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Abstract. In mobile Ad Hoc networks, the existence and availability of
trusted authorities is severely limited by intrinsic network features, and
problems such as “service availability” have become a crucial issue. A
proxy signature scheme allows an entity to delegate his/her signing ca-
pability to another entity in such a way that the latter can sign messages
on behalf of the former when the former is not available. This is an impor-
tant primitive to ensure the service availability issue. Proxy signatures
have found numerous practical applications such as distributed systems,
mobile agent applications, etc. However, the security of the known proxy
signature schemes is proven in the random oracle which does not imply
security in the real world. In this paper, we propose the first proxy signa-
ture schemes without random oracle. The unforgeability of our scheme is
based on the hardness of the well known Computational Diffie Hellman
(CDH) problem.

Keywords: Proxy Signature, Without Random Oracles, CDH Problem,
Bilinear Pairings.

1 Introduction

In Mobile Ad hoc Networks, permanent connections between customers and
servers are unnecessary and infeasible. In order to ensure service availability to
the customers distributed in the whole networks, the server must delegate his
rights to some other parties in the systems, such as the mobile agents. This way,
replication can be achieved and there is no need to count on a single server.

A proxy signature scheme is a variation of the standard signature schemes,
in which an original signer (say, Alice) can delegate her signing right to another
signer, called the proxy signer (say, Bob), for signing messages. The notion of
proxy signature was introduced by Mambo, Usuda and Okamoto [15]. Since then,
proxy signature schemes have attracted a considerable amount of interest from
the cryptographic research community. Based on the delegation type, there are
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three types of proxy signatures: full delegation, partial delegation, and delegation
by warrant. In the full delegation system, Alice’s secret key is given to Bob
directly so that Bob can have the same signing capability as Alice. In practice,
such schemes are obviously impractical and insecure. In a partial delegation
proxy signature scheme, a proxy signer possesses a key, called private proxy key,
which is different from Alice’s private key. Hence, proxy signatures generated
by using the proxy private key are different from Alice’s signatures. However,
in such schemes, the messages a proxy signer can sign are not limited. This
weakness is eliminated in delegation by a warrant that specifies what kinds of
messages are delegated. Here, the original signer uses the signing algorithm of
a standard signature scheme and its secret key to sign a warrant and generate
a signature on the warrant which is called as delegation. The proxy signer uses
the delegation and his/her secret key to create a proxy signature on behalf of
the original signer. According to whether the original signer can generate a valid
proxy signature, proxy signatures can be classified into proxy-unprotected and
proxy-protected schemes. In a proxy-protected scheme only the proxy signer can
generate proxy signatures, while in a proxy-unprotected scheme either the proxy
signer or the original signer can generate proxy signatures. In many applications,
proxy-protected schemes are required to avoid the potential disputes between the
original signer and the proxy signer. Though there exist many proxy signature
schemes, most of them are insecure [14,11,13,16,17,20].

Provable security is the basic requirement for the proxy signature schemes.
Currently, all the practical secure signature schemes were proven in the ran-
dom oracle model. The random oracle model was introduced by Bellare and
Rogaway in [5]. The model replaces hash functions by truly random objects
and provides probabilistic security proofs for the resulting schemes, showing
that attacks against these can be turned into efficient solutions of well-known
mathematical problems, such as the discrete logarithm problem or factorization.
Although the model is efficient and useful, it has received a lot of criticism that
the proofs in the random oracle model are not proofs. They are simply a design
validation methodology capable of spotting defective or erroneous designs when
they fail. Canetti et al. have shown that security in the random oracle model
does not imply the security in the real world in that a scheme can be secure
in the random oracle model and yet be broken without violating any particular
intractability assumption, and without breaking the underlying hash functions
[7]. Therefore, the search for a secure proxy signature scheme without random
oracle remains an open and interesting research problem.

Our Contribution
In this paper, we propose the first secure proxy signature scheme whose security
does not rely on the random oracle. We incorporate Water’s signature scheme
[19] to obtain a concrete secure proxy signature scheme. The new scheme is
proxy-protected in the sense that even the proxy signer can not forge a valid
proxy signature. The security of the proposed scheme is based on the hardness
of the well-known hard problem, the Computational Diffie Hellman Problem.
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Roadmap
The rest of this paper is arranged as follows. In next section, we provide the
preliminaries of our scheme including bilinear pairings and security assumptions.
In Section 3, we describe the formal models of our proxy signature scheme.
We present our proxy signature scheme without random oracle in Section 4. In
Section 5, we provide formal security analysis of the proposed scheme. Finally,
we conclude our paper in Section 6.

2 Preliminaries

In this section, we will review some fundamental backgrounds used throughout
this paper, namely bilinear pairings and complexity assumption.

2.1 Bilinear Pairing

Let G1 and GT be two groups of prime order p and let g be a generator of G1.
The map e : G1 × G1 → GT is said to be an admissible bilinear pairing if the
following three conditions hold true:

– e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ ZZp.
– e is non-degenerate, i.e. e(g, g) �= 1GT .
– e is efficiently computable.

We say that (G1, GT ) are bilinear groups if there exists a group GT , e : G1×G1 →
GT as above, and e, and the group action in G1 and GT can be computed
efficiently. See [3] for more details on the construction of such pairings.

2.2 Complexity Assumption

Definition 1. Computational Diffie Hellman (CDH) Problem in G1

Given g, ga, gb ∈ G1 for some unknown a, b ∈ ZZp, compute gab ∈ G1.

The success probability of a polynomial algorithmA in solving the CDH problem
in G1 is denoted:

SuccCDH
A,G1

= Pr[A(g, ga, gb) = gab : a, b ∈R ZZp, ]

Definition 2. Computational Diffie Hellman (CDH) Assumption in G1

Given g, ga, gb ∈R G1, for some unknown a, b ∈ ZZp, SuccCDH
A,G1

is negligible.

3 Formal Models of Proxy Signatures

Let Alice denote the original signer and Bob the proxy signer. Our proxy signa-
ture scheme consists of the following algorithms: ParaGen, KeyGen, StandardSign,
DelegationGen, ProxySign and ProxyVerification.
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1. ParaGen: Taking as input the system security parameter �, this algorithm
outputs system’s parameters: Para. That is: Para← ParaGen(�)

2. KeyGen: Taking as input system’s parameter Para, this algorithm generates
a secret-public key pair (ski, pki) where i ∈ {a, b} denotes Alice and Bob,
respectively. That is: (ski, pki)← KeyGen(Para)

3. StandardSign: Input system’s parameter Para, the signer’s secret key sk and
the message M to be singed, this algorithm generates the standard signature:
σS . That is: σS ← StandardSign (Para, sk, M)

4. DelegationGen: Input system’s parameter Para, the original signer’s secret key
ska and the warrant W to be singed, this algorithm uses the StandardSign al-
gorithm to generate the delegation: σW . That is: σW ← DelegationGen(Para,
ska, W )

5. ProxySign: Input system’s parameter Para, the warrant W , the delegation σw,
the secret key skb of the proxy signer and the message M to be signed, this al-
gorithm generates the proxy signature σ. That is: σM ← ProxySign(Para, W,
σW , skb, M)

6. ProxyVerification: Input system’s parameter Para, original signer’s public keys
pka, proxy signer’s public key pkb, the warrant W , the signed message M
and the signature σM , this algorithm outputs True if σ is a valid proxy
signature of the message M and output ⊥ otherwise. That is: {True,⊥} ←
ProxyVerification(Para, pka, pkb, W, M, σM )

3.1 Security Models

Lee, Kim and Kim defined some properties that a strong proxy signature scheme
should provide in [12]. While these informal requirements provide some intuition
about the goals that a notion of security for proxy signature schemes should cap-
ture, their precise meaning is unclear. The first security model of proxy signature
was proposed in [4]. In [10], the authors also proposed a security model of the
proxy signature. In the model defined in[10], they divide the potential attackers
into three kinds:

1. Type I: This type adversary AI only has the public keys of Alice and Bob.
2. Type II: This type adversary AII has the public keys of Alice and Bob, he

additionally has the secret key of the proxy signer Bob.
3. Type III: This type adversary AIII has the public keys of Alice and Bob,

he additionally has the secret key of the original signer Alice.

One can find that if a proxy signature scheme is secure against Type II (or Type
III) adversary, the scheme is also secure against Type I adversary. We note the
above classification helps to make the security model clearer, therefore, we will
use this classification to redefine and improve the security model proposed in
[4]. In the security model defined later, we only consider the general case of the
proxy signature where the original signer and the proxy signer are distinct.

In a warrant based proxy signature, the delegation is the original signer’s
standard signature on the warrant which contains information regarding the
particular proxy signer such as the proxy signer’s public key, a period of validity,
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and restrictions on the class of messages for which the warrant is valid. Therefore,
this kind of proxy signature can prevent the misuse of the delegation. Here after,
we only focus on the unforgeability of the proxy signature.

Existential unforgeability against adaptive AII Adversary
Roughly speaking, the existential unforgeability of a proxy signature scheme
under a type II attacker requires that it is difficult for a user to forge a valid
proxy signature under a warrant if he does not obtain the delegation of this
warrant. It is defined using the following game between the challenger C and a
type II adversary AII :

– Setup: C runs the ParaGen algorithm to obtain system’s parameter Para,
runs KeyGen to obtain the secret-public key pairs (ska, pka), (skb, pkb) of
the original signer Alice and proxy signer Bob, respectively. C then sends
(pka, pkb, skb) to the adversary AII .

– Delegation queries: Proceeding adaptively, AII can request the delegation on
the warrant W . In response, C runs the DelegationGen algorithm to obtain
σW and returns σW to the adversary AII .

– ProxySign queries: Proceeding adaptively, AII can request the proxy signa-
ture on the message M under the warrant W . In response, C runs Delega-
tionGen algorithm to generate the delegation on the warrant W . Then C runs
the ProxySign algorithm to obtain the proxy signature σM and returns σM

to the adversary AII .
– Output: Finally, AII outputs a signature σ∗ with the warrant W ∗ and the

message M∗ such that
1. W ∗ has not been requested as one of the Delegation queries.
2. (M∗, W ∗) has not been requested as one of the ProxySign queries.
3. σ∗ is a valid proxy signature of the message M∗ under the warrant W ∗.

Compared with the model defined in [4], an important refinement is that AII

can adaptively submit the ProxySign queries under warrant whose delegation is
unknown to AII . The only restrictions are that when AII outputs the forgery
(M∗, W ∗, σ∗), he cannot submit W ∗ as one of the Delegation queries or submit
(M∗, W ∗) as one of the ProxySign queries. However, he can even submit (M ′, W ∗)
to the ProxySign queries where M ′ �= M∗. The success probability of an algorithm
AII wins the above game is defined as Succ AII .

Definition 3. We say a type II adversary AII can (t, qW , qPS , ε) break a proxy
signature scheme if AII runs in time at most t, AII makes at most qW Del-
egation queries and at most qPS ProxySign queries and Succ AII is at least ε.

Existential unforgeability against adaptive AIII adversary
The existential unforgeability of a proxy signature scheme under a type III at-
tacker requires that it is difficult for the original signer to generate a valid proxy
signature of a message M∗ which has not been singed by the proxy signer. It
is defined using the following game between the challenger C and a type III
adversary AIII :
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– Setup: C runs the ParaGen algorithm to obtain system’s parameter Para,
runs KeyGen to obtain the secret-public key pairs (ska, pka), (skb, pkb) of
the original signer Alice and proxy signer Bob, respectively. C then sends
(pka, pkb, ska) to the adversary AIII .

– StandardSign: Proceeding adaptively, AIII can request proxy signer’s stan-
dard signature on the message M . In response, C runs the StandardSign
algorithm to generate the standard signature on the message M and returns
to the adversary AIII .

– ProxySign queries: Proceeding adaptively, AIII can request the proxy sig-
nature on the message M under the warrant W . In response, C runs the
DelegationGen algorithm to generate the delegation on the warrant W . Then
C runs the ProxySign algorithm to generate the proxy signature σM and
returns σM to the adversary AIII .

– Output: Finally, AIII outputs a signature σ∗ with the warrant W ∗ and the
message M∗ such that
1. (M∗, W ∗) has not been requested as one of the ProxySign queries.
2. σ∗ is a valid proxy signature of the message M∗ under the warrant W ∗.

In this model, we allow the attacker AIII can submit StandardSign queries, this
is to guarantee that proxy signer’s standard signature on the message M∗ can
not help the attacker to forge a valid proxy signature on the same message.
The success probability of an algorithm AIII wins the above game is defined as
Succ AIII

Definition 4. We say a type III adversary AIII can (t, qS , qPS , ε) break a proxy
signature scheme if AIII runs in time at most t, AIII makes at most qS Stan-
dardSignqueries and qPS ProxySign queries, and Succ AIII is at least ε.

4 Proposed Scheme

In this section, we will describe our proxy signature scheme without random
oracle. It consists of the following algorithms:

1. ParaGen: Let (G1, GT ) be bilinear groups defined in Section 2.1 where |G1| =
|GT | = p for some prime p, g is the generator of G1. e denotes the bilinear
pairing G1 × G1 → GT . The messages M to be signed in this scheme will
be represented as bitstrings of length n. Furthermore, picks 2n + 2 random
elements u′, v′, u1, u2, · · · , un, v1, · · · , vn ∈R G1 and set u = (u1, u2, · · · , un),
v = (v1, v2, · · · , vn). Then the common parameter Para = (G1, GT , p, g, e, n,
u′, v′, u, v).

2. Key Gen: The original Alice picks two secret values xa, ya ∈R ZZ∗
p and set the

secret key ska = (skax, skay) = (xa, ya). Then the signer computes the public
key pka = (pkax, pkay) = (gxa , gya). Similarly, the proxy signer’s secret key
is skb = (skbx, skby) = (xb, yb) and the public key is pkb = (pkbx, pkby) =
(gxb , gyb)
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3. StandardSign: Let M be an n-bit message to be signed and Mi denote the
ith bit of M , and M ∈ {1, · · · , n} be the set of all i for which Mi = 1,
the standard signature is generated as follows. First, a random r ∈ ZZp

is chosen. Then the standard signature is constructed as: σS = (σS1 , σS2)
where σS1 = gskxsky (u′ ∏

i∈M ui)r, σS2 = gr. Here skx, sky denote the secret
key of the signer.

4. DelegationGen: Let W be an n-bit message to be signed by the original signer
Alice and Wi denote the ith bit of W , and W ∈ {1, · · · , n} be the set of all i
for which Wi = 1, the delegation is generated as follows. First, a random ra ∈
ZZp is chosen. Then the signature is constructed as: σW = (σW1 , σW2) where
σW1 = gxaya(u′ ∏

i∈W ui)ra , σW2 = gra . Then Alice sends the delegation σW

with the warrant W to the proxy signer Bob.
5. ProxySign: Let M be an n-bit message to be signed by the original signer

Alice and Mi denote the ith bit of M , and M ∈ {1, · · · , n} be the set of all
i for which Mi = 1, the proxy signature is generated as follows. First, two
random values r′a, rb ∈ ZZp are chosen. Then the signature is constructed as:

σM = (σM1 , σM2 , σM3) = (σW1 (u
′ ∏

i∈W
ui)r′

agxbyb(v′
∏

i∈M
vi)rb , σW2g

r′
a , grb).

= (gxayagxbyb(u′ ∏

i∈W
ui)ra+r′

a(v′
∏

i∈M
vi)rb , gra+r′

a , grb)

6. Verification: Given the public keys (pka, pkb), a warrant W ∈ {0, 1}n, a mes-
sage M ∈ {0, 1}n, and a signature σM = (σM1 , σM2 , σM3), verify whether

e(σM1 , g) ?= e(pkax, pkay)e(pkbx, pkby)e(u′ ∏

i∈W
ui, σM2)e(v

′ ∏

i∈M
vi, σM3).

If the equality holds the result is True; otherwise the result is ⊥.

Correctness:

e(σM1 , g) = e(gxayagxbyb(u′ ∏

i∈W
ui)ra+r′

a(v′
∏

i∈M
vi)rb , g)

= e(gxaya , g)e(gxbyb , g)e((u′ ∏

i∈W
ui)ra+r′

a , g)e((v′
∏

i∈M
vi)rb , g)

= e(pkax, pkay)e(pkbx, pkby)e(u′ ∏

i∈W
ui, g

ra+r′
a)e(v′

∏

i∈M
vi, g

rb)

= e(pkax, pkay)e(pkbx, pkby)e(u′ ∏

i∈W
ui, σM2 )e(v

′ ∏

i∈M
vi, σM3)

5 Security Analysis

In this section, we will provide the formal security analysis of the proposed proxy
signature scheme.
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5.1 Unforgeability Against Type II Adversary

Theorem 1. If there exists a type II adversary AII can (t, qW , qPS , ε) breaks
the proposed proxy signature scheme then there exists another algorithm B who
can use AII to solve an instance of the CDH problem in G1 with the probability

SuccCDH
B,G1

≥ ε

27(n + 1)2
· 1
(qW + qPS)2

in time t + c1(4qW + 7qPS) + c2((n + 2)qW + (2n + 4)qPS). Here c1, c2 are the
two constants that depend on G1.

Proof. Let G1 be a bilinear pairing group of prime order p. Algorithm B is given
g, ga, gb ∈ G1 which is a random instance of the CDH problem. Its goal is to
compute gab. Algorithm B will simulate the challenger and interact with the
forger AII as described below.

Let’s recall the definition of the type II adversary AII . This type of adversary
AII has the public key of the original signer Alice and the proxy singer Bob, he
also has Bob’s secret key.

1. Setup: B chooses two integers �a, �b, and other two integers, ka, kb, uniformly
at random between 0 and n. Then it chooses two values x′

a, x′
b and two

random n-vectors, xa = (xai), xb = (xbi) where x′
a, xai ∈R ZZ�a , x′

b, xbi ∈R

ZZ�b
. Additionally, B chooses two values y′

a, y′
b and two random n-vectors

ya = (yai), yb = (ybi) where y′
a, y′

b, yai, ybi ∈R ZZp. B keeps all the values
secret.

For an n-bit X , we let X ⊆ {1, 2, · · · , n} be the set of all i for which Xi =
1. Then, for a warrant W , W be the set of all i for which Wi = 1. Similarly,
for a message M , M be the set of all i for which Mi = 1. To make the
notation easy to follow, we define six functions Fa(X), Fb(X), Ja(X), Jb(X)
and Ka(X), Kb(X) as [19]:
(a) Fa(X) = (p−�aka)+x′

a+Σi∈Xxai and Fb(X) = (p−�bkb)+x′
b+Σi∈Xxbi

(b) Ja(X) = y′
a + Σi∈X yai and Jb(M) = y′

b + Σi∈X ybi

(c) Ka(X) =
{

0, if x′
a + Σi∈Xxai ≡ 0 (mod �a)

1, otherwise

and Kb(X) =
{

0, if x′
b + Σi∈Xxbi ≡ 0 (mod �b)

1, otherwise
B sets the public keys of the users and the common parameter as:
(a) B chooses two random numbers skbx, skby ∈ ZZ∗

p and sets

pkax = ga, pkay = gb, pkbx = gskbx , pkby = gskby .

Where ga, gb are the input of the CDH problem.
(b) B assigns u′ = pk

p−ka�a+x′
a

ay gy′
a , ui = pkxai

ay gyai , ua = (u1, u2, · · · , un)

(c) B then assigns, v′=pk
p−kb�b+x′

b
ay gy′

b, vi =pkxbi

by gybi and v=(v1, v2, · · · , vn).
Then B returns (G1, GT , e, p, g, u, u′, v, v′) and (pkax, pkay, pkbx, pkby, skbx,
skby) to the Type II adversary AII .
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2. Delegation queries: Suppose AII issues a delegation query for an n-bit war-
rant W . If Ka(W ) �= 0 (If we have Ka(W ) �= 0 this implies Fa(W ) �= 0
(mod p), since we can assume p > n�a for any reasonable values of p, n, and
�a[19]), B can construct the delegation of this warrant by choosing a random
ra ∈ ZZp and computing:

σW = (σW1 , σW2 ) =

(

pk
−Ja(W )
Fa(W )

ax (u′ ∏

i∈W
ui)ra , pk

−1
Fa(W )
ax gra

)

If Ka(W ) = 0. B terminates the simulation and reports failure.
3. ProxySign queries: SupposeAII issues a delegation query for an n-bit message

M under the warrant W .
(a) If Ka(W ) = 0, Kb(M) = 0, B terminates the simulation and reports

failure.
(b) Else Ka(W ) = 0, Kb(M) �= 0, B can construct the delegation of this

warrant by choosing a random ra, rb ∈ ZZp and computing: σM = (σM1 ,
σM2 , σM3 ). where

σM1 =

(

pk
−Jb(M)
Fb(M)

ax (u′ ∏

i∈W
ui)ra · gskbxskby (v′

∏

i∈M
vi)rb

)

,

σM2 = gra , σM3 = pk
−1

Fb(M)
ax · grb

(c) Otherwise Ka(W ) �= 0. In this case, B can compute the delegation of
the warrant W as he does in response to the delegation queries. Since B
knows the secret key skbx, skby of proxy signer, B can run the ProxySign
algorithm as defined in Section 4 to compute the proxy signature and
return the signature to AIII .

Finally, the adversary AII outputs a proxy signature σ∗ = (σ∗
1 , σ∗

2 , σ∗
3) of

the message M∗ under the warrant W ∗ such that
(a) W ∗ has not been submitted as one of the Delegation queries.
(b) (M∗, W ∗) has not been submitted as one of the ProxySign queries.
(c) σ∗ = (σ∗

1 , σ∗
2 , σ∗

3) is a valid signature, that is:

σ∗
1 = gskaxskay gskbxskby (u′ ∏

i∈W∗
ui)r∗

a(v′
∏

i∈M∗
vi)r∗

b , σ∗
2 = gr∗

a , σ∗
3 = gr∗

b

If Fa(W ∗) �= 0 or Fb(M∗) �= 0, B will abort. Otherwise, Fa(W ∗) = 0,
Fb(M∗) = 0. In this case,

σ∗
1 = gskaxskay gskbxskby (u′ ∏

i∈W∗
ui)r∗

a(v′
∏

i∈M∗
vi)r∗

b

= gabgskbxskby (gJa(W∗))r∗
a(gJb(M

∗))r∗
b

= gabgskbxskby (gr∗
a)Ja(W∗)(gr∗

b )Jb(M
∗)

= gabgskbxskby (σ∗
2)Ja(W∗)(σ∗

3)Jb(M
∗)

Therefore, B can compute gab = σ∗
1

gskbxskby (σ∗
2 )Ja(W∗)(σ∗

3 )Jb(M∗)
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This completes the description of the simulation. It remains to analyze the prob-
ability of B not aborting. B will not abort if all the following cases happen:

A : Ka(W ) �= 0 (mod �a) during Delegation queries

B : Ka(W ) �= 0 (mod �a) or Kb(M) �= 0 (mod �b) during ProxySign queries

C : Fa(W ∗) = 0 (mod p) and Fb(M∗) = 0 (mod p)

The success probability is SuccCDH
B =Pr[A ∧B ∧ C]ε.

Pr[A ∧B ∧ C] = Pr[
qW∧

i=1

Ka(Wi) �= 0
qP S∧

i=1

(
Ka(Wi) �= 0

∨
Kb(Mi) �= 0

)

∧
Fa(W ∗) = 0 (mod p)

∧
Fb(M∗) = 0 (mod p)]

≥ 1
(n + 1)2�a�b

(1 − 2(qW + qPS)
�a

)

Therefore, SuccCDH
B,G1

≥ 1
(n+1)2�a�b

(1− 2(qW +qP S)
�a

)ε. We can optimize it by setting
�a = �b = 3(qW + qPS), then

SuccCDH
B,G1

≥ ε

27(n + 1)2
· 1
(qW + qPS)2

Algorithm B’s running time is the same as A′
IIs running time plus the time

it takes to respond to qW Delegation queries and qPS ProxySign queries. Each
Delegation query requires 4 exponentiation operations and n + 2 multiplication
operations in G1. Each ProxySign query requires at most 7 exponentiation oper-
ations and 2n+ 4 multiplication operations in G1. If we assume each exponenti-
ation takes time c1 and each multiplication takes time c2, the total running time
is at most t + c1(4qW + 7qPS) + c2((n + 2)qW + (2n + 4)qPS). This completes
the proof. ��

5.2 Unforgeability Against Type III Adversary

Theorem 2. If there exists a type III adversary AIII can (t, qS , qPS , ε) breaks
the proposed proxy signature scheme then there exists another algorithm B who
can use AIII to solve an instance of the CDH problem in G1 with the probability

SuccCDH
B,G1

≥ ε

27(n + 1)2
· 1
(qS + qPS)2

in time t + c1(4qW + 7qPS) + c2((n + 2)qW + (2n + 4)qPS). Here c1, c2 are the
two constants that depend on G1.

Proof. It is similar to the proof of Theorem 1.
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6 Conclusion

In this paper, we proposed the first proxy signature scheme without random
oracle based on Water’s signature scheme [19]. We showed that our scheme is
unforgeable against an adaptively chosen message attacker. Even the original
signer can not forge a valid proxy signature of our scheme. The security of our
scheme is based on the Computational Diffie Hellman problem.
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