, one centering a point in the inner medial axis
and the other in the outer medial axis. The local feature size at a point x ∈ Σ
is defined as f(x) = d(x,M). The function f() satisfies the following Lipschitz
property [2].

Lipschitz property. For any two points x, y ∈ Σ, f(x) ≤ f(y) + ‖x− y‖.

2.2 Sampling

A finite set of points P ⊂ Σ is called an ε-sample of Σ if d(x, P ) ≤ εd(x,M)
for each x ∈ Σ. To accommodate the tangential and normal scatters of points
around Σ in the noisy case, we put two conditions on the sampling. The first
condition says that the projection of the point set P on the surface makes a
dense sample and the second one says that P is close to the surface. We also use
a third condition to make the sampling locally uniform. To make the sampling
definition general, we use a separate parameter for each sampling condition. For
any point x ∈ R3 \M let x̃ denote its closest point on Σ. Clearly, the segment
xx̃ is parallel to the normal nx̃.

We say P ⊂ R3 is a (ε, δ, κ)-sample of Σ if the following conditions hold.

(i) P̃ = {p̃}p∈P is an ε-sample of Σ,
(ii) ‖p− p̃‖ ≤ δf(p̃),
(iii) ‖p − q‖ ≥ εf(p̃) for any two points p, q in P where q is the κth nearest

sample point to p.
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Figure 2 illustrates why we put the third condition. In the figure the same
point sample satisfies the first two conditions for two different curves; C and
also C ∪ C′. Our analyses for normal and medial axis approximations apply to
both of these curves; albeit with different scales of local feature sizes. Therefore,
the analyses do not need the third condition in the sampling. However, our
approximation algorithms determine a particular scale by looking at the nearest
neighbor distances. This implies that the sampling cannot allow the ambiguity
which is forced by assuming a local uniformity constraint in the third one.

C’

C

Fig. 2. A point sample satisfying sampling conditions (i) and (ii) for a single component
curve C (left) and also the curve C ∪ C′ (right)

In the analysis we concentrate only in the bounded component ΩI together
with the inward normals and inner medial axis. It should be clear that the results
also hold for unbounded component, outward normals and outer medial axis. For
a point x ∈ Σ, let mx denote the center of the inner medial ball meeting Σ at
x and ρx its radius.

It follows almost immediately from our sampling conditions that each point
of Σ and a point not far away from Σ has a sample point nearby. Lemma 1 and
Corollary 1 formalize this idea.

Lemma 1. Any point x ∈ Σ has a sample point within ε1f(x) distance where
ε1 = (δ + ε+ δε).

Since f(x) ≤ ρx for any point x ∈ Σ, the following corollary is immediate.

Corollary 1. Any point y ∈ R3 with ‖y − ỹ‖ = δρỹ has a sample point within
ε2ρỹ distance where ε2 = (2δ + ε+ δε).

3 Empty Balls

A ball is empty if its interior is empty of points from P . A main ingredient in
our analysis will be the existence of large empty balls. They in turn lead to
the existence of large Delaunay balls that circumscribe Delaunay tetrahedra in
DelP . The centers of such Delaunay balls which are also Voronoi vertices in
VorP play crucial roles in the algorithms for normal and feature estimations.
In this section, we present two lemmas that assure the existence of large empty
balls with certain conditions.

Lemma 2 below assures that for each point x ∈ Σ there is a large empty ball
of radius almost as large as (i) f(x) and (ii) ρx. Notice the differences between
the distances of these balls from x. Also, see Figure 3.
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Lemma 2. A ball Bm,r is empty of sample points from P if either

(i) m̃ = x, ‖m− x‖ = f(x) and r = (1 − 3δ)f(x), or
(ii) m = mx and r = (1 − δ)ρx.

Σ

x

p

m

p x

p~
m=mx

(1−δ)ρx

f(x)(1−3δ)

p~

Fig. 3. Illustration for Lemma 2. The dotted big balls are not empty of sample points
but their slightly shrunk copies (shown with solid boundaries)are.

Next, we show that, for each point x of Σ, there is a nearby large ball which
is not only empty but also its boundary passes through a sample point close
to x. Eventually these balls will be deformed to Delaunay balls for medial axis
approximations.

Lemma 3. For each point x ∈ Σ there is an empty ball Bc,r with c ∈ ΩI that
enjoys the following properties:

(i) r is at least (1 − 2
√
ε2)ρx, mx is in Bc,r and ‖c−mx‖ ≤ 2

√
ε2ρx where ε2

defined in Corollary 1 is O(ε+ δ),
(ii) its boundary contains a sample point p within a distance ε3ρx from x where

ε3 = 2ε2
1
4 + δ and ε, δ are sufficiently small.

Observation: We could choose ε3 = O(
√
ε2) = O(

√
ε+ δ) though the radius of

the empty ball becomes a constant fraction of ρx. Also, Lemma 3 remains valid
when we replace ρx with f(x).

4 Normal Approximation

We will approximate the normals by the vectors from the sample points toward
the centers of the Delaunay balls incident to them. First, we derive an upper
bound on this normal approximation error in Theorem 1. Then, we describe a
simple algorithm for approximating the normals whose justification is given by
the theorem and Lemma 3.
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4.1 Analysis

The proof of Theorem 1 is based on the following idea. Consider tilting an
empty ball whose boundary passes through a point p and whose center lies in
the direction of np̃. The maximum amount of tilt with the constraint that the
ball remains empty depends on how big the ball is and how close the sample
points are.

Theorem 1. Let p ∈ P be incident to an empty ball Bc,r where r = λf(p̃) and
c ∈ ΩI . Then,

sin(∠pc,np̃) ≤ 2(
1
λ

+ 1)(ε1 + 2
√
δ) +O(δ) +O(ε2)

for a sufficiently small ε > 0 and δ > 0.

Implications: Theorem 1 gives a general form of the normal approximation under
a fairly general sampling assumption. One can derive different normal approx-
imation bounds under different sampling assumptions from this general result.
For example, if P is a (ε, ε2,−)-sample we get an O(ε) bound on the normal ap-
proximation error. In case P is a (ε, ε,−)-sample, we get an O(

√
ε) error bound.

Another important implication is that Delaunay balls need not be too big to
give good normal estimates. One can observe that if λ is only

√
max{ε, δ}, we

get O(ε
1
2 + δ

1
4 ) error. Algorithmic implication of this fact is that a lot of sample

points can qualify for normal estimation.
Theorem 1 remains valid even if the sample point p is replaced with any point

x ∈ R3 meeting the conditions as stated in the corollary below. We use this fact
later in feature estimation.

Corollary 2. Let x ∈ R3 be any point with ‖x − x̃‖ ≤ δρx̃ and Bc,r be any
empty ball incident to x so that r = Ω(ρx̃). Then, ∠xc,nx̃ = O(ε +

√
δ) for

sufficiently small ε and δ.

4.2 Algorithm

We know from Theorem 1 that if there is a big Delaunay ball incident to a sample
point p, then the vector from p to the center of the ball estimates the normal
direction at the point p̃. On the other hand, the observation after the proof of
Lemma 3 assures that for each point x ∈ Σ, there is a sample point p within
O(
√
ε+ δ)f(x) distance with an empty ball of radius Ω(f(x)). This means there

is a big Delaunay ball incident to p where the vector pc approximates np̃ and
hence nx. Algorithmically we can exploit this fact by picking up sample points
that are incident to big Delaunay balls only if we have a scale to measure ‘big’
Delaunay balls. For this we assume the third condition in the sampling which
says that the sample is locally uniform.

Let λp be the distance of p to its κth nearest neighbor. By sampling condition
λp ≥ εf(p̃). Therefore, any Delaunay ball incident to p with radius more than τλp

will give a normal estimation with an error 6( 1
τε +1)(ε) according to Theorem 1
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under the assumption that P is a (ε, ε2, κ)-sample. It is important that λp is not
arbitrarily large since then no Delaunay may qualify for the size threshold. This
concern is alleviated by the fact that λp ≤ ε′f(p̃) where ε′ =

(
ε+ 4κ+ε

1−4κε

)
ε [8].

Notice that the error decreases as τ increases. However, as we indicated before
τεf(p̃), the radius of the big Delaunay ball, can be as small as ε

1
2 f(p̃) to give

an O(
√
ε) error. This explains why a large number of Delaunay balls give good

normal estimations as Figure 1 illustrates.

ApproximateNormal(P, τ)
Compute DelP ;
fo r each p ∈ P compute λp;

if there is a Delaunay ball incident to p
with radius larger than τλp

Compute the largest Delaunay ball Bc,r

incident to p;
Approximate the normal direction at p by pc.

endif

Notice that, alternatively we could have eliminated the parameter τ in the
algorithm by looking for the largest Delaunay ball incident to a set of k-nearest
neighbors of p for some suitable k. Again, thanks to Lemma 3, we are assured
that for a suitable k, one or more neighbors have Delaunay balls with radius
almost equal to the medial balls. However, this approach limits the number of
sample points where the normals are estimated. Because of our earlier obser-
vation, the normals can be estimated at more points where the Delaunay ball
is big but not necessarily as big as the medial balls. In contrast, as we see
next, feature estimation needs the Delaunay balls almost as big as the medial
ones.

5 Feature Approximation

We approximate the local feature size at a sample point p by first approximating
the medial axis with a set of discrete points and then measuring the distance
of p from this set. We are guaranteed by Lemma 3 that there are many sample
points which are incident to big Delaunay balls. The furthest Voronoi vertices
from these sample points in ΩI and ΩO approximate the inner and outer medial
axis respectively. For a point p ∈ P , we call the furthest Voronoi vertex from p
in Vp ∩ΩI as the inner pole p+ of p. Similarly one may define the outer pole p−

of p which resides in ΩO.
In line with the previous results on medial axis approximation [4,6,7], we claim

that a certain subset of the medial axis is approximated by poles. Let x and x′

be two points where the medial ball B centered at m meets Σ. Call ∠xmx′ the
medial angle at m if it is the largest angle less than π made by any two such
points of B ∩ Σ. Let Mα ⊆ M be the subset where each point m ∈ Mα has a
medial angle at least α.
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5.1 Analysis

We show that each medial axis point mx with a large enough medial angle is
approximated by a pole. The idea is as follows. Consider the large ball incident to
a sample point p guaranteed by Lemma 3. Then we deform it to a large Delaunay
ball with the center at p+. First, during this deformation the ball cannot be tilted
too much since the vector from p to the center has to approximate the normal
np̃ by Theorem 1. Second, the center in the tilted direction cannot move too
much due to Lemma 4 as stated below. The result of these constraints is that
the center p+ of the Delaunay ball remains close to the center of the original
ball which in turn is close to mx.

Lemma 4. LetB = Bc,r be an empty ball whose boundary passes through a sample
point p. Let z be a point on Σ whose distance to the boundary of B is less than ε′ρz

for ε′ < 1. Let B′ = Bc′,r′ be an empty ball obtained by expanding B while keeping
c′ on the ray pc and p on its boundary. If βρz ≤ r ≤ ρz, then we have

‖c− c′‖ ≤ (ε1 + ε′)(2 + ε′)
2β(1− cos∠pcz)− 2ε1 − 2ε′ cos∠pcz ρz.

Theorem 2. For each point mx ∈ Mα ∩ ΩI where α = ε
1
4 + δ

1
4 , there is a

sample point p within O(ε
1
4 + δ

1
4 )ρx distance of x so that the pole p+ lies within

O(ε
1
4 + δ

1
4 )ρx distance from mx where ε and δ are sufficiently small.

For each point x ∈ Σ where mx ∈ Mα the previous theorem guarantees the
existence of a sample point p whose pole approximates mx. Actually, the proof
technique can also be used to show that any Delaunay ball with radius almost
as big as ρx and incident to a sample point close to x has its center close to mx.

Theorem 3. Let x ∈ Σ be a point so that mx ∈Mα for α = ε
1
4 + δ

1
4 . Then for

any point p ∈ P within ε3ρx distance of x and with an incident Delaunay ball of
radius at least (1−O(

√
ε+
√
δ)ρx, the pole p+ lies within O(ε

1
8 + δ

1
8 )ρx distance

from mx.

5.2 Algorithm

Theorem 2 and Theorem 3 suggest the following algorithm for feature estimation
at any point x ∈ Σ where mx ∈ M

ε
1
4 +δ

1
4
. Theorem 2 says that x has a sample

point p within a neighborhood of ε3ρx whose pole p+ approximates mx. Also,
Theorem 3 says that all sample points within ε3ρx neighborhood of x with a
large enough Delaunay ball have their poles approximate mx. Therefore, if we
take the pole of a sample point q whose distance to q is largest among all sample
points within a neighborhood of x, we will get an approximation of mx.

We search the neighborhood of x by taking k nearest neighbors of a sample
point s close to x. If we assume that P is a (ε, δ, κ)-sample for some κ > 0,
κ-nearest neighbors cannot be arbitrarily close to x. Notice that if we do not
prevent oversampling by the third condition of noisy sampling, we cannot make
this assertion. In the algorithm, we simply allow an user supplied parameter k
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to search the k nearest neighbors. Since we want to cover all points of Σ, we
simply take all points of P and carry out the following computations.

For each point p ∈ P we select k-nearest neighbors for a suitable k. Let Np be
this set of neighbors. First, for each q ∈ Np, we determine the Voronoi vertex vq

in Vq which is furthest from q. This is one of the poles of q. Let �1(p) = ‖vq −
q‖. Select the point p1 ∈ Np so that �1(p1) is maximum among all points in Np.
By Theorem 2 and Theorem 3, vp1 approximates a medial axis point mx if x ∈
M

ε
1
4 +δ

1
4
. However, we do not know ifmx is an inner medial axis point or an outer

one. Without loss of generality assume that mx is an inner medial axis point. To
approximate the outer medial axis point for x, we determine the Voronoi vertex
uq in Vq for each q ∈ Np so that quq makes more than π

2 angle with p1vp1 . Let
�2(q) = ‖uq − q‖. Then, we select the point p2 ∈ Np so that �2(p2) is maximum
among all points in Np. Again, appealing to Theorem 2 and Theorem 3 for outer
medial axis, we can assert that up2 approximates a medial axis point for x.

ApproximateFeature(P, k)
Compute DelP ; L := φ;
for each p ∈ P compute k nearest neighbors Np;

compute p1 ∈ Np whose distance to
its pole vp1 is maximum

among all points in Np;
compute p2 ∈ Np with a pole vp2 so that

∠p2vp2 ,p1vp1 ≥ π
2 and ‖p2 − vp2‖

is maximum among Np;
L := L ∪ {vp1 , vp2};

endfor
for each p ∈ P compute the distance of p to L.

As we have observed already, a subset of the medial axis is not approximated
by the poles. These are exactly the points on the medial axis which have a

Fig. 4. Left: Medial axis approximated by centers of big Delaunay balls for a noisy
Horse. For a chosen threshold, some parts of the legs do not have medial axis ap-
proximated though still many centers lie near the surface. Right: Medial axis well
approximated by the poles as computed by ApproximateFeature.
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small medial angle. This type of exclusions are also present in earlier medial axis
approximation results [4,6,7]. The implication of this exclusion is that features
cannot be properly estimated for points whose closest point on the medial axis
resides in the excluded part. However, if the sampling is sufficiently dense, the
excluded part is indeed small in most cases. Figure 4 shows the result of feature
approximations for a model in three dimensions.
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“The problem received the title of ‘Buridan’s sheep.’ The biological code was
taken from a young merino sheep, by the Casparo-Karpov method, at a moment
when the sheep was between two feeding troughs full of mixed fodder. This code,
along with additional data about sheep in general, was fed into CODD. The
machine was required: a) to predict which trough the merino would choose, and
b) to give the psychophysiological basis for this choice.”

– The mystery of the hind leg, Arkady and Boris Strugatsky.

Abstract. Given a set P of n points on the real line and a (potentially
infinite) family of functions, we investigate the problem of finding a small
(weighted) subset S ⊆ P , such that for any f ∈ F, we have that f(P ) is
a (1 ± ε)-approximation to f(S). Here, f(Q) =

∑
q∈Q w(q)f(q) denotes

the weighted discrete integral of f over the point set Q, where w(q) is
the weight assigned to the point q.

We study this problem, and provide tight bounds on the size S for
several families of functions. As an application, we present some coreset
constructions for clustering.

1 Introduction

Motivated by recent work on clustering, we investigate the following natural
problem.

Problem 1. Let P be a set of points on the real line, and let F be a (potentially
infinite) family of functions. A ε-coreset for P is a weighted subset S ⊆ P , such
that

∀f ∈ F, f(P )≈εf(S),

where f(P ) =
∑

p∈P f(p), f(S) =
∑

p∈S f(p) ∗ w(p) and w(p) is the associated
weight of p in S. (The notation x≈εy denotes the fact that (1−ε)x ≤ y ≤ (1+ε)x
and (1 − ε)y ≤ x ≤ (1 + ε)y.)

The problem is to find the smallest ε-coreset for P and F. Note that such a
coreset always exists as we can just take S = P .
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If P is uniformly distributed on an interval on the real line, this is (very sim-
ilar to) the standard problem of numerical integration on the real line studied
in numerical-analysis. However, as our investigation demonstrates, this is funda-
mentally a different problem once the point set is not uniform. Similarly, there
seems to be some indirect connection to discrepancy [2]. However, the author is
unaware of any direct previous work on this problem.

To see how this problem naturally arises from clustering, consider the problem
of computing k-median clustering (say, in the plane). For any set of centers C
in the plane, every point of P is assigned the cost of being clustered using C;
namely, the k-median clustering cost of P by C is the sum of distances of the
points of P to their closest neighbor in C. Let fC(·) the cost function induced
by C, and let Fkwc be the set of all such functions. If one can find a small ε-
coreset for P (for Fkwc) then one can compute a good clustering of P directly
on the (considerably smaller) coreset. Har-Peled and Kushal [3] showed that
this problem, for a point set in Rd, can be reduced to (a variant) of this one
dimensional problem.

Coresets for k-median clustering are now relatively well understood, see [4,3,5].
See [6] for more details on the usage of coresets for clustering. However, if we are
interested in handling more general clustering problems, like the centers being
lines instead of points, we need to better understand the aforementioned more
general problem. See the work by Feldman et al. [7] for preliminary results on
this problem for the line clustering problem. For more information about clus-
tering, see [8,9,10,11,12,13,14,15,16,17,18]. In particular, our work yields better
coreset constructions for k-line median clustering (see Theorem 12) than what
was known before [7].

Our approach is to systematically classify which families of functions have
coresets and of what sizes, starting from (the trivial) family of linear functions
and ending in the clustering functions mentioned above. The basic approach is
quite natural, and has long history: We will partition the points into groups, and
from each group pick one representative point (with weight equal to the group
size). This is a classical technique used in computing estimates to summations
and integrals (for example, bounding

∑n
i=1 1/i by partitioning the range 1, . . . , n

into the blocks 2i, . . . , 2i+1 − 1, for i = 1, . . . , �lg n�). What makes our study
(maybe) interesting, is that our partitions do not work just for a single function
but for a family of functions, and require (especially towards the end) delicate
and not completely trivial constructions. In particular, this gives rise to new
partition schemes of point sets on the line (i.e., safe and secure partitions) which
might be of independent interest.

The paper is organized as follows. In Section 2 we define some preliminary
definitions. In Section 3, we study the problem for some simple families of func-
tions. In Section 4, we introduce some partition schemes of point sets that are
useful in constructing coresets for clustering functions. In Section 5, we use these
partition scheme to construct coreset for the weighted k-median clustering prob-
lem on the line, and in Section 6, we extend this to handle the k-median function
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induced by k lines. We conclude in Section 7 with conclusions and some open
problems.

2 Preliminaries

Two non-negative numbers x and y are (1 ± ε)-approximation of each other if
(1 − ε)x ≤ y ≤ (1 + ε)x and (1 − ε)y ≤ x ≤ (1 + ε)y. We denote this fact by
x≈εy.

Observation 1. Let x and y be two positive numbers and ε < 1/4. We have: (i)
If x≈εy and y≈εz then x≈3εz. (ii) If |x− y| ≤ εx then x≈2εy. (iii) If x ≤ (1+ε)y
and y ≤ (1 + ε)x then x≈εy.

Two non-negative functions f(·) and g(·) are (1±ε)-approximation of each other,
denoted by f≈εg, if f(x)≈εg(x), for all x.

3 Basic Coresets for Integration

In this section, we present coresets for several simple families of functions.

3.1 Linear Functions

Let Flinear be the set of affine functions of the form f(x) = ax+ b. Then, clearly
for the set P , the centroid point of P (i.e., the average value of P ) with assigned
weight |P | is a coreset.

Lemma 1. The family Flinear of linear functions have a coreset of size 1.

3.2 Monotone Functions

Let Fdec (resp., Finc) be the family of monotone decreasing non-negative func-
tions (resp., family of monotone increasing non-negative functions) from R to
R+.

Lemma 2. Given a set P ⊆ R of n numbers, one can compute an ε-coreset of
P of size O

(
ε−1 log n

)
for the family of functions Fdec.

Proof. The following construction is somewhat of an overkill, but it would be
useful later for other purposes.

The construction follows the exponential construction used in the 1-median
coreset in [19]. Indeed, let zi denote the ith point in the sorted order of the
points of P . We partition P symmetrically into subsets, such that the size of
the subsets increase in size as one comes toward the middle of the set. Formally,
the set Ai = {zi} contains the ith point on the line, for i = 1, . . . ,m, where
m ≥ 10/ε is a parameter to be determined shortly. Similarly, Ri = {zn−i+1},
for i = 1, . . . ,m. Set αm = m, and let αi+1 = min (�(1 + ε/10)αi� , n/2), for i =
m, . . . ,m′, where αm′ is the first number in this sequence equal to n/2. Now, let
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Ai =
{
zαi−1+1, . . . , zαi

}
and Ri =

{
zn−αi−1 , . . . , zn−αi+1

}
, for i = m+1, . . . ,m′.

See figure on the right. We will refer to a set Ai or Ri as a chunk. Consider
the partition of P formed by the chunks A1, A2, . . . , Am′ , Bm′ , . . . , B2, B1. To
simplify the exposition, let C1, . . . , CM denote the resulting sequence of sets,
where M = 2m′. This is a partition of P into “exponential sets”. The first/last
m sets on the boundary are singletons, and all the other sets grow exponentially
in cardinality, till they cover the whole set P .

Next, we pick an arbitrary point li ∈ Ci and assign it weight wi = |Ci|, for
i = 1, . . . ,M. Let S be the resulting weighted set of points. We claim that this is
a coreset for any function of Fdec.

For the sake of analysis we can assume that P = {1, 2, . . . , n}. Indeed, this
can be realized by stretching and translating the real-axis appropriately and
observing that the resulting function is still monotone decreasing. The claim
now follows by a simple integration argument.

T

�

R−

Indeed, let f ∈ Fdec be an arbitrary function. For
a chunk Ci = {ji, . . . , ji+1 − 1}, we observe that its
contribution to f(S) can be interpreted as a bar
(i.e., rectangle) in a histogram based at the interval
Ii = [ji − 1, . . . , ji+1 − 1] and having height f(li),
for i = 1, . . . ,M. Consider the error zone formed by
this rectangle, as it gets its maximum height (by
setting li = ji) and its minimum height (by setting
li = ji+1−1). Clearly, this zone of error is a rectangle ri = Ii×[f(ji+1−1)), f(ji)].
Let T = r1 ∪ . . . ∪ rM be the resulting set formed by these of rectangles. Since
f(·) is monotone decreasing, a horizontal line crosses the interior of at most
one of the rectangle of T . Let R− be the histogram

⋃
i Ii × f(ji+1 − 1), and

let R+ be the histogram
⋃

i Ii × f(ji). Clearly, R− ⊆ R+, R+ = R− ∪ T ,
area(R+) = area(R−)+ area(T ), area(R−) ≤ f(S) ≤ area(R+), and area(R−) ≤
f(P ) ≤ area(R+).

Furthermore, by construction, we have that

|Ii| ≤
ε

4

∑
j<i

|Ij | ,

for i = m+1, . . . ,M, where |Ii| denotes the length of this interval. In particular,
this implies that for any horizontal line � we have that |T ∩ �| ≤ (ε/4) |R− ∩ �|.
Now, imagine computing the area of T by integrating the length of the intersec-
tion of a horizontal line with T . We have that area(T ) ≤ (ε/4)area(R−). This
implies that

E = |f(S)− f(P )| ≤ area(R+)− area(R−) = area(T ) ≤ (ε/4)area(R−)
≤ (ε/4)min(f(P ), f(S)),

as required. �

Clearly, the same construction works for monotonically increasing function. In
fact, the construction also works for a function which is decreasing and then
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increasing, as can be verified. In particular, let Fdec→inc denote the set of non-
negative functions which are first monotonically decreasing, and then they be-
come monotonically increasing. We summarize:

Theorem 2. Let P be a set of n points on the real line. One can construction
a ε-coreset, of size O(ε−1 logn), that works for any function that belongs to
Finc ∪ Fdec ∪ Fdec→inc.

Since non-negative convex functions are also in Fdec→inc, it follows that this
also holds for convex functions.

Let Finc→dec denote the set of non-negative functions which are monotonically
increasing, and then they become monotonically decreasing afterwards.

Lemma 3. Any ε-coreset for Finc→dec for a set P of n points on the real line,
must include all points of P .

Proof. In full version, see [1]. �

3.3 Concave Functions
x

Definition 3. A function f : R → R+ is concave on the
interval I, if for all x, y ∈ I and α ∈ [0, 1] we have that
αf(x) + (1 − α)f(y) ≤ f(αx+ (1− α)y).

Let Fconcave(I) denote the family of concave non-negative
functions defined over the interval I.

Definition 4. An interval J is ε-oblivious for Fconcave(I), if J ⊆ I and for any
f ∈ Fconcave(I) we have that f(x)≈ε/10f(y), for all x, y ∈ J .

Lemma 4. Let I = [a, b], and consider x ∈ [a, b]. Then, there is an ε-oblivious
interval, for Fconcave(I), centered at x of length (ε/40)min ((x− a), (b − x)).

Proof. In full version, see [1]. �

Clearly, if I is a ε-oblivious interval, then we can pick an arbitrary point of
Q = I ∩ P and assign it weight equal to |Q| as a representative of Q in
the resulting coreset. Lemma 4 now implies that f(Q) would be well approx-
imated by this single point. The problem is that one can not cover a given
interval by oblivious intervals, since an infinite number of such intervals
is required.

Theorem 5. Let P be a set of n points on the real line, let I be an interval con-
taining P . Then one can compute a ε-coreset for Fconcave(I) of size O(ε−1 logn).

Proof. Assume I = [0, 1]. Tile the interval [ε/100, 1 − ε/100] by ε-oblivious
intervals. The number of oblivious intervals required is O(ε−1 log(1/ε)). Indeed,
we start tiling from the middle, and let x1 = 1/2. The ith ε-oblivious interval
is [xi+1, xi], where by Lemma 4 we can set xi+1 = (1 − ε/40)xi. Thus, for
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j > 2 �(40/ε)� ln(100/ε) intervals, we have that xj < ε/100, as can be easily
verified. We use the symmetric tiling for the interval [1/2, 1− ε/100].

Compute for each such oblivious interval its coreset representative. As such,
we are left with handling the margin intervals. Let J = [0, ε/100], and consider
a function f ∈ Fconcave(I).

The coreset we use for Q = J ∩P is the (ε/30)-coreset for monotone increasing
functions of Theorem 2. Let S denote the resulting coreset for Q. We use, up to
symmetry, the same coreset construction for [1− ε/100, 1]∩ P . Every oblivious
interval contributes one point to the coreset. Overall, we have a coreset of size
O(ε−1 log n). We remain with the task of proving that this subset is indeed the
required ε-coreset.

f

g

J
ε

100

(1− ε
100 )f(β)}

f(β)

β

Let g(x) = max0≤y≤x f(y).
Note that g(x) − f(x) is max-
imized in J , if the maximum of
f(·) lies at point β that is in-
side J and x = ε/100 is at the
right endpoint of J . But then,
we have by convexity, that f(x)
≥ (1− ε/100)f(β). This implies
that for any x ∈ J , we have
that f(x)≤ g(x)≤ f(β)≤ f(x)/
(1− ε/100) ≤ (1 + ε/50)f(x).

Thus, we can use g(x) instead of f(x) in J , introducing a small (ε/50)-
error in the process. Now, since the (ε/10)-coreset S for Q can handle mono-
tone functions, it follows that it is a (ε/30)-coreset for f(·) on this interval.
Formally,

f(Q) ≤ g(Q) ≤ (1 + ε/30)g(S) ≤ (1 + ε/50)(1 + ε/30)f(S) ≤ (1 + ε/20)f(S),

and similarly,

f(Q) ≥ 1
1 + ε/50

g(Q) ≥ 1− ε/30
1 + ε/50

g(S) ≥ 1− ε/30

(1 + ε/50)2
f(S) ≥ (1− ε/10)f(S).

This implies that S is an ε-coreset for Q for the function f . Thus, collecting
the two coresets of the margin intervals, and all the coresets for the oblivious
intervals results in a ε-coreset for P . �

Somewhat surprisingly, the coreset constructed in Theorem 5 is of optimal size,
up to a multiplicative constant.

Lemma 5. In the worst case, any ε-coreset for Fconcave(I) is of sizeΩ(ε−1 logn).

Proof. In full version, see [1]. �
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pi0 1

Remark 1. Somewhat surprisingly the lower boundofLemma 5
works even when the function fi(x) is a “triangle” function,
namely, fi(x) = min(x/pi, (1 − x)/(1 − pi)). The same esti-
mates as above hold with minor “noise” which do not effect the
conclusion.

4 Partitioning Schemes

Let P be a set of n points on the real line. In this section, we investigate different
ways of partitioning P into subsets, such that each subset has some kind of
separation property from the rest of the point set. Intuitively, all the coreset
constructions so far were based on partition schemes, and we need to have better
understanding of such partitions to have more general coresets.

Definition 6 (Partition). A partition P of a point-set P ⊆ R is a set of disjoint
subsets S1, . . . , Sm of P , such that ∪iSi = P and B(Si) ∩ B(Sj) = ∅, for i 
= j,
where B(S) denotes is the smallest interval containing the set S ⊆ R.

In the following, for an interval I and a positive real number c, we denote by cI
the interval resulting from scaling I up by a factor of c around the middle point
of I.

For a partition P of P into disjoint subsets 〈S1, . . . , Sm〉 and a set I ⊆ R, let

P \ I =
{
Si

∣∣∣Si ∩ I = ∅
}

denote the family of sets of P that are completely outside I. Similarly, let

P ∩ I =
{
Si

∣∣∣Si ⊆ I
}

denote the family of sets of P that are completely inside I. Note that (P ∩ I) ∪
(P \ I) is not necessarily equal to P, as some sets in P might intersect both I
and R \ I. We remind the reader that ∪ (P \ I) = ∪S∈P\IS.

4.1 Safe Partitions

Definition 7 (ε-safe partition). A set S ⊆ R is ε-safe in relation to a set
P ⊆ R if either |S| = 1 or alternatively |P \ 3B(S)| ≥ |S| /ε. Namely, there are
a “lot” of points of P that are “faraway” from S.

B(S)
S

Fig. 1. The interval B(S) and its
associated two safe regions. The
safe regions must contain at least
|S| /ε points.

As such, a partition P is ε-safe if either |Si| = 1
or we have that |∪ (P \ 3B(Si))| ≥ |Si| /ε, for
i = 1, . . . ,m.

Lemma 6. For a set P of n points on the
real line, there exists an ε-safe partition of size
O(ε−1 log n). And in the worst case, any ε-safe
partition of P must be of size Ω(ε−1 logn).

Proof. In full version, see [1]. �
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4.2 Secure Partitions

As reality had demonstrated repeatedly, there is no real safety without security
(the reader mystified by this comment, should see Remark 2).

Definition 8 (ε-secure partition)

A Ba b

Z(S, I)For an interval I = [A,B] and a set S ⊆ I, the se-
curity zone for S, denoted by Z(S, I) is the interval
[(a+A)/2, (b+B)/2], where B(S) = [a, b].

B(Si)
I“allowable” zone

Z(Si, I)

Fig. 2. The set Si and its associated “allowable” zone
Z(Si, I)\3B(Si). For P to be secure, the “allowable” zone
of Si must include sets of P with total mass exceeding
|Si| /ε. And this has to hold for all sets Si in P.

Let P be a set of n
points on the real line,
and let I = [a, b] be a
given interval that
contains P . Informally,
a partition P = {S1,. . . ,
Sm} of P is ε-secure in
I, if we have that Si is
ε-safe in relation to the
set P ∩Z(Si, I), for all i. Formally, let Pi = P∩Z(Si, I) be the partition inside
Z(Si, I) induced by P, and we require that Si is ε-safe in relation to the partition
Pi. See Figure 2 for an alternative equivalent definition.

Intuitively, P is ε-secure if every subset in the partition has enough sets with
sufficient total mass in the partition “faraway” from it, that are not too close to
the endpoints of the host interval I.

Lemma 7. Let P be a set of n points on the real line contained inside the
interval I. Then, there exists a ε-secure partition of P in relation to I of size
O(ε−2 log2 n).

Proof. In full version, see [1]. �

An improved construction.

Theorem 9. Let P be a set of n points on the real line contained inside the
interval I. Then, there exists a ε-secure partition of P in relation to I of size
O(ε−1 log n).

Proof. In full version, see [1]. �

5 Coreset for Weighted Centers

Let Fkwc be the family of functions induced by k weighted centers on the real line.
Formally, for a point p ∈ R and weight w ∈ R+, let fp,w(x) = w ∗ |x− p|. Given
a set W of k weighted points (p1, w1), . . . , (pk, wk), let fW (x) = mini fpi,wi(x)
denote the cost function of clustering x using its nearest weighted center in W ,
for all x ∈ R.
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p q

fq,1

fp,3/2

r

fr,3

f{(p,3/2),(q,1),(r,3)}

Let Ŵ denote the set of all possible k weighted points
on the real line. Then, we have that

Fkwc =
{
fW (·)

∣∣∣W ∈ Ŵ
}
.

Thus, for a point set P ⊆ R and W ∈ Ŵ , the quan-
tity fW (P ) is the price of k-median clustering of P by
the weighted centers of W . We are now interested in
computing a coreset for this family. We need the fol-
lowing technical lemma.

I

J
xin

xout

a bc d

K

Lemma 8. Let I = [a, b] and J =
[c, d] be two intervals on the real line,
such that I ⊆ J , and let K = [(a +
c)/2, (b+ d)/2]. Let fW ∈ Fkwc be a function, such that none of its centers are
in the set J \ I (i.e., W ⊆ (R \ J ) ∪ I). Finally, let xout ∈ K \ 3I and xin ∈ I
be any two points. Then fW (xin) ≤ 3fW (xout).

Proof. In full version, see [1]. �

Theorem 10. Let P be a set of n points on the real line. There exists a ε-coreset
for Fkwc of size O

((
ε−1 logn

)k+1
)
.

Proof. In full version, see [1]. �

Remark 2. The reader might wanter why we need secure partitions for proving
Theorem 10, and maybe safe partitions are enough. However, a careful inspection
of the proof reveals that the inductive hypothesis in the proof fails if we use only
safe partitions. Thus, we need the more involved and painful construction of
secure partitions for our purposes.

5.1 A Lower Bound

Theorem 11. A ε-coreset for a set of n points for the set of functions Fkwc,
has to be of size Ω

(
max

[
(k/ε) log(n/k) , 2k

])
in the worst case.

Proof. In full version, see [1]. �

6 Coreset for Weighted Lines

Consider a line � in Rd, for d > 1, and another line σ. For any point p ∈ σ,
we are interested in its distance to �. It is easy to verify that if we parame-
terize σ uniformly by a number t ∈ R, then the line distance function f(t) =
minx∈� ‖σ(t)− x‖, has the form f(t) =

√
γ2 + β2(t− α)2, where β ≤ 1 and

γ ≥ 0. Note, that f(t) is non-negative, symmetric function around α, realizing
its minimum at t = α. Let Fdline denote the family of all such functions.
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Lemma 9. Let f(t) =
√
γ2 + β2(t− α)2 be a line distance function, and let x

and y be two real numbers, such that y < x < α and α − y ≤ η(α − x), where
η ≥ 1 is a constant. Then, f(y) ≤ η ∗ f(x).

Let Fk−lines be the function formed by the minimization diagram of k functions
of Fdline. A function of such family has a natural interpretation as the distance
of a point on a line, to the closest line in a set of k lines. Next, we prove the
analogue of Lemma 8 for this family of functions.

Lemma 10. Let I = [a, b] and J = [c, d] be two intervals on the real line, such
that I ⊆ J , and let K = [(a+c)/2, (b+d)/2]. Let f ∈ Fk−lines be a function, such
that all its minimums are either in I or outside J . Finally, let xout ∈ K \ 3I
and xin ∈ I be any two points. Then f(xin) ≤ 3f(xout).

Proof. The function f is the minimization function of k functions f1, . . . , fk. In
particular, let FO be the set of these functions with their minimum outside J ,
and FI be the set of these functions with minimums inside I.

For a function g ∈ FI , let u ∈ I be the location of its minimum. Consider the
two points x1 = u− |xout − u| and x2 = u+ |xout − u|. Clearly, I ⊆ [x1, x2], and
by the symmetry of g around u, we have that outside [x1, x2] it is larger than it
is inside this interval. As such, g(xin) ≤ g(x1) = g(x2) = g(xout).

I
J

h

xin

xout

a bc d

Fig. 3. The gray areas represent the “for-
bidden/insecure” areas for xout

For a function h ∈ FO, assume that
xout is to the right of I. If the min-
imum of h is to the left of J , then
we are done as h is increasing on the
interval J , and as such h(xout) ≥
h(xin). If the minimum of h is to the
right of J , as depicted on the right,
then arguing as in Lemma 8 we have
that |xout − b| > |I|. Also, we have that |xout − d| ≥ |xout − b|. Thus, by Lemma 9,
we have that

h(xout) ≥
d− xout

d− xin
fM (xin) ≥ d− xout

|I|+ |b− xout|+ |xout − d|fM (xin)

≥ d− xout

3 |xout − d|fM (xin) =
fM (xin)

3
,

as claimed. �

To construct a coreset for Fk−lines using a construction similar to Theorem 10,
we need to be able to handle the base case k = 0. Fortunately, the functions
induced in such a case are “almost” concave.

Lemma 11. Let I = [a, b] be an interval, and P ⊆ I be a set of n points. Then
one can compute a ε-coreset S, of size O(ε−1 logn), for the set of functions of
Fk−lines with minimums outside I.

Formally, the coreset works for functions f , such that f ∈ Fk−lines is the
minimization diagram of k line distance functions f1, . . . , fk ∈ Fdline, and all of
them having minimums outside I.
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Proof. In full version, see [1]. �

Theorem 12. Let P be a set of n points on the real line. There exists a ε-coreset
for Fk−lines of size O

((
ε−1 logn

)k+1
)
.

Proof. In full version, see [1]. �

Remark 3. Theorem 12 is a substantial improvement over the result of Fiat
et al. [7] that had coreset of size 2O(k2)

ε2k+1 log4k−3 n, for this problem. Also, our
construction is arguably is simpler and more intuitive (well, at least for the
author).

6.1 Applications

The results above immediately imply that there exists a k-line median coreset
for clustering of small size. Namely, given a set P of n points in Rd one can find
a small coreset of small size such that finding the k-lines of minimum median
price (i.e., every point pays its distance to the closest line in the set k lines that
serves as centers).

Theorem 13. Given a set P of n points in Rd, and a k > 0, there exists a ε-
coreset for P for the problem of k-line median clustering. The size of the coreset
is O

(
kε−k−d logk+2 n

)
.

Proof. In full version, see [1]. �

Plugging our construction into the standard machinery of random sampling
leads to an efficient clustering algorithm, which computes (1 + ε)-approximate
k-median line clustering in near linear time. We omit any further details, see [7].

7 Conclusions

We had introduced the problem of computing coreset for discrete integration, and
showed some tight coreset constructions for this problem, for various families of
functions. We also used it to improve the coreset size for the problem of clustering
points in Rd for the k-median line clustering.

In particular, we showed a coreset of size (roughly) O(logk+2 n) and a lower
bound of 2k, see Theorem 11. Previously, no non-trivial lower bound was known
for this problem. Although there is still a gap between the upper and lower
bound it is relatively “small”, and we leave the improvement of both bounds
as an open problem for further research. The lower bound also leaves open the
question of how to cluster efficiently a set of n points with k = Ω(log n) line
centers. The lower bound implies that coresets can not help us in solving this
problem efficiently, but maybe other techniques might work here. We leave this
as an open problem for further research.

Another open problem is to extend the study of the discrete integration prob-
lem to dimensions higher than one.
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Abstract. In this paper we construct fixed finite tile systems that as-
semble into particular classes of shapes. Moreover, given an arbitrary
n, we show how to calculate the tile concentrations in order to ensure
that the expected size of the produced shape is n. For rectangles and
squares our constructions are optimal (with respect to the size of the
systems). We also introduce the notion of parallel time, which is a good
approximation of the classical asynchronous time. We prove that our tile
systems produce the rectangles and squares in linear parallel time (with
respect to the diameter). Those results are optimal. Finally, we introduce
the class of diamonds. For these shapes we construct a non trivial tile
system having also a linear parallel time complexity.

1 Introduction

The tile assembly model was introduced by Rothemund and Winfree [5,7]. This
model, based on the classical one of Wang [6], includes a mechanism of growth (a
dynamics) which takes into account global parameters such as the temperature
and the tile concentrations.

The individual components are square tiles. These tiles “float” on the two
dimensional plane. They can not be rotated. Each side of a tile has a specific
“glue”. When two tiles collide they stick if their abbuting sides have the same
glue and, crucially, if the strength of the glue is “high enough” with respect to
the temperature.

The dynamics of such a tile system is modeled as a Markov process. The pre-
cise process we consider here was introduced by Adleman et al. [1]. It is, however,
a simplification of the reversible version proposed by Winfree [7]. Roughly speak-
ing, the higher the concentration of a particular tile the higher the rate at which
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it is encountered. And, when encountered, the particular tile can eventually be
incorporated into the growing structure. At the end of the process, which begins
with a “seed” tile placed at the origin of the plane, a given shape S will be pro-
duced. Aggarwal et al. [2] proved that the minimal number of tiles that uniquely

produces the m× n rectangle is Ω(n
1
m

m ) if m � n and Θ( log n
log log n ) otherwise. In

[1] it is shown that the average time complexity for uniquely producing an n×n
square is Θ(n).

Of course, besides the assembly time, some other random variables are also
relevant. In fact, in this work we focus our attention on the random variable that
corresponds to the “size” of the produced shape. We therefore explore a new
direction by searching for tile systems producing languages of shapes. We tackle
the problem of producing three natural languages of shapes: squares, rectangles
and diamonds.

Let us consider, for instance, the class of all squares. In our construction we
fix the tile system in such a way that each time we run the Markov chain a
(different) square is produced. Let us call N the random variable corresponding
to the size of the produced square. If n is a fixed positive integer, then we will
show how to calculate the tile concentrations in order to ensure that E(N) = n.
To our knowledge, the tile concentrations, a parameter of the original model,
has never been seriously considered before. In other words, it is therefore not
necessary to construct the tiles (which in fact are model representations of tiny
molecules) for each shape we are asked to assemble.

We construct tile systems for rectangles and squares. Each of them turn out to
be optimal with respect to its size. On the other hand we introduce the notion of
parallel time. It is defined as the time needed to assemble a shape when all possible
transitions are performed at once. Our constructions for squares and rectangles
are also optimal in terms of the parallel time. In fact we get, with respect to the
diameter of the shapes, a linear parallel time. We also show that the parallel time
gives lower and upper bounds for the average time of the Markov process.

Finally we introduce the class of diamonds. A first approach gives a tile system
with quadratic parallel time complexity (linear with respect to the surface).
Nevertheless, by using a “firing squad” approach, we get the optimal linear
parallel time complexity (linear with respect to the diameter).

2 Tile Systems

A tile system is a 5-tuple T =< T, t0, τ, g, P >. Each of these variables is defined
in the following.

The set of tiles. T is a finite set of tiles. Each of these tiles is an oriented unit
square with the north, east, south and west edges labeled from some alphabet
Σ of glues (or colors). For each t ∈ T , the labels of its four edges are canonically
denoted σN (t), σE(t), σS(t) and σW (t).

The seed. t0 ∈ T is a particular tile known as the seed.
The temperature. τ is a positive integer called the temperature.
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The strength function. The (glue) strength function g goes from Σ × Σ
to N. We assume that g(α, β) = 0 for all α, β in Σ such that α 
= β. The
value g(α, α) is called the strength of α. We also assume that the set of glues Σ
contains a special one, denoted by null, such that for all α in Σ, g(null, α) = 0.
The tiles are represented as in Figure 1: the number of lines in front of the glue
corresponds to the strength of it. There is one exception to that convention: no
lines also mean strength 1.

The concentration. The concentration P associates to each tile t ∈ T a
positive value P (t). The concentration function P satisfies Σt∈T P (t) = 1.

a
a

b

c
a

a

b

c

Fig. 1. Two ways of representing the same tile

In order to define the asynchronous and parallel dynamics we need to intro-
duce the following concepts.

T-transitions. A configuration is a map from Z2 to (T ∪ {empty}), where
the tile empty is the one having in its four sides the glue null. Let A and B be
two configurations. Suppose that there exist t ∈ T and (x, y) ∈ Z2 such that
A = B except for (x, y) with A(x, y) = empty and B(x, y) = t. If also

g(σE(t), σW (A(x + 1, y)) + g(σW (t), σE(A(x − 1, y))+

g(σN (t), σS(A(x, y + 1)) + g(σS(t), σN (A(x, y − 1)) ≥ τ

then we say that the position (x, y) is attachable in A, and we write A →z B
with z = (t, (x, y)). We write A →T B when such a z exists. Informally, this
means that B can be obtained from A by adding a tile t in such a way that the
total strength of the interaction between A and t is at least τ . Let →∗

T denote
the transitive closure of →T.

Derived supertiles. The seed configuration, Γt0 , is the one that satisfies Γt0

(0, 0) = t0 and, for all (x, y) 
= (0, 0), Γt0(x, y) = empty. The derived supertiles
of the tile system T are those configurations X such that Γt0 →∗

T X .
Production of shapes. A shape is a 4-connected finite subset of Z2. The

shape of a derived supertile A will be denoted by [A] and corresponds to {(x, y) ∈
Z2 : A(x, y) 
= empty}.

2.1 The Asynchronous Dynamics

The dynamics of the tile system T is modeled as a continous time Markov
process where the states are in one-to-one correspondence with the derived
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supertiles and the initial state corresponds to the seed coniguration Γt0 . There
is a transition from state A to state B if A →T B. If B is obtained from A
by adding the tile t, then the rate of the transition is P (t). More precisely,
it is assumed that the time for the occurence of such a transition follows an
exponential law of parameter P (t), and, consequently, the average time necessary
to make this transition is 1/P (t).

Suppose that in state A there are k possible transitions to states B1, . . . , Bk.
And suppose that the transition rates are P1, . . . , Pk. Then, the probability to
jump to state Bi equals Pi

P1+...+Pk
. Finally, the time spent in state A follows an

exponential law of parameter P1 + . . .+ Pk.
A derived supertile A is called terminal if it is a sink state of the Markov

process. In other words, if there is no supertile B such that A →T B. The set
of shapes produced by the tile system is S(T) = {[A] : A is terminal}.

Let C be a set of shapes. We say that the tile system T uniquely produces the
set C if on one hand S(T) = C and, on the other hand, the event “the structure
grows indefinitely” has probability zero of ocurrence. This notion is a natural
generalization of the one of Winfree where the set C was a singleton.

2.2 The Parallel Dynamics

Here, at each step, all possible transitions are performed at once. This parallel
dynamics is deterministic. Sometimes it is easy to compute and it allows us to
obtain bounds for the assembly time of the asynchronous model.

Let A be a derived supertile, and let T rans be a set of transitions. T rans is a
set of independent transitions if, for any z, z′ ∈ T rans such that A →z Az and
A →z′ Az′ , z′ is a possible transition from Az and z is a possible transition from
Az′ .

There can be several maximal sets of independent transitions from a given
supertile. Nevertheless, given a terminal supertile F and a derived supertile
A, one can define a unique ‖ T-transition from A to a A′ such that F can
be derived from A′. This parallel transition is given by taking the set of all
attachable positions in A, and attaching to each of them the corresponding tile
of F , when it is already attachable: let T rans = {t1, . . . , tk} be a maximal set
of independent transitions from A which are compatible with F . Let Ak be
such that A →t1 A1 . . .Ak−1 →tk

Ak. We say that there is a parallel transition
between A and Ak, and we note A →‖T Ak.

Thus, the sequence of parallel transitions by which F is built is unique.
The parallel time πA to assemble a derived supertile A is the number of

parallel transitions needed to produce A. We will see that the parallel time is
closely related to τA, the expected (asynchronous) assembly time of A. The
parallel instant of a position (x, y) is the number of the parallel transition that
puts a tile at (x, y).

This notion of parallel time is the adequate notion to compute the time effi-
ciency of tilesets, as it is easier to compute than the expected time to complete
the Markov process, but is a good approximation.
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Proposition 1. For every tile system T and every production P of T, we have
(1/χmax)πP ≤ τP , and τP = O(πP /χmin), where χmin and χmax are the mini-
mal and maximal tile concentrations. When all the concentrations are 1/k, with
k the number of tiles in T, we have τP = Θ(πP k).

We only give an idea of the proof, which is an extension of the proof of Adleman
and Cheng[1]. They stated a version of this prosposition for cases where there
is an order of dependency between the positions. But this order does not exist
in every case; when it does not exist, we take the order induced by the parallel
instants. This order has the properties of fairness that allow us to prove the
proposition: any order that is compatible with the assembly contains a chain of
length at least πp.

3 Rectangles and Squares

Let m, n be positive integers. Let Rm,n = {(x, y) |0 ≤ x < m, 0 ≤ y < n} be the
rectangle of width m and height n. Let us fix the temperature τ = 2. With this
temperature, by generalyzing the result of [1], it has been proved in [2] that the

minimal number of tiles that uniquely produce the rectangle Rm,n is Ω(n
1
m

m ) if
m � n and Θ( log n

log log n ) otherwise.
Let us fix the set of tiles that appears in Figure 2. Let us consider tSW as the

seed. It is easy to notice that this set of tiles uniquely produces rectangles. If
A, B, C are arbitrary positive values satisfying A + B + C = 1, then we fix the
concentrations as follows:

P (tS) = A(m−2)
m−1 P (tSE) = A

m−1 P (tW ) = B(n−2)
n−1

P (tNW ) = B
n−1 P (tβ) = C P (tSW ) = 0.

NW
t

W
t

SW
t

S
t

SE
t

β
t

β

α

β

βα

β

α

β

α

β β

α

α

β

β

β β

β

β β

β

βα

α

Fig. 2. The set of tiles used for producing rectangles

If we want to produce squares it is rather natural to create diagonals. Infor-
mally, we use three tiles in order to construct the diagonal. These three tiles
-tD, tDdown

, tDup- appear in Figure 3. We need two more tiles in order to fill the
square: tβ2 for the northwest half and tβ1 for the southeast half. We need to have
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β2 
= β1, in order to avoid final productions which are not squares. The seed is
tD and the temperature is τ = 2.

Fig. 3. The set of tiles used for producing squares

For arbitrary positive values A, B, C,D such that A + B + C +D = 1, we fix
the concentrations as follows:

P (tD) =
A(n− 2)

n− 1
, P (tβ1) =

A

n− 1
, P (tDdown

) = B, P (tDup) = C, P (tβ2) = D

Fig. 4. An example of square production

Proposition 2. The tile systems defined above uniquely produce rectangles and
squares. In the case of rectangles, if M is the random variable correspond-
ing to the width and N the random variable corresponding to the height, then
E(M) = m and E(N) = n. In the case of squares, if N is the random variable
corresponding to the length of the side then E(N) = n.

Proof. Just for M in the case of rectangles. The other cases are very similar. Let
ε = (m− 1)−1. The random variable M follows a geometric law. More precisely,
Pr{M = k} = (1− ε)k−2ε. So E(M) = ε−1 + 1 = m.
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Proposition 3. The tile systems which we defined above are the smallest ones
that uniquely produce the set of all rectangles and the set of all squares. In the
case of rectangles, each set of tiles whose set of final productions is formed by
the m × n rectangles, with m ≥ 2 and n ≥ 2, contains at least six tiles. In the
case of squares, each set of tiles whose set of final productions is formed by the
n× n squares, with n ≥ 2, contains at least five tiles.

Proof. We just need to focus on glues of strength 2. With respect to that property
there are 16 tiles.

Squares. Let us consider the set of all possible tilings of 2 × 2 squares. We
have 8 cases (see Figure 5). Since we are assuming the seed to be in the leftmost
position of the bottom the number of cases can be reduced to 5 (up to symmetry
1=3, 2=4, 6=7). In each case, we have at least three or four tiles. More precisely,
2 of cardinality three and 3 of cardinality four.

Fig. 5. The possible tilings of the 2 × 2 square

We want to prove that four tiles are not enough to generate squares. We have
to test sets of four tiles which contain one of the previous sets which produce
2× 2 squares. Each of the two cases of cardinality 3 may be completed with 13
tiles. Therefore, there are at most 2× 13 + 3 = 29 cases to test. We first try to
produce a 3×3 square with each set of tiles. In any exploration, we can easily see
the impossibility for all the completions with the exception of the set numbered
by 8.

For this latter case, we study the only (hypothetical) possible tiling of a 4× 4
square obtained by self-assembly. Let t be the tile which has no glue of strength
2. Notice that t must be placed at the lower right corner and at the upper left
corner of the square. Moreover, the opposite glues of t must be equal (in order
to assemble any k-square with k > 2). Let t′ be the tile with glue of strength
2 in its southern side. A t-tile of the left upper part of the square must touch
a t′-tile below and another t-tile must touch a t′-tile in its right. Therefore, a
t′-tile could be placed in the lower right corner of the square. A contradiction.

Rectangles. For rectangles we consider set of tiles which can produce the 2× 2
square (i.e. containing a set of tiles obtained in Figure 5), the 3 × 2 rectangle,
2× 3 rectangle.

We first assume that the only glue of strength 2 of the seed is on its northern
side. In this case, we have 12 possible tilings of the 3 × 2 rectangle induced by
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successive productions, 7 with six tiles, 4 with five tiles, and 1 with four tiles.
An obvious analysis proves that sets of 5 tiles obtained are not sufficient to tile
the 2× 3 rectangle.

For the set of four tiles, we can remark that another tile is necessary to
tile the 2 × 3 rectangle and, furthermore, there exists two tiles with only a
glue of strength 2 on their northern side which have the same strength 2 glue.
Otherwise, some productions which are not in the upper right quarter of plane
appear.

The case when the only glue of strength 2 of the seed is on its eastern side
can be treated in a symmetric way. We now assume that the seed has two sides
(the northern and the eastern one) with glues of strength 2. We study tilings
of the 3× 2 rectangle induced by successive productions We have two subcases
according to the glues of strength 2 of the tile in position (0, 1).

– When this tile has two sides (the southern and the eastern one) with glues
of strength 2, we also have 12 cases: 7 with six tiles, 4 with five tiles, and 1
with four tiles. An obvious analysis proves that the sets of 5 tiles obtained
are not sufficient to tile the 2× 3 rectangle.

– When this tile has only one side (the southern one) with a glue of strength
2, we also have 12 cases (symmetric to the case when the seed has a unique
side with glue of strength 2): 7 with six tiles, 4 with five tiles, and 1 with
four tiles. An obvious analysis proves that the sets of 5 tiles obtained are not
sufficient to tile the 2× 3 rectangle.

Thus, we have a tricky case only when there exists a set of five tiles, such that
four of them are enough to tile the 3× 2 rectangle, and four of them are enough
to tile the 2 × 3 rectangle (see figure 6). We have (up to symmetry) only one
set of five tiles satisfying this condition. But, according to the number of glues
of strength 2, this set either has final productions which are not rectangles, or
does not produce all rectangles. This finishes the proof.

Fig. 6. The possible tilings with four tiles for the 3×2 rectangle and the 2×3 rectangle,
with a seed with two glues of strength 2. A union of two tiling sets (one for each
rectangle) contains at least 5 tiles. Moreover, the only set (up to symmetry) of 5 tiles
obtained by this way is formed by tiles used in the highest 3 × 2 rectangle and in the
rightmost 2 × 3 rectangle.
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Proposition 4. With the tile systems defined above, the parallel time needed to
assemble an m× n rectangle is m + n while the parallel time needed to assemble
an n× n square is 3n− 5.

Proof. We give a proof for the squares (rectangles are similar). Notice first that
for any shape S with a marked position (x, y), the parallel time to assemble S
with the seed at (x, y) is at least max(x′,y′)∈S{d((x, y), (x′, y′)}, no matter which
tileset is used. The parallel time needed to put the tile at (n − 1, n) is at least
2n− 3 since that is the distance l1 between (0, 0) and (n, n− 1). This tile is the
only one in the line {(x, n), 0 ≤ x ≤ n} with a glue of strength 2 on its south
side, thus it has to be put before any other in this line. Thus, the tile at (n, 0)
cannot be put before the step 2n − 3 + n − 2 = 3n − 5. It is then easy to see
that this bound is in fact reached, and that the square can be assembled in time
3n− 5.

4 Diamonds

Notice that a square corresponds to the set {(x, y) | d∞[(x, y), (0, 0)] ≤ n}, with
d∞[(x, y), (x′, y′)] = max{|x−x′|, |y− y′|}. If we change the metrics towards the
more “natural” d1[(x, y), (x′, y′)] = |x− x′|+ |y − y′|, then the induced shape is
the diamond Dn that appears in Figure 7. The problem of producing diamonds
is much more complicated than those we tackled before. Any naive approach
seem not to work.
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Fig. 7. An n-diamond

A first possible approach is given by the tileset of Figure 8(a). This tileset
assembles the upper halves of diamonds. By using this set and its mirror image,
one can assemble the set of all diamonds. The tileset works by “knitting” the half-
diamond row after row, going back and forth (see Figure 8(b)). The sequentiality
of this approach is the cause of the quadratic parallel time n2/4. We are going
to show how to lower this bound. More precisely, we are going to construct
diamonds in linear parallel time with the help of a very particular and non-
trivial cellular automaton called “the firing squad”.
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(a) The tileset for assembling half-
diamonds

(b) The assembly of a half-diamond

Fig. 8. Knitting diamonds

4.1 Simulating the Firing Squad CA by Self-assembly

The firing squad automaton, detailed in [3], is a cellular automaton which, from
a line of n cells, such that the first and n-th cells are in special states Gl and
Gr, and the other in initial state s, evolves in such a way that they all enter the
final state F for the first time at time n, and all other cells remain in a quiescent
state ρ.

We will represent, for simplicity, the tiles rotated in 45◦. Let us first consider
the set of six tiles of Figure 9. The tiles are, from left to right, tα (the seed),
tGl

, tβ , ts, tGr and tγ . The colors α, β, γ /∈ QFS . The color null is omitted. For
instance, σN (tα) = σS(tα) = σW (tα) = null.

α β β γ

s

β β

s

βα
lG G r

β γ

α γ

Fig. 9. The set of six tiles that codifies the initial configuration

As it is schematically explained in Figure 10, the assemblying process of these
tiles is such that the structure they produce represents the initial configuration
. . . ρρρGlsss . . . sssGrρρρ . . . .

The size of the initial structure of Figure 10 determines the size of the diamond
the tile system is going to produce. This part of the self-assembly process is, in
fact, the only nondeterministic one. Therefore, the expected size of the diamond
can be calculated as a function of the concentrations of the previously introduced
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s s s s s s s s s s s s s slG s s G rα γ

Fig. 10. The way the initial configuration . . . ρρρGlsss . . . sssGrρρρ . . . is assembled

tiles. Moreover, the only concentrations relevant for the process are those of ts
and tGr . Let 0 < A < 1. Let us define the concentrations as follows:

P (ts) = A(1 − (n− 1)−1), P (tGr) = A(n− 1)−1.

The only requirement for the concentrations of the other tiles (the four already
introduced and those to come) is that they must be positives with their sum being
1−A.

There are two other classes of tiles: transmission tiles and transition tiles.
The transmission tiles are divided into six subclasses: left-border, internal, right-
border, upper-left-border, upper-border, upper-right-border. More precisely, for
all a, b ∈ QFS \ {F}, the transmission tiles are constructed in Figure 11.

FF

upper−border

ρ

γ

right−border right−upper−border

ρ

α

left−border

ab ab

ba

internal

F

left−upper−border

* F *

Fig. 11. Transmission tiles

The transition tiles are divided into five subclasses: left-border, internal, right-
border, upper-left-border and upper-right-border.

More precisely: let a, b, c, d, e, f, g ∈ QFS be such that δFS(ρ, a, b) 
= F and
δFS(f, g, ρ) 
= F. The (a, b)-left-border, (c, d, e)-internal and (f, g)-right-border
tiles are constructed in Figure 12(a).

Finally, let a, b, c, d ∈ QFS be such that δFS(ρ, a, b) = δFS(c, d, ρ) = F . The
upper-left-border and upper-right-border tiles are constructed in Figure 12(b).

From the previously defined construction follows the last propositions.

α ρab

ρ ab decd

cdecde fgh

fg gh

fgh

(a) Left-border, internal, right-border.

F∗ F

ρ ab cd ρ

F∗F

(b) Upper-left-border, upper-
right-border.

Fig. 12. Transition tiles; xyz represents δF S(xyz)
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Proposition 5. The tile system defined above uniquely produces diamonds. If N
is the random variable corresponding to the length of the diagonal, then E(N) =
2n + 1; and the parallel time needed by the above tile system to assemble a
diamond of size n is 4n− 6.

Proof. The parallel assembly follows the simulation of the CA, as shown on
Figure 13. By induction one gets that the last tile of the kth row is added in the
2n + k − 4 parallel transition for k > 0. As the assembly is complete when the
(2n− 2)th row of the simulation is complete, the parallel time for the assembly
is 4n− 6.

Fig. 13. Parallel assembly of a diamond
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Abstract. A monotone planar circuit (MPC) is a Boolean circuit that
can be embedded in a plane, and that has only AND and OR gates. Yang
showed that the one-input-face monotone planar circuit value problem
(MPCVP) is in NC2, and Limaye et. al. improved the bound to LogCFL.
Barrington et. al. showed that evaluating monotone upward stratified cir-
cuits, a restricted version of the one-input-face MPCVP, is in LogDCFL.
In this paper, we prove that the unrestricted one-input-face MPCVP is
also in LogDCFL. We also show this problem to be L-hard under quanti-
fier free projections.

Keywords: L, LogDCFL, monotone planar circuits.

1 Introduction

The problem of evaluating Boolean circuits is a widely studied problem in com-
plexity theory. In [12], the problem of evaluating a Boolean circuit (CVP) was
shown to be P-complete under logspace many-one reductions. Special cases of
CVP, namely, the monotone CVP and the planar CVP, have also been shown to
be P-complete in [9]. However, a special case of both these versions, the planar
monotone CVP (MPCVP), is known to be in NC.

It was shown in [10] that upward stratified MPCVP, a special case of MPCVP
(see Section 2 for definitions), is in NC2. The upper bound for this problem
was subsequently improved to LogCFL in [7], and quite recently to LogDCFL
in [5].

A less restrictive case, the layered upward MPCVP, was shown to be in NC3

in [11]. Independently and in parallel, it was shown in [15] and [6] that general
MPCVP is in NC4 and NC3 respectively.

In [15], it was shown that one-input-face MPCVP, a less restricted case than
upward stratified, is in NC2. Recently, it was shown in [13] that one-input-face
MPCVP is in L(PDLP⊕ LogDCFL) ⊆ LogCFL. (PDLP is the problem of finding
the longest path in a planar DAG. Its best known upper and lower bounds are
NL and L, respectively.) The upper bound for general MPCVP was also improved
to AC1(LogCFL) = SAC2 in [13].
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Cylindrical and toroidal circuits were also discussed in [13]. Stratified
monotone cylindrical circuits were shown to be in LogDCFL, one-input-face
monotone cylindrical circuits in L(PDLP⊕ LogDCFL), and monotone cylindrical
circuits(in full generality) in AC1(LogDCFL). Toroidal circuits were shown to be
in SAC2.

The main result of this paper is that one-input-face MPCVP is in LogD-
CFL. Our method is inspired chiefly from the insights about grid graphs and
single source planar graphs developed in [2] and [1]. Our result has been men-
tioned as personal communication in [13], and we are grateful to its authors for
valuable discussion.

We also show that L is a lower bound for one-input-face MPCVP, i.e. one-
input-face MPCVP is L-hard under quantifier free projections. As corollary to
the main result of this paper, we infer that one-input-face cylindrical circuits,
can be evaluated in LogDCFL.

The rest of the paper is organized as follows: Section 2 gives some necessary
definitions and basic or known facts, Section 3 gives an overview of the proof of
our main result, while Section 4 presents its details. In Section 5, we show the
L-hardness of one-input-face MPCVP under quantifier free projections, and in
Section 6, we summarize the results. Section 7 provides our conclusion.

2 Definitions and Facts

A Boolean circuit is a circuit with AND, OR and NOT gates, apart from the
input gates. The gates (as vertices) and wires (as edges directed towards the gate
for which it is an input wire) of the circuit form a directed acyclic graph (DAG).
We shall consider Boolean circuits which also have COPY gates of fan-in one: a
COPY gate outputs 1 if and only if its input is 1. Note that the behaviour of a
COPY gate is the same as an AND or OR gate with fan-in one.

Circuit value problem (CVP) is the problem of evaluating a circuit when
values of the input gates are specified. A circuit is called monotone if it does
not have any NOT gate. A circuit is called planar if its underlying DAG has a
planar embedding. MPCVP refers to the restriction of CVP in which the circuit
is monotone as well as planar.

A planar circuit is said to be one-input-face if it has a planar embedding such
that all the input gates are on a single face. The planar embedding need not be
given as part of the input, as the following lemma shows.

Lemma 1. An appropriate planar embedding for a one-input-face circuit can be
found in logspace.

Proof. Consider the planar DAG G corresponding to the circuit C. Add a source
vertex s in G, and add edges from s to all the input gates, to obtain a graph
G′. Since C is one-input-face, G′ is also planar. Find a planar embedding of G′,
and delete s to get the required embedding for G. A planar embedding can be
computed by a logspace transducer, since it was shown to be in FLSL in [3], and
it was proved that SL = L in [14]. �
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A planar embedding can be specified by listing the edges incident on each vertex,
in cyclic order around the vertex. Such a specification is called a combinatorial
embedding. A planar embedding is said to be bimodal if all the incoming edges at
every vertex appear consecutively in the cyclic ordering. For a bimodal planar
embedding, we can define the clockwise-most and anticlockwise-most incoming
and outgoing edges at every vertex v without any ambiguity. We can, infact,
order all the incoming edges and all the outgoing edges, according to their cyclic
ordering, clockwise or anticlockwise.

A planar DAG is called an SSPD if it has a single source (vertex with indegree
zero), and a single sink (vertex with outdegree zero). It is well known (e.g., see
[1],[15]) that any planar embedding of an SSPD is bimodal. A planar DAG is
called an SMPD if it has a single source, but can have multiple sinks.

Similar to planar circuits, one may also consider cylindrical circuits (i.e. em-
beddable on the surface of a cylinder), and toroidal circuits (i.e. embeddable
on the surface of a torus). Please see [13] for definition and properties of such
embeddings.

A circuit is said to be layered if there is a partition of the vertex set V =
V0 ∪ V1 ∪ V2 . . .Vk, such that all the edges go from Vi to Vi+1 for some i. Each
subset of the partition is called a layer. A layered circuit is said to be stratified
if there is such a partition, in which all the input gates (vertices) are in V0. For
layered circuits, it is important that the input provides the layering information;
all the previous results critically use this fact. Finding a layering for general
circuits that can be layered is not known to be in LogDCFL.

A circuit (graph) is said to be upward planar if there is a planar embedding in
which every edge is monotonically increasing in the upward, or any particular,
direction. A circuit (graph) is said to be upward layered (stratified) if it is layered
(stratified), and the layers give an upward planar embedding. Clearly, an upward
stratified circuit is also a one-input-face circuit.

LogCFL and LogDCFL are the classes of languages that are logspace many-
one reducible to non-deterministic and deterministic context-free languages, re-
spectively. LogDCFL can be alternately described as the class of languages de-
cidable by a logspace Turing machine that is also provided with a stack, which
runs in polynomial time. The following facts are known:

– L ⊆ NL ⊆ LogCFL,
– L ⊆ LogDCFL ⊆ LogCFL, and
– LogCFL = SAC1 ⊆ AC1 ⊆ NC2.

Grid graphs are planar graphs whose vertices are a subset of the integral
points of a finite two-dimensional grid (called grid points), and whose edges are
either from (i, j) to (i+ b, j) (horizontal edge), or from (i, j) to (i, j + b) (vertical
edge), where b ∈ {−1, 1}. A grid graph has the naturally defined directions up,
down, left and right, which are synonymous with north, south, west and east,
respectively. We follow the convention that the first coordinate increases right-
ward, and call it the rightward/eastward coordinate, while the second coordinate
increases downward, and we call it the downward/southward coordinate. [1] and
[2] are good references for terminology and facts associated with grid graphs.
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A grid graph is said to be 1-forbidden if it has edges only in three of the
four directions. A grid graph is said to be 2-forbidden or layered if it has either
rightward or leftward edges, and has either upward or downward edges. Note
that a layered grid graph is upward layered (view the grid graph diagonally).
Note that a layered grid graph, viewed diagonally, is also an upward layered
graph. Each layer consists of all the vertices that lie on a line parallel to the
diagonal, and the ordering of the layers can be deduced easily in logspace.

The problem ORD is defined as reachability from a vertex s to another vertex
t in a directed graph, consisting of n vertices v1, v2 . . . vn and (n−1) edges (given
in the input as ordered pairs of vertices), such that the graph is a directed path.
Every vertex v has a unique successor S(v). An equivalent definition of the
problem in terms of total orders is given in [8].

It was shown in [8] that ORD is L-complete under quantifier free projections
(qfp’s). For details on these extremely low level reductions please see [8].

3 Overview

In [13], one-input-face MPCVP was reduced to upward stratified MPCVP, by
making oracle calls to the PDLP problem, which finds the longest path in a
planar DAG, and then the LogDCFL algorithm given in [5] was used to solve the
one-input-face MPCVP in L(PDLP⊕ LogDCFL).

We prove that the one-input-face MPCVP is in LogDCFL, by finding a
logspace reduction from one-input-face MPCVP to the upward stratified
MPCVP. This result would have followed trivially from the algorithm in [13]
if PDLP were in LogDCFL, but such a result has not yet been proved, and, for
all we know, PDLP can be NL-hard. We take a completely different approach to
bypass the PDLP problem and obtain a logspace reduction.

3.1 Graph-Circuit Conversion

In this paper, we shall often store a circuit as a DAG G, with vertices correspond-
ing to gates and edges corresponding to wires. For interpreting G as a circuit,
it is required that every vertex carries exactly one of the labels 0, 1, AND, OR,
COPY and SRC. The label SRC shall indicate the dummy vertices, that are not
present in C. The other labels shall indicate the type of the gate corresponding
to the vertex. Further, one of the vertices carries a second label of OUTPUT,
which will correspond to the output gate of the circuit. Note that it is possi-
ble for a DAG to have a labelling that cannot be interpreted as a meaningful
Boolean circuit.

We shall use the following conversion algorithm, which, given a DAG G and
a labelling of its vertices, decides if the labelling valid, i.e. whether it can be
interpreted as a meaningful circuit, and also produces the unique circuit corre-
sponding to G, if it is meaningful:

1. If some vertex labelled COPY does not have indegree one, report that the
labelling is not valid.
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2. Delete all vertices (and edges incident on them) that should not be there
in the circuit. These include vertices labelled SRC, and also those vertices
v labelled COPY, such that there is a path from another vertex u, labelled
SRC, all whose internal vertices are labelled COPY.

3. Replace the remaining vertices by gates according to the labelling, and the
edges by wires. The gate corresponding to the vertex labelled OUTPUT is
marked as the output gate of the circuit produced.

Since the hardest step in the conversion algorithm involves checking reacha-
bility in graphs by simple paths (paths whose internal vertices have total degree
2 in the graph), the algorithm can be implemented in logspace.

We shall refer to the circuit obtained by the conversion algorithm as the circuit
corresponding to the graph. For any vertex that is not deleted by the algorithm,
the gate corresponding to it will have a value in the evaluation of the circuit,
which we shall refer to as the value at the vertex.

Note that, given a circuit C, it is trivial to construct a graph G, such that
the conversion algorithm applied on G yields C.

3.2 Steps of the Reduction

Given a one-input-face MPC C, consider its underlying single-source planar
DAG, with vertices labelled accordingly. We add a source vertex s to the graph,
with edges to all the vertices labelled 0 or 1, and label it as SRC. Let this graph,
which is an SMPD, be G.

The reduction then proceeds sequentially in 5 major steps. Each step takes
the output of the previous step as its input, and uses it to produce some output,
in logspace. Step 1 takes G(with its labelling) as input. Each of steps 1-4 output
a planar DAG (that has certain useful properties) with a valid labelling. We shall
ensure that the value of the circuit corresponding to the output of each step is
the same as that of the input circuit C. Step 5 produces an upward stratified
circuit, hence completing the reduction.

The chief properties of the output of the each step is listed below:

1. An SSPD G1.
2. An SSPD G2 whose total degree at each vertex is bounded by 3, and the

indegree and outdegree by 2.
3. A 1-forbidden grid graph G4, that is also an SMPD.
4. A layered grid graph G5, that is also an SMPD.
5. An upward stratified circuit C′′.

The upward stratified circuit C′′ obtained at the end of step 5 can then be
evaluated in LogDCFL, as described in [5].

4 Details of the Reduction

In this section, we provide the necessary details about how to implement the
steps, outlined in the overview, in logspace, and also show that the circuit value
is preserved.
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4.1 Step 1

Suppose that a vertex u does not have a path to t, the vertex labelled OUTPUT.
Then the value at t is independent of the value at u. So, deleting u does not affect
the circuit value. If we delete all such vertices, then it is easy to see that the
resulting graph has a single source s and a single sink t, i.e. the resulting graph
G1 is an SSPD, and the circuit value remains unchanged. It was shown in [1]
that reachability in single-source planar DAGs is in L, so G1 can be constructed
from G by a logspace transducer.

4.2 Step 2

We compute a planar embedding (combinatorial) of G1. This can be done in
logspace, by Lemma 1. Note that since G1 is an SSPD, the embedding is
bimodal.

To reduce the degrees of the vertices as required, we replace each vertex v of
G1 by a gadget, to obtain the graph G2. It comprises two directed binary trees,
one with its root as its source, and the other with its root as its sink. We shall
refer to the former as outgoing tree, and to the latter as incoming tree. There
is also an edge from the root of the incoming tree to that of the outgoing tree.
Both the trees have depth at most �log |V |�, where |V | is the number of vertices
in G1. The number of leaves in the incoming tree (incoming leaves) is equal to
the indegree of v, and the number of leaves in the outgoing tree (outgoing leaves)
is equal to the outdegree of v. All the vertices of the outgoing tree are labelled
COPY. If v were labelled AND, OR or SRC, all the vertices of the incoming
tree are labelled AND, OR or SRC, respectively. If v were labelled 0 or 1, then
the vertices of the incoming tree, except its root, are labelled COPY, while its
root is labelled 0 or 1. Note that the gadget corresponding to s will not have an
incoming tree, and the gadget corresponding to t will not have an outgoing tree.
For s, the root of the outgoing tree is labelled SRC, and for t, the root of the
incoming tree is labelled OUTPUT.

Note that the incoming leaves and the outgoing leaves are arranged in a bi-
modal fashion, i.e. the incoming leaves appear consecutively in a cyclic ordering.
Now, for every edge e = (u, v) in G1, which is the ith outgoing edge of u and
the jth incoming edge of v(unambiguously defined, due to bimodality in G1),
we put an edge in G2 from the ith outgoing leaf of the gadget for u to the jth

incoming leaf of v. Because of bimodality in G1, G2 is planar. Also, G2 is an
SSPD, satisfying the degree constraints. It is easy to see that the value of the
circuit for G2 is the same as that for G1.

Since the gadget for each vertex is dependent only on its indegree and outde-
gree, they can be constructed by a logspace transducer. The other edges of G2

can also be added by the same transducer.

4.3 Step 3

This is the most involved step in our reduction. We first convert G2 into an
SMPD G3 with certain advantageous features, that has the same circuit value



One-Input-Face MPCVP Is Hard for L, But in LogDCFL 63

as G2, and then embed G3 as a 1-forbidden grid graph G4, by only subdividing
some of the edges (i.e. replacing edges by simple paths) of G3. We shall label
the new vertices created due to the subdividing as COPY, and it is easy to see
that the circuit value will remain unchanged. Note that the degree constraints
achieved in Step 2 are also not violated.

The process of embedding in the grid is similar in spirit to the process given
in [2], where it was shown how to embed a planar graph in a grid using only
logspace, preserving reachability. Here, we have an SSPD to embed instead of a
general planar graph, while we additionally require that the grid graph produced
should be monotone along one axis (we shall ensure that G4 has no westward
edge), and also want to preserve circuit value. This is significant, because reach-
ability is precisely evaluation of circuits with only OR gates, and hence possibly
easier to preserve than values of circuits with both AND and OR gates.

Using the mentioned embedding of G2, we construct a subgraphH , by deleting
all incoming edges except the clockwise-most one at every vertex of G2 except
the source and sink (the clockwise-most edge is unambiguously defined, due to
bimodality). Delete all but one (arbitrarily chosen) of the edges incoming to the
sink t. It is easy to see that H is a directed tree spanning all vertices, with s as
its root.

We can now classify the edges of G2 as tree edges (those present inH) and non-
tree edges. The non-tree edges can be further classified as forward edges (from
a vertex to its descendant in H), and cross edges (between different subtrees).
Since G2 is a DAG, there is no back edge (from a vertex to its ancestor). Due
to the bounded degree of G2, H is a binary tree. We perform an Euler traversal
(same as a dfs traversal for a tree) of H starting at s, choosing the anticlockwise-
most unexplored edge at every stage (we consider the embedding of H derived
from G2). In the beginning, at s, we make an arbitrary choice of the edge to
explore first. We write down the discovery time d[v] and the finishing time f [v]
of every vertex v using a logspace transducer.

Before describing the reduction any further, we need the following lemmas
whose proofs we omit.

Lemma 2. Suppose H is drawn as the dfs-tree, mentioned above, in standard
fashion, with the child explored first drawn as the left child at every vertex. The
combinatorial embedding of H thus obtained is the same as that derived from G2.

Hence, it is possible to add and embed the non-tree edges to the dfs-tree in a
planar way such that the combinatorial embedding is the same as that of G2 at
the end of the previous step. The dfs-tree helps us define the left and right of
every vertex that is not the source or a leaf in H . There cannot be any non-tree
edge incoming to or outgoing from a vertex u between its left and right child, due
to bimodality and degree constraint, respectively. Hence, every non-tree edge is
incoming to and outgoing from every vertex from either its left or its right. For
leaves, there is no distinction between left and right, and we shall take the liberty
of either.

Lemma 3. Any non-tree edge (u, v), is incoming to v from the left of v.
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For any two vertices u and v that do not share an ancestor-descendant relation-
ship, we say that u is to the left of v if the discovery and finishing times of u is
less than that of v, and vice versa otherwise. We say that a cross edge (u, v) is
leftward or rightward, depending on whether u is to the right or left of v, respec-
tively. We say that a forward edge (u, v) is leftward or rightward, depending on
whether the edge is outgoing from the right or left of u, respectively.

Notice that Lemma 3 does not imply that there are no leftward edges, since
its quite possible that the origin u of an edge (u, v) is to the left of the terminal
v. It just says that even such edges approach v from the left (see Figure 1).

Leftward forward edge

Leftward cross edge

Rightward forward edge

Rightward
cross edge

Fig. 1. Possible types of non-tree edges

If we neglect the direction of the edges, every non-tree edge (u, v) added to H
produces a unique cycle, consisting of the undirected tree-path between u and
v, and the edge (u, v) itself. We call the curve formed by the edges of this cycle
as the characteristic closed curve of (u, v).

Lemma 4. Suppose (u, v) is a rightward non-tree edge. Then t cannot be strictly
inside characteristic closed curve of (u, v).

Lemma 5. Suppose (u, v) is a leftward non-tree edge. Then t cannot be strictly
outside the characteristic closed curve of (u, v).

We shall now construct a graph G3 with an analogous tree H ′, such that there
is no leftward non-tree edge, and the circuit value remains unchanged. Suppose
there are k leftward non-tree edges. To construct G3, we make k + 1 disjoint
copies of G2 without the leftward edges, and label the copies 1, 2 . . .k, k +1. For
every leftward edge (u, v) in G2 and ∀i, 1 ≤ i ≤ k, add an edge between u of the
ith copy and v of the (i + 1)th copy of G2. Finally, we add a new source s′, and
add edges from s′ to all the k + 1 copies of s. Expectedly, we label s′ as SRC.
H ′ consists of the copies of H , plus s′ and its outgoing edges.

We claim that G3 is planar. To show this, we observe that from lemma 5 and
planarity, it follows that the leftward edges in G2 are nested, i.e. if e1 and e2

are two leftward edges, either E1 is contained in the characteristic closed curve
of e2, or vice versa. Thus the cross edges between the copies do not intersect,
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and, infact, those between any two consecutive copies are also nested. Further,
no such edge is nested within a rightward edge, for that would contradict lemma
4. So, these edges between copies do not intersect any other edge.

Note that G3 is no longer an SSPD, but an SMPD, hence there is no clear
choice for the output gate (vertex) of the circuit (graph). For every vertex v of
G2, we say that the ith copy of v in G3 gets the correct value if its circuit value
in G3 is the same as that of v in G2, otherwise we say that it gets the wrong
value. We claim that the (k + 1)th copy of t has the correct value, and hence we
shall label it as the output gate in G3.

Suppose the k leftward edges in G2 are (u1, v1), (u2, v2) . . . (uk, vk), with
(u2, v2) nested inside (u1, v1), (u3, v3) nested inside (u2, v2), and so on, (uk, vk)
being the innermost leftward non-tree edge. Note that, due to degree constraints,
v1, v2 . . . vk are all distinct vertices. To prove our claim, we shall use the following
lemmas:

Lemma 6. A vertex in G3, that is not in the first copy of G2, can get the wrong
value only if at least one of the vertices, whose values are fed into it, get the wrong
value.

Lemma 7. There is no path from vi to uj or from vi to vj, if i 
= j, in G2,
∀1 ≤ j ≤ i ≤ k.

We say that the ith copy of a vertex v has primitive error if it gets the wrong
value, but all the vertices in the ith copy, that have an edge to it in G3, get the
correct value.

Lemma 8. 1. If the ith copy of a vertex v gets the wrong value, it must be
reachable from a vertex of the ith copy that has primitive error.

2. Also, no vertex, other than v1, v2 . . . vk, can have primitive error in any of
its copy.

3. A vertex vj can have a primitive error in the ith copy only if uj gets a wrong
value in the (i− 1)th copy.

We shall prove the following statement using induction:

Lemma 9. In the ith copy, uj and vj get the correct value, and hence do not
have a primitive error, ∀0 < j < i ≤ (k + 1).

Putting i = k + 1 in the Lemma 9, we get that the (k + 1)th copy does not have
any vertex with primitive error, and hence, by lemma 8 (1), no vertex in the
(k + 1)th gets the wrong value. Hence our claim is proved.

Note that our construction has ensured that G3 consists of the tree edges
of H ′ and rightward non-tree edges only. Also note that a rightward non-tree
edge can start from the left of a vertex, go leftwards, and then go rightwards
to end at a vertex to the right of its starting vertex. But, for embedding in a
grid in a 1-forbidden fashion, we demand that every cross edge should always be
rightwards in direction. In precise terms, we demand the following:

– Every non-tree edge should be a cross edge.
– Every such cross-edge should be rightward.
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– Every such cross-edge should start from the right of a vertex and ends at
the left of a vertex.

By Lemma 3, our construction has ensured that every non-tree edge ends at the
left of its end-point. For every non-tree edge (u, v) that starts from the left of u,
we divide (u, v) into two edges, (u, w) and (w, v), and add (u, w) to H ′, so that
w becomes the left child of u. The non-tree edge (w, v) starts from a leaf, and so
trivially satisfies the condition. Clearly, the degree constraints are not violated.
Since the forward edges present in G3 must be rightward, and hence start from
the left of a vertex, this process gets rid of all forward edges.

For simplicity, we continue to call the modified graph as G3, and the tree as
H ′. The new vertices generated due to the subdivisions are labelled as COPY,
clearly the circuit value remains unchanged.

To complete the step, we now embed G3 in a grid, by only subdividing its
edges. The vertices formed due to subdividing are labelled COPY, and, clearly,
the circuit value is preserved. This part of the step is almost identical to the
process of embedding any planar graph in a grid, given in [2].

In the embedding, each edge of G3 corresponds to a grid path in the grid
graph G4 thus produced, and every vertex of G3 correspond to a grid point
in G4. If we view these grid paths as the curved edges of G3 drawn on the
plane, the embedding process ensures that the combinatorial embedding of G3

remains unchanged. This fact, coupled with the carefully chosen parameters
in the process, ensure that no two grid paths, that represent two edges of
G3, intersect. The nature of the non-tree edges of G3 ensures that G4 is 1-
forbidden.

4.4 Step 4

Barrington ([4]) gave a logspace conversion from a 1-forbidden grid graph to a
layered grid graph, preserving reachability. We observe that the reduction, with
an easy-to-compute labelling, preserves circuit value as well.

4.5 Step 5

We apply the conversion algorithm on G5 to obtain a circuit C′. Since G5 is
a layered grid graph, C′ is upward layered (since G5 had only northeast and
southeast edges, each layer consists of the vertices on a particular north-south
grid line). Moreover, since G5 is an SMPD, C′ is a one-input-face circuit, with
the inputs appearing on the external face.

We convert C′ into an upward stratified circuit C′′(thus completing the re-
duction), as follows: For each input gate that is on a layer Vi for some i > 0, add
a copy of it to V0, label the original gate as COPY, introduce a COPY gate at all
intermediate layers V1, V2 . . .Vi−1, and connect the new gate to the original gate
through all these new gates. Again, this operation can be performed in logspace.
Since the entire reduction consisted of a constant number of steps, each of which
is in logspace, so the entire reduction is in logspace.
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5 L-Hardness

In this section, we show that one-input-face MPCVP is L-hard under qfp’s, by
reducing ORD to it via qfp’s.

Given an instance of ORD, we map it to the following instance of one-input-
face MPCVP: there is an OR gate for every vertex vi, which takes as input the
gate corresponding to the vertex S(vi) and a constant gate (the single vertex
that has no successor has only a constant gate as input). The constant input
is 1 for t and 0 for all other vertices. The gate corresponding to s is made the
output gate. Notice that the circuit thus constructed outputs 1 if and only if s
precedes t in the ordering induced by S, i.e. the problem instance belongs to
ORD. Clearly, the circuit is planar, and all constant gates(inputs) appear on the
external face.

6 Results

Hence, we have proved that

Theorem 1. One-input-face MPCVP is in LogDCFL, but is L-hard under quan-
tifier free projections.

It was shown in [13] that monotone stratified cylindrical circuits can be evaluated
in LogDCFL, by reducing it to monotone upward stratified circuits in logspace,
and then using the algorithm given in [5]. It was also shown in [13] that monotone
one-input-face cylindrical circuits are in L(PDLP⊕ LogDCFL), by reducing it to
monotone stratified cylindrical circuits using oracle calls to PDLP. Since one-
input-face cylindrical circuits also have a one-input-face planar embedding (see
[13]), so Theorem 1 trivially implies that both these problems are in LogDCFL.

Corollary 1. One-input-face monotone cylindrical circuits (and hence
monotone stratified cylindrical circuits) can be evaluated in LogDCFL.

7 Conclusion

A close inspection of the logspace reduction, that we have described in Sections
3 and 4, reveals that it does not use the fact that the circuit is monotone, not
even the fact that the circuit is Boolean. In other words, given any one-input-
face planar circuit (need not be Boolean, i.e. gates and wires can take more
than two values) with any kind of gates, we can produce an equivalent upward
stratified circuit in logspace, provided we are allowed to use COPY gates. Hence,
the reduction in this paper can be applied to much more general situations.

The exact complexity of one-input-face MPCVP remains open. In other
words, is the problem solvable in L? Or is it hard for LogDCFL? General MPCVP
has a larger gap between its lower and upper bounds. It is known to be hard
only for L, while the best known upper bound is LogCFL.
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Abstract. Tanner Graph representation of linear block codes is widely
used by iterative decoding algorithms for recovering data transmitted
across a noisy communication channel from errors and erasures intro-
duced by the channel. The stopping distance of a Tanner graph T for a
binary linear block code C determines the number of erasures correctable
using iterative decoding on the Tanner graph T when data is transmitted
across a binary erasure channel using the code C. We show that the prob-
lem of finding the stopping distance of a Tanner graph is hard to approx-
imate within any positive constant approximation ratio in polynomial
time unless P = NP . It is also shown as a consequence that there can be
no approximation algorithm for the problem achieving an approximation

ratio of 2(log n)1−ε

for any ε > 0 unless NP ⊆ DTIME(npoly(log n)).

1 Introduction

Linear block codes are widely used for reliable transmission of information across
a noisy communication channel. A linear block code may be represented (not
necessarily uniquely) as a bipartite graph called a Tanner graph [2]. Interest in
such graphical representation is primarily due to the fact that the well known
Iterative Decoding Algorithm [11] typically operates on a Tanner graph repre-
sentation of the code. The error correcting capability of a code under iterative
decoding depends on the Tanner graph representation of the code used at the
receiver-end of the communication channel for decoding. In particular, the stop-
ping distance of a Tanner graph T for a binary linear block code C determines
the number of erasures that the iterative decoding algorithm can correct when
C is used for communication across a binary erasure channel and decoding is
performed by running the iterative decoding algorithm on the graph T [1].

In this paper, we study the computational complexity of the problem of finding
the stopping distance of a given Tanner graph. The problem was shown to be
NP-hard in [12]. We show that unless P = NP there exists no polynomial time
approximation algorithm for the problem achieving any constant approximation
ratio. It is also shown that there can be no approximation algorithm for the
problem achieving an approximation ratio of 2(log n)1−ε

for any ε > 0 unless
NP ⊆ DTIME(npoly(log n)).
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2 Background

The following sub-section reviews the necessary background in coding theory
required for an understanding of the problem and set up the notation for the
rest of the paper.

2.1 Codes, Tanner Graphs and Stopping Distance

An (n, k) binary linear block code C (hereafter referred to simply as a code)
is a k dimensional subspace of the vector space Fn

2 with 0 ≤ k ≤ n, where
F2 refers to the binary field. A vector x ∈ Fn

2 satisfying x ∈ C is called a
codeword. A generator matrix G for a code C is a k × n matrix over F2 whose
rows generate the subspace C. The dual space for a code C called C⊥ is the
orthogonal complement of C in Fn

2 i.e., C⊥ = {x ∈ Fn
2 : x.y = 0}, where “.”

represents the standard dot product in Fn
2 . It is well known that that C⊥ is

a subspace of Fn
2 of dimension n − k [13, p. 244]. An (n − k) × n generator

matrix H for C⊥ is called a parity check matrix for C. Note that For any x ∈ C,∑
i:hji=1 xi = 0 for any 1 ≤ j ≤ n− k with addition carried out over F2.

Given the parity check matrix H = [hij ] ∈ F
(n−k)×n
2 , 0 ≤ k ≤ n for an (n, k)

binary linear code, the Tanner graph defined by H is the undirected bipartite graph
G = (L,R,E) where L = {xi, 1 ≤ i ≤ n}, R = {cj, 1 ≤ j ≤ n − k} and
E = {(xi, cj) : hji = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n − k}. The set L is called the set of
code symbols and the setR called the set of parity checks. We refer to the set L and
R as the set of left and right vertices of G respectively. Figure 1 shows the parity
check matrix for a (3, 1) binary linear code and the corresponding Tanner graph.

x x2 3x1

c 1 c 2

1     1     0

1     1     1
H= G

L

R

Fig. 1. Parity check matrix and Tanner graph for a (3,1) code

For S ⊆ L ∪ R, we define N(S) = {v : (u, v) ∈ E, u ∈ S}. S ⊆ L is a
stopping set if S 
= ∅ and for all cj ∈ N(S), |N({cj}) ∩ S| ≥ 2 i.e., every vertex
connected to some vertex in a stopping set must have at least two neighbours in
the stopping set.

The stopping distance of a Tanner graph is the size of a stopping set of mini-
mum cardinality in the graph. We define the optimization problem MINSTOP
as the problem of determining the stopping distance of a given Tanner graph. The
objective of this paper is to study the computational complexity of MINSTOP .
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The following subsection, though not necessary for reading the rest of the
paper, explains the motivation for studying the problem.

2.2 Erasure Channel and Iterative Decoding

A binary erasure channel with parameter p called BEC(p) with p ∈ [0, 1] is
a stochastic process taking input symbol x ∈ {0, 1}, producing output symbol
y ∈ {0, 1, e} with the transition probabilities P r(y = 0|x = 0) = P r(y = 1|x =
1) = 1 − p and P r(y = e|x = 0) = P r(y = e|x = 1) = p. The symbol e is called
the erasure symbol and models the situation where the value of a bit transmitted
is unrecognizable at the receiver end. The action of an erasure channel on a vector
x ∈ Fn

2 is defined as the stochastically independent action of BEC(p) on its n
component symbols xi, 1 ≤ i ≤ n. The binary erasure channel is a useful model
for several practical communication systems.

The problem of (maximum likelihood) decoding a code C on a channel BEC(p)
is that of finding an x ∈ C for a given y ∈ {0, 1, e}n such that P r(y|x) ≥
P r(y|x′) for all x′ ∈ C. The problem can be shown to be equivalent to finding
an x ∈ C that agrees with y in maximum number of positions.

The iterative decoding algorithm takes as input a Tanner graph G for an
(n, k) code C and a vector y ∈ {0, 1, e}n and does the following. The algorithm
first associates the symbol yi with the vertex xi ∈ L for each 1 ≤ i ≤ n. The
algorithm then finds a vertex cj ∈ R such that only one of the neighbours of cj
— say xt has value e. Since for any x ∈ C the equation

∑
xi∈N({cj}) xi = 0 must

be satisfied, the algorithm can solve for the single unknown value xt so that the
above equation holds. The value of xt so found replaces the old value e in the next
iteration. The process continues until either all erasures are solved successfully
or every cj ∈ R with a neighbour with value e has at least one more neighbour
with value e. In the latter case, the algorithm fails to progress and announces a
decoding failure. The iterative decoding algorithm though sub-optimal is widely
used owing to its low computational complexity.

It is not hard to see [1] that decoding failure occurs if and only if the set of
vertices in G corresponding to erasures in the input vector y contains a stopping
set as a subset. Hence the stopping distance of a Tanner graph is of interest as
it is the minimum number of erasures that can cause a decoding failure when
iterative decoding algorithm is used for decoding on the graph. Considerable
analysis on the structure of stopping sets in the Tanner graphs of various code
families as well as design of codes with large stopping distance has been carried
out — for example see [3,4,5,6,9,7,10].

The problem of finding the stopping distance of a Tanner graph was shown to
be NP-hard in [12]. In this paper, non-approximability results for the problem
are derived. The following subsection gives a brief outline of the rest of the
paper. The definitions provided are not the most general, but are sufficient for
the purposes for this paper.
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2.3 Non-approximability

For any ε > 0, A (1+ ε)-approximation algorithm Π for a minimization problem
P is one that on any instance x of P returns a feasible solution y such that
COST (y) ≤ (1 + ε)OPT (x), where OPT (x) denotes the cost of an optimal
solution for the instance x and COST (y) denotes the cost of y with respect to the
cost function under consideration. We require that Π runs in time polynomial in
the size of the input x. Approximation algorithms have been intensively studied
in computer science literature — see for example [14,15,16].

A vertex cover in an (undirected) graph G is a subset S of the vertices of G
such that every edge in G has at least one endpoint in the set S. The problem
of finding a minimum vertex cover in a graph called MINV C is NP-hard [8,
p. 190]. It is known that there exists an ε0 > 0 such that no polynomial time
(1 + ε0)-approximation algorithm exists for MINV C unless P = NP even for
graphs whose vertex degree is bounded by three [15, p. 369]. We shall call the
specialization of MINV C to graphs of degree at most 3 as MINV C(3).

Our objective here is to show that there does not exist any polynomial time
(1 + ε)-approximation algorithm for MINSTOP for any constant ε > 0 unless
P = NP . We achieve this by showing first that if there is a polynomial time
(1 + ε)-approximation algorithm for MINSTOP , then using the algorithm we
can deduce a polynomial time (1+4ε)-approximation algorithm for MINV C(3).
As the next step we show that MINSTOP has the interesting property that
the existence of a polynomial time (1 + ε)-approximation algorithm for some
constant ε > 0 implies existence of a polynomial time (1 + ε)-approximation
algorithm for every constant ε > 0. As a consequence, existence of a polynomial
time (1 + ε)-approximation for MINSTOP for any constant ε > 0 would imply
existence of a polynomial time (1 + ε)-approximation algorithm for MINV C(3)
for every constant ε > 0 which is impossible unless P = NP .

3 Hardness of MINSTOP

This section proves the results claimed in the paper. The following subsection
shows that existence of a (1 + ε)- approximation algorithm for MINSTOP
implies existence of a (1 + 4ε)-approximation algorithm for MINV C(3). We
follow the standard terminology and notation for representing graphs.

3.1 Reduction from MINVC(3) to MINSTOP

Given an instance of the MINV C(3) problem, namely, an undirected graph
G = (V,E), with degree of each vertex bounded by 3. Let |V | = n and |E| = m.
We assume that G is connected. It is not hard to see that assuming that G is
connected does not affect the hardness of approximation results for MINV C(3).
Let V = {v1, v2, ..., vn} and E = {e1, e2, ...., em}. Without loss of generality, we
may assume m > 0, n > 0 and e1 = (v1, v2). We construct undirected bipartite
graphG1 = (L,R,E′), where L = L0∪L1 is the left vertex set ofG1, R = R0∪R1

is the right vertex set of G1, R0 = {e1, ...em}, L1 = {e′1, ...e′m}, L0 = {v1, ..., vn}
and R1 = {z1, ..., zm}. The edges of G1 are connected as follows:
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– For each edge e = (u, v) in G. connect e ∈ R0 to u and v in L0. In other
words, L0 and R0 are connected according to the vertex-edge incidence
in G.

– Connect ei ∈ R0 to e′i ∈ L1 for 1 ≤ i ≤ m.
– Connect zi ∈ R1 to e′i and e′i+1 in L1, 1 ≤ i ≤ m− 1.
– Connect zm ∈ R1 to v1 ∈ L0 and e′1 ∈ L1. (Recall our assumption that
e1 = (v1, v2)).

The example in Figure 2 illustrates the construction. We construct a graph G2

which is identical to G1 except that the edge (z3, v1) between R1 and L0 is
replaced with the edge (z3, v2).

G

1v

v4

e 1

e 1

e 2

e 2

e 3

e 3

2 1

z 1z 2z 3

G1

L L

R R

0 1

0 1
v2 v3

v2 3
vv4 v1 e’ e’e’3

Fig. 2. Construction of the graph G from G

Given any subset S of vertices inG, we can identify the set S as a subset ofL0 in
G1 and G2. A similar identification works in the reverse direction as well. We will
be using this identification repeatedly without particular mention of that fact to
avoid cumbersome notation. We first establish some observations about stopping
sets in G1 and G2. The first observation is an immediate consequence of the way
edges are connected between R1 and L1 and shows that any stopping set S′ in G1

(or G2) containing at least one vertex in L1 must contain the whole of L1.

Lemma 1. Let S′ be a stopping set in G1 (or G2). Suppose S′ ∩ L1 
= ∅ then
L1 ⊆ S′.

Proof. Let e′i ∈ L1 be contained in S′. If i < m, zi which is a neighbour of e′i
must have two neighbours in S′ (for S′ to satisfy the stopping set condition).
Since the only neighbours of zi are e′i and e′i+1 we have e′i+1 ∈ S′. Similarly, for
i > 1, zi−1 must have two neighbours in S′ and hence e′i−1 ∈ S′. Extending the
argument, we see that e′i ∈ S′ for some 1 ≤ i ≤ m if and only if e′i ∈ S′ for every
1 ≤ i ≤ m proving the lemma.

The following lemma proves that any stopping set S′ in G1 (or G2) must contain
the whole of L1. This is a consequence of the fact that G is connected.

Lemma 2. Let S′ be a stopping set in G1 (or G2). Then L1 ⊆ S′.
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Proof. By Lemma 1, it is enough to prove that there exists some e′i ∈ L1,
1 ≤ i ≤ m satisfying e′i ∈ S′. Assume on the contrary that S′ ∩ L1 = ∅. Then
we first show that L0 ⊆ S′. If not, then there must exists an edge ei = (vj , vk),
1 ≤ i ≤ m, 1 ≤ j, k ≤ n such that vj ∈ S′ and vk /∈ S′. This is true because G is
connected and in a connected graph every proper subset of vertices will have at
least one edge connecting a vertex in the subset to a vertex not belonging to the
subset. Let us look at the vertex ei ∈ R0. For S′ to be a stopping set, ei must
have one more neighbour in S′. But the only possible options are e′i ∈ L1 and
vk ∈ L0. Since we assumed L1 ∩ S′ = ∅, vk ∈ S′, contradicting our assumption.
Hence L0 ⊆ S′.

However, since L0 ⊆ S′, both v1 and v2 belong to S′. Since the only neighbours
of zm ∈ R1 in G1 (respectively G2) are e′1 ∈ L1 and v1 ∈ L0 (respectively
v2 ∈ L0), it must be true that e′1 ∈ S′ for satisfying the stopping set condition,
thus contradicting S′ ∩ L1 = ∅. Hence L1 ⊆ S′.

The next two lemmas establish the connection between stopping sets in G1 (or
G2) and vertex covers in G. Recall that a subset S of vertices of G may be
identified with the corresponding subset of L0 in G1 (or G2).

Lemma 3. Let S′ be a stopping set in G1 (respectively G2) then S′ ∩ L0 is a
vertex cover in G.

Proof. By Lemma 2, L1 ⊆ S′. Hence by construction R0 ⊆ N(S′). But any
ei ∈ R0 1 ≤ i ≤ m has only one neighbour in L1 and hence must have at least
one neighbour in S′ ∩ L0 in order for S′ to satisfy the stopping set condition.
This in turn is equivalent to saying that every edge in G has an endpoint in
S′ ∩ L0. Hence S′ ∩ L0 must be a vertex cover in G.

The following lemma follows directly from the construction of G1 (respectively
G2).

Lemma 4. If S is a vertex cover in G then S′ = S ∪ L1 ∪ {v1} (respectively
S′ = S ∪ L1 ∪ {v2}) is a stopping set in G1 (respectively G2).

Proof. Since L1 ⊆ S′, by construction N(S′) = R0 ∪ R1. Any ei ∈ R0 have
e′i ∈ L1 as a neighbour and must have at least one neighbour in L0∩S′ (because
S is a vertex cover). For each 1 ≤ i ≤ m − 1 zi has e′i and e′i+1 as neighbours
in S′. Finally, e′1 and v1 in G1 (respectively e′1 and v2 in G2) are neighbours of
zm. Hence, every vertex in N(S′) has at least two neighbours in S′. Thus S′ is
a stopping set in G1 (respectively G2).

The following lemma relates solutions of MINV C(3) in G and MINSTOP in
G1 and G2.

Lemma 5. If the smallest vertex cover in G has size s, 1 ≤ s ≤ n− 1, then the
smallest stopping set in either G1 or G2 must be of size at most s+m.

Proof. Let S be a vertex cover of size s in G. Since e1 must have a neighbour in
S, either v1 or v2 must belong to S. If v1 ∈ S consider G1 (otherwise consider
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G2). By Lemma 4, S ∪ L1 must be a stopping set in G1. This is the required
stopping set of size s+m. No stopping set can be smaller because of Lemma 2
and Lemma 3.

We are now ready to prove:

Theorem 1. If there is a polynomial time (1 + ε)-approximation algorithm for
MINSTOP then there exists a polynomial time (1+4ε) approximation algorithm
for MINV C(3).

Proof. Assume that we have a polynomial time (1+ ε)-approximation algorithm
Π for MINSTOP . Suppose we are given an instance G of MINV C(3). Let s
be the size of a vertex cover of least size in G. Construct G1 and G2. Let S′

1

and S′
2 be the stopping sets in G1 and G2 respectively returned by Π . Then by

Lemma 5, the smaller of the two stopping sets (say S′
1) must have size at most

(1 + ε)(s+m). By Lemma 2, L1 ⊆ S1 and hence by Lemma 3 S′
1 ∩L0 = S′

1 \L1

must be a vertex cover of size at most (1 + ε)(s + m) −m = s(1 + ε) + εm in
G. Let us call this vertex cover S. Since every vertex in G has at most 3 edges
connected to it, any vertex cover must have size at least �m/3�. Thus we have
m ≤ 3s. Consequently, |S| ≤ (1 + 4ε)s. It is clear that this procedure can be
completed in polynomial time provided Π runs in polynomial time, yielding the
required (1 + 4ε)-approximation algorithm.

The following statement is a direct consequence of Theorem 1.

Corollary 1. There exists a constant ε > 0 such that there is no polynomial
time (1 + ε)-approximation algorithm for MINSTOP even for Tanner graphs
with left vertex degree bounded by four and right vertex degree bounded by three
unless P = NP .

Proof. It is easy to see that G1 and G2 constructed above has left degree at most
four and right degree at most three if G is an instance of MINV C(3). By [15, p.
369] there exists ε0 such that there is no polynomial time (1+ ε0)-approximation
algorithm for MINV C(3) unless P = NP . Hence, by Theorem 1, existence of
a polynomial time (1 + ε0/4)-approximation algorithm for MINSTOP would
imply P = NP .

Our next goal is to show the self reducibility of MINSTOP namely, if there
is a polynomial time (1 + ε)-approximation algorithm for MINSTOP for some
constant ε > 0, using this algorithm we can construct another polynomial time√

1 + ε-approximation algorithm for MINSTOP . As a consequence, existence
of a polynomial time (1 + ε)-approximation algorithm for MINSTOP for any
constant ε > 0 would imply existence of a polynomial time (1+ε)-approximation
for MINV C(3) for every constant ε > 0 which is impossible unless P = NP .

3.2 Self-reducibility of MINSTOP

Suppose we are given an instance of MINSTOP — an undirected bipartite
graph G = (L,R,E). Let L = {x1, .., xn}, R = {c1, ..., cm}. We construct an
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undirected bipartite graph G′ = (L′, R′, E′) such that L′ = L1 ∪ ... ∪ Ln, R′ =
R0∪ ...∪Rn, E′ = E0∪ ...∪En, where for 1 ≤ k ≤ n Lk = {xk

i , 1 ≤ i ≤ n}, Rk =
{ckj , 1 ≤ j ≤ m}, Ek = {(xk

i , c
k
j ) : (xi, cj) ∈ E}, R0 = {zij : 1 ≤ i < j ≤ n} and

E0 = {(xj
i , zij), (zij , x

i
j) : 1 ≤ i < j ≤ n}. Figure 3 illustrates the construction

for the Tanner graph in Figure 1.
The following description would help the reader to develop a better intuition

about the structure of G′. G′ consists of n copies of the Tanner graph G, where
the kth copy is the subgraph of G′ induced by vertices Lk and Rk and contains
all the edges in the set Ek. We shall denote this subgraph as G′

k. The vertex
xi ∈ L appears as xk

i ∈ Lk, cj ∈ R appears as ckj ∈ Rk and the connections
established by Ek are identical to those by E in G. The connections between
different copies are defined by the edges in E0 and the vertices in R0 are used
as intermediate vertices in the connection. The vertex xk

i in Lk is connected to
xi

k in Li through the vertex zik. This connection guarantees that any stopping
set S′ in G′ that contains xk

i must also contain xi
k for otherwise the vertex zik

will have only one neighbour in S′ violating the stopping set condition.
To simplify the notation the following convention will be used. We shall iden-

tify the vertex xk
i ∈ Lk with xi ∈ L, 1 ≤ i ≤ n, and ckj ∈ Rk with cj ∈ R

1 ≤ j ≤ m. Then we have a natural isomorphism between G and G′
k for each

1 ≤ k ≤ n. Let S′ be a stopping set in G′. We use the notation S′
k to denote the

set S′ ∩ Lk. We then have S′ = S′
1 ∪ ... ∪ S′

n and the union is disjoint. We refer
to S′

k as a subset of L in G using the above identification without mention of
that fact when there is no confusion.

x1 x2 x3

c c
21

c c c c c c1

1

1

12 2 1 2

2 2 3 3

1x
1

1x
2
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3

x
1

x2x
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2

x
3

3
3x2 2 2

12 13 23

3

G’G
z z z

Fig. 3. Construction of G - example illustrating self-reducibility of MINSTOP

The following lemma summarizes a key property of stopping sets in G′.

Lemma 6. Let S′ be a stopping set in G′. Let S′
k 
= ∅ for some 1 ≤ k ≤ n.

Then S′
k is a stopping set in G (under the identification above).

Proof. Since vertices in Rk have neighbours only in the set Lk in G′, any vertex
in Rk with a neighbour in S′

k must have at least one more neighbour in S′
k in

order for S′ to satisfy the stopping set condition. Thus, S′
k must be a stopping set
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in the subgraph of G′ induced by Lk and Rk namely, G′
k. Since G′

k is isomorphic
to G under our identification, S′

k must be a stopping set in G.

The next lemma proves that from any given stopping set S′ in G′ we can extract
a stopping set S in G such that |S′| ≥ |S|2.

Lemma 7. Let S′ be a stopping set in G′. Let H = {S′
k : S′

k 
= ∅, 1 ≤ k ≤ n}.
Let S′

i be an element of H of minimum cardinality. Then |S′
i| ≤

√
|S′|.

Proof. Let t = |S′
i|. Without loss of generality we may assume that S′

i =
{xi

1, ..., x
i
t} (otherwise re-label the vertices). Since zij (if i > j read zji) which is

a neighbour of xi
j must have at least two neighbours in S′ to satisfy the stopping

set condition, xj
i ∈ S′ for 1 ≤ j ≤ t. Hence S′

j ∈ H for 1 ≤ j ≤ t. By the as-
sumption that S′

i is a member in H of least cardinality, |S′
j | ≥ |S′

i| for 1 ≤ j ≤ t.
Since every S′

j ∈ H is contained in S′ and are disjoint, |S′| ≥ t|S′
i| = t2.

Now we show that for every stopping set S in G, we can find a stopping set in
G′ containing |S|2 vertices.

Lemma 8. Let S be a stopping set in G then S′ = {xj
i : xi ∈ S and xj ∈ S} is

a stopping set of size |S|2 in G′.

Proof. First, note that it follows from the definition of the set S′ that if xi ∈ S
then S′

i = S (under our identification) and if xi /∈ S then S′
i = ∅ for all 1 ≤ i ≤ n.

Let y be a neighbour of a vertex in S′. Then by the definition of S′, either y ∈ Ri

for some i ∈ {1, ...n} such that xi ∈ S or y ∈ R0. In the first case, since S′
i is a

stopping set in G (because S′
i = S under our identification and S is a stopping

set in G), y must have at least two neighbours in S′
i and hence in S′. In the

latter case, y = zij for some 1 ≤ i < j ≤ n and both xj
i and xi

j are neighbours
of y in S′. Thus in all cases the stopping set condition is satisfied.

As a result of all the above we have:

Lemma 9. Let S be a stopping set of minimum size in G then the stopping set
of minimum size in G′ has size |S|2.

Proof. Let S′ be a stopping set in G′ consider the set H = {S′
k : S′

k 
= ∅, 1 ≤
k ≤ n} defined in Lemma 7. By Lemma 6, each element S′

k ∈ H must be a
stopping set in G and therefore |S′

k| ≥ |S| for each S′
k ∈ H as S is a stopping set

of minimum size in G. Hence By Lemma 7, |S′| ≥ |S|2. Existence of a stopping
set of size |S2| follows from Lemma 8.

Theorem 2. If there is a polynomial time (1 + ε)-approximation algorithm for
MINSTOP for any constant ε > 0 then there exists a polynomial time

√
1 + ε-

approximation algorithm for MINSTOP .

Proof. Suppose there is a polynomial time (1 + ε)-approximation algorithm Π
for MINSTOP . Given an instance G of MINSTOP , construct G′ and run Π
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on input G′. Let s be the size of a stopping set of smallest size in G. By Lemma
9, the size of any stopping set of smallest size in G′ must be s2. Thus Π must
return a stopping set S′ of size at most (1 + ε)s2 in G′. Hence by Lemma 7 we
can find an S′

i of size at most (
√

1 + ε)s in G′ which by Lemma 6 must be a
stopping set in G. Since G′ has size of the order of square the size of G, the
procedure runs in polynomial time provided Π runs in polynomial time.

We collect the non-approximability results that follow as consequences of The-
orem 1 and Theorem 2 in the following sub-section. We shall deviate from our
earlier notation and use the variable n here to denote the “size” of a graph.
(Size of a graph is normally measured in terms of the number of bits needed to
represent the graph using an adjacency matrix/list.)

3.3 Non-approximability of MINSTOP

Theorem 3. There exists no polynomial time (1 + ε)-approximation algorithm
for MINSTOP for any constant ε > 0 unless P = NP .

Proof. Suppose there is a polynomial time (1 + ε)-approximation algorithm
for MINSTOP for some constant ε > 0. Fix any constant ε0 < ε. Let r =⌈
log2(log(1+ε0)(1 + ε))

⌉
. Given an instance G of MINSTOP of size n, by an

r-fold repeated application of self-reduction on G we get a graph G′ of size
O(n2r

) from which we can extract a stopping set of size at most (1+ ε)2
−r

times
the size of the smallest stopping set in G. Note that r is a constant indepen-
dent of n and hence the procedure will run in time polynomial in n. By our
choice of r, (1 + ε)2

−r

< (1 + ε0) and thus the procedure yields a polynomial
time (1+ε0)-approximation algorithm for MINSTOP . Note that the procedure
works with any constant ε0 > 0. By Corollary 1, there is some constant ε0 > 0
for which this is impossible unless P = NP . Hence existence of a polynomial
time (1 + ε)-approximation algorithm for MINSTOP for any constant ε > 0
implies P = NP .

The above proof may be extended to yield a stronger non-approximability as-
sertion if we assume a hypothesis weaker than P 
= NP .

Theorem 4. There exists no polynomial time 2(log n)1−ε

-approximation algo-
rithm for MINSTOP for any constant ε > 0 unless NP ⊆DTIME(npoly(log n)).

Proof. Suppose there is a polynomial time 2(log n)1−ε

-approximation algorithm
for MINSTOP for some constant ε > 0. Given an instance G of MINSTOP of
size n and any constant ε0 > 0, let r = �(1/ε)(log2 log2 n− log2 log2(1 + ε0))�.
As with the proof of Theorem 3, an r-fold application of the self reducibility of
MINSTOP on G results in a graph G′ of O(n2r

) = O(npoly(log n)) size from
which we can extract a stopping set of size at most (1 + ε0) times the size of the
smallest stopping set in G. By Corollary 1, this would yield an O(npoly(log n)) al-
gorithm for MINV C(3) which in turn would imply that every NP-optimization
problem would be in DTIME(npoly(log n)).
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4 Discussion and Conclusion

There is an extensive literature on complexity results on problems in coding
theory — particularly on the problem of finding the minimum distance of a
linear code [17,18,19,20,21] which is closely related to MINSTOP . It can be
shown that the self-reducibility proof for stopping distance presented in this
paper is adaptable to yield a proof for self-reducibility of the problem of find-
ing the minimum distance of a binary linear code, although the resultant non-
approximability result is slightly weaker than the best known in literature [20].
The question of whether there exist a constant ε > 0 such that there is a poly-
nomial time nε approximation algorithm for MINSTOP is open for further
investigation.
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Abstract. The boundary labeling problem was recently introduced in [5]
as a response to the problem of labeling dense point sets with large labels.
In boundary labeling, we are given a rectangle R which encloses a set of n
sites. Each site is associated with an axis-parallel rectangular label. The
main task is to place the labels in distinct positions on the boundary
of R, so that they do not overlap, and to connect each site with its
corresponding label by non-intersecting polygonal lines, so called leaders.
Such a label placement is referred to as legal label placement.

In this paper, we study boundary labeling problems along a new line
of research. We seek to obtain labelings with labels arranged on more
than one stacks placed at the same side of R. We refer to problems of
this type as multi-stack boundary labeling problems.

We present algorithms for maximizing the uniform label size for bound-
ary labeling with two and three stacks of labels. The key component of
our algorithms is a technique that combines the merging of lists and the
bounding of the search space of the solution. We also present NP-hardness
results for multi-stack boundary labeling problems with labels of variable
height.

1 Introduction

A common task in the process of information visualization is the placement of
extra information, usually in the form of text labels, next to the features of a
drawing (diagram, map, technical or graph drawing). When the labels are small
and the features are sparsely distributed in the drawing, it may be feasible to
place most labels next to the features so that the labels do not overlap with
each other and they do not obscure other drawing features. Obtaining optimal
label placements with respect to some optimization criterion is, in general, NP-
hard [8]. An extensive bibliography about map labeling can be found at [12].

In the case of very large labels (or, equivalently, dense feature sets), it is usually
impossible to find a label placement, i.e. to place each label next to the feature.
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In response to this problem, Bekos, Kaufmann, Symvonis and Wolff [5] (an ex-
tended journal version appears in [4]) proposed the boundary labeling model. In
this model the labels are placed on the boundary of a rectangle enclosing all fea-
tures and each label is connected to its associated feature with polygonal lines,
called leaders. If the labels are non overlapping and the leaders non intersecting
we have a legal labeling or a legal label placement. The boundary labeling model is
a realistic model for medical atlases and technical drawings, where certain features
of a drawing are explained by blocks of text placed outside the drawing so that no
part of the drawing is obscured. SmartDraw [10] provides boundary labelings in
a primitive form based on labeling templates. It does not support any form of au-
tomated boundary labeling optimization. Bler [6] supports the boundary labeling
process and facilitates the annotation of drawings with text labels.

Sites model features of the drawing. If they model a point-feature (e.g., a city
on a map) they are naturally represented as points (see points in rectangle R of
Fig. 1, 2 and 5). So, in its simplest form, a boundary labeling problem specifies
as part of its input a set P of n points pi = (xi, yi) on the plane in general
position, i.e. no three points lie on a line and no two points have the same x- or
y-coordinate. Another interesting variation is the one with two candidate points
on the plane for each site (see Fig. 3). In practice, several times we want to
associate a label with an area-feature (e.g., a region on a map). To keep things
simple, we specify these regions by a closed polygonal line or by a line segment
internal to the feature area, and assume that the site “slides” along the boundary
of the polygon or on the line segment (see Fig. 4).

R
Track Routing Area

Fig. 1. Type-opo leaders

R

Fig. 2. Type-po leaders

R

Fig. 3. Sites with 2 candidate
points

R

Fig. 4. Sites are vertical line segments

R

Fig. 5. Three stacks of labels

In general, each site pi has a corresponding axis-parallel rectangular, open
label li of width wi and height hi. The labels are to be placed around an axis-
parallel rectangle R = [lR, rR]x[bR, tR] of height H = tR − bR and width W =
rR − lR which contains all sites pi ∈ P . While in the general case the labels are
of variable dimensions, we also consider the restricted cases where the labels are
of uniform size (height and/or width), or of maximum uniform size.
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Each site is connected with its corresponding label in a simple and elegant way
by using polygonal lines, called leaders. In our approach we have leaders that
consist of a single straight line segment or a sequence of rectilinear segments.
When a leader is rectilinear, it consists of a sequence of axis-parallel segments
either parallel (p) or orthogonal (o) to the side of R containing the label it leads
to. The type of a leader is defined by an alternating string over the alphabet
{p, o}. We focus on leaders of types-opo and po, see Fig. 1 and 2, respectively.
Furthermore, we assume that each type-opo leader has its parallel p-segment (or
equivalently its both bends) outside R, routed in the so-called track routing area.
We consider type-o leaders to be of type-opo and of type-po as well.

A further refinement of the labeling model has to do with the sides of the
enclosing rectangle containing the labels. Labels can be placed on one or more
sides of R (in Fig. 1, 2, 3 and 5 all labels are placed on the east side of R).
In order to allow for greater numbers of larger labels, we might have the labels
arranged in more than one stack at each side of the enclosing rectangle. This
paper is devoted to the case of multi-stack labelings. Figure 5 shows a labeling
where the labels occupy three stacks to the east side of R. Notice that in the
case of multiple stacks of labels (say m stacks), a leader of type-opo can have
its p segment either in between R and the first stack (called first track routing
area) or between the i-th and the (i+ 1)-th stack, where i < m (called (i+ 1)-th
track routing area).

Each leader that connects a site to a label, touches the label on a point on
its side that faces R, this point is called port. We can assume either fixed ports,
i.e. the leader is only allowed to use a fixed set of ports on the label side (a
typical case is where the leader uses the middle point of the label side) or sliding
ports where the leader can touch any point of the label’s side. The labelings in
Fig. 1, 2 and 5 use fixed ports, while in Fig. 3 and 4 they use sliding ports.

Keeping in mind that we want to obtain simple and easy to visualize labelings,
the following criteria can be adopted from the areas of VLSI and graph drawing:
minimizing the total number of bends of the leaders, minimizing the total leader
length and minimizing the maximum leader length. An additional criterion that
we consider is the maximization of the uniform label size. This is a quite common
optimization criterion in the map labeling literature. In this paper, we seek to
obtain labelings with labels of maximum uniform size arranged on more than
one stacks of labels at the same side of R.

This paper is structured as follows: Section 2, reviews preliminary results re-
quired for the development of our algorithms. In Section 3, we present algorithms
for obtaining multi-stack labelings of maximum uniform label size for the cases
of two and three stacks of labels arranged at the same side of R. In Section 4, we
present several NP -hardness results for non-uniform labels placed in two stacks.
We conclude in Section 5 with open problems and future work.

Previous Work
Most of the known results on boundary labeling with point sites were presented
in [4]. A legal labeling, on one side with type-opo (type-po) leaders can be
achieved in O(n log n) time (in O(n2) time, respectively), whereas on all four
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sides with type-opo leaders in O(n log n) time. The problem of minimizing the
total number of leader bends on one side with type-opo leaders can be solved
in O(n2) time. The minimization of the total leader length when uniform sized
labels can be placed on two opposite sides of R with either type-opo and type-po
leaders needs O(n2) time. For the similar problem, where non-uniform labels can
be placed on two opposite sides of R and the leaders are of type-opo, O(nH2)
time is needed. An algorithm for minimizing the total leader length on four sides
with type-opo leaders in O(n2 log3 n) (O(n3)) time for fixed ports (sliding ports)
is presented for points in [1] and for polygons in [3].

2 Preliminaries

Throughout the paper we use lists that contain pairs of integers describing dif-
ferent label placements. Given a pair (a, b) of integers, a and b are referred to as
the first and the second coordinate of the pair, respectively. Inspired by an idea
of Stockmeyer [11] which was subsequently used by Eades et. al. [7], we manage
to keep the length of each list bounded by pruning pairs that cannot occur in
an optimal solution.

Definition 1. A list L of pairs of integers is sorted if the pairs it contains are
lexicographically sorted in decreasing order with respect to their first coordinate
and in increasing order with respect to their second coordinate.

Definition 2. Let (a, b) and (c, d) be pairs of integers.

(a, b) dominates (c, d) ⇐⇒ a ≥ c and b ≥ d.

Suppose that we have to solve a problem where the search space of the solution
consists of pairs of integers, and let f be a monotone function computing a
minimization objective on pairs from the solution search space. If (a, b) and
(c, d) represent possible solutions and (a, b) dominates (c, d), then the pair (a, b)
can never be involved in an optimal solution and may be safely removed from
the solution set. Given a list L of pairs of integers, a pair (a, b) ∈ L that does
not dominate any other pair in L is called an atom (with respect to L).

In our algorithms we maintain lists (of pairs) that contain only atoms. A
frequently performed operation is the merging of two lists of atoms, resulting in
a new list of atoms. The merging algorithm resembles the merging step of merge
sort algorithm. It supports the following lemmas:

Lemma 1. k sorted lists L1, L2, . . . , Lk, k ≥ 2, of atoms can be merged in
O((k − 1)

∑k
i=1 |Li|) time into a new sorted list L of at most

∑k
i=1 |Li| atoms.

Lemma 2. Let A and B be two finite sets of integers and let L = {(a, b)| a ∈
A and b ∈ B} be a list of atoms. Then, |L| ≤ min(|A|, |B|).

Finally, we present some notation and terminology that we use in the description
of our algorithms. We say that a pair (a, b) obeys the boundary conditions, if
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a ≤ H and b ≤ H , where H is the height of the enclosing rectangle. We also
define operator ⊕H : R× R → R, where:

a⊕H b =
{
a+ b, if a+ b ≤ H
∞, otherwise .

3 Label Size Maximization

3.1 Two Stacks of Labels on the Same Side

We consider boundary labeling with type-opo leaders, where the labels are placed
at two stacks on the same side (say, the east side) of the rectangle R. We assume
that all labels have the same size (width and height) and we seek to maximize
the uniform height h of all labels, so that a legal labeling exists. To determine
the maximum value of h, we apply a binary search on all possible discrete values
for height h. We assume the more general case of sliding ports. Additionally,
the type-opo leaders connecting sites to labels that are at the second stack are
allowed to bend either in the first or in the second track routing area.

Observe that, in any legal one-side labeling with type-opo leaders, the vertical
order of the sites is identical to the vertical order of their corresponding labels
on both stacks. This, together with the assumption that no two sites share the
same y-coordinate, guarantees that leaders do not intersect. So, we assume that
the sites are sorted according to increasing y-coordinate.

For a fixed h, we propose a dynamic programming algorithm that outputs a
boolean value, which indicates whether there exists a legal label placement, when
all sites have labels of height h. Imagine that a label placement L is given, then
we say that a pair (a, b) describes L, if a (b) is the highest occupied y-coordinate
of the first (respectively second) stack. Our algorithm maintains a table T of
size (n+ 1)× (n+ 1), where each entry T [i, k], i ≥ k, of table T contains a list
of atoms (a, b) decribing the label placement of the first i sites when k out of
them have leaders bending in the second track routing area. List T [i, k] is empty,
when it is impossible to place the first i labels, with k leaders bending in the
second track routing area.

Assuming that we have placed the labels for the first i−1 sites, we try to place
the label li of the i-th site. Label li can be placed at the first or second stack.
Additionally, if li is to be placed at the second stack, then we have to check
whether this can be done with a leader bending in the first or second track
routing area. Obviously, such placements can be obtained from label placements
of the first i− 1 sites with either k or k − 1 leaders bending in the second track
routing area.

Label li is placed at the first stack: Let T1[i, k] be a list of pairs (a, b)
describing the label placement of the first i sites when the i-th site has its label
at the first stack and k leaders have their bends in the second track routing area.
T1[i, k] can be computed based on entry T [i− 1, k] (see Fig. 6a), as follows:

T1[i, k] = {(a ⊕H h, b) : ∀(a, b) ∈ T [i − 1, k]}
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R

b

h

pi a

(a) li in 1st stack; bend in
1st track routing area.

R

b

h

pi a

(b) li in 2nd stack; bend in 1st
track routing area.

R

b

h

pi

a

(c) li in 2nd stack; bend in
1st track routing area.

R

b

h

a

pi

(d) li in 2nd stack; bend in
2nd track routing area.

Fig. 6. Different placements obtained for the label of site i. In Figures 6a, 6b and 6c:
(a, b) ∈ T [i − 1, k], whereas in Fig. 6d: (a, b) ∈ T [i − 1, k − 1].

Label li is placed at the second stack - bend at the first track routing
area: Let T21[i, k] be a list of pairs (a, b) describing the label placement of
the first i sites when the i-th site has its label at the second stack using a
leader bending at the first track routing area and k leaders have their bends in
the second track routing area. Again, T21[i, k] can be computed based on entry
T [i− 1, k]. If for some pair (a, b) ∈ T [i− 1, k] it holds that a ≤ b (i.e. the first
stack is lower or equal than the second stack), then a pair (b, b⊕H h) is added
in T21[i, k] (see Fig. 6b). Else pair (a,max{b ⊕H h, a}) is added in T21[i, k] (see
Fig. 6c). Therefore, T21[i, k] is computed as follows:

T21[i, k] = A21[i, k] ∪ B21[i, k],

where:

A21[i, k] = {(b, b ⊕H h) : ∀(a, b) ∈ T [i − 1, k] s.t. a ≤ b}
B21[i, k] = {(a, max{b ⊕H h, a}) : ∀(a, b) ∈ T [i − 1, k] s.t. a > b}

Label li is placed at the second stack - bend at the second track routing
area: Let T22[i, k] be a list of pairs (a, b) describing the label placement of the
first i, when the i-th site has its label placed at the second stack using a leader
bending at the second track routing area and k leaders have their bends in the
second track routing area. T22[i, k] is computed based on entry T [i − 1, k − 1]
(see Fig. 6d), as follows:

T22[i, k] = {(yi, b ⊕H h) : ∀(a, b) ∈ T [i − 1, k − 1] s.t. a < yi}

All pairs (∞, a), (a,∞) can be removed from lists T1[i, k], T21[i, k] and T22[i, k],
in linear time, since they do not capture possible placements. The implied lists
are merged into list T [i, k] of atoms, based on Lemma 1. We can easily show
that |T [i, k]| ≤ 2|T [i−1, k]|+3. This implies that |T [n, k]| = O(2n), n ≥ k. Also,
by Lemma 2, we have that |T [n, k]| ≤ H . However, by employing the following
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Lemma 3, we can improve on both of these bounds. Its correctness can easily
be shown inductively, by proving that the distinct values that both coordinates
of the pairs in T [i, k] can receive are drawn from the sets {0, h, 2h, . . . , ih},
{y1, y2, . . . , yi}, and

⋃i
j=1{yj + h, yj + 2h, . . . , yj + (i− 1)h}.

Lemma 3. List T [n, k], n ≥ k contains O(n2) pairs.

To prove the correctness of our algorithm, consider a pair (a, b) ∈ T [i, k] that
dominates pair (c, d) ∈ T [i, k]. Assume, for the sake of contradiction, that pair
(a, b) yields a solution and pair (c, d) does not. That means that, for at least
one pair out of {(yi, b + h), (b, b + h), (a,max{b + h, a}), (a + h, b)} the bound-
ary condition holds while the boundary condition does not hold for any of the
pairs {(yi, d+h), (d, d+h), (c,max{d+h, c}), (c+h, d)}. This is impossible since
a ≥ c and b ≥ d. Therefore (a, b) can never be involved in an optimal solution
and can be discarded. This implies that each list T [i, k] should only contain
atoms.

Each of the (n + 1)× (n + 1) entries of T is computed in O(n2) time. Thus,
our algorithm terminates after O(n4) time. For a fixed label height h, the al-
gorithm outputs a boolean value, which indicates whether there exists a legal
label placement. This is done by identifying whether there exists a non-empty
list T [n, j], with 0 ≤ j ≤ n. By using an extra table of the same size as T , our
algorithm can easily be modified, such that it also computes the label and leader
positions.

Theorem 1. Given a rectangle R of integer height H and a set P ⊂ R of
n points in general positions, there exists an O(n4 log H) time algorithm that
produces a legal multi-stack labeling with two stacks of labels on the same side of
R and with type-opo leaders such that the uniform integer height of the labels is
maximum.

Proof. In order to solve the label size maximization problem, we can simply apply
a binary search on all possible discrete values for height h. To complete the proof,
observe that H

n ≤ h ≤ 2H
n . �

Fig. 7. A regional map of UK Fig. 8. A regional map of Italy
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Sample Labelings
Figures 7 and 8 are produced from the algorithm of Section 3.1 and depict two
regional maps of UK and Italy, respectively. The labels occupy two stacks on the
east side of the enclosing rectangle. In both labelings the label size is maximum.

3.2 Three Stacks of Labels on the Same Side

In this section, we extend the algorithm of Section 3.1 to support an additional
stack of labels. We consider the case, where leaders connected to labels at the
i-th stack are restricted to bend in the i-th track routing area. The objective,
again, is to maximize the uniform height h of all labels.

Theorem 2. Given a rectangle R of integer height H and a set P ⊂ R of
n points in general positions, there exists an O(n4 log H) time algorithm that
produces a legal multi-stack labeling with three stacks of labels on the same side
of R and with type-opo leaders such that the uniform integer height of the labels
is maximum and the leaders connected to labels at the i-th stack are restricted
to bend in the i-th track routing area.

Proof. We use dynamic programming algorithm employing a table T of size
(n + 1) × (n + 1) × (n + 1). For each i ≥ k + m, entry T [i, k,m] contains a
list of pairs (a, b), where a (b) is the y-coordinate of the first (second) stack,
that is needed to place the first i labels, when m labels are placed in the third
stack, k labels are placed in the second stack and i− k−m labels are placed in
the first stack. Note that the height at the third stack is mh, since all leaders
connected to labels of the third stack are restricted to bend in the third track
routing area. List T [i, k,m] is empty, when it is impossible to route the first i
labels using k labels in the second stack and m in the third stack. This implies
that table entries T [i, k,m], where i < k + m, contain empty lists. Following
similar arguments as in Section 3.1, entry T [i, k,m] can be computed based on
the following recurrence relation:

T [i, k, m] = Merge{T1[i, k, m], T2[i, k, m], T3[i, k, m]} (1)

where:

T1[i, k, m] = {(a ⊕H h, b) : ∀(a, b) ∈ T [i − 1, k, m]}
T2[i, k, m] = {(yi, b ⊕H h) : ∀(a, b) ∈ T [i − 1, k − 1, m] s.t. a < yi}
T3[i, k, m] = {(yi, yi) : ∀(a, b) ∈ T [i − 1, k, m − 1], s.t. mh ≤ H and (a, b) < (yi, yi)}

List T1[i, k,m] of Eq. 1 captures placements of the i-th label at the first stack.
Similarly, list T2[i, k,m] of Eq. 1 captures placements of the i-th label at the
second stack. Since we assumed that leaders connected to labels at the second
stack are restricted to bend in the second track routing area, this is possible
only for pairs (a, b) ∈ T [i − 1, k − 1,m] with a ≤ yi . Finally, list T3[i, k,m] of
Eq. 1 captures placements of the i-th label at the third stack. This is possible
only for pairs (a, b) ∈ T [i− 1, k,m− 1] with (a, b) ≤ (yi, yi) . To compute entry
T [i, k,m], we first remove all pairs (∞, a), (a,∞) from lists T1[i, k,m], T2[i, k,m]
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and T3[i, k,m] and then we merge the implied lists to T [i, k,m] of atoms, based
on Lemma 1.

Lemma 4. For n ≥ k +m, |T [n, k,m]| ≤ n+ 1.

Proof. Lists T2[i, k,m] and T3[i, k,m] contain pairs of numbers with the same
first coordinate. This implies that they contribute at most one atom, while list
T1[i, k,m] contains at most i elements, since |T [i−1, k,m]| ≤ i. Thus, T [i, k,m] ≤
i+ 1. �
Each of the (n + 1) × (n + 1)× (n + 1) entries of T is computed in O(n) time.
Thus, our algorithm terminates after O(n4) time. For a fixed label height h, the
algorithm outputs a boolean value, which indicates whether there exists a legal
label placement. This is done by identifying whether there exists a non-empty
list T [n, i, j], with 0 ≤ i + j ≤ n. By using an extra table of the same size as
T , our algorithm can easily be modified, such that it also computes the label
and leader positions. In order to solve the label size maximization problem, we
can simply apply a binary search on all possible discrete values for height h. To
complete the proof, observe that H

n ≤ h ≤ 3H
n . �

4 Computational Complexity of the Multi-stack Labeling
Problem

In this section, we investigate the computational complexity of several multi-
stack boundary labeling problems with either type-opo or po leaders and labels
of arbitrary size, which can be placed at two stacks on the same side of the
enclosing rectangle. Without loss of generality, we assume that the labels are
located on the east side of the enclosing rectangle. We consider several different
type of sites. In the most applicable case, site si is associated with a point
pi = (xi, yi) on the plane. However, we also consider the cases, where site si is
associated with either two candidate points p1

i = (x1
i , y

1
i ) and p2

i = (x2
i , y

2
i ) on

the plane (see Fig. 3) or with a vertical line segment, so that the site “slides”
along the boundary of the proposed line segment (see Fig. 4). The assumed
models are quite general, since we allow sliding labels with sliding ports.

4.1 Line Sites with Type-opo Leaders at Two Stacks on One Side

We focus on type-opo leaders, where each site si can slide along a line segment
parallel to the y-axis and is associated with a label li of height hi. We seek to
find a legal labeling.

Theorem 3. Given a rectangle R of height H, a set P ⊂ R of n line segments
(sites) that are parallel to the y-axis and a label of height hi for each site si ∈ P , it
is NP -hard to place all labels at two stacks on one side of R with non-intersecting
type-opo leaders.

Proof. We reduce the Partition problem [9] to our problem. The Partition
problem is defined as follows: Given positive integers a1, a2, . . . , am, is there a
subset I of J = {1, 2, . . . ,m} such that

∑
i∈I ai =

∑
i∈J−I ai?
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Our site set P = {s1, s2, . . . , sm} consists of m (parallel to y-axis) line seg-
ments of identical length H = 1

2

∑
i∈J ai (H : height of R). Each site si is also

associated with a label li of height ai. Both stacks contribute 2H height, which
is equal to the sum of all label heights.

Suppose that there exists a subset I of J = {1, 2, . . . ,m} such that
∑

i∈I ai =∑
i∈J−I ai. Without loss of generality, we further suppose that |I| ≥ |J − I|.

For each site si with i ∈ I, we choose to place its label at the first stack. The
remaining labels are placed at the second stack. The leaders of the sites with
labels at the first stack are of type-o. In this case, the ports of both sites and
labels can be chosen arbitrarily. Since the labeling is tight (i.e. the sum of the
label heights on each stack is equal to H), we use the fact that the labels are open
and use the gaps between them as corridors to route the leaders, that connect
sites with labels at the second stack. Since we assumed that |I| ≥ |J − I|, there
exist enough corridors to route all leaders: The leader which corresponds to the
lowest label that has not been routed yet, can use the lowest available corridor.
In this case the site ports are defined based on the corridors, whereas the label
ports can be chosen arbitrarily again. �

4.2 Two Candidate Points with Type-opo Leaders at Two Stacks
on One Side

We will show that the problem remains NP -hard even if we restrict ourselves
in sites, which may have two candidate points, i.e. leader of site si connects
either point p1

i = (x1
i , y

1
i ) or point p2

i = (x2
i , y

2
i ) with label li. To show NP -

hardness, we reduce the following variant of Partition to our problem. The NP -
hardness of this problem follows easily from the Even Odd Partition problem
(see [9] pp. 223).

Lemma 5 (RPartition). Given 2m non-negative integers a1, a2, . . . a2m, the
problem of finding a subset I of J = {1, 2, . . .2m} such that the following three
conditions are satisfied is NP -hard. 1) I contains exactly one of {2i− 1, 2i} for
i = 1, 2, . . .m. 2)

∑
i∈I ai =

∑
i∈J−I ai and 3)

∑
i∈I&i≤k ai <

∑
i∈J−I&i≤k ai

for k = 2, 4, . . . 2m− 2.

Theorem 4. Given a rectangle R of height H, a set P ⊂ R of n sites, each
associated with two candidate points, and a label of height hi for each site si ∈
P , it is NP -hard to place all labels at two stacks on one side of R with non-
intersecting type-opo leaders.

Proof. Let A = {a1, a2, . . . a2m} be an instance of RPartition. We will con-
struct an instance B of our problem as follows: Let C be a very large number,
e.g. C = (2m + 1)2

∑
i∈J ai. Set P = {s1, s2, . . . , s2m} consists of 2m sites.

Site si is associated with p1
i = (xi, y

1
i ) and p2

i = (xi, y
2
i ). Consecutive sites

s2i−1 and s2i, i = 1, 2, . . . ,m, form m parallelograms ri, i = 1, 2, . . . ,m, such
that y1

2i−1 < y1
2i < y2

2i−1 < y2
2i and |y2

2i−1 − y1
2i| = a2i−1+a2i

2 + 1. We assume
that parallelogram ri−1 is placed lower than ri. The vertical distance between
two consecutive parallelograms is C, whereas the vertical distance between the
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bottommost (topmost) parallelogram r1 (rm) and the bottommost (topmost
respectively) side of the enclosing rectangle R is C/2. The height of the enclos-
ing rectangle is H = m(C + 1) + 1

2

∑
i∈J ai. The label li of site si has height

hi = C+ai +1, thus
∑

i∈J hi = 2m(C+1)+
∑

i∈J ai. Observe, that both stacks
contribute 2H height, which is equal to the sum of all label heights.

One can see that the construction ensures that the same number of labels are
placed at the two stacks and that all leaders should bend in the first track routing
area. Two consecutive sites s2i−1 and s2i, i = 1, 2, . . .m can not have their labels
both at the same stack, because at least one corridor is lost and therefore at least
one label at the second stack can not be routed. To avoid leader crossings, the
order of indices should be preserved at both stacks, i.e. if i < j then label li will
be stacked lower than lj. To connect all sites with their labels, it must either
hold

∑
i∈I&i≤k hi <

∑
i∈J−I&i≤k hi or

∑
i∈I&i≤k hi >

∑
i∈J−I&i≤k hi, for all

k = 2, 4, . . .2m − 2, which is equivalent to condition (3) of RPartition. The
indices of the sites with labels at the first stack imply the partition I of J .

Suppose that we have a subset I of J of A such that all three conditions of
RPartition are satisfied. If i ∈ I, then the label of site si is placed at the first
stack preserving the order of indices. The remaining labels (i ∈ J−I) are placed
at the second stack in the same manner. A legal labeling is obtained by taking
the lowest site which has not been routed. If its label is to be placed at the
second stack, use the lowest available corridor for its leader, else route it at the
first stack with a type-o leader. For two consecutive sites s2i−1 and s2i we can
determine in constant time which points will be used, such that their leaders do
not intersect. �

4.3 Type-po Leaders at Two Stacks on One Side

Following similar arguments as in proof of Theorem 4, one can show that the
problem remains NP -hard if we use type-po leaders, even if we restrict ourselves
to a point pi = (xi, yi) or two candidate points p1

i = (x1
i , y

1
i ) and p2

i = (x2
i , y

2
i )

for each site si. Recall that for the case of two candidate points the leader of
each site si connects either point p1

i or point p2
i with label li. The corresponding

theorems follow. Detailed proofs of these theorems are given in the full version
of the paper (see [2]).

Theorem 5. Given a rectangle R of height H, a set P ⊂ R of n points and a
label of height hi for each site si ∈ P , it is NP -hard to place all labels at two
stacks on one side of R with non-intersecting type-po leaders.

Theorem 6. Given a rectangle R of height H, a set P ⊂ R of n sites, each
associated with two candidate points, and a label of height hi for each site, it is
NP -hard to place all labels at two stacks on one side of R with non-intersecting
type-po leaders.

Since, each point site can be thought as a line site of zero length, Corollary 1
follows immediately from Theorem 5.
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Corollary 1. Given a rectangle R of height H, a set P ⊂ R of n lines and a
label of height hi for each site si ∈ P , it is NP -hard to place all labels at two
stacks on one side of R with non-intersecting type-po leaders.

5 Open Problems and Future Work

We presented results for the label size maximization problem and for the legal
label placement for the case of two and three stacks of labels on the same side of
R. No results are known regarding the total leader length minimization and the
minimization of the total number of bends. Another line of research is to design
good approximation algorithms that solve the problems, that are proved to be
NP -hard.
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Abstract. A center-transversal line for two finite point sets in R3 is a
line with the property that any closed halfspace that contains it also
contains at least one third of each point set. It is known that a center-
transversal line always exists [12,24], but the best known algorithm for
finding such a line takes roughly n12 time. We propose an algorithm
that finds a center-transversal line in O(n1+εκ2(n)) worst-case time, for
any ε > 0, where κ(n) is the maximum complexity of a single level in
an arrangement of n planes in R3. With the current best upper bound
κ(n) = O(n5/2) of [21], the running time is O(n6+ε), for any ε > 0. We
also extend the concept of center-transversal line to that of bichromatic
depth of lines in space, and give an algorithm that computes a deepest
line exactly in time O(n1+εκ2(n)), and a linear-time approximation al-
gorithm that computes, for any specified δ > 0, a line whose depth is at
least 1 − δ times the maximum depth.

1 Introduction

Two classical notions in discrete geometry are the notions of center points and
ham-sandwich cuts. Given a set P of points in Rd, a point q, not necessarily
in P , is a center point with respect to P if any closed halfspace that contains
q also contains at least |P |/(d + 1) points of P . The existence of center points

� P.A. was supported by NSF under grants CCR-00-86013 EIA-98-70724, EIA-99-
72879, EIA-01-31905, and CCR-02-04118. S.C. was partially supported by the Euro-
pean Community Sixth Framework Programme under a Marie Curie Intra-European
Fellowship, and by the Slovenian Research Agency, project J1-7218-0101. J.A.S. was
partially supported by grant TIN2004-08065-C02-02 of the Spanish Ministry of Ed-
ucation and Science (MEC). M.S. was partially supported by NSF Grants CCR-
00-98246 and CCF-05-14079, by grant 155/05 of the Israel Science Fund, and by
the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.
P.A. and M.S. were also supported by a joint grant from the U.S.-Israeli Binational
Science Foundation.

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 93–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



94 P.K. Agarwal et al.

is a consequence of Helly’s theorem [15]. Given d finite point sets P0, . . . , Pd−1

in Rd with n points in total, a ham-sandwich cut is a hyperplane h such that
each of the open halfspaces bounded by h contains at most |Pi|/2 points of
Pi, for every i = 0, 1, . . . , d − 1. Dol’nikov [12], and Živaljević and Vrećica [24]
proved the following theorem, called center-transversal theorem, which yields a
generalization of center points and ham-sandwich cuts.

Theorem 1 (Center-Transversal Theorem). Given k + 1 finite point sets
P0, P1, . . . , Pk in Rd, for any 0 ≤ k ≤ d− 1, there exists a k-flat f such that any
closed halfspace that contains f also contains at least 1

d−k+1 |Pi| points of Pi, for
each i = 0, 1, . . . , k.

Observe that when k = 0, f is a center point, and when k = d − 1, f is a
ham-sandwich cut. Therefore, the center-transversal theorem can be seen as an
“interpolation” between these two theorems. A weaker result with |Pi|/(d + 1)
instead of |Pi|/(d−k+1) can easily be obtained by considering the k-flat passing
through a center point of each of the Pi, i = 0, 1, . . . , k.

In this paper we consider in detail the case d = 3, k = 1. Given two finite point
sets P0, P1 in R3, we say that a line  is a center-transversal line for P0, P1 if any
closed half-space that contains  also contains at least |Pi|/3 points of Pi, for i =
0, 1. The center-transversal theorem asserts that, for any finite point sets P0, P1

in R3, there exists a center-transversal line. However, the original proofs [12,24]
of this result are non-constructive and do not lead to an algorithm for finding a
center-transversal line. The running time of the best known algorithm for this
problem [5] is rather large (about n12—see below). We present a considerably
more efficient algorithm for finding such a line, and consider several other related
problems.

Related work. A more detailed review of center points, ham sandwich cuts,
and related problems can be found in Matoušek [15]. Efficient algorithms are
known for computing a center point in R2 and R3 [14,16]. A center point in
Rd can be found using linear programming with Θ(nd) linear inequalities, and
there exists a faster algorithm, due to Clarkson et al. [10], for computing an
approximate center point in arbitrary dimensions; that is, a point q such that
any closed halfspace containing q contains at least Ω(n/d2) points of P . Efficient
algorithms have also been developed for constructing the center region, namely,
the set of all center points, in R2 and R3 [4,6]. The concept of center point leads
to generalizations that have been useful in robust statistics. The halfspace depth
(also called location depth, data depth) of a point q relative to a data set P in
Rd, is the smallest number of data points in any closed halfspace whose boundary
passes through q. A center point is a point with depth at least |P |/(d+ 1), and
a halfspace median, or a Tukey point, is a point with maximum halfspace depth.
Chan [6], improving upon previous results, has recently obtained a randomized
O(n log n+nd−1) expected-time algorithm for computing a Tukey median point
in Rd.

The problem that we consider can be related to multivariate regression depth,
a generalization, introduced by Bern and Eppstein [5], of regression depth, a qual-
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ity measure for robust linear regression defined by Rousseeuw and Hubert [19,20].
In particular, Bern and Eppstein [5] give a general-purpose algorithm, which can
be easily modified to yield an algorithm that constructs a center-transversal line
in R3 in O(n12+ε) time, for any ε > 0.

Our contributions. Let P0, P1 be two finite point sets in R3 with a total of n
points.

– We present an algorithm that constructs a center-transversal line for P0

and P1 in O(n1+εκ2(n)) worst-case time, for any ε > 0, where κ(n) is the
maximum complexity of a single level in an arrangement of n planes in R3.
With the current best upper bound κ(n) = O(n5/2) of [21], the running time
is O(n6+ε), for any ε > 0. See Section 2. This is a considerable improvement
over the algorithm by Bern and Eppstein [5].1

– We describe a randomized algorithm that, for a given direction u, in O(n log n)
expecetd time whether there exists a center-transversal line of P0 and P1 i
in direction u. Because of lack of space, we omit this algorithm from this ex-
tended abstract.

– We introduce the notion of the bichromatic depth of a line , with respect to
P0 and P1, extending similar earlier concepts. Specifically, it is the minimum
fraction size ρ of the points in either set that lie in a halfspace that contains
; that is, each halfspace containing  contains at least ρ|P0| points of P0

and ρ|P1| points of P1. This concept generalizes that of center-transversal
line (which has bichromatic depth at least 1/3). We show how to compute
a deepest line in O(n1+εκ2(n)) time, for any ε > 0, and give a linear-time
approximation algorithm that computes, for any δ > 0, a line whose depth
is at least 1− δ times the maximum depth. See Section 3.

2 Finding a Center-Transversal Line

We consider the problem of computing a center-transversal line in dual space,
where the problem is reformulated in terms of levels in arrangements of planes.
We generate a set of candidate lines that is guaranteed to contain a center-
transversal line and use a data structure to determine which of these candidate
lines is a center transversal line. For simplicity, we assume that |P0| and |P1| are
multiples of 3, and that the points P0 ∪ P1 are in general position in the sense
that no four of them are coplanar.

Center-transversal lines in the dual. The widely used duality transform maps a
point p in Rd to a hyperplane p∗ in Rd and vice-versa, so that the incidence and
above/below relationships are preserved. There are many variants of duality [15];
we use the following one: A point a = (a1, . . . , ad) ∈ Rd is mapped to the
nonvertical hyperplane a∗ : xd = a1x1+· · ·+ad−1xd−1−ad, and a hyperplane h :
xd = α1x1+· · ·+αd−1xd−1+αd is mapped to the point h∗ = (α1, . . . , αd−1,−αd),

1 We note though that an algorithm with running time near n8 is not hard to obtain.
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so (a∗)∗ = a. A point p lies below (resp., above, on) a hyperplane h if the dual
point h∗ lies below (resp., above, on) the dual hyperplane p∗. The pencil of
hyperplanes passing through a line  in Rd, for d ≥ 3, maps to the set of points
in Rd lying on a line ∗; we refer to ∗ as the dual of . For a set A of objects,
set A∗ = {a∗ | a ∈ A}.

Let P be a set of n points in R3, and let H = P ∗ be the set of n non-vertical
planes in R3 dual to the points in P . The level of a point p ∈ R3, with respect to
H , is the number of planes in H that lie below p. For 0 ≤ k < n, the k-level of H ,
denoted Lk(H) (or simply Lk if the set H is understood), is the closure of the
set of all points on any of the planes of H that are at level k. The k-level Lk is
a polyhedral terrain, that is, an xy-monotone piecewise-linear continuous surface
formed by a subset of the faces of the arrangement A(H). The combinatorial
complexity of Lk is the number of faces of all dimensions in Lk. Let κ(n) denote
the maximum complexity of a level in any arrangement of n planes in R3. The
best known upper bound for κ(n) is O(n5/2) [21], which differs substantially
from the best known lower bound n2eΩ(

√
log n) [23]. See [3] for more details on

arrangements and levels.
If h is a plane in R3 so that each of the two halfspaces bounded by h contains

at least k points of P , then h∗ lies between Lk(H) and Ln−k(H). If  is a line
in R3 so that any halfspace containing  contains at least k points of P , then
the entire dual line ∗ lies between Lk(H) and Ln−k(H). Hence, the problem of
computing a center-transversal line for P0 and P1 reduces to computing a line
in the dual space that lies above Σ0 = Ln0/3(H0), Σ1 = Ln1/3(H1) and below
Σ2 = L2n0/3(H0), Σ3 = L2n1/3(H1), where Hi = P ∗

i and ni = |Pi| for i = 0, 1.
We note that each of these four terrains can be computed in O(nεκ(n)) time,
for any ε > 0 [2].

We thus have four terrains Σ0, Σ1, Σ2, Σ3, and we wish to compute a line that
lies above Σ0, Σ1 and below Σ2, Σ3. Note that such a line cannot be z-vertical,
i.e., parallel to the z-axis. Let Ei be the set of edges in Σi, for i = 0, 1, 2, 3,
and E =

⋃3
i=0 Ei. Set m := |E| ≤ 4κ(n), and assume that m ≥ n (or else the

problem can be solved much faster than the time bound of our algorithm). Let
H = H0 ∪ H1. Each edge in Ei lies in the intersection line of a pair of planes
in H . We define a “sidedness function” χ : E → {+1,−1}, where χ(e) = +1
if e ∈ E0 ∪ E1 and χ(e) = −1 if e ∈ E2 ∪ E3. Let V be the set of endpoints
of edges in E. By the general-position assumption, each point of V is incident
upon at most three edges of E. For an object (point, line, segment) Δ in R3, let
Δ̃ denote its xy-projection in R2.

Definition 1. Let  be a nonvertical line in R3, and let e be a nonvertical seg-
ment in R3 so that ̃ intersects ẽ. We say that  lies above (resp., below) e if the
oriented line in the (+z)-direction that passes through ̃∩ ẽ meets e before (resp.,
after) . The line  is in compliance with an edge e ∈ E if (i) ̃ does not intersect
ẽ, or (ii)  does not lie below (resp., above) e if χ(e) = +1 (resp., χ(e) = −1).
We say that  is in compliance with a subset R ⊆ E if it is in compliance with
every edge in R. In particular, we have:
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Lemma 1. A nonvertical line  in R3 lies above Σ0, Σ1 and below Σ2, Σ3 if and
only if  is in compliance with E.

The problem of computing a center-transversal line now reduces to finding a line
that is in compliance with E. Let L be the set of all lines in R3 that are not
parallel to the yz-plane. We restrict the search for a line that is in compliance
with E to lines in L. This involves no loss of generality: The lines in R3 parallel to
the yz-plane have three degrees of freedom and a center-transversal line among
them, if there exists one, can be found using a much simpler (and more efficient)
algorithm. Alternatively, we can run our algorithm twice, exchanging the roles
of the x- and y-axes in the second run.

Overview of the algorithm. We show that, for each line  ∈ L, there exists a
“witness set” of O(n) edges of E, so that  is in compliance with E if and only
if it is in compliance with its witness set. We then group the lines in L into
equivalence classes so that all lines in the same class have the same witness set.
Using this reduction, we present an algorithm that works in three stages. The first
stage, called the filtering stage, splits the problem into O(m2/n2) subproblems,
each aiming to compute a line that is in compliance with some set of O(n) edges.
The second stage, a recursive candidate generation stage, computes, for each
subproblem, a set of O(n3+ε) candidate lines, for any ε > 0, which is guaranteed
to contain a line in compliance with the corresponding subset if there exists
one. The final stage, the verification stage, checks which of the candidate lines
generated by the previous step is in compliance with E, and report the first such
line that it encounters (which is guaranteed to exist). We now describe each of
these steps in detail.

Witness sets and equivalence classes. For a line  ∈ L and a subset R ⊆ E of
edges, we define the witness set of  for R, denoted by W (, R), as follows. For
i = 0, 1, 2, 3, let Ri ⊆ R be the sequence of edges in R∩Ei whose xy-projections
intersect ̃, sorted by the order of the intersection points along ̃. For a plane
h ∈ H0∪H1, let e−h,i, e

+
h,i ∈ Ri be, respectively, the first and the last edges in the

i-th sequence that lie on h, where only planes in H0 (resp., H1) are considered
for i = 0, 2 (resp., i = 1, 3). We set

W (, R) = {e−h,i, e
+
h,i | h ∈ H, 0 ≤ i ≤ 3}.

By definition, ̃ intersects the xy-projection of every edge in W (, R); |W (, R)| =
O(n).

Lemma 2. For a subset R ⊆ E, a line  ∈ L is in compliance with R if and
only if  is in compliance with W (, R).

The proof of the lemma follows from the simple observation that if  lies above
(resp., below) both e−h,i, e

+
h,i then it lies above (resp., below) all edges in Ri that

lie in h.
We define, for a subset R ⊆ E, an equivalence relation on L so that for

any two lines 1, 2 in the same equivalence class, W (1, R) = W (2, R). This
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will discretize the search for a center-transversal line. For this we need a few
notations. For a point or a line ξ in R3, let ϕ(ξ) denote the dual (in R2) of ξ̃,
i.e., ϕ(ξ) = ξ̃∗. 2 For an edge e = uv in E, let ϕ(e) ⊆ R2 be the double wedge
that is formed by the lines ϕ(u) and ϕ(v) and does not contain the line in R2

passing through their intersection point and parallel to the y-axis. By standard
properties of the duality transform in R2, a line γ in R2 intersects ẽ if and only
if γ∗ ∈ ϕ(e). Moreover if the points γ∗

1 , γ∗
2 ∈ R2 lie in the same (left or right)

wedge of ϕ(e), then γ1, γ2 intersect ẽ from the same side, in the sense that the
same endpoint of ẽ lies in each of the positive halfplanes bounded by γ1 and γ2,
respectively (that is, the halfplanes above these lines).

Let R ⊆ E be a fixed subset of edges, let VR ⊆ V be the set of endpoints of
the edges in R, and let Λ(R) = {ϕ(v) | v ∈ VR} be the corresponding set of lines
in R2. For each face f in the arrangement A(Λ(R)) of Λ(R), let R(f) denote the
set of those edges e ∈ R for which ϕ(e) contains f . For a line  ∈ L, if f is the
face containing ϕ() then, by construction, R(f) is the set of edges of R whose
xy-projections intersect ̃. By definition, W (, R) ⊆ R(f).

Definition 2. We call two lines 1, 2 ∈ L equivalent (with respect to R), de-
noted by 1≡R 2, if ϕ(1) and ϕ(2) lie in the same face of A(Λ(R)).

Lemma 3. Let R ⊆ E be a set of edges, and let 1, 2 ∈ L be two lines so that
1≡R 2. Then W (1, R) = W (2, R).

Proof. Let f be the face of A(Λ(R)) that contains ϕ(1) and ϕ(2). Set Ri(f) :=
R(f) ∩ Ei and Li := Λ(Ri(f)) ⊆ Λ(R), for i = 0, 1, 2, 3. Clearly, ϕ(1),ϕ(2) lie
in the same face of A(Li). Since the edges of Ei all belong to the same terrain,
their xy-projections are pairwise disjoint. An easy observation (due to [1]) shows
that ̃1, ̃2 intersect the xy-projections of the edges in Ri(f) in the same order.
This immediately implies that W (1, R) ∩ Ei = W (2, R) ∩ Ei, from which the
lemma follows.

In view of the preceding lemma, we define, for each face f of A(R), Wf (R) ⊆ R
to be the common witness set for any line in the equivalence class corresponding
to f .

The filtering stage. Given a set L of lines in R2, a triangle Δ0, and a parameter
1 ≤ r ≤ |L|, a (1/r)-cutting of (L,Δ0) is a triangulation Ξ of Δ0 so that each
triangle of Ξ is crossed by at most |L|/r lines of L. It is known that a (1/r)-
cutting consisting of O(r2) triangles, along with the set of lines crossing each of
its triangles, can be computed in O(|L|r) time [7].

Let Λ = Λ(E). We set Δ0 = R2 and r = m/n, and compute a (1/r)-cutting
Ξ of (Λ,Δ0). For each triangle Δ ∈ Ξ, let ΛΔ be the set of lines of Λ that cross
Δ; since Ξ is a (1/r)-cutting, we have |ΛΔ| ≤ m/r = n. Let EΔ ⊆ E be the set
of edges e = uv so that either ϕ(u) ∈ ΛΔ or ϕ(v) ∈ ΛΔ. Since each vertex of

2 Note that ϕ(�) is not defined if � is parallel to the yz-plane. That is why we exclude
these lines from L.
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V is an endpoint of at most three edges of E, we have |EΔ| ≤ 3|ΛΔ| ≤ 3n. For
each Δ ∈ Ξ, let FΔ = {e ∈ E \ EΔ | Δ ⊆ ϕ(e)}. We refer to the edges in EΔ as
short and to the edges in FΔ as long. Finally, let LΔ = { ∈ L | ϕ() ∈ Δ}.

Since Δ is contained in a face of A(Λ(FΔ)) (the arrangement of lines dual to
the xy-projections of the endpoints of the edges in FΔ), Lemma 3 implies that
W (, FΔ) is the same for all lines  ∈ LΔ; let WΔ denote this common witness
set. Observe that |WΔ| = O(n).

If two triangles Δ and Δ′ in Ξ share an edge, then FΔ ⊕ FΔ′ ⊆ EΔ ∪ EΔ′ .
Therefore WΔ can be computed from WΔ′ in O(|EΔ| + |EΔ′ |) = O(n) time.
Hence, by performing a traversal of Ξ, we can compute WΔ for all triangles
Δ ∈ Ξ, in overall time O(m2/n).

The next lemma follows from Lemmas 2 and 3.

Lemma 4. For any Δ ∈ Ξ, a line  ∈ LΔ is in compliance with E if and only
if  is in compliance with EΔ ∪WΔ.

Hence, for each Δ ∈ Ξ, we have a subproblem (Δ, EΔ, WΔ), in which we want
to determine whether there is a line in LΔ that is in compliance with EΔ ∪WΔ

(and thus with E). Since
⋃

Δ LΔ = L, these subproblems together exhaust the
overall problem of computing a line in L that is in compliance with E. There
are O(m2/n2) such subproblems, and the total time spent in generating them is
O(m2/n).

The recursive candidate generation stage. Let (Δ, EΔ, WΔ) be one of the sub-
problems generated in the previous stage. We generate a set of “candidate” lines
that contains a line in compliance with EΔ ∪WΔ if there exists one. Let  ∈ LΔ

be such a line. We move it around while keeping it in the set LΔ and in com-
pliance with EΔ ∪WΔ, until we reach a critical position of  at which one of
the following events occurs (for the following enumeration, recall that passing
above, below, or through an endpoint of an edge in WΔ can occur only when
ϕ() reaches the boundary of Δ):

(E0) ϕ() is a vertex of Δ;
(E1)  passes through a pair of endpoints of edges in EΔ;
(E2)  passes through an endpoint of an edge in EΔ, ϕ() lies on an edge of Δ,

and  touches the relative interior of an edge of EΔ ∪WΔ;
(E3)  passes through an endpoint of an edge in EΔ and touches the relative

interior of two edges of EΔ ∪WΔ;
(E4) ϕ() lies on an edge of Δ, and  touches the relative interior of three edges

of EΔ ∪WΔ;
(E5)  touches the relative interior of four edges of EΔ ∪WΔ.

Since (E0)–(E4) are defined by at most three edges of EΔ ∪WΔ and there
are O(1) lines for each such event (assuming general position), we generate all
critical lines of these types (the O(n3) cost of producing these lines is subsumed
by the cost of generating the lines of type (E5)—see below). We add all the
resulting lines that belong to LΔ to the candidate set. Hence, it suffices to de-
scribe an algorithm for computing the set of candidate lines that satisfy (E5).
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Let C(Δ, EΔ, WΔ) denote this set. We compute a superset of C(Δ, EΔ, WΔ)
with a divide-and-conquer algorithm that employs Plücker coordinates [18]. Our
approach for generating candidate lines is very similar to that used by Pelle-
grini [17].

Before describing the algorithm, we briefly review the representation of lines
in Plücker space. An oriented line  in R3 can be mapped to a point π() ∈ R5,
called the Plücker point of , that lies on the so-called 4-dimensional Plücker
hypersurface Π , or to a hyperplane �() in R5, called the Plücker hyperplane of
. (The actual Plücker space is the real projective 5-space, but since we exclude
lines parallel to the yz-plane, it is easy (though some care is needed) to embed
the Plücker structure into the real 5-dimensional space.) Abusing the notation
a little, we use π(e) and �(e) to denote the Plücker point and hyperplane,
respectively, of the line supporting an oriented segment e in R3.

We orient every line of L and every edge of E in the (+x)-direction (this is well
defined for lines in L, by definition, and for edges of E, by the general position
assumption). For two oriented lines 1, 2 in R3, π(1) lies above �(2) (which
is the same as π(2) lying above �(1)) if and only if the simplex spanned by
a vector u1 lying on 1 with the same orientation, and by a vector u2 lying on
2 with the same orientation, is positively oriented. This is easily seen to imply
that, when 1 and 2 are non-vertical, 1 passes above 2 if and only if either (i)
π(1) lies above �(2) and ̃1 lies counterclockwise to ̃2, or (ii) π(1) lies below
�(2) and ̃1 lies clockwise to ̃2; see [18] for more details.

We now proceed to describe the construction of the set of lines C(Δ, EΔ, WΔ).
We choose a constant r and construct a (1/6r)-cutting T of (Λ(EΔ),Δ). As in
the filtering stage, we define, for each τ ∈ T , Eτ ⊆ EΔ to be the set of short
edges in τ , and Fτ ⊆ EΔ to be the set of long edges in τ . We have |Eτ | ≤
3|Λ(EΔ)|/6r ≤ |EΔ|/r. Set Wτ := Fτ ∪WΔ. Define Lτ = { ∈ LΔ | ϕ() ∈ τ},
and note that

⋃
τ∈T Lτ = LΔ. For each τ ∈ T , we compute a set of candidate

lines Cτ ⊂ Lτ , with the property that C(Δ, EΔ, WΔ) ⊆
⋃

τ∈T Cτ .
Consider a triangle τ ∈ T . We want to construct a set of candidate lines Cτ

that includes the lines in Lτ of type (E5). Hence, it suffices to consider only
the edges Eτ ∪Wτ in its construction. The line  is in compliance with an edge
e ∈Wτ if π() lies in one specific halfspace Γe bounded by �(e). Γe depends on
the function χ(e) and on the clockwise order of ̃ and ẽ (when oriented in the
positive x-direction). Since τ is a subset of a fixed wedge of ϕ(e), this clockwise
order is the same for all lines  ∈ Lτ ; hence Γe is the same halfspace for all lines
in Lτ . Set K :=

⋂
e∈Wτ

Γe; K is a convex polyhedron in R5 with O(n) facets, so
its overall combinatorial complexity is O(n2).

Let  ∈ Lτ be a line that touches the relative interior of four edges of Eτ ∪Wτ ,
and let B() denote the set of these four edges. There are four cases, depending
on how many edges of Wτ the line  touches.

B() ⊆ Wτ . If all edges of B() belong to Wτ and  is in compliance with Eτ∪Wτ ,
then π() ∈ K. Since  touches four edges of Wτ , it lies on an edge of K.
Therefore, we find lines of this type by intersecting each edge of K with the
(quadratic) Plücker hypersurface Π , and by adding the (at most) two lines
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corresponding to the two intersection points to the candidate set Cτ , if they
belong to Lτ . The total time spent is O(n2).

|B() ∩Wτ | = 3. For any line  with this kind of contacts, π() lies on the in-
tersection edge of some 2-face of K and the Plücker hyperplane �(e) for
some e ∈ Eτ . For each pair e ∈ Eτ and 2-face φ of K, we compute the at
most two intersection points of φ ∩ �(e) ∩ Π , and add the corresponding
lines to the candidate set Cτ , if they belong to Lτ . Since the polyhedron
K has O(n2) 2-faces, the total number of lines generated in this case is
O(n2|Eτ |) = O(n3/r), and their construction takes O(n3/r) time.

|B() ∩Wτ | = 2. Let e1, e2 ∈ Eτ be the two edges that belong to B(). The
Plücker subspace F of lines (in L) that touch e1 and e2 is a 3-dimensional
flat in R5, and π() ∈ F ∩K. Since F ∩K is a convex 3-polyhedron with O(n)
facets, it only has O(n) edges. We form, as above, the intersections of each
edge of F∩K with the Plücker surface Π , and add the (at most two) resulting
lines to our candidate set Cτ , if they belong to Lτ . The total number of
lines generated in this case is O(|Eτ |2n) = O(n3/r2), and their computation
takes O(|Eτ |2n log n) = O((n3/r2) log n) time, where the costliest step is the
construction, repeated O(|Eτ |2) times, of convex 3-polyhedra, each defined
by at most n inequalities.

|B() ∩Wτ | ≤ 1. We partition Wτ into u = O(r) subsets W
(1)
τ , . . . , W

(u)
τ so that

|W (i)
τ | ≤ n/r for each i. We recursively compute the set of candidate lines

C(τ, Eτ , W
(i)
τ ), for 1 ≤ i ≤ u and for τ ∈ T . We thus recursively solve

O(r) subproblems, all of whose outputs are added to our candidate set Cτ .
Clearly, all lines of this type (and perhaps more) are found by this recursive
procedure.

The correctness of the procedure is fairly straightforward. Let T (n) denote the
maximum time needed to compute

⋃
τ∈T Cτ , which is a superset of C(Δ, EΔ, WΔ),

when |EΔ|, |WΔ| ≤ n. For each τ ∈ T , we spend O(n2+n3/r+(n3/r2) log n) time
plus the time needed to solve O(r) recursive calls where the size of each of the two
sets of edges is at most n/r. Since the cutting T consists of O(r2) triangles, we
obtain the following recurrence.

T (n) = O(r3)T (n/r) + O(n2r2 + n3r + n3 log n).

The solution of this recurrence is T (n) = O(n3+ε), for any ε > 0 (for which we
need to choose r sufficiently large, as a function of ε). The size of C(Δ, EΔ, WΔ)
is also bounded by this quantity.

Repeating this procedure for the O(m2/n2) subproblems generated by the
filtering stage, we construct, in O(m2n1+ε) overall time, a candidate set C of
O(m2n1+ε) lines.

The verification stage. To complete the algorithm, we test which of the lines
in C is in compliance with E. Using the data structure described in [9], we can
preprocess, in O(m2+ε) time, each Ei into a data structure of size O(m2+ε)
so that we can determine in O(log n) time whether a line  ∈ L passes above
or below the terrain Σi, or, equivalently, whether  is in compliance with Ei.
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Querying each line in C with this data structure for every Ei, we can determine,
in O(m2+ε + m2n1+ε) = O(m2n1+ε) time, which of the lines in C are in com-
pliance with E. Since a center-transversal line always exists, it belongs to C, by
construction, and will be found by this procedure. Putting everything together,
and recalling that m ≤ 4κ(n), where κ(n) is the maximum complexity of a level
in an arrangement of n planes in R3, we obtain the following main result of
the paper. For the concrete time bound, we use the currently best known upper
bound κ(n) = O(n5/2) of [21].

Theorem 2. A center-transversal line for two sets P0, P1 with a total of n points
in R3 can be constructed in O(n1+εκ2(n)) time, for any ε > 0. This time bound
is O(n6+ε), for any ε > 0.

Terrains with many coplanar faces. Pellegrini [17] and Halperin and Sharir [13]
have shown that the complexity of the envelope of lines above a terrain of com-
plexity k is O(k3+ε), for any ε > 0. The complexity of this envelope corresponds
to the number of lines that are tangent to the terrain while lying above it. In
our scenario, we have taken advantage of the fact that the faces of our terrains
are contained in few planes. It is not clear how to plug this hypothesis into the
techniques used in [13,17]. However, using the ideas of witness sets and the fil-
tering stage as we have done, we directly obtain the following result, which may
be of independent interest.

Theorem 3. Let Σ be a terrain of complexity k in R3, all of whose facets lie on
n different planes. Then the complexity of the envelope of lines that pass above
Σ is O(n1+εk2), for any ε > 0.

3 Variations

Bichromatically deepest line. The algorithm that we have presented in Section 2
can be extended so that, for any given number α ∈ [0, 1], it finds a line  with
the property that any closed halfspace containing  also contains at least �α|Pi|�
points of Pi, for i = 0, 1, or determines that no such line exists. The running
time remains O(n1+εκ2(n)), for any ε > 0.

We define the bichromatic depth of a line  with respect to P0, P1 as follows:

Depth(; P0, P1) = min
h

{
|P0 ∩ h|
|P0|

,
|P1 ∩ h|
|P1|

}
∈ [0, 1],

where the minimum is taken over all closed halfspaces h containing . Equiva-
lently, Depth(; P0, P1) ≥ α means that any closed halfspace containing  also
contains at least �α|Pi|� points of Pi, for i = 0, 1. A line 0 is a bichromatically
deepest line if it has maximum bichromatic depth. The center-transversal theo-
rem (Theorem 1) implies that there always exists a line of depth at least 1/3.
By conducting a binary search and using the extended version of the algorithm
of Section 2, we can easily find a line with maximum depth. We thus obtain the
following.
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Theorem 4. Given two finite point sets P0, P1 in R3 with a total of n points,
we can compute a bichromatically deepest line for P0, P1 in O(n1+εκ2(n)) time,
for any ε > 0.

Computing an almost-deepest line. We next observe that, for any fixed δ > 0,
we can compute in linear time a line  whose bichromatic depth with respect to
P0, P1 is at least 1− δ times the maximum depth of a line. An ε-approximation
of a point set P (with respect to closed halfspace ranges) is a subset A ⊆ P such
that, for any closed halfspace h we have∣∣∣∣ |A ∩ h|

|A| − |P ∩ h|
|P |

∣∣∣∣ ≤ ε.

As is well known [8], for any fixed ε, an ε-approximation of size O
(

1
ε2 log 1

ε

)
can

be computed deterministically in O(n) time.
We fix ε = δ

6 , and compute for each Pi an ε-approximation subset Ai ⊂ Pi as
above. We then compute a bichromatic deepest line A for A0 and A1 in O(1)
time and return A. We now argue that A is an almost-deepest line. Observe
that for any line  we have (where h ranges over all closed halfspaces containing )

Depth(; P0, P1) = min
h

min
i=0,1

{|Pi ∩ h|/|Pi|} ≥ min
h

min
i=0,1

{|Ai ∩ h|/|Ai|} − ε

= Depth(; A0, A1)− ε,

and similarly Depth(; P0, P1) ≤ Depth(; A0, A1) + ε.
Let A be a bichromatically deepest line for A0, A1, and let opt be a bichro-

matically deepest line for P0, P1. Since Depth(opt; P0, P1) ≥ 1
3 , we have

Depth(A; P0, P1) ≥ Depth(A; A0, A1)− ε ≥ Depth(opt; A0, A1)− ε

≥ Depth(opt; P0, P1)−
δ

3
≥ (1 − δ)DepthP0,P1(opt).

We thus conclude the following.

Theorem 5. For a fixed parameter δ > 0, and two finite point sets P0, P1 ⊂ R3

with a total of n points, we can compute in O(n) time a line  whose bichromatic
depth is at least 1− δ times the maximum bichromatic depth.
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Abstract. A number of recent results have constructed randomness extractors
and pseudorandom generators (PRGs) directly from certain error-correcting codes.
The underlying construction in these results amounts to picking a random index
into the codeword and outputting m consecutive symbols (the codeword is ob-
tained from the weak random source in the case of extractors, and from a hard
function in the case of PRGs).

We study this construction applied to general cyclic error-correcting codes,
with the goal of understanding what pseudorandom objects it can produce. We
show that every cyclic code with sufficient distance yields extractors that fool all
linear tests. Further, we show that every polynomial code with sufficient distance
yields extractors that fool all low-degree prediction tests. These are the first re-
sults that apply to univariate (rather than multivariate) polynomial codes, hinting
that Reed-Solomon codes may yield good randomness extractors.

Our proof technique gives rise to a systematic way of producing unconditional
PRGs against restricted classes of tests. In particular, we obtain PRGs fooling all
linear tests (which amounts to a construction of ε-biased spaces), and we obtain
PRGs fooling all low-degree prediction tests.

1 Introduction

Two of the central objects in the area of derandomisation are extractors and pseudoran-
dom generators. Extractors use a small number of truly random bits to transform “weak”
random source into a nearly uniform one. Thus extractors allow the simulation of ran-
domised procedures using only weak randomness (which, for example, may be avail-
able from a physical source). In addition to this original motivation, extractors have been
used in numerous other settings including complexity theory [Sip88, NZ96, GZ97], al-
gorithms [WZ93], hardness of approximation [Zuc96, Uma99, MU02], distributed pro-
tocols [Zuc97, RZ01], and coding theory [TSZ01]. For further discussion see Shaltiel’s
survey [Sha02]. Quite good constructions of extractors are known now (e.g., [RSW00],
[SU05], [LRVW03]), but it remains an open problem to construct optimal extractors.

Pseudorandom generators (PRGs) use a small number of truly random bits to trans-
form a hard function into a small set of strings (a discrepancy set) which cannot be
distinguished from the uniform distribution by an efficient computational procedure.
Thus PRGs prove “hardness vs. randomness” tradeoffs, which show that randomised
procedures may be simulated deterministically, under a suitable hardness assumption.
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A sequence of works has ultimately produced “optimal” PRG constructions [Uma03]
that fool general randomised procedures. There is a substantial literature on PRGs
that fool more restricted classes of tests, and in some instances unconditional con-
structions (not requiring access to a hard function) are available. For example ε-biased
spaces [NN93, AGHP92] are PRGs that fool linear tests; other constructions fool affine
tests [ABCR97], combinatorial rectangles (see the survey [Sri00]), and general space-
bounded computation [Nis92, Nis94, NZ96, INW94, SZ99]. Recently, Bogdanov has
constructed PRGs that fool low degree polynomial tests [Bog05].

There is a strong connection between these objects (extractors and PRGs) and error-
correcting codes. For example, Trevisan’s extractor construction [Tre01] uses at its core
any good list-decodable code. Subsequent works [TSZS01, SU05] have constructed
extractors directly from Reed-Müller codes (and in return, extractors have been used
to construct good error-correcting codes in [TSZ01]). PRGs constructed in
[STV01, Uma03] have at their core Reed-Müller codes, and it is well-known that
ε-biased spaces are equivalent to codes with good distance.

In this paper we study a simple construction suited to any cyclic code. Specifically,
given any q-ary cyclic error-correcting code C : Fk̄

q → Fn̄
q , and an additional parameter

m, we define the function fC,m : Fk̄
q × [n̄] → Fm

q as follows:

fC,m(x, y) = (C(x)[y + 1], C(x)[y + 2], C(x)[y + 3], . . . , C(x)[y + m]), (1)

where the symbols of the code are indexed in the cyclic ordering. Our goal is to under-
stand what derandomisation objects are produced by this construction. This construc-
tion already has a good “track record” — for certain specific kinds of codes the results
of [SU05, Uma03] show that

– fC,m is a (k, ε)-extractor with m = k1−δ when C is a Reed-Müller code with
suitable parameters, and

– fC,m is an ε-PRG with m = kδ when C is an “augmented” version of a Reed-Müller
code with suitable parameters, and when we fix x to be the truth table of a function
that cannot be computed by size k circuits.

We are interested in the following questions: Is fC,m a good extractor for every cyclic
code C with sufficiently good distance? If so, what parameters does it achieve? What
can be said about fC,m when C is a Reed-Solomon code? Is it a good extractor? Can it be
used to produce PRGs against certain restricted classes of tests? We feel that studying
the Reed-Solomon code question in particular may illuminate new ways of arguing
about code-based extractor constructions (since the local-decodability of Reed-Müller
codes that is so heavily relied on in [TSZS01, SU05] is not present in Reed-Solomon
codes).

In general these seem to be difficult questions to resolve. In this paper we obtain some
modest positive results. Our results are phrased in terms of “fooling” certain classes of
tests. Using this terminology, extractors outputting m bits fool the class of all func-
tions from {0, 1}m to {0, 1}, while PRGs fool the class of all functions from {0, 1}m

to {0, 1} with small circuits. The proofs for these constructions often transform these
“distinguishing” tests into prediction tests (see Section 2 for formal definitions of distin-
guishers and predictors). In this paper we are concerned with prediction tests directly:
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Definition 1. A degree d prediction test is a degree-d polynomial p : Fm
q → Fq such

that p can be expressed as p(x1, . . . , xm) = xi − p′(x1, . . . , xi−1) for some i.

Theorem 1. Let C be an [n̄, k̄, δn̄] q-ary cyclic linear code with 1n̄ ∈ C. For any k
and ρ > 0, fC,m is a (k, ρ) q-ary extractor for the family of all linear prediction tests,
provided that δ > 1− ρ/2, and k > m log q + log(2/ρ).

When C is further restricted to be a Reed-Müller code (importantly, including the uni-
variate case, which are Reed-Solomon codes), we show:

Theorem 2. Let C be an [n̄, k̄, δn̄] q-ary Reed-Müller code with parameters , h. For
any k and ρ > 0, fC,m is a (k, ρ) q-ary extractor for the family of all degree d prediction
tests, provided that ρ > 2dh/q, and k > m log q + log(2/ρ).

Our proofs follow the so-called “reconstruction proof” methodology (see, e.g., [Tre01],
[TSZS01], [SU05]). That is, we argue that if the distribution induced by fC,m has a
“next-element” predictor of the appropriate type (linear or low-degree), then there is a
fixed procedure that “reconstructs” many strings in the weak random source from short
advice. This leads to a contradiction, as a source with high min-entropy cannot have
many strings that have short descriptions.

Many extractor and PRG constructions employ this proof methodology. From one
viewpoint the crucial step is transforming a next-element predictor that errs some frac-
tion of the time into a next-element predictor that is errorless (here it becomes clear
why error-correcting codes play an important role). From an errorless predictor the re-
mainder of the argument is usually straightforward. From this perspective the main loss
associated with the constructions of [SU05], that prevents them from being optimal
constructions, is in the conversion from predictors that err to errorless predictors.

Our proofs of Theorem 1 and 2 are noteworthy in that they perform this transfor-
mation with no loss, for a wide variety of codes. Of course the price currently is that
we only know how to use this argument to fool a restricted class of tests. Nevertheless,
one motivation for exploring these questions, and this methodology in particular, is the
possibility of exposing new “lighter-weight” proof techniques that may be useful in the
quest to construct optimal extractors.

One consequence of our proof technique is that there is a systematic way to produce
unconditional PRGs against restricted classes of tests from the above extractor con-
structions. For example, from the construction in Theorem 1, we obtain a PRG fooling
linear prediction tests:

Theorem 3. Let C be a systematic [n̄, k̄, δn̄] q-ary cyclic linear code with 1n̄ ∈ C. Let
x be such that C(x)[1 . . . k̄] = 0k̄−11. Then S = {fC,k̄−1(x, y) : 1 ≤ y ≤ n̄} is a
q-ary pseudorandom set that fools all linear prediction tests with success probability ρ,
provided that ρ ≥ 1− δ.

By converting the q-ary pseudorandom sets into binary (using a standard idea involving
concatenated codes) we get ε-biased spaces of size O(mpolylog(m, 1/ε)/ε3), which are
comparable to those one can obtain using the well-known connection to error-correcting
codes. By comparison, [NN93] gives a construction of size m/εc where 4 < c < 5
while [AGHP92] provides a construction of size (m/ε)2.
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Using the same idea, from the construction in Theorem 2, we obtain an unconditional
PRG construction that fools low-degree prediction tests:

Theorem 4. Let C be a systematic [n̄, k̄, δn̄] q-ary cyclic Reed-Müller code with with
parameters h, . Let x be such that C(x)[1 . . . k̄] = 0k̄−11. Then S = {fC,k̄−1(x, y) :
1 ≤ y ≤ n̄} is a q-ary ρ-pseudorandom set for the class of all degree d prediction tests,
provided that ρ ≥ dh/q.

This construction may sound like it unconditionally derandomises polynomial identity
testing. If “prediction tests” were replaced by “distinguishing tests” that would indeed
be the case. Yao’s Lemma [Yao82] shows how to convert any distinguishing test into
a prediction test, but unfortunately it does not preserve low-degree-ness. However our
result does derandomise polynomial identity testing for the restricted class of tests that
can be phrased as degree d prediction tests.

Of course derandomising polynomial identity testing is a major open problem with
significant consequences (see [KI04]). Several works have succeeded in derandomis-
ing polynomial identity testing for restricted classes of polynomials ([DS05], [RS],
[LV98]). Our result derandomises polynomial identity testing for degree d prediction
tests; in fact it produces a stronger object, a hitting set with density 1 − ρ (see the dis-
cussion following Definition 5). We don’t know of any trivial constructions of hitting
sets with density 1−ρ for even this simple class of polynomials, making it an interesting
testbed for new techniques.

Two other works construct hitting sets with density 1 − ρ for general classes of
polynomials: Bogdanov [Bog05] constructs a hitting set of density 1− ρ against all m-
variate polynomials of degree d, of size mO(d log(d/ρ)). Klivans and Spielman [KS01]
construct hitting sets of density 1−ρ against all m-variate polynomials of degree dwith
M monomials, of size O(mMd/ρ). Our construction has a much smaller size, md/ρ,
against a particular subclass of m-variate polynomials of degree d (degree d prediction
tests). For many settings of the parameters, this is an exponential improvement, albeit
for a limited class of polynomials. It is in fact surprising that we obtain hitting sets of
this size without an explicit constraint on the size of an arithmetic circuit computing the
polynomial.

2 Preliminaries

Two distributions P and Q over a finite set S are said to be ε-close if their 1-distance
given by

∑
x∈S |P (x)−Q(x)| is at most 2ε or equivalently if maxA⊆S |P (A)−Q(A)|

is at most ε. The min-entropy of a random variable X with distribution P on S is
defined asH∞(X) = minx∈S log(1/P (x)). We often use Un as a uniformly distributed
random variable.

Definition 2. A distinguisher with advantage ε for a random variable X = (X1, X2,
. . . , Xm) defined on Fm

q is a function f : Fm
q → Fq with the property that

|P r[f(X) = 0]− P r[f(Um) = 0]| ≥ ε

where Um is uniformly distributed on Fm
q .
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Definition 3. An ith-element predictor with success probability ρ for a random vari-
able X = (X1, X2, . . . , Xm) defined on Fm

q is a function f : Fi−1
q → Fq such that:

P r[f(X1, . . . , Xi−1) = Xi] ≥ ρ. If ρ = 1 we say that f is errorless.

We will be concerned with linear and low-degree distinguishers and predictors. Note
that a linear function f satisfies the identities (i) f(

∑k
j=1 xj) =

∑k
j=1 f(xj) − (k −

1)f(0) and (ii) f(αx) = αf(x)− (α− 1)f(0) for any scalar α. A homogeneous linear
function f has f(0) = 0.

Definition 4. A (k, ρ) q-ary extractor for a family of predictors P is a function E :
{0, 1}n × {0, 1}t → Fm

q such that for every random variable X with H∞(X) ≥ k,
there is no ith-element predictor f ∈ P for E(X, Ut) with success probability ρ for
any i = 1, . . .m.

In our notation, the usual q-ary extractors (as defined in, e.g., [SU05]) are simply q-ary
extractors for the family of all predictors. Rather than referring to PRGs directly we
prefer to describe the set of strings they produce.

Definition 5. A q-ary ρ-pseudorandom set for a family of predictors P is a multiset
S such that there is no i-th element predictor f ∈ P with success probability ρ for the
random variable induced by picking an element uniformly at random from S.

In Bogdanov’s terminology [Bog05], a ρ-pseudorandom set for a family of predictors
P is called a hitting set with density 1 − ρ for the class of degree d prediction tests1.
In fact, it is a simple observation that a ρ-pseudorandom set S for the family of degree
d predictors has the property that for every degree d prediction test g, the distribution
g(Z) is ρ-close to the distribution g(X) in the max-norm (where Z is a random variable
uniformly distributed on S, and X is a uniform random variable). One can also ask that
g(Z) and g(X) be ρ-close in the 1 norm. This gives rise to genuinely a stronger object,
termed a pseudorandom generator of bias ρ in [Bog05].

Definition 6. An [n̄, k̄, d̄] q-ary linear code is a subspace C ⊆ Fn̄
q for which the Ham-

ming distance between every pair x, y ∈ C is at least d̄.

Given a string x, we will often use C(x) to mean the x-th codeword in C (and all of
the codes we consider come equipped with efficient ways to compute this encoding
function). A code is systematic if the message appears as a prefix of every codeword.

Definition 7. A code C is cyclic if it satisfies the following condition:

(x1, x2, . . . , xn̄−1, xn̄) ∈ C ⇒ (xn̄, x1, x2, . . . , xn̄−1) ∈ C.

We always treat the indices into a cyclic code modulo n̄.

A specific family of q-ary codes we will use are the Reed-Müller codes. The codewords
of a Reed-Müller code with parameters , h are the evaluations of -variate polynomials
of total degree at most h, at the points F�

q\{0}. The special case of  = 1 gives the Reed-
Solomon codes. All of these codes are cyclic (for an appropriate ordering of F�

q \ {0})
and linear.

1 A hitting set of density α for a family of functions F is a multiset H ⊆ Fm
q such that for every

non-zero function p ∈ F , Prx∈H [p(x) �= 0] > α.
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3 Overview of the Results

In this section we describe the high-level ideas behind our results, before giving the
technical details and full proofs in the next section.

3.1 Extractors Fooling Linear Tests

Let C be any cyclic code, and consider the function fC,m from (1). We show that for
fixed x, if the distribution fC,m(x, y) with y chosen uniformly at random has a linear
predictor p, then x has a short description. In this case p is a linear function for which:

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m− 1]) = C(x)[y + m] (2)

with noticeable probability over the choice of y.
Our key observation is that if C has sufficiently good distance, then f must be er-

rorless. To prove this we first select a subset S of those y for which (2) holds. If C
has sufficiently good distance, then a given position r may be expressed as a linear
combination  of the values of C(x) at the positions S:

C(x)[r] = (C(x)[y])y∈S

Since C is cyclic, this same equation holds for every cyclic shift; i.e., for all i: C(x)[r+
i] = (C(x)[y + i])y∈S . These equations together with (2), which holds for all y ∈ S,
imply that (2) holds for r. Since r was arbitrary, we conclude that p is indeed errorless.

From here, it is easy to see that x may be described by C(x)[1 . . .m − 1], since we
can use p to obtain C(x)[m], and again to obtain C(x)[m + 1], and so on, until we have
C(x) in its entirety. Finally decoding C(x) recovers x.

Note that “extractors that fool linear tests” are not meaningful in the usual setting of
simulating randomised procedures using a weak random source. This is because if one
is only trying to fool linear tests, one could use ε-biased spaces to do away with the
randomness altogether. However, we believe that this setting is a good testbed for refin-
ing the “reconstruction proof” technique, and that it may be valuable to adapt it in the
way we do here, to obtain an errorless predictor without relying on local-decodability
of the underlying code. Additionally, our goal is to understand the construction in (1)
in the most general setting possible, and the fact that an extractor object (albeit against
a restricted class of tests) is produced from any cyclic code is a step toward that goal.

3.2 Extractors Fooling Low-Degree Tests

Now suppose further that C is a polynomial cyclic code; i.e., a Reed-Müller code, and
we have the same setup except that the predictor p is now only low degree. That is, there
is a function p of degree d for which:

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m− 1]) = C(x)[y + m] (3)

with noticeable probability over the choice of y. The argument used for linear p breaks
down, but a different argument works, relying on the fact that C(x) is now itself a low-
degree polynomial. This means that there is a mapping between the index y and values
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for variables y1, y2, . . . , yn for which rx(y1, y2, . . . , yn) ≡ C(x)[y], where rx is a low-
degree polynomial depending on x. The fact that C is cyclic means that for all i there is
a low-degree polynomial rx,i for which rx,i(y1, y2, . . . , yn) ≡ C(x)[y + i].

Now, we observe that the left-hand side of (3) is a low-degree polynomial in y1, y2,
. . . , yn, as is the right hand side. However, they agree with noticeable probability, so
for an appropriate choice of parameters, they must be equal. This implies that p is an
errorless predictor, since equation (3) holds for all y.

3.3 Unconditional PRGs Fooling Linear and Low-Degree Tests

If for a given code C, one can identify a fixed “good” x for which fC,m(x, ·) fools all
efficient predictors, then fC,m(x, ·) generates a discrepancy set against all small circuits.
It is standard that such an x yields a function that is not computable by small circuits,
and thus in the absence of strong circuit lower bounds we can obtain (at best) a condi-
tional construction. When the class of predictors is restricted in a different way, we can
pursue the same strategy to produce a pseudorandom set against all predictors in this
class.

One of the surprising side-effects of having transformations from a predictor to an
errorless predictor like the ones we have is that it is easy to produce a “good” x, uncon-
ditionally. This is because we need only to find a codeword that cannot have an errorless
predictor. In fact, any codeword beginning with 0m1, will suffice. If such a codeword
has an errorless predictor p, then that predictor must output 0 since

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m− 1]) = C(x)[y + m]

implies p(0, 0, 0 . . . , 0) = 0 (when y = 0) and p(0, 0, 0 . . . , 0) = 1 (when y = 1), a
contradiction. This gives a simple construction of pseudorandom sets fooling all linear
tests from any cyclic code with good distance. We are also able to conclude that sub-
strings of low-degree polynomials comprise a pseudorandom set that fools low-degree
prediction tests, giving a derandomisation of polynomial identity testing for this re-
stricted class of tests.

4 Proofs of Main Results

In this section, we shall provide a formal proof of Theorem 1 and sketch proofs of the
remaining main theorems.

4.1 Extractors Fooling Linear Tests

We present a construction for q-ary extractors that fool all linear prediction tests. We
begin with a crucial property of linear codes (the proof appears in the full version):

Lemma 1. Let C be an [n̄, k̄, d̄] q-ary linear code. Let S ={t1, . . . , tm}⊆{1, 2, . . . , n}
be a set of size at least n̄− d̄+ 1, and pick r ∈ {1, 2, . . .n}. Then there exists a homo-
geneous linear function f : Fm

q → Fq such that for all x, C(x)[r] = f(C(x)[t1], . . . ,
C(x)[tm]).
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We prove that a “reasonably correct” linear predictor operating on a codeword in a
suitable code must in fact be exactly correct.

Lemma 2. Let C be an [n̄, k̄, δn̄] q-ary cyclic linear code with 1n̄ ∈ C, and fix x.
Suppose p is a linear ith-element predictor with success probability ρ > (1− δ) for the
random variable fC,m(x, y) induced by picking y uniformly from {1, 2, . . . , n̄}. Then,
p is an errorless linear predictor.

Proof. Define S to be the set of positions on which p is correct; i.e.,

S = {s : p(C(x)[s + 1], C(x)[s + 2], . . . , C(x)[s + i− 1]) = C(x)[s + i]}

We know that |S| ≥ (1 − δ)n̄ + 1. Now pick an arbitrary r ∈ {1, 2, . . . , n̄}, and let
f =

∑
s∈S αszs be the linear function guaranteed by Lemma 1. We have: p(C(x)[r +

1], . . . , C(x)[r + i− 1]) = p
(∑

s∈S αsC(x)[s + 1], . . . ,
∑

s∈S αsC(x)[s + i− 1]
)

=
∑
s∈S

αsp(C(x)[s + 1], . . . , C(x)[s + i− 1]) +

(
1−
∑
s∈S

αs

)
p(0, . . . 0)

=
∑
s∈S

αsp(C(x)[s + 1], . . . , C(x)[s + i− 1]) =
∑
s∈S

αsC(x)[s + i] = C(x)[r + i]

where the second line follows from the fact that p is linear (using two properties of
linear functions noted in Section 2), and the third line follows because 1n̄ ∈ C implies
(1−

∑
s∈S αs) = 0, and from the definition of S. �

We now prove our first main theorem, showing that fC,m for cyclic codes C is an ex-
tractor fooling q-ary linear tests.

Proof (of Theorem 1). Suppose fC,m is not an extractor with the parameters as claimed.
Then there is some random variable X having distributionD, with min-entropy at least
k, and for some i, a linear ith-element predictor p satisfying

Pr
x←D,y

[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ.

By an averaging argument

Pr
x←D

[Pr
y

[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ/2] ≥ ρ/2. (4)

Now, for every x for which Pry[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ/2, Lemma
2 implies that Pry[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] = 1, since ρ/2 > 1 − δ.
Every such x can be described with (i − 1) elements of Fq, by simply writing down
C(x)[1 . . . , i−1]. From this, p(C(x)[1 . . . , i−1]) = C(x)[i], and then p(C(x)[2 . . . , i] =
C(x)[i], p(C(x)[3 . . . , i +1] = C(x)[i +2], and so on until we obtain all of the symbols
of C(x), which in turn determine x.

We can define a function R : Fi−1
q → Fk̄

q that runs this procedure. Using equation (4)
above, we get: Prx←D[∃a ∈ Fi−1

q for which R(a) = x] ≥ ρ/2. A given x is sampled
with probability at most 2−k, and so applying the union bound, the probability above
is bounded above by qi−12−k. Using the fact that i ≤ m, we get a contradiction if
2m log q−k < ρ/2, or equivalently k > m log q+log(2/ρ). Our choice of k thus implies
that fC,m must be the claimed extractor. �
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To get a sense of the achievable extractor parameters here, we plug in a Reed-Müller
code:

Corollary 1. Fix n, k, and ρ > 1/kO(1). Let C be a Reed-Müller code with parameters
h = k, q = 2k/ρ, and  = log n/ log k. Then fC,m is a (k, ρ) q-ary extractor for
the family of all linear prediction tests, with seed length O(log n) and output length
m ≥ k/O(log k).

4.2 Extractors Fooling Low-Degree Tests

We develop our result further to describe constructions of extractors that fool low-
degree prediction tests. While the extractor constructions presented in the previous
section can be derived in general from any cyclic, linear code the following construc-
tions are obtained from Reed-Müller codes (including the special case of Reed-Solomon
codes). Similar to the previous subsection, we present a lemma that says that a “reason-
ably good” low-degree predictor is an errorless low-degree predictor.

Lemma 3. Let C be an [n̄, k̄, d̄] q-ary Reed-Müller code with parameters , h, and fix
x. Suppose p is a degree d i-th element predictor with success probability ρ > dh/q
for the random variable fC,m(x, y) induced by picking y uniformly from {1, 2, . . . , n̄}.
Then p is an errorless predictor.

We omit the proof for lack of space, but note that it is described informally in Section
3.2. This gives us Theorem 2, showing that fC,m for Reed-Müller codes C is an extractor
fooling low-degree tests. The proof uses Lemma 3 in similar fashion to how the proof
of Theorem 1 uses Lemma 2.

The following corollary plugs in Reed-Solomon codes, which correspond to  = 1
in Theorem 2.

Corollary 2. Fix n, k, d and ρ > 1/kO(1). Let C be a q-ary Reed-Solomon code with
parameters q = 2dn/ρ and h = n. Then fC,m is a (k, ρ) q-ary extractor for the
family of all degree d prediction tests, with seed length O(log n) and output length
m ≥ k/O(log dn).

5 Pseudorandom Sets for Linear and Low-Degree Tests

In this section we obtain unconditional PRGs by using a special feature of our proof
methodology.

5.1 Pseudorandom Sets for Linear Tests

Using Lemma 2 again, we can prove Theorem 3 giving a construction of a pseudoran-
dom set for linear prediction tests using any systematic cyclic linear code as described
in Section 3.3. Specifically, using a systematic Reed-Solomon code gives us Corollary
3 and furthermore, using Proposition 1 gives us pseudorandom sets fooling linear dis-
tinguishing tests in Corollary 4, all of which are stated below.
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Corollary 3. Fix m, ρ. Let C be a systematic Reed-Solomon code with parameters h, q
satisfying q = h/ρ. The set S described in Theorem 3 is a q-ary ρ-pseudorandom set in
Fm

q of size h/ρ for the class of all linear prediction tests.

Proposition 1. Let f : Fm
q → Fq be a q-ary linear distinguisher for a distribution D

with advantage ε. Then, there exists an i and a q-ary linear next-element predictor for
D f ′ such that for a random variable x defined over Fm

q , Prx←D[f ′(x1, . . . , xi−1) =
xi] ≥ 1

q + ε
q−1 and for the case 1

q ≤ ε ≤ 1− 1
q , Prx←D[f ′(x1, . . . , xi−1) = xi] ≥ 1

q +ε.

We reserve the proof of the proposition for the full version of the paper.

Corollary 4. Let C and S be as defined above in Theorem 3. For every v ∈ Fm
q ,

|Prs∈S [s · v = 0]− Prx[x · v = 0]| ≤
(
ρ− 1

q

)
(q − 1).

Pseudorandom sets for binary linear distinguishing tests are called ε-biased sample
spaces. Using our constructions from above and combining them with good binary
codes we can construct good ε-biased sample spaces.

Definition 8. A multiset T ⊆ {0, 1}m is an ε-biased sample space if for every v ∈
{0, 1}m, |Prx∈T [x · v = 0]− Prx∈T [x · v = 1]| ≤ ε.

Theorem 5. Let C1 be an [n̄1, k̄1, δ1n̄1] q-ary cyclic code, and C2 be an [n̄2, k̄2 =
log q, δ2n̄2] binary systematic code, and set m = k̄1 − 1. Define S = {fC1,m(x, y) :
1 ≤ y ≤ n̄1} and define

T = {(C2(s1)[z], C2(s2)[z], . . . , C2(sm)[z]) : (s1, s2, . . . , sm)∈S, z∈{1, 2, . . . , n̄2}}

The set T is a 4ε-biased sample space, provided δ1 > 1− ε, and δ2 > 1/2− ε.

We defer the proof to the full version of the paper. For fixed m, ε, if we choose C1 to
be a [q, m + 1, q − m] RS-code where q > m/ε and C2 to be a [q, log q, q/2] binary
Hadamard code we can apply Theorem 5 to get a 4ε-biased space of size O(m2/ε2).
Moreover, with C2 as an [n̄ = O(log q2/ε2), log q, (1/2−ε)n̄] binary code, we improve
the size to O(mpolylog(m, 1/ε)/ε3).

5.2 Pseudorandom Sets for Low-Degree Tests

We extend the previous discussion to pseudorandom sets for low-degree tests derived
from Reed-Müller codes. In similar fashion to proving Theorem 3, we can prove Theo-
rem 4 using Lemma 3 and arguing that a good prediction test would imply an errorless
prediction test which, given the construction is impossible, hence contradicting our as-
sumption. As before, by using a specific Reed-Solomon code we obtain Corollary 5.

Corollary 5. Fix m, ρ. Let C be a systematic Reed-Solomon code with parameters h, q
satisfying q = dh/ρ. The set S described in Theorem 4 is a q-ary ρ-pseudorandom set
in Fm

q of size hd/ρ for the class of all degree d prediction tests.
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Equivalently, we have an explicit construction of a hitting set with density 1−ρ against
degree d prediction tests, with size md/ρ. As discussed in the introduction this is some-
what surprising. Even for this simple class of polynomials, there does not seem to be a
trivial construction of a hitting set with density 1 − ρ, making Theorem 4 another ex-
ample where the generic object fC,m yields a non-trivial pseudorandom construction.

6 Concluding Remarks

There are many questions raised by these results. For example, is it possible to enlarge
the class of tests fooled by the extractors and pseudorandom sets constructed from ar-
bitrary cyclic linear codes? Similarly, is it possible to fool more general prediction tests
using arbitrary polynomial codes? The results of [SU05] show that it is in the particular
case of Reed-Müller codes (with certain parameters), but it is possible that something
more general is true depending, e.g., only on the distance of the code.

We feel that one of the nicest questions of this type is the question of whether fC,m

is a extractor (fooling all prediction tests), when C is a Reed-Solomon code.
Regarding pseudorandom sets for low-degree polynomials, we wonder if there is

a nontrivial conversion of distinguishers to predictors (probably relying on the distin-
guisher being presented as a small arithmetic circuit) that preserves low-degree-ness.
This would potentially lead to a non-trivial derandomisation of polynomial identity
testing, because it would imply that the pseudorandom sets of Theorem 4 would in fact
fool low-degree distinguishing tests with small circuits.

Acknowledgements. We thank Eli Ben-Sasson for helpful discussions and Andrej Bog-
danov for sharing a draft of [Bog05] with us. We also thank the anonymous referees for
their insightful comments.
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Abstract. We study the following optimization problem: the input is a
multigraph G = (V, E) and an integer parameter g. A feasible solution
consists of a (not necessarily proper) coloring of E with colors 1, 2, . . . , g.
Denote by d(v, i) the number of edges colored i incident to v. The objec-
tive is to minimize

∑
v∈V maxi d(v, i), which roughly corresponds to the

“imbalance” of the edge coloring. This problem was proposed by Berry
and Modiano (INFOCOM 2004), with the goal of optimizing the deploy-
ment of tunable ports in optical networks. Following them we call the
optimization problem MTPS - Minimum Tunable Port with Symmetric
Assignments.

Among other results, they give a reduction from Edge Coloring show-
ing that MTPS is NP-Hard and then give a 2-approximation algorithm.
We give a (3/2)-approximation algorithm. Key to this problem is the
following question: given a multigraph G = (V, E) of maximum degree
g, what fraction of the vertices can be properly edge-colored in a color-
ing with g colors, where a vertex is properly edge-colored if the edges
incident to it have different colors? Our main lemma states that there is
such a coloring with half of the vertices properly edge-colored. For g ≤ 4,
two thirds of vertices can be made properly edge-colored.

Our algorithm is based on g Maximum Matching computations (to-
tal running time O(gm

√
n + m/g)) and a local optimization procedure,

which by itself gives a 2-approximation. An interesting analysis gives an
expected O((gn + m) log(gn + m)) running time for the local optimiza-
tion procedure.

Keywords: Approximation Algorithms, Graph Theory, Edge Coloring,
Randomized Algorithms

1 Introduction

Berry and Modiano [2] study the benefits of using tunable electronic ports in
WDM/TDM Optical Networks. They provide formulations for the “tunable”
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optimization problems of reducing the number of tunable electronic ports. These
ports are very expensive and optimal placement is very desirable.

They introduce two optimization problem. In this paper we concentrate on
the Minimum Tunable Port with Symmetric Assignments (MTPS) problem: The
input is a multigraph G = (V, E) and an integer parameter g. A feasible solution
consists of a (not necessarily proper) coloring (called a g-edge coloring) of E
with colors 1, 2, . . . , g. Denote by d(v, i) the number of edges colored i incident
to v. The objective is to minimize

∑
v∈V maxi d(v, i).

Actually, the MTPS problem as described in [2] has a different description.
They give a non-trivial equivalence reduction to the formulation above, which
they use for proving NP-Completeness and for approximation algorithms. For
g = 3, they show the problem is NP-Complete by an easy reduction from Edge
Coloring in cubic graphs [7]. Indeed, one can see that a proper 3-edge coloring
(that is, a coloring with 3 colors where no two edges incident to a vertex have
the same color) of a cubic graph is the only way a 3-edge coloring can have
objective function in MTPS equal to |V |. The result of [7] can be used (though
we do not prove this here) to show that MTPS is APX-Hard: that is no (1 + ε)-
approximation algorithm exists unless P=NP [1].

An edge coloring is called equitable [6] if for all vertices v and colors i, j, we
have d(v, i) ≤ d(v, j) + 1. It is clear that an equitable edge coloring, if it exists,
minimizes the objective function [3]. Certain classes of graphs, for example simple
graphs where no vertex has degree multiple of g, are known to have equitable
g-edge colorings [6].

Berry and Modiano [2] give a conceptually simple 2-approximation algorithm,
which we describe later. We give a (3/2)-approximation algorithm. Key to the
MTPS problem is the following question: given a graph G = (V, E) of maximum
degree g, what fraction of the vertices can be properly edge-colored in a g-edge
coloring, where a vertex is properly edge-colored (or just proper) if the edges
incident to it have different colors? Our main lemma states that there is a g-
edge coloring with half of vertices properly edge-colored. For g ≤ 4, two thirds
of vertices can be made properly edge-colored; this bound is tight. We leave as
an open question the problem of finding tight bounds for larger values of g.

Our algorithm for g > 4 is based on g Maximum Matching computations (to-
tal running time O(gm

√
n + m/g)) and a local optimization procedure, which

by itself gives a 2-approximation. By carefully implementing this local optimiza-
tion procedure, we prove it has an expected O((gn + m) log(gn + m)) running
time. This implementation is needed to ensure the overall running time is not
dominated by local optimization. Local optimization would be a top choice of a
practitioner, and depending on the size of the instance, it may be important to
have a fast implementation. For g = 3 and g = 4 we obtain a 4/3-approximation
algorithm with running time of O((n + m) log n) and O(n2 + m2), respectively.

A related problem was considered by Feige et. al. [5] In Maximum Edge
Coloring, given a multigraph G = (V, E) and a parameter g, one seeks a
subgraph with maximum number of edges which can be properly edge-colored
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with g colors. They show that Maximum Edge Coloring is Max-SNP Hard,
even for g = 2, and give constant approximation algorithms.

Our paper is organized as follow. The next section presents preliminaries, the
case g = 2, introduces the local optimization procedure, and gives two simple
2-approximation algorithms. Section 3 gives the approximation ratio of the al-
gorithms, ignoring implementation details and the analysis of the running time
of the algorithms, which appear in Section 4.

2 Preliminaries

All our graphs are multigraphs, unless stated otherwise. For F ⊆ E(G), we use
G \ F to denote the graph (V (G), E(G) \ F ). For A ⊆ V (G), we use G \ A to
denote the subgraph of G induced by V (G) \A.

The obvious lower bound for the optimum is L =
∑

v∈V �
d(v)

g �, where d(v) is
the degree of vertex v. Berry and Modiano [2] use L as a lower bound, and we
will do the same. It is only for small values of g that we see hope of better lower
bounds.

We call a vertex v unbalanced in a g-edge coloring if there are colors i and j
with d(v, i) > d(v, j) + 1, and grossly unbalanced if there are colors i and j with
d(v, i) > d(v, j) + 2. A vertex that is unbalanced but not grossly unbalanced
contributes at most �d(v)

g �+ 1 to the objective function. Vertices which are not
unbalanced are called balanced.

The paper [6] describes how to compute the optimum for MTPS when g = 2.
We include their method for completeness. We may consider each component
separately, so let us assume that G is connected. If G is Eulerian with even num-
ber of edges, then following an Eulerian tour and coloring edges with alternate
colors gives us an equitable 2-edge coloring of G. If G is Eulerian with an odd
number of edges, [6] shows that no equitable 2-edge coloring exists; following the
Eulerian tour and using alternate colors results in a coloring with one vertex un-
balanced but not grossly unbalanced and a 2-edge coloring with objective L+1.
If G is not Eulerian we add extra edges between vertices having odd degree to
make it Eulerian, then use alternate colors on the Eulerian tour, starting with
an extra edge. The resulting 2-edge coloring has objective L.

Next we describe a local optimization procedure, called quasibalancing, that
can be used to improve an edge coloring to ensure that no grossly unbalanced
vertices exist, without creating unbalanced vertices. Suppose that d(v, i) >
d(v, j) + 2 for some vertex v. Consider the subgraph induced by colors i and
j and let H be the component containing v. Use the g = 2 procedure to
recolor H such that no vertex of H remains unbalanced in i and j except
for possibly v. It is easy to check that this procedure reduces the quantity∑

u∈V

∑
1≤k<l≤g |d(u, k)−d(u, l)| and it does not make balanced vertices unbal-

anced or create any new grossly unbalanced vertices. The repeated application
of the procedure results in a g-edge coloring without grossly unbalanced vertices.
At the end, maxi d(v, i) ≤ 1+ �d(v)

g �, so
∑

v∈V maxi d(v, i) ≤ L+n ≤ 2L, which
shows that we have a 2-approximation algorithm. Pseudocode for one step of
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quasibalancing (balancing two colors) appears later in this paper (Table 2, in
Section 4), when we analyze the running time of our algorithms.

We define the MTPS problem to be the restriction of MTPS to instances
where every vertex has degree at most g. If one uses L as a lower bound (as we
do), MTPS is equivalent from approximation point of view: we give a simple
reduction (also used in [2]) from MTPS to MTPS. Starting with an instance
G of MTPS we construct an instance G′ of MTPS as follows. Every vertex
v ∈ G is replaced by �d(v)

g � copies. Edges of G are processed one by one and edge
uv ∈ E(G) is replaced by one edge between some copy of u to some copy of v such
that all copies of vertices have degree at most g. Then L = L′ = |V (G′)|. Any
g-edge coloring of G′ translates back to G without an increase in the objective
function.

Berry and Modiano’s [3] 2-approximation algorithm works as follows. Given
a multigraph G, replace each vertex v by �3d(v)/(2(g − 1))� copies (their con-
ference version [2] uses �3d(v)/2g� copies, which is not enough when d = 800
and g = 4, as pointed out by a referee of this paper!) and distribute the end-
points of edges that had been incident to v evenly among its copies, so that each
copy has degree at most (2/3)g. Then Shannon’s bound [10] gives a proper g-
edge-coloring of the modified graph; transferring the colors to edges of G yields
d(v, i) ≤ 2�d(v)/g� for each vertex v and color i. Thus the objective is at most
2L, as claimed.

Both the 2-approximation obtained by [2,3] and the one obtained by quasi-
balancing suggest the hardest instances for MTPS are g-regular graphs. Since
we are using L as a lower bound, we restrict the rest of this paper to the MTPS
problem. Note that for MTPS instances a vertex is properly colored if and only
if it is balanced.

3 The Approximation Ratio

Lemma 1. Given a graph G = (V, E) of maximum degree g, there is a g-edge
coloring with at most � |V |−1

2 � unbalanced vertices. Such a coloring can be ob-
tained in polynomial time.

Proof. The proof is by induction on n+g, where n = |V |. The base cases n = 1
and n = 2 are trivial. If G is not connected, let G1 = (V1, E1) be one connected
component and G2 = (V2, E2) be the remaining graph. Induction gives a g-edge
coloring with at most

� |V1| − 1
2

�+ � |V2| − 1
2

� ≤ � |V1|+ |V2| − 1
2

�

unbalanced vertices. Thus we assume G is connected.
We wish to make use of a maximum matching of G, so we apply the

Edmonds-Gallai decomposition theorem to the underlying simple graph of G.
The statement of this theorem, as in, for example, [8, p94], is described in
the next sentence. In polynomial time, using Edmonds’ Maximum Matching
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Algorithm [4], we obtain a set A ⊆ V such that G \ A has components
B1, B2, . . . , Bk,D1,D2, . . . Dj such that:

– for each 1 ≤ i ≤ j Di has a perfect matching,
– for each 1 ≤ i ≤ k and each vertex v ∈ Bi, Bi \ {v} has a perfect matching.
– any maximum matching of G matches the vertices of A to vertices in distinct

Bi; moreover, the matchings above can be quickly found and extended to a
maximum matching M of G.

If |V | is even and A = ∅, then M is a perfect matching; we color the edges
of M with color g, remove them from G, and apply induction. Any vertex of
G \M that is properly edge-colored with (g − 1) colors will remains properly
edge-colored after adding the edges of M colored g.

If |V | is odd and A = ∅, then there is a matching M that leaves exactly one
vertex (say, v) unmatched. The graph G\M \ {v} has maximum degree at most
g − 1 and thus, by induction, has a (g − 1)-edge coloring with at most � |V |−2

2 �
unbalanced vertices. We use the color g for the edges of M . Then for edges of
the form uv with u ∈ V \ {v}, we use colors from {1, 2, . . . , g− 1} such that, if u
is proper in the (g− 1)-edge coloring, it remains proper; a color for uv is always
available since the degree of u in G does not exceed g. The vertex v could also
be unbalanced, and so the number of unbalanced vertices in the g-coloring of G
is at most � |V |−2

2 �+ 1 = � |V |−1
2 �.

Now we may assume that A 
= ∅. Select in each Bi a vertex vi adjacent to
some vertex of A to specify M so that M restricted to Bi \ {vi} is a perfect
matching. Consider G \M \A. It has at least k + j components, and maximum
degree at most g− 1: some vertex degrees drop due to being matched in M , and
the remaining vertices are adjacent to vertices in A. Let each Bi have 2bi + 1
vertices and each Di have 2di vertices. We apply recursion to each component,
obtaining a (g−1)-edge coloring with at most

∑k
i=1 bi+

∑j
i=1(di−1) unbalanced

vertices. We use color g for the edges of M , and for edges of type uv with
u 
∈ A and v ∈ A we use colors from {1, 2, . . . , g} such that, if u is proper in
the (g − 1)-edge coloring, it remains proper; a color for uv is always available
since the degree of u in G does not exceed g. For edges with both endpoints
in A, we use arbitrary colors. In the resulting g-edge coloring, the number of
unbalanced vertices is at most |A| +

∑k
i=1 bi +

∑j
i=1(di − 1). Note that G has

|A|+
∑k

i=1(2bi + 1) +
∑j

i=1 2di vertices.
Since M is not a perfect matching we have |A| ≤ k − 1, and therefore

� |A|+
∑k

i=1(2bi + 1) +
∑j

i=1 2di − 1
2

� =

= � |A|+ k − 1
2

�+
k∑

i=1

bi +
j∑

i=1

di ≥ |A|+
k∑

i=1

bi +
j∑

i=1

di.

Thus the number of unbalanced vertices does not exceed � |V |−1
2 �.

Using the procedure of the previous lemma followed by quasibalancing we obtain
an algorithm that produces a g-edge coloring of a graph of maximum degree g
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with at most n/2 unbalanced vertices and no grossly unbalanced vertex. The
objective is then at most n+n/2 ≤ 3n/2 = 3L/2, proving the following theorem:

Theorem 1. There is a (3/2)-approximation algorithm for MTPS.

Due to space limitations, we only give the 4/3 proof for g = 3. The case g = 4 is
handled by a more complicated extension of the same method. We use a second
local optimization procedure to improve Lemma 1. Quasibalancing is first applied
and it assures no grossly unbalanced vertices exists, and one can check it does
not make balanced vertices unbalanced.

Consider a vertex v with d(v, i) = 2 and d(v, j) = 0, and let u1 and u2 be the
two vertices with vu1 and vu2 colored i (u1 may be u2). We say that v can be
fixed by u1 and v can be fixed by u2. If one of u1 or u2, say u1, is unbalanced
(this is also the case when u1 = u2), then recoloring vu1 with color j makes v
balanced. Then we resume with quasibalancing. If unbalanced vertices v1 and v2

can be both fixed by one vertex u, then we fix both v1 and v2 Then we resume
with quasibalancing.

In all cases, we reduce the number of unbalanced nodes. Thus, at the end
of the second local optimization procedure each unbalanced vertex v has two
private (not shared with other unbalanced vertices) balanced vertices u1 and u2:
the two vertices v can be fixed by. This algorithm implies the lemma below for
g = 3.

Lemma 2. Assume g ≤ 4. Given a graph G = (V, E) of maximum degree g,
there is a g-edge coloring with at most � |V |

3 � unbalanced vertices. Such a coloring
can be obtained in polynomial time.

The lemma is tight: for g = 2 consider a triangle v1v2v3, while for g = 3 or
g = 4 add one or two parallel edges between v1 and v2. Using the procedure
of the previous lemma followed by quasibalancing we obtain an algorithm that
produces, for g ≤ 4, a g-edge coloring of a graph of maximum degree g with at
most n/3 unbalanced vertices and no grossly unbalanced vertex. The objective
is then at most n + n/3 ≤ 4n/3 = 4L/3, and we have a (4/3)-approximation
algorithm for MTPS.

4 Implementation and Running Time Analysis

We start with an equivalent version of the algorithm of Lemma 1, given in
Table 1. The next paragraph discusses the equivalence.

In the proof of Lemma 1, the third case considered (A 
= ∅) is always followed
by applying to non-trivial components Bj or Dj either the first case (A = ∅ and
|V (G)| even) or the second case (A = ∅ and |V (G)| odd). Trivial components,
(one vertex only, whose only neighbors are in A) give each a proper vertex
immediately. When the algorithm, as described in Table 1, encounters the third
case, it merges this next application into the same step, removing in Step 5 one
vertex from each non-trivial component with odd number of vertices (such a
vertex joins A in the set of vertices we gave up on being proper).
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Table 1. The algorithm of Lemma 1. The set A above is the set of A of the proof of the
lemma, and we mention that each shrunk blossom becomes an outer vertex; thus the
final inner vertices are vertices of the original graph. L is designed to have exactly one
vertex from each non-trivial odd component of the subgraph of G induced by V \ A.

Input: Positive integer parameter g and graph G = (V, E) of maximum degree g
Output: Coloring of E(G) with colors 1, 2, . . . , g

1 If g = 1, color all the edges 1 and return
2 Compute a maximum matching M ⊆ E in G
3 Construct, as in Edmonds’ algorithm, alternating forests,

implicitly shrinking the blossoms
4 Let Q be the set of unmatched vertices, A be the set of inner vertices in the

alternating forest, and J be the vertices matched by M to some vertex of A.
Let L be the subset of Q ∪ J with vertices who have a neighbor outside A.

5 Recurse on G \ (A ∪ L) \ M with parameter g − 1
6 Assign color g to the edges of M
7 for each edge e incident to some vertex u ∈ A ∪ L
8 if v, the other endpoint of e, is in V \ (A ∪ L)
9 color e such that, if v is proper in G \ A \ L, then v remains proper
10 else color e arbitrarily
11 return

For the running time of the algorithm in Table 1, we first note that g maxi-
mum matchings are computed in a graph, which we call G′ = (V ′, E′), with at
most n′ := n+2m/g vertices and m′ := m edges, where n and m are the number
of vertices and edges of the original graph. Using the algorithm of Micali and
Vazirani [9], we obtain a total running time of O(gm

√
n + m/g). We need to

elaborate a bit on steps 7-10. To ensure that proper vertices remain proper, we
keep for each vertex v an array Mv of size g indicating which color is already used
by edges incident to v. In addition we keep for v an integer jv (initially 0) such
that colors 1, . . . , jv are used. An unused color for an edge incident to v is found
by increasing jv and testing (and eventually updating) the array Mv. Since j only
increases, the total time spent for vertex v on finding unused colors incident to
v is O(g(n + m/g)) = O(gn + m).

We move to quasibalancing, which we apply directly to the output of the
algorithm in Table 1. Thus the input consists of G′, a graph of maximum de-
gree at most g, and whose edges are colored with colors 1, 2, . . . , g. Applying
quasibalancing to G′, rather than the original graph, does not affect the 1.5
approximation ratio and makes the running time easier to analyze.

As described in Section 2, quasibalancing is clearly polynomial: in O(m +
n) time we reduce the quantity

∑
u∈V

∑
1≤k<l≤g |d(u, k) − d(u, l)| by one, and

the initial
∑

u∈V

∑
1≤k<l≤g |d(u, k) − d(u, l)| ≤ ng3. We can do a much better

analysis if we carefully describe the procedure, changing it a bit and adding
randomization. We describe this specific implementation below. But first, some
intuition.

The goal, roughly speaking, is to bound the number of times Euler tours are
constructed, as in Section 2 or later below. A natural way to obtain such a bound
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is to have a potential function which decreases fast whenever we do an Euler
tour construction and recoloring; each such Euler tour comes from edges colored
with only two colors, say i and j. It can reasonably be hoped that picking i
and j such as to decrease the potential the most would be good. But to show
a good pair of colors exists it is natural to compute the average decrease in
potential over pairs i, j. Then we will not even have to pick the best i, j: we
save time by picking them randomly. Such an approach, with potential function∑

v

∑
i(d(v, i)− 1)2 would have worked and give the same bound we give on the

running time, provided the recoloring is “perfect” in the sense that all vertices
are left balanced in colors i, j. But one vertex v can be left unbalanced in each
Euler tour; in particular, when d(v, i) = 3 and d(v, j) = 1 no progress may
be done. There exist graphs on which the “random pair of colors” (and also
“best pair of colors”) approach fails. So, instead we use randomization in a more
complicated way.

Recall that d(v, j) is the number of edges incident to v with color j. Thus∑
1≤j≤g d(v, j) ≤ g, and

∑
j,v d(v, j) = 2m. We also think of these d(v, j) as

being values in a matrix M where rows are indexed by colors, and columns by
vertices. Our goal is to ensure no grossly unbalanced vertex remains, which in
our graph of maximum degree bounded by g means that we must reach that
d(v, i) ≤ 2 for all v ∈ V ′ and i ∈ {1, 2, . . . , g}.

The basic move is to pick two colors and “balance” them. For this an Euler
tour is produced; it is important for the analysis that a certain edge is picked
as the first edge of the tour, and a color is assigned to this edge. Pseudocode
appears in Table 2, with one of the colors being 1. To analyze the total run-
ning time of quasibalancing, we give a special role (to be described later) to
color 1.

Table 2. Balancing colors 1 and j

1 Let H be the subgraph of G′ induced by the edges colored 1 and j
2 Apply the following to each connected component C of H
3 If C is not Eulerian, add “fake” edges between vertices of odd degree

to obtain graph C′

4 Compute T , an Eulerian tour of C′

5 if there is a fake edge
6 start T with a fake edge, colored arbitrarily
7 else
8 if there is v ∈ V (C) with d(v, 1) = 2 and d(v, j) = 0, or d(v, 1) = 0 and d(v, j) = 2
9 start T with an edge incident with v, colored j
10 else
11 if there is v ∈ V (C) with d(v, 1) �= d(v, j)
12 start T with an edge incident with v, colored 1
13 else
14 start T with an arbitrary edge, colored arbitrarily
15 Follow T , assigning colors to its edges alternating 1 and j
16 Remove the fake edge, if any
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The running time of the procedure is O(n′+ |E(H)|) = O(
∑

v∈V ′(1+d(v, 1)+
d(v, j))). The procedure results in |d(v, 1) − d(v, j)| ≤ 1 at every vertex of the
component C except perhaps one vertex v (where the Eulerian tour starts and
ends), in which case |d(v, 1) − d(v, j)| = 2. Here we choose which of d(v, 1) or
d(v, j) is larger: If the two values are 0 and 2, we make d(v, 1) = 0 and d(v, j) = 2;
otherwise we make d(v, 1) > d(v, j).

For each vertex v, let ||v||j = [max{d(v, j) − 2, 0}]2 and let ||v|| =
∑

j ||v||j .
||v|| is defined to measure, roughly speaking, the progress of a balancing: when
||v|| = 0, we have d(v, j) ≤ 2 for all j. More formally, we define the progress(v)
of a balancing as ||v|| − ||v′||, where ||v′|| is ||v|| after balancing.

Lemma 3. For any balancing of two rows i and j, progress(v) is a nonnegative
integer. Moreover, if we balance rows with values d(v, i) and d(v, j) being M, m,
with m ≤ M , and after the balancing d(v, i) and d(v, j) are (not necessarily
in this order) M ′, m′, with m′ ≤ M ′, then progress(v) ≥ 1 unless M = m,
M = m + 1, M = M ′ = m + 2 = m′ + 2, or M ≤ 2.

Proof. Clearly progress(v) is an integer.
If M = m + 1 then there is a “fake” edge added at v, which eventually yields

M ′ = m′ +1. If M = m then the Eulerian tour through v either has even length
or it does not start at v; this yields M ′ = m′. In each case progress(v) = 0, so
we may assume that M ≥ m + 2.

If m, m′, M, M ′ are each at least 2, then progress(v) = (m− 2)2 + (M − 2)2−
[(m′−2)2+(M ′−2)2]. According to the algorithm in Table 2 we get M ′ ≤ m′+2.
Since M + m = M ′ + m′, the average of the two values does not change. Thus
we have m ≤ m′ ≤ M+m

2 ≤ M ′ ≤ M . It follows that (m − 2)2 + (M − 2)2 −
[(m′ − 2)2 + (M ′ − 2)2] is nonnegative, with equality if and only if m = m′ and
M ′ = M .

If M ≥ 4 and m is 0 or 1, progress(v) is at least

(M − 2)2 − [(m′ − 2)2 + (M ′ − 2)2]

≥ (M − 2)2 − [(
M + m

2
− 3)2 + (

M + m

2
− 1)2]

= (M − 2)2 − [2(
M + m

2
− 2)2 + 2]

≥ (M − 2)2 − 2(
M + 1

2
− 2)2 − 2

=
1
2
M2 −M − 5

2
≥ 0.

If M = 3 and M ′ ≤ 2 then m, m′ ≤ 2 and progress(v) = 1. Otherwise M = M ′

or M ≤ 2 and progress(v) = 0.

Consider the subsequence of rows r = σ(1) < σ(2) < . . . < σ(k) for which
d(v, r) 
= 1.

Claim. Suppose that d(v, σ(j)) ≥ 3, d(v, σ(j+1)) = 0, and either d(v, σ(j−1)) =
0 or j = 1. If σ(j) 
= 1 then balancing row 1 with rows σ(j − 1), . . . , σ(j + 1)
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yields progress(v) ≥ ||v||σ(j)/80. The same progress is achieved when σ(j) = 1
by balancing row 1 with rows 2, . . . , σ(2).

Proof. Let y = d(v, σ(j)). If σ(j) > 1, let b be the value of d(v, 1) just after
balancing row σ(j) and row 1. Since the value of d(v, 1) before this balancing
was nonnegative, b ≥ y

2 − 1. If σ(j) = 1 (in which case j = 1 and y = d(v, 1)),
then we let b = y. Suppose that b ≥ 4.

¿From the hypothesis, d(v, σ(j + 1)) = 0, and if σ(j + 1) > σ(j) + 1, then by
the definition of the σ’s we have d(v, σ(j) + 1) = 1. Thus, there a 0 or 1 in row
σ(j) + 1, and therefore after balancing rows 1 and σ(j) + 1, the new entries are
either b+1

2 ± ε or b
2 ± ε, integers with ε ∈ {0, 1

2 , 1}. Thus ||v||1 + ||v||j becomes at
most ( b+1

2 + ε− 2)2 + ( b+1
2 − ε− 2)2 or ( b

2 + ε− 2)2 + ( b
2 − ε− 2)2. The largest

this could be is ( b+1
2 − 1)2 + ( b+1

2 − 3)2, so progress(v) is at least

(b − 2)2 − [(
b + 1

2
− 1)2 + (

b + 1
2

− 3)2]

= (b − 2)2 − [2(
b + 1

2
− 2)2 − 2]

=
1
2
b2 − b− 5

2
.

Since 9
20b2 − b − 5

2 > 0 when b ≥ 4, progress(v) ≥ 1
20b2 ≥ 1

80 (y − 2)2, which
suffices.

If b ≤ 3 then (y − 2)2/80 ≤ 36/80 < 1, so progress(v) ≥ 1 would suffice.
If σ(j) = 1 (and j = 1) then d(v, 1) ≥ 3 at first, and is balanced only with 1s

until row σ(j + 1). Each balancing with a 1 that doesn’t yield positive progress
must begin and end with d(v, 1) = 3. Thus, if there has been no progress until
row 1 is balanced with row σ(j + 1), then at that point 0 is balanced with a 3
(or d(v, 1) ≥ 3 if σ(j + 1) = σ(1) + 1), for positive progress.

If j = 1 and σ(j) 
= 1, then d(v, 1) is 0 or 1 until row 1 is balanced with
row σ(j), which yields positive progress or makes d(v, 1) = 3. In the latter case,
the situation is identical to the previous case, and thus will later yield positive
progress.

If j > 1 and no progress is made balancing row 1 and row σ(j − 1), then
d(v, 1) becomes 0 or 1, after which it follows the previous case.

Each pass of the algorithm randomly orders the colors (redefining the rows),
then balances row 1 with rows 2, . . . , g in sequence. See Table 3.

Lemma 4. One pass takes O(n′g) time.

Proof. Recall that balancing rows 1 and j takes time O(
∑

v∈V ′(1 + d(v, 1) +
d(v, j))). Let t(v, j) = 1+ d(v, 1) + d(v, j) and t(v) =

∑g
j=2 t(v, j); note however

that d(v, 1) changes after each balancing. It is enough to show that t(v) = O(g)
for all v ∈ V ′.
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We employ a credit scheme for the proof. Row j starts with 2d(v, j)+3 credits.
We maintain the invariant that row 1 has at least 2d(v, 1) credits. Consider the
rebalancing of row 1 with row j. Let d′(v, 1) be the number of edges colored 1
incident to v after the rebalancing. Row j brings 2d(v, j)+3 credits, and we have
2d(v, 1) credits in row 1. Of these, 1+d(v, 1)+d(v, j) go toward t(v, j), and we are
left with d(v, 1)+d(v, j)+2 credits. Since d′(v, 1) ≤ 1+(d(v, 1)+d(v, j))/2, the
credit invariant is maintained. Thus t(v) ≤

∑g
j=1(3+2d(v, j)) ≤ 3g+2g = O(g),

completing the proof.

Table 3. One pass of the algorithm through the colors

1 Randomly reorder colors 1, . . . , g, redefining the rows
2 for j = 2, . . . , g
3 balance row 1 and row j according to the algorithm in Table 2
4 endfor

We continue with estimating the total number of passes. Consider any vertex v
with maxj d(v, j) ≥ 3, and let Xq = Xq(v) be the value of ||v|| after q passes.
Each Xq is a random variable, and X0 is a constant bounded by the maxi-
mum possible value of ||v||, which is clearly (g − 2)2. We begin by showing that
E[Xq|X0, . . . , Xq−1] ≤ (1279/1280)Xq−1.

As above, we consider the subsequence of rows r = σ(1) < σ(2) < . . . < σ(k)
for which d(v, r) 
= 1. Since

∑g
j=1 d(v, j) ≤ g, at least half of these d(v, r) are

0s. Each color which has degree 3 or more is now in a row r = σ(j) for some
1 ≤ j ≤ k. We are happy with the color in row σ(j) if the entry in row σ(j + 1)
is 0 (and j + 1 ≤ k) and the entries in rows σ(j − 1) and σ(j − 2) are either
0 or undefined (in case j is 1 or 2). By Claim 4, any happy row r = σ(j) with
1 ≤ j < k yields progress at least ||v||r/80 from balancing row 1 with rows
σ(j), . . . , σ(j + 1) (rows 2, . . . , σ(j + 1) if σ(j) = 1). Observe that there are at
least two rows between happy rows in the subsequence σ(1), . . . , σ(k), so the
progress counted for one happy row does not overlap with progress counted for
another happy row.

Suppose that k ≥ 5. Each color with d(v, j) ≥ 3 is placed in a row j with
j 
= k with probability k−1

k . The probability that such a color is happy is at least
( k/2

k−1 )(k/2−1
k−2 )(k/2−2

k−3 ) = 1
8

k(k−4)
(k−1)(k−3) ≥

1
16

k
k−1 . Thus the expected progress for

one pass at v is at least the sum of 1
16 (||v||r/80) over all r such that dr(v) ≥ 3.

Since ||v||r = 0 whenever dr(v) ≤ 2, also
∑

r
1

1280 ||v||r = 1
1280 ||v||. Therefore

E[Xq|X0, . . . , Xq−1] ≤ (1279/1280)Xq−1 as desired.
If k is 3 or 4, using maxj d(v, j) ≥ 3, it follows that exactly one row of the

subsequence has a nonzero entry. Hence the color with d(v, j) ≥ 3 is happy with
probability 1/3 or 1/4. As this is greater than 1

16 , in this case we still have
E[Xq|X0, . . . , Xq−1] ≤ (1279/1280)Xq−1 in this case.

Let Yq be the value of
∑

v ||v|| after q passes. Then Yq is the sum of Xq(v)
over all vertices v for which maxj d(v, j) ≥ 3. By linearity of expectation,
we have E[Yq|Y0, . . . , Yq−1] ≤ (1279/1280)Yq−1. It immediately follows that
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E[Yq] = E[Yq|Y0] ≤ (1279/1280)qY0. By Markov’s inequality, P r(Yq > 0) <
(1279/1280)qY0. Let q = 2 log1279/1280(n′(g − 2)2). Then (1279/1280)qY0 ≤
(n′(g−2)2)−2+1 < 1/n, so Yq = 0 with high probability. That is, after O(log(n′g))
passes, ||v|| is zero w.h.p. Since each pass takes time O(n′g), the total time needed
is O(n′g log n′g).

With n′ ≤ n + 2m/g, the main result of this paper is:

Theorem 2. There is a randomized O(gm
√

n + m/g) algorithm that gives a
1.5 approximation to MTPS.

We omit for lack of space the running time analysis for g = 3 and g = 4.
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Abstract. Let m,q, � be positive integers such that m ≥ � ≥ q. A family H of
functions from [m] to [q] is said to be an (m,q, �)-family if for every subset S of
[m] with � elements, there is an h ∈ H such that h(S) = [q]. Let, N(m, q, �) be
the size of the smallest (m,q, �)-family. We show that for all q, � ≤ 1.58q and
all sufficiently large m, we have

N(m, q, �) = exp(Ω(q)) log m.

Special cases of this follow from results shown earlier in the context of perfect
hashing: a theorem of Fredman & Komlós (1984) implies that N(m, q, q)=exp
(Ω(q)) log m, and a theorem of Körner (1986) shows that N(m, q, q + 1) =
exp(Ω(q)) log m. We conjecture that N(m, q, �) = exp(Ω(q)) log m if � =
O(q). A standard probabilistic construction shows that for all q, � ≥ q and all
sufficiently large m,

N(m, q, �) = exp(O(q)) log m.

Our motivation for studying this problem arises from its close connection to a
problem in coding theory, namely, the problem of determining the zero error list-
decoding capacity for a certain channel studied by Elias [IEEE Transactions on
Information Theory, Vol. 34, No. 5, 1070–1074, 1988]. Our result implies that
for the so called q/(q − 1) channel, the capacity is exponentially small in q, even
if the list size is allowed to be as big as 1.58q. The earlier results of Fredman &
Komlós and Körner, cited above, imply that the capacity is exponentially small if
the list size is at most q + 1.

1 Introduction

Shannon [S56] studied the zero error capacity of discrete finite memoryless noisy chan-
nels. Such a channel can be modeled as a bipartite graph (V, W, E), where (v, w) ∈ E
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iff the letter w can be received when the letter v is transmitted. The goal then, is to
encode messages as strings of letters from the input alphabet V and recover it from
the received message. The goal naturally is to use as few input letters as possible and
still recover the intended message perfectly. Shannon [S56] and Lovász [L79] deter-
mined the best rate of transmission achievable under this model for several specific
channels.

We are interested in the list-decoding version of this problem, studied by Elias [E88].
For example, consider the channel shown in Figure 1. It is not hard to see that for this
channel, no matter how many letters are used in the encoding, it is impossible to recover
an input message uniquely (assuming there are at least two possibilities for the input
message). However, it is not hard to see that one can always encode messages using
strings of letters such that based on the received message one can narrow down the
possibilities to just two, that is, we cannot decode exactly but we can list-decode with a
list of size two. This motivates the following definition.

�

� �

�

� �

�
�

�
�

�
� �

�
�

��
�

�
�

��

Fig. 1. The 3/2 channel

Definition 1 (Code, Rate). Consider a channel C = ([q], [q′], E) with q input letters
and q′ output letters. We say that a sequence σ ∈ [q]n is compatible with σ′ ∈ [q′]n if
for i = 1, 2, . . . , n, we have (σ[i], σ′[i]) ∈ E. A subset S ⊆ [q]n is said to be a zero
error -list-decoding code for the channel C if for all σ′ in [q′]n,

|{σ ∈ S : σ and σ′ are compatible}| ≤ .

Let n(m, C, ) be the minimum n such that there is a zero error -list-decoding code S
for the channel C, such that S ≥ m. The zero error list-of- rate of the code S is

RC,�(S) =
1
n

log
(m



)
,

and the zero error capacity of the channel C is the least upper bound of the attainable
zero error list-of- rates of all codes.

For the 3/2 channel Elias [E88] proved that the zero error capacity when  = 2 is lower
bounded by log(3) − 1.5 ≈ 0.08 and upper bounded (see (2) below) by log(3) − 1 ≈
0.58. In this paper, we study generalization’s of the 3/2 channel. The q/(q−1) channel
corresponds to the complete bipartite graph Kq,q minus a perfect matching. Thus, the
transmission of any letter can result in all but one of the letters being received. It is
easy to see that that it is not possible to design a code where one can always recover
the original message exactly. However, it is possible to design codes that perform list-
decoding with lists of size q − 1. In fact a routine probabilistic argument shows the
following.
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Proposition 1. n(m, q, q − 1) = exp(O(q)) log m.

The q/(q − 1) channel is thus a natural and simple channel where exact decoding is
not possible, but list-decoding with moderate size lists is possible. The main point of
interest for us is that the rate of the code promised by Proposition 1 is exponentially
small as a function of q. Is this exponentially small rate the best we can hope for if
the list size is restricted to be q − 1? Yes, and this follows from a lower bound on the
size of families of perfect hash functions shown by Fredman and Komlós [FK84]. A
generalization of the result of Fredman and Komlós obtained by Körner [K86], implies
that the rate is exponentially small even if we allow the decoder to produce lists of size
q. For what list size, then, can we expect list-decoding codes with constant or inverse
polynomial rate?

Proposition 2. For all q we have, n(m, q, �q ln q�) = O(q log m).

On the other hand, it can be shown that the rate cannot be better than 1
q unless the list

size is allowed to depend on m.

Proposition 3. All functions  : Z+ → Z+ and all q, for all large enough m, n(m, q,
(q)) ≥ q log m.

Thus, we know that the rate is exponentially small when the list size is required to be
exactly q, and it is an inverse polynomial when the list size is θ(q ln q). These observa-
tions, however, do not completely determine the dependence of the rate on the list size,
or even the smallest list size (as a function of q) for which there are codes with rate
significantly better than an inverse exponential. We conjecture the following.

Conjecture 1. The conjecture has two parts.

1. For all constants c > 0, there is a constant ε, such that for all large m, we have

n(m, q, cq) ≥ exp(εq) log m

2. For all function (q) = o(q log q) and for all large m we have

n(m, q, (q)) ≥ qω(1) log m

In this paper, we make progress towards the first part of the conjecture.

Theorem 1 (Main result). For ε > 0, there is a δ > 0 such that for all large q and
for all large enough m, we have n(m, q, (γ − ε)q)) ≥ exp(δq) log m, where γ =
e/(e− 1) ≈ 1.58.

2 Techniques

As stated above the inverse exponential upper bounds on the rate when the list size is
q−1 or q follow from results proved earlier in connection with hashing. In this section,
we formally state this connection, review the previous techniques, and then outline the
argument we use to obtain our result.
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2.1 Connection to Hashing

Definition 2. Let q, , m be integers such that 1 ≤ q ≤  ≤ m. A familyH of functions
from [m] to [q] is said to be an (m, q, )-family of hash functions if for all -sized subsets
S of [m], there is a function h ∈ H such that h(S) = [q]. N(m, q, ) is the size of the
smallest (m, q, )-family of hash functions. For convenience, we will allow m, q and  to
positive real numbers, and use N(m, q, ) to mean the size of the smallest (m′, q′, ′)-
family where m′, q′ and ′ are integers such that m′ ≥ m, q′ ≥ q and ′ ≤ .

The connection between the family of hash functions and zero error list-decoding codes
for the q/(q − 1) channel is as follows. Suppose we have an (m, q, )-code C ⊆ [q]n.
Such a code naturally gives rise to n functions h1, h2, . . ., hn from [m] to [q]: where
hi(j) = k iff the i-th letter of the j-th codeword is k ∈ [q]. It is then straightforward
to verify that for every set S ⊆ [m] of size  + 1, we have hi(S) = [q] for some i ∈
{1, 2, . . . , n}. This translations works in the other direction as well: if {h1, h2, . . . , hn}
is an (m, q, )-family, then the code C ⊆ [q]n of size m, whose j-th word wj ∈ [q]n

(1 ≤ j ≤ m) is defined by wj [i] = hi(j) is an (m, q, −1)-code. We have thus verified
the following claim.

Proposition 4. For all m, q, and , we have n(m, q, ) = N(m, q,  + 1).

In light of the above, we will concentrate on showing lower bounds for N(m, q, ). Our
main result can then be reformulated as follows.

Theorem 2. For all ε > 0, there is a δ > 0, such that for all large q,  ≤
(

e
e−1 − ε

)
q,

and all large enough m,

N(m, q, ) ≥ exp(δq) log m.

It is easy to see that Theorem 1 follows immediately from this. In Section 4.2 we will
formally prove this theorem. We now present an overview.

2.2 The Lower Bound Argument

It will be helpful to review the proof of the lower bound shown by Fredman and
Komlós [FK84].

Theorem 3. For all large q and all large enough m, N(m, q, q) ≥ O(q−1/2 exp(q))
log m.

First, we note two simple lower bounds on N(m, q, q). First, any one hash function can

perfectly hash at most
(

m
q

)q

sets of size q. So,

N(m, q, ) ≥
(

m

q

)(
m

q

)−q

≈ 1√
2πq

exp(q). (1)

This bound has the required exponential dependence on q but not the logarithmic depen-
dence on m. A different argument gives us a logarithmic dependence on m. If we restrict
attention to all elements of [m] that are mapped by the first hash function to some q − 1
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of the [q] elements of [m], then clearly every q-sized subset of these elements must be
perfectly hashed by at least one of the remaining hash functions. From this, we conclude

that N(m, q, q) ≥ N
(
( q−1

q )m, q, q
)

(provided m ≥ q), which implies

N(m, q, q) ≥ log q
q−1

(
m

q − 1

)
≥ q log

(
m

q − 1

)
. (2)

[A similar calculation can be used to justify Proposition 3.] This bound, gives us the
required logarithmic dependence on m but not the exponential dependence on q. Fred-
man and Komlós devised an ingenious argument that combined the merits of (1) and
(2). Consider a set T of size q − 2. Clearly, if a function maps two of the elements
of T to the same value in [q], then this hash function is incapable of perfectly hashing
any q-element superset T ′ ⊇ T . An averaging argument shows that for if T is cho-
sen uniformly at random then all but an exponentially small fraction of the original
family do map some two elements of T to the same element. Furthermore, for every
two elements of [m] − T one of the remaining hash functions (that are on-to-one on
T ) must map these two elements differently. By (2), the number of hash functions re-
maining must be at least log(m − q + 2). Thus, the size of original family must be at
exp(Ω(q)) log(m− q + 2). (The arguments used by Fredman and Komlós and Körner
are more sophisticated and yield slightly better bounds.)

Our argument is similar. Suppose we have an (m, q, ) family of hash functions
where  = 1 + 1

e − ε (for some ε > 0). As in the argument above, we pick a set T
of size q−2. The main observation now is that for any fixed function h : [m] → [q], the
expected size h(T ) (as T is chosen at random) is about q

(
1− 1

e

)
, and there is a sharp

concentration of measure near this mean value. Thus, only for an exponentially small
fraction of the hash functions in the family is the image of T at least q

(
1− 1

e + ε
)
. The

majority of the functions already suffer so many collisions on T , that they cannot cover
all of [q] when an additional

(
1
e − ε

)
q elements are added to T . Using an argument sim-

ilar to the one used to show (2), we conclude that an exponentially small fraction of the
original family must be at least log(m− q+ 2). The lower bound will follow from this.
This argument is presented in detail in Section 4.1. It however is somewhat weaker than
the bound claimed in Theorem 2. The stronger result is obtained by applying this idea
recursively. The formal proof proceeds by induction, and is presented in Section 4.2.

3 Preliminaries

In this section we develop the tools that will be necessary in the proof of Theorem 2 in
Section 4.1 and 4.2.

Definition 3 (Derived function). Let m, q , q′ be integers such that m ≥ q > q′ ≥ 1
and let T ⊆ [m] Let h : [m] → [q] be a hash function such that |h(T )| ≤ q − q′. Then,
the function hT,q′ is defined as follows. Let j1, j2, . . . , jq′ be the smallest q′ elements of
[q]− h(T ). Then, for all i ∈ [m], let

hT,q′(i) =
{

k if h(i) = jk

1 otherwise
.

The following proposition follows immediately from our definition.
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Proposition 5. Let h : [m] → [q]. If T, T ′ ⊆ [m] are such that |h(T )| ≤ q − q′ and
h(T ∪ T ′) = [q], then hT,q′(T ′) = [q′].

Lemma 1. If H is a family of hash functions from [m] to [2]. Then, there is a subset
U ⊆ [m] of size at least m/2|H| such that |h(U)| = 1, for all h ∈ H.

Proof. Consider the map from [m] to {1, 2}|H| defined by i �→ 〈h(i) : h ∈ H〉. The
range of this map has size exactly 2|H|. It follows that there are at least m/2|H| elements
of the domain [m] that map to the same element. �
Definition 4 (Dangerous function). We say that the function h : [m] → [q] is ε-
dangerous for the set T ⊆ [m] if |h(T )| ≥ q

(
1− 1

e + ε
)
.

Lemma 2. Let h : [m] → [q]. Let T be a random subset of [m] chosen uniformly from
among all subsets of [m] of size q − 2. Then, if m # q,

Pr
T

[h is ε-dangerous for T ] ≤ 2 exp(−2ε2q).

To prove Lemma 2, we will need the following concentration result due to
McDiarmid.

Lemma 3 (see McDiarmid [M89]). Let X1, X2, . . . , Xn be independent random vari-
ables with each Xk taking values in a finite set A and let f : An → R. For all k, let
f change by at most ck if only the value of Xk is changed, that is, maxx∈Ak |f(x) −
f(y)| ≤ ck, when x and y differ only in the kth coordinate. If Y = f(X1, X2, . . . , Xn)
is the random variable with expectation E[Y ], then for any t ≥ 0,

Pr[Y −E[Y ] ≥ t] ≤ exp
(
−2t2∑n
i=1 c2

k

)
.

Proof (of Lemma 2). Pick q − 2 elements from [m] with replacement, let the resulting

set be T . With probability more than

(
1− (q−2

2 )
m

)
we have that |T | = q − 2. Now, fix

an h ∈ H. For j ∈ [q], the probability that j 
∈ h(T ) is exactly,
(
1− |h−1(j)|

m

)q−2

.

Thus, by linearity of expectation, we have

E[|[q]− h(T )|] =
q∑

j=1

(
1− |h

−1(j)|
m

)q−2

≥ q

⎛⎝1− 1
qm

q∑
j=1

|h−1(j)|

⎞⎠q−2

= q

(
1− 1

q

)q−2

= q

(
1 +

1
q − 1

)−(q−2)

≥ q exp
(
−q − 2
q − 1

)
≥ q

e
.
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The second inequality follows from Jensen’s inequality. Thus, E[|h(T )|] ≤ q(1− 1
e ).

We think of |h(T )| as a function of f(X1, X2, . . . , Xq), of q − 2 independent random
variables X1, X2, . . . , Xq−2 (each distributed uniformly over the set [m]).

Note that f changes at most by 1 if the value of any of the the variables is changed
(leaving the rest unchanged). We may thus conclude from Lemma 3 that

Pr
[
|h(T )| ≥ q

(
1− 1

e
+ ε

)]
≤ exp

(
−2

ε2q2

q − 2

)
≤ exp

(
−2ε2q

)
.

This implies that if T is chosen to be a random set of size q − 2, then the probability
that h is dangerous for T is at most(

1−
(
q−2
2

)
m

)−1

exp
(
−2ε2q

)
≤ 2 exp

(
−2ε2q

)
.

�
Corollary 1. Let H be a family of hash functions from [m] to [q]. Then, there is a set
T ⊆ [m] of size q − 2 such that at most 2 exp(−2ε2q)|H| hash functions in H are
ε-dangerous for T .

Proof. Pick T at random. By Lemma 2, the expected number of ε-dangerous hash func-
tions for T is at most 2 exp(−2ε2q)|H|. There must be a at least one choice for T with
this property. �

4 Proof of Theorem 2

4.1 A Weaker Bound

Our goal in this section is to show the following weaker form of the main theorem,
which will serve as the basis for the inductive argument, when we present the proof of
the main result.

Theorem 4. For ε > 0, large q and all large enough m, we have N(m, q, (γ − ε)q) ≥
exp(δq) log m, where γ = 1 + 1

e ≈ 1.37.

Proof. Let H be an (m, q, )-family with  ≤ (γ − ε)q. By Corollary 1, we have a set
T of size q − 2 such that the number of functions that are ε-dangerous for T is at most
2 exp(−2ε2q)|H|. Fix such a T and consider the derived family

H′ = {hT,2 : h ∈ H is ε-dangerous for T}.

By Lemma 1, there is a set U ⊆ [m] of size m/2|H
′| such that |h′(U)| = 1 for all

h′ ∈ H′. We claim that |U | <
⌈
q
(

1
e − ε

)⌉
. For, otherwise let T ′ be a subset of U

of size q′ =
⌈
q
(

1
e − ε

)⌉
, and consider the set T ∪ T ′. If h ∈ H is not dangerous

then |h(T )| < q − q′ and, therefore, |h(T ∪ T ′)| < q. On the other hand if h is ε-
dangerous for T , then our definition of U ensures that |h(T ′)| = 1 and, therefore,
|h(T ∪ T ′)| ≤ |T |+ 1 < q. Thus,

m

2|H′| <

⌈
q

(
1
e
− ε

)⌉
.

This, together with |H′| ≤ 2 exp(−2ε2q)|H| implies our claim. �
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4.2 The General Bound

In this section, we will prove the Theorem 2. It will be convenient to restate it in a form
suitable for an inductive proof. For k ≥ 1 and ε > 0, let

k(q, ε) = q

(
1 +

1
e

+
1
e2

+ · · ·+ 1
ek
− ε

)
− 2k.

Theorem 5 (Version of main theorem). For all k ≥ 1, ε > 0, q ≥ 2k and all large
enough m,

N(m, q, k(q, ε)) ≥ 1
4k

exp
(

2ε2q

e2k

)
log m.

Proof. We will use induction on k. The base case k = 1, follows from the Theorem 4
proved in the previous section.

Induction step: Suppose the claim is false, that is, there is an (mk, qk, k)-family Hk

such that k ≤ k(qk, ε) and

|Hk| <
1
4k

exp
(

2ε2qk
e2k

)
log m. (3)

[We use k in the subscript for parameters associated with theHk to make emphasize the
correspondence with the parameter k used in the induction.] From Hk we will derive
an (mk−1, qk−1, k−1)-familyHk−1 such that

|Hk−1| ≤ |Hk|; (4)

mk−1 ≥ m
1− 1

k

k ; (5)

qk−1 ≥ qk

(
1
e
− ε

4

)
≥ qk

ε2
; (6)

k−1 ≤ k−1(qk−1, ε). (7)

Then, using the induction hypothesis, we obtain

|Hk| ≥ |Hk−1| ≥
1

4(k − 1)
exp
(

2ε2qk−1

e2(k−1)

)
log mk−1 (by the induction hypothesis)

≥ 1
4(k − 1)

exp
(

2ε2qk
e2k

)(
1− 1

k

)
log mk;

=
1
4k

exp
(

2ε2qk
e2k

)
log mk,

contradicting (3).
It remains to describe how Hk−1 is obtained from Hk. The idea, as outlined in the

introduction, is this. In the hope of using induction, we will first pick a subset T of
size qk − 2, which most hash functions map into a small number of elements. These
functions can now be viewed as mapping [mk]− T to [qk], so that the problem reduces
to one of covering a large subset of [qk] with k−qk +2. However, not all functions are
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guaranteed to be so well-behaved. For the few functions that do perform well on T , we
need to take evasive action, by restricting attention to a subset of the universe on which
these functions are guaranteed to be fail.

This idea is implemented as follows. Using Corollary 1, we first obtain a set T ⊆
[mk] of size qk − 2 such that at most

2 exp
(
−2
( ε

4

)2

qk

)
|Hk| ≤ 2 exp

(
−2
(ε
4

)2

qk

)
· 1
4k

exp
(

2ε2qk
e2k

)
log m≤ 1

2k
log mk

hash functions in Hk are
(
ε
4

)
-dangerous for T . Now consider the family of derived

functions
H′ = {hT,2 : h ∈ Hk is

(
ε
4

)
-dangerous for T}.

Using Lemma 1, we obtain a set U ⊆ [mk] of size at least (mk − qk + 2)m− 1
2k

k such
that |h(U)| = 1 for all h ∈ H′. Our family Hk−1 will be the following set of hash
functions from U to [qk−1] (where qk−1 =

⌈
qk(1

e −
ε
4 )
⌉
).

Hk−1 = {hT,qk−1 : h ∈ Hk is not
(

ε
4

)
-dangerous for T}.

We claim that for all T ′ ⊆ U of size k − (qk − 2), there is a function h ∈ Hk−1 such
that h(T ′) = [qk−1]. For, consider the set T ∪ T ′ of size k. By the definition of Hk

there is an h ∈ Hk such that h(T ∪ T ′) = [qk]. Such an h is not
(

ε
4

)
-dangerous for T

because our definition of U ensures that |h(T ∪ T ′)| < qk. So for such an h we have

|h(T )| < qk

(
1− 1

e
+

ε

4

)
≤ qk −

⌈
qk(

1
e
− ε

4
)
⌉

= qk − qk−1.

Hence, for such an h, by Proposition 5, we have hT,qk−1(T
′) = [qk−1].

Thus,Hk−1 is an (mk−1, qk−1, k−1)-family for k−1 = k− (qk−2). In particular
lk−1 ≥ qk−1. We need to verify (4)–(7). The definition of |Hk−1| immediately implies
(4). To verify (5) note that for mk # qk,

|U | ≥ (mk − qk + 2)m− 1
2k

k ≥ m
1− 1

k

k .

Since qk−1 =
⌈
qk(1

e −
ε
4 )
⌉
, (6) holds. Finally, to justify (7), note that

k−1(qk−1, ε) ≥ qk

(
1
e
− ε

4

)(
1 +

1
e

+ · · ·+ 1
ek−1

− ε

)
− 2(k − 1)

≥ qk

[
1
e

+
1
e2

+ · · ·+ 1
ek
− ε

e
− ε

(
1 +

1
e

+ · · ·+ 1
ek−1

)]
− 2(k − 1)

≥ qk

(
1
e

+
1
e2

+ · · ·+ 1
ek
− ε

)
− 2(k − 1)

≥ qk

(
1 +

1
e

+ · · ·+ 1
ek−1

− ε

)
− 2k − qk + 2

≥ k(qk, ε)− (qk − 2)
≥ k − (qk − 2)
= k−1.

�
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Abstract. Given a graph G=(V,E) on n vertices, the MAXIMUM r-REGULAR

INDUCED SUBGRAPH (M-r-RIS) problems ask for a maximum sized subset of
vertices R ⊆ V such that the induced subgraph on R, G[R], is r-regular. We
give an O(cn) time algorithm for these problems for any fixed constant r, where
c is a positive constant strictly less than 2, solving a well known open problem.
These algorithms are then generalized to solve counting and enumeration version
of these problems in the same time. An interesting consequence of the enumer-
ation algorithm is, that it shows that the number of maximal r-regular induced
subgraphs for a fixed constant r on any graph on n vertices is upper bounded by
o(2n).

We then give combinatorial lower bounds on the number of maximal r-regular
induced subgraphs possible on a graph on n vertices and also give matching al-
gorithmic upper bounds.

We use the techniques and results obtained in the paper to obtain an improved
exact algorithm for a special case of INDUCED SUBGRAPH ISOMORPHISM that
is INDUCED r-REGULAR SUBGRAPH ISOMORPHISM, where r is a constant.

All the algorithms in the paper are simple but their analyses are not. Some of
the upper bound proofs or algorithms require a new and different measure than
the usual number of vertices or edges to measure the progress of the algorithm,
and require solving an interesting system of polynomials.

1 Introduction

The problem of finding a MAXIMUM/MINIMUM INDUCED SUBGRAPH having prop-
erties like acyclicity [6,14], bipartiteness [3,13], regularity [4,5,7,15,16] and regularity
with dominance [2] is among the fundamental problems in graph algorithms. Here we
study one such problem, namely the MAXIMUM r-REGULAR INDUCED SUBGRAPH

problem. The problem is defined as follows:

MAXIMUM r-REGULAR INDUCED SUBGRAPH (M-r-RIS): Given an undirected
graphG = (V,E), find a maximum subset of verticesR ⊆ V such that the induced
subgraph on R, G[R], is r-regular.

When r is 0 or 1, it corresponds to the well studied MAXIMUM INDEPENDENT SET

and MAXIMUM INDUCED MATCHING problems respectively. While MAXIMUM IN-
DEPENDENT SET problem is among the six classical NP-complete problems [9], MAX-
IMUM INDUCED MATCHING problem was introduced by Stockmeyer and Vazirani in

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 139–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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[17] who showed it to be NP-complete [17]. But only recently, has it been shown [5] that
the problem of finding a maximum sized r-regular induced subgraph is NP-complete
for any value of r.

In this paper we look at the M-r-RIS problems (a) from exact exponential time
algorithm paradigm and (b) from the view point of combinatorial bounds on the number
of maximal r-regular induced subgraphs possible on a graph on n vertices.

An exact algorithm to find a MAXIMUM INDEPENDENT SET or M-0-RIS problem
has attracted a lot of attention in the area of exact exponential time algorithms [7,15]
and the current fastest known exact algorithm runs in time O(1.2108n) 1[15]. There is
no algorithm better than Θ(2n) is known for larger values of r.

Here, we give a simple-generic algorithm for MAXIMUM r-REGULAR INDUCED

SUBGRAPH problems taking O(cn) time, c < 2, a constant, depending on r alone. As
a corollary, we obtain O(1.6957n), O(1.7069n) and O(1.7362n) time algorithms for
MAXIMUM INDUCED MATCHING, MAXIMUM 2-REGULAR INDUCED SUBGRAPH

and MAXIMUM INDUCED CUBIC SUBGRAPH problems respectively. We then general-
ize the algorithm to solve the counting and enumeration version of M-r-RIS problems
in the same time.

Another interesting consequence of the algorithm is that it gives an algorithmic upper
bound of o(2n) on the number of maximal r-regular induced subgraphs on n vertices,
if r is some constant. We then investigate the lower bounds on the number of maximal
r-regular induced subgraphs of a graph and observe that for larger values of r, the
lower bounds and the upper bounds (mentioned above) on the number of maximal r-
regular induced subgraphs on n vertices are “almost identical”. For small values of r,
we improve the upper bounds using a different technique and give a matching lower and
upper bounds on the number of maximal r-regular induced subgraphs. This generalizes
the result of Moon and Moser [12] who showed an upper and lower bound of 3n/3 on
the number of maximal independent sets on a graph on n vertices.

Applications of the algorithms developed in this paper include non trivial exact al-
gorithms for a special case of INDUCED SUBGRAPH ISOMORPHISM problem, that is
INDUCED r-REGULAR SUBGRAPH ISOMORPHISM problem, where r is a constant,
δ-SEPARATING MAXIMUM MATCHING problem [17] and EFFICIENT EDGE DOMI-
NATING SET problem [10].

All our algorithms are simple but their analyses are non trivial. These algorithms are
based on one of the most important and widely used tool of exact algorithms, namely
the Branch & Reduce paradigm. In this paradigm we obtain an optimal solution to a
problem by combining solutions to many subproblems of smaller size. We also use a
new measure not just the number of vertices or edges to measure the progress of the
algorithms and use it extensively in many of our upper bound proofs. Measure other
than the number of vertices has been source of many recently developed non trivial
exact algorithms [6,7,14]. See recent surveys by Woeginger [18] and Fomin et al. [8] for
an overview and recent developments in designing exponential time exact algorithms.

Organization of the Rest of the Paper: In Section 2, we give a generic algorithm
for MAXIMUM r-REGULAR INDUCED SUBGRAPH problems and then generalize it
1 We round the base of the exponent in all our algorithms which allows us to ignore polynomial

terms and write O(cnnO(1) as O(cn).
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to solve the counting and enumeration version of the problems. In Section 3 we give
matching lower and upper bounds on the number of maximal r-regular induced sub-
graphs for various values of r. In Section 4 we conjure all that we develop that far to
give faster exact algorithms for M-r-RIS problems for r = 1 and 2 than that is possible
from the general theorem. We also obtain a non trivial exact algorithm for INDUCED

r-REGULAR SUBGRAPH ISOMORPHISM problem in this section. We conclude with
some remarks and open problems in Section 5.

In the rest of the paper, we assume that all our graphs are simple and undirected.
Given a graph G = (V,E), n represents the number of vertices, and m represents the
number of edges. For a subset V ′ ⊆ V , byG[V ′] we mean the subgraph ofG induced on
V ′. ByN(u) we represent all vertices (excluding u) that are adjacent to u, and byN [u],
we refer to N(u)∪ {u}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v].

2 Maximum r-Regular Induced Subgraph

Our algorithm is based on the Branch & Reduce paradigm. It selects a vertex v and on
one branch of recursion grows a maximum r-regular induced subgraph without v and
on the other a maximum r-regular induced subgraph containing v and then outputs the
one with the maximum size. At any point of time in our algorithm we maintain a set
R (of possible vertices of a M-r-RIS) and construct one connected component of this
R. Once we finish one connected component, say Ri, we remove all the neighbors of
vertices ofRi which are not inRi, that is N [Ri]−Ri, from the graph and then proceed.
Based on the structure of G[R], we divide our algorithm into two phases:

1. ACTIVE PHASE : G[R] is ∅ or a r regular induced subgraph.
2. GROWTH PHASE : There exists a unique componentRi ofG[R] such thatG[Ri] is

not a r regular subgraph.

In ACTIVE PHASE we initiate constructing a new connected component for the possible
M-r-RIS. We select a vertex v and at one branch construct a solution not including v
and at other branches we construct a solution containing v and a r-subset ofN(v). This
leads to

(|N(v)|
r

)
+ 1 way branching. In the GROWTH PHASE, we choose a vertex v of

an unique component Ri of G[R] (G[Ri] is not a r regular subgraph) such that degree
of v in G[Ri] is rv < r and branch on all possible subsets of size r − rv of N(v)−R,
which leads to

(|N(v)−R|
r−rv

)
way branching.

At any point of time, our algorithm has a 4 tuple (G′ = (V ′, E′), G, r, R). Here,
G′ contains the unexplored vertices (vertices which are neither in R nor those which
have been removed from the consideration). G is the initial input graph. This graph
never changes during recursion and is only used for checking whether or not G[R] is
induced r-regular. R is a set of vertices already chosen for a possible maximum r-
regular induced subgraph. We return −∞ if we detect that the corresponding branch
can not lead to a r-regular induced subgraph; for an example if in GROWTH PHASE, we
find a vertex v ∈ R having degree rv in G[R] but strictly less than r − rv neighbors in
V ′. In our algorithm until we state otherwise N(v) and N [v] mean NG(v) and NG[v]
respectively. The details of our algorithm are presented in Figure 1.
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Algorithm Max-r-RIS (G′ = (V ′, E′), G, r, R)

Step 1: [active phase] If G[R] is not r regular and not empty then go to Step 2.
Step 1a: Obtain a new G′ by removing N [R] from G′.
Step 1b: Remove all vertices of degree < r recursively from G′.
Step 1c: If G′ is non empty then select a vertex v of maximum degree d ≥ r and branch

in following ways: (1) v /∈ R, and (2) v ∈ R and then some r neighbors of v are
in R.

1. R1 ← Max-r-RIS(G′ − v, G, r, R)
2. for (S ⊆ NG′(v) & |S| = r),

RS ← Max-r-RIS(G′ − NG′ [v], G, r, R ∪ S ∪ {v}).
return the set (or number) of maximum size between

{R1} and {RS | S′ ⊆ NG′ (v) |S′| = r}.
Step 2: [growth phase] Let R′ be the unique component of G[R] such that G[R′] is

not a r regular induced subgraph. R1 ← −∞. Choose a vertex v with degree say ri in
G[R′] such that 1 ≤ ri ≤ r − 1 and |N(v) ∩ V ′| ≥ r − ri.

1. for (S ⊆ (N(v) ∩ V ′) & |S| = r − ri & maximum degree of G[R′ ∪ S] is ≤ r )
RS ←Max-r-RIS(G′ − (N(v) ∩ V ′), G, r,R ∪ S)

return the set (or number) of maximum size between
{R1} and {RS′ | S′ ⊆ (N(v) ∩ V ′) & |S′| = r − ri}.

Fig. 1. A Generic Algorithm to find a Maximum r-Regular Induced Subgraph

Theorem 1. Let G = (V,E) be a graph on n vertices and r be a fixed constant. Then
there exists a constant c, c < 2 such that the MAXIMUM r-REGULAR INDUCED SUB-
GRAPH problem can be solved in O(cn) time.

Proof. The correctness of the algorithm is clear. The analysis of time complexity is
involved and we present the details here.

From now onwards let r be a fixed positive constant. Observe that the above algo-
rithm is guided by the following recurrences:

T (n) ≤ T (n− 1) +
(

d

r

)
T (n− d− 1) d ≥ r [Active Phase]. (1)

T (n) ≤
(

d

t

)
T (n− d) d ≥ t, 1 ≤ t ≤ r − 1 [Growth Phase]. (2)

The smallest positive roots of the following inequalities,

hd(x, r)=xd+1−xd−
(

d

r

)
≥ 0 , d ≥ r and gd(x, t) = xd−

(
d

t

)
≥ 0 , d ≥ t, 1 ≤ t ≤ r−1,

are solutions to the above recurrences. It is clear that x = 2 satisfies these inequalities.
Now we show that if r is a constant then we can find a c, a function of r alone, and
c < 2 satisfying these set of inequalities. We need the following easy lemma for our
proof.
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Lemma 1. For any r ≥ 5,
(
2r
r

)
≤ 22r

4 .

We concentrate on the polynomials coming from the ACTIVE PHASE as they represent
the dominating recurrences. Observe that

xd −
(

d

r

)
≥ xd(x− 1)−

(
d

r

)
≥ xd+1 − xd −

(
d

r

)
.

The inequality holds as x ≤ 2. This shows that if there exists c = f(r) such that
hd(f(r), r) ≥ 0 then gd(f(r), r) ≥ 0.

Now we show that if there exists a c = f(r) such that h2r(c, r) ≥ 0 then we can

choose a c′ such that hd(c′, r) ≥ 0 for any d. We take c′ = max
{
c, 2r+1

r+1

}
. We prove

this using forward induction for d ≥ 2r and backward induction for d ≤ 2r. For the
base case observe that h2r(c′, r) ≥ h2r(c, r) ≥ 0. Now assume that hd(c, r) ≥ 0 for
some d ≥ 2r. Then

hd+1(c
′, r) = c′d+2−c′d+1 −

(
d + 1

r

)
=c′(c′d+1−c′d)−

(
d + 1

r

)
≥c′
(

d

r

)
−
(

d + 1

r

)
≥0.

The second last inequality follows from induction hypothesis while the last inequality

follows as: c′ ≥ (d+1
r )

(d
r)

= d+1
d+1−r ≥ 2r+1

r+1 , for d ≥ 2r. Similarly using backward

induction we can show that hd(c′, r) ≥ 0 for d ≤ 2r. Observe that for r ≥ 0, 1 ≤
2r+1
r+1 < 2, is a constant depending on r alone. So now we are left with showing a

c = f(r) for h2r(x, r). For r ≥ 5, we know that
(
2r
r

)
≤ 22r

4 . We choose a c such that

c2r+1 − c2r ≥ 22r

4 which will prove the desired result. We take c = 21− 1
2r for r ≥ 5

and c = 1.761 for r ≤ 4. For small values of r we get the desired number by directly
solving the corresponding equations.

Hence for any r ≥ 0, we choose c= max
{
1.761, 21− 1

2r , 2r+1
r+1

}
. This proves that

our generic algorithm Max-r-RIS takesO(cn) time, c< 2, for any positive constant r.
�

We gave a conservative bound on the value of c in the Theorem 1, as our main aim
there was to obtain a c < 2 for any fixed constant r. For smaller values of r, we obtain
improved bounds on c by directly finding the roots of the polynomials coming from
the recurrences of MAX-r-RIS algorithm. Without going into the details, we list c for
various values of r in the table below where O(cn) is the runtime of our Max-r-RIS
algorithm.

Table 1. Improved Upper Bounds on c for Various r

r = 1 2 3 4 5 6 7 8 9
c = 1.69562 1.70688 1.73615 1.76357 1.78554 1.80351 1.81846 1.83111 1.84195

r = 10 15 20 30 50 75 100 125 150
c = 1.85136 1.88452 1.90486 1.92868 1.95138 1.96458 1.97186 1.97652 1.97979

We observe that the Max-r-RIS algorithm can be generalized to solve the counting
versions of M-r-RIS problems. The counting version of M-r-RIS problems (#M-r-
RIS) asks for the number of maximum r regular induced subgraphs of the given graph
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G. We can also consider counting the number of maximal r-regular induced subgraphs of
the given graphGwhich we call #MAXIMAL-r-RIS problems. To solve these problems
we allow our algorithm Max-r-RIS to enumerate all theR’s it finds during the recursion
forG and check whether they are maximal if we want to count maximal r-regular induced
subgraphs alone. If we want to count maximum r-regular induced subgraphs then we also
need to check the size of R. Thus we give the following theorem.

Theorem 2. Let G = (V,E) be a graph on n vertices and r be a fixed constant. Then
(a) #M-r-RIS problems and (b) #MAXIMAL-r-RIS problems can be solved in O(cn)
time, where c is max of {1.761, 21− 1

2r , (2r + 1)/(r + 1)}.
We observed above that our algorithm enumerates all maximal r-regular induced sub-
graphs. Hence Theorem 2 also implies that the number of maximal r-regular induced
subgraphs of a graph on n vertices is upper bounded by the time complexity of the algo-
rithm. Let Mr(n) denote the number of maximal r-regular induced subgraph of graphs
on n vertices, then we get following theorem.

Theorem 3. Let G = (V,E) be a graph on n vertices and r be a fixed constant. Then
Mr(n) is upper bounded by cn, where c is max of {1.761, 21− 1

2r , (2r + 1)/(r + 1)},
i.e. Mr(n) is upper bounded by o(2n), if r is a fixed constant.

In the next section we consider the lower bounds on the number of maximal r-regular
induced subgraphs on graphs on n vertices and improve the upper bounds coming from
Theorem 3 to match the lower bounds for various r.

3 Bounds on Number of Maximal r-Regular Induced Subgraphs

Moon and Moser [12] gave a matching lower and upper bound of 3n/3 on the number
of maximal independent sets on a graph on n vertices. We generalize this result and
give matching algorithmic lower and upper bounds on Mr(n) for larger values of r.

3.1 Bounds on M1(n) or Number of Maximal Induced Matching

For lower bound assume that n ≡ (0 mod 5). Consider the graph G =
⋃n

5
i=1K

i
5 that

is n/5 disjoint copies ofK5 (Ki
n represents the complete graph on n vertices). Observe

that we need to include one edge from each copy of theK5 (we can include exactly one
edge from each copy) to obtain a maximal induced matching for G. Since a K5 has 10
edges and for any K5 we can select any edge, we get 10n/5 distinct maximal induced
matching for G, giving a lower bound of 10n/5 on M1(n). This shows the following
theorem.

Theorem 4. M1(n) is at least 10n/5 ≈ 1.58489n.

For an upper bound proof, we obtain recurrences for M1(n) by considering various
cases based on the maximum degree of the graph. The proof is long and is similar to
the upper bound proof in Theorem 6 which we prove in detail below.

Theorem 5. M1(n) is at most 10n/5 ≈ 1.58489n and all the maximal induced match-
ing of a graph G can be enumerated with polynomial delay.
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3.2 Bounds on Mr(n) for r ≥ 2

Now we extend the matching upper and lower bounds for larger values of r(≥ 2). To
give the upper bound on Mr(n), we define the following generalized problem.

GEN-r-RIS (G-r-RIS): Given a graph G = (V,E) and R ⊆ V , such that G[R]
is connected induced subgraph of degree at most r. The objective is to find a maxi-
mum R′ ⊆ V −R such that G[R ∪R′] is a r regular subgraph extendingR.

Observe that given any instance (G,R), where R satisfies the constraints in the def-
inition of G-r-RIS problem, if we can give a bound on the number of R′ such that
G[R′ ∪ R] is a maximal r-regular subgraph then by setting R = ∅ we have an up-
per bound on Mr(n). Given an instance (G,R) where R satisfies the constraints in
G-r-RIS problem, we define μ as follows:

μ = α|NR|+ β|U |

Here NR = N [R] − R and U = V − N [R]. In other words, we assign a weight of α
to the vertices of NR and β to the vertices of U . The value of α and β depend on the
problem. The weight of a vertex changes in following situation:

1. If a vertex goes to NR from U then the weight changes from β to α and the μ
changes by δ = β − α.

2. If a vertex has current weight either α or β and the vertex is either included in R or
removed from the graph then the weight changes to 0. In this case μ changes either
by α or β.

We use μ as a measure rather than the number of vertices and give an upper bound on
Mr(n) as a function f of μ. We exemplify the approach by giving the matching lower
and upper bound on the number of maximal 2-regular induced subgraphs.

Theorem 6. M2(n) is at most 35n/7 ≈ 1.66181n and there exists a graph on n vertices
such that M2(n) is at least 35n/7 ≈ 1.66181n. Moreover, all the maximal 2-regular
induced subgraphs of a graphG can be enumerated with polynomial delay.

Proof. For the lower bound on M2(n), assume that n ≡ (0 mod 7) and consider

the graph G =
⋃n

7
i=1K

i
7, n/7 disjoint copies of K7. Any maximal 2-regular induced

subgraph ofG contains a 2 regular induced subgraph (a triangle) from each copy ofK7.
Every K7 has 35 distinct triangles and hence G has 35n/7 distinct maximal 2-regular
induced subgraphs. This shows the desired lower bound on M2(n).

For upper bound, we consider the generalized problem where we have been given
(G = (V,E), R) and R satisfies the constraints in the definition of the G-2-RIS prob-
lem. We give a bound on the number of R′’s, i.e. is the size of the set {R′ | G[R′ ∪
R] is a maximal 2-regular } as a function f of μ. Depending on various cases we give
recurrence relation for f .

Case 1: (G[R] 
= ∅) Here we have two cases based on the degree of a vertex in G[R].
For a subset X ⊆ V , by degX(v) we mean the number of neighbors of v in G[X ].
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Suppose we have a vertex v ∈ R such that degR(v) = 2 and have l neighbors in V −R
then

f(μ) ≤ f(μ− αl);
as none of the l neighbors of v in V − R can be selected in any R′ extending R and
hence can be removed from the graph, leading to decrease in μ by at least αl. Now
suppose we have a vertex v such that degree of v is d in G and degR(v) = 1.

Now any maximal 2-regular induced subgraph extending R must contain one of the
neighbors of v in V −R. Hence when we include a neighbor u of v in R we remove all
other neighbors of v fromG as they can not be part of anyR′ extendingR. This reduces
μ by α(d − 1). Since there are d − 1 neighbors of v in V − R, we get the following
recurrence:

f(μ) ≤ (d− 1)f(μ− α(d− 1)).

We can assume that (d − 1) ≥ 1, otherwise in this case R can not be extended to any
maximal 2 regular induced subgraphs resulting in f(μ) = 0.
Case 2: (R = ∅) We assume that the minimum degree of G is at least 2, as the vertices
of degree at most 1 can never be part of any maximal 2 regular induced subgraphs. Also
note that every vertex has weight β now. Let v be a vertex of maximum degree d. A
maximal 2-regular induced subgraph of G either does not contain v or contains v and
its two neighbors. In the first case μ reduces by β and in the other cases where v and its
two neighbors are selected in R and other neighbors of v are removed from the graph,
μ decreases by (d + 1)β. This gives the following worst case recurrence on f(μ):

f(μ) ≤ f(μ− β) +
(

d

2

)
f(μ− (d + 1)β).

When d ≥ 7 this recurrence itself gives us the desired bound on M2(n). So from now
on we assume that the maximum degree of G is at most 6. To obtain the desired bound
in this case we refine the recurrences on f(μ) based on following three cases. These
cases are applied in order of their appearance.
(a) CON-COM CASE: There exists a vertex v such that G[N [v]] is one of the connected
component of G. Call the connected component containing v Cv . Now the number of
maximal 2-regular induced subgraphs ofG is maximized when we have Cv such that Cv

has maximum number of maximal 2-regular induced subgraphs. This happens precisely
when Cv = Kt where t = degV (v). So for this case we get:

f(μ) ≤
(

d + 1
3

)
f(μ− β(d + 1)), 2 ≤ d ≤ 6.

(b) CUT-EDGE CASE: We have a vertex v such that it has an unique neighbor u having
an unique neighbor x such that x /∈ N [v]. Since the edge (u, x) is a cut edge it is not
part of any maximal 2-regular induced subgraph. So the number of maximal 2 regular
subgraphs of G is upper bounded by the number of maximal 2 regular subgraphs of G′

obtained from G by removing the edge (u, x). This reduces it to CON-COM CASE.
(c)AT-LEAST-2-IN-N2[v] CASE: In this case every vertex v ∈ V either has a neighbor
u such that u has at least 2 neighbors not inN [v] or there are at least two neighbors of v
which don’t have neighbors inN [v]. For this case we give a generic recurrence. Partition
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the neighbor set N(v) of v into W1, W2 and W3 such that every vertex u ∈ W1 has
N(u) ⊆ N [v], each vertex in W2 has an unique neighbor x such that x /∈ N [v] while
every vertex u ∈W3 has at least 2 neighbors not inN [v]. By Sv

y we mean the setN(y)-
N [v].Let2 ≤

∑3
i=1 |Wi| = d ≤ 6.Weconsider the recurrenceonf(μ)based on whether

or notv is a part of maximal 2-regular induced subgraph. When v /∈ Rμ changes by μ−β.
Now we consider the case when v and its two neighborsu1, u2 and u1 
= u2 are inR and
see the change in μ based on whichWi’s, 1 ≤ i ≤ 3, u1 and u2 belong.

(A) [(u1,u2) ∈W1 ×W1] μ changes to μ− β(d + 1).
(B) [(u1,u2) ∈W1 ×W2] The only way we can have a 2-regular induced subgraph

is when (u1, u2) is an edge and v, u1, u2 is a triangle. This implies that x, the
unique neighbor of u2 not in N [v] will be removed from the graph. This reduces μ
to μ− β(d + 1)− β.

(C) [(u1,u2) ∈W1 ×W3] Similar to the previous case we can argue that μ at least
reduces to μ− β(d + 1)− 2β.

(D) [(u1,u2) ∈W2 ×W2] The worst case is when u1 and u2 have a common neigh-
bor x which is not in N [v]. In this case μ changes to μ− β(d + 1)− β.

(E) [(u1,u2) ∈W2 ×W3] If (u1, u2) is an edge or u1 and u2 have a common neigh-
bor x then either {v, u1, u2} or {v, u1, u2, x} forms a 2 regular induced subgraph
leading to a reduction of β(d + 1)− 2β in μ. When none of these cases arise then
since x is an unique neighbor of u1, x gets included in R and two neighbor of u2

become elements of NR, leading to change in μ by β(d + 1)− β − 2δ.
(F) [(u1,u2) ∈W3 ×W3] Here the worst case is when u1 and u2 have exactly two

neighbors not in N [v] and Sv
u1

= Sv
u2

, that is u1 and u2 have common neighbors
not in N [v]. This reduces μ by β(d+1)−2δ as both neighbors of u1 and u2 which
are not in N [v] become element of NR.

Above discussion gives us following recurrence on f(μ).

f(μ) ≤ f(μ− β) +
(
|W1|

2

)
f(μ− β(d + 1)) + |W1||W2|f(μ− β(d + 1)− β)

+|W1||W3|f(μ− β(d + 1)− 2β) +
(
|W2|

2

)
f(μ− β(d + 1)− β)

+|W2||W3|f(μ− β(d + 1)− β − 2δ) +
(
|W3|

2

)
f(μ− β(d + 1)− 2δ).

We assume that
(
l1
l2

)
= 0 if l1 < l2. Note that, |W1| ≤ d − 1 and if there is an unique

neighbor u of v having a neighbor x such that x /∈ N [v] then W2 = ∅ because of the
CUT-EDGE CASE.

We numerically obtain α = 1.45, β = 2 and δ = β − α = 0.55, as values which
minimizes the above set of recurrences on f .

We used a program to generate the above set of recurrences based on different parti-
tions ofN(u) and found that the worst case recurrence among the above set after setting
α = 1.45 and β = 2 corresponds to the following scenario:

d = 5, W1 = W2 = ∅ and ∀(y, z) ∈ W3 ×W3, |Sv
y ∪ Sv

z | = 2.
The recurrence corresponding to this scenario is: f(μ) ≤ f(μ−β)+10f(μ−6β−2δ).
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r 3 4 5 6 7 8 10 15
lbr 1.71149 1.7468 1.7734 1.7943 1.8113 1.8253 1.8474 1.8828
ubr 1.73615 1.76357 1.78554 1.80351 1.81846 1.83111 1.85136 1.88452

ubr − lbr 0.02466 0.016782 0.012131 0.0091762 0.0071727 0.0057618 0.0039415 0.0017377

Fig. 2. Bounds on the Number of Maximal-r-Regular Induced Subgraphs for Small Values of r

All the recurrences occurring in all the above cases (Cases 1 & 2) are dominated by

f(μ) ≤
(

7
3

)
f(μ− 7β)

which solves to (35)
μ
7β . Now given a graph G, μ(G) ≤ nβ, and hence

M2(n) ≤ f(βn) ≤ 35βn/7β = 35n/7.

This proves the required upper bound. These cases can be changed in branching steps
leading to an enumeration algorithm running in O(35n/7) = O(1.66181n) time. �
To obtain a lower bound on Mr(n) for larger values of r we need to find a function

g(r) such that when we take G as n
g(r) disjoint copies of Kg(r) then

(
g(r)
r+1

)1/g(r)
is

maximized. We obtain the following description for g(r).

Lemma 2. Given r, g(r) defined below

g(r) =

⎧⎪⎨⎪⎩
2r + 3 0 ≤ r ≤ 11
2r + 4 12 ≤ r ≤ 100
2r + 2 +

⌊
1
2 ln
(

(2r+1)π
2

)
+O

(
(ln r)2

r

)⌋
r > 100

maximizes
(

g(r)
r+1

)1/g(r)
. Hence Mr(n) is at least

(
g(r)
r+1

)n/g(r)
.

The proof of Lemma 2 is based on estimates on binomial coefficients and will appear
in the longer version of the paper.

For a fixed r, let lbr and ubr denote a base of exponent in lower bound and upper
bound on Mr(n), i.e., lbnr ≤ Mr(n) ≤ ubnr . When r ≥ 3, we obtain tighter upper
bounds on Mr by directly finding the roots of the polynomials coming from the recur-
rences in MAX-r-RIS algorithm. We can see that the upper bound obtained this way
and the lower bound coming from Lemma 2 are already very close, as Figure 2 shows.
For small values of r, these upper bounds could be made equal to lower bound by
choosing α and β appropriately in the definition of μ and by doing the analysis similar
to the one in Theorem 6. For an example, when r = 3 we can take α = 1.73 and β = 2
and show that lb3 = ub3. We do not go into the details due to lack of space and the
details will appear in the full version of the paper.

4 Improved Algorithms for r = 1 and 2 and Applications

Our generic algorithm Max-r-RIS finds a maximum r-regular induced subgraph in
time O(1.6957n) and O(1.7069n) for r = 1 and 2 respectively. Our algorithmic upper
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bound proofs (on Mr(n)) of Section 3 enumerates all maximal r-regular subgraphs in
time O(1.58469n) and O(1.66181n) for r = 1 and 2 respectively, already improving
the bounds given in Section 2. Here we further improve these algorithms for r = 1 and
2 and give an application of algorithms developed so far in the paper.

4.1 Maximum Induced Matching (MIM) and M-2-RIS Problems

Let G = (V,E) be a graph and v be a vertex having a neighbor u such that N(u) ⊆
N [v]. Consider the set Mv of maximum sized induced matching having v (these may
not be the maximum sized induced matching of G). Then the following is easy to see.

Lemma 3. Let G be a graph and v be a vertex and u ∈ N(v) such that N(u) ⊆ N [v].
Then there exists a M ′ ∈Mv such that it contains the edge (v, u).

The other observation relates MIM of G to MAXIMUM INDEPENDENT SET (MIS)
of square of the line graph of G. The line graph, L(G) of G = (V,E) is the graph
whose vertices are edges of G, and two edges e1, e2 are adjacent if and only if they are
adjacent edges in G. Gi (ith power of G) is a graph on V and there are edges between
two vertices v1 and v2 if and only if there is a path of length at most i between v1 and
v2.

Lemma 4 ([4]). Let G be a graph then MIM(G) = MIS(L(G)2).

So our algorithm uses branching on a vertex v when the maximum degree of the graph is
at least 5 and distinguishes cases based on Lemma 3. When the maximum degree of the
graph is at most 4, we use the well known algorithms to find a maximum independent
set [7,15] in L(G)2. Without going into further details we state the following theorem.

Theorem 7. Let G = (V,E) be a graph on n vertices, then a MIM can be found in
(a) O(1.4904n) time and space polynomial in n or in (b) O(1.4786n) time and space
exponential in n.

We obtain an improved algorithm for M-2-RIS by refining the measure defined in the
Section 3 and by using new branching rules. We omit the details and simply state the
following theorem.

Theorem 8. LetG = (V,E) be a graph onn vertices, then the MAXIMUM 2-REGULAR

INDUCED SUBGRAPH problem can be solved in O(1.62355n) time.

4.2 Induced r-Regular Subgraph Isomorphism

Here we consider a special case of INDUCED SUBGRAPH ISOMORPHISM (IND-SI)
problem.

IND-SI: Given a graph G = (V,E) and H , the question is to determine whether
there exists a H ′ ⊆ V such that G[H ′] ∼= H .

A brute force algorithm for this is to enumerate all subsets H ′ of size |H | of G and
check whetherG[H ′] ∼= H , using the O(no(n)) time graph isomorphism algorithm [1].
The question is: can we do this in time O(cn) time where n is the number of vertices
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in G and c < 2, a constant? Here, we answer this question for a special class of H ,
that is when H is a r-regular graph with r a constant. Even with such restrictions
this problem is NP-hard as it contains problems like INDEPENDENT SET. We show the
following theorem.

Theorem 9. Given a graph G = (V,E) on n vertices and a graph H , where H is
r-regular, for a constant r, we can determine whether there exists a H ′ ⊆ V such that
G[H ′] ∼= H in O(cn) time, where c < 2 a constant depending on r alone.

Proof. Let H = {H1,H2, · · · ,Hr} where each Hi is a connected component of
H . If there exists a H ′ ⊆ V such that G[H ′] ∼= H then H ′ can also be written
as {H ′

1,H
′
2, · · ·H ′

r}, H ′
i connected component of G[H ′], such that G[H ′

i ] ∼= Hi for
1 ≤ i ≤ r.

The crucial observation is that if there exists a H ′ such that G[H ′] ∼= H then there
exists a maximal r-regular induced subgraph R extending H ′ such that each of the
connected component of H ′ appears as a connected component of G[R]. By applying
Theorem 3, we enumerate all maximal r-regular induced subgraphs of a graph on n
vertices in O(cn) time, c < 2 a constant depending on r alone. Now given a R, a max-
imal r-regular induced subgraph of G, we check the isomorphism of each connected
component of G[R] with each of Hi using the polynomial time bounded degree graph
isomorphism algorithm of Luks [11]. If we obtain a H ′ such that G[H ′] ∼= H then we
return H ′ else we return no. The correctness and the time complexity of the algorithm
follow easily. �

5 Conclusion

In this paper we developed anO(cn) time exact algorithms for MAXIMUM r-REGULAR

INDUCED SUBGRAPH problems for any fixed constant r, where c < 2 is a constant de-
pending on r alone. We also showed that if r is a constant then the number of maximal
r-regular induced subgraphs on a graph on n vertices is bounded by o(2n). Then we
gave very tight lower and upper bounds on the number of maximal r-regular induced
subgraphs on n vertices. All our algorithms were simple to describe but their analy-
ses were non-trivial and involved a different measure than the usual number of vertices
to measure the progress of the algorithms. We analyzed recurrences having binomial
coefficients and believe that these may trigger some new results in the area of exact
algorithms. Finally, we used the results obtained on the enumeration version of MAXI-
MUM r-REGULAR INDUCED SUBGRAPH problems to give a non trivial exact algorithm
for INDUCED r-REGULAR SUBGRAPH ISOMORPHISM when r is a constant. The other
problems for which we can give non trivial exact algorithms based on the algorithms
and the techniques developed in this paper include EFFICIENT EDGE DOMINATING

SET [10], δ-SEPARATING MAXIMUM MATCHING [17] and MAXIMUM BOUNDED

DEGREE INDUCED SUBGRAPH problems.
It will be interesting to find other applications of the algorithms developed in this

paper. Finding a non trivial exact algorithm for INDUCED SUBGRAPH ISOMORPHISM

problem, even for special classes of H , remains open. Here we obtained an efficient
algorithm for INDUCED SUBGRAPH ISOMORPHISM when H is a r-regular graph for a
constant r.
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Abstract. In the connected dominating set problem we are given an n-
node undirected graph, and we are asked to find a minimum cardinality
connected subset S of nodes such that each node not in S is adjacent to
some node in S. This problem is also equivalent to finding a spanning
tree with maximum number of leaves.

Despite its relevance in applications, the best known exact algorithm
for the problem is the trivial Ω(2n) algorithm which enumerates all the
subsets of nodes. This is not the case for the general (unconnected) ver-
sion of the problem, for which much faster algorithms are available. Such
difference is not surprising, since connectivity is a global property, and
non-local problems are typically much harder to solve exactly.

In this paper we break the 2n barrier, by presenting a simple
O(1.9407n) algorithm for the connected dominating set problem. The
algorithm makes use of new domination rules, and its analysis is based
on the Measure and Conquer technique.

1 Introduction

Nowadays, it is common belief that NP-hard problems cannot be solved in poly-
nomial time. For a number of NP-hard problems, we even have strong evidence
that there are no sub-exponential algorithms [19]. Moreover, many relevant prob-
lems do not admit satisfactory approximation algorithms. For example, Max-
imum Independent Set is hard to approximate within n1−ε [17]. For these
problems a promising approach is to design exact algorithms with smallest pos-
sible exponential running times.

The recent interest in exact exponential algorithms has several motivations.
Indeed, there are applications that require exact solutions of NP-hard problems,
although this might only be possible for moderate input sizes. Decreasing the
exponential running time, say, from O(2n) to O(20.9 n), increases the size of the
instances solvable within a given amount of time by a constant multiplicative
factor. This kind of improvements can be crucial in several applications. On the
other hand, the study of exact algorithms leads to a better understanding of
NP-hard problems, and initiates new combinatorial and algorithmic challenges.

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 152–163, 2006.
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In this paper we consider one of the classical NP -hard problems, the Con-
nected Dominating Set problem (CDS). A connected dominating set of a
graph G = (V, E) is a subset of nodes S ⊆ V such that S is a dominating
set of G and the subgraph of G induced by S is connected. The Connected
Dominating Set problem asks to find a connected dominating set of smallest
possible cardinality. This problem is also equivalent to finding a spanning tree
with maximum number of leaves. Connected Dominating Set is a fundamen-
tal problem in connected facility location and studied intensively in computer
science and operations research [16,26]. Another recent application of this prob-
lem is in wireless ad-hoc networks: a small connected dominating set is often a
convenient backbone to route the flow throughout the network (see e.g. [2]). The
problem is NP-hard [13] and there is a (lnΔ+ O(1))-approximation algorithm,
where Δ is the maximum degree [15]. Such approximation guarantee cannot be
improved unless NP ⊆ DTIME(nO(log log n)) [15]. Despite its relevance in appli-
cations, the current best exact algorithm for Connected Dominating Set is
the trivial Ω(2n) enumerative algorithm, which tries all possible subsets of nodes.
Better results are known for the general (unconnected) version of the problem
[8,12,14,22]: the current best algorithm for Dominating Set has running time
O(20.598n) [8].

Though apparently closely related, Connected Dominating Set and Dom-
inating Set are rather different from the point of view of exact algorithms. In
particular, the techniques used to solve Dominating Set do not seem to work
for Connected Dominating Set. One of the main reasons of this discrepancy
is that connectivity is a global property: very often exact algorithms are based
on the local structure of the problem; these algorithms seem not able to capture
global properties such as connectivity.

Indeed, Connected Dominating Set belongs to a family of non-local prob-
lems which turns out to be particularly hard to solve exactly. Probably the best
known example of this kind of problems is the Travelling Salesman Prob-
lem: find a minimum cost tour which visits all the nodes of a weighted graph. The
fastest known algorithm for this problem, which dates back to the sixties [18], is
based on dynamic programming and has running time Ω(2n). Better results are
known only for special graph classes, such as cubic graphs [6]. For many other
non-local problems the current best known algorithms are still trivial. There
are only a few exceptions to this. A relevant example is Steiner Tree: find a
minimum size subtree of a given graph spanning a given subset of k nodes. For
this problem an O(1.4143n) time algorithm can be obtained by combining the
O((2 + ε)knO(1)) dynamic-programming (exponential space) algorithm in [21]
(for small k), with trivial O(2n−knO(1)) enumeration of Steiner nodes (for large
k). Finding a polynomial space algorithm faster than 2n is still open. Another
very recent example is a O(1.9053n) algorithm for Feedback Vertex Set:
find a minimum cardinality subset of nodes of a graph whose removal makes the
graph acyclic [23].

Our results. In this paper we make a further significant step in the design of
faster exact algorithms for non-local problems, by presenting the first algorithm
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for Connected Dominating Set which breaks the 2n barrier: our recursive
algorithm takes polynomial space and runs in time O(1.9407n). The algorithm
is based on the simple strategy “stay connected”, which means that all partial
solutions generated recursively must be connected. Local choices are performed
under this constraint. Our algorithm makes use of new domination rules, which
were designed with the stay-connected framework in mind.

If analyzed in the standard way, our algorithm performs very poorly. The re-
fined time bound is obtained with the Measure and Conquer approach described
in [8]. The idea is to lower bound the progress made by the algorithm at each
branching step according to non-standard measures of the size of the subprob-
lems. However, the measure used in [8] for Dominating Set does not seem
to work properly here. For this reason we designed a new, non-trivial measure:
for every vertex v our measure reflects both the “need for domination” of v,
and the ability of v “to dominate” the vertices that are not dominated yet. We
remark that here Measure and Conquer is crucial to break the 2n barrier. More-
over, we believe this approach is flexible enough to be applied to other non-local
problems.

Measure and Conquer does not necessarily provide tight upper bounds for the
worst case running time of recursive exponential algorithms, thus lower bounds
are of great interest. As a second contribution of this paper, we establish a lower
bound of Ω(4n/5) for the worst case running time of our algorithm.

Related Work. The design of exponential time algorithms has a long history
dating back to Held and Karp’s paper [18] on the travelling salesman problem
in the early sixties. The last years have seen an emerging interest in construct-
ing exponential time algorithms for combinatorial problems like Coloring [1,4],
Max-Cut [27], 3-SAT [3,5], Dominating Set [8], Treewidth [11], and Inde-
pendent Set [10]. There are two nice surveys of Woeginger [28,29] describing
the main techniques that have been established in the field. We also recom-
mend the survey of Iwama [20] devoted to exponential algorithms for 3-SAT
and the paper of Schöning [25] for its introduction to exponential time algo-
rithms. In [9] we review some new techniques for the design and analysis of
exponential-time algorithms, among which “Measure and Conquer” and “Lower
Bounds”.

One of the major techniques for constructing fast exponential time algorithms,
which is also used in our CDS algorithm, is the Branch and Reduce paradigm.
Roughly speaking, Branch and Reduce algorithms (also called search tree algo-
rithms, Davis-Putnam-style exponential-time backtracking algorithms etc.) first
apply some reduction rules, and then branch on two or more subproblems, which
are solved recursively. Their running time analysis is based on a measure for the
problem instance; reduction and branching rules lead to linear recurrences in the
measure and their solution by standard methods provides upper bounds for the
worst case running time. Recently, non-standard measures for problem instances
have been used to improve the analysis of Branch and Reduce algorithms. This
approach is called Measure and Conquer in [8]. The analysis of our algorithm
for CDS is heavily based on this technique.
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2 The Algorithm

Let G = (V, E) be an n-node undirected and simple graph. The open neigh-
borhood of a node v is denoted by N(v) = {u ∈ V : uv ∈ E}, and the closed
neighborhood of v is denoted by N [v] = N(v)∪{v}. The subgraph of G induced
by a set S ⊆ V is denoted by G[S]. A set S ⊆ V of nodes of G is connected, if
G[S] is connected.

Without loss of generality, we can assume (i) that the graph is connected
(otherwise there is no solution) and (ii) the minimum connected dominating
set has cardinality at least two (otherwise the problem is trivially solvable in
polynomial time). By the last assumption, we can consider the total variant of
CDS, where each node v dominates its neighbors N(v), but not the node v itself.
This will turn out to be useful in the analysis.

Our recursive CDS algorithm is based on the following approach. Suppose
we are given two subsets of nodes S (selected nodes), and D (discarded nodes),
where |S| ≥ 2 and G[S] is connected. We will describe a recursive algorithm
which finds an optimum solution OPT , if any, under the constraint that all the
nodes in S and no node in D belong to OPT :

S ⊆ OPT and D ∩OPT = ∅.

In order to solve CDS it is sufficient to guess two adjacent nodes v′ and v′′ of
some optimum solution, and run the algorithm above on the instance (S,D) =
({v′, v′′}, ∅). So we run the algorithm O(n2) times.

Clearly, the instance is infeasible when V \D is not a connected dominating
set. For notational convenience, we will sometimes allow S and D to overlap,
and in that case we say that the instance is infeasible as well.

Before describing the algorithm, let us introduce some notation. The available
nodes A = V \(S∪D) are the nodes which are neither selected nor discarded. An
available node v is a candidate if it is adjacent to S, and a promise if its removal
makes the instance infeasible, i.e. V \(D∪{v}) is not a connected dominating set
of G. Intuitively, a candidate is a node that might be added to S in the current
step, while a promise is a node that must be added to S at some point (if the
instance is feasible). We say that a node is dominated if it is adjacent to some
node in S, and free otherwise. By F we denote the set of the free nodes

F = V \ ∪v∈SN(v).

The algorithm halts if either the instance is infeasible or S is a (connected)
dominating set. In the first case the algorithm returns no, while in the second
one it returns OPT = S. Otherwise the algorithm performs some reductions
on the problem instance, and then it branches on one or more subproblems,
which are solved recursively. In each subproblem the algorithm adds available
nodes to either S or D but always keeping S connected. The best solution of
the subproblems, that is the one which minimizes the size |OPT | of the solution
returned, is the solution to the original problem.
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The reduction rules are:

(a) If there is a candidate v which is a promise, select it (add it to S);
(b) If there are two candidates v and w (which by (a) are not promises) such

that N(v) ∩ F ⊆ N(u) ∩ F , discard v (add it to D);
(c) If there is an available node v which does not dominate any free node, discard

v.

The algorithm branches according to the following rules:
(A) If there is a candidate v which dominates at least three free nodes w1,w2

and w3, or which dominates an available node w such that, after selecting v, w
does not dominate any free node, branch on the two subproblems

• (S1,D1) = (S ∪ {v},D); • (S2,D2) = (S,D ∪ {v}).

(B) If there is a candidate v which dominates a unique free node w, let

U = {u1, u2, . . . , uk} = N(w) ∩A \N [v]

be the set of the available neighbors of w which are not in the closed neighbor-
hood of v. Branch on the three subproblems:

• (S1,D1) = (S,D ∪ {v}); • (S2,D2) = (S ∪ {v, w},D);
• (S3,D3) = (S ∪ {v},D ∪ {w} ∪ U).

Observe that w might be discarded or a promise. Moreover one of the ui’s could
be a promise. In those cases one or more subproblems are infeasible, and the al-
gorithm simply halts on such infeasible subproblems. The same kind of situation
may happen also in the following cases.
(C) If there is a candidate v which dominates two free nodes w1 and w2, name
w1 and w2 such that if w2 is available (a promise), so is w1. Let

Ui = {ui,1, ui,2, . . . , ui,ki} = N(wi) ∩A \N [v]

be the available neighbors of wi which are not in the closed neighborhood of v.
There are three different subcases:
(C.1) If w1 and w2 are adjacent, w1 is available and w2 is discarded, branch on
the three subproblems:

• (S1,D1) = (S,D ∪ {v}); • (S2,D2) = (S ∪ {v, w1},D);
• (S3,D3) = (S ∪ {v},D ∪ {w1} ∪ U1).

(C.2) If w1 and w2 are adjacent and both available, branch on the four sub-
problems:

• (S1, D1) = (S,D ∪ {v}); • (S2, D2) = (S ∪ {v, w1}, D);

• (S3, D3) = (S ∪ {v, w2}, D ∪ {w1}); • (S4, D4)=(S ∪ {v},D ∪ {w1, w2}∪U1∪U2).
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Fig. 1. Examples of cases (B) and (C.3). Black nodes are selected.

(C.3) Otherwise (either w1 and w2 are not adjacent, or they are adjacent and
both discarded), branch on the five subproblems

• (S1, D1) = (S, D ∪ {v}); • (S2, D2) = (S ∪ {v, w1}, D);

• (S3, D3) = (S ∪ {v, w2}, D ∪ {w1}); • (S4, D4)=(S∪{v}, D∪{w1, w2} ∪ U1);

• (S5, D5) = (S ∪ {v}, D ∪ {w1, w2} ∪ U2).

Theorem 1. (correctness) The algorithm above computes a minimum cardi-
nality connected dominating set.

Proof. The correctness of the halting rules is trivial.
A reduction rule is feasible if it does not modify the value of the optimum.

Reduction rule (a) is feasible since removing a candidate v which is a promise
would lead to an infeasible instance. Reduction rule (b) is feasible since if v ∈
OPT , then OPT ′ = OPT ∪ {w} \ {v} is a feasible solution of cardinality at
most |OPT |. Reduction (c) is feasible since all the available neighbors of v are
already connected to S, and thus removing v from any feasible solution keeps
the solution feasible.

Let us consider the branching rules. First observe that, as required, every
set Si induces a connected subgraph of the original graph. A branching rule is
feasible if at least one subproblem preserves the value of the optimum solution.
Branching rule (A) is trivially feasible: every connected dominating set either
contains candidate v or does not. This simple fact is also used in the remaining
branching rules.

Consider now branching rule (B). It is sufficient to show that if we select
v and discard w, then we must also discard U . Assume by contradiction that
OPT = O′∪{v, ui} is an optimum solution of (S′,D′) = (S∪{v},D∪{w}), where
ui ∈ U . Since w is discarded, OPT ′ = O′ ∪ {ui} is also connected. Moreover,
since v dominates only w, and w is dominated by ui as well, we have that OPT ′

is a dominating set (see Figure 1). Thus OPT ′ is a connected dominating set of
size |OPT | − 1, which is a contradiction.

The feasibility of (C.3) follows by observing that if we select v and discard
both w1 and w2, then we must also discard either U1 or U2 (or both). This can
be proved by essentially the same argument as in case (B).
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Fig. 2. Example of cases (C.1) and (C.2). Here we are assuming that w1 is available.

The remaining two cases are slightly more complicated. Consider first case
(C.2). It is sufficient to show that, if we select v and discard both the wi’s, then
we can also discard U1 and U2. By the same argument used in case (C.3), we
already know that in the optimum solution OPT to (S ∪ {v},D ∪ {w1, w2})
we must discard either U1 or U2. For sake of contradiction, suppose that
OPT = O′ ∪ {v, u1,i} contains one u1,i ∈ U1 and no node in U2 (a sym-
metric analysis holds if OPT contains one u2,j ∈ U2 and no node in U1).
Since w1 and w2 are adjacent, and w1 is available, we have that by replac-
ing v with w1 in OPT , we obtain another feasible solution of the same car-
dinality (see Figure 2). Thus we do not need to consider this case because
if OPT is the optimum solution to the original problem, the algorithm will
find a solution of the same cardinality while solving subproblem (S1,D1) =
(S,D ∪ {v}).

Basically the same argument shows that in case (C.1), if we select v and
we discard both w1 and w2, then we can also discard U1. Hence the feasibility
of (C.1). Note that, differently from case (C.2), we cannot use a symmetric
argument to show that also U2 can be discarded. This is because w2 ∈ D, and
thus the optimum solution to (S1,D1) = (S,D ∪ {v}) cannot contain w2. �

3 Analysis

Consider a given instance (S,D) of the problem (where the graph G is fixed).
We will measure the size of the problem as described below. This measure
will be used to bound the progress made by the algorithm at each branching
step.

We associate two different weights to each node v of the graph. The first
weight α(v) ≥ 0 is used to take into account the need for domination of v. In
particular, if v is already dominated by S, α(v) = 0. The second weight β(v) ≥ 0
instead reflects the capability of v to dominate free nodes. For this reason, we
assume β(v) = 0 if either v ∈ S or v ∈ D.

Altogether the weight of the problem is

k = k(G, S,D) = k(S,D) =
∑
v∈F

α(v) +
∑
v∈A

β(v). (1)
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In order to simplify the analysis, we make the following assumptions:

• for a given available node v, β(v) = β ∈ (0, 1] if v is a promise and β(v) = 1
otherwise.

• α(v) = α|v| is a non-decreasing function of the frequency of v, denoted by
|v|, that is the number of available nodes which dominate v (recall that v
does not dominate itself). More precisely we assume

0 = α0 = α1 < α2 < α3 = αi, ∀i ≥ 4.

The reasons for the simplifying assumptions above will be clearer from the anal-
ysis. Note that the size of the original problem is upper bounded by (1 + α3)n.

For notational convenience, we define

Δαi = αi − αi−1, i ≥ 1.

Intuitively, Δαi is the reduction of the size of the problem due to the reduction
from i to i− 1 of the frequency of a free node.

Fact 1. Observe that when we discard a candidate node v, we decrease the size
of the problem (i) by β(v), because v is not available any more, and (ii) by
Δα|w| for each free neighbor w of v, because of the decrease of the frequency of
w. Moreover, the size could further decrease (iii) by (1 − β), if some available
node becomes a promise.

On the other hand, when we select a node v, we decrease the size of the problem
(i) by β(v), because v is not available any more, and (ii) by α|w| for each free
neighbor w of v, because w is not free any more.

Fact 1 will be repeatedly applied in the proof of the following theorem.

Theorem 2. (running time) The running time of the CDS algorithm of Sec-
tion 2 is O(1.9407n).

Proof. Let P (k) be the number of subproblems generated to solve an instance
of size k = k(S,D), where k is defined as in (1). For notational convenience we
assume P (k) = 1 for k ≤ 0.

Of course, if the algorithm halts, P (k) = 1. Now observe that when we apply
the reduction rules (a)-(c), the size of the problem decreases by at least β:

P (k) ≤ 1 + P (k − β). (2)

Consider now the case when the algorithm branches. Note that, by (a), the
candidate v selected is not a promise (and thus β(v) = 1). Following the algo-
rithm, we distinguish different subcases:

(A) Suppose v dominates three free nodes w1, w2, and w3 (and possibly more).
By Fact 1,

P (k) ≤ 1 + P (k − 1 − Δα|w1| − Δα|w2| − Δα|w3|)

+ P (k − 1 − α|w1| − α|w2| − α|w3|). (3)
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Now suppose v dominates an available node w, such that N(w) ∩F \N(v) = ∅.
Then when we select v, w is discarded by (c). Note that w cannot be a promise
(β(w) = 1). By Fact 1 and the observation above,

P (k) ≤ 1 + P (k − 1 − Δα|w|) + P (k − 1 − α|w| − 1). (4)

From this point on we can assume that every available node w adjacent to
the candidate v dominates at least one free node z not in N(v). In the following
we denote such free nodes by

Z(w) = N(w) ∩ F \N(v).

(B) Recall that v dominates a unique free node w, and U is the set of available
neighbors of w, excluding N [v]. By Fact 1,

P (k) ≤ 1 + P (k − 1 − Δα|w|)

+ P (k − 1 − α|w| − β(w) −
z∈Z(w)

δw∈A · α(z))

+ P (k − 1 − α|w| − β(w) −
z∈Z(w)

δw∈A · Δα(z) −
u∈U

β(u)), (5)

where δP = 1 if predicate P is true, and δP = 0 otherwise.
Since v is not a promise, we have that |U | = |w| − 1 ≥ 1. Moreover, by case

(A), if w is available, it must dominate at least one free node z (|Z(w)| ≥ 1). If
w is not a promise, such a neighbor z must have frequency at least two.

It is worth to mention that there might be subproblems which are infeasible
because we either select nodes which are discarded, or we discard nodes which
are promises. In those cases we can replace the corresponding P (k′) with 1 in
the recurrences above, since the algorithms halts on such subproblems. The same
holds also in next cases.

(C) Recall that v dominates two free nodes w1 and w2, where Ui are the available
neighbors of wi, excluding N [v]. Moreover the wi’s are named such that, if w2 is
available (a promise), so is w1. In particular this implies that, if w1 is discarded,
the same holds for w2.

(C.1) In this case w1 and w2 are adjacent, w1 is available and w2 is discarded.
Observe that, if |w1| = 2, which implies U1 = {u1,1}, and u1,1 is not a promise,
then u1,1 becomes a promise when we remove v. By this observation and Fact 1,

P (k) ≤ 1 + P (k − 1 − Δα|w1| − Δα|w2| − δ|w1|=2(β(u1,1) − β))

+ P (k − 1 − α|w1| − α|w2| − β(w1) −
z∈Z(w1)

δw1∈A · α|z|)

+ P (k − 1 − α|w1| − α|w2| − β(w1) −
z∈Z(w1)

δw1∈A · Δα|z| −
u∈U1

β(u)).

(6)

Note that |U1| = |w1| − 1 ≥ 1.
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(C.2) In this case w1 and w2 are adjacent and both available. Observe that,
if |w1| = 2 (|w1| = 2) and w2 (w1) is not a promise, then w2 (w1) becomes a
promise when we remove v. By this observation and Fact 1,

P (k) ≤ 1 + P (k − 1 −
2

i=1

Δα|wi| −
2

i=1

δ|wi|=2 · (β(wi) − β))

+ P (k − 1 −
2

i=1

α|wi| − β(w1) −
z∈Z(w1)

δw1∈A · α(z))

+ P (k − 1 −
2

i=1

α|wi| −
2

i=1

β(wi) −
z∈Z(w1)

δw1∈A · Δα(z))

+ P (k − 1 −
2

i=1

α|wi| −
2

i=1

β(wi) −
z∈Z(w1)

δw1∈A · Δα(z) −
u∈U1∪U2

β(u)).

(7)

Note that it cannot be |w1| = |w2| = 2 since otherwise v would be a promise.
Moreover |U1 ∪ U2| ≥ max{|U1|, |U2|} ≥ max{|w1| − 2, |w2| − 2}.

(C.3) Recall that if w1 and w2 are adjacent, they are both discarded. In any
case, |U1| = |w1| − 1 ≥ 1 and |U2| = |w2| − 1 ≥ 1. If |w1| = 2, which implies
U1 = {u1,1}, and u1,1 is not a promise, u1,1 becomes a promise when we remove
v. A symmetric argument holds for w2. By this observation and Fact 1,

P (k) ≤ 1 + P (k − 1 −
2

i=1

Δα|wi| − δ|w1|=2 or |w2|=2 max
h

{β(uh,1) − β})

+ P (k − 1 −
2

i=1

α|wi| − β(w1) −
z∈Z(w1)

δw1∈A · α|z|)

+ P (k − 1 −
2

i=1

α|wi| −
2

i=1

β(wi) −
z∈Z(w1)

δw1∈A · Δα|z|)

+ P (k − 1 −
2

i=1

α|wi| −
2

i=1

β(wi) −
z∈Z(w1)

δw1∈A · Δα|z| −
u∈U1

β(u))

+ P (k − 1 −
2

i=1

α|wi| −
2

i=1

β(wi) −
z∈Z(w1)

δw1∈A · Δα|z| −
u∈U2

β(u)).

(8)

Observe that, if w1 is available (and thus w1 and w2 are not adjacent), by (A)
w1 must dominate at least one free node z: |Z(w1)| ≥ 1.

From recurrences (2)-(8), P (k) ≤ ck ≤ c(1+α3)n, where c = c(β, α2, α3) is a
quasi-convex function of the weights [7]. Thus the estimation of the running time
reduces to choosing the weights minimizing c1+α3 . Note that it is sufficient to
consider only a finite number of recurrences. This is because each recurrence R
where the frequency of some node considered is larger than 5 is dominated by a
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recurrence R′ where the same element has frequency 4, that is the upper bound
on c given by R is not larger than the one given by R′. We numerically obtained
β = 0.5004, α2 = 0.0600, and α3 = 0.1215, and thus the claimed running time
O(1.9407n). �

4 An Exponential Lower Bound

Since the known tools to analyze the worst case running time of Branch and
Reduce algorithms (including Measure and Conquer) do not provide tight upper
bounds, it is natural to ask for lower bounds: A lower bound may give an idea of
how far is the established upper bound from the real worst case running time.

Theorem 3. (lower bound) The worst case running time of the CDS algo-
rithm of Section 2 is Ω(4n/5) = Ω(1.3195n).

The proof of Theorem 3 is omitted here for lack of space.
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Abstract. Phylogenetic trees are an important tool to help in the un-
derstanding of relationships between objects that evolve through time, in
particular molecular sequences. In this paper, we consider two subtree-
comparison problems on phylogenetic trees. Given a set of k phylogenetic
trees whose leaves are drawn from {1, 2, . . . , n} and the leaves for two
arbitrary trees are not necessary the same, we first present a linear-
time algorithm to final all maximal leaf-agreement subtrees. Based on
this result, we also present a linear time algorithm to find maximal all-
agreement isomorphic subtrees.

1 Introduction

One of the central problems in biology is to explain the evolutionary history of
today’s species and, in particular, how species relate to one another in terms of
common ancestors. This is usually done by constructing trees, whose leaves rep-
resent present-day species and whose internal nodes represent hypothesized an-
cestors. These kinds of trees are called phylogenetic trees [19]. Phylogenetic trees
are widely used for classifying hierarchical relations between different species [5,
10, 13]. Different methods of classification may lead to different trees. It is nat-
ural to try to resolve differing phylogenetic trees in a manner that will increase
our confidence in the results.

There are quite a few phylogenetic inference methods, e.g. maximum parsi-
mony, maximum likelihood, distance matrix fitting, subtrees consistency, and
quarter based methods, proposed in the literature [8, 9, 11, 18, 20]. There were
also many previous works for inferring the consensus tree from a profile of
trees [1, 3, 5, 6]. Among them, many extensively studies focused on the maxi-
mum agreement subtree problem (MAST) [2]: Given a set of rooted trees whose
leaves are drawn from the same set of items of size n, find the largest subset of
items such that the portions of the trees restricted to the subset are isomorphic.
It was shown that the problem is NP-hard even for three unbounded degree
trees [1]. There were polynomial time algorithms for three or more bounded de-
gree trees [1, 6], even though the time complexity is exponential in the bound
for the degree. On the other hand, efficient algorithms for the MAST on two

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 164–175, 2006.
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trees have been presented in the literature: Farach and Thorup [7] presented a
O(n1.5 log n)-time algorithm for two arbitrary degree trees. Cole et al. [4] showed
that the MAST of two binary trees can be found in O(n log n) time, while the
MAST of two degree d trees can be found in O(min{n

√
d log2 n, nd log n log d})

time.
Previously, it was rather common to compare phylogenetic trees on the same

set of species with respect to different biological sequences or different genes.
However, several biology experiments need to extract highly similar structures
among a set of phylogenetic trees with different specie sets. In this paper, we con-
sider two new subtree-comparison problems on a set of phylogenetic trees, which
have applications to analyze the evolution and co-evolution genes clustering of
genomic sequences [15, 17]. We begin with some definitions before proceeding
to formally define the problems. Let T be a phylogenetic tree with at most n
leaves such that each leaf is labelled with a distinct number in {1, 2, . . . , n},
and each internal node v has a unique label label(v). The subtree rooted at
v, denoted by T [v], is the tree induced by descendants of v, rooted at v. Let
L(T [v]) = {x| x is a leaf of T [v]}. We also use L(T ) to denote the leaves of T .
Two trees Ti[vi] and Tj [vj ] are said to be all-agreement isomorphic, denoted
by Ti[vi] ∼= Tj[vj ], if the following conditions hold: Either vi ∈ Ti and vj ∈ Tj

are two leaves with the same label; otherwise, label(vi) = label(vj), and the
children of vi and the children of vj can be put into one-to-one correspond-
ing such that Ti[vi1 ] ∼= Tj[vj1 ], Ti[vi2 ] ∼= Tj [vj2 ], . . ., and Ti[vim ] ∼= Tj [vjm ],
where {vi1 , vi2 , . . . , vim} and {vj1 , vj2 , . . . , vjm} are the children of vi and vj ,
respectively. Given k rooted trees T1, T2, . . . , Tk, where L(Ti) ⊆ {1, 2, . . . , n}
for 1 ≤ i ≤ k, a k-tuple (v1, v2, . . . , vk), where vi ∈ Ti, is said to be maximal
leaf-agreement if the following two conditions hold:

1. L(T1[v1]) = L(T2[v2]) = · · · = L(Tk[vk]).
2. There is no other sequence (u1, u2, . . . , uk) satisfying L(T1[u1])=L(T2[u2])=
· · · = L(Tk[uk]), and Ti[vi] is a subtree of Ti[ui] for 1 ≤ i ≤ k.

If a given k-tuple only satisfies Condition 1, then we call it leaf-agreement k-
tuple. In addition, a k-tuple is said to be maximal all-agreement isomorphic if
the following two conditions hold:

1. T1[v1] ∼= T2[v2] ∼= · · · ∼= Tk[vk].
2. There is no other sequence (u1, u2, . . . , uk) satisfying T1[u1] ∼= T2[u2] ∼= · · · ∼=

Tk[uk], and Ti[vi] is a subtree of Ti[ui] for 1 ≤ i ≤ k.

If a given k-tuple only satisfies Condition 1, then we call it all-agreement iso-
morphic k-tuple.

In this paper, we first show that the problem of finding all maximal leaf-
agreement subtrees among the given k phylogenetic trees (that is, finding the set
of maximal leaf-agreement k-tuples), can be solved in linear-time O(kn). Based
on this result, we also show that the problem of finding the set of maximal
all-agreement isomorphic subtrees (that is, maximal all-agreement isomorphic
k-tuples) can be solved in linear time O(kn).
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2 Preliminaries

Consider a rooted (unbounded degree) tree T . Let root(T ) denote the root of T ,
and V (T ) denote the set of nodes of T . For a node v in T , any node y on the
unique path from root(T ) to v is called an ancestor of v. If y is an ancestor of
v, then v is a descendant of y. Note that every node is both an ancestor and a
descendant of itself. If y is an ancestor of v and v 
= y, then y is a proper ancestor
of v and v is a proper descendant of y. If the last edge on the path from root(T )
to a node x is (y, x), then y is the parent of x, and x is a child of y. If two nodes
have the same parent, then they are siblings. In this paper, we assume that each
internal node of T has at least two children; thus the total size of T is bounded
by O(n).

For a k-tuple (v1, v2, . . . , vk), the ith position of the tuple is called the ith
dimension. For convenience, (v1, v2, . . . , vk) is said to be a solution k-tuple if it is a
maximal leaf-agreement k-tuple or a maximal all-agreement isomorphic k-tuple.
Given a set of k phylogenetic trees T1, T2, . . . , Tk with L(Ti) ⊆ {1, 2, . . . , n}, a
leaf v ∈ Ti, 1 ≤ i ≤ k, is said to be inactive if each proper ancestor cannot
appear in the ith dimension of a solution k-tuple. A node x is further said to be
unnecessary if it is inactive or it is a proper ancestor of an inactive node. Let
χ(Ti) be the set of inactive nodes of Ti. Also let χ =

⋃
1≤i≤k χ(Ti).

Lemma 1.
⋃k

i=1 L(Ti)−
⋂k

i=1 L(Ti) ⊆ χ.

Proof. If a node x /∈
⋂k

i=1 L(Ti), then the subtree rooted at each proper ancestor
of x contains x as a leaf. By the definitions of leaf-agreement and all-agrement
isomorphism, each proper ancestor of x cannot appear in the corresponding
dimension of a solution k-tuple. �

For a node v in a rooted tree T , let π(v) denote the unique path from v to the
root of T . Moreover, we say a node u /∈ π(v) is directly connected to π(v) if its
parent is in π(v).

Lemma 2. Let T1, T2, . . . , Tk be a set of k phylogenetic trees with L(Ti) ⊆
{1, 2, . . . , n}. If v is inactive of Ti, then any leaf which is directly connected
to π(v) is also inactive.

Proof. Let l be a leaf node directly connected to π(v) for an inactive node v.
Since each proper ancestor u of l is also a proper ancestor of v, the subtree rooted
at u contains both v and l. Therefore, u is not in any solution k-tuples. By the
definition, l is inactive. �

Corollary 3. Let T1, T2, . . . , Tk be a set of k phylogenetic trees with L(Ti) ⊆
{1, 2, . . . , n}. Also let v is an inactive node of Ti and u is one of its sibling. If u
is a leaf, then it is inactive.

Proof. It directly follows from Lemma 2. �
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The least common ancestor (lca) of two nodes u and v in a rooted tree T is the
node w that is an ancestor of both u and v and that has the greatest depth in T ,
i.e., w is the first commonly encountered node by traversing paths from u and v
to the root. For a set of nodes U = {u1, u2, . . . , up} in a rooted tree T , lcaT (U)
is used to denote an ancestor of u1, u2, . . . , up that has the greatest depth in T ,
i.e., lcaT (U) is the first commonly encountered node by traversing paths from
u1, u2, . . . , up to the root. The level of each node v ∈ T , denoted by level(v), is
the distance (number of edges) between v and the root.

3 Pruning Trees

The concept of our pruning algorithm is to delete those inactive nodes satisfying
the condition of Lemma 1 together with their ancestors (without deleting all
the inactive nodes). After pruning, all the resulting trees have the same leaves,
we then further process these trees using algorithms described in Section 4 and
Section 5.

Algorithm. Reconstructing Trees
Input: a set of k phylogenetic trees T1, T2, . . . , Tk with L(Ti) ⊆ {1, 2, . . . , n};
Output: a set of k auxiliary trees T1, T2, . . . , Tk with L(T1) = L(T2) = · · · =
L(Tk).

1. for each Ti, 1 ≤ i ≤ k do
1.1 for each v /∈

⋂k
j=1 L(Tj) do

1.2 delete v together with those nodes in π(v)
1.3 let Ti1 , Ti2 , . . . , Tiq be the resulting rooted subtrees of Ti after executing

the above two steps
1.4 if q > 1, then
1.5 makeapseudo root ri and let it be the commonparentofTi1, Ti2 ,. . . ,Tiq

1.6 return the resulting tree Ti

1.7 else Ti ← Ti /∗ q = 1. Return the original tree. ∗/
2. Output k auxiliary trees T1, T2, . . . , Tk.

For finding the desired k-tuples on T1, T2, . . . , Tk, we slightly modified the
definitions of maximal leaf-agreement and all-agreement isomorphic. A k-tuple
(v1, v2, . . . , vk), where vi is a non-root node in Ti, is also said to be maximal leaf-
agreement on T1, T2, . . . , Tk if it satisfies Condition 1 of the original definition and
Condition 2′: There is no other sequence (u1, u2, . . . , uk), where u1, u2, . . . , uk are
all non-pseudo roots, such that L(T1[u1]) = L(T2[u2]) = · · · = L(Tk[uk]), and
Ti[vi] is a subtree of Ti[ui] for 1 ≤ i ≤ k. Similarly, we can also defined a maximal
all-agreement isomorphic k-tuple on T1, T2, . . . , Tk.

Lemma 4. After executing Algorithm Reconstructing Trees for the input
instance transformation, we show that finding maximal leaf-agreement k-tuples
on T1, T2, . . . , Tk is equivalent to finding those on T1, T2, . . . , Tk.
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Proof. Suppose that (v1, v2, . . . , vk) is a maximal leaf-agreement k-tuple on T1,
T2, . . . , Tk. Clearly, L(T1[v1]) = L(T2[v2]) = · · · = L(Tk[vk]) and each Ti[vi],
1 ≤ i ≤ k, does not contain any inactive node in

⋃k
i=1 L(Ti)−

⋂k
i=1 L(Ti). In exe-

cuting Algorithm Reconstructing Trees, if the parent of root(Ti[vi]) is an un-
necessary node, then root(Ti[vi]) is directly connected to a pseudo root. In either
case, (v1, v2, . . . , vk) is also a maximal leaf-agreement k-tuple on T1, T2, . . . , Tk.

On the other hand, suppose that (v1, v2, . . . , vk) is a maximal leaf-agreement
k-tuple on T1, T2, . . . , Tk. Since each vi for all 1 ≤ i ≤ k, is not the pseudo
root of Ti, Ti[vi] is also a subtree of Ti with L(T1[v1]) = L(T2[v2]) = · · · =
L(Tk[vk]) = L(T1[v1]) = L(T2[v2]) = · · · = L(Tk[vk]). Moreover, if there is a
k-tuple (u1, u2, . . . , uk), where ui ∈ Ti, such that L(T1[u1]) = L(T2[u2]) = · · · =
L(Tk[uk]) and Ti[vi] is a subtree of Ti[ui] for 1 ≤ i ≤ k, then by Algorithm
Reconstructing Trees, Ti[ui] is also a subtree of Ti for 1 ≤ i ≤ k, which
contradicts to the fact that (v1, v2, . . . , vk) is a maximal leaf-agreement k-tuple
on T1, T2, . . . , Tk. Therefore, (v1, v2, . . . , vk) is also maximal leaf-agreement k-
tuple on T1, T2, . . . , Tk. �

As with a proof similar to that of Lemma 4, we have the following result.

Lemma 5. After executing Algorithm Reconstructing Trees for the input
instance transformation, we show that finding maximal all-agreement isomorphic
k-tuples on T1, T2, . . . , Tk is equivalent to finding those on T1, T2, . . . , Tk.

Lemma 6. Algorithm Reconstructing Trees can be implemented to run in
O(kn) time.

Proof. We first describe our data structure. A rooted tree with unbounded degree
is represented by the left-child, right-sibling representation1: Each node contains
a parent pointer par, and root[T ] points to the root of tree T . Instead of having
a pointer to each of its children, however, each node x has only two pointers, in
which left-child[x] points to the leftmost child of node x, and right-sibling[x]
points to the sibling of x immediately to the right. If node x has no children, then
left-child[x] =NIL (empty), and if node x is the rightmost child of its parent,
then right-child[x] =NIL. Note that this data structure use only O(n) space.

We next describe the implementation of our algorithm. For implementing
Steps 1.1–1.3, we first find all the leaves in

⋂k
i=1 L(Ti) using the auxiliary array

W [i, j], where 1 ≤ i ≤ n and 1 ≤ j ≤ k, such that W [i, j] = 1 if tree Tj has a leaf
labelled i (leaf i for short), and W [i, j] = 0 for otherwise. For each 1 ≤ i ≤ k, we
then compute the prefix-sum

∑n
j=1 W [i, j]. After this computation, if W [i, j] =

k, then leaf i belongs to
⋂k

i=1 L(Ti). This implies that
⋃k

i=1 L(Ti)−
⋂k

i=1 L(Ti)
can be found in O(kn) time. We then mark the corresponding unnecessary nodes
on Ti: For each node v ∈

⋃k
i=1 L(Ti) −

⋂k
i=1 L(Ti), we mark each ancestor if it

is unmark through pointer par() from v to the root. This marking on Ti takes
O(n) time. Therefore, the unnecessary nodes of all the k trees can be found in

1 For the remainder of this paper, a rooted tree is represented using this data structure
for implementing algorithms.
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O(kn) time. We then removed them from each Ti and obtain several subtrees
with the same time complexity.

We next describe the implementation of Step 1.4–1.7. During the above mark-
ing process, if there is an unmarked node with marked parent in Ti, then cre-
ate the pseudo node ri. Then, for each unmarked node x with marked parent,
set par(x) to ri. This step can be implemented to run in O(kn) time for all
trees. Note that Step 2 can be easily implemented. Therefore, Algorithm Re-
constructing Trees runs in O(kn) time. �

4 Maximal Leaf-Agreement Subtrees

Let T1, T2, . . . , Tk be a set of k phylogenetic trees. For two k-tuples (u1, u2, . . . , uk)
and (v1, v2, . . . , vk) where ui, vi ∈ Ti, we say that (u1, u2, . . . , uk) properly contains
(v1, v2, . . . , vk) if each Ti[vi] is a subtree of Ti[ui] for all 1 ≤ i ≤ k. On the other
hand, (u1, u2, . . . , uk) and (v1, v2, . . . , vk) are said to be disjoint if each of {ui, vi}
is not an ancestor of the other in Ti, for all 1 ≤ i ≤ k.

Lemma 7. Let (u1, u2, . . . , uk) and (v1, v2, . . . , vk) be two leaf-agreement k-tuples
(i.e., L(T [u1]) = L(T [u2]) = · · · = L(T [uk]) and L(T [v1]) = L(T [v2]) = · · · =
L(T [vk])). If there exists an integer 1 ≤ i ≤ k such that L(T [ui]) ∩ L(T [vi]) 
= ∅,
then either L(T [ui]) ⊆ L(T [vi]) or L(T [vi]) ⊆ L(T [ui]).

Proof. Suppose, by contradiction, that L(T [ui]) ∩ L(T [vi]) 
= ∅ and L(T [ui]) 
⊆
L(T [vi]) and L(T [vi]) 
⊆ L(T [ui]). Then, one of {ui, vi} is not an ancestor of each
other in Ti. Clearly, there is a unique path, denoted by P , in Ti connecting ui and
vi via the root. On the other hand, by the assumption that L(T [ui])∩L(T [vi]) 
=
∅, there exists a leaf l ∈ L(T [ui]) ∩ L(T [vi]). Then, there are two paths, one is
from ui to l and the other is form vi to l; thus we can find another path Q
different from P , which also connects ui and vi. This is a contradiction because
paths P and Q form a cycle in Ti. �

Form Lemma 7, we know that if L(T [uj]) and L(T [vj]) have a non-empty inter-
section, then one contains the other.

Lemma 8. If (u1, u2, . . . , uk) and (v1, v2, . . . , vk) are two leaf-agreement k-tuples,
then there are no distinct 1 ≤ i, j ≤ k such that L(T [ui]) ∩ L(T [vi]) 
= ∅, and
L(T [uj]) and L(T [vj]) are disjoint.

Proof. Suppose, by contradiction, that such i and j exist. Then, by Lemma 7,
one of {T [ui], T [vi])} is a subtree of the other. Without loss of generality, assume
that i < j and T [vi] is a subtree of T [ui]. Then, L(T [vi]) ⊆ L(T [ui]). Since
L(T [u1]) = L(T [u2]) = · · · = L(T [ui]) = · · · = L(T [uj]) = · · · = L(T [uk]), thus
L(T [vj]) = L(T [vi]) ⊆ L(T [ui]) = L(T [uj]), which contradicts to the assumption
that L(T [uj]) and L(T [vj]) are disjoint. �

Form Lemma 8, we know that if L(T [uj]) and L(T [vj]) have a non-empty in-
tersection, then each all the other pairs L(T [ui]) and L(T [vi]) have non-empty
intersection. By Lemma 8, we have the following immediate result.
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Lemma 9. Let (u1, u2, . . . , uk)and (v1, v2, . . . , vk) be two leaf-agreement k-tuples.
If L(T [vj]) and L(T [uj]) are disjoint for some j, then L(T [vi]) and L(T [ui]) are
disjoint for all 1 ≤ i ≤ k.

Lemma 10. Let (u1, u2, . . . , uk) and (v1, v2, . . . , vk) be two leaf-agreement k-
tuples. If L(T [vj]) ⊆ L(T [uj]) for some j, then L(T [vi]) ⊆ L(T [ui]) for all
1 ≤ i ≤ k.

Proof. By the fact that L(T [v1]) = L(T [v2]) = · · · = L(T [vj]) = · · · = L(T [vk]) ⊆
L(T [u1]) = L(T [u2]) = · · · = L(T [uj]) = · · · = L(T [uk]), the result holds. �

Lemma 11. For any two leaf-agreement k-tuples (u1, u2, . . . , uk) and (v1, v2,
. . . , vk), both are disjoint or one properly contains the other.

Proof. By Lemmas 7–10, the result holds. �

Given two phylogenetic trees T1 and T2 with the same leaves L(T1) = L(T2), we
define a function f1,2 : V (T1) �→ V (T2) such that f1,2(x) = y = lcaT2(L(T1[x])).
The following lemmas was shown in [16], which is useful to our algorithm.

Lemma 12. [16] Let T1 and T2 be two phylogenetic trees with L(T1) = L(T2),
and x be a node in T1 with children x1, x2, . . . , xm. Then,

– f1,2(x) = lcaT2(f1,2(x1), f1,2(x2), . . . , f1,2(xm)).
– L(T1[x]) = L(T2[f1,2(x)]) iff |L(T1[x])| = |L(T2[f1,2(x)])|.

In what follows, we first present a linear-time algorithm to find maximal leaf-
agreement 2-tuples (pairs) on two trees, and then extend it to compute max-
imal leaf-agreement k-tuples on k trees. For convenience, we call each node vi

in a maximal leaf-agreement (all-agreement) k-tuple (v1, v2, . . . , vk) as critical
node.

Algorithm. Maximal pairs(T1,T2)
Input: two phylogenetic trees T1 and T2 with L(Ti) ⊆ {1, 2, . . . , n};
Output: a set M of maximal leaf-agreement pairs.

1. Apply Algorithm Reconstructing Trees to output two auxiliary trees
T1 and T2.

2. Compute a set of leaf-agreement pairs S = {(v1, f1,2(v1))| |L(T1[v1])| =
|L(T2[f1,2(v1)])|}. By Lemma 12, this step can be carried out by a bottom-
up evaluation of trees. For convenience, we call each node in the output pairs
as a candidate.

3. Compute critical nodes of T1 as follows:
3.1 T ← T1

3.2 repeat processing each node v in increasing order of level(v) of the
current tree T

3.3 if v is a candidate and it is not the pseudo root then
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3.4 mark v and delete all the nodes of T [v]
3.5 T ← T − T [v]

4. Output M = {(x, y)| (x, y) ∈ S and x is marked}.

Lemma 13. Algorithm Maximal pairs(T1,T2) correctly computes all the max-
imal leaf-agreement pairs.

Proof. It is clear that after executing Steps 1–2, all the candidates are collected
in S. By Lemma 11, for any two pairs, either they are disjoint or one properly
contains the other. This implies that v ∈ T1 is critical iff it is a candidate and its
ancestors are all not candidates. Clearly, after executing Steps 3, all the critical
nodes in T1 are obtained because each candidate which has a candidate ancestor is
deleted in Step 3.4. Lemma 10 implies that if x is marked candidate, then (x, y)(=
(x, f1,2(x))) is a maximal leaf-agreement pair. Therefore, all the maximal pairs
can be found in Step 4 of the algorithm. �

Lemma 14. Algorithm Maximal pairs(T1,T2) can be implemented to run in
O(n) time.

Proof. By Lemma 6, Step 1 can be implemented to run in O(n) time. By
Lemma 12 and O(1)-time lca query [12], Step 2 can be implemented to run
in O(n) time by a bottom-up evaluation of trees.

Step 3 can be implemented as follows: level(v) for all nodes v can be computed
in O(n) time using breadth-first-search. The increasing order of level(v)’s can be
obtained by counting-sort to sort n1(= O(n)) non-negative integers level(v)’s
with range [0, 1, . . . , n1] in O(n) time. During travelling of the current tree T , when
a unmarked candidate v is visited, we mark it and delete all the nodes of T [v] in
O(p) time, where p is the number of nodes of T [v]. Since all the nodes of T1 are
processed at most twice, Step 3 can be implemented to run in O(n) time.

Since |S| = O(n), Step 4 can be implemented to run in O(n) time. Therefore,
Algorithm Maximal pairs(T1,T2) can be implemented to run in O(n) time. �

Our result on two trees can be further extended to solve the problem on k trees
as shown below.

Theorem 15. Given a set of k phylogenetic trees T1, T2, . . . , Tk with L(Ti) ∈
{1, 2, . . . , n}, all the maximal leaf-agreement k-tuples can be found in O(kn) time.

Proof. We describe our algorithm with the following steps: In Step 1, we apply
algorithm Reconstructing Trees to generate k auxiliary trees T1, T2, . . . , Tk.
Note that L(T1) = L(T2) = · · · = L(Tk). By Lemma 6, this step takes O(kn)
time.

In Step 2, we find all the leaf-agreement k-tuples S = {(v1, v2, . . . , vk)| v1, v2,
. . . , vk are all non-seudo roots and L(T1[v1]) = L(T2[v2]) = · · · = L(Tk[vk])} as
follows: By utilizing Step 2 of Algorithm Maximal pairs(T1,Ti) for all 2 ≤
i ≤ k, we can find f1,2(x), f1,3(x), . . . , f1,k(x) for each non-pseudo root node
x ∈ T1. Then, (v, f1,2(v), . . . , f1,k(v)) ∈ S iff |L(T1[v])| = |L(T2[f1,2(v)])| = · · · =
|L(Tk[f1,k(v)])|. Since Step 2 of Algorithm Maximal pairs can be implemented
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to run in O(n) time by the proof of Lemma 14, thus this step can be implemented
to run in O(kn) time.

In Step 3, we mark all the critical nodes of T1 using Step 3 of Algorithm
Maximal pairs. This step can be implemented to run in O(n) time according
to the proof of Lemma 14.

In Step 4, we output {(v, f1,2(v), . . . , f1,k(v))| (v, f1,2(v), . . . , f1,k(v)) ∈ S and
v is marked}. Since |S| = O(n), thus this step can be implemented to run in O(n)
time. From the above analysis of Steps 1–4, the overall time complexity is O(kn).
As with a similar argument to show Lemma 13, it is not difficult to verify the
correctness of the algorithm. Therefore, the result holds. �

5 Maximal All-Agreement Isomorphic Subtree

Given a set of k phylogenetic trees, we aim at computing all the maximal all-
agreement isomorphic k-tuples by utilizing the method presented in Section 4.
We begin solving the problem on k = 2. For two nodes x ∈ T1 and y ∈ T2,
it is clear that (x, y) is a maximal all-agreement isomorphic pair implies that
(x, y) is a maximal leaf-agreement pair. By the definition of T1

∼= T2, we have
the following lemma.

Lemma 16. Let T1 and T2 be two phylogenetic trees with L(T1) = L(T2), and let
v be a node in T1 with the children {v1, v2, . . . , vm}. If label(v) = label(f1,2(v))
and T1[vi] ∼= T2[f1,2(vi)] for all 1 ≤ i ≤ m, and f1,2(vi) are all the children of
f1,2(v), then T1[v] ∼= T2[f1,2(v)]

We now present a linear-time algorithm to find maximal all-agreement isomor-
phic pairs on two trees.

Algorithm. Isomorphic pairs(T1,T2)
Input: two phylogenetic trees T1 and T2 with L(Ti) ⊆ {1, 2, . . . , n};
Output: a set I of maximal all-agreement isomorphic pairs.

1. Apply Algorithm Maximal pairs(T1,T2) to output a set of maximal leaf-
agreement pairs M = {(x, y)}.

2. Test whether T1[x] and T2[y] are all-agrement isomorphic for each pair
(x, y) ∈M :
2.1 for each pair (x, y) ∈ M do
2.2 for each node v in non-increasing order of level(v) of T1[x] do
2.3 if v is a leaf then
2.4 mark v

2.5 else /∗ v is an internal node of T1[x] ∗/
2.6 let {v1, v2, . . . , vm} be the children of v

2.7 if label(v) = label(f1,2(v)) and all vi’s are marked and f1,2(vi)’s
are all the children of f1,2(v) then
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2.8 mark v
2.9 else ignore this pair

3. Output I = {(x, y)| (x, y) ∈ M and x is marked}.

Lemma 17. Algorithm Isomorphic pairs(T1,T2) correctly computes all the
maximal isomorphic pairs.

Proof. For two nodes x ∈ T1 and y ∈ T2, T1[x] and T2[y] are maximal
all-agreement isomorphic implies that L(T1[x]) = L(T2[y]) and T1[x] and T2[y] are
not subtrees of another two leaf-agreement trees T1[x′] and T1[y′], respectively.
Thus we only need to verify that for each maximal leaf-agreement pair (x, y),
whether T1[x] ∼= T2[y] (Steps 1–2). We define the height of a node v, denoted by
height(v), in a tree is the number of edges on the longest simple downward path
from the node to a leaf. We next show by induction that Steps 2.1–2.9 correctly
verify whether two subtrees are all-agreement isomorphic:

Claim 1. During executing Steps 2.1–2.9, if a node v ∈ T1 is marked, then
T1[v] ∼= T2[f1,2(v)].

Proof of the Claim: We prove the claim by induction on height(v).
Basis: height(v) = 0. Then v is a leaf. The result holds because v ∈ T1 and
f1,2(v) ∈ T2 are two one-node trees with the same label. Assume the result
holds on height(v) = h > 0.
Induction step: Now we consider height(v) = h + 1. Let v1, v2, . . . , vm be
the children of v. By Steps 2.7–2.8, v is marked provided that v1, v2, . . . , vm

are all marked. By the induction hypothesis, T1[v1] ∼= T2[f1,2(v1)], T1[v2] ∼=
T2[f1,2(v2)], . . . , T1[vm] ∼= T2[f1,2(vm)] hold. Moreover, label(v) = label
(f1,2(v)) and f1,2(vi)’s for all 1 ≤ i ≤ m are the children of f1,2(v) (ver-
ified by Step 2.7). By Lemma 16, T1[v] ∼= T2[f1,2(v)]. The result of this claim
holds.

Therefore, for a maximal leaf-agreement pair (x, y), if x is marked, then
T1[x] ∼= T2[f1,2(x)](= T2[y]), then our algorithm outputs it by Step 3. On the
other hand, if x is unmarked, then there exists some descendant, say v, of x
such that a subtree T1[v] of T1[x] is not all-agreement isomorphic to a subtree
T2[f1,2(v)] of T2[y]. In such a case, Step 2.9 will ignore the pair (x, y). Thus the
algorithm is correct. �
We next analyze the time-complexity of Algorithm Isomorphic pairs(T1,T2).

Lemma 18. Algorithm Isomorphic pairs(T1,T2) can be implemented to run
in O(n) time.

Proof. By Lemma 14, Step 1 can be implemented to run in O(n) time.
Before proceeding to analyze Step 2, we first note that level(v)’s for all nodes

v in T1 can be computed in O(n) time. Assume that the number of nodes of T1 is
n1 = O(n). By utilizing the counting sort to sort n1 non-negative integers with
range [0, 1, . . . , n1], the decreasing order of level(v)’s can be computed in O(n)
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time. We also note that f1,2(v)’s for all nodes v in T1 can also be computed in
O(n) time by the proof of Lemma 14. We assume that label(f1,2(v)) for all nodes
v ∈ T1 are stored in an auxiliary table during the computation of Algorithm
Maximal pairs. Moreover, by utilizing the representation of T2, we can com-
pute, in advance, the number of children of each node in T2 in O(n2+m2) = O(n)
time, where n2 and m2 are the number of nodes and edges of T2, respectively.
Then, Step 2 can be implemented as follows: We visit all the nodes of T1 in
non-increasing order of level()’s in O(n) time, and process each node v in O(1)
time depending on the following two cases:

Case 1: v is a leaf. Mark v.
Case 2: v is an internal node. Assume that {v1, v2, . . . , vm} be the children of

v. We mark v if label(v) = label(f1,2(v)) and all vi’s are marked and f1,2(vi)
are all the children of f1,2(v). This checking can be carried out in O(deg(v))
time, where deg(v) is the number of children of v in T1.

After travelling T1 together with the above operations, Step 2 can be imple-
mented to run in O(n1 + m1) = O(n) time.

Because |M | = O(n), Step 3 can be easily implemented to run in O(n) time.
Therefore, Algorithm Isomorphic pairs(T1,T2) can be implemented to run in
O(n) time. �

Our result on two trees can be further extended to solve the problem on k trees
as shown below.

Theorem 19. Given a set of k phylogenetic trees T1, T2, . . . , Tk with L(Ti) ⊆
{1, 2, . . . , n}, the maximal all-agreement isomorphic k-tuples can be found in
O(kn) time.

Proof. Our algorithm is described as follows: First, we generate the maximal
leaf-agreement k-tuples in O(kn) time by Theorem 15.

Next, for each maximal leaf-agreement k-tuple (v1, v2, . . . , vk), we can verify
whether T1[v1] ∼= T2[v2] ∼= · · · ∼= Tk[vk] as follows: Note that T1[v1] ∼= T2[v2] ∼=
· · · ∼= Tk[vk] iff T1[v1] ∼= T2[v2], T1[v1] ∼= T3[v3], . . . , T1[v1] ∼= Tk[vk]. That
is (v1, v2, . . . , vk) is maximal all-agreement isomorphic iff (v1, v2), (v1, v3), . . . ,
(v1, vk) are all maximal all-agreement isomorphic pairs. By executing Step 2 of
Algorithm Isomorphic pairs(T1,Ti) for all 2 ≤ i ≤ k, we can verify whether
(v1, vi)’s are maximal all-agreement isomorphic pairs. We note that the number
of the maximal all-agreement isomorphic k-tuples is bounded by O(n). As with
a similar method to implement Step 2 of Algorithm Isomorphic pairs(,), the
maximal all-agreement isomorphic k-tuples can be obtained in O(kn) time. �
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Véronique Cortier1, Steve Kremer2, Ralf Küsters3, and Bogdan Warinschi4
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Abstract. The standard symbolic, deducibility-based notions of secrecy are in
general insufficient from a cryptographic point of view, especially in presence
of hash functions. In this paper we devise and motivate a more appropriate se-
crecy criterion which exactly captures a standard cryptographic notion of secrecy
for protocols involving public-key enryption and hash functions: protocols that
satisfy it are computationally secure while any violation of our criterion directly
leads to an attack. Furthermore, we prove that our criterion is decidable via an NP
decision procedure. Our results hold for standard security notions for encryption
and hash functions modeled as random oracles.

1 Introduction

Two distinct kinds of models have been developed for the rigorous design and analysis
of cryptographic protocols: the so-called Dolev-Yao, symbolic, or formal models on
the one hand and the cryptographic, computational, or concrete models on the other
hand. In symbolic models messages are considered as formal terms and the adversary
can manipulate these terms based on a fixed set of operations. The main advantage of
the symbolic approach is its relative simplicity which makes it amenable to automated
analysis tools (see, e.g., [6,15]). In cryptographic models, messages are actual bit strings
and the adversary is an arbitrary probabilistic polynomial-time (ppt) Turing machine.
While proofs in this kind of models yield strong security guarantees, the proofs are
often quite involved and only rarely suitable for automation (see, e.g., [11,5]).

Starting with the seminal work of Abadi and Rogaway [1], a significant amount
of research has been directed at bridging the gap between the two approaches. The
goal is to obtain the best of both worlds: simple, automated security proofs that entail
strong security guarantees. The typical approach is to show that the executions of the
computational adversaries correspond to executions of the symbolic adversaries, and
then use this result to show how to translate security notions from the symbolic world
to the computational world.

For some security notions like integrity and authentication, the derivation of com-
putational guarantees out of symbolic ones can be done with relative simplicity [3,14].
In contrast, analogous results for the basic notion of secrecy proved significantly more
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elusive and have appeared only recently [4,10,12,7]. The apparent reason for this situ-
ation is the striking difference between the definitional ideas used in the two different
models. Symbolic secrecy typically states that the adversary cannot deduce the entire
secret from the messages it gathers in an execution. On the other hand, computational
secrecy requires that not only the secret, but also no partial information is leaked to
the adversary. A typical formulation that is used requires the adversary to distinguish
between the secret and a completely unrelated alternative.

OUR CONTRIBUTIONS. In this paper we investigate soundness results for symbolic se-
crecy in the presence of hash functions. One of the main motivations for considering
hash functions, which have not been considered in the aforementioned results1, is that
they present a new challenge in linking symbolic and cryptographic secrecy: Unlike
ciphertexts, hashes have to be publicly verifiable, i.e., any third party can verify if a
value h is the hash value corresponding to a given message m. This implies that a sim-
ple minded extension of previous results on symbolic and computational secrecy fails.
Assume, for example, that in some protocol the hash h = h(s) of some secret s is sent
in clear over the network. Then, while virtually all symbolic models would conclude
that s remains secret (and this is also a naive assumption often made in practice), a
trivial attack works in computational models: given s, s′ and h, compare h with h(s)
and h(s′), and therefore recover s. Similar verifiability properties also occur in other
settings, e.g. digital signatures which do not reveal the message signed.

In this paper we propose a new symbolic definition for nonce secrecy in protocols
that use party identities, nonces, hash functions, and public key encryption. The defini-
tion that we give is based on the intuitively appealing concept of patterns [1].

The central aspect of our criterion is that it captures precisely security in the compu-
tational world in the sense that it is both sound and complete. More specifically, nonces
that are secret according to our symbolic criterion are also secret according to a stan-
dard computational definition. Furthermore, there exist successful attacks against the
secrecy of any nonce that does not satisfy our definition. Our theorems hold for pro-
tocols implemented with encryption schemes that satisfy standard notions of security,
and for hash functions modeled as random oracles. In the proofs we combine different
techniques from cryptography and make direct use of a (non-trivial) extension of the
mapping theorem of [14] to hash functions.

Our second important result is to prove the decidability of our symbolic secrecy cri-
terion (w.r.t. a bounded number of sessions). This is a crucial result that enables the
automatic verification of computational secrecy for nonces. We give an NP-decision
procedure based on constraint solving, a technique that is suitable for practical imple-
mentations [2]. While the constraint solving technique is standard in automatic pro-
tocol analysis, we had to adapt it for our symbolic secrecy criterion: For the standard
deducibility-based secrecy definition it suffices to transform constraint systems until
one obtains a so-called simple form. However, for our symbolic secrecy criterion further
transformations might be required in order for the procedure to be complete. Identify-
ing a sufficient set of such transformations and proving that they are sufficient turned
out to be non-trivial.

1 One exception is [12] where hash functions are allowed, but only as randomness extractors.
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RELATED WORK. The papers that are immediately related to our work are those of
Cortier and Warinschi [10], Backes and Pfitzmann [4], and Canetti and Herzog [7], who
study computationally sound secrecy properties, as well as the paper by Janvier et al.
[13], that presents a soundness result in the presence of hash functions. In this context,
our work is the first to tackle computationally sound secrecy in the presence of hashes.
We study the translation of symbolic secrecy into a computational version in a setting
closely related to that in [10]. However, the use of hashes requires, as explained above,
new notions and non-trivial extensions of the results proved there. In [13], Janvier et al.
present a soundness result that differs however from this one. On the one hand they
do not consider computational secrecy of nonces sent under hash functions. On the
other hand, they present a new security criterion for hash functions, which is not the
random oracle, although no implementation of a hash function satisfying their criterion
is currently known. The work in [4] and [7] is concerned with secrecy properties of key-
exchange protocols in the context of simulation-based security, and hence, they study
different computational settings. Interestingly, the symbolic criterion used in [7] is also
formalized using patterns, but their use is unrelated to ours. None of the mentioned
works considers decidability issues.

PAPER OUTLINE. In the following section, we introduce the symbolic and computa-
tional models. Our symbolic secrecy criterion is developed in Section 3. We state and
prove the soundness and completeness of this criterion w.r.t. computational secrecy in
Section 4, and prove its decidability in Section 5. Details about the models and proofs
can be found in [9].

2 The Symbolic and Concrete Protocol and Intruder Models

2.1 The Symbolic Model

We define (symbolic) messages and terms, how honest agents and the (Dolev-Yao-style)
intruder can derive messages from a set of messages, and how protocols are specified.

MESSAGES AND TERMS. To define messages, we consider an infinite set A of agent
identities, infinite sets Nonceag , Nonceadv, Randag , and Randadv (nonces and ran-
dom coins generated by the agents and the adversary, respectively), and an infinite set
Garbage representing garbage messages. All of these sets are assumed to be pairwise
disjoint. We set Nonce = Nonceag ∪Nonceadv and Rand = Randag ∪ Randadv.

The set of messages M (w.r.t. A, Nonce, and Rand) is defined by the following gram-
mar: M ::= A | Nonce | ek(A) | dk(A) | 〈M, M〉 | {M}Rand

ek(A) | h(M) | Garbage

where ek(a) and dk(a) with a ∈ A denote the public and private key of a, respectively,
〈m, m′〉 denotes pairing of m and m′, {m}r

ek(a) denotes the message m encrypted with
ek(a) using the random coins r, and h(m) is the hash of m. We define the following
subsets of M: EKey, DKey, Ciphertext, Hash, and Pair are the sets of all messages
starting with ek(·), dk(·), {·}··, h(·), and 〈·, ·〉, respectively. We sometimes refer to the
sets introduced above as types.

We assume an infinite set of typed variables X where the types are as above and for
a variable of a certain type only messages of this type may be substituted. In particular,
we assume variables Ai, i ∈ {1, . . . , k}, for agent identities and variables Xj

Ai
, Lj

Ai
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j ∈ N, for fresh nonces and random coins generated by Ai. The set of terms T(X) over
X is defined analogously to the set of messages.

DERIVING MESSAGES. terms. The set of terms that can be derived from φ is defined by
the deduction rules given in Figure 1. We write φ & t to say that t can be derived from
φ. For example, {〈dk(a), {c}r

ek(a)〉} ∪ A & {c}r′
ek(b) where b ∈ A and r′ ∈ Randadv.

φ � m
m ∈ φ

φ � b

φ � ek(b)
b ∈ A ∪ X.a

φ � m1 φ � m2

φ � 〈m1, m2〉
φ � 〈m1, m2〉

φ � mi
i ∈ {1, 2}

φ � ek(b), φ � m

φ � {m}r
ek(b)

r ∈ Randadv

φ � {m}r
ek(b) φ � dk(b)

φ � m

φ � m

φ � h(m)

Fig. 1. Deduction rules

PROTOCOLS. Roles are usually specified by a sequence of input/output actions. In order
to model branching protocols, the roles we consider are ordered edge-labeled finite trees
where every edge is labeled by an agent rule (l, r), where l, r ∈ T(X) are messages with
variables, and certain syntactic conditions are satisfied such that the actions can actually
be carried out (in a computational interpretation). A k-party protocol is a mapping
Π : [k] → Roles where [k] = {1, . . . , k} and Roles denotes the set of roles.

SYMBOLIC EXECUTION OF A PROTOCOL. The symbolic execution of a k-party proto-
col is modeled as a finite sequence of global states. A global state is a triple (SId, f,ϕ)
where ϕ is a finite set of messages (the current intruder knowledge), SId is a finite set of
session ids, and f maps every session id in SId to the current state of the corresponding
session. This state is called the local state and is of the form (i, σ, p, (a1, a2, . . . , ak))
where i ∈ [k] is the index of the role that is executed in this session, σ is a substitu-
tion whose domain is a subset of the variables occurring in Π(i) (i.e., σ determines
the messages assigned to variables so far in the current session), p is a node of Π(i)
and determines at what node the agent currently stands, and (a1, a2, . . . , ak) ∈ Ak is
the tuple of names of the agents that are involved in the session, where ai is the agent
carrying out the current session (supposedly with the mentioned agents aj , j 
= i). The
initial state is qI = (∅, ∅, A∪ EKey∪Nonceadv), i.e., the intruder knows all names and
public keys of agents as well as the infinite set of intruder nonces.

We allow three kinds of transitions between global states.

– The adversary corrupts a set of parties and thereby learns the private keys of the

agents: qI
corrupt(a1,...,al)−−−−−−−−−−−→ (∅, ∅, A ∪ EKey ∪ {dk(aj) | 1 ≤ j ≤ l}). Note that

this transition can only be applied at the beginning (static corruption).

– The adversary can initiate new sessions: (SId, f,ϕ)
new(i,a1,...,ak)−−−−−−−−−−→ (SId′, f ′,ϕ)

where SId′ and f ′ are defined as follows. Let sid = |SId|+1 be the session identifier
of the new session where |SId| denotes the cardinality of SId. We define SId′ =
SId ∪ {sid}. The function f ′ is defined as: f ′(sid′) = f(sid′) for every sid′ ∈ SId
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and f ′(sid) = (i, σ, ε, (a1, . . . , ak)) where ε denotes the root of the role tree and
σ(Aj) = aj for 1 ≤ j ≤ k and σ(Xj

Ai
) = nai,j,s, σ(Lj

Ai
) = lai,j,s for j ∈ N.

– The adversary can send messages: (SId, f,ϕ)
send(sid,m)−−−−−−−→ (SId, f ′,ϕ′) where sid ∈

SId, m ∈ M, and ϕ′ and f ′ are defined as follows. We define f ′(sid′) = f(sid′) for
every sid′ 
= sid. Suppose that f(sid) = (i, σ, p, (a1, . . . , ak)) and (l1, r1), . . . , (lh,
rh) are the labels of edges leaving p (in this order). We distinguish two cases:
• there does not exist a j such that m and ljσ match. Then, we define f ′(sid) =

f(sid) and ϕ′ = ϕ (the state remains unchanged);
• else, let j be minimal s. t. m and ljσ match. Let θ be the matcher, i.e., m=(ljσ)θ.

We define f ′(sid)=(i, σ ∪ θ, pj, (a1,. . . ,ak)) and ϕ′=ϕ∪{(rjτai,sid)σθ}.

A finite sequence of global states is called a symbolic execution trace (for a protocol
Π) if it starts with the initial global state qI and two consecutive global states in this
sequence are connected via one of the above transitions. We say that a trace is valid

if every send transition (SId, f,ϕ)
send(sid,m)−−−−−−−→ (SId, f ′,ϕ′) verifies that the adversary

could actually deduce m, that is ϕ & m. The set of valid symbolic execution traces (for
a protocol Π) is denoted by Execs(Π). The set of valid set of messages is defined by
Msgs(Π) = {ϕ | (SId, f,ϕ) is the last state of a valid execution trace}.

2.2 The Concrete Model

The concrete model is defined w.r.t. an encryption schemeAE = (Ke, Enc, Dec), which
we now fix once and for all. Hashing is modeled by the random oracle.

CONCRETE MESSAGES. Concrete messages are bit strings which carry type informa-
tionwhich can be efficiently computed. In bit strings of type Pair, the two components
can be efficiently retrievedand strings of type Ciphertext carry the public key that sup-
posedly was used to encrypt the plaintext. The set of bit strings is denoted by Cη. This
set depends on the security parameter η as this parameter determines the length of agent
names, nonces, and keys. Substitutions now map variables (of some type) to concrete
messages (of the same type).

CONCRETE EXECUTION OF A PROTOCOL. A concrete global state is a 4-tuple (SId, f,
ϕ,H) where ϕ is a finite set of bit strings, SId is a finite set of session ids, and f maps
every session id in SId to the current state of the corresponding session (the concrete
local states). A concrete local state is defined just as a symbolic one, except that vari-
ables are now mapped to bit strings and agent names are also bit strings. The fourth
component carries the state of the random oracle: H is a set of couples (m, h) where
m is a bit string and h its corresponding hash value. A protocol is executed by running
a ppt Turing machine, the (concrete) adversary, which may make queries correspond-
ing to the transitions in the symbolic model. We allow four kinds of transitions between
global states, which we will refer to by corrupt, new, send transitions, and hash queries.
The semantics of the first three queries is defined by analogy with the formal execu-
tion model. In addition, the adversary may also make queries to the random oracle:

(SId, f,ϕ,H)
hash(m)−−−−−→ (SId, f,ϕ,H′) where H′ is defined as follows. If there exists

n such that (m, n) ∈ H, then H′ = H and we define h = n. Else a hash value h is
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generated at random for m andH′ = H∪{(m, h)}. In any case, h is returned to the ad-
versary. A finite sequence of concrete global states is called a concrete execution trace
if it starts with the initial global state. Obviously, since the adversary is a ppt Turing
machine the length of the trace is bounded by a polynomial in the security parameter η.
Also, the sequence of random coins RΠ used in the execution by the honest agents and
the random oracle as well as the sequence of random coins RA used by the adversary
can be bounded in length by polynomials gA(η) and pA(η), respectively. Clearly, if RΠ

and RA are fixed, we obtain a uniquely determined concrete trace, which we denote by
ExecΠ(RΠ ),A(RA)(η).

3 Symbolic and Computational Secrecy Properties

In this section we recall the computational definition of secrecy and introduce our new
symbolic definition for secrecy.

COMPUTATIONAL SECRECY. Computational secrecy requires that no partial informa-
tion is leaked to the adversary. The typical way to formalize this idea is to require that
the secret s is indistinguishable from an unrelated random bitstring s′ chosen (from an
appropriate distribution). The secrecy of nonce variable XAi (the nonce generated by
Ai in the ith role of the protocol) in protocol Π is defined as follows.

Definition 1. Consider the experiment Expsec b
ExecΠ,A(i, j)(η) parametrized by a bit b

and that involves an adversary A against protocol Π . The experiment takes as input a
security parameter η and starts by generating two random nonces n0 and n1 in Cη.n.
Then the adversary A starts interacting with the protocol Π as in the execution de-
scribed by ExecΠ,A(η). At some point in the execution the adversary initiates a session
s in which the role of Ai is executed, and declares this session under attack. In this
session, the variable Xj

Ai
is instantiated with nb. The rest of the execution is exactly as

in ExecΠ,A(η). At some point the adversary requires the two nonces n0 and n1 and has
to output a guess d. The bit d is the result of the experiment. We define the advantage of
the adversary A by:

Advsec
ExecΠ,A(i, j)(η) = Pr

[
Expsec 1

ExecΠ,A(i, j)(η)=1
]
− Pr

[
Expsec 0

ExecΠ,A(i, j)(η)=1
]

We say that nonce Xj
Ai

is computationally secret in protocol Π , and we write Π |=c

SecNonce(i, j) if for every p.p.t. adversary A its advantage is negligible.

SYMBOLIC SECRECY. As explained in the introduction, weak secrecy is not sufficient
to capture the standard indistinguishability-based notion used in computational settings.
The new notion of secrecy we propose here relies on the intuitively appealing concept
of patterns [1]. Roughly, the pattern of an expression is obtained by replacing with �,
all the subterms of the expression that are secret. In our case, a subterm T of T ′ is secret
if, even when given T the adversary cannot verify that T has been used to construct T ′.
Formally, we add T to the knowledge set φ in the deduction relation. The ideas behind
our definition of patterns are related to offline guessing attacks, where the adversary
is given the weak secret and should be unable to test whether the given weak secret is
indeed the one used in the observed messages.
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Definition 2 (Patterns). Given a set of closed terms φ = {M1, M2, . . . , Mk} and a
term T , we define PatT (φ) = {PatφT (M1), PatφT (M2), . . . , PatφT (Mk)}, where
PatφT (M) defined recursively by:

PatφT (a) =
{

a if φ, T & a
� otherwise

PatφT (〈M1, M2〉) = 〈PatφT (M1), PatφT (M2)〉

PatφT ({M}r
ek(a)) =

{
{PatφT (M)}r

ek(a) if φ, T & dk(a) or if r ∈ Randadv

� otherwise

PatφT (h(M)) =
{

h(PatφT (M)) if φ, T & M
� otherwise

PatφT is extended to set of messages as expected: PatφT (S) =
⋃

t∈S PatφT (t).

The messages of φ may contain some subterms of the form {M}r
ek(a) where r ∈

Randadv. Because of the random coins such messages must have been build by the
adversary and M should be deducible. Thus we consider φ augmented with such mes-
sages: φ = φ ∪ {M | {M}r

ek(a) subterm of φ}. For any valid message set φ (that is

φ ∈ Msgs(Π) for some protocol Π), we can show that φ & M for every M ∈ φ.

Definition 3 (Nonce secrecy). Let Π be a protocol and Xj
Ai

a nonce variable occur-

ring in some role Ai. We say that Xj
Ai

is secret in Π and we write Π |=s SecNonce(i, j),
if for every valid set of messages φ ∈ Msgs(Π) it holds that for every session number
s, the symbolic nonce nai,j,s does not occur in Patnai,j,s(φ).

To better appreciate these definitions, consider the following examples.

1. Let φ1 = {h(〈nb, n
′〉)} = φ1. Then Patnb

(φ1) = {�}. φ1 preserves the indistin-
guishability of nb since, intuitively, nb is hidden by the secret nonce n′.

2. Let φ2 = {h(〈nb, {n′}r
ek(a)〉), n′} where r 
∈ Randadv. Then φ2 = φ2 and

Patnb
(φ2) = {�, n′}. In this example, the encryption of n′ does hide nb.

3. Let φ3 = {h(〈nb, {n′}r
ek(a)〉)} where r ∈ Randadv. Then φ3 = φ3 ∪ {n′} and

Patnb
(φ3) = {h(〈nb, {n′}r

ek(a)〉), n′}. We have that nb occurs in Patnb
(φ3). This

corresponds indeed to an attack. As n′ has been encrypted by the adversary himself
he knows the ciphertext. Given n0 and n1 he computes both h(〈n0, {n′}r

ek(a)〉) and
h(〈n1, {n′}r

ek(a)〉) and compares them to h(〈nb, {n′}r
ek(a)) yielding the attack.

4. Let φ4 = {{〈h(nb), h(n′)〉}r
ek(a), dk(a)} where r 
∈ Randadv. Then φ4 = φ4 and

Patnb
(φ4) = {{〈h(nb), �〉}r

ek(a), dk(a)}. Again, nb does occur in Patnb
(φ1). For

this attack an intruder may get h(nb) by decrypting and projecting the message
{〈h(nb), h(n′)〉}r

ek(a) and compare h(nb) with h(n0) and h(n1) that he may com-
pute from n0 and n1.

Our notion of secrecy has a useful equivalent formulation described in the follow-
ing lemma. Informally, the lemma states that all unencrypted occurrences of the secret
nonce in a set of messages are such that they occur in a term t that is hashed, and such
that t itself can not be computed from φ and n.
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Lemma 1. Let φ be an arbitrary set of messages and n a nonce symbol that occurs in
φ. n does not occur in Patn(φ) if and only if φ 
& n and ∀M subterm of φ such that
φ & M , ∀p such that M |p = n, so that there is no encryption along p, ∃p′ < p such
that 1) M |p′ = h(M ′) and 2) φ, n 
& M ′.

4 Symbolic Secrecy Is Equivalent to Computational Secrecy

To prove the soundness and the completeness of our secrecy criterion, we proceed in two
steps: i) relate symbolic and concrete traces and ii) prove equivalence of the symbolic
and computational notions.

RELATING SYMBOLIC AND CONCRETE TRACES. The first step linking security prop-
erties in symbolic and concrete models is to exhibit a relation between individual ex-
ecution traces. The relation is similar to that developed in previous works [14,10], but
our definitions and results have to deal with the use of random oracles in computational
executions. In line with common practice in symbolic models, hash applications (ex-
plicitly captured as queries to the random oracle by concrete traces) are not reflected by
the symbolic traces. Therefore, we define the hash-query free trace clean hash(tc) asso-
ciated to the concrete trace tc = (SIdc

1, g1,ϕ1,H1), . . . , (SIdc
n, gn,ϕn,Hn). The trace

clean hash(tc) is the concrete trace (SIdc
i1 , gi1 ,ϕi1 ,Hi1), . . . , (SIdc

ik
, gik

,ϕik
,Hik

),
obtained by removing from tc the states that are the result of a hash request.

Definition 4. Let ts = (SIds
1, f1, φ1), . . . , (SIds

n, fn, φn) be a symbolic execution trace
and let clean hash(tc) = (SIdc

1, g1,ϕ1,H1), . . . , (SIdc
n, gn,ϕn,Hn) be the hash-query

free trace of concrete execution trace tc.

– We say that trace tc is a concrete instantiation of ts with (partial) mapping c : M →
Cη and we write ts 'c tc if for every  (1 ≤  ≤ n) it holds that SIds

� = SIdc
�

and for every sid ∈ SIds
� if f�(sid) = (σsid, isid, psid, (a1, . . . , ak)) and g�(sid) =

(τ sid, jsid, qsid, (a1, . . . , ak)) then τ sid = c ◦ σsid, isid = jsid and psid = qsid.
– Trace tc is a concrete instantiation with Dolev-Yao hash queries of ts and we write

ts ' tc if there exists a partial, injective function c : M → Cη such that ts 'c tc

and for every 1 ≤ k ≤ n, for every message m such that (m, h) ∈ Hk for some h,
there exists a term M such that c(M) = m and φk & M .

Proposition 1. Let Π be an executable protocol. If the encryption scheme AE is
IND-CCA secure, and the hash functions are random oracles, then for any p.p.t. al-
gorithm A

Pr
[
∃ts ∈ Execs(Π) | ts ' Execc

Π(RΠ ),A(RA)(η)
]
≥ 1− νA(η)

where the probability is over the choice (RΠ , RA) $← {0, 1}pA(η) × {0, 1}gA(η) and
νA(·) is some negligible function.

The proof shares many ideas with earlier work [14,10].

SYMBOLIC SECRECY IS EQUIVALENT TO COMPUTATIONAL SECRECY. The follow-
ing theorem states that the symbolic secrecy criterion is necessary and sufficient for
computational secrecy to hold.
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Theorem 1. Let Π be an executable protocol and let Xj
Ai

be a nonce variable occur-
ring in some role Ai. If the encryption scheme AE used in the implementation of Π is
IND-CCA secure then Π |=s SecNonce(i, j) if and only if Π |=c SecNonce(i, j).

Proof. The “if” direction. First, we give an ideal execution of the protocols that re-
places real nonces with random strings. We show that no adversary can distinguish the
modified execution, which we call the “oracle execution” from the real execution.

Next, we argue that in the oracle execution, nonces that are symbolically secret are
information theoretically hidden from the computational adversary. Indeed, if the sym-
bolic secrecy property is satisfied, by Lemma 1 the nonce occurs only in some hashed
terms, and the term themselves are secret (i.e., it cannot be computed efficiently). Since
in the random oracle model the hash values are independent of the hashed message, the
view of the adversary is independent from the value of the secret nonces.

STEP I. We now describe the “oracle execution”. Whenever the protocol dictates that an
honest party encrypts some bitstring m, the party encrypts instead a randomly selected
bitstring rm of equal length. The execution keeps a table with all association (m, rm),
which we call the random associations table (RAT). The RAT is not made available to
the adversary, but only to honest parties. Specifically, whenever an honest party receives
encrypted messages, the party performs the appropriate decryption and recovers some
plaintext. If the plaintext is some m′ such that (m, m′) occurs in RAT, the party treats
the encryption as an encryption of m and continues its execution as normal. Otherwise,
the underlying plaintext is set to m′.

Intuitively, if any adversary behaves differently in the two executions, it is because he
can see the difference between encryptions of true, and random ciphertexts. Formally,
if we let ExecA,Π(η) be the output of adversary A when executed with protocol Π
for security parameter η, and Execo

A,Π(η) the output of the adversary in the associated
oracle execution, we have the following lemma.

Lemma 2. Let Π be an executable protocol, and A an arbitrary ppt adversary. Then,
if the encryption schemeAE used in the implementation of Π is IND-CCA secure, then
Pr [ ExecA,Π(η) = 1 ]− Pr

[
Execo

A,Π(η) = 1
]

is negligible.

Notice that we can apply the above lemma for the case when the execution that is
considered is used in the experiment Expsec b

ExecA,Π
(i, j)(η), for some b, i, j. If we write

Expsec b
Execo

A,Π
(i, j)(η) for the corresponding oracle execution, we obtain that there exists

some negligible function νi,j,b such that

Pr
[
Expsec b

ExecΠ,A(i, j)(η) = 1
]
− Pr

[
Expsec b

Execo
Π,A

(i, j)(η) = 1
]

= νi,j,b(η) (1)

STEP II. Next, we associate symbolic traces to the computational traces of the oracle
execution. This enables us to reason about an adversary’s success in the oracle execu-
tion (which is conceptually simpler). The association is in fact the one in the proof of
Proposition 1, with an additional parsing step necessary to take into account the random
association table that we detail below. In addition to access to the keys and the random-
ness of the parties, the parsing procedure also uses access to the random association
table, and is as follows: the first step in processing some message m′ is a search in the
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random association table. If (m, m′) occurs in the RAT, then the procedure proceeds as
before, with m′ replaced by m, otherwise the procedure remains unchanged.

Next, we argue that the symbolic traces obtained as above are valid execution traces,
and moreover, that they are included among the traces of the execution of Π . The for-
malization is given in the next lemma.

Lemma 3. The symbolic traces of Execo(Π,A) are valid with overwhelming probabil-
ity and Execo

A,Π ⊆ ExecA,Π .

STEP III. Finally, we prove that ifAE is IND-CCA secure then Π |= SecNonces(i, j)⇒
Π |=c SecNonce(i, j). For an arbitrary adversary A against the secrecy of nonce Xj

Ai

recall that we write Expsec b
Execo

Π,A
(η) for the oracle version of the experiment defining

secrecy of nonce Xj
Ai

. Let Advsec
Execo

A,Π
(η) be the corresponding advantage functions.

By definition we have that:

Advsec
ExecΠ,A(i, j)(η) = Pr

[
Expsec 1

ExecΠ,A(i, j)(η)=1
]
−Pr

[
Expsec 0

ExecΠ,A(i, j)(η)=1
]

Advsec
Execo

Π,A
(i, j)(η) = Pr

[
Expsec 1

Execo
Π,A

(i, j)(η)=1
]
−Pr

[
Expsec 0

Execo
Π,A

(i, j)(η)=f1
]

By subtracting, using Equation 1, we obtain that for some negligible function ν

Advsec
ExecΠ,A(i, j)(η) = Advsec

Execo
Π,A

(i, j)(η) + ν(η) (2)

Finally, we show that in the oracle execution the advantage Advsec
Execo

Π,A
(i, j)(η) of

any adversary A is negligible since nonces that are symbolically secret are informa-
tional theoretically hidden from the adversary. This can be seen as follows.

Consider the symbolic trace φ that corresponds to the execution of the experiment
Expsec b

Execo
Π,A

(η), up to the point when the adversary is given the nonces and he is asked

to determine the bit b. Let s be the id of the session under attack, and let na,j,s be the
symbolic nonce that corresponds to the nonce under attack. By Lemma 3, the trace φ is
with overwhelming probability a Dolev-Yao trace of protocol Π . By the hypothesis of
the theorem Π |=s SecNonce(i, j) and therefore by Lemma 1, all occurrences of na,j,s

in φ that are not under an honest encryption are in some term Ti that appears under
a hash, and Ti is nondeductible from φ, ni,j,s. Let ti be the bitstrings that correspond
to the terms Ti. We conclude by observing that in the real execution, the adversary
may observe the values c1 = h(t1), c2 = h(t2), . . ., but provided that it does not query
t1, t2, . . . to the random oracle, their values (and thus in particular the value of the secret
nonce) are independent from the c1, c2, . . .. Since all queries to the random oracle are
the images of deductible terms, we conclude that A does not request h(ti), for all i.

The “only if” direction. It is important to observe that if a message M is deducible
from a set of messages M1, M2, . . . , Mn, the associated deduction tree τ can be trans-
lated into an (efficient) program τ which given the bit-string representations of mi for
Mi (i = 1, 2, . . . , n) computes the bit-string representation m of M .

We proceed as follows. Assume that for some symbolic trace φ, the symbolic nonce
nai,j,s occurs in Patnai,j,s(φ), starting from Lemma 1 we can show that there exist a
term M ∈ φ and a deduction tree τ such that: 1) τ(φ, nai,j,s) yields message M and 2)
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for n 
= nai,j,s, τ(φ, n) does not yield M . Since M ∈ φ, we know that there also exists
a deduction tree π such that π(φ) yields M .

Based on the above, we construct a two-stage adversary against secrecy of nonce
Xj

Ai
. In the first stage, the adversary produces a computational representation φc of the

trace φ (by simply following the instructions of the Dolev-Yao adversary that defines
φ). Once φ is created, it requests the two values of the nonce nai,j,s and receives from
the experiment nb and n1−b. Then it computes mb = τ(φc, nb) for b = 0, 1 and m =
π(φc), and retrieves b by comparing m with m0 and m1.

5 Decidability of Symbolic Secrecy

In this section, we show that our notion of secrecy is decidable. We present an NP-
procedure that decides nonce non-secrecy for the case of a bounded number of sessions
(that is, adversaries are allowed only a fixed number of new queries)2.

Without loss of generality, we assume that all of the new queries are performed at
the beginning of the execution. Our decision procedure starts by guessing the sequence
of these requests together with the identities of the agents involved. Then, the proce-
dure guesses an interleaving for the execution. Using standard techniques [15], such
executions can be translated to constraint systems. We recall their definition:

Definition 5. A constraint system C is a finite set of expressions Ti � tt or Ti � ui,
where Ti is a non empty set of terms, tt is a special symbol that represents an always
deducible term, and (for 1 ≤ i ≤ n) ui is a term such that:

- Ti ⊆ Ti+1, for all 1 ≤ i ≤ n− 1;
- if x ∈ var(Ti) then ∃j < i such that Tj = min{T | T � u ∈ C, x ∈ var(u)} (for

the inclusion relation) and Tj � Ti.

The left-hand side (right-hand side) of a constraint T � u is T (respectively u). The
left-hand side of a constraint system C, (for which we write lhs(C)), is the maximal set
of messages Tn. By ⊥ we denote the unsatisfiable system.

The left-hand side of a constraint represents the messages already sent on the network,
while the right-hand side represents the message expected by an agent in order to per-
form the next protocol step. A solution of a constraint system C is a ground substitution
σ such that Tσ &Randadv

uσ for any T � u ∈ C. We say that C preserves nonce secrecy
of n if there does not exist a solution σ of C such that n occurs in Patn(lhs(C)σ).

The transformation of protocols into constraint systems yields systems that are well-
formed. A constraint system E is well-formed if 1) any subterm of E of the form dk(t′)
is such that t′ is an agent identity and 2) any subterm of E of the form {t1}r

t2 is such
that r ∈ Rand and r /∈ Randadv. The following theorem states that our notion of nonce
secrecy (Section 3) is decidable for a bounded number of sessions.

Theorem 2. The following problem is co-NP complete:
Given: A well-formed constraint system C and a nonce n.
Decide: Does C preserve the nonce secrecy of n?

2 As for the standard deducibility-based notions, nonce secrecy is undecidable for an unbounded
number of sessions.
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The decision procedure for nonce secrecy preservation works as follows. First, given
an arbitrary constraint system we reduce it to a solved system using non-deterministic
transformation rules similar to those in [8]. A constraint system is solved if it is different
from⊥ and each of its constraints are of the form T � tt or T � x where x is a variable.
Second, we check whether n occurs in Patn(lhs(C)). If not, we check whether C can
further be simplified into a solved form that does not preserve nonce secrecy, and so on.
Note that although for standard deducibility-based notions decision procedures can stop
as soon as the constraint system has been transformed into solved form, for our secrecy
notion further transformations might be necessary. NP-hardness is proved analogously
to the case of standard deducibility-based notions [16].
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Abstract. We prove several results about the average-case complex-
ity of problems in the Polynomial Hierarchy (PH). We give a connec-
tion among average-case, worst-case, and non-uniform complexity of op-
timization problems. Specifically, we show that if PNP is hard in the
worst-case then it is either hard on the average (in the sense of Levin)
or it is non-uniformly hard (i.e. it does not have small circuits).

Recently, Gutfreund, Shaltiel and Ta-Shma (IEEE Conference on
Computational Complexity, 2005) showed an interesting worst-case to
average-case connection for languages in NP, under a notion of average-
case hardness defined using uniform adversaries. We show that extending
their connection to hardness against quasi-polynomial time would imply
that NEXP doesn’t have polynomial-size circuits.

Finally we prove an unconditional average-case hardness result. We
show that for each k, there is an explicit language in PΣ2 which is hard
on average for circuits of size nk.

1 Introduction

Average-case complexity is one of the central concepts in complexity theory.
There are several different reasons for studying average-case complexity. The
notion of being hard on average is fundamental to cryptography [Gol01, Gol04],
since the security of most cryptographic protocols is conditioned on the assump-
tion that certain problems such as factoring and discrete logarithm problem are
hard on average. Notions of average-case complexity also appear naturally in
the theory of pseudo-randomness [BM84, Yao82], learning theory [JS05] and the
study of heuristics for solving NP-complete problems [ART06].

Does the existence of aworst-casehardproblem(say,with respect topolynomial-
size circuits) in a complexity class C imply the existence of an average-case hard
problem in the class? This question is particularly significant for the case of NP in
part because of its connections to cryptography and the theory of approximation.
Answering the question positively for NP would enable us to base cryptography on

� Research supported in part by NSF grant CCF-0430807, and a Big12 Faculty Fel-
lowship.

�� Research supported inpart by NSF grant CCF-0430991.

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 188–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Some Results on Average-Case Hardness Within the PH 189

NP-hardness rather than on the hardness of specific algebraic/number-theoretic
problems such as discrete logarithm and factoring. From the perspective of hard-
ness of approximation, there is a recent line of work [Fei02, Ale03] showing that
average-case hardness of NP problems would imply much better inapproximabil-
ity results for certain natural problems in NP than that are currently known.

For “large enough” complexity classes such as EXP and PSPACE, it is known
that worst-case hardness implies average-case hardness. This follows from generic
hardness amplification techniques [STV01, TV02] which were developed in the
context of the theory of pseudo-randomness. However, for NP or other classes
in the polynomial-time hierarchy (PH), the techniques that work for EXP or
PSPACE are known to fail [BT03, Vio05], and the question of whether worst-
case hardness implies average-case hardness for NP and PH remains unsolved.

Our Results

We consider various notions of average-case hardness that have been defined in
the literature, and investigate the possibility of constructing languages within
the polynomial-time hierarchy that are average-case hard according to these
notions.

First, we consider Levin’s framework for average-case complexity [Lev86].
Informally, in this framework, a problem L is easy on average if for every
polynomial-time samplable distribution μ, there is some algorithm which solves
L and halts in polynomial time with high probability over the distribution μ.
It is a longstanding open problem whether the assumption that NP is easy on
average under this notion implies NP = P. It is also not known if there is an
oracle under which the implication would not follow (and hence would require a
non-relativizing technique to prove, assuming it is true). The analogous question
for ΣP

k , for any k > 1 also remains open.
We ask a weaker question: is there any non-trivial easiness assumption about

PH which in conjunction with the assumption about easiness on average imply
that NP = P? A natural assumption to consider is the assumption of non-
uniform easiness, i.e., solvability by polynomial-size circuits. Our first theorem
is along this direction.

Theorem 1.1. If NP 
= P, then NP 
⊆ P/poly or PNP is average-case hard.

An immediate corollary of this result is that if PNP 
= P, then either PNP is non-
uniformly hard or PNP is average-case hard. PNP has a natural interpretation as
the class of optimization problems whose decision versions are in NP, thus we get
that for optimization problems, worst-case hardness implies either average-case
hardness or non-uniform hardness.

The nonuniform hardness in the above theorem refers to worst-case nonuni-
form hardness. We consider the possibility of improving this to average-case
nonuniform hardness. As our second main result, we obtain the following im-
provement to the above theorem (for a more precise statement see Section 3).
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Theorem 1.2. If NP 
= P, then either PNP is average-case hard, or there is a
language L in NP such that for every k there is a polynomial-time samplable
distribution μ and L is average-case hard for nk-size circuits with respect to
distribution μ.

A more restrictive notion (than the one due to Levin) of average-case easiness
that has gained prominence recently is the notion of easiness against uniform
adversaries. A language L is said to be easy against a class C of adversaries if
there is a fixed polynomial-time simulation of L such that no adversary in C
outputs an instance on which the simulation differs from L. Note that in this
setting, the simulation is independent of the adversary. This is more restrictive
than Levin’s notion, since in Levin’s setting the running time of the simulation
can depend on the running time of the adversary. A recent work of Gutfreund,
Shaltiel and Ta-Shma [GSTS05] shows that under this notion the average-case
complexity of NP is same as its worst-case complexity. In particular they show
that if every language in NP is easy against polynomial-time adversaries then in
fact NP = P. Their result has been further refined by Atserias [Ats06].

The question we ask is: how relevant is the technique of [GSTS05] for prov-
ing an average-case to worst-case connection for NP in Levin’s framework? In
particular if we allow the simulation to run for more than polynomial time (say
quasi-polynomial time) can we extend the results of Gutfreund, Shaltiel and
Ta-Shma to get an average-case to worst-case equivalence for NP? We show
that such a result would imply a groundbreaking circuit lower bound result, and
hence is unlikely to be provable using current techniques.

Theorem 1.3. If NP ⊆ quasiP−QP implies NP ⊆ QP, then NEXP 
⊆ P/poly.

We refer the reader to Section 2 for the definition of “quasiP”, which formalizes
the notion of easiness used in [GSTS05].

Next we consider the question of whether known worst-case lower bounds
in PH can be extended to average-case lower bounds. To be specific, we ask:
which level in the polynomial-time hierarchy has languages that are average-case
hard for circuits of size nk? Kannan [Kan82] showed using a nonconstructive
argument that for any fixed k, there is a language in the second level of PH
(more precisely ΣP

2 ∩ΠP
2 ) that cannot not be computed by circuits of size nk.

Since then there have been a series of attempts to prove better upper bounds
on the complexity of such a language. The current best upper bound known
[Cai01] is SP

2 , which is a subclass of ΣP
2 ∩ΠP

2 . There has been related work on
constructing explicit languages in low levels of PH that do not have circuits of size
nk (the SP

2 upper bound is proved non-constructively). Miltersen, Vinodchandran
and Watanabe [MVW99] showed a constructive upper bound of PΣP

2 ; Cai and
Watanabe [CW03] improved the upper bound to Σ2.

Note that since an average-case to worst-case connection is not known within
PH, we cannot directly use the results above to show an average-case hardness
result. Nevertheless, we strengthen the technique of Miltersen, Vinodchandran
and Watanabe to show that for each k, there is an explicit language in PΣP

2
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which cannot be approximated on significantly more than 1/2 the inputs of any
input length by circuits of size nk (refer to Section 2 for the precise definition of
(nk, nk)-hard in the following).

Theorem 1.4. For each k, there is a language Lk in PΣP
2 such that Lk is

(nk, nk)-hard.

2 Preliminaries

We say that μ = (μ1,μ2, · · · ) is an ensemble of distributions if each μn is a
distribution over Σn. We often use the word distribution instead of ensemble of
distributions. A distribution μ is p-samplable if there is a probabilistic algorithm
A such that for every x ∈ Σn

P r[A(1n) = x] = μn(x).

We use Levin’s notion of average polynomial-time [Lev86]. In his definition
of average-polynomial time, Levin considered a distribution over Σ∗ rather
than an ensemble of distributions. However, many times it is more convenient
to consider an ensemble of distributions rather than a single distribution.
Gurevich [Gur91] and Impagliazzo [Imp95] showed that Levin’s definition
can be adapted to the case of an ensemble of distributions. We follow this
adaptation.

Let μ = (μ1,μ2, · · · ) be an ensemble of distributions. We associate distribution
μassoc over Σ∗, to the ensemble (μ1,μ2, · · · ), as follows: if x is a string of length
n, then

μassoc(x) =
6
π2

1
n2
μn(x).

Definition 2.1. ([Lev86]) Let L be a language and μ = (μ1,μ2, · · · ) be a distri-
bution. We say (L,μ) is in Average-P if there is a machine M that decides L
and a constant k � 1,

∑
x

(TM (x))1/k

|x| μassoc(x) < ∞.

Remark. In Levin’s notion of Average polynomial-time, a single distribution
over Σ∗ is used instead of an ensemble of distributions as above.
We find the following observation to be useful.

Observation 2.2. Let μ be an ensemble of distributions, and let (L,μ) in
Average-P. There exists a Turing machine M that accepts L such that for every
polynomial p(.), there exists a constant l > 0, and for all but finitely many n,

Pr
x∈μn

[M(x) does not halt in nl steps] < 1/p(n).
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Given a complexity class C, let DistC denote the class of distributional problems
(L,μ), where L ∈ C and μ is a p-samplable ensemble. Now whether DistC ⊆
Average-P is the average-case analogue of whether C ⊆ P. Given a class C, we
say that C is easy on average if DistC ⊆ Average-P.

We can adapt Levin’s notion of average polynomial time to function classes
also. The following observation is easy to prove.

Observation 2.3. If PNP is easy on average, then PFNP is easy on average.

We also consider the notions of average-case complexity under the uniform dis-
tribution in nonuniform models of computation.

Definition 2.4. Let s and h be functions from N to N. A language L is called
(s, h)-hard if for every s(n)-size circuit family C = (C1, C2, · · · )

Pr
x∈Σn

[L(x) = Cn(x)] � 1/2 + 1/h(n).

Here x is drawn uniformly at random from Σn.

Definition 2.5. A distributional problem (L,μ) is in HSIZE(nk), if for every
polynomial p, there is a nk-size circuit family C = (C1, C2, · · · ) such that for all
but finitely many n

Pr
x∈μn

[L(x) 
= Cn(x)] � 1/p(n).

In this paper, we also study a notion of easy on average that is different from
Levin’s notion of easy on average. This notion naturally arises in the theory of
pseudo-randomness and uniform derandomization. This notion was implicit in
the work of Impagliazzo and Wigderson [IW98]. Kabanets [Kab01] made this
explicit and defined “pseudo classes.”

Definition 2.6. ([Kab01]) Let C be a complexity class. A language L is in
pseudoP−C if there is a language L′ in C such that for every polynomial-time
machine R for all but finitely many n, R(1n) /∈ LΔL′.

Thus if a language L is in pseudoP−C, there is a simulation L′ for L and no
adversary R can find places where L′ and L differ. We obtain the class quasiP−P
(defined in [vMS05]) by allowing the adversary R to output more than one string.

Definition 2.7. A language L is in quasiP−C, if there is a language L′ in C
such that for every polynomial-time machine R for all but finitely many n, no
output of R(1n) belongs to LΔL′.

A consistent circuit for SAT is a circuit that can err only on one-side. More
formally,

Definition 2.8. We say a circuit C is consistent circuit for SAT, if C outputs
a satisfying assignment whenever it says a formula is satisfiable.

We use the following known results in our proofs.
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Theorem 2.9. [BCK+96] Assume NP ⊆ P/poly. There is a ZPPNP machine
M such that M on input 1n either outputs “?” or outputs a circuit for SATn.
Probability that M outputs “?” is at most 1/2n.

Theorem 2.10. [FPS03] For every k, there is a ZPPNP algorithm M such that
if SAT does not have nk+2-size circuits at length n then M on input 1n either
outputs “?” or outputs a list of formulas φ1, φ2, · · · , φm, m � n2k, such that

– Pr[M(1n) =?] � 1/2n

– If M(1n) outputs φ1, · · ·φm, then for every nk-size consistent circuit C, there
exists i, 1 � i � m such that C(φi) 
= SAT(φi).

3 Easiness on Average Versus Nonuniform Easiness

In this section we show results that connect the worst-case, average-case, and
non-uniform hardness of the class PNP.

Theorem 1.1 If P 
= NP, then at least one of the following statements is true.

– PNP is not easy on average.
– NP is not in P/poly.

Proof. Assume that NP is in P/poly and PNP is easy on average. Since NP is in
P/poly, by Theorem 2.9 there is a ZPPNP machine M that on input 1n outputs
a circuit for SATn with high probability. Assume that M(1n) needs nk random
bits. Define a function f as follows:

f(1n, r) = M(1n, r).

where |r| = nk, and M(1n, r) is the output of M when it is given r as random
seed. Clearly, f ∈ PFNP. Since PNP is easy on average, by Observation 2.3,
for every p-samplable distribution μ, (f,μ) can be computed in polynomial-
time on average. Consider the following distribution μ = (μ1,μn, · · · ), where μn

randomly and uniformly picks a string r of length nk and outputs 〈1n, r〉.
Let N be a machine that computes f in average polynomial time with respect

to μ. By Observation 2.2, there exists l > 0 such that

P rr[N(1n, r) does not halt in nl steps] � 1/n2.

Since N computes f
P rr[N(1n, r) =?] � 1/2n.

Thus if we randomly pick r, probability that N(1n, r) either takes more than
nl time or outputs “?” is at most 1/n. Thus if we randomly pick r and stop
the computation of N(1n, r) after nl steps, then with very high probability it
outputs a circuit for SATn. This gives a probabilistic polynomial-time algorithm
that can compute circuits for SAT.

Thus SAT ∈ BPP and so NP ⊆ BPP. Buhrman, Fortnow and Pavan [BFP05]
showed that if NP is easy on average, then BPP = P. Thus NP = P.
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This theorem has the following interesting corollary.

Corollary 3.1. If PNP is hard in the worst-case, then either it is non-uniform
hard or average-case hard.

Theorem 1.1 says that if NP does not equal to P, then either PNP is hard on
average or there is a language in NP that is not in SIZE(nk) for every k > 1.
This language in NP is worst-case hard in the non-uniform model. Can we make
this language to be average-case hard in the non-uniform model? We show the
following:

Theorem 1.2 If P 
= NP, then at least one of the following statements is true.

– PNP is not easy on average.
– There is a language L in NP such that for every k there is a p-samplable

distribution μ such that (L,μ) /∈ HSIZE(nk).

Remark. In this result, the distribution μ depends on the constant k. Making
the distribution independent of k yields the much sought average-case to worst-
case connection for PNP.

The theorem follows from the following two Lemmas. We omit the proofs due
to lack of space. Proof of these Lemma 3.2 makes crucial use of Theorem 2.10.

Lemma 3.2. If P 
= NP, then at least one of the following statements is true.

– PNP is not easy on average.
– For every k there is a p-samplable distribution μ, and infinitely many n such

that for every nk-size consistent circuit fancily C = (C1, C2, · · · ) for SAT

Pr
x∈μn

[Cn(x) 
= SAT(x)] � 1/n4k.

Lemma 3.3. Assume that the following statement holds: For every k there is
a p-samplable distribution μ, and infinitely many n such that for every nk-size
consistent circuit family C = (C1, C2, · · · ) for SAT,

Pr
x∈μn

[Cn(x) 
= SAT(x)] � 1/n4k.

Then, there is a language L in NP such that for every k, there is a p-samplable
distribution μ and

(L,μ) /∈ HSIZE(nk).

4 On the Difficulty of Showing Easiness on Average
Implies Easiness in the Worst Case

A recent result by Gutfreund, Shaltiel and Ta-Shma [GSTS05] on worst-case
to average-case reductions for NP problems states that if there is a simulation
of SAT in polynomial time which fools all polynomial-time adversaries, then
NP = P.
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Theorem 4.1. If NP ⊆ quasiP−P, then NP = P.

Theorem 4.1 can be interpreted as follows. If SAT is not in polynomial time,
then for any polynomial-time algorithm A purporting to solve SAT, there is
an adversary—a polynomial time procedure—that for each n produces a small
list of candidate counter-examples of size n. Namely the adversary outputs a
list of formulae such that there is at least one formula φ in the list for which
A(φ) 
= SAT (φ). In fact, the proof of Theorem 4.1 gives an upper bound of 3 on
the size of the list.

It is crucial to the proof of Theorem 4.1 that the adversary has more resources
than the simulating class. Indeed, the proof of Theorem 4.1 proceeds via con-
struction of an adversary which simulates an algorithm A purporting to solve
SAT. On the other hand, showing an average-case to worst-case connection for
NP under Levin’s notion would mean that if NP 
= P, then there is a distri-
bution μ such that (SAT,μ) is not solved on average by any polynomial-time
algorithm, where the algorithm may take more time than is required to sample
from μ. Thus intuitively, if the method of [GSTS05] is to be applicable to showing
an average-case to worst-case connection for NP, it should be possible to extend
Theorem 4.1 to a setting where the simulating class has more power than the
adversary. We show that this is unlikely using current techniques (indeed, using
relativizing techniques) since NEXP 
⊆ P/poly is a consequence.

We will actually show that NEXP 
= MA, which implies the circuit lower
bound by the following result of Impagliazzo, Kabanets and Wigderson:

Theorem 4.2. [IKW02] NEXP 
= MA if and only if NEXP 
⊆ P/poly.

We consider two cases, the first where NP is somewhat easy in the worst case,
and the second where NP is somewhat hard according to the notion of hard-
ness in [GSTS05]. In both cases, we show that MA 
= NEXP follows. Thus
MA 
= NEXP would follow from an average-case to worst-case connection. In
the first case, we use standard techniques, and in the second case, we use the
“easy witness” method of Kabanets [Kab01] and Impagliazzo, Kabanets and
Wigderson [IKW02]. Let QP denote the class of languages that can be decided
in deterministic quasi-Polynomial time, and NQP is the nondeterministic ana-
logue of QP.

Lemma 4.3. If NP ⊆ QP, then MA 
= NEXP.

Proof. We will prove something even stronger, namely that MA 
= EXP.
By Lautemann’s theorem [Lau83], MA ⊆ ΣP

2 . If NP ⊆ QP, then MA ⊆ ΣP
2 =

NPNP ⊆ NPQP ⊆ NQP.
By padding, if NP ⊆ QP, then NQP = QP, and hence MA ⊆ QP. By the

hierarchy theorem for deterministic time, EXP 
⊆ QP, and hence MA 
= EXP.

Next, we show that a superpolynomial lower bound on average-case hardness in
the framework of [GSTS05] would also separate MA and NEXP. We will need the
optimal construction of pseudo-random generators due to Umans [SU05, Uma02]
in the proof.
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Theorem 4.4. There is a function G : {0, 1}2m × {0, 1}O(m) → {0, 1}ms

com-
putable in polynomial time such that if f is a Boolean function on m bits
which doesn’t have circuits of size m3s, then for any circuit C of size ms,
|Pry∈{0,1}ms (C(y) = 1)− Prx∈{0,1}m(C(G(f, x)) = 1)| < 1/ms.

Lemma 4.5. If NP 
⊆ quasiP−QP, then MA 
= NEXP.

Proof Sketch. Fix a language L in NP. We attempt to simulate L in deterministic
time 2polylog(n) on inputs of length n as follows. For an input x of length n, we
interpret a witness for x as the truth table of a Boolean function (rounding
the witness size upwards to a power of 2). We search for witnesses describable
by small circuits, i.e., circuits of size polylog(n). If we find such a witness for
x, we accept x, otherwise we reject. Clearly, the search can be implemented
exhaustively in time 2polylog(n).

Since NP 
⊆ quasiP −QP, there is an L ∈ NP such that the simulation above
fails for L. Moreover, there is a polynomial time machine B outputting a list
of instances such that the simulation fails on at least one of the instances. We
will use the machine B to derive a simulation of MA in non-deterministic sub-
exponential time with small advice, and then use a hierarchy theorem to show
that this implies a separation of MA and NEXP.

We show that for any language L′ ∈MA, L′ ∈ i.o.NTIME(2O(m))/O(m). The
basic idea is that the machine B can be used to derandomize a Merlin-Arthur
machine accepting L′ infinitely often, given small advice. This is because for
infinitely many input lengths n, there is at least one instance y ∈ L of length
n output by B such that none of the witnesses for y are describable by small
circuits. Thus, if we knew y, we could non-deterministically compute the truth
table of a hard function by merely guessing and verifying a witness for y. Once
we have the truth table of a hard function, we could use Theorem 4.4 to deran-
domize a polynomial-time Merlin-Arthur machine and simulate it’s computation
in NTIME(2O(m)), where m is the length of the input to the machine.

We do not know y but B does produce a small list containing y. Thus, given
a small amount of advice telling us the index of y in the list, we can determine
y. We also do not know precisely for which input lengths B produces a list
containing at least instance in L with hard witnesses. But we know that this
happens infinitely often, and we can again use a small amount of advice to point
to the right input lengths. We omit the details in this sketch.

Now assume, for the purpose of contradiction, that MA = NEXP. Since MA ⊆
EXP ⊆ NEXP, we have that EXP = NEXP. This implies that there is some
constant c such that NE ⊆ DTIME(2nc

) (since NE has a complete language, and
a deterministic time upper bound for that complete language also holds for any
language in NE). It follows that NE/O(n) ⊆ DTIME(2nc

)/O(n). We have that
MA ⊆ i.o.NE/O(n) ⊆ i.o.DTIME(2nc

)/O(n). Since MA = EXP by assumption,
we have that EXP ⊆ i.o.DTIME(2nc

)/O(n), which is a contradiction to the time
hierarchy theorem for deterministic time. �
Now, Theorem 1.3 follows from above two lemmas.

Theorem 1.3 . If NP ⊆ quasiP−QP implies NP ⊆ QP, then NEXP 
⊆ P/poly.
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Proof. By assumption, either NP ⊆ QP or NP 
⊆ quasiP−QP. In the first case, by
Lemma 4.3, MA 
= NEXP. In the second case also, by Lemma 4.5, MA 
= NEXP.
Thus, in either case, MA 
= NEXP, which implies NEXP 
⊆ P/poly by Theorem
4.2.

5 Average-Case Circuit Lower Bounds Within PH

Kannan [Kan82] showed that for every k, there exist functions in the polynomial-
time hierarchy for which no nk-size circuits exist. However, this is a worst-case
hardness result. Are there functions in PH that are hard on average for nk-size
circuits?

We show how to find such functions in the third level of the PH.

Theorem 5.1. For any k and h, there is a language L ∈ PΣP
2 that is (nk, nh)

hard.

We first start with a function g : {0, 1}2(k+h) log n → {0, 1} that is (nk, nh) hard
and then randomly pad the input to get a function f on n bits with the same
hardness.

Theorem 5.2. There is a function g : {0, 1}2(k+h) log n → {0, 1} that is (nk, nh)
hard. Moreover, there is an FPΣP

2 procedure that outputs the lexicographically
first such function.

Proof. Consider a random function from {0, 1}2(k+h) log n → {0, 1} viewed as a
Boolean string of length n2(k+h). Fix a circuit C of size nk. The expected agree-
ment between C and g is n2(k+h)

2 . Thus using Chernoff’s bounds, Pr((C(x) =

g(x)) > (1 + δ)n2(k+h)

2 ) � e
−δ2n2(k+h)

6 . For δ = 1
nh , this probability is < 2−n2k

.
There are at most 2nk+1

circuits of size � nk. Thus by union bound there exists
a function g : {0, 1}2(k+h) log n → {0, 1} that is (nk, nh) hard.

Since the function is on O(log n) size inputs, it is easy to see that an FPΣP
2

procedure can output the lexicographically first such function.

Proof. (Of Theorem 5.1). Consider the function f : {0, 1}n → {0, 1} defined as
follows. Let x = yz where y is the first 2(k+h) logn bits of x. Define f(x) = g(y)
where g is the hard function from the above theorem. Claim is that the function
f is (nk, ns) hard. For a contradiction, letD be a circuit of size at most nk so that
Prx((D(x) = f(x)) > 1

2 + 1
nh ). That is, Pryz((D(yz) = f(yz)) > 1

2 + 1
nh ). Then

by an averaging argument there is a z so that Pry((D(yz) = f(yz)) > 1
2 + 1

nh ).
Thus by hardwiring this z into D , we get a circuit Dz of size � nk so that
Pry((Dz(y) = g(y)) > 1

2 + 1
nh ). This contradicts the hardness of g.

Theorem 1.4 is a special case of Theorem 5.1.
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Unbiased Rounding of Rational Matrices

Benjamin Doerr and Christian Klein

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Rounding a real-valued matrix to an integer one such that the rounding
errors in all rows and columns are less than one is a classical problem. It has been
applied to hypergraph coloring, in scheduling and in statistics. Here, it often is
also desirable to round each entry randomly such that the probability of rounding
it up equals its fractional part. This is known as unbiased rounding in statistics
and as randomized rounding in computer science.

We show how to compute such an unbiased rounding of an m× n matrix in
expected time O(mnq2), where q is the common denominator of the matrix en-
tries. We also show that if the denominator can be written as q = ∏

i=1 qi for some
integers qi, the expected runtime can be reduced to O(mn∑

i=1 q2
i ). Our algorithm

can be derandomised efficiently using the method of conditional probabilities.
Our roundings have the additional property that the errors in all initial intervals

of rows and columns are less than one.

1 Introduction

In this paper, we analyze a rounding problem with strong connections to statistics, but
also to different areas in discrete mathematics, computer science, and operations re-
search. We present an efficient way to round a matrix to an integer one such that the
rounding errors in all intervals (i.e., a set of consecutive entries) of rows and columns
are small.

For real numbers a,b let [a..b] := {z ∈ Z | a≤ z≤ b}. For x ∈R let �x� := max{z ∈
Z | z≤ r},�x� := min{z∈Z | z≥ r} and {x} := x−�x�. For q∈N let 1

q Z := { p
q | p∈Z}.

We show the following.

Theorem 1. For all X ∈ 1
q Zm×n a randomized rounding Y ∈ Zm×n such that

∀b ∈ [1..n], i ∈ [1..m] :

∣∣∣∣ b

∑
j=1

(xi j− yi j)
∣∣∣∣< 1, (1)

∀b ∈ [1..m], j ∈ [1..n] :

∣∣∣∣ b

∑
i=1

(xi j− yi j)
∣∣∣∣< 1, (2)∣∣∣∣ m

∑
i=1

n

∑
j=1

(xi j− yi j)
∣∣∣∣< 1 (3)

can be computed in expected time O(mn∑
i=1 p2

i ), where q = ∏
i=1 pi, pi ∈ N is a fac-

torization of q.

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 200–211, 2006.
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The result above can be derandomised using the method of conditional probabilities,
leading to a deterministic algorithm having asymptotically the same runtime.

Theorem 2. For all X ∈ 1
q Zm×n a rounding Y ∈ Zm×n such that the inequalities (1),

(2) and (3) in Theorem 1 hold, can be computed in time O(mn∑
i=1 p2

i ), where q =
∏

i=1 pi, pi ∈ N is a factorization of q.

Previous results on this particular rounding problem were given by Doerr et al. in [7].
Theorem 2 extends their result to arbitrary rational matrices. Their equivalent of The-
orem 1, however, only works for matrices of numbers with finite binary expansion.
Hence, they cannot, for example, round decimal fractions, as is often required in appli-
cations. For deterministic rounding they give an O(mn log(mn)) time algorithm, while
our algorithm is linear in the matrix size.

1.1 Baranyai’s Rounding Lemma and Applications in Statistics

Baranyai [2] used a weaker variant of Theorem 2 to obtain his famous results on color-
ing and partitioning complete uniform hypergraphs. He showed that any matrix can be
rounded such that the errors in all rows, all columns and the whole matrix are less than
one. He used a formulation as flow problem to prove this statement, giving super-linear
runtime. However, algorithmic issues were not his focus.

In statistics, Baranyai’s result was independently obtained by Bacharach [1] (in a
slightly weaker form), by Causey, Cox and Ernst [3], and, again independently, by
Šíma [10]. There are two statistics applications for such rounding results. Note first that
instead of rounding fractions to integers, our result also applies to rounding to multiples
of any other integer (e.g., multiples of 10). Such a rounding can be used to improve the
readability of data tables.

The main reason, however, to apply such a rounding procedure is confidentiality
protection. Frequency counts that directly or indirectly disclose small counts may per-
mit the identification of individual respondents. There are various methods to pre-
vent this [12], one of which is controlled rounding [5]. Here, one tries to round an
(m+ 1)× (n + 1)-table X̃ given by

(xi j) i=1...m
j=1...n

(
∑n

j=1 xi j

)
i=1...m

(∑m
i=1 xi j) j=1...n ∑m

i=1 ∑n
j=1 xi j

to an (m + 1)× (n + 1)-table Ỹ such that additivity is preserved, i.e., the last row and
column of Ỹ contain the associated totals of Ỹ . In our setting we round the m×n-matrix
X defined by the mn inner cells of the table X̃ to obtain a controlled rounding.

The additivity in the rounded table allows to derive information on the row and col-
umn totals of the original table. In contrast to previous rounding algorithms, our result
also permits to retrieve further reliable information from the rounded matrix, namely on
the sums of consecutive elements in rows or columns. Such queries make sense if there
is a linear ordering on statistical attributes.
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Here is an example. Let xi j be the number of people in country i that are j years
old. Say Y is such that 1

1000Y is a rounding of 1
1000 X as in Theorem 1. Now ∑40

j=20 yi j

is the number of people in country i that are between 20 and 40 years old, apart from
an error of less than 2000. Note that such guarantees are not provided by Baranyai [2],
Bacharach [1], and Causey, Cox and Ernst [3].

1.2 Unbiased and Randomized Rounding

Our randomized algorithm has the additional property that each matrix entry is rounded
up with probability equal to its fractional value. This is known as randomized rounding
in computer science [9] and as unbiased rounding in statistics [4,8]. Here, a controlled
rounding is computed such that the expected values of each table entry (including the
totals) equals its fractional value in the original table.

Definition 1. Let x ∈ R. A random variable y is called randomized rounding of x, de-
noted by y ≈ x, if Pr(y = �x�+ 1) = {x} and Pr(y = �x�) = 1−{x}. For a matrix
X ∈ Rm×n, we call a Zm×n-valued random variable Y randomized rounding of X if
yi j ≈ xi j for all i ∈ [1..m], j ∈ [1..n].

Note that if y≈ x, then Pr(|y− x|< 1) = 1 and E(y) = x. In fact, the converse holds as
well. Hence we can restate Theorem 1 in the following stronger form.

Theorem 3. For all X ∈ 1
qZm×n a randomized rounding Y ∈ Zm×n fulfilling the addi-

tional constraints

∀b ∈ [1..n], i ∈ [1..m] :
b

∑
j=1

xi j ≈
b

∑
j=1

yi j,

∀b ∈ [1..m], j ∈ [1..n] :
b

∑
i=1

xi j ≈
b

∑
i=1

yi j,

m

∑
i=1

n

∑
j=1

xi j ≈
m

∑
i=1

n

∑
j=1

yi j

can be computed in expected time O(mn∑
i=1 p2

i ), where q = ∏
i=1 pi, pi ∈ N is a fac-

torization of q.

2 Preliminaries

2.1 Random Walks

We need some well known facts about one-dimensional random walks with absorbing
barriers. Consider a set of n + 1 vertices labeled v0 to vn. From vertex vi, i ∈ [1..n−1],
one can either take a step to vertex vi+1 or vi−1, both with probability 1

2 . At the endpoints
v0 and vn, no further steps can be taken. We write Pr(vi ↗ vn) for the probability that a
random walk from vertex vi will reach vn instead of v0 and E(Steps(vi)) for the expected
number of steps a random walk starting in vertex vi needs to reach either vertex v0 or vn
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Lemma 1. Pr(vi ↗ vn) = i
n .

Proof. From the definition of random walks we obtain the equations Pr(vn ↗ vn) = 1,
Pr(vi ↗ vn) = 1

2 Pr(vi−1 ↗ vn)+ 1
2 Pr(vi+1 ↗ vn), i ∈ [1..n− 1], and Pr(v0 ↗ vn) = 0.

It can easily be checked that this system of equations has the unique solution Pr(vi ↗
vn) = i

n . �

Lemma 2. E(Steps(vi)) = i(n− i).

Proof. Again, we obtain the system of equations E(Steps(v0)) = E(Steps(vn)) = 0 and
E(Steps(vi)) = 1 + 1

2 E(Steps(vi−1))+ 1
2 E(Steps(vi+1)), i ∈ [1..n− 1]. It can easily be

checked that this system of equations has the unique solution E(Steps(vi)) = i(n− i). �

2.2 Integrality of Row and Column Sums

In the following we always assume the input matrix X to be from [0,1)m×n. Other-
wise, simply subtract the integral part of X before rounding and add it again afterwards.
Furthermore, we assume X to have integral row and column sums, as justified by the
following lemma from [7].

Lemma 3. Assume that for any X ∈Rm×n with integral row and column sums, a round-
ing Y ∈ Zm×n satisfying inequality (1) and (2) from Theorem 1 can be computed in
time T (m,n). Then for all X̃ ∈ Rm×n with arbitrary row and column sums, a rounding
Ỹ ∈ Zm×n satisfying inequalities (1), (2) and (3) can be computed in time T(m+ 1,n +
1)+ O(mn).

3 Unbiased Rounding

3.1 Index Intervals

What properties does a rounding Y of X fulfilling the inequalities of Theorem 1 have?
Substituting b = n in inequality (1), we can deduce that the ith row of Y must con-
tain exactly ∑n

j=1 xi j many 1-entries. To fulfill the inequality for b 
= n, there must be

�∑b
j=1 xi j� or �∑b

j=1 xi j� many 1-entries in column 1 to b of the ith row of Y . Inequality
(2) gives analogous statements for columns. This observation suggests that we should
put one 1 in each interval bounded by two positions where the integral part of the partial
row (resp. column) sum increases. This motivates the following definition.

We define the kth index interval of the ith row of X as

IX
i (k) :=

{
j ∈ [1..n] | xi j 
= 0∧

j

∑
=1

xi > k−1∧
j−1

∑
=1

xi < k

}
.

Column index intervals are defined analogous. Observe that the sum over all entries
of an index interval is at least one. Because of this, each index interval consists of at
least two non-zero elements. If the sum is more than one, the interval shares an entry
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with an neighboring interval. The following example shows a row of values and the
corresponding index intervals.

I(1)︷ ︸︸ ︷
0.2 0.7 0 .

I(2)︷ ︸︸ ︷
8 0 .

I(3)︷ ︸︸ ︷
6 0.4 0.3

I(4)︷ ︸︸ ︷
0.5 0.4 0.1

The idea now is to “concentrate the total value of all entries” of an index interval into
a single entry until it has value 1. For this, observe that if we pick two non-zero entries
in the same row index interval and modify one by + 1

q and the other by − 1
q , we don’t

change any of the partial sums left of the first or right of the second entry. In particular,
the total sum of this row stays unchanged. The same holds for columns.

3.2 The Algorithm

The algorithm now iteratively modifies the matrix until all elements are 0 or 1. In each
step it first constructs a cycle in the current matrix that alternatingly pairs two directly
adjacent fractional elements in the same row interval resp. column interval1. This way
each element of the cycle has one horizontal and one vertical neighbor in the cycle. How
to construct such cycles will be discussed in Section 3.4. The algorithm then traverses
this cycle and alternatingly adds 1

q and subtracts 1
q to each cycle entry.

ROUND(X ∈ ( 1
q Z∩ [0,1))m×n)

1 t ← 0
2 X (0) ← X
3 Compute row and column index intervals of X (0)

4 while X (t) 
∈ {0,1}m×n

5 do
6 C← FINDCYCLE(X (t))
7 Choose a ∈ {+ 1

q ,− 1
q}

8 X (t+1) ← alternatingly augment X (t) along C by ±a
9 t ← t +1

10 Update row and column index intervals of X (t).
11 return Y := X (t)

Fig. 1. The rounding algorithm

The current matrix is stored in a two-dimensional doubly linked list where every
non-integral entry has a pointer to the next non-integral entry in each direction. For the
cycle finding step the algorithm must keep track of the index intervals of the current
matrix X (t). To do this, the fractional parts scol

i j := {∑i
k=1 xk j} and srow

i j := {∑ j
k=1 xik} of

the partial row and column sums of each entry xi j, i ∈ [1..m], j ∈ [1..n] are computed

1 There is a special case where this is not true, as we will see later.
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for the initial matrix and updated during the augmentation step. With these values the
algorithm can decide if the neighbor of an entry belongs to the same index interval or
not, based on the value of the neighbor entry and on the fractional part of the current en-
try. Whenever two neighboring elements inside the same index interval are augmented,
only their partial sums change, hence the cost of an update is linear in the size of the
current cycle.

If an augmentation changes an element to 0 or 1, it is removed from the data structure.
Also, when updating the intervals, such element are ignored. By disregarding entries
changed to 1, the corresponding row and column sums decrease by 1 and thus also
the number of intervals decreases by 1 if this happens. Since the fractional part of an
element that changes to 0 or 1 is also 0, this does not change the values scol

i j or srow
i j for

any other element.

3.3 Runtime and Unbiasedness

For the moment let us assume that the call in Line 6 of the algorithm always returns a
cycle and takes time proportional to the cycle size. Does the algorithm terminate? As
we will see, this depends on how we choose a in Line 7. Each value for a corresponds to
one of the two possible choices we have when doing the augmentation along the cycle.
Either we start by adding + 1

q to the first element on the cycle, then − 1
q to the second

and so on, or we start by adding − 1
q then + 1

q and so on. If one of this possibilities is
chosen uniformly at random, we have the following theorem.

Theorem 4. Assume that in Line 7 of the algorithm from Figure 1, a is chosen inde-
pendently at random such that Pr(a = 1

q ) = Pr(a =− 1
q) = 1

2 . Then the following holds.

– The algorithm terminates in expected time O(mnq2).
– Each xi j, i ∈ [1..m], j ∈ [1..n] is rounded to one with probability xi j.

Proof. Consider an element xi j, i ∈ [1..m], j ∈ [1..n] of the cycle. With probability 1
2

each, we will either add or subtract 1
q from it. But this is equivalent to doing a random

walk on a line with q + 1 elements, starting from position q · xi j. From Lemma 2 it fol-
lows that the element becomes 0 or 1 after an expected number of O(q2) augmentations.
As soon as this happens, xi j will no longer belong to any index interval, and hence will
no longer be chosen during the cycle construction. Since the matrix has mn entries, the
first claim follows. The second claim follows immediately from Lemma 1. �

3.4 Finding Cycles

We now specify the function FINDCYCLE used by the algorithm to find a cycle along
which it can round. As we will see, the fact that we aim at low errors in all initial inter-
vals (and not only whole rows and columns) imposes some subtle additional difficulties.

First an arbitrary non-integral matrix entry a1 is chosen as current entry. Then, alter-
natingly pick a non-integral entry directly adjacent to the current entry in the same row
interval resp. in the same column interval as new current entry. This way, a sequence
(a1, . . . ,a) of matrix entries is constructed. Since each index interval contains at least
two fractional entries, the cycle construction routine can not fail to construct a cycle
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ak ak+1aaak−1 ak

Fig. 2. The two possibilities during cycle construction

C as long as the matrix is not integral. The algorithm stops as soon as an element already
picked before, say ak,k ∈ [1..− 1], can be chosen as current element. Assume that ak

and a share a row interval2. By construction, either ak−1 or ak+1 will also be an element
of this row. If ak−1 is an element of this row, C := (ak, . . . ,a) is a cycle alternatingly
pairing row and column elements sharing common intervals as needed by the main
algorithm. However, if ak+1 is an element of this row, the above cycle would contain
two successive edges pairing row entries, namely (a,ak) and (ak,ak+1).

In this case, the cycle C := (ak+1, . . . ,a) is chosen instead which again alternatingly
pairs row and column elements (See Figure 2 for details.). As this cycle now contains
an edge pairing an element to its neighbors neighbor, the algorithm has to modify one
additional partial sum during the augmentation, namely the one of ak by ± 1

q depending
on how the pair (a,ak+1) is augmented. Observe that if ak belongs to two overlapping
index intervals, then a and ak+1 belong to different intervals. As we will see in the
analysis, this will not influence the correctness of the algorithm.

We finally argue that FINDCYCLE has an amortized runtime of Θ(|C|), where |C| is
the length of the cycle computed. Because augmenting along C only changes the local
structure between two paired elements, the remaining elements of the sequence that
were not chosen for C still alternatingly connect entries of the same row resp. column
interval. Hence, the next time FINDCYCLE is called, it can reuse the part of the sequence
not used to construct the cycle. Thus, over the whole algorithm, each element is touched
during cycle construction as often as it is part of a cycle.

3.5 Correctness

In the following we only consider rows, as the arguments for columns are analogous.

Hence, let (x(t)
1 , . . . ,x(t)

n ) := (x(t)
i1 , . . . ,x(t)

in ) be the elements of the ith row of X (t), for an

arbitrary i ∈ [1..m]. Let I(t)(1), . . . , I(t)(k) be the k := ∑n
j=1 x(t)

j index intervals of this

row. For ∈ [1..k], we write L(I(t))() := min(I(t)()) and R(I(t))() := max(I(t)()) for
the position of the leftmost, resp. rightmost entry of the th interval. If L(I(t))() (resp.
R(I(t))()) does not belong to two intervals, we call it proper. If both L(I(t))() and
R(I(t))() are proper, we call I(t)() proper.

The interior I(t)()◦ of an interval is defined as the set of all elements that only belong
to this interval. Hence, I(t)()◦ = I(t)() if and only if the interval is proper.

2 Again the same holds for columns.
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By the definition of index intervals, R(I(t))() is proper if and only if the partial sum
up to this entry is integral. L(I(t))() is proper if and only if R(I(t))(− 1) is proper.
Hence, I(t)() is proper if the sum over all entries in I(t)() is 1.

In the special case where we constructed a cycle pairing two entries x(t)
a ,x(t)

b from

neighboring row intervals, those intervals share a common element x(t)
j 
= 0, j ∈ [a..b].

Augmenting along this cycle introduces no inconsistencies in the columns, as all other

pairs of entries are taken from a common interval. Modifying x(t)
a ,x(t)

b to, say, x(t)
a +

1
q ,x(t)

b − 1
q , can, for the analysis, be viewed as modifying x(t)

a + 1
q ,x(t)

j − 1
q and x(t)

j +
1
q ,x(t)

b − 1
q independently. Since x(t)

j is a non-zero multiple of 1
q shared by both intervals,

this is always possible.
First we show that as long as no element of an interval is set to one, the interval will

only contract.

Lemma 4. Let I(t)() be the th interval at time t. Assume that no entry of I(t)()
changes to 1. Let I(t+1)(′) be an interval at time t + 1 that intersects I(t)().

a) If R(I(t))() is proper, then R(I(t+1))(′) is proper and R(I(t))()≥ R(I(t+1))(′).
b) If L(I(t))() is proper, then L(I(t+1))(′) is proper and L(I(t))()≤ L(I(t+1))(′).
c) If L(I(t))() and L(I(t+1))(′) are not proper, then L(I(t))() = L(I(t+1))(′).
d) If L(I(t))() is not proper, but L(I(t+1))(′) is proper, then

R(I(t+1))(′ −1)≤ R(I(t))() = L(I(t))()≤ L(I(t+1))(′).

Proof. First observe that if L(I(t))() (resp. R(I(t))()) is proper, it can only be paired
with an element to its right (left). Since augmenting a pair does not change the partial
sum of its right entry, we get the first statement. For the second statement observe that
the partial sum up to L(I(t))() has the same fractional value as this element. Hence
before it can be made small enough to belong to the (− 1)th interval, it will be zero,
since all changes are done in steps of 1

q . Statement c) follows from the fact that a shared

element always has value larger than 1
q . Since the augmentation only changes each value

by at most 1
q , this also proves d). �

Lemma 5. Let I(t)() be the th interval at time t and let x(t)
a be an element of I(t)()

that changes to 1. If x(t)
a is shared with I(t)(+ 1), both intervals will merge. Otherwise

I(t)() vanishes and both the rightmost border of the interval to the left as well as the
leftmost border of the interval to the right become proper.

Proof. Surely x(t)
a = q−1

q .

First, assume that x(t)
a is shared with I(t)( + 1). Then the partial sum for x(t)

a must

have fractional value smaller than x(t)
a , hence the intervals will merge.

Now assume that x(t)
a is an inner element of I(t)(). Then the partial sum for x(t)

a must
either be q−1

q and L(I(t))() = a is proper, or it must be integral and R(I(t))() = a is

proper. Note that in both cases the other border of I(t)() is the only non-integral element
of this interval. If this element is also proper, the lemma obviously holds, hence assume
it is shared (and thus has value at least 2

q ). If a = L(I(t))(), then the augmentation will
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cause the partial sum for x(t)
a to become integral, making R(I(t))() the proper left border

of I(t)( + 1). Otherwise the augmentation will cause the partial sum for L(I(t))() to
become integral, making it the proper right border of I(t)(−1). �

Lemma 6. Let Y be a rounding of X computed by the algorithm in Figure 1. Then for
each row there exists a bijective mapping between elements rounded to 1 and index
intervals of this row in X, mapping each element to an interval containing it. The same
holds for columns.

Proof. Let K := (Ia, . . . , Ib) be a maximum collection of neighboring intervals in an ar-
bitrary row of X such that I j∩ I j+1 
= /0 for j ∈ [a..(b−1)]. In other words, exactly L(Ia)
and R(Ib) are proper. Clearly, it suffices to prove the lemma for such subcollections.

First assume that at time t no element is changed to 1. If none of the shared borders of
intervals in K become proper, then nothing changes according to Lemma 4. Otherwise,
K decomposes into smaller collections of intervals which can be treated separately.

Now assume that at time t an inner element x(t)
j of a current interval changes to 1.

By Lemma 5, this interval was obtained by merging d − c + 1 neighboring intervals
Ic, . . . , Id ,a ≤ c ≤ d ≤ b of the initial collection. This means that their d − c shared
entries were set to 1 during the algorithm. Hence we can assign 1 to the interval of the

initial collection containing x(t)
j , and the remaining d−c 1s to the other intervals. Since

by Lemma 5 the borders of the neighbors of this interval become proper in this case,
we get two smaller subcollections which can be treated separately. �

Theorem 5. If Y is a rounding of X computed by the algorithm in Figure 1, then

∀b ∈ [1..n], i ∈ [1..m] :

∣∣∣∣ b

∑
j=1

(xi j− yi j)
∣∣∣∣< 1,

∀b ∈ [1..m], j ∈ [1..n] :

∣∣∣∣ b

∑
i=1

(xi j− yi j)
∣∣∣∣< 1.

Proof. Let b ∈ [1..n] and i ∈ [1..m]. If xib = 0 then yib = 0. Hence it suffices to regard
the case xib 
= 0. Let  ∈ N be maximal such that xib is contained in the th interval
of the ith row of X . By definition, this means that − 1 < ∑b

j=1 xi j ≤ . By Lemma 6,

−1≤∑b
j=1 yi j ≤  holds. If ∑b

j=1 xi j < , this shows the theorem. In the other case, xib

must be the last element of the th interval, hence ∑b
j=1 yi j = . For columns, the proof

is analogous. �

4 Iterative Rounding

If q has a non-trivial factorization q = q1 ·q2 with q1,q2 ∈N≥2, this can be exploited to
improve the runtime from Theorem 4. Our approach resembles that given by Doerr [6]
for powers of 2.
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COMPUTEROUNDING(X ∈ 1
q1·q2

Zm×n)

1 Compute X ′ ∈ 1
q1

Zm×n,X ′′ ∈ 1
q2

Zm×n such that X = X ′+ 1
q1

X ′′

2 Y ′′ ← ROUND(X ′′)∈ {0,1}m×n

3 X̃ ← X ′+ 1
q1

Y ′′ ∈ 1
q1

Zm×n

4 Y ← ROUND(X̃)∈ {0,1}m×n

5 return Y ∈ {0,1}m×n

Fig. 3. The factor rounding algorithm

Lemma 7. Let X ∈ 1
q Zm×n be a rational matrix with q = q1q2 and q1,q2 ∈ N. Then

COMPUTEROUNDING in Figure 3 will compute an unbiased rounding Y of X satisfying

∀b ∈ [1..n], i ∈ [1..m] :

∣∣∣∣ b

∑
j=1

(xi j− yi j)
∣∣∣∣< 1,

∀b ∈ [1..m], j ∈ [1..n] :

∣∣∣∣ b

∑
i=1

(xi j− yi j)
∣∣∣∣< 1.

Proof. First note that the algorithm decomposes each matrix entry xi j, i ∈ [1..m], j ∈
[1..n] into x′i j ∈ 1

q1
Z and x′′i j ∈ 1

q2
Z. To show unbiasedness, observe that in Line 2, an

unbiased rounding y′′i j ∈ {0,1} of x′′i j is computed according to Theorem 4. In other

words, x̃i j computed in Line 3 will have value x′i j +
1
q1

with probability x′′, and value x′i j
otherwise. From Line 4 it follows that

Pr(yi j = 1) = Pr(x̃i j ↗ 1) = x′′i jPr((x′i j +
1
q1

)↗ 1)+ (1− x′′i j)Pr(x′i j ↗ 1)

= x′′i j(x
′
i j +

1
q1

)+ (1− x′′i j)x
′
i j

= 1
q1

x′′i j + x′i j = xi j,

hence the algorithm computes an unbiased rounding of X .
To see that the rounding computed in Figure 3 is a controlled rounding satisfying

our additional constraints, let si j(X) := ∑i
k=1 xk j for i ∈ [1..m], j ∈ [1..n], be the sum

over the first i elements of the jth column of X . In Line 2, a controlled rounding Y ′′ of
X ′′ satisfying our additional constraints is computed, hence |si j(X ′′ −Y ′′)| ≤ 1− 1

q2
. A

similar statement holds for Y and X̃ in Line 4, namely |si j(X̃−Y )| ≤ 1− 1
q1

. These two
error bounds and the triangle inequality yield

|si j(X−Y )| = |si j(X ′+ 1
q1

X ′′ − 1
q1

Y ′′+ 1
q1

Y ′′ −Y )|

≤ |si j(X̃−Y)|+ 1
q1
|si j(X ′′ −Y ′′)|

≤ 1− 1
q1

+ 1
q1

(1− 1
q2

) = 1− 1
q ,
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hence the error in all initial column intervals is at most 1− 1
q . The proof for the error in

initial row intervals and in single elements is analogous. �

Now let q = ∏
i=1 qi, qi ∈ N be a factorization of the denominator of X . Then the al-

gorithm in Figure 3 can be applied recursively to get the main result as stated in Theo-
rem 1.

Since for X ∈ {0, 1
2}m×n, an augmentation of an element by ± 1

2 will always change
the element to either 0 or 1, the algorithm from Figure 1 will run in deterministic time
O(mn) for this special case. Using this observation and choosing q = 2, this gives the
result from [7] for unbiased rounding of matrices of -bit numbers.

Corollary 1. Let X ∈ [0,1)m×n be a matrix of -bit numbers. Then an unbiased con-
trolled rounding of X satisfying equations (1), (2) and (3) from Theorem 1 can be com-
puted in time O(mn).

5 Derandomisation

The algorithm in Figure 1 can be derandomised using the method of conditional proba-
bilities (cf. [11]). For this, observe that by Lemma 2 the expected number E(Steps(X))
of augmentations needed to round a given matrix X ∈ ( 1

q Z∩ [0,1))m×n is

E(Steps(X)) =
m

∑
i=1

n

∑
j=1

xi j(q− xi j) = O(mnq2).

The derandomisation now works as follows. At the beginning of the algorithm in Fig-
ure 1, E(Steps(X)) is computed. Each time one of the two possible ways to augment
along a cycle C in Line 7 of the algorithm must be chosen, this isn’t done randomly.
Instead, the augmentation for which the algorithm would need the fewer number of ex-
pected steps if it would continue choosing randomly is picked. By Lemma 2 it follows
that

E(Steps(X)) = |C|+ 1
2 E(Steps(X−XC))+ 1

2 E(Steps(X + XC)),

where XC is the matrix for one of the two possible augmentations along C. From this
formula it follows that E(Steps(X −XC)) and E(Steps(X + XC)) cannot both be larger
than E(Steps(X))− |C|. Hence, each time the algorithm augments along a cycle C,
E(Steps(X)) decreases by at least |C|, since the augmentation giving the smaller ex-
pected value is picked.

Calculating E(Steps(X)) for the input matrix needs time O(mn). Deciding which
augmentation to use for cycle C in step t can be done in time O(|C|) while constructing
the cycle. The value E(Steps(X (t))) can be derived from E(Steps(X (t−1))) in O(|C|)
time while doing the actual augmentation. This gives the following theorem.

Theorem 6. For all X ∈ 1
q Zm×n a rounding Y ∈ Zm×n such that the inequalities (1), (2)

and (3) from Theorem 1 hold can be computed in time O(mnq2).

Together with Lemma 7, this yields Theorem 2 from the introduction.
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in Infinite Multiplayer Games�
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Abstract. We study infinite games played by arbitrarily many players
on a directed graph. Equilibrium states capture rational behaviour in
these games. Instead of the well-known notion of a Nash equilibrium, we
focus on the notion of a subgame perfect equilibrium. We argue that the
latter one is more appropriate for the kind of games we study, and we
show the existence of a subgame perfect equilibrium in any infinite game
with ω-regular winning conditions.

As, in general, equilibria are not unique, it is appealing to compute
one with a maximal payoff. This problem corresponds naturally to the
problem of deciding given a game and two payoff vectors whether the
game has an equilibrium with a payoff in between the given thresholds.
We show that this problem is decidable for games with ω-regular winning
conditions played on a finite graph and analyse its complexity. Moreover,
we establish that any subgame perfect equilibrium of a game with ω-
regular winning conditions played on a finite graph can be implemented
by finite-state strategies.

Finally, we consider logical definability. We state that if we fix the
number of players together with an ω-regular winning condition for each
of them and two payoff vectors the property that a game has a sub-
game perfect equilibrium with a payoff in between the given thresholds
is definable in the modal μ-calculus.

1 Introduction

We study infinite games of perfect information [5] played by multiple players on
a directed graph. Intuitively, a play of such a game evolves by moving a token
along edges of the graph. Every vertex of the graph is controlled by precisely one
player. Whenever the token arrives at some vertex, the player who controls this
vertex must move the token to a successor vertex. Thus a play of such a game
is an infinite path through the graph. Plays are mapped to payoffs, one for each
player. In the simplest case, which we discuss here, payoffs are just 0 and 1, i.e.
each player either wins or loses a given play of the game. We allow, however,
that a play is won by more than one player or even by no player at all.

� This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (games).

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 212–223, 2006.
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Infinite games have been successfully applied in the verification and synthesis
of reactive systems. Such a system is usually modelled as a game between the
system and its environment where the environment’s objective is the complement
of the system’s objective, so the environment is considered hostile. Therefore,
traditionally, the research in this area has mostly looked at two-player games
where each play is won by precisely one of the two players, so-called two-player
zero-sum games. However, motivated by the modelling of distributed systems,
interest in the general case has increased in recent years [1,2].

Example 1. Consider a scenario where three agents are competing for a resource
that can only be used by at most two of them using the following protocol: At
first, agent 1 decides whether to grant the other agents 2 and 3 access to the
resource or to pass control to agent 2. If control is passed to agent 2, she can
decide whether to share access to the resource with agent 1 or to grant agent
3 exclusive access to the resource. The situation is naturally modelled by the
following game with its arena depicted in Fig. 1; round vertices are controlled
by player 1; boxed vertices are controlled by player 2; player 3 does not control
any vertex; player 1 wins if vertex 5 is visited (infinitely often); player 2 wins
if vertex 4 or vertex 5 is visited (infinitely often); player 3 wins if vertex 3 or
vertex 4 is visited (infinitely often); the initial vertex is 1.

1 2 3

4 5

Fig. 1. A game with three players

Different solution concepts [13] have been proposed to model rational behav-
iour in games. The classical solution concept offered by game theory is the one
of a Nash equilibrium [12]. In a Nash equilibrium no player can receive a better
payoff by unilaterally changing her strategy. For instance, the game described in
Example 1 has two Nash equilibrium payoffs:

1. Players 1 and 2 win; a Nash equilibrium with this payoff is the combination
of strategies where player 1 moves from vertex 1 to vertex 2 and player 2
moves from vertex 2 to vertex 5.

2. Player 3 wins; a Nash equilibrium with this payoff is the combination of
strategies where player 1 moves from vertex 1 to vertex 4 and player 2 moves
from vertex 2 to vertex 3.

Intuitively, the second equilibrium is not rational because if player 1 moved from
vertex 1 to vertex 2 instead player 2 should change her strategy and move to
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vertex 5 instead because this is then the only way for her to win. However, in
the definition of a Nash equilibrium it is not taken into account that players can
change their strategies during a play.

An equilibrium concept that respects this possibility is the notion of a subgame
perfect equilibrium [16]. For being a subgame perfect equilibrium, a choice of
strategies is not only required to be optimal for the initial vertex but for every
possible initial history of the game (including histories not reachable in the
equilibrium play). In the example the second Nash equilibrium is not a subgame
perfect equilibrium because moving from vertex 2 to vertex 3 is not optimal for
player 2 after the play has reached vertex 2.

Subgame perfect equilibria have been well studied in the context of finite
games. In particular, Kuhn [7] showed that every finite game has a subgame
perfect equilibrium. Yet, we think that the concept is also worth to be analysed
in the context of infinite games because the possibility of changing strategies
during a play is not unique to finite games. In this paper we show the existence
of subgame perfect equilibria for infinite games with parity winning conditions,
a standard form of ω-regular winning conditions, and we remark that the same
holds for the greater class of Borel objectives. This generalises a result by Chat-
terjee et al. [2] about the existence of Nash equilibria in infinite games. Based
on the proof, we also develop an algorithm for computing a subgame perfect
equilibrium of a game with parity winning conditions.

We then turn to the potentially harder problem of finding a subgame per-
fect equilibrium with a maximal payoff. This problem is closely related to the
problem of deciding given a game and two payoff vectors whether the game has
a subgame perfect equilibrium with a payoff in between the given thresholds.
Using a translation into tree automata, we show that the latter problem is de-
cidable for games with ω-regular winning conditions played on a finite graph.
In particular, we show that for games with Rabin objectives the problem is de-
cidable in exponential time in general and in polynomial time if the number of
players and the number of Rabin pairs are bounded. Moreover, we show that the
problem is 2Exptime-complete for games with LTL objectives.

Naturally, we are also interested in the complexity of strategies realising an
equilibrium. We show that for games with ω-regular winning conditions played
on a finite graph any subgame perfect equilibrium can be implemented by finite-
state strategies. This is the best one can hope for because, even for games with
Büchi objectives, positional strategies, in general, do not suffice to implement
any Nash or subgame perfect equilibrium.

We conclude this paper with a section on logical definability. It is well known
that for any fixed number m the property that the first player wins a two-player
zero-sum parity game with m different priorities is definable in the modal μ-
calculus. We state a natural generalisation of this fact for multiplayer games: If
we fix the number of players together with an ω-regular winning condition for
each of them and two payoff vectors, the property that a game has a subgame
perfect equilibrium with a payoff in between the given thresholds is definable in
the modal μ-calculus as well.
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2 Infinite Multiplayer Games

The definition of an infinite (two-player zero-sum) game played on a directed,
coloured graph [19] easily generalises to the multiplayer setting. Formally, we
define an infinite multiplayer game as a tuple G = (Π, V, (Vi)i∈Π , E,χ, (Wi)i∈Π)
where

– Π is a finite set of players;
– (V, E) is a (not necessarily finite) directed graph;
– (Vi)i∈Π is a partition of V ;
– χ : V → C for some set C;
– Wi ⊆ Cω for all i ∈ Π .

The structure G = (V, (Vi)i∈Π , E,χ) is called the arena of G; χ is called the
colouring of G, and Wi is called the winning condition of player i ∈ Π . For the
sake of simplicity, we assume that uE := {v ∈ V : (u, v) ∈ E} 
= ∅ for all u ∈ V ,
i.e. each vertex of G has at least one outgoing edge. We say that G is finitely
coloured if χ : V → C for a finite set C. Finally, we call G a zero-sum game if
the sets Wi define a partition of V ω. Thus if G is an infinite two-player zero-sum
game with players 0 and 1 it suffices to define V0 and W0, and we just write
G = (V, V0, E,χ, W0).

A play or history of G is an infinite or finite path in G, respectively. We say
that a play π is won by player i ∈ Π if χ(π) ∈ Wi. The payoff of a play π of
G is the vector μ(π) ∈ {0, 1}Π defined by μ(π)i = 1 if π is won by player i.
A strategy of player i in G is a total function σ : V ∗Vi → V assigning to each
nonempty sequence wv of vertices ending in a vertex v of player i another vertex
σ(wv) such that (v, σ(wv)) ∈ E. We say that a play π of G is consistent with a
strategy σ of player i if π(k + 1) = σ(π(0) . . . π(k)) for all k < ω with π(k) ∈ Vi.
A strategy profile of G is a tuple (σi)i∈Π where σi is a strategy of player i in G.

A strategy σ of player i in G is called positional if σ depends only on the
current vertex, i.e. if σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi. More generally,
σ is called a finite-state strategy if the equivalence relation ∼σ on V ∗ defined by
w ∼σ w′ if σ(wz) = σ(w′z) for all z ∈ V ∗Vi has finite index. In other words, a
finite-state strategy is a strategy that can be implemented by a finite automaton
with output. A strategy profile (σi)i∈Π of G is called positional or a finite-state
strategy profile if each σi is positional or a finite-state strategy, respectively.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game.
We call the tuple (G, v0) an initialised infinite multiplayer game. A play (history)
of (G, v0) is a play (history) of G starting with v0. A strategy (strategy profile) of
(G, v0) is just a strategy (strategy profile) of G. A strategy σ of some player i in
(G, v0) is winning if every play of (G, v0) consistent with σ is won by player i. A
strategy profile (σi)i∈Π of (G, v0) determines a unique play of (G, v0) consistent
with each σi, called the outcome of (σi)i∈Π and denoted by 〈(σi)i∈Π〉 or, in the
case that the initial vertex is not understood from the context, 〈(σi)i∈Π〉v0 . In
the following we will often use the term game to denote an (initialised) infinite
multiplayer game.
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For a game G = (Π, V, (Vi)i∈Π , E,χ, (Wi)i∈Π) and a history h of G, let the
game G|h = (Π, V, (Vi)i∈Π , E,χ, (Wi|h)i∈Π) be defined by Wi|h = {α ∈ Cω :
χ(h) ·α ∈Wi}. For an initialised game (G, v0) and a history hv of (G, v0), we call
the initialised game (G|h, v) the subgame of (G, v0) with history hv. For a strategy
σ of player i ∈ Π in G, let σ|h : V ∗Vi → V be defined by σ|h(wv) = σ(hwv).
Obviously, σ|h is a strategy of player i in G|h.

A strategy profile (σi)i∈Π of a game (G, v0) is called a Nash equilibrium if
for any player i ∈ Π and all her possible strategies σ′ in (G, v0) the play
〈σ′, (σj)j∈Π\{i}〉 is won by player i only if the play 〈(σj)j∈Π〉 is also won by
her. The strategy profile (σi)i∈Π is called a subgame perfect equilibrium (SPE)
if (σi|h)i∈Π is a Nash equilibrium of (G|h, v) for every history hv of (G, v0).

Winning conditions. We have introduced winning conditions as abstract sets
of infinite sequences over the set of colours. In verification winning conditions are
usually ω-regular sets specified by formulae of the logic S1S (monadic second-
order logic on infinite words) or LTL (linear-time temporal logic) referring to
unary predicates Pc indexed by the set C of colours, which is assumed to be
finite. Special cases are the following well-studied winning conditions:

– Büchi (given by F ⊆ C): defines the set of all α ∈ Cω such that α(k) ∈ F
for infinitely many k < ω.

– Parity (given by a priority function Ω : C → ω): defines the set of all α ∈ Cω

such that the least number occurring infinitely often in Ω(α) is even.
– Rabin (given by a set Ω of pairs (Gi, Ri) where Gi, Ri ⊆ C): defines the

set of all α ∈ Cω such that there exists an index i such that α(k) ∈ Gi for
infinitely many k < ω but α(k) ∈ Ri only for finitely many k < ω.

Note that the Büchi condition is a special case of the parity condition with two
priorities and that the parity condition is a special case of the Rabin condition.
Also note that Büchi, parity and Rabin conditions are prefix independent, i.e.
for every α ∈ Cω and w ∈ C∗ it is the case that α satisfies the condition if and
only if wα does.

We call a finitely coloured game G a multiplayer S1S, LTL, Büchi, parity or
Rabin game if the winning condition of each player is of type S1S, LTL, Büchi,
parity or Rabin, respectively.1 Any of these games is called an ω-regular game.
It is well known that the complement of a Rabin condition is again expressible
as a Rabin condition if and only if it is equivalent to a parity condition. Thus
any two-player zero-sum Rabin game is also a two-player zero-sum parity game.
Observe that G|h = G for every history h of G if G is a multiplayer Büchi,
parity or Rabin game because the winning conditions in these games are prefix
independent.

We say that two initialised games (G, v0) and (G′, v′0) are equivalent if for
any (finite-state) Nash or subgame perfect equilibrium of (G, v0) there exists a

1 Our notation differs here from the usual notation for two-player zero-sum games
where a Büchi or Rabin game is a game where the winning condition of the first
player is a Büchi or Rabin condition, respectively.
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(finite-state) Nash or subgame perfect equilibrium of (G′, v′0), respectively, with
the same payoff and, vice versa, for any (finite-state) Nash or subgame perfect
equilibrium of (G′, v′0) there exists a (finite-state) Nash or subgame perfect equi-
librium of (G, v0), respectively, with the same payoff. As for two-player zero-sum
games (see, for example, [17]), any ω-regular multiplayer game can be reduced
to an equivalent multiplayer parity game.

Proposition 1. Any ω-regular multiplayer game (G, v0) is equivalent to a mul-
tiplayer parity game (G′, v′0). If G is a multiplayer LTL game with k players, n

vertices and winning conditions of size ≤ m, then G′ has n · 22O(m)+log k

vertices
and 2O(m) priorities for each player.

3 Existence of Subgame Perfect Equilibria

The aim of this section is to show that any ω-regular multiplayer game has a
subgame perfect equilibrium. By Proposition 1, it suffices to consider multiplayer
parity games. In the case of two-player zero-sum games, parity games are posi-
tionally determined, i.e. one of the two players not only has a winning strategy
but a positional one.

Theorem 2 (Emerson-Jutla [3], Mostowski [10]). Two-player zero-sum
parity games are positionally determined.

Moreover, positional winning strategies can always be chosen uniformly, i.e. in-
dependently of the initial vertex (see, for example, [19]). Hence any two-player
zero-sum parity game has a positional subgame perfect equilibrium.

Corollary 3. Any two-player zero-sum parity game has a positional subgame
perfect equilibrium.

Using Martin’s determinacy theorem for two-player zero-sum Borel games [8],
Chatterjee et al. [2] showed that any multiplayer game with Borel winning con-
ditions has a Nash equilibrium. Rephrased for parity games, roughly speaking,
their proof goes as follows: Given a multiplayer parity game (G, v0), for each
player i, consider the two-player zero-sum parity game (Gi, v0) where player i
plays against the coalition of all other players. By Corollary 3, this game has a
subgame perfect equilibrium consisting of a strategy σi of player i and a strat-
egy σ−i of the coalition, i.e. for every vertex v of G either σi or σ−i is winning
in (Gi, v). In the equilibrium player i plays her strategy σi as long as no other
player j deviates from her strategy σj in which case she switches to the coali-
tion strategy σ−j . In game theory this type of strategy is known under the term
“threat strategy” and has its origin in the theory of repeated games (cf. [13,
Chapter 8]). To make the Nash equilibrium a subgame perfect equilibrium, we
do not consider threat strategies in the original game but in a game arising as a
fixed point of a deflationary operator defined on the original game.

Theorem 4. Any multiplayer parity game has a subgame perfect equilibrium.
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Proof. Let G = (Π, V, (Vi)i∈Π , E,χ, (Ωi)i∈Π) be a multiplayer parity game. For
each ordinal α we define a set Eα ⊆ E beginning with E0 = E and

Eλ =
⋂

α<λ

Eα

for limit ordinals λ. To define Eα+1 from Eα, we consider for each player i ∈ Π
the two-player zero-sum parity game Gα

i = (V, Vi, E
α,χ, Ωi) where player i plays

against the coalition of all other players. By Corollary 3, we can fix a positional
subgame perfect equilibrium (σα

i , σα
−i) of this game where σα

i is a strategy of
player i and σα

−i is a strategy of the coalition. Let Xα
i be the set of all v ∈ V

such that σα
i is winning in (Gα

i , v). For vertices v ∈ Vi∩Xα
i we delete all outgoing

edges except the one taken by the strategy σα
i , i.e. we define

Eα+1 = Eα \
⋃
i∈Π

{(u, v) ∈ E : u ∈ Vi ∩Xα
i and v 
= σα

i (u)} .

Obviously, the sequence (Eα)α∈On is nonincreasing. Thus we can fix the least
ordinal ξ with Eξ = Eξ+1 and define σi = σξ

i and σ−i = σξ
−i. Moreover, for each

player j 
= i let σj,i be the positional strategy of player j in G that is induced
by σ−i. Player i’s equilibrium strategy τi is defined as follows: Player i plays σi

as long as no other player deviates. Whenever some player j 
= i deviates from
her equilibrium strategy τj , player i switches to σi,j . Then (τi)i∈Π is a subgame
perfect equilibrium of (G, v0) for any initial vertex v0. �
More generally, Theorem 4 holds for games with (quasi-)Borel winning conditions
[9]. The proof is similar to the proof for parity games but based on Martin’s
determinacy theorem for (quasi-)Borel sets [8,9]. However, Martin’s theorem can
only guarantee the existence of an arbitrary subgame perfect equilibrium in a
two-player zero-sum game with (quasi-)Borel winning conditions, not necessarily
a positional one. To ensure that the proof works, we have to assume that the
arena of the game under consideration is a forest. Over a forest any strategy is
obviously equivalent to a positional one. The justification for this assumption
is that we can always replace the arena of an arbitrary game by its unravelling
from the initial vertex, ending up in an equivalent game. See [18, Chapter 3] for
the full proof.

Theorem 5. Any multiplayer game with (quasi-)Borel winning conditions has
a subgame perfect equilibrium.

Naturally, we are interested in the complexity of strategies realising a subgame
perfect equilibrium. It is easy to see that for parity games played on a finite
arena the subgame perfect equilibrium constructed in the proof of Theorem 4 is,
in fact, a finite-state one. This leaves open the existence of a positional subgame
perfect equilibrium as it is guaranteed in the two-player zero-sum case (even for
games with an infinite arena). We are only able to give a partial answer to this
question, namely in the case of only two players 1 and 2. Indeed, it is easy to see
that the positional strategies σ1,2 and σ2,1 as defined in the proof of Theorem 4
form a subgame perfect equilibrium in this case.
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Theorem 6. Any two-player parity game has a positional subgame perfect equi-
librium.

A simple algorithm. Knowing that there always exists a subgame perfect
equilibrium in an ω-regular multiplayer game, the next challenge is to compute
one. Algorithm 1 is a simple procedure for computing a subgame perfect equi-
librium of a multiplayer parity game derived from the proof of Theorem 4 in a
straightforward way. Thus its correctness follows immediately.

Algorithm 1. Computing a finite-state SPE of a multiplayer parity game.

input multiplayer parity game G = (Π,V, (Vi)i∈Π , E, χ, (Ωi)i∈Π)
Enew := E
repeat

Eold := Enew

for each i ∈ Π do
Compute a positional SPE (σi, σ−i) of Gi = (V, Vi, Eold, χ, Ωi)
Wi := {v ∈ V : σi is winning in (Gi, v)}
Enew := Enew \ {(u, v) ∈ E : u ∈ Vi ∩ Wi and v �= σi(u)}

end for
until Enew = Eold

for each i ∈ Π do
Compute equilibrium strategy τi of player i

end for
output (τi)i∈Π

Obviously, the running time of the algorithm depends on the running time of
the algorithm we use for computing a positional subgame perfect equilibrium of
a two-player zero-sum parity game. The best known algorithm for this problem,
which also computes the winning regions (i.e. the set of vertices from which each
player has a winning strategy) of the game, is due to Jurdziński [6]. For a game
with at most n vertices, m edges and d ≥ 2 different priorities, Jurdziński’s
algorithm runs in time

O

(
dm
( n

�d/2�
)�d/2�)

.

Note that each strategy τi can be implemented by a finite automaton of size
O(|Π |2|V |). Thus we have the following theorem.

Theorem 7. Computing a finite-state subgame perfect equilibrium of a mul-
tiplayer parity game with k players, n vertices, m edges and at most d ≥ 2
priorities for each player can be done in time

O

(
kdm2

( n

�d/2�

)�d/2�
+ k3n2

)
.
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In particular, Theorem 7 says that we can compute a subgame perfect equilib-
rium of a multiplayer parity game in polynomial time for classes of games with
a bounded number of priorities. Moreover, if there exists a polynomial-time al-
gorithm for computing a positional subgame perfect equilibrium of a two-player
zero-sum parity game then Algorithm 1 can be made to run in polynomial time
as well. Hence the problem of computing a subgame perfect equilibrium in an
arbitrary multiplayer parity game is computationally not much harder than the
corresponding problem for two-player zero-sum parity games.

4 Complexity

One can easily construct games where Algorithm 1 computes an equilibrium
with a payoff of (0, . . . , 0) although there is an equilibrium with a payoff of
(1, . . . , 1). This is unsatisfactory because, if we think of verification, we want
as many components as possible to fulfil their specification. Therefore it seems
desirable to find an equilibrium with a maximal payoff (a maximal subgame
perfect equilibrium). This “maximisation problem” naturally corresponds to the
decision problem SPE defined as follows:2

Given an ω-regular multiplayer game (G, v0) played on a finite arena and
thresholds x, y ∈ {0, 1}k, decide whether (G, v0) has a subgame perfect
equilibrium with a payoff ≥ x and ≤ y.

Note that we can find the payoff of a maximal subgame perfect equilibrium with
k queries to the decision problem if k is the number of players. To solve the
problem SPE, we use a reduction to the problem of deciding whether a given
tree automaton defines a nonempty tree language.

Theorem 8. The problem of deciding given a multiplayer Rabin game (G, v0)
played on a finite arena and thresholds x, y ∈ {0, 1}k whether (G, v0) has a
subgame perfect equilibrium with a payoff ≥ x and ≤ y is in Exptime. If the
number of players and pairs is bounded, the problem is in Ptime.

Proof (sketch). Without loss of generality, we can assume that G is binary, i.e.
every vertex of G has at most two successors. Then we can arrange all plays
of (G, v0) in an infinite binary tree with labels from the vertex set V . Given
a strategy profile (σi)i∈Π of (G, v0), we enrich this tree with a second label
component that takes the value 0 or 1 if the strategy profile prescribes going to
the left or right successor, respectively.

The algorithm works as follows: We construct two alternating parity tree au-
tomata. The first one checks whether some arbitrary tree with labels from the
alphabet V ×{0, 1} is indeed a tree originating from a strategy profile of (G, v0),
and the second one checks for a tree originating from a strategy profile (σi)i∈Π

of (G, v0) whether (σi)i∈Π is a subgame perfect equilibrium with a payoff in be-
tween the given thresholds. The first automaton is actually a nondeterministic
2 Here ≤ denotes the product ordering on {0, 1}k, i.e. x ≤ y if xi ≤ yi for all i.
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tree automaton with trivial acceptance (every run of the automaton is accept-
ing) and has O(|V |) states. The second automaton has O(kd) states and O(1)
priorities where k is the number of players and d is the maximum number of
pairs in a player’s winning condition. An equivalent nondeterministic parity tree
automaton has 2O(kd log kd) states and O(kd) priorities [11]. Finally, we construct
the product automaton of the first nondeterministic parity tree automaton with
the one constructed from the alternating one. As the former automaton works
with trivial acceptance, the construction is straightforward and leads to a non-
deterministic parity tree automaton with O(|V |) · 2O(kd log kd) states and O(kd)
priorities. Obviously, the tree language defined by this automaton is nonempty if
and only if (G, v0) has a subgame perfect equilibrium with a payoff in between the
given thresholds. By [4], nonemptiness for nondeterministic parity tree automata
can be decided in time polynomial in the number of states and exponential in
the number of priorities. �
As any ω-regular multiplayer game can be reduced to an equivalent multiplayer
parity game (and thus also to a multiplayer Rabin game), Theorem 8 implies the
decidability of SPE. For LTL games the reduction gives an algorithm running in
doubly exponential time. As the problem of deciding the winner in a two-player
zero-sum LTL game is already 2Exptime-complete [14], this is optimal.

Corollary 9. The problem SPE is decidable. For multiplayer LTL games the
problem is 2Exptime-complete.

We point out another consequence of our reduction. By Rabin’s basis theorem
[15], every regular, nonempty tree language contains a regular tree, i.e. a tree
with only finitely many nonisomorphic subtrees. It is easy to see that a tree
t : {0, 1}∗ → V × {0, 1} originating from a strategy profile (σi)i∈Π is regular if
and only if each σi is a finite-state strategy. Thus we have the following theorem.

Theorem 10. Let (G, v0) be an ω-regular multiplayer game played on a finite
arena and x ∈ {0, 1}k. Then (G, v0) has a subgame perfect equilibrium with
payoff x if and only if (G, v0) has a finite-state subgame perfect equilibrium with
payoff x.

Intuitively, the theorem says that any subgame perfect equilibrium of an ω-
regular multiplayer game played on a finite arena can be implemented by finite-
state strategies. This is the best one can hope for because an arbitrary Nash or
subgame perfect equilibrium, in general, cannot be implemented by positional
strategies.

Example 2. Consider the following Büchi game with two players 1 and 2 played
on the arena depicted in Fig. 2: Every vertex is controlled by player 1, and
the winning condition of player i is to visit vertex i infinitely often. Obviously,
player 1’s finite-state strategy of alternating between visits to vertex 1 and vertex
2 induces a subgame perfect equilibrium of the game with payoff (1, 1). However,
for any positional strategy of player 1 only one player wins the resulting play.
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1 0 2

Fig. 2. A 2-player Büchi game

5 Definability

Let us now study the following question: Given winning conditions W1, . . . , Wk ⊆
Cω defined with respect to a (finite) set C of colours and payoff thresholds x, y,
in which logic can we define the class of initialised game arenas that, when
equipped with the given winning conditions, admit a subgame perfect equilib-
rium with a payoff in between the given thresholds? Note that any game arena
G = (V, (Vi)i∈Π , E,χ), where χ : V → C, can be identified with the Kripke
structure (V, (Vi)i∈Π , E, (Pc)c∈C) defined by Pc = {v ∈ V : χ(v) = c}. Hence
any logic that has a semantics for pointed Kripke structures can be used to de-
fine a class of initialised game arenas, one possible candidate being the modal
μ-calculus Lμ, i.e. basic modal logic extended by least and greatest fixed points.
Indeed, it is well known that for any fixed number of priorities the class of ini-
tialised two-player game arenas that admit a winning strategy for the first player
in the corresponding two-player zero-sum parity game is Lμ-definable [3].

If G is a k-player game arena with colours in C and W1, . . . , Wk ⊆ Cω are
winning conditions, we write G[W1, . . . , Wk] for the corresponding game. Then
our result can be stated as follows.

Theorem 11. Let W1, . . . , Wk ⊆ Cω be ω-regular and x, y ∈ {0, 1}k. Then
there exists a formula ψ ∈ Lμ such that the following equivalence holds for every
k-player game arena G with colours in C and every vertex v of G:

G, v |= ψ ⇔ (G[W1, . . . , Wk], v) has a SPE with a payoff ≥ x and ≤ y .

Note that Theorem 11 is closely related to Theorem 8 and Corollary 9. Indeed,
it can be shown that the formula ψ as defined in Theorem 11 can be constructed
effectively. As the model-checking problem for Lμ on finite Kripke structures is
decidable, this gives another method to solve the problem SPE.

As a special case, Theorem 11 implies that for every fixed ω-regular winning
condition the class of initialised two-player game arenas that admit a winning
strategy for player 0 in the corresponding two-player zero-sum game is definable
in Lμ, a fact that, surprisingly, seems not to have been stated anywhere before.

Acknowledgements. This paper is largely based on the author’s master’s the-
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Abstract. We refine previous analyses of Hyland-Ong game semantics
and its relation to λ- and λμ-calculi and present improved factorization
results for bracketing and rigidity that can be combined in any order.

1 Introduction

Innocent strategies [4,7,2] provide models of (idealized programming languages
based on) the λ- and λμ-calculi, the difference between these two calculi being
expressed by the bracketing condition: whenever a strategy plays an answer, this
must respond to the “pending” question, i.e. the most recent, as yet untreated,
request. In [5], Laird analysed this situation and showed that an arbitrary inno-
cent strategy σ can be decomposed as a well-bracketed innocent strategy B(σ)
with access to an innocent but non-well-bracketed oracle call/cc. This seman-
tic factorization mirrors the well-known result from proof theory that classical
deductions can be rewritten as intuitionistic deductions with a few copies of
Peirce’s law as additional hypotheses. In [1], Danos & Harmer introduced a new
constraint of rigidity, in a certain sense dual to bracketing, which restricts the
use of case much as bracketing restricts the use of call/cc and showed that σ

can be decomposed as a rigid innocent strategy
−→R(σ) with access to a non-rigid

oracle case.
So we have a decomposition of the CCC I of innocent strategies into a “dia-

mond” of subCCCs:
I

B

����� −→R

�����

B−→R

���� ����

In B, we can model case but not call/ccwhereas in
−→R we can model call/cc

but not case. However, neither factorization preserves the other constraint,
i.e. eliminating call/cc reintroduces case and eliminating case reintroduces
call/cc:

I

����
��
� I

���
��

��

B −→R�� B �� −→R

B−→R B−→R
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In this paper, we continue this analysis of innocent strategies with the aim
of better understanding the role of answers in game semantics. To this end, we
introduce an additional constraint, backward rigidity or B-rigidity, which extends
the above decomposition to a “cube” of subCCCs (§3.3):

←−R
��

I
��
�

B←−R B

R
���

−→R
��

BR B−→R

This constraint can be seen as a dual to rigidity—which, henceforth, we re-
name as forward rigidity, reserving the term rigidity (R) for the conjunction of
the two—in that forward rigidity restricts the elimination (in the sense of nat-
ural deduction) of base type constants whereas backward rigidity restricts their
introduction. The cube provides us with a taxonomy of logics and programming
languages based on λ- and λμ-calculi: each node corresponds, via definability
and full completeness theorems, to a fragment of μPCF (§3.4).

We then present (§4) a factorization for B-rigidity and modified factoriza-
tions for F-rigidity and bracketing, each of which preserves the other two
constraints:

←−R I�� ←−R

��

I

��

←−R
����

I
�����

B←−R B�� B←−R

��

B

��

B←−R B

R −→R�� R −→R R
�����

−→R
����

BR B−→R�� BR B−→R BR B−→R

This allows us to “navigate” (from I) in the cube, applying factorizations in
whichever order we like, and still being sure to end up in BR. From a syntactic
point of view, this explains how we can move from one language of the cube
to another: a “smaller” language plus an appropriate oracle equals a “larger”
language (e.g. λ-calculus plus call/cc equals λμ-calculus).

We conclude (§4.4) by examining the unary case where the factorizations can
be simplified and the connection to logic becomes especially clear: BR = λ-
calculus and R = λμ-calculus.

2 Innocent Game Semantics

This section briefly presents the definitions necessary to construct the category
I of innocent strategies. A more detailed development can be found in [2].
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2.1 Arenas and Plays

An arena A is a tuple 〈MA,λA, IA,&A〉 where

– MA is a countable set of tokens.
– λA : MA → {O, P} × {Q, A} labels each m ∈ MA as belonging to Opponent

or to Player and as a Question or an Answer.
– IA is a subset of λ−1

A (OQ) known as the initial moves of A.
– &A is a binary enabling relation on MA satisfying
(e1) if m &A n then λOP

A (m) 
= λOP
A (n) and n 
∈ IA;

(e2) if m &A n where λQA
A (n) = A then λQA

A (m) = Q.

An arena where answers never enable other moves is called an A-terminal
arena. A flat arena has a single OQ-move and a set of PA-moves, all enabled
by the O-move. For example, bool has an OQ, q, and two PAs, tt and ff, where
q &bool tt and q &bool ff. We similarly define ⊥⊥⊥, com and nat as the flat are-
nas over ∅, {t} and {0, 1, 2, . . .} respectively. Note that a flat arena is always
A-terminal.

A play in arena A is a string s over alphabet MA with pointers between
its occurrences such that, if si (the ith symbol of s) points to sj then j < i,
if sj points to si then si &A sj and if si has no pointer then si ∈ IA. We
write |s| for the length of s. A legal play in arena A is a play in A that
also satisfies OP-alternation: λOP

A (si) 
= λOP
A (si+1) for 1 ≤ i < |s|. Each oc-

currence in a legal play s is an element m of MA together with its pointer
(unless m ∈ IA); we call m plus its pointer a move of s. If m points to
n in s, we say that n justifies m in s. We write LA for the set of all legal
plays in A.

The prefix ordering on strings extends to LA with least element ε, the empty
play. For s, t ∈ LA, we write s . t (resp. s .O t, resp. s .P t) when s is a (resp.
O-ending, resp. P-ending) prefix of t. We fix the convention that ε .P s for any
s ∈ LA. We write s ∧ t for the longest common prefix of s and t, ip(s) or s−

for the immediate prefix of non-empty s and, provided the last move of s,
written sω, has a pointer, jp(s) for the justifying prefix of s, i.e. that prefix of
s ending with the move that justifies sω. We define ie(s) = {t ∈ LA | ip(t) = s},
the set of immediate extensions of s and, if s ∈ LA and m ∈ MA such that
sω enables m in A, we write s ·m for the legal play obtained by adding m to the
end of s, pointing to the last move.

We have the standard [6] constructors on arenas: the product A × B (and
its infinite version Aω), the par A � B and the lift ↓A from which we recover
the familiar arrow A ⇒ B as (↓A) � B. If A and B are pointed arenas [only
one initial move] then A � B is also pointed and, in this special case, is written
A⊕B. All constructors preserve the property of being A-terminal.

2.2 The Ambient SMCC

A strategy σ for an arena A, written σ : A, is a non-empty set of P-ending
legal plays of A which satisfies
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– prefix-closure: if s ∈ σ and s′ .P s then s′ ∈ σ;
– determinism: if s ∈ σ and t ∈ σ then s ∧ t ∈ σ.

The second condition amounts to asking for s∧ t to end with a P-move; so only
Opponent can branch nondeterministically. We write dom(σ) for the domain of
σ defined as

⋃
s∈σ ie(s), all the O-ending plays of A accessible to σ.

We compose strategies σ : A⇒B and τ : B ⇒C by parallel composition plus
hiding, i.e. σ and τ synchronize on B and hide this from “the outside world”,
yielding σ ; τ : A ⇒ C. It can be shown that, by taking arenas as objects and
strategies for A ⇒ B as arrows between A and B, this notion of composition
gives rise to an SMCC G [2].

2.3 The CCC of Innocent Strategies

We define the P-view , noted �s�, of a non-empty legal play s ∈ LA in two stages.
First we extract a subsequence of s with pointers defined only for O-moves:

– �s� = sω, if sω is an initial move;
– �s� = �jp(s)� · sω, if sω is a non-initial O-move;
– �s� = �ip(s)� sω, if sω is a P-move.

In words, we trace back from the end of s, following pointers from O-moves,
excising all moves under such pointers, and “stepping over” P-moves, until we
reach an initial move. In general, a P-move can “lose its pointer” (if it points to
a move that gets erased in this way). The second stage of the definition specifies
that, in such a case, the P-move has no justifier in the P-view (and so �s� 
∈ LA);
otherwise it keeps the same justifier as in s.

We say that a legal play s ∈ LA satisfies P-visibility iff �s� ∈ LA. In words,
no P-move of �s� loses its pointer. Note that this doesn’t prevent a P-move of
�t� losing its pointer, for t some proper prefix of s. We lift the definition of P-
visibility to strategies in the obvious way: σ satisfies P-visibility iff all s ∈ σ
do. Note that, for s in P-vis σ as opposed to arbitrary P-vis s, all t .P s do in
fact satisfy P-visibility—since σ is closed under P-ending prefixes—so �t� ∈ LA

for all the P-prefixes t of s.
If s, t ∈ LA where s ends with a P-move, satisfies P-vis and �ip(s)� = �t� then

we denote by match(s, t) the unique extension of t satisfying �s� = �match(s, t)�,
i.e. add the last move of s to t using the “same” pointer as in s. We can do this
since, by assumption, the last move of s points in �ip(s)� = �t�.

We now say that a deterministic P-vis strategy σ is innocent iff

s ∈ σ ∧ t ∈ dom(σ) ∧ �ip(s)� = �t� ⇒ match(s, t) ∈ σ.

So an innocent strategy is completely determined by its view function �σ�
defined to be {�s� | s ∈ σ}. It can be shown that innocent strategies are closed
under composition and form a subcategory I of G where the monoidal structure
becomes Cartesian, i.e. I is a CCC. In the rest of this paper, we restrict to the
full subCCC of I consisting of A-terminal arenas only.
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3 Bracketing and Rigidity

3.1 Backward Rigidity

An innocent strategy satisfies backward (or B-)rigidity iff every time it plays
an answer, the preceding O-move was also an answer. This rules out strategies
like skip = {ε, q · t} : com where Player produces an answer “from thin air”.

3.2 Forward Rigidity

An obvious “dual” to B-rigidity applies the same condition to questions: every
time the strategy plays a question, the preceding move must itself have been
a question. We call such strategies forward (or F-)rigid. In the setting of A-
terminal arenas, this is equivalent to the notion of rigid strategy defined in [1].
This condition typically rules out case:

nat ⇒ (natω ⇒ nat)

q1

q2

n2

q3
n

m3

m1

3.3 The Bracketing Condition

The P-view of an O-ending legal play s has generic form

OQ((PQ � OQ)∗(PQ � OA)∗)∗

(where we’ve omitted Player’s pointers for clarity). The rightmost OQ of �s� is
called the pending question of s. An innocent strategy satisfies the bracketing
condition iff, every time the strategy plays an answer, that answer is justified by
the pending question.

This rules out strategies like call/cc à la Peirce:

((com ⇒ com) ⇒ com) ⇒ com

q1

q2

q3

q4

t4

t1
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3.4 The Cube of Subcategories

Each of the above constraints is preserved by composition, independently of
the others. For this reason, we say that the constraints are orthogonal. As an
immediate consequence of this, we can “unfold” the CCC of innocent strategies
I into a cube of subcategories:

←−R
��

I
��
�

B←−R B

R
���

−→R
��

BR B−→R
As shown in [1,3], any innocent strategy with finite view function for (the

arena interpreting) a simple type over a collection of flat arenas is denoted by a
term in the following “Böhm tree” syntax (with appropriate typing rules) where
Ω is a divergent term (or constant) of base type and k ranges over the (other)
constants of base type:

E ::= Ω | [α]k | (case (x)!F
−−−−→
k �→ E)

F ::= λ!xμα(E)

We can “unfold” this rather compact syntax into the following grammar:

V ::= Ω | [α]k

C ::= Ω | (case (x)!F !M)
E ::= V | C
M ::= k �→ E

F ::= λ!xμα(E)

This more accurately reflects the game semantics in that each syntactic class
corresponds to a certain kind of move—V for Player answers, C for Player ques-
tions, M for Opponent answers and F for Opponent questions—and allows us
to easily identify the fragments corresponding to our three semantic constraints:
to impose the bracketing condition, we simply erase all μαs and [α]s; to impose
F-rigidity, we restrict M by M ′ ::= k �→ V and to impose B-rigidity, we restrict
F by F ′ ::= λ!xμα(C).

4 Factorizations

We now present factorizations, one for each of our constraints, each of which
forces an innocent strategy to satisfy its constraint whilst preserving the other
two. We fix, once and for all, an encoding of the answers (in a given arena) as
natural numbers A �→ ‘A’ and a second encoding of answer-natural number pairs
as natural numbers A, i �→ ‘Ai’.
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4.1 Backward Rigidity

To eliminate a violation of B-rigidity—a Player answer preceded by an Opponent
question—we transform all OQ PA-ending P-views of σ into two new P-views:

...
...

OQ OQ

q q

q ‘PA’
q‘PA’ PA

t

‘PA’

All other P-views remain unchanged. This determines a B-rigid innocent strat-
egy

←−R(σ) : ((comω ⇒ nat) ⇒ nat) ⇒ A—which is well-bracketed and/or
F-rigid if σ is—where we can recover σ by composing with const : (comω ⇒
nat) ⇒ nat, our oracle strategy, defined by the following view function:

q q

q q

qn n

t n

4.2 Forward Rigidity

A violation of F-rigidity consists of an Opponent answer followed by a Player
question. We would therefore like to transform the view function of σ : A by
“disguising” OAs as OQs so that σ can play all of its questions in an F-rigid
manner. We can do this using case⊕, our oracle for F-rigidity, with view function:

(nat ⊕ nat) ⇒ (natω ⇒ nat)

q1

q2

n2
r

n1

q1

q2

n2
�

q3
n

m3

m1
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This strategy is deterministic, total, well-bracketed and B-rigid and we have
an evident finite version casek,l

⊕ : (Fk ⊕F�) ⇒ (Fk
� ⇒ F�) where Fk denotes a

base type with k distinct values.
The factorization transforms PQ � OA arches of PQ-ending P-views of σ into

PQ � OQ arches on ((nat ⊕ nat) ⇒ (natω ⇒ nat)) ⇒ A:

q1

q2

PQ

OA

‘OA’2�
q3
‘OA’

For well-bracketed PA-ending P-views of σ, we must pop all the q‘OA’s in-
troduced by the factorization, up to the pending question, so as to preserve
bracketing:

OQ

q1

q3
‘OA’

...
q1

q3
‘OA’

q1

q2

PQ

OA

‘PA’2r

‘PA’1

‘PA’3

‘PA’1

...

‘PA’3

‘PA’1

PA
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The factorized strategy initiates popping by playing ‘PA’2r. The oracle propa-
gates this directly to q1. If the new pending question still belongs to the oracle,
the strategy plays ‘PA’3r and the oracle again propagates. This continues un-
til we reach the pending question in A, whence PA is played. Note that this
doesn’t depend on σ at all: all factorized strategies will share the following es-
sentially history free component, where Player always points to the pending
question:

‘PA’1 �→ PA, if the pending question is in A

‘PA’1 �→ ‘PA’3, otherwise

To formally describe the σ-dependent component, we define, for s ∈ �σ�, its
(empty or singleton) principal P-view s and its set of auxiliary P-views
As:

ε �→ (ε, ∅)
s · OQ PQ �→ (s · OQ q1 · q2 PQ,As)
s ·OAPQ �→ (s−− · q‘OA’ q

1 · q2 PQ,As ∪ {s · OA ‘OA’2�})
s · OQ PA �→ (∅,As ∪ {s · OQ PA})
s · OAPA �→ (∅,As ∪ {s · OAPA}), if s · OAPA violates bracketing

�→ (∅,As ∪ {s · OA ‘PA’2r}), otherwise

Lemma 1. If σ is an innocent strategy for A then

σ =
⋃

s∈�σ�
s ∪As

is a view function for ((nat ⊕ nat) ⇒ (natω ⇒ nat)) ⇒ A.

We can now formally define
−→R(σ) as the innocent strategy determined by σ and

the history free component. This meshes perfectly with case⊕ to implement our
factorization:

Theorem 1. If σ is an innocent strategy for A then
−→R(σ) is an F-rigid innocent

strategy for ((nat ⊕ nat) ⇒ (natω ⇒ nat)) ⇒ A satisfying

case⊕ ;
−→R(σ) = σ.

If σ is well-bracketed and/or B-rigid then so is
−→R(σ).

4.3 Bracketing

A violation of bracketing consists of a Player answer pointing beyond the pending
question. We thus need to transform P-views in such a way that each P � O arch
can, if necessary, be “popped” at a later point so as to recover a well-bracketed
strategy. To do this, we use call/cc⊕, a variant of call/cc, as oracle:
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(((nat ⊕ nat) ⇒ nat) ⇒ nat) ⇒ (nat ⊕ nat)

q1

q2

q3

q4

n4
�

n1
�

q1

q2

q3

q4

n4
r

n3

q1

q2

n2

n1
r

This strategy is deterministic, total and (B- and F-)rigid. If we restrict to finite
enumerated types, we have call/cck,�

⊕ : (((Fk ⊕F�) ⇒ F�) ⇒ Fm)⇒ (Fk ⊕Fm).
Our factorization sandwiches each PQ � OQ arch of a P-view with q1 q2 and
q3 q4. So, if we subsequently play ‘PAj ’4� , call/cc⊕ replies with ‘PAj ’1� , “popping”
the arch.

...
q1

q2

PQ

OQ

q3

q4

...



234 R. Harmer and O. Laurent

The factorization also transforms PQ � OA arches:

...
q1

q2

PQ

OA

‘OA’2

‘OA’1r
...

As for F-rigidity, the popping phase is mainly implemented by a history free
component: the factorized strategy has only to initiate this process by providing
an offset j—the number of OQs of σ between the answer we wish to play and its
justifier. Formally, we map each P-view of �σ� on A to a principal P-view and set
of auxiliary P-views on ((((nat ⊕ nat) ⇒ nat) ⇒ nat) ⇒ (nat⊕ nat)) ⇒ A:

ε �→ (ε, ∅)
OQ PQ �→ (OQ q1 · q2 PQ, ∅)

s ·OQ PQ �→ (s ·OQ q3 · q4 q1 · q2 PQ,As)
s ·OAPQ �→ (s−− · ‘OA’1r q1 · q2 PQ,As ∪ {s ·OA ‘OA’2})

OQ PA �→ (OQ PA, ∅)
s ·OAPA �→ (s ·OAPA,As), if s contains no non-initial OQs
s ·OQ PA �→ (∅,As ∪ {s ·OQ q3 · q4 ‘PA’4r}), if j = 0

�→ (∅,As ∪ {s ·OQ q3 · q4 ‘PAj−1’4�}), otherwise

s ·OAPA �→ (∅,As ∪ {s ·OA ‘OA’2, s−− · ‘OA’1r ‘PA’4r}), if j = 0
�→ (∅,As ∪ {s ·OA ‘OA’2, s−− · ‘OA’1r ‘PAj−1’4�}), otherwise

Lemma 2. If σ is an innocent strategy for A then

σ =
⋃

s∈�σ�
s ∪As

is a view function for ((((nat ⊕ nat) ⇒ nat) ⇒ nat) ⇒ (nat ⊕ nat)) ⇒ A.

We write B(σ) for the innocent strategy determined by σ and the (almost) history
free component:

‘PAj+1’1� �→ ‘PAj ’4�
‘PA0’1� �→ PA, if the pending question is initial

�→ ‘PA’4r, otherwise
‘PA’3 �→ PA



The Anatomy of Innocence Revisited 235

Theorem 2. If σ is an innocent strategy for A then B(σ) is a well-bracketed
innocent strategy for ((((nat ⊕ nat) ⇒ nat) ⇒ nat) ⇒ (nat ⊕ nat)) ⇒ A
satisfying

call/cc⊕ ; B(σ) = σ.

If σ is F-rigid and/or B-rigid then so is B(σ).

4.4 The Unary Case

If we restrict ourselves to a single base type com with constants Ω, t : com, we
can simplify our factorizations and oracles. For B-rigidity, skip : com suffices
as oracle; the factorization simply inserts q · t just before all violating PAs. For
F-rigidity, we use seq : com ⇒ com ⇒ com, the unary case, as oracle; the
factorization simply transforms all PQ � OA arches into q1 � q3, popping (if
necessary) as usual.

For bracketing, Peirce’s law cc : ((com ⇒ com) ⇒ com) ⇒ com acts as
oracle. The factorization transforms every OQ PQ-ending P-view s ∈ �σ� by in-
serting q1 · q2 q3 · q4 between the OQ and the PQ, where q3 points to the q2

occurring after the “answering justifier” of s: consider the unique, maximal P-
view t ∈ �σ� extending s where all O-moves (after s) are answers; if t ends with
an answer, the answering justifier is the question answered by the last move;
otherwise (including the case where no such maximal P-view exists), the answer-
ing justifier is just the pending question of s. Syntactically, this corresponds to
the translation μα(t) �→ (cc λα(t)) and [α]t �→ (α)t. Instead of popping arches
one-by-one, this pops everything between a PA and its justifying question “in
one go”. This exploits the property (of the unary case) that we can statically
determine the answering justifier of a P-view. In the general case, the answering
justifier can only be known at runtime and so we have to pop arches dynamically.
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Abstract. We propose a new approach to verification of probabilistic
processes for which the model may not be available. We use a technique
from Reinforcement Learning to approximate how far apart two pro-
cesses are by solving a Markov Decision Process. If two processes are
equivalent, the algorithm will return zero, otherwise it will provide a
number and a test that witness the non equivalence. We suggest a new
family of equivalences, called K-moment, for which it is possible to do
so. The weakest, 1-moment equivalence, is trace-equivalence. The others
are weaker than bisimulation but stronger than trace-equivalence.

1 Introduction

In program verification, the goal is typically to check automatically whether a
system (program, physical device, protocol, etc.) conforms to its pre-established
specification. For non-probabilistic systems, one usually expects equivalence be-
tween the two, and most of the time this equivalence is chosen to be bisimula-
tion. In the verification of probabilistic systems it has been observed [8] that the
comparison between the program and the specification should not be based on
equivalences: one reason is that the probabilities involved often come from ap-
proximations of the actual numbers. Hence a slight difference in the probabilities
between two processes should not necessarily be interpreted as non equivalence.
Instead, one is interested in a notion of distance or divergence1 that quantifies
how far apart the processes are. When defining a divergence or distance, we
have two focus: its computability of course but also the relation induced by zero
distance. The actual value of the distance is usually not relevant but the derived
relation, which may be for example bisimulation or trace equivalence, is a guide
to evaluate the power or adequacy of the distance or divergence.

In real scenarios, the model of the implementation is rarely known and the
available information can only be gathered by interacting with the system. Con-
sequently, verification in this setting has to be based on some form of sampling
(or testing). In their famous paper on probabilistic transition systems [13], Larsen
and Skou have defined a test language that corresponds to probabilistic bisim-
ulation. Two processes are bisimilar if and only if they accept the same tests
1 We use the word divergence to mean a distance that may not satisfy the triangle

inequality and symmetry.
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with the same probabilities. From the maximal difference over the probabili-
ties on these tests, Van Breugel et. al. [2] have defined a divergence (in fact a
pseudo-metric) that quantifies the difference between the processes. However,
the tests defined by Larsen and Skou have a copy construct that represents run-
ning many tests on a given state, and this recursively. The need to maintain an
arbitrary number of replicas of states is an obstacle to automatisation and has
been an argument against bisimulation which is thus considered too strong, even
for non-probabilistic processes.

In this paper, we explore alternative equivalences and divergences that do
not require to maintain an unbounded number of replicas. In particular, we
suggest a new family of equivalences called K-moment that only need a non-
recursive form of replication. We also propose an algorithm to compute these
divergences using Reinforcement Learning (RL) methods; these are applicable
even when the model is not available. While verification techniques can deal
with processes of about 1012 states, RL algorithms do a lot better; for example,
the TD-Gammon program deals with more than 1040 possible states [15]. The
key idea of our approach is to define a Markov Decision Process (MDP) out of
the processes to be tested and to interpret the optimal value of this MDP as a
divergence between the processes. Moreover, the algorithm we propose outputs
a test that witnesses the computed divergence. In [5], we showed how it can
be done for trace-equivalence; we now extend the approach to a large family of
testing equivalences.

The plan of the paper is as follows. In the following section, we point out the
difficulties behind testing probabilistic bisimulation and define the K-moment
equivalence. In Section 3, we informally expose our approach via a one player
stochatic game and give the key definition of the MDP, the associated theorems,
and the experimental results. Section 4 shows briefly how the approach can be
applied to other equivalence notions.

2 Testing Equivalences

We consider probabilistic reactive systems where actions are meant to be syn-
chronized through interaction with the environment and where no internal ac-
tions occur. Our models are Labelled Markov Processes (LMPs) [1]; while they
can be uncountable in general, we restrict ourselves to countable ones. Finite
LMPs are also called Probabilistic labelled transition systems or Markov deci-
sion processes without rewards. A countable LMP is a tuple (S, i, Act, P ) where
S is a countable set of processes, i ∈ S the initial process, Act a finite set of ac-
tions, and P (s, a) a sub-probability distribution on S, for s ∈ S and a ∈ Act (see
Fig. 1). We will write S generically for this tuple, and assume that subscripts
propagate to the four elements. We use the notation PsX(a) for P (s, a)(X), the
probability that an a-transition from s ends in X . Given a trace τ (i.e., a se-
quence of actions), Pis(τ) is the probability to reach s with τ from the initial
state i. We will always assume our models to be tree like; up to bisimulation [1],
it is always possible.
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Bisimulation
Larsen and Skou showed that probabilistic bisimulation can be characterized by
a testing scenario [13]. Their test language has the following syntax:

TLS : t ::= ω | a.t | (t1, . . . , tn)

ω is a dummy test that always terminates with success; test a.t consists in
executing action a and, in case of success, proceeding with test t; finally, test
(t1, . . . , tn) consists in making n copies of the current process and then executing
test ti on the ith copy for i = 1, . . . , n. The execution of a test may result in
several possible observations. Let a� represents the success of action a and a×

its failure. The observation set of test t is recursively defined as follows :

Oω = {ω}, Oa.t = {a×}∪ {a�.e | e ∈ Ot}, O(t1,... ,tn) = Ot1 × . . .×Otn

To each test t is associated a probability distribution Qs
t (e) on Ot; it represents

the probability to witness observation e after running t on process s and is
defined as :

Qs
ω(ω) = 1, Qs

(t1,...,tn)((e1, . . . , en)) =
∏

i Qs
ti
(ei) where ei ∈ Oti ∀i,

Qs
a.t(a

×) = 1− PsS(a), Qs
a.t(a

�.e) =
∑
s′∈S

Pss′(a)Qs′
t (e) where e ∈ Ot.

Theorem 1 ([13]). Two processes are probabilistic bisimilar iff they yield the
same probability distribution on observations for any test of the grammar TLS.

The replication construct in the test language TLS makes bisimulation very diffi-
cult to check in practice. Indeed, this construct requires to make n replicas of the
current process and to execute a test on each replica. Since this construct is de-
fined recursively on tests, there is no bound on the number of replicas that must
be kept in memory. However, as is well known, bisimulation cannot be tested
without recursive replication. In this work, we propose equivalences that make
sure to limit the number of replicas2. This allows us to propose an algorithm
that uses efficient techniques of RL to estimate the divergence between LMPs. A
major advantage of this approach is that it runs even if the model of the imple-
mentation is unknown, contrarily to Van Breugel and Worrell’s work [3]. In the
latter, a pseudo metric that corresponds to bisimulation is computed through a
linear programming algorithm.

K-moment Equivalences
Trace-equivalence, contrarily to bisimulation, can be tested without the need to
create replicas recursively, but for many applications, it does not discriminate
enough. Especially, it cannot discriminate between the following two processes:
2 In the classification of Van Glabbeek [9], the testing machine we assume is equipped

with (1) a series of buttons (one for each action), (2) a reset button and (3) a replica-
tion button to generate copies of the current process. To avoid recursive replication,
we delete copies in memory once a transition happens from one state to the next.
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Of course bisimulation does discriminate between them, and therefore can catch
the fact that the probabilistic choice happens at different levels in both processes.
One may wonder if equivalences without recursive replication can catch this
difference. Such equivalences, if they can be tested efficiently, should be a good
compromise between the fact that bisimulation is very costly to test and the fact
that trace-equivalence does not discriminate enough.

It is well known that probabilistic bisimulation can be formulated as the
greatest fixed point of F defined as follows. Given an equivalence relation R, we
say that two states s1, s2 are F (R) equivalent if they have the same probability to
jump to an equivalence class of R with every sequence of actions. More formally∑

t∈C Ps1t(τ) =
∑

t∈C Ps2t(τ) for all R-equivalence class C. Observe that trace-
equivalence is simply F (S×S). Hence, in order to naturally define an equivalence
whose discrimination power is between bisimulation and trace-equivalence, one
can consider ∩a∈ActF (∼a) where ∼a is the equivalence that identifies states that
have the same total probability to perform action a, that is PsS(a). This relation
does discriminate T1 and T2 and any two trace-equivalent processes on which
probabilistic choices happen at different levels. It can be tested without recursive
replicas but, unfortunately, the number of needed replicas at a particular state
is unbounded. However, we will see that it is the limit of a sequence of “bounded
replicas” equivalences. First we need the following:

Definition 1. Let (S, i, Act, P ) be an LMP, a ∈ Act and τ ∈ Act∗. We define
Xτ,a : S ∪ {Dead} → [0, 1] the random variable representing the probability to
perform action a after having run trace τ . Dead is the outcome of the experiment
of failing to perform τ . Equivalently, for p > 0

P r(Xτ,a = p) =
∑

s:PsS(a)=p

Pis(τ)

and {Xτ,a = 0} = {s : PsS(a) = 0} ∪ {Dead}.
At first sight, it is surprising to see a random variable taking probability values,
but recall that we are performing tests on processes and are indeed observing
the probabilities that these tests be accepted.

It is easy to see that two processes S1 and S2 are ∩a∈ActF (∼a)-equivalent if,
and only if, for any trace τ ∈ Act∗ and action a ∈ Act, the random variables
XS1

τ,a and XS2
τ,a are equal. Since any two discrete random variables are equal if and

only if they have the same moments3, the following is a natural relaxation of the
preceding equivalence:
3 Recall that, the ith moment of a random variable X is the expected value of Xi.
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Definition 2. Let K ∈ N∗. Two LMPs S and S′ are K-moment equivalent,
if and only if, ∀ τ ∈ Act∗, ∀ a ∈ Act XS

τ,a and XS′
τ,a have exactly the same

first K moments. That is, E((XS
τ,a)k) = E((XS′

τ,a)k) for k ≤ K, or equivalently,∑
s∈S Pis(τ) (PsS(a))k =

∑
s′∈S′ P ′

i′s′(τ) (P ′
s′S′(a))k for k ≤ K.

It is easy to see that 1-moment equivalence corresponds to trace-equivalence.
K-moment also has a nice characterization in term of tests:

Definition 3. Let K ∈ N∗. The K-moment test grammar is defined as:
TKmoment : t ::= ω | ak.t

with k ≤ Ksuch that (1) the test ak.t consists in running action a on k copies
of the current process and if the last action succeeds, proceed with test t on the
last copy (and delete the other copies);
(2) the observations corresponding to the test ak.t are given by:

Oak.t = {ak×} ∪ {ak�\
.e | e ∈ Ot} ∪ {ak�

.e | e ∈ Ot}

ak×
is the observation that the last action has failed (and maybe others); ak�\

means that an action failed but not the last one and finally ak�
is the observation

that all copies succeeded on a. The probability distribution on observations is:

• Qs
ak.t(a

k×
) = 1− PsS(a)

• Qs
ak.t(a

k�\
.e) = (1− PsS(a)k−1)

∑
s′∈S Pss′(a)Qs′

t (e)
• Qs

ak.t(a
k�
.e) = PsS(a)k−1

∑
s′∈S Pss′ (a)Qs′

t (e).

For processes T1 and T2 defined above, the test t = c.a.b2.ω yields different
probability distributions on observations: QT1

t (c�.a�.b2�
.ω) = 1 1 (1

3 )2 1 = 1
9

while QT2
t (c�.a�.b2�

.ω) = 1 1
3 (1)2 1 = 1

3 . Note also that QT1
t (c�.a�.b2�\

.ω) =
1 1 (2

3
1
3 ) 1, whereas QT1

t (c�.a�.b2×
) = 1 1 (1− 1

3 ).

Theorem 2. Let K ∈ N∗. Two LMPs are K-moment equivalent iff they yield the
same probability distribution on observations of tests generated from TKmoment.

This equivalence is interesting in two ways: it closes the gap between bisimulation
and trace-equivalence and it is testable without recursive replication. We will now
take advantage of its testability.

3 Testing Without the Model

We want to define a divergence between “Spec”, a model of the specification and
“Impl”, a real system; the model of the latter is not necessarily available but
we can interact with it (as a black-box) via the testing machine. We also want
this divergence to come as the solution of an MDP, the basic ingredient of RL
techniques, on which the learning algorithm works. The MDP will be defined
in Section 3.2. The rewards in the MDP have to be chosen carefully to make
sure that the optimal value will indeed define a divergence as we expect: this
is the subject of Section 3.1. We expose our approach in the form a one-player
stochastic game, the player being the personification of the learning algorithm.
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We illustrate our approach for K-moment equivalence but the ideas can be
adapted for other equivalences testable through a recursive replication-free test
grammar (see Section 4).

3.1 K-Moment Equivalences Through a Stochastic Game

When interacting with processes “Spec” and “Impl”, the player’s goal is to detect
difference between the two. Hence the game (and its corresponding MDP) should
give him low reward when they behave the same (i.e., both succeed or both fail)
and high reward otherwise. However, the processes are probabilistic and hence
a process may behave differently on different trials of the same action, which
could lead the player to find a big difference between identical processes. This
will happen more likely when the choice at a state is “wide”, more technically,
when the entropy is high. To compensate this uncertainty, we introduce a third
process, called “Clone” which is simply a copy of the specification but given in
the form of a black-box (exactly as “Impl”) (see Figure 1). The player will get a
high reward if “Impl” and “Spec” differ for some action, but this reward could
be cancelled if “Spec” and “Clone” also do. Recall that the player does not see
the states reached in “Impl” and “Clone” but does see what happens in “Spec”.

Impl
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Spec Clone

Fig. 1. Implementation, Specification, and Clone

GameKmoment: The three processes start in their initial states; then
Step 1: The player chooses an action a and an integer k < K, and makes

a prediction Pred on its success or failure on “Spec” . We will denote the
player choice by ak�

for success and by ak×
otherwise.

Step 2: ak is run on “Impl”, “Spec” and “Clone” as in Definition 3. Let
(oI , oSp, oC) ∈ {ak×

, ak�\
, ak�}3 be the outcome of this experiment.

Step 3: Get reward as defined below. If the last occurrence of action a suc-
ceeds on the three processes, go to Step 1 with the three processes in their
reached state. Else the game ends.
The player gets a reward according to the following formula:

R :=
(
oSp ∼ Pred

)(
(oI 
∼ oSp))− (oSp 
∼ oC)

)
where 0 and 1 are used as both truth values and numbers and the relation
∼ is a relaxation of equality to identify cases where a failure happens: i.e.,
ak× ∼ ak�\ 
∼ ak�

.
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For example, if ak�
is selected and the observation is (ak�\

, ak�
, ak�

) we obtain
a reward of (ak� ∼ ak�

)((ak�\ 
∼ ak�
) − (ak� 
∼ ak�

)) = 1 (1 − 0) = 1, but for
(ak�\

, ak×
, ak�

), we obtain 0 (0− 1) = 0.
With the rewards so defined, we will show in Section 3.2 that “Spec” and

“Impl” are K-moment equivalent if, and only if, the optimal strategy has ex-
pected reward zero. In other words, we will show that the optimal value of the
MDP defined from this game yields a suitable notion of divergence.

Remark 1. It is not clear at first sight why the prediction is important in Step 1.
It happens that by just running ak on the processes and collecting the rewards
we do not reach our goal totally (that is, without multiplying by oSp ∼ Pred). If
“Spec” and “Impl” are K-moment equivalent, the optimal strategy would indeed
have expected reward zero, as wanted. However, the converse would not be true:
there are K-moment inequivalent LMPs for which the optimal strategy would
have expected reward zero. This is not what we want because they would get a
divergence zero. Here is an example: for K = 1, consider three systems with one
a-transition from one state to another one. The probability of this transition is
1
2 in “Spec” (and “Clone”) and 1 in “Impl”. Note that such examples all exhibit
a specific form of symmetry in “Spec”.

Remark 2. This game has been inspired by a well known and well studied di-
vergence, the Kullback-Leibler divergence. The idea is that two processes are
“equivalent” via testing if, and only if, they yield the same probability distri-
butions on observations for any test generated from the given test grammar.
Hence, the divergence between two processes could be defined with the help
of a divergence between the probability distributions on test observations. The
Kullback-Leibler divergence (KL divergence) would be a candidate: it is defined,
for two distributions Q and P , as KL(Q‖P ) := Eh∼Q ln 1

P (h) − Eh∼Q ln 1
Q(h)

[4]. Unfortunately, because of the high number of possible tests (on huge sys-
tems), the maximum value over all Kullback-Leibler divergences is not tractable.
Nevertheless, let us describe the analogy between GameKmoment and the KL di-
vergence. The entropy of P relativised by Q (Eh∼Q ln 1

P (h) in the above formula)
can be seen as how likely we can obtain different observations when interacting
(via some test t) with both “Spec” and “Impl”. On the other hand, the entropy
of the distribution Q (Eh∼Q ln 1

Q(h) in the above formula) can also be seen as a
quantification over the likelihood to obtain different observations when running
the same action on “Spec” twice. Thus, the game expresses the same kind of
tradeoff as the KL divergence. This is a first indication that one can derive the
notion of divergence we are looking for.

3.2 The Reinforcement Learning Framework

In artificial intelligence, Markov Decision Processes (MDPs) offer a popular
mathematical tool for planning and learning in the presence of uncertainty [11].
MDPs are a standard formalism for describing multi-stage decision making in
probabilistic environments (what we called a one-player stochastic games in the
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preceding section). The objective of the decision making is to maximize a cumu-
lative measure of long-term performance, called the reward.

In an MDP, an agent interacts with a stochastic environment at a discrete,
low-level time scale. On each time step t, the agent observes its current state st ∈ S
and chooses an action at from an action set A. One time step later, the agent
transits to a new state st+1, and receives a reward rt+1. For a given state s and
action a, the expected value of the immediate reward is denoted by Ra

s S and the
transition to a new state s′ has probability PrMK

s s′ (a), regardless of the path taken
by the agent before state s (this is the Markov property). The goal in solving MDPs
is to find a way of behaving, or policy, which yields a maximal reward. Formally, a
policy is defined as a probability distribution for picking actions in each state. For
any policy π : S×A → [0, 1] and any state s ∈ S, the value function of π for state s
is defined as the expected infinite-horizon discounted return from s, given that the
agent behaves according to π: V π(s) := Eπ{rt+1 + γrt+2 + γ2rt+3 + · · · |st = s}
where i is the initial state and γ is a factor between 0 and 1 used to discount future
rewards. The objective is to find an optimal policy, π∗ which maximizes the value
V π(s) of each state s. The optimal value function, V ∗, is the unique value function
corresponding to any optimal policy.

If the MDP has finite state and action spaces, and if a model of the envi-
ronment is known (i.e., state space S, immediate rewards Ra

s s′ and transition
probabilities Pr

MK
s s′ (a)), then DP algorithms (namely policy evaluation [15]) can

compute V π for any policy π. Similar algorithms can be used to compute V ∗.
RL methods, in contrast, compute approximations to V π and V ∗ directly based
on the interaction with the environment, without requiring a complete model
or finiteness of the MDP. Only the state space of the MDP and the knowledge
of the exact current state at each step of the interaction are required. This is
exactly what we are looking for.

Constructing the MDP. We now define the MDP (denoted MK) with which
the divergence between two LMPs, “Impl” and “Spec”, will be computed. In-
teracting with MK will be like executing GameKmoment. The model of “Spec”
is needed and must be in a tree-like representation (up to bisimulation, this
is always possible). Since it has a tree-like structure, for any of its state s,
there is a unique sequence of actions (or trace, denoted tr.s) from the initial
state to s. For the LMP “Impl”, only the knowledge of all possible conditional
probabilities P I(ak

� |τ) and P I(ak
× |τ) of observing the success or failure of an

action ak given any successfully executed trace τ is required; note that we de-
fine the trace corresponding to the execution of the i first steps of the test
a

k-
1

1 a
k-
2

2 . . . a
k-

n
n as τ = a1a2 . . .ai (we write ak- for ak�

or ak×
) . We write PC(ak� |τ)

and PC(ak× |τ) for the same conditional probabilities but on a copy of the first
LMP (called “Clone”): this is for readability and is no additional information
since PC(a�|τ)=PSpec(a�|τ).

The state space of the MDP MK will be the state space of the LMP “Spec”
plus one extra state, called Dead. This state corresponds in the MDP to the fact
that GameKmoment is over: i.e., given that ak- is the last choice of the player,
then one of the three LMPs failed to execute the kth action a. Any other state



244 J. Desharnais, F. Laviolette, and S. Zhioua

of MK represents the current state of the LMP “Spec” during the execution of
GameKmoment. The probability transitions (PrMK

s s′ (ak-)) and the average rewards
signals (Rak-

s S) therefore follows from the rules of GameKmoment
4. More formally:

Definition 4. Given “Impl”, “Spec”= (States, i, Actions, P rSpec), and “Clone”,
the set of states of the MDP MK is S := States ∪ {Dead}, with initial state i;
the action set is Act := {ak� |a ∈ Actions, 1 ≤ k ≤ K} ∪ {ak× |a ∈ Actions, 1 ≤
k ≤ K}. The next-state probability distribution is the same for ak�

and ak×
; it

is defined below, followed by the definition of the reward function.

Pr
MK
s s′ (ak-) :=

{
PrSpec

s s′ (a) P I(a�|tr.s) PC(a�|tr.s) if s′ 
= Dead

1− PSpec(a�|s) P I(a�|tr.s) PC(a�|tr.s) if s′ = Dead

Rak-

s s′ :=
{

PSpec(a(k−1)- |s) Δa(k−1)-

tr.s if s′ 
= Dead and k > 1
0 if s′ 
= Dead and k = 1

Rak-

s Dead :=
1

PrMK
sDead(ak-)

(
PSpec(ak- |s) Δak-

τ −
∑

s′∈S\{Dead}
Pr

MK
s s′ (ak-) Rak-

s s′

)

where • P Spec(ak� |s) := s′∈S\{Dead} Pr
Spec

s s′ (a), and P Spec(ak× |s) :=1 − P Spec(ak� |s),
on a state s,

• Δak�
τ := P C(ak� |τ ) − P I(ak� |τ ) and Δak×

τ := −Δak�
τ .

The proof that the formal definition of MK corresponds to the intuition given
before Definition 4 is omitted as well of the proof of the following theorem5.

Theorem 3. Let MK be the MDP induced by “Spec”, “Impl”, and “Clone”. If
γ < 1 or |MK | < ∞ then V �(i) ≥ 0 for any policy π, and V �(i) = 0 if and only
if “Spec” and “Impl” are K-moment equivalent.

We can now give the definition of the central notion of this paper.

Definition 5. Let “Spec” and “Impl” be two LMPs and MK their induced
MDP. We define their K-moment equivalence divergence as

divK-moment(“Spec”‖“Impl”) := V �(i).

3.3 The Choice of the Learning Algorithm and PAC Guaranties

As mentioned in Section 3.1, the full model of the MDP might not be available.
Therefore, it is not appropriate to use a Dynamic Programming algorithm such
as value iteration [15] to solve the MDP. Instead, we use a Q-Learning algorithm
[16]. Q-Learning is an off-policy Temporal Difference (TD) control algorithm
which directly approximates V �(i). The algorithm has been proven to converge

4 If one only wants to run a Q-learning algorithm on it, only the model of “Spec” and
a possibility of interacting with “Clone” and “Impl” is required.

5 See http://www.ift.ulaval.ca/∼laviolette/Publications/publications.html.
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to the optimal value [17]. Moreover, some results about its convergence rates have
been proposed [6]. However, in the field of verification, the main goals are (∗) to
find the difference between the implementation of a system and its specification
and also (∗∗) to have a guarantee on the fact that this difference is very small
in the case where we do not find any such difference during the investigation.
Hence, from that perspective, a PAC-guarantee is the most appropriate tool.

Definition 6. We say that we have a PAC (Probably Approximately Correct)
guarantee for a learning algorithm on an MDP M if, given an a priori precision
ε > 0 and a maximal probability error δ, there exists a function f(MK , ε, δ)
such that if the number of episodes is greater than f(MK , ε, δ), then

P rob{|V π̂(i)− V �(i)| ≤ ε} ≥ 1− δ (1)

where π̂ is the policy returned by the Q-learning algorithm and V π̂(i) is the
estimation of V �(i) given by this algorithm.

The Q-learning algorithm does have a PAC guarantee [12], but the function
f(MK , ε, δ) is very difficult to compute, which makes this guarantee unusable in
practice. The Fiechter RL algorithm [7] comes with a simpler PAC guarantee and
hence one can use it in the current setting. The main drawback of the Fiechter
algorithm remains its inefficiency compared to Q-Learning.

However we can still reach goal (∗) using any RL learning algorithm. Indeed,
when the processes are not K-moment equivalent, we can guarantee a bottom
bound for the optimal value using Hoeffding inequality based on the following
idea. Let π̂ be the policy returned by the RL algorithm. Let V π̂(i) be the es-
timation of V π̂(i) using a Monte Carlo [15] algorithm with m episodes. Given
ε, δ ∈]0, 1[, according to the Hoeffding inequality, if m ≥ 1

ε2 ln(2
δ ), we have Equa-

tion (1) with V �(i) replaced with V π̂(i). Since V π̂(i) never exceeds the optimal
value V �(i), we have the PAC guarantee: P rob{V π̂(i)− V �(i) ≤ ε} ≥ 1− δ.

Experimental Results. The approach described so far has been implemented
for the trace and K-moment family equivalences. Two action selection algorithms
have been experimented: ε-greedy and SoftMax. For both methods, we tried
several functions to decrease the ε (resp. the τ) values. The combination that
produced the best results is SoftMax such that the temperature τ is decreasing
from 0.8 to 0.01 according to the function : τ = k

currentEpisod+l (k and l are
constants). The learning rate α (also called step size) must decrease in order
to assure convergence of the Q-Learning algorithm. We tried several decreasing
functions and the best convergence results are with 1

x where x is the number of
times the state-action has been visited. The two following graphics



246 J. Desharnais, F. Laviolette, and S. Zhioua

show how the Q-Learning algorithm converges to the optimal value. In the above
graphics, we tracked the optimal value in one execution of 10000 episodes on
small examples. Running the algorithm with 1-moment option on trace equiv-
alent processes produces the graphic (a). It is easy to see that the estimated
divergence value converges to zero as expected. The second graph (b) is obtained
by running the algorithm with 2-moment option and in this case, however, the
estimated value converges to a value bigger than zero indicating a difference
between the two processes.

4 Other Testable Equivalences

Any equivalence notion that coincides with a recursive replication-free test gram-
mar is compatible with the RL algorithm described earlier. Several known equiv-
alence notions fall in this category. Due to space limitations, we only present the
test grammar that we propose for each of these notions, namely, Ready, Fail-
ure [10], Barb Acceptance, and Barb Failure [14] equivalences.

Equivalence Test Grammar
T race T1moment ::= ω | a.t
Ready Tready ::= ω | a.t | {a1, . . . , an}

Failure Tfailure ::= ω | a.t | {¬a1, . . . ,¬an}
Barb Acceptance TBarbAcc ::= ω | a.t | {a1, . . . , an}a.t

Barb Failure TBarbRef ::= ω | a.t | {¬a1, . . . ,¬an}a.t

A test of the form {a1, . . . , an} consists in executing the actions a1, . . . , an on n
copies of the current process, whereas the test of the form {a1, . . . , an}a.t consists
in executing actions a1, . . . , an on respective copies of the current process, then
executing action a on another copy and if the latter succeeds proceeding with t.

5 Conclusion

The main contributions of this paper are (1) a completely new approach to
estimate how far apart two LMPs are and (2) a new family of equivalences
(K-moment) that are a good compromise between trace-equivalence and bisim-
ulation. Indeed, we introduce a notion of divergence divK-moment( . ‖ . ) that can be
estimated via some Monte-Carlo estimation using Reinforcement Learning algo-
rithms. Traditional approaches, on the other hand, are based on costly complete
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calculations on the models. The RL approach therefore opens a way for analyz-
ing huge systems and even infinite ones. Moreover, it can be adapted to other
equivalences that can be tested via recursive replication-free test grammars.

For future work, we want to modify the construction ofMK , in order to speed
up the calculation, especially for situations like Ready equivalence, where the
action set of the MDP is exponentially larger that the one of the LMP. Finally,
since the LMP formalism is mathematically quite similar to the MDP, POMDP,
and HMM formalisms, the next step will be to apply our approach on these
formalisms. In particular, we could contribute to a theory of approximations.
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Abstract. We establish a decidability boundary of the model checking problem
for infinite-state systems defined by Process Rewrite Systems (PRS) or weakly ex-
tended Process Rewrite Systems (wPRS), and properties described by basic frag-
ments of action-based Linear Temporal Logic (LTL). It is known that the problem
for general LTL properties is decidable for Petri nets and for pushdown processes,
while it is undecidable for PA processes. As our main result, we show that the
problem is decidable for wPRS if we consider properties defined by formulae
with only modalities strict eventually and strict always. Moreover, we show that
the problem remains undecidable for PA processes even with respect to the LTL
fragment with the only modality until or the fragment with modalities next and
infinitely often.

1 Introduction

Automatic verification of current software systems often needs to model them as
infinite-state systems. One of the most powerful formalisms for description of infinite-
state systems (except formalisms with Turing power for which nearly all interesting ver-
ification problems are undecidable) is called Process Rewrite Systems (PRS) [May00].
The PRS framework, based on term rewriting, subsumes many formalisms studied in
the context of formal verification, e.g. Petri nets (PN), pushdown processes (PDA),
and process algebras like BPA, BPP, or PA. PRS can be adopted as a formal model
for programs with recursive procedures and restricted forms of dynamic creation and
synchronization of concurrent processes. A substantial advantage of PRS is that some
important verification problems are decidable for the whole PRS class. In particular,
Mayr [May00] proved that the reachability problem (whether a given state is reachable)
and the reachable property problem (whether there is a reachable state where some
given actions are enabled and some given actions are disabled) are decidable for PRS.

In [KŘS04b], we have presented weakly extended PRS (wPRS), where a finite-state
control unit with self-loops as the only loops is added to the standard PRS formalism
(addition of a general finite-state control unit makes PRS Turing powerful). This control
unit enriches PRS by abilities to model a bounded number of arbitrary communication
events and global variables whose values are changed only a bounded number of times

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 248–259, 2006.
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during any computation. We have proved that the reachability problem remains decid-
able for wPRS [KŘS04a] and that the problem called reachability Hennessy–Milner
property (whether there is a reachable state satisfying a given Hennessy–Milner for-
mula) is decidable for wPRS as well [KŘS05]. The hierarchy of all PRS and wPRS
classes is depicted in Figure 1.

Concerning the model checking problem, a broad overview of (un)decidability re-
sults for subclasses of PRS and various temporal logics can be found in [May98]. Here
we focus exclusively on (future) Linear Temporal Logic (LTL). It is known that LTL
model checking of PDA is EXPTIME-complete [BEM97]. LTL model checking of PN
is also decidable, but at least as hard as the reachability problem for PN [Esp94] (the
reachability problem is EXPSPACE-hard [May84, Lip76] and no primitive recursive
upper bound is known). If we consider only infinite runs, then the problem for PN is
EXPSPACE-complete [Hab97, May98].

Conversely, LTL model checking is undecidable for all classes subsuming PA [BH96,
May98]. So far, there are only two positive results for these classes. Bouajjani and
Habermehl [BH96] have identified a fragment called simple PLTL� for which model
checking of infinite runs is decidable for PA (strictly speaking, simple PLTL� is not a
fragment of LTL as it can express also some non-regular properties, while LTL cannot).
Only recently, we have demonstrated that model checking of infinite runs is decidable
for PRS and the fragment of LTL capturing exactly fairness properties [Boz05].
Our contribution: This paper completely locates the decidability boundary of the
model checking problem for all subclasses of PRS (and wPRS) and all basic LTL frag-
ments, where a basic LTL fragment is a set of all formulae containing only a given subset
of standard modalities. The boundary is depicted in Figure 2. To locate the boundary,
we show the following results.

1. We introduce a new LTL fragment A and prove that every formula of the basic
fragment LTL(Fs,Gs) (i.e. the fragment with modalities strict eventually and strict
always only) can be effectively translated into A . As LTL(Fs,Gs) is closed under
negation, we can also translate LTL(Fs,Gs) formulae into negated formulae of A .

2. We show that model checking (of both finite and infinite runs) of wPRS against
negated formulae of A is decidable. The proof employs our results presented
in [Boz05, KŘS04a, KŘS05] to reduce the problem to LTL model checking for
PDA and PN. Thus we get decidability of model checking for wPRS against
LTL(Fs,Gs). Note that LTL(Fs,Gs) is strictly more expressive than the Lamport
logic (i.e. the basic fragment with modalities eventually and always), which is again
strictly more expressive than the mentioned fragment of fairness properties and also
than the regular part of simple PLTL�.

3. We demonstrate that the model checking problem remains undecidable for PA even
if we consider the basic fragment with modality until or the basic fragment with
modalities next and infinitely often (which is strictly less expressive than the one
with next and eventually).

The paper is organized as follows. The following section recalls basic definitions.
Sections 3, 4, and 5 correspond, respectively, to the three results listed above. The
last section discuss other potential applications of our results and it contains an open



250 L. Bozzelli et al.

question driving our future research. Proofs are only sketched due to space constraints.
Full proofs can be found in [BKŘS06].

2 Preliminaries

2.1 PRS and Its Extensions

Let Const = {X , . . .} be a set of process constants. The set of process terms t is defined
by the abstract syntax t ::= ε | X | t.t | t‖t, where ε is the empty term, X ∈ Const,
and ’.’ and ’‖’ mean sequential and parallel compositions, respectively. We always
work with equivalence classes of terms modulo commutativity and associativity of ’‖’,
associativity of ’.’, and neutrality of ε, i.e. ε.t = t.ε = t‖ε = t. We distinguish four
classes of process terms as:

1 – terms consisting of a single process constant, in particular, ε 
∈ 1,
S – sequential terms - terms without parallel composition, e.g. X .Y.Z,
P – parallel terms - terms without sequential composition, e.g. X‖Y‖Z,
G – general terms - terms without any restrictions, e.g. (X .(Y‖Z))‖W .

Let M = {o, p,q, . . .} be a set of control states, ≤ be a partial ordering on this set,
and Act = {a,b,c, . . .} be a set of actions. Let α,β ∈ {1,S,P,G} be classes of process
terms such that α ⊆ β. An (α,β)-wPRS (weakly extended process rewrite system) Δ is
a tuple (R, p0,X0), where

– R is a finite set of rewrite rules of the form (p,t1)
a
↪→ (q, t2), where t1 ∈ α, t1 
= ε,

t2 ∈ β, a ∈ Act, and p,q ∈M are control states satisfying p≤ q,
– the pair (p0,X0) ∈M×Const forms the distinguished initial state.

By Act(Δ), Const(Δ), and M(Δ) we denote the sets of actions, process constants, and
control states occurring in the rewrite rules or the initial state of Δ, respectively.

An (α,β)-wPRS Δ = (R, p0,X0) induces a labelled transition system, whose states
are pairs (p, t) such that p ∈ M(Δ) is a control state and t ∈ β is a process term over
Const(Δ). The transition relation −→Δ is the least relation satisfying the following in-
ference rules:

((p, t1)
a
↪→ (q, t2)) ∈ Δ

(p, t1)
a−→Δ (q,t2)

(p,t1)
a−→Δ (q,t2)

(p,t1‖t ′1)
a−→Δ (q,t2‖t ′1)

(p, t1)
a−→Δ (q, t2)

(p,t1.t ′1)
a−→Δ (q, t2.t ′1)

Sometimes we write −→ instead of −→Δ if Δ is clear from the context. The transition
relation can be extended to finite words over Act in a standard way. To shorten our
notation we write pt in lieu of (p, t). A state pt is called terminal, written pt 
−→Δ, if
there is no state p′t ′ and action a such that pt

a−→Δ p′t ′. In this paper we always consider
only systems where the initial state is not terminal. A (finite or infinite) sequence

σ = p1t1
a1−→Δ p2t2

a2−→Δ . . .
an−→Δ pn+1tn+1

(
an+1−→Δ . . .

)
is called derivation over the word u = a1a2 . . .an(an+1 . . .) in Δ. Finite derivations are
also denoted as p1t1

u−→Δ pn+1tn+1, infinite as p1t1
u−→Δ. A derivation in Δ is called
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Fig. 1. The hierarchy of PRS and wPRS subclasses

a run of Δ if it starts in the initial state p0X0 and it is either infinite, or its last state is
terminal. Further, L(Δ) denotes the set of words u such that there is a run of Δ over u.

An (α,β)-wPRS Δ where M(Δ) is a singleton is called (α,β)-PRS (process rewrite
system) [May00]. In such systems we omit the single control state from rules and states.

Some classes of (α,β)-PRS correspond to widely known models, namely finite-state
systems (FS), basic process algebras (BPA), basic parallel processes (BPP), process
algebras (PA), pushdown processes (PDA), and Petri nets (PN). The other classes have
been named as PAD, PAN, and PRS. The relations between (α,β)-PRS and the men-
tioned formalisms and names are indicated in Figure 1. Instead of (α,β)-wPRS we
juxtapose the prefix ‘w-’ with the acronym corresponding to the (α,β)-PRS class. For
example, we use wBPA rather than (1,S)-wPRS. Figure 1 shows the expressiveness
hierarchy of all considered classes, where expressive power of a class is measured by
the set of transition systems that are definable (up to the strong bisimulation equiva-
lence [Mil89]) by the class. This hierarchy is strict, with a potential exception concern-
ing the classes wPRS and PRS, where the strictness is just our conjecture. For details
see [KŘS04b, KŘS04a].

For technical reasons, we define a normal form of wPRS systems. A rewrite rule is
parallel or sequential if it has one of the following forms:

Parallel rules: pX1‖X2‖ . . .‖Xn
a
↪→ qY1‖Y2‖ . . .‖Ym

Sequential rules: pX
a
↪→ qY.Z pX .Y

a
↪→ qZ pX

a
↪→ qY pX

a
↪→ qε

where X ,Y,Xi,Yj,Z ∈Const, p,q∈M, n> 0, m≥ 0, and a∈ Act. A rule is called trivial

if it is both parallel and sequential (i.e. it has the form pX
a
↪→ qY or pX

a
↪→ qε). A wPRS

Δ is in normal form if it has only parallel and sequential rewrite rules.
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2.2 Linear Temporal Logic (LTL) and Studied Problems

The syntax of Linear Temporal Logic (LTL) [Pnu77] is defined as follows

ϕ ::= tt | a | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ,

where a ranges over Act, X is called next, and U is called until. The logic is in-
terpreted over infinite as well as nonempty finite words of actions. Given a word
u = u(0)u(1)u(2) . . .∈Act∗∪Actω, |u| denotes the length of the word (we set |u|= ∞ if u
is infinite). For all 0≤ i< |u|, by ui we denote the ith suffix of u, i.e. ui = u(i)u(i+1) . . ..

The semantics of LTL formulae is defined inductively as follows:

u |= tt
u |= a iff u(0) = a
u |= ¬ϕ iff u 
|= ϕ
u |= ϕ1∧ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff |u|> 1 and u1 |= ϕ
u |= ϕ1 Uϕ2 iff ∃0≤ i < |u| .(ui |= ϕ2 and ∀0≤ j < i . u j |= ϕ1 )

We say that a nonempty word u satisfies ϕ whenever u |= ϕ. Given a set of words L,
we write L |= ϕ if u |= ϕ holds for all u ∈ L. We say that a derivation (or run) σ over a
word u satisfies ϕ, written σ |= ϕ, whenever u |= ϕ.

Moreover, we define the following modalities: Fϕ (eventually) standing for ttUϕ,
Gϕ (always) standing for ¬F¬ϕ, Fsϕ (strict eventually) standing for XFϕ, Gsϕ (strict

always) standing for ¬Fs¬ϕ,
∞
Fϕ (infinitely often) standing for GFϕ,

∞
Gϕ (almost always)

standing for ¬
∞
F¬ϕ. Note that Fϕ is equivalent to ϕ∨Fsϕ but Fsϕ cannot be expressed

with F as the only modality. Thus Fs is “stronger” than F. The relation between Gs and
G is similar.

For a set {O1, . . . ,On} of modalities, LTL(O1, . . . ,On) denotes the LTL fragment
containing all formulae with modalities O1, . . . ,On only. Such a fragment is called ba-
sic. Figure 2 shows an expressiveness hierarchy of all studied basic LTL fragments.
Indeed, every basic LTL fragment using standard1 future modalities is equivalent to
one of the fragments in the hierarchy, where equivalence between fragments means that
every formula of one fragment can be effectively translated into a semantically equiva-
lent formula of the other fragment and vice versa. For example, LTL(Fs,Gs)≡ LTL(Fs).
Further, the hierarchy is strict. For detailed information about expressiveness of future
LTL modalities and LTL fragments we refer to [Str04].

Let F be an LTL fragment and C be a class of wPRS systems. The model checking
problem for F and C is to decide whether a given formula ϕ ∈ F and a given system
Δ∈ C satisfies L(Δ) |= ϕ. We also mention the problem called model checking of infinite
runs, where L(Δ)∩Actω |= ϕ is examined.

1 By standard modalities we mean the ones defined in this paper and also other commonly used
modalities like strict until, release, weak until, etc. However, it is well possible that one can
define a new modality such that there is a basic fragment not equivalent to any of the fragments
in the hierarchy.
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Fig. 2. The hierarchy of basic fragments with model checking decidability boundary

3 Fragment A and Translation of LTL(Fs,Gs) into A

The A fragment consists of finite disjunctions of α-formulae defined as follows.
Recall that LTL() denotes the fragment of formulae without any modality,

i.e. boolean combinations of actions. In the following we use ϕ1 U+ ϕ2 to abbreviate
ϕ1∧X(ϕ1 Uϕ2). Let δ = θ1O1θ2O2 . . .θnOnθn+1, where n > 0, each θi ∈ LTL(), On is
‘∧Gs’, and, for each i < n, Oi is either ‘U’ or ‘U+’ or ‘∧X’. Further, let B ⊆ LTL() be
a finite set. An α-formula is defined as

α(δ,B) =
(
θ1O1(θ2O2 . . . (θnOnθn+1) . . .)

)
∧
∧

ψ∈B
GsFsψ

Hence, a word u satisfies α(δ,B) iff u can be written as u1.u2. · · · .un+1, where

– each ui consists only of actions satisfying θi and
• |ui| ≥ 0 if i = n + 1 or Oi is ‘U’,
• |ui|> 0 if Oi is ‘U+’,
• |ui|= 1 if Oi is ‘∧X’ or ‘∧Gs’,

– and un+1 satisfies GsFsψ for every ψ ∈ B .

Proof of the following lemma is a simple exercise.

Lemma 1. A conjunction of α-formulae can be effectively converted into an equivalent
disjunction of α-formulae.

Theorem 2. Every LTL(Fs,Gs) formula can be translated into an equivalent disjunc-
tion of α-formulae.
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Proof (Sketch). Given an LTL(Fs,Gs) formula ϕ, we construct a finite set Aϕ of α-
formulae such that ϕ is equivalent to disjunction of formulae in Aϕ. The proof proceeds
by induction on the length of ϕ. The base case shows that the theorem holds for all
formulae of LTL(). The inductive step is done by a detailed analysis of the structure of
ϕ (it distinguishes 19 cases). �

4 Model Checking of wPRS Against Negated A

This section is devoted to decidability of the model checking problem for wPRS and
negated formulae of the A fragment. In fact, we prove decidability of the dual problem,
i.e. whether a given wPRS system has a run satisfying a given formula of A . Finite and
infinite runs are treated separately.

Theorem 3. The problem whether a given wPRS system has a finite run satisfying a
given α-formula is decidable.

Proof (Sketch). The problem is reduced to the reachability Hennessy–Milner property
problem, which is decidable for wPRS [KŘS05]. �

The problem for infinite runs is more complicated. In order to solve it, we introduce
more terminology and notation. First we define β-formulae and regular languages called
γ-languages. Let w = a1O1a2O2 . . .anOn, where n ≥ 0, a1, . . . ,an ∈ Act are pairwise
distinct actions and each Oi is either ‘U+’ or ‘∧X’. Further, let B ⊆ Act � {a1, . . . ,an}
be a nonempty finite set of actions and C ⊆ B. A β-formula β(w,B,C) and γ-language
γ(w,C) are defined as

β(w,B,C) =
(
a1O1(a2O2 . . . (anOnG

∨
b∈B

b) . . .)
)
∧
∧
b∈C

GFb ∧
∧

b∈B�C

(Fb ∧ ¬GFb)

γ(w,C) = ao1
1 .a

o2
2 . · · · .a

on
n .L,

where oi =
{

+ if Oi = U+
1 if Oi = ∧X

and L =
{

{ε} if C = /0⋂
b∈C C∗.b.C∗ otherwise

Roughly speaking, a β-formula is a more restrictive version of an α-formula and in
context of β-formulae we consider infinite words only. Contrary to δ of an α-formula,
w of a β-formula employs actions rather than LTL() formulae. While a tail of an infinite
word satisfying an α-formula is specified by θn+1, in the definition of β-formulae we
use a set B containing exactly all the actions of the tail and its subset C of exactly all
actions occurring infinitely many times in the tail.

Note that an infinite word satisfies a formula β(w,B,C) if and only if it can be di-
vided into a prefix u ∈ γ(w,B) and a suffix v ∈Cω such that v contains infinitely many
occurrences of every c ∈C.

Let w,B,C be defined as above. We say that a finite derivation σ over a word u
satisfies γ(w,C) if and only if u ∈ γ(w,C). We write (w′,B′) . (w,B) whenever B′ ⊆ B
and w′ = ai1Oi1ai2Oi2 . . .aik Oik for some 1≤ i1 < i2 < .. . < ik ≤ n. Moreover, we write
(w′,B′,C′). (w,B,C) whenever (w′,B′). (w,B), B′ is nonempty, and C′ ⊆C∩B′.
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Remark 4. If u is an infinite word satisfying β(w,B,C) and v is an infinite subword
of u (i.e. it arises from u by omitting some letters), then there is exactly one triple
(w′,B′,C′) . (w,B,C) such that v |= β(w′,B′,C′). Further, for each finite subword v of
u, there is exactly one pair (w′,B′) such that (w′,B′). (w,B) and v ∈ γ(w′,B′).

Given a PRS in normal form, by tri(Δ), par(Δ), and seq(Δ) we denote the system Δ
restricted to trivial, parallel, and sequential rules, respectively. A derivation in tri(Δ)
is called a trivial derivation in Δ. In the following we write simply tri,par,seq as Δ is
always clearly determined by the context.

Definition 5. Let Δ be a PRS in normal form and β(w,B,C) be a β-formula. The PRS
Δ is in flat (w,B,C)-form if and only if for each X ,Y ∈ Const(Δ), each (w′,B′,C′) .
(w,B,C), and each B′′ ⊆ B, the following conditions hold:

1. If there is a finite derivation X
u−→ Y satisfying γ(w′,B′′), then there is also a finite

derivation X
v−→tri Y satisfying γ(w′,B′′).

2. If there is a term t and a finite derivation X
u−→ t satisfying γ(w′,B′′), then there is

also a constant Z and a finite derivation X
v−→tri Z satisfying γ(w′,B′′).

3. If w′ = ε and there is an infinite derivation X
u−→ satisfying β(w′,B′,C′), then there

is also an infinite derivation X
v−→tri satisfying β(w′,B′,C′).

4. If there is an infinite derivation X
u−→par satisfying β(w′,B′,C′), then there is also

an infinite derivation X
v−→tri satisfying β(w′,B′,C′);

5. If there is an infinite derivation X
u−→seq satisfying β(w′,B′,C′), then there is also

an infinite derivation X
v−→tri satisfying β(w′,B′,C′).

Intuitively, the system is in flat (w,B,C)-form if for every derivation of one of the listed
types there is an “equivalent” trivial derivation. All conditions of the definition can be
checked due to the following lemma, [Boz05], and decidability of LTL model checking
for PDA and PN. Lemma 7 says that every PRS in normal form can be transformed
into an “equivalent” flat system. Finally, the Lemma 10 says that if a PRS system in flat
(w,B,C)-form has an infinite derivation satisfying β(w,B,C), then it has also a trivial
infinite derivation satisfying β(w,B,C). Note that it is easy to check whether such a
trivial derivation exists.

Lemma 6. Given a γ-language γ(w,C), a PRS system Δ, and constants X ,Y, the fol-
lowing problems are decidable:
(i) Is there any derivation X

u−→ Y satisfying γ(w,C)?
(ii) Is there any derivation X

u−→ t such that t is a term and u ∈ γ(w,C)?

Proof (Sketch). Both problems can be reduced to the reachability problem for wPRS,
which is known to be decidable [KŘS04a]. �

The proof of the following lemma contains the algorithmic core of this section.

Lemma 7. Let Δ be a PRS in normal form and β(w,B,C) be a β-formula. One can
construct a PRS Δ′ in flat (w,B,C)-form such that for each (w′,B′,C′) . (w,B,C) and
each X ∈ Const(Δ), Δ′ is equivalent to Δ with respect to the existence of an infinite
derivation starting from X and satisfying β(w′,B′,C′).
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Proof (Sketch). All conditions of Definition 5 can be checked for each X ,Y ∈Const(Δ),
each (w′,B′,C′) . (w,B,C), and each B′′ ⊆ B. For Conditions 1 and 2, this follows
from Lemma 6. The problem whether there is an infinite derivation X

u−→ satisfying
β(ε,B′,C′) is a special case of the fairness problem, which is decidable due to [Boz05].
Finally, Conditions 4 and 5 can be checked due to decidability of LTL model checking
for PDA and PN. If there is a non-satisfied condition, we add some trivial rules forming
the missing derivation. �

Definition 8 (Subderivation). Let Δ be a PRS in normal form and σ1 be a (finite or
infinite) derivation s1

a1−→ s2
a2−→ . . ., where s1

a1−→ s2 has the form X
a1−→ Y.Z and, for

each i≥ 2, if si is not the last state of the derivation, then it has the form si = ti.Z with
ti 
= ε. Then σ1 is called a subderivation of a derivation σ if σ has a suffix σ′ satisfying
the following:

1. every transition step in σ′ is of the form si‖t ′
ai−→ si+1‖t ′ or si‖t ′ b−→ si‖t ′′, where

t ′
b−→ t ′′,

2. in σ′, if we replace every step of the form si‖t ′
ai−→ si+1‖t ′ by step si

ai−→ si+1 and

we skip every step of the form si‖t ′ b−→ si‖t ′′, we get precisely σ1.

Further, if σ1 and σ are finite, the last term of σ1 is a process constant, and σ is a prefix
of a derivation σ′, then σ1 is also a subderivation of σ′.

Remark 9. Let Δ be a PRS in normal form and σ be a derivation of Δ having a suffix σ′

of the form σ′ = X‖t a−→ (Y.Z)‖t u−→. Then, there is a subderivation of σ whose first
transition step X

a−→ Y.Z corresponds to the first transition step of σ′.

Intuitively, the subderivation captures the behaviour of the subterm Y.Z since its emer-
gence until it is possibly reduced to a term without any sequential composition. Due to
the normal form of Δ, the subterm Y.Z behaves undependently on the rest of the term
(as long as it contains a sequential composition).

Lemma 10. Let Δ be a PRS in flat (w,B,C)-form. Then, the following condition holds
for each X ∈ Const(Δ) and each (w′,B′,C′). (w,B,C):
If there is an infinite derivation X

u−→ satisfying β(w′,B′,C′), then there is also an
infinite derivation X

v−→tri satisfying β(w′,B′,C′).

Proof (Sketch). Given an infinite derivation σ satisfying a formula β(σ) = β(w′,B′,C′)
where (w′,B′,C′) . (w,B,C), by trivial equivalent of σ we mean an infinite trivial
derivation starting in the same term as σ and satisfying β(σ). Similarly, given a finite
derivation σ satisfying some γ(σ) = γ(w′,B′) where (w′,B′). (w,B), by trivial equiva-
lent of σ we mean a finite trivial derivation σ′ such that σ′ starts in the same term as σ,
it satisfies γ(σ), and if the last term of σ is a process constant, then the last term of σ′ is
the same process constant.

The lemma is proven by contradiction. We assume that there exist some infinite
derivations violating the condition of the lemma. Let σ be one of these derivations
such that the number of transition steps of σ generated by sequential non-trivial rules
with actions a 
∈ B is minimal (note that this number is always finite as we consider
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derivations satisfying β(w′,B′,C′) for some (w′,B′,C′). (w,B,C)). First, we prove that
every subderivation of σ has a trivial equivalent. Then we replace all subderivations of
σ by the corresponding trivial equivalents. This step is technically nontrivial because
σ may have infinitely many subderivations. By the replacement we obtain an infinite
derivation σ′ satisfying β(σ) and starting in the same process constant as σ. Moreover,
σ′ has no subderivations and hence it does not contain any sequential operator. Flat
(w,B,C)-form of Δ (Condition 4) implies that σ′ has a trivial equivalent. This is also a
trivial equivalent of σ which means that σ does not violate the condition of our lemma.

�
Theorem 11. The problem whether a given PRS Δ in normal form has an infinite run
satisfying a given formula β(w,B,C) is decidable.

Proof. Due to Lemmata 7 and 10, the problem can be reduced to the problem whether
there is an infinite derivation X

v−→tri satisfying β(w,B,C). This problem corresponds
to LTL model checking of finite-state systems, which is decidable. �
The following three steps show that the previous theorem holds even for wPRS and
α-formulae. The corresponding theorems and proofs can be found in [BKŘS06].

1. First we prove that the theorem holds even for α-formulae. In the proof we assign a
fresh action aθ to each subformula θ ∈ LTL() of a given α-formula. For every such

θ and every rule t1
a
↪→ t2 of a given PRS in normal form, if a |= θ then we add a

rule t1
aθ
↪→ t2. Now we replace every θ in the α-formula by a corresponding action

aθ. The system with added rules has a run satisfying the resulting formula iff the
original system has a run satisfying the original α-formula. Moreover, the resulting
formula can be easily transformed into a β-formula.

2. Now we show that the system Δ does not have to be in normal form. The proof uses
a modification of the standard algorithm transforming a general PRS system into
an ‘equivalent’ PRS system in normal form [May00].

3. The last step is to move from PRS to wPRS. To remove control states from the

wPRS system Δ, we replace every rule pt1
a
↪→ pt2 by the rule pt1

ap
↪→ pt2 and every

rule pt1
a
↪→ qt2 by the rule pt1

ap<q
↪→ qt2. In a given α-formula, we replace every

action a with
∨

p,q∈M(Δ)(ap∨ap<q). Let Δ′ be the resulting PRS system and α′ the
resulting α-formula. We define a finite set U of α-formulae such that a run of Δ′
satisfies some formula of U iff it corresponds to a correct behaviour of control unit.
Hence, Δ has a run satisfying the original α-formula iff Δ′ has a run satisfying α′
in conjunction with one of the α-formulae of U . As conjunction of two α-formulae
can be transformed into equivalent disjunction of α-formulae, we are done.

Theorem 12. The problem whether a given wPRS system has an infinite run satisfying
a given α-formula is decidable.

As LTL(Fs,Gs) is closed under negation, Theorems 2, 3, and 12 give us the following.

Corollary 13. The model checking problem for wPRS and LTL(Fs,Gs) is decidable.

This problem is EXPSPACE-hard due to EXPSPACE-hardness of the model check-
ing problem for LTL(F,G) for PN [Hab97]. Our decidability proof does not provide any
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primitive recursive upper bound as it employs LTL model checking for PN, for which
no primitive recursive upper bound is known.

5 Undecidability Results

Obviously, the model checking for wPRS and LTL(X) is decidable. Hence, to prove that
the decidability boundary of Figure 2is drawn correctly, it remains to show the following.

Theorem 14. Model checking of PA against LTL(U) is undecidable. Model checking

of PA against LTL(
∞
F,X) is undecidable as well.

Proof (Sketch). In both cases, the proof is done by reduction from the non-halting prob-
lem for Minsky 2-counter machine. �
In the proof of the previous theorem, the PA systems constructed there have only infinite
runs. This means that model checking of infinite runs remains undecidable for PA and

both LTL(
∞
F,X) and LTL(U).

6 Conclusion

We have established the decidability border of model checking of wPRS classes and ba-
sic fragments of future LTL (see Figure 2) by showing that the model checking problem
of wPRS against LTL(Fs,Gs) is decidable, while the same problem for PA and LTL(U)

or LTL(X,
∞
F) is undecidable. So far, only two positive results on LTL model checking of

PA (and classes subsuming PA) have been published: decidability of model checking of
infinite runs for PRS and LTL fragment of fairness properties [Boz05] and decidability
of the same problem for PA and simple PLTL� [BH96]. Note that the fairness fragment
and the regular part of simple PLTL� are strictly less expressive than LTL(F,G) (also
known as Lamport logic), which is again strictly less expressive than LTL(Fs,Gs). We
also emphasize that our positive result for LTL(Fs,Gs) deals with both finite and infinite
runs, and with wPRS rather than PRS or PA only.

It is also worth mentioning that our proof techniques differ from those used
in [Boz05] and [BH96]. The decidability proof for LTL(Fs,Gs) is based on the auxiliary
result saying that model checking for wPRS and negated A fragment is decidable. In
fact, this auxiliary result is very powerful. We conjecture that it also implies decidability
of the model checking problem of wPRS and the common fragment of CTL and LTL
called LTLdet [Mai00]. Note that LTLdet is semantically incomparable with LTL(Fs,Gs).

Unfortunately, our results are insufficient to establish the decidability border for basic
LTL fragments with both future and past modalities. Indeed, fragments LTL(Fs,Ps) and
LTL(F,P), where P,Ps are past counterparts of F,Fs respectively, do not semantically co-
incide with any fragment of Figure 2 and decidability of the model checking problem for
these two fragments and all wPRS classes subsuming PA is an open question. However,
we conjecture that our technique can be adopted to answer this question positively.
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Monitoring of Real-Time Properties

Andreas Bauer, Martin Leucker, and Christian Schallhart
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Abstract. This paper presents a construction for runtime monitors that check
real-time properties expressed in timed LTL (TLTL). Due to D’Souza’s results,
TLTL can be considered a natural extension of LTL towards real-time. Moreover,
a typical obstacle in runtime verification is solved both for untimed and timed for-
mulae, in that standard models of linear temporal logic are infinite traces, whereas
in runtime verification only finite system behaviours are at hand. Therefore, a 3-
valued semantics (true, false, inconclusive) for LTL and TLTL on finite traces
is defined that resembles the infinite trace semantics in a suitable and intuitive
manner. Then, the paper describes how to construct, given a (T)LTL formula, a
deterministic monitor with three output symbols that reads a finite trace and yields
its according 3-valued (T)LTL semantics. Notably, the monitor rejects a trace as
early as possible, in that any minimal bad prefix results in false as a return value.

1 Introduction

Runtime verification [9] is becoming a popular tool to complement verification tech-
niques such as model checking and testing, especially for so-called black box systems.
In a nutshell, runtime verification works as follows. A correctness property ϕ, usually
formulated in some linear temporal logic, such as LTL [20], is given and a so-called
monitor that accepts all models for ϕ is automatically generated. The system under
scrutiny as well as the generated monitor are then executed in parallel, such that the
monitor observes the system’s behaviour. System behaviour which violates property ϕ
is then detected by the monitor and an according alarm signal is returned.

Monitors can be employed in different phases of system development: In the testing
phase [7], the system is executed with typical inputs and monitors are observed for
complaints. At customer’s site, monitors check for bugs that escaped the testing phase
and may trigger recovery actions [5].

Various runtime verification approaches for LTL have been proposed already
[13,16,17,15,23]. However, the current approaches suffer—to our opinion—from the
treatment of the following obstacle: The semantics of LTL is defined over infinite (be-
havioural) traces whereas monitoring a running system allows an at most finite view. In
consequence, various authors have proposed custom interpretations of LTL over finite
traces using weak and strong semantics: the weak interpretation of a formula ϕ w. r. t.
a finite trace u is that if up to the point where u ends, “nothing has yet gone wrong”,
ϕ holds. In the strong view, ϕ holds only if it evaluates to true within u. (see [12]
for an overview). However, good examples can be found for each of the interpretations
and—at the same time—also examples that the chosen approach is misleading.

In this paper, we propose a simple, yet—as we find—convincing way to overcome
this obstacle. Instead of trying to define a two-valued semantics for LTL on finite traces,
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we define a three valued semantics, using values true, false , and ?, where the latter
denotes inconclusive. Given a finite string u and a formula ϕ, the truth values are defined
as expected: if there is no continuation of u satisfying ϕ, the value is false . If every
continuation of u satisfies ϕ, we go for true. Otherwise, we say ?, since the observations
so far are just inconclusive to say either true or false .

We argue that it is important to work with three instead of two truth values: Consider,
for instance, the property G¬p stating that no state satisfying p should occur. Clearly,
when p is observed, the monitor should complain. As long as p does not hold, it is mis-
leading to say that the formula is true, since the next observation might already violate
the formula. On the other hand, consider the formula ¬pU init stating that nothing bad
(p) should happen before the init function is called. If, indeed, the init function has been
called and no p has been observed before, the formula is true, regardless what will
happen in the future. For testing and verification, it is important to know whether some
property is indeed true or whether the current observation is just inconclusive.

Thus, in this paper, we propose a 3-valued logic, LTL3, which can be interpreted over
finite traces based on the standard semantics of LTL for infinite traces. Furthermore, we
describe how to construct, given an LTL formula, a (deterministic) finite state machine
(FSM) with three output symbols. This automaton reads finite traces and yields their
3-valued LTL semantics. Hence, it can be directly deployed for runtime verification.
Standard minimisation techniques for FSMs can be used to obtain an optimal FSM
w. r. t. number of states.

Our 3-valued semantics for LTL rounds off the study of safety properties in terms
of automata in [18] from a temporal logic perspective. In [18], a bad prefix (of a Büchi
automaton), is defined as a finite prefix which cannot be the prefix of any accepting
trace. Dually, a good prefix is a finite prefix such that any infinite extension of the trace
will be accepted. It is exactly this classification that forms the basis of our 3-valued
semantics: “bad prefixes” (of formulas) are mapped to false , “good prefixes” evaluate
to true, while the remaining prefixes yield ?. Thus, monitors for 3-valued formulas
classify prefixes as one of good = true, bad = false , or ? (neither good nor bad ).

Since an extension of a bad (good) prefix is bad (good, respectively), there is a min-
imal bad (good) prefix for every bad (good) prefix. In runtime verification, one is inter-
ested in getting information already for minimal prefixes and one solution was worked
out in [10]. However, all “bad prefixes” for a formula ϕ gives rise to false–also minimal
ones. Thus, the correctness of our monitor procedures for LTL and TLTL ensures that
already for minimal good or bad prefixes one of true or false is obtained. Altogether,
we get a coherent study of (not only safety) LTL properties based on finite prefixes
together with optimal acceptors, as they are called in [10], based on elementary results
for LTL and automata theory.

To make our result easily accessible to the reader and to complete the picture started
in [10], our concepts are first developed in the setting of LTL. However, the main con-
cern of this paper are real-time systems. Therefore, we develop our ideas also for TLTL,
a logic introduced in [21], which, as argued by D’Souza in [11] can be considered a nat-
ural counterpart of LTL in the timed setting. Hence, for a TLTL formula a monitor is
constructed which operates over finite timed traces. Again, by correctness of our con-
struction, monitors signal faults or satisfaction “as early as possible”. While the general
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scheme, as we show, is also applicable in the timed setting, the monitor construction is
technically much more involved. Automata for TLTL employ so-called event recording
and event predicting clocks. Since in runtime verification the future of a trace is not
known, predicting events are difficult to handle. We introduce symbolic runs and show
their benefit for checking promises efficiently, avoiding the translation of event-clock
automata to (predicting-free) timed automata.

[14] studies monitor generation based on LTL enriched with a freeze quantifier for
time. In [24,6], fault diagnosis for timed systems is examined, a problem that is more
complicated than runtime verification. However, only timed automata or event record-
ing automata are used, no prediction of events is supported. TLTL is event-based, mean-
ing that the system emits events when the system’s state has changed. In [19] moni-
toring of continuous signals is considered, which is intrinsicly different to observing
discrete signals in a continuous time domain. All of the work mentioned so far employs
a 2-valued semantics. In [10], minimal prefixes for runtime verification are discussed,
which our approach offers for free thanks to the 3-valued semantics.

We have implemented the untimed setting and validated our approach examining a
real-world case study. The monitor generator, exemplifying material, a case study, and
a full version of the paper is available from http://runtime.in.tum.de/.

2 Preliminaries

For the remainder of this paper, let AP be a finite set of atomic propositions and Σ =
2AP a finite alphabet. We write ai for any single element of Σ, i.e., ai is a possibly
empty set of propositions taken from AP. Finite traces overΣ are elements of Σ∗, and
are usually denoted by u, u′, u1, u2, . . . , whereas infinite traces are elements of Σω,
usually denoted by w,w′, w1, w2, . . . .

The set of LTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (p ∈ AP)

Let i ∈ N be a position. The semantics of LTL formulae is defined inductively over
infinite sequencesw = a0a1 . . . ∈ Σω as follows:w, i |= true,w, i |= ¬ϕ iffw, i 
|= ϕ,
w, i |= p iff p ∈ ai, w, i |= ϕ1∨ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2, w, i |= ϕ1Uϕ2 iff there
exists k ≥ i with w, k |= ϕ2 and for all l with i ≤ l < k, w, l |= ϕ1, and w, i |= Xϕ
iff w, i + 1 |= ϕ. Further, let w |= ϕ, iff w, 0 |= ϕ. For every LTL formula ϕ, its set
of models, denoted by L(ϕ), is a regular set of infinite traces and can be described by a
corresponding Büchi automaton.

A (nondeterministic) Büchi automaton (NBA) is a tuple A = (Σ,Q,Q0, δ, F ),
where Σ is a finite alphabet, Q is a finite non-empty set of states, Q0 ⊆ Q is a set
of initial states, δ : Q × Σ → 2Q is the transition function, and F ⊆ Q is a set of
accepting states. We extend the transition function δ : Q × Σ → 2Q, as usual, to δ′ :
2Q×Σ∗ → 2Q by δ′(Q′, ε) = Q′whereQ′ ⊆ Qand δ′(Q′, ua) =

⋃
q′∈δ′(Q′,u) δ(q

′, a).
To simplify notation, we use δ for both δ and δ′. A NBA is called deterministic iff for
all q ∈ Q, a ∈ Σ, |δ(q, a)| = 1, and |Q0| = 1. We use DBA to denote a deterministic
Büchi automaton. A run of an automatonA on a word w = a1 . . . ∈ Σω is a sequence
of states and actions ρ = q0a1q1 . . . , where q0 is an initial state of A and for all i ∈ N
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we have qi+1 ∈ δ(qi, ai). For a run ρ, let Inf(ρ) denote the states visited infinitely often.
A run ρ of a NBA A is called accepting iff Inf(ρ) ∩ F 
= ∅.

A nondeterministic finite automaton (NFA) A = (Σ,Q,Q0, δ, F ) is one where Σ,
Q, Q0, δ, and F are defined as for a Büchi automaton, but which operates on finite
words. A run of A on a word w = a1 . . . an ∈ Σ∗ is a sequence of states and actions
ρ = q0a1q1 . . . qn, where q0 is an initial state of A and for all i ∈ N we have qi+1 ∈
δ(qi, ai). The run is called accepting if qn ∈ F . A NFA is called deterministic iff for
all q ∈ Q, a ∈ Σ, |δ(q, a)| = 1, and |Q0| = 1. We use DFA to denote a deterministic
finite automaton.

Finally, let us recall the notion of a Moore machine, also called finite-state machine
(FSM), which is a finite state automaton enriched with output, formally denoted by a
tuple (Σ,Q,Q0, δ,Δ,λ), where Σ, Q, Q0 ⊆ Q, δ is as before and Δ is the output
alphabet, λ : Q→ Δ the output function. The outputs of a Moore machine, defined by
the function λ, are thus determined by the current state q ∈ Q alone, rather than by input
symbols. As before, δ extends to the domain of words as expected. For a deterministic
Moore machine, we denote by λ also the function that applied to a word u yields the
output in the state reached by u rather than the sequence of outputs.

3 Three-Valued LTL in the Untimed Setting

To overcome difficulties in defining an adequate boolean semantics for LTL on finite
traces, we propose a 3-valued semantics. The intuition is as follows: in theory, we ob-
serve an infinite sequence w of some system. For a given formula ϕ, thus either w |= ϕ
or not. In practice, however, we can only observe a finite prefix u of w. Consequently,
we let the semantics of u and ϕ be true, if uw′ |= ϕ for every possible future extension
w′. On the other hand, if uw′ is not a model of ϕ for all possible infinite continuations
w′ of u, we define the semantics of u and ϕ as false. In the remaining case, the truth
value of uw′ and ϕ depends on w′. Thus, we define the semantics of u with respect to
ϕ to be inconclusive, denoted by ?, to signal that u itself is not sufficient to determine
how ϕ will evaluate in any possible future which is prefixed with u.

Formally, we define our 3-valued semantics in terms of LTL3 over the set of truth
values B3 = {⊥, ?,3} as follows:

Definition 1 (3-valued semantics of LTL). Let u ∈ Σ∗ denote a finite trace. The truth
value of a LTL3 formula ϕ w. r. t. u, denoted by [u |= ϕ], is an element of B3 and defined
as follows:

[u |= ϕ] =

⎧⎪⎨⎪⎩
3 if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 
|= ϕ

? otherwise.

Now, we develop an automata-based monitor procedure for LTL3. More specifically,
for a given formula ϕ ∈ LTL3, we construct a finite Moore machine, Āϕ that reads
finite traces u ∈ Σ∗ and outputs [u |= ϕ], thus a value in B3.

For a NBA A, we denote by A(q) the NBA that coincides with A except for Q0,
which is defined asQ0 = {q}. Fix ϕ ∈ LTL for the rest of this section and letAϕ denote
the NBA, which accepts all models of ϕ, and let A¬ϕ denote the NBA, which accepts
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all counter examples of ϕ. The corresponding construction is standard and explained,
for example in [26]. For these automata, we observe:

Lemma 1. Let Aϕ = (Σ,Qϕ, Qϕ
0 , δ

ϕ, Fϕ) denote the NBA such that L(Aϕ) = L(ϕ).
For u ∈ Σ∗, let δ(Qϕ

0 , u) = {q1, . . . , ql}. Then

[u |= ϕ] 
= ⊥ iff ∃q ∈ {q1, . . . , ql} such that L(Aϕ(q)) 
= ∅.

Lemma 2. Let A¬ϕ =(Σ,Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F¬ϕ) denote the NBA such that L(A¬ϕ)=

L(¬ϕ). For u ∈ Σ∗, let δ(Q¬ϕ
0 , u) = {q1, . . . , ql}. Then

[u |= ϕ] 
= 3 iff ∃q ∈ {q1, . . . , ql} such that L(A¬ϕ(q)) 
= ∅.

Correctness of the first lemma follows directly from the definition of acceptance for
Büchi automata and the second lemma rephrases the first one by substituting ¬ϕ for ϕ.

For Aϕ and A¬ϕ, we now define a function Fϕ : Qϕ → B respectively F¬ϕ :
Q¬ϕ → B (where B = {3,⊥}), assigning to each state q whether the language of
the respective automaton starting in state q is not empty. Thus, if Fϕ(q) = 3 holds,
then the automatonAϕ starting at state q accepts a non-empty language and each finite
prefix u leading to state q can be expanded in order to satisfy ϕ. Using Fϕ andF¬ϕ, we
define two NFAs Âϕ = (Σ,Qϕ, Qϕ

0 , δ
ϕ, F̂ϕ) and Â¬ϕ = (Σ,Q¬ϕ, Q¬ϕ

0 , δ¬ϕ, F̂¬ϕ)
where F̂ϕ = {q ∈ Qϕ | Fϕ(q) = 3} and F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = 3}.
Âϕ, resp. Â¬ϕ, accept the finite traces u for which [u |= ϕ] evaluates to 
= ⊥ and,

respectively, 
= 3.

Lemma 3. Using the notation as before, we have for all u ∈ Σ∗:

u ∈ L(Âϕ) iff [u |= ϕ] 
= ⊥ and u ∈ L(Â¬ϕ) iff [u |= ϕ] 
= 3

Therefore, we can evaluate [u |= ϕ] according to Lemma 3 as follows.

Lemma 4. With the notation as before, we have [u |= ϕ]=3 if u 
∈ L(Â¬ϕ), [u |= ϕ] =
⊥ if u 
∈ L(Âϕ), and [u |= ϕ]=? if u ∈ L(Âϕ) and u ∈ L(Â¬ϕ).

The lemma yields a simple procedure to evaluate the semantics of ϕ for a given finite
trace u: we evaluate both u ∈ L(Â¬ϕ) and u ∈ L(Âϕ) and use Lemma 4 to determine
[u |= ϕ]. As a final step, we now define a (deterministic) FSM Āϕ that outputs for
each finite string u its associated 3-valued semantical evaluation with respect to some
LTL-formula ϕ.

Let Ãϕ and Ã¬ϕ be the deterministic versions of Âϕ and Â¬ϕ, which can be com-
puted in the standard manner by power-set construction. Now, we define the FSM in
question as a product of Ãϕ and Ã¬ϕ:

Definition 2 (Monitor Āϕ for a LTL-formula ϕ). Let Ãϕ = (Σ,Qϕ, {qϕ
0 }, δϕ, F̃ϕ)

and Ã¬ϕ = (Σ,Q¬ϕ, {q¬ϕ
0 }, δ¬ϕ, F̃¬ϕ) be the DFAs which correspond to the two

NFAs Âϕ and Â¬ϕ as defined for Lemma 3. Then we define the monitor Āϕ = Ãϕ ×
Ã¬ϕ as the FSM (Σ, Q̄, q̄0, δ̄, λ̄), where Q̄=Qϕ×Q¬ϕ, q̄0 =(qϕ

0 , q
¬ϕ
0 ), δ̄((q, q′), a) =

(δϕ(q, a), δ¬ϕ(q′, a)), and λ̄ : Q̄→ B3 is defined by

λ̄((q, q′)) =

⎧⎨⎩
3 if q′ 
∈ F̃¬ϕ

⊥ if q 
∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.
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Fig. 1. The procedure for getting [u |= ϕ] for a given ϕ

We sum up our entire construction in Fig. 1 and conclude by formulating the correctness
theorem.

Theorem 1. Let ϕ ∈ LTL3 and let Āϕ = (Σ, Q̄, q̄0, δ̄, λ̄) be the corresponding moni-
tor. Then, for all u ∈ Σ∗ the following holds: [u |= ϕ] = λ̄(δ̄(q̄0, u)).

Complexity. Consider Fig. 1: Given ϕ, step 1 requires us to replicate ϕ and to negate
it, i.e., it is linear in the original size. Step 2, the construction of the NBAs, causes an
exponential blow-up in the worst-case. Steps 3 and 4, leading to Âϕ and Â¬ϕ, do not
change the size of the original automata. Then, computing the deterministic automata
of step 5, might again require an exponential blow-up in size. In total the FSM of step
6 will have double exponential size with respect to |ϕ|.

While the size of the final FSM is in O(22n

) which sounds a lot, standard minimisa-
tion algorithms for FSMs can be used to derive an optimal deterministic monitor w. r. t.
the number of states. Optimality implies that any other method, in the worst case, has
the same complexity. Better complexity results in other approaches are either due to us-
ing a restricted fragment of LTL or otherwise imply that the chosen temporal operators
might not limit the expressive power of LTL but sometimes impose long formulas for
encoding the desired behaviour.

That said, we have implemented the determinisation of NFAs and the product for
obtaining Ā (steps 4–6) in an on-the-fly fashion. This technique is well known for ex-
ample in compiler construction [1]. Our examples confirm huge savings in memory
consumption.

4 Three-Valued LTL in the Timed Setting—TLTL

In this part, we extend the approach developed in the preceding section to the timed
setting. Thus, the goal is to dynamically check real-time specifications formulated in a
timed temporal logic. We use timed LTL (TLTL for short), a logic introduced in [21], in
the form presented in [22]. The language expressible by a TLTL formula can be defined
by event-clock automata [4], a subclass of timed automata. It was shown in [11] that
TLTL corresponds exactly to the class of languages definable in first-order logic inter-
preted over timed words. Thus, it can be considered as the natural counterpart of LTL
for the timed setting. Given the translation to event-clock automata in the literature [22],
we base our timed runtime verification approach on TLTL and event-clock automata.

4.1 Preliminaries

Let us fix an alphabetΣ of actions for the rest of this section. In the timed setting, every
symbol a ∈ Σ is associated with an event-recording clock, xa, and an event-predicting
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clock, ya. An (infinite) timed word w over the alphabet Σ is an (infinite) sequence
of timed events (a0, t0)(a1, t1) . . . consisting of symbols ai ∈ Σ, and non-negative
numbers ti ∈ R≥0, such that for each i ∈ N, ti < ti+1 (strict monotonicity), and for all
t ∈ R≥0 there is an i ∈ N such that ti > t (progress). Furthermore, for w as above, we
call its sequence of actions (the projection to the first component) the untimed word of
w, denoted by ut(w).

To simplify notation, we abbreviate (Σ × R≥0) by TΣ . Thus, a finite timed word is
an element of TΣ ∗ and the domain of infinite timed words is denoted by TΣω. Given
an (infinite) timed wordw, the value of the event-recording clock variable xa at position
i of w equals ti − tj , where j represents the last position preceding i such that aj = a.
If no such position exists, then the value of xa remains undefined, denoted by ⊥. The
event-predicting clock variable ya at position i equals tk − ti, where k represents the
next position after i such that ak = a. If no such position exists, again, the variable
remains undefined. The set of all event-clocks is denoted by CΣ = {xa, ya | a ∈ Σ}.
A clock valuation function over a timed word w, γi : CΣ → R≥0 ∪ {⊥} assigns a
positive real, or undefined value to each clock variable corresponding to position i. We
abbreviate R≥0 ∪ {⊥} by T⊥.

A clock constraint compares a clock value to a natural number. Let Ψ(CΣ) denote
the set of clock constraints over CΣ . Formally, a clock constraint ψ ∈ Ψ(CΣ) is a
conjunction of formulae of the form z $% c, where z ∈ CΣ , $%∈ {<,≤,≥, >} and
c ∈ N. For clock constraint ψ and clock valuation function γ, we write γ |= ψ to denote
that w.r.t. γ, constraint ψ is fulfilled, where ⊥ $% c for c ∈ N and $%∈ {<,≤,≥, >}
does not hold and the remaining cases are defined in the expected manner.

4.2 Syntax and Semantics of TLTL3

Let Σ be a finite set of actions. A set of formulas ϕ of TLTL is defined by the grammar

ϕ ::= true | a | 	a ∈ I | 
a ∈ I | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (a ∈ Σ),

where 	a is the operator that measures the time elapsed since the last occurrence of a,
and 
a the operator that predicts the next occurrence of a within a timed interval I ∈ I.
The set of intervals I contains intervals of the form (l, r), [l, r), (l, r], or [l, r], where
l, r ∈ R≥0 ∪ {∞}. Without loss of generality, we assume l < r, except for [l, r], and
for intervals (l, r], or [l, r] that r 
= ∞. To simplify notation, we use [( and )] for interval
borders which can either be ( or [, respectively ), ].

The semantics of TLTL formulae are defined inductively over infinite timed words
w ∈ TΣω, where w = (a0, t0)(a1, t1) . . . , and i ∈ N≥0 as follows: w, i |= true,
w, i |= ¬ϕ iff w, i 
|= ϕ, w, i |= a iff ai = a, w, i |= 	a ∈ I iff γi(xa) ∈ I , w, i |=

a ∈ I iff γi(ya) ∈ I , w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2, w, i |= ϕ1Uϕ2 iff
∃k ≥ i with w, k |= ϕ2 and ∀l : (i ≤ l < k ∧w, l |= ϕ1), w, i |= Xϕ iff w, i+ 1 |= ϕ.
Further, let w |= ϕ, iff w, 0 |= ϕ.

Analogously to the untimed case, we now define a 3-valued semantics for TLTL,
from this point onwards denoted as TLTL3, as follows:

Definition 3. Let u ∈ TΣ∗ denote a finite timed trace. The truth value of a TLTL3

formula ϕ w. r. t. u, denoted by [u |= ϕ], is an element of B3 and defined as follows:
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[u |= ϕ] =

⎧⎪⎨⎪⎩
3 if ∀σ such that uσ ∈ TΣω uσ |= ϕ

⊥ if ∀σ such that uσ ∈ TΣω uσ 
|= ϕ

? otherwise.

4.3 Symbolic Runs of Event-Clock Automata

We first recall the definition of an event-clock automaton: Given a finite set of clocks,
CΣ , we define an event-clock automaton as a finite state automaton whose edges are an-
notated both with input symbols and with clock constraints asAec = (Σ,Q,Q0, E, F ),
where Σ is a finite input alphabet, Q a finite set of states, Q0 ⊆ Q are initial states,
F ⊆ 2Q is a set of accepting states (generalized Büchi acceptance condition) and
E ⊆ Q× Σ × Ψ(CΣ) ×Q a set of transitions. An edge e = (q, a,ψ, q′) represents a
transition from state q upon symbol a to q′, where the clock constraint ψ then specifies
when e is enabled. For an event-clock automatonA, let KA denote the biggest constant
appearing in some constraint ofA; we write K whenA is clear from the context.

A timed run θ of an automaton Aec = (Σ,Q,Q0, E, F ) over a timed word w ∈
TΣω starting in (q0, γ0) is an infinite sequence of state-valuation tuples and transitions
(q0, γ0)

α1→ (q1, γ1)
α2→ . . . with qi ∈ Q, and γi being the evaluation function assigning

for every element from Σ the value of the recording and predicting event clocks corre-
sponding to αi, where αi ∈ TΣ is a timed event of the form (ai ∈ Σ, ti ∈ R≥0), and
for all i ≥ 1 there is a transition in E of the form (qi−1, ai,ψ, qi) such that γi |= ψ.Aec

accepts θ, iff for each Fi ∈ F , a state q ∈ Fi exists such that q occurs infinitely often
in θ. γ0 is initial (w.r.t. w) if γ0(xa) = ⊥ and γ0(ya) = ti if αi = (a, ti) and for j < i
and αj = (aj , tj), aj 
= a, and γ0(ya) = ⊥ if a does not occur in w. Then, the timed
language accepted by Aec, denoted as L(Aec), is the set of timed words for which an
accepting run ofAec exists starting in (q0, γ0), for some q0 ∈ Q0 and the initial γ0.

For runtime verification predicting clock variables pose a problem, since informa-
tion about the future occurrence of an action a is predicted, but this information is not
available yet. We solve this problem by representing the value of some predicting clock
variable symbolically. A symbolic clock valuation function Γ : CΣ → T⊥ ∪ I assigns
a positive real, or undefined value to each recording clock variable and an interval or
undefined value to each predicting clock variable. The interval constrains the possible
values of a predicting variable. To simplify notation, we identify Γ (ya) = (l, r) with
the constraint ya > l ∧ ya < r (and similarly for borders [ and ]).

For a symbolic clock evaluation Γ , we define the following three operations: time
elapse, reset, and conjunction. Given an elapsed time t ∈ R≥0, Γ ′ = Γ + t, where
Γ ′(xa) = Γ (xa) + t and for Γ (ya) = [(l, r)], we set Γ ′(ya) = [(l−̇t, r − t)], where
−̇ yields at least 0. If r − t < 0, then Γ ′ is invalid. Γ reset by action a, denoted by
Γ ↓ a, sets xa = 0 and removes all constraints on ya, and we set Γ ′(ya) = [0,∞)
and Γ ′(zb) = Γ (zb) for all b 
= a. The conjunction of Γ with constraint ψ yields
Γ ′ = Γ∧ψ, where each predicting clock ya is combined with the constraints of ψ which
involve ya, i. e., for a ∈ Σ, Γ ′(ya) = Γ (ya) ∧

∧
{ya $% c ⊆ ψ}. We call Γ ′ invalid,

if for some ya, Γ ′(ya) is not satisfiable. Furthermore, a transition (q, a,ψ, q′) ∈ E
is applicable to a pair (q,Γ ), if the constraints xb $% c in ψ are satisfied by Γ , for
all b ∈ Σ, and 0 ∈ Γ (ya). If (q, a,ψ, q′) ∈ E is applicable, then the corresponding
successor of (q,Γ ) is (q′,Γ ′), where Γ ′ = (Γ↓a) ∧ ψ.
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A symbolic timed run Θ of an automaton Aec = (Σ,Q,Q0, E, F ) over a timed
word w ∈ TΣω starting in (q0,Γ0) is an infinite sequence of state-symbolic-valuation
tuples and transitions as follows: (q0,Γ0)

α1→ (q1,Γ1)
α2→ . . . with qi ∈ Q, and Γi being

a symbolic valuation function, where for each (qi−1,Γi−1)
(ai,ti)→ (qi,Γi), there exists

some transition (qi−1, ai,ψ, qi) applicable to (qi−1,Γi−1 + ti) and (qi,Γi) is the result
of this application. The notion of acceptance for symbolic runs corresponds to that of
runs, i. e., for each Fi ∈ F there is some q ∈ Fi occurring infinitely often. We call Γ0

initial if for a ∈ Σ, Γ0(xa) = ⊥ and Γ0(ya) = [0,∞).

Theorem 2. LetAec = (Σ,Q,Q0, E, F ) be an event-clock automaton andw ∈ TΣω.
Then, there is an accepting run onw starting in (q0, γ0) iff there is a symbolic accepting
run on w starting in (q0,Γ0) for initial Γ0.

The important fact about the previous theorem is that γ0 is dependent on w (since each
predicting clock ya has to be initialised to match the first occurrence of a), while Γ0 is
independent of w. Thus, symbolic runs are a suitable device for runtime verification.

4.4 A Monitor Procedure for TLTL3

We can assume that for some property ϕ as well as its negation, an event-clock au-
tomaton is given, accepting precisely the models of ϕ respectively ¬ϕ (see [22] for
details). Looking at the scheme developed in the untimed setting, we are now tempted
to check for every state q of the event-clock automaton, whether the language accepted
from state q is empty. However, this would yield wrong conclusions, as can be seen
in Fig. 2. While the language accepted in state 2 is non-empty and, despite, state 2 is

0 1 2
a b[xa ≥ 2]

a[xa ≤ 1]

Fig. 2. Event-clock automaton

reachable, the automaton does not accept
any word when starting in state 0. The con-
straint when passing from 1 to 2 requires
the clock xa to be at least 2. This, however,
prevents the loop in state 2 to be taken.

We therefore decided to work on the so-
called region automaton (for alternatives

see Remark 2 on page 270). Recall that K denotes the biggest constant occurring in
some constraint of the event-clock automaton. Two clock valuations γ1, γ2 are in the
same region, denoted by γ1 ≡ γ2 iff

– for all z ∈ CΣ , γ1(z) = ⊥ iff γ2(z) = ⊥, and (agreement on undefined)
– for all z ∈ CΣ , if γ1(z) ≤ K or γ2(z) ≤ K , then �γ1(z)� = �γ2(z)�, and

(agreement on integral part)
– for all a ∈ Σ, let 〈γ(xa)〉 = �xa� − γ(xa) and 〈γ(ya)〉 = γ(ya)− �ya�. Then, for

all z1, z2 ∈ CΣ with γ1(z1) ≤ K and γ2(z2) ≤ K ,
• 〈γ1(z1)〉 = 0 iff 〈γ2(z1)〉 = 0
• 〈γ1(z1)〉 ≤ 〈γ1(z2)〉 iff 〈γ2(z1)〉 ≤ 〈γ2(z2)〉. (agreement on fraction’s order)

A clock region is an equivalence class of ≡. LetR denote the set of all regions.
The key property of the region equivalence is stability [3]: given state s and two

equivalent valuations γ1 and γ2, then (s′, γ′) is an a-successor of (s, γ1) iff (s′, γ′′) is
one of (s, γ2) for suitable γ′′ equivalent to γ′. Lifting this to infinite runs, we get:
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Lemma 5. Let Aec be an event-clock automaton, q some state of Aec, and γ1, γ2 two
valuations withγ1 ≡ γ2. Let w̄ ∈ Σω. Then, there exists an accepting run on some infinite
timed word w1 ∈ TΣω with ut(w1) = w̄ starting in (q, γ1) iff there exists an accepting
run on some infinite timed wordw2 ∈ TΣω with ut(w2) = w̄ starting in (q, γ2).

Note that the so-called zone equivalence [2] is not stable.
For completeness, we give the translation of an event-clock automaton to a region au-

tomaton, as presented in [22], whose states actually serve their purpose in our approach,
because of the previous lemma.

A clock region κ2 is a time successor of a clock region κ1, denoted by κ2 ∈ TS (κ1),
iff for all γ ∈ κ1 there is some t ∈ R≥0 such that γ + t ∈ κ2. Here, γ′ = γ + t is
defined as γ′(xa) = γ(xa) + t and γ′(ya) = γ(ya) − t. To simplify notation, let us
fix an event-clock automatonAec = (Σ,Q,Q0, E, F ). The region automaton ofAec is
the (generalized) Büchi automatonR(Aec) = (Σr, Qr, Qr

0, E
r, F r), where

– Qr = {(l, κ, ζ) | l ∈ Q, κ ∈ R, ζ ∈ {t, d}} is the set of states
– Qr

0 = {(l, κ, ζ) ∈ Qr | l ∈ Q0, ∀a ∈ Σ, κ(xa) = ⊥, ζ = d} is the set of initial
states

– Σr = Σ ∪ {ε}
– Er = Er

d ∪ Er
t is the union of untimed and timed transitions, where

• Er
d = {((l1, κ1, t), (l2, κ2, d), a) | (l1, a,ψ, l2) ∈ E and
∃κ3 s. t. κ1 = κ3[ya := 0], κ2 = κ3[xa := 0], and κ3 |= ψ}

• Er
t = {((l, κ1, d), (l, κ2, t), ε) | κ2 ∈ TS (κ1)}

– F r = {F r
i | Fi ∈ F} ∪ {Fxa | 	a ∈ I ∈ Sub(ϕ)} ∪ {Fya | 
a ∈ I ∈ Sub(ϕ)},

• where for Fi ∈ F , F r
i = {(l, κ, ζ) | l ∈ Fi}

• Fxa = {(l, κ, ζ) | ∀γ ∈ κ γ(xa) = 0 ∨ γ(xa) > c ∨ γ(xa) = ⊥}
• Fya = {(l, κ, ζ) | ∀γ ∈ κ γ(ya) = 0 ∨ γ(ya) = ⊥}

Note that the region automaton as defined here is a Büchi automaton and thus, the
accepted language is a sequence of (untimed) words overΣ. Thus, it is easy to compute
for every state, whether the accepted (untimed) language is empty or not. For every state
(l, κ, ζ) with a non-empty language, stability now guarantees that for each γ ∈ κ, there
is some accepting run of the original event-clock automaton starting in (l, γ) for some
timed word w. Dually, if the accepted language is empty, the underlying event-clock
automaton has no accepting run starting in (l, γ) for any γ ∈ κ and any w (Lemma 5).

We now describe a procedure that reads timed events and decides whether further
events might yield an accepting run (satisfying the formula to check).

The procedure is based on the event-clock automaton as well as the region automa-
ton. It follows the possible symbolic computations for the given input along the lines
of the event-clock automaton. To decide, whether future events might contribute to an
accepting run, the region automaton is consulted.

Let us fix an event-clock automaton Aec and its region automaton R(Aec) for the
moment. Let us consider the timed word w = (a0, t0)(a1, t1) · · · ∈ TΣω. Recall that
(a0, t0) actually means that the first action a0 occurs at time t0.

Let Γ0 be the initial symbolic valuation of Aec and l0 one of the initial states of
Aec. Now, for the first event (a0, t0), we compute the set of successors w.r.t. Aec. If
this set is empty, the underlying formula is obviously violated. If not, each successor
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Fig. 3. The procedure for getting [u |= ϕ] for a given ϕ ∈ TLTL3

is a pair (l,Γ ). Each (l,Γ ) now corresponds to a set of states in the region automaton.
If and only if for all of them the accepted language is empty, the underlying property
is violated, which follows directly from Theorem 2 and Lemma 5. We continue with
each successor state (l,Γ ) for which a corresponding accepting state of R(Aec) exists,
reading the input event.

Thus, the generated procedure keeps a set of possible state-symbolic valuation pairs
that represent the possible current states of Aec (giving credit to the non-deterministic
nature of Aec). Furthermore, the transition table of Aec and the states of R(Aec) en-
riched with emptiness per state information are stored as look-up tables.

Remark 1. To enhance the practical applicability of our approach, we adjust the proce-
dure slightly: the formal framework described above requires the monitor to complain
iff for some prefix (a0, t0) . . . (ai, ti) no accepting run exists. In particular, it is assumed
that “a watch is consulted only when some action occurs”. But the time transitions
yielding the subsequent regions in the region automaton actually (often) constrain the
possible occurrence of some future event a. For each current valuation Γ corresponding
to a set of regions, we check in R(A) the possible accepting time successors and com-
pute a maximal time bound before some event has to occur to reach an accepting state.
Thus, in practice, we can set a timer interrupt, when such a bound exists, and decide for
rejection, when a timeout occurs before a suitable action has been read.

The overall monitor procedure for TLTL3 is similar to the untimed case and summarised
in Fig. 3. However, since we have to consider the region automaton (with emptiness
per state information) together with the current clock valuation to compute the timed
successor, we do not get an NFA neither can determinise to get a DFA (at least in a
straightforward manner). We therefore propose for the overall monitor procedure to
rely on R(Aϕ

ec) and R(A¬ϕ
ec ) in an on-the-fly manner, as described above.

Remark 2. We have used region automata to keep our presentation short and simple.
The key property of our monitor construction, however, is stability of the region equiv-
alence. Thus, our approach can be improved by taking a coarser stable partition of the
underlying timed transition system instead of the region equivalence. Such partitions
have been studied extensively in [25].

Complexity. Consider Fig. 3 and observe that step 1 is constant. The region automaton
of Aϕ

ec (resp. A¬ϕ
ec ) is exponential with respect to the length of the underlying formula

ϕ as well as the largest constant K appearing in ϕ. Following the different paths for
some prefix (due to the non-determinism of the region automaton) might cause further
exponential blow-up in space, in the worst case.
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5 Conclusions

The paper presented a monitor construction for (T)LTL formulae. For LTL, we have
shown the construction to be optimal, in that no smaller deterministic finite state mon-
itor accepting the same language as ours can be constructed. For both, LTL and TLTL,
the construction reflects minimality, such that true or false is returned by the monitor as
early as an observed behavioural trace allows. The latter is an implicit property of the
constructed monitor and does not require additional analyses, or data structures besides
the monitor itself.

We have already implemented the untimed setting and integrated the monitor gen-
erator within a larger logging and unit testing framework. Examples and an extended
version of this paper including details of the implementation are available from
http://runtime.in.tum.de/

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles and Techniques and Tools. Addison-
Wesley, 1986.

2. R. Alur. Timed automata. In NATO-ASI 1998 Summer School on Verification of Digital and
Hybrid Systems, 1998.

3. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
4. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable class of timed

automata. TCS, 211(1-2):253–273, 1999.
5. A. Bauer, M. Leucker, and C. Schallhart. Model-based runtime analysis of distributed reac-

tive systems. In ASWEC’06. IEEE, 2006.
6. P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis using timed automata. In FoSSaCS,

LNCS 3441. Springer, 2005.
7. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-based

Testing of Reactive Systems, LNCS 3472. Springer, 2005.
8. M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space systems

with fine-grained abstractions using spin. In SPIN’01, LNCS 2057.
9. S. Colin and L. Mariani. Run-Time Verification, chapter 18. LNCS 3472. [7], 2005.

10. M. d’Amorim and G. Rosu. Efficient monitoring of omega-languages. In CAV’05, LNCS
3576. Springer, 2005.

11. D. D’Souza. A logical characterisation of event clock automata. Int. Journ. Found. Comp.
Sci., 14(4):625–639, Aug. 2003.

12. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V. Campenhout. Reasoning
with temporal logic on truncated paths. In CAV’03, LNCS 2725.

13. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties
on Running Programs. In ASE’01, IEEE, 2001.
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Abstract. The linear time μ-calculus extends LTL with arbitrary least
and greatest fixpoint operators. This gives it the power to express all
ω-regular languages, i.e. strictly more than LTL. The validity problem
is PSPACE-complete for both LTL and the linear time μ-calculus. In
practice it is more difficult for the latter because of nestings of fixpoint
operators and variables with several occurrences.

We present a simple sound and complete infinitary proof system for
the linear time μ-calculus and then present two decision procedures for
provability in the system, hence validity of formulas. One uses nondeter-
ministic Büchi automata, the other one a generalisation of size-change
termination analysis (SCT) known from functional programming.

The main novelties of this paper are the connection with SCT and the
fact that both decision procedures have a better asymptotic complexity
than earlier ones and have been implemented.

1 Introduction

The linear time μ-calculus (Llin
μ ) [1,14] extends Pnueli’s Linear Time Temporal

Logic (LTL) with extremal fixpoints quantifiers. This increases its expressive
power: Llin

μ captures exactly the ω-regular languages, while the class of LTL-
definable properties is only that of star-free ω-languages. Llin

μ can also be seen as
the modal μ-calculus which is only interpreted over infinite linear time structures,
i.e. Kripke structures in which every state has exactly one successor.

The main decision problems for LTL and Llin
μ have the same complexity: model

checking, satisfiability and validity are all PSPACE-complete for both logics
[11,14]. By model checking we denote, as usual, the problem to decide whether
all paths of a given Kripke structure satisfy a given specification. Note that these
three problems are all interreducible for linear time logics. For instance, validity
is the same as model checking in a universal Kripke structure that has the shape
of a full clique; model checking can be reduced to validity checking by modeling
the given structure in a formula which is linear in the size of the structure, etc.
Since these reductions do not interfere with the main difficulty in each decision
problem – to find infinite regenerations of least or greatest fixpoint – we will
simply refer to decision problems. Here we focus on the validity problem but
stress the point that this approach is applicable to the other problems without
major alterations, too.

The presence of nested and possibly alternating fixpoint constructs makes
Llin

μ ’s decision problems much harder in practice than those of LTL. The fact

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 273–284, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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that LTL formulas only contain very simple unnested fixpoints is certainly one
of the reasons for LTL being well supported by successfully working tools like
Spin and NuSMV, etc.

Some decision procedures for Llin
μ have been presented so far. Vardi [14] uses

nondeterministic Büchi automata to decide an extension of Llin
μ with temporal

past operators. The time complexity of his algorithm is 2O(n4) where n is the
size of the input formula. Stirling and Walker subsequently gave a tableau char-
acterisation for Llin

μ ’s decision problems but were not concerned with complexity
issues.

Bradfield, Esparza and Mader defined tableaux with simpler termination con-
ditions. Their algorithm runs in time 2O(n2 log n) but this appeals to general com-
plexity theorems about nondeterministic space vs. deterministic time. Hence,
their result is of theoretical rather than – as they say – practical use. The same
holds for Kaivola’s procedure [4] which runs in time 2O(n2 log n) when transformed
into a deterministic procedure. We remark that it was designed to be nondeter-
ministic in the first place – the user is supposed to provide Hintikka structures
manually. To the best of our knowledge, none of these existing suggestions to
solve Llin

μ ’s decision problems have ever seen any serious attempt to be put into
practice.

Here we present a simple proof system for Llin
μ . A proof is an infinite tree

in which each branch satisfies an additional global condition concerning the ex-
istence of threads – similar to the internal paths of [2]. Our proof system and
in particular the characterisation of valid proof branches is related to the no-
tion of pre-models and models in Streett and Emerson’s work on deciding the
modal μ-calculus [13], adapted to Llin

μ by Vardi [14]. Indeed, a formula is invalid
iff its negation is satisfiable and in this case the offending path in the generic
pre-proof amounts to a model in their sense when we negate all formulas and
understand a sequent as the conjunction of its formulas whereas any infinite
path in a pre-proof can be extended to a pre-model.

There are some subtle differences though. States of a pre-model are always
maximally consistent sets of formulas (Hintikka sets) whereas our proofs con-
tain arbitrary sequents. Second, by considering the whole proof tree rather than
individual paths in isolation the need for the perhaps mysterious concept of
choice functions disappears. Of course they come back in Section 4 where we
show that a simple nondeterministic parity (or Büchi) automaton (NPA/NBA)
is able to accept all valid paths in a proof. They return in the form of a con-
densed description of rule instances fed to the NPA in addition to the sequents.
We claim though that the concept is more naturally explained by arguing that
the automaton must check every path in the pre-proof.

We present two different approaches to decide validity. The first one reduces
this to the inclusion problem for nondeterministic Büchi automata. Depending
on which complementation procedure is used we obtain an algorithm that runs
in time 2O(n2 log n) for example. This is easily implementable since it does not
use any theorems from complexity theory. Alternatively, there is a procedure
running in time 2O(n4) that can be implemented symbolically.



A Proof System for the Linear Time μ-Calculus 275

The second approach is an iterative algorithm inspired by the size-change
termination (SCT) method introduced by Jones et al. [8] in the context of ter-
mination analysis. There is, effectively, a fundamental connection between ter-
mination of functional programs and decision problems for ω-automata which
we will elaborate elsewhere. Here we adapt and substantially generalise the SCT
method in an ad hoc fashion to our situation at hand. Validity then reduces to
the problem of finding an idempotent morphism satisfying a certain property in
a category generated by a finite number of morphisms. Rule applications in the
proof system are regarded as morphisms with successive applications as mor-
phism composition. Systematically exploring the set of morphisms can be done
in time 2O(n3) but is in practice better than the automata-theoretic method as
some experimental results suggest.

2 Preliminaries

Let P = {p, q, . . .} be a set of atomic propositions, and V = {X,Y, . . .} an infinite
set of monadic second-order variables. Formulas of the linear time μ-calculus Llin

μ

in positive normal form are given by the following grammar.

ϕ ::= q | ¬q | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | μX.ϕ | νX.ϕ

where q ∈ P , and X ∈ V . We will write σ for either μ or ν and use l, l etc. to
denote literals q,¬q and their complements. We assume the reader to be familiar
with the standard notions of syntactic subformulas Sub(ϕ), free variables, well-
named formulas, substitution ϕ[ψ/X ] of all occurrences of a variable, etc.

The Fischer-Ladner closure FL(ϕ0) of a Llin
μ -formula ϕ0 is the least set of

formulas that contains ϕ0 and satisfies: if ϕ ∈ FL(ϕ0) and

– ϕ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2 then {ψ1,ψ2} ⊆ FL(ϕ);
– ϕ = ©ψ then ψ ∈ FL(ϕ);
– ϕ = σX.ψ then ψ[σX.ψ/X ] ∈ FL(ϕ).

Define |ϕ0| := |FL(ϕ0)|. Note that |FL(ϕ0)| is bounded by the syntactical length
of ϕ0.

A linear time structure over P is a function K : N → 2P or, equally, an ω-word
over the alphabet 2P . The semantics of a Llin

μ -formula ϕ, relative to K and an
environment ρ : V → 2N is a subset of N, inductively defined using the Knaster-
Tarski-Theorem.

[[q]]Kρ := {n ∈ N | q ∈ K(n)} [[X ]]Kρ := ρ(X)
[[¬q]]Kρ := {n ∈ N | q 
∈ K(n)} [[©ϕ]]Kρ := {n∈N | n+1 ∈ [[ϕ]]Kρ }
[[μX.ϕ]]Kρ :=

⋂
{T ⊆ N | [[ϕ]]Kρ[X �→T ] ⊆ T } [[ϕ ∨ ψ]]Kρ := [[ϕ]]Kρ ∪ [[ψ]]Kρ

[[νX.ϕ]]Kρ :=
⋃
{T ⊆ N | T ⊆ [[ϕ]]Kρ[X �→T ]} [[ϕ ∧ ψ]]Kρ := [[ϕ]]Kρ ∩ [[ψ]]Kρ

We write K, i |=ρ ϕ if i ∈ [[ϕ]]Kρ , and K |=ρ ϕ if 0 ∈ [[ϕ]]Kρ . If ϕ is closed we may
also drop ρ.
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By deMorgan’s laws and duality of μ and ν, negation ¬ – and then of course
→ and ↔ – can be defined in Llin

μ .
A formula ϕ is valid, written |= ϕ, if for all linear time structures K, and all

environments ρ: K |=ρ ϕ holds. Two formulas ϕ and ψ are equivalent, ϕ ≡ ψ, if
for all ρ, and all K we have K |=ρ ϕ iff K |=ρ ψ.

A formula is guarded if every occurrence of a variable X is in the scope of a
©-operator under its quantifier μ or ν. Every Llin

μ formula can be transformed
into guarded form.

Approximants of a fixpoint formula νX.ϕ are defined in the usual way:
ν0X.ϕ := tt, νk+1X.ϕ := ϕ[σkX.ϕ/X ], and νωX.ϕ :=

∧
k∈N νkX.ϕ. The next

result about approximants uses the fact that the semantics of a Llin
μ formula is

a monotone and continuous function (for infinite unions of directed sets) of type
2N → 2N in each variable, c.f. [3].

Lemma 1. For all linear time structures K, all i ∈ N, all environments ρ, and
all ϕ(X) we have: K, i 
|=ρ νX.ϕ iff there is a k ∈ N s.t. K, i 
|=ρ νkX.ϕ.

3 A Proof System for the Linear Time μ-Calculus

Let ϕ0 be fixed. A sequent is a subset Γ of FL(ϕ0). Semantically, a sequent
stands for the disjunction of its members; the empty sequent is always false. We
extend satisfaction by structures and validity to sequents accordingly.

A pre-proof for ϕ0 is a possibly infinite tree whose nodes are labeled with
sequents, whose root is labeled with & ϕ0 and which is built according to the
following proof rules, later referred to as (∨), (∧), (σ), and (©). We write ©Γ
to abbreviate ©γ1, . . . ,©γn if Γ = γ1, . . . , γn.

& ϕ,ψ,Γ
& ϕ ∨ ψ,Γ

& ϕ,Γ & ψ,Γ
& ϕ ∧ ψ,Γ

& ϕ[σX.ϕ/X ],Γ
& σX.ϕ,Γ

& Γ
& ©Γ,Δ

A principal formula in a rule application is a formula that gets transformed by
this rule, e.g. ϕ ∨ ψ in rule (∨). Note that rule (©) can have several principal
formulas.

For all sequents Γ,Δ and all rules r occurring in a pre-proof for ϕ0, s.t. Γ
is the conclusion of r and Δ is a premiss of r we define the connection relation
Conr(Γ,Δ) ⊆ FL(ϕ0)× FL(ϕ0) as follows.

(ϕ,ψ) ∈ Conr(Γ,Δ) iff either r does not transform ϕ and ϕ = ψ

or ψ results from ϕ in the application of r

We drop the index r if the actual rule is irrelevant. Let π = Γ0,Γ1, . . . be an
infinite branch in a pre-proof for ϕ0 resulting from the rule applications r0, r1, . . ..
A thread in π is a sequence of formulas ϕ0,ϕ1, . . . s.t. for all i ∈ N: (ϕi,ϕi+1) ∈
Conri(Γi,Γi+1) holds. Such a thread is called a ν-thread if there is a νX.ψ ∈
FL(ϕ0) s.t. ϕi = νX.ψ for infinitely many i ∈ N, and for all μY.ψ′ s.t. νX.ψ
∈ Sub(μY.ψ′): there are only finitely many i ∈ N s.t. ϕi = μY.ψ′. A μ-thread is
defined accordingly.

The following facts about threads are not hard to see.
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.

.

.

� νZ . . . , μX . . .

� ©Z , © X , q

.

.

.

� νZ . . . , μX . . . , νY . . .

� ©Z , © X , © Y

� ©Z , © X , (q ∧ ©Y )

�

.

.

.

μV . . . , μX . . . , νY . . .

� ¬q , © V , © X , © Y � ¬q , q , . . .

� ¬q , © V , © X , (q ∧ ©Y ) �

� ©Z ∧ (¬q ∨©V ) , © X , (q ∧©Y )

� (μV. © Z ∧ (¬q ∨ ©V )) , μX. © X ∨ (q ∧ ©Y )

� (νZ.μV. © Z ∧ (¬q ∨ ©V )) ∨ νY.μX. © X ∨ (q ∧ ©Y )

Fig. 1. Example of a proof

1. If a σX.ψ and a σ′X ′.ψ′ occur infinitely often in a thread then σX.ψ ∈
Sub(σ′X ′.ψ′) or vice-versa.

2. Every thread is either a ν-thread or a μ-thread.

A proof for ϕ0 is a pre-proof s.t. every finite branch ends in a sequent l, l,Γ , and
every infinite branch contains a ν-thread. We also write & ϕ0 to indicate that
there is a proof for ϕ0.

Example 1. Consider the quantifier swapping theorem

|=
(
μZ.νV.© Z ∨ (q ∧©V )

)
→
(
νY.μX.©X ∨ (q ∧©Y )

)
This can be shown to be valid using principles from fixpoint theory. It is also
intuitively valid: the premiss of the implication expresses “after some point, q
always holds” and the conclusion says “q holds infinitely often”.

In positive normal form this is written as ϕ = (νZ.μV.© Z ∧ (¬q ∨©V )) ∨
(νY.μX.©X ∨ (q ∧©Y )). A proof for ϕ is sketched in Fig. 1. In order to save
space, not all rule applications are listed explicitly and a variable is used to
denote its unique fixpoint formula. On each infinite branch of this proof, either
νZ. . . . or νX. . . . can be followed along a thread.

Theorem 1. For all closed and guarded ϕ ∈ Llin
μ : if |= ϕ then & ϕ.

Proof. Suppose |= ϕ. Let us replace (©) by the following restriction.

& Γ
& ©Γ, l1, . . . , lk

�i, j : li = lj

Now all rules preserve and reflect validity. Therefore, systematic backwards ap-
plication of the rules leads to a pre-proof P of ϕ comprising valid sequents only.
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We claim that P is a proof. Note that guardedness means that all fixpoints must
have been unfolded prior to an application of restricted (©) so no “round-robin”
policy or similar is needed in the construction of P .

Take any infinite branch π = Δ0,Δ1, . . . of P . We will now exhibit a ν-thread
in π. For every i ∈ N let f(i) be the number of applications of rule (©) in π
before Δi. We construct a linear time structure K as follows:

∀i ∈ N with f(i) 
= f(i+ 1) : K(f(i)) = {l̄1, . . . , l̄k} iff Δi = ©Γ, l1, . . . , lk

Consider for each Δi the formulas of Δi satisfied by K, f(i). Call them “true
formulas”. For each Δi there is at least one such true formula, because each Δi

is a valid disjunction.
Every true formula is linked by the connection relation to a true formula

in the preceding sequent; König’s lemma thus delivers a thread comprising true
formulas only. More formally, we obtain a sequence ϕi ∈ Δi such that ϕ0 = ϕ and
(ϕi,ϕi+1) ∈ Con (Δi,Δi+1) and K, f(i) |= ϕi. Assume that (ϕi)i is a μ-thread.
There is an i ∈ N and a μX.ψ ∈ Sub(ϕ) s.t. K, f(i) |= μX.ψ. Furthermore, no
greater νY.ψ′ occurs on this thread after position i. According to Lemma 1 there
is a k ∈ N s.t. K, f(i) |= μkX.ψ. Now note that the connection relation follows
the definition of the approximants. Hence, by preservation of satisfaction along
this thread, there must be a i′ > i, s.t. K, f(i′) |= μ0X.ψ which is impossible.
So, the thread (ϕi)i is a ν-thread as required. �

We remark without proof that the proof system is also complete for non-guarded
formulas.

Let ϕ0 ∈ Llin
μ and νX1.ψ1, . . . , νXn.ψn all ν-quantified formulas in FL(ϕ0),

ordered s.t. νXi.ψi ∈ Sub(ψj) implies i > j. A ν-signature is a tuple ζ =
(k1, . . . , kn) ∈ (N∪{ω})n. Note that the lexicographic ordering< on ν-signatures
is well-founded. We write ζ(i) for the i-th component of ζ, and K, i |=ζ ϕ if K, i
is a model of the formula that results from ϕ when every νXi.ψi is interpreted
by νζ(i)Xi.ψi.

Theorem 2. For all closed ϕ ∈ Llin
μ : if 
|= ϕ then 
& ϕ.

Proof. Suppose 
|= ϕ but P is a proof for ϕ. Then there is a K s.t. K, 0 
|= ϕ. This
can be used to construct a path π = Γ0,Γ1, . . . with inferences r0, r1, . . . in P ,
and a sequence t0 ≤ t1 ≤ . . . of positions in K, s.t. K, ti 
|= Γi (i), and whenever
(α, β) ∈ Conri(Γi,Γi+1) and K, ti 
|=ζ α then K, ti+1 
|=ζ β (ii).

Let Γ0 := ϕ and t0 := 0. If Γi and ti have been constructed we regard the
inference ri leading to Γi (note that Γi cannot be an axiom). If ri = (©) then
ti+1 := ti+1. We put ti+1 := ti in all other cases. If ri 
= (∧) then Γi has a unique
premiss Δ =: Γi+1. In the case of (∧) let ψ1 ∧ ψ2 ∈ Γi be the principal formula
of ri. Let ζ be the least ν-signature s.t. K, ti 
|=ζ ψ1 ∧ ψ2 (it exists by Lemma 1
and (i)). Let Γi+1 be the j-th premiss of ri where j ∈ {1, 2} s.t. K, ti 
|=ζ ψj .
Clearly, this construction guarantees condition (ii).

Since P is a proof, π must contain a ν-thread (ϕi)i. For each i ∈ N let ζi
be the minimal ν-signature s.t. K, ti 
|=ζi ϕi. Since (ϕi,ϕi+1) ∈ Conri(Γi,Γi+1)
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we have ζi+1 ≤ ζi. Since there is an outermost fixpoint formula νZ.ψ that gets
unfolded infinitely often in this thread, there are infinitely many i s.t. ζi > ζi+1

which is a contradiction to the wellfoundedness of <. �

4 Deciding Validity I: Automata-Theoretic Method

We regard rule applications in a pre-proof for a Llin
μ formula ϕ0 as symbols

of a finite alphabet. Formally, let Σϕ0 := { L(ϕ ∧ ψ), R(ϕ ∧ ψ) | ϕ ∧ ψ ∈
FL(ϕ0) } ∪ {N} ∪ { P(ϕ) | ϕ ∈ FL(ϕ0) is of the form ψ1 ∨ ψ2, σX.ψ, or ©ψ }.

An infinite branch π = Γ0,Γ1, . . . in a pre-proof for ϕ0 induces a word π′ =
r0, r1, . . . ∈ Σω

ϕ0
in a straight-forward way:

ri :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(ϕ ∧ ψ), if ϕ ∧ ψ is principal in Γi,Γi+1 is left premiss of Γi

R(ϕ ∧ ψ), if ϕ ∧ ψ is principal in Γi,Γi+1 is right premiss of Γi

P(ϕ), if ϕ is principal in Γi and not of the form © ϕ′

N, if (Γi,Γi+1) is an instance of (©)

We will not distinguish formally between a branch π and its induced ω-word π′

over Σϕ0 .
Next we define an NPA that accepts exactly those branches which contain a

ν-thread. Let ϕ0 ∈ Llin
μ , and define Aϕ0 := (Q,Σϕ0 , q0, δ, Ω) where Q := FL(ϕ0)

is the set of states with starting state q0 := ϕ0. The priority function Ω : Q→ N
is defined inductively as Ω(ψ1 ∨ ψ2) = Ω(ψ1 ∧ ψ2) := max{Ω(ψ1), Ω(ψ2)};
Ω(©ϕ) := Ω(ϕ); Ω(σX.ϕ) := Ω(ϕ) if Ω(ϕ) is odd and σ = μ, or Ω(ϕ) is even
and σ = ν, and Ω(σX.ϕ) := Ω(ϕ) + 1 otherwise; and Ω(ψ) := 0 in all other
cases. Here we assume that an NPA accepts a word if it has an accepting run in
which the greatest priority occurring infinitely often is even.

Intuitively, Aϕ0 traces a thread. The priority function ensures that the under-
lying word is accepted only if the guessed thread is a ν-thread. The transition
relation therefore simply resembles the connection relation:

δ(ψ, r) := {ψ} if r 
∈ {P(ψ), L(ψ), R(ψ)}
δ(ψ1 ∨ ψ2, P(ψ1 ∨ ψ2)) := {ψ1,ψ2} δ(©ψ, N) := {ψ}
δ(ψ1 ∧ ψ2, L(ψ1 ∧ ψ2)) := {ψ1} δ(©ψ, r) := {©ψ} if r 
= N
δ(ψ1 ∧ ψ2, R(ψ1 ∧ ψ2)) := {ψ2} δ(σX.ϕ, P(σX.ϕ)) := {ϕ[σX.ϕ/X ]}
Clearly, |Aϕ0 |, the number of states of Aϕ0 is |ϕ0|.

Lemma 2. For all closed ϕ0 ∈ Llin
μ and all infinite branches π of a pre-proof

for ϕ0: π ∈ L(Aϕ0) iff π contains a ν-thread.

Proof. Let π = Γ0,Γ1, . . . be an infinite branch in a pre-proof for ϕ0.
(⇐) Suppose ϕ0,ϕ1, . . . is a ν-thread in π. Since δ is defined in accordance

to the connection relation, this thread is also a run of Aϕ0 . By assumption, the
outermost subformula of the form σX.ψ that occurs infinitely often in this thread
is of type ν. Now note that the priority of an automaton state σX.ψ is even iff
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σ = ν, and outer formulas have greater priorities than inner ones. Hence, the
greatest priority occurring infinitely often in this run is even, i.e. π ∈ L(Aϕ0).

(⇒) This is proved in the same way as the other direction. �

Furthermore, we define a (deterministic) Büchi automaton Bϕ that accepts all
the words which form a branch in a pre-proof for ϕ. In order to avoid notational
clutter we simply assume that every branch in a pre-proof is infinite. Note that
finite branches can be modeled by introducing a new final state in the automaton
with a self-loop under any alphabet symbol.

Let Bϕ := (2FL(ϕ), Σϕ, {ϕ}, δ, F ) with F := 2FL(ϕ), and Δ ∈ δ(Γ, r) iff Δ is a
premiss of Γ in an application of rule r. The following is a direct consequence
of the definition of a proof and Lemma 2.

Proposition 1. For all ϕ ∈ Llin
μ : & ϕ iff L(Bϕ) ⊆ L(Aϕ).

This shows that validity in Llin
μ can be decided using this proof system in an

optimal way matching the known PSPACE lower bound [11].

Theorem 3. Deciding whether or not & ϕ holds for a given ϕ ∈ Llin
μ is in

PSPACE.

Proof. According to Proposition 1 it suffices to check the language L(Bϕ)∩L(Aϕ)
for non-emptiness. Let n := |ϕ|. Note that |Bϕ| ≤ 2n and |Aϕ| ≤ n. Using well-
known automata-theoretic constructions and Savitch’s Theorem this boils down
to the emptiness test of an automaton B×A which can be done in PSPACE. �

Proposition 1 yields a generic automata-theoretic method for deciding valid-
ity. We will compare various complementation and non-emptiness procedures
for NBAs w.r.t. the incurring complexities. Note that every state of Bϕ is fi-
nal. Hence, the automaton Bϕ × Aϕ can always be built in a simple product
construction and is of the same type as Aϕ.

construction type of Aϕ |Bϕ ×Aϕ| emptiness test

Safra [10] det. Streett 2O(n2 log n) 2O(n2 log n)

Sistla/Vardi/Wolper [12] nondet. Büchi 2O(n4) 2O(n4)

Klarlund [5] nondet. Büchi 2O(n2 log n) 2O(n2 log n)

Kupferman/Vardi [7] weak alt. Büchi O(n4) 2O(n4)

Kupferman/Vardi [6] weak alt. Büchi O(nn) 2O(nn)

Piterman [9] det. parity 2O(n2 log n) 2O(n2 log n)

The index of the Streett or parity automaton is O(n2) in both cases. Note that
the table lists the running times of a deterministic algorithm not using gen-
eral theorems from complexity theory. We remark that using either of Safra’s,
Klarlund’s or Piterman’s construction improves asymptotically over Vardi’s de-
cision procedure for Llin

μ . It also improves over the other 2O(n2 log n) procedures
mentioned in the introduction by being a priori deterministic. Furthermore, the
procedures using Kupferman and Vardi’s complementation can be implemented
symbolically.
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5 Deciding Validity II: Category-Theoretic Method

Let P be the (finite) set of priorities assigned to subformulas of ϕ0 by the function
Ω in Section 4. Let Γ and Δ be sequents. A morphism f from Γ to Δ written
f : Γ → Δ is a subset of Γ ×Δ×P . In this case, Γ is the domain of f and Δ is
the codomain of f . If f : Γ → Δ and Δ→ Θ then the composition f ; g : Γ → Θ
is the morphism defined by

f ; g = {(γ, θ, p) | ∃δ p1 p2.(γ, δ, p1) ∈ f ∧ (δ, θ, p2) ∈ g ∧ p = max(p1, p2)}

The identity morphism idΓ : Γ → Γ is given by idΓ = {(γ, γ, 0) | γ ∈ Γ}.
It is clear that composition is associative with identities as neutral elements

and that therefore the sequents with morphisms form a category. If M is a set
of morphisms we denote by C(M) the set of morphisms obtained by closing
M under composition and adding identities, i.e., the category generated by M .
Notice that if M is a finite set so is C(M) because there is only a finite number
of sequents and morphisms.

A morphism f : Γ → Δ is idempotent if Γ = Δ and f ; f = f . An idempotent
morphism f is bad if it does not contain a link of the form (ϕ,ϕ, p) with p even.
A morphism should be viewed as a connection relation whose links are labeled
with priorities.

Suppose that r is an instance of a rule occurring in a pre-proof of ϕ0 with
conclusion Γ and Δ one of its premisses. We define the morphism f(Γ,r,Δ) : Γ →
Δ by

fΓ,r,Δ = {(γ, δ,Ω(γ)) | (γ, δ) ∈ Conr(Γ,Δ)}
If π is a finite branch occurring in a pre-proof then we obtain a morphism fπ by
composing the morphisms f ,r, that are associated with the sequents and rules
occurring along π. If π begins at sequent Γ and ends at Δ then (γ, δ, p) ∈ fπ iff
there is a run of Aϕ0 on π beginning in state γ, ending in state δ and exhibiting
p as the highest priority along this run.

Now let P be the generic pre-proof obtained as in the proof of Theorem 3.
Note that in this pre-proof any sequent uniquely determines the proof rule which
is (backwards-)applied to it.

Theorem 4. Let M be the set of morphisms of the form fΓ,r,Δ where r is a rule
instance contained in the generic pre-proof P of ϕ0. The following are equivalent.
(a) ϕ0 is valid.
(b) P is a proof.
(c) The closure C(M) of M by composition contains no bad idempotent.

Proof. The equivalence between (a) and (b) is a direct consequence of Lemma 2
and Theorem 1. The interesting part is the equivalence between (b) and (c)
and it is here that we draw inspiration from the graph-theoretic algorithm for
size-change termination in [8] and in particular closely follow their proof idea.

(b)⇒(c) by contraposition: suppose that C(M) contains a bad idempotent
f : Δ → Δ. Let π be the finite path in the generic proof P that led to f ’s
being in C(M). We use here the fact that every sequent uniquely determines its
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proof rule. Let ρ be a finite path in P leading from {ϕ0} to Δ and consider the
infinite path ρ;π;π;π; . . . which is contained in P . We claim that this path is
not accepted by Aϕ0 . Assume for a contradiction that there is an accepting run
with n the highest (even) priority. Since Δ is finite there must exist δ ∈ Δ such
that the accepting run goes through δ and after consuming πi := π;π; . . . ;π (i
times) for some i > 0 goes through δ again and moreover, the highest priority
encountered along πi is n. But this means that (δ, δ, n) ∈ f contradicting the
assumption that f was bad.

(c)⇒(b) Assume that C(M) does not contain a bad idempotent. Let π be an
infinite path in P . For i < j let πi,j be the finite portion of π from i to j. By
Ramsey’s theorem there exists an infinite subset U ⊆ N and a morphism f such
that fπi,j = f whenever i, j ∈ U . It follows that f is idempotent. If f contains a
link (δ, δ, n) with n even then we get a successful run on π with highest priority
n simply by going through δ at each position in U and following the construction
of fπi,j in between. �

Theorem 4 directly leads to an algorithm for deciding validity of formulas: sim-
ply compute the set of morphisms M occurring in the generic pre-proof of ϕ0,
then iteratively calculate C(M) and then look for a bad idempotent in C(M). Of
course, in practice one checks for bad idempotents already during the construc-
tion of M and C(M) terminating the process immediately upon encountering
one. The resulting algorithm is not in PSPACE since the size of C(M) is ex-
ponential: |C(M)| ≤ 2n2·p+2n where n is the size of the input formula and p
is the highest priority of any subformula. Since p ≤ n, and the runtime of our
algorithm is quadratic in |C(M)|, it is also bounded by 2O(n3). We note that
this also improves asymptotically on the runtime of Vardi’s decision procedure
for Llin

μ [14].

6 Experimental Results

We have implemented two exponential time algorithms – the one based on an
explicit computation of C(M) and the one testing emptiness of a deterministic
parity automaton using Piterman’s determinisation procedure – in OCAML. In
the following we present some experimental results obtained on three families of
formulas.

Includen := νX.
(
q ∧©(q ∧©(. . .© (q︸ ︷︷ ︸

2n times

∧© (¬q ∧©X)) . . .)))

→ νZ.μY.(¬q ∧©Z) ∨ (q ∧©(q ∧©Y ))

describes the valid statement ((aa)nb)ω ⊆ ((aa)∗b)ω, where the alphabet symbol
a is the label {q} and b is ∅. Includen is not LTL-definable for any n ∈ N.

The next family is Nestern := ψ ∨ ¬ψ where

ψ := μX1.νX2.μX3. . . . σXn.q1 ∨©
(
X1 ∧

(
q2 ∨©(X2 ∧ . . . (qn ∨©Xn) . . .)

))
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Includen Nestern Countern

n |C(M)| search |C(M)| search |C(M)| search

0 2,545 1,285 — — 5 638
1 11,965 17,203 9 79 299 18,564
2 28,866 44,903 2,154 23,589 1,333 195,989
3 50,057 83,864 2,030,259 † 34,401 1,666,281
4 77,189 135,220 † 379,356 12,576,760
5 110,242 198,971 † †

Fig. 2. Complexity measures for some example formulas

It is clearly valid and is chosen as an example with several alternating fixpoint
constructs.

Countern := (
n∨

i=0

¬ci) ∨
(
μX.©X ∨ (c0 � ©¬c0) ∨

n∨
i=1

©ci � (ci ∧ ¬ci−1) ∨ (ci−1 ∧ (©ci−1 ↔ ci))
)

is not valid and is chosen because its smallest countermodel has size 2n+1. Note
that ¬Countern formalises an (n+ 1)-bit counter.

Figure 2 presents empirical measures for the complexity of both procedures on
the example formulas above. The columns labeled |C(M)| contain the number
of examined morphisms. Note that this is the number of all possible morphisms
unless the input formula is not valid. The columns labeled “search” contain the
number of search steps done in the emptiness test on the DPA B×Aϕ. This is in
general quadratic in the size of the automaton. The runtime was always around
a few minutes but of course space is the limiting resource here. A dagger marks
the tasks where our 1GB PCs ran out of memory.

7 Further Work

We would like to carry out a more systematic study of the practical usefulness
of either algorithm. The examples from Section 6 were deliberately chosen to
stress-test our approach. It may well be that formulas of the form ϕ⇒ ψ where
ϕ describes an implementation of a system, e.g., a Mutex algorithm and where
ψ is a specification of low quantifier nesting depth are feasible up to a much
larger size. Should such experiments turn out promising one could then consider
improving the treatment of the propositional part using BDDs or SAT-solvers,
as well as using a symbolic implementation of the automata-theoretic algorithm.
Notice namely that our decision procedures deal with propositional tautologies
or consequences rather inefficiently basically by proof search in sequent calculus.

Also of interest could be optimisations using heuristics to guide the search for
a countermodel as well as improvements on the theoretical side that reduce the
size of the entire search space.

Furthermore, the proof system of Section 3 can be quite straightforwardly ex-
tended to capture validity of the modal μ-calculus: simply replace rule (©) with
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ϕ,Γ
[a]ϕ, 〈a〉Γ,Δ

This, however, introduces non-determinism (if a sequent contains several [a]-
formulas), and countermodels become genuine trees. The automata-theoretic
decision procedure of Section 4 can, in theory, easily be extended. Using Piter-
man’s construction to determinise the automaton that recognises ν-threads, the
product of this and the proof system becomes a parity game. Hence, validity in
the modal μ-calculus can be solved using parity game solvers. On the other hand,
whether or not the category-theoretical method of Section 5 can be extended to
this framework is a nontrivial question.
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9. N.Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. In Proc. 21st Ann. IEEE Symp. on Logic in Computer Science,
LICS’06. IEEE Computer Society Press, 2006. To appear.

10. S. Safra. On the complexity of ω-automata. In Proc. 29th Symp. on Foundations
of Computer Science, FOCS’88, pages 319–327. IEEE, 1988.

11. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733–749, 1985.

12. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi
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Abstract. We give a new simple proof of the decidability of the First

Order Theory of (ωωi

, +) and the Monadic Second Order Theory of
(ωi, <), improving the complexity in both cases. Our algorithm is based
on tree automata and a new representation of (sets of) ordinals by
(infinite) trees.

1 Introduction

The connections between automata and logic have been fruitful for many years,
see [13] for an introduction. In 1960 Büchi [4] showed that sets of finite words
can be equivalently defined by Monadic Second Order (MSO) formulas and by
finite automata. This gives in particular a decision procedure for this logic. This
result has been extended later to other classes of structures and automata: MSO
over infinite words and Büchi automata in [5], MSO over transfinite ordinals and
transfinite automata [6], MSO over the full binary tree and Rabin automata in
[18], MSO over graphs of the Caucal hierarchy and graph automata [7,15].

The decidability of the first order logic over the integers with addition, also
known as Presburger arithmetic, can be easily obtained by using finite automata
reading binary representation of numbers. A central idea in all these results is
that formulas can be represented by automata: by induction on the formula one
can build an automaton accepting exactly the models of the formula. See [22]
for a clear exposition of many of the previous results.

More recently many authors have used automata to improve the complexity
of certain decisions procedures. In particular in [14] the Presburger arithmetic
is considered and in [16] the first order theory of the ordinals with addition.

We address in this article the decision algorithms for the First Order theory
(FO) of (ωωi

,+) and the Monadic Second Order theory (MSO) of (ωi, <) for
any integer i. Our proposal is to use finite labeled trees to represent ordinals
and infinite trees to represent sets of ordinals. Then one can use tree automata
to represent formulas (namely, all their models). In this way we improve the
best known complexity, and we hope that our constructions are easier to under-
stand than previous ones. Note that already MSO(ω,+) is undecidable, and the
decision procedure for MSO(ω,<) has a non elementary lower bound. In [12]
trees are already used to represent ordinals, but only termination of preocesses
is considered. Our infinite trees in Section 3 are close to those in [3], where only
inclusion of languages is considered.

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 285–296, 2006.
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The paper is organized as follows. The next section is concerned with the first
order theory. After recalling definitions we present our tree encoding and our
decidability proof. In Section 3 the encoding is adapted to the Monadic Second
Order theory, before comparisons to other results and techniques are given.

2 Decidability of the First Order Theory of (ωω, +)

2.1 Definitions: Ordinal Addition, First Order Logic, Tree
Automata

We assume basic knowledge about ordinals, see e.g. [20,21]. An ordinal is a
well and totally ordered set. It is either 0 or a successor ordinal of the form
β + 1 or a limit ordinal. The first limit ordinal is denoted ω. For all ordinal α:
β < α ⇔ β ∈ α and α = {β : β < a}. The set of natural numbers is identified
with ω. Recall e.g. that 1 + ω = ω = 2ω and ω + ω2 = ω2 but ω + 1 
= ω 
= ω2.
By the Cantor Normal Form theorem, for all 0 < α < ωω there exist unique
integers p, n0, n1, . . . , np such that np > 0 and

α = ωpnp + ωp−1np−1 + · · ·+ ω1n1 + n0 .

Ordinal addition has an absorption property: for any p < p′, ωp + ωp′
= ωp′

.
Given two ordinals α = ωpnp + · · ·+ω1n1 +n0 and α′ = ωp′

n′
p′ + · · ·+ω1n′

1 +n′
0

both written in Cantor Normal Form, the ordinal α+ α′ is

ωpnp + · · ·+ ωp′
(np′ + n′

p′) + · · ·+ ω1n′
1 + n′

0 .

Formulas of the First Order Logic (FO) over (ωω,+) are built from

– a countable set of individual variables x, y, z, . . .
– the addition +, seen as a ternary relation,
– the Boolean connectives ¬, ∧, ∨, → and ↔,
– first order quantification ∃ over individual variables (∀ is seen as an abbre-

viation of ¬∃¬).

Example 1. The order relation x ≤ y can be easily defined as ∃z : x+ z = y.
The relation x < y is defined by ¬(y ≤ x).
The ordinal 0 is the only ordinal x such that ¬∃y : y < x or equivalently such
that x+ x = x.
The equality between x and y can be defined e.g. by x ≤ y ∧ y ≤ x.
The ordinal 1 is definable by φ(x) = (x > 0) ∧ ¬∃y(0 < y ∧ y < x).

Example 2. The first limit ordinal, ω, is the only ordinal satisfying the formula

ϕ1(x) = (x > 0) ∧ ∀y(y < x→ y + 1 < x) ∧
∀x′[(x′ > 0) ∧ ∀y(y < x′ → y + 1 < x′) → x ≤ x′] .

Similarly and by induction ωi+1 is defined by

ϕi+1(x) = (x > 0) ∧ ∀y(y < x→ y + ωi < x) ∧
∀x′[(x′ > 0) ∧ ∀y(y < x′ → y + ωi < x′) → x ≤ x′] .
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A finite binary tree T is a finite prefix closed subset of {a, b}∗. The root is the
empty word ε, and for all u ∈ {a, b}∗, ua is the left successor of u and ub the right
one. For simplicity we impose that each node has 0 or 2 successors: ∀u ∈ {a, b}∗,
ua ∈ T ⇔ ub ∈ T . A leaf has no successor. Given a finite alphabet Σ, a Σ-
labeled tree is a couple 〈T,λ〉 where T is a tree and λ is a function λ : T �→ Σ.
A tree automaton is a tuple (Q,Σ,Δ, I, F ) where Q is a finite set of states, Σ
is a finite alphabet, Δ ⊆ Q × Σ ×Q × Q is the transition relation, I ⊆ Q and
F ⊆ Q are the sets of initial and accepting states (“final states”). A Σ-labeled
tree is accepted by such a tree automaton iff there exists a run ρ : T �→ Q such
that

ρ(ε) ∈ F , and ∀u ∈ T : either (ρ(u),λ(u), ρ(ua), ρ(ub)) ∈ Δ

or u is a leaf (ua 
∈ T ) and ρ(u) ∈ I .

This presentation is unusual: the labels at the leafs are not important in our
constructions. These (bottom up) tree automata can be determinized by a usual
subset construction. By exchanging initial and final states they can be seen as
top down automata.

2.2 Binary Trees Representing Ordinals

Ordinals less than ωω can be easily represented by finite binary trees. The tree
representing α = ωpnp + · · ·+ω1n1 +n0 (where np > 0) has a leftmost branch of
length (at least) p. At depth i on this branch a right branch is attached, holding
the binary encoding of the number ni. For example the ordinal ω3.5 +ω.3 + 8 is
represented essentially as the following tree.

A

0

0

0

1

A

1

1

A

E

1

0

1

The letter E marks the last position where
there is a non zero right branch. We allow
all possible ways to add dummy symbols
# at the bottom of the tree. There are not
represented on the picture, but they are
needed for every node to have 0 or 2 suc-
cessors (not 1). To be more formal the set
of tree representations of a given ordinal
α = ωpnp + · · ·+ ω1n1 + n0 is exactly the
language accepted by the tree automaton
to be defined next. The initial state is q#,
the accepting state q0.

If σ0
i σ

1
i . . . σ

mi

i is the (little endian) binary encoding of ni: ni =
∑mi

j=0 2jσj
i , then

the transitions are:

(qi, A, qi+1, p
0
i ) if i < p and ni > 0 (pj

i , σ
j
i , q#, p

j+1
i ) if j < mi

(qi, A, qi+1, q#) if i < p and ni = 0 (pj
i , σ

j
i , q#, q#) if j = mi

(qi, E, q#, p
0
i ) if i = p (q#,#, q#, q#)

In the special case where α = 0 we have a transition (q0,#, q#, q#). We denote
Tα the tree coding an ordinal α.
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2.3 Decidability Using Tree-Automata

We adapt a well known method for proving decidability of logic theories. A
single tree over the alphabet {A,E,#, 0, 1}k represents the values of k variables
by superposing k corresponding trees (and adding dummy symbols #). For every
formula ψ ∈ FO(ωω,+) with free variables x1, . . . , xk we want to build a tree
automaton over the alphabet {A,E,#, 0, 1}k such that a tree is accepted by this
automaton iff the corresponding valuation of the variables satisfies ψ. This can
be done by induction on the formula. The case of Boolean connectives is easy
using standard automata techniques of product and complementation, see [10].
Existential quantification results in projecting out the corresponding variable.
The main point is to define an automaton recognizing the relation x + y = z,
and this is easy with our coding.

In the following transitions
#
1
0

represents a letter from {A,E,#, 0, 1}3 where

the first component is #, the second is 1 and the third is 0. These components
are letters from Tx, Ty and Tz respectively. The symbols σ, δ represent digits
from {0, 1} and ∗ represents any letter. The accepting state is r. Because of the
absorption property, above symbol E of Ty, trees Ty and Tz must coincide. State
qy checks that Ty and Tz coincide on the corresponding right branch. Similarly
qx checks that Tx and Tz coincide. State ry checks that Ty and Tz coincide on
the rest of the tree. Similarly rx checks that Tx and Tz coincide.

(r,
#
#
#
, q#, q#) (q#,

#
#
#
, q#, q#)

(r,
A
A
A
, r, qy) (qy,

∗
σ
σ
, q#, qy) (qy,

∗
#
#
, q#, qy) (qy,

#
#
#
, q#, q#)

(r,
E
A
A
, ry, qy) (ry ,

#
A
A
, ry, qy) (ry ,

#
E
E
, q#, qy)

(r,
A
E
A
, rx, q0) (rx,

A
#
A
, rx, qx) (rx,

E
#
E
, q#, qx)

(r,
E
E
E
, q#, q0) (qx,

σ
∗
σ
, q#, qx) (qx,

#
∗
#
, q#, qx) (qx,

#
#
#
, q#, q#)

The states q0 and q1 are in charge of the binary addition with carries.

(q0,
σ
δ

σ XOR δ
, q#, qσAND δ) (q0,

σ
#
σ
, q#, qx) (q0,

#
σ
σ
, q#, qy)

(q1,
σ
δ

¬(σ XOR δ)
, q#, qσOR δ) (q1,

σ
#
¬σ

, q#, qσ) (q1,
#
σ
¬σ

, q#, qσ)

(q0,
#
#
#
, q#, q#) (q1,

#
#
1
, q#, q#)

Some details are omitted here for the sake of simplicity. In state qy, after reading
# on the first component, one should check that only # appears. And the most
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significant bit of each number should be 1 to have a standard representation. It is
left to the reader to add intermediate states to check that the trees Tx, Ty and Tz

are well formed. That is needed when the automata defining Tx, Ty or Tz were
obtained by complementation (see below). Let Tower stand for the “tower of
exponentials” function, i.e., Tower(0, n) = n and Tower(k+1, n) = 2Tower(k,n).

Theorem 1. The First Order Theory of (ωω,+) is decidable in time
O(Tower(n, c)), for some constant c, where n is the length of the formula.

To our knowledge the best known algorithm for deciding FO(ωω,+) goes via a
(linear) reduction to the Weak Monadic Second Order logic of (ωω, <), which in
turn is decidable in time O(Tower(6n, c′)) [16]. See Section 3 for the definition
of this logic.

Proof. By induction on the formula ψ ∈ FO(ωω,+) one can construct a tree
automaton Aψ accepting exactly all valuations satisfying ψ. A valuation is here
a tree labeled over {A,E,#, 0, 1}k, where k is the number of free variables in ψ.

– If ψ is an atomic proposition, it is of the form x + y = z and we have seen
how to construct Aψ.

– If ψ is of the form ¬ψ′, by induction Aψ′ is constructed. We can determinize
and complement it [10], and intersect with the automaton describing the
allowed representation of ordinals, to obtain Aψ.

– If ψ is of the form ψ1 ∧ ψ2, by induction Aψ1 and Aψ2 are constructed.
Rearrange the order of the variables, build the product of Aψ1 and Aψ2 .
Declare a state 〈q1, q2〉 final iff both q1 and q2 are final. [10]

– Similarly if ψ is of the form ψ1∨ψ2, rearrange the variables, build the product
and declare a state 〈q1, q2〉 final iff q1 or q2 is final.

– If ψ is of the form ψ1 → ψ2, first determinize Aψ1 and Aψ2 , then build the
product, and declare a state 〈q1, q2〉 final iff (q1 ∈ F1) ⇒ (q2 ∈ F2).

– Similarly if ψ is of the form ψ1 ↔ ψ2, determinize Aψ1 and Aψ2 , build the
product, and declare a state 〈q1, q2〉 final iff (q1 ∈ F1) ⇔ (q2 ∈ F2).

– If ψ is of the form ∃xψ′, then the input alphabet of the automaton A′
ψ is

{A,E,#, 0, 1}k, where k is the number of free variables in ψ′. Project out
the component corresponding to the variable x to get the automaton Aψ

that non-deterministically guesses the value of x.

At the end of the procedure it remains to determine whether Aψ accepts a
tree (labeled over an empty alphabet). This can be done in polynomial time
by marking the states reachable from the initial states. Note that the cases
of conjunction and disjunction does not need determinization. This is possible
with a bottom up tree automaton, where the acceptance condition is checked
only once, at the root.

Like for many automata based decision procedures, the most expensive step
is the determinization of automata. It costs exponential time and the result is
an automaton of exponential space. The number of steps of the construction is
the number of Boolean connectives and quantifiers of the formula, whereas the
constant c is essentially the number of states of the automaton for x+ y = z.
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To slightly improve the complexity one can easily construct directly automata
recognizing the relations x = y, x < y, x ≤ y of Example 1. Of course every
ordinal ωi can also be easily defined directly, without using the formulas of
Example 2.

It is also possible to replace → and ↔ by equivalent formulas using only ¬,∧
and ∨ and to push negations symbols inwards (using De Morgan’s laws, etc).
See [14] for a careful discussion about the cost of these transformations: they
can increase the length of the formula and add new quantifiers. Here we do not
assume that the formula is in prenex normal form.

2.4 Beyond ωω

By using a new letter (B) in the alphabet, it is possible to encode ordinals greater
than ωω. Any ordinal β < ωω2

can be uniquely written in the form

ωω.pαp + · · ·+ ωω.2α2 + ωωα1 + α0 , where p < ω, αi < ωω, αp > 0 .

and we can encode it as a tree where each Tαi appears
as a subtree. Namely the leftmost branch will have
length p. At depth i on this branch the tree Tαi is
attached. The skeleton of the tree is depicted on the
right. It is easy to see that a tree automaton can
recognize the relation x+ y = z, and that the proof
of Theorem 1 carries over. Note that the letter B is
used here only for clarity, one could use A instead.

B

B

E

Tα0

Tα1

Tαp

This can be generalized by induction, and for all i < ω we can encode ordinals
less than ωωi

.

Theorem 2. For each i < ω there exists a constant ci such that the First Order
Theory of (ωωi

,+) is decidable in time O(Tower(n, ci)), where n is the length of
the formula.

Note that the height of the tower of exponentials do not depend on i, and
that ci is linear in i. When considering FO(ωωi

,+), even the ordinal 1 is coded
by a tree of depth at least i: we need each tree to have the same skeleton to
allow the automaton to proceed the addition locally. It was already noticed
(without proof) in [11] that any ordinal α < ωωω

is tree-automatic, that is to say
that the structure (α,<) —without addition— is definable using tree-automata.
Moreover [11] proves that any tree-automatic ordinal is less than ωωω

.

3 Monadic Second Order Theory of (ωk, <)

In this section we use full infinite binary trees. They are given by a mapping
λ : {a, b}∗ �→ Σ for some finite alphabet Σ. Their domain is always {a, b}∗ so we
do not need to mention it. One can adapt the idea of Section 2 to represent sets of
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ordinals. Given a subset S ⊆ ω2 it is represented by the tree λ : {a, b}∗ �→ {0, 1}
such that

∀i, j ≥ 0 : λ(aibj) ∈ {0, 1} ∀u 
∈ a∗b∗ : λ(u) = #
∀i, j ≥ 0 : λ(aibj) = 1 ⇔ ω.i+ j ∈ S .

So positions are associated to ordinals according to the left tree of the next
picture. Accordingly the right tree represents the set {0, ω+1, ω+2, ω.2+2, ω.3}.
In this way one can represent any subset of ω2.

0

1

2
. . .

ω

ω + 1

ω + 2
. . .

ω.2

ω.2 + 1

ω.2 + 2
. . .

ω.3
. . .

...

1

0

0
. . .

0

1

1
. . .

0

0

1
. . .

1
. . .

...

Languages of infinite trees can be defined by top down Muller automata [17]. A
Muller automaton A is a tuple (Q,Σ,Δ, I,F) where Q,Σ,Δ are the same as
in Section 2, I ⊆ Q is the set of initial states and F ⊆ P(Q) is the acceptance
component (P(Q) is the powerset of Q). A run of A on a Σ-labeled tree λ is a
labeling ρ : {a, b}∗ �→ Q such that

ρ(ε) ∈ I and ∀u ∈ T : (ρ(u),λ(u), ρ(ua), ρ(ub)) ∈ Δ .

A run is accepting iff on each (infinite) branch of the run, the set of states
appearing infinitely often is equal to one of the F ∈ F . A tree is accepted
iff there exists an accepting run. Muller automata cannot be determinized in
general, but the class of languages accepted by Muller automata is closed under
union, intersection, projection and complementation. In particular an automaton
accepting all trees where only one node is labeled by 1 cannot be deterministic:
it has to guess where is the 1.

Formulas of the (full) Monadic Second Order Logic (MSO) over (ωω, <) are
built from

– a countable set of first order variables x, y, z, . . .
– a countable set of second order variables (in capitals) X,Y, Z, . . .
– the order relation (x < y) over first order variables,
– the membership relation (x ∈ X), also written X(x),
– the Boolean connectives ¬, ∧ and ∨ (→ and ↔ are seen here as abbrevia-

tions),
– existential quantification (∃) over first order and second order variables (∀

is seen as an abbreviation of ¬∃¬).

The syntax of the Weak Monadic Second Order Logic (WMSO) is exactly the
same, the difference is that second order variables are interpreted by finite subsets
of the structure.
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Example 3. The formulas of Example 1 above are also expressible in MSO(ωω, <)
because they do not need the addition. One can also define a relation x = y+1.
The next formula shows that the set of even ordinals (less than ωω) can be
defined in MSO:

∃X : ∀x (x ∈ X ↔ ¬(x+ 1 ∈ X)) ∧ (¬∃y(x = y + 1)→ x ∈ X) .

We consider trees labeled over {0, 1}k where k is the number of first-order and
second-order free variables. It should be clear that one can construct Muller
automata recognizing the relations x ∈ X and x < y. Note that for each first-
order variable the automaton has to check that only one node in the tree is
labeled by 1, i.e., x is treated as a second-order variable X = {x}. See [2] for a
clear exposition of a similar construction in the framework of ordinal automata.

Theorem 3. The Monadic Second Order Theory of (ω2, <) is decidable in time
O(Tower(n, c)), for some constant c, where n is the length of the formula.

Recall that the upper bound of [16] is in O(Tower(6n, 1)) for the weak variant
WMSO(ωω, <). Already MSO(ω,<) has a lower bound in Ω(Tower(n, d)) for
some constant d > 0 [19], so our bound is really tight.

Proof (sketch). We use again the well known method by induction on the struc-
ture of the formula ψ ∈MSO(ω2,+).

– If ψ is an atomic proposition, it is clear how to construct Aψ.
– If ψ is of the form ¬ψ′, ψ1 ∨ ψ2 or ψ1 ∧ ψ2, we use the fact that languages

of Muller tree automata are closed under complementation, union and inter-
section.

– If ψ is of the form ∃xψ′ or ∃Xψ′, we use the fact that languages of Muller
tree automata are closed under projection.

The most expensive step is the complementation, it can be done in exponential
time, and the result has also exponential size, see [17,22]. At the end the test of
emptiness is also exponential.

Note that for the case of disjunction the automaton has to guess at the root
which subformula can be true. For a formula ψ = ψ1 → ψ2 we cannot do better
than transform it into ¬ψ1 ∨ ψ2. It is not correct to simply build the product
of Aψ1 and Aψ2 and adapt the acceptance component, because the acceptance
condition is checked independently on each branch.

Using an idea similar to that of Section 2.4, one can attach ω trees of the
form presented above to a left-most branch to encode subsets of ω3. This can be
extended by induction to ωi for all i < ω.

Theorem 4. For each i < ω there exists a constant ci such that the Monadic
Second Order Theory of (ωi, <) is decidable in time O(Tower(n, ci)), where n is
the length of the formula.

In other works such as [8,1] the emphasis is not placed on the complexity, but it
seems that the complementation of ordinal automata is double exponential. It
is open how to extend the tree encoding to subsets of ωω.



Tree Automata Make Ordinal Theory Easy 293

3.1 MSO-Interpretation. Comparison with Ordinal Automata

It is possible to put a different light on the previous constructions. The MSO the-
ory of the full binary tree [22], called S2S, is build from the atomic propositions
Sa(x, y), Sb(x, y) and P (x), where Sa is the relation “left successor”, Sb is “right
successor” and P is a predicate that indicates that the label of a node is 1. In
other words, given a labeled infinite tree λ : {a, b}∗ �→ {0, 1} and x, y ∈ {a, b}∗:

Sa(x, y) ⇔ y = x.a , Sb(x, y) ⇔ y = x.b , P (x) ⇔ λ(x) = 1 .

Recalling the left figure in page 291, the order among the ordinals/positions
in the tree can be interpreted in S2S. That is, one can write a formula φ(x, y)
such that φ(x, y) is true iff the ordinal of position x is less than that of y. It is
easy if one first write formulas φa(x, y) and φb(x, y) that checks that y is a left
descendant of x (resp. right descendant).
Alternatively one can see the ordering ω2

as the transitive closure of the graph pic-
tured on the right. Nevertheless concern-
ing complexity it is better to construct
dedicated automata as in the proof of
Theorem 3. In other words the graphs
of the orderings ωi, i < ω, are prefix-
recognizable graphs [9]. It is open whether
graphs of greater ordinals are in the Caucal
hierarchy.

. . .

. . .

. . .

. . .
...

The usual proof that MSO(ωω, <) is decidable uses ordinal automata reading
ordinal words. An ordinal word of length α is a mapping α �→ Σ, where Σ is
a finite alphabet. An ordinal automaton has a state space Q, usual one-step
transitions of the form (q, σ, q′) ∈ Q ×Σ × Q and limit transitions of the form
(P, q′) ∈ P(Q) × Q, see e.g. [2]. They are a generalization of Muller (word)
automata. A run is a mapping ρ : α + 1 �→ Q. For a successor ordinal β + 1,
ρ(β + 1) is defined in the usual way. For a limit ordinal β, the state ρ(β) is
obtained by a limit transition according to the states appearing infinitely often
“before” β.

We want to point out that a run of a Muller automaton on a tree representing
S ⊆ ω2 is very similar to a run of length ω2 of an ordinal automaton. Consider
a node v at depth i on the left most branch. It corresponds to an ordinal ω.i.
The right-most branch from v must satisfy the Muller condition, and the state
reached at the left successor of v is like the state reached at the limit transition
at ω.(i+ 1). In this way we get a new proof that languages accepted by ordinal
automata are closed under complementation, restricted to the case of words of
length ωj, for all j < ω.

Comparing both approaches, we see that tree automata can not be deter-
minized in general, they can be complemented, however, using an exponential
construction. On the other side ordinal automata can be determinized (and com-
plemented) using a doubly exponential construction, due to the nesting of Muller
conditions. We are not aware of a better complementation algorithm for ordinal
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automata, see e.g. [8] for a more general result. The transformation from a tree
automaton to an equivalent ordinal automaton according to our coding is very
simple. The state space remains the same except for one extra final state for the
last limit transition. If (q,λ, qa, qb) ∈ Δ in the tree automaton, add transitions
(q,λ, qb), and (P, qa) for all P ∈ F , where F is the Muller acceptance condition.
The other way around is more complicated because the tree automaton has to
guess what states are going to be visited infinitely often on the right branch,
and then allow only these states to be visited infinitely often.

3.2 Weak MSO and FO

We introduce here new material to compare MSO and FO. Any ordinal β can
be written in a unique way in the form

2γn−1 + · · ·+ 2γ0 , where (γn−1, . . . , γ0)

is a strictly decreasing sequence of ordinals. The set {γn−1, . . . , γ0} is called
the 2-development of β. For example 2ω = ω, 2ω.i+j = 2ω.i.2j = ωi.2j , 2ω2

=
(2ω)ω = ωω. Let E be the binary relation on ordinals such that (x, y) ∈ E iff
x = 2γ for some γ that belongs to the 2-development of y. It is known [6] that the
theories WMSO(α,<) and FO(2α,+, E) are equireducible in linear time. Recall
that the (weak) theory WMSO is the monadic theory where only finite sets are
considered. This mean that any formula of one of the logics can be translated
into an equivalent formula of the other logic in linear time.

To extend Theorem 2 to the decidability of FO(2α,+, E) for α = ωi, we
only need a tree automaton recognizing the relation E. The fact that x = 2γ is
equivalent in our coding to the fact that exactly one label is 1 in the tree Tx,
and (x, y) ∈ E if moreover the same node is labeled by 1 in the tree Ty. The
automaton recognizing E needs only three states, so the complexity bounds of
Theorem 2 are not changed.

On the other side we have proved decidability of the full MSO theory of
(ωi, <) in Theorem 4. It remains to interpret WMSO in MSO. It is known in
general how to construct a Muller tree automaton that checks that only finitely
many nodes of a tree are labeled by 1. It is possible with only 2 states and can
be used to adapt the proof of Theorem 3 to WMSO. Using this reduction, the
complexity of the decision procedure of WMSO(ωi, <) is in O(Tower(n+ 1, c′i))
for some (new) constant c′i. Alternatively, using the property that every subset
of an ordinal is also well ordered, it is possible to write an MSO formula that
checks that a set of ordinals is finite. This formula should be used together with
each second order quantification.

An extension of the previous tree-automata techniques to higher ordinals such
as MSO(ωω, <) would gives also tree-automata techniques for WMSO(ωω, <)
and then FO(ωωω

,+, E), which is impossible [11] (see end of Section 2).
Related to the Cantor Normal Form (see Section 2), any ordinal β can yet be

written in a unique way in the form

α = γ.ωω + ωpnp + ωp−1np−1 + · · ·+ ω1n1 + n0 .
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where np > 0. The ω-character of α is the sequence (σ, np, . . . , n0) where σ = 0
if γ = 0, and σ = 1 if γ > 0. The theories WMSO(α,<) and WMSO(β,<) are
equal iff α and β have the same ω-character [6]. It follows that FO(2α,+, E) and
FO(2β ,+, E) are equal iff α and β have the same ω-character.

4 Perspectives

We gave a new decision procedure for FO(ωωi

,+) and MSO(ωi, <) achieving
better complexity bounds. We hope our constructions are easy to understand.
As a byproduct we have a new proof of the complementation of ordinal automata
restricted to words of length ωi.

According to [11] (see end of Section 2) and Section 3.2 it is not possible to
extend the tree-automata techniques to higher ordinals. But we would like to
extend it to other linear orderings. A bi-infinite word is a mapping from the
relative integers to a finite alphabet. It is easy to represent it as an infinite tree
where only the right most and the left most branches are relevant. It seems easy
to represent also orderings like −ω or ω× (−ω). Using a special letter, one could
mark branches where the “reverse” ordering −w is used. We conjecture that one
can extend the results of Section 3 to more general linear orderings than just
ordinals, and give a new proof of the results of [8].
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Context-Sensitive Dependency Pairs�
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Abstract. Termination is one of the most interesting problems when
dealing with context-sensitive rewrite systems. Although there is a good
number of techniques for proving termination of context-sensitive rewrit-
ing (CSR), the dependency pair approach, one of the most powerful tech-
niques for proving termination of rewriting, has not been investigated in
connection with proofs of termination of CSR. In this paper, we show
how to use dependency pairs in proofs of termination of CSR. The im-
plementation and practical use of the developed techniques yield a novel
and powerful framework which improves the current state-of-the-art of
methods for proving termination of CSR.

Keywords: Dependency pairs, term rewriting, program analysis,
termination.

1 Introduction

A replacement map is a mapping μ : F → P(N) satisfying μ(f) ⊆ {1, . . . , k}, for
each k-ary symbol f of a signature F [Luc98]. We use them to discriminate the
argument positions on which the rewriting steps are allowed. In this way, for a
given Term Rewriting System (TRS [Ohl02, Ter03]), we obtain a restriction of
rewriting which we call context-sensitive rewriting (CSR [Luc98, Luc02]). In CSR
we only rewrite μ-replacing subterms: ti is a μ-replacing subterm of f(t1, . . . , tk)
if i ∈ μ(f); every term t (as a whole) is μ-replacing by definition. With CSR
we can achieve a terminating behavior with non-terminating TRSs, by pruning
(all) infinite rewrite sequences. Proving termination of CSR has been recently
recognized as an interesting problem with several applications in the fields of
term rewriting and programming languages (see [DLMMU06, GM04, Luc02,
Luc06]).

Several methods have been developed for proving termination of CSR under
a replacement map μ for a given TRS R (i.e., for proving the μ-termination
of R). In particular, a number of transformations which permit to treat ter-
mination of CSR as a standard termination problem have been described (see
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[GM04, Luc06] for recent surveys). Direct techniques like polynomial orderings
and the context-sensitive version of the recursive path ordering have also been
investigated [BLR02, GL02, Luc04b, Luc05]. Up to now, however, the depen-
dency pairs method [AG00, GAO02, GTS04, HM04], one of the most powerful
techniques for proving termination of rewriting, has not been investigated in
connection with proofs of termination of CSR. In this paper, we address this
problem.

Roughly speaking, given a TRS R, the dependency pairs associated to R
conform a new TRS DP(R) which (together with R) determines the so-called
dependency chains whose finiteness or infiniteness characterize termination ofR.
Given a rewrite rule l→ r, we get dependency pairs l� → s� for all subterms s of
r which are rooted by a defined symbol1; the notation t� for a given term t means
that the root symbol f of t is marked thus becoming f � (often just capitalized:
F ). A chain of dependency pairs is a sequence ui → vi of dependency pairs
such that σ(vi) rewrites to σ(ui+1) for some substitution σ and i ≥ 1. The
dependency pairs can be presented as a dependency graph, where the absence
of infinite chains can be analyzed by considering the cycles in the graph. These
basic intuitions are valid for CSR, although some important differences arise.

Example 1. Consider the following TRS R [GM99, Example 1]:
c -> a f(a,b,X) -> f(X,X,X)

c -> b

together with μ(f) = {3}. As shown by Giesl and Middeldorp, among all existing
transformations for proving termination of CSR, only the complete Giesl and
Middeldorp’s transformation [GM04] (yielding a TRS Rμ

C) could be used in this
case, but no concrete proof of termination for Rμ

C is known yet. Furthermore,
Rμ

C has 13 dependency pairs and the dependency graph contains many cycles.
In contrast, R has only one context-sensitive (CS-)dependency pair

F(a,b,X) -> F(X,X,X)

and the corresponding dependency graph has no cycle (due to the replacement
restrictions, since we extend μ by μ(F) = {3}). As we show below, a direct (and
automatic) proof of μ-termination of R is easy now.

Basically, the subterms in the right-hand sides of the rules which are considered
to build the CS-dependency pairs must be μ-replacing terms. However, this is
not sufficient to obtain a correct approximation. The following example shows
the need of a new kind of dependency pairs.

Example 2. Consider the following TRS R:
a -> c(f(a))

f(c(X)) -> X

together with μ(c) = ∅ and μ(f) = {1}. There is no μ-replacing subterm s
in the right-hand sides of the rules which is rooted by a defined symbol. Thus,
there is no ‘regular’ dependency pair. We could wrongly conclude that R is
μ-terminating, which is not true:
1 A symbol f is said to be defined in a TRS R if R contains a rule f(l1, . . . , lk) → r.
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f(a) ↪→μ f(c(f(a))) f(a) ↪→μ · · ·
Indeed, we must add the following dependency pair

F(c(X)) -> X

which would not be allowed in Arts and Giesl’s approach [AG00] because the
right-hand side is a variable.

After some preliminaries in Section 2, Section 3 introduces the general framework
to compute and use context-sensitive dependency pairs for proving termination of
CSR. The introduction of a new kind of dependency pairs (as in Example 2) leads
to a new notion of context-sensitive dependency chain. We prove the correctness
and completeness of the new approach, i.e., our dependency pairs approach fully
characterize termination of CSR. We also show how to use term orderings for
proving termination of CSR by means of the new approach. Furthermore, we are
properly extending Arts and Giesl’s approach: whenever μ(f) = {1, . . . , k} for
all k-ary symbols f ∈ F , CSR and ordinary rewriting coincide; coherently, our
results boil down into the standard results for the dependency pair approach.
Section 4 shows how to compute the (estimated) context-sensitive dependency
graph and investigates how to use term orderings together with the dependency
graph to achieve automatic proofs of termination of CSR within the dependency
pairs approach. Section 5 adapts Hirokawa and Middeldorp’s subterm criterion
[HM04] to CSR. Section 6 concludes.

2 Preliminaries

Throughout the paper, X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity given
by a mapping ar : F → N. The set of terms built from F and X is T (F ,X ).
Positions p, q, . . . are represented by chains of positive natural numbers used to
address subterms of t. Given positions p, q, we denote their concatenation as p.q.
If p is a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}. We denote the
topmost position by Λ. The set of positions of a term t is Pos(t). Positions of
non-variable symbols in t are denoted as PosF(t), and PosX (t) are the positions
of variables. The subterm at position p of t is denoted as t|p and t[s]p is the term
t with the subterm at position p replaced by s. We write t� s if s = t|p for some
p ∈ Pos(t) and t � s if t � s and t 
= s. The symbol labelling the root of t is
denoted as root(t). A context is a term C ∈ T (F ∪ {�},X ) with zero or more
‘holes’ � (a fresh constant symbol).

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ),
l 
∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the
right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of rewrite
rules. Given R = (F , R), we consider F as the disjoint union F = C 5 D of
symbols c ∈ C, called constructors and symbols f ∈ D, called defined functions,
where D = {root(l) | l → r ∈ R} and C = F −D.

Context-sensitive rewriting. A mapping μ : F → P(N) is a replacement map
(or F -map) if ∀f ∈ F , μ(f) ⊆ {1, . . . , ar(f)} [Luc98]. Let MF be the set of all
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F -maps (or MR for the F -maps of a TRS (F , R)). A binary relation R on terms
is μ-monotonic if t R s implies f(t1, . . . , ti−1, t, . . . , tk)R f(t1, . . . , ti−1, s, . . . , tk)
for all f ∈ F , i ∈ μ(f), and t, s, t1, . . . , tk ∈ T (F ,X ). The set of μ-replacing
positions Posμ(t) of t ∈ T (F ,X ) is: Posμ(t) = {Λ}, if t ∈ X and Posμ(t) =
{Λ} ∪

⋃
i∈μ(root(t)) i.Pos

μ(t|i), if t 
∈ X . The set of replacing variables of t is
Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), t|p = x}. The μ-replacing subterm
relation �μ is given by t�μ s if there is p ∈ Posμ(t) such that s = t|p. We write
t�μ s if t�μ s and t 
= s. In context-sensitive rewriting (CSR [Luc98]), we (only)
contract replacing redexes: t μ-rewrites to s, written t ↪→μ s (or t ↪→R,μ s and
even t ↪→ s), if t

p→R s and p ∈ Posμ(t). A TRS R is μ-terminating if ↪→μ is
terminating. A term t is μ-terminating if there is no infinite μ-rewrite sequence
t = t1 ↪→μ t2 ↪→μ · · · ↪→μ tn ↪→μ · · · starting from t. A pair (R,μ) where R is a
TRS and μ ∈MR is often called a CS-TRS.

Dependency pairs. Given a TRS R = (F , R) = (C 5D, R) a new TRS DP(R) =
(F �,D(R)) of dependency pairs forR is given as follows: if f(t1, . . . , tm) → r ∈ R
and r = C[g(s1, . . . , sn)] for some defined symbol g ∈ D and s1, . . . , sn ∈
T (F ,X ), then f �(t1, . . . , tm) → g�(s1, . . . , sn) ∈ D(R), where f � and g� are
new fresh symbols (called tuple symbols) associated to defined symbols f and
g respectively [AG00]. Let D� be the set of tuple symbols associated to sym-
bols in D and F � = F ∪ D�. As usual, for t = f(t1, . . . , tk) ∈ T (F ,X ), we
write t� to denote the marked term f �(t1, . . . , tk). Conversely, given a marked
term t = f �(t1, . . . , tk), where t1, . . . , tk ∈ T (F ,X ), we write t� to denote the
term f(t1, . . . , tk) ∈ T (F ,X ). Given T ⊆ T (F ,X ), let T � be the set {t� |
t ∈ T }.

A reduction pair (6,�) consists of a stable and weakly monotonic quasi-
ordering 6, and a stable and well-founded ordering � satisfying either 6 ◦ �⊆�

or � ◦ 6 ⊆�. Note that monotonicity is not required for �.

3 Context-Sensitive Dependency Pairs

Let M∞,μ be a set of minimal non-μ-terminating terms in the following sense: t
belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing subterm
s of t (i.e., t �μ s) is μ-terminating. Obviously, if t ∈ M∞,μ, then root(t) is
a defined symbol. The following proposition establishes that, given a minimal
non-μ-terminating term t ∈ M∞,μ, there are two ways for an infinite μ-rewrite
sequence to proceed. The first one is by using ‘visible’ parts of the rules which
correspond to μ-replacing subterms in the right-hand sides which are rooted by
a defined symbol. The second one is by showing up ‘hidden’ non-μ-terminating
subterms which are activated by migrating variables in a rule l → r, i.e., variables
x ∈ Varμ(r) − Varμ(l) which are not μ-replacing in the left-hand side l but
become μ-replacing in the right-hand side r.

Proposition 1. Let R = (C 5 D, R) be a TRS and μ ∈ MR. Then for all
t ∈ M∞,μ, there exist l → r ∈ R, a substitution σ and a term u ∈ M∞,μ such
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that t
>Λ
↪→∗ σ(l) Λ→ σ(r) �μ u and either (1) there is a μ-replacing subterm s of r

such that u = σ(s), or (2) there is x ∈ Varμ(r)− Varμ(l) such that σ(x) �μ u.

Proposition 1 motivates the following.

Definition 1. Let R = (F , R) = (C 5 D, R) be a TRS and μ ∈MR. We define
DP(R,μ) = DPF (R,μ) ∪ DPX (R,μ) to be the set of context-sensitive depen-
dency pairs (CS-DPs) where:

DPF(R,μ) = {l� → s� | l→ r ∈ R, r �μ s, root(s) ∈ D, l 
�μ s}

and DPX (R,μ) = {l� → x | l → r ∈ R, x ∈ Varμ(r) − Varμ(l)}. We extend
μ ∈MF into μ� ∈MF� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f) if f ∈ D.

A rule l→ r of a TRS R is μ-conservative if Varμ(r) ⊆ Varμ(l), i.e., it does not
contain migrating variables; R is μ-conservative if all its rules are (see [Luc06]).
The following result is immediate from Definition 1.

Proposition 2. If R is a μ-conservative TRS, then DP(R,μ) = DPF(R,μ).

Therefore, in order to deal with μ-conservative TRSs R we only need to consider
the ‘classical’ dependency pairs in DPF(R,μ).

Example 3. Consider the TRS R:
g(X) -> h(X) h(d) -> g(c) c -> d

together with μ(g) = μ(h) = ∅ [Zan97, Example 1]. DP(R,μ) is:
G(X) -> H(X) H(d) -> G(c)

with μ�(G) = μ�(H) = ∅.

If the TRS R contains non-μ-conservative rules, then we also need to consider
dependency pairs with variables in the right-hand side.

Example 4. Consider the TRS R [Zan97, Example 5]:
if(true,X,Y) -> X f(X) -> if(X,c,f(true))

if(false,X,Y) -> Y

with μ(if) = {1, 2}. Then, DP(R,μ) is:
F(X) -> IF(X,c,f(true)) IF(false,X,Y) -> Y

with μ�(F) = {1} and μ(IF) = {1, 2}.

Now we introduce the notion of chain of CS-DPs.

Definition 2 (Chain of CS-DPs). Let (R,μ) be a CS-TRS. Given P ⊆
DP(R,μ), an (R,P ,μ�)-chain is a finite or infinite sequence of pairs ui → vi ∈
P, for i ≥ 1 such that there is a substitution σ satisfying both:

1. σ(vi) ↪→∗
R,μ� σ(ui+1), if ui → vi ∈ DPF (R,μ), and

2. if ui → vi = ui → xi ∈ DPX (R,μ), then there is si ∈ T (F ,X ) such that
σ(xi) �μ si and s�

i ↪→∗
R,μ� σ(ui+1).
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for i ≥ 1. Here, as usual we assume that different occurrences of dependency
pairs do not share any variable (renamings are used if necessary).

An (R,P ,μ�)-chain with u1 → v1 ∈ P as heading dependency pair is called
minimal if σ(u1)� ∈M∞,μ and all dependency pairs in P occur infinitely often.

Remark 1. When an (R,DP(R,μ),μ�)-chain is written for a given substitution
σ, we write σ(u) ↪→DP(R,μ),μ� σ(v) for steps which use a dependency pair u →
v ∈ DPF (R,μ) but we rather write σ(u) ↪→DP(R,μ),μ� s� for steps which use a
dependency pair u→ x ∈ DPX (R,μ), where s is as in Definition 2.

In the following, we use DP1
X (R,μ) to denote the subset of dependency pairs

in DPX (R,μ) whose migrating variables occur on non-μ-replacing immediate
subterms in the left-hand side:

DP1
X (R, μ) = {f 	(u1,. . . ,uk) → x ∈ DPX (R, μ) | ∃i, 1≤ i≤k, i �∈ μ(f 	), x ∈ Var(ui)}

For instance, DP1
X (R,μ) = DPX (R,μ) for the CS-TRS (R,μ) in Example 4. For

this subset of CS-dependency pairs, we have the following.

Proposition 3. There is no infinite (R,P ,μ�)-chain with P ⊆ DP1
X (R,μ).

The following result establishes the correctness of the context-sensitive depe-
nency pairs approach.

Theorem 1 (Correctness). Let R be a TRS and μ ∈ MR. If there is no
infinite (R,DP(R,μ),μ�)-chain, then R is μ-terminating.

As an immediate consequence of Theorem 1 and Proposition 3, we have the
following.

Corollary 1. Let R be a TRS and μ ∈MR. If DP(R,μ) = DP1
X (R,μ), then R

is μ-terminating.

Example 5. Consider the following TRS R [Luc98, Example 15]
and(true,X) -> X first(0,X) -> nil

and(false,Y) -> false first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))

if(true,X,Y) -> X from(X) -> cons(X,from(s(X)))

if(false,X,Y) -> Y

add(0,X) -> X

add(s(X),Y) -> s(add(X,Y))

with μ(cons) = μ(s) = μ(from) = ∅, μ(add) = μ(and) = μ(if) = {1}, and
μ(first) = {1, 2}. Then, DP(R,μ) = DP1

X (R,μ) is:
ADD(0,X) -> X IF(true,X,Y) -> X

AND(true,X) -> X IF(false,X,Y) -> Y

Thus, by Corollary 1 we conclude the μ-termination of R.

Now we prove that the previous CS-dependency pairs approach is not only cor-
rect but also complete for proving termination of CSR.
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Theorem 2 (Completeness). Let R be a TRS and μ ∈ MR. If R is μ-
terminating, then there is no infinite (R,DP(R,μ),μ�)-chain.

Corollary 2 (Characterization of μ-termination). Let R be a TRS and
μ ∈MR. R is μ-terminating iff there is no infinite (R,DP(R,μ),μ�)-chain.

In the dependency pairs approach, the absence of infinite chains is checked by
finding a reduction pair (6,�) which is compatible with the rules and the depen-
dency pairs [AG00]. In our setting, we can relax the monotonicity requirements
and use μ-reduction pairs (�,�) where � is a stable and μ-monotonic quasi-
ordering which is compatible with the well-founded and stable ordering �, i.e.,
� ◦ �⊆� or � ◦ �⊆�. The following result shows how to use μ-reduction pairs
for proving μ-termination. This is the context-sensitive counterpart of [AG00,
Theorem 7]; however, a number of remarkable differences arise due to the treat-
ment of the dependency pairs in DPX (R,μ). Basically, we need to ensure that
the quasi-ordering is able to ‘look’ for a μ-replacing subterm inside the instantia-
tion σ(x) of a migrating variable x (hence we require �μ⊆�) and also connect a
term which is rooted by defined symbol f and the corresponding dependency pair
which is rooted by f � (hence the requirement f(x1, . . . , xk) � f �(x1, . . . , xk)).

Theorem 3. Let R = (F , R) be a TRS, μ ∈ MF . Then, R is μ-terminating if
and only if there is a μ-reduction pair (�,�) such that,

1. l � r for all l→ r ∈ R,
2. u � v for all u→ v ∈ DPF(R,μ), and
3. whenever DPX (R,μ) 
= ∅ we have that �μ⊆�, where �μ is the μ-replacing

subterm relation on T (F ,X ), and
(a) u (� ∪ �) v for all u → v ∈ DP1

X (R,μ), u � v for all u → v ∈
DPX (R,μ)− DP1

X (R,μ), and f(x1, . . . , xk) � f �(x1, . . . , xk) for all f ∈
D, or

(b) u(� ∪ �)v for all u→v ∈ DPX (R,μ) and f(x1, . . . , xk)�f �(x1, . . . , xk)
for all f ∈ D.

4 Context-Sensitive Dependency Graph

As noticed by Arts and Giesl, the analysis of infinite sequences of dependency
pairs can be made by looking at (the cycles C of) the dependency graph associated
to the TRS R. The nodes of the dependency graph are the dependency pairs
in DP(R); there is an arc from a dependency pair u → v to a dependency pair
u′ → v′ if there are substitutions σ and θ such that σ(v) →∗

R θ(u′).
Similarly, in the context-sensitive (CS-)dependency graph:

1. There is an arc from a dependency pair u → v ∈ DPF (R,μ) to a depen-
dency pair u′ → v′ ∈ DP(R,μ) if there are substitutions σ and θ such that
σ(v) ↪→∗

R,μ� θ(u′).
2. There is an arc from a dependency pair u→ v ∈ DPX (R,μ) to each depen-

dency pair u′ → v′ ∈ DP(R,μ).
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Note that the use of μ� (which restricts reductions on the arguments of the de-
pendency pair symbols f �) is essential: given a set of dependency pairs associated
to a CS-TRS (R,μ), we have less arcs between them due to the presence of such
replacement restrictions.

Example 6. Consider the CS-TRS in Example 1. DP(R,μ) is:
F(a,b,X) -> F(X,X,X)

with μ�(F) = {3}. Although the dependency graph contains a cycle (due to
σ(F(X,X,X)) →∗ σ(F(a,b,Y)) for σ(X) = σ(Y ) = c), the CS-dependency
graph contains no cycle because it is not possible to μ�-reduce θ(F(X,X,X))
into θ(F(a,b,Y)) for any substitution θ (due to μ�(F) = {3}).

As noticed by Arts and Giesl, the presence of an infinite chain of dependency
pairs correspond to a cycle in the dependency graph (but not vice-versa).

Again, as an immediate consequence of Theorem 1 and Proposition 3, we have
the following.

Corollary 3. Let R be a TRS, μ ∈ MR and C ⊆ DP1
X (R,μ) be a cycle. Then,

there is no minimal (R,C,μ�)-chain.

According to this, and continuing Example 6, we conclude the μ-termination of
R in Example 1.

4.1 Estimating the CS-Dependency Graph

In general, the (context-sensitive) dependency graph of a TRS is not computable
and we need to use some approximation of it. Following [AG00], we describe how
to approximate the CS-dependency graph of a CS-TRS (R,μ). Let Capμ be
given as follows: let D be a set of defined symbols (in our context, D = D∪D�):

Capμ(x) = x if x is a variable

Capμ(f(t1, . . . , tk)) =
{
y if f ∈ D

f([t1]
f
1 , . . . , [tk]f1 ) otherwise

where y is intended to be a new, fresh variable which has not yet been used
and given a term s, [s]fi = Capμ(s) if i ∈ μ(f) and [s]fi = s if i 
∈ μ(f).
Let Renμ given by: Renμ(x) = y if x is a variable and Renμ(f(t1, . . . , tk)) =
f([t1]

f
1 , . . . , [tk]fk) for evey k-ary symbol f , where given a term s ∈ T �(F ,X ),

[s]fi = Renμ(s) if i ∈ μ(f) and [s]fi = s if i 
∈ μ(f). Then, we have an arc from
ui → vi to uj → vj if Renμ(Capμ(vi)) and uj unify; following [AG00], we say
that vi and uj are μ-connectable. The following result whose proof is similar to
that of [AG00, Theorem 21] (we only need to take into account the replacement
restrictions indicated by the replacement map μ) formalizes the correctness of
this approach.

Proposition 4. Let (R,μ) be a CS-TRS. If there is an arc from u → v to
u′ → v′ in the CS-dependency graph, then v and u′ are μ-connectable.
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Example 7. (Continuing Ex. 6) Since Renμ�

(Capμ�

(F(X,X,X))) = F(X,X,Z)
and F(a,b,Y) do not unify, we conclude (and this can be easily implemented)
that the CS-dependency graph for the CS-TRS (R,μ) in Example 1 has
no cycle.

4.2 Checking μ-Termination with the Dependency Graph

For the cycles in the dependency graph, the absence of infinite chains is checked
by finding (possibly different) reduction pairs (6C,�C) for each cycle C [GAO02,
Theorem 3.5]. In our setting, we use μ-reduction pairs.

Theorem 4 (Use of the CS-dependency graph). Let R = (F , R) be a
TRS, μ ∈ MF . Then, R is μ-terminating if and only if for each cycle C in
the context-sensitive dependency graph there is a μ-reduction pair (�C,�C) such
that, R ⊆�C, C ⊆�C ∪ �C, and

1. If C ∩ DPX (R,μ) = ∅, then C ∩ �C 
= ∅
2. If C ∩ DPX (R,μ) 
= ∅, then �μ⊆�C (where �μ is the μ-replacing subterm

relation on T (F ,X )), and
(a) C ∩ �C 
= ∅ and f(x1, . . . , xk) �C f

�(x1, . . . , xk) for all f � in C, or
(b) f(x1, . . . , xk) �C f

�(x1, . . . , xk) for all f � in C.

Following Hirokawa and Middeldorp, the practical use of Theorem 4 concerns the
so-called strongly connected components(SCCs) of the dependency graph, rather
than the cycles themselves (which are exponentially many) [HM04, HM05]. A
strongly connected component in the (CS-)dependency graph is a maximal cycle,
i.e., it is not contained in any other cycle. According to Hirokawa and Middel-
dorp, when considering an SCC C, we remove from C those pairs u → v sat-
isfying u � v. Then, we recompute the SCCs with the remaining pairs in the
CS-dependency graph and start again (see [HM05, Section 4]). In our setting, it
is not difficult to see that, if the condition f(x1, . . . , xk) �C f �(x1, . . . , xk) for
all f ∈ D holds for a given cycle C, then we can remove from C all dependency
pairs in DPX (R,μ), thus continuing from C− DPX (R,μ).

Example 8. Consider the CS-TRS (R,μ) in Example 4 and DP(R,μ):
F(X) -> IF(X,c,f(true))

IF(false,X,Y) -> Y

with μ�(F) = {1} and μ�(IF) = {1, 2}. These two CS-dependency pairs form the
only cycle in the CS-dependency graph. The μ-reduction pair (≥, >) induced by
the polynomial interpretation

[c] = [true] = 0 [f](x) = x [F](x) = x
[false] = 1 [if](x, y, z) = x + y + z [IF](x, y, z) = x + z

can be used to prove the μ-termination of R.

The use of argument filterings, which is standard in the current formulations
of the dependency pairs method, also adapts without changes to the context-
sensitive setting. This is a simple consequence of [AG00, Theorem 11] (using
μ-monotonicity instead of monotonicity for the quasi-orderings is not a problem).
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5 Subterm Criterion

In [HM04], Hirokawa and Middeldorp introduce a very interesting subterm cri-
terion which permits to ignore certain cycles of the dependency graph.

Definition 3. [HM04] Let R be a TRS and C ⊆ DP(R) such that every depen-
dency pair symbol in C has positive arity. A simple projection for C is a mapping
π that assigns to every k-ary dependency pair symbol f � in C an argument po-
sition i ∈ {1, . . . , k}. The mapping that assigns to every term f �(t1, . . . , tk) ∈
T �(F ,X ) with f � a dependency pair symbol in R its argument position π(f �) is
also denoted by π.

In the following result, for a simple projection π and C ⊆ DP(R,μ), we let
π(C) = {π(u)→ π(v) | u→ v ∈ C}. Note that u, v ∈ T �(F ,X ), but π(u), π(v) ∈
T (F ,X ).

Theorem 5. Let R be a TRS and μ ∈ MR. Let C ⊆ DPF (R,μ) be a cycle. If
there exists a simple projection π for C such that π(C) ⊆ �μ, and π(C)∩�μ 
= ∅,
then there is no minimal (R,C,μ�)-chain.

Note that the result is restricted to cycles which do not include dependency
pairs in DPX (R,μ). The following result provides a kind of generalization of
the subterm criterion to simple projections which only consider non-μ-replacing
arguments of tuple symbols.

Theorem 6. Let R = (F , R) be a TRS, μ ∈ MF and C ⊆ DPF (R,μ) be a
cycle. Let � be a stable quasi-ordering on terms whose strict and stable part >
is well-founded and π be a simple projection for C such that for all f � in C,
π(f �) 
∈ μ�(f �) and π(C) ⊆�.

1. If C ∩ DPX (R,μ) = ∅ and C∩ > 
= ∅, then there is no minimal (R,C,μ�)-
chain.

2. If C∩DPX (R,μ) 
= ∅, �μ⊆� (where �μ is the μ-replacing subterm relation
on T (F ,X )), and
(a) C∩ > 
= ∅ and f(x1, . . . , xk) � xπ(f�) for all f ∈ D such that f � is in C,

or
(b) f(x1, . . . , xk) > xπ(f�) for all f ∈ D such that f � is in C,
then there is no minimal (R,C,μ�)-chain.

Example 9. Consider the CS-TRS (R,μ) in Example 3. DP(R,μ) is:
G(X) -> H(X)
H(d) -> G(c)

where μ�(G) = μ�(H) = ∅. The dependency graph contains a single cycle in-
cluding both of them. The only simple projection is π(G) = π(H) = 1. Since
π(G(X)) = π(H(X)), we only need to guarantee that π(H(d)) = d > c = π(G(c))
holds for a stable and well-founded ordering >. This is easily fulfilled by, e.g., a
polynomial ordering.
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6 Conclusions

We have shown how to use dependency pairs in proofs of termination of CSR.
The implementation and practical use of the developed techniques yield a novel
and powerful framework which improves the current state-of-the-art of methods
for proving termination of CSR. Some interesting differences arise which can
be summarized as follows: in sharp contrast to the standard dependency pairs
approach, where all dependency pairs have tuple symbols f � both in the left-
and right-hand sides, we have dependency pairs having a single variable in the
right-hand side. These variables reflect the effect of the migrating variables into
the termination behavior of CSR. This leads to a new definition of chain of
context-sensitive dependency pairs which also differs from the standard approach
in that we have to especially deal with such migrating variables. As in Arts
and Giesl’s approach, the presence or absence of infinite chains of dependency
pairs from DP(R,μ) characterizes the μ-terminaton of R (Theorems 1 and 2).
Furthermore, we are also able to use term orderings to ensure the absence of
infinite chains of context-sensitive dependency pairs (Theorem 3). In fact, we
are properly extending Arts and Giesl’s approach: whenever μ(f) = {1, . . . , k}
for all k-ary symbols f ∈ F , CSR and ordinary rewriting coincide and all these
results and techniques boil down into well-known results and techniques for the
dependency pairs approach.

Regarding the practical use of the CS-dependency pairs in proofs of termi-
nation of CSR, we have shown how to build and use the corresponding CS-
dependency graph to either prove that the rules of the TRS and the cycles in
the CS-dependency graph are compatible with some reduction pair (Theorem 4)
or to prove that there are cycles which do not need to be considered at all (The-
orems 5 and 6). We have implemented these ideas as part of the termination tool
mu-term [AGIL07, Luc04a]. We refer the reader to [AGIL07] for details about
the practical impact of the techniques developed in this paper. From this pre-
liminary results, we can well conclude that the CS-dependency pairs can play in
CSR the (practical and theoretical) role than dependency pairs play in rewriting.

There are many other aspects of the dependency pairs approach which are
also worth to be considered and eventually extended to CSR (e.g., narrowing
refinements, modularity issues, innermost computations, usable rules, ...). These
aspects provide an interesting subject for future work.
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Abstract. In recent papers, the partial order reduction approach has been adapted
to reason about the probabilities for temporal properties in concurrent systems
with probabilistic behaviours. This paper extends these results by presenting re-
duction criteria for a probabilistic branching time logic that allows specification
of constraints on quantitative measures given by a reward or cost function for the
actions of the system.

1 Introduction

Partial order reduction [13,25,32] is one of the most prominent techniques for tackling
the state explosion problem for concurrent software systems. It has been implemented
in many tools and successfully applied to a large number of case studies, see e.g. [17].
Recently, the ample-set method [24] has been extended for concurrent probabilistic sys-
tems, both in the setting of quantitative linear time [5,7] and branching time [4] proper-
ties. The underlying models used in this work are Markov decision processes (MDPs),
an extension of transition systems where nondeterminism can be used e.g. to model
the interleaving of concurrent activities, to represent the interface with an unknown
system environment or for abstraction purposes, and where probability serves e.g. to
model coin tossing actions or to specify the frequency of exceptional (faulty) behaviour
(such as losing messages from a buffer). Thus, MDPs arise as natural operational mod-
els for randomized distributed algorithms and communication or security protocols and
are widely used in model checking. Equipped with reward or cost functions MDPs are
also standard models in many other areas, such as operations research, reinforcement
learning and robot path planning. In those fields a lot work has already been done on re-
ducing the state (and/or actions) space via aggregating states (and/or actions) [2,29,11].
Opposed to many results in the field of machine learning that yield only approxima-
tions to optimal solutions, the results in the field of model checking offer some work on
exact process equivalences, like (weak) bisimulation. Contrary to those approaches that
rely on partition refinement and need global knowledge of the state space, the approach
with partial order reduction can be implemented with local conditions and therefore be
intertwined with the state space search on-the-fly, provided an appropriate high-level
representation of the system is given.

The contribution of this paper is reduction criteria which are shown to be sound for an
extension of probabilistic computation tree logic (PCTL) [6] that serves to reason about
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rewards or costs. Our logic, called PCTLr, essentially agrees with the logic suggested
by de Alfaro [9,8]. (PCTLr is also similar to the logic PRCTL [1,23] which relies on
a Markov chain semantics, while PCTLr-formulae are interpreted over MDPs.) PCTLr

allows specifications regarding e.g. the packet loss characteristics of a queueing system,
the energy consumption, or the average number of unsuccessful attempts to find a leader
in a distributed system. We first explain how the ample-set conditions suggested in [4]
for PCTL can be modified to treat reward-based properties specified in PCTLr and then
identify a fragment of PCTLr (which still contains a wide range of non-trivial reward
properties) where the weaker criteria of [4] are sufficient. We also present results on
a new logic PCTLc, that treats the rewards with a discounting semantics. As in the
case of previous publications on partial order reduction for probabilistic systems, the
major difficulty was to provide the proof of correctness. The general proof technique
follows the line of [12,4] by establishing a bisimulation between the full and the reduced
system. However, we depart here from these approaches by introducing a new variant of
bisimulation equivalence for MDPs which borrows ideas from [21,31] and relies on the
concept of norm functions [22,14]. This new type of bisimulation equivalence preserves
PCTLr-properties and might be useful also for other purposes.

Organization of the paper. Section 2 summarizes the basic definitions concerning
Markov decision processes, reward structures and PCTLr. Section 2 also recalls the
partial order reduction approach for MDPs without reward structure and PCTL of [4]
which we then extend to reason about rewards in Section 3. Section 4 identifies a class
of reward-based properties that are preserved when using the weaker conditions of [4].
In Section 5 we discuss our approach in the setting of discounted rewards and Section
6 concludes the paper.

2 Preliminaries

Markov decision processes (MDPs), see e.g. [27]. An MDP is a tuple M = (S,Act, P,
sinit, AP,L, rew) where S is a finite state space, sinit ∈ S is the initial state, Act a finite set of
actions, AP a set of atomic propositions, L : S → 2AP a labelling function, P : S×Act×
S→ [0,1] the three-dimensional transition probability matrix such that ∑u∈S P(s,α,u)∈
{0,1} for all states s and actions α, and a function rew that assigns to each action α∈Act
a reward rew(α) ∈ IR.

Action α is called enabled in state s if ∑u∈S P(s,α,u) = 1. We write Act(s) for the set
of actions that are enabled in s. The states t with P(s,α, t)> 0 are called α-successors
of s. For technical reasons, we require that Act(s) 
= /0 for all states s. Action α is called
a stutter action iff for all s ∈ S where α is enabled in s, L(s) = L(u) for all α-successors
u of s. That is, stutter actions do not change the state labelling. Action α is called non-
probabilistic iff for all states s, there is at most one α-successor. That is, if α is enabled
in s then there is a state sα with P(s,α,sα) = 1, while P(s,α,u) = 0 for all other states
u. In particular, if α ∈ Act(s) is a non-probabilistic stutter action then L(s) = L(sα).

An infinite path in an MDP is a sequence ς = s0
α1−→ s1

α2−→ s2
α3−→ · · · such that

αi ∈ Act(si−1) and P(si−1,αi,si) > 0 for all i≥ 1. We denote by first(ς) = s0 the starting
state of ς and write state(ς, i) for the (i+1)th state in ς and ρ(ς, i) for the cumulative
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reward obtained through the first i actions. That is, if ς is as above then state(ς, i) = si

and ρ(ς, i) = rew(α1 . . .αi) where rew(α1 . . .αi) = rew(α1)+ · · ·+rew(αi). If T ⊆ S
is a set of states then Rew(ς,T ) denotes the reward that is earned until a T -state is
visited the first time. Formally, if state(ς, i) ∈ T and state(ς, j) /∈ T for all j < i then
Rew(ς,T ) = ρ(ς, i). If state(ς, i) /∈ T for all i ≥ 0 we set Rew(ς,T ) = ∞. Finite paths
(denoted by σ) are finite prefixes of infinite paths that end in a state. We use the notations
first(σ), state(σ, i) and ρ(σ, i) as for infinite paths and |σ| for the length (number of
actions). Pathsfin(s) (resp. Pathsω(s)) denotes the set of all finite (resp. infinite) paths of

M with first(·) = s. Given a path ς = s0
α1−→ s1

α2−→ s2
α3−→ · · · we denote by trace(ς) =

L(s0),L(s1),L(s2), . . . the word over the alphabet 2AP obtained by the projection of ς to
the state labels. Two infinite paths ς1 and ς2 in an MDP are called stutter equivalent iff
there is an infinite word 1, 2, . . . over the alphabet 2AP such that trace(ς1) = k1

1 , k2
2 , . . .

and trace(ς2) = n1
1 , n2

2 , . . . where ki, ni ≥ 1.
A scheduler, also often called policy, strategy or adversary, denotes an instance that

resolves the nondeterminism in the states, and thus yields a Markov chain and a proba-
bility measure on the paths. We shall use here history-dependent randomized schedulers
in the classification of [27]. They are defined as functions A that take as input a finite
path σ and return a distribution over the actions α ∈ Act(last(σ)).1 A scheduler A is
called deterministic if it chooses a unique action (with probability 1) for all finite paths.
An A-path denotes an infinite or finite path σ that can be generated by A. Given a state s
and a scheduler A, the behaviour of M under A can be formalised by a (possibly infinite-
state) Markov chain. PrA,s denotes the standard probability measure on the Borel field
of the infinite A-paths ς with first(ς) = s. If T ⊆ S then IEA,s(♦T ) denotes the expected
value under A with starting state s for the random function ς �→ Rew(ς,T ). Recall that
Rew(ς,T ) denotes the reward that is earned by the prefix of ς that leads from the start-
ing state s to a state in T and that Rew(ς,T ) equals ∞ if ς does not reach T . Thus, if
there is a positive probability of not reaching T under scheduler A (from state s), then
IEA,s(♦T ) = ∞. If s = sinit we simply write PrA and IEA.

Probabilistic computation tree logic. PCTL is a probabilistic variant of CTL which has
been introduced first for Markov chains [15] and then for Markovian models with non-
determinism [6,31]. We follow here the approach of de Alfaro [9,8] and extend PCTL
with an operator R to reason about expected rewards. As partial order reduction relies
on identifying stutter equivalent paths which might be distinguishable by the next step
operator, we do not include the next step operator in the logic. PCTLr-state formulae
are therefore given by the grammar:

Φ ::= true
∣∣ a ∣∣Φ∧Φ

∣∣ ¬Φ
∣∣ PJ(Φ1UIΦ2)

∣∣ R I(Φ)

Here, a ∈ AP is an atomic proposition, J ⊆ [0,1] is a probability interval and I ⊆
IR∪{−∞,∞} a reward interval. We refer to the terms Φ1UIΦ2 as PCTLr-path formu-
lae. UI denotes the standard until operator with a reward bound. The meaning of the
path formula ϕ = Φ1UIΦ2 is that a Φ2-state will be reached via a finite path σ where

1 By a distribution on a finite set X we mean a function ν : X → [0,1] such that ∑x∈X ν(x) = 1
and refer to ν(x) as the probability for x.
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the cumulative reward is in I, while all states in σ, possibly except the last one, fulfil
Φ1. The state formula PJ(ϕ) holds for state s if for each scheduler A the probability
measure of all infinite paths starting in s and fulfilling the path formula ϕ meets the
probability bound given by J. On the other hand, R I(Φ) asserts that for any sched-
uler A the expected reward that is earned until a Φ-state has been reached meets the
reward bound given by I. For instance, R [0,17](goal) asserts that independent of the
scheduling policy the average costs to reach a goal state do not exceed 17. The formula
P(0.9,1](true U[0,4] delivered) requires that the probability of a message being delivered
with at most 4 retransmissions is greater than 0.9.

If M is an MDP and s a state in M then we write s |= Φ to denote that state-formula
Φ holds in state s, and similarly, ς |= ϕ to denote that path formula ϕ holds for the
infinite path ς. The formal semantics of the propositional logic fragment is standard and
the semantics of the P - and R -operator is formalised by :

s |= PJ(Φ1UIΦ2) ⇔ for all schedulers A:PrA,s
{

ς ∈ Pathsω(s) : ς |= Φ1UIΦ2
}
∈ J

s |= R I(Φ) ⇔ for all schedulers A:IEA,s(♦Sat(Φ)) ∈ I

If ς = s0
α1−→ s1

α2−→ s2
α3−→ · · · then ς |= Φ1UIΦ2 iff ∃i ≥ 0 s.t. si |= Φ2 ∧ ρ(ς, i) ∈

I ∧ ∀ j < i. s j |= Φ1. The satisfaction set of Φ in M is Sat(Φ) =
{

s ∈ S : s |= Φ
}
. State

formula Φ is said to hold for an MDP if the initial state satisfies Φ.
Note that one could also give the R I operator a different semantics as follows. s |=

R I(Φ) if and only if for all schedulers A, such that the probability to reach Sat(Φ) from
s equals 1, it holds that IEA,s(♦Sat(Φ)) ∈ I. But this is irrelevant for our purposes.

Derived operators. Other Boolean connectives, such as disjunction ∨, implication
→, can be derived as usual. The temporal operator eventually ♦ is obtained in the
standard way by ♦IΦ = true UIΦ. The always-operator can be derived as in PCTL
by the duality of lower and upper probability bounds. For the trivial reward-interval
I = (−∞,∞), we obtain the standard eventually, always and until operator. We simply
write U , ♦ and � rather than U(−∞,∞), ♦(−∞,∞) and �(−∞,∞), respectively.

PCTL denotes the sublogic of PCTLr that does not use the R -operator and where the
path-formulae have the trivial reward interval. Since the reward structure is irrelevant
for PCTL-formulae, they can be interpreted over MDPs without reward structure.

The ample set method for PCTL [4]. Before presenting the partial order reduction
citeria for PCTLr in Section 3, we briefly summarize the results of [4] for applying
the ample-set method to PCTL model checking. The starting point is an MDP M =
(S,Act,P,sinit,AP,L), without reward structure, to be verified against a PCTL-formula.
Following Peled’s ample-set method [24], the idea is to assign to any reachable state s
a nonempty action-set ample(s)⊆ Act(s) and to construct a reduced MDP M̂ by using
the action-sets ample(s) instead of Act(s). Formally, given a function ample : S → 2Act

with /0 
= ample(s) ⊆ Act(s) for all states s, the state space of the reduced MDP M̂ =
(Ŝ,Act, P̂,sinit,AP, L̂) induced by ample is the smallest set Ŝ ⊆ S that contains sinit and
any state u where P(s,α,u) > 0 for some s∈ Ŝ and α∈ ample(s). The labelling function
L̂ : Ŝ → 2AP is the restriction of the original labelling function L to the state-set Ŝ. The
transition probability matrix of M̂ is given by P̂(s,α, t) = P(s,α, t) if α ∈ ample(s) and
0 otherwise. State s is called fully expanded if ample(s) = Act(s).
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A1 (Stutter-condition) If ample(s) 
= Act(s) then all actions α ∈ ample(s) are stutter actions.

A2 (Dependence-condition) For each path σ = s
α1−→ · · · αn−→ sn

γ−→ · · · in M where γ is depen-
dent on ample(s) there exists an index i ∈ {1, . . . ,n} such that αi ∈ ample(s).

A3 (Cycle-condition) On each cycle s
α1−→ s1

α2−→ · · · αn−→ sn = s in M̂ there exists a state si
which is fully expanded, i.e., ample(si) = Act(si).

A4 (Branching condition) If ample(s) 
= Act(s) then ample(s) is a singleton consisting of a
non-probabilistic action.

Fig. 1. Conditions for the ample-set method for PCTL [4]

The main ingredient of any partial order reduction technique in the non-probabilistic
or probabilistic setting is an adequate notion for the independence of actions. The defini-
tion for the independence of actions α and β in the composed transition system (which
captures the semantics of the parallel composition of all processes that run in paral-
lel) relies on recovering the interleaving ‘diamonds’. Formally, two distinct actions α
and β are called independent (in M ) iff for all states s ∈ S with {α,β} ⊆ Act(s), (I1)
α ∈ Act(u) for each β-successor u of s, (I2) β ∈ Act(u) for each α-successor u of s, and
(I3) P(s,αβ,w) = P(s,βα,w) for all w∈ S where P(s,γδ,w) = ∑u∈S P(s,γ,u) ·P(u,δ,w)
for γ,δ ∈ Act. Two different actions α and β are called dependent iff α and β are not
independent. If D ⊆ Act and α ∈ Act \D then α is called independent of D iff for all
actions β ∈ D, α and β are independent. Otherwise, α is called dependent on D.

To preserve PCTL properties, [4] use the four conditions in Fig. 1. These rely on a
slight modification of the conditions by Gerth et al [12] for preserving CTL-properties
and can be implemented in an on-the-fly state space exploration [25,3].

Theorem 1 ([4]). If (A1)-(A4) hold then M and M̂ fulfil the same PCTL-formulae.

3 Reduction Criteria for Rewards

In the sequel, we assume that we are given an MDP M and discuss the partial order
reduction approach for properties specified in PCTLr. We first show that (A1)-(A4) are
not sufficient to preserve PCTLr properties with nontrivial reward bounds. To treat full
PCTLr, we shall need a modification of the branching condition (A4).

Example 1. We begin with a simple example illustrating that (A1)-(A4) cannot ensure
that all PCTLr-formulae are preserved. Consider the following MDP with the actions
α,β,γ that are all non-probabilistic and where rew(α) = rew(β) = rew(γ) = 1.

s /0

t/0 r {a}

u {a}

α

α

β

β

γ

Since α and β are independent and α is a stutter action, (A1)-
(A4) allow for a reduction obtained through ample(s)={α}.
Thus, Ŝ={s,t,u}. Consider the PCTLr formula Φ=R [2,∞)(a).
Then, the reduced system M̂ satisfies Φ, while the original
system M does not, because M might choose action β in s
which yields the expected reward 1 to reach an a-state. �
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We now discuss how to strengthen conditions (A1)-(A4) such that reward-based prop-
erties are preserved. We start with some simple observations. First, as M̂ is a sub-MDP
of the original system M , any scheduler A for M̂ is also a scheduler for M . Thus:

Lemma 1. Let Φ1,Φ2 be PCTLr-formulae with SatM (Φi)∩ Ŝ = SatM̂ (Φi), i = 1,2.

(i) M |= R I(Φ1) ⇒ M̂ |= R I(Φ1),
(ii) M |= PJ(Φ1UIΦ2) ⇒ M̂ |= PJ(Φ1UIΦ2).

The converse directions in Lemma 1 do not hold in general as M might have “more”
schedulers than M̂ . To get a feeling of how to modify the reduction criteria for PCTLr,
let us first give some informal explanations. In [4], the soundness proof of (A1)-(A4)
for PCTL establishes a kind of bisimulation between the full MDP M and the reduced
MDP M̂ which allows one to transform any scheduler A for M into a scheduler B
for M̂ such that A and B yield the same probabilities for PCTL-path formulae. As in
the case of the ample-set method for verifying linear time properties (where (A1)-(A3)
and a weaker form of (A4) are sufficient [5,7]) this scheduler-transformation yields a
transformation of the A-paths into “corresponding” B-paths. Let us look at this path-
transformation “path ς in M  path ς̂ in M̂ ” which, in fact, is already known from the
non-probabilistic case [24]. The path ς̂ in M̂ is obtained through a sequence of paths
ς0,ς1,ς2, . . . in M such that the first i-steps in ςi and ςi+1 agree and are composed of
transitions in M̂ . The switch from ςi to ςi+1 is performed as follows.

Let π = s1
α1−→ s2

α2−→ · · · be the suffix of ςi starting with the (i+1)th step (by the
above, s1 is a state in M̂ ). Our goal is to construct a stutter equivalent path π̂ from
s1 that starts with an action in ample(s1). We then may compose the prefix of ςi from
first(ςi) to s1 with π̂ to obtain the path ςi+1. If α1 ∈ ample(s1) then we may put π = π̂.
Let us now assume that α1 /∈ ample(s1). Then, by (A4), ample(s1) consists of a single
non-probabilistic action.
(T1) If there is some index j ≥ 2 such that α j ∈ ample(s1) then choose the smallest

such index j and replace the action sequence α1 . . .α j−1α jα j+1 . . . with α jα1 . . .
α j−1 α j+1 . . .. This is possible since by (A2) the actions α1, . . . ,α j−1 are indepen-
dent of α j. The resulting path π̂ is stutter-equivalent to π by condition (A1).

(T2) If α j /∈ ample(s1) for all j ≥ 1 and ample(s1) = {β} then replace the action se-
quence α1α2 . . . with βα1α2 . . .. Again, (A2) ensures that each α j is independent of
β. (A1) yields the stutter-equivalence of π and the resulting path π̂.

Note, that the insertion of the additional action in transformation (T2) possibly changes
the cumulative reward. Since we are interested in the cumulative reward that is gained
until a certain state labelling is reached, the action permutation in transformation (T1)
possibly changes this reward, as can be seen in Example 1 (note that a stutter action is
permuted to the front of the action sequence).

To establish the equivalence of M and M̂ for PCTLr it seems to be sufficient to
ensure that, in transformation (T2), the additional action β has zero reward, and in
transformation (T1), the stutter action α j , that is permuted to the front of the action
sequence, has zero reward. This motivates the following stronger branching condition:

A4′ (New branching condition) If ample(s) 
= Act(s) then ample(s) = {β} for some
non-probabilistic action with rew(β) = 0.
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Fig. 2. Mutual exclusion example: (a) components, (b) full system and (c) reduced MDP

Theorem 2. If (A1)-(A3), (A4′) hold then M and M̂ satisfy the same PCTLr formulae.

Example 2. To illustrate our approach we consider a simple mutual exclusion protocol
in which the processes P1 and P2 attempt to access a common resource controlled by
a resource manager. A shared variable x is used to guarantee mutual exclusion and
we assume that the communication is unreliable (requests to the resource manager are
corrupted/lost with probability 0.1). Fig. 2(a) presents the different components of the
system. Associating a reward of 1 with the actions req1 and req2 and 0 with all other
actions, using PCTLr one can, for example, specify:

– R≤1.4(crit1 ∨ crit2) : the expected number of requests before a process enters the
critical section is at most 1.4;

– P>0.7(true U[0,6] crit1∨crit2): the probability that a process enters its critical section
after at most 6 requests have been issued is strictly greater than 0.7.

Fig. 2(b) gives the full MDP for the system and (assuming AP = {crit1,crit2}) one can
construct the reduced system given in Fig. 2(c) satisfying conditions (A1)-(A4′). �

4 Preservation Result for (A1)-(A4) and Reward-Based Properties

We now turn to the question of which properties with nontrivial reward bounds are
preserved by (A1)-(A3) and the original branching condition (A4) in Fig. 1. Let us
again look at the path transformation described in (T1) and (T2) where, given a path
π in M a path π̂ is generated, where either the action sequence of π̂ is a permutation
of the action sequence of π (T1) or π̂ starts with a non-probabilistic stutter action and
then performs the same action sequence as the original path π (T2). As the rewards are
in IR we do not know, how the cumulative reward of π̂ has changed compared to that
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of π. If we however require that the rewards of all actions are non-negative, along the
modified path π̂ a reward equal or greater will be earned than that along π. This yields
an informal explanation why the additional power of M can lead to smaller minimal
expected rewards, but the maximal expected rewards agree in M and M̂ . Similarly, we
might expect that the minimal probabilities for events of the form a1U[0,r]a2 agree under

M and M̂ . The same holds for maximal probabilities for events of the form �[0,r]a. This
motivates the definition of the following sublogic of PCTLr.

Let PCTL−r be the sublogic of PCTLr which only uses the R -operator with upper re-
ward bounds, i.e., formulae of the form R [0,r](Φ), and where the probabilistic operator
is only used in combination with PCTL-path formulae Φ1UΦ2 or with the until-operator
in combination with upper reward and lower probability bounds or in combination with
lower reward and upper probability bounds or with the always-operator in combination
with upper reward and upper probability bounds or in combination with lower reward
and lower probability bounds, e.g. P [0,p](�[0,r]Φ) or P(p,1](Φ1U[0,r]Φ2). Note that PCTL
is contained in PCTL−r . (The result stated in Theorem 3 would still hold when dealing
with a release- or weak until operator rather than the always-operator.)

Theorem 3. If (A1)-(A4) hold and rew(α) ≥ 0 for all α ∈ Act then M and M̂ satisfy
the same PCTL−r formulae.

Proof. (sketch) As is the case for many other types of (bi)simulation relations for prob-
abilistic systems, our notion of bisimulation equivalence will use the concept of weight
functions [18,19]. Let S, S′ be finite sets and R ⊆ S× S′. If ν and ν′ are distributions
on S and S′ respectively then a weight function for (ν,ν′) with respect to R denotes a
function w : S× S′ → [0,1] such that {(s,s′) : w(s,s′)> 0} ⊆ R, ∑u′∈S′ w(s,u′) = ν(s)
and ∑u∈S w(u,s′) = ν′(s′) for all s ∈ S, s′ ∈ S′. We write ν.R ν′ iff there exists a weight
function for (ν,ν′) with respect to R and refer to .R as the lifting of R to distributions.

Definition 1 (Normed (bi)simulation). Let M = (SM ,Act,PM ,sM
init,AP,LM , rew) and

N = (SN ,Act, PN , sN
init,AP,LN , rew) be two MDPs with the same set of atomic proposi-

tions, the same action set Act and the same reward structure rew : Act → IR≥0. A normed
reward simulation for (M ,N ) with respect to rew is a triple (R,η1,η2) consisting of a
binary relation R⊆ SM ×SN and functions η1,η2 : R → IN such that (sM

init,s
N
init) ∈ R and

for each pair (s,s′) ∈ R the following conditions hold.

(N1) LM (s) = LN (s′)
(N2) If α ∈ ActM (s) then at least one of the following conditions holds:

(N2.1) α is enabled in s′ (i.e., α ∈ ActN (s′)) and PM (s,α, ·) .R PN (s′,α, ·),
(N2.2) α is a non-probabilistic stutter action s. th. (sα,s′)∈R and η1(sα,s′)<η1(s,s′).
(N2.3) There is a non-probabilistic stutter action β ∈ ActN (s′) with (s,s′β) ∈ R and

η2(s,s′β)< η2(s,s′).

A normed bisimulation for (M ,N ) is a tuple (R,η1,η2,η−1 ,η−2 ) such that (R,η1,η2)
and (R−1,η−1 ,η−2 ) are normed simulations for (M ,N ), resp. (N ,M ). �

We write M ≈nb N iff there exists a normed bisimulation for M and N .
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A forming path from s to ŝ means a path s = s0
β0−→ s1

β1−→ · · · βn−1−−→ sn = ŝ where
β0, . . . ,βn−1 are non-probabilistic stutter actions, and for 0≤ i<n, the singleton action-
set {βi} fulfils the dependence condition (A2) for state si. A shortest forming path from
s to ŝ means a forming path from s to ŝ where the cumulative reward is minimal under all
forming paths from s to ŝ and where the length (number of actions) is minimal under all
forming paths with minimal cumulative reward. We will write μ(s, ŝ) for the cumulative
reward of all/some shortest forming path from s to ŝ. s  ŝ denotes the existence of a
forming path from s to ŝ and we put R = {(s, ŝ) ∈ S× Ŝ : s  ŝ}.

If (s, ŝ) ∈ R then

PrA,s(Π(s,r+μ(s, ŝ),C1, . . . ,Cn))≥ PrB,ŝ(Π(ŝ,r,C1, . . . ,Cn)) (∗)

and PrA,s(Π(s,C1, . . . ,Cn)) = PrB,ŝ(Π(ŝ,C1, . . . ,Cn)). Here, we used the following nota-
tion. Let u ∈ S, C1,C2, . . . ,Cn be a sequence of ≈nb-equivalence classes with Ci 
= Ci+1

for 1 ≤ i < n and r ≥ 0. Then, Π(u,r,C1, . . . ,Cn) denotes the set of all infinite paths

that have a finite prefix of the form u0 →∗
C1

ũ1
γ1−→ u2 →∗

C2
ũ2

γ2−→ · · · γn−2−−→ un−1 →∗
Cn−1

ũn−1
γn−1−−→ un where u0 = u and the total reward is ≤ r and un ∈Cn. The actions γi are

arbitrary. In this context, v→∗
C ṽ means a finite path built out of non-probabilistic stutter

actions such that v, ṽ and all intermediate states of that path belong to C. Π(u,C1, . . . ,Cn)
stands for the union of the path-sets Π(u,r,C1, . . . ,Cn) for arbitrary r≥ 0. For s = sinit = ŝ
we have μ(s, ŝ) = μ(sinit,sinit) = 0.

The above yields that for each scheduler A for M there exists a scheduler B for M̂
such that PrA(Π(sinit,r,C1, . . . ,Cn))≥ PrB(Π(sinit,r,C1, . . . ,Cn)) for all r≥ 0 and all≈nb-
equivalence classes C1, . . . ,Cn. From this we can derive that M and M̂ fulfil the same
PCTL−r formulae. �

Example 3. Let us return to Example 2 and redefine the rewards such that the only
nonzero rewards are for actions demand1 and demand2 which have reward 1. Now, in
this situation the reduced MDP in Fig. 2(c) can no longer be constructed using (A1)-
(A4′). However, this construction is still possible under (A1)-(A4).

This is demonstrated by the fact that both the reduced and full MDP satisfy the
PCTL−r property R [0,2](crit1∨ crit2) (the maximum expected number of processes that
can attempt to enter the critical section before one of them does so is at most 2), while
only the reduced model satisfies the PCTLr property R [2,∞)(crit1∨crit2) (the minimum
expected number is at least 2). �

5 Reward Properties w.r.t Discounted Rewards

In many research areas (e.g. economics, operations research, control theory) rewards are
treated with a different semantics, namely as so-called discounted rewards [27], where
given a discount factor 0 < c < 1, the reward of the i-th action of a path is multiplied
with ci−1. This interpretation of rewards reflects the fact that a reward (e.g. a payment)
in the future is not worth quite as much as it is now (e.g. due to inflation). In this Section
we investigate our partial order approach for discounted rewards.
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Given a path ς = s0
α1−→ s1

α2−→ s2
α3−→ · · · and a discount factor c ∈ (0,1), we de-

note by ρc(ς, i) = rewc(α1 . . .αi) = c0 · rew(α1)+c1 · rew(α2)+ · · ·+ci−1 · rew(αi) the
cumulative discounted reward obtained through the first i actions.

With this on hand we can define the logic PCTLc, which is a variant of PCTLr. In
PCTLc, we use the new operators Uc

I and R c
I instead of UI and R I , where instead

of the cumulative reward ρ(ς, i) the cumulative discounted reward ρc(ς, i) is used in the
semantics of those new operators. The semantics of the Uc

I operator is as follows. Given

a path ς = s0
α1−→ s1

α2−→ s2
α3−→ · · · , we say that ς |= Φ1Uc

I Φ2 iff ∃i≥ 0 s.t si |= Φ2 ∧ ∀ j <
i : s j |= Φ1 ∧ ρc(ς, i) ∈ I. Similarly, given a set of states T ⊆ S we denote by Rewc(ς,T )
the discounted reward that is earned until a T -state is visited the first time. Formally, if
state(ς, i) /∈ T for all i≥ 0 then Rewc(ς,T ) = ∞. If state(ς, i) ∈ T and state(ς, j) /∈ T for
all j < i then Rewc(ς,T ) = ρc(ς, i). For T ⊆ S and a scheduler A, IEA,s

c (♦T ) denotes the
expected value under A with starting state s for the random function ς �→ Rewc(ς,T ).
Then s |= R c

I(Φ) iff ∀ schedulers A: IEA,s
c (♦Sat(Φ)) ∈ I.

A simple example shows that theorem 2 does not hold for PCTLc (even if all re-
wards are nonnegative). Consider the MDP M in example 1 on page 313. We assign
the following rewards : rew(α) = 0, rew(β) = rew(γ) = 1. Choosing ample(s) = {α},
conditions (A1)-(A3) and (A4’) are satisfied. However, if we consider the formula
Φ = R c

[0,c](a), we gain that the reduced system M̂ satisfies Φ while the original system

M does not, because M might choose action β in state s which yields the expected
discounted reward to reach an a-state to be c0 · rew(β) = 1 > c.

The reader should notice that due to the discounting, the transformations (T1) and
(T2) described in Section 3 on page 314 change the reward of a given path, even under
condition (A4’) which requires the ample set of a non-fully expanded state to be a
singleton consisting of a non-probabilistic action with zero reward. Nevertheless, the
following holds: given an MDP M with only non-negative rewards, ample-sets that
satisfy (A1)-(A3) and (A4’) and a path ς in M , let ς̂ be a path that emanates from
ς by applying transformation (T1) or (T2). Then ρc(ς̂, i) ≤ ρc(ς, i). Similarly as in
Section 4 this informally explains that the additional power of M can lead to greater
maximal expected rewards, but the minimal expected rewards agree in M and M̂ . Also,
the maximal probabilities for events of the form a1Uc

[0,r]a2 agree under M and M̂ . This
motivates the definition of the following sublogic of PCT Lc.

Let PCT L−c be the sublogic of PCTLc which uses the R c operator only with lower
reward bounds (i.e R c

[r,∞)Φ) and where the probabilistic operator is only used in combi-
nation with PCTL-path formulae Φ1UΦ2 or with the until-operator in combination with
lower reward and lower probability bounds or in combination with upper reward and
upper probability bounds or with the always-operator in combination with upper reward
and lower probability bounds or in combination with lower reward and upper probabil-
ity bounds, e.g. P [0,p](�[r,∞)Φ) or P [0,p](Φ1U[0,r]Φ2). Note that PCTL is contained in
PCTL−c .

Theorem 4. If (A1)-(A3) and (A4’) hold and rew(α) ≥ 0 for all α ∈ Act then M and
M̂ satisfy the same PCTL−c formulae.
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6 Conclusion

The goal of this paper was to study the theoretical foundations of the ample-set approach
for the logic PCTLr, a variant of PCTL with reward-bounded temporal modalities and
an expectation operator. The main results of this paper are that the ample-set conditions
presented in [4] for PCTL preserve a class of non-trivial reward-based properties (The-
orem 3) and that a slight modification of the conditions of [4] are sufficient to treat full
PCTLr (Theorem 2). The proofs of these results have been established by means of a
new notion of weak bisimulation for MDPs which preserves PCTLr and – since it is
simpler than other notions of weak bisimulation equivalence for MDPs – might also
be useful for other purposes. Moreover we investigated the logic PCTLc, a variant of
PCTLr where the rewards are given a discounting semantics. We presented ample-set
conditions that preserve a non-trivial subset of PCTLc properties if all given rewards
are non-negative (Theorem 4).

Besides being of theoretical interest, the results of this paper also have a practical
impact. First experimental results on the ample set approach for MDPs (without reward
structure) with the forthcoming model checker LiQuor [3] show that although the cri-
teria needed for probabilistic systems are stronger than in the non-probabilistic case,
good reductions can be obtained. Furthermore, the bottleneck in analysis of probabilis-
tic systems modelled by MDPs are the required techniques for solving linear programs.
Since the amount of time required for the construction of the reduced MDP is negligi-
ble compared to the running time of linear program solvers, even small reductions can
increase the efficiency of the quantitative analysis.

In future work, we plan to integrate the partial order reduction techniques suggested
here in the symbolic MTBDD-based model checker PRISM [16] by constructing a syn-
tactic representation of the reduced MDP at compile time, in the style of static partial
order reduction [20] which permits a combination of partial order reduction with sym-
bolic BDD-based model checking.
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Abstract. We study the synthesis problem for external linear or branch-
ing specifications and distributed, synchronous architectures with arbi-
trary delays on processes. External means that the specification only
relates input and output variables. We introduce the subclass of uni-
formly well-connected (UWC) architectures for which there exists a rout-
ing allowing each output process to get the values of all inputs it is con-
nected to, as soon as possible. We prove that the distributed synthesis
problem is decidable on UWC architectures if and only if the set of all
sets of input variables visible by output variables is totally ordered, un-
der set inclusion. We also show that if we extend this class by letting
the routing depend on the output process, then the previous decidabil-
ity result fails. Finally, we provide a natural restriction on specifications
under which the whole class of UWC architectures is decidable.

1 Introduction

Synthesis is an essential problem in computer science considered by Church in [2].
It consists in translating a system property, given in a high level specification
language (such as temporal logic) into a low-level equivalent model (such as a fi-
nite automaton). The problem can be parametrized by the specification language
and the target model. For instance, synthesis for infinite sequential systems from
monadic second order formulas is simply Büchi’s theorem.

In this paper, we address the synthesis problem for distributed open syn-
chronous systems and temporal logic specifications. This specific question has
been first studied in [11], where general synthesis has been proved undecidable for
LTL specifications, and LTL synthesis for pipeline architectures has been shown
non elementarily decidable, the lower bound following from a former result on
multiplayer games [10]. For local specifications, constraining only variables lo-
cal to processes [8], the general problem is undecidable (though doubly flanked
pipelines become decidable.)
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The pipeline architecture has been shown decidable for CTL∗ full specifica-
tions [5], that is, specifications allowed to constrain all variables of the system.
In this case, where decidability of the distributed synthesis is obtained, full
specifications strengthen the result.

A decision criterion, established in [3] for full specifications, implies that the ar-
chitecture of Figure 1 is undecidable. The reason is that specifications are allowed
to enforce a constant value on variable t, breaking the link between processes p0

and p1. For the undecidability part of the criterion, allowing specifications on all
variables allows easy reductions to the basic undecidable architecture of Pnueli
and Rosner [11], for instance by breaking communication links at will.

In the seminal paper [11], specifications were assumed to be external, or
input-output : only variables communicating with the environment could be con-
strained. The way processes of the system communicate was only restricted by
the communication architecture, not by the specification. This is very natural
from a practical point of view: when writing a specification, we are only con-
cerned by the input/output behavior of the system and we should leave to the
implementation all freedom on its internal behavior. For that reason, solving
the problem for external specifications is more relevant and useful - albeit more
difficult - than a decidability criterion for arbitrary specifications. We will show
that the architecture of Figure 1 is decidable for external specifications, that is,
if we do not constrain the internal variable t.

Contributions. We consider the synthesis problem for synchronous semantics,
where each process is assigned a nonnegative delay. The delays can be used to
model latency in communications, or slow processes. This model has the same
expressive power as the one where delays sit on communication channels, and it
subsumes both the 0-delay and the 1-delay classical semantics [11,5].

To rule out unnatural properties yielding undecidability, the specifications we
consider are external, coming back to the original framework of [11,2]. We first
determine a sufficient condition for undecidability with external specifications,
that generalizes the undecidability result of [11]. We next introduce uniformly
well-connected (UWC) architectures. Informally, an architecture is UWC if there
exists a routing of input variables allowing each output process to get, as soon as
possible, the values of all inputs it is connected to. Using tree automata, we prove
that for such architectures, the sufficient condition for undecidability becomes
a criterion, for external specifications. We also propose a natural restriction on
specifications for which all UWC architectures becomes decidable.

x0 x1

p0 p1

y0 y1

t

Fig. 1. Architecture decidable for external/undecidable for full specifications
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Finally, we introduce the larger class of well-connected architectures, in which
the routing of input variables to an output process can depend on that process.
We show that our criterion is not necessary anymore for this larger class. Whether
the restricted external specifications are always decidable for this class, as it is the
case for UWC architectures, remains open. The undecidability proof highlights
the surprising fact that in Figure 1, blanking out a single information bit in the
transmission of x0 to p1 through t suffices to yield undecidability. This is a step
forward in understanding decidability limits for distributed synthesis.

Due to lack of space, proofs are omitted or only sketched in this extended
abstract. A full version is available in [4].

2 Preliminaries

Trees and tree automata. Given two finite sets X and Y , a Y -labeled (full) X-
tree is a (total) function t : X∗ → Y where elements of X are called directions,
and elements of Y are called labels. A word σ ∈ X∗ defines a node of t and t(σ)
is its label. The empty word ε is the root of the tree. A word σ ∈ Xω is a branch.
In the following, a tree t : X∗ → Y will be called an (X, Y )-tree.

A non-deterministic tree automaton (NDTA) A = (X, Y, Q, q0, δ, α) runs on
(X, Y )-trees. It consists of a finite set of states Q, an initial state q0, a transition
function δ : Q × Y → P(QX) and an acceptance condition α ⊆ Qω. A run ρ
of such an automaton over a (X, Y )-tree t is a (X, Q)-tree ρ such that for all
σ ∈ X∗, (ρ(σ · x))x∈X ∈ δ(ρ(σ), t(σ)). A run tree is accepting if all its branches
s1s2 · · · are such that ρ(ε)ρ(s1)ρ(s1s2) · · · ∈ α. The specific acceptance condition
chosen among the classical ones is not important in this paper.

Architectures. An architecture A = (V 5 P, E, (Sv)v∈V , s0, (dp)p∈P ) is a finite
directed acyclic bipartite graph, where V 5 P is the set of vertices, and E ⊆
(V × P ) ∪ (P × V ) is the set of edges, such that |E−1(v)| ≤ 1 for all v ∈ V .
Elements of P will be called processes and elements of V variables. Intuitively,
an edge (v, p) ∈ V × P means that process p can read variable v, and an edge
(p, v) ∈ P × V means that p can write on v. Thus, |E−1(v)| ≤ 1 means that
a variable v is written by at most one process. Input and output variables are
defined, respectively, by VI = {v ∈ V | E−1(v) = ∅} and VO = {v ∈ V |
E(v) = ∅}. Variables in V \ (VI ∪ VO) will be called internal. We assume that
no process is minimal or maximal in the graph. Each variable v ranges over a
finite domain Sv, given with the architecture. The initial value of the variables
is s0 = (sv

0)v∈V ∈
∏

v∈V Sv. We will consider that |Sv| ≥ 2 for all v ∈ V . In
fact, if not, such a variable would always have the same value, and could be
ignored. It will be convenient in some proofs to assume that {0, 1} ⊆ Sv and
that sv

0 = 0 for all v ∈ V . Each process p ∈ P is associated with a delay dp ∈ N
that corresponds to the time interval between the moment the process reads the
variables v ∈ E−1(p) and the moment it will be able to write on its own output
variables. Note that delay 0 is allowed. In the following, for v ∈ V , we will often
write dv for dp where E−1(v) = {p}.
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Fig. 2. An architecture

An example of an architecture is given in Figure 2, where processes are rep-
resented by boxes and variables by circles.
Runs. When U ⊆ V , SU will denote

∏
v∈U Sv. A configuration of the architecture

is given by a tuple s ∈ SV describing the value of the variables. For s = (sv)v∈V ∈
SV , U ⊆ V , we denote by sU = (sv)v∈U the projection of the configuration s
to the subset of variables U . A run of an architecture is an infinite sequence
of configurations, i.e., an infinite word over the alphabet SV , starting with the
initial configuration s0 ∈ SV given by the architecture. If σ = s0s1s2 · · · ∈ (SV )ω

is a run, then its projection on U is σU = sU
0 sU

1 sU
2 · · · . Also, we denote by σ[i]

the prefix of length i of σ (by convention, σ[i] = ε if i ≤ 0). A run tree is a
full tree t : (SVI)∗ → SV , where t(ε) = s0 and for ρ ∈ (SVI)∗, r ∈ SVI , we have
(t(ρ · r))VI = r. The projection of t on U ⊆ V is the tree tU : (SVI)∗ → SU

defined by tU (ρ) = t(ρ)U .
Specifications. Specifications over a set U ⊆ V of variables can be given, for
instance, by a μ-calculus, CTL∗, CTL, or LTL formula, with atomic propositions
of the form (v = a) for v ∈ U and a ∈ Sv. We then say that the formula is in
L(U) where L is the logic used. A specification is external if U ⊆ VI ∪ VO. The
validity of an external formula on a run tree t (or simply a run) only depends
on its projection tVI∪VO onto VI ∪ VO.
Programs, strategies. We consider a discrete time, synchronous semantics. In-
formally, at step i = 1, 2, . . ., the environment provides new values for input
variables. Then, each process p reading values written by its predecessors or by
the environment at step i − dp, computes values for the variables it writes to,
and writes them. Let v ∈ V \ VI and let R(v) = E−2(v) be the set of variables
read by the process writing to v. Intuitively, from a word (s0σ)R(v) in (SR(v))+

representing the projection on R(v) of some run prefix, a program (or a strat-
egy) advices a value to write on variable v. But, since the process may have
a certain delay dv, the output of the strategy must not depend on the last dv

values of (s0σ)R(v). Since all runs begin by s0, this initial configuration is ir-
relevant for a strategy which only depends on σR(v). Formally, a program (or
local strategy) for variable v is a mapping fv :

(
SR(v)

)+ → Sv compatible with
the delay dv, i.e., such that for all ρ, ρ′ ∈ (SR(v))i, if ρ[i − dv] = ρ′[i − dv],
then fv(ρ) = fv(ρ′). This condition ensures that the delay dv is respected when
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computing the next value of variable v. A distributed program (or distributed
strategy) is a tuple F = (fv)v∈V \VI of local strategies. A run σ ∈ (SV )ω is an
F -run (or F -compatible) if for all v ∈ V \ VI, sv

i = fv(σR(v)[i]). Given an input
sequence ρ ∈ (SVI)ω, there is a unique run σ which is F -compatible and such
that σVI = ρ. The F -run tree is the run tree t : (SVI)∗ → SV such that each
branch is labeled by a word s0s1s2 · · · ∈ (SV )ω which is an F -run. Note that,
in an F -run, the prefix σ[i] only depends on the prefix ρ[i]. This shows that the
F -run tree is unique.

For a variable v ∈ V , we let View(v) = (E−2)∗(v) ∩ VI be the set of input
variables v might depend on. Observe that if s0σ is an F -run then, for all v ∈
V \ VI, for all i > 0, sv

i only depends on σView(v)[i]. This allows us to define the
summary f̂v : (SView(v))+ → Sv such that f̂v(σView(v)[i]) = sv

i , corresponding
to the composition of all local strategies used to obtain the value of v.

Remark 1. The compatibility of the strategies F = (fv)v∈V \VI with the de-
lays (dv)v∈V \VI extends to the summaries F̂ = (f̂v)v∈V \VI . Formally, a map
h : (SView(v))+ → Sv is compatible with the delays if for all ρ ∈ (SView(v))i,
h(ρ) only depends on the prefixes (ρu[i− d(u, v)])u∈View(v), where d(u, v) is the
smallest cumulative delay of transmission between u and v, i.e.,

d(u, v) = min{dv1 + · · ·+ dvn | u E2 v1 E2 . . . E2 vn = v is a path in A}.

The strategy fv is memoryless if it does not depend on the past, that is, if there
exists g : SR(v) → Sv such that fv(s1 · · · si · · · si+dv ) = g(si) for s1 · · · si+dv ∈
(SR(v))+. In case dv = 0, this corresponds to the usual definition of a memoryless
strategy.
Distributed synthesis problem. Let L be a specification language. The distributed
synthesis problem for an architecture A is the following: given a formula ϕ ∈
L, decide whether there exists a distributed program F such that every F -
run (or the F -run tree) satisfies ϕ. We will then say that F is a distributed
implementation for the specification ϕ. If for some architecture the synthesis
problem is undecidable, we say that the architecture itself is undecidable (for
the specification language L).

3 Architectures with Uncomparable Information

In this section, we state a necessary condition for decidability.

Definition 2. An architecture has uncomparable information if there exist vari-
ables x, y ∈ VO such that View(x) \ View(y) 
= ∅ and View(y) \ View(x) 
= ∅.
Otherwise the architecture has linearly preordered information.

For instance, the architectures of Figures 1 and 3 have linearly preordered infor-
mation. The following proposition extends the undecidability result of [11,3].

Proposition 3. Architectures with uncomparable information are undecidable
for LTL or CTL external specifications.
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4 Uniformly Well-Connected Architectures

This section introduces the new class of uniformly well-connected (UWC) archi-
tectures and provides a decidability criterion for the synthesis problem on this
class. It also introduces the notion of robust specifications and shows that UWC
architectures are always decidable for external and robust specifications.

A routing for an architecture A = (V ∪P, E, (Sv)v∈V , s0, (dp)p∈P ) is a family
Φ = (fv)v∈V \(VI∪VO) of memoryless local strategies. Observe that a routing
does not include local strategies for output variables. Informally, we say that an
architecture is uniformly well connected if there exists a routing Φ that allows
to transmit to every output variable v, with a minimal delay, the value of the
variables in View(v).

Definition 4. An architecture A is uniformly well-connected (UWC) if there
exist a routing Φ and, for every v ∈ VO and u ∈ View(v), a decoding function
gu,v :

(
SR(v)

)+ → Su that can reconstruct the value of u, i.e., such that for any
Φ-compatible sequence σ = s1s2 · · · ∈

(
SV \VO

)+, we have for i > 0

su
i = gu,v(σR(v)[i + d(u, v)− dv]) (1)

In case there is no delay, the uniform well-connectedness refines the notion of
adequate connectivity introduced by Pnueli and Rosner in [11], as we no longer
require each output variable to be communicated the value of all input variables,
but only those in its view. In fact, this gives us strategies for internal variables,
that are simply to route the input to the processes writing on output variables.

Observe that, given an architecture, there is a finite number of routings and a
finite number of decoding functions, so that the property of being UWC is NP.
Actually, the problem is NP-complete: using a natural reduction, this follows
from the NP-hardness of the multicast problem [7], which is a special instance
of the network information flow problem [1].

We first show that distributed programs are somewhat easier to find in a UWC
architecture. As a matter of fact, in such architectures, to define a distributed
strategy it suffices to define a collection of input-output strategies that respect
the delays given by the architecture.

Lemma 5. Let A = (V ∪ P, E, (Sv)v∈V , s0, (dp)p∈P ) be a UWC architecture.
For each v ∈ VO, let hv : (SView(v))+ → Sv be an input-output mapping which
is compatible with the delays of A. Then there exists a distributed program F =
(fv)v∈V \VI over A such that hv = f̂v for all v ∈ VO.

We now give a decision criterion for this specific subclass of architectures.

Theorem 6. A UWC architecture is decidable for external (linear or branching)
specifications if and only if it has linearly preordered information.

We have already seen in Section 3 that uncomparable information yields unde-
cidability of the synthesis problem for LTL or CTL external specifications. We
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prove now that, when restricted to the subclass of UWC architectures, this also
becomes a necessary condition.

We assume that the architecture A is UWC and has linearly preordered in-
formation, and therefore we can order the output variables VO = {v1, . . . , vn} so
that View(vn) ⊆ · · · ⊆ View(v1) ⊆ VI.

In the following, in order to use tree-automata, we extend a strategy f :
(SX)+ → SY by f(ε) = sY

0 so that it becomes a (SX , SY )-tree. We proceed
in two steps. First, we build an automaton accepting all the global input-output
0-delay strategies implementing the specification. A global input-output 0-delay
strategy for A is a (SView(v1), SVO)-tree h satisfying h(ε) = sVO

0 . This first step
is simply the program synthesis for a single process with incomplete information
(since we may have View(v1) � VI). This problem was solved in [6] for CTL∗

specifications.

Proposition 7 ([6, Th. 4.4]). Given an external specification ϕ ∈ CTL∗(VI ∪
VO), one can build a NDTA A1 over (SView(v1), SVO)-trees such that h ∈ L(A1)
if and only if the run tree induced by h satisfies ϕ.

If L(A1) is empty, then we already know that there are no distributed implemen-
tations for the specification ϕ over A. Otherwise, thanks to Lemma 5, we have
to check whether for each v ∈ VO there exists an (SView(v), Sv)-tree hv which is
compatible with the delays and such that the global strategy

⊕
v∈VO

hv induced
by the collection (hv)v∈VO is accepted by A1. Formally, the sum of strategies
is defined as follows. Let X = X1 ∪ X2 ⊆ VI and Y = Y1 5 Y2 ⊆ VO, and for
i = 1, 2 let hi be a (SXi , SYi)-tree. We define the (SX , SY )-tree h = h1 ⊕ h2 by
h(σ) = (h1(σX1), h2(σX2)) for σ ∈ (SX)∗.

To check the existence of such trees (hv)v∈VO , we will inductively eliminate
the output variables following the order v1, . . . , vn. It is important that we start
with the variable that views the largest set of input variables, even though,
due to the delays, it might get the information much later than the remaining
variables. Let Vk = {vk, . . . , vn} for k ≥ 1. The induction step relies on the
following statement.

Proposition 8. Let 1 ≤ k < n. Given a NDTA Ak accepting (SView(vk), SVk)-
trees, we can build a NDTA Ak+1 accepting (SView(vk+1), SVk+1)-trees, such that
a tree t is accepted by Ak+1 if and only if there exists a (SView(vk), Svk)-tree hvk

which is compatible with the delays and such that hvk ⊕ t is accepted by Ak.

The proof of Proposition 8 divides in two steps. Since Vk = {vk}∪Vk+1, for each
(SView(vk), SVk)-tree t we have t = tvk ⊕ tVk+1 (recall that tU is the projection of
t on U). So one can first turn the automaton Ak into A′

k that accepts the trees
t ∈ L(Ak) such that tvk is compatible with the delays (Lemma 9). Then, one can
build an automaton that restricts the domain of the directions and the labeling
of the accepted trees to SView(vk+1) and SVk+1 respectively.

Lemma 9. Let v ∈ U ⊆ VO. Given a NDTA A over (SView(v), SU )-trees one
can build a NDTA A′ = compatv(A) also over (SView(v), SU )-trees such that
L(A′) = {t ∈ L(A) | tv is compatible with the delays}.
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Proof. Intuitively, to make sure that the function tv is compatible with the
delays, the automaton A′ will guess in advance the values of tv and then check
that its guess is correct. The guess has to be made K = max{d(u, v), u ∈
View(v)} steps in advance and consists in a function g : (SView(v))K → Sv that
is already compatible with the delays and that predicts what will be the v-values
K steps later. During a transition, the guess is sent in each direction r ∈ SView(v)

as a function r−1g defined by (r−1g)(σ) = g(rσ) which is stored in the state of
the automaton. Previous guesses are refined similarly and are also stored in the
state of the automaton so that the new set of states is Q′ = Q × F where F
is the set of functions f : (SView(v))<K → Sv which are compatible with the
delays, where Z<K =

⋃
i<K Zi. The value f(ε) is the guess that was made K

steps earlier and has to be checked against the current v-value of the tree.
Transitions of A′ will be defined using the function Δ : F × SView(v) → P(F)

given by Δ(f, r) = {f ′ | f ′(σ) = f(rσ) for |σ| < K − 1}. Note that the values
f ′(σ) for |σ| = K − 1 do not depend on f and correspond to the new guess g
refined by r as intuitively described above. Now, the transition function of A′ is

δ′
(
(q, f), (f(ε), s)

)
=
{

(qr, fr)r∈SView(v)

∣∣∣ (qr)r∈SView(v) ∈ δ(q, (f(ε), s)) and
fr ∈ Δ(f, r) for all r ∈ SView(v)

}
.

Finally, the set of initial states of A′ is I ′ = {q0} × F and α′ = π−1(α) where
π : (Q×F)ω → Qω is the projection on Q, i.e., a run of A′ is accepted if and only
if its projection on Q is an accepted run of A. One can check that the automaton
A′ satisfies the requirements of Lemma 9. �

Proof (of Proposition 8). We consider the NDTA compatvk
(Ak). It remains

to project away the Svk component of the label and to make sure that the
SVk+1 component of the label only depends on the SView(vk+1) component of
the input. The first part is the classical projection on SVk+1 of the automaton
and the second part is the narrowing construction introduced in [6]. The au-
tomaton Ak+1 fulfilling the requirements of Proposition 8 is therefore given by
narrowView(vk+1)(projVk+1

(compatvk
(Ak))). Note that, even when applied to a

NDTA, the narrowing construction of [6] yields an alternating tree automaton.
Here we assume that the narrowing operation returns a NDTA using a classical
transformation of alternating tree automata into NDTA [9]. The drawback is
that this involves an exponential blow up. Unfortunately, this is needed since
Lemma 9 requires a NDTA as input. �

We can now conclude the proof of Theorem 6. Using Proposition 8 inductively
starting from the NDTA A1 of Proposition 7, we obtain a NDTA An accept-
ing a (SView(vn), Svn)-tree hvn if and only if for each 1 ≤ i < n, there exists
a (SView(vi), Svi)-tree hvi which is compatible with the delays and such that
hv1 ⊕ · · · ⊕ hvn is accepted by A1. Therefore, using Remark 1 and Lemma 5,
there is a distributed implementation for the specification over A if and only if
L(compatvn

(An)) is nonempty. The overall procedure is non-elementary due to
the exponential blow-up of the inductive step in Proposition 8. �
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We now show that we can obtain decidability of the synthesis problem for the
whole subclass of UWC architectures by restricting ourselves to specifications
that only relate output variables to their own view.

Definition 10. A specification ϕ ∈ L with L ∈ {LTL,CTL,CTL∗} is robust
if it is a (finite) disjunction of formulas of the form

∧
v∈VO

ϕv where ϕv ∈
L(View(v) ∪ {v}).

Proposition 11. The synthesis problem for UWC architectures and external
robust CTL∗ specifications is decidable.

Proof. LetA = (V ∪P, E, (Su)u∈V , s0, (dp)p∈P ) be a UWC architecture and ϕ be
an external and robust CTL∗ specification. Without loss of generality, we may as-
sume that ϕ =

∧
v∈VO

ϕv where ϕv ∈ CTL∗(View(v)∪{v}). Using Proposition 7,
for each v ∈ VO we find a NDTA Av accepting a strategy h : (SView(v))∗ → Sv

if and only if the induced run tree tv : (SView(v))∗ → SView(v)∪{v} satisfies ϕv.
Using Remark 1 and Lemma 5 one can show the following claim from which
Proposition 11 follows.
Claim. There exists a distributed implementation of ϕ over A if and only if for
each v ∈ VO, the automaton compatv(Av) is nonempty. �

5 Well-Connected Architectures

It is natural to ask whether the decision criterion for UWC architectures can
be extended to a larger class. In this section, we relax the property of uniform
well-connectedness and show that, in that case, linearly preordered information
is not anymore a sufficient condition for decidability.

Definition 12. An architecture is said to be well-connected, if for each output
variable v ∈ VO, the sub-architecture consisting of (E−1)∗(v) is uniformly well-
connected.

The architecture of Figure 2 is well-connected but not UWC when the variables
are boolean. This follows from similar results on the multicast problem [7]. Hence,
the subclass of UWC architectures is strictly contained in the subclass of well-
connected architecture. Note that the size of the variable domains has a major
influence: any well-connected architecture with sufficiently large domain sizes is
UWC.

The following theorem asserts that, unfortunately, the decision criterion can-
not be extended to well-connected architectures.

Theorem 13. The synthesis problem for LTL specifications and well-connected,
linearly preordered architectures is undecidable.

Let A be the architecture of Figure 3, in which all the delays are set to 0, and
which is clearly well-connected and linearly preordered. To show its undecidabil-
ity, fix a deterministic Turing machine M with tape alphabet Γ and state set Q.
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We reduce the non halting problem of M starting from the empty tape to the
distributed implementability of an LTL specification over A. Let Sz = {0, 1}
for z ∈ V \ {x, y} and Sx = Sy = Γ 5 Q 5 {#} where # is a new symbol. As
usual, the configuration of M defined by state q and tape content γ1γ2, where
the head scans the first symbol of γ2, is encoded by the word γ1qγ2 ∈ Γ ∗QΓ+.
An input word u ∈ 0∗1p0{0, 1}ω encodes the integer n(u) = p and similarly for v.
We construct an LTL specification ϕM forcing any distributed implementation
to output on variable x the n(u)th configuration of M starting from the empty
tape. Processes p0 and p6 play the role of the two processes of the undecidable
architecture of Pnueli and Rosner. The difficulty is to ensure that process p6

cannot receive relevant information about u.
The specification ϕM is a conjunction of five properties described below that

can all be expressed in LTL(VI ∪ VO).

1. The processes pi for i 
= 6 have to output the current values of u and w
until (including) the first 1 occurs on w. Afterwards, they are unconstrained.
Process p6 must always output the value of w on w6. Moreover, after the first
1 on w, it also has to output the current value of u on u6. We can describe
this property with a formula α.

2. If the input word on u (resp. v) is in 0q1p0{0, 1}ω, then the corresponding
output word x (resp. y) is in #q+pΓ ∗QΓ+#ω. This can be expressed by a
formula β.

3. We next express with a formula γ that if n(u) = 1, then the output on x is
the first configuration C1 of M starting from the empty tape.

4. We say that the input words are synchronized if u, v ∈ 0q1p0{0, 1}ω or if
u ∈ 0q1p+10{0, 1}ω and v ∈ 0q+11p0{0, 1}ω. We use a formula δ to express
the fact that if u and v are synchronized and n(u) = n(v), then the outputs
on x and y are equal.

5. Finally, one can express with an LTL formula ψ that if the input words are
synchronized and if n(u) = n(v) + 1, then the configuration encoded on x is
obtained by a computation step of M from the configuration encoded on y.

u w v

x z0p0 q

z1 z2 z3 z4

p1 p2 p3 p4 p5 p6

u1 w1 u2 w2 u3 w3 u4 w4 u5 w5 u6 w6

y

Fig. 3. Undecidable, well-connected, comparable-information architecture
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We first show that there exists a distributed implementation of ϕM over A.
Let ⊕ be the addition modulo 2 (xor). Process p0 forwards u to z0. Process q
forwards u to z1, u⊕w to z2 and w to z3. The strategy for z4 is not memoryless.
Process q forwards w to z4 until (including) the first 1 on w and then it forwards
u⊕w to z4. Formally, fz4(u, 0qb) = b and fz4(ub1, 0q1wb2) = b1⊕b2. We also use
memoryless strategies for the processes pi so that α is satisfied. For instance, the
strategy for p1 is f1(b1, b2) = (b1, b1 ⊕ b2) and the strategy for p6 (y excluded)
is f6(b3, b4) = (b3 ⊕ b4, b3). It is easy to see that with these strategies, the first
property α of the specification is satisfied.

The strategy fx (respectively fy) is to output the pth configuration of M
starting from the empty tape when u (respectively v) encodes p. Then, the rest
of the specification, β ∧ γ ∧ δ ∧ ψ, is satisfied.

Remark 14. Actually, one can define another distributed implementation by
changing only the strategy fz4 : at each step, process q transmits to p6 the value
of u at the preceding step as the mod 2 difference between z3 and z4, until the
first 1 occurs on w. Formally, fz4(u ·a1 ·a2, 0qb) = a1⊕b and we adapt the strate-
gies of p1, . . . , p6 so that α is satisfied. By xoring its two arguments, process p6

can then recover the whole history of u, except the bit occurring simultaneously
with the first 1 of w. Hence, we are almost in the situation of the decidable
architecture of Figure 1, but surprisingly, missing only one bit of information
suffices to induce undecidability.

Let now F = (fv)v∈V \VI be a distributed implementation of ϕM on the archi-
tecture A of Figure 3. We prove that fx must simulate the computation of M
starting from the empty tape.

Let q ≥ 0. For u = 0q1u′, we define u0 = 0q0u′. The next lemma states that
strategies fz3 (resp. fz4) must output the same sequence for u and u0 if the
input word w is suitable. This is the main technical lemma whose proof relies
on the specification α.

Lemma 15. Let u, w ∈ 0q1{0, 1}ω. For k ∈ {3, 4}, we have for all n > 0:

f̂zk(u0[n], w[n]) = f̂zk(u[n], w[n]). (2)

Lemma 16. If x is computed by fx from the input word u then for all p > 0
we have

∀q ≥ 0, u ∈ 0q1p0{0, 1}ω =⇒ x = #p+qCp#ω (3)

where Cp is the p-th configuration reached by M starting from the empty tape.

Proof. The proof is by induction on p. The case p = 1 follows from the specifica-
tion γ. Assume now that u ∈ 0q1p+10{0, 1}ω and let v = 0q+11p0ω and w = 0q1ω.
By induction, for u0 ∈ 0q+11p0{0, 1}ω the output is x = #q+1+pCp#ω. Using δ,
we deduce that on the input triple (u0, v, w) the output is y = x = #q+1+pCp#ω .
Now, by Lemma 15, on the input pairs (u0, w) and (u, w), the outputs on z3 and
z4 are the same. Hence, on the input triples (u0, v, w) and (u, v, w) the outputs
on y must be y = #q+1+pCp#ω by the above. Using ψ, we deduce that on the
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input triple (u, v, w) the output on x must be x = #q+1+pCp+1#ω. This con-
cludes the proof since x only depends on u. �

It is then easy to get the undecidability of the architecture A of Figure 3 by
considering the specification ϕM ∧ G(x 
= halt).

6 Conclusion

In this paper, we have argued that it is meaningful to rule out specifications for
distributed architectures constraining internal variables. We have shown that
every decidable architecture is linearly preordered, and that this condition is
sufficient for deciding external specifications on UWC architectures. On the other
hand, we have exhibited a linearly preordered, yet undecidable well-connected
architecture for external LTL specifications, by simulating the loss of a single
information bit on the UWC architecture of Figure 1.

Finally, we have shown that all UWC architectures are decidable for external
and robust specifications, i.e., specifications constraining external variables which
are causally related by a communication path. A challenging problem is to find
whether this still holds for well-connected architectures.
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Abstract. Structured Operational Semantics (SOS) is a popular
method for defining semantics by means of deduction rules. An important
feature of deduction rules, or simply SOS rules, are negative premises,
which are crucial in the definitions of such phenomena as priority mech-
anisms and time-outs. Orderings on SOS rules were proposed by Phillips
and Ulidowski as an alternative to negative premises. The meaning of
general types of SOS rules with orderings has not been studied hitherto.
This paper presents satisfactory ways of giving a meaning to general SOS
rules with orderings. We also give semantics-preserving transformations
between the two paradigms, namely, SOS with negative premises and
SOS with orderings.

1 Introduction

It is well-known that negative premises in Structured Operational Semantics
(SOS) are useful and non-trivial additions but at the same time they may lead
to ambiguities and paradoxical phenomena with respect to the semantics of
SOS [4,5]. As an alternative to negative premises, [9] proposes to furnish SOS
deduction rules with an ordering. But to avoid the same difficulties as those with
negative premises, [9] restricts itself to the positive subset of GSOS [3] which
does not allow for look-ahead or complex terms as sources of the premises.

It is also well-known from the term rewriting literature that the introduction
of orderings (called priorities) to term rewrite systems introduces challenges for
the well-definedness of the semantics of term rewrite systems [2]. SOS specifi-
cations can be seen as conditional term rewrite systems and thus one expects
similar or even more difficult challenges when studying the general semantics of
SOS with ordering.

A fundamental study of the semantics of ordered SOS (in its full generality)
has not been carried out to date and even misconceptions exist. In [8, Theorem 4],
it is mentioned (without formal proof) that they can generalize their particular
rule format for ordered SOS with look-ahead while preserving the congruence
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property. However, as we show in the remainder of this paper, the introduction
of either look-ahead or complex terms as sources of premises to ordered SOS
jeopardizes the well-definedness of the induced transition relation (let alone the
congruence result).

In the remainder of this paper, in Section 2, we define the basic concept of
Ordered Transition System Specification (OTSS) which is a general framework
for ordered SOS. In the same section, we give some examples, both for illustrating
the applications of ordered SOS and for showing that the semantics of OTSS’s
is not always clear. Then, in Section 3, following [5], we define a model-theoretic
and a proof-theoretic view to the meaning of ordered SOS and prove them equal.
Subsequently, in Sections 4 and 5, we give semantics-preserving transformations
from a novel rule format for ordered SOS (called otyft, for order tyft, where
tyft is a coding for the terms admitted in the deduction rules) to a rule format
for SOS with negative premises (called ntyft [6]) and vice versa. In Section 6 we
show that our otyft rule format indeed induces congruence for strong bisimilarity.
Section 7 concludes the paper.

2 (Ordered) Transition System Specification

2.1 Basic Concepts

Definition 1 (Signature, Term and Substitution). Assume a countable set
of variables V (with typical members x, y, x′, y′, xi, yi . . .). A signature Σ is a set
of function symbols (operators, with typical members f , g, . . .) with fixed arities
ar : Σ → IN. Functions with zero arity are called constants and are typically
denoted by a, b, c and d. Terms s, t, ti, . . . ∈ T are constructed inductively using
variables and function symbols. A list of terms is denoted by

−→
t . When we write

f(
−→
t ), we assume that

−→
t has the right size, i.e., ar(f). All terms are considered

open terms. Closed terms p, q, . . . ∈ C are terms that do not contain a variable
and are typically denoted by p, q, l, p′, pi, . . .. The set of variables appearing in
term t is denoted by vars(t).

Definition 2 (Ordered Transition System Specification (OTSS)). Given
a signature and a set of variables, a Transition System Specification (TSS) is a
set R of deduction rules.

A deduction rule r ∈ R, is defined as a tuple (H, c) where H is a set of
formulae and c is a positive formula. For all t, t′ ∈ T and l ∈ C we define that
φ = t

l→ t′ is a positive formula and φ′ = t
l� is a negative formula. A formula

is a positive or a negative formula. We denote the set of formulae by Φ and
the set of positive fomulae by Φp. Term t is called the source of both φ and
φ′, denoted by src(φ) and src(φ′), and t′ is called the target of φ. The formula
c is called the conclusion of r , denoted by conc(r), and the formulae in H are
called its premises and denoted by prem(r). A positive deduction rule (TSS) is
a deduction rule of which all the premises (all the deduction rules) are positive.
The notions of source and target generalize to a set of formulae, as expected.
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Also, the notion of “variables of” is naturally lifted to sets of terms, formulae,
sets of formulae and deduction rules.

An Ordered Transition System Specification (OTSS) is a pair (R, <) where R
is a positive TSS and < ⊆ R×R is an arbitrary relation on the deduction rules.
For a rule r, higher (r) is defined as {r′ | r′ ∈ R ∧ r′ > r}, i.e., the set of rules
placed above r by the ordering <.

The intuition behind the ordering on rules is that a rule r can only be applied
when all rules r′ ∈ higher (r) are disabled since they do not have a “reason” (or
“proof”) for their premises to hold. As we show in the remainder, this notion of
“reason” or “proof” is not trivial to define and involves the same complications
as those concerning the semantics of TSS’s with negative premises [5].

2.2 Rule Formats

A major line of research in the SOS meta-theory concerns defining syntactic
schema for TSS’s which guarantee certain properties such as congruence of strong
bisimilarity. A distinguished example of such rule formats is the ntyft rule format
due to [6] which has powerful and complicating features such as look-ahead and
negative premises.

Definition 3 ((N)Tyft). A rule is in the ntyft rule format when it is of the form

{ti
li→ yi | i ∈ I} ∪ {tj

lj� | j ∈ J}
f(−→x ) l→ t

where all variables in −→x and yi’s are pairwise

distinct (i.e., for all i, i′ ∈ I and 1 ≤ j < j′ ≤ ar(f), yi 
= xj , xj 
= xj′ and if
i 
= i′ then yi 
= yi′), f is a function symbol from the signature, I and J are
(possibly infinite) sets of indices, t, ti’s and tj ’s are arbitrary terms and l, li’s
and lj ’s are closed terms.

A TSS is in the ntyft rule format when all its rules are. A rule (TSS) is in the
tyft rule format when it is positive and in the ntyft rule format.

Our goal is to show that ordering on rules is at least as expressive (and of course
complicated in nature) as negative premises and thus, we introduce the following
otyft rule format which will be proved equal in expressiveness to the ntyft rule
format (in Sections 4 and 5).

Definition 4 (Otyft). An OTSS (R, <) is in the otyft rule format when (1)
for all rules r ∈ R, either r is in the tyft rule format or conc(r) ∈ prem(r),
(2) for all rules r, r′ ∈ R such that r′ ∈ higher (r) (a) if a premise of r has the
same target as that of a premise of r′, then the two premises are the same (i.e.,
have the same source and label) and (b) vars(src(prem(r′))) ⊆ (vars(prem(r))∪
vars(src(conc(r)))).

The above rule format generalizes the OSOS rule format of [9] by allowing for
look-ahead and arbitrary terms as sources of premises (both conditions 2.a and
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2.b are trivially satisfied by OTSS’s in the OSOS rule format). In the forthcoming
extended version of this paper, we prove that removing condition 2.b gives rise to
a more general rule format called universal otyft, while preserving the congruence
result. The expressiveness of this rule format, called universal otyft, goes beyond
that of the ntyft rule format in that all transition relations specifiable by a TSS
in the ntyft rule format can be specified by an OTSS in the universal otyft rule
format but not vice versa.

The non-tyft rules allowed by the otyft rule format are mainly for convenience:
our definitions of semantics in Section 3 are insensitive to such rules and they
are useful in the translation between the ntyft and the otyft rule formats in
Section 4.

2.3 Examples

Orderings on positive rules can replace negative premises in rules [9]. In the
remainder, we start with a simple example motivating the use of ordering (as
an alternative to negative premises). Then we show that our new otyft rule
format extends the applicability of the ordered SOS paradigm by specifying an
example involving look-ahead. Finally, we show that this extension comes at a
price, namely, the semantics of general OTSS’s (e.g., those involving look-ahead)
is not always clear and should be studied more thoroughly.

Example 5 (Priority). The priority operator θ [1] may be used to represent
such phenomena as time-outs and interrupts. For a given partial order ≺ on
actions (a set of constants, denoted by a, b, c, . . . ∈ Act), θ(p) is a restriction
on the behavior of p such that action a can happen only if no b with a ≺ b is
possible. If Ba = {b | a ≺ b}, then θ can be defined by this TSS (where the rule
is actually a rule schema which should be repeated for each action a ∈ Act):
x

a→ y {x b� | b ∈ Ba}
θ(x) a→ θ(y)

.

Alternatively, θ can be defined by positive rules ra, equipped with the ordering

defined by ra < rb whenever a ≺ b: (ra)
x

a→ ya

θ(x) a→ θ(ya)
where ya are distinct

variables for all a ∈ Act . (Note that the naming of variables in the rules related
by ordering is indeed important; if for two different actions a and b such that
a ≺ b, ya = yb, then the OTSS specified by the above rules is not in the otyft
rule format and as shown in Section 6, it may lack intuitive properties such as
congruence of bisimilarity.)

Example 6 (Timed Parallel Composition). Consider the following TSS
defining the semantics of a subset of Hennessy and Regan’s Process Algebra
for Timed Systems (TPA) [7]. The signature consists of a constant nil , unary
operators a. (action prefixing, for all a ∈ Act), τ. (internal action prefix-
ing) andσ. (time step prefixing) and a binary operator ‖ (parallel
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composition). (Constants a, τ σ are also introduced in the signature to model
the labels.)

(a)
a.x

a→x
(τ)

τ.x
τ→x

(σ0)
σ.x

σ→x
(σ1)

a.x
σ→ a.x

(σ2)
nil σ→nil

(‖0)
x0

a→ y0

x0 ‖ x1
a→ y0 ‖ x1

(‖1)
x1

a→ y1

x0 ‖ x1
a→x0 ‖ y1

(τ0)
x0

τ→ y0

x0 ‖ x1
τ→ y0 ‖ x1

(τ1)
x1

τ→ y1

x0 ‖ x1
τ→x0 ‖ y1

(comm)
x0

a→ y0 x1
a→ y1

x0 ‖ x1
τ→ y0 ‖ y1

(time)
x0

σ→ y0 x1
σ→ y1 x0 ‖ x1

τ�

x0 ||x1
σ→ y0 || y1

In the semantics of the parallel composition operator, p ‖ q can pass time
(denoted by label σ) if both p and q can pass time, and if they are stable and
cannot communicate (i.e. p ‖ q τ� ).

The above semantics can be specified in ordered SOS by placing a positive
version of the rule (time) below the rules (τ0), (τ1) and (comm) as shown below.
All other rules are copied to the following OTSS and are unrelated (in terms of
ordering) to the rules below.

↓ (τ0)
x0

τ→ y0

x0 ‖ x1
τ→ y0 ‖ x1

(τ1)
x1

τ→ y1

x0 ‖ x1
τ→x0 ‖ y1

(comm)
x0

a→ y0 x1
a→ y1

x0 ‖ x1
τ→ y0 ‖ y1

(time)
x0

σ→ y′
0 x1

σ→ y′
1

x0 ‖ x1
σ→ y′

0 ‖ y′
1

We fix the above notation for ordering so that in each column, rules of the
upper row have priority over rules of the lower row, i.e., rules of the lower row
can only be “applied” when no rule in the upper row (of the same column)
can be “applied”. Formally, we have the following orderings: (τ0) > (time),
(τ1) > (time), and (comm) > (time).

In the following example, we address the idea of extending OSOS [9] with look-
ahead as suggested by [8, Theorem 4] and show that it may lead to pathological
specifications with an unclear meaning. (The rule format of [8] extends tradi-
tional OTSS with probabilities but the problem we address below is orthogonal
to the presence or absence of probabilities and hence, we use the plain OTSS
setting as defined before.)

Example 7 (OSOS with Look-Ahead). Consider the OTSS with the fol-
lowing rules. Note that according to the notation fixed before, in the following

OTSS, it holds that x
b→ y y

d→ z

f(x)
d→ d

> x
b→ y

f(x)
c→ c

and x
a→ y y

c→ z

g(x)
c→ c

> x
a→ y

g(x)
d→ d

but it

does not hold that
a

a→ f(a)
> x

b→ y

f(x)
c→ c

.
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↓ x
b→ y y

d→ z

f(x) d→ d

x
a→ y y

c→ z

g(x) c→ c a
a→ f(a) a

b→ g(a)
x

b→ y

f(x) c→ c

x
a→ y

g(x) d→ d

At first sight, it is not intuitively clear which of the following three transition
relations should be considered as the meaning of the above OTSS.

1. {a a→ f(a), a b→ g(a), f(a) c→ c, g(a) c→ c} or
2. {a a→ f(a), a b→ g(a), f(a) d→ d, g(a) d→ d} or
3. {a a→ f(a), a b→ g(a)}.

So, a convincing semantics for OTSS’s should either be neutral about different
possibly derivable transitions (in items 1 and 2) or reject the above OTSS al-
together due to its ambiguous nature. We present solutions that cater for both
possibilities in the remainder of this paper.

The situation with the following OTSS is even worse.

↓ x
a→ y y

b→ z

f(x) b→ a a
a→ f(a)

x
a→ y

f(x) b→ b

If one initially assumes that from rules in the first row one cannot derive any
transition with f(a) as its source (which is a legitimate assumption), then the
rule below allows for deriving f(a) b→ b. This transition, in turn, enables the
premises of the rule above it (leading to the conclusion that f(a) b→ a should be
derivable) and thus the very same rule below must have been disabled and the
chain of contradictory conclusions goes forever. Again, any convincing semantics
for OTSS’s should either find a way to deal with the contradicting conclusions
(e.g., by considering all of them uncertain, yet possibly, derivable transitions) or
reject the above OTSS altogether due to its paradoxical nature. The notions of
semantics presented in the remainder allow for both interpretations.

The above examples make the case for a more profound study of the meaning of
ordered SOS which is the subject of the following section.

3 Semantics of OTSS

An OTSS is supposed to induce a unique transition relation on closed terms
but as Example 7 already suggested, for some OTSS’s the way to assign such
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a transition relation may not be straightforward. This phenomenon has been
known in several areas such as logic programming and term rewriting and even
inside the SOS meta-theory as the result of introducing negative premises to SOS
rules. For TSS’s with negative premises, several notions of semantics have been
defined and used of which [5] provides an overview and a comparison. In this
paper, due to lack of space, we only present two very general model-theoretic and
proof-theoretic approaches to giving semantics to OTSS’s. To avoid repeating
the phrase “an instance of rule r under a closing substitution σ”, in this section,
we assume that the OTSS’s only contain closed terms. To define the semantics
of an arbitrary OTSS, one may instantiate the rules and the ordering relation
under all closing substitutions and then use the notions of the semantics in the
remainder of this section.

We start with the following notion of provability which is the usual way of
giving semantics to ordinary positive TSS’s (i.e., without ordering or negative
premises).

Definition 8 (Proof). Given an OTSS (R, <), a proof p for a formula φ is a
well-founded upwardly branching tree of which

1. the nodes are formulae,
2. the root is φ, and
3. if a node is labelled φ′ and the nodes above it form the set K; then there is

a rule r = K
φ′ ∈ R.

An r-proof for φ is a proof in which the last step is due to rule r. We write &p φ
when p is a proof in (R, <) for φ. We denote the set of rules used in a proof p
by rules(p).

3.1 Model-Theoretic Solution

For OTSS’s the above notion of provability is too lax because it neglects the
ordering among rules. Hence, we have to provide an addendum to the above
concept which makes sure that the rules placed above those used in the proof
are disabled. The first way to specify this addendum is the following (model-
theoretic) notion of correctness.

Definition 9 (Correct). Given an OTSS (R, <) and a transition relation T ,
we say that a rule r = H

φ ∈ R is correct w.r.t. T when for all r′ = H′
ψ ∈ higher (r),

H ′ 	 T .

Our first solution is based on the following notion of three-valued stable model.
Such three-valued solutions assign three transition relations to each OTSS,
namely the set of transitions that are certainly derivable denoted by C, tran-
sitions that are possibly derivable denoted by P (thus C ⊆ P ) and the set of
transitions that are impossible denoted by I. Three-valued solutions may be
written as pairs of these sets, i.e., (C, P ) or (C, I), with the third component
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being easily constructed given the other two. Later in this section, we discuss
how to adopt the three-valued stable model to define a single transition relation
for an OTSS.

Definition 10 (Three-Valued Stable Model). Given an OTSS (R, <), a
pair of transition relations (C, P ) is a three-valued stable model when C ⊆ P
and

1. φ ∈ C ⇔ &p φ for some proof p such that ∀r∈rules(p) r is correct w.r.t. P and
2. φ ∈ P ⇔ &p φ for some proof p such that ∀r∈rules(p) r is correct w.r.t. C.

The third value of the stable model I, for impossible, is the set of transitions that
are not included in P . Of particular interest, among three-valued stable models,
is the least one with respect to the information ordering, i.e., (C, P ) < (C′, P ′)
when C ⊆ C′ and P ′ ⊆ P .

The following reduction technique [4] is a method to calculate the least three-
valued stable model (thus such a least model indeed exists).

Definition 11 (Reduction Technique). For an ordinal α, define:

C0
.= ∅

U0
.= Φp

Cα
.= {φ | &p φ ∧ ∃β<α∀r∈rules(p)r is correct w.r.t. Cβ ∪ Uβ}

Uα
.= {φ | &p φ ∧ ∀β<α∀r∈rules(p)r is correct w.r.t. Cβ}

Lemma 12. Given an OTSS (R, <), for all ordinals α and β such that α < β,
the following statements hold:

1. Cα ⊆ Cβ ;
2. Uβ ⊆ Uα;
3. Cβ ⊆ Cα ∪ Uα;
4. Cβ ∪ Uβ ⊆ Cα ∪ Uα.

From items 1 and 2 of the above lemma (and Tarski’s fixpoint theorem), it
follows that both Cα and Uα will reach fixpoints, which we denote by C and U ,
respectively. From item 1-4 and Definition 11, it follows that (C, C ∪ U) is the
least three-valued stable model of the OTSS under consideration.

Example 13. Consider the first OTSS of Example 7. Its three-valued stable
model consists of a certain component C = {a a→ f(a), a b→ g(a)} and a possible
component P = {a a→ f(a), a b→ g(a), f(a) c→ c, g(a) c→ c, f(a) d→ d, g(a) d→ d}.

Similarly, for the second OTSS of Example 7, the certain component of the
least three-valued stable model only contains a

a→ f(a) and the possible compo-
nent contains a

a→ f(a) as well as both f(a) b→ a and f(a) b→ b.

Now the question is how to reduce the three-valued model to a two-valued one,
i.e., to associate a unique transition relation to a (meaningful) OTSS. The fol-
lowing notions provide two plausible answers to this question.
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Semantics 1 (Complete). An OTSS is meaningful when for its least three-
valued stable model (C, P ) it holds that C = P (such an OTSS is called complete)
and its meaning is the least three-valued stable model.

In order to obtain useful meta-results, e.g., the congruence meta-result (discussed
in Section 6), one has to restrict attention to complete OTSS’s and for practical
applications the OTSS under consideration should be complete or should be
rejected. However, one might want to generalize Semantics 1 to the following
notion of irrefutability which assigns a transition relation to all OTSS’s.

Semantics 2 (Irrefutable). All OTSS are meaningful and their meaning is
the P component of their least three-valued stable model.

3.2 Proof-Theoretic Solution

An alternative way of giving semantics to OTSS’s is by means of a well-supported
proof. In a well-supported proof, in addition to constructing a traditional proof,
we provide a “proof” for inapplicability of the higher rules; such a “proof” is
called a well-supported denial. A well-supported denial makes sure that a formula
is not derivable since all proofs leading to the formula contain a rule that is
provably disabled (i.e., there is a higher rule that has a well-supported proof for
all of its premises).

Definition 14 (Well-Supported Proof). Given an OTSS (R, <) and a rule
r ∈ R, a well-supported r-proof (or just a well-supported proof) for φ is a well-
founded upwardly branching tree of which

1. the nodes are formulae,
2. the root is φ,
3. if a node is labelled φ′ and the nodes above it form the set K, then there is

a rule r′ = K′
φ′ ∈ R such that K ′ ⊆ K (for the root node, r′ = r) and for all

r′′ = H′
ψ ∈ higher (r′), there exists a set Dψ′ ⊆ K denying some ψ′ ∈ H ′ by

a well-supported proof.

A set Dφ denies a formula φ when for all proofs p such that &p φ (in the sense of
Definition 8), there exists a rule r ∈ rules(p) and there exists a rule r′ = H′

φ′ ∈
higher (r) such that H ′ ⊆ Dφ. The structure providing a well-supported proof
for all ψ ∈ Dφ is called a well-supported denial for φ.

We write &ws φ (&ws ¬φ) when there is a well-supported proof (denial) for φ.

The following theorem states that the model-theoretic and the proof-theoretic
views of the least well-supported semantics indeed match.

Theorem 15. Given an OTSS (R, <), let C′ be the set of all formulae that
have a well-supported proof and I ′ the set of all formulae that have a well-
supported denial. Let (C, P ) be the least three-valued stable model of (R, <).
Then, (C′, (Φp \ I ′)) = (C, P ).
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4 From Ntyft to Otyft

We assume in the remainder that the TSS’s in the ntyft rule format are pure,
i.e., only contain variables among the source of the conclusion and targets of
the premises. Impure TSS’s can be transformed to pure ones (while keeping the
TSS in ntyft rule format and preserving the semantics) by making many copies
of rules each instantiating the other variables by a closed term [6]. (Hence, there
is no expressiveness gap between the ntyft rule format and its pure subset, i.e.,
all transition relations that can be specified by the ntyft rule format can also be
specified by the pure ntyft rule format and vice versa.) Our translation is correct
for impure rules, as well but the outcome will not be in the otyft rule format.

Definition 16 (Pure Ntyft to Otyft: Translation Scheme). Given a TSS
R in the pure ntyft rule format, its translation to otyft, denoted by otyft(R),
is an OTSS (R′, <) where R′ .= {r+, sr,j | r ∈ R, j ∈ Jr}, <

.= {(r+, sr,j) | r ∈

R, j ∈ Jr} and for each r ∈ R of the form {ti
li→ yi|i∈Ir}∪{tj

lj
� |j∈Jr}

f(−→x )
l→ t

, r+ and sr,j

(for each j ∈ Jr) are defined as follows.

(r+)
{ti

li→ yi|i ∈ Ir}

f(−→x ) l→ t
(sr,j)

{tj
lj→ yj}

tj
lj→ yj

In rule sr,j , yj is a fresh variable not appearing in r.

The following theorem states that the diagram depicted in Figure 1.(a)
commutes.

R (pure ntyft) otyft(R)

3-Valued Stable Model

[ ] Definition 10

Definition 16

(a)

4

(R, <) (otyft) ntyft(R, <)

3-Valued Stable Model

Definition 10 [ ]

Definition 18

(b)

4

Fig. 1. Correctness of translations: (a) from ntyft to otyft and (b) from otyft to ntyft

Theorem 17 (Pure Ntyft to Otyft: Correctness). The translation from
pure ntyft to otyft preserves its three-valued stable model.

5 From Otyft to NTyft

Definition 18 (Otyft to Ntyft: Translation Scheme). Given an OTSS
(R, <) in the otyft rule format, partial function Sr : R ⇀ I, where I .=⋃

i∈Ir
Ir, is a selection function for r ∈ R when for all s ∈ higher (r) of the form
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{ti
li→ yi|i∈Is}
t

l→ t′
, it holds that Sr(s) ∈ Is. (Thus, if Is = ∅ for some s ∈ higher (r),

then the set of selection functions for r is empty.)
Given an OTSS (R, <) in the otyft rule format, its translation to ntyft, denoted

by ntyft(R, <), is defined as {rS | r ∈ tyft(R), S is a selection function for r}
where tyft(R) is the subset of R that conforms to the tyft rule format and for

each r ∈ tyft(R) of the form {ti
li→ yi|i∈Ir}

f(−→x )
l→ t

, rS is defined as follows.

(rS)
{ti

li→ yi|i ∈ Ir} ∪ {tS(s)

lS(s)
� |s ∈ higher (r)}

f(−→x ) l→ t

The idea of the above translation is that for each rule r in R, for all rules
s placed above r, an arbitrary premise S(s) is negated and included in the
premises of rS . This way, we make sure that rS is applicable if and only if r is
applicable and all rules above it are disabled. We can safely exclude rules that
do not conform to the tyft rule format in our translation since their conclusion is
among their premises and thus, they do not contribute to the least three-valued
well-supported model.

The following theorem states that the diagram depicted in Figure 1.(b)
commutes.

Theorem 19 (Otyft to Ntyft: Correctness). The translation from otyft to
ntyft preserves its three-valued stable model.

6 Congruence Meta-theorem

As it is shown in [4], for a complete TSS in the ntyft rule format, strong bisimi-
larity is a congruence. Since our translation (in Section 5) provably preserves the
three-valued stable model, we can recast this result to the setting with ordered
SOS, as follows.

Theorem 20 (Congruence for Otyft). For a complete OTSS in the otyft
rule format, bisimilarity is a congruence.

Note that our only essential addition to the constraints of tyft rule format is
the constraint 2.a of Definition 4 (as mentioned before, constraint 2.b can be
removed and is only needed to obtain compatibility with the ntyft rule format).
The following counter-example shows that constraint 2.a is indeed useful for the
purpose of congruence and cannot be dropped.

Example 21.

↓ b
a→ y

b
a→ y a

a→ b b
a→ a

x
a→ y

f(x) a→a
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The above OTSS is complete and it meets all the constraints of Definition 4
except for the constraint 2.a. The C (P ) component of the least three-valued
stable model of the above OTSS is {a a→ b, b

a→ a, f(a) a→ a} but f(b) a→ a is not
included in it. Hence, for the above OTSS a and b are bisimilar while f(a) and
f(b) are not.

7 Conclusions

In this paper, we presented ways of giving a meaning to ordered SOS specifica-
tions. Furthermore, we gave semantics-preserving translations (w.r.t. our chosen
notion of semantics) between general ordered SOS and SOS rule formats, namely
otyft and ntyft, respectively. Finally, thanks to our semantics-preserving trans-
lation, we obtained a congruence meta-result for complete OTSS’s in the otyft
rule format.
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Abstract. We consider timed games extended with cost information,
and prove computability of the optimal cost and of ε-optimal memoryless
strategies in timed games with one clock. In contrast, this problem has
recently been proved undecidable for timed games with three clocks.

1 Introduction

An interesting direction of real-time model checking that has recently received
substantial attention is to extend and re-target timed automata technology to-
wards optimal scheduling and planning [1, 15, 9]. In particular, as part of this
effort, the notion of priced timed automata [6, 5] has been promoted as a useful
extension of the classical model of timed automata [4]. In this extended model
each location q is associated with a cost cq giving the cost of a unit of time spent
in q. Thus, each run of a priced timed automaton has an accumulated cost, based
on which a variety of optimization problems may be formulated.

Several of the established results concerning priced timed automata are con-
cerned with reachability questions. In [3] cost-bounded reachability was shown
decidable. [6] and [5] independently show computability of the cost-optimal
reachability for priced (or weighted) timed automata using different adaptations
of the so-called region technique. In [13, 15] the notion of priced zone is devel-
oped allowing efficient implementation of cost-optimal reachability as witnessed
by the competitive tool UPPAAL Cora [16]. Also the problem of computing
optimal infinite schedules (in terms of minimal limit-ratios) has been shown
computable [8]. Finally cost-optimal reachability has been shown decidable in a
setting with multiple cost-variables [14].

In this paper we consider the more challenging problem of the computation
of cost-optimal winning strategies for priced timed game automata, i.e. a game
where the controller tries to win at minimal cost and opponent tries to maxi-
mize the cost. Consider the priced timed game with the single clock x depicted
in Fig. 1. Here the (circle) locations c1 and c2 are controllable whereas (square)
locations u1 and u2 are uncontrollable with cost-rates being 3, 4, 1 and 1, respec-
tively. All four locations have x ≤ 1 as invariant. Besides transitions between

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 345–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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these four locations, additional transitions are indicated to (triangle) locations
for which the optimal costs of winning (for any value of x) are assumed to have
already been computed (we call those cost functions outside cost functions in
the sequel). Obviously, c1 and c2 have winning strategies for all values of x by
uniformly exiting to their respective outside locations (triangle), cout1 and cout2 .
However, this strategy is, clearly, suboptimal for both locations. Alternatively,
consider the superior strategy for c2 depicted in Fig. 2. that guarantees cost no
larger than depicted in the corresponding cost function. Then it can be shown
that this strategy guarantees the optimal cost.

c1
ċ=3

u1

ċ=1

c2

ċ=4

u2

ċ=1

x ≤ 1

cout
1

x=14
5

1
2

c=2.2

0.4
0.7

uout
2

x=11
2

c=3.5

cout
2

x=1

c=1.1

Fig. 1. Sample PTGA with outside cost
functions

x=1

c=1.1

2
5

1
2

0.4

0.7

4
5

σ(c2, x) =

cout
2 if 0 ≤ x < 2/5

c2 if 2/5 ≤ x < 1/2

u2 if 1/2 ≤ x ≤ 1

Fig. 2. An optimal strategy in c2,
and the associated cost function

In [12] the problem of computing cost-optimal winning strategies has been
studied and shown computable for acyclic priced timed games. Furthermore,
in [11] it is proven that computing optimal winning strategies for one-clock
PTGA with stopwatch cost (i.e. cost are either zero or one) is decidable. [2]
and [10] provide partial solutions to the general case of non-acyclic games: under
the assumption of certain non-Zenoness behaviour of the underlying priced timed
automata it is shown that it suffices only to consider strategies guaranteed to
win within some given number k of steps, or alternatively to unfold the given
game k times and reduce the problem to solving an acyclic game. To see how
restricted these results are, it may be observed that the priced timed game in
Fig. 1 does not belong to any of the above classes. In fact, in [11] it has recently
been shown that the problem of determining cost-optimal winning strategies for
priced timed games is not computable. Most recently, it has been shown that
this negative result holds even for priced timed (game) automata with no more
than three clocks [7].

In this paper we completely solve the computation of cost-optimal winning
strategies for arbitrary priced timed (game) automata with one clock : we offer an
algorithm for computing optimal costs, explain why optimal strategies need not
always exist, whereas memoryless ε-optimal strategies exist and can be computed.
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2 Definitions

We write x for the (unique) clock variable, and X = {x}. A clock constraint for
clock x is an expression of the form x ∈ I where I is an interval over the reals
with integer (or infinite) bounds which can have strict or non-strict bounds. As a
shortcut, we may use expressions like x ≥ 5 instead of x ∈ [5, +∞[. The set of all
clock constraints is denoted B(X ). That a valuation v : X → R+ satisfies a clock
constraint g is defined in a natural way (v satisfies x ∈ I whenever v(x) ∈ I),
and we then write v |= g. We denote by v0 the valuation that assigns zero to
clock x, by v + t (t ∈ R+) the valuation that assigns v(x) + t to x ∈ X .

A cost function is a piecewise affine function f : R+ → R+ ∪ {+∞} with
negative slopes. We also require that if {+∞} ∈ f((n, n+1)) for some integer n,
then f((n, n+1)) = {+∞}, and that f is continuous over all intervals (n, n+1).
We write CF for the set of all cost functions.

We define an extended notion of priced timed games, with outside cost func-
tions and urgent locations. Those extra features will be needed throughout the
proof. A 1-clock priced timed game with outside cost functions (PTGf for short)
is a tuple G = (Qc, Qu, Qf , Qurg, Qinit, fgoal, T, η, P ) where

– Qc is a finite set of controllable locations, Qu is a finite set of uncontrollable
locations. Those sets are disjoint, and we define Q = Qc ∪Qu;

– Qf is the set of final locations (it is disjoint from Q).
– Qurg ⊆ Qu indicates urgent uncontrollable locations;
– Qinit ⊆ Q is the set of initial locations;
– fgoal : Qf → CF assigns to each final location a cost function;
– T ⊆ Q× B(X )× 2X × (Q ∪Qf) is the set of transitions ;
– η : Q → B(X ) defines the invariants of each location;
– P : Q ∪ T → N is the cost (or price) function.

Standard (1-clock) priced timed games [2,10] are PTGf with Qurg = ∅ and, for
any q ∈ Qf , fgoal(q)(R+) = {0} or {+∞}.

In the following, G will always refer to a PTGf , and we will not always rewrite
the corresponding tuple. Similarly, G′ will denote a PTGf whose components
are “primed”.

We assume (w.l.o.g., see [6]) that the clock is bounded, i.e., there exists an
integer M such that for every location q ∈ Q, η(q) ⇒ x ≤M .

Let G be a PTGf . The semantics of G is given as a labeled timed transition
system T = (S, Sinit,→) where S ⊆ (Q ∪Qf)× R+ is the set of states1, Sinit =
Qinit×{v0} is the set of initial states, and the transitions relation → ⊆ S×R+×S
is defined as:

1. (discrete transition) (q, v) c−→ (q′, v′) if q /∈ Qf and there exists (q, g, R, q′) ∈
T such that v(x) |= g, v′ = [R← 0]v, v′(x) |= η(q′), and c = P (q, g, R, q′);

2. (delay transition) (q, v) c−→ (q, v + t) if q /∈ Qurg ∪ Qf , and ∀0 ≤ t′ ≤ t,
v + t′ |= η(q), and c = t · P (q).

1 Formally, S ⊆ (Q ∪ Qf ) × (R+)X , but we identify v with v(x) here.
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A run of G is a (finite) path in the underlying transition system. Given T, U ⊆
S, we write2 RunG(T, U) for the set of runs of G issued from t ∈ T and ending
in u ∈ U . Given a run ) and a position v ∈ ) along that run, the prefix of ) ending
in v is denoted by )|v. A run is maximal if either it is infinite, or no discrete
transition is possible (even after a delay transition). A maximal run is accepting
if it is finite and ends in a final location. Let ) = s0

c0−→ s1
c1−→ · · · cn−1−−−→ sn

be a run. Its cost, denoted cost()), is either
∑n−1

i=0 ci if ) is not accepting, or∑n−1
i=0 ci + fgoal(qn)(vn(x)), where (qn, vn) = sn if ) is accepting. An accepting

run is winning if it has finite cost.

Example. Reconsider the example depicted in Fig. 1. Here, a sample winning
run is ) = (c1, 0) 0−→ (u1, 0) 0.4−−→ (u1, 0.4) 0−→ (c2, 0.4) 0.4−−→ (c2, 0.5) 0−→ (cout2 , 0.5)
which has cost cost()) = 0.4× 1 + 0.1× 4 + fgoal(cout2 )(0.5) = 1.9. � A strategy

is then a function σ : RunG(Q × R+, Qc × R+) → {λ} ∪ Q ∪ Qf . Informally, a
strategy tells in all controllable locations, what has to be done, and the special
symbol λ indicates to delay. A strategy σ is memoryless if σ()) = σ()′) as soon
as ) and )′ end in the same state.

Let σ be a strategy in G, and )0 a run in G ending in (q0, x0). A run ) =
(q0, x0)

c0−→ (q1, x1)
c1−→ · · · cn−1−−−→ (qn, xn) is a (σ, )0)-run if for all delay- (or

discrete-) transitions (qi, xi)
ci−→ (qi+1, xi+1) where qi ∈ Qc, we have

– ∀x ∈ [xi, xi+1[, σ()0 · )|x) = λ,
– σ()0 · )|xi

) = qi+1.

where )0 · ) denotes the (usual) concatenation. In that case, we say that )
is compatible with σ after )0 (or that it is an outcome of σ after )0). We
write RunG,σ()0, U) for the set of such runs ending in U .

A strategy σ is said accepting after (run) )0 whenever all maximal runs in
RunG,σ()0) are accepting. If a strategy is not accepting from )0, we set its cost
in G after )0, CostG(σ, )0), to +∞. Otherwise its cost in G after )0 is given as:
CostG(σ, )0) = sup{cost()) | ) ∈ RunG,σ()0, Qf ×R+)}. Obviously, for any two
runs )0 and )1 ending in (q, x), the sets {CostG(σ, )0) | σ strategy in G} and
{CostG(σ, )1) | σ strategy in G} are equal. An accepting strategy σ after )0 is
winning if CostG(σ, )0) is finite. We define for every state s of G, the optimal
cost of winning from s as inf{CostG(σ, )0) | σ strategy in G} for some run )0

ending in s. We denote it OptCostG(s). If OptCostG(s) < +∞, the state s is said
winning in G. In that case, for every ε > 0, for every run )0 ending in s, there
exists a winning strategy σ s.t. OptCostG(s) ≤ CostG(σ, )0) < OptCostG(s) + ε,
and we say that σ is ε-optimal from )0. A strategy σ is optimal from )0 if
CostG(σ, )0) = OptCostG(s) where )0 ends in state s.

A strategy σ in G is (ε, N)-acceptable (with ε > 0, and N ∈ N) whenever:
(1) it is memoryless, (2) it is ε-optimal, (3) there exist N (consecutive) intervals
(Ii)1≤i≤N partitioning [0, 1] such that for every location q, for every 1 ≤ i ≤ N ,
for every integer α < M , the function x �→ CostG(σ, (q, x)) is affine on every
interval α + Ii, and the function x �→ σ(q, x) is constant on α + Ii.
2 In the sequel, we might omit the subscripts G when they are clear from the context.
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3 Main Result

The main result of this paper is that optimal cost is computable and that almost-
optimal memoryless strategies always exist and can be effectively computed. This
is summarized by the following theorem:

Theorem 1. Let G be a PTGf . Then for every location q in G, the function
x �→ OptCostG((q, x)) is computable and piecewise-affine. Moreover, for every
ε > 0, there exists (and we can effectively compute) a strategy σ in G such
that σ is memoryless and ε-optimal in every state.

We will even prove a stronger result, which is that there exists N ∈ N such that
for every ε > 0, we can effectively compute an (ε, N)-acceptable strategy σ.
The rest of this paper is devoted to a proof of this result.

10
q0

1

x≤1

q1

win

lose

x>0 x=1

x=0

Fig. 3. A game with no optimal
strategy

2

x≤1

q0
win

1
q1

x:=0

x<1

x=1

x>
0

Fig. 4. A game where optimal
strategies require memory

There are PTGf for which no optimal strategies exist, as exemplified by Fig. 3:
from q0, the optimal cost is 1, but a winning strategy consists in delaying in q0
for some duration δ > 0, yielding a cost of 1 + 9δ. This is why we compute, in
the general case, ε-optimal strategies. In the same way, as witnessed by Fig 4,
it might be the case that optimal strategies exist but require some amount of
memory: in the example of Fig 4, state (q0, x = 0) is winning with optimal cost 2,
but no memoryless strategy can achieve that cost for sure.

4 Simplifying Transformations

In this section, we first explain how to restrict to simpler games while preserving
the same optimal costs, and we then show how we can inductively compute
optimal cost on those simpler games. We also explain how to compute almost-
optimal strategies for those simpler games, and how to “lift” those strategies to
the original game.

Our transformations consist in two steps: (i) we restrict to PTGf where the
clock is bounded by 1 (denoted [0, 1]-PTGf ) (Section 4); (ii) we restrict to a
[0, 1]-PTGf without resetting transition (Section 4). For each transformation,
we prove that:

– the optimal cost in each state of the original game is identical to the optimal
cost in some corresponding state in the transformed game,
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– we can derive an ε-optimal strategy in the original game from some ε′-
optimal strategy in the transformed game.

Section 5 is then devoted to computing the optimal cost and an almost-optimal
strategy in the simpler game. For the sake of simplicity, we assume here that there
are no discrete costs on transitions. A slight adaptation of the transformation
for removing resets can be given for handling discrete costs as well.

Restricting to a PTGf bounded by 1. The idea of this construction is to
reset the clock each time it reaches 1, and to record in the discrete structure
what should be the real integer part of the value of the clock (the clock will only
store the fractional part of its real value).

Let G be a PTGf . We build another PTGf G′ such that for every q′ ∈ Q′,
η′(q′) implies 0 ≤ x ≤ 1, and G′ is correct for computing optimal cost, in a sense
which will be made clear later.

As we have assumed that PTGf are bounded, we set M the constant bound-
ing G, and we define:{

Q′
x = {q[α,α+1] | q ∈ Qx and 0 ≤ α < M} for every x ∈ {c, u, f, urg}

Q′
init = {q[0,1] | q ∈ Qinit}

The set of transitions T ′ is composed of the following transitions (if g is a guard,
g − α denotes the same guard translated by −α):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q[α,α+1]
(g−α)∩(0≤x<1)−−−−−−−−−−→ q′[α,α+1] if (q

g−→ q′) ∈ T and α + 1 < M

q[M−1,M ]
(g−α)∩(0≤x≤1)−−−−−−−−−−→ q′[M−1,M ] if (q

g−→ q′) ∈ T

q[α,α+1]
(g−α)∩(0≤x<1)−−−−−−−−−−→

x:=0
q′[0,1] if (q

g−−−→
x:=0

q′) ∈ T and α + 1 < M

q[M−1,M ]
(g−α)∩(0≤x≤1)−−−−−−−−−−→

x:=0
q′[0,1] if (q

g−−−→
x:=0

q′) ∈ T

q[α−1,α]
x=1−−−→
x:=0

q[α,α+1] if 0 < α < M

The invariant η′ is defined by η′(q[α,α+1]) = (0 ≤ x ≤ 1) ∧ (η(q) − α) if q ∈ Q.

The cost function P ′ is defined by P ′(q[α,α+1]) = P (q). The function f ′
goal is

defined by f ′
goal(q[α,α+1])(x) = fgoal(q)(x + α) for every 0 ≤ x ≤ 1.

Note that all guards and invariants of G′ are included in [0, 1], we say that G′

is a [0, 1]-PTGf .
We define f the function which maps every state (q, x) of G onto the state

(q[α,α+1], x−α) of G′ such that 0 ≤ x−α ≤ 1 and x < M integer implies x = α.
We now state the following correctness result.

Proposition 2. For every state (q, x) in G, OptCostG(q, x)=OptCostG′(f(q, x)).
Moreover, for every ε > 0 and N ∈ N, given an (ε, N)-acceptable strategy in G′,
we can compute an (ε, N)-acceptable strategy in G, and vice-versa.
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Removing resetting transitions from SCCs. We have restricted to games
with a single clock. A strong property of this model is that each time a resetting
transition is taken, then the very same state is visited (because the valuation is
each time v0). The construction for removing resetting transitions takes advan-
tage of this property.

Let G be a PTGf with n resetting transitions. From the previous reduction,
we may assume that all the invariants and guards in G imply that 0 ≤ x ≤ 1.
We build a PTGf G′, made of n+1 copies of G, such that no strongly connected
component (SCC for short) of G′ contains a resetting transition.

We thus define Q′
c = Qc × {0, ..., n}, Q′

u = Qu × {0, ..., n}, and Q′
f = (Qf ×

{0, ..., n}) ∪ {r}. A location (q, i) ∈ Q′
u is urgent iff q ∈ Qurg. We let Q′

init =
Qinit × {0}. The outside cost functions are given by f ′

goal((q, i)) = fgoal(q), and
fgoal(r) = +∞. The invariant is given by η′((q, i)) = η(q) for q ∈ Q. Transitions
are defined as follows:⎧⎪⎪⎨⎪⎪⎩

((q, i)
g−→ (q′, i)) ∈ T ′ if (q

g−→ q′) ∈ T and i ≤ n

((q, i)
g−−−→

x:=0
(q′, i + 1)) ∈ T ′ if (q

g−−−→
x:=0

q′) ∈ T and i < n

((q, n)
g−→ r) ∈ T ′ if (q

g−−−→
x:=0

q′) ∈ T and i = n

Last, we set P ′((q, i)) = P ′(q) for every q ∈ Q, and the price of each transition
of T ′ defined above is the price of the corresponding transition in T .

Proposition 3. For every state (q, x) in the game G, OptCostG((q, x)) equals
OptCostG′(((q, 0), x)). Moreover, for every ε′ > 0 and N ′ ∈ N, given an (ε′, N ′)-
acceptable strategy in G′, we can compute a (2ε′, N ′)-acceptable strategy in G.

We have thus reduced our problem to computing optimal cost and almost-
optimal winning strategies in G′. In G′, this can be done by first computing
it in the nth copy of G, and then in the (n− 1)th copy of G, etc.

5 Computing Almost-Optimal Strategies

We have restricted our problem to [0, 1]-PTGf without resets. We can also easily
restrict to such PTGf containing only one SCC: if we can compute the optimal
costs and an (ε, N)-acceptable strategy on an SCC, we will be able to handle
the general case by working first on the deepest SCC, and then replace it by the
corresponding outside function (and an (ε, N)-acceptable strategy).

Thus, we now assume that we only work on a [0, 1]-PTGf without resets and
based on an SCC. We prove the following result, which will imply Theorem 1.

Theorem 4. Let G be a [0, 1]-PTGf without reset such that (Qc ∪Qu, T ) is an
SCC (or contains only one location). Then:

H1. OptCostG(q, x) is computable for every q ∈ Q and every x ∈ [0, 1];
H2. for every location q ∈ Q, x ∈ [0, 1] �→ OptCostG(q, x) is a cost function

whose finitely many segments either have slope −c where c ∈ P (Q), or are
fragments of the outside cost functions of G;
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H3. there exists an integer N such that, for any ε > 0, we can compute an
(ε, N)-acceptable strategy in G for every q ∈ Q and every x ∈ [0, 1].

The rest of this section is devoted to the proof of this theorem, which is by
induction on the number of non-urgent locations in G. First we prove the base
case of the induction, that is when the game is only composed of urgent locations,
or of a single controllable location.

– Proving properties H1 and H2 in the case where G contains only one location
is handled straightforwardly, by combining the outside cost functions of G
with the cost rate of the location. Property H3 requires more care. Let q be
a (controllable) location with a bunch of outside cost functions {fgoal(q′) |
q′ ∈ Qf}. Define the function s : x → min{fgoal(q′, x) | q′ ∈ Qf}. Then
OptCostG(q, x) = infx≤x′≤1 P (q) · (x′ − x) + s(x′). Let ε > 0. We then define
the strategy σ as follows:

σ(q, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q′ if OptCostG(q, x) = fgoal(q′)(x)
λ if OptCostG(q, x) < s(x) and either s(1) < +∞

or x ≤ 1− ε/(2P (q))
q′ if OptCostG(q, x)<s(x), s(1)=+∞, 1−ε/(2P (q)) < x < 1,

and limx→1− fgoal(q′)(x) = limx→1− s(x)

It is not difficult to check that σ is (ε, N)-acceptable for some N which is
independent of ε.

– The case where G contains an SCC with only urgent (thus uncontrollable)
locations is also straightforward, since the opponent can force the game to
never reach a final location, and the optimal cost is then +∞. If the game
is composed of a single urgent location, then this is also easy.

We now assume that G is an SCC composed of at least two locations, n of
which are non-urgent. We select one of the non-urgent locations having least
cost, and denote it with qmin, and, depending on the nature (controllable or not)
of qmin, we explain how we prove that Theorem 4 holds for G if it holds for SCCs
having at most (n− 1) non-urgent locations.

Case: qmin is controllable. For handling this case, we will prove that the
rough intuition that there is no need to delay twice in qmin, but we better delay
longer in qmin is indeed correct.

From the game G, we construct a game G′, made of two copies of G, such
that each SCC of the new game contains one location less (see Fig. 5). We define
Q′

c = (Qc \ {qmin})×{0, 1}∪ {qmin}, Q′
u = Qu×{0, 1}, Q′

f = Qf ×{0, 1}∪ {r},
Q′

urg = Qurg × {0, 1}, Q′
init = Qinit × {0}, f ′

goal((q, i)) = fgoal(q) if q ∈ Qf , and
f ′
goal(r) = +∞, η′((q, i)) = η(q), η′(qmin) = η(qmin), P ′((q, i)) = P (q) for every

(q, i) ∈ Q′
c ∪Q′

u. The set of transitions is

T ′ = {(q, i) g,R−−→ (q′, i) | q g,R−−→ q′, and q, q′ 
= qmin}

∪ {(q, 0)
g,R−−→ qmin, (q, 1)

g,R−−→ r | (q g,R−−→ qmin) ∈ T }

∪ {qmin
g,R−−→ (q′, 1) | (qmin

g,R−−→ q′) ∈ T }.
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G
G′

qmin
q (q,0)

qmin

(q,1)

+∞
r

Fig. 5. Case qmin (in grey) controllable

We prove the following lemma, which establishes properties H1 and H2.

Lemma 5. For every (q, x) ∈ (Q � {qmin}) × [0, 1], we have OptCostG(q, x) =
OptCostG′((q, 0), x). For every x∈ [0, 1], OptCostG(qmin, x)=OptCostG′(qmin, x).

It remains to prove property H3. We fix the integer N ′ for G′. We fix some
ε > 0, and take ε′ = ε

3 . We take σ′ an (ε′, N ′)-acceptable strategy in G′. We
then define σ as follows:

σ(q, x) =
{

σ′((q, 1), x) if CostG′(σ′, ((q, 1), x)) ≤ OptCostG′(qmin, x)
σ′((q, 0), x) otherwise (1)

(u1,0)

(c2,0)

(u2,0)

c1

(u1,1)

(c2,1)

(u2,1)

cout
1

cout
2

uout
2

+∞

Fig. 6. Running example after unwinding

x=1

c=1.1
(c2,1)

x=1

c=1.1
c1

1.1
3

x=1

c=1.1
(c2,0)

2
5

Fig. 7. Optimal costs

Example. Returning to the running example of Fig. 1 with u1 and u2 urgent,
performing the above transformation with respect to c1 gives the PTGf depicted
in Fig. 6. The optimal cost functions are depicted in Fig. 7 and the resulting
winning strategy for c2 is, according to (1), the strategy of (c2, 1) when x ≤ 1.1

3
and (c2, 0) otherwise. �
Obviously, the strategy σ is memoryless. We need to establish that the function
x �→ CostG(σ, (q, x)) consists of at most N pieces, and that σ is ε-optimal.

Proposition 6. Strategy σ is winning and there exists a fixed (independant of ε)
integer N such that σ is (ε, N)-acceptable.
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G G′

G′′

qmin

Fig. 8. When it is uncontrollable, qmin is made urgent (in dash line here)

Case: qmin is uncontrollable. The intuition is that the opponent will prefer
delays in other locations than qmin whenever possible. We attempt to enforce
this by a transformation of the game where location qmin is urgent, as depicted
in Fig. 8. Formally, given a [0, 1]-PTGf without resets G, we define G′ with
Q′

urg = Qurg ∪ {qmin} and Q′
u = Qu\{qmin}.

Obviously enough, since we restrict the possible moves for the opponent in G′,
we have for every state (q, x), OptCostG′(q, x) ≤ OptCostG(q, x).

However, the converse inequality is not correct over [0, 1], and we will need a
more complex construction to handle this case. We now explain how to iteratively
compute the optimal costs in G. Fig. 9 gives an overview of the computation
described below.

evu

fi

−P (qmin)

e

fi

e′ = uv′u′

f ′
i

Fig. 9. Successive computations when qmin is uncontrollable

Clearly, we can compute OptCostG(qmin, 1) (indeed, OptCostG(qmin, 1) =
OptCostG′(qmin, 1), since when x = 1, time cannot elapse any more and the same
moves are available in G′ and in G). This initializes our iterative computation.

Now, assume we can compute OptCostG(qmin, e) for some e ∈ [0, 1]. We can
apply the induction hypotheses H1—H3 to G′. In particular, f : x ∈ [0, e] �→
OptCostG′(qmin, x) is a cost function satisfying the requirements of item H2.
Writing f1, ..., fn for the successive affine functions constituting f , we pick the
smallest index i such that for every j > i, function fj has slope less than or
equal to −P (qmin). If i > 0, we note [u, v] the domain of fi (see Fig. 9).

Lemma 7. If i = 0, for all (q, x) ∈ Q×[0, e], OptCostG(q, x) = OptCostG′(q, x).
If i > 0, for all (q, x) ∈ Q× [v, e], OptCostG(q, x) = OptCostG′(q, x).

We now explain how to compute OptCostG(qmin, x) for x ∈ [u, v]; we prove the
following lemma:
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Lemma 8. If i > 0, then for all (q, x) ∈ Q× [u, v], we have OptCostG(qmin, x) =
(v − x)P (qmin) + f(v).

The optimal cost in states (q, x) with x ∈ [u, v] can then be computed by con-
sidering the PTGf G′′, restricted to x ∈ [u, v], and obtained from G′ by making
qmin a goal location with cost function equal to x �→ OptCostG(qmin, x), which
is then viewed as an outside cost function, see Fig. 9.

We can then repeat the procedure above on the interval [0, u] (i.e. by set-
ting e = u): compute f ′ : x �→ OptCostG′(qmin, x) with x ∈ [0, u], select an
interval [u′, v′] where f ′

i has slope larger than or equal to −P (qmin), and so
on, replace that part with an affine function with slope −P (qmin), and con-
tinue with the interval [0, u′]. We now explain why this process terminates:
since they have slopes strictly greater than −P (qmin), fi and f ′

i are fragments
of outside cost functions, according to hypothesis H2. If they have different
slopes, then they are obviously parts of two different fragments of outside cost
functions. If they have the same slopes, then they are fragments of two dif-
ferent parts of outside cost functions, since they are joined by affine func-
tions with slopes less than (or equal to −P (qmin)). Since there are only finitely
many affine functions constituting the outside cost functions, our procedure
terminates.

At each step of the procedure above, we can also compute (ε, N)-acceptable
strategies, and merge them.

6 Conclusion

In this paper we have proven that optimal cost for arbitrary priced timed
games with one clock is a computable problem, and that ε-optimal memory-
less strategies may effectively be obtained. The complexity of our procedure
is quite high, running in 3-EXPTIME, while the best known lower bound for
this problem is PTIME. Our future works of course include tightening these
bounds.

As a consequence of our result it may be shown that the iterative semi-
algorithm proposed in [10] always terminates for priced timed games with one
clock. Cost functions costiG are inductively defined, which for any location q ∈ Q
and any clock value v, give the optimal cost of winning from the state (q, v)
within at most i steps (we count the number of steps in a run ρ by the num-
ber of delay-and-action fractions). Now Theorem 4 ensures that we can find a
fixed N such that for any ε > 0 we can compute an (ε, N)-acceptable strategy.
In particular this guarantees that we can find ε-optimal strategies which are
guaranteed to win within N · |Q| steps for any ε > 0. Consequently, 〈costiG〉∞i=1

(the semi-algorithm of [10]) converges after at most N · |Q| iterations to the
optimal cost of winning. A prototype implementation of this iterative algorithm
is available at http://www.lsv.ens-cachan.fr/∼markey/1ptga/.

As future work we would like to determine what happens with priced timed
games using two clocks, but this seems really difficult as our approach heavily
relies on the fact that there is only one clock.
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1. Y. Abdeddäım, E. Asarin, and O. Maler. Scheduling with timed automata. 2006.
2. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability in weighted

timed games. In Proc. 31st Intl Coll. Automata, Languages and Programming
(ICALP’04), LNCS 3142, p. 122–133. Springer, 2004.

3. R. Alur, C. Courcoubetis, and Th. A. Henzinger. Computing accumulated delays in
real-time systems. In Proc. 5th Intl Conf. Computer Aided Verification (CAV’93),
LNCS 697, p. 181–193. Springer, 1993.

4. R. Alur and D. Dill. A theory of timed automata. Theor. Comp. Science,
126(2):183–235, 1994.

5. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Proc. 4th Intl Workshop Hybrid Systems: Computation and Control (HSCC’01),
LNCS 2034, p. 49–62. Springer, 2001.

6. G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In Proc.
4th Intl Workshop Hybrid Systems: Computation and Control (HSCC’01), LNCS
2034, p. 147–161. Springer, 2001.

7. P. Bouyer, Th. Brihaye, and N. Markey. Improved undecidability results on
weighted timed automata. Inf. Proc. Letters, (5):188–194, June 2006.

8. P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply as possible.
In Proc. 7th Intl Workshop Hybrid Systems: Computation and Control (HSCC’04),
LNCS 2993, p. 203–218. Springer, 2004.

9. P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite scheduling for multi-
priced timed automata. Form. Meth. in Syst. Design, 2006. To appear.

10. P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced timed
game automata. In Proc. 24th Conf. Foundations of Software Technology & Theoret-
ical Computer Science (FST&TCS’04), LNCS 3328, p. 148–160. Springer, 2004.

11. Th. Brihaye, V. Bruyère, and J.-F. Raskin. On optimal timed strategies. In Proc.
3rd Intl Conf. Formal Modeling and Analysis of Timed Systems (FORMATS’05),
LNCS 3821, p. 49–64. Springer, 2005.

12. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and control
for acyclic weighted timed automata. In Proc. 2nd IFIP Intl Conf. Theoretical
Computer Science (IFIPTCS’02), IFIP Conf. Proc. 223, p. 485–497. Kluwer, 2002.

13. K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, Th. Hune, P. Pettersson,
and J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In Proc. 13th Intl Conf. Computer Aided Verification (CAV’01),
LNCS 2102, p. 493–505. Springer, 2001.

14. K. G. Larsen and J. I. Rassmussen. Optimal conditional reachability for multi-
priced timed automata. In Proc. 8th Intl Conf. Foundations of Software Science and
Computation Structures (FoSSaCS’05), LNCS 3441, p. 234–249. Springer, 2005.

15. J. I. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal scheduling
using priced timed automata. In Proc. 10th Intl Conf. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’04), LNCS 2988, p. 220–235.
Springer, 2004.

16. UPPAAL CORA. http://www.cs.aau.dk/∼behrmann/cora/, Jan. 2006.



Expressivity Properties of Boolean BI
Through Relational Models

Didier Galmiche* and Dominique Larchey-Wendling**

LORIA – CNRS* – UHP Nancy 1**

Campus Scientifique, BP 239
54 506 Vandœuvre-lès-Nancy, France

Abstract. In this paper, we study Boolean BI Logic (BBI) from a semantic per-
spective. This logic arises as a logical basis of some recent separation logics used
for reasoning about mutable data structures and we aim at proposing new re-
sults from alternative semantic foundations for BBI that seem to be necessary in
the context of modeling and proving program properties. Starting from a Kripke
relational semantics for BBI which can also be viewed as a non-deterministic
monoidal semantics, we first show that BBI includes some S4-like modalities and
deduce new results: faithful embeddings of S4 modal logic, and then of intuition-
istic logic (IL) into BBI, despite of the classical nature of its additive connectives.
Moreover, we provide a logical characterization of the observational power of
BBI through an adequate definition of bisimulation.

1 Introduction

Separation logics are logics for reasoning about mutable data structures [9,11,14] in
which pre- and post-conditions are written in a logic enriched with specific forms of
conjunction or implication. They are mainly based on the logic of Bunched Implications
(BI) which combines standard (additive) intuitionistic implication → and conjunction
∧ (additive connectives) and linear (intuitionistic) implication −∗ and conjunction ∗
(multiplicative connectives) [12]. Actually, they mainly deal with Boolean BI (BBI) that
is the version of BI in which the additive connectives are classical. Compared to BI,
BBI needs further investigations from both semantic and proof-theoretic points of view.
Recently we have proposed results about propositional BI: new semantics (based on
relations or partially defined monoids) [8], labelled calculi and related proof-search
methods from which decidability and finite model property have been proved [6].

Our aim is to obtain similar results for BBI, in order to provide new proof-theoretical
foundations for this logic but also for some computational models of BBI like separation
and spatial logics [2,14]. Even if the difference with BI is mainly the classical nature
of additives, we cannot directly derive such results from those of BI, for instance a
(complete) based-on monoid semantics like in BI [8] or in classical BI pointer logic [9].
Therefore it seems important to study new semantic foundations of BBI that initially
has an algebraic model called Boolean BI-algebra [12]. In this context, we start from a
Kripke relational semantics for BBI, that is proved sound and complete, and also provide
an equivalent semantics based on non-deterministic monoids. The first ternary-relation
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models for BBI, defined by Yang [16], are based on the notion of maximally consis-
tent sets. Their definitions and proofs strongly use classical negation and are tailored
towards BBI. Our semantics, that is equivalent, is in the continuation of our works about
relational models of (intuitionistic) BI [8] and does not deal with negation. It might be
suitable to consider open problems like, for instance, the existence of a (deterministic)
based-on monoid semantics for BBI? Even if we can define, from this semantics, la-
belled calculi and thus prove their completeness for BBI, it would remain to study prop-
erties of propositional BBI, like decidability and finite model property. Our relational
models for BBI, that extend those for BI, seem to provide good foundations for such a
study. As a consequence of the soundness property, we propose as central contributions
embeddings of modal logic S4, and then of intuitionistic logic IL into BBI. The later
could be surprising despite of the classical nature of its additive connectives. These
embeddings have consequences on the use of BBI from proof-search and complexity
perspectives. To complete these results we also provide a logical characterization of its
observational power through an adequate definition of bisimulation.

2 Boolean BI

Boolean BI, denoted by BBI, is a mixed logic like BI [12] that has some computational
models like separation and spatial logics [2,14]. It is built on a set Var of propositional
variables combined using additive connectives of classical propositional logic (∧, ∨,
→, ¬, ⊥ and 3) and linear connectives of multiplicative linear logic (∗, −∗ and I).

Provability in BBI is defined in [12] by adding the rule of re-
A&¬¬B

A&B
[RAA]ductio ad absurdum denoted [RAA] to the natural deduction cal-

culus of BI.1 In this paper, like in [16], we rather adopt a Hilbert
deduction system to define provability in BBI. We only recall here the axioms and rules
that characterize BBI. First, we choose any (finite) set of axioms for the classical part of
BBI among the axiom sets for classical propositional logic.2 We add to it the following
axioms for the linear part: A→ (I∗A);(I∗A)→A;A∗B)→ (B∗A);(A∗ (B∗C))→ ((A∗
B)∗C). All these axioms should be considered as schemes, i.e., we consider the closure
of the set of axioms under (uniform) substitutions. Moreover, we have the following
Hilbert deduction rules for BBI:

&A &A→B
&B

[MP] &A→C &B→D

& (A∗B)→ (C ∗D)
[∗]

&A→ (B−∗C)

& (A∗B)→C
[−∗1]

& (A∗B)→C

&A→ (B−∗C)
[−∗2]

The [MP]-rule is the usual modus ponens and the three other rules [∗], [−∗1] and [−∗2]
hold for BI and BBI. Compared to BI, the additive axioms of BBI are those of classical
logic instead of intuitionistic logic. So the set of “classical” axioms of BBI contains a
form of reductio ad absurdum, like for example ¬¬A→A. An algebraic model for this

1 With ¬A defined as ¬A≡ A→⊥.
2 Such axioms could be for example A→ (A∨B), A→ (B→ (A∧B)), . . . .
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system is called a Boolean BI-algebra. We denote by A8 B the logical equivalence of
A and B (both &A→B and &B→A are deducible from the axioms).

Proposition 1. The following logical equivalences hold in BI and BBI:

⊥∗A 8 ⊥ (A∨B)∗C 8 (A∗C)∨ (B∗C)
⊥−∗A 8 3 (A∨B)−∗C 8 (A−∗C)∧ (B−∗C)
A−∗3 8 3 A−∗ (B∧C) 8 (A−∗B)∧ (A−∗C)

Computational models of BBI, like BI’s pointer logic (PL), are used for reasoning about
mutable data structures [9] and we aim at studying them in a proof-theoretic perspective
from their semantics [7]. Starting from our results on BI [6,8] we need first to study
relational models for BBI.

3 A Kripke Relational Semantics for BBI

Before to study semantics of BBI, we emphasize the relationships between the notions
of non-deterministic monoid and so-called relational frame.

3.1 Non-deterministic Monoids and Relational Semantics

Let us consider a set M . We denote by P (M ) the powerset of M , i.e. its set of subsets.
A binary function ◦ : M ×M −→P (M ) is naturally extended to a binary operator
on P (M ) by X ◦Y = {x ◦ y | x ∈ X ,y ∈ Y} for any subsets X ,Y of M . Using this
extension, we can identify an element m of M with the singleton set {m} and derive
the equations m◦X = {m} ◦X and a ◦b = {a} ◦{b}.

Definition 1. A non-deterministic monoid is a triple (M ,◦,e) where e ∈ M and ◦ :
M ×M −→P (M ) for which the following conditions hold:
1. ∀a ∈M ,e◦a = {a} (identity)
2. ∀a,b ∈M ,a ◦b = b ◦a (commutativity)
3. ∀a,b,c ∈M ,a ◦ (b ◦c) = (a ◦b)◦c (associativity)3

The term non-deterministic is introduced in order to emphasize the fact that the com-
position a ◦b may yield not only one but several results including the possible incom-
patibility of a and b in which case a ◦ b = /0. If (M ,×,1) is a commutative monoid
then, defining a ◦ b = {a×b} and e = 1 induces a non-deterministic monoid structure
on M . Partial monoids can also be represented using the empty set /0 as the result of
undefined compositions. We claim that the notion of non-deterministic monoid is an ex-
tension of the notion of partial commutative monoid. Then, these models generalize the
(associative and commutative) tree based models [5] or the process based models [3]
of separation logics. We establish an algebraic link between non-deterministic monoids
and Boolean-BI algebras.

Proposition 2. Let the triple (M ,◦,e) be a non-deterministic monoid, (P (M ),⊆,◦) is
a quantale and also a complete boolean algebra.

3 The axiom of associativity should be understood using the extension of ◦ to P (M ).
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Using the isomorphism between M ×M −→P (M ) and M ×M ×M −→2 = {false <
true}, we define a ternary relation �⊆M ×M ×M by: a,b � c iff c ∈ a ◦b.

Then we can also consider non-deterministic monoids as relational frames.

Definition 2. A relational frame is a triple (M ,�,e) where e is an element of M and �
a ternary relation on M satisfying, for all a,b,c,d ∈M :
1. e,a � b iff a = b (identity)
2. a,b � c iff b,a � c (commutativity)
3. if ∃k (a,k � d and b,c � k) then ∃p(a,b � p and p,c � d) (associativity)

The relation m,a � b can be read in both directions: “the composition of m and a yields
b” or “b is decomposable into m and a.” We claim that relational frames can model pro-
cess calculi and resource calculi or a combination of both like in [13]. The two notions
of non-deterministic monoid and relational frame are in fact completely isomorphic. In
the following, we will rather use the relational frame notion.

Moreover, from Proposition 2, it is clear that non-deterministic monoids (or equiva-
lently relational frames) induce Boolean BI algebras on the powerset of their career.

3.2 A Relational Semantics for BBI

Let (M ,�,e) be a relational frame and v : Var−→P (M ) be a valuation, i.e. an in-
terpretation of propositional variables. We define, by induction on formulae, a forcing
relation � between elements of M and formulae of BBI:

m � I iff m = e m � X iff m ∈ v(X)

m �⊥ iff never m � A∨B iff m � A or m � B
m �3 iff always m � A∧B iff m � A and m � B

m � ¬A iff m 
 A m � A→B iff m 
 A or m � B

m � A∗B iff ∃a,b s.t. a,b � m and a � A and b � B
m � A−∗B iff ∀a,b (m,a � b and a � A) implies b � B

Theorem 1 (Soundness). Let (M ,�,e) be a relational frame and v be a valuation. If
a formula A of BBI is provable then for any element m of M , m � A holds.

Proof. Let us fix a relational frame (M ,�,e) and a valuation v : Var−→P (M ). Since
the interpretation of the additive connectives of BBI is the standard Kripke interpretation
of classical propositional connectives, all theorems of classical logic are forced by all
elements of M . Moreover the rule [MP] preserves forcing since it is the standard modus
ponens rule of classical logic. We only have to check that the linear axioms are forced
and also that the three deduction rules [∗], [−∗1] and [−∗2] preserve forcing.

Let us check axiom 4 (section 2). Let m be such that m � A∗ (B∗C). We prove that
m � (A ∗B) ∗C. By definition of the forcing relation, there exist a,k s.t. a,k � m and
a � A and k � B∗C. So there exist b,c � k s.t. b � B and c �C. Thus a,k � m and b,c � k
holds. By associativity of the � relation, there exists p s.t. a,b � p and p,c � m. Since
a,b � p, we deduce p � A∗B and since p,c � m, we deduce m � (A∗B)∗C.

Now let us check the deduction rule [−∗1]. Suppose that for any element m of M ,
m � A→ (B−∗C) holds. Let k be an element of M such that k � A ∗B holds. Let us
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prove that k � C holds. Since k � A∗B, there exist a,b s.t. a,b � k and a � A and b � B.
Since a � A holds and a � A→ (B−∗C) holds (by instantiation of the hypothesis), then
a � B−∗C holds. But since a,b � k holds, by definition of the forcing relation, we deduce
k � C.

We now study the completeness of this relational semantics by extending techniques
we used for completeness of the relational semantics of BI [8]. We define a term model
based on the Lindenbaum construction and the prime filters of this boolean algebra.
We denote by L the set of classes of logically equivalent formulae and these classes
by the letters a,b,c... The class of a formula A is denoted [A] = {B | A 8 B}. The 8
equivalence relation is a congruence and the logical connectives induce algebraic op-
erators on the Lindenbaum algebra. An order relation is defined between classes by
[A] � [B] iff &A→B is provable and (L,�) has the structure of a boolean algebra with
least element 0 = [⊥] and greatest element 1 = [3], each classical connective inducing
a corresponding boolean operator. We introduce i = [I] as the class of the monoidal unit.

Filters and prime filters. The upward closure of a subset X of L is defined by ↑X =
{k ∈ L | ∃x ∈ X ,x � k}. A filter F of L is a non-empty (1∈ F) upward closed (↑F = F)
and meet-stable (∀x,y∈ F,x∧y ∈ F) subset of L . If x is an element of L then ↑x defined
by ↑x = {k ∈ L | x � k} is the least filter containing x. ↑0 = L is the greatest filter.

A prime filter Fp of L is a filter which is proper (0 
∈ Fp) and satisfies ∀a,b ∈ L,a∨
b∈ Fp implies (a∈ Fp or b∈ Fp). Let us recall the following result: since L is a boolean
algebra, the prime filters are exactly the maximal proper filters of L [4].

Proposition 3. Let Fp,Gp be prime filters of L . If Fp ⊆ Gp then Fp = Gp.

We denote by F (resp. Fp) the set of filters (resp. prime filters) of L . They are ordered
by inclusion⊆ and, by Proposition 3, the order on Fp is flat. We define a (commutative)
monoidal operation on F by A •B = ↑{a ∗b | a ∈ A and b ∈ B}. Then (F,⊆,•,↑i) is an
ordered commutative monoid. The greatest filter ↑0 is an absorbing element of •.4

Definition 3. A prime predicate ϕ : F−→2 = {false < true} satisfies
1. k ϕ(Fk) � ϕ( k Fk) for any chain (Fk)k∈I .
2. ϕ(F ∩G) � ϕ(F)∨ϕ(G) for any filters F,G.
3. ϕ(↑0) = false.

Let us give two examples of prime predicates. Let x < 1 be an element of L . Then the
map F �→ x 
∈ F is a prime predicate. Let A ∈ F and Hp ∈ Fp then F �→ A •F ⊆ Hp is
also a prime predicate.5

Lemma 1 (prime extension). If ϕ if a prime predicate and F a filter such that ϕ(F) =
true, then there exists a prime filter Fp extending F (F ⊆Fp) and such that ϕ(Fp) = true.

This lemma is proved using Zorn’s lemma and expresses that a filter satisfying a prime
predicate can be extended to a prime filter satisfying the same predicate.

4 So for any filters F,G, if 0 ∈ F then 0 ∈ F •G.
5 This property involves the distributivity of ∗ over ∨ (see Proposition 1).
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Corollary 1. We have the two following results:
1. Let x ∈ L and F ∈ F s.t. x 
∈ F. There exists Fp ∈ Fp s.t. F ⊆ Fp and x 
∈ Fp.
In particular, if x < 1, there exists Fp ∈ Fp s.t. x 
∈ Fp.
2. Let A,B∈ F and Hp ∈ Fp s.t. A•B⊆Hp. There exist Ap,Bp ∈ Fp s.t. A⊆ Ap, B⊆ Bp

and Ap •Bp ⊆ Hp.

Term models with one unit. Indeed, the set Fp of prime filters cannot be used directly
as a model of BBI because several extensions of the unit I exist. We have to select a
particular one to obtain a model with a unique unit, problem also studied in [16].

Definition 4. Let Ip,Fp be prime filters. Ip is a unit if i ∈ Ip. Ip is a unit of Fp if Ip is a
unit and Ip •Fp ⊆ Fp.

Since i ∈ Ip, for any filter F we have F ⊆ Ip •F . Consequently if Ip is a unit of Fp then
the identity Ip •Fp = Fp holds.

Proposition 4. Let Ip, I′p be two units and Fp be a prime filter, we have
1. Ip is a unit of Ip;
2. 0 
∈ Ip • I′p if and only if Ip = I′p;
3. 0 
∈ Ip •Fp if and only if Ip is a unit of Fp.

Proposition 5. Every prime filter has a unique unit.

Proposition 6. Let Ap, Bp and Cp be prime filters. If Ap •Bp ⊆Cp holds then Ap, Bp

and Cp share the same unit.

We now can build a term model with a unique unit. Let us fix a unit Ip. Among
the primer filters, we only consider those having Ip for unit. Let M = {Fp ∈ Fp |
Ip is a unit of Fp}. We define the ternary relation � on M by Ap,Bp �Cp iff Ap•Bp⊆Cp.
We also define a valuation v : Var−→P (M ) by Fp ∈ v(X) iff [X ] ∈ Fp. We interpret
propositional variables with the valuation v and obtain a forcing relation �.

Lemma 2. The triple (M ,�, Ip) is a relational frame, in which we use the previously
defined forcing relation �. Then, for any formula A of BBI and any prime filter Fp of
M , Fp � A iff [A] ∈ Fp.

Theorem 2 (Completeness). If A is not provable in BBI, then there exists a relational
frame which is a counter-model of A.

Proof. Let A be not provable in BBI. Let a be its class [A] in L . Then a < 1. So by
Corollary 1, there exists a prime filter Fp such that a 
∈ Fp. Let Ip be the unit of Fp and
M be relation frame associated to Ip according to Lemma 2. Then Fp ∈M since Ip is
the unit of Fp. Moreover [A] = a 
∈ Fp and thus Fp 
 A.

Compared to the relational semantics of Yang [16], that is based on maximally consis-
tent sets, our semantics extends the one we defined for (intuitionistic) BI [8] and can be
seen as more abstract. It generalizes previous models for separation logics for trees and
processes. From such a semantics we could define a tableau method for BBI and proved
its completeness but in order to study decidability and finite model properties for BBI
we need to deeper analyze the resolution of relational constraints.
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4 Embeddings of S4 and IL into BBI

In this section, we exploit the relational semantics of BBI, mainly its soundness, in
addition to the definition of a S4-like modality of BBI in order to faithfully embed the
modal logic S4, and then the intuitionistic logic IL, into BBI.

4.1 A S4-Like Modality in BBI

We introduce the denotation �A as an abbreviation of 3−∗A. Given a relational frame
(M ,�,e), we define the relation � between elements of M by a � b if there exists
m ∈M such that m,a � b. It is easy to verify that � is a preorder on the set M , i.e., a
reflexive and transitive relation. Moreover the Kripke interpretation of the � operator is
expressed by: m � �A iff ∀k,m � k implies k � A.

Then �A is Kripke interpreted the same way as in S4. Let us check now if the axioms
of S4 are theorems of BBI.

Proposition 7. The three axioms �(A→B)→ (�A→�B), �A→A and �A→��A
of S4 are provable in BBI. If A is provable in BBI, then �A is provable in BBI.

Proof. We give a proof of �A→A. Let K1 ≡ (3−∗A)∗ I, K2≡ (3−∗A)∗3. (3−∗A)→
(3−∗A) is a (classical) axiom of BBI. So by rule [−∗1], K2 →A ≡ ((3−∗A) ∗3)→A
is provable. Moreover I→3 is a (classical) tautology of BBI and then, by rule [∗],
K1 →K2 ≡ ((3−∗A)∗ I)→ ((3−∗A)∗3) is provable. As (3−∗A)→K1 ≡ (3−∗A)→
((3−∗A)∗ I) is an axiom of BBIwe get, by combining (3−∗A)→K1 with K1 →K2 and
K2 →A, a proof of �A→A.

We now prove the deduction rule. Let A be a provable formula of BBI. Then3→A is
provable. Moreover (3∗3)→3 is (classical) tautology of BBI. Combining those two,
(3∗3)→A is provable and then by rule [−∗2], 3→ (3−∗A) is provable. Moreover3
is a (classical) axiom and thus, by rule [MP], 3−∗A is provable, i.e., �A is provable.

As a corollary to this result, we define a mapping from formulae of S4 to formulae of
BBI built on the same set Var of propositional variables. Let A �→ A� be recursively
defined by the following equations:

(¬A)� = ¬A� K� = K for K ∈ Var∪{⊥,3}
(�A)� = 3−∗A� (A �B)� = A� �B� for � ∈ {∧,∨,→}

Corollary 2. If A is a provable formula of S4 then A� is provable in BBI.

Proof. By Proposition 7, all the (specific) axioms and deductions rules of S4 are also
derivable in BBI. The other rule of S4 (which is [MP]) and the other axioms of S4 are
those of classical propositional logic, which is a part of BBI.

4.2 From Trees to Relational Frames

A partial order � is a reflexive, antisymmetric and transitive relation. Two elements a
and b are upper bounded when they have a common upper bound m such that a � m
and b � m. Two elements a and b are comparable if either a � b or b � a.
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Definition 5. A tree (T ,�,r) is a partial order where r is the least element of T . More-
over any two upper bounded elements of T are comparable.

Theorem 3. If A is a formula of S4 which is not provable, then there exists a tree
(T ,�,r) such that r 
 A.

Proof. We recall the main argument of the proof given in [1] (pages 59–63). Since A is
not provable, it has a counter-model (Q ,�) in the class of preorders. For some element
r ∈Q , the property r 
 A holds. Consider the set S of finite increasing sequences of the
form (r = a0,a1, . . . ,an) for n � 0. It is ordered by the prefix order between sequences
and thus S is a tree with root (r). The mapping (a0,a1, . . . ,an) �→ an from S to Q is a
surjective bounded morphism so it preserves the forcing relation. Thus (r) 
 A in S .

Let (T ,�,r) be a tree. Then the max operator is a partial commutative monoidal oper-
ator with unit r. We build a ternary relation on T by:

a,b � m iff a and b are comparable and m = max{a,b}

Proposition 8. (T ,�,r) is a relational frame and the preorder � induced by � matches
�, i.e., � = �.

Proof. Since r is the neutral element of T , the identity axiom is obvious. Commutativity
is also obviously verified. Let us check associativity. If a,k � d and b,c � k hold, then b
and c are comparable and k = max{b,c}. Then d is an upper bound of a, b and c. Since,
k∈ {b,c} and d ∈ {a,k}, then d ∈ {a,b,c}. Thus d = max{a,b,c}. Since T is a tree and
a and b are upper bounded by d, then a and b are comparable6 and let p = max{a,b}.
Then a,b � p and p,c � d. We conclude that � is associative. If a � b there exists m s.t.
m,a � b. Then b = max{m,a} and we obtain a � b. Conversely if a � b then r,a � b and
thus a � b holds. Consequently the identity � = � holds.

Theorem 4. If A is not provable in S4, then A� is not provable in BBI.

Proof. Since A is not provable in S4, by Theorem 3, there exist a (potentially infinite)
tree (T ,�,r) and a valuation v : Var−→P (T ) s.t. r 
S4 A. We consider the associated
relational frame (T ,�,r) and use the same valuation v. By Proposition 8, the identity
� = � holds. By a structural induction on F , formula of S4, we prove that for any
m∈ T , m �S4 F iff m �BBI F�. Then, in particular, r 
BBI A�. Then (T ,�,r) associated
to v is a counter-model of A�. By soundness, we deduce that A� is not provable in BBI.

A direct consequence of the faithful embedding A �→ A� is the following: it is well
known that propositional intuitionistic logic IL can be faithfully embedded into S4 by
prefixing with a � all variables X �→ �X and implications (A→B) �→ �(A→B) while
preserving the rest of the structure of the formula. Thus combining both embeddings
we have the following result:

Theorem 5. There exist faithful embeddings of S4 and IL into BBI.

6 Here the fact that T is a tree is required. The max operator would not necessarily be associative
if T was only a partial order or preorder.
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This result is surprising because we could naively think that BBI with its classical propo-
sitional connectives has a “classical” nature. Moreover, such embeddings have an im-
pact on proof-search in BBI. In particular, if BBI is decidable as we still hope to prove
it in further works, its complexity is at least polynomial-space complete (the complex-
ity of IL [15] and S4). Even if it is complete w.r.t. to partial orders or trees, S4, does
not have the finite model property for these models. However, S4 has the finite model
property for preorders [1]. This point emphasizes the importance of the right tuning of
axioms when seeking the finite model property and could be a hint to a finer axioma-
tization of relational semantics. In further work we will study if there exists a faithful
embedding of multiplicative intuitionistic linear logic MILL into BBI.

5 BBI and Bisimulation in Relational Frames

In this section, we deal with the formulae of BBI in order to distinguish elements of
relational frames. We provide a characterization of the observational power of BBI: it
is the ω-limit denoted ∼ω of the transfinite decreasing sequence leading to the greatest
bisimulation (see [10]) denoted∼. Then, we discuss further conditions under which the
identity ∼ = ∼ω would hold. We consider the Lindenbaum algebra L of BBI. Unlike
what we have done before, we do not distinguish between a formula A and its class of
logical equivalence [A]. So we write A = B when we have A8 B.

5.1 BBI in Finite Slices

Let δ be the function defining the weight of binary logical connectives: δ(∨) = δ(∧) =
δ(→) = 0 and δ(∗) = δ(−∗) = 1. The rank of a formula A, denoted rank(A), is defined
by induction on the structure of A as follows:

rank(¬A) = rank(A) and rank(K) = 0 for K ∈ Var∪{⊥,3, I}
rank(A �B) = max{rank(A), rank(B)}+ δ(�) for � ∈ {∨,∧,→,∗,−∗}

Then an additive connective preserves the rank while a linear connective increases the
rank by one. This notion of rank is not the same as in [5] but it serves the same purpose:
to cut BBI into finite slices. The rank of a class of logically equivalent formulae is
the least rank of its representatives (i.e. its elements). We denote by Lr the subset of L
composed of (classes of) formulae of rank at most r. Obviously, since boolean (additive)
connectives preserve the rank, Lr = {A ∈ L | rank(A) � r} is a sub-boolean algebra of
L . Then L0 contains all the propositional variables of Var and the multiplicative unit I.

Let K be a subset of L . The sub-boolean algebra generated by K , denoted B(K ), is
the least subset of L containing K ∪{⊥,3} and closed under the boolean operators ∨,
∧, → and ¬. It is clear that B(·) is a closure operator on L . Moreover formulae of rank
0 cannot contain the ∗ or−∗ connectives, so any formula of L0 is a boolean combination
of atomic formulae and L0 = B(Var∪{I}).

Proposition 9. If K is a finite subset of L then B(K ) is finite.

Proof. Suppose K = {K1, . . . ,Kn} and let X = {X1, . . . ,Xn} be a set of (distinct) vari-
ables. We denote by BX the (finite) boolean algebra freely generated by X . There is a
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unique boolean algebra homomorphism ϕ : BX −→L such that ∀i ϕ(Xi) = Ki. Its image
is the least sub-boolean algebra of L containing K : ϕ(BX ) = B(K ). Since BX is finite,
then B(K ) is finite.

Let K be a finite subset of L . We define a mapping (·) : P (K )−→L from subsets of
K to L by: Γ = {A | A ∈ Γ}∧ {¬A | A ∈ K −Γ}
It is clear that for any Γ ∈ P (K ), Γ is an element of B(K ). In fact, the direct image of
the mapping (·) : P (K )−→B(K ) is either Min or Min∪{⊥}, where Min is the set of
minimal elements of B(K )−{⊥}.

Proposition 10. For A ∈K , the identity A = {Γ | A ∈ Γ and Γ⊆K } holds.

This property is inherited from the freely generated boolean algebra BX we introduced
in the preceding proof. We now associate to a finite set K of formulae of L , a finite set
ψ(K ) containing formulae of potentially greater rank:
ψ(K ) = {Γ∗Δ | Γ,Δ ∈ P (K )}∪{¬(Γ−∗¬Δ) | Γ,Δ ∈ P (K )}

Proposition 11. If K is a finite subset of Lr then ψ(K ) is a finite subset of Lr+1.
If I ∈ K then K ⊆ B(ψ(K )).

Proof. The first result is trivial. If I ∈K then I = {Γ | I ∈ Γ and Γ ∈ P (K )} by Propo-
sition 10. Let A ∈ K , by Proposition 10, we have A = {Δ | A ∈ Δ and Δ ∈ P (K )}.
Then, by distributivity of ∗ over ∨ (see Proposition 1), we obtain the identities A =
I∗A = {Γ∗Δ | I ∈ Γ,A ∈ Δ and Γ,Δ ∈ P (K )}. Then A ∈ B(ψ(K )).

Proposition 12. If Lr is finite then Lr+1 = B(ψ(Lr)).

Theorem 6. Var is finite iff L0 is finite iff for all r, Lr is finite.

5.2 Observational Equivalence and Bisimulation

Now we use formulae of BBI and the forcing relation to distinguish between elements
of relational frames. We suppose that the set of propositional variables Var is finite
and consider a fixed relational frame (M ,�,e). We also have a fixed interpretation
v(X)⊆M for each propositional variable X .

The valuation v is the atomic observational tool to distinguish between elements
of M . X distinguishes the elements of v(X) from the elements of M − v(X) and I
distinguishes e from the other elements of M . We define the atomic observational
equivalence ∼0 by a ∼0 b if ∀F ∈ Var∪ {I},a � F iff b � F . So a ∼0 b holds when
no atomic observation can distinguish a from b. Then we generalize the observational
equivalence to a subset K of L . We define∼K , the observational equivalence under K
by: a∼K b iff ∀F ∈ K ,a � F iff b � F . Then a and b are observationally equivalent
under K when they cannot be distinguished from each other using forcing and formulae
of K . Then they are neither distinguishable by any boolean combination of formulae
of K.

Proposition 13. ∼K =∼B(K ).

Now we suppose that K is a finite subset of L . Given a in M , we define the subset Ka

of K by Ka = {F ∈ K | a � F}. Ka characterizes the ∼K -class of a.



Expressivity Properties of Boolean BI Through Relational Models 367

Proposition 14. For any a,b ∈M , a∼K b if and only if b � Ka.

Definition 6. We define∼ω, the observational equivalence by∼ω =∼L and the obser-
vational equivalence up to rank r by ∼r =∼Lr .

This definition is coherent with the previous definition of ∼0 because of L0 =
B(Var∪{I}) and Proposition 13: the atomic observational equivalence coincides with
the observational equivalence up to rank 0. We now generalize this identity for rank r.
We recall the notion of bisimulation. We define an increasing operator F : P (M 2)−→
P (M 2) on the set of binary relation over M . Let R ∈ P (M 2) be a binary relation on
M . Then F (R) is the binary relation on M characterized by:

m F (R) m′ iff

⎧⎪⎪⎨⎪⎪⎩
∀a,b � m, ∃a′,b′ � m′, a R a′ and b R b′

∀a′,b′ � m′, ∃a,b � m, a R a′ and b R b′

∀m,a � b, ∃m′,a′ � b′, a R a′ and b R b′

∀m′,a′ � b′, ∃m,a � b, a R a′ and b R b′

With this definition, we could check that the full relation M 2 is a fixpoint of F ,
i.e. F (M 2) = M 2. In order to obtain the bisimulation, we combine F with an atomic
distinction feature using the ∼0 atomic observational equivalence.

Definition 7. The bisimulation equivalence ∼ is the greatest fixpoint of the increasing
function F0 where F0(R) = F (R)∩∼0.

As noted by Milner [10], ∼ could be obtained either by the union of all bisimulations
(i.e. binary relations satisfying R ⊆ F0(R)) or as the limit of the decreasing transfinite
sequence λ F λ

0 (M 2), λ ranges over the class of ordinals.

5.3 The Observational Power of BBI

The function F operates on binary relations and thus on observational equivalences
∼K . The next result shows when K is finite, the behavior of F on ∼K can be repre-
sented by a finitary transformation on the set K .

Lemma 3. For any finite subset K of L , F (∼K ) =∼ψ(K ).

Theorem 7. For any rank r, F (∼r) =∼r+1 and ∼r = F r(∼0).

Proof. Using Propositions 12, 13 and Lemma 3 we derive F (∼r)=F (∼Lr)=∼ψ(Lr)=
∼B(ψ(Lr)) =∼Lr+1 =∼r+1. Then by induction on r, we prove∼r = F r(∼0).

Corollary 3. Observational equivalence is the ω-limit of the decreasing sequence

M 2 ⊇ F0(M 2)⊇ F 2
0 (M 2)⊇ ·· · ⊇

r<ω
F r

0 (M 2) =∼ω ⊇ ·· · ⊇
λ

F λ
0 (M 2) =∼

Proof. We prove F r+1
0 (M 2) =∼r by induction on r once having noticed that F0(M 2)=

∼0. Then, any pre-fixpoint of F0 (i.e. any bisimulation, including∼) is smaller than any
element of the transfinite decreasing sequence F λ

0 (M 2), and in particular when λ = ω.
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Observational equivalence ∼ω is not necessarily equal to bisimulation equivalence ∼
because iterations up to ordinals λ greater than ω could be necessary to reach the great-
est fixpoint λ F λ

0 (M 2). As Milner noticed [10], one should use infinitary logics to
make infinite observations. In this context, our results can be related to a recent study
on resources and processes based on BBI [13] and provide a characterization of the ob-
servational power of BBI. Though in general ∼ is not equal to ∼ω, it is interesting to
study under which further conditions the identity ∼ = ∼ω holds. For example, it holds
when M is finite or when the relation � is locally finite or more generally, when the
model has the Hennessy-Milner property. The results obtained in the context of modal
logic [1] could be adapted to BBI. To have ∼ = ∼ω is an important goal that could
provide constructive tools to show equivalence and also to distinguish.
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Abstract. We consider a general class of timed automata parameterized by a set
of “input-determined” operators, in a continuous time setting. We show that for
any such set of operators, we have a monadic second order logic characterization
of the class of timed languages accepted by the corresponding class of automata.
Further, we consider natural timed temporal logics based on these operators, and
show that they are expressively equivalent to the first-order fragment of the cor-
responding MSO logics. As a corollary of these general results we obtain an
expressive completeness result for the continuous version of MTL.

1 Introduction

Timed automata are a popular model of real-time systems, introduced by Alur and Dill
in the early nineties [1]. Since then there have been several variants of these automata
based on input-determined guards [2,3,4,5]. Unlike the explicit clock based guards of
timed automata, an input-determined guard is based on a distance operator whose value
is completely determined by the input timed word and a time point in it. This property
leads to robust logical properties including closure under complementation which timed
automata lack. A good example of an input-determined operator is the event-recording
operator �a of [2] which measures the distance to the last time an event a occurred.
Similarly the “eventual” operator �a [6,5] inspired by the well-known timed logic
Metric Temporal Logic (MTL) [7,2,8], measures the time to “some” future occurrence
of an a event.

There have been two natural ways of employing these operators in automata and
logical formalisms in the literature. One is the traditional “pointwise” interpretation in
which guards are asserted only at “action-points” in a timed word. The other is the so-
called “continuous” interpretation in which assertions can be made at any time point
along the timed word. The two interpretations are well illustrated by the MTL formula
��[1,1]a which states that there is a point in future such that an a occurs exactly one
time unit later. In the pointwise semantics, the formula is not satisfied by the timed
word which comprises a b at time 1 followed by an a at time 3, but is satisfied in the
continuous semantics. In general, the continuous semantics is strictly more expressive
than the pointwise semantics [9,10].

S. Arun-Kumar and N. Garg (Eds.): FSTTCS 2006, LNCS 4337, pp. 369–380, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In the pointwise semantics, the work in [6] provides a general framework for show-
ing determinizability, closure properties, and monadic second-order (MSO) logic char-
acterizations, for classes of timed automata based on input-determined operators, called
input-determined automata (IDA’s). It also identifies natural timed temporal logics
based on these operators which are expressively complete with respect to the corre-
sponding automata classes.

In this paper we show a similar general framework for the continuous semantics.
Thus we first define an appropriate “continuous” version of these automata called con-
tinuous input-determined automata (CIDA’s) which are parameterized by a set of input-
determined operators. These CIDA’s extend IDA’s by allowing epsilon-transitions and
state invariants. We show that these classes of automata are determinizable and closed
under boolean operations. They also admit logical characterizations via natural MSO
logics based on the input-determined operators, and interpreted over continuous time.
Further, the continuous version of the natural timed temporal logics based on these op-
erators are shown to be expressively complete, in that they correspond to the first-order
fragments of the associated MSO logics. These results generalize to the corresponding
recursive formalisms where the input-determined operators take as arguments logical
formulas or “floating” automata, as originally used in the work of [11].

This framework can be used as a general technique for showing such results for any
class of automata and logics based on input-determined operators. In particular, the
results of [11] for the class of recursive event clock automata (ECA’s), pertaining to
the MSO characterization via the logic MinMaxML and the expressive completeness of
recursive Event Clock Temporal Logic (ECTL), follow as corollaries of our results.

As a new application, we obtain an expressive completeness result for MTL in the
continuous semantics. MTL can be viewed as the recursive timed temporal logic based
on the operator �, and hence corresponds to the first-order fragment of recursive CIDA’s
and the MSO based on the operator �.

The techniques used to prove our results are similar to [6] in that we also make use
of the notion of proper alphabets. These alphabets help in determinizing CIDA’s and
showing closure properties. For the MSO characterization we use proper alphabets to
translate formulas into a continuous version of Büchi’s MSO logic, which preserves,
in a sense, the original models of the formula. Now we need to make use of the fact
that the “untiming” of continuous MSO formulas is regular in order to obtain a CIDA
for the original MSO formula. We give an automata-theoretic proof of this result which
was independently proved by Rabinovich in [12] using a translation to classical MSO.
For the expressive completeness result concerning our timed temporal logics we factor
through the well-known result of Kamp for classical LTL [13].

The technique used in [11,14] for event clock automata is similar in that they fac-
tor through Kamp’s theorem to prove their expressive completeness result. However
the MSO characterization is obtained differently by showing that quantified ECTL is
expressively equivalent to recursive ECA’s.

In this paper we deal with finite timed words, though the results can be easily ex-
tended to infinite words as well. Details of proofs omitted due to lack of space can be
found in the technical report [15].
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2 Preliminaries

For an alphabet A, we use A∗ to denote the set of finite words over A. For a word w in
A∗, we use |w| to denote its length. We make use of the standard notations for regular
expressions, with ‘·’ for concatenation and ‘∗’ for Kleene closure.

A finite state automaton (FSA) A over a finite alphabet A is a structure A =
(Q, s, δ, F ), where Q is a finite set of states, s is the initial state, δ ⊆ Q × A × Q is
the set of transitions, and F ⊆ Q is the set of final states. A run ρ of A on a word w =
a1 · · · an ∈ A∗ is a mapping from {0, · · · , n}→ Q such that (ρ(i), ai+1, ρ(i + 1)) ∈ δ
for each i < n, and ρ(0) = s. The run is accepting if ρ(n) ∈ F . The symbolic lan-
guage accepted byA, denoted Lsym(A), is the set of words in A∗ over whichA has an
accepting run.

We denote the set of non-negative and positive real numbers by R≥0. We use IR≥0

to denote the set of intervals, where an interval is a convex subset of R≥0. Two interval
I and J are adjacent if I ∩ J = ∅ and I ∪ J is an interval. We use IQ to denote the set
of intervals whose end-points are rational or ∞.

Let A be an alphabet and let f : [0, r] → A be a function, where r ∈ R≥0. We
denote r by length(f). We call f a finitely varying function over A, if there exist a word
a0a1 · · · a2n in A∗, and an interval sequence I0I1 · · · I2n, such that 0 ∈ I0, Ii and Ii+1

are adjacent for each i, Ii is singular if i is even, and for all t ∈ [0, r], f(t) = ai if t ∈
Ii. We then call (a0, I0) · · · (a2n, I2n) an interval representation of f . We call a word
a0a1 · · · an in A∗ canonical, if n is even, and there does not exist an even i such that
0 < i < n and ai−1 = ai = ai+1. An interval representation (b0, I0) · · · (b2n, I2n) of
f is called canonical, if b0 · · · b2n is canonical. Note that every finitely varying function
has a canonical interval representation. We define func(A) to be the set of all finitely
varying functions over A.

Let f ∈ func(A) and let (a0, I0) · · · (a2n, I2n) be its canonical interval representa-
tion. We denote the untiming of the function as a sequence which captures explicitly
the points of discontinuities and the intervals between them. The untiming of the above
f , denoted untiming(f), is defined as a0 · · ·a2n. Note that the untiming of a function
is always canonical. Given a word w in A∗, we define its timing to be a set of func-
tions: timing(w) = ∅ if |w| is even, otherwise f ∈ timing(w) if w = a0a1 · · · a2n

and (a0, I0)(a1, I1) · · · (a2n, I2n) is an interval representation of f . We can extend the
definitions of timing and untiming to languages of functions in the expected way.

We define a timed word σ over an alphabet Σ to be an element of (Σ × R≥0)∗,
such that σ = (a0, t0)(a1, t1) · · · (an, tn) and t0 < t1 < · · · < tn. We denote the set
of all timed words over Σ by TΣ∗. We define an input-determined operator Δ over
an alphabet Σ as a partial function from (TΣ∗ × R≥0) to 2R≥0 , which is defined for
all pairs (σ, t), where t ∈ [0, length(σ)]. Given a set of input-determined operators
Op, we define the set of guards over Op, denoted by G(Op), inductively as g ::=
3 |ΔI | ¬g | g ∨ g | g ∧ g, where Δ ∈ Op and I ∈ IQ. Guards of the form ΔI are
called atomic. Given a timed word σ, we define the satisfiability of a guard g at time
t ∈ [0, length(σ)], denoted σ, t |= g, as σ, t |= ΔI iff Δ(σ, t) ∩ I 
= ∅, and in the
usual way for the boolean operators. For example ΔQ, which maps (σ, t) to {1} if t is
rational and to {0} otherwise, is an input-determined operator. Other examples include
the eventual operator �a, inspired by MTL, which maps (σ, t) to the set of time points



372 F. Chevalier, D. D’Souza, and P. Prabhakar

in σ after t at which an event a occurs, and the event-recording operator �a which maps
(σ, t) to the set containing the time point which corresponds to the last occurrence of
the event a before time t.

We call an input-determined operator Δ over Σ finitely varying if for all σ ∈ TΣ∗

and I ∈ IQ, the function fΔ : [0, length(σ)] → {0, 1} defined as, fΔ(t) is 1 if σ, t |=
ΔI , and 0 otherwise, is finitely varying. The operators �a and �a are finitely varying,
whereas ΔQ is not.

Let Σ be an alphabet and Op be a set of input determined operators over Σ. We call
(Γ1,Γ2) a symbolic alphabet over (Σ,Op), if Γ1 is a finite subset of (Σ∪{ε})×G(Op)
and Γ2 is a finite subset of G(Op). We define the set of timed words over Σ associated
with a function f in func(Γ1 ∪ Γ2), denoted tw(f), as follows. If untiming(f) 
∈
Γ1 · (Γ2 · Γ1)∗, then tw(f) = ∅. Otherwise, a timed word σ = (a1, t1) · · · (an, tn) is in
tw(f), provided for all t ∈ [0, length(f)],

– f(t) = (a, g), for some a ∈ Σ and g ∈ G(Op), if there exists i such that i ∈
{1, · · · , n}, ti = t and ai = a, and if σ, t |= g, and

– f(t) = (ε, g) or g, for some g ∈ G(Op), if there does not exist i such that i ∈
{1, · · · , n}, ti = t, and if σ, t |= g.

Note that for any f , tw(f) is either a singleton set or an empty set. We can extend the
definition of tw to a set of functions as the union of the timed words corresponding to
each function in the set.

Let G be a finite set of atomic guards over Op. We call (Γ1,Γ2) the proper symbolic
alphabet over (Σ,Op) based on G, if Γ1 = (Σ ∪ {ε}) × 2G and Γ2 = 2G. A proper
word is a word over a proper symbolic alphabet. Further we call a proper word γ over
(Γ1 ∪ Γ2) fully canonical, if γ ∈ Γ1 · (Γ2 · Γ1)∗ and no subword of γ is of the form
g · (ε, g) · g. If f ∈ func(Γ1 ∪ Γ2), then we associate with it the set of timed words
obtained by interpreting g ⊆ G as the guard

∧
h∈g h ∧

∧
h∈G−g ¬h.

Example 1. Let Σ = {a}, Op = {�a} and G = {�[1,1]
a }. The proper alphabet

(Γ1,Γ2) is given by Γ1 = (Σ∪{ε})×2G and Γ2 = 2G. Let f1 : [0, 2] → Γ1∪Γ2 such

that f1(0) = f1(2) = (a, ∅), f1(1) = (ε, {�[1,1]
a }) and f(t) = ∅ if t 
= 0, 1, 2. We then

have tw(f1) = {(a, 0)(a, 2)}. Let f2 : [0, 2] → Γ1 ∪ Γ2 defined by f2(1) = (ε, ∅) and
f2(t) = f1(t) if t 
= 1. Then tw(f2) = ∅.

3 Continuous Input Determined Automata

Let Σ be an alphabet and Op be a set of input determined operators based on Σ.
A Continuous Input Determined Automaton (CIDA) A over (Σ,Op) is a structure
(Q, s, δ, F, inv) on a symbolic alphabet (Γ1,Γ2) over (Σ,Op), where Q is a finite set
of states, s ∈ Q is the start state, δ ⊆ Q×Γ1×Q is the transition relation, inv : Q → Γ2

is the labelling function for the states, and F ⊆ Q is the set of accepting states.
We now define the symbolic language accepted by the CIDA A. Let γ ∈ Γ1 · (Γ2 ·

Γ1)∗ and let γ = γ0γ1 · · · γ2n. Let N = {0, · · · , n + 1}. A run of A over γ is a
map ρ : N → Q such that ρ(0) = s, (ρ(i), γ2i, ρ(i + 1)) ∈ δ for i = 0, · · · , n and
inv(ρ(i)) = γ2i−1 for all 1 ≤ i ≤ n. We say ρ is accepting if ρ(n + 1) ∈ F . The



On Continuous Timed Automata with Input-Determined Guards 373

symbolic language defined by A, denoted Lsym(A), is the set of words in Γ1 · (Γ2 ·
Γ1)∗ over which A has an accepting run. Note that a language L is a regular subset of
Γ1 · (Γ2 · Γ1)∗ iff it is the symbolic language of a CIDA.

We define the language of functions accepted by the CIDA A, denoted F (A), as
timing(Lsym (A)). The timed language of the CIDA A, denoted L(A), is defined as
tw(F (A)).

We give below a concrete example of a CIDA, which we call Continuous Eventual
Timed Automata (CETA). A CETA over an alphabet Σ is a CIDA over (Σ,Op), where
Op = {�a | a ∈ Σ} is the set of eventual operators based on Σ. The diagram below
gives a CETA over {a, b} which recognizes the language Lni (for “no insertion”),
which consists of timed words in which between any two consecutive a’s, there does
not exist a time point from which at time distance one in the future there is an a or a b.

(a,�
)

(a
,�

)
(b,�

)

¬(�a ∈ [1, 1] ∨ �b ∈ [1, 1])

(a,�)�

�

(ε,�), (b,�) (a,�)

We define a proper CIDA to be a structure similar to CIDA except that it is over a
proper symbolic alphabet instead of a symbolic alphabet. We call a proper CIDA fully
canonical if its symbolic language consists of fully canonical proper words. We show
below the closure of CIDA’s under the boolean operations. Let Σ be an alphabet and
Op be a set of finitely varying operators.

Lemma 1. CIDA’s over (Σ,Op) and fully canonical proper CIDA’s over (Σ,Op)
define the same class of timed languages.

Theorem 1. The class of CIDA’s over (Σ,Op) is closed under union, intersection and
complementation.

Proof. Union of CIDA’s is equivalent to the union of their symbolic languages. For
complementation, using lemma 1 we can give an equivalent fully canonical proper
CIDA A′ for a given CIDA A. But the set of timed words associated with two distinct
fully canonical proper words is disjoint. Hence we can complement the timed language
ofA′ by complementing its symbolic language with respect to the set of fully canonical
proper words. �

4 Continuous Monadic Second Order Logic

In this section, we interpret Buchi’s monadic second order logic over finitely varying
functions and show that the untiming of the language of functions definable in the logic
is regular.
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Recall that for an alphabet A, Büchi’s monadic second order logic (denoted here by
MSOc(A)) is given as follows:ϕ ::= Qa(x) |x ∈ X |x < y | ¬ϕ | (ϕ∨ϕ) | ∃xϕ | ∃Xϕ,
where a ∈ A, and x and X are first and second order variables, respectively. We use the
convention that the small letters are first order variables and capital letters are second
order variables.

We interpret a formula of the logic over a finitely varying function f in func(A),
along with an interpretation I with respect to f , which assigns to a first order variable
x, a value in [0, length(f)], and to a set variable X , a finite subset of [0, length(f)]. We
use X ⊆fin Y to denote that X is a finite subset of Y .

For an interpretation I, we use the notation I[t/x] to denote the interpretation which
sends x to t and agrees with I on all other variables. Similarly, I[B/X ] denotes the
modification of I which maps the set variable X to B and the rest to the same as that
by I. We also use the notation [t/x] to denote an interpretation which sends x to t when
the rest of the interpretation is irrelevant.

We now define the semantics of MSOc(A). Given a formula ϕ ∈ MSOc(A), f ∈
func(A) and an interpretation I with respect to f to the variables in ϕ, the satisfaction
relation f, I |= ϕ, is defined inductively as:

f, I |= Qa(x) iff f(I(x)) = a, wherea ∈ A.
f, I |= x ∈ X iff I(x) ∈ I(X).
f, I |= x < y iff I(x) < I(y).
f, I |= ¬ϕ iff f, I 
|= ϕ.
f, I |= ϕ1 ∨ ϕ2 iff f, I |= ϕ1 or f, I |= ϕ2.
f, I |= ∃xϕ iff ∃t ∈ [0, length(f)] : f, I[t/x] |= ϕ.
f, I |= ∃Xϕ iff ∃B ⊆fin [0, length(f)] : f, I[B/X ] |= ϕ.

For a sentence, a formula without free variables, the interpretation does not play any
role. Hence, for a sentence ϕ in MSOc(A), we set the language defined by ϕ to be
F (ϕ) = {f ∈ func(A) | f |= ϕ}. The following theorem relates FSA’s and MSOc.

Theorem 2. Given a sentence ϕ in MSOc(A), we can give a finite state automatonAϕ

such that F (ϕ) = timing(Lsym(Aϕ)).

Proof. We construct the automaton for a formula ϕ ∈MSOc(A), inductively. Let X =
(x1, x2, · · · , xn) and Y = (X1, X2, · · · , Xm) be the free variables in ϕ. We give an
automaton AX,Y

ϕ over A′ = A × {0, 1}n+m, which is related to ϕ as follows. Let
f ∈ func(A) and I be an interpretation of the variables in (X, Y ) with respect to f .

Then f, I |= ϕ iff untiming(f (X,Y )
I ) ∈ AX,Y

ϕ . The function f
(X,Y )
I : [0, length(f)] →

A′ is defined as, f
(X,Y )
I (t) = (f(t), i1, i2, · · · , in, j1, j2, · · · , jm), where ik = 1 if

I(xk) = t and 0 otherwise, and jk = 1 if t ∈ I(Xk) and 0 otherwise. Let Ai
canon be

the automaton which accepts canonical words over A × {0, 1}i. We consider here the
cases when ϕ is Qa(x) and ∃xϕ, and the detailed proof can be found in [15].

If ϕ = Qa(x), then the automatonAX,Y
ϕ is the intersection of A1

canon with:

(a, 1)

(−, −) (−, −)
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Suppose ϕ = ∃xη. Let AX,Y
η be the automaton for η, where (X, Y ) are the free

variables in η, and X = (x, x1, · · · , xn). Let X ′ = (x1, · · · , xn). We first intersect
AX,Y

η with Avalid , which accepts words in which there is exactly one symbol with a
1 for its x-component at some even position (assuming indices start from 0). We then
project away the x-components of the labels on the transitions in the automaton. Next
we canonicalize the resulting automaton in two steps. First we convert the automaton
to one that is in the form of a bipartite graph in which the transitions are only from the
states in one set to the other. We then add transitions as described below repeatedly until
no more can be added. A transition (p, a, r) is added if there exist transitions (p, a, q),
(q, a, q′) and (q′, a, r). The above construction relies on the fact that if f

(X,Y )
I is in

the timing of w, then f
(X′,Y )
I′ is in the timing of w′, where w′ is obtained from w by

projecting away its x-component and I′ is an interpretation to the variables in (X ′, Y )
which agrees with I on the common variables. Finally we intersect the automaton with
An+m

canon where m is the number of variables in Y . �

5 A Logical Characterization of CIDA’s

In this section we give a logical characterization of CIDA’s in terms of a monadic
second order logic parameterized by a set of input-determined operators. Let Σ be an
alphabet and Op be a set of input determined operators over Σ. We define the syntax of
continuous timed monadic second order logic over (Σ,Op)(TMSOc(Σ,Op)) as:

ϕ ::= Qa(x) |ΔI(x) |x ∈ X |x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Xϕ,

where a ∈ Σ, Δ ∈ Op, I ∈ IQ, and x and X are first and second order variables. We
interpret the logic over timed words in TΣ∗. Given a formula ϕ ∈ TMSOc(Σ,Op),
a timed word σ = (a1, t1) · · · (an, tn) in TΣ∗, and an interpretation I with respect
to σ, which maps a first order variable x to t ∈ [0, length(σ)] and a second order
variable X to B ⊆fin [0, length(σ)], we define the satisfaction relation σ, I |= Qa(x)
as ∃i : ai = a, ti = I(x), and σ, I |= ΔI(x) as Δ(σ, I(x)) ∩ I 
= ∅, and the rest of the
cases are similar to that of MSOc over functions. For a sentence ϕ in TMSOc(Σ,Op),
we set the timed language defined by ϕ to be L(ϕ) = {σ ∈ TΣ∗ |σ |= ϕ}. We now
show that TMSOc characterizes CIDA’s.

Theorem 3. Let Σ be a finite alphabet and Op be a set of finitely varying input-
determined operators based on Σ. Let L be a timed language over Σ. Then L is ac-
cepted by a CIDA over (Σ,Op) iff it is definable by a TMSOc(Σ,Op) sentence.

We devote the rest of the section for a proof of the above theorem. As a proof of the
forward direction, we show that the class of languages defined by proper CIDA’s over
(Σ,Op) is a subset of the class of languages defined by TMSOc(Σ,Op) sentences. Let
A = (Q, s, δ, F, inv) be a proper CIDA over (Γ1,Γ2) based on a set of atomic guards
G over Op. We give a formula ϕA such that L(A) = L(ϕA). The formula essentially
checks for the existence of a valid run ofA over the timed words. Let δ = {e1, · · · , em}
be the set of transitions. We set (e, e′) ∈ consec if and only if there exists q such that
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e = (p, γ, q) and e′ = (q, γ′, r). We use action(x) for
∨

a∈Σ Qa(x). Given g ⊆ G,
we will use g(x) to denote the TMSOc formula

∧
ΔI∈g Δ

I(x) ∧
∧

ΔI∈G−g ¬ΔI(x).
The second order variables Xe1 , · · · , Xem are used to capture the points in the timed
words which correspond to the transitions e1, · · · , em, respectively, and X to capture
their union. Let between(x, y, z) = x < y ∧ y < z, first(x) = ¬∃y(y < x), last(x) =
¬∃y(x < y) and next(x, y, X) = x ∈ X ∧ y ∈ X ∧ ¬∃w(x < w ∧w < y ∧w ∈ X).
ϕA is given by: ∃X∃Xe1 · · · ∃Xem(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7), where:

ϕ1 : ∀x(
∨

e∈δ x ∈ Xe ⇔ x ∈ X)
∧
∀x
∧

i,j∈{1,··· ,m},i�=j(x ∈ Xei ⇒ x 
∈ Xej ).
ϕ2 : ∀x(first(x) ⇒

∨
(s,γ,q)∈δ x ∈ X(s,γ,q)).

ϕ3 : ∀x(last(x) ⇒
∨

(q,γ,f)∈δ,f∈F x ∈ X(q,γ,f)).
ϕ4 : ∀x∀y(next(x, y, X) ⇒

∨
e,e′∈consec(x ∈ Xe ∧ y ∈ Xe′)).

ϕ5 : ∀x
∧

(p,(a,g),q)∈δ(x ∈ X(p,(a,g),q) ⇒ (Qa(x) ∧ g(x))).
ϕ6 : ∀x

∧
(p,(ε,g),q)∈δ(x ∈ X(p,(ε,g),q) ⇒ (¬action(x) ∧ g(x))).

ϕ7 : ∀x∀y∀z((next(y, z) ∧ between(y, x, z)) ⇒
(
∧

(p,a,q)∈δ(y ∈ X(p,a,q) ⇒ (¬action(x) ∧ [inv(q)](x))))).

In the other direction we reduce a TMSOc formula to an MSOc formula and then
factor through theorem 2 to get an FSA over Γ1 ∪ Γ2. Let ϕ ∈ TMSOc(Σ,Op) and
let G = {ΔI |ΔI(x) is a subformula of ϕ}. Let (Γ1,Γ2) be the proper alphabet over
(Σ,Op) based on G, and let Γ = Γ1 ∪ Γ2. We now give the function tmso-mso,
which maps a TMSOc(Σ,Op) formulaϕ to the MSOc(Γ ) formula obtained by replac-
ing every atomic formula Qa(x) by

∨
(a,g)∈Γ Q(a,g)(x) and ΔI(x) by

∨
(c,g)∈Γ,ΔI∈g

Q(c,g)(x) ∨
∨

g∈Γ,ΔI∈g Qg(x).

Theorem 4. Given a sentence ϕ ∈ TMSOc(Σ,Op), L(ϕ) = tw(F (tmso-mso (ϕ))).

TMSOc − ϕ

MSOc − ϕ̃ FSA − Aϕ̃

CIDA − A′

We can now complete the proof by taking the route in the diagram above. From theorem
4, L(ϕ) = tw(F (ϕ̃)), where ϕ̃ = tmso-mso(ϕ). By theorem 2 there exists an FSA
Aϕ̃ such that F (Lsym(Aϕ̃)) = F (ϕ̃). Hence L(ϕ) = tw(F (Lsym (Aϕ̃))). We can
assume that Lsym(Aϕ̃) ⊆ Γ1 · (Γ2 ·Γ1)∗ as words not in Γ1 · (Γ2 ·Γ1)∗ do not have any
timed words associated with them. Thus we can give a CIDAA′ such that Lsym(A′) =
Lsym(Aϕ̃). It now follows that L(ϕ) = L(A′).

6 Continuous Timed Linear Temporal Logic

In this section we identify a natural, expressively complete, timed linear temporal logic
based on a set of input-determined operators. The logic is denoted TLTLc(Σ,Op),
parameterized by the alphabet Σ and the set of input-determined operators Op over Σ.
The formulas of TLTLc are given by:

θ ::= a |ΔI | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),
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where a ∈ Σ, Δ ∈ Op and I ∈ IQ. We interpret TLTLc(Σ,Op) formulas over
timed words over Σ. Let ϕ be a TLTLc(Σ,Op) formula. Let σ ∈ TΣ∗, with σ =
(a1, t1) · · · (an, tn) and let t ∈ [0, length(σ)]. Then the satisfaction relation σ, t |= ϕ is
given by:

σ, t |= a iff ∃i : ai = a, ti = t.
σ, t |= ΔI iff Δ(σ, t) ∩ I 
= ∅.
σ, t |= θUη iff ∃t′ : t < t′ ≤ length(σ), σ, t′ |= η,∀t′′ : t < t′′ < t′, σ, t′′ |= θ.
σ, t |= θSη iff ∃t′ : 0 ≤ t′ < t, σ, t′ |= η,∀t′′ : t′ < t′′ < t, σ, t′′ |= θ.

It is defined in the usual manner for the boolean combinations. The language defined
by a TLTLc(Σ,Op) formula θ is given by L(θ) = {σ ∈ TΣ∗ |σ, 0 |= θ}.

We show that TLTLc is expressively equivalent to the first order fragment of TMSOc.
Let us denote by TFOc(Σ,Op) the first order fragment of TMSOc(Σ,Op) (i,e, the
fragment we get by disallowing quantification over set variables). The logics TLTLc

and TFOc are expressively equivalent in the following sense:

Theorem 5. Let Σ be an alphabet and Op be a set of finitely varying input-determined
operators over Σ. A timed language L ⊆ TΣ∗ is definable by a TLTLc(Σ,Op) formula
θ iff it is definable by a sentence ϕ in TFOc(Σ,Op).

Proof. The proof of the forward direction is similar to the classical translation of LTL
to MSO. In the converse direction a more transparent proof is obtained by factoring
through Kamp’s result for classical LTLc. Recall that the syntax of LTLc(A) is given
by: θ ::= a | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ), where a ∈ A. The logic is interpreted over
functions f ∈ func(A). Given t ∈ [0, length(f)] and θ ∈ LTLc(A), the satisfaction
relation f, t |= a is defined as f(t) = a, and for the rest of the cases it is defined as for
TLTLc. Let FOc(A) denote the first order fragment of MSOc(A). Then the result due
to Kamp [13] states that:

Theorem 6 ([13]). LTLc(A) is expressively equivalent to FOc(A).

Let ϕ be a TFOc(Σ,Op) sentence. By theorem 4 the function tmso-mso maps a
TFOc(Σ,Op) formula to an FOc(Γ ) formula ϕ̃ = tmso-mso(ϕ) such that L(ϕ) =
tw(F (ϕ̃)). By Kamp’s result, there exists a mapping fo-ltl such that F (ϕ̃) =
F (fo-ltl(ϕ̃)). Let θ = fo-ltl(ϕ̃). Let a ∈ Σ, g ∈ G and (a, g) ∈ Γ . Let θg

=
∧

h∈g h ∧
∧

h∈G−g ¬h. We define the function ltl -tltl which maps an LTLc(Γ ) for-
mula θ to a TLTLc(Σ,Op) formula obtained by replacing each atomic formula (a, g) by
a∧θg , (ε, g) by¬

∨
c∈Σ c∧θg ∧¬(gSg∧gUg) and g by¬

∨
c∈Σ c∧θg ∧(gSg∧gUg).

We then have L(ϕ) = tw(F (ϕ̃)) = tw(F (θ)) = L(ltl -tltl(θ)). So ltl -tltl(θ) is the
TLTLc(Σ,Op) formula equivalent to ϕ.

7 Recursive Continuous Input Determined Automata

We now consider “recursive” CIDA’s. The main motivation is to increase the expres-
sive power of our automata, as well as to characterize the expressiveness of recursive
temporal logics which occur naturally in the real-time settings.
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We define a recursive input-determined operator Δ over an alphabet Σ as a partial
function from (2R≥0 × TΣ∗ × R≥0) to 2R≥0 , which is defined for tuples (X, σ, t)
where X ⊆ R≥0, σ ∈ TΣ∗ and t ∈ [0, length(σ)]. Given a recursive operator Δ
and a set X ⊆ R≥0, We denote by ΔX , the operator whose semantics is given by
ΔX(σ, t) = Δ(X, σ, t). We call a set X finitely varying if there exists a finitely varying
function f : [0, r] → {0, 1} such that X ⊆ [0, r] and f(t) = 1 if and only if t ∈ X . We
call a recursive operator Δ finitely varying if for every finitely varying set X , ΔX is a
finitely varying operator.

Given a timed word σ in TΣ∗ and a t ∈ [0, length(σ)] we call the pair (σ, t) a
floating timed word over Σ. A floating timed language is then a set of floating timed
words. We will use the notation Σ′ for (Σ∪{ε})×{0, 1}. Given σ′ ∈ TΣ′∗, we denote
by σ the timed word obtained from σ′ by projecting away the {0, 1} component from
each pair and then dropping any ε’s in the resulting word. A timed word σ′ over the
alphabet Σ′ which contains exactly one symbol from (Σ ∪ {ε})× {1}, and whose last
symbol is from Σ ×{0, 1}, defines the floating timed word (σ, t) where t is the time of
the unique action which has a 1-extension. We use fw to denote the (partial) map which
given a timed word σ′ over Σ′ returns (σ, t) and extend it to apply to timed languages
over Σ′ in the natural way.

Let Σ be an alphabet and Op be a set of input determined operators. GivenΔ ∈ Op,
we use the notationΔ′ for the operator over Σ′ with the semanticsΔ′(σ′, t) = Δ(σ, t).
We use the notation Op′ to denote the set {Δ′ |Δ ∈ Op}. We now define a floating
CIDA over (Σ,Op) to be a CIDA over (Σ′,Op′). We define the floating language of
a floating CIDA B, denoted Lfl(B), as fw (L(B)).

We define the recursive continuous input determined automata (rec-CIDA’s) and
the floating recursive continuous input determined automata (frec-CIDA’s) over an al-
phabet Σ and a set of recursive operators Rop based on Σ, as the union of level i
rec-CIDA’s and level i frec-CIDA’s, for all i ∈ N, respectively.

– A level 0 rec-CIDA A is a CIDA over Σ that uses only the guard3. It accepts the
timed language L(A). A level 0 frec-CIDA B is a floating CIDA over Σ which
uses only the guard 3. It accepts the floating language Lfl (B).

– Let C be a finite collection of frec-CIDA’s of level i or less over (Σ,Rop). Let
Op be the set of operators {ΔB |Δ ∈ Rop,B ∈ C}, where the semantics of each
ΔB is defined as follows. Let pos(σ,B) = {t ∈ [0, length(σ)] | (σ, t) ∈ Lfl (B)}.
Then ΔB(σ, t) = Δ(pos(σ,B), σ, t). We say that an operator ΔB is of level j if
B is a level j frec-CIDA. A level i + 1 rec-CIDA(Σ,Rop) is a CIDA(Σ,Op)
which uses at least one operator of level i. And a level i + 1 frec-CIDA(Σ,Rop)
is a floating CIDA(Σ,Op) which uses at least one operator of level i.

We now introduce the recursive version of TMSOc and show that it characterizes
the class of timed languages defined by rec-CIDA. Given an alphabet Σ and a set
of recursive operators Rop, the set of formulas of rec-TMSOc(Σ,Rop) are defined
inductively as:

ϕ ::= Qa(x) |ΔI
ψ(x) |x < y |x ∈ X | ¬ϕ |ϕ ∨ ϕ | ∃xϕ | ∃Xϕ,

where a ∈ Σ, Δ ∈ Rop, I ∈ IQ and ψ is a rec-TMSOc formula with a single free
variable z.
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The logic is interpreted over timed words in TΣ∗. If ϕ contains no predicates of
the form “ΔI

ψ(x)”, then σ, I |= ϕ is defined as for TMSOc. Inductively we assume that
σ, I |= ψ is defined where ψ has a single free variable z. Let pos(σ,ψ) = {t |σ, [t/z] |=
ψ} be the set of interpretations of z which make ψ true in σ. We then consider Δψ as
an operator with the semantics Δψ(σ, t) = Δ(pos(σ,ψ), σ, t). The rest of the interpre-
tation is similar to TMSOc.

We note that each rec-TMSOc(Σ,Rop) formula can be viewed as a TMSOc(Σ,Op)
formula where Op is the set ofΔψ’s which have a top-level occurrence, i.e., they are not
in the scope of any other Δ operator.

A rec-TMSOc(Σ,Rop) sentence ϕ defines the language L(ϕ) = {σ ∈ TΣ∗ |σ |=
ϕ}. A rec-TMSOc(Σ,Rop) formula ψ with one free variable z defines the floating
language Lfl (ψ) = {(σ, t) |σ, [t/z] |= ψ}. We have the following characterization.

Theorem 7. Let Rop be a set of finitely varying recursive operators and Σ be a finite
alphabet. L ⊆ TΣ∗ is accepted by a rec-CIDA over (Σ,Rop) iff L is definable by a
rec-TMSOc(Σ,Rop) sentence.

We now define a recursive timed temporal logic along the lines of [6] and show that
it is expressively complete. It is similar to the logic TLTLc and is parameterized by
an alphabet Σ and a set of recursive input-determined operators Rop, and is denoted
rec-TLTLc(Σ,Rop). The syntax of the logic is given by

θ ::= a |ΔI
θ | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),

where a ∈ Σ,Δ ∈ Rop and I ∈ IQ. The logic is interpreted over timed words in a man-
ner similar to TLTLc, where the satisfaction of the predicateΔI

θ by σ at t is equivalent
to Δ(pos(σ, θ), σ, t) ∩ I = ∅, and pos(σ, θ) = {t ∈ R≥0 |σ, t |= θ}. Let us denote by
rec-TFOc(Σ,Rop) the first order fragment of the logic rec-TMSOc(Σ,Rop). Then
we have the following expressiveness result:

Theorem 8. rec-TLTLc(Σ,Rop) is expressively equivalent to rec-TFOc(Σ,Rop).

8 Expressive Completeness of MTL

As an application of the results in this paper we show that the logic Metric Temporal
Logic (MTLc) in the continuous semantics introduced in [7] is expressively equivalent
to rec-TFOc for a suitably defined set of recursive input-determined operators. We
define the logic MTLc(Σ) inductively as below:

θ ::= a | (θUIθ) | (θSIθ) | ¬θ | (θ ∨ θ),

where a ∈ Σ and I ∈ IQ. The modalities UI and SI are interpreted as follows for a
timed word σ and t ∈ [0, length(σ)].

σ, t |= θUIη iff ∃t′ ≥ t : t′ − t ∈ I, σ, t′ |= η, and∀t′′ : t < t′′ < t′, σ, t′′ |= θ.
σ, t |= θSIη iff ∃t′ ≤ t : t− t′ ∈ I, σ, t′ |= η, and∀t′′ : t′ < t′′ < t, σ, t′′ |= θ.
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We first observe that MTLc(Σ) is expressively equivalent to its sublogic MTLc�(Σ)
in which the modalities UI and SI are replaced by the modalities U , S, �I and �-I , where
θUη = θU(0,∞)η, θSη = θS(0,∞)η, �Iθ = 3UIθ and �-Iθ = 3SIθ. To show the
equivalence we need to consider only the cases when I = [l, l] and I = (l, r). If I =
[l, l], then θUIη = ¬�(0,l)¬θ ∧ �[l,l]η, otherwise I = (l, r) in which case θUIη =
¬�(0,l]¬θ ∧�[l,l](θUη) ∧�(l,r)η. Next we consider the logic rec-TLTLc(Σ, {�, �-})
where the semantics of � and �- is defined as �(X, σ, t) = {t′ − t | t′ ≥ t, t ∈ X}
and �-(X, σ, t) = {t− t′ | t′ ≤ t, t ∈ X}. The logic MTLc�(Σ) is clearly expressively
equivalent to rec-TLTLc(Σ, {�, �-}), since the predicates �Iθ and �I

θ are equivalent.
Further � and �- are finitely varying recursive operators. Hence,

Theorem 9. MTLc(Σ) is expressively equivalent to rec-TFOc(Σ, {�, �-}).
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Safely Freezing LTL
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Abstract. We consider the safety fragment of linear temporal logic with
the freeze quantifier. The freeze quantifier is used to store a value from
an infinite domain in a register for later comparison with other such val-
ues. We show that, for one register, satisfiability, refinement and model
checking problems are decidable. The main result in the paper is that sat-
isfiability is ExpSpace-complete. The proof of ExpSpace-membership
involves a translation to a new class of faulty counter automata. We
also show that refinement and model checking are not primitive recur-
sive, and that dropping the safety restriction, adding past-time temporal
operators, or adding one more register, each cause undecidability of all
three decision problems.

1 Introduction

Logics and automata over finite alphabets, and their algorithmic properties, are
central to formal specification and verification, and have been extensively stud-
ied: for a recent survey, see e.g. [1]. However, models which are not simply words
or trees over finite alphabets arise in a variety of practical contexts. Examples
include: computations of systems with unboundedly many locations or resources
(e.g. [2]), XML documents with infinite data domains (e.g. [3,4]), and computa-
tions with discrete or continuous timestamps (e.g. [5]).

In this paper, we focus on models which are data words, i.e. words over a finite
alphabet Σ where, at each position, there is also a datum from an infinite domain.
The only data operation available is the equality predicate. Hence, formally, a
data word is a word over Σ together with an equivalence relation on its indices.

A number of logical and automata formalisms over data words have been
studied in the literature, including: linear temporal logic (LTL) with the freeze
quantifier [6,7,2,8], first-order logic (FO) [3], and automata with registers or peb-
bles [9,10]. Much introductory and motivational material (including the research
context and applications), as well as results on relative expressiveness, can be
found in those references. The freeze quantifier (↓) enables a word index to be
stored in a register, and later tested for equivalence with the current index. For
example, G ↓1 X G¬(↑1∼) (where 1 denotes the first register and ∼ the equiva-
lence relation) expresses the ‘nonces property’: that any two data in the model
are distinct. In FO, the same property is expressible as ∀x∀y (x < y ⇒ ¬x ∼ y).
� Supported by grants from the EPSRC (GR/S52759/01) and the Intel Corporation.
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The main known decidability results for logics over data words are for: satis-
fiability for LTL with the freeze quantifier and 1 register, over finite data words
[8]; and satisfiability for FO with 2 variables and predicates ∼, < and +1, over
finite and over infinite data words [3].

We consider the safety fragment of LTL with the freeze quantifier, designed
for expressing safety properties. Formally, φ is a safety formula iff it does not
contain an occurence of the eventually (F) or until (U) operator under an even
number of negations. For example, the nonces sentence above is in the safety
fragment, and also G(free ⇒ ↓1 X¬(¬(alloc ∧ ↑1∼) U access ∧ ↑1∼)) which
states that, after being freed, a location is not accessed before being allocated.

Over finite words, φ Uψ is equivalent to ¬(¬ψ U¬ψ ∧ (¬φ ∨ X⊥)) (since X⊥
is true only at the last index), so the full logic is translatable (in polynomial
space) to the safety fragment. Hence, in this paper, we focus on infinite data
words. For any safety sentence φ, the set of all infinite data words which satisfy
φ is a safety property, i.e. closed under limits of finite prefixes [11]. Since the
safety fragment is not closed under negation, there are three central decision
problems to consider: satisfiability, refinement (whether a given sentence implies
another given sentence), and model checking (whether each data word accepted
by a given register automaton satisfies a given sentence). A fragment for which
all three problems are decidable is said to be fully decidable [12].

The main result in the paper is that satisfiability for the safety fragment
with 1 register is ExpSpace-complete. Membership of ExpSpace should be
compared with the following: the full fragment with 1 register is undecidable
over infinite data words (by [8, Theorem 15]), the safety fragment with 1 register
is not primitive recursive over finite data words (by the remarks above and [8,
Theorem 15]),1 the fragment of FO shown decidable in [3] is at least as hard
as reachability for Petri nets (for which elementarity is a long-standing open
problem), and primitive recursiveness is not known for the safety fragment of
Metric temporal logic [12]. The only previously known logics over data words
with elementary satisfiability are: FO with 2 variables and predicates ∼ and <,
which is NExpTime-complete over finite data words [14]; FO with 2 variables
and predicates ∼ and +1, which is in 2NExpTime over finite data words [3]; and
the flat fragment of LTL with the freeze quantifier, which is PSpace-complete
over infinite data words [7, Corollary 4]. The absences of the +1 and < predicates,
and flatness, are severe restrictions. For example, the nonces property is not
expressible in the flat fragment.

The proof of ExpSpace-membership is by reducing, in polynomial space and
via alternating register automata, to nonemptiness for a new class of counter au-
tomata with incrementing errors. The latter have 〈transf, f〉 instructions, where
f is a mapping from counters to sets of counters. Such an instruction nondeter-
ministically distributes the value of each counter c over the set of counters f(c).
The 〈transf, f〉 instructions enable the counter automata computed from the
logical formulae to have transition relations with no ε-cycles and all locations

1 Recall the Ritchie-Cobham Property [13, page 297]: a decision problem is primitive
recursive iff it is solvable in primitive recursive time/space.
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accepting. Nonemptiness then amounts to existence of an infinite sequence of
transitions from the initial state. By adapting and substantially extending the
recent proof that termination for channel machines with insertion errors and
emptiness testing is primitive recursive [15], we show how to compute, for any
counter automaton from the class, a positive integer such that if the automaton
has a sequence of transitions of that length from the initial state, then it has
an infinite sequence. (The machines in [15] do not have an equivalent of the
〈transf, f〉 instructions.) By Savitch’s Theorem, we obtain that the nonempti-
ness problem is in ExpSpace. Although the counter automata computed from
the logical formulae are of exponential size, the precise form of the integer bounds
enables us to deduce that satisfiability for the safety fragment with 1 register is
also in ExpSpace.

We also show that, for the safety fragment with 1 register, refinement and
model checking are decidable. They have the validity problem as a special case,
which can be shown not primitive recursive. Finally, we observe that dropping
the safety restriction, adding the past-time operator F−1, or adding a register,
each cause undecidability of satisfiability, refinement and model checking.

2 Preliminaries

2.1 LTL over Data Words

LTL↓(∼;O) will denote the linear temporal logic with the freeze quantifier, the
predicate ∼, and temporal operators in the set O ⊆ {X, X−1, F, F−1, U, U−1}. Each
formula is over a finite alphabet Σ. Atomic propositions a are elements of Σ, r
ranges over IN \ {0}, and O ranges over O.

φ ::= 3 | a | ↑r∼ | ¬φ | φ ∧ φ | O(φ, . . . , φ) | ↓r φ

Models of LTL↓(∼;O) are infinite data words. An infinite data word σ over
a finite alphabet Σ is an infinite word σ(0)σ(1) · · · over Σ together with an
interpretation of ∼ as an equivalence relation ∼σ on IN. Let Σω(∼) denote the
set of all infinite data words over Σ. For σ ∈ Σω(∼), let str(σ) be the underlying
word σ(0)σ(1) · · ·.

A register valuation v is a finite partial map from IN\{0} to IN. An undefined
register value in an atomic formula will make the latter false. Undefined register
values will be used for initial automata states. The satisfaction relation |= is
defined as follows. The temporal operators other than X and U are interpreted
as expected. We also omit the Boolean cases.

σ, i |=v a
def⇔ σ(i) = a σ, i |=v ↑r∼ def⇔ r ∈ dom(v) and v(r) ∼σ i

σ, i |=v Xφ
def⇔ σ, i + 1 |=v φ σ, i |=v ↓rφ

def⇔ σ, i |=v[r �→i] φ

σ, i |=v φUψ
def⇔ for some j ≥ i, σ, j |=v ψ and for all i ≤ j′ < j, σ, j′ |=v φ

A sentence φ over Σ is said to be satisfied by σ ∈ Σω(∼) iff σ, 0 |=∅ φ.
As Fφ is equivalent to 3Uφ, F can be omitted from any set of temporal op-

erators which contains U, and the same holds for the past-time versions F−1
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and U−1. As usual, we regard G and G−1 as abbreviations for ¬F¬ and ¬F−1¬.
An occurence of ↑r∼ within the scope of a freeze quantifier ↓r is bound by it;
otherwise, it is free. A sentence is a formula with no free occurence of any ↑r∼.

A formula is in the safety [resp. co-safety] fragment iff it does not contain an
occurence of F or U under an even [resp. odd] number of negations ¬. Hence, φ
is a safety formula iff ¬φ is a co-safety formula, and vice-versa. LTL↓

n(∼;O) is
the fragment of LTL↓(∼;O) with n registers, i.e. where r ∈ {1, . . . , n}.

2.2 Register Automata

We shall define (one-way) alternating register automata over infinite data words,
and nondeterministic register automata as a subclass. We shall only need to
consider Büchi acceptance.

Following a standard approach to formalising alternation [16], we work with
transition formulae in which disjunctions and conjunctions express existential
and universal branching (respectively). Suppose Q is a finite set of locations,
and n ∈ IN specifies the number of registers. The set Φ(Q, n) of all transition
formulae with respect to Q and n is defined as follows (r ∈ {1, . . . , n} and q ∈ Q):

ϕ ::= 3 | ⊥ | ↑r∼ | ↑r 
∼ | ϕ ∧ ϕ | ϕ ∨ ϕ | ↓r ϕ | q

A transition formula is locationless iff it has no subformula of the form q.
Otherwise, it is locationful. For any locationless transition formula ϕ, let ϕ̄ de-
note its dual, obtained by replacing any atomic subformula by its negation, and
interchanging ∧ and ∨.

An alternating register automaton (RA) A is a tuple 〈Σ, Q, qI , n, δ, F 〉 such
that: Σ is a finite alphabet, Q is a finite set of locations, qI ∈ Q is the initial
location, n ∈ IN is the number of registers (given in unary), δ : Q×Σ → Φ(Q, n)
is the transition function, and F ⊆ Q is the set of accepting locations.

A state of A is a triple 〈i, q, v〉 where i ∈ IN specifies a word index, q ∈ locs,
and v is a valuation for n registers. To interpret transition formulae inA, suppose
σ ∈ Σω(∼). We define a relation S |=σ,i

v ϕ, which means that a finite set of states
S satisfies a transition formula ϕ at index i of σ and with register valuation v.
The definition is recursive over ϕ, where the Boolean cases are standard, and
dual clauses are treated as expected:

S |=σ,i
v ↑r∼ def⇔ v(r) ∼σ i and v(r) is defined

S |=σ,i
v ↓rϕ

def⇔ S |=σ,i
v[r �→i] ϕ S |=σ,i

v q
def⇔ 〈i + 1, q, v〉 ∈ S

A run of A over σ is a directed acyclic graph 〈G,→〉 such that: G is a set of
states of A; 〈0, qI , ∅〉 (the initial state) is the unique vertex with no predecessors,
and all other vertices are reachable from it; for any state 〈i, q, v〉, the set of all its
successors is a minimal S satisfying S |=σ,i

v δ(q, σ(i)). For any i ∈ IN, let G(i) be
the set of all states 〈i, q, v〉 in G. Observe that G(i+1) is the set of all successors
of states in G(i), so G(i) is the ith level of 〈G,→〉.

A run 〈G,→〉 is accepting iff, along each infinite path from the root, an ac-
cepting location occurs infinitely often. We say that A accepts σ iff A has an
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accepting run over σ. Note that any finite run is accepting. (Runs are finitely
branching, so a run is finite iff it has no infinite paths from the root.) Note also
that σ can be rejected because A has no runs over σ.

We say that A is nondeterministic (i.e. existential) iff any transition subfor-
mula which is a conjunction of locationful formulae is of the form (ϕ∨ϕ′)∧(ϕ̄∨ϕ′′)
where ϕ is locationless. The runs of such RA are sequences of states.

2.3 Counter Automata

We define Automata over infinite words, with Counters which are elements of
a Powerset, ε transitions, Nondeterministic Transfers, Incrementing errors, and
Büchi acceptance: for short, IPCANT. Let P+(X) denote the set of all nonempty
subsets of X . An IPCANT C is a tuple 〈Σ, Q, qI , X, C, δ, F 〉 such that: Σ is
a finite alphabet, Q is a finite set of locations, qI is the initial location, X
is a finite set (called the basis), C ⊆ P+(X) is a nonempty set of counters,
δ ⊆ Q× (Σ5{ε})×L×Q is the transition relation (given as a list), and F ⊆ Q
is the set of accepting locations. The instruction set L consists of: 〈inc, c〉 and
〈dec, c〉 for each c ∈ C, and 〈transf, f〉 for each mapping f : C → P(C) which
is distributive as follows:

if c ∈ C, c ⊆
⋃k

i=1 ci, and c′i ∈ f(ci) for each i = 1, . . . , k,
then there exists c′ ∈ f(c) with c′ ⊆

⋃k
i=1 c′i.

A state of C is a pair 〈q, v〉 such that q ∈ Q and v is a counter valuation,
where counter valuations are mappings C → IN. A state 〈q, v〉 has an error-free

transition
w,l−→√ to 〈q′, v′〉 iff 〈q, w, l, q′〉 ∈ δ and v′ can be obtained from v using

l. The instructions 〈inc, c〉 and 〈dec, c〉 have the standard interpretations, where
〈dec, c〉 is firable iff v(c) > 0. An instruction 〈transf, f〉 transfers the value of
each counter c to the counters in f(c), nondeterministically distributing it. More
precisely, v′ can be obtained from v using 〈transf, f〉 iff there exist dc

c′ ≥ 0 for
each c ∈ C and c′ ∈ f(c), such that v(c) =

∑
c′∈f(c) d

c
c′ for each c ∈ C, and

v′(c′) =
∑

f(c)�c′ dc
c′ for each c′ ∈ C.

For counter valuations v and v√, we write v ≤ v√ iff, for all c, v(c) ≤ v√(c).
To allow transitions of IPCANT to contain arbitrary errors which increment one
or more counters, we define 〈q, v〉 w,l−→ 〈q′, v′〉 iff there exist v√ and v′√ such that

v ≤ v√, 〈q, v√〉 w,l−→√ 〈q′, v′√〉, and v′√ ≤ v′.

A run of C over w ∈ Σω is an infinite sequence 〈q0, v0〉
w0,l0−→ 〈q1, v1〉

w1,l1−→ · · ·
where 〈q0, v0〉 is the initial state 〈qI , 0〉, and w = w0w1 . . .. Such a run is accepting
iff qi ∈ F for infinitely many i. C accepts w iff it has an accepting run over w.

Example 1. Given Y ⊆ X , let fY (c) = ∅ if c∩Y 
= ∅, and fY (c) = {c} otherwise.
Observe that fY is distributive. The instruction 〈transf, fY 〉 is firable iff each
counter c which intersects Y is zero, and it does not change the value of any
counter. Hence, we may write 〈iszero, Y 〉 instead of 〈transf, fY 〉.
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3 From LTL↓ to Register Automata

A sentence φ of LTL↓(∼;O) is equivalent to an RA A iff they are over the same
alphabet Σ and, for each σ ∈ Σω(∼), φ is satisfied by σ iff A accepts σ. It was
shown already in [9, Proposition 5] that no nondeterministic RA is equivalent
to the nonces sentence G ↓1 X G¬(↑1∼).

Theorem 1. Given a sentence φ of LTL↓(∼; X, U) with alphabet Σ, an equivalent
alternating RA AΣ

φ with equally many registers and whose number of locations is
linear in |φ| is computable in logarithmic space. If φ is a safety [resp. co-safety]
formula, then AΣ

φ can be constructed with all [resp. no] locations accepting.

Proof. By adapting the proof of [8, Theorem 8], which shows how to compute in
logarithmic space an equivalent alternating RA with weak parity acceptance. �

Example 2. Consider the safety LTL↓
1(∼; X, U) sentence φ = G ↓1 Xψ, where ψ =

¬(¬a U ↑1∼), over Σ = {a, b}. φ states that a must occur between each pair of
∼-equivalent positions. The following is an equivalent alternating RA.

φ ψ 3
↓1

↑1 
∼

a ∧ ↑1 
∼ Transitions unlabelled by a letter can be
taken with any letter. The fork represents
a conjunctive branching, which spawns a
new thread. When a state performs the
transition leading to 3, it terminates, i.e.
has no successors at the next level.

A set of infinite words is considered to be a safety property [11] iff each
infinite word not belonging to the set has a ‘doomed’ finite prefix, i.e. such that
all infinite words which extend it also do not belong to the set. It is a corollary
of Theorem 1 that safety sentences of LTL↓(∼; X, U) induce safety properties.

4 Satisfiability

In this section, we show that safety LTL↓
1(∼; X, U) satisfiability is ExpSpace-

complete. Dropping the safety restriction, adding F−1, or adding one more reg-
ister, each produce undecidability. More precisely, LTL↓

1(∼; X, U) satisfiability
is Π0

1 -complete by [8, Corollary 13 and Theorem 15]. We have Π0
1 -hardness

for safety LTL↓
1(∼; X, U, F−1) and safety LTL↓

2(∼; X, U) by the proof of [8, Theo-
rem 17], and Π0

1 -membership by Theorem 1 (which can be extended to past-time
operators and two-way RA) and König’s Lemma.

4.1 Membership

By Theorem 1 and Theorem 2 below, for safety LTL↓
1(∼; X, U) sentences φ over

alphabets Σ, an IPCANT CAΣ
φ

is computable in polynomial space, whose basis
size is linear in |φ|, which satisfies the assumptions in Theorem 3 below, and
which is nonempty iff φ is satisfiable. Hence, by Theorem 3, safety LTL↓

1(∼; X, U)
satisfiability is in ExpSpace.
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Let us say that an IPCANT C corresponds to an RA A iff they have the
same alphabet Σ and, for each w ∈ Σω, C accepts w iff A accepts some σ with
str(σ) = w. In particular, C is nonempty iff A is.

Theorem 2. Given an alternating RA A which has 1 register and all locations
accepting, a corresponding IPCANT CA whose basis size is linear in the number
of locations of A, whose transition relation contains no cycles of ε transitions,
and which has all locations accepting, is computable in polynomial space.

Proof. By the proof of [8, Theorem 12], a corresponding IPCANT C′A with non-
deterministic transfer instructions only of the form 〈iszero, Y 〉 (see Example 1),
and which has all locations accepting, is computable in polynomial space. Writing
Q for the set of locations of A, the basis of C′A is Q5 Q̂, where Q̂ = {q̂ : q ∈ Q}.
The counters of C′A are Q† and Q̂† as Q† ranges over P+(Q). After C′A simu-
lates a run of A over a finite data word τ , the counters Q† represent the last
level of the run. Lifting ∼τ to the level and projecting onto Q gives a multiset
over P+(Q), and each counter Q† stores the number of occurences of Q† in the
multiset. The instruction 〈iszero, Q〉 [resp. 〈iszero, Q̂〉] is used in C′A to check
whether all the counters Q† [resp. Q̂†] are zero. C′A accepts w by an error-free
run iff A accepts some σ with str(σ) = w. Finally, whenever C′A accepts w by a
run possibly with incrementing errors, it is also accepts w by an error-free run.

In general, the transition relation of C′A contains cycles of ε transitions of the
following form. Given Q† ∈ P+(Q) and a ∈ Σ, the transition function of A
determines a subset Q(Q†, a) of (P(Q))2. The ith pass through the cycle for Q†

and a consists of decrementing the counter Q†, nondeterministically choosing

〈Q=
i , Q �=

i 〉 ∈ Q(Q†, a), and incrementing the counter Q̂ �=
i if Q �=

i 
= ∅. The union
of all Q=

i is stored in the control of C′A.
To compute CA as required in polynomial space, we modify the computation

of C′A to eliminate the cycles of ε transitions as follows. The basis of CA is
{∗}5Q5{∗̃}5Q5Q̃. The counters of CA are {∗}5Q† and {∗̃}5Q=5Q̃ �= as Q†,
Q= and Q �= range over P(Q). The counters {∗} 5Q† for Q† 
= ∅ correspond to
the counters Q† of C′A. The remaining counters of CA are auxiliary. Now, suppose
a ∈ Σ. Instead of the cycles of ε transitions, CA performs 〈transf, f〉, where

f({∗} 5Q†) = {{∗̃} 5Q= 5 Q̃ �= : 〈Q=, Q �=〉 ∈ Q(Q†, a)}
f({∗̃} 5Q= 5 Q̃ �=) = {{∗̃} 5Q= 5 Q̃ �=}

(Note that Q(∅, a) = {〈∅, ∅〉}.) The next stage is that CA computes the union
of all Q= such that some counter {∗̃} 5 Q= 5 Q̃ �= is nonzero, as follows. It
chooses a subset Q=∪ of Q, performs 〈iszero, Q \Q=∪ 〉, and checks whether, for
each q ∈ Q=∪ , some counter {∗̃} 5 Q= 5 Q̃ �= with Q= � q is nonzero. CA then
performs 〈transf, f ′〉, where f ′({∗̃}5Q=5Q̃ �=) = {{∗}5Q �=} and f ′({∗}5Q†) =
{{∗}5Q†}. It remains to observe that, like C′A, if CA accepts w by a run possibly
with incrementing errors, it is also accepts w by an error-free run. �
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Example 3. Simplifying CA for A in Example 2, we get the following IPCANT.

a, 〈transf,
{c �→ {c, c′},
c′ �→ {c′}}〉

ε, 〈inc, c〉

b, 〈inc, c〉

The counters are c = {∗,ψ} and c′ = {∗}. The
counter c stores the number of∼-classes of positions
associated with the location ψ in a run level. Per-
forming the transfer instruction represents a sub-
set of threads choosing to terminate upon seeing a
whose position is in a new class. Each w ∈ {a, b}ω

is accepted, because there exists σ with str(σ) = w
and which is accepted by A (i.e. satisfies φ).

Theorem 3. Nonemptiness of IPCANT whose transition relations contain no
cycles of ε transitions and which have all locations accepting is decidable in space
exponential in basis size and logarithmic in alphabet size and number of locations.

Proof. Suppose C = 〈Σ, Q, qI , X, C, δ, F 〉 is as in the statement. We have that C
is nonempty iff it has an infinite sequence of transitions from the initial state.
Observe also that if C has an infinite sequence of transitions from the initial
state, then it has such a sequence which is lazy, i.e. where incrementing errors
occur only as 〈dec, c〉 instructions which do not change the value of c.

We define positive integers αi and Ui for i = 0, . . . , |X | as follows:

α0 = |Q| U0 = 1 αi+1 = 2(|X | − i)αiU
|C|
i Ui+1 = 3αiU

|C|
i

Let m = 2α|X|U
|C|
|X|. We shall show that, if C has a lazy sequence of transitions of

length m−1 from the initial state, then it has an infinite sequence. In such a lazy
sequence S, each counter is at most m−1. For guessing S, it suffices to store only
one transition at a time. Since m < 222|X|2+|X| log(3|Q|), it follows by Savitch’s
Theorem that nonemptiness of C is decidable in space 2O(|X|2)O(log(|Σ||Q|)).

Suppose C has a lazy sequence of transitions S = 〈q1, v1〉
w1,l1−→ · · · wm−1,lm−1−→

〈qm, vm〉 from the initial state, but no infinite sequence. Let q ∈ Q and J0 ⊆
{1, . . . , m} be such that |J0| = m/α0U

|C|
0 and qj = q for each j ∈ J0. We claim:

There exists an enumeration x1, . . . , x|X| of X , and for i = 1, . . . , |X |,
mappings ui : Ci → {0, . . . , Ui − 1} where Ci = {c ∈ C : xi ∈ c ∧
x1, . . . , xi−1 
∈ c}, and subsets Ji of {1, . . . , m} of size m/αiU

|C|
i , such

that for each 0 ≤ i ≤ |X | and j ∈ Ji, we have qj = q and vj(c) = ui′(c)
for all c ∈ Ci′ and 1 ≤ i′ ≤ i.

The claim holds for i = 0. Assume that 0 ≤ i < |X | and that xi′ , ui′ and
Ji′ for 1 ≤ i′ ≤ i have been picked so that the claim holds for i. Let us call a
subsequence of S an i-subsequence iff there exist consecutive j, j′ ∈ Ji (i.e. where
there is no j′′ ∈ Ji with j < j′′ < j′) such that the subsequence begins at 〈qj , vj〉
and ends at 〈qj′ , vj′ 〉. Consider the m/2αiU

|C|
i shortest i-subsequences, and let

J ′
i ⊆ Ji consist of their beginning positions. The length of the longest of those

i-subsequences must be at most 2αiU
|C|
i . Let S† = 〈qj , vj〉

wj ,lj−→ · · ·
wj′−1,lj′−1−→

〈qj′ , vj′〉 be an i-subsequence with j ∈ J ′
i . We have qj = qj′ = q, vj(c) = vj′ (c) =
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ui′(c) for all c ∈ Ci′ and 1 ≤ i′ ≤ i, and j′ − j ≤ 2αiU
|C|
i . In particular,∑i

i′=1

∑
c∈Ci′ vj′ (c) ≤

∑i
i′=1 |Ci′ |Ui′ .

Assume that, for each x′ 
= x1, . . . , xi, there exists cx′ such that x′ ∈ cx′ ,
x1, . . . , xi 
∈ cx′ , and vj(cx′) > 2αiU

|C|
i +

∑i
i′=1 |Ci′ |Ui′ . Let H be a directed

acyclic graph on {j, . . . , j′}×C, defined by letting the successors of 〈j†, c†〉 be: ∅,
if j† = j′; {〈j†+1, c‡〉 : c‡ ∈ f(c†)}, if lj† is of the form 〈transf, f〉; {〈j†+1, c†〉},
otherwise. Now, for c ∈ C and j† ∈ {j, . . . , j′}, let H(c, j†) be the set of all c†

such that 〈j†, c†〉 is reachable in H from 〈j, c〉. We have
∑

c†∈H(c,j†) vj†(c†) ≥
vj(c) − (j† − j) by induction on j†. In particular, for each x′ 
= x1, . . . , xi, we
have

∑
c†∈H(cx′ ,j′) vj′ (cx′) ≥ vj(cx′)− (j′ − j) >

∑i
i′=1 |Ci′ |Ui′ , so H contains a

path Hcx′ from 〈j, cx′〉 to some 〈j′, c†〉 with x1, . . . , xi 
∈ c†.
Consider any c with x1, . . . , xi 
∈ c. We have c ⊆

⋃
{cx′ : x′ ∈ c}. By distribu-

tivity of nondeterministic transfer mappings and the definition of H , there exists
a path Hc from 〈j, c〉 to some 〈j′, c†〉 with x1, . . . , xi 
∈ c†. For j† ∈ {j, . . . , j′},
let Hc(j†) be the counter at position j† in Hc.

Given any v′j such that v′j(c) = vj(c) for all c ∈ Ci′ and 1 ≤ i′ ≤ i, by induction

we can find 〈qj , v′j〉
wj ,lj−→ · · ·

wj′−1,lj′−1−→ 〈qj′ , v′j′〉 such that v′j†(c†) = vj†(c†) for
all j† ∈ {j + 1, . . . , j′} and c† 
∈ {Hc(j†) : x1, . . . , xi 
∈ c}. Since vj(c) = vj′(c)
for all c ∈ Ci′ and 1 ≤ i′ ≤ i, it follows that C has an infinite sequence of
transitions, obtained by following S to position j, and then repeatedly simulating
S†. That is a contradiction, so there exists x′ 
= x1, . . . , xi such that vj(c) ≤
2αiU

|C|
i +

∑i
i′=1 |Ci′ |Ui′ < Ui+1 for all c with x′ ∈ c and x1, . . . , xi 
∈ c.

Let xi+1 
= x1, . . . , xi be such that there exists J ′′
i ⊆ J ′

i with |J ′′
i | = m/αi+1

and vj(c) < Ui+1 for all j ∈ J ′′
i and c ∈ Ci+1. Then let ui+1 : Ci+1 →

{0, . . . , Ui+1− 1} be such that there exists Ji+1 ⊆ J ′′
i with |Ji+1| = m/αi+1U

|C|
i+1

and vj(c) = ui+1(c) for all j ∈ Ji+1 and c ∈ Ci+1. That completes the inductive
proof of the claim.

Since m = 2α|X|U
|C|
|X|, we have from the claim above that S contains two equal

states, so C has an infinite sequence of transitions from the initial state. That is
a contradiction, completing the proof. �

4.2 Hardness

Theorem 4. Satisfiability for safety LTL↓
1(∼; X, U) is ExpSpace-hard.

Proof. We shall show ExpSpace-hardness by reducing from the Halting problem
for Turing machines with exponentially long tapes. More precisely, a Turing
machine M is a tuple 〈Σ, aB, Q, qI , δ〉 such that: Σ is a finite alphabet, aB ∈ Σ
denotes the blank symbol, Q is a finite set of locations, qI ∈ Q is the initial
location, and δ : Q×Σ → Q×(Σ5{�, �}) is the transition function. If the size of
M is n, we consider its computation on a tape of length 2n. More formally, a state
ofM is of the form 〈q, i, w〉 where q ∈ Q is the machine location, 0 ≤ i < 2n is the
head position, and w ∈ Σ2n

is the tape contents. The initial state is 〈qI , 0, a2n

B 〉. A
state 〈q, i, w〉 has a transition iff neither i = 0 and δ(q, w(i))2 = �, nor i = 2n−1
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and δ(q, w(i))2 = �. In that case, we write 〈q, i, w〉 → 〈δ(q, w(i))1, i′, w′〉 where
the new head position i′ and tape contents w′ are determined as expected.

The following problem is ExpSpace-complete: given M = 〈Σ, aB, Q, qI , δ〉
of size n, to decide whether the computation from the initial state with tape
length 2n is infinite. We shall show that a sentence φM of safety LTL↓

1(∼; X, U)
can be computed in space logarithmic in n, such that the answer to the decision
problem is ‘yes’ iff φ is satisfiable.

φM will have alphabet Σ̃ = Q 5 {0d, 1d : d ∈ {1, . . . , n}} 5 {a, â : a ∈ Σ}.
A state 〈q, i, w〉 is encoded by the word

q 01 · · · 0n−1 0n w(0, i) 01 · · · 0n−1 1n w(1, i) · · · 11 · · · 1n−1 1n w(2n − 1, i)

where w(i, i) = ŵ(i), and w(j, i) = w(j) for j 
= i.
The computation of M from the initial state with tape length 2n is infinite

iff there exists σ ∈ Σ̃ω(∼) such that:

(i) str(σ) is a sequence of encodings of states of M;
(ii) str(σ) begins with the encoding of the initial state 〈qI , 0, a2n

B 〉;
(iii) for any two consecutive encodings in str(σ) of states 〈q, i, w〉 and 〈q′, i′, w′〉,

we have 〈q, i, w〉→ 〈q′, i′, w′〉.

Hence, it suffices to construct φM such that σ satisfies φM iff (i)–(iii) hold and:

(iv) for any encoding in σ of a tape position, all the letters bd and w(j, i) are in
the same class of ∼σ;

(v) for any two encodings in σ of tape positions j and j′ (occuring in one or
two state encodings), their classes of ∼σ are the same iff j = j′.

Properties (iv) and (v) will be used to help navigation through σ in φM.
The most involved part of (i) is that the binary representation of any j < 2n−1

is followed by that of j+1. It is expressed by the following LTL↓
1(∼; X, U) sentence,

which is in the safety fragment because ⇒ implicitly negates its left-hand side.
Let δd

def= 0d ∨ 1d.

G

(
δ1 ⇒

∧n
d=1

((
(
∨d−1

d′=1 δd′) U
(
0d ∧ X ((

∨n
d′=d+1 1d′) U

∨
a∈Σ a ∨ â)

))
⇒(∧d−1

d′=1

∧1
b=0 ¬

(
¬δd′ U (bd′ ∧ X (¬δd′ U (1− b)d′))

))
∧

X¬
(
¬δ1 U

(
δ1 ∧

(
(¬δd U 0d) ∨

∨n
d′=d+1(¬δd′ U 1d′)

)))))
Expressing (ii) and (iv) is straightforward. For (iii), we use the presence of

(iv) and (v) to avoid making |φM| exponential in n. For (v), we specify that: in
the encoding in σ of the first state, the classes of ∼σ for any two tape positions
are distinct; for each encoding in σ of a tape position, its class of ∼σ occurs in
the next state encoding; for any two encodings in σ of tape positions j and j′

occuring in two consecutive state encodings and such that j 
= j′, their classes
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of ∼σ are distinct. The last property is the most involved, and to avoid making
|φM| exponential in n, we observe that j 
= j′ iff some binary digit is distinct:∧n

d=1

∧1
b=0G

(
bd ⇒ ↓1 X¬

(
¬(↑1∼ ∧ δd) U (↑1∼ ∧ (1 − b)d)

))
We have |Σ̃| = O(n) and |φM| = O(n3 log n). �

5 Refinement

The result in this section is that the problem of whether, given safety sentences φ
and φ′ of LTL↓

1(∼; X, U), φ ⇒ φ′ is valid, is decidable but not primitive recursive.
If for either φ or φ′, the safety restriction is dropped, F−1 is allowed, or one more
register is allowed, we have undecidability for the following reasons. Unsatisfia-
bility of φ and validity of φ′ are special cases of the problem. By the remarks at
the beginning of Section 4, satisfiability and nonvalidity for LTL↓

1(∼; X, U), and
satisfiability for the safety fragments of LTL↓

1(∼; X, U, F−1) and LTL↓
2(∼; X, U), are

Π0
1 -complete. By Theorem 1 and the proof of [8, Theorem 17], validity for the

safety fragments of LTL↓
1(∼; X, U, F−1) and LTL↓

2(∼; X, U) is also Π0
1 -complete.

Theorem 5. Refinement for safety LTL↓
1(∼; X, U) is decidable and not prim. rec.

Proof. For decidability, suppose φ and φ′ are sentences of safety LTL↓
1(∼; X, U)

over an alphabet Σ. By Theorem 1, let AΣ
φ and AΣ

¬φ′ be equivalent alternat-
ing RA with 1 register and with all and no (respectively) locations accepting,
computed in logarithmic space. By the proof of Theorem 2, an IPCANT C corre-
sponding to the intersection of AΣ

φ and AΣ
¬φ′ is computable in polynomial space,

such that its transition relation contains no cycles of ε transitions, and each
transition from an accepting location is to an accepting location.

As in the proof of Theorem 3, it suffices to consider lazy transitions. Let
〈q, v〉 ≤ 〈q′, v′〉 iff q = q′ and v ≤ v′. States and lazy transitions of C form a
well-structured transition system with strong downward compatibility [17] with
respect to ≤. The set A of all accepting states from which C has an infinite se-
quence of lazy transitions is downward-closed, and membership of A is decidable
by the proof of Theorem 3. It remains to observe that reachability of A from the
initial state is decidable by the forward set-saturation algorithm [17].

By the proof of [8, Theorem 15], there is a reduction (in logarithmic space)
to validity for safety LTL↓

1(∼; X, U) from emptiness of Incrementing counter au-
tomata over finite words, which is not primitive recursive [8, Theorem 2]. �

6 Model Checking

Our final result is that model checking for safety LTL↓
1(∼; X, U) is decidable and

not primitive recursive. The validity problem is a special case, so by the remarks
at the beginning of Section 5, we have that dropping the safety restriction, adding
F−1, or adding one more register, each produce undecidability.



392 R. Lazić

Theorem 6. Model checking for nondeterministic RA and safety LTL↓
1(∼; X, U)

is decidable and not primitive recursive.

Proof. Similar to the proof of Theorem 5, by constructing an IPCANT corre-
sponding to the intersection of a given nondeterministic RA and an alternating
RA which is equivalent to a given sentence of safety LTL↓

1(∼; X, U), has 1 register,
and has no locations accepting. �

7 Concluding Remarks

It would be interesting to investigate whether ideas in this paper can be used to
show that satisfiability for safety MTL [12] is primitive recursive.

I am grateful to Stéphane Demri and James Worrell for helpful discussions.
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Abstract. We observe that pushdown tree automata (PTAs) known in
the literature cannot express combinations of branching and pushdown
properties. This is because a PTA processes the children of a tree node
in possibly different control states but with identical stacks. We propose
branching pushdown tree automata (BPTAs) as a solution. In a BPTA,
a push-move views its matching pops as an unbounded, unordered set of
successor moves and can assert existential and universal requirements on
them, just the way finite automata on unranked, unordered trees pass
requirements to the children of a tree node. We show that BPTAs can
express some natural properties and are more expressive than PTAs.
Using a small-model theorem, we prove their emptiness problem to be
decidable. The problem becomes undecidable, however, if push-moves
are allowed to specify the ordering of matching pops.

1 Introduction

Regular languages of trees [1] have been studied extensively in the literature [10]
and found a number of applications. Automata accepting such languages can
reason about paths in a tree existentially (“a symbol a is seen along some path
from the current node”) and universally (“a is seen on all paths”). Concretely,
while reading a node in a binary tree, a nondeterministic, top-down tree au-
tomaton can nondeterministically pick pairs of different states to be sent to the
children of the current node. Such “branching” of the finite control permits tree
automata to specify properties of trees such as: “every node labeled a has a
descendant labeled b and another descendant labeled c.”

Above the class of regular tree languages in the hierarchy of expressiveness
lies the class of context-free tree languages [7,1]. Such languages are accepted by
nondeterministic pushdown tree automata (PTAs) [3,9,8,4,6], which augment tree
automata with pushdown stores. PTAs are expressively equivalent to context-
free tree grammars [1,7], and their emptiness problem is in EXPTIME [11,6].
Their usual operational definition runs as follows: while reading a tree node, a
PTA A assumes a configuration of the form (q, w), where q is a state and w is
a stack. At any point, A may push or pop the stack, or it may fork copies to
be sent to the children of the current node. The essence of the expressiveness of
PTAs, however, lies in the fact that they allow information stored on the stack
at a push-transition to be retrieved at “matching” pop-transitions arbitrarily far
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away. Another way to view this is: a push-move in a PTA A can constrain its
matching pops—for instance, it may require q′ to be the only state reached via
the latter. This is analogous to the way a transition in a tree automaton can
constrain the automaton’s state at the children of a tree node.

We note, however, that in existing definitions of PTAs, copies of the automa-
ton forked by a branch-transition have identical stacks, even though they may
differ in control state (in some definitions, the stacks may differ, but only in a
bounded way). If a push stores γ on the stack, then at every matching pop, it
is the same γ that must be popped. Thus, while γ may be used to require that
every matching pop leads to state q′, a push-move cannot assert properties such
as: “there exists a unique matching pop leading to state q1, and every other
matching pop leads to state q2.” Intuitively, a PTA can only express universal
(as opposed to universal and existential) matching requirements. On the other
hand, tree automata can reason universally and existentially about the children
of a tree node—for unranked trees, MSO-complete tree automata [5] have tran-
sitions asserting requirements such as: “there exists a unique child to which state
q1 is passed, and every remaining child gets state q2.” Thus, PTAs do not re-
ally combine the way tree automata specify branching properties with the way
pushdown automata express matching requirements.

To see how this prevents PTAs from capturing the interplay of matching and
tree branching, consider a basic pushdown language: that of words over brackets
[, ]1 and ]2 where every bracket [ has a matching instance of ]1 or ]2. Now
consider the language L of trees labeled by the above brackets where: (1) each
node labeled [ has a single descendant labeled ]1 such that the path from the
former to the latter is “matched,” and (2) every other “matched descendant” is
labeled ]2. A push-transition taken by a PTA at a node labeled [ (or within a
bounded distance from it) can check that all matching brackets reachable from
the point of push are of a certain type. However, no PTA can accept L.

In this paper, we introduce branching pushdown tree automata (BPTAs), a
class of pushdown automata which run on trees but do not suffer from this
shortcoming in expressiveness. A push-transition in a BPTA views the tree nodes
reached via its matching pops as an unbounded, unordered set of successor nodes,
and can assert existential and universal requirements on them. More precisely,
a push-transition is of the form q → (q′, push(χ)), where q is the source state,
q′ is the destination state, and χ, a constraint on the states reached by the
matching pops, can demand a requirement such as: “state q1 is reached through
one matching pop, and the rest lead to q2.” Note how this is analogous to the
way MSO-complete finite automata on unranked, unordered trees can assert
requirements on the children of a tree node. Thus, the ability of tree automata to
reason about tree branches is combined seamlessly with the power of pushdown
automata to match brackets, letting BPTAs accept a “truly pushdown” class of
tree languages. Note also that the language L may now be accepted easily. At
nodes labeled ]1 and ]2, the BPTA A for L pops and moves respectively to states
q1 and q2, then continues down the tree. At a node labeled [, A pushes, asserting
the constraint χ on the matching pops, before it branches.
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BPTAs enjoy closure properties similar to PTAs but are provably more expres-
sive. The main technical result of this paper is an algorithm for their emptiness
problem. The analogous problem for PTAs reduces to pushdown games [11];
however, such a reduction seems impossible in this case. Instead, we define a
proof system that, for states q and constraints χ, derives facts such as “starting
at state q with empty stack from the root of some tree, the automaton has a
way to reach the leaves of that tree with empty stack, at states that together
satisfy χ.” Using a small-model theorem that states that a short proof exists for
every proof in this system, we obtain a 3-EXPTIME algorithm for the emptiness
problem. Intriguingly, checking emptiness becomes undecidable if we allow BP-
TAs to reason about the order among the matching pops of a push by allowing
the constraints asserted at push-moves to be regular expressions.

The organization of this paper is as follows. In Sec. 2, we present some defini-
tions we use in the rest of the paper. In Sec. 3, we formally define BPTAs, and
in Sec. 4, we present our main decision procedure. We study the expressiveness
of BPTAs in Sec. 5, and conclude with some discussion in Sec. 6.

2 Basics

Binary trees. Our models in this paper are binary trees. Let Σ be an in-
put alphabet. A finite binary tree over Σ is a term given by the grammar
T :=⊥ | a(T, T ), for a ∈ Σ. The tree ⊥ is the empty tree, and the root of
a tree a(T1, T2) is the letter a. The i-th leaf of T is the i-th instance of ⊥ in it
(reading left-to-right). The i-th composition (T ◦i T ′) of T and T ′ is the term
obtained by replacing the i-th leaf of T by T ′.

Count constraints. Consider a finite set Q and a word α ∈ Q+. We denote
the length of α by |α| and the i-th symbol in α by α(i). The count of q ∈ Q in
α is the number of times q occurs in α.

We will be interested in count constraints over Q. Such a constraint χ follows
the grammar χ := (count(q) ≥ k) | (count(q) = k) | χ ∧ χ, for k ∈ N. A word α
satisfies χ (written as α |= χ) iff it satisfies each conjunct of form (count(q) ≥ k)
or (count(q) = k); the former holds iff the count N of q in α satisfies N ≥ k, and
the latter iff N = k. We assume our constraints to be in the simplest possible
form, i.e. no two conjuncts refer to count(q) for the same q.

Let us now construct an alphabet of starred elements Q∗ = {q∗|q ∈ Q}.
We will represent a count constraint χ over Q as a multiset (U ∪ U), where
U is a multiset over Q, and U ⊆ Q∗. For each q ∈ Q, let mq be the number
of occurrences of q in U; if q∗ ∈ U , then set τq = (count(q) ≥ mq), else set
τq = (count(q) = mq). Then we must have χ =

∧
q τq. Intuitively, mq copies of

q in χ guarantees any word satisfying χ to have at least mq occurrences of q;
absence of q∗ (q∗ is read as “an unspecified number of q-s”) guarantees that the
constraint is an equality. For instance, χ = {q1, q∗1 , q2} represents the constraint
(count(q1) ≥ 1) ∧ (count(q2) = 1) ∧

∧
i�=1,2(count(qi) = 0).
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In the sequel, we denote by count(χ, q) the number of times q appears in
χ, and we define the size of χ to be Size(χ) =

∑
q count(χ, q). Also, binary

relations over constraints χ and χ′ are to be interpreted as relations over the
corresponding multisets. Now we define an “implied-by” relation � for count
constraints. For constraints χ and χ′, we define χ � χ′ iff (1) for each q ∈ Q
such that q∗ ∈ χ, we have count(χ, q) ≤ count(χ′, q), and (2) for each q ∈ Q
such that q∗ /∈ χ, we have count(χ, q) = count(χ′, q). Clearly, if χ � χ′, then for
every word α ∈ Q+, we have α |= χ′ ⇒ α |= χ.

For count constraints χ1 = U1 ∪ U1 and χ2 = U2 ∪ U2, where U1,U2 are
multisets over Q and U1, U2 ⊆ Q∗, we define the sum (χ1 + χ2) as (U1 ∪U2) ∪
(U1 ∪U2). Note that the union of U1 and U2 is a multiset union that duplicates
states, whereas U1 ∪ U2 is a simple set union. Likewise, for q ∈ U1, we define
(χ1 − {q}) to be (U1 \ {q}) ∪ U1.

3 Branching Pushdown Tree Automata

Syntax and semantics. A (top-down) branching pushdown tree automaton
(BPTA) is a tuple A = (Q, Σ, q0, δ, F ), where Q is a finite set of states, Σ is an
input alphabet, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. The
transition relation δ consists of four kinds of transitions: (1) push-transitions
q → (q′, push(χ)), where q, q′ ∈ Q and χ is a count constraint over Q; (2) pop-
transitions q → (q′, pop), where q, q′ ∈ Q; (3) swap-transitions q → q′, where
q, q′ ∈ Q, and (4) branch-transitions q a−→ (q1, q2), where a ∈ Σ and q1, q2 ∈ Q.

Intuitively, while processing a binary tree, a BPTA is able to change its con-
figuration using a push, pop or swap transition and process the same tree while
in the new configuration. It may also read the root of the tree, fork two copies
using a branch transition, and use them to inductively process the left and right
subtrees of the present tree. We note that the assumption that the current input
symbol is ignored during pushes, pops and swaps is only for simpler exposition,
and does not limit expressiveness. Also, observe that the transitions of a BPTA
do not manipulate a stack explicitly—indeed, we avoid the use of a stack alto-
gether while defining runs of BPTAs. However, we will see that our definition
can encode the usual stack-based semantics for pushdown automata. We will
also see that pushdown tree automata (PTAs) can be encoded by BPTAs where
for every constraint χ appearing in a push-transition, Size(χ) = 0.

The semantics of a BPTA A is defined inductively via predicates Run(q, α, T ),
where q ∈ Q, α is a word over Q, and T is a binary tree. Intuitively, the predicate
Run(q, α, T ) is true iff the automaton has a run on the tree T , starting at state
q with empty (implicit) stack and ending at the leaves of T with empty stack,
such that α is obtained by reading from left to right the states of A at the leaves
of T . Formally:

– Run(q, q,⊥) is true;
– if A has a transition q → q′, then Run(q, q′,⊥);
– if T = a(⊥,⊥) and A has a transition q a−→ (q1, q2), then Run(q, q1q2, T );



Branching Pushdown Tree Automata 397

– assume that Run(q′, α′, T ) and A has a transition q → (q′, push(χ)). Then
Run(q, α, T ) holds if for some α ∈ Q∗, we have: (1) α |= χ, and (2) there is
a bijection μ : {1, 2, . . . , |α|} → {1, 2, . . . , |α|} such that A has a transition
α(i) → (α′(μ(i)), pop) for all 1 ≤ i ≤ |α|;

– if Run(q, α, T ) and Run(q′, α′, T ′), and α(i) = q′, then Run(q, α′′, T ◦i T ′),
where α′′ is obtained by substituting α(i) by α′.

The BPTA A accepts a tree T if Run(q0, α, T ) for some word α over F .
Informally, the acceptance condition requires the automaton to reach each leaf
of T in a final state with an empty (implicit) stack. The language L(A) of A is
the set of all trees it accepts.

Among the above, the fourth and the fifth

[[

[
[

]1]1]1 ]1]1

]1

]1 ]1

]2]2 ]2

Fig. 1. A BPTA example

clauses are the most interesting. The fourth
clause captures matching—if A pushes to go
from q to q′, and there is an empty-stack-to-
empty-stack run from q′ to q′′, then a pop
from q′′ to q′′′ matches the original push.
The distinguishing feature of BPTAs is that
the word obtained by reading the q′′′’s from
left to right must now satisfy a count con-
straint χ. The fifth clause captures the way
a run from q and ending, among others, at

q′, can be composed with a run from q′.
To see a language recognized by a BPTA, consider binary trees over the input

alphabet Σ = {[, ]1, ]2}. Let nodes and paths in such trees have the natural
definitions, and let brackets [ be matched by brackets ]1 and ]2. Call a node x′

in a tree a matching node of a node x if x is labeled [, x′ is labeled ]1 or ]2,
and there is a well-matched path (defined in the natural way) from x to x′. Now
consider the language L of such trees where (1) every path from the root to a
“leaf” ⊥ (not including the leaf itself) is matched, and (2) every node labeled [
has exactly two matching nodes labeled ]1, and every remaining matching node
is labeled ]2. The tree in Fig. 1, for instance, belongs to L (the leaves have been
omitted to keep the figure clean).

A BPTA A for L has states q, q]1 , and q]2 , the initial state being q. On read-
ing a node labeled ]1 (similarly ]2), A pops and changes state to q]1 (or q]2).
On reading a node labeled [, A pushes and sends the state q to the children
of the current node, the count constraint in the push being: “state q]1 appears
exactly twice, and q]2 occurs 0 or more times.”1 It is easy to see that A accepts L.

Pushdown tree automata. A (top-down) pushdown tree automaton (PTA) P
has a finite state set H , an initial state h0, a finite stack alphabet Γ , a set of
final states, and transitions of the types h → (h1, push(γ)), h → (h1, pop(γ)),
h → h1, and h

a−→ (h1, h2), where h, h1, h2 ∈ H , γ ∈ Γ , and a is an input
symbol. A configuration of P is of the form (h, w), where h ∈ H , and w ∈ Γ ∗ is

1 While BPTAs, as defined, cannot push and branch in a “compound” transition, a
move like this can be implemented using extra “book-keeping” states.
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a stack. We define the semantics of A on an input tree T via predicates of the
type Accept((h, w), T ), which intuitively means “P accepts T from configuration
(h, w),” and is true if one of the following conditions holds:

– w = ε, h is a final state, and T =⊥;
– there is a transition h → h′ such that Accept((h′, w), T );
– T = a(T1, T2), and for some transition h

a−→ (h1, h2), Accept((h1, w), T1)
and Accept((h2, w), T2);

– there is a transition h → (h′, push(γ)) such that Accept((h′, γ.w), T );
– w = γ.w′, and for some transition h → (h′, pop(γ)), Accept((h′, w′), T ).

The automaton P accepts a tree T if Accept((h0, ε), T ) holds; L(P) is the
language of P . Now, to see that BPTAs can encode PTAs, note that the only
way a push-transition is different from a swap transition is that it constrains the
“matching” pop transitions—if γ is pushed, then it is γ that must be popped
at every matching pop. More precisely, construct from P a BPTA A with state
set H ∪ (H × Γ )—intuitively, a pop in A to state (h, γ) simulates a move in
P that pops γ and changes state to h. Every branch and swap transition in
P is also a transition in A; A also has extra swap-transitions (h, γ) → h for
all h ∈ H, γ ∈ Γ . For every pop-transition h → (h′, pop(γ)) in P , A has a
transition h → ((h′, γ), pop), and for every push h → (h′, push(γ)) in P , A has a
transition h → (h′, push(χ)), where the count constraint χ =

∧
h(count((h, γ) ≥

0)∧
∧

∀h.q �=(h,γ)(count(q) = 0). It is not hard to see that L(A) = L(P). Now, let a
0-BPTA be a BPTA where for every constraint χ appearing in a push-transition,
we have Size(χ) = 0. We note that A is a 0-BPTA. We can also show that for
every 0-BPTA, there is an equivalent PTA. Then:

Theorem 1. The class of languages accepted by PTAs equals the class of lan-
guages accepted by BPTAs where for every constraint χ appearing in a push-
transition, we have Size(χ) = 0.

4 Emptiness

Now we present our main technical result: a decision procedure for the problem
of checking, given a BPTA A, whether L(A) is empty.

Consider a BPTA A = (Q, Σ, q0, δ, F ), where Q = {q1, q2, . . . , qn}, and recall
the predicates Run(q, α, T ) defined in Sec. 3. We would like to prove such predi-
cates inductively—however, since they are unboundedly many, we must quotient
them in a finite way.

We do so using predicates of the form F(q,χ), where q ∈ Q and χ is a count
constraint over Q. The predicate F(q,χ) holds iff Run(q, α, T ) holds for some
tree T and some word α ∈ Q+ such that α |= χ. Then, by definition:

Lemma 1. If χ � χ′, then for all q, F(q,χ′) ⇒ F(q,χ).

Lemma 2. L(A) 
= ∅ iff F(q0,χF ), where χF = {q∗ : q ∈ F}.
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A natural question is whether it suffices to consider only predicates F(q,χ) where
χ appears in a push-transition of A. It turns out that it does not. Consider a
BPTA A that has, among others, a push-transition q → (q′, push(ψ)), where
ψ = {p∗1, p2, p

∗
2}, and pop-transitions q′′ → (p1, pop) and q′′ → (p2, pop). Now

suppose the constraint χ = {p1, p
∗
1, p

∗
2} appears in a different push-transition,

and that we want to prove F(q,χ). We note that to use the push-transition
involving ψ in such a proof, we need to prove the stronger predicate F(q,χ′′),
where χ′′ = χ + ψ = {p1, p

∗
1, p2, p

∗
2}. If we are to use this push along with the

pop-transitions from q′′, we also need to prove F(q′,χ′), where χ′ = {q′′, q′′, q′′∗}.
However, there is no reason why χ′ must appear in a transition of A.

Hence we define a proof system F for facts F(q,χ). The system derives predi-
cates F(q,χ) (designed to be the syntactic analog of F(q,χ)), and uses the rules:

1. F(q,χ), for χ � {q} (Base)

2.
F(q,χ) F(q′,χ′)

F(q,χ′′)
(Compose),

if q′ is in χ and χ′′ � χ+ χ′ − {q′}.
3. F(q,χ) (Swap),

if A has a transition q → q′ and χ � {q′}.
4. F(q,χ) (Branch),

if A has a transition q a−→ (q1, q2) for some a such that χ � {q1, q2}.

5.
F(q′,χ′)

F(q,χ)
(Summarize),

if there are count constraints χ′′ and ψ such that: (1) χ � χ′′, (2) ψ � χ′′,
(3) A has a push-transition q → (q′, push(ψ)), and (4) there is a relation
ν ⊆ χ′ × χ′′ such that:
(a) for every v ∈ χ′′, there is some u ∈ χ′ such that ν(u, v)
(b) for each u ∈ χ′ that is a state of A, we have a unique v ∈ χ′′ such that

ν(u, v), v is a state of A, and A has a transition u → (v, pop);
(c) for each u of form q′′∗, for q′′ ∈ Q, in χ′, every v ∈ χ′′ such that ν(u, v)

must satisfy: (i) v is of form q′′′∗ for some q′′′ ∈ Q, and (ii) A has a
transition q′′ → (q′′′, pop).

Here, the rule Base may be used to establish that F(q, {q}) is true. In addition,
this rule can prove a “weaker” fact such as F(q, {q, q∗}), implied by F(q, {q})
according to Lemma 2. Generally, if any of our rules can derive a fact, then it
can also derive every weaker fact.

We will explain why the rule Compose is sound to demonstrate its pur-
pose. Suppose we have F(q,χ) and F(q′,χ′), for q′ ∈ χ. Inductively, we have
Run(q, α, T ) for some α, T such that α |= χ; likewise, we have Run(q′, α′, T ′)
for some α′, T ′ such that α′ |= χ′. Since q′ = α(i) for some i, we have, by the
semantics of A, Run(q, α′′, T ◦i T ′), where α′′ is obtained by replacing the i-th
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letter of α by α′. As α′′ |= χ+χ′ −{q′}, we can soundly derive any goal weaker
than F(q,χ+ χ′ − {q′}).

Rules Swap and Branch capture the semantics of the swap and branch
transitions of A. We will explain the rule Summarize via an example (Fig. 2).
Suppose we want to derive F(q,χ), where χ = {p1, p

∗
1, p2}. Let A have a push-

transition q → (q′, push(ψ)) that, matched by some pop-transitions and com-
bined with the true predicate F(q′,χ′), proves F(q,χ′′) for some χ′′ satisfy-
ing χ � χ′′. We must have ψ � χ′′; also, there must exist appropriate pop-
transitions from χ′ to χ′′. To be concrete, let χ′′ = {p1, p1, p1, p

∗
1, p2}, and ψ =

{p1, p1, p
∗
1, p2}, and suppose A has pop transitions q → (p1, pop), q′ → (p1, pop),

and q′ → (p2, pop). Now, every instance of p1 (or p2) in χ′′ guarantees one copy
of p1 (p2) reached in a run of A, and must be derived via a pop from a copy of
q or q′ in χ′. The element p∗1 stands for “an unspecified number (zero or more)
of p1’s,” and must be derived from “an unspecified number of states that, via a
pop, may lead to p1.” Thus, we may set χ′ = {q, q, q′, q∗, q′, q′∗} (as in the fig-
ure) or χ′ = {q, q, q, q′∗, q′}, but not, say, χ′ = {q, q, q, q∗, q}. Now, the relation
ν ⊆ χ′ × χ′′ collects the pairs (u, v) such that v is derived from u.

Let us write &F F(q,χ) if F(q,χ) is derivable in F. We can prove that:

Lemma 3. F(q,χ) iff &F F(q,χ).

Now take a proof tree for F(q0,χF ),

′′

′

′∗

∗

p1p1p1

p1 p2

p2

p∗1

p∗1

push(ψ)
ψ = {p1, p1, p

∗
1, p2}

χ

χ′

χ′′

pop

q

q

q

q q

q

q

q

Fig. 2. The rule Summarize

where χF is as in Lemma 2. We show
that for every such tree, there is a proof
for the same predicate involving a small
number of predicates. Consider a path
in this tree from the root (the target
predicate F(q0,χF )) to a leaf (a pred-
icate derived without a premise). For
predicates P and P′ that lie on such a
path, let us write P 	 P′ if P is derived
using P′ in one step. We write P	+P′ if
P is obtained via a positive number of
derivations from P′. Call a proof tree S
minimal if it cannot be further reduced
by any of the following two operations:

(1) replace the proof for a predicate P in S by a proof tree with fewer vertices,
and (2) if F(q,χ) 	 F(q′,χ′) in S, then replace F(q′,χ′) by a predicate F(q′,χ′′),
where χ′′ � χ′ and χ′′ 
= χ′, such that F(q,χ) can be derived from F(q′,χ′′) (and
the other predicates used to derive F(q,χ) in S). Note that in the above, a proof
for F(q′,χ′′) follows directly from the proof for F(q′,χ′)).

Let S be a minimal proof tree. We note that if χ � χ′ for some χ and χ′,
and F(q,χ) 	+ F(q,χ′) for some q in Q, then by Lemma 1, we can compact S
by replacing the proof of F(q,χ) by the (stronger) proof for F(q,χ′). Since S is
minimal, this is a contradiction, so that:

Lemma 4. In a minimal proof tree, we cannot have F(q,χ)	+F(q,χ′) if χ � χ′.
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Now note that if F(q, χ) 	 F(q′, χ′) in a minimal proof tree, then we can have
Size(χ) < Size(χ′) only if the rule Summarize is used for this derivation. Now
consider a state p such that p∗ ∈ χ, and let cmax = maxψ maxq (count(ψ, q))
be the maximum count of a state in a count constraint that appears in a push-
transition of A. Because we must have ψ � χ′′, it may not suffice to have
count(χ′′, p) = count(χ, p), but the number of extra copies of p that we may
need to add is at most cmax (we may also have to add elements of the form
q∗, but recall that they do not figure in the size of a constraint). At the same
time, for states p′ for which p′∗ /∈ χ, we cannot have count(χ, p′) > cmax —this
is because count(χ, p′) = count(χ′′, p′) = count(ψ, p′), which contradicts the
definition of cmax . Setting k = θ(ncmax ) for the rest of this section, we have
Size(χ′) ≤ Size(χ) + k. Then:

Lemma 5. If F(q, χ)	F(q′, χ′) in a minimal proof, then Size(χ′) ≤ Size(χ)+k.

Now we abstract the problem further.

(m0
1,m

0
2)

m1 = m0
1 + (m0

2 − m2)k

m2 = m0
2 + (m0

1 − m1)k

m1 = 1

m2 = 1

Fig. 3. Bound on constraint size

From now on, only consider count con-
straints χ where q ∈ χ ⇒ q∗ ∈ χ. Call
a sequence of such count constraints
ϕ = χ1χ2 . . . χl a proof witness if it sat-
isfies the conditions: (1) for all i, Size
(χi+1) ≤ Size(χi) + k, (2) if j > i,
then we cannot have χi � χj , and (3)
χ1 = χF , where χF is as in Lemma 2.
Let us denote by λ(ϕ) the maximum
size of a constraint in a proof witness ϕ.
We ask the question: what is the max-

imum value of λ(ϕ) over all proof witnesses ϕ? The answer is an upper bound
on the maximum size of a count constraint χ appearing in a predicate F(q, χ) in
a minimal proof tree.

Define the basis of a count constraint χ as the set of states q such that q∗ ∈ χ.
The total number of bases is bounded by 2n. Using the facts that the ordering �
only relates count constraints over the same basis and that we assume nothing
about the specific counts of states in a constraint, we observe:

Lemma 6. For any proof witness ϕ = χ1χ2 . . . χl, there are 2n sequences of
count constraints ϕ1, ϕ2,. . . ,ϕ2n , such that (1) each constraint appearing in a
particular ϕi has the same basis, (2) constraints in different ϕi’s have different
bases, and (3) the concentenation ϕ′ of the ϕi’s is a proof witness satisfying
λ(ϕ) ≤ λ(ϕ′).

Call a proof witness contiguous if it may be split into sub-witnesses over partic-
ular bases in the above way. To find λ(ϕ′) for a contiguous proof witness ϕ′ =
ϕ1ϕ2 . . . ϕ2n , we consider a sub-witness ϕi = χ1χ2 . . . χl, such that count(χ1, q)=
m for all q in the common basis of constraints in ϕi (in general, the state qi can
have a count mi, but we could set m = maxi mi without decreasing λ(ϕ)). We
will find a bound π(m, n, k) on λ(ϕi) under this assumption. First, note that
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for i1 > i2, we cannot have count(χi1 , q) > count(χi2 , q) for all q in the ba-
sis of ϕi. Then, starting from χ1, if we decrease the count of one of the states
to 1, then the other counts can grow at most to (m + (m − 1)k) = O(mk)
(the situation is illustrated in Fig. 3-(b) for basis size 2; here, allowed pairs
(m1, m2) of counts are depicted as points in a 2-dimensional space, and can
only lie in its shaded part—(m0

1, m
0
2) is the “initial” point). In this way we

can show that π(m, n, k) ≤ π(O(mk), n − 1, k), and using this inequality, that
λ(ϕi) = O(mnkn). Now note that in ϕi+1, the first constraint has the form
(m′, m′, . . . , m′), where m′ = O(mnkn), so that λ(ϕi+1) = O(mn2

kn2+n). Also,
in the first constraint in ϕ1, the count of each state is 0. From all this and using
induction, we obtain that λ(ϕ) = O(kn2n

).
Now note that the total number of multisets over a basis of size n where

each element can have at most r copies is rn. Therefore, the total number of
predicates F(q, χ) is O(kn2n

). Since every derivation step in F derives at least
one new predicate, we have:

Theorem 2. The emptiness problem of BPTAs is in 3-EXPTIME.

5 Expressiveness

Basic properties. In this section, we study the expressiveness of BPTAs fur-
ther. First, note that on word models, a push in a run of a BPTA has a single
matching pop, so that the count constraints in push-transitions applicable in this
setting can be simplified to: “one of the states in Q′ ⊆ Q appears once, and the
other states do not occur.” This can be encoded by nondeterministic pushdown
word automata, proving (along with Theorem 1) that BPTAs on words accept
precisely the class of context-free languages.

As for closure properties of BPTAs, closure under union is trivial. Some “hard-
ness” results follow from Theorem 1 and results for pushdown automata:

Theorem 3. BPTAs are closed under union, but not under intersection or com-
plementation. The problems of checking the emptiness of (1) the complement of
a BPTA and (2) the intersection of two BPTAs are undecidable.

We show that BPTAs are more

a1 a2
an $

bm1 bm2 bmn

b21 b22

b11

b1n

b2n

b12

Fig. 4. Expressiveness of BPTAs

expressive than PTAs by con-
sidering trees as in Fig. 4 (the
leaves have been omitted).
Here, the input alphabet is
Σ = {0, 1, $}, and the symbols
ai, bij are in Σ for all i, j (while
these trees are not binary, we
can always encode them by
such). Now let L be the lan-

guage of trees of the above form where for all i ≤ n, there is exactly one k ≤ m
such that an−i+1 = bki. This language is recognized by a BPTA that has states
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q0 and q1 (along with a couple of other states needed for “book-keeping”) cor-
responding to the input symbols 0 and 1. While reading each ai, it executes a
push-transition that enforces the following count constraint χ on its matching
pops: “state qai appears exactly once, and state qj , where j �= ai ∈ {0, 1} can
appear an unspecified number of times.” On reading a symbol bij , the BPTA
executes a pop-transition to the state qbij .

To see why L cannot be recognized by a PTA M with N states, take a tree
as above where n = m > N . In any run, M must enter two branches of the tree
in the same configuration. Then we can replace one of these branches with the
other to get an accepting run on a tree not in L. This leads to:

Theorem 4. There is a BPTA A such that no PTA recognizes L(A).

Alternation. One may wonder if BPTAs can be simulated by alternating push-
down tree automata (APTAs), which can fork copies during a run and require
that all forked copies accept the input tree. Such automata have undecidable
membership and emptiness problems and can accept languages not recognizable
by BPTAs. For instance, the non-context free word language L = {aibici : i ≥ 1},
clearly not accepted by a BPTA, can be accepted by an APTA [6].

However, alternation does not appear to be the source of expressiveness of BP-
TAs. Consider the language L of trees as in Fig. 4 where there is a j ≤ n such
that for all i ≤ j, there is a branch k such that an−j+1 = bkj and an−i+1 = bki.
An APTA M running on such trees cannot track the universal quantifier over
i just by forking copies. Such copies would run independently and not agree on
the value of j. We conjecture that L cannot be accepted by an APTA. On the
contrary, consider a BPTA A that has a pair of states qσ, q#

σ for each σ ∈ Σ, and
pushes on the a’s and pops on the b’s. At every ai preceding some nondetermin-
istically guessed aj , A pushes and asserts that, among the states reached via the
matching pops, “qai appears at least once.” At aj, A demands that “q#

aj
occurs

once or more” among the states reached by the matching pops. While popping
along the k-th branch of b’s, A has, in the beginning, the option to move to a
state q#

σ at any point. If it does so on a symbol bkl, then it checks that σ = bkl.
Now it waits to move to a state qσ′ . If it does so on a symbol bkp, then it checks
that σ′ = bkp. We can show that A accepts a tree if and only if it belongs to L.

Regular expressions instead of count constraints? While a count con-
straint χ in a push-transition in a BPTA A can reason about state counts in the
multiset of states reached via the pops matching the push, it cannot order them
by the position of the leaves they reach. A way to let BPTAs reason about the
order of matching pops would be to let χ be a regular expression. The semantics
for push-transitions is the obvious one; pop, swap and branch transitions stay
the same.

Such automata can trivially encode BPTAs; unfortunately, their emptiness
problem is undecidable (we omit the proof). Evidently, the expressiveness of
BPTAs is quite close to the maximum permitted by decidability contraints.
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6 Conclusions

In this paper, we introduced BPTAs as a new automaton model for pushdown
tree languages. Unlike pushdown tree automata studied in the literature, BPTAs
allow path quantifiers to be combined with pushdown properties satisfied along
a path. We established that BPTAs are strictly more expressive than classical
PTAs and presented a decision procedure for their emptiness problem.

There is an intriguing connection between our decidability result and known
results [2] for transition systems equipped with well-founded quasi-orders (wqo).
Using Lemma 6, we can establish that the relation � defines a wqo on a transition
system whose states are predicates of the form F(q, χ). We can then pose the
emptiness question for BPTAs as an alternating coverability problem on this
transition system, which can then be proved decidable by extending existing
decidability proofs for coverability in such systems.

Several questions are left open. First, we are not convinced that the upper
bound for our decision procedure is tight, and it is possible that an entirely new
approach would yield a better upper bound. Secondly, an extension of context-
free tree grammars that is equivalent to BPTAs would be interesting to study.
Finally, this paper exclusively deals with automata on finite trees, and a general-
ization to infinite trees and infinitary acceptance conditions would be of interest.

Acknowledgement. We thank P. Madhusudan for valuable discussions.
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Validity Checking for Finite Automata over Linear
Arithmetic Constraints�
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Abstract. Decision procedures underlie many program analysis problems. Tra-
ditional program analysis algorithms attempt to prove some property about a sin-
gle, statically-defined program by generating a single constraint. Accordingly,
traditional decision procedures take single constraints as input. Extending these
traditional program analysis algorithms to reason about potentially infinite lan-
guages of programs (as generated by a given metaprogram) requires a new class
of decision procedures that reason about languages of constraints. This paper in-
troduces the parameterized class of validity checking problems that take as input a
language generator A. The parameters are: (1) the language formalism for A, (2)
the theory under which each string in the language of A is interpretted, and (3) the
quantification (existential/universal) of the constraints in the language to which
the validity property applies. We introduce such decision problems by presenting
an algorithm that decides whether a given finite state automaton A generates any
valid linear arithmetic constraints.

1 Introduction

Many program analysis and formal verification problems reduce to validity or satisfi-
ability checking over some logical theories. Consequently, significant effort has been
devoted to designing efficient decision procedures for these theories. Traditional pro-
gram analysis problems address individual programs, so the decision procedures that
underlie program analysis algorithms take a single constraint ϕ. Extending program
analysis problems to address potentially infinite languages of programs (as generated
by a metaprogram) requires decision procedures that take languages of constraints. We
introduce the study of such decision procedures in this paper. The input to decision
procedures over languages of constraints is a language generator A, where each string
in the language of A is a constraint in a given theory. The problem such procedures
address is: Does there exist a valid constraint in the language ofA, or alternatively, are
all constraints in the language of A valid?

As an example application, consider a web application that takes user input (e.g., a
username and password) and generates a query to a backend database (e.g., a banking
system) to authenticate the user. Errors in the application may allow a malicious user to
send specifically crafted input to cause the application to generate a query with a tautol-
ogy as its conditional clause. This is one example of a widespread security vulnerability
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G =( {∨, ∧, ¬, (,), −, +, =, �=, >, ≤, <, ≥, } ∪ � ∪ V,
{bE, bT, bF, bS, pred, aE, aT}, PG, bE)

PG =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bE ::= bE ∨ bT | bT aE ::= aE + aT | aT
bT ::= bT ∧ bF | bF aT ::= V | − V | �
bF ::= ¬ bS | bS cmp ::= = | �= | >
bS ::= ( bE ) | pred | ≥ | < | ≤
pred ::= aE cmp aE

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Fig. 1. Grammar G for linear arithmetic constraints, where V is a set of variables

known as database command injection [1]. These vulnerabilities can be discovered stat-
ically by constructing a language generator A to conservatively characterize the set of
database queries that the application may generate [2]. The verification problem then
reduces to checking whetherA accepts any tautologies.

We denote this class of problems parametrically as VALIDΠ,Φ,K . The first parameter,
Π , is the formalism for describing the language generatorA that VALIDΠ,Φ,K takes as
input. The second parameter, Φ, is the theory under which each string in L(A) (i.e., the
language ofA) is to be interpreted. The third parameter, K ∈ {∃, ∀}, specifies whether
the goal is to find whether any (K = ∃) or all (K = ∀) constraints in L(A) are tau-
tologies. This paper introduces such decision problems by presenting an algorithm for
VALIDFSA,LA,∃, where “FSA” is short for “Finite State Automaton,” and “LA” is short
for “Linear Arithmetic.” In practice, FSAs are sufficient for modeling web applications
as query constructors [2].

The challenge of VALIDΠ,Φ,K for any non-trivial Π is that L(A) may be infinite,
so naively enumerating L(A) and checking each constraint will not yield a decision
procedure. Instead, the algorithm must exploit the finiteness of the representation of A.

The rest of the paper is structured as follows. Section 2 presents the VALIDFSA,LA,∃
problem more precisely and defines arithmetic loops and logical loops, which represent
the main challenges of the problem. Sections 3 and 4 address arithmetic and logical
loops respectively. Section 5 surveys related work, and Sect. 6 concludes.

2 Overview

This section first defines the parameters for VALIDFSA,LA,∃ and makes some general
observations, and then sets up the high-level structure of the algorithm.

2.1 The VALIDFSA,LA,∃ Problem

Finite state automata (FSAs) are defined by a five-tuple, (Q, Σ, δ, q0, qf ), where Q is a
set of states, Σ is the alphabet of terminals from the input language, δ ⊆ Q×Σ ×Q is
a transition relation, q0 ∈ Q is a start state, and qf ∈ Q is a final state. The semantics
of FSAs is standard. The grammar G in Fig. 1 defines the syntax for linear arithmetic
constraints. Again, the semantics of the language is standard, and the grammar rules
reflect the operator precedence. Because each s ∈ L(A) must be interpreted as a linear
arithmetic constraint, for A to be a valid input to VALIDFSA,LA,∃, L(A) ⊆ L(G). For
the sake of compactness and for certain steps in our algorithm, the transition relation
will sometimes be presented as δ ⊆ Q×Σ∗ ×Q.
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(a)

+2 +z

+2
y + y

x + x

+z ≥ y

x + x
+y

∨

(b)
y + y + z ≥ x + x + z

∨ x + x + 2 ≥ y + y + 2

(c)

x

−y

≥ −y

∨
x ≥ y

(d)
x − y − y ≥ −y

∨ y ≥ x

Fig. 2. Two example FSAs

let aik = (qi, a, qk) bij = (qi, b, qj) cjk = (qj , c, qk)

a → b c ∈ PG

bij , cjk ∈ δT ∪ δN
⇒ δN = δN ∪ {aik}

δR(aik) = δR(aik) ∪ {{bij , cjk}}

Fig. 3. CFL-reachability algorithm—the cases for rhs’s of lengths other than 2 are analogous

We select Φ = “LA” to explore because it is broadly applicable, and the general
problem of validity checking for integer arithmetic constraints is undecidable (due to
the undecidability of Diophantine equations [3]). Although multiplication by a constant
is within the theory of linear arithmetic, we forbid ‘×’ from appearing in Σ. If we
allowed, for example, an FSA to have a loop over “×2,” we would characterize the
multiplication as “×2n,” and exponentiation with variables is difficult to reason about.

A few concrete examples of inputs to VALIDFSA,LA,∃ help to illustrate the signifi-
cance of the finite representation and the challenges in handling it. Consider, for ex-
ample, the FSA shown in Fig. 2a. Because of cycles in the automaton, it accepts an
infinite language. By considering single passes through each of its cycles, we discover
the tautology shown in Fig. 2b. However, a single pass through a cycle is not sufficient
to discover possible tautologies in general. For example, two passes through the cycle
in the FSA shown in Fig. 2c are needed to discover the tautology in Fig. 2d.

Our algorithm for validity checking of automata uses a combination of automaton
transformations and a theorem that bounds the number of constraints needed for a tau-
tology. It generates validity queries in the theory of first-order arithmetic and sends them
to a first-order arithmetic decision procedure [4]. If the FSA accepts some tautology, at
least one of the finite number of first-order arithmetic queries must be a tautology.

2.2 Definitions and Setup

Our algorithm for the VALIDFSA,LA,∃ problem uses a modified version of context free
language (CFL) reachability to create abstractions of the input FSA for use at certain
steps. This CFL-reachability algorithm takes as input a context free grammar G =
(N, Σ, PG, S) and an FSA A = (Q, Σ, δ, q0, qF ), and produces an augmented FSA
A′ = (Q, Σ ∪N, δT ∪ δN , δR, q0, qF ) where δT and δN are sets of terminal transitions
and non-terminal transitions (transitions labeled with terminals and non-terminals from
G) respectively, and δR : δN → P(P(δN ∪ δT )) is the set of reference transitions. The
transitions in A′ are defined by δT = δ plus the minimal solution to the constraint
shown in Fig. 3. The standard CFL-reachability algorithm does not include reference
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B

B

A

C

C

Fig. 4. CFL-reachability

transitions [5]. Figure 4 depicts an FSA produced
by CFL-reachability, showing terminal transitions as
solid, nonterminal transitions as dashed, and reference
transitions as dotted, assuming that A → B C ∈ PG.
For t ∈ δN , we write t t′ if t ∈ st ∈ δR(t) for some
st; let ‘ ∗ ’ denote the reflexive, transitive closures of
‘ ,’ and let δ∗R(t) =

⋃
st∈δR(t)(st ∪

⋃
t′∈st

δ∗R(t′)).
The references effectively form parse trees for all of the strings in L(A)—“all” because
of the syntactic correctness requirement, i.e., L(A) ⊆ L(G).

∨ s1 x

+

<
1

z
t
∧

∧ s2

y

∨ s1 �s1,t�a

t
∧

∧ s2 �s2,t�a

(a) (b)

Fig. 5. Examples for arithmetic and logical FSAs

Let “σij” abbreviate “(qi, σ, qj).” Because bE cannot be derived from aE in RG,
if aEij ∈ δN , then for any string s accepted on a qi–qj path over the transitions in
δ∗R(aEij), s ∈ L(N, Σ, PG, aE). Similarly, if bEij ∈ δN , then for any string s generated
on a qi–qj path, s ∈ L(N, Σ, PG, bE). This leads to the following lemma:

Lemma 1. Each cycle inA, an input to VALIDFSA,LA,∃, is either arithmetic (i.e., within
δ∗R(aEij) for some aEij ∈ δN ) or logical (i.e., within δ∗R(bEij) for some bEij ∈ δN and
not within δ∗R(aEkl) for any aEkl ∈ δN ).

The subsequent sections present one technique for handling arithmetic cycles and an-
other for logical cycles, but neither technique works for both kinds of cycles. This mo-
tivates the primary CFL-reachability-based abstraction used in our algorithm.

Definition 1 (Arithmetic FSA). Let A = (Q, Σ, δ, δR, q0, qF ) and predst ∈ δ. The
arithmetic FSA �qs, qt�

a or Ast = (Q′, Σ, δ′, δ′R, qs, qt) where Q′ = {q ∈ Q |
(q, σ, q′) ∈ δ′} ∪ {qt}, δ′ = {t ∈ δ | t ∈ δ′R

∗(predst)}, and δ′R(t) = δR(t) if t ∈ δ′ and
∅ otherwise.

Definition 2 (Logical FSA). Let A = (Q, Σ, δ, δR, q0, qF ). The logical FSA Al =
(Q′, Σ ∪ B, δ′, δ′R, q0, qF ), where Q′ = {q ∈ Q | (q, σ, q′) ∈ δ′} ∪ {qF }, B =
{�qi, qj�

a | qi, qj ∈ Q′}, δ′ = {σij ∈ δ | σ �= pred ∧ σij ∈ δ′R
∗(bE0F )} ∪ {�qi, qj�ij

| predij ∈ δ}, δ′R(t /∈ δ′) = ∅, and δ′R(t ∈ δ′) =
⋃

st∈δR(t)({{�qi, qj�
a
ij}} if st =

{predij} ; {st} otherwise).

The FSA fragment in Fig. 5a has two arithmetic FSAs. The one defined by �s1, t�
a in-

cludes all states and solid transitions in the figure. The one defined by �s2, t�
a excludes

the state s1 and the x-transition. Figure 5b shows the logical FSA that results from
abstracting out the arithmetic FSAs in Fig. 5a. The labels on the states show the corre-
spondence between the original FSA and the logical FSA. Arithmetic FSAs include no
logical cycles and logical FSAs include no arithmetic cycles.
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We split the problem of validity for FSAs into two subproblems, and in order to
define the sub-problems precisely, we define linear FSAs:

Definition 3 (Linear FSA). An FSAA is a linear FSA iffA is deterministic, |L(A)| =
1, andA is minimal (i.e., it includes no useless states or transitions).

The first subproblem takes as input a linear logical FSA and produces a linear arithmetic
constraint that is valid if the linear logical FSA accepts a tautology. To this end, Sect. 3
casts arithmetic FSAs as network flow problems. The second subproblem takes as input
a logical FSA and produces a finite number of linear logical FSAs such that at least one
accepts a tautology iff the input FSA accepts a tautology. Section 4 uses a finite model
theorem to unroll logical loops based on the number of variables in the arithmetic FSAs.

3 Arithmetic Loops

We address arithmetic loops by casting questions about arithmetic automata as ques-
tions about network flows. The algorithm has four main steps. First, given an arithmetic
FSA A = (Q, Σ, δ = (δT ∪ δN), δR, qs, qt) we define a labelling function

L :
(
δ ∪

⋃
t∈δ

st∈δR(t)

(t, st)
)
→ F

where F is a set of flow variables. In the constraint that this construction generates, the
value of L(t ∈ δT ) equals the number of times the transition t was taken in some accept-
ing path. The value of L(t, st) equals the number of times the corresponding derivation
occurs in the parse tree of the generated string. The first part of the constraint existen-
tially quantifies the flow variables because the VALIDFSA,LA,∃ problem asks whether
there exist any tautologies: “∃f∈codom(L)f .”

The second step constrains the values of flow variables so that the values they can
take correspond to derivations and paths throughA.

(1)
∧

f∈codom(L)

f ≥ 0 ∧ (2)
∧

t∈δN

L(t) =
∑

st∈δR(t)

L(t, st) ∧

(3)
∧
t∈δ

L(t) = k +
∑
t′∈δ

st′∈δR(t′)
t∈st′

L(t′, st′) , k = 1 if t = predst

0 otherwise

Fig. 6. Flow balancing

Conjunction (1) prohibits solutions that would have a
transition being traversed a negative number of times.
Figure 6 illustrates how (2) and (3) balance the flow of
incoming and outgoing reference transitions.

The third step universally quantifies the variables
in V ∩ Σ because the VALIDFSA,LA,∃ problem asks
whether there exists a tautology: “∀v∈V ∩Σ v.”

The fourth step uses C(predst) to generate a flow-
comparison constraint that relates the number of times
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each transition is taken with the value of the generated expression. Because addition
commutes, C uses the number of times each term occurs to calculate the value of arith-
metic expressions.

C(predst) =
∧

{aEsi,cmpij ,aEjt}∈δR(predst)

{cij}∈δR(cmpij)

(L(cij) = 1)⇒ C(aEsi) c C(aEjt) C(aEij) =
∑

aEij
∗

aTkl

C(aTkl)

C(aTij) =
∑

{vij}∈δR(aTkl)

(L(aTij , {vij})× v) −
∑

{−ik,vkj}∈δR(aTkl)

(L(aTij , {−ik, vkj})× v)

Tarski’s theorem [4] establishing the decidability of first-order arithmetic guarantees
that expressions of this form are decidable when the variables range over real numbers.
We state here a completeness result:

Theorem 1. If the flow-comparison expression generated from an arithmetic FSA �s, t�
is not valid, then �s, t� does not accept a tautology.

Furthermore, when two or more arithmetic FSAs are linked sequentially by logical
operators (e.g., ‘∧’ or ‘∨’), we can merge in a natural way the constraints that model
the arithmetic FSAs, and the completeness result holds for the sequence of automata.

Theorem 2. If the flow-comparison expression generated from a linear logical FSAA
is not valid, then A does not accept a tautology.

Unsoundness. If the flow variables ranged over integers, this construction would
be sound. Because they range over real numbers, they may take on non-integral values
and not correspond to any path through the FSA.

4 Logical Loops

Consider an arithmetic FSA with an ∨-transition from its last state to its first state. The
arithmetic FSA might not accept any tautology, but two or more passes through the
arithmetic FSA joined by ‘∨’ may be a tautology, as in the case of the FSA in Fig. 2a.

4.1 Setup and Loop Unrolling

Unfortunately, we cannot use equations to address logical loops as we did for arith-
metic loops. If we did, the generated constraint would not be in first-order arithmetic.
Instead, we “unroll” the loop a bounded number of times so that if the loop accepts
some tautology, the unrolling must also accept some tautology.

The algorithm for generating linear logical FSAs from a given logical FSA has three
main steps. (1) Remove the¬-transitions. (2) Collapse all strongly connected components
(SCCs) in the FSA to form a dag, and enumerate the paths through the dag. (3) Transform
each collapsed SCC in an FSAAl into a linear FSA that replaces the SCC in Al.

The first step uses graph transformations and an adaptation of DeMorgan’s law to
propagate ‘¬’ inward. Due to space constraints, the details are omitted here but can be
found in the companion technical report [6]. The second step is straightforward, so we
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omit the details. Section 4.2 presents the third step in detail. Each step preserves the
property of accepting a tautology.

The third step takes as input a logical FSA without ¬-transitions that only produces
syntactically correct strings (as stated in Sect. 2.2). This step relies on the syntactic
correctness property, which implies that parentheses are balanced on all paths, and the
parenthetic nesting depth is bounded. Because parentheses are always balanced, we
can abstract all paths between a pair of matching parentheses into a parenthetic FSA
�qi, qj�

p, which is defined as follows:

Definition 4 (Parenthetic FSA). Let logical FSA A = (Q, Σ, δ, δR, q0, qF ) where
bSst ∈ δ and bSst

∗ bEkl. The parenthetic FSA �qs, qt�
p or Ast = (Q′, Σ, δ′, δ′R,

qs, qt) where
Q′ = {q ∈ Q | (q, σ, q′) ∈ δ′} ∪ {qt}
Bp = {�qi, qj�

p | qi, qj ∈ Q′}
δ′ = {t ∈ δ | ¬∃bSij . bSst

+ bSij
+

t}
∪ {�qi, qj�

a
ij ∈ δ | bSij ∈ δ′}

∪ {�qi, qj�
p
ij | bSij ∈ δ′ ∧ bSij

∗ bEkl}
δ′R(t /∈ δ′) = ∅

δ′R(t ∈ δ′) =
{
{{�qi, qj�

a
ij , �qi, qj�

p
ij} ∩ δ′} if bSij = t �= bSst

δR(t) otherwise.

This abstraction is analogous to the abstraction that defines arithmetic and logical FSAs,
except that parenthetic FSAs can be nested within parenthetic FSAs.

After abstracting away parenthetic FSAs, the SCC only has ∨- and ∧-transitions
and transitions over arithmetic and parenthetics FSAs as atomic units. The following
theorem provides the basis for the bounded loop unrolling in Sect. 4.2:

Theorem 3 (Loop Unrolling Theorem). Let T = {t1, · · · , tm}, where each ti is
a comparison of linear arithmetic expressions, and let n be the number of distinct
variables in T . Then (

∨
t∈T t) is a tautology iff there exists some T ′ ⊆ T such that

|T ′| ≤ (n + 2) and (
∨

t∈T ′ t) is a tautology.

Proof. Helly’s theorem states that if K1, · · · , Km are convex sets in n-dimensional
Euclidean space �n in which m ≥ n, and if for every choice of n + 1 of the sets Ki

there exists a point that belongs to all the chosen sets, then there exists a point that
belongs to all the sets K1, · · · , Km [7]. This implies that if K1, · · · , Km are convex
sets as before but have no points in common, then there exists some choice of n + 1 of
the sets Ki that have no points in common.

If t1 ∨ · · · ∨ tm is a tautology, then by DeMorgan’s law, ¬t1 ∧ · · · ∧ ¬tm is un-
satisfiable. Each ¬ti can be rewritten as si by replacing the comparison operator with
its opposite (e.g., < � ≥). Linear inequalities and linear equalities each define convex
spaces (half-spaces and hyperplanes, respectively) in�n, where n is the number of vari-
ables occurring in them. If each si falls into one of these categories (i.e., its comparison
operator is one of {<, >,≥,≤, =}), then some choice of n+1 of them is unsatisfiable,
and the disjunction of the corresponding ti’s is a tautology.

However, a linear disequality (i.e., a · x �= b) defines a non-convex region. Specifi-
cally, the points that do not satisfy a disequality lie in a single hyperplane. Suppose that
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Paren({s1, . . . , sn}) = Conj(s1) ∨ · · · ∨ Conj(sn)

Conj({b1, . . . , bn}) = (Disj(b1)) ∧ · · · ∧ (Disj(bn))

Disj(�qi, qj�
p
ij) = Paren(

⋃
t∈{bTkl∈δN |bEkl∈δ∗

R
(bSij )} Paths(t, ∅))

Disj(�qi, qj�
a
ij) = �qi, qj�

a ∨ · · · ∨ �qi, qj�
a︸ ︷︷ ︸

NumVars+2

Paths( t ∈ δN , d ) =
⋃

st∈δR(t) Zip(st \ (d ∪ {t}), d ∪ {t})
Paths(�qi, qj�

a
ij , d) = {{�qi, qj�

a
ij}

Paths(�qi, qj�
p
ij , d) = {{�qi, qj�

p
ij}}

Paths( ∧ij , d ) = ∅

Zip({t1, . . . , tn}, d) =
⋃

s1∈ (t1,d)...
sn∈ (tn,d)

{⋃n
i=1 si

}

Fig. 7. Algorithm to construct a linear FSA from an SCC of a logical FSA

for all choices of n+1 convex regions (as defined by the si’s) there exists some point p
that satisfies the si’s. Suppose further that for some choice of n + 1 convex regions all
points common to the region lie in the hyperplane that does not satisfy some disequality
si. Then a choice of n + 2 of the si’s are required for unsatisfiability, and consequently
n + 2 of the ti’s are required for validity.

The only non-convex shape definable by linear constraints has a hyperplane as its
region of unsatisfiability. Consequently, given a set S of convex regions whose inter-
section (is necessarily convex and) is not confined to a hyperplane, no addition of a
finite number of non-convex linear constraints to S can cause S to become unsatisfi-
able. Therefore, no more than (n + 2) ti’s will be needed for a tautology. ��

4.2 Linearizing Strongly Connected Components

Figure 7 defines five functions: Paren, Conj, Disj, Paths, and Zip. These five func-
tions are used to construct a linear logical FSAAl from a strongly connected component
of a logical FSA As such that Al accepts a tautology iff As accepts a tautology.

The algorithm to construct Al begins as follows. Let As be an SCC without ¬-
transitions, with parenthetic FSAs abstracted, and with start and final states q0 and
qF , respectively. Construct a single parenthetic FSA by adding to δ (qα,(, q0) and
(qF ,), qβ) and letting qα and qβ be the start and final states, respectively. Begin con-
structing a linear FSA by calling Disj(�qα, qβ�p

αβ). Disj interprets (�qα, qβ�p
αβ) as the

parenthetic FSA that it represents. The set {bTkl · · · } over which Disj() takes a union
includes all of the nonterminal transitions from which only conjunctive expressions
(i.e., “a ∧ · · · ∧ b”) can be derived, but all expressions the can be derived can be en-
tered and exited through ∨-transitions. The Paths function then returns a set S of sets
of transitions, where each set s of transitions includes all of the arithmetic and par-
enthetic FSAs on some shortest (i.e., ¬∃s′ ∈ S.s′ ⊂ s) acyclic path derived from the
transition t. BecauseAs is strongly connected, each path represented by the set returned
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Fig. 8. An example SCC and the result of Fig. 7, where v = NumVars

from Paths can be entered and exited through ‘∨,’ and disjunction weakens expres-
sions monotonically, if a tautology can be constructed from the conjunctive expressions
returned from Paths, thenAs accepts a tautology. Because conjunction strengthens ex-
pressions monotonically, and the conjunctive expressions returned from Paths are all
Paths returns all shortest conjunctive expressions, if As accepts some tautology, then
a tautology can be constructed by the shortest conjunctive expressions.

Paths passes the set representing all shortest conjunctive expressions to Paren,
which begins to construct a linear structure by calling Conj on each expression, and
connecting the results with ‘∨.’ A DNF expression constructed by disjoining several
instances of one of these conjunctive expressions can be refactored into a CNF expres-
sion. Conj constructs such a CNF expression. Because it constructs a CNF expression,
each element (arithmetic or parenthetic FSA) in the set can be handled individually and
independently by Disj. If the element is a parenthetic FSA, Disj recurses down and
produces a linear construction based on the parenthetic FSA. If the element is an arith-
metic FSA, Disj disjoins NumVars + 2 copies of it, where NumVars is the number of
distinct variables that appear in the original FSA (i.e., |{v ∈ V | vij ∈ δ}|). Theorem 3
implies that if any (necessarily finite) disjunction of constraints from a given set consti-
tutes a tautology, then at most NumVars + 2 of the constraints are needed to construct
a tautology. Given a complete linear structure, a linear logical FSA can be constructed
by using the sequence of tokens as the labels for the transitions in a linear FSA.

To illustrate the algorithm, Fig. 8 shows an example SCC, where numbers (1–5)
represent arithmetic FSAs. The set S consists of three sets, and below that, the begin-
ning of the constructed linear FSA shows how those sets are used. Note that each set
in S consists of the arithmetic FSAs along a path that can be entered and exited from
∨-transitions but has only ∧-transitions between arithmetic FSAs.

4.3 Soundness, Completeness, and Complexity

Taken together, the algorithms for constructing linear logical FSAs from a logical FSA
are sound and complete for finding tautologies in logical FSAs.

Theorem 4 (Soundness and Completeness). Given an FSA A where L(A) ⊆ L(G),
the algorithm presented in Sect. 4 produces a finite set SA of linear logical FSAs such
that there exists an FSA in SA that accepts a tautology iff A accepts a tautology.

Proof. The abstraction from A to a logical FSA A′ described in Sect. 2.2 maintains
language equivalence if a path through A′ includes paths through the arithmetic FSAs
that correspond to their names. The algorithm to remove ¬-transitions produces a log-
ical FSA A+ from A′ such that there exists a bijective mapping b : L(A+) → L(A′)
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where b(ϕ+) = ϕ′ implies ϕ+ ≡ ϕ′. Collapsing SCCs and finding paths through the
dag produces a finite set SA+ of FSAs fromA+ such that a path in A+ can be mapped
to a path in someAS ∈ SA+ , and vice versa. The algorithm in Fig. 7 then produces a fi-
nite set SA of linear logical FSAs from SA+ , such that, by the algorithm in Sect. 4.2 and
Theorem 3, there exists an FSA A− ∈ SA that accepts a tautology iff some AS ∈ SA+

accepts a tautology. ��

A logical FSA is no larger than the FSA from which it is abstracted. Removing ¬-
transitions produces at most a constant number of instances of each state, so the result-
ing FSA has size O(|Q|) in the size of the input. The states in the FSA can be partitioned
into Qq , those states that can be reached from themselves, Qp, those that cannot. Let
q = |Qq| and p = |Qp|. Collapsing SCCs and enumerating all paths generates O(2p)
paths. From each of these paths, the algorithm in Fig. 7 produces linear logical FSAs. If
p � q, then each path has length O(p). Otherwise, each path is bounded by |S|, which
is O(2q), and the length of the FSA produced from each S ∈ ∫ , which is O(n(q2q)),
where n is the number of unique variables in the arithmetic FSAs. So, each path has
length O(max(p, nq2q)). From each path a query, which is linear in the size of the path,
is created and sent to a first-order arithmetic decision procedure.

5 Related Work

This section surveys closely related work.

First-Order Theories. Tarski established the decidability of the first-order the-
ory of real numbers with addition and multiplication through quantifier elimination [4].
Collins used cylindrical decomposition to check validity in the same theory more effi-
ciently, but his algorithm also has high complexity [8]. The first-order theory over inte-
gers is undecidable because of the undecidability of solving Diophantine equations [3].
However, an important fragment, Presburger Arithmetic, is decidable [9].

Linear Constraints. In program analysis and formal verification, decision proce-
dures for linear constraints are widely used. Some proposed techniques include Fourier-
Motzkin variable elimination [10], the Sup-Inf method of Bledsoe [11], and Nelson’s
method based on Simplex [12]. More tractable algorithms can be found by restricting
the class of integer constraints further. Pratt gives a polynomial time algorithm for the
form of linear constraints x ≤ y + k, where k is an integer [13]. Shostak considers a
slightly more general problem ax+by ≤ k, where a, b, and k are integer constants [14].
He uses “loop residues” for an algorithm which requires exponential time in the worst
case. Aspvall and Shiloach give a refined algorithm for the same form which runs in
polynomial time [15]. Su and Wagner [16] leverage ideas from Pratt and Shostak to pro-
pose the first polynomial time algorithm for a general class of integer range constraints
underlying the standard example (range constraints [17]) of abstract interpretation [18].

Combined Theories. In 1979, Nelson and Oppen proposed a method for com-
bining theories in a decision procedure [19]. Contemporary theorem provers, such that
as in Necula and Lee’s certifying compiler [20], use Nelson and Oppen’s architecture
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for cooperating decision procedures. In 1984, Shostak introduced an algorithm for de-
ciding the satisfiability of quantifier-free formulas in a combined theory [21]. This al-
gorithm improved over previous decision procedures by enabling multiple theories to
be integrated uniformly instead of using separate, communicating processes. This al-
gorithm serves as the basis for decision procedures found in several tools including
PVS [22], STeP [23], and SVC [24]. SVC uses a decision procedure for a fragment of
first-order logic which excludes quantifiers, but includes equality, uninterpreted func-
tions and constants, arrays, records, and bit-vectors, as well as propositional connec-
tives. CVC Lite [25] is a descendant of SVC that includes a builtin SAT solver and
support for quantifiers.

Helly-like Theorems. Helly-like theorems have been used to improve certain in-
dividual linear programming problems, such as finding a point in the intersection of a
family of convex sets [7,26]. In 1994, Amenta proved a general relation between Helly-
like theorems and generalized linear programming [27]. None of these, however, use
Helly’s theorem as this paper does: to bound the number of constraints needed to find a
tautology in unboundedly large sets of constraints.

6 Conclusions and Future Work

We have introduced the class of decision problems for language generators ValidΠ,Φ,K

(motivated by the need for advanced checking of meta-programs) and an algorithm for
ValidFSA,LA,∃. Our algorithm is based on casting FSAs as network flow problems and
leveraging a novel application of Helly’s theorem to bound the number of comparison
expressions needed for a tautology. The network flow-based construction is unsound
because the flow variables may take on non-integral values.

This paper opens up several interesting directions for future work. First, language
generators that can match calls and returns, such as tree automata and push-down au-
tomata, are better suited for certain program analysis problems in meta-programming
than finite state automata. Because the algorithm presented here relies on the bound-
edness of parenthetic nesting, new insights will be needed to construct algorithms over
these more expressive formalisms. Second, we expect that similar techniques to the
ones presented here will yield an algorithm for ValidFSA,LA,∀. Third, this algorithm
does not exploit much of the finer-grained structure of the FSA. We expect that this
can be used to provide an alternative, and frequently lower, bound on the number of
expressions needed for a tautology. Fourth, we are interested in studying the relation of
ValidFSA,LA,∃ to MSO logic, which also has an automata-based formulation. Finally,
we would like to find matching upper and lower bounds for the ValidFSA,LA,∃ problem
in order to know its exact complexity.
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Game Semantics for Higher-Order Concurrency
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Abstract. We describe a denotational (game) semantics for a call-by-
value functional language with multiple threads of control, which may
communicate values of general type on locally declared channels.

This develops previous work which interpreted freshly generated
names in a category of games acted upon by the group of natural number
automorphisms, by showing how names may be associated with “depen-
dent arenas” in which interaction between strategies, corresponding to
asynchronous communication on named channels, may occur.

We describe a model of the call-by-value λ-calculus (a closed Freyd
category) based on these arenas, and use this as the basis for interpreting
our language. We prove that the semantics is fully abstract with respect
to may-testing using a correspondence between channel and function
types based on the “triggering” representation of procedure-passing in
terms of name-passing.

1 Introduction

Higher-order concurrency — the capacity to generate multiple threads of control
and pass higher-order functions and processes as values between them — is a
powerful and subtle programming paradigm. Languages and calculi with these
features, such as Concurrent ML and the higher-order π-calculus, have been
extensively studied using operational methods, but the combination of dynamic
name creation and higher-order value-passing has presented a long standing chal-
lenge for denotational semantics. In this paper, we shall develop a denotational
model of a call-by-value functional language with higher-order concurrency, in-
cluding dynamically generated channel names, and prove that it is fully abstract
with respect to may-testing.

Our model is based on game semantics. This has proved successful in giv-
ing precise (fully abstract) models of higher-order programming languages with
many different features, including concurrency [3,12]. Our semantics opens the
door to a range of (largely theoretical) applications: by formalizing some of
the categorical and algebraic structures required to capture higher-order con-
currency, it can contribute to the development of general theories, whilst also
potentially being the basis for more specific forms of program analysis, already
developed for various games models, such as control and information flow anal-
ysis [14], and model-checking of properties such as program equivalence [2].
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1.1 Related Work

Our semantics is given for a language with syntax based on Reppy’s Concur-
rent ML [17]: it may also be viewed as a programming language variant of the
higher-order π-calculus [18]. Both languages (or fragments thereof) have been
investigated using operational techniques [18,1,8,9], giving, for example, labelled
transition systems which are closely related to game semantics. Indeed, our se-
mantics may be viewed as a trace semantics, defined compositionally. (See [12]
for an explicit comparison between game and trace semantics of the π-calculus.)

Our model uses (and adapts) a variety of notions from game semantics, includ-
ing the representation of call-by-value types introduced by Honda and Yoshida
[5]. In common with earlier models of shared-variable concurrency [3] and the
π-calculus [12], we represent terms up to asynchronous, may-testing observation
as sets of justified sequences (traces) closed under a preorder. Particularly sig-
nificant for the current work is the development of a category of “ν-arenas and
ν-strategies” acted upon by the group of natural number automorphisms [11],
with which the manipulation and generation of names can be interpreted (in
the current case, channel names). A certain degree of parametricity is implicit in
the representation of values at a range of types as names, and there are parallels
in this respect between our games and the game semantics of polymorphism
described by Hughes [6].

1.2 Contribution of This Paper

The main technical contribution of this paper is to show how the game semantics
of freshly generated names developed in [11] may be used to model the passing of
values of all types on named, typed channels. The construction which makes this
possible is a notion of “tree arena” which has ν-arenas as its nodes, each of which
has as its children a “dependent arena” for each name which may be mentioned
by each move. Using a name allows interaction to take place in its dependent
arena, corresponding to message passing on the associated channel. We define
a category of games in which we define “parallel composition plus hiding” of
strategies to allow interaction both at top level, and within dependent arenas
with names which have been made public. We then define the structure of a
categorical model of the call-by-value λ-calculus (a premonoidal closed category),
and interpret the key operations of our language (spawning of threads, generation
of channels, sending and receiving of messages) as simple strategies. We show
that our interpretation is sound and adequate with respect to may-testing.

We then prove that the bounded elements of our semantics are definable as
terms of L, and hence that it is fully abstract with respect to may-testing. The
key to the proof of definability is the observation that justification pointers may
be encoded as names using a series of definable retractions. This is a seman-
tic counterpart of Sangiorgi’s triggering translation from higher-order processes
into the π-calculus [18]. We may then give a simple proof that “pointer-free”
sequences are definable as π-calculus-like terms.



Game Semantics for Higher-Order Concurrency 419

2 A Language with Higher-Order Concurrency

The programming language L which we shall interpret contains several of the key
features of CML [17]: new thread generation, new channel declaration (it omits
thread identifiers, which are readily expressible using channel names, and event
types). Thus it is similar both to μCML [1] and μνCML [9] (although, unlike
these languages, communication is asynchronous). The types of L are given by
the grammar:

S, T := B | S ∗ T | S ⇒ T | chan[T ] where B is a set of basic types including at
least unit, bool, and an empty type 0. The syntax and typing judgements of L
are those of the typed λ-calculus extended with the following constants:

Pairing/Projection pair : S ⇒ T ⇒ S ∗ T , fst : S ∗ T ⇒ S, snd : S ∗ T ⇒ T
Atomic Values () : unit and tt, ff : bool,
Conditional If : bool⇒ (T ∗ T )⇒ T
Equality Testing eq : chan[T ] ∗ chan[T ]⇒ bool,
Channel Declaration newT : unit⇒ chan[T ],
Thread Creation spawn : (unit⇒ 0)⇒ unit,
Message Passing send : chan[T ] ∗ T ⇒ 0 and recv : chan[T ]⇒ T

We write (M, N) for (pairM) N , νx.M for (λx.M) (new ()), nil for νc.recv c,
M = N for (eq (M, N) and M |N for (spawn (λx.M)); N . We may express re-
cursively defined functions as: μf.λx.M =df

νc.let f = (λx.let g = recv c in (send (c, g)|g x)) in (send (c, λx.M)|f).
In particular, we define the replicated send: !sendM=dfμf.λx.(send (c, M)|f ()).

A configuration of consists of a multiset T of programs or threads M1, . . . , Mn

(of which at most one has non-empty type), and a set N of typed channel names
such that N � Mi for 1 ≤ i ≤ n. The values of L are given by the grammar:
U, V ::= v | n | C | pairU | (pairU) V | λx.M
(where v ranges over base type values, n over channel names and C over con-
stants). The evaluation contexts are: E[ ] ::= [ ] | E[ ] M | V E[ ].
The “small step” evaluation rules for evaluating configurations are as follows:

T , E[(λx.M) V ], N −→ T , E[M [V/x]], N
T , E[fst(U,V )], N −→ T , E[U ], N
T , E[snd(U,V )], N −→ T , E[V ], N
T , E[eq(a, a)], N −→ T , E[tt], N
T , E[eq(a, b)], N −→ T , E[ff], N , if a �= b

T , E[If tt], N −→ T , E[fst], N
T , E[If ff)], N −→ T , E[snd], N
T , E1[send(a, V )], E2[recv(a)], N −→ T , E2[V ], N
T , E[spawn(V )], N −→ T , V (), E[()], N
T , E[newT ()], N −→ T , E[a], N ∪ {(a, chan[T ])} a �∈ N

We write M ⇓ (M may converge) if M, 0 � (T , V ),N for some T , V,N . Thus we
define observational approximation and equivalence with respect to may-testing:
M � N if C[M ] ⇓ implies C[N ] ⇓ for all compatible closing contexts C[ ] : unit.
M � N if M � N and N � M .
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3 Game Semantics

Our notion of game is based on the dialogue games of Hyland and Ong [7],
developed in e.g. [15,5] and extended in [11] with structure for manipulating a
countable set of names, in the form of an action of the automorphism group of
the natural numbers. A significant departure from these games for sequential
languages arises because in the concurrent setting there are moves which may
be played by either participant in a dialogue. So polarity (Player/Opponent
labelling) is not intrinsic to arenas but to interactions.

An (underlying) arena A is a tuple (MA, λA,�A) consisting of a set of moves
MA, a question/answer labelling λA : MA → {Q, A} and an enabling relation
�A⊆ MA ×MA such that no answer enables an answer. We write M I

A for the
subset of MA of consisting of moves with no enabling move (the initial moves),
and say that an arena is A-rooted if all such moves are answers.

A justified sequence over the arena A is a sequence of moves of A together
with a “justification pointer” from each non-initial move to some enabling move.

Definition 1. A (partial or total) polarization for a justifed sequence s is a
(partial or total) labelling of the occurrences of moves in s as belonging to Player
and Opponent (concretely, a function λOP from the non-empty prefixes of s to
{P, O}) such that the justifier of any Player move is an Opponent move and vice-
versa. A polarized sequence t is a justified sequence with a total polarization. We
write t⊥ for the polarized sequence in which the labelling is reversed.

We now recall the notion of ν-arena introduced in [11]. Let G be the topological
group of automorphisms on N with the product topology on NN. An action of
G on a set A is continuous (with respect to the discrete topology on A) iff the
stabiliser of any a ∈ A is open in G and thus equal to the stabiliser of a finite
subset ν(a) ⊆ N, the support of a.

Definition 2. A ν-arena (A, π) is an underlying arena A together with a con-
tinuous action of G on MA (·) such that λA(π · m) = λA(m) and m � n iff
π ·m � π · n, which therefore extends pointwise to a continuous action on justi-
fied sequences of A. We write ∼ for the equivalence relation determined by this
action — i.e. s ∼ t if ∃π ∈ G.π · s = t.

A key example is the ν-arena of names N , in which the set of moves is the set
of natural numbers (all of which are initial moves), with the canonical action of
G upon N — i.e. MN = M I

N = N, λ(i) = A for all i, and π · i = π(i).
For each polarized sequence s, we define the sets Pν , Oν ⊆fin N of new names

introduced by Player and Opponent in s. Pν(ε) = ∅ and:

– Pν(sa) = Pν(s) ∪ (ν(sa)− ν(s)) if a is Player move,
– Pν(sa) = Pν(s) otherwise.
– Oν(s) = ν(s)− Pν(s).

In order to use names to represent channel types, we introduce a notion of
“tree arena”, in which each node is an arena, from which there are branches for
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each name occurring in the support of each move. Essentially, playing a move
which mentions a name with a given “dependent arena” allows both Player and
Opponent to commence play in that arena, corresponding to sending (if Player
starts) or receiving (if Opponent starts) a value on the associated channel.

Definition 3. A (finite-depth) tree arena is a ν-arena A, together with an in-
dexed set {α(m)i | i ∈ ν(m)} of tree arenas for each move m ∈MA, such that:

– G-Invariance: for any π ∈ G, m ∈MA and i ∈ ν(m), α(m)i = α(π ·m)π(i).
– Finite Depth: there is no infinite chain of arenas A � A1 � A2 � . . .,

where B � C if there exists m ∈ MB and i ∈ ν(m) such that α(m)i = C.

Thus, for example, for any tree arena A, we may form the tree arena Ch(A)
which has as its root node the arena N , and as its children, copies of the arena
A — i.e. ch(A) = (N, {{α(i)i} | i ∈ N}), where α(i)i = A for all i.

We refer to the set of nodes of a tree arena as its dependent arenas. Formally,
this is defined by induction on tree depth as follows:
|A| = {α(m)i | m ∈ MA ∧ i ∈ ν(m)} ∪

⋃
{|α(m)i| | m ∈MA ∧ i ∈ ν(m)}.

We obtain a tree arena Â — the expansion of A — by explicitly adding N-
indexed copies of the dependent arenas of A to the top node. More precisely:

– MA = MA +{〈i, A, m〉 ∈ N×|A|×
⋃
{MB | B ∈ |A|} | m ∈MB ∧ i �∈ ν(m)},

– m �A inl(n) if m = inl(m′) and m′ �A n.
m �A inr(〈i, B, n〉), if m = inr(〈i, B, m′), where m′ �B n,

– λA(inl(m)) = λA(m) and λA(inr(〈i, B, m〉)) = λB(m),
– π · inl(m) = inl(π ·A m) and π · inr(〈i, B, m〉) = inr(π(i), π ·B m)
– αA(inl(m))i = αA(m)i

αA(inr(〈i, B, m〉))i = B, αA(inr(〈i, B, m〉))j = αB(m)j if j �= i.

Names of the form 〈i, m〉 are called dependent moves. The name of 〈i, m〉 is i.

Definition 4. A legal sequence on A is a justified sequence s on Â, satisfying:

Uniformity. Every occurrence of a name refers to the same arena: if ta, t′a′ � s
and i ∈ ν(a) ∩ ν(a′) then α(a)i = α(a′)i.

Dependency. The name of any dependent move has already occurred in s: if
t〈i, a〉 � s then i ∈ ν(t).

Well-openedness. s contains at most one initial and non-dependent move.
Well-answering. Every question in s justifies at most one answer.

A negative sequence is a legal sequence starting with an Opponent move. We
write LA for the legal sequences over A, and L−

A for the negative sequences.

To represent the behaviour of strategies “up to asynchronous observation” re-
quires saturation under a preorder  on polarized sequences as in e.g. [10]. This
is defined to be the least preorder on polarized sequences such that:

– If λ(a) = O and Pν(sat) = Pν(st) then sabt  sbat and if λOP (a) = P and
Oν(sat) = Oν(st) then sbat  sabt.
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– If λ(a) = O and Pν(sat) = Pν(st) then sat  st, and if λ(a) = P and
Oν(sat) = Oν(st), then t  sat.

Definition 5. Let A be a tree arena. A strategy σ : A is a non-empty set of
negative sequences over A which is prefix closed, ∼-closed and  -closed. We
write ker(σ) for the set of  -minimal sequences of σ — i.e. {s ∈ σ | ∀t ∈ σ.s  
t =⇒ t  s}.

4 Denotational Semantics

We will now construct a premonoidal closed category [16] of tree arenas and
strategies in which to model the call-by-value λ-calculus. This follows the con-
structions of Honda and Yoshida [5] or variants described by in [13], and (for
ν-arenas) [11]. In each case the group action and dependent arena structure on
compound arenas is defined pointwise. Play in the function-space arena A1 → A2

starts on the left (by labelling the initial moves of A1 as questions which enable
the initial moves of A2).

Definition 6. Given tree arenas A1, A2 we define the (Q-rooted) call-by-value
function-space tree-arena A1 → A2 as follows:

– MA1→A2 = MA1 + MA2 ,
– λA1→A2(ini(m)) = Q, if i = 1 and m ∈ M I

A2
,

λA1→A2(ini(m)) = λAi(m), otherwise,
– m �A1→A2 ini(n) if m = ini(m′) and m′ �Ai n or i = 2, n ∈ M I

A2
and

m = in1(m′), where m′ ∈M I
A1

.
– π · ini(m) = ini(π ·m).
– α(ini(m))j = αAi(m)j.

For example, for each arena A, we have a “channel creation” strategy new : I →
ch(A) (where I is the arena I with a single initial answer move). This responds
to Opponent’s initial question by generating a fresh name and making it public
(i.e. playing an arbitrary move in N) — thus ker(new) = {ε, q} ∪ {qi | i ∈ N}.
For each A-rooted arena A, we have a strategy recv : ch(A) → A which responds
to Opponent’s initial question — which supplies the a channel name i — by
playing copycat between A and the dependent arena of i. (See Fig. 1.)

To define the composition of strategies σ : A → B and τ : B → C we need
to allow interaction both in the shared “public arena” B and in the dependent
arenas. In addition, we impose the “freshness conditions” introduced in [11] to
ensure that the new names introduced by σ are disjoint from those introduced
by τ , and that both are disjoint from those introduced by Opponent.

Definition 7. An interaction sequence is a justified sequence t with two partial
polarizations λL and λR such that:

– Every move has at least one polarity: for all s � t.λL(s) ↓ or λR(s) ↓.
– There is no s � t such that λL(s) = λR(s).
– Pν(s�L) ∩ Pν(s�R) = (Pν(s�L) ∪ Pν(s�R)) ∩Oν(s�L"R) = ∅,
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ch(A) → A ch(A) � A → 0

iO 〈i, m〉O

〈i, A,m〉O 〈i, A, m〉P

mP

��
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%� &'

〈i, A, n〉O

��
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 (
〈i, n〉P

��
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...
...

Fig. 1. Typical plays of recv and snd

(Where we write s�L for the polarized sequence obtained by restricting to moves
for which λL is defined, and s�L"R for the restriction to moves for which only
one of λL, λR is defined.)

Let IA,B,C be the set of interaction sequences which are legal sequences of (A →
B)→ C. Given σ : A → B, τ : B → C, we may now define:
σ; τ : A→ C = {s ∈ L−

A→C | ∃t ∈ IA,B,C .t�L ∈ σ ∧ t�R ∈ τ ∧ s = t�L"R}.
We prove that composition is well-defined and associative following the stan-

dard arguments used in [7,15,5], extended to ν-strategies in [11]. The identity
strategy idA : A → A is defined: ker(idA) = {s ∈ (L−

A→A)E | ∀t �E s.t�A+ = t�
A−}. Thus we may form a category G in which objects are A-rooted tree arenas
and morphisms from A to B are strategies on A→ B.
G has all small coproducts, given by the “disjoint union” of arenas, and an

initial object, the empty arena 0, containing no moves. We define premonoidal
structure on G based on that described in [5,13,11], in which initial moves of
A#B are pairs of initial moves from A and B, but non-initial moves are either
from A or from B.

Definition 8. From A-rooted tree arenas A1, A2, we form A1 #A2:

– MA1�A2 = {(m, n) ∈ (MA1 ×M I
A2

) ∪ (M I
A1
×MA2) | i ∈ ν(m) ∩ ν(n) =⇒

α(m)i = α(n)i)},
– λA1�A2(〈m1, m2〉) = λA2(m2), if m1 ∈M I

A1
,

λA1�A2(〈m1, m2〉) = λA1(m1), otherwise,
– (m1, m2) �A1�A2 (n1, n2) if m1 = n1 ∈ M I

A1
and m2 �A2 n2 or m2 = n2 ∈

M I
A2

and m1 �A2 n1,
– π · 〈m, n〉 = 〈π ·m, π · n〉,
– α(m, n)i = αA1(m)i, if i ∈ ν(m),

α(m, n)i = αA2(n)i, otherwise.

Examples:

Equality Testing. For each object A, we have a strategy eq : ch(A)#ch(A) →
I +I which is supplied by Opponent with a pair of names and responds with
inl(∗) if they are equal and inr(∗) otherwise: ker(eq) = {〈i, i〉inl(∗) | i ∈
N} ∪ {〈i, j〉inr(∗) | i, j ∈ N ∧ i �= j}.
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Message Passing. For each object A, we have a strategy send : ch(A)#A→ 0
which is supplied with a channel name i and an initial move m in A, plays
it as an initial move 〈i, m〉 in the dependent arena for A, and then plays
copycat between the explicit and dependent occurrences of A. (See Fig. 1.)

For each object A we define an endofunctor #A : G → G: given σ : B → C,
σ # A : B # A → C # A = {s ∈ LB�A→C�A | s\A, A ∈ σ ∧ s�A, A ∈ idA ∧
Pν(s\A, A) = Pν(s)}.

Proposition 1. (G, I,#) is a symmetric premonoidal category.

We now identify a category in which the premonoidal product is Cartesian.

Definition 9. A sequence qas ∈ LA→B is single-threaded if a answers q and:

– Player does not introduce any new names with the move a — i.e Pν(qa) = ∅.
– There is at most one move justified by a in s.

A strategy σ is single-threaded if it is non-empty, every sequence of at least two
moves in ker(σ) is single-threaded and qa, qa′ ∈ ker(σ) implies a = a′.

To define the composition of single-threaded strategies we apply a “promotion”
operation ( )†.

Definition 10. Given a strategy σ : A, let σ† be the least subset of LA such that
for any interaction sequence s, if qa(s�L) ∈ σ†, qa(s�R) ∈ σ and qa(s�L"R) ∈
LA then qa(s�L"R) ∈ σ†.

We define a category Gt with tree arenas as objects and single-threaded total
strategies on A → B as morphisms from A to B. Composition of σ : A → B
and τ : B → C is defined σ†; τ , and the identity on A is the restriction of idGA to
single-threaded sequences. We also note that # is a Cartesian product on Gt.
Thus (G,Gt, ( )†) is a Freyd category [16] (a symmetric premonoidal category G, a
Cartesian category Gt, and an identity-on-objects strict symmetric premonoidal
functor from Gt to G). Moreover, it is a closed Freyd category: the functor ( )†#
A : Gt :→ G has a right adjoint A ⇀ : G → Gt.

Definition 11. For any Q-rooted tree arena B, let ↑ B be the arena obtained
by adding to B a single initial answer (invariant under G action) which enables
all of the initial moves of B. We then define A ⇀ B =↑ (A → B).

Thus, for example, the arena I ⇀ 0 consists of an initial answer which enables
a single question. So we have a strategy spawn : (I ⇀ 0) → I which responds
to the initial Opponent question by concurrently answering it and playing the
(unique) initial question in I → 0. i.e.:

(I ⇀ 0) → I
qO

qP

��
�

aP

��

�
�

��,
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There is an obvious bijection from (non-empty) legal sequences on A #B →
C to single-threaded sequences on A → (B ⇀ C), sending 〈m, n〉s to mans
and yielding an adjunction between A ⇀ and ( )† # A : Gt :→ G. Thus we
have a model of the call-by-value λ-calculus, and so we may interpret terms
x1 : S1, . . . , xn : Sn � M : T of L as morphisms from [[S1]]# . . .# [[Sn]] to [[T ]] in
G by setting [[0]] = 0, [[unit]] = I and [[bool]] = I +I, [[S ⇒ T ]] = [[S]] ⇀ [[T ]], and
[[chan[T ]]] = ch([[T ]]). The constants are interpreted as the key strategies already
defined for channel-generation, equality testing, thread-spawning and sending
and receiving values.

In order to prove soundness and adequacy with respect to may-testing (i.e.
M ⇓ if and only if M �= ⊥) we define the interpretation of configurations (T ,N ).
Given strategies σ : A→ 0 and τ : A→ B, we define the asymmetric interleaving
σ‖τ : A → B to consist of sequences qs ∈ LA→B such that there exists an
interaction sequence t with q(t�L) ∈ σ, q(t�R) ∈ τ and q(t�L"R) = qs. Then
f‖(g; h) = (f‖g); h.

We interpret the configuration M1 : 0, . . . , Mn : 0, N : S, {a1 : chan[T1], . . . ,
am : chan[Tn]} as new[[T1]] # . . .new[[Tm]]; ([[M1]]‖ . . . ‖([[Mn]]‖[[N ]])).

Lemma 1. If C −→ C′ then [[C]] ⊆ [[C′]].

Proof. We show that we may interpret evaluation contexts a1 : T1, . . . , an :
Tn � E[· : S] : T as morphisms [[E[ ]]] : [[S]] # [[T1]] # . . . # [[Tn]] → [[T ]] so that
[[E[M ]]] = δ[[T1]]�...�[[Tn]]; ([[M ]]# ([[T1]]# . . .# [[Tn]])); [[E[ ]]] and verify soundness
for each reduction of the operational semantics using the categorical structure
of G and the following (in)equations:

– For any f : A→ 0 and g : I → B, Λ(f); spawn; g = f‖tA; g1,
– πr ⊆ send‖(πl; recv),
– newA; 〈idch(A), idch(A), idch(A)〉†; eq# ch(A) = newA; (inl # ch(A)),
– (newA#ch(A)); 〈πl, πr, πl, πr〉†; (eq#(ch(A)#ch(A)))=(newA#ch(A)); inr#

(ch(A) # ch(A)).

Thus M ⇓ implies M �= ⊥.

Proposition 2. If [[C]] �= ⊥ then M ⇓.

Proof. We define a translation which allows us to count internal reductions of
M as recv actions: fixing a variable c : chan[unit], for each term Γ � M : T
with c �∈ Γ , define Γ, c � M c : T :

– M c = M if M is a variable or constant.
– (M N)c = (recv c); (M c N c)
– (λx.M)c = λx.M c

Then for every term Γ � M : T , [[M ]]=[[νc.!send (c, ())|M c]]. Defining send1 M =
sendM and sendi+1 M =sendM |sendi M , we have [[!send V ]]=

⋃
i∈N[[sendi V ]].

So if [[M ]] �=⊥ then by continuity, there exists n such that [[newc.sendn (c, ())|M c]]
�= ⊥. We may prove by induction on n that this entails that M ⇓, by showing
that for any configuration [[C]] =

⋃
{[[C′]] | C −→ C′}.

1 tA : A → I is the terminal map in the category of single threaded strategies.
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5 Definability and Full Abstraction

We prove full abstraction by establishing that for any legal sequence s over a
type-object, the least strategy containing s (the closure of {s} under the relations
�, ∼ and  ) is the denotation of a term. This is sufficient to define “tests” to
distinguish any pair of distinct strategies.

Definition 12. For any s ∈ L−
A, let 's( be the least set such that s ∈ 's(, and

if t ∈ 's( and r � t or r ∼ t or r  t then r ∈ 's(.

A ⇀ B → ch(A � ch(B))

aO iP
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Fig. 2. A typical play of [[in]](f)

The key to our proof is the observation that we may encode justification pointers
in terms of explicit name passing, and so reduce an arbitrary justfied sequence
to one which is “pointer-free” (i.e. every move is an initial move). This reduction
corresponds, in essence, to Sangiorgi’s “triggering” translation of higher-order
π-calculus into the π-calculus [18]. In the semantic setting, its essence may be
captured as a definable retraction from the function type S ⇒ T into the chan-
nel type chan[S ∗ chan[T ]] (i.e. a pair of terms (in : (S ⇒ T ) ⇒ chan[S ∗
chan[T ]], out : chan[S ∗ chan[T ]]⇒ S ⇒ T ) such that [[λx.in (out x)]] = [[λx.x]].

Lemma 2. For any types S, T there is a definable retraction from S ⇒ T to
chan[S ∗ chan[T ]].

Proof. We have in=λf.νc.(let z=recv c in send (snd(z), f fst(z)))|c, out =
λx.λy.νd.send (x, (y, d))|recv d.
There is a translation from legal plays of [[S ⇒ T ]] to (∼-equivalence classes of)
legal plays of [[chan[S ∗chan[T ]]], which adds arbitrary names i, j to the opening
pair of moves, and replaces each move m with a justification pointer into one of
these moves with a dependent move of the form 〈i, m〉 or 〈j, m〉. We prove that
in and out act as copycats factoring through this translation (see Fig. 2).

We cannot use this retraction to reduce definability at all types to behaviour at
the “π-types” constructed from B, ∗ and chan[ ] (the problem is that chan[ ] is
non-functorial and so “is a definable retract of” is not a precongruence). However,



Game Semantics for Higher-Order Concurrency 427

we may use it to map each strategy into one which has a “pointer-free fragment”
from which the original strategy can be recovered. For each type T we define a
type T as follows: B = B; S ∗ T = S ∗ T and S ⇒ T = chan[S ∗ chan[T ]].

Proposition 3. For each type T there is a definable retraction (injT , projT ) :
T � T such that for all s ∈ [[T ]] → 0 there exists a pointer-free s ∈ [[x �
projT x]]; 's( such that [[x � injT x]]; 's( = 's(.

So given a sequence s in [[T ]] → 0, if 's( is definable as a term x : T � M : 0
then 's( is definable as M (injT x). We now show that each such pointer-free
strategy is definable, via a decomposition which successively erases dependent
moves.

Proposition 4. For any pointer-free s ∈ [[T1]]# . . .# [[Tn]] → 0, 's( is definable
as a term x1 : T1, . . . , xn : Tn � M : 0 such that [[M ]] = 's(.

Proof. We assume T1, . . . , Tn are pointed (i.e. base, function or channel types)
and define M by induction on the length of s. If this is less than 2, then 's( =
⊥ = [[nil]].

If s has length greater than 2 then s = 〈a1, . . . , an〉〈i, B, b〉s′, where i ∈
ν(〈a1, . . . , an〉) and thus i = aj for some 1 ≤ j ≤ n, and so B = [[Tj ]]. So if Tj =
chan[S1 ∗ . . . ∗ Sm] (where each Sk is pointed) then b = 〈b1, . . . , bm〉 where bk ∈
M I

[[Sk]] for each k. So we may form a legal sequence s′′ = 〈a1, . . . , an, b1, . . . , bm〉s′
on [[Tn]]# . . .# [[Tn]]# [[S1]]# . . .# [[Sm]]. By induction hypothesis, 's′′( is definable
as a term x1 : T1, . . . , xn : Tn, y1 : S1, . . . , ym : Sm � M : 0

If 〈i, B, b〉 is an Opponent move then we have 's( = [[let (y1, . . . , ym) =
recv xi in M ]]. If 〈i, B, b〉 is a Player move then for each k ≤ m we define a
term x1 : T1, . . . , xn : Tn � Nk : Sk:

– If Sk = unit then Nk =df (),
IfSk = bool then Nk =df tt if bk = inl(∗) and Nk =df ff, otherwise.

– If Sk = U ⇒ V then let Nk =df λx.nil.
– If Sk = chan[U ] then Nk =df xi, if bk = ai and bk �= xj for j < i,

Nk =df newu (), if bk �= xj for all j ≤ n.

For each j ≤ n we define a test term Bj : bool:

– If Tj = bool, we define Bj =df xi if aj = inl(∗) and Bj =df ¬xi, otherwise.
– If Tj = U ⇒ V or Tj = unit, then Bj =df tt,
– If Tl = chan[U ] then Bl =

∧
k≤n Ek, where:

Ek =df xi = xj if Tj = Tk and aj = ak,
Ek =df ¬xj = xk if Tj = Tk and aj �= ak,
Ek =df tt, otherwise.

Then 's( is definable as:
let (y1, . . . , ym)=(N1, . . . , Nm) in If

∧
j≤n Bj then (send (xi, y1, . . . , ym)|M)

else nil.

Theorem 1. [[M ]] ⊆ [[N ]] if and only if M � N .
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Proof. From right-to left (inequational soundness) this follows from soundness
and adequacy. We prove the converse for closed values U, V , which implies the
general case. So suppose [[U ]] �⊆ [[V ]]. Then there exists a sequence qs ∈ I → [[T ]]
such that qs ∈ [[U ]] and qs �∈ [[V ]]. By Propositions 3 and 4, the strategy 's⊥∗(
on [[T ]] → unit (where ∗ is the unique move in I) is definable as a term x :
T � P : unit. Then [[(λx.P ) U ]] = {∗} and hence by adequacy, (λx.P ) U ⇓. But
[[λx.M V ]] = ⊥, since for all t∗ ∈ 's⊥∗( there exists r ∼ s⊥ such that t  r and
hence s ∼ r⊥  t⊥ and so by assumption qt⊥ �∈ [[V ]]. Hence (λx.M) V �⇓, and
U �� V as required.
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Křet́ınský, Mojmı́r 248
Krishnan, K. Murali 69
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