

Lecture Notes in Computer Science 4331
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Geyong Min Beniamino Di Martino
Laurence T. Yang Minyi Guo
Gudula Ruenger (Eds.)

Frontiers of High
Performance Computing
and Networking –
ISPA 2006 Workshops

ISPA 2006 International Workshops
FHPCN, XHPC, S-GRACE, GridGIS, HPC-GTP
PDCE, ParDMCom, WOMP, ISDF, and UPWN
Sorrento, Italy, December 4-7, 2006
Proceedings

13

Volume Editors

Geyong Min
University of Bradford, Bradford, UK
E-mail: g.min@brad.ac.uk

Beniamino Di Martino
Seconda Universita’ di Napoli, Roma, Italy
E-mail: beniamino.dimartino@unina.it

Laurence T. Yang
St. Francis Xavier University, Antigonish, Canada
E-mail: lyang@stfx.ca

Minyi Guo
University of Aizu, Fukushima 965-8580, Japan
E-mail: minyi@u-aizu.ac.jp

Gudula Ruenger
Chemnitz University of Technology, Chemnitz, Germany
E-mail: ruenger@informatik.tu-chemnitz.de

Library of Congress Control Number: 2006937143

CR Subject Classification (1998): F.1, F.2, D.1, D.2, D.4, C.2, C.4, H.4, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-49860-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49860-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11942634 06/3142 5 4 3 2 1 0

Preface

This proceedings volume contains the refereed and revised papers presented at
the ten workshops held in conjunction with the 4th International Symposium
on Parallel and Distributed Processing and Applications (ISPA 2006), in Sor-
rento, Italy, December 4-6, 2006. The objective of the workshops is to provide
an outstanding international forum for academics, educators, engineering, and
industrial professionals to contribute and to disseminate innovative and state-
of-the-art research, to report, discuss and exchange experimental or theoretical
results, experience, work-in-progress, and case studies on high-performance com-
puting and networking. These workshops are:

– FHPCN 2006: Workshop on Frontiers of High-Performance Computing and
Networking

– XHPC 2006: Workshop on XEN in HPC Cluster and Grid Computing
Environments

– S-GRACE 2006: Workshop on Semantic Grid Applications in Computing
and Engineering

– GridGIS 2006: Workshop on Fertilization of Grid Computing and Geographic
Information Systems

– HPC-GTP 2006: Workshop on High-Performance Computing in Genomic
Proteomics and Transcriptomics

– PDCE 2006: Workshop on Parallel and Distributed Computing in Engineering
– ParDMCom 2006: Workshop on Parallel and Distributed Multimedia

Computing
– WOMP 2006: Workshop on Middleware Performance
– ISDF 2006: Workshop on Information Security and Digital Forensics
– UPWN 2006: Workshop on Ubiquitous Processing for Wireless Networks

The FHPCN 2006 workshop constituted 40 papers that were carefully se-
lected from manuscripts submitted for potential publication at the conference.
These papers are organized in four special tracks: System Architectures; Mid-
dleware and Cooperative Computing; Techniques, Algorithms and Applications;
and Advanced Networking. Each of the additional nine workshops focused on a
particular theme of high-performance computing and networking and comple-
mented the spectrum of the main conference and FHPCN workshop.

We would like to thank the ISPA 2006 General Co-chairs, Beniamino Di
Martino, Jack Dongarra, and Laurence T. Yang for their guidance and vision,
and the Program Co-chairs, Minyi Guo and Hans Zima, for their support and
encouragement. We deeply appreciate the tremendous efforts and contributions
of the Chairs of individual workshops. Our thanks also go to all authors for their
valuable contributions and to all Program Committee members and reviewers for
providing timely and in-depth reviews. Last but not least, we deeply appreciate

VI Preface

Lan Wang, Shihang Yan, Xiaolong Jin, and Mimmo Di Sivo for their great help
and hard work with editing the proceedings.

Geyong Min
Gudula Rünger

ISPA 2006 Workshop Co-chairs
Beniamino Di Martino

Jack Dongarra
Laurence T. Yang

ISPA 2006 General Co-chairs
Minyi Guo
Hans Zima

ISPA 2006 Program Co-chairs

International Workshop on XEN in HPC
Cluster and Grid Computing Environments

(XHPC 2006)

The XEN virtual machine monitor is reaching wide spread adoption in a variety
of operating systems as well as scientific, educational and operational usage ar-
eas. With its low overhead, XEN allows for concurrently running large numbers of
virtual machines, providing each with encapsulation, isolation and network-wide
CPU migratability. XEN offers a network-wide abstraction layer of individual
machine resources to OS environments, thereby opening options for new cluster-
and grid high-performance computing (HPC) architectures and HPC services.
With XEN finding applications in HPC environments, this workshop brought to-
gether researchers and practitioners active on XEN in high-performance cluster
and grid computing environments.

XHPC 2006 also provided a forum for scientists, engineers, and researchers
to discuss and exchange their new ideas, novel results, work in progress and ex-
perience on all aspects of virtualization in HPC environments. It covered a wide
range of theoretical and applied topics in the area of virtualization including
XEN in cluster environments, compute job entry and scheduling, MPI on vir-
tual machines, system sizing, network architectures for XEN clusters, XEN on
large SMP machines, performance measurements, management of XEN clusters,
dynamic scheduling and load-leveling, and power management in HPC clusters.

We are very proud to have received many high-quality submissions. We con-
ducted a rigorous peer review process for each submission, with the great support
of all Program Committee members. Based on the reviews, we selected 11 papers
to be included in this program. We congratulate the authors of accepted papers,
and regret that many quality submissions could not be included due to the time
and space limit.

Finally, we would like to take this opportunity to thank the authors of all
the submissions for their contribution. We would also like to thank the Program
Committee members for their efforts in reviewing the submissions. Finally, we
would like to thank Gudula Rünger and Geyong Min for their guidance in the
organization of this workshop.

Hope you all enjoy the workshop proceedings.

Michael Alexander
XHPC 2006 Workshop Organizers

VIII Organisation

Workshop Chair

Michael Alexander WU Vienna, Austria

Program Committee

Franck Cappello INRIA, France
Stephen Childs Trinity College, Ireland
Claudia Eckert Fraunhofer Institute, Germany
Bill Gardner University of Guelph, Cananda
Rob Gardner HP Labs, USA
Marcus Hardt Forschungszentrum Karlsruhe, Germany
Klaus Ita WU Vienna, Austria
Sverre Jarp CERN, Switzerland
Thomas Lange University of Cologne, Germany
Ronald Luijten IBM Research Laboratory, Zurich, Switzerland
Franco Travostino Nortel CTO Office, USA
Andreas Unterkircher CERN, Switzerland

International Workshop on Semantic GRid
Applications in Computing and Engineering

(S-GRACE 2006)

As an extension of current computing grids, a semantic grid is characterized as
an open system in which information, computing resources and services are given
well-defined meaning in standard ways. This approach helps bring resources vir-
tually together and makes it easier for resources to be discovered and processed
automatically. It also opens research opportunities for scientists and engineers.
This workshop aims to provide a forum for researchers to discuss and share their
findings and ideas in semantic grid applications in computing and engineering,
and to envision the future work in this area. This year we are very proud to have
received many high-quality submissions. We conducted a rigorous peer review
process for each submission, with the great support of all Program Committee
members. Based on the reviews, we selected nine papers to be included in the
program. We congratulate the authors of accepted papers, and regret that many
quality submissions could not be included due to the time and space limit. Taking
this opportunity, we would like to thank all the authors for their contributions
to the program. We would also like to thank the Program Committee members
for their efforts in reviewing the submissions. In conclusion, we would like to
thank the ISPA Workshop Chairs Geyong Min and Gudula Rünger for their
excellent work in driving and supporting us in the various phases of workshop
development.

Xubin (Ben) He
Wenbin Jiang

Beniamino Di Martino
Young-Sik Jeong

Laurence T. Yang
S-GRACE 2006 Workshop Organizers

Executive Committee

Steering Chair: Laurence T. Yang, St. Francis Xavier University, Canada
General Co-chairs: Beniamino Di Martino, Second University of Naples, Italy

Xubin He, Tennessee Technological University, USA
Program Co-chairs: Young-Sik Jeong, Wonkwang University, Korea

Wenbin Jiang, Huazhong University of Science
and Technology, China

X Organisation

Program Committee

Huajun Chen Zhejiang University, China
Xiaowu Chen Beihang University, China
Christian Engelmann Oak Ridge National Laboratory, USA
Jizhong Han Chinese Academy of Sciences, China
Sung-Kook Han Wonkwang University, Korea
Youn-Hee Han Korea University of Technology and Education, Korea
Dongwon Jeong Kunsan National University, Korea
Rodrigo de Mello University of São Paulo, Brazil
Li Ou Tennessee Technological University, USA
Stephen Scott Oak Ridge National Laboratory, USA
Ruppa K. Thulasiram University of Manitoba, Canada
Juan Tourino University of A Coruna, Spain
Guojun Wang Central South University, China
Tao Xie San Diego State University, USA
Naixue Xiong JAIST, Japan
Zhiyong Xu Suffolk University, USA
Pingpeng Yuan Huazhong University of Science and Technology, China
Yifeng Zhu University of Maine, USA
Hai Zhuge Chinese Academy of Sciences, China

International Workshop on Fertilization of Grid
Computing and Geographic Information Systems

(GridGIS 2006)

The development of Geographic Information Systems (GIS) sciences and technolo-
gies motivates the concern of the next-generation GIS, including multi-resources
distributed, high-performance computation and data transfer, and collaborative
platform of virtual organization for multiple end users. Grid technology offers the
prospect of enabling new types of applications and new ways of working in the area
of GIS. Grid computing and geographic information system (GridGIS) is a science
at the intersection of grid computing and GIS. It is characterized by modern grid
computing technology, by information sharing between geographically distributed
sites, and by real-time decisions.

This workshop aims to provide a forum for examining the state of the art of
GridGIS. The main objectives are the definitions of theoretical and conceptual
fundamentals of GridGIS, the description of applications and the related com-
mon fundamental problems as well as the determination of research directions
to improve the understanding and applications of GridGIS. It also provides a
venue for scientists to network with their peers working in similar fields.

It covers a wide range of theoretical and experimental topics in the area of
GridGIS including:

– Definition and Architecture of GridGIS, including spatial information grid
theory and technologies

– GridGIS middleware for security, error disposal, and the management of
resources, tasks, users, login, messages, duplication, and logging

– Algorithms in GridGIS, including cooperative computing of spatial informa-
tion, parallel, distributed, and intelligent data processing algorithms, etc.;
Security of GridGIS

– Integration of remote sensing and global positioning systems (GPS) with
GridGIS

– Data access service, metadata management and information service
– Applications of GridGIS, including online spatial decision support system,

location-based service, telegeoprocessing, telemonitoring, Digital Earth, pub-
lic emergency prevention and monitoring, etc.

We are pleased to have received a number of high-quality submissions. We
conducted a rigorous peer-review process for each submission, with the support
of all Program Committee members as well as a group of external reviewers.
Based on the reviews, we selected five papers to be included in this program.
We congratulate the authors of accepted papers, and regret that many excellent
submissions could not be included due to the time and space limit.

XII Organisation

Taking this opportunity, we would like to thank the authors of all the sub-
missions for their contributions to the program. We would also like to thank the
Program Committee members and external reviewers for their efforts in review-
ing the papers.

Yong Xue
Chenghu Zhou

GridGIS 2006 Workshop Organizers

Workshop Co-chairs

Yong Xue IRSA, Chinese Academy of Sciences, China
Chenghu Zhou IGSNRR, Chinese Academy of Sciences, China

Program Committee

Ken Fisher London Metropolitan University, UK
James King London Metropolitan University, UK
Eunjoo Lee London Metropolitan University, UK
Romas Mikusauskas London Metropolitan University, UK
Peter Oriogun London Metropolitan University, UK
Karim Ouazzane London Metropolitan University, UK
Costas Varotsos University of Athens, Greece
Yong Xue IRSA, Chinese Academy of Sciences, China
Chenghu Zhou IGSNRR, Chinese Academy of Sciences, China
Honglei Zhu Clarke University, USA

International Workshop on High-Performance
Computing in Genomic Proteomics and

Transcriptomics

(HPC-GTP 2006)

Data mining and machine learning techniques have been widely applied in many
practical problems. The ever-increasing growth of data arising in diverse areas
has urged the development of high-performance methods, software and tools to
extract useful information from data and to derive knowledge.

Genomics, proteomics and transcriptomics are among the most important
areas where information obtained from very large datasets can assist medical
researchers in understanding the structure and functions of the humane genome,
discovering new personalized drugs, and diagnosing genetic diseases.

The problems arising in these areas have some unique characteristics. First,
the quantity of data produced is going to exponentially increase in the next few
years, leaving a stable gap of two orders of magnitude between known sequences
and identified structures. Furthermore, the data are often updated, which, for ex-
ample, poses problems to the training step of supervised learning techniques. Fi-
nally, the data have the unusual feature of comprising a very large number of vari-
ables. Indeed, publicly available datasets can contain data with tens of thousands
of characteristics, which are updated regularly. This tendency is going to result in
the need for algorithms that can handle such complexity in the next few years.

Due to the size and efficiency problems, it is likely that such very large data-
bases will only be processed or mined using loosely connected supercomputers.
Since standard data mining and machine learning algorithms do not achieve a
good performance in the considered computational paradigm, special algorithms
must be designed to exploit that strong computational infrastructure.

The HPC-GTP 2006 workshop, held in conjunction with The International
Symposium on Parallel and Distributed Processing and Applications (ISPA
2006), aimed to bring together researchers who use high-performance comput-
ing to solve these computationally demanding problems in genomics, proteomics
and transcriptomics. It represents a first attempt to collect the existing expertise
in the field and engage researchers in this exciting and rapidly growing research
area. Finally, special thanks to all authors for their contributions to the program.
We would also like to thank the Program Committee members and external re-
viewers for their efforts in reviewing the submissions.

Mario R. Guarracino
Panos M. Pardalos
Laurence T. Yang

HPC-GTP 2006 Workshop Organizers

XIV Organisation

General Chairs
Mario R. Guarracino National Research Council, Italy
Panos M. Pardalos University of Florida, USA
Laurence T. Yang St. Francis Xavier University, Canada

Program Committee

Mario Cannataro University of Catanzaro, Italy
Vipin Chaudhary Wayne State University, USA
Maria Luisa Chiusano University of Naples “Federico II,” Italy
Claudio Cifarelli University of Rome “La Sapienza,” Italy
Amitava Datta University of Western Australia, Australia
Ivanoe De Falco ICAR-CNR, Italy
Andrei Doncescu LAAS-NCSR, France
Ryoko Hayashi Kanazawa Institute of Technology, Japan
Chun-Hsi Huang University of Connecticut, USA
Chokchai Leangsuksun Louisiana Tech, USA
Tao Li Int. University of Florida, USA
Wenjun Li UT Southwestern Medical Center, USA
Yiming Li National Chiao Tung University, Taiwan
Jun Ni University of Iowa, USA
Clara Pizzuti ICAR-CNR, Italy
Oleg Prokopyev University of Florida, USA
Onur Seref University of Florida, USA
El-Ghazali Talbi LIFL, France
Domenico Talia University of Calabria, Italy
Ernesto Tarantino ICAR-CNR, Italy
Gerardo Toraldo University of Naples “Federico II,” Italy
Albert Zomaya University of Sydney, Australia

International Workshop on Parallel and
Distributed Computing in Engineering

(PDCE 2006)

This workshop is an international forum for engineers, developers, and researchers
to share experiences, discuss new ideas, and present results on all aspects of par-
allel and distributed computing applied to engineering. It covers contributions
from academia and industry applied to all branches of engineering, such as aero-
nautical, agricultural, automotive, bioengineering, biological, biomedical, chem-
ical, civil, computer, control, electrical, electronics, environmental, forest, indus-
trial, manufacturing, materials, mechanical, mechatronic, metallurgical, naval,
nuclear, optical, transportation, petroleum. Papers may describe new architec-
tures, algorithms, methods, techniques, tools and software applications.

Topics of interest include, but are not limited to: methods for parallel and dis-
tributed applications development; parallel and distributed algorithms; parallel
and distributed application software; parallel and distributed dedicated archi-
tectures; parallel and distributed numerical methods; parallel and distributed
optimization methods; parallel and distributed reconfigurable computing; paral-
lel and distributed simulations; performance analysis of parallel and distributed
applications; real-time parallel and distributed computing; techniques for parallel
and distributed applications development; and tools for parallel and distributed
applications development.

This year we are very proud to have received 26 high-quality submissions.
We conducted a rigorous peer-review process for each submission, with the great
support of all Program Committee members as well as a group of external re-
viewers. Based on the reviews, we selected eight papers to be included in this
program. We congratulate the authors of accepted papers, and regret that many
quality submissions could not be included due to the time and space limit.

Taking this opportunity, we would like to thank the authors of all the sub-
missions for their contributions to the program. We would also like to thank the
Program Committee members and external reviewers for their efforts in review-
ing the submissions. Finally, we would like to thank Geyong Min and Gudula
Rünger, the ISPA 2006 Workshop Co-chairs, for the guidance in the organization
of this workshop.

Alvaro L. G. A. Coutinho
Carlos Augusto P. S. Martins

Jairo Panetta
José Eduardo Moreira

José Nelson Amaral
Petr Ya. Ekel

Witold Pedrycz
PDCE 2006 Workshop Organizers

XVI Organisation

Executive Committee

General Co-chairs: Carlos Augusto P.S. Martins
Pontifical Catholic University of Minas Gerais, Brazil
Petr Ya. Ekel
Pontifical Catholic University of Minas Gerais, Brazil

Workshop Co-chairs: Alvaro L. G. A. Coutinho
Federal University of Rio de Janeiro, Brazil
Carlos Augusto P. S. Martins
Pontifical Catholic University of Minas Gerais, Brazil
Jairo Panetta
National Institute for Space Research, Brazil
José Eduardo Moreira
IBM Thomas J. Watson Research Center, USA
José Nelson Amaral
University of Alberta, Canada
Petr Ya. Ekel
Pontifical Catholic University of Minas Gerais, Brazil
Witold Pedrycz
University of Alberta, Canada

Program Committee

Eugênio Sper Almeida National Institute for Space Research, Brazil
José Nelson Amaral University of Alberta, Canada
Marcelo Cintra University of Edinburgh, UK
Walfredo Cirne Federal University of Campina Grande, Brazil
Alvaro L. G. A. Coutinho Federal University of Rio de Janeiro, Brazil
Tiaraju Asmuz Divério Federal University of Rio Grande do Sul, Brazil
Petr Ya. Ekel Pontifical Catholic University of Minas Gerais,

Brazil
Djalma Mosqueira Falcão Federal University of Rio de Janeiro, Brazil
Sergio Takeo Kofuji University of São Paulo, Brazil
Eugene Levner Holon Academic Institute of Technology, Israel
Carlos Augusto P. S. Martins Pontifical Catholic University of Minas Gerais,

Brazil
Wagner Meira Federal University of Minas Gerais, Brazil
Rodrigo Fernandes de Mello University of São Paulo, Brazil
Alba Cristina M. A. de Melo University of Brasilia, Brazil
José Eduardo Moreira IBM Thomas J. Watson Research Center, USA
Philippe Olivier A. Navaux Federal University of Rio Grande do Sul, Brazil
Jairo Panetta National Institute for Space Research, Brazil
Witold Pedrycz University of Alberta, Canada
Edison Zacarias da Silva State University of Campinas, Brazil
Maria Helena Murta Vale Federal University of Minas Gerais, Brazil

International Workshop on Parallel and
Distributed Multimedia Computing

(ParDMCom 2006)

In recent decades, multimedia computing has emerged as an important tech-
nology to generate content based on images, video, audio, graphics, and text.
Furthermore, the recent new development represented by high-definition(HD)
and interactive television will generate important computing problems connected
with the creation, processing, and management of multimedia content. Dealing
with HD multimedia content (image, video and sound) will generate a huge
volume of data to process, which can lead in a natural way to parallel and
distributed computing. Moreover, the inherent data parallelism of multimedia
content data makes this type of computing a natural application area for parallel
and distributed processing.

This workshop aims to merge the recent research achievements in develop-
ing new theories, algorithms, architectures, systems and integrated multimedia
platforms that exploit parallel and distributed computing. The papers included
in this workshop reflect current trends in the parallel and distributed multime-
dia computing research areas with topics such as parallel and distributed al-
gorithms for multimedia, parallel and distributed architectures for multimedia,
and multimedia content creation, processing, and management using parallel
and distributed architectures.

Many people contributed to the success of ParDMCom 2006. We wish to
thank the Program Committee members and the external referees for their great
work. We would also like to express our gratitude towards the ISPA 2006 orga-
nizers for their help in this whole process.

Agustinus Borgy Waluyo
Shu-Ching Chen

Hui Huang Hsu Ma Lin
Sabin Tabirca Laurence T. Yang

Jianhua Ma
ParDMCom 2006 Organizers

Executive Committee

Steering Co-chairs: Laurence T. Yang, St. Francis Xavier University,
Canada

Jianhua Ma, Hosei University, Japan
General Co-chairs: Shu-Ching Chen, Florida International University, USA

Hui-Huang Hsu, Tamkang University, Taiwan

XVIII Organisation

Program Co-chairs: Agustinus Borgy Waluyo, Monash University, Australia
Sabin Tabirca, National University of Ireland at Cork,

Ireland
Man Lin, St. Francis Xavier University, Canada

Program Committee

Marios C. Angelides Brunel University, UK
Bernady O. Apduhan Kyushu Sangyo University, Japan
Dorin Bocu Transiylvania University of Brasov, Romania
Hsuan T. Chang National Yunlin University of Science and Technology,

Taiwan
Lawrence Y. Deng St. John’s University, Taiwan
Michael Ditze University of Paderborn, Germany
Xubin He Tennessee Technological University, USA
Jason C. Hung Northern Taiwan Institute of Science and Technology,

Taiwan
Ismail Khalil Ibrahim Johannes Kepler University Linz, Austria
Wenbin Jiang Huazhong University of Science and Technology, China
Qun Jin Waseda University, Japan
James Joshi University of Pittsburgh, USA
Hong-va Leong Hong Kong Polytechnic University, Hong Kong, China
Qing Li City University of Hong Kong, Hong Kong, China
Alex Zhaoyu Liu University of North Carolina at Charlotte, USA
Hongli Luo Indiana University-Purdue University Fort Wayne, USA
Vishv Malhotra University of Tasmania, Australia
Paul McKevitt Ulster University, UK
John O’Mullane National University of Ireland at Cork, Ireland
Mei-Ling Shyu University of Miami, USA
Ling Tan Monash University, Australia
Guojun Wang Central South University, China
Zhiyong Xu Suffolk University, USA
Xiaochuan Yi AT&T, USA
Zhiwen Yu Nagoya University, Japan
Chengcui Zhang University of Alabama at Birmingham, USA
Chi Zhang Florida International University, USA

International Workshop on Middleware
Performance

(WOMP 2006)

Middleware technologies consist of various components that form the infrastruc-
ture or plumbing of distributed applications. Middleware performance plays a
critical role in the end-to-end performance of distributed applications, which are
characterized by a constant variation of location and intensity of users and/or
their service. Middleware, based on existing and emerging technologies such as
CORBA, .Net, EJB, Jini, Grid, Web Services, etc., should provide mechanisms
to support applications to handle highly dynamic environments. This relies on
awareness about the performance of middleware in order to assure certain de-
grees of service quality, such as response time or availability.

Ensuring adherence to performance requirements in middleware-based ap-
plications demands the characterization of metrics, measurement techniques,
evaluation methods and benchmarks. The complexity of the design of such ap-
plications makes even more stringent the need for methodologies and tools that
help the software designer in evaluating the impact of different alternatives in
middleware on the application quality.

WOMP 2006 provided a forum for the growing community of scientists, re-
searchers and software engineers interested in performance of middleware-based
distributed applications, including essentially all kinds of measurement, analysis,
prediction and testing, from requirements to software architecture, to design, to
implementation. Performance analysis is intended in the very broad sense of an-
alyzing nonfunctional quantitative aspects of such applications. This workshop
focused on methods, measures, and tools for performance of distributed applica-
tion developed from middleware. This includes middleware infrastructure, inter-
action paradigms, communication protocol, software architecture, middleware
applications, other nonfunctional quality attributes, etc., and their relationship
with performance.

This year we accepted papers that highlighted interesting research issues and
provided insightful solutions. We were delighted to see contributions of accepted
papers from three aspects. First, the performance evaluation and modeling is-
sues are addressed in the context of emerging middleware domains including
grid applications, Web services and context-aware mobile applications. Second,
topics cover a wide spectrum including empirical evaluation and studies, analyt-
ical modeling, performance management tools and software architecture design.
Third, papers address practical needs for methods, tools and models to be ap-
plicable to middleware systems.

All these contributions form a basis for inspiring and promoting fruitful dis-
cussions on the creation, use and refinement of methods, measures, and tools for

XX Organisation

performance of distributed applications developed from middleware. We thank
our reviewers who made a considerable effort to review the papers.

We hope you find the workshop proceedings beneficial and enjoyable.

Carlos Juiz
Andrea D’Ambrogio

Yan Liu
WOMP 2006 Workshop Co-chairs

Workshop Co-chairs

Carlos Juiz University of the Balearic Islands, Spain
Andrea D’Ambrogio University of Rome “TorVergata,” Italy
Yan Liu NICTA, Australia

Program Committee

Mariacarla Calzarossa University of Pavia, Italy
Shiping Chen CSIRO, Australia
Lawrence Chung University of Texas at Dallas, USA
Vittorio Cortellessa University of L’Aquila, Italy
Mariela Curiel University Simón Bolvar, Venezuela
Lorenzo Donatiello University of Bologna, Italy
Ian Gorton Pacific Northwest National Lab, USA
Gnter Haring University of Vienna, Austria
Giuseppe Iazeolla University of Rome “TorVergata,” Italy
Yan Jin Swinburne University of Technology, Australia
Helen Karatza Aristotle University of Thessaloniki, Greece
Samuel Kounev Cambridge University, UK
Ming Li Deakin University, Australia
José Merseguer University of Zaragoza, Spain
Dorina Petriu Carleton University, Canada
Ramon Puigjaner University of the Balearic Islands, Spain
Nary Subramanian University of Texas at Tyler, USA
Antony Tang Swinburne University, Australia
Cho-Li Wang University of Hong Kong, Hong Kong

International Workshop on Information Security
and Digital Forensics

(ISDF 2006)

During the last few years, the IT community has witnessed the rapid growth
of the information security and digital forensics sector with the introduction of
many new concepts and technologies. Such developments have been influenced
by the growing popularity of the Internet as well as the availability of powerful
computers and high-speed networks.

However, modern society is increasingly victimized by the exponential growth
of criminal activities in cyberspace. Computers are misused for many illegal
activities, such as e-mail espionage, credit card fraud, spam and software piracy,
which result in invasion of privacy and disruption of daily lives. As a result, the
necessity for prevention and prosecution of cyber-crime is also growing rapidly.
This workshop is organized to bring together the international community of
researchers and practitioners of information security and digital forensics in order
to address this critical issue.

The objective of ISDF 2006 was to serve as a forum to present current and
future work as well as to exchange research ideas in the field of information secu-
rity and digital forensics. The workshop successfully attracted the participation
of many researchers and practitioners, resulting in the submission of 45 papers.
They were all thoroughly reviewed by the Program Committee members and
external reviewers, and they selected 12 papers to be presented at the workshop.

We, the Co-chairs, extend our gratitude to the Program Committee members
and external reviewers for their excellent work and their active participation in
the creation of this technical program. We also thank all the authors for making
this workshop possible. Finally, we extend special thanks to Yunseong Choi, who
helped us organizing the workshop.

We hope you enjoy the workshop proceedings.

Kuinam J. Kim
Dong Chun Lee

Sung-Jae Yu
Sangho Lee

ISDF 2006 Workshop Organizers

Executive Committee
Steering Co-chairs: Kuinam J. Kim, Kyonggi University, Korea

Dong Chun Lee, Howon University, Korea
Sangho Lee, Kyonggi University, Korea

Program Chair: Jingyuan (Alex) Zhang, University of Alabama, USA

XXII Organisation

Program Committee

Junheun Jeung Sunmoon University, Korea
Moung Ju Kim Seoul Women’s University, Korea
Sang Chun Kim Kangwon University, Korea
Jae Choul Moon STG Security, USA
Sangseo Park The University of Melbourne, Australia
Sungjae Yu Jungbu University, Korea

International Workshop on Ubiquitous
Processing for Wireless Networks

(UPWN 2006)

Traditionally, wireless systems are considered for voice communication. How-
ever, wireless networks are becoming more popular for data processing. Since
wireless communication guarantees freedom of movement, it can provide easier
access from anywhere. Hence, wireless networks are a vital element for ubiqui-
tous processing. Ubiquitous processing for wireless networks (UPWN) aims for
seamless, secure, and intuitive access to the various ubiquitous computing net-
works for distributed processing. As the need for ubiquity grows, there has been
great effort to support ubiquitous computing environments through distributed
and parallel processing over networks. This conference provides an international
forum for the presentation and showcasing of recent advances in various as-
pects of ubiquitous processing for wireless networks. It reflects the state of the
art in computational methods, involving theory, algorithms, numerical simula-
tion, error and uncertainty analysis and/or novel applications of new processing
techniques in engineering, science, and other disciplines related to ubiquitous
computing wireless networks. At the conference, discussions on specific themes
of interest to the participants were included.

This workshop is a unique opportunity for developers, administrators, re-
searchers, and service providers of ubiquitous computing to meet. It can provide
an inside view of new paradigms in parallel and distributed processing for ubiq-
uitous networking.

We are very proud to have received a large number of high-quality submis-
sions. Based on the reviews, with the great support of all Program Committee
members as well as a group of external reviewers, we selected 12 papers out of
38 submitted papers to be included in these proceedings. We regret that many
quality submissions could not be included. Once again, we would like to thank
all the authors of all the submissions for their contribution. We would also like to
thank the Program Committee members and the external reviewers who did the
peer review for the successful workshop. I owe special thanks to Geyong Min and
Gudula Rünger, who served as ISPA 2006 Workshop Co-chairs and proceedings
editors, for their guidance in organizing this workshop.

Keecheon Kim
UPWN 2006 Workshop Organizer

XXIV Organisation

Executive Committee

General Chair: Keecheon Kim, Konkuk University, Korea
Program Co-chairs: Jongwon Choe, Sookmyung Women’s University, Korea

Yan Ma, Beijing University of Post and Telecommuni-
cation, China

Steering Co-chairs: Michael Ha, Sprint Nextel Communications, USA
Sang Lee, Microsoft, USA
Oshiito Oyama, Tsukuba University, Japan

Program Committee

Jinsung Choi LG Electronics, Korea
Hyunseung Choo Sungkyunkwan University, Korea
Koji Okamura Kyushu University, Japan
Vincent Tang NUS, Singapore

Reviewers

Nael Abuhalaweh
Marcos D. de Assuncao
Rocco Aversa
Junguk Baek
Jacir L. Bordim
Anu Bourgeois
Patrick Bridges
Rajkummar Buyya
Wentong Cai
Valentina Casola
Liang Cheng
Eunjung Cho
Guojing Cong
Ewa Deelman
Frederic Desprez
Joerg Diederich
Falko Dressler
Iain Duff
Brett Estrade
Hafiz Farooq
Noria Foukia
Franco Frattolillo
Satoshi Fujita
Akihiro Fujiwara
Marc Garbey
Wolfgang Gentzsch
Jonathan Giddy
Luc Giraud
Minyi Guo
Suman Gupta
Lee Joon Heo
Annika Hinze
Adrinan Hong
Tsung-Chuan Huang
Nisar Hundewale
Shuichi Ichikawa

Yasushi Inoguchi
Chuzo Iwamoto
Fakhra Jabeen
Young-Sik Jeong
Xiaohong Jiang
Kazuki Joe
Hirotsugu Kakugawa
Daniel S. Katz
Andre Kerstens
Byungcheol Kim
Jik-Soo Kim
Kyong Kim
Hiroaki Kobayashi
Biplab Kumer
Dongeun Lee
Jaeil Lee
Hyukjoon Lee
Sunghung Lee
Jaehuann Leem
Kuan-Ching Li
Yiming Li
Maryline Markursius
Stefano Marrone
Susumu Matsumae
Hiroshi Matsuo
Antonino Mazzeo
Nicola Mazzocca
Lois Curfman McInnes
Rodrigo de Mello
Simon Miles
Reiko Miller
Eiji Miyano
Christine Morin
Syed Naqvi
Elth Ogston
Daniel Olmedilla

Hong Ong
Benno Overeinder
Marcin Paprzycki
Michael Philippsen
Massimiliano Rak
Ulrich Ruede
Shoichi Saito
Amal El F. Seghrouchni
Yongtae Shin
Wei Shyy
Roy Sterritt
Heinz Stockinger
Hussein Suleman
Alan Sussman
Hiroyuki Takizawa
Kiyofumi Tanaka
Feilong Tang
Michela Taufer
Tomoaki Tsumura
Laslo Varga
Yuri V. Vassilevski
Salvatore Venticinque
Cho-Li Wang
Dajin Wang
Guojun Wang
Joe Shang-Chieh Wu
Chao-Tung Yang
Ouklel Yang
Baoliu Ye
Jae Yong
Jaepil Yoo
Il-Chul Yoon
Liu Yun
Jose Alberto F. Zepeda
Jingyuan Zhang

Table of Contents

FHPCN 2006 Workshop

Track 1: System Architectures

DNA: Diameter NEMO Applications Based on Binding Update
Integration . 1

Youngjin Ahn, Tae-Jin Lee, Hyunseung Choo, Sungchang Lee

Towards Real-Time Processing of Monitoring Continuous k-Nearest
Neighbor Queries . 11

HaRim Jung, Sang-Won Kang, MoonBae Song, SeokJin Im,
Jongwan Kim, Chong-Sun Hwang

Comparison of SBA – Family Task Allocation Algorithms for Mesh
Structured Networks . 21

Leszek Koszalka, Michal Kubiak, Iwona Pozniak-Koszalka

Scalable Overlay Multicast Architecture . 31
Choonsung Rhee, Sunyoung Han, Byounguk Choi, Jungwook Song

On the Design of a Dual-Execution Modes Processor: Architecture
and Preliminary Evaluation . 37

Md. Musfiquzzaman Akanda, Ben A. Abderazek, Masahiro Sowa

Pseudo Share Data Cache in Multiprocessor: PSDMP 47
Pengyong Ma, Xiao Hu, Shuming Chen, Yang Guo

Further Improvement of Manik et al.’s Remote User Authentication
Scheme Using Smart Cards . 57

Jai-Boo Oh, Jun-Cheol Jeon, Kee-Young Yoo

Dynamic Load Balancing on Non-homogeneous Clusters 65
Marcelo R. Naiouf, Laura C. De Giusti, Franco Chichizola,
Armando E. De Giusti

L2-Cache Hierarchical Organizations for Multi-core Architectures 74
Mario Donato Marino

Automatic Guidance of a Tractor Using Distributed Applications 84
Jaime Gómez, Antonio Carlón, José Fernando Dı́ez,
Mario Mart́ınez, Daniel Boto, Luis Manuel Navas

XXVIII Table of Contents

RCMP: A Reconfigurable Chip-Multiprocessor Architecture 94
Raphael Fonte Boa, Dulcinéia Oliveira da Penha,
Alexandre Marques Amaral, Márcio Oliveira Soares de Souza,
Carlos Augusto P. da Silva Martins, Petr Yakovlevitch Ekel

Track 2: Middleware and Cooperative Computing

Virtual Link: An Enabler of Enterprise Utility Computing 104
Krishna Kant

Pervasive Open Spaces: A Transparent and Scalable Dome-Based
Pervasive Resource Allocation System . 115

Amgad Madkour, Sherif G. Aly

Computational Experience with Branch, Cut and Price Algorithms
in Grid Environments . 125

Sonya Marcarelli, Emilio Pasquale Mancini, Umberto Villano

Quorum Based Distributed Conflict Resolution Algorithm for Bounded
Capacity Resources . 135

Armin Lawi, Kentaro Oda, Takaichi Yoshida

Performance Analysis of Semi-centralized Load Sharing 145
Hassan Barada, Rachid Benlamri, Ali Al-Raqabani

A Case for Non-blocking Collective Operations . 155
Torsten Hoefler, Jeffrey M. Squyres, Wolfgang Rehm,
Andrew Lumsdaine

Using Agreement Services in Grid Computing . 165
Michel Hurfin, Jean-Pierre Le Narzul, Julien Pley,
Philippe Räıpin Parvédy

An Open Environment for Compositional Software Development 175
Ewa Ochmańska

Track 3: Techniques, Algorithms and Applications

A Survivable Distributed Sensor Networks Through Stochastic
Models . 185

Dong Seong Kim, Jong Sou Park

Design and Analysis of the M2LL Policy Distributed Algorithm
for Load Balancing in Dynamic Networks . 195

Jacques M. Bahi, Raphaël Couturier, Abderrahmane Sider

Table of Contents XXIX

An Artificial Fish Swarm Algorithm Based and ABC Supported QoS
Unicast Routing Scheme in NGI . 205

Xingwei Wang, Nan Gao, Shuxiang Cai, Min Huang

An Efficient Parallel Algorithm for Ultrametric Tree Construction
Based on 3PR . 215

Kun-Ming Yu, Jiayi Zhou, Chun-Yuan Lin, Chuan Yi Tang

Exploring Financial Applications on Many-Core-on-a-Chip
Architecture: A First Experiment . 221

Weirong Zhu, Parimala Thulasiraman, Ruppa K. Thulasiram,
Guang R. Gao

A Distributed Simulation-Based Computational Intelligence Algorithm
for Nanoscale Semiconductor Device Inverse Problem 231

Yiming Li, Cheng-Kai Chen

Monitoring Distributed Systems for Safety Critical Software:
A Goal-Driven Approach and Prototype-Tool . 241

Guido Pennella, Christian Di Biagio, Alessandro Colicchia,
Gianfranco Pesce, Giovanni Cantone

A Profiling Approach for the Management of Writing in Irregular
Applications . 251

M.B. Ibáñez, F. Garćıa, J. Carretero

Parallel Thermo-Mechanical Modelling for Nuclear Waste Deposition 260
Jǐŕı Starý, Ondřej Jakl, Roman Kohut

A Markovian Sensibility Analysis for Parallel Processing Scheduling
on GNU/Linux . 269

Regiane Y. Kawasaki, Luiz Affonso Guedes, Diego L. Cardoso,
Carlos R.L. Francês, Glaucio H.S. Carvalho, Solon V. Carvalho,
João C.W.A. Costa, Marcelino S. Silva

Multiple Tasks Allocation in Arbitrarily Connected Distributed
Computing Systems Using A* Algorithm and Genetic Algorithm 279

Biplab Kumer Sarker, Anil Kumar Tripathi, Deo Prakash Vidyarthi,
Laurence Tianruo Yang, Kuniaki Uehara

Track 4: Advanced Networking

Panconnectivity and Pancyclicity of Hypercube-Like Interconnection
Networks with Faulty Elements . 291

Jung-Heum Park, Hyeong-Seok Lim, Hee-Chul Kim

XXX Table of Contents

Embedding Starlike Trees into Hypercube-Like Interconnection
Networks . 301

Jung-Heum Park, Hyeong-Seok Lim, Hee-Chul Kim

Reconfigurable Interconnects in DSM Systems: A Focus on Context
Switch Behavior . 311

I. Artundo, D. Manjarres, W. Heirman, C. Debaes, J. Dambre,
J. Van Campenhout, H. Thienpont

Cross-Layer Scheduling Algorithm for WLAN Throughput
Improvement . 322

Sung Won Kim

Power Saving Mechanisms of IEEE 802.16e: Sleep Mode vs. Idle Mode . . . 332
Beomjoon Kim, Jaesung Park, Yong-Hoon Choi

Routing Based on Ad Hoc Link Reliability . 341
Kwonseung Shin, Min Young Chung, Jongho Won,
Hyunseung Choo

Tracking Anomalous Behaviors of Name Servers by Mining DNS
Traffic . 351

Yao Wang, Ming-zeng Hu, Bin Li, Bo-ru Yan

On Recovery Algorithm for Fault-Tolerance in Multicast Trees 358
Seong-Soon Joo, Moonseong Kim, Yoo-Kyoung Lee,
Young-Cheol Bang

A Low Cost and Effective Link Protection Approach for Enhanced
Survivability in Optical Transport Networks . 368

Francesco Palmieri, Ugo Fiore

WR-Grid: A Scalable Cross-Layer Infrastructure for Routing,
Multi-dimensional Data Management and Replication in Wireless
Sensor Networks . 377

Gabriele Monti, Gianluca Moro, Claudio Sartori

XHPC 2006 Workshop

Making Wide-Area, Multi-site MPI Feasible Using Xen VM 387
Masaki Tatezono, Naoya Maruyama, Satoshi Matsuoka

Virtualizing a Batch Queuing System at a University Grid Center 397
Volker Büge, Yves Kemp, Marcel Kunze, Oliver Oberst,
Günter Quast

Table of Contents XXXI

Power Management in Grid Computing with Xen . 407
Fabien Hermenier, Nicolas Loriant, Jean-Marc Menaud

Dynamic Virtual Worker Nodes in a Production Grid 417
Stephen Childs, Brian Coghlan, Jason McCandless

Performance Models for Virtualized Applications . 427
Fabŕıcio Benevenuto, César Fernandes, Matheus Santos,
Virǵılio Almeida, Jussara Almeida, G.(John) Janakiraman,
José Renato Santos

Dynamic Virtual Clustering with Xen and Moab . 440
Wesley Emeneker, Dave Jackson, Joshua Butikofer,
Dan Stanzione

Performance Enhancement of SMP Clusters with Multiple Network
Interfaces Using Virtualization . 452

Peter Strazdins, Richard Alexander, David Barr

Architectural Characterization of VM Scaling on an SMP Machine 464
Padma Apparao, Ravi Iyer, Don Newell

Paravirtualization for HPC Systems . 474
Lamia Youseff, Rich Wolski, Brent Gorda, Chandra Krintz

Xen-OSCAR for Cluster Virtualization . 487
Geoffroy Vallée, Stephen L. Scott

Job Scheduling for Loosely-Coupled Inhomogeneous Nodes Using Data
Envelopment Analysis . 499

Michael Alexander

S-GRACE 2006 Workshop

Semantic Description of Grid Based Learning Services 509
Gustavo Gutiérrez-Carreón, Thanasis Daradoumis, Josep Jorba

A QoS Oriented Broker System for Autonomic Web Services
Selection . 519

Young-Jun Seo, Young-Jae Song

XML Based Semantic Query Mechanism on Grid . 532
Jinguang Gu, Baowen Xu

XXXII Table of Contents

A Novel Memory-Oriented OWL Storage System . 542
Dongwon Jeong, Myounghoi Choi, Yang-Seung Jeon, Youn-Hee Han,
Young-Sik Jeong, Sung-Kook Han

An Ontology Matching Approach to Semantic Web Services
Discovery . 550

Beniamino Di Martino

Ontology-Based Composition of Web Services for Ubiquitous
Computing . 559

Yang-Seung Jeon, Eun-Ha Song, Minyi Guo, Laurence T. Yang,
Young-Sik Jeong, Jin-Tak Choi, Sung-Kook Han

Web Service Resource Framework Based Computing Service Framework
for Computational Grid Applications . 569

Eui Heo, Kyung-Lang Park, Oh-Young Kwon, Oh-Kyung Kwon,
Shin-Dug Kim

Metropolitan-Scale Grid Environment: The Implementation and
Applications of TIGER Grid . 579

Chao-Tung Yang, Tsu-Fen Han, Wen-Chung Shih,
Wen-Chung Chiang, Chih-Hung Chang

A Plug-In Tool for Composing Web Services for Applications
Development . 589

Olivia G. Fragoso D., René Santaolaya S., Mariana Guzmán R.,
Mario Guillén R., Manuel A. Valdés M.

GridGIS 2006 Workshop

Spatial Data Service Models in Grid Environment . 598
Guoqing Li, Dingsheng Liu, Zhenchun Huang, Yi Zeng, Yong Xue

Solving Spatio-temporal Non-stationarity in Raster Database with
Fuzzy Logic . 603

Rakefet Shafran-Natan, Tal Svoray

Study on Grid-Based Special Remotely Sensed Data Processing Node
in Grid GIS . 610

Jianqin Wang, Yong Xue, Jianping Guo, Yincui Hu, Chaolin Wu,
Lei Zheng, Ying Luo, Yi Xie, YunLing Liu

Versioning and Consistency in Replica Systems . 618
Hartmut Kaiser, Kathrin Kirsch, Andre Merzky

Table of Contents XXXIII

Design of GridGIS Architecture . 628
Jianqin Wang, Yong Xue, Yuxin Jiang, Chenghu Zhou,
Rongguo Chen, Jianping Guo, Wei Wan, Lei Zheng, Yi Xie

HPC-GTP 2006 Workshop

Selection for Feature Gene Subset in Microarray Expression Profiles
Based on a Hybrid Algorithm Using SVM and GA . 637

Wei Xiong, Chen Zhang, Chunguang Zhou, Yanchun Liang

Filtering Epitope Alignments to Improve Protein Surface Prediction 648
Brendan Mumey, Nathaniel Ohler, Thomas Angel, Algirdas Jesaitis,
Edward Dratz

A Grid Service Based on Suffix Trees for Pattern Extraction from Mass
Spectrometry Proteomics Data . 658

M. Cannataro, P. Veltri

Performance Evaluation of BLAST on SMP Machines 668
Hong-Soog Kim, Hae-Jin Kim, Dong-Soo Han

compPknots: A Framework for Parallel Prediction and Comparison
of RNA Secondary Structures with Pseudoknots . 677

Trilce Estrada, Abel Licon, Michela Taufer

On Integration of GUI and Portal of Cluster and Grid Computing
Platforms for Parallel Bioinformatics . 687

Chao-Tung Yang, Tsu-Fen Han, Heng-Chuan Kan,
William C. Chu

PDCE 2006 Workshop

Combining Measures for Temporal and Spatial Locality 697
Jörg Dümmler, Thomas Rauber, Gudula Rünger

Parallel Processing Applied on the Electric Grounding Systems
Design . 707

Marco Aurélio S. Birchal, Maria Helena M. Vale, Silvério Visacro

Implementing Overlapping Domain Decomposition Methods
on a Virtual Parallel Machine . 717

David Darjany, Burkhard Englert, Eun Heui Kim

XXXIV Table of Contents

Parallel Image Segmentation in Reconfigurable Chip Multiprocessors 728
Raphael Fonte Boa, Alexandre Marques Amaral,
Dulcinéia Oliveira da Penha, Carlos Augusto P. da Silva Martins,
Petr Y. Ekel

Ensuring Immediate Processing of Real-Time Packets at Kernel
Level . 738

Jeong Seob Kim, Dae Sung Lee, Ki Chang Kim, Jae Hyun Park

A Parallel Implementation of the Finite Volume Method for
the Simulation of the Natural Convection in a Closed Cavity 748

Elton F.D. Nogueira, Luiz J.C. Rocha, Alexei Machado,
Carlos A. Pietrobon, Carlos A.P.S. Martins, Rose M.S. Batalha,
Petr Y. Ekel

A Real-Time and Parametric Parallel Video Compression Architecture
Using FPGA . 758

Cássio A. Carneiro, Francisco M.P. Garcia, Flávia M. Freitas,
Zélia M.A. Peixoto, Amanda R.M. Diniz, Abraham Alcaim

A Resource Selection Method for Cycle Stealing in the GPU Grid 769
Yuki Kotani, Fumihiko Ino, Kenichi Hagihara

ParDMCom 2006 Workshop

Parallel High-Dimensional Index Structure Using Cell-Based Filtering
for Multimedia Data . 781

Jae-Woo Chang, Yong-Ki Kim, Young-Jin Kim

Throughput Aware Mapping for Network on Chip Design of H.264
Decoder . 791

Vu-Duc Ngo, Huy-Nam Nguyen, Younghwan Bae, Hanjin Cho,
Hae-Wook Choi

A Delivery Method for Compound Video Playback in Wireless
Network . 803

Kazuya Uyama, Morihiko Tamai, Yoshihiro Murata, Naoki Shibata,
Keiichi Yasumoto, Minoru Ito

A Dynamic Hierarchical Map Partitioning for MMOG 813
Beob Kyun Kim, Kang Soo You

Generic Framework for Parallel and Distributed Processing
of Video-Data . 823

Dirk Farin, Peter H.N. de With

Table of Contents XXXV

WOMP 2006 Workshop

PSO vs. ACO, Data Grid Replication Services Performance
Evaluation . 833

Vı́ctor Méndez, Felix Garćıa Carballeira

A Markovian Performance Model for Resource Allocation Scheduling
on GNU/Linux . 844

Regiane Y. Kawasaki, Luiz Affonso Guedes, Diego L. Cardoso,
Carlos R.L. Francês, Glaucio H.S. Carvalho, João C.W.A. Costa,
Nandamundi L. Vijaykumar

Evaluating Tools for Performance Modeling of Grid Applications 854
Mariela Curiel, Gustavo Alvarez, Leonardo Flores

A Performance Evaluation of Asynchronous Web Interfaces
for Collaborative Web Services . 864

Michele Angelaccio, Berta Buttarazzi

An Adaptive Load Balancing Middleware for Distributed Simulation 873
Luciano Bononi, Michele Bracuto, Gabriele D’Angelo,
Lorenzo Donatiello

Impact of SOAP Implementations in the Performance of a Web
Service-Based Application . 884

Elena Gómez-Mart́ınez, José Merseguer

Server Allocation in Grid Systems with On/Off Sources 897
Joris Slegers, Isi Mitrani, Nigel Thomas

Context-Broker Service Architecture for AmI Systems Through
Mobile-Agents and Ontologies as Middleware . 907

Borja Miñano, Isaac Lera, Pere P. Sancho, Carlos Juiz,
Ramon Puigjaner

ISDF 2006 Workshop

Routing Information System and HOIDS for Detection Method
of Vicious Attack in Large Networks . 917

Dong Hwi Lee, Kyong Ho Choi, Kuinam J. Kim, Sang Min Park

IPBio: Embedding Biometric Data in IP Header for Per-Packet
Authentication . 927

Dae Sung Lee, Ki Chang Kim, Year Back Yoo

XXXVI Table of Contents

Scalable Distributed Scheduling for Quality of Service 939
Moohun Lee, Sungja Choi, Janguk In, Changbok Jang,
Sunghoon Cho, Euiin Choi

Analysis of Security Vulnerability Diagnosis in Mobile IP Networks 949
Dong Chun Lee

Virtual Telematics Systems for Distributing Nationwide Real-Time
Traffic Information . 955

Bong Gyou Lee

Scope of Forensics in Grid Computing – Vision and Perspectives 964
Syed Naqvi, Philippe Massonet, Alvaro Arenas

Modeling Active Cyber Attack for Network Vulnerability
Assessment . 971

Jung-Ho Eom, Young-Ju Han, Tai-Myoung Chung

Toward Lightweight Intrusion Detection System Through Simultaneous
Intrinsic Model Identification . 981

Dong Seong Kim, Sang Min Lee, Jong Sou Park

The Design of Random Number Generator in an Embedded Crypto
Module . 990

Jinkeun Hong, Kihong Kim, Dongcheul Son

A Design of Network Traffic Analysis and Monitoring System for Early
Warning System . 1000

Geuk Lee, Inkyu Han, Youngsup Kim

A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat
Early Warning System . 1006

Sangho Lee, Dong Hwi Lee, Kuinam J. Kim

Learning-Based Algorithm for Detecting Abnormal Traffic 1018
Changwoo Nam, Seongjin Ahn, Jinwook Chung

UPWN 2006 Workshop

Energy-Efficient Routing Protocol Depending on Dynamic Message
Communication over Wireless Sensor Network . 1025

KwangKyum Lee, Yongtae Shin, Ara Khil

Design of Authentication Mechanism Using PANA CTP in FMIPv6
Environment . 1034

Insu Kim, Keecheon Kim

Table of Contents XXXVII

Bounding Performance of LDPC Codes and Turbo-Like Codes
for IEEE 802.16 Broadband Wireless Internet . 1044

Kyuhyuk Chung, Jun Heo

Design and Performance Analysis of an Enhanced MAC Algorithm
for the IEEE 802.11 DCF . 1053

Whoi Jin Jung, An Kyu Hwang, Byung Chul Kim, Jae Yong Lee

Design of an Adaptive DCF Algorithm for TCP Performance
Enhancement in IEEE 802.11–Based Mobile Ad Hoc Networks 1063

Gira Lee, Han Jib Kim, Jae Yong Lee, Byung Chul Kim

Icon-URI Structure with ENUM System for Mobile Device 1073
Jiwon Choi, Keecheon Kim

Efficient Attribute Authentication in Wireless Mobile Networks 1080
Jaeil Lee, Inkyoung Jeun, Seoklae lee

Group Key Agreement Protocol Among Mobile Devices in Different
Cells . 1090

Jeeyeon Kim, Seungjoo Kim, Kilsoo Chun, Jaeil Lee, Dongho Won

A Novel Approach to Link Utilization Measurement 1098
Cui Yidong, Zhang Bin, Ma Yan

A Joint MAC Discovery-Routing Protocol for Self-Organizing
Hierarchical Ad Hoc Networks . 1107

Hyukjoon Lee, Yong-Hoon Choi, Young-uk Chung, Seomin Yang

An Effective Path Recovery Mechanism for AODV Using Candidate
Node . 1117

Sang-min Lee, Keecheon Kim

Analyzing Correlation Between Flow Data and AS Paths in BGP
Routing . 1126

Yoshiaki Harada, Koji Okamura, Takashi Chiyonobu,
Youngseok Lee

Author Index . 1137

DNA: Diameter NEMO Applications Based on
Binding Update Integration

Youngjin Ahn1, Tae-Jin Lee1, Hyunseung Choo1, and Sungchang Lee2

1 School of Information and Communication Engineering
Sungkyunkwan University, 440-746, Suwon, Korea

{yjahn, tjlee, choo}@ece.skku.ac.kr
2 Department of Telecommunications

Hankuk Aviation University, 200-1, Goyang, Korea
sclee@hau.ac.kr

Abstract. NEtwork MObility (NEMO) technology leads to manage not
only host mobility but also the mobility of an entire network. For practi-
cal usage, mobile users should however be authenticated by their service
provider when accessing foreign networks. AAA for NEMO (AFN) [8]
provides a solution to perform the AAA mechanism, based on NEMO
Basic Support (NBS). When we consider the AAA mechanism, the bind-
ing update procedure (BU) would also be performed when Mobile Router
(MR) does frequent handoffs between Mobile Networks. These two proce-
dures (Authentication and BU) result in additional overhead if they are
performed separately. Therefore, both are considered for formulating an
integration scheme. An efficient solution is proposed by integrating the
binding update message into the Diameter protocol, in order to reduce
traffic overhead and routing delay. The proposed scheme is analyzed in
terms of measurement factors of transmission time and processing time.
As a result, the proposed scheme outperforms AFN up to 8∼35% in
terms of routing delay.

1 Introduction

NEtwork MObility (NEMO) is technology that supports and manages group
mobility. It ensures session continuity for all nodes in the Mobile Network, when
the Mobile Router (MR) changes its point of attachment to the Internet. When-
ever the Mobile Network moves to foreign networks, the MR dispenses with
handoff overhead of each Mobile Network Node (MNN) inside the MR, which
efficiently manages the network resources by making connections hierarchical.
Hence, the IETF NEMO Working Group actively researches into the MR and
Network Mobility.

In order to extend NEMO for practical use by Internet service providers, au-
thentication, authorization, accounting (AAA) should be provided to support
NEMO. In using the AAA mechanism, the structure is provided for authen-
ticating a MR or MNN, and establishing Security Associations (SAs) between

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 Y. Ahn et al.

entities. The representative protocols of AAA are RADIUS, TACACS+, and Di-
ameter. Among these protocols, Diameter is the most suitable protocol for mak-
ing NEMO secure with respect to roaming, scalability, and flexibility. Diameter
adapts to various network environments. It also adapts NEMO for authenticat-
ing an MNN. A MR embracing an MNN should have the capability to use the
Diameter protocol for the MNNs.

In the case of AAA application for Mobile IPv6 (MIPv6), some mechanisms
are proposed to authenticate mobile devices for use on the Internet. The study
for the Diameter MIPv6 application has begun with [5] and [10]. Even though
both provide AAA using Diameter, [10] is more efficient than [5] because [10] en-
ables the Diameter message to support embedded Binding Update. For NEMO,
Kwon et al. proposed AAA for NEMO (AFN) [8], and provided the Diameter
application protocol for adapting to the NEMO Basic Support protocol (NBS)
[6]. This proposal allows an MR to authenticate MNNs behind the MR.

Although AFN provides a proper solution for AAA, it is also necessary to con-
sider additional signaling overhead for handoff, when processing the BU message.
Therefore, the new Diameter NEMO Application (DNA) scheme is proposed by
integrating the BU message in the Diameter message, particularly when MNNs
frequently move from one domain to another, and are based on NBS. The pro-
posed DNA is analyzed and it is demonstrated that the proposed scheme is more
efficient than AFN in terms of routing delay and network traffic overhead.

In this paper, related work on the study of AAA protocol with MIPv6 and
NEMO is first introduced in Section 2. In Section 3, an integration scheme is
proposed to minimize traffic overhead and delay. A model is derived to mea-
sure the delay of AFN and the proposed DNA in Section 4. Finally, Section 5
concludes this paper and discusses future work.

2 Related Works

The Diameter base protocol [2] can be extended to several applications such
as NAS [3], MIPv4 [1], and MIPv6 [10] applications. The MIPv4/v6 applica-
tions that support a mobile node (MN) are authenticated and authorized, and
SAs between entities are made by distributing the security keys when the MN
is roaming foreign networks. The Diameter for MIP consists of three entities:
home AAA server (AAAH), local AAA server (AAAL), and attendant. AAAH
is located in the MN’s home network. When an MN moves into a foreign net-
work, AAAH authenticates the MN through the Diameter message exchanges.
AAAL in the foreign network enables the MN to use of its network resource
after the authentication procedure. The attendant is an entity providing a ser-
vice interface between the MN and AAAL. It can be an access router (AR) in
MIPv6 [7] and a foreign agent (FA) in MIPv4 [11]. Diameter defines a format
in the form of Attribute Value Pairs (AVPs). Fundamental AVPs are provided
in the base protocol [2], and additional AVPs for supporting MIP property are
defined in MIP application documents. Diameter for MIPv4 has already been
standardized while that for MIPv6 still remains open as an Internet draft, to

DNA: Diameter NEMO Applications Based on Binding Update Integration 3

make extension more certain. Furthermore, it is necessary to provide Diameter
to NEMO applications for roaming in foreign networks.

Prior to NEMO consideration, MIPv6 applications for Diameter should be
studied. Diameter MIPv6 applications are proposed by Dupont et al. [5] and Le
et al. [10]. Both of the proposed applications define new AVPs for application to
MIPv6 in Diameter packet format. The AVPs are located in the transport layer
and Diameter entities use them to perform Diameter message exchanges. In these
protocols, a node has a Network Access Identifier (NAI) to identify its unique
device instead of its home address (HoA). Since AAAL receives a NAI included
in a request message, it can route to its AAAH, authenticating the requester.
Hence, the NAI is the essential parameter in the Diameter MIPv6 protocol.
The MN itself does not support the Diameter protocol because it should be
transparent to the AAA mechanism. It is assumed that the MN has long-term
SA only with its AAAH. Both AAAH and AAAL share a secure channel.

AMR: AA-MN-Request
AMA: AA-MN-Answer
AHR: AA-HA-Request
AHA: AA-HA-Answer

MN Attendant (AR) AAAL AAAH HA

(AS)

LC

AReq
AMR

AMR
AHR
AHA

AMA

AMA
ARep

AS: Attendant Solicitation
LC: Local Challenge
Areq: Attendant Request
Arep: Attendant Reply

Binding Update

Binding Acknowledgement

(a) AAA for MIPv6

MN Attendant (AR) AAAL AAAH HA

(AS)

RA/LC

AReq
ARR

ARR

HOR

HOA

ARA

ARA

ARep

ARR: AA-registration-Request
ARA: AA-registration-Answer
HOR: Home-Agent-MIPv6-Request
HOA: Home-Agent-MIPv6-Answer

RA: Router Advertisement
LC: Local Challenge
Areq: Authentication Request
Arep: Authentication Reply

(b) Diameter MIPv6 Application

Fig. 1. The solutions for adapting AAA to MIPv6

Fig. 1, (a) depicts message flows of AAA for MIPv6 proposed by Dupont et al.
[5] and (b) describes those of Diameter MIPv6 application by Le et al. [10]. The
attendant corresponds to the AR, and each domain has an AAA server, as AAAL
and AAAH to be used by the Diameter protocol. The home agent (HA) is used
for routing when the MN is located in the visited link. Fig. 1 (a) and (b) appears
to be similar with regard to the message flow. When the MN moves to a new
foreign domain and transmits an authentication request message to the atten-
dant, it converts the message to the Diameter message, to check the permission.
This message includes AAA parameters and key materials. However, Fig. 1(b)
supports the binding update embedded in Diameter message exchange, while
(a) does not support this update. (b) is efficient because of reducing additional
overhead when the MN moves frequently and performs inter-domain handoff.
In (b), AAAH can dynamically detect the HA’s address through the Dynamic
Home Agent Address Discovery (DHAAD) mechanism, using the Diameter AVP
related to MIPv6, in the event that the MN does not know its HA address. There-
fore, (b) makes better use of AVPs than (a), and can be remarkably flexible.

4 Y. Ahn et al.

AAA for NEMO (AFN) [8] is a Diameter application protocol for adapting
to NEMO. The architecture and message exchanges in this scheme are not quite
different to the Diameter MIPv6 application described above, but are in the
nested mobile network environment. This protocol is based on NEMO Basic
Support (NBS) [6] and supports Mobile Network session continuity. In the NBS
protocol, when the Top Level MR (TLMR) moves to another subnet, each MR
nested in TLMR makes a tunnel to forward packets to its HA. In the case of
the nested Mobile Network, tunnel processing is piled up to the nested level,
and packets from the visiting mobile node (VMN) should bypass each MR’s HA
until arriving at a communicating correspondent node, called pinball routing.

Fig. 2 depicts the message flow to authenticate the VMN in a foreign network.
When a VMN comes to the MR’s realm, the MR becomes the attendant and
the VMN requests the authentication message to the MR. The MR makes a
Diameter message to request VMN’s authentication and then forwards this to
it’s AAAH through the NBS tunnel. From the point of view of VMN’s, the
MR’s AAA server can be the VMN’s AAAL, so that the message is forwarded
to the VMN’s AAAH to find whether the VMN is a legitimate node. When
the authentication procedure completes, the VMN can use the foreign network’s
resources. According to this scheme, it provides the AAA protocol to NEMO and
considers the AAA procedure in Diameter message exchange when requesting
authentication. Then, the Binding Update procedure is performed by the VMN.
Hence, the protocol induces extra overhead, due to exchanging messages twice
on registration for the usage of foreign network resources.

Internet

VMN’s HA

VMN’s
AAA Server

MR1

foreign link

AR

MR2

MR2’s HA

MR1’s HA

VMN

MR2’s
AAA Server

Areq

Arep

Diameter Message
ICMP Message

AMAAMR

AHA

AHR

AMR

AMA

MR2-MR2’s HA
Tunnel

MR1-MR1’s HA
Tunnel

BU Message

Fig. 2. The architecture of AFN

3 Proposed Diameter NEMO Application

3.1 Motivation

As discussed in Section 2, AFN based on the NBS protocol does not consider
handoff signaling overhead but considers authentication message exchange. If a

DNA: Diameter NEMO Applications Based on Binding Update Integration 5

node frequently moves from one domain to another, it not only requests the AAA
procedure to be authenticated by its AAAH, but it also requires a BU procedure
in each handoff. These two procedures should occur successively, in common
handoff situations, and result in overhead from double message exchange. To
reduce this burden, a new scheme which integrates the BU message into the
Diameter message is proposed, and the scheme is designated as Diameter NEMO
Application (DNA).

The proposed DNA process may have several advantages in terms of efficiency.
First, it lifts the burden when sending two different messages, i.e., Diameter mes-
sage and BU message. If a node has frequent mobility, it must send authentica-
tion requests and location registration messages. It can present serious overhead
when initiating fast roaming. Secondly, it is possible to carry out additional work
related to HA such as DHAAD. The DHAAD procedure is a merit of the MIPv6
protocol because it can allocate an MN’s HA address to the MN when the MN
does not have an HA address, or wants to change it’s HA address. Finally, the
proposed integrating procedure reduces traffic overhead causing by MN’s sending
BU message in the foreign network. With regard to scalability, it is important
to note that the signaling storm may have occurred from the signaling traffic.

3.2 DNA Flow Messages and Header Format

New messages that the DNA exchanges are provided to support Diameter in
integrating a VMN’s location registration in the authentication procedure. Prior
to introducing these messages, several parameters contained in the message

Table 1. DNA flow messages

Message Name Description: Parameters Type

Attendant Solicitation (AS)
Router solicitation including AAA secu-
rity option ICMP

Attendant Advertisement (AA)
Router advertisement including AAA
security option ICMP

Authentication Request (AReq)
Authentication request message including
BU : NAI,HoA,HAA,LC, HC, KM, BU

ICMP

Authentication Reply (ARep)
Authentication reply message including
BA : NAI,HoA,HAA,KM, BA

ICMP

Diameter-NEMO-Registration-
Request (DRR)

Authentication request with diameter
message : NAI,HoA, HAA,HC, KM, BU

Diameter

Diameter-NEMO-Registration-
Answer (DRA)

Authentication answer with Diameter
message : NAI, HoA,HAA,HC,KM, BA

Diameter

Home-Agent-Diameter-NEMO-
Request (HDR)

Home agent request with Diameter mes-
sage : HAA,BU,KM

Diameter

Home-Agent-Diameter-NEMO-
Answer (HDA)

Home agent answer with Diameter mes-
sage HAA,BA,KM

Diameter

6 Y. Ahn et al.

exchanges, are provided. NAI is the Network Access Identifier for identifying
where the MR or VMN originates, and provides the routing path, along which
MR or VMN is authenticated. BU and BA are the Binding Update and Binding
Acknowledgement messages, respectively. These messages are used in transpar-
ent routing, to maintain session continuity for the Internet service. The HoA
(Home address) and HAA Home Agent Address are the required addresses for
routing during MR or VMN handoff. LC is the local challenge with a random
value, and should be generated by the attendant. HC is MR or VMN’s host
challenge and the value used to authenticate a MR or VMN by the AAAH.
It is an encrypted value of LC for creating the session key between requester
and AAAH. KM is the Keying Material used to establish a temporary security
association (SA) between entities, such as VMN-HA and VMN-AAAL. Based
on these message parameters, it is important that the foreign network validates
visiting nodes and allocates resources to these nodes. According to the above
parameters, new flow messages are created and sent to each entity. The new
messages are described in Table 1.

To support binding update in the Diameter procedure, BA/BU AVPs are
extended and the Diameter message header has an additional flag N. The N
flag set informs AAA servers that the message comes from the Mobile Network.
When the AAAL receives the Diameter message from a remote attendant (MR)
in the foreign network, the IP address header of this message contains the source,
destination, and home address option (HAO) address. Since the AAAL does not
have the binding cache of the MR, it requests MR’s binding information from
its HA, using a signaling process, and refers to the HA for the validity of the
addresses in the message header. Therefore, the attendant should set the N flag
so it transmits the Diameter message to its AAA server.

3.3 DNA Description

In this section, the details for the proposed DNA are described. In Fig. 3, an ex-
ample of DNA topology is provided. The VMN enters the nested Mobile Network,
carrying out the authentication procedure with the binding update to use the
resources of the foreign network. Although the original resource of the Internet is
serviced by the AR’s link, the VMN should to be authenticated to MR2’s AAAL
at the VMN’s standpoint because it shares MR2’s network resources. Each MR’s
link has a hierarchically different Mobile Network Prefix (MNP). The VMN op-
tionally sends the AS (Authentication Solicitation) signal in order to attach to
the MR2’s link, and then it receives the AA (Authentication Advertisement) as
a router advertisement message which includes LC. After the VMN makes its
CoA from AA message, it sends AReq message to the attendant (MR2). The
attendant constructs the DRR message from the VMN’s request information
and sends the message to its AAAL (MR2’s AAA server) to authenticate the
VMN. Since the MR2 is nested to MR1, the MR1 receiving the DRR message
makes a tunnel between the MR1 and it’s HA for mobility transparency. Since
this procedure is based on the NBS protocol, the Diameter message exchanges
are also performed by tunneling process. When AAAL receives the DRR, it re-

DNA: Diameter NEMO Applications Based on Binding Update Integration 7

lays the message to the AAAH (VMN’s AAA server) to check the validity of
the VMN. When the AAAH receives the DRR message, it authenticates the
VMN and recognizes the BU AVP. The BU message including keying materials
for when the Diameter message is delivered to the VMN’s HA and the HA not
only performs AAA processes, but also binding registration. The reverse route
(HDA-DRA-ARep) includes the information of authentication and BA.

Internet

VMN’s HA

VMN’s
AAA Server

MR1

foreign link

AR

MR2

MR2’s HA

MR1’s HA

VMN

MR2’s
AAA Server

Areq

Arep

DRR

DRA

DRADRR

HDA

HDR

Diameter Message
with BU Message

ICMP Message

Fig. 3. The authentication procedure of DNA message

The dynamic Home Agent Address Discovery (DHAAD) function could be
used to learn the address of HAs in the home network. The MR or MN may
not know the HA’s address at the home link. In the event that a VMN does
not know it’s HA’s address, it sends and receives the DHAAD message. This
message provides the HA’s address on the home network. The BU message con-
tains the DHAAD message in the HAO field in MIPv6. In the DNA scheme,
this message can instead be embedded to in Diameter’s AVP, and the MR/MN
acquires its HA’s address. Therefore, the DNA does not need to transmit the
DHAAD message separately. The DHAAD AVP field could be encrypted by the
Diameter protocol.

4 Performance Evaluation

4.1 Modeling

There are several assumptions to compare these schemes fairly. The delay is
considered as performance measurement and the processing capacity of all nodes
is identical. The transmission speed of wired routers is 10 times faster than that

8 Y. Ahn et al.

of wireless routers. The propagation and queuing delay is not considered in the
evaluation because they are not seriously influential. Each domain is uniformly
distributed in the Internet and the distance between entities is simply one hop in
the same domain. The general processing delay of wired routers is not considered.

The delay factors are evaluated as a measurement. The end-to-end delay gen-
erally consists of transmission delay and processing delay. That is, DTOT =
H · (DTRANS +DPROC), where H is the number of hops. DTOT means the total
delay. DTRANS is the transmission delay, calculated by packet size(bit)

transmission speed(bit/sec) .
DPROC is the processing time in each entity. The following denotes the param-
eters for the analysis of the total delay for massage exchange.

N – Nested level
Bwd/Bwl – Wired/wireless Transmission speed (bit/sec)
Havg – Average number of hops from an entity to another in the wired network
Sbu/Stu – Binding update/tunnel header size (bit)
Sareq – AReq or ARep message size (bit)
Sdrr/Shdr – DRR or DRA/HDR or HDA message size (bit)
Tbu/Ttu – Binding update/tunnel processing time (sec)
Tareq – Areq or Arep processing time (sec)
Tdrr/Thdr – DRR or DRA/HDR or HDA processing time (sec)
Tref – Message verification and reference time (sec)

The performance metric is derived to compare each scheme in terms of authen-
tication and location registration time. Examples of each scheme are show in
Fig. 4 and generalize the formula. In Fig. 4, the dotted line/solid line means the
wireless/wired link, respectively. The box indicates the domain boundary.

DTOTAF N = 2
[1
Bwl

{
Sareq + Sbu + N · (Sdrr + Sbu) + 2

N∑
k=1

k · Stu

}

+
1

Bwd

{(
(N + 1)(Sdrr + Sbu) + 2

N∑
k=1

k · Stu

)
·Havg + Sdrr + Shdr

}
+ Tareq + Tdrr + 2Tbu + 4N · Ttu + 3Tref + 2Thdr

]

1 hop

VMN MR2 MR1

1 hop

AR

1 hop

MR1
HA

Havg Havg Havg

MR2
HA

VMN
AAAH

VMN
HA

AAA for NEMO

1 hop

MR2
AAAH

1 hop

VMN MR2 MR1

1 hop

AR

1 hop

MR1
HA

Havg Havg Havg

VMN
AAAH

VMN
HA

DNADNA

MR2
AAAH

1 hop

1 hop

Fig. 4. Flow models of AFN and proposed DNA

DNA: Diameter NEMO Applications Based on Binding Update Integration 9

DTOTDNA = 2
[1
Bwl

{
Sareq + Sbu + N · Sdrr +

N−1∑
k=1

k · Stu

}

+
1

Bwd

{(
(N + 1)Sdrr +

N−1∑
k=1

k · Stu

)
· Havg + Shdr

}
+ Tareq + Tdrr + 2Tbu + 2(N − 1)Ttu + 3Tref + 2Thdr

]
4.2 Analytical Results

The total delay of AFN and DNA is evaluated. The following values are used
for evaluation of the described schemes, as presented in Table 2:

Table 2. Parameters for performance evaluation

Sbu Stu Sareq Havg

40 × 8 20 × 8 256 × 8 10

Shdr Sdrr Bwd Bwl

256 × 8 512 × 8 108 107

0 5 10

0.02

0.04 AFN
 DNA

To
ta

l D
el

ay
 (s

ec
)

Nested Level

(a) Total delay vs. nested level

0 20 40 60 80 100

0.020

0.022

0.024

0.026 AFN
 DNA

T
ot

al
 D

el
ay

 (s
ec

)

MR's Transmission Speed (Mbps)

(b) Total delay vs. MR’s transmission
speed in level 5

Fig. 5. Total delays for nested levels and MR’s transmission speed

The analysis results are presented in Fig. 5. Fig. 5(a) presents the total delay
in terms of nested level in the Mobile Network, and Fig. 5(b) indicates the
total delay when the MR changes transmission speed. The degree at which the
changing transmission speed influences total delay is the goal of experiments,
since the wireless environment does not guarantee the MR’s bandwidth. The
results from two plots demonstrate that the proposed DNA outperforms AFN in
terms of the total delay, i.e., delays of Diameter message exchange and binding
update procedure. It is demonstrated that DNA is more efficient than AFN, up
to 8∼35% along the variance of nested levels.

10 Y. Ahn et al.

5 Conclusion

The more mobile devices emerge, the importance of NEMO technology increases.
The research on Diameter NEMO Application is active as soon as the AFN
protocol is introduced as an Internet draft. In this paper, a new combining
scheme for AAA is proposed. In addition, a new analysis model is proposed
to evaluate the total delay of message exchange. It is demonstrated that the
proposed DNA approach is more efficient than AFN in terms of delay. As a
future work, the route optimization scheme in Diameter NEMO application will
be researched.

Acknowledgement

This research was supported by the Ministry of Information and Communica-
tion, Korea under the Information Technology Research Center support program
supervised by the Institute of Information Technology Assessment, IITA-2005-
(C1090-0501-0019). Corresponding author: H. Choo.

References

1. P. Calhoun, T. Johansson, C. Perkins, and T. Hiller, “Diameter Mobile IPv4 Ap-
plication,” IETF, RFC 4004, August 2005.

2. P. Calhoun, J.Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diameter Base
Protocol,” IETF, RFC 3588, September 2003.

3. P. Calhoun, G. Zorn, D. Spence, and D. Mitton, “Diameter Network Access Server
Application,” IETF, RFC 4005, August 2005.

4. A. Conta and S. Deering, “Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification,” IETF, RFC 2463, December
1998.

5. F. Dupont and M. Laurent-Maknavicius, “AAA for mobile IPv6,” IETF, draft-
dupont-mipv6-aaa-01, November 2001.

6. V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, “Network Mobility
(NEMO) Basic Support Protocol,” IETF, RFC 3963, January 2005.

7. D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6,” IETF, RFC
3775, June 2004.

8. T. Kwon, S. Baek, S. Pack, and Y. Choi, “AAA for NEMO,” IETF, draft-kwon-
aaa-nemo-00, July 2005.

9. C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence, “Generic AAA
Architecture,” IETF, RFC 2903, August 2000.

10. F. Le and C. E. Perkins, “Diameter Mobile IPv6 Application,” IETF, draft-le-aaa-
diameter-mobileipv6-04, November 2004.

11. C. Perkins, “IP Mobility support for IPv4,” IETF, RFC 3220, January 2002.
12. J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de

Laat, M. Holdrege, and D. Spence, “AAA Authorization Framework,” IETF, RFC
2904, August 2000.

Towards Real-Time Processing of Monitoring
Continuous k-Nearest Neighbor Queries�

HaRim Jung, Sang-Won Kang, MoonBae Song, SeokJin Im,
Jongwan Kim, and Chong-Sun Hwang

Department of Computer Science and Engineering
Korea University

1, 5-Ga, Anam-dong, Sungbuk-gu, Seoul, Korea
{harim, swkang, mbsong, seokjin, wany, hwang}@disys.korea.ac.kr

Abstract. This paper addresses the problem of monitoring continuous
k -nearest neighbor (k -NN) queries. In order to support highly dynamic
environments, where objects and/or queries are frequently moving, mon-
itoring continuous k -NN require real-time updated results when objects
and/or queries change their locations. Thus, it is important to mini-
mize time delay for maintaining up to date the results. In this paper, we
present the monitoring method to shorten time delay for updating con-
tinuous k -NN queries based on the notion of result region and the min-
imum bounding rectangle enclosing all objects inside each cell, referred
to as cMBR, in the main-memory grid index structure. Simulations are
conducted to show the efficiency of the proposed method.

1 Introduction

This paper addresses the problem of monitoring continuous k -nearest neighbor
(k -NN) queries in a mobile computing environment. Given a set of moving (or
static) objects and a set of moving (or static) query points, monitoring contin-
uous k -NN query continually updates the closest k objects to each query point
during the running time of each query. Because continuous queries have long
running time, monitoring continuous queries focuses more on CPU-time efficient
continuous maintenance of the results than initial result computation for each
query. Thus, we are not concerned with initial k -NN evaluation and we assume
that initial result of each query is available.

Since the large set of queries and objects update their location asynchro-
nously, it is inefficient to update the index and re-evaluate each query results
whenever any query and/or object moves [8]. Therfore, we periodically update
the index and re-evaluate all query results affected by the motion of objects at
fixed time interval Δt. Under the periodic update method, the query results eas-
ily deviate from the actual result due to the mobility of objects and/or queries.

� This work was supported by the Second Brain Korea 21 Project and the Korea
Research Foundation Grant funded by the Korea Government(MOEHRD) (KRF-
2005-041-D00665).

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

12 H. Jung et al.

In order to provide real-time updated results for continuous k -NN query, it is
critical to minimize Δt. In this paper, we utilize the notion of result region
and minimum bounding rectangle enclosing all objects inside each cell, referred
to as cMBR, in the main-memory grid index structure. The result region and
cMBR lead to save CPU-time for needless distance computation. Based on the
notion of result region and cMBR, we present methods for index maintenance
and query re-evaluation to shorten CPU-time for monitoring continuous k -NN
queries.

The rest of this paper is organized as follows. Related work for monitoring
continuous k -NN queries is discussed in Section 2. In Section 3, we present our
technique covering index structure, incremental query re-evaluation algorithm,
and optimizations. Section 4 presents the performance evaluation. Finally we
conclude the paper in Section 5.

2 Related Work

Traditional algorithms for answering k -NN queries have been introduced by
Roussopoulos et al. [2]. They assume a set of static objects indexed with R-
tree-like structures [1] and present branch-and-bound R-tree traversal algorithm
to avoid the examination of the entire index contents by utilizing two distance
metrics, MINDIST and MINMAXDIST . These two metrics provide a lower
and an upper bound on the actual distance of object o from query point q respec-
tively. In [4], the authors proposed modified branch-and-bound algorithm based
solely on MINDIST without reducing efficiency. In [5], the best-first search
algorithm which achieves the optimal I/O performance has been proposed. It
maintains a priority queue of the entries visited so far in ascending order by
MINDIST .

Various techniques that consider answering k -NN queries under dynamic en-
vironments, where objects or queries are constantly moving have been proposed
[6,7]. These techniques utilize spatial or temporal validity information for an-
swering continuous k -NN queries. These techniques do not assume that queries
run continually over the database and focus on efficient query evaluation for a
single snapshot query.

Recently, motivated by LBSs, methods for monitoring continuous k -NN quer-
ies were proposed in [9,10]. These methods focus on maintaining query results for
multiple long running queries in a CPU-time efficient way. They use a grid-like
index structure for easy and fast maintenance.

Yu et al. [9] propose two main-memory indexing approaches with different
scenarios for monitoring exact continuous k -NN queries over moving objects:
object indexing and query indexing. With object indexing approach, overhaul
query re-evaluation and incremental query re-evaluation, referred to as Yu-CNN,
are suggested. Query indexing approach, which is suit for the case that the
number of queries is very small, indexes query points instead of objects. Authors
also introduce hierarchical extension of object indexing approach for improving
performance when objects are not uniformly distributed.

Towards Real-Time Processing of Monitoring Continuous k-NN Queries 13

Xiong et al. [10] propose SEA-CNN. SEA-CNN deals with incremental moni-
toring of continuous k -NN queries by considering only moving objects that may
influence the query results. SEA-CNN assumes that objects are indexed with
grid structure in secondary-memory and focuses on incrementally re-evaluating
the query results without considering the evaluation of initial k -NN evaluation.
SEA-CNN also considers the motion of queries.

Both Yu-CNN and SEA-CNN utilize previous k -NNs for re-evaluating query
results. In particular, the search scope for the new query result is set to be
the circular region centered at query point q with radius equal to the distance
between q and the previous NN that is currently furthest as shown in Figure
1(a). However the search scope of both Yu-CNN and SEA-CNN is approximated
with the collection of cells in the grid G. Every shaded cell c should be visited
and the objects that fall in c should be considered, even if they do not constitute
the actual result, in order to guarantee the correct result. Figure 1(b) illustrates
the approximated search scope. Although all objects inside bold-lined cells do
not constitute the actual NNs of q they must be examined.

q

ppnew

(a) Search scope

q

pnew p

(b) Approximated scope

Fig. 1. Search scope and approximated search scope (k=7)

In order to avoid visiting needless cells, we propose continuous k -NN moni-
toring method based on the notion of result region and cMBR in Section 3.

3 Monitoring of Continuous k-NN Queries

Like existing methods mentioned in Section 2 [9,10], we assume two-dimensional
data space and given a set of query points in the data space, we periodically
re-evaluate the k -Nearest Neighbors (k -NNs).

We focus on re-evaluating query answers in a CPU-time efficient way by re-
ducing unnecessary computation for monitoring k -NN queries. In other words,
we focus on reducing time interval between two consecutive re-evaluation pe-
riods. Since what is important in monitoring continuous k -NN queries is to

14 H. Jung et al.

continually maintain k -NNs over time and to minimize time delay Δt caused by
re-evaluation, we do not deal with initial k -NN evaluation.

We use grid index for simple and fast maintenance under dynamic environ-
ment. The grid index G is two-dimensional array of cells generated by uniformly
partitioning the data space with its size=δ × δ. Each cell, denoted as ci,j , at
column i and row j (starting from low-left corner), contains every object with
its coordinates (objx, objy), where �x/δ� = i, �y/δ� = j. Additional structure
are also used for efficiency.

3.1 Preliminaries

In this section, we give definitions of cMBR and pruning heuristic that are
necessary for the description of our algorithm for monitoring continuous k -NN
queries. Data structure for our method is also presented.

Definition 1. Given a cell ci,j and objects Obj = {obji, 1 ≤ i ≤ n} ∈ ci,j

with their coordinates (objx, objy), cMBRi,j is a two dimensional minimum
bounding rectangle specified by two endpoints of its major diagonal min point =
(xmin, ymin) and max point = (xmax, ymax), where xmin = min(∀objx), ymin =
min(∀objy), xmax = max(∀objx) and ymax = max(∀objy) for ∀(objx, objy) of
Obj ⊂ ci,j.

With the use of cMBR, we can avoid visiting needless cells that do contain the
result. Thus, we reduce needless computation for monitoring continuous k -NN
queries by utilizing the pruning heuristic PH presented in [2].

– PH: Given a query point q and cMBRi,j ⊂ ci,j , if MINDIST (cMBRi,j, q)<
kth dist, ci,j is safely pruned because it cannot contain the object nearer
than kth NN, where kth dist is distance between kth NN and query q.

During the monitoring k -NN queries, we maintain main-memory based grid
index structure and additional information.

Object list (OL)C3,2

Grid index

Query list(QL)

q1

q2

Query table (QT)C3,1

Objects

o

(qx,qy)qid kNN_Setkth_dist

q1 q2

o

q1 q2

cMBR

Fig. 2. Grid index structure and query table

Towards Real-Time Processing of Monitoring Continuous k-NN Queries 15

Figure 2 illustrates the index structure. Each cell ci,j in the grid G maintains
its cMBRi,j and OL, the list of objects within its extents. In addition, ci,j has
the lists of queries whose result regions intersect with the ci,j , referred to as
query list QL.

Query table QT stores the queries that are currently running with their ids,
coordinates, kth dist, and current k -NNs. By using kth dist, we determine the
result region of each query q (i.e., the circular region centered at the query point
q with radius equal to kth dist).

3.2 Static Query Monitoring over Moving Objects

In this section, we present monitoring scheme for static k -NN queries. We assume
that the initial result of each query q is available. By using the initial result of
each q, we incrementally maintain the index and re-evaluate the result of q in
every re-evaluation period if location updates of objects occur. In particular, for
each cell ci,j in G, we takes the following steps:

1. Check if any of the inner objects moves out of ci,j , denoted as objout. If
so, objout is deleted from the object list of ci,j . Each q in the query list of
ci,j is checked whether q contains objout in its kNN set. In case objout is
in kNN set of q and objout moves out from the result region of q, objout is
deleted from kNN set of q, kth dist is set to dist(q, objout) and q is marked
as affected.

2. Check if any of the inner objects moves within ci,j , denoted as objwithin. If
so, each q in the query list of ci,j also should be checked. In particular, for
each q in the query list of ci,j ,
– if q is marked as affected, q is ignored.
– if objwithin is in kNN set of q and objwithin moves out from the re-

sult region q, objwithin is deleted from kNN set of q, kth dist is set to
dist(q, objwithin) and q is marked as affected.

– if objwithin is not in kNN set of q and objwithin moves into the result
region of q, kth NN of q is deleted from kNN set and objwithin is inserted
into kNN set. Then the order of kNN set and the result region of q are
updated.

3. Check if any of the outer objects moves into ci,j , denoted as objin. If so,
objin is inserted into the object list of ci,j . Then, every q that is not marked
as affected in the query list of ci,j is checked. If objin moves into the result
region of q from step 2, the kth NN of q is deleted from kNN set and objin

is inserted into kNN set. Then, the order of kNN set and the result region
of q are updated.

After above steps, we re-evaluate each affected query qaff . We utilize pri-
ority queue and pruning heuristic PH for efficient query re-evaluation. Figure
3 illustrates the re-evaluation algorithm to retrieve the new kNN set of qaff .
For each affected query qaff , we first initialize the priority queue (line 1 in
Figure 4) and enqueue all cell entries {ci,j, MINDIST (cMBRi,j, q)} whose
MINDIST (cMBRi,j, q) has less than qaff .kth dist (line 2-4 in Figure 3). Then,

16 H. Jung et al.

enqueued elements are visited. Finally, we update the new kNN set and kth dist
(line 5-9 in Figure 3). After termination of the re-evaluation algorithm, the result
region is updated.

As shown in Figure 4, when re-evaluate the affected queries, although the
search scope of proposed method (cells inside the bold line in Figure 4(a)) is
the same as that of Yu-CNN and SEA-CNN (cells inside the bold line in Figure
1(b)), we enqueue only shaded cells (in Figure 4(b)) into the priority queue.
Thus, the number of distance computation for objects is reduced.

Algorithm 1
Input. G: grid index, qaff : affected query
Procedure.
initialize the priority queue
for each cell ci,j that intersects with the result region of qaff do

if MINDIST (cMBRi,j , q) ≤ qaff .kth dist then
enqueue every cell entry {ci,j , MINDIST (cMBRi,j , q)}

end if
while entry has key < qaff .kth dist and priority queue is not empty do

dequeue the next entry of the queue
for each obj ∈ ci,j in the cell entry do

if dist(obj, qaff) < qaff .kth dist then
update qaff .kNN set and qaff .kth dist

end if
end for

end while
update the result region of qaff in G

Fig. 3. Re-evaluation algorithm for static affected query

Although the query re-evaluation algorithm reduces the search scope of af-
fected query qaff and the number of visited cells, thus leads to shorten each
re-evaluation time interval Δt due to reduction of the number of distance com-
putation for objects, CPU-time for query re-evaluation is further reduced by
using the notion of the result region.

Let Upobj be the set of location updates of objects. Clearly, if the result
region of q contains at least k objects after Upobj, we can simply compute dis-
tance from the objects that fall in the result region to q. Then we form the new
result of q without using re-evaluation algorithm. For this purpose, each q main-
tains additional counter, sorted list q.in list for incoming objects and sorted list
q.out list for outgoing objects during the re-evaluation. Only if the number of
outgoing objects Numout is greater than the sum of the number of incoming
objects Numin and the number of remaining objects Numrem, we mark q as
affected and re-evaluate q by using Algorithm 1. However, in order to reduce
the search scope, we set q.kth dist to distance between the query point q and
{Numout − (Numin + Numrem)}th element of q.out list.

Towards Real-Time Processing of Monitoring Continuous k-NN Queries 17

q

pnew p

(a) Search scope

q

pnew p

(b) Enqueued cells

Fig. 4. Search scope and enqueued cells of proposed method (k=7)

3.3 Moving Query Monitoring over Moving Objects

In this section, we consider query re-evaluation for moving query points over
moving objects. In case a query q updates its location, we maintain query results
incrementally based on the previous result, similar to SEA-CNN, and compare
our proposed method with SEA-CNN because Yu-CNN does not consider the
motion of queries.

When the moving query point qmov changes its location qold to a new location
qnew, SEA-CNN sets the search scope of qmov to the circular region centered at
qnew with radius equal to kth distprev + dist(qold, qnew), where kth distprev is
the previous kth dist of qmov. This guarantees that at least k objects are inside
the search scope of qmov. Although SEA-CNN incrementally re-evaluates the
query result, it visits the cells more than necessary to answer the result due to
the unnecessarily increased search scope.

To reduce the unnecessary increase of search scope when the queries move, we
utilize the distances between queries and previous kNN set. Specifically, when
the moving query qmov changes its location qold to a new location qnew ,we mark
the qmov as affected irrelevant to whether it is affected by moving objects or not.
In other words, it is unnecessary to check this query being affected by the motion
of objects. Then, we set the search scope of moving query point qmov to the circu-
lar region centered at qnew with radius equal to max{dist(qnew, NNq(k)prev)},
where NNq(k)prev is the previous kNN set of qmov. After update of the search
scope of qmov, we re-evaluate the new kNN set of qmov utilizing Algorithm 1 in
Figure 3.

Figure 5 illustrates the search scope of SEA-CNN and the proposed method.
As illustrated in Figure 5(a), SEA-CNN visits needless cells to guarantee the
correctness of the result because it does not utilize NNq(k)prev. Furthermore,
when qmov moves, the search scope of SEA-CNN is always larger than the pre-
vious result region irrelevant to the direction of the qmov and all objects in the
shaded cells must be processed. Compared to SEA-CNN, the search scope of
the proposed method is much smaller than that of SEA-CNN as illustrated in

18 H. Jung et al.

Figure 5(b) and only objects in bold-lined cells are processed. Because we use
the previous result, if qmov moves toward the relative position of its NNq(k)prev,
the search scope of qmov becomes much smaller.

qold
qnew

(a) SEA-CNN

qold
qnew

(b) proposed method

Fig. 5. Search scope when qmov moves(k=7)

4 Performance Evaluation

In this section, we evaluate the performance of our proposed method. We com-
pare our method with current methods for monitoring continuous k -NN queries
(Yu-CNN and SEA-CNN).

All the experiments are performed on a Pentium M 1.2GHz machine with
1GB RAM. As the experimental data sets, we use object points and query points
that are generated by pseudo-random number generator. We set k to 10. We first
compare the performance of the proposed method with varying the number of
objects and the number of queries for static queries with Yu-CNN and SEA-CNN.
Then, we compare the performance of proposed method for moving queries with
only SEA-CNN because Yu-CNN does not consider the motion of queries. The
granularity of the grid index G is set to 64× 64 because all methods (including
our proposed method) show good performance in 64×64 grid index setting. The
number of objects is varied from 10(K) to 100(K) and the number of queries is
varied from 1(K) to 10(K) in the experiments.

Firstly, we compare CPU-time of proposed method for re-evaluating static
queries with that of Yu-CNN and SEA-CNN. Figure 6 shows the effect of the
number of objects and the number of queries. We set the number of queries to 1
(K) and measure the CPU-time with varying the number of objects, then set the
number of objects to 10 (k) and measure the CPU-time with varying the number
of queries. As illustrated in Figure 6(a), CPU-time of all the three methods
is increasing as the number of objects rises. However, our proposed method
outperforms Yu-CNN and SEA-CNN. CPU-time of all the three methods is also
increased linearly to the number of queries similar to the effect of the number
of objects as shown in Figure 6(b) and our proposed method shows the best

Towards Real-Time Processing of Monitoring Continuous k-NN Queries 19

Table 1. Simulation parameters

Parameter Setting
Number of objects 10, 20, 40, 60, 80, 100 (K)
Number of queries 1, 2, 4, 6, 8, 10

0 20000 40000 60000 80000 100000

0

1

2

3

4

5

6

C
PU

-t
im

e

Number of objects

 PROPOSED METHOD
 SEA-CNN
 Yu-CNN

(a) Varying the number of objects

0 2000 4000 6000 8000 10000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
 PROPOSED METHOD
 SEA-CNN
 Yu-CNN

C
PU

-t
im

e

number of queries

(b) Varying the number of queries

Fig. 6. Effect of the number of objects and queries

performance as the number of queries is increased. This is because proposed
method utilizes the notion of cMBR to reduce needless visits of cells and the
result region.

Next, we compare the performance of proposed method with SEA-CNN, when
both objects and queries are moving. We set the number of queries to 1 (K) and
measure the CPU-time with respect to the number of objects. As illustrated
in Figure 7, the performance of both proposed method and SEA-CNN degrades
rapidly in comparison with the performance when queries are static, as the num-
ber of objects is increased. However, our proposed method shows better perfor-
mance. This is due to the fact that proposed method utilizes previous k -NN set
in addition to the notion of cMBR and the result region. Thus, our proposed

0 20000 40000 60000 80000 100000

2

4

6

8

10

12

C
PU

-t
im

e

number of objects

 PROPOSED METHOD
 SEA-CNN

Fig. 7. Effect of the number of objects for moving queries

20 H. Jung et al.

method reduces the search scope for re-evaluation compared with SEA-CNN
which only uses previous radius of the result region.

5 Conclusion

In this paper, we investigate the problem of monitoring continuous k -nearest
neighbor (k -NN) queries. Based on the notion of result region and cMBR, we
present in-memory grid structure and method for monitoring continuous k -NN
queries. With the use of pruning heuristic, we reduce unnecessary computation
for updating query result as well as needless visits of cells. As a result, we reduce
CPU-time to update the results of queries as demonstrated in simulation studies.

References

1. A.Guttman, ”R-trees: a dynamic index structure for spatial searching,” In SIG-
MOD, 1984.

2. N.Roussopoulos, S.Kelley, and F. Vincent, ”Nearest neighbor search,” In SIGMOD,
1995.

3. Apostolos Papadopoulos and Yannis Manolopoulos, ”Performance of Nearest
Neighbor Queries in R-Trees,” In ICDT, 1997.

4. K. L. Cheung and A. W. C. Fu, ”Enhanced nearest neighbor search on the R-tree,”
In SIGMOD, 1998.

5. Gisli R. Hjaltason, Hanan Samet, ”Browsing in Spatial Databases,” ACM Trans-
actions on Database Systems, 1999.

6. Y.Tao and D. Papadias, ”Time-parameterized queries in spatio-temporal data-
bases,” In SIGMOD, 2002.

7. J.Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee, ”Location-based spatial
queries,” In SIGMOD, 2003.

8. Dmitri V. Kalashnikov, Sunil Prabhakar, Susanne E. Hambrusch, ”Main Mem-
ory Evaluation of Monitoring Queries Over Moving Objects,” Distrib. Parallel
Databases, 15(2):117-135, 2004.

9. Yu, X., Pu, K., Koudas, N, ”K-Nearest Neighbor Queries Over Moving Objects,”
In ICDE, 2005.

10. Xiong, X., Mokbel, M., Aref, W, ”SEA-CNN: Scalable Processing of Continuous
K-Nearest Neighbor Queries in Spatio-temporal Databases,” In ICDE, 2005.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 21 – 30, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Comparison of SBA – Family Task Allocation Algorithms
for Mesh Structured Networks

Leszek Koszalka, Michal Kubiak, and Iwona Pozniak-Koszalka

Chair of Systems and Computer Networks, Faculty of Electronics,
Wroclaw University of Technology, 50-370 Wroclaw, Poland

leszek.koszalka@pwr.wroc.pl

Abstract. In the last years, computer networks with mesh structure become a
common computing platform. It is very important to find free resources for exe-
cuting incoming jobs in a short time. The objective of the paper is a comparison
between five task allocation algorithms. The evaluation of algorithms properties
has been carried out with utilization of the designed and implemented experi-
mentation system. The investigations have been concentrated on complexity as
the introduced measure of efficiency. Moreover, a concept of an experimenta-
tion system allowing research for allocation in dynamic mode is presented.

1 Introduction

Nowadays, there is a constant need for higher and higher computing power as the
software development advances and its basic requirements grow. Instead of using
faster and faster processors we can combine several standard execution units and thus
create a parallel system for which computing efficiency is far greater than the average
of system components [9], [10]. A reasonable way is to design a structure of such a
system in a shape of 2- or 3-dimensional mesh (Fig. 1 and Fig. 2).

The main reason is that mesh oriented systems have some very interesting prop-
erties like regularity, modularity and also scalability (e.g. [5], [6], [11]). That is why
these systems are a very important issue for the implementation of any kind of paral-
lel algorithms when using many execution units (EUs) simultaneously.

Obviously, if we desire to make a full use of the advantages that such a construc-
tion gives us, there has to be very efficient task disposition algorithm available. Effec-
tive task allocation algorithms are required when we are trying to reduce costs of the
network and at the same time preserving the same high computing power. In the lit-
erature, many ideas of such algorithms for task allocation purposes have been pro-
posed (e.g. [2], [3], [5], [6], [7], and [8]).

In this paper, we concentrate on the family of so-called stack–based algorithms
(SBA) [6], in particular on algorithms proposed by the authors, including BFSBA,
SSBA [3] and WSBA [1]. Evaluating properties of the algorithms has been done via
simulation using the designed and implemented experimentation system. The main
goal of the conducted experiments was inspection of efficiency of the five algorithms
considered, including four algorithms from SBA-family.

22 L. Koszalka, M. Kubiak, and I. Pozniak-Koszalka

Fig. 1. 2D mesh with 64 EUs Fig. 2. 3D mesh with 100 EUs

The rest of the paper is organized as follows: Section 2 contains short description
of task allocation problem and all algorithms considered. In Section 3 we present our
experimentation system. In Section 4 some results of investigations are shown and
discussed. In Section 5 new ideas of experimentation system for allocation in dynamic
mode (allocation with reallocation) are shortly described. Section 6 contains final
remarks.

2 Task Allocation Algorithms

In general, the goal of mesh algorithm in MPP (Massive Parallel Processing) [4] is to
allocate a set of rectangular tasks onto the free submeshes of a rectangular processor
mesh. When a given task is allocated it occupies a number of processing elements
completely until it is finished.

Terms and Notions. Let us introduce some terms and definitions concerning mesh
structured networks (without loss of generality with reference to 2D meshes).

A mesh M(L, W) is a rectangular structure (Fig. 1) composed of the number of
L×W nodes, where L denotes length and W denotes the width of the mesh. This struc-
ture may be described as a matrix in which rows and columns are counted beginning
with left-upper corner of the mesh. The submesh S(l, w) is a rectangular set of (l×w)
nodes that pertain to the mesh M(L, W). A given submesh is described by {<x1,,y1>,
<x2,,y2>}, where <x1,,y1> and <x2,,y2> are the nodes located in its upper left corner
and its lower right corner, respectively.

For algorithms description purposes the following notions are introduced: Free
submesh or Candidate Block (CB) is a submesh in which every node is free i.e. it is
not at the moment preoccupied with previously allocated tasks. Busy submesh (BS) is
a submesh in which at least one node was already assigned to execute a task. Total
busy submesh contains only busy nodes. Coverage (C) is a set of nodes such that
using one of them as a free node makes a given task to be overlapped with BS. Reject
Area (RA) contains nodes such that using any of them as free node makes a crossing
of the boundary of the mesh by a given task [6].

Assumptions. The paper mainly concerns task allocation in static mode i.e. the fol-
lowing assumptions have been taken into consideration: (i) Any task that is waiting in

 Comparison of SBA – Family Task Allocation Algorithms 23

a queue to be accomplished on the mesh M(L,W) is rectangular. The ith task Ti , where
i=1,2,…,N requires a free submesh of known size i.e. Ti=S(li, wi) or Ti=S(wi, li). (ii)
The total number of available nodes in the entire mesh is never smaller than the total
number of nodes required by N tasks, (iii) Tasks execution times are longer than the
predicted total time of their allocation - execution times may be considered as infinite.

Task Allocation Problem. The problem in the static case can be stated as follows:

• given: the 2D or 3D mesh, the set (queue) of N tasks with known sizes,
• problem: allocation of tasks within the mesh,
• goal: to ensure the possibly smallest complexity i.e. the shortest total
• allocation time TN of N tasks.

Complexity is a value describing the time needed for carrying out all computations
required by a given allocation algorithm. This term is regarded as the total number of
elementary operations made during the whole allocation process.. This method of
time measurement can be justified, because computations are conducted in a multitask
computational environment. When we utilize operations by counting then we have
opportunities for isolating the complexity of a specific thread – it is especially con-
venient and reasonable for the future research along with ideas described in Section 5.

Description of Algorithms. We focus on comparison between allocation algorithms
such as FS (Full Search), which is a simple classic algorithm [1], and algorithms
which belong to so-called SBA-family, including

• SBA (Stack Based Algorithm)
• SSBA (Sorted Stack Based Algorithm)
• BFSBA (Best Fit Stack Based Algorithm)
• WSBA (Window Stack Based Algorithm)

FS Algorithm. It begins searching a given mesh from the node <0, 0> for every sin-
gle task. Nodes are checked row by row until a free node is found. Next, it is checked,
whether this free node may be regarded as the left-upper corner of a task being allo-
cated i.e. a free submesh matching a given task may be formed. If this is the case, the
task is allocated within this submesh and all nodes occupied by this task become a
busy submesh. Then, the next task in a queue is allocated, and so on.

SBA Algorithm. In the beginning, for each task from a queue, the algorithm creates
the coverage set C. Next, it creates an initial CB by subtracting the RA from the entire
mesh. Then, it puts the initial CB together with the set C for the first task from the
queue onto the stack. From now, the algorithm works in a loop. At first, it checks
whether the stack is not empty. If it is true, the algorithm checks from the top of the
stack whether the position of the set C is null. If it is not, SBA tests intersecting C and
CB from the top of the stack, and (i) if they have at least one shared node then the top
of the stack is popped up from the stack, C is spatially subtracted from CB, and the
newly created CBs are pushed up onto the stack with C for the next task from the
queue, (ii) if they have not got any shared node, SBA exchanges C with the next from
the queue without any operation with the stack. When a CB with an empty C position
appears on the top of the stack, the desired base block is obtained. Each node from
this base block can be returned as the left-bottom node of a submesh in which a given

24 L. Koszalka, M. Kubiak, and I. Pozniak-Koszalka

task can be allocated. Finally, an incoming task is accommodated and a new item can
be added to the set of busy submeshes.

SSBA Algorithm. The main idea of SSBA consists in reducing the number of tests for
intersecting. It has been done by sorting the BS queue [9] through checking the coor-
dinates of the recent CB and C, before doing a test for intersecting. Checking begins
with comparing horizontal coordinates of CB and C. Next, if the horizontal coordi-
nates are equal, the vertical coordinates are to be compared, etc. If C has greater coor-
dinates than CB then the remainder of items in the queue has greater coordinates.
Thus, at that point a free submesh has been found.

BFSBA Algorithm. The improvement consists in no-rotating when sizes of the con-
sidered task are all equal. Some modification called the Better Fit has been applied to
SBA. The modified algorithm chooses CB with the minimal height and with the
minimal horizontal position. This operation is not extra time-consuming because it
can be done during standard run of the SBA scheme.

WSBA Algorithm. The basic idea of the algorithm consists of presenting knowledge
of accessible allocation space (i.e. all free nodes available into mesh) in the form of
the set of maximum submeshes (maximum windows) for any task being allocated.

Fig. 3. An example of allocation using WSBA with the number of allocated tasks equal to:
(a) zero, (b) one, (c) two, (d) three

Maximum windows should have the least as possible common nodes. These win-
dows are placed on the inner stack of the algorithm (window stack) and they are
sorted according to left-upper corner, at first along columns, next along rows. The
incoming task is always located in the first window on the stack that is large enough

 Comparison of SBA – Family Task Allocation Algorithms 25

to contain it. After successful allocation, the windows on the stack are updated fol-
lowing the rules: (i) none of windows would contain the nodes taken by that allocated
task, (ii) a window which is contained in the other window has to be popped from the
stack, (iii) windows are cut into maximum windows that do not contain the busy
nodes. The algorithm operates in a loop. The idea of maximum windows is shown in
Fig. 3 (e.g. O(3,0,13,12) means – left-upper corner as node <3,0> , width of 13 and
length of 12).

3 Experimentation System

Following ideas presented in [3], the experimentation process concerning task alloca-
tion may be regarded as an input-output system (see Fig. 4).

A

P1 P2 P3

Ei

E

Fig. 4. Allocation process as an input-output system

The observable inputs are constituted by the parameters of the allocation process
(symbolized by Pi in the figure), the controllable input is the allocation algorithm
(symbolized by A) chosen by the user. The output values can be indices of perform-
ance obtained from experiments (symbolized by Ei) and the introduced measure to the
efficiency (denoted as E) of the series of experiments.

In order to carry out experiments a simulation environment was created in JAVA
with application dedicated to work within multi-task environment (MS Windows,
Java 1.4.1 SDK). It allows to visualize the state of the allocation process. The experi-
menter has opportunities to form a design of experiment by determining the inputs,
including:

• W and L – parameters (P1) concerning mesh size,
• N - the total number of tasks in a queue as the parameter (P2),
• the parameters (P3) of probability distribution of sizes of incoming jobs -

available: (i) normal distribution with mean from 1 to 50 and standard devia-
tion being less than the mean, (ii) uniform distribution within [1,50]; the ran-
dom values of w and h are generated separately in both cases,

• the percentage of mesh utilization i.e. the ratio of the sum of products wi and
hi for all N tasks and the area of the entire mesh given by product WxL,

• A - the allocation algorithm (available FS, SBA, SSBA, BFSBA, and WSBA).

26 L. Koszalka, M. Kubiak, and I. Pozniak-Koszalka

4 Investigations

The main goal of the simulation experiments was to investigate (for different A) the
relationship between complexity (measure of efficiency) and “deterministic” input
parameters, including P1 and P2. The values of P3 - probabilistic input were generated
100 times for the same deterministic inputs in order to make results (mean values of
complexity) more accurate and thus more reliable. The percentage of mesh utilization
was not greater than 75% during all experiments. In respect to the deterministic inputs
three cases were considered.

• Case #1. Relationship between complexity and the total number of tasks for
relatively small mesh (W=L=30).

• Case #2. Relationship between complexity and the mesh size (for 30<W<120
and 30<L<120).

• Case #3. Relationship between complexity and the total number of tasks for
relatively large mesh (W=L=130).

• We concentrated on the proposed WSBA algorithm, trying to evaluate its
properties.

Case #1. As it may be seen in Fig. 5 the WSBA algorithm appears to be less effective
than the commercial algorithm (SBA) and their modifications (SSBA and BFSBA). By
looking at the chart we can even guess that a major coefficient of its complexity is
exponential. As expected, the algorithm which is based on full search (FS) was the
worst one.

Fig. 5. Complexity vs. total number of tasks for relatively small mesh (30x30)

Case #2. We tested many times the WSBA algorithm trying to find the ranges of
inputs at which this algorithm could be recommended. It has materialized in the situa-
tion when (i) mesh sizes were greater than 70, and (ii) generation of sizes of tasks
ensures that 75% of the entire mesh would be covered by them, approximately. In
Fig. 6, the advantage of WSBA over other members of SBA-family can be observed.

 Comparison of SBA – Family Task Allocation Algorithms 27

Fig. 6. Relationship between complexity and mesh size

Case #3. We anticipated that with a constantly growing amount of tasks and for rela-
tively large mesh, the WSBA algorithm can supersede all of its competitors. It was
confirmed by the obtained results (see Fig. 7).

Fig. 7. Relationship between complexity and the total number of tasks for a relatively large
mesh (130x130)

This phenomenon given by WSBA is directly related to the inner free submeshes
available throughout the whole allocation process. Along with this algorithm a
given task is allocated into the first free submesh that is capable of handling the
task, thus placing the task into a mesh and then updating a stack are very fast
activities.

Discussion. We have noted that the WSBA is more effective for larger meshes. The
construction of SBA, SSBA and BFSBA algorithms makes their effectiveness vulnerable

28 L. Koszalka, M. Kubiak, and I. Pozniak-Koszalka

for the case when task size in the scope of the mesh is relatively small. The allocation
of any task with these algorithms can be separated and stated as an independent prob-
lem without any states carried from previous ones. It enforces them to reinstate their
inner assumptions each time when a task arrives and makes calculations more complex
when there are many tasks already allocated on the mesh. The WSBA algorithm carries
on its inner state throughout the allocation process thus it can provide almost instant
task allocation though its complexity rises at some value of deterministic inputs.

Although the WSBA algorithm appeared to be better than the rest when operated in
the static mode, we should make more experiments for various designs of experiments
in order to make some general conclusions. Especially, the properties of WSBA need
to be tested when operated on 3D meshes, and first of all, in dynamic mode of alloca-
tion process. All four competitive algorithms are dedicated for mainly single task
allocation, thus their complexity can be compared with an upwardly set task queue.
The WSBA algorithm keeps the mesh state within so it is expected to have a problem
with task reallocation issue.

5 Development of Experimentation System

We may distinguish two modes of allocation process, the static mode and the
dynamic mode. The static mode was defined in Section 2. The dynamic mode is
characterized by dropping assumption (iii), i.e. if for a given task being allocated
the free submesh is not available then this task remains in the queue until another
just allocated task finishes its execution and releases a required free submesh. In
this case we assume that execution times can not be infinite. Designing an experi-
mentation system for allocation processes in this case we have to deal not only
with allocation but with reallocation as well. An initial concept of the kernel of
such a system is shown in Fig. 8. The proposed system is composed of modules,
including

• Task Generator and Dispatcher which provides reliable and scalable genera-
tion of load according to chosen parameters of random distributions.

• Mesh which simulates task execution by receiving the task with coordinates
and returning space when its execution ceases,

• Algorithm which is finding a free submesh for tasks received from Task Dis-
patcher taking into account recent information about freed submeshes.

• Captain which provides a way to conduct batch experiments and to navigate
all the other modules.

To achieve most reliable processor time measurements, all modules should be im-
plemented as a separate applications which communicate through Server module over
the TCP/IP protocol (see solid lines in Fig. 8). Dotted lines are visualization of control
routines within the system.

Such a distributed implementation within the Linux system is being tested, actually.

 Comparison of SBA – Family Task Allocation Algorithms 29

Fig. 8. Logical system architecture confronted with its physical dependencies

6 Final Remarks

The main conclusion resulting from the research is that in the static mode the WSBA is
by far the best algorithm tested in the case when we need to allocate a huge amount of
tasks but SBA, BFSBA and SSBA turn out to be useful when the total number of tasks
in the queue is relatively smaller.

The further research will concentrate on evaluating task allocation algorithms proper-
ties in the dynamic mode with using the proposed experimentation system. Moreover,
we are looking for efficient allocation algorithms based on dynamic programming
approach,

References

1. Koszalka L., Kubiak M., Pozniak-Koszalka I.: Allocation Algorithm for Mesh-Structured
Networks, Proc. of IARIA ICN’06 Conf., ICN5: Management, Mauritius, IEEE Computer
Society Press (2006)

2. Chang C., Mohapatra P.: An Integrated Processor Management Scheme for Mesh-
Connected Multicomputer System, Proc. of Int. Conf. on Parallel Processing, (1997)

3. Koszalka L., Lisowski D., Pozniak-Koszalka I.: Comparison of Allocation Algorithms for
Mesh-Structured Networks with Using Multistage Experiment, LNCS 3984, Springer-
Verlag (2006) 58-67

4. Batcher K.E.: Architecture of Massively Parallel Processor, Proc. of Intern. Conf. on
Computer Architecture (1998) 174-179

30 L. Koszalka, M. Kubiak, and I. Pozniak-Koszalka

5. Sharma D.D., Pradhan D.K.: Submesh Allocation in Mesh Multicomputers Using Busy
List: A Best-Fit Approach with Complete Recognition Capability, Journal of Parallel and
Distributed Computing 1 (1996) 106-118

6. Byung S., Das C.R.: A Fast and Efficient Processor Allocation Scheme for Mesh-
Connected Multicomputers, IEEE Trans. on Computers 1 (2002) 46-59

7. De M., Das D., Ghosh M.: An Efficient Sorting Algorithm on the Multi-Mesh Network,
IEEE Trans. on Computers 10 (1997) 1132-1136

8. Yang Y., Wang J.: Pipelined All-to-All Broadcast in All-Port Meshes and Tori, IEEE
Trans. on Computers 10 (2001) 1020-1031

9. Agarwal A.: The MIT Alewife Machine: Architecture and Performance, Computer Archi-
tecture (1995) 2-13

10. Kasprzak A.: Packet Switching Wide Area Networks, WPWR, Wroclaw (1997) /in Polish/
11. Liu T., Huang W., Lombardi F., Bhutan L.N.: A Submesh Allocation for Mesh-Connected

Multiprocessor Systems, Parallel Processing (1995) 159-163

Scalable Overlay Multicast Architecture�

Choonsung Rhee, Sunyoung Han��, Byounguk Choi, and Jungwook Song

Dept. of Computer & Information Communication Engineering, Konkuk University
1 Hwayang, Gwangjin, Seoul 143-701, Korea

{csrhee, syhan, buchoi, swoogi}@cclab.konkuk.ac.kr

Abstract. We have introduced loosely-coupled TCP connection in or-
der to support efficient and reliable overlay multicast. We have also de-
fined new service type to the flow label of IPv6 header and proposed
the architecture that offers differentiated service. In order to realize this
proposal, we used separate buffer of a different kind in accordance with
its service type. The architecture we propose supports subnet multi-
casting in a bid to prevent the degradation that has occurred due to
the increased number of total users, and we have optionally adopted
FEC (Forward Error Correction) so that the receiver can rectify the er-
ror. In order to verify the effect of the proposed solution, we simulated
our experiment in an environment that is similar to the actual service
environment.

1 Introduction

In order to efficiently utilize multimedia services, introducing multicast tech-
nology is a must. However, the current situation bears many issues when these
technologies are to be adopted. Slow introduction of IP multicast led overlay
multicast debut that processes multicast function in the upper layer of appli-
cation level without changing the current network base [1,2,3]. This method
not only resolves most of the issues raised in IP multicast, but also it eases
the way multicast technology is added since it is easily applicable to the ex-
isting internet architecture. However, overlay multicast is less efficient than IP
multicast.

We employed two different techniques in order to support efficient and reliable
multicast [4,5,6]. The first one is the modified loosely-coupled TCP connection
initially introduced by ROMA [6], and the other one is to provide differentiated
service according to the packet type by defining the new service types to the
flow label of IPv6 header.

� This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

�� Corresponding author.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 31–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

32 C. Rhee et al.

�������	
�������

��
���	������������	��

��
���	�� ���������	
�������

�������
	�

����	
���	
�������

����������
	� �������
	�

�

�

�

�

�������	

����	�	�����

�

�

�

�

�

�

�

�

�

�

�

������	����������

�����	��	������

�������	
�������

��
���	������������	��

��
���	�� ���������	
�������

�������
	�

����	
���	
�������

����������
	� �������
	�

�������	
�������

��
���	������������	��

��
���	�� ���������	
�������

�������
	�

����	
���	
�������

����������
	� �������
	�

�

�

�

�

�������	

����	�	�����

�

�

�

�

�

�

�

�

�

�

�

������	����������

�����	��	������ �

�

�

�

�������	

����	�	�����

�

�

�

�

�

�

�

�

�

�

�

������	����������

�����	��	������

Fig. 1. The architectural model of the suggested overlay network

2 Architectural Model

2.1 Components

The basic environment we have in mind is a hybrid network where both multi-
cast and non-multicast exist. We built overlay multicast network as it is shown
in Fig. 1 when the whole configuration of IP multicast network is not fully
completed.

Relay: Relay plays a role as both a multicast data deliverer and a constituent in
building multicast tree. Our proposed structure is separated into three categories
as below.

– Root Relay: Root Relay which is a root of multicast tree belongs to the
backbone source network along with media service that is a multicast source.

– Interim Relay: Interim Relay lies in the middle of multicast tree, and it
is separated into two types. In the first type of relay, no user is interested
in receiving multicast service to the subnet, and it simply functions as a
multicast data deliverer to the other relay. Differentiated transport can be
done according to the designated value of flow label. In the other type of
relay, users who receive multicast service to the subnet exist, and it performs
additional functions other than the basic transports. It creates data including
FEC according to the designated value in the flow label as well as delivers
multicast data to the subnet multicast subscribers[7].

– Edge Relay: Edge relay, located on the edge of multicast tree, delivers
multicast data to the end-users in the subnet. It optionally creates FEC
according to the designated value in the flow label.

End-User: End-user as a terminal receiving multicast data, de-encapsulates
overlay multicast header in the received multicast data. Moreover, it rectifies
the error itself in case the error occurs according to whether it includes FEC or
not. The proposed architecture separates end-user into three types as below.

Scalable Overlay Multicast Architecture 33

– High Quality User: High Quality User receives faster data transport ser-
vice than the general data, and it also guarantees reliable data transmission.

– Medium Quality User: Medium Quality User receives a bit faster data
transport service than the ordinary users, and it also guarantees reliable data
transmission.

– Normal Quality User: Normal Quality User receives normal-speed data
transport service, and it does not guarantee reliable data transmission.

2.2 Features

Our new model has the following features.

– Reliability: Reliable transmission that IP multicast does not provide is
distributed via overlay multicast network. For a reliable transmission, we
used loosely-coupled TCP connection and unicast tunneling between each
relays. We also employed optional FEC algorithm for subnet multicast areas.

– QoS: In order to support QoS, we defined a new type in the flow label of
IPv6 header. According to this newly defined type, we differentiated data
transmission speed by using different buffers.

– Low Latency: We minimized end-to-end delay of multicast data that re-
quires fast speed by using buffers with different transmission speed. By using
FEC, we reduced delays from re-transmitting the lost data.

2.3 QoS and Reliable Transmission

Flow Label Field as a newly added field in IPv6, eases real-time traffic control
or packet that requires the same processing. We defined a new type in the flow
label in order to send differentiated multicast packet as well as reliable data. The
types for differentiated transmission are mutually exclusive. The newly defined
type in low 8-bit of flow label is as follows.

– 10000000
It is used for differentiated transmission. This data that demands best quality
services provide faster transport service than other packets.

– 11000000
It is used for differentiated transmission. This data that demands inter-
mediate standard services provide a bit faster transport service than other
ordinary packets.

– 11100000
It is used for reliable transmission. It enables the receiver to rectify the error
itself by creating FEC in case of subnet transmission.

Fig. 2 depicts the architecture for reliable and differentiated data transmis-
sion. The architecture we propose is a modified version of loosely-coupled TCP
connection that was initially introduced by ROMA. Transmission between re-
lays uses reliable TCP while transmission between relays and end-users in the
subnet uses UDP. The left side of Fig. 2 is the incoming data while the right

34 C. Rhee et al.

Fig. 2. The Architecture for reliable data transmission and QoS

side shows the movements of outgoing data. Relays that received data via reli-
able TCP connections use three buff-ers for the data processing. Relays separate
multicast packet into three categories and store in high/medium/normal quality
buffer according to the type defined in the flow label. Data transport method
in relays is classified into two types. The first method is TCP transmission that
is meant to send multicast data to other relays, and the other one is multicast
transmission for end-users in the subnet. In TCP transmission for other relays,
transport and overflow buffer exist per each corresponding relays. In multicast
transmission for subnets, FEC buffer exists for reliability and overflow buffer for
the transmission itself. Relays determine whether it should create FEC accord-
ing to the designated type in the flow label before delivering multicast data to
end-users in the subnet.

We adopted a way of using TCP between relays, and optionally creating FEC
and sending it to multicast according to the designated value of flow label in the
subnet. This method enhances the performance of real-time streaming service in
overlay multicast through combined use of TCP, UDP and FEC.

3 Performance Evaluation

In fact, not only we constructed a small network in order to evaluate the perfor-
mance of our proposed architecture, but also we implemented a simulation using
one of the network simulators called OMNeT++ to evaluate the performance in
a broader range [8]. For overlay multicast service, we configured a network with
3 different sources and 14 relays. Fig. 3 illustrates a testbed environment built
by using OMNeT++.

In order to measure delays in the simulation, we adopted delays between
each relays differently from 5 ms to 20 ms considering special features of the
network. Multicast packet is able to move to other networks only via relay that
works as a multicast router, and 3 sources are connected to relay3, relay6 and
relay7 respectively. Test environment embraces 3 multicast groups, and each

Scalable Overlay Multicast Architecture 35

Fig. 3. The overlay multicast network to be simulated

Fig. 4. Simulation results 1

�������	��
�������
������	���������	�������������������������

�

�

��

��

��

��

��

��

� � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���������������

�
��

�
�
�
�

�
	

���� ���	������� !��	�� ���	�������

Fig. 5. Simulation results 2

36 C. Rhee et al.

user receiving services is connected to interim and edge relay that constructs
multicast tree of the corresponding group. Fig. 4 depicts a result of delays shown
from sources per multicast group to each relays.

We also measured average delay of the whole relays that was generated due to
the increased number of users, and compared it with the basic overlay multicast
architecture. Fig. 5 is a result of average delay of relays that was generated due
to the increased number of users. As it is depicted in the simulation result of
Fig. 4 and 5, we verified that the performance of our proposed architecture is
more superior than the existing basic overlay multicast architecture.

4 Conclusion

In this paper, we introduced a novel overlay multicast architecture suitable for
distributing stream. We examined and analyzed the problems arose from over-
lay multicast architecture for the live streaming, and eventually came up with
more efficient architecture than the previous one. We approached the transport
issue in two different ways; transmission between relays and transmission in the
subnet. We used loosely coupled TCP connections for unicast-tunneling, and
optional FEC for subnet multicast. We decided whether we should use FEC in
subnet multicast transmission and differentiated transmission between relays ac-
cording to the type newly defined in the flow label of IPv6. We also simulated
some models to evaluate the performance of our approach. We verified that this
architecture guarantees higher reliability and lower delay than the existing basic
overlay multicast architecture.

References

1. P. Francis, Yoid: “Extending the Multicast Internet Architecture”, 1999, White
paper

2. J. Byers, J. Considine, M. Mitzenmacher, S. Rost: “Informed Content Delivery
Across Adaptive Overlay Networks”, ACM SIGCOMM, Aug 2002

3. Y. Chu, S. G. Rao, H. Zhang: “A Case For End System Multicast”, ACM SIGMET-
RICS, 2000

4. R. Buskens, M. Siddiqui, S. Paul: “Reliable Multicast of Conrinuous Data Streams”,
Bell Labs Tech, Journal, 1997

5. S. Paul, K. Sabnani, J. Lin, S. Bhattacharrya: “Reliable Multicast Transport Pro-
tocol(RMTP)”, IEEE Journal on Selected Areas in Communications, Apr 1997

6. G. Kwon, J. Byers: “ROMA: Reliable Overlay Multicast with Loosely Coupled TCP
Connections”, Technical Report BU-CS-TR-2003-015, Boston University, 2003

7. L. Rizzo, L. Vicisan:“RMDP: an FEC-based Reliable Multicast protocol for wire-
less environments”, Mobile Computing and Communications Review, Volumn 2,
Number 2, 1998

8. OMNeT++ version 3.2, http://www.omnetpp.org

On the Design of a Dual-Execution Modes
Processor: Architecture and Preliminary

Evaluation

Md. Musfiquzzaman Akanda, Ben A. Abderazek, and Masahiro Sowa

National University of Electro-Communications
Graduate School of Information Systems

1-5-1 Chofugaoka, Chofu-shi, 182-8585 Tokyo, Japan
akanda@sowa.is.uec.ac.jp

Abstract. In this work, we propose a novel dual-execution modes pro-
cessor, named Functional Assignment Register Machine (FaRM),
which supports both Queue and Stack execution models in a single and
simple processor core.

The hardware elements, instruction formats and the major hardware
components of the processor are presented in sufficient detail. We also
give a preliminary evaluation result of the designed processor. From our
preliminary evaluation results, we found that FaRM processor achieves
about 65MHz speed and can execute both Queue and Stack execution
models correctly. We also found that the novel architecture is imple-
mented without considerable additional hardware when compared with
conventional architectures with similar hardware configurations.

Indexwords: Dual-execution modes, Design, Queue, Dynamic Switch-
ing Mechanism, Parallel.

1 Introduction

Nowadays, as we enter into an era of constant demand for faster and compatible
processors as well as different internet and network appliances using different
processor architectures, it becomes extremely complicated and costly to develop
a separate processor for every execution model that satisfies this demand. Inter-
net applications, which are generally stack−based, need high execution speed or
high performance as defined by the literature. However, recently the term ”high
performance” is questioned again by many processor designers and computer
users. Some consider that high performance means high execution speed or low
execution time of some given applications. Others define ”high performance” dif-
ferently. They consider that processors which support several execution models
are the favourite candidates for high performance ”award”, since switching from
processor to processor lead to difficulty and waste of time. This is true especially
when users have different applications written for different execution models (i.e.,
Stack and RISC model). In this case, users are forced to run these two applica-
tions separately on different machines. In conventional machines, this problem

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 37–46, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 Md.M. Akanda, B.A. Abderazek, and M. Sowa

was somehow solved using direct software translation techniques. However, these
techniques still suffer from slow translation speed. Sun Microsystems proposed
another alternative and designed its Stack-based Java processor, so that Java
code can execute directly [2,6,7]. According to its designers, the JavaChip-I, for
example, is a highly efficient Java execution unit design. It delivers up to 20
times the Java performance for x86 and other general-purpose processor archi-
tectures and up to five times the performance obtained by just-in-time (JIT)
compiler. It is evident that in term of reduced execution time, the solution is
better than translation (indirect) or JIT schemes, but in term of compatibility,
the processor still suffers from not being able to execute other codes. Supporting
another execution model will eventually lead to more complex hardware.

We realized that supporting different instruction sets could yield superior op-
erational attributes to those architectures that support a single instruction set.
Our objectives are clear; first, we knew that to reduce die size and improve
performance, dual execution mechanism should be implemented in the FaRM
pipeline as a finite state machine rather than a traditional microcoded engine.
Second, the solution would have to dynamically calculate Queue and Stack loca-
tions to architectural registers called Shared Storage Unit (SSU). Thus avoiding
the need for a translation stage. Finally, the resulting architecture would have
to perform 16-bit fetches in order to fetch up to four instructions at once.

To this end, we propose in this work a dual-execution modes processor archi-
tecture named FaRM processor. It addresses the above problems as a pure-play
architectural paradigm and integrates Stack and Queue execution models right
into a single core. This is achieved dynamically with a mode−switching scheme
and a sources − results locations computing unit [1].

The rest of this paper is organized as follows: in section 2, we present a
detailed description of the proposed processor architecture. Section 3 gives the
design result and analysis. The last section gives our conclusion.

2 System Architecture Description

The FaRM architecture is a 32-bit processor, which supports a subset of the
Queue instruction set (QEM) and Stack instruction set (SEM)[1]. The QEM
mode uses a first-in-first-out Queue data structure as the underlying control
mechanism for the manipulation of operands and results. In addition, the QEM
is analogous to the stack execution model (SEM) in that it has operations
in its instructions set which implicitly reference an operand queue just as a
stack machine has operations that implicitly references an operand stack. Each
instruction removes the required number of operands from the front of the
operand queue, performs some computations, and stores the result of compu-
tation into the operand queue at the specified offsets from the head of the
Queue. The operand Queue occupies continuous storage locations. A special
register called Queue Head (QH) contains the address of the first operand in the
operand Queue. Operands are retrieved from the front of the Queue by read-
ing the location indicated by the QH pointer. Immediately after retrieving an

On the Design of a Dual-Execution Modes Processor 39

operand, the QH is incremented so that it points to the next operand in the
Queue. Results are returned to the rear of the operand Queue indicated by the
Queue Tail (QT). When switched for Stack-based mode, the switching circuitry
and the FaRM Computing Unit (FCU) perform the job of executions mode
switching. The FCU calculates the sources and destination for corresponding
instructions.

In SEM execution mode, operands (implicitly referenced) are retrieved from
the Top of the operand stack and results are returned back into the Top of the
operand stack. For example, consider a sub instruction. In SEM mode, the sub
instruction pops two operands from the top of the operand stack (SP), computes
the difference and pushes the results back into the top of the stack. In QEM
mode, the sub instruction removes two operands from the front of the operand
Queue, computes their difference, and puts the results at the rear of the operand
Queue indicated by the QT pointer. In the former case, the result of the operation
is available at the SP. In the later case, the result is behind any other operand
in the Queue. This will have an enormous impact to effectively exploit pipelined
ALU where normal SEM obviously cannot guarantee. The details explanation
of the novel queue computing model is given in [1,3,5].

2.1 Instruction Set Architecture

The dual-execution modes processor architecture uses a single shared instruc-
tion set for both Queue (FQM) and Stack (FSM) execution models. In FQM, the
architecture supports a subset of a produced order parallel Queue processor in-
structions set [3]. FaRM’s instruction set features are: (1) shared instruction set,
(2) simple and has relatively small number of instructions and (3) fixed length
instructions. All instructions are 16-bits wide and allowing simple instruction
fetch, decode stages and facilitate pipelining of the processor where the upper
part specifies the type of instruction (opcode), and says how to interpret the
value (operand) stored in the lower part. In the current version of our imple-
mentation, we target our processor for small applications where our concerns
focus on the ability to execute FaRM codes on a processor core with small die
size and acceptable power consumption characteristics.

2.2 Pipeline Structure

FaRM processor is a pipelined architecture. It has six pipeline stages and is
based on a 16-bit instruction set architecture. The basic block diagram of the
architecture is given in Fig. 1. The processor consists of the following units: (1)
Instruction Fetch Unit (FU), (2) Decode Unit (DU), (3) FaRM Computation
Unit (FCU), (4) Issue Unit (IU), (5) Execution Unit (EXE), and (6) Shared
Storage Unit (SSU).

Instructions fetch: The fetch unit fetches 4*16-bits instructions/cycle from the
program memory and inserts them into the fetch buffer.

40 Md.M. Akanda, B.A. Abderazek, and M. Sowa

De code Unit
(DU)

FaRM Computation
Unit (FCU)

Fe tch Unit
(FU)

Share d
Storage

Unit
(SSU)

Issue Unit (IU)

EXE

Addre s s Mu l ti pl e xe r

D
A

T
A

B
U

S

A
D

D
R

E
SS

B
U

S

R/W A dr
PROG/DAT

Mem ory

W RT

ADR

SW

DSM

4 inst

4 inst

4 inst

4 inst
W RT

RD

Fig. 1. Hybrid FaRM system architecture

Instructions decode: Decodes the instructions opcodes and operands. The decode
unit (DU) has 4 decode circuits (DC) and 1 Mode Selector Register (MS). The
later, is set to ”0” or ”1” according the the type of execution modes.

Address Computing: The processor’s computation unit reads information from
the decode unit and uses them to compute the instruction sources and destina-
tion locations for booth Queue and Stack execution models.

Instructions issue: The issue stage issues ready instructions to the execution
unit. Memory and registers dependency are checked in this unit/stage. This unit
also checks the sources availability.

Execution: The execution unit (EXE) executes issued instructions and sends the
results to the Shared Storage Unit (SSU) or the data memory. The EXE con-
sists of: 4 Arithmetic logical units (ALU), 2 Shift units, 4 Set register units, 4
Load/Store units, 4 Move unit, 1 Compare unit and 1 Branch unit.

Write Back Unit: The write back unit writes the result back to the PROG/DATA
memory or SSU. The SSU is a 32*16 registers. The dual-execution mechanism
(DSM) consists of a switching circuitry (SW) and a dynamic computation unit
(FCU). The FCU unit calculates the sources and destinations for instructions in
both FQM and FSM modes. A block diagram of the DSM mechanism is illus-
trated in Fig. 2. The DSM detects the instruction mode by decoding the operand
of the switch instruction. After it detects the mode, it inserts a mode − bit for
all instructions between the current and the next switch instruction.

The dynamic address computation mechanism has two mapping algorithms: (1)
FaRM Queue Computing (FQMAP) and (2) FaRM Stack Computing (FSMAP).

On the Design of a Dual-Execution Modes Processor 41

operand_out
Decode
Circuit

SW (MS)

opcode_in

operand_in

ms_we

IMms_set
opcode_out

consumed_data
produced_data

8

8

1
1

1

Q
or
S

0/FQM

1/FSM

SW

inst

(a)

Decode
Buffer
(DB)

FMU
Mapping

Unit

 LEGEND
SW: Switching circuit
MS: mode selector
ms_set: mode selector port
opcoed_in: opcode input port
operand_in: operand input port
FQM: queue mode execution
FSM: stack mdoe execution
inst: instruction
ms_we: mode selector write enable

Fig. 2. DSM basic block diagram

In FQM, each instruction needs to know its QH and QT values. The above
values are easy to know in serial Queue execution model, since the QH is always
used to fetch instruction from the operand queue and the QT is always used to
store the result of the computation into the tail of the operand Queue. However, in
the parallel execution scheme the above values are not explicitly determined. This
is due to the fact that previous instructions are simultaneously executed and may
not be completed in order. The mechanism for calculating the source1 address
for the queue computation is given in Fig. 3(a). The computing unit keeps the
current value of the QH and QT pointers. Four instructions arrive to this unit each
cycle. For the first instruction the number of consumed data (CN) (8-bit field) is
added to the current QH value (QH0) to find the first operand and the number
of produced data (PN) (8-bit field) is added to the current QT value (QT0) to
find the result address (QT1) of the first instruction. The other three instruction’s

+ +

Q H 0 Q T 0

+ +

Q H 1 Q T 1

P N

P N

CN

CN

QHn+1

QTn+1

NQT

NQH

P N : number of produced data
CN : number of consumed data
QH0 : initial queue head v alue
QT0 : intial queue tail v alue
NQH : next queue head v alue
NQT: next queue tail v alue
QHn+1 : next queue head v alue
QTn+1 : next queue tail v alue

(a)

- +

T O P 0
P N

CN

P N : number of produced data
CN : number of consumed data
TOP 0 : initial top pointer v alue
NTP : next top pointer v alue
TOP n+1 : next top pointer v alue

- +

T O P 1
P N

CN

NTP

TOP n+1

(b)

Fig. 3. Address calculation mechanism for source1 and destination: (a) FQM computing
circuit; (b) FSM computing circuit

42 Md.M. Akanda, B.A. Abderazek, and M. Sowa

Table 1. FaRM architecture hardware design results

Description GSOP GAOP GBOP Speed(MHz)

Fetch Module 1476 1476 1476 231.80
Decode Module 9960 8148 8148 212.54
Computation Module 5088 5088 5088 65.27
Issue Module 19224 16296 16296 240.85
Execution Module 76212 68520 68520 108.39
Shared Storage Module 35520 23808 23808 422.12

FaRM processor 147480 123336 123336 65.27

first operand and result addresses are calculated similarly. The second operand
(source2) of a given instruction is the first calculatedby adding the addresssource1
to the displacement (OFFSET) that comes with the instruction. Fig. 4(a) shows
the hardware mechanism used for calculating the second operand.

In FSM, the execution is based on pure stack model. The mechanism for
calculating the source1 and destination address in this mode is shown in Fig. 3(b).
The computing unit keeps the current value of the TOP pointer. Four instructions
arrive to the FCU unit each cycle. For the first instruction the source1 address is
taken from the current top pointer value (TOPn-1). The number of consumed data
(CN) (8-bit field) is subtracted from the currentTOPvalue (TOPn-1) and then the
number of produce data (PN) is added to find the result address (DESTn-1) of the
first instruction. The other three instruction’s first operand and result addresses
are calculated similarly as indicated in Fig. 4(b). The second operand (source2) is
calculated by subtracting from current top pointer value (TOPn-1) one. Fig. 4(b)
shows the hardware mechanism used for calculating the second operand.

+

QHn-1

OF F SE T(n-1)

OF F SE T : postiv e/negativ e integer v alue that
indicates the location of SR C2(n-1) f rom QH(n-1)
QTn : queue tail v alue of instruction n
DE STn : destination location of instruction n
SR C1(n-1) : source address 1 of instruction (n-1)
SR C2(n-1) : source address 2 of instruction (n-1)

(a)

QTn-1

SR C1(n-1)

SR C2(n-1)

DE ST(n-1)

+

QHn

OF F SE T(n)

QTn

SR C1n

SR C2n

DE STn

-

TOP n-2

1

TOP n : current top poiner v alue f or instruction n
DE ST(n-1) : destination location of instruction (n-1)
SR C1(n-1) : source address 1 of instruction (n-1)
SR C2(n-1) : source address 2 of instruction (n-1)

(b)

TOP n-1

SR C1(n-2)

SR C2(n-2)

DE ST(n-2)

-

TOP n-1

1

SR C1(n-1)

SR C2(n-1)

DE ST(n-1)TOP n

Fig. 4. Source2 calculation mechanism (a) FQM computing circuit; (b) FSM computing
circuit

On the Design of a Dual-Execution Modes Processor 43

3 Results and Analysis

We have developed the FaRM processor architecture in verilog HDL. After syn-
thesizing the HDL code, the designed processor gives us the ability to investigate
the actual hardware performance and functional correctness. It also gives us the
possibility to study the effect of coding style and instruction set architecture over
various optimizations. For the processor to be useful for these purposes we identi-
fied the following requirements (1) High-level description: the format of the FaRM
design description should be easy to understand and modify; (2) Modular: to add
or removenew instructions, only the relevant parts should have to modify. A mono-
lithic design would make experiments difficult; and (3) the processor description
should be synthesizable to derive actual implementation.

To simplify the functional verification we have developed a front-end tool, which
displays the internal state of the processor. The states displayed include: the state
of each pipeline stage, SSU contents and data memory contents. We can easily
extend the front-end tool to display several other states at each pipeline stage.
For visibility, we only show the state of the SSU and the data memory - the two
states are enough for checking the correctness of a simulated benchmark program.
This approach allows monitoring the program execution as each instruction passes
through the pipeline and identifies functional problems by tracing processor state
change. We captured the input and output signals changes for several cases.

High-level verification is mainly used to verify functional correctness. Low-
level problems such as timing violation cannot be verified directly with high-
level verification tools. To ensure correctness of low-level implementation details,
interfaces and timing, we use gate-level simulation for ensuring compliance with
design specifications. We specified timing and other constraints using a unified
user constraints file with the core modules. We used Altera Quartus II tools and
Stratix FPGA EPS1 target device.

3.1 Complexity and Speed Comparison Results

As we earlier mentioned, the proposed architecture was designed in hardware with
Verilog HDL and synthesised with Altera Quartus II synthesizable tools. Several
test benches were used to verify the correctness of the architecture for both Stack
and Queue execution models.

Table 1 shows the design results of the FaRM system architecture when syn-
thesised for Stratix FPGA device over speed, area and combined optimisations.
The complexity of the processor is given in terms of gates for each module and the
whole processor core. The synthesize result gives the number of Logic Elements
(according to[9] a gate is equivalent to 12 logic elements (LE)). In average, the
processor achieves about 65 MHz speed for Stratix FPGA device.

We also compared the proposed FaRM system performance in terms of (1)
execution capability, (2) complexity and (3) speed, to three synthesizable proces-
sors (JOP, S-JOP and PQP processors). The JOP processor is a Java Optimised
architecture based on stack execution model with its own instruction set, called mi-
crocode [4]. Java byte codes are translated intomicrocode instructions or sequences

44 Md.M. Akanda, B.A. Abderazek, and M. Sowa

Table 2. Hardware Parameters used during synthesis stage for various processor archi-
tectures. S-JOP is a simplified (without bytecode support) JOP architecture.

Description FaRM PQP JOP S-JOP
Instruction Width (IW) 16-bits 16-bits 8-bits 8-bits
Fetch Width (FW) 8 bytes 8 bytes 1 byte 1 byte
Decode Width (DW) 8 bytes 8 bytes 1 byte 1 byte
Storage Register 16 (Shared) 16 16 16
Arithmetic Logic 1 1 1 1
Load/Store 1 1 1 1
Branch 1 1 1 1
Set Register 1 1 0 0
Execution mode Dual Single Single Single
Application Queue, Queue Bytecode, Stack
program type Stack Stack
Supporting instructions 55 54 43 43

Table 3. Speed and complexity comparison

Achitecure GSOP GAOP GBOP SSOP SAOP SBOP
(Gates) (Gates) (Gates) (MHz) (MHz) (MHz)

FaRM 147480 123336 123336 65.27 65.20 65.20
JOP 36048 35472 35472 80 80 80
PQP 144012 120852 120852 108.39 108.39 108.39
S-JOP 31212 28944 28944 80 80 80

of microcode. The S-JOP processor is a simplified version of JOP architectures
and supports only stack native instruction set. For fair comparison, we removed
the bytecode decoding circuitry part form the base JOP processor since our core’s
instruction set do not support them yet. Finally, the PQP processor is a produced
order parallel queue architecture developed at SowaLaboratory [3,5,8]. It supports
a subset of the produced order queue instruction set architecture [3]. All instruc-
tions are 16-bit wide.Table 2 shows the design parameter of various processor
architectures (FaRM, PQP, JOP and S-JOP).

Table 3 shows the complexity (in terms of gates number) and the speed for each
processorovervariousoptimisations:(a)GSOP-gatescountforspeedoptimisations,
(b) GAOP gates count for area optimisation, (c) GBOP gates count for balanced
optimisation, (d) SSOP- speed for speed optimisations, (e) SAOP- speed for area
optimisation, and (f) SBOP- speed for balanced optimisations. In average, the
additional hardware needed by our dual-execution core is acceptable (Figure 5).
Consequently, we found that FaRM, PQP, JOP, and S-JOP cores achieve about
65MHz, 80MHz, 108MHz, and 80MHz respectively. These results show that FaRM
core is a little slower (about 18.5%) than the other architectures.This comes for the
execution mode switching mechanism delays, which needs additional hardware.
For overall performance, we conclude that the complexity and the achieved speed

On the Design of a Dual-Execution Modes Processor 45

0

20

40

60

80

100

120

140

160

FaRM JOP PQP S-JOP

Processors

G
a
t
e
s

(
k
i
l
o
)

Fig. 5. Hardware complexity comparison

of our dual-execution modes core are acceptable. Complexity can be reduced more
if aggressive optimisations techniques are adopted.

4 Conclusion

In this paper, we proposed a dual-execution modes processor and we presented its
evaluation results. The architecture shares a single instruction set and supports
both Queue and Stack execution modes in a single and simple processor core. This
is achieved dynamically with an Execution-Mode-Switching (ESM) and Sources-
Results-Computing mechanisms.

We presented the novel aspects of the dual-execution mechanism and a detailed
description of the FaRM architecture. From our preliminary evaluation results,
we found that FaRM processor achieves about 65MHz speed and can execute
both Queue and Stack execution models correctly. It is implemented without
considerable additional hardware when compared with conventional architectures
with similar hardware configurations. For example, when compared with PQP
core, only about 2.19% more gates are required.

Finally, we conclude that, although the proposed architecture is still in its
preliminary design phase, it is expected that the system will have a bright future
especially for applications requiring small memory footprint and tight resources.

References

1. M. M. Akanda , B. A. Abderazek and M. Sowa, An Efficient Dynamic Switching
Mechanism (DSM) for Hybrid Processor Architecture, EUC 2005, LNCS Vol. 3824,
pages77-86, December, 2005.

2. R. Radhakrishnan, D. Talla, and L. K. John, Allowing for ILP in an embedded
Java processor, Proceedings of the 27th International Symposium on Computer
Architecture, pages 294-305, June 2000.

3. M. Sowa,B. A. Abderazek, and T. Yoshinaga, FARM Processor, Parallel Queue
Processor Architecture Based on Produced order computation model, Int. Journal of
Supercomputing, HPC, Vol.32, No.3, June 2005, pp.217-229.

46 Md.M. Akanda, B.A. Abderazek, and M. Sowa

4. M. Schoeberl, JOP: A Java Optimized Processor for Embedded Real-Time Systems,
PhD thesis, Vienna University of Technology, 2005.

5. B. A. Abderazek, S. Shigeta, T. Yoshinaga and M. Sowa, On the Design of Register-
Queue Based Processor Architecture (FARM-rq), Journal of LNCS Vol. 2745, pp.
248-262, July 2003.

6. N. VijayKrishnan, Issues in the Design of JAVA Processor Architecture, PhD disser-
tation, University of South Florida, Tampa, FL-33620. December 1998.

7. R.Radhakrishnan,N.Vijaykrishnan, L. John and A.Sivasubramanium,Architectural
issues in java runtime systems, Tech. Rep. TR-990719, 1999.

8. B. A. Abderazek, T. Yoshinaga and M. Sowa, High-Level Modeling and FPGA Proto-
typing of Produced Order Parallel Queue Processor Core, Journal of supercomputing,
Volume 38, Number 1 / October, pp. 3-15, 2006.

9. STRATIX devices: www.altera.com/products/devices/stratix/

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 47 – 56, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Pseudo Share Data Cache in Multiprocessor: PSDMP*

Pengyong Ma, Xiao Hu, Shuming Chen, and Yang Guo

School of Computer Science and Technology,
National University of Defense Technology, Changsha. 410073 China

pyma@nudt.edu.cn,
mapy@sohu.com

Abstract. With the development of semiconductor technology, multicore is
integrated on one chip [1]. In CMP, more than one core accessing the shared
data will cause memory access conflict and the problem of cache coherence.
Cache coherence is a precondition for the system to function correctly. So it is a
key problem in CMP. In this paper, we propose a new pseudo sharing level one
data cache in a chip multiprocessor architecture (PSDMP). In PSDMP, the
request of memory access will be propagated on a ring chain. This method can
reduce both the complexity of the design and the load of L2 cache. Simulation
results show that performance of PSDMP improves about 30% averagely than
another CMP which uses MESI protocol, especially the best is about 100% for
the parallel applications which has many inter-processor communications for
modifying shared data. In one word, PSDMP is promising processor
architecture.

1 Introduction

As the feature size of the integrated circuit manufacturing process continues to shrink,
more and more transistors can be integrated on a single chip. It is predicted that there
will be several billion transistors on a chip by the year 2010. So a single chip can
integrate more complex functions, even multiple processor cores. CMP (Chip Multi-
Processor) has been widely used in high performance processors. It will be a
technology trend for future processors.

Multiple processor cores in CMP communicate by the shared cache. Every
processor core has its own internal cache. There maybe several copies in multiple
caches for one memory block. It will cause the problem of data coherence. To provide
an efficient programming model and ensure the correctness of program execution, the
designer must guarantee the cache coherence.

Generally, there are two main methods to resolve the cache coherence [2]: software-
based method and hardware-based method [3] [4] [5] [6]. Software depends on
programmers and the compilers. Programmer must know the trace of the program run
and the architecture of the chip. It is very rigorous for most programmers and it will
result in fewer people taking full advantage of the multi-core processor. On the other
hand, compiler must distinguish the uncacheable data. During program execution the
cacheable data enters the low levels cache and the uncacheable data remains in the

* This work is supported by National Natural Science Foundation of China(60473079).

48 P. Ma et al.

share memory. It is quite restrictive by compiler. Moreover, lots of data can’t be
buffered in the lower levels cache and that will reduce the chip’s performance.

On snoopy multiprocessor machines, every private cache maintains the coherence
protocol. Generally, every cache controller changes the data’s state depending on bus
requests and the data previous state. Snoopy protocol’s drawback is its scalable
limitation. Directory protocol can solve this limitation; but it needs large memory to
store the directories. Otherwise, to achieve high performance, the protocol always
divides one transaction into multi-phases, which supports several requests
simultaneously. It is difficult to maintain many temporary states [5].

In CMP, several threads run simultaneously, the memory access delay is large and
the data bandwidth is the system’s bottleneck. How to design a simple and high
performance coherence protocol is a challenge.

In this paper, we propose a new architecture: PSDMP. Every core can access other
L1Ds through a ring. Data request and response are accomplished on the ring. One data
block has several copies in L1Ds. The copies are distinguished between master and
slave depending on Master bits. After several benchmarks were run, we find that this
architecture can reduce the memory load of L2 and enhance the chip’s performance.

2 Model Proposed

In our CMP model, the core is “YHFT”-DSP. “YHFT”-DSP is two clusters and
VLIW architecture. It can issue 8 instructions which include two memory instructions
at most in one clk cycle [7] [8]. The chip has two-level cache; L1D is a 4K-bytes,
two-way set associative cache with 4 single port memory blocks in one way. It can
support two memory accesses in a cycle. Figure 1 is the L1D architecture [9] [10].

Fig. 1. It is the first level Cache architecture of “YHFT”-DSP, L1D has 8 banks; both
instructions access every bank through the crossbar [9] [10]

 Pseudo Share Data Cache in Multiprocessor: PSDMP 49

On the assumption that there are 4 cores in one chip, if we adopt SMPDCA(shared
multi-ported data Cache architecture)[11]; It will need a crossbar between 32 memory
banks and 8 memory accesses. The access delay will spend several cycles and the
hardware will increase rapidly. To solve this problem, we propose PSDMP. The
core’s L1Ds are linked by a ring. Every L1D cache is independent, but one core can
access other L1Ds by the ring. When a load/store instruction arrives, if it hits its L1D
only, the operation is same as in single core chip. If it hits other L1Ds, the core will
issue request word on the ring. When other cores receive a request, they will insert a
stall cycle or wait their L1Ds idle to return data or write the data to memory.

The request word will propagate as far as possible on the ring. For example, if
there is only one request word on the ring, it will reach the destination in current
cycle, otherwise it will be buffed in chain buffer as far as possible. Figure 2 is the
frame of PSDMP with 4 cores.

Fig. 2. There are 4 “YHFT”-DSP cores in the broken line rectangle with L2 and the other
peripherals outside. Four L1Ds are linked by the ring. Every core can access other L1Ds
through the ring.

3 Design and Implementation

3.1 Read Access

After a load instruction issued, the address will be calculated out. Cache controller
compares the address with the data in Tags, if it hit its L1D, the succeed steps are
same as in single core chip; if the access doesn’t hit itself L1D but other core’s, the
core will send request to the near core which include the data. The request word has
three segments: Source core ID, Dst core ID, and the data address.

Source core ID Dst Core ID Address

50 P. Ma et al.

Source core ID is the core’s ID which contain the requested data. It has 2 bits to
distinguish one from four cores. Dst core ID is the core’s ID which sends the request
word.

The read request propagates on the ring, when it arrives at a core, the core compares
the Source core ID with it’s, if equal, it will hold the request and stall its pipeline one
cycle to fetch the data from its L1D, then it sends the data with the destination core ID
on the ring. If not equal, it will transfer the request word to the next core by the ring.
The request will reach the destination finally and disappear on the ring.

The read response word has three parts: Dst core ID, Ready and the data.

Dst core ID Ready data

The core which sends the request word will wait for data all along. When the
response word arrives, it compares the Dst core ID with it’s, if equal, it accepts the
data and holds the response word; otherwise, it hands the response word to the next
core by the ring. Finally, the word will reach the destination.

If a read request doesn’t hit any L1Ds, it will be sent to L2, the response is same as
in single core despite of the request word containing the core ID.

After sending a read request word, the core will stall the pipeline until the request
data return, so the request should be responded as early as possible. When the core
containing the data receives a read request, it will stall its pipeline to fetch the data
immediately.

3.2 Write Access

The write access is similar as reading. After a store instruction issued in the execute
stage, the cache controller compares the high address with the Tag data to judge hit or
miss. If the access hits its L1D only, the responding process is same as in single core
chip; if it hits other L1Ds, the core will send the write request word on the ring. The
word contains four segments: destination core ID, width, data and address.

Dst core ID Width Data Address

Because a write access maybe hits other three L1Ds, destination core ID contains
three 2-bits ID to indicate that which L1Ds will update the data.

When a core receives a write request word, it compares the Dst core ID with itself.
If three Dst core IDs equal it’s, the request will be buffered in the write buffer and the
core will hold the request word. If one or two Dst core IDs equal their ID, the core
will buffer the request word and modify the corresponding Dst core ID to the remains
and then transfer the request word to the next core. The core updates a byte, half word
or a word depending on Width segment.

Figure 3 shows the process how a write request word propagates on the ring. From
up to down it illustrates the steps of that how the request word passes the cores.

Write request word propagates as same as read request word on the ring. The
difference between them is that once a core sends write request word on the ring; it
considers that the write access is finished. So when the core receives a write request
word, the request is not responded until that L1D is idle or the write buffer is full. On
the contrary, once accepting a read request, the core will respond it immediately. If a
write request doesn’t hit any core, it will be sent to L2.

 Pseudo Share Data Cache in Multiprocessor: PSDMP 51

Fig. 3. Core0 sends the write request and it propagates on the ring. The Dst core ID is “01, 01,
11”. This means that this write access hits core1 and core3’s L1Ds. When the request reaches
core1, according to Dst core ID, core1 finds that it should update its L1D; then it buffers the
request. But “11” doesn’t equal its ID, core1 modifies the Dst core ID from “01, 01, 11” to
“11, 11, 11” and transfers the request word to core2 on the ring. Core2 finds that three Dst
core IDs are not equal to its ID, so it transfers the request word to core3. Core3 finds that three
Dst core IDs equal its ID, so it buffers the request word and eliminates it form the ring.

3.3 Conflict Handling

There are four cores sending request on the ring, it will bring conflict. How to solve
this problem? If each of these requests is buffered in every core and transmitted in the
next cycle, it will lessen the efficiency. For example, when core0 sends request to
core3, the request will not arrive at core2 until 3 cycles later even though the ring is
idle. One other method is to build a 4*4 crossbar connecting every core, but it needs
lots of hardware. PSDMP needs only a ring chain and a chain buffer in every core.

Fig. 4. When core n-1 sends request to core n+1, if core n sends or transmits other request at
the same time, the request of core n-1 will be buffered in the chain buffer of core n and be sent
to core n+1 in the next cycle

52 P. Ma et al.

So there may be several requests on the ring simultaneously. When a conflict
happens, the request will be sent to the chain buffer as far as possible. As Figure 2
shows, if there are two requests simultaneity, one is core0 to core1 and the other is
core2 to core3. They are not interfering on the ring and will reach their destinations
respectively at the current cycle.

If the two request are Q1:core0 to core3 and Q2:core2 to core0. At current cycle T,
Q2 reaches core0; but Q1 is buffered in chain buffer of core2, it will reach core3 in
time T+1.

3.4 Allocation and Invalidation of Data Block

Every core sends request to other cores or L2 and allocates a cache line for read miss.
On the contrary, it doesn’t allocate a cache line for write miss. According to the
principle of locality, the next access will be the nearby data very possibly. So if not
allocate a cache line and fetch this miss line, the sequent read accesses will access
other core’s L1Ds or L2, this will enhance other cores and L2’s load, especially it will
break program running in other cores.

Fig. 5. It is the process of Master symbol shifting. The cores P, Q, R have the copies of data X.
The line’s Master bit is 1 in P. When data line whose address is N+A (N is multiple of the
memory’s size) enters P’s cache, it has to sacrifice the data X. P doesn’t need to write back the
data X, it only needs Q to set the corresponding Master bit. This process reduces the data
exchanging between L2 and L1Ds, lightens the load of L2 in CMP, lessens the stall cycles of
program and enhances the chip’s performance.

 Pseudo Share Data Cache in Multiprocessor: PSDMP 53

The core doesn’t allocate a cache line for miss write, because once the write
request is sent on the ring, the core considers that this operation is complete and runs
the program continually. Otherwise it has to stall the program to wait the data back.

In PSDMP, one data block may have several copies in L1Ds; the difference with
other coherence protocols is that the copies are same. So when the cores receive a
flush or a snooping request, it needs only one core to return the dirty data, others just
clear their valid bits. Master bit is used to distinguish the master and slave data line.
Every cache line has a Mater bit; all Master bits are reset to 0 at the beginning. Once a
core has a read miss and gets the data from L2, the corresponding Master bit will be
set to 1. It means this core has the dominion of this cache line. When L2 invalidates
this line, the L1D with Master bit being 1 check whether it needs to write back this
line. L2 only waits for the master line’s ACK signal.

When a read request misses in it’s L1D but hits more than one L1Ds of other cores,
the core only sends request to the nearly core without considering Master bit because
these copies are same. This method will balance the load; otherwise the Master line
will work hard.

The Master symbol maybe transferred when a core sacrifice a Master cache line. If
other cores have the data’s copies, they don’t write back the dirty data to L2. The only
work is to transfer the Master symbol.

4 Simulation Results and Analysis

In our simulation environment, the CMP cores are “YHFT”-DSP 700, the simulator is
VCS and programs run in SUN Co. blade 2000. To evaluate the benefit of PSDMP,
the evaluation is performed using a cycle-accurate.

Programs are compiled in “YHFT” IDE (integrated design environment) at first,
then export the binary codes and run them in “YHFT”-DSP 700. Then each program
is divided into 4 tasks and compiled. Finally these tasks run in 4 cores PSDMP and 4
cores chip with MESI protocol. During compiling, the optimize level is the same. L2
is set as RAM in chip, data and programs are loaded in RAM during simulation.

Because the core is “YHFT”-DSP, the programs are typical benchmarks in digital
signal processing. It includes minerror, bitrev, dotp_sqr, fir, matrix, FFT.

Minerror performs a dot product on 256 pairs of 9 element vectors and searches for
the pair of vectors which produces the maximum dot product result. It is used in the
VSELP vocoder codebook search.

Bitrev performs the address bit-reversal of the input array.
Dotp_sqr performs two array’s dot product and stores it in R. It also squares each

element of input and accumulates it in G. The size of each array is 1024.
Fir assumes the number of filter coefficient is a multiple of 4 and the number of

output samples is a multiple of 2. It operates on 16-bit data with a 32-bit accumulate.
The size of coefficient array is 8; the size of input array is 1032 and 1024 of output.

Matrix performs two matrixes multiply. In this program, the sizes of two matrixes
are both 32*32.

FFT calculates a 128 dot FFT with radix 2.

54 P. Ma et al.

Fig. 6. It shows six programs running time in the single core, 4 cores with MESI protocol and 4
cores of PSDMP respectively. The y-axis shows the running time of the programs and the
numbers came from detailed simulation. The times of MESI and PSDMP are the longest in 4
tasks.

Fig. 7. It shows the acceleration of 4cores with MESI protocol and PSDMP relative to single
core chip. On average PSDMP produces good acceleration (2.9, 3.1, 3.1, 3.5, 3.2 and 2.0).
Whereas 4 cores with MESI protocol produces poor acceleration (1.8, 2.4, 3.2, 1.8, 1.5 and 2.0).
PSDMP improves performances exceed 30%. It is clear that PSDMP is the better architecture.

As Fig. 6 and Fig. 7 showing, PSDMP improves performances exceed 30%
comparing with MESI protocol. There are several main causes of it.

Firstly, pseudo sharing L1Ds improves the hit rate. The pseudo hit delay is shorter
than the delay of waiting for the data from L2. When an access misses in its own
cache but hits on other L1Ds, it can get the data in the next cycle if the ring is idle.
The delay is 2.9 cycles on average by simulation. On the contrary, it is at least 7
cycles from L2.

 Pseudo Share Data Cache in Multiprocessor: PSDMP 55

Secondly, PSDMP reduces the conflicts of access L2. The bandwidth of shared L2
is always the bottleneck of system. The chip needs lots of data especially in DSP.
During simulation, we find that in the chip with two cores the conflicting rate of
access L2 is 30%; it will exceed 70% in 4 cores chip. In PSDMP, it doesn’t need to
access L2 if the miss data has been loaded in other L1Ds. It needs to do nothing but
one L1D returning this data line. Once it sacrifice a Master cache line and allocate
this line for the new data and if the sacrificial line’s copies are loaded in other L1Ds
too, it doesn’t need write back the dirty date, the only work is to set other core’
Master bit. Compared with MESI protocol, it doesn’t exchange data with L2.

Finally, PSDMP doesn’t maintain the complex coherence protocol. A write
operation will update all copies by the ring, so all copies are same.

PSDMP is very fit with computing much data. It is especially suitable to the
program which imports lots of data and modifies them, such as Fir and Matrix in
Figure 7. Because in PSDMP, it needn’t to invalidate other copies while it modifies
the date.

Of course, PSDMP has its drawbacks. One core needs to stall its pipeline a cycle to
fetch data for other core while accepting a read request. The write requests needn’t to
stall pipeline, but it needs write buffers to store them. Furthermore, the core’s Tag
must have multi ports. Through these ports, other cores access the Tag to determine
whether the access hits this L1D.

5 Conclusions

Today, more processors are integrated in a chip; it causes the problem of cache
coherence. No matter MSI, MESI or Dragon, it is complex to maintain the coherence.
Moreover, if messages exchange between programs too frequently, it will lead to
cache thrashing. In addition, multicore access L2 frequently, the bandwidth of L2 will
limit the chip’s performance seriously. Therefore, on the base of the detailed analysis
of these factors, this paper proposes a new architecture of CMP: pseudo sharing the
level one cache and then makes a detailed simulation.

Compared with the CMP using MESI protocol, PSDMP architecture has four
strong points as follows: the higher rate of data hit; the lesser data access of L2; the
shorter delay time of data sacrifice and the lower hardware spending to maintain
coherence. Through simulation, it indicates that at average the performance of
PSDMP improves about 30% than the CMP with MESI protocol.

Its drawback is that the Tags must be a multi-port memory.

References

1. Tang Zhimin: Prospect of tera-scale microprocessors. Information Technology Letters,
No.8, 2004

2. FENG Li, Chen Ji-lu, Zhao Zhen-bo: Establishment of LC memory model and Cache
consistency protocol. Journal of North China Electric Power University, Oct, 2002

3. Vinod Viswanath: Multi-log Processor Towards Scalable Event Driven Multiprocessors.
DSD’04

56 P. Ma et al.

4. Taeweon Suh: Supporting Cache Coherence in Heterogeneous Multiprocessor Systems.
DATE’04

5. Daniel J.Sorin: Specifying and Verifying a Broadcast and a Multicast Snooping Cache
Coherence Protocol. IEEE Transactions on Parallel and Distributed Systems, Vol.13,
NO.6, June 2002

6. Guang R.Gao and Vivek Sarkar: Location Consistency-A New Memory Model and Cache
Consistency Protocol. IEEE Transactions on Computers, Vol.49, NO.8, August 2000

7. WAN Jiang-Hua, CHEN Shu-Ming: MOSI: a SMT Microarchitecture Based On VLIW
Processors. Chinese Journal of Computer, Vol.39, 2006

8. Chen Shuming, Li Zhentao: Research and Development of High Performance YHFT
Digital Signal Processor. Journal of Computer Research and Development, Vol.43, 2006

9. Ma Pengyong, Chen Shuming, Li Guokuan: The Design of Cache Controller Supporting
Two Parallel Cache Accesses. High Technology Letters, 2002

10. ZHANG Dan-Yu, MA Peng-Yong, CHEN Shu-Ming: The Mechanism of Miss Pipeline
Cache Controller based on Two Class VLIW Architecture. Journal of Computer Research
and Development, 2005

11. HUANG Guang-Qi, LI Zi-Mu, ZHOU Xing-Ming, DOU Yong: Shared Multi Ported Data
Cache Architecture: SMPDCA. Chinese Journal of Computer, Dec, 2001

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 57 – 64, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Further Improvement of Manik et al.’s Remote User
Authentication Scheme Using Smart Cards

Jai-Boo Oh, Jun-Cheol Jeon, and Kee-Young Yoo*

Department of Computer Engineering, Kyungpook National University,
Daegu 702-701, South Korea

jboh0515@hotmail.com, jcjeon33@infosec.knu.ac.kr, yook@knu.ac.kr

Abstract. In 2006, Manik et al. proposed a novel remote user authentication
scheme using bilinear pairings. Chou et al. identified a weakness in this scheme
and made improvements. In addition, Thulasi et al. noted that both Manik et
al.’s and Chou et al.’s schemes are vulnerable to forgery and replay attacks. In
this paper, we analyze the previous schemes based on a timestamp and provide
further comments together with an improved scheme using a nonce.

Keywords: Authentication, Bilinear Pairing, Forgery Attack, Replay Attack,
Off-line guessing Attack.

1 Introduction

With the rapid growth of computer networks and the use of the Internet, the security
of various types of data transmissions using public networks, such as electronic com-
merce, business transaction and government services has, become more and more
important. Remote user-authentication schemes have become one of the most impor-
tant research topics.

In 1981, Lamport [1] proposed a famous hash-based password authentication
scheme. The scheme required the remote server system to maintain a password table to
verify user legitimacy. In maintaining a verification table, that is a risk of password
disclosure and issues in managing costs. To avoid these problems, several authentication
schemes have been proposed [2, 3, 4, 5]. Hwang and Li [4] proposed a new authentica-
tion scheme using smart cards, which didn’t require a password table. Recently, Manik
et al. [6] proposed a remote user authentication scheme using bilinear pairings. Chou et
al. [7], however, identified that this scheme had some flaws which could lead to a replay
attack. They suggested a modified scheme to prevent such an attack. Thulasi et al. [8]
pointed out that Chou et al.’s modified scheme is still susceptible from replay attacks.
They identified that Manik et al.’s scheme has other weaknesses.

In this paper, we analyze the problems of the above schemes and propose an efficient
protocol to avoid such attacks. The rest of this paper is organized as follows: Section 2
defines notations used in this paper. Section 3 briefly reviews previous schemes and
provides comments regarding Manik et al.’s scheme. Section 4 offers further com-
ments, as well as our improved scheme and a security and performance analysis.
Concluding remarks are presented in Section 5.

* Corresponding author.

58 J.-B. Oh et al.

2 Preliminary

In this section, we refer to the basic definition of the bilinear map, the Bilinear Diffie-
Hellman Generator, and related computational problems which are used throughout
this paper. Most of the results in this section come from [9, 10].

Bilinear Map: Let G1 be an additive group of a large prime q and let P be a generator
of G1. Let G2 be a multiplicative group with the same order q. A pairing is a map ê:
G1 × G1 G2 which has the following properties:

(1) The map ê is bilinearity: Given P, Q, R ∈ G1, we have
ê(P, Q + R) = ê(P, Q) ê(P, R) and ê(P + Q, R) = ê(P, R) ê(Q, R) .

Consequently, for any a, b ∈ Zq :
ê(a·P, b·Q) = ê(P, Q)ab = ê(a·b·P, Q)

= ê(P, a·b·Q) = ê(b·P, Q)a = ê(b·P, a·Q) .
(2) The map ê is non-degenerate: If P is a generator of G1, then ê(P, P) is a genera-

tor of G2. In other words, ê(P, P) 1.
(3) The map ê is efficiently computable.

Bilinear Diffie-Hellman Generator: Boneh et al. first formally set up the bilinear
Diffie-Helman definitions and defined some assumptions and complex problems in
[11].

Randomized algorithm: If the following conditions are satisfied, we say that a ran-
domized algorithm is a bilinear Diffie-Hellman (BDH) parameter generator.

(1) Takes a security parameter k for integer 1.
(2) runs in polynomial time in k.

(3) outputs a prime q, the description of groups G1, G2 of the prime order q and

bilinear map ê: G1 × G1 G2 .

Bilinear Diffie-Hellman problem: Let < G1, G2, ê > be the output of (k) and let P

be a generator of G1. The bilinear Diffie-Hellman (BDHP) in < G1, G2, ê > is as fol-
lows: Given < P, a·P, b·P, c·P > with uniformly random choices of a, b, c, ∈ Zq

*, compute
ê(P, P)abc.

BDH assumption: The BDH assumption states that no probabilistic polynomial time
algorithm has a non-negligible advantage in solving the BDHP for <G1, G2, ê> gener-
ated by on input k.

Related Hard Problems: Many pairing-based cryptographic protocols are based on
the hardness of BDHP for their security. Other computational problems related to
pairing-based protocols are as follows:

(1) Discrete Logarithm Problem (DLP): Given two elements P, Q ∈ G1, find an
integer a ∈ Zq

*, such that Q = a·P whenever such an integer exists.

(2) Computational Diffie-Hellman Problem (CDHP): Given (P, a·P, b·P) for any
a, b ∈ Zq

*, compute a·b·P.

 Further Improvement of Manik et al.’s Remote User Authentication Scheme 59

(3) Decisional Diffie-Hellman Problem (DDHP): Given (P, a·P, b·P, c·P) for any
a, b, c ∈R Zq

*, decide whether c = a·b mod q.

Cryptographic Hash Function:

(1) H1 : {0, 1}* G1, is a public one-way hash function that maps a message of
arbitrary length into a non-zero point of G1, as described in [12].

(2) H2 : {0, 1}*→ Zq, is a key derivation function, typically a secure hash function.

3 A Review of Previous Schemes

In this section, we briefly review the previous schemes and cryptanalysis of Manik et
al., Chou et al., and Thulasi et al..

3.1 Manik et al.’s Scheme

Setup phase: The remote server (RS) selects a secret key s and computes the server’s
public key, PubRS = s⋅P. Then, the RS publishes the system parameter < G1, G2, ê, q,
P, PubRS, H1>.

Registration phase: This phase is invoked whenever Ui initially registered or re-
registered to the RS.

(1) Ui submits his/her identity, IDi and password PWi to the RS.
(2) On receiving the registration request, the RS computes RegIDi=s⋅H1(IDi)+

H1(PWi).
(3) The RS personalizes a smart card with IDi, Reg IDi, H1 and this is sent to Ui over a

secure channel.

Authentication phase: This phase is invoked whenever Ui wants to login to the RS.
This phase is further divided into login and verification phase.

Login Phase: Ui inserts a smart card into a terminal and keys the IDi and PWi. If the
IDi is identical to the one that is stored in the smart card, the smart card performs as
follows:

(1) Computes DIDi = T⋅RegIDi, Vi = T⋅H1(PWi), where T is the user system’s time-
stamp.

(2) The login request < IDi, DIDi, Vi, T > is sent to the RS over a public channel.

Verification phase: This phase is invoked whenever the RS receives Ui’s login re-
quest.

(1) The expected valid time interval T (T* - T) is verified.
(2) Checks whether ê(DIDi – Vi, P) = ê(H1(IDi), PubRS)

T. If it holds, the RS accepts
the login request; otherwise, it is rejected.

Password change phase: This phase is invoked whenever Ui wants to change its
password.

60 J.-B. Oh et al.

(1) Ui inserts the smart card to a terminal and keys IDi and PWi. If IDi is identical to
the stored key in the smart card, proceeds to the step (2); otherwise, terminates
the operation.

(2) Ui submits a new password PWi
*.

(3) The smart card computes a new
RegIDi

* = RegIDi – H1(PWi) + H1(PWi
*) = s⋅H1(IDi) + H1(PWi

*) .
(4) The password has been replaced by the new password PWi

* and the smart card
has replaced the previously stored RegIDi value by RegIDi

* value.

3.2 Chou et al.’s Improvement of Manik et al.’s Scheme

Chou et al. [6] noted that the verification in [5], ê(DIDi – Vi, P) = ê(H1(IDi), PubRS) holds
valid even when DIDi′ = DIDi + a and Vi′ = Vi + a where a ∈ G1, as shown below.

ê(DIDi′ – Vi′, P) = ê(DIDi + a – Vi - a, P)
= ê(DIDi – Vi, P)
= ê(H1(IDi), PubRS) .

Chou et al. proposed a different verification technique as ê(DIDi, P) =
ê(T⋅s⋅H1(IDi) + Vi, P) to avoid the subtraction effect of [5].

3.3 Thulasi et al.’s Cryptanalysis

Chou et al. modified Manik et al.’s verification as ê(DIDi, P) = ê(T⋅s⋅H1(IDi) + Vi, P).
Thulasi et al., however, pointed out that this verification also is valid for DIDi′ = DIDi
+ a′ and Vi′ = Vi + a′ where a′ ∈ G1, as shown below.

ê(DIDi′, P) = ê(DIDi + a′, P)
= ê(DIDi, P)ê(a′, P)

 = ê(T⋅s⋅H1(IDi) + Vi, P) ê(a′, P)
 = ê(T⋅s⋅H1(IDi) + Vi + a′, P)
 = ê(T⋅s⋅H1(IDi) + Vi′, P) .

Forgery attack: The tuple <IDi, DIDi, Vi, T> is sent to the RS over a public channel.
Any adversary who tapped these can compute T-1. An adversary can compute RegIDi,
and H1(PWi), as below.

RegIDi = T-1⋅DIDi = T-1⋅T⋅RegIDi .
H1(PWi) = T-1⋅V = T-1⋅T⋅H1(PWi) .

An attacker, who knows RegIDi and H1(PWi), can form the valid tuple < IDi, DIDi′,
Vi′, T′ > for the time stamp T* by computing, DIDi = T ⋅RegIDi , Vi′ = T′⋅H1(PWi). The
scheme is vulnerable against replay and forgery attacks. Anyone can forge the login
request, so it is also possible for an insider to lead an inside attack.

Weakness in the password change phase: In the password change phase, a user
submits the IDi, old password PWi, and new password PWi

*. The verifing equation is
RegIDi

* = RegIDi – H1(PWi) + H1(PWi
*), but they didn’t verify the validity of the old

password. Therefore, anyone who knows the IDi and has a smart card can change the
secret value RegIDi in the smart card.

 Further Improvement of Manik et al.’s Remote User Authentication Scheme 61

4 Further Comments and the Improved Scheme

In this section, we illustrate further flaws on Manik et al.’s scheme and provide an
improved one. Also we provide a security analysis.

4.1 Further Weaknesses of Manik et al.’s Scheme

Besides the replay and forgery attacks on Manik et al,’s scheme, it is still insecure
against a guessing attack. As Thulasi et al. has identified, an adversary can compute
RegIDi and H1(PWi) by multiplying T-1 to the right side of the equation DIDi =
T⋅RegIDi, Vi = T⋅H1(PWi). Then, the secret value is only one parameter, such as RegIDi
or H1(PWi). An adversary can easily identify values which are kept in a smart card,
and the following off-line guessing attack is possible:

Off-line guessing attack: As an active adversary knows the value of RegIDi and
H1(PWi), he/she can guess the password through the repetition of guessing and
verification.

A comment on the password change phase: Thulasi et al. showed that there is no
verification regarding the validity of the old password, however if the password
change phase is operated after checking the validity of the inputted password, the
phase does not have any problems.

4.2 Our Improved Scheme

The previous scheme is vulnerable against forgery, replay, and guessing attacks. One
of the key reason for those weaknesses is that RegIDi and H1(PWi) can be revealed
based on the computation of the inverse of T. The following procedure illustrates our
improved scheme.

Setup phase: The remote server (RS) selects a secret key s ∈ Zq
*. Then, RS publishes

the system parameter < G1, G2, ê, q, P, H1, H2>.

Registration phase:
R1 User Ui submits his identity, IDi and password PWi to the RS.
R2 On receiving the registration request, the RS computes RegIDi = s⋅H1(IDi) +

H1(PWi) .
R3 The RS personalizes a smart card with the IDi, RegIDi, H1, H2 parameters. They

sent to Ui over a secure manner, such as face-to-face.

Authentication phase: The authentication phase is divided into login and verification
phases.

Login Phase: The user Ui inserts a smart card into a terminal and keys the IDi and
PWi. The smart card performs the following operations:

L1 Checks to see whether the IDi is identical to the one that is stored in the smart
card.

L2 Generates a nonce ni ∈ Zq
*.

L3 Computes Vi = ni⋅P.

62 J.-B. Oh et al.

L4 Computes Wi = H2(IDi || Vi || T) where T is the user system’s time stamp.
L5 Computes Xi = RegIDi - H1(PWi) = s⋅ H1(IDi) .
L6 Computes DIDi = ni⋅ Wi⋅ Xi .
L7 Computes Ci = DIDi ⊕ Xi .
L8 Sends the login request < IDi, Vi, Ci, T > to the RS over a public channel.

Verification phase:
V1 Verifies the expected valid time interval T T* - T .
V2 Extracts DIDi = Ci ⊕ s⋅ H1(IDi) .
V3 Computes Wi = H2(IDi || Vi || T) .
V4 Checks whether ê(DIDi, P) = ê(s⋅ H1(IDi), Vi)

Wi . If it holds, the RS accepts the
login request; otherwise, it is rejected.

Fig. 1. Proposed remote authentication scheme using bilinear pairings

4.3 Validation and Security analysis

In this Section, we analyze the security of our proposed scheme.

Correctness: The validity in V4 of the verification phase is examined in the following.

ê(DIDi, P) = ê(ni⋅ Wi⋅ Xi, P)
= ê(ni⋅ Wi⋅ s⋅ H1(IDi), P)
= ê(Wi⋅ s⋅ H1(IDi), ni⋅ P)
= ê(s⋅ H1(IDi), Vi)

Wi.

Replay attack: If an adversary replays an intercepted valid login request and the RS
receives the request at time T′, the delay time is T T - T. Then, the replay attack

 Further Improvement of Manik et al.’s Remote User Authentication Scheme 63

does not work because the time interval exceeds the admissible delay time T. Only a
valid time stamp can be passed through the verification phase.

Forgery attack: In the login phase, an adversary can get the tuple <IDi, Vi, Ci, T>,
however, he cannot extract RegIDi or H1(PWi) from the equation, Vi = ni⋅P and Ci =
DIDi ⊕ Xi, since an adversary cannot find the nonce ni or the server secret s. Thus,
the correct DIDi or Wi cannot be computed, nor can an adversary pass V4 in the veri-
fication phase. The login request will fail.

Insider attack: In our scheme, we assume that remote server is protected through
access control. Then, RS secret s is protected from an adversary. If the user login
request is password-based and the RS maintains a password or verifier table for login
request verification, this attack can be achieved by an insider of RS. In our scheme,
however, the user login request is based on the user’s password, as well as RS’s secret
and a nonce which is not maintained in the verifier table. Thus, our scheme can with-
stand this attack.

Moreover, our scheme can simply prevent the scenario of many logged-in users
with the same login-ID, functioning/operating at the same time, as the other person
cannot login to the RS without the smart card. In our scheme, the RS does not posses
any password or verifier table for user verification, so our scheme can also withstand
a stolen verifier attack.

5 Conclusion

Several researchers have indicated that Manik et al.’s scheme has security flaws, but it
is difficult to improve their scheme in a given environment because of their funda-
mental problems. Thus, we have demonstrated that Manik et al.’s scheme has funda-
mental flaws in the construction of parameters and has been designed an efficient
scheme based on employing a nonce and two kinds of hash operations. Moreover we
have shown that our verification provides validity and security satisfaction. Our
scheme has only one path that needs to be authenticated by the RS and minimal com-
putational costs so that it can be efficiently used for remote user authentication.

Acknowledgement

This work was supported by grant No. R01-2006-000-10614-0 from the Basic Research Pro-
gram of the Korea Science & Engineering Foundation.

References

1. L. Lamport: Password authentication with insecure communication. Communication of
ACM 24 (1981) 770-772

2. E. J. Yoon, and K. Y. Yoo: More Efficient and Secure Remote User Authentication
Scheme using smart cards. IEEE CS ICPADS (2005) 73-77

3. H. M. Sun and L. H. Li: An efficient remote user authentication scheme using smart cards.
IEEE Transactions on Consumer Electronics 46 (2000) 958-961

64 J.-B. Oh et al.

4. M. Hwang and L. Li: A new remote user authentication scheme using smart cards. IEEE
Trans Consumer Electronics 46 (2000) 28-30

5. W. Yang and S. Shieh: Password authentication schemes with smart cards. Computers and
Security 18 (1999) 727-733

6. Manik. L. Das, Ashutosh Saxena, V. P. Gulati, D. B. Phatak: A novel remote user authen-
tication scheme using bilinear pairings. Computers & Security 25 (2006) 184-189

7. J. S. Chou, Y. Chen, J. Y. Lin: Improvement of Manik et al.’s remote user authentication
scheme. http://eprint.iacr.org/2005/450.pdf

8. Thulasi Goriparthi, Manik. L. Das, Atul Negi and Ashutosh Saxena: Cryptanalysis of re-
cently proposed Remote User Authentication Schemes. http://eprint.iacr.org/2006/28.pdf

9. I. Blake, G. Seroussi, and N. Smart: Elliptic curve in cryptography. Cambridge University
press (1999)

10. S. S. Al-Riyami: Cryptographic Schemes based on Elliptic Curve Pairings. Ph.D Thesis,
University of London (2004)

11. D. Boneh and M. Franklin: Identity-based encryption from the Weil pairing, Advances in
Cryptology (Crypto’2001), Lecture Notes in Computer Science, Springer-Verlag, Berlin
Heidelberg New York 2139 (2001) 213-229

12. N.P. Smart: An identity based authenticated key agreement protocol based on the Weil
pairing, Electronics Letters 38 (2002) 630-632

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 65 – 73, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Load Balancing on Non-homogeneous
Clusters

Marcelo R. Naiouf1, Laura C. De Giusti2, Franco Chichizola3,
and Armando E. De Giusti4

Instituto de Investigación en Informática LIDI (III-LIDI)5
Facultad de Informática – Universidad Nacional de La Plata

La Plata - Buenos Aires - Argentina
{mnaiouf, ldgiusti, francoch, degiusti}@lidi.info.unlp.edu.ar

Abstract. This paper discusses the dynamic and static balancing of non-
homogenous cluster architectures, simultaneously analyzing the theoretical par-
allel speedup as well as the speedup experimentally obtained.

A classical application (Parallel N-Queens) with a parallel solution algo-
rithm, where processing predominates upon communication, has been chosen so
as to go deep in the load balancing aspects (dynamic or static) without distor-
tion of results caused by communication overhead.

Four interconnected clusters have been used in which the machines within
each cluster have homogeneous processors although different among clusters.
Thus, the set can be seen as a N-processor heterogeneous cluster or as a multi-
cluster scheme with 4 subsets of homogeneous processors.

At the same time, three forms of load distribution in the processors (Direct
Static, Predictive Static and Dynamic by Demand) have been studied, analyzing
in each case parallel speedup and load unbalancing regarding problem size and
the processors used.

Keywords: Parallel Processing, Load Distribution, Static and Dynamic Load
Balancing.

1 Introduction

1.1 Cluster and Multi-cluster Architectures

A cluster is a type of parallel/distributed processing architecture consisting of a set of
interconnected computers that can work as a single machine. The machines that make
up a cluster can be homogeneous or heterogeneous, this being an important factor for
the analysis of performance that can be obtained from a cluster as a parallel machine
[1][2][3].

1 Full-time Professor, School of Computer Sciences. UNLP.
2 PhD student. UNLP Scholarship. Assistant Profesor, School of Computer Sciences. UNLP.
3 PhD student. CONICET. Assistant Profesor, School of Computer Sciences. UNLP.
4 CONICET Main Researcher. Full-time Professor, School of Computer Sciences. UNLP.
5 This project is financially supported by the CIC and the YPF Foundation.

66 M.R. Naiouf et al.

A multi-cluster architecture consists in interconnecting two or more clusters to
configure a new parallel machine. The characterization of global performance pa-
rameters of a multi-cluster is complex owing to the number of intervening clusters,
the degree of heterogeneity of processors and the inter-cluster communication system.
On occasions, a combination of interconnected homogeneous clusters, configuring a
heterogeneous multi-cluster is used.

1.2 Load Balancing in Heterogeneous Architectures

For the type of known work problems (e.g. matrix multiplication) a “predictive”
static load balancing considering the calculation power of the multi-cluster processors
can be obtained; however, many real problems have a variable or dynamic workload
depending on the data [4][5][6][7]. In these cases, it is necessary to adjust data or
processes allocation dynamically while the application is being executed.

Besides, in a multi-cluster scheme in which applications are resolved with the Mas-
ter-Slave paradigm, any dynamic balancing solution used, implies a communication
overhead that will be affected by the complexity of the communication scheme
among the nodes of the different clusters.

1.3 Types of Problems with Variable Workload

There are certain types of data parallelism problems for which it is possible to per-
form a static balancing allocation of the total workload. In these cases, provided there
is a heterogeneous architecture, it will be possible to define a predictive F(Pi,Wt)
function where Pi is the calculation power of processor i and Wt the total work This
function allows to distribute data “a priori” among processors [8].

If there is a variable workload due to the data particular characteristics (e.g. data
arrangement, identification of image patterns), it is not possible to have a predictive
function that assures load balancing among processors. Thus, it will be necessary to
have a dynamic allocation policy that can be combined with a predictive initial distri-
bution of a percentage of the total data [5][9].

Any dynamic allocation policy used implies some overhead degree of communica-
tion, which will be more complex to model and predict in a heterogeneous multi-
cluster architecture.

2 Characterization of Type of Application of Interest

As analyzed in the introduction, there are different research axes on dynamic load
balancing problems in multi-cluster architectures.

An architecture model in which heterogeneity appears only in machines with dif-
ferent clusters and can be compared to a calculation power function of the machines
of each cluster has been determined.

Finally, the focus of this experimental work has been put on one type of the prob-
lems in which communication time among Tc processes is not significant, considering
Tp (Tp >> Tc) local processing time.

 Dynamic Load Balancing on Non-homogeneous Clusters 67

This restriction allows to identify the differences among the static and dynamic
load balancing schemes more clearly without overlapping an important communica-
tion overhead not relate to the distribution.

3 Load Distribution Models to be Studied and Theoretical
Speedup to Be Achieved

Three ways of data parallelism implementation will be used:

• Direct Static Distribution (DSD) where the total workload Wt will be allocated
to the architecture B processor in a homogeneous manner, so that each proces-
sor will have Wt/B, regardless the F(Pi,Wt) function. This distribution is used as
a lower bound reference.

• Predictive Static Distribution (PSD) where the total workload Wt will be allo-
cated to the architecture B processor at the moment of starting the application,
according to the prediction F(Pi,Wt) function.

• Dynamic Distribution upon Demand (DDD) where a Li percentage of the total
Wt workload will be allocated to the architecture B processor at the moment of
starting the application, according to the prediction F(Pi,Wi) function and then,
each processor will demand more work on the part of the Master, as its task is
being completed.

The Li value and the amount of additional work to be allocated to each processor
on demand are experimental research parameters that depend on the application and
the relation between Tp and Tc.

The theoretical speedup to be achieved by multi-cluster architecture will be a G(Pi)
function. The experimental measuring of the real speedup should directly correlate
with the degree of balancing achieved with the total Wt work allocation during the
execution of the application.

4 Contribution of This Work

• An expression for heterogeneous cluster calculation power is presented, consid-
ering individual processor power and heterogeneity. Also theoretical analysis of
unbalance and maximum speedup attainable is presented.

• A Master-Slave model with 4 heterogeneous clusters among them operating as a
(B=42) multi-cluster with an additional processor as Master has been studied,
checking the theoretical analysis on processors heterogeneity and maximum
speedup attainable.

• One problem case was studied, which responded to the hypothesis Tp >> Tc,
with the three load distributions proposed (DSD, PSD, DDD) to carry out the
data parallelism, specially comparing with the theoretical parallel speedup. This
speedup was achieved in view of the calculation power of the processors, and
the load unbalancing taking into account the parameters B, Wt, Pi y Li men-
tioned before.

68 M.R. Naiouf et al.

5 Application to Parallel Solution on a Heterogeneous
Multi-cluster of the N-Queens Problem

The N-queens problem consists in placing N queens on an NxN board in such a way
that they do not attacks one another [10][11][12]. A queen attacks another one if they
are in the same diagonal, row or column .

5.1 Sequential Solution

An initial solution to the N-queens problem, using an sequential algorithm, consists
in trying all possible location combinations of the queens on the board, keeping those
that are valid and disrupting the search whenever this is not achieved. Considering
that a valid combination can generate up to 8 different solutions, which are rotations
of the same combination, the number of distributions to be evaluated can be reduced.
The best sequential algorithm found for this problem is based on this fact
[13][14][15].

5.2 Parallel Solution Proposed Based on the Function of the Load Distribution
Models

For the parallel solution of this problem, the queen is placed on one or more rows, and
all the solutions for that initial arrangement are obtained. Each processor is in charge
of solving the problem for a subset of said solutions, in this way, the whole system
works with all the possible combinations of those rows.

When working with a heterogeneous architecture, the amount of work (combina-
tions) that each processor must solve vary according to the existing relation regarding
calculation power. To be able to distribute the work in a balanced way, it is conven-
ient to use “fine grain”, that is, many combinations of little work each, so as to level
up the work done by each machine, and resolve several of them. To this aim, the first
four rows are used to form each of the combinations to resolve [16].

In this way, different N4 combinations are obtained to be distributed among all the
heterogeneous processors, N being the board size. This distribution is carried out by
using those motherhoods mentioned in III.

6 Experimental Results Obtained

In this section, the tests carried out are presented together with the results obtained,
regarding the speedup metrics and the unbalancing described below.

6.1 Metrics Used

To measure the load unbalancing among the processors that intervene in a parallel ap-
plication, the relative work difference obtained is calculated with formula (1), where
Worki = machine timei [2].

 Dynamic Load Balancing on Non-homogeneous Clusters 69

.
)(

)(min)(max

..1

..1..1

iBi

iBiiBi

Workaverage

WorkWork
Unbalance

=

== −= (1)

The speedup metrics is used to analyze the algorithm performance in the parallel
architecture as indicated by formula (2).

.
meParallelTi

TimeSequential
Speedup = (2)

In the case of a heterogeneous architecture, the “Sequential Time” is given by the
time of the best sequential algorithm executed in the machine with the greatest calcu-
lation power [1][17][18].

To evaluate how good the speedup obtained is, it is compared with the theoretical
speedup of the architecture upon which work is being carried out. The speedup con-
siders the relative calculation power of each machine with respect to the power of the
most powerful machine [19]. The theoretical speedup is calculated with formula (3),
where B is the number of machines of the architecture used, y Pi is the relative calcu-
lation power of the machine i regarding the best machine power. This relation is ex-
pressed in the formula (4).

.
1=

= B

i iPlSpeedupTheoretica (3)

.
)(

)(

i
mTimesequential

chinepowerfulMaTimesequential
i

P =
(4)

6.2 Experiments

The experiments were done on a multi-cluster architecture consisting of four clusters:
an 16 Pentium IV 2.4 Ghz homogeneous cluster of 1 Gb memory.

• an 10 Celeron 2 Ghz homogeneous cluster of 128 Mb memory.
• an 8 Duron 800Mhz homogeneous cluster of 256 Mb memory.
• an 8 Pentium III 700 Mhz cluster homogeneous cluster of 256 Mb memory.

Communication within each cluster is done via an Ethernet web, using a switch for
communication among clusters.

The language used for the implementations is C together with the MPI library to
handle communications among processors.[20]

Tests were carried out using 42 machines, adding one for the dynamic distribution,
acting as master, and with different board sizes. (N = 17, 18, 19, 20, 21).

In the case of dynamic distribution, it was experimented with different percentages
of initial distribution. (Li = 0, 5, 10, 15, 20, 25, 50).

6.3 Results

The data of Table 1 shows the percentage of load unbalancing produced by the algo-
rithm for the Direct Static, Predictive Static and Dynamic upon Demand distributions
with different Li values. Some of these results can be seen in figure 1.

70 M.R. Naiouf et al.

0.00

50.00

100.00

150.00

200.00

250.00

17 18 19 20 21
Size N

%
U

nb
al

an
ce

Direct Static Predictive Static Dynamic upon Demand

Fig. 1. Graph of Percentage of Load Unbalancing of Direct Static, Predictive Static and Dy-
namic upon Demand Distributions (Li=15). N=17,18,19,20,21

Table 1. Percentage of Unbalancing for each test

0% 5% 10% 15% 20% 25% 50%
17 236.09 122.37 2.81 1.65 0.13 0.14 0.12 0.12 106.09
18 148.30 115.20 20.93 12.10 0.04 0.04 1.63 27.29 150.29
19 160.66 107.62 152.91 92.72 0.04 0.05 3.91 9.92 131.61
20 162.02 128.21 0.03 0.03 0.03 0.03 0.03 24.09 131.19
21 145.60 92.91 0.03 0.03 0.03 0.03 0.03 16.48 117.34

Dynamic upon Demand
Size

Direct
Static

Predictive
Static

Table 2 presents the speedup obtained for each test mentioned before together
with the optimal speedup (or theoretical) calculated for this machine combination.
Table 3 shows the total time for each test.

Table 2. Speedup

0% 5% 10% 15% 20% 25% 50%
17 31 10.62 17.75 24.13 24.72 24.96 25.14 25.38 23.30 13.49
18 31 12.99 17.31 30.07 30.15 30.20 30.25 29.78 24.00 12.00
19 31 12.21 18.22 30.79 30.59 30.76 30.90 30.12 28.63 13.28
20 31 12.46 15.99 30.85 30.89 30.91 30.95 30.99 24.90 13.21
21 31 13.52 19.76 30.98 30.98 30.99 31.00 30.99 27.10 14.30

Size
Direct
Static

Predictive
Static

Dynamic upon Demand
Optimum

Figure 2 shows the speedup obtained with each of the distribution algorithms for
some of the tests in Table 2, together with the optimal speedup of this architecture.

 Dynamic Load Balancing on Non-homogeneous Clusters 71

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

17 18 19 20 21

Size N

Sp
ee

du
p

Direct Stat ic Predictive Stat ic Dynamic upon Demand Optimum

Fig. 2. Speedup of the Direct Static, Predictive Static and Dynamic upon Demand Distribu-
tions (Li=15) and Optimum. N=17, 18, 19, 20, 21.

Table 3. Algorithm Total Time

0% 5% 10% 15% 20% 25% 50%
17 4.70 2.81 2.07 2.02 2.00 1.99 1.97 2.14 3.70
18 27.91 20.94 12.06 12.02 12.00 11.98 12.17 15.10 30.19
19 228.16 152.95 90.50 91.09 90.57 90.18 92.51 97.33 209.76
20 1795.20 1399.46 725.15 724.19 723.68 722.92 721.90 898.45 1693.51
21 13957.76 9554.65 6094.24 6094.46 6090.92 6090.52 6090.63 6966.64 13205.15

Dynamic upon Demand
Size

Direct
Static

Predictive
Static

7 Conclusions and Work Guidelines

Analyzing the results obtained from the experimental work, we can come to the fol-
lowing conclusions:

• Experimental results are coherent with theoretical analysis of unbalance and
maximum speedup attainable.

• For the type of problems where Tp>>Tc (as the N-Queens problem that requires
a minimal communication among machines), if the work is data-dependent it’s
essential the choice of data distribution among clusters, to achieve an almost op-
timal speedup.

• Naturally, algorithms that take into account the calculation power of each ma-
chine for work distribution have a better behavior than Direct Static distribution.
This improvement is clearly expressed in the load balancing and the speedup.

• Among the algorithm that take into account the calculation power, it can be seen
that the algorithms that distribute dynamically can assign work in a more bal-
ancing way among the machines (as seen in Graph 1), without much affecting
the final time of execution (as shown by the speedup en Graph 2 and the data of
Table 3).

72 M.R. Naiouf et al.

• In dynamic distribution, the speedup obtained is quite close to the optimum ac-
cording to the parallel architecture used in this case, all of which becomes more
evident as N increases.

At present, tests are being done with clusters outside the UNLP, particularly at the
UNSur (Bahía Blanca), UNComahue (Neuquen), UA Barcelona(Spain) and the Uni-
versidad Católica del Salvador (Brasil), through a WAN network. This requires a pre-
vious evaluation of the communication costs, for considering them in the computation
power model.

References

1. Al-Jaroodi J, Mohamed N, Jiang H, Swanson D. “Modeling parallel applications perform-
ance on heterogeneous system”. IEEE Computer Society, 2003.

2. Bohn C, Lamont G. “Load balancing for heterogeneous clusters of PCs”. Future Genera-
tion Computer Systems, Elsevier Science B.V., Vol 18, 2002, pp 389-400.

3. Leopold C. "Parallel and distributed computing. A survey of models, paradigms, and ap-
proaches". Wiley Series on Parallel and Distributed Computing. Albert Zomaya Series
Editor, 2001.

4. Baiardi F, Chiti S, Mori P, Ricci L. “Integrating load balancing and locality in the paral-
lelization of irregular problems”. Future Generation Computer Systems, Elsevier Science
B.V., Vol 17, 2001, pp 969-975.

5. Naiouf M. “Procesamiento paralelo. Balance dinámico de carga en algoritmos de sorting”.
Tesis doctoral. Universidad Nacional de La Plata, 2004.

6. Watts J, Taylor S. “A practical approach to dynamic load balancing”. IEEE Transactions
on Parallel and Distributed Systems, 9(3), March 1998, pp. 235-248.

7. Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L, White A. “The Sourcebook
of Parallel Computing”. Morgan Kauffman Publishers. Elsevier Science, 2003.

8. Ross K, Yao D. “Optimal load balancing and scheduling in a distributed computer sys-
tem”. Journal of Association for Computing Machinery, 38 (3): 676-690.1991.

9. Hui C, Chanson S. “Improve strategies for dynamic load balancing”. IEEE Concurrency,
pages 58-67. 1999.

10. Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L, White A. “The Sourcebook
of Parallel Computing”. Morgan Kauffman Publishers. Elsevier Science, 2003.

11. Bruen A, Dixon R. “Then n-queens problem. Discrete mathematics”. 12:393-395, 1997.
12. De Giusti L, Novarini P, Naiouf M, De Giusti A. “Parallelization of the N-queens problem.

Load unbalance analysis”. Workshop de Procesamiento Paralelo y Distribuido (WPPD),
Congreso Argentino de Ciencias de la Computación (CACIC’03), 2003.

13. Hedetniemi S, Hedetniemi T, Reynolds R. “Combinatorial problems on chessboards: II”.
Chapter 6 in domination in graphs: advanced topic, pag 133-162, 1998.

14. Bernhardsson B. ”Explicit solution to the n-queens problems for all n”. ACM SIGART
Bulletin,2:7,1991.

15. Somers J. “The N-queens problem a study in optimization”. www.jsomers.com/
nqueen_demo /nqueens.html.

16. Takaken, “N-queens problem (number of solutions)”. http://www.ic-net.or.jp/home/
takaken/e/queen/.

17. De Giusti L., Chichizola F. “Optimización de N-queens Paralelo”. Technical report III-
LIDI. 2006.

 Dynamic Load Balancing on Non-homogeneous Clusters 73

18. Grama A, Gupta A, Karypis G, Kumar V. “Introduction to parallel computing”. Second
Edition. Pearson Addison Wesley, 2003.

19. Jordan H, Alaghband G. “Fundamentals of parallel computing”. Prentice Hall, 2002.
20. Tinetti F. “Cómputo paralelo en redes locales de computadoras”. Tesis Doctoral.

Universidad Autónoma de Barcelona, 2004.
21. Snir M., Otto S., Huss-Lederman S., Walker D., Dongarra J., “MPI: The Complete Refer-

ence”, The MIT Press, Cambridge, Massachusetts ,1996.

L2-Cache Hierarchical Organizations for
Multi-core Architectures

Mario Donato Marino

Computing Engineering Department- Polytechnic School - University of Sao Paulo
mario@regulus.pcs.usp.br

Abstract. Nowadays the market is moving to have multiple cores on
the same chip (Chip Multiprocessors - CMP) with a multi-sliced L2
which is shared by 2 cores. CMPs with 8 cores can already be found,
and future CMPs will have more than 8 cores. Typical implementations
of CMPs share the L2 cache among the processors and have 2 cores
sharing the same L2. We are interested in investigating the behavior of
the pair: L2 sharing x L2 cache size. So, we construct models of two
different organizations of CMPs: (i) tiles, with L1 and L2 private, in-
terconnected through a router; (ii) tiles with L1 private and L2 shared
among processors. The (ii) organization is evaluated with different num-
bers (2, 4) of cores sharing the same L2 slice and also, the L2 shared
slice size is changed (1 MB, 2MB and 4 MB). With a total number of
32 cores, the proposed configurations of (ii) organization are evaluated
with a full-system simulation under SPLASH-2 benchmarks. By apply-
ing both techniques, results show that the execution time is improved of
about 18.9% for Ocean, 88.8% for Raytrace,and 31.8% for Volrend.

1 Introduction

The adoption of chip multiprocessors, CMP [19,20] or multi-core architectures, is
spreading all over the markets: commercial, industrial, domestic and gaming [12].
Several 2-core [9,10,11] solutions are already available for commercial, domes-
tic and gaming purposes. An 8-core [17] solution is available for the web-server
market. A 9-core [12] solution will soon be released for video game applications.
Next-year road maps promises machines with 4 and also 16 [21] or more cores.
Better dissipation, scalability, performance [13] and less energy [3,18] consump-
tion, when compared to a wider processor, are the central reasons for adopting
the CMPs.

Many cores inside the chip cause higher latencies due to wire delays [2,3,19,24]
when compared to a wider core. The other consequence of having many cores
is the need of more data to run several tasks in parallel. Present solutions con-
centrate [9,10,11] on increasing the bandwidth and/or on sharing some parts of
their caches and maintaining others private. In this paper we are investigating
the latter way.

The main feature of the solutions which focus on sharing are the data reusing.
Data reusing is obtained by sharing a slice of L2, thinking on a multi-banked or

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 74–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

L2-Cache Hierarchical Organizations for Multi-core Architectures 75

multi-sliced solution for L2. Designs and implementations of L2 through multi-
sliced banks have been preferred [1,2,3,6,7,13,25] due to their low latency and
better hit rate.

Hierarchical cache hierarchies with multi-sliced banks are built with replica-
tions of a tile. Each tile contains a processor, L1 cache and L2 cache. It’s possible
to use a set of processors with the L1 next level pointing to the same L2, which
is denominated L2 shared cache cluster or L2 shared slice. Differently from the
previous studies[1,2,3,21], which have investigated particular solutions, the main
contribution of this paper is to evaluate the behavior of the hierarchical caches
with these features investigating the pair: L2 size x number of processors shar-
ing the L2, changing both parameters and how they are related. Following this
idea, we constructed different hierarchical organizations of multi-sliced L2 caches
and evaluated them with different numbers of shared clusters (different numbers
of processors sharing the same cluster) and different L2 cache sizes, through
a full-system simulation and running SPLASH-2 [15] benchmarks. In order to
implement those evaluations, we consider a cluster as a set of cores; this paper
compares 3 different organizations with (i) 32 L2 cache clusters of 1 core, (ii)
16 L2 cache clusters of 2 cores and (iii) 8 L2 cache clusters of 4 cores. These 3
configurations were also evaluated with 3 different L2 cache sizes. Other contri-
bution of this article is to investigate CMPs with 32 cores which have more than
2x or 4x number of cores which previous papers [1,2,3,21] have investigated.

The rest of the paper is organized as follows. Section 2 describes possible
multi-core organizations. Section 3 discusses the methodology and Section 4
presents results. Section 5 concludes our work.

2 CMP: Internal Organization

In this section we describe some configurations considered for tiled CMPs. They
are based on a tile replicated in a 2-D mesh configuration, where each tile con-
tains: (i) its processor, with a L1 instruction and L1 data caches; (ii) one L2
cache; (iii) a connection to the network. Figures 1a and b illustrate that.

Thinking of L2, its possible to have L2 private or shared. In order to be acces-
sible by several processors, it’s possible to implement L2 shared via multi-port or
multi-slices. As we have said before, multi-slicing implementations[1,2,3,6,7,13,25]
have been preferred because of their best performance. Based on the way the
caches are connected in a hierarchical implementation, we propose a nomencla-
ture for them: (i) private L1 data cache and private L2: L1pL2p configuration
is illustrated in figure 1a; (ii) private L1 data cache and i processors sharing
one L2 slice: L1pL2si; for example, L1pL2s2 if we have 2 processors sharing L2;
L1pL2s2 configuration is illustrated in figure 1b and better described in the next
item.

Figure 1a illustrates L1pL2p , which is the most simple one: a replication
of a traditional tile, i.e., each tile has one CPU (processor or core), and each
processor has its private L1 data cache and L1 instruction cache. Both L1 data
and instruction caches are connected to a private L2. Each L2 is connected to

76 M.D. Marino

L2

L1I L1D

router

L2 L2

router router...

...

...

...
L1I L1IL1D L1D

CPU CPU

memory memorymemory

CMP (chip multiprocessor)

CPU

memory

CMP (chip multiprocessor)

CPU

L1DL1IL1DL1I

CPU

router

memory

...

L1DL1I

router

L2 cachecluster...

...

...
L1I L1D

CPU CPU

L2 cachecluster

Fig. 1. a: L1pL2p; b: L1pL2s

another L2 and to the memory, through a router. Except for the memory, the
sets of tiles (core + L1 + L2 + internal buses + router) are inside the chip.
When a cache line is required by one processor, on a L1 miss, before going to
the memory, the line is searched from another L2 cache, through the network,
avoiding off chip accesses, that maximizes locality inside the chip. The number
of hops needed to find the data on the remote L2 caches and the coherence
messages may cause a congestion in this bus[21].

Figure 1b ilustrates L1pL2s configuration, which is similar to the ones pro-
posed by Barroso[13] and Zhang[1]. Each tile has one CPU with its private L1
data and L1 instruction caches, which are connected to a shared cluster L2
(multi-sliced L2): each cluster of L2 is shared among 2, 4 or more processors,
i.e., a set of processors sharing L2, as viewed at figure 1b. The sets of tiles (CPU
+ L1 + L2 + internal buses) are inside the chip. Previous papers [1,9,13] have
shown the superiority of the scheme L1pL2s over the L1pL2p. The superiority of
L1pL2s over L1pL2p is responsible for the industry migration from configuration
L1pL2p to L1pL2s. The recent processors dual-core IBM Power5[10] and Intel
Core 2 [11], the next AMD K8[9], and also the 8-core Niagara[17] are examples
of sharing a L2 slice with 2 processors. Figure 1b illustrates a CMP with some
shared clusters L2, each of these shared by 2 CPUs.

L1pL2s cache clusters communicate with the others by the network, via router,
with the distributed directory held as a replicated set of L2 tags. Each CPU has
its private L1 data and L1 instruction caches, which are connected to a shared
cluster L2: each cluster of L2 may be shared among 2, 4 or more processors, i.e.,
a set of processors sharing the same L2 cache cluster. The main advantage of
having a set of processors sharing the same L2 is that one of them can reuse a
line brought by the other processor firstly originated from memory. So, if there

L2-Cache Hierarchical Organizations for Multi-core Architectures 77

is a miss in L1, the line is searched in a L2 cache cluster through the network,
which is a way to move lines from remote L2s. If the line is found in the L2 cache
cluster, network is avoided (congestion).

Table 1. Summary of L1pL2si simulation parameters

parameter considered values

Processor UltraSparc III, in order, IPC=1

of processors 32 processors

i processors sharing L2 2 and 4

L1 cache line size 64 B

L1 cache associativity 4-way

L1 dcache size 32 kB, 64 kB, 128 kB and 256 kB

L1 icache size 32 kB

L1 latency 3 cycles

L1 replacement policy LRU

L2 cache line size 128 B

L2 cache associativity 4-way

L2 latency 6 cycles

L2 replacement policy LRU

MESI transaction 7 cycles - L2

1-hop latency 4 cycles - L2

of processors sharing L2 1, 2 and 4

cluster of shared L2 32, 16 and 8

cache size:L2 cache cluster 1 MB/cluster, 2 MB/cluster

memory latency 200 cycles

3 Methodology

Since the main goal of the paper is to evaluate the impact of having more proces-
sors sharing the same L2 slice, we have changed the number of processors in the
configurations L1pL2si [2 and 4 processors] and evaluate its impact on the ex-
ecution time, hit rate and memory breakdown. We have considered, for each
i (number of processors sharing the same L2 = 2 and 4) a different L2 cache
cluster size: 1 MB, 2 MB and 4 MB. For the results section, for example, the
L1pL2s4.2MB configuration means 4 processors sharing the L2 slice and having
L2 cache size equals to 2 MB. Different models based on these configurations
were constructed and be evaluated. The methodology used here is the same as
the used in similar studies[1,13,2,21].

Different configurations of the models developed were run on Simics 2.0.16 [14]
in order to perform a full system simulation. In these configurations, dedicated
models of the L1, L2, the network and the memory were considered. These
models consider contention and bandwidth.

For this paper, a technology of 70 nm and 24 FO4 processor clock cycle are
assumed. Each CPU is an UltraSparc III, in-order issue, with an ideal pipelining

78 M.D. Marino

and IPC = 1. Considering L1, we assume dcaches of 32 kB, 64 kB, 128 kB and
256 kB, 64B-line write-back, 4-way associative. By running Cacti[29] we obtain
1 to 2 cycles for the access memory times, which added to a conservative wire
delay assumption results on a 3-cycle access time. When it comes to each slice
of L2, we assume 1 MB, 2 MB and 4 MB as the cache size for each cache cluster,
128B-line write-back, 4-way associative. The number of processors sharing L2
varies from 1 (L1pL2p) to 2 (L1pL2s2) and 4 (L1pL2s4). When it comes to
memory, we assume infinite memory with a 200-cycle latency.

We have chosen all the applications from SPLASH-2 [15] benchmarks, as they
have been used for years by the research community to evaluate shared memory
architectures, so we consider them as a representative benchmark. All SPLASH-
2 benchmarks were compiled with gcc 4.0.0 and run for class-A input sizes. The
time is measured in number of cycles.

4 Simulation Results

We evaluate the results of the simulations considering the following parameters:
execution time (speedup), number of coherency messages and memory events
(memory breakdown accesses).

Figures 2 and 3a show the execution time obtained from our experiments.
We have chosen the basis version with L1 and L2 of 1MB both privates, i.e.,
L1pL2p.1MB the one which will be compared against the best ones in terms
of execution times: (i) Barnes and Volrend: the configuration L1pL2s2.4MB
has the lowest execution time; when compared to L1pL2p.1MB, L1pL2s2.4MB
is 7.6% faster for Barnes and 31.8% for Volrend; (ii) FMM: the configuration
L1pL2s2.2MB has the lowest execution time; when compared to L1pL2p.1MB,
L1pL2s2.2MB is 0.6% faster; as a general behavior we can say that, as it’s showed
in the figure 2, all configurations produce about the same execution time; (iii)
Ocean, Radiosity and Raytrace: the configuration L1pL2s4.4MB has the lowest
execution time; when compared to L1pL2p.1MB, L1pL2s4.4MB is 18.9% faster
for Ocean, 4.9% for Radiosity and 88.8% for Raytrace; (iv) Water: L1pL2s4.2MB
has the lowest execution time; L1pL2s4.2MB is 29.3% faster, when compared to
L1pL2p.1MB.

Figure 3b shows the behavior of the coherence traffic inside the chip. Con-
sidering the same L2 sizes, by confronting L1pL2p with L1pL2si (i is the # of
processors sharing the same L2 cache) , the number of invalidate messages does
not increase at the same proportion as i multiplied by the number of invalidates
of L1pL2p. This can be justified by the fact that the sharing among the proces-
sors saves a lot of invalidations, contributing to the reduction of their number;
as a consequence, the speedups are improved.

Considering Barnes, L1pL2p.1MB has a high L1 hit rate of about 95.7%,
i.e., most data fit in L1. Fixing i, i.e., the number of processors which shares
the L2 cache, and considering different L2 slice sizes, comparing L1pL2p with
L1pL2si, we’ve noticed that the L1 hit rate: (i) decreases from 95.7% to 86.3%
L1pL2p (L2 private); (ii) it increases from 84.3% to 89.2% (1MB to 2 MB); (iii)

L2-Cache Hierarchical Organizations for Multi-core Architectures 79

500

1000

1500

2000

2500

3000

3500

4000

4500

WaterRaytraceOceanFMMBarnes

C
y
c
le

s
 x

 1
0

0
0

Benchmarks

Execution Time

"L1pL2p.1MB"
"L1pL2p.2MB"
"L1pL2p.4MB"

"L1pL2s2.1MB"
"L1pL2s2.2MB"
"L1pL2s2.4MB"
"L1pL2s4.1MB"
"L1pL2s4.2MB"
"L1pL2s4.4MB"

12600

12700

12800

12900

13000

13100

13200

13300

13400

Radiosity
C

y
c
le

s
 x

 1
0

0
0

Execution Time - Radiosity

"L1pL2p.1MB"
"L1pL2p.2MB"
"L1pL2p.4MB"

"L1pL2s2.1MB"
"L1pL2s2.2MB"
"L1pL2s2.4MB"

"L1pL2s4.1MB"
"L1pL2s4.2MB"
"L1pL2s4.4MB"

(a) (b)

Fig. 2. a, b: Execution time - SPLASH2 benchmarks

it decreases from 89.2 % to 84.5% (2MB to 4MB) for L1pL2s2 (two processors
sharing one L2 slice); (iv) it increases from 75.22% to 78.6% (1 MB to 2 MB); (v)
and decreases from 78.6% to 70.1% (2MB to 1 MB) for L1pL2s4 (four processors
sharing one L2 slice). When it comes to the coherency messages (figure 3b), (I)
fixing i and increasing L2 slice size increases the number of coherency messages
maintains about the same. (II) Fixing L2 slice size and changing i from 2 to 4:
(1) it increases of up to 80% for 1 MB when compared to L1pL2p; (2) increases
of up to 50% for 2MB and 4 MB when comparing to L1pL2p. Concluding,
L1sL2s2.4MB has the best speedups (execution times) as seen in figure 2. This
can be justified because L1sL2s2.4MB has the best combination of L1 high hit
rate / L2 hit rate /low number of L2 invalidates.

About FMM, L1pL2p.1MB has a good L1 hit rate of about 87.2%. Fixing i,
i.e., the number of processors which shares the L2 cache and considering different
L2 slice sizes, comparing L1pL2p with L1pL2si, we’ve noticed that the L1 hit rate
(i) decreases from 87.2% to 60.8% L1pL2p (L2 private); (ii) L1 hit rate main-
tains in about 63.5% changing from 1MB to 2 MB; (iii) decreases from 63.5% to
44.7% (2MB to 4MB) for L1pL2s2 (two processors sharing one L2); (iv) L1 hit
rate increases from 75.22% to 78.6% (1 MB to 2 MB); (v) decreases from 36.09%
to 29.9% when changing from 1MB to 4 MB for L1pL2s4. Concerning about co-
herency messages, figure 3b shows that if L2 slice size is increased (maintaining
i) or if i is increased (maintaining L2 slice size), the number of invalidation mes-
sages increases but not in the same proportion as i or the cache size, which means
that by sharing or by increasing L2 slice sizes minimizes the emission of this kind
of traffic. The best combination of L1 hit / L2 hit / L2 miss rates/ coherency
messages imply that L1pL2s2.2MB has the best speedup as noticed in figure 2a.

80 M.D. Marino

Considering Ocean, L1pL2p.1MB has a low L1 hit rate of about 59.7%, i.e.,
its data does not fit completely in L1. Fixing i and considering different L2
sizes, comparing L1pL2p with L1pL2si, we’ve noticed that the L1 hit rate: (i)
maintains at about 60.8% for L1pL2p (L2 private); (ii) decreases from 32.0% (1
MB) to 19.8% (4 MB) for L1pL2s2; (iii) increases from 9.9%(1 MB) to 14.6%
(2 MB) and decreases from 14.6% (2MB) to 13.2% (4 MB) for L1pL2s4. As in
the previous benchmarks, the latter reductions in occur due to the increment
of capacity misses in L1 and due to the inclusivity of L1 in L2. Analogously,
the previous observation for Barnes and FMM about the coherency messages for
L1pL2si are also valid for this benchmark. The combination of having a low L1
hit rate and high L2 hit rate, and a number of invalidation messages not so high
when compared to the other versions, contribute to to promote L1pL2s4.4MB
to have the best speedup, which also can be confirmed in figure 2a and 3b.

20000

25000

30000

35000

40000

45000

50000

55000

Volrend

C
y
c
le

s

Execution Time - Volrend

"L1pL2p.1MB"
"L1pL2p.2MB"
"L1pL2p.4MB"

"L1pL2s2.1MB"
"L1pL2s2.2MB"
"L1pL2s2.4MB"

"L1pL2s4.1MB"
"L1pL2s4.2MB"
"L1pL2s4.4MB"

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

WaterVolrendRaytraceRadiosityOceanFMMBarnes

in
v
a

li
d

a
te

 m
e

s
s
a

g
e

s

Benchmarks

Invalidate messages - L2

"L1pL2p.1MB"
"L1pL2p.2MB"
"L1pL2p.4MB"

"L1pL2s2.1MB"
"L1pL2s2.2MB"
"L1pL2s2.4MB"
"L1pL2s4.1MB"
"L1pL2s4.2MB"
"L1pL2s4.4MB"

Fig. 3. a: Execution time - Volrend; b: Total number of invalidates of L2

Confronting all benchmarks, Radiosity is the one which has the highest L1 hit
rate (about 99.3%) for L1pL2p.1MB, which means that most data completely
fit on L1. Fixing i and considering different L2 sizes, comparing L1pL2p with
L1pL2si, we’ve noticed that the L1 hit rate: (i) maintains at about 98.0% for
L1pL2p (L2 private); (ii) it decreases from 98.6% (1 MB) to 97.1% (4 MB) for
L1pL2s2; (iii) it maintains at 97.2% from 1 MB to 2 MB and decreases from
97.2% (2MB) to 96.22% (4 MB) for L1pL2s4. The effect of sharing L2 among
several processors didn’t affect Radiosity because of its high L1 hit rate, i.e.,
because the core of the benchmark fits inside L1. When it comes to the L2 miss
rates, fixing i and changing the L2 slice size or fixing the L2 cache slice size
and varying, both assumptions produce L2 miss rates close to 0.0%, which was
previewed when we commented about its high L1 hit rates. The combination of

L2-Cache Hierarchical Organizations for Multi-core Architectures 81

having a high L1 hit rate and the highest L2 hit rate with an adequate number
of invalidate messages((figure 3b)), contribute to to promote L1pL2s4.4MB to
have the best speedup, which also can be confirmed in figure 2b.

In Raytrace, L1pL2p.1MB has a good L1 hit rate of about 85.2%, which means
that most data completely fit on L1. Fixing i and considering different L2 sizes,
comparing L1pL2p with L1pL2si, we’ve noticed that the L1 hit rate decreases
from: (i) 85.2% to 68.6% for L1pL2p (L2 private); (ii) from 77.6% (1 MB) to
60.4% (4 MB) for L1pL2s2; (iii) from 69.0% (1MB) to 53.4% (4 MB) for L1pL2s4.
As in the previous benchmarks, the latter reductions occur due to the increment
of capacity misses on L1 and due to the inclusivity of L1 in L2. When it comes to
the coherency messages (figure 3b), (i) fixing i and increasing L2 slice size cause
the increment of the number of them by 50% when L2 size is changed from 1
MB to 2 MB and 10% from 2 MB to 4 MB. (ii) Fixing L2 slice size and changing
i from 2 to 4: it increases of up to 20% (L1pL2s4) for 1 MB when compared to
L1pL2p; decreases of 10% (L1pL2s4) for 2MB when comparing to L1pL2p; for 4
MB decreases of 3.5% when comparing to L1pL2p. The combination of having
a high L1 hit rate and the highest L2 hit rate with number of invalidation
messages not so high when compared to the other versions, contribute to to
promote L1pL2s4.4MB to have the best speedup, which also can be confirmed
in figure 2a.

In Volrend, L1pL2p.1MB has a high L1 hit rate of about 90.6%, which means
that most data completely fit on L1. Fixing i and considering different L2 sizes,
comparing L1pL2p with L1pL2si, we’ve noticed that the L1 hit rate: (a) decreases
from 90.6% (1 MB) to 65.0% (4 MB) for L1pL2p (L2 private); (b) decreases from
about 69.0% (1 MB and 2 MB) to 48.0% (4 MB) for L1pL2s2; (c) increases from
51.4% (1MB) to 54.0% (2 MB), but decreases from 54.0% (2 MB) to 45.0% (4
MB) for L1pL2s4. As in the previous benchmarks, the latter reductions occur
due to the increment of capacity misses on L1 and due to the inclusivity of L1 in
L2. As a conclusion, both sharing L2 among processors and increasing L2 slice
sizes have benefited the speedups of Volrend. When it comes to the coherency
messages (figure 3b), fixing i and increasing L2 slice size increases the number of
coherency messages maintains about the same. Also, by fixing L2 slice size and
changing i from 2 to 4: (i) it increases of up to 80% for 1 MB when compared
to L1pL2p; (ii) increases of up to 50% for 2MB and 4 MB when comparing to
L1pL2p. The combination of having a high L1 hit rate and the highest L2 hit
rate with number of invalidation messages not so high when compared to the
other versions, contribute to to promote L1pL2s2.4MB to have the best speedup,
which also can be confirmed in figure 3a.

For Water, L1pL2p.1MB has a high L1 hit rate of about 93.1%, which means
that most data completely fit on L1. Fixing i and considering different L2 sizes,
comparing L1pL2p with L1pL2si, we’ve noticed that the L1 hit rate: (a) decreases
from 93.1% (1 MB) to 76.7% (4 MB) for L1pL2p; (b) decreases from about
82.0% (1 MB and 2 MB) to 70.3% (4 MB) for L1pL2s2; (c) increases from
65.7% (1MB) to 7.6% (2 MB), but decreases from 77.6% (2 MB) to 60.1% (4
MB) for L1pL2s4. The same justification adopted in previous benchmarks is

82 M.D. Marino

valid for Water: the latter reductions in occur due to the increment of capacity
misses on L1 and due to the inclusivity of L1 in L2. When it comes to the
number of coherency messages (figure 3b), fixing L2 slice size and changing i
from 2 to 4: (i) for 1 MB and 2 MB L2 cache slice sizes, the number of coherency
messages increases of up to 100% when L1pL2s4 is compared to L1pL2p, and 90%
when L1pL2ps4 is compared to L1pL2p, for 4 MB L2 cache slices; fixing i and
increasing L2 slice size increases the number of coherency messages maintains
about the same. The combination of having a high L1 hit rate and the highest
L2 hit rate with number of invalidation messages not so high when compared
to the other versions, contribute to to promote L1pL2s4.2MB to have the best
speedup, which also can be confirmed in figure 2a.

5 Conclusions

The goal of this study is to evaluate how pair size versus number of processors
sharing L2 affects the performance of the parallel applications of SPLASH-2,
considering the most adopted implementation of L2 (multi-sliced). As a general
guide conclusion, for 4 of 7 benchmarks evaluated, this study extends previous
works verifying the possibility of sharing L2 among 4 processors can even im-
prove the speedups, comparing to traditional implementations with just 2 cores
per L2. Very promising results were obtained: about 18.9% for Ocean, 88.8%
for Raytrace, and 31.8% for Volrend. So, the combination of L2 sharing and
increment of L2 slice size can be perfectly applied, providing good speedups,
respectively due to the the reduction of conflict and capacity misses. We intend
to make other tests also with other scientific benchmarks[22], such as SPEC, and
other commercial benchmarks.

References

1. Zhang M., Asanovic K., Victim Replication: Maximizing Capacity while Hiding
Wire Delay in Tiled Chip Multiprocessors, ISCA 2005, USA.

2. Chisti Z., Powell M.D., and Vijaykumar T.N., Optimizing Replication, Communi-
cation, and Capacity Allocation in CMPs, ISCA 2005, USA.

3. Kumar R., Zyuban V., Tullsen D.M., Interconnections in Multi-core Architectures:
Understanding Mechanisms, Overheads and Scaling, ISCA 2005, USA.

4. Waingold E. et al, Baring it all to Software: Raw Machines, Computer 1997.
5. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for

ILP and Streams, Taylor M.B et all, Proceedings of ISCA 2004.
6. Nagarajan R.N., Sankaralingam K., Burger D., Leckler S.W., A Design Space Eval-

uation of Grid Processor Architectures, ISCA 2001.
7. Sankaralingam K., Nagarajan R.N., Liu H., Kim C., Exploiting ILP, TLP, and

DLP with the Polymorphous TRIPS Architecture, IEEE, 2003.
8. Cascaval C. et al, Evaluation of a Multithreaded Architecture for Cellular Comput-

ing ,, 2002.
9. http://www.amd.com

10. http://www.ibm.com

L2-Cache Hierarchical Organizations for Multi-core Architectures 83

11. http://www.intel.com
12. http://www.research.scea.com/research/html/CellGDC05/index.html
13. Barroso L et al., Piranha: a scalable architecture based on single-chip multiprocess-

ing , ISCA, 2002.
14. http://www.simics.net
15. Woo S. Ohara M., Torrie E., Singh J.P., Gupta A.; The SPLASH-2 programs:

Characterization and Methodological Considerations. In Proceedings of the 22nd.
Annual Symposium on Computer Architecture, p. 24-36, 1995.

16. Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, Parthasarathy Ranganathan.
Heterogeneous Chip Multiprocessors, Computer, vol. 38, no. 11, pp. 32-38, Novem-
ber, 2005.

17. http://www.sun.com
18. Chun Liu, Anand Sivasubramaniam, Mahmut Kandemir. Optimizing Bus Energy

Consumption of On-Chip Multiprocessors Using Frequent Values, pdp, p. 340,
12th Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP’04), 2004.

19. K. Olukotun et al., The Case for a Single-Chip Multiprocessor , Proceedings of the
Seventh International Symposium on Architectural Support for Parallel Languages
and Operating Systems, October, 1996.

20. Huh J. Burger D., Kecler S. Exploring the design space of future CMPs, PACT,
1997.

21. Villa F., Acacio M., Garcia J., Memory Subsystem Characterization in a 16-Core
Snoop-Based Chip-Multiprocessor Architecture, L.T. Yang et al. (Eds.): HPCC
2005, LNCS 3726, pp. 223232, 2005. c Springer-Verlag Berlin Heidelberg, 2005.

22. Curstis-Maury et all, An Evaluation of OpenMP on Current and Emerging Multi-
threaded/Multicore Processors, IWOMP, Eugene, Oregon, USA, June 1-4, 2005.

23. Kumar R., Tullsen D.M., Heterogeneous Chip Multiprocessors, Computer, 2005.
24. Chisti Z., Powell M.D., and Vijaykumar T.N., Distance Associativity for High-

Performance Energy-Efficient Non-Uniform Cache Architectures, In Proceedings of
the 36th Annual International Symposium on Microarchitecture (MICRO), pages
55-66, December, 2003.

25. Kumar R., Jouppi N. P., Tullsen D.M., Conjoined-core Chip Multiprocessing , In
37th International Symposium on Microarchitecture, December, 2004.

26. Kumar R., Zyuban V., Tullsen D.M.; Interconnections in Multi-core Architectures:
Understanding Mechanisms, Overheads and Scaling, ISCA, Wisconsin-Madison,
USA, 2005.

27. Nayfeh B.A., Hammond L., Olukotun K., Evaluation of Design Alternatives for a
Multiprocessor Microprocessor, ISCA, May, 1996.

28. Marino M.D., Preliminary evaluation of interconnection latency on a CMP with
multisliced-L2, XXI South Symposium on Microeletronics, Porto Alegre, Brasil,
May, 2006.

29. Shivakumar P., Jouppi N.P., Cacti 3.0: An integrated cache timing, power and area
model . Technical report, Compaq Computer Corporation, Aug 2001.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 84 – 93, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Guidance of a Tractor Using Distributed
Applications

Jaime Gómez1, Antonio Carlón1, José Fernando Díez1, Mario Martínez1,
Daniel Boto1, and Luis Manuel Navas2

1 Departamento de Teoría de la Señal, Comunicaciones e Ingeniería Telemática,
Universidad de Valladolid, Valladolid, Spain

{jgomez, acarlon, josdie, mmarzar, dboto}@tel.uva.es
2 Departamento de Ingeniería Agrícola y Forestal. Universidad de Valladolid, Spain

lmnavas@iaf.uva.es

Abstract. In this paper it is presented a platform to be used in an agricultural
scenario. This platform has been built using distributed applications developed
by interconnected modules. The modules are communicated by sockets on
TCP/IP. The architecture allows the programmer to develop a high number of
interconnected applications with a high level of flexibility. Different modules
will be used depending on the application. One of the developed applications is
the autonomous guidance of a tractor using GPS and electronic compass. This
and other applications have been tested with success in a real world
environment.

1 Introduction

Distributed applications are the solution to our problems when we are developing a
complex system that could be hard to debug. When many people join to build a
common project, the discussions about what programming language must be used
appear early. By using distributed applications, we can program each application in a
different language and then, join them in a common project so that the applications
fulfil the objectives when they are joined.

Also, when we need different applications to run faster, it is easy to install them in
different computers and join them to get a more powerful result. Distributed
applications can also be installed in different locations. In our case, the Route
Guidance Application will run in a portable computer onboard and the Monitorization
Application could run in the user’s home.

Besides, security is another goal that we can get by using distributed applications.

2 Objectives

The main goal for this project is to get a distributed system that must be capable of
automatically guiding a tractor through an agricultural plot using a GPS and an
electronic compass.

The system must also be scalable so that other tasks could be accomplished. The
developed modules have to be as simple as possible, easy to use for the final user

 Automatic Guidance of a Tractor Using Distributed Applications 85

(usually without technical knowledge) and the platform must allow the modules to be
programmed in different languages. On the other hand, the final system has to be so
flexible that one module could be modified without affecting the rest of them.

3 Development

First, we are going to describe the hardware used in this project.
The tractor must have a GPS receiver mounted to know in each moment the

position of the vehicle, an electronic compass to allow the system to correct errors in
direction, and a number of video cameras to be used by the Module of Artificial
Vision. The tractor must also have a portable computer onboard to make the necessary
calculations for the guidance.

The tractor also has an Electronic Module capable of controlling the steering, the
accelerator and the work tools.

The whole system includes a base station that consists in a portable computer near
the plot. The onboard equipment and the base station are communicated at data link
level by means of wireless 802.11.

The scheme of the devices can be seen in Fig. 1.

Fig. 1. The hardware scheme

The software developed for this project includes applications in order to:

− Help the driver in the manual guidance of the vehicle.
− Make a distance guidance of the tractor. The tractor can be driven from the

base station. The video captured from the cameras onboard will be presented
on the monitor of the base station.

− Guide automatically the tractor using artificial vision. In this case, the driver
will guide the tractor in the heads of the route, and the system will take
control in the rest of the plot.

− Guide automatically the tractor using GPS and electronic compass. First of
all, the application will make the route based on a bunch of parameters.
Then, the system will automatically guide the vehicle through this path.

The software has been developed based on a three layer protocol. The scheme of
the model can be seen in Fig. 2. As we can see, the lower the layer, the more specific
the application is.

86 J. Gómez et al.

3.1 The Lower Layer

The lower layer of the system includes the input/output modules and communicates
the hardware platform with the medium layer.

In this layer we have two main types of modules:

− Input modules. These modules take data from the hardware devices and
transform it into a language that could be read by the rest of the system. In
this type, we can include the GPS, the compass and the video cameras.

− Output modules. These modules convert the data from the system into
commands that could be read by the actuators. These actuators can, for
instance, spin the wheel or press the accelerator.

3.2 The Medium Layer

The medium layer takes the information from the lower layer and makes the
necessary calculations to accomplish a task. Then, it generates a bunch of commands
to be sent to the lower layer, and information to be sent to the higher layer.

The following modules are included in this layer:

− Positioning. This module takes the information from the GPS receiver and
joins it to the information obtained from the compass to get the data that
other modules could use.

− Route guidance. This module takes the information from the positioning module
and calculates the correct position of the steering to follow the desired path.

− Split detection. This module takes information from the video camera to
make the necessary calculations to guide the vehicle using guidance based in
artificial vision.

3.3 The Higher Layer

This layer takes the information from the other layers and presents it to the user,
either in the onboard computer or in the base station. The user can interact with the
applications of this layer to make the system work properly.

The modules included in this layer are:

− Guidance assistance. This module helps the driver presenting him a light bar
that informs of the worked zones.

− Tele-guidance. This module allows the user to guide the vehicle using a
steering wheel installed on the base station. The tractor will follow the
commands of the driver.

− Autonomous guidance based in artificial vision. This module takes
information from the split detection module and moves the steering using
border detection.

− Combination of tele-guidance and autonomous guidance. This module
allows the driver to guide the vehicle using tele-guidance but it also allows
the system to guide automatically the tractor in certain moments.

− Monitorization. This module allows the user the guidance from the base
station and informs him of the zones which have been worked. It also allows
the driver to stop the tractor at any moment.

 Automatic Guidance of a Tractor Using Distributed Applications 87

3.4 Communication Between Layers

The three layer based system provides the system with a high level of flexibility. The
division of the different tasks in modules allows the developer to add new modules at
any time without changing the whole system.

The communications between layers is made following the scheme of Fig. 2. It
shows the modules used in each application. For example, the route server module
communicates with the GPS module and the route-guidance module, and the route-
guidance module takes data from the positioning module that uses the GPS, compass
and movement modules.

Fig. 2. Communication between layers

The main advantage of the development of the system using a model based in
distributed applications is that the different modules can be written in different
program languages.

The communication between the onboard equipment and the base station is made
via wireless 802.11, and the communication between the layers inside of the system is
made using sockets.

The advantage of the sockets is that we can find them in most of the programming
languages, and they use the standard TCP/IP to make the communications, so the
development of any application based on this standard will be fast, easy and powerful.
We can see the communications scheme in Fig. 3.

Fig. 3. Using sockets

88 J. Gómez et al.

The development of the lower layer modules has been made using LabView in
combination with C and Matlab. The combination of these three platforms allows the
lower layer to be easy to change in the development phase and powerful and fast in
the final application.

The medium layer has been built using LabView and C, and the higher layer has
been developed using a lot of programming languages. For example, the vision based
guidance has been built using Visual C++, and the monitorization system has been
developed using JAVA.

This work style can appear to be chaotic, but it allows the developer to have a high
level of independence from other developers and allows the final user to have a more
flexible application.

For example, the vision based guidance or the tele-guidance written in Visual C++
are very fast applications that show on the screen the images taken from a video
camera in real-time. On the other hand, the monitorization application allows the user
to see the worked zone not only in the display of the onboard and base station, but
also via the Internet. This is possible because this application has been programmed
using JAVA and it does not need to be installed on the base station near the plot that
is being worked. It can be installed on a server on the Internet, so we can have access
to it from anywhere if there is connection to the Internet.

To allow the modules to communicate between them, a bunch of protocols has
been designed. We have developed, for instance, a protocol to communicate the
actuators module with the rest of the modules that could need to send information to
it. These protocols have been designed to be simple but powerful. They accomplish
the objectives of interchanging information and they are open, so new functions can
be easily added to accomplish new tasks.

To illustrate how the protocols work, let us explain a couple of them.

Fig. 4. Sentences interchanged by the server of files

 Automatic Guidance of a Tractor Using Distributed Applications 89

The server of files protocol works over TCP/IP as we have seen before. To ask the
server for a file, the client will send a message to the server. This message is called
SENDFILE. Then, the server will answer with a message that will include the length
of the file. Then, the client will ask for each line and the server will send them. When
the server reaches the end of the file, it answers with an ENDFILE message. The
interchange of information can be observed in Fig. 4.

Some modules only send information periodically. This is the case of the GPS
module which sends messages every 200 ms. Fig. 5 shows the sent messages, and
table 1 shows the information contained in these messages.

Fig. 5. Sentences sent by the GPS module

Table 1. Contents of the sentence PGUVA sent by the GPS module

PGPUVA Navigation Sentence

$PGPUVA, hhmmss.ss, a, pppppp.pppppp,qqqqqq.qqqqqq, nnnnnnn.nn,
eeeee.ee, vv.vv, dd.dd, xx.xx, aa.aa, *hh

1) hhmmss.ss: UTC Time
2) a: Navigation Receiver Warning

3)pppppp.pppppp: Latitude

4)qqqqqq.qqqqqq: Longitude

5) nnnnnnn.nn: UTM Northing
6) eeeeee.ee: UTM Easting
7) vv.vv: Speed (m/s)
8) dd.dd: Heading GPS (radians)
9) hh: Checksum

$PGPUVA,104032.25,A,4140.1375,00442.2053,4716696.00,473063.94,09.02,
01.20,01.32,02.27,*hh

The messages sent between applications are the centre of the developed protocols.

Each communication has very well-defined messages to interchange information. The
webcam protocol is shown in Fig. 6.

90 J. Gómez et al.

Fig. 6. Webcam protocol

Table 2. Messages of the webcam protocol

PCUVA camera module input
$PCUVA,for,cam,pto,*hh

1) for: Format of the required video image (RGB/COM)
2) cam: Number of the desired camera (1 .. N)
3) pto: Listen port (client)
4) hh: Checksum

$PCUVA,RGB,1,11300,*CHECKSUM

 Camera module input

PCSUVA Camera module ouput
$PCSUVA,an,al,for,cam,pto,*hh

1) an: Image width (pixels)
2) al: Image height (píxels)
3) for: Format of the video image (RGB/COM)
4) cam: Number of the desired camera (1 .. N)
5) pto: listen port (client)
6) hh: Checksum

$PCSUVA,320,240,RGB,1,11300,*CHECKSUM

 Camera module output

PCDUVA Video information
$PCDUVA,lon,inf,*hh

1) lon: Data size
2) inf: Video information to be sent
3) hh: Checksum

$PCDUVA,230400,inf,*CHECKSUM

 Video information sent by the camera module

 Automatic Guidance of a Tractor Using Distributed Applications 91

The messages defined for the webcam protocol are shown in Table 2.
The three layer based system and the communication protocols specifically

developed for the system based on the TCP/IP standard allow the whole system to be
more flexible, more scalable, easy to develop and easy to use.

4 Results

We have tested the whole system on an agricultural plot in Aguilar de Bureba, Burgos
(Spain).

The main test consists in the guidance of a tractor in a plot. First of all, we walked
around the plot carrying a PDA with a GPS receiver to get the coordinates for the
border of the desired work zone.

Then, we determined the parameters that we were going to use, such as the width
of the farm implement, the type of path (interlaced or non-interlaced), and other
parameters. Then, we obtained the path which was going to be followed by the tractor
from the border of the plot [1] [2] [3] [4] [5].

This path is loaded in the main application (the Route Guiding module), to guide
the tractor through the path. In Fig. 7 we can see the graphic block diagram for the
actuator module.

Fig. 7. Connection to Actuator Module

To improve the accuracy in the positioning, due to economical GPSs receivers are
used, the positioning module mixes data from GPS receiver and from electronic
compass [8][9][10].

92 J. Gómez et al.

The monitorization application runs in the base station and is communicated with
the onboard computer. It receives the followed route and displays it on the screen.

We made several tests and they were successful. One result is shown in Fig. 8.

Fig. 8. The path which must be followed (in red) and the worked zone (in green)

5 Conclusions

We have obtained a distributed system which guides a tractor without the intervention
of any human operator except in the beginning of the work.

The system has been created to be scalable, easy to use and to debug, and the
modules are built separately.

The modules have been programmed in different programming languages
according to fulfil the objectives of each of them, so that each module can be
modified without affecting the others.

References

1. H. Choset and P. Pignon. Coverage Path Planning: The Boustrophedon cellular
decomposition. Proceedings of the International Conference on Field and Service Robotics,
Canberra, Australia, December, 1997

2. T. Arai, D. Kurabayashi, J. Ota and E. Yoshida. Cooperative sweeping by mobile robots.
IEEE International Conference on Robotics and Automotion, pages 1744-1749, 1996

3. Yi Guo and Zhihua Qu, “Coverage control for a mobile robot patrolling a dynamic and
uncertain environment,” the 5th World Congress on Intelligent Control and Automation,
Hangzhou, China, pages.4899-4903, 2004

4. B. Thuilot L. Cordesses, P.Martinet and M. Berducat. Gps based control of a land vehicle.
Proceedigs of the 16th IAARC/IFAC/IEEE International Symposium on Automation and
Robotics in Construction. ISARC’99, Madrid, Spain, pages 41-46, 1999

5. E. Nebot, S. Sukkarieh, H. Durrant-Whyte. “Inertial navigation aided with GPS
information”. Proceedings of Fourth Annual Conference on Mechatronics and Machine
Vision in Practice. Toowomba, Australia. 1997

6. O. Connor, T. Bell, G. Elkaim. “Automatic steering of farm vehicles using GPS”.
Proceeding of the 3rd International Conference on Precision Agriculture. Minneapolis.
1996

 Automatic Guidance of a Tractor Using Distributed Applications 93

7. O’Connor, M.L., Elkaim, G.H., and Parkinson, B. W. Kinematic GPS for Closed-Loop
Contro of Farm and Construction Vehicles, Proceedings of ION GPS-95, Palm Springs, CA,
Sept. 1995, pp 1261-1268

8. Farrell J.A., Givargis T.D., Bart J.M. “Real-time differential carrier phase GPS-ided INS”.
IEEE Transactions on Control Systems Technology. 2000(8) pages 709-721

9. T. Aono, Y. Matsuda, T. Kamiya. “Position estimation using GPS and dead reckoning”.
Proceedings of th 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion
and Integration for Intelligent Systems. Washington D. C. 1996

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 94 – 103, 2006.
© Springer-Verlag Berlin Heidelberg 2006

RCMP: A Reconfigurable Chip-Multiprocessor
Architecture

Raphael Fonte Boa, Dulcinéia Oliveira da Penha, Alexandre Marques Amaral,
Márcio Oliveira Soares de Souza, Carlos Augusto P. da Silva Martins,

and Petr Yakovlevitch Ekel

Pontifical Catholic University of Minas Gerais (Brazil)
rfonteboa@ieee.org, dulcineia.penha@ieee.org,

alexmarques@ieee.org, marciooss@yahoo.com.br, capsm@pucminas.br,
ekel@pucminas.br

Abstract. Current parallel architectures are not optimized to all different kinds
of applications since they can vary in requirements and resource needs. An ideal
system to attend different applications should be able to fit their different
characteristics and resource needs and to improve application performance. Our
objective is to design and to develop a system architecture that can be
reconfigured to fulfill many kinds of the application requirements and run with
a reduced communication overhead. Our main goal is a new Reconfigurable
Chip-MultiProcessor architecture that improves adaptability to have better
performance, regardless of the application requirements. Our results and its
analysis show that our architecture provides greater flexibility and scalability
and still obtains performance gain over one multiprocessor architecture. Our
main contribution is a Reconfigurable Chip-Multiprocessor architecture,
composed of reconfigurable processing, storage and interconnection elements.

1 Introduction

Current superscalar microprocessors are very used around the world. These
architectures support multi-issue instruction parallelism with branch-prediction and
instruction reordering capabilities. In addition, as the issue-windows increase, the
issue queues are quadratic increased. This implies in complexity increasing and
performance loss [1]. One alternative to run applications with better performances is
to use parallel architectures. These architectures target performance gains over
sequential ones, dividing applications in independent parts.

Traditional parallel machines can reduce the response time of some applications,
depending on their data processing independency. However, multiprocessors usually
have fixed and static architectures. Therefore, they may not be adequate to all kinds of
applications, since these applications can vary in storage, processing and response
time needs. For instance, if an application starts requiring more performance, and the
multiprocessor is not able to achieve this requirement, it will not allow any
adaptation. Moreover, multicomputers have a significant overhead due to
communications among their processing elements (PE). For instance, if an application
has a fine-grained workload, it will require too much communication. Therefore its
performance will be limited by the network latency and bandwidth.

 RCMP: A Reconfigurable Chip-Multiprocessor Architecture 95

Hence, two problems were considered in this paper. First problem is the low
optimization of the most common parallel machine architectures (multiprocessors and
multicomputers) to suit different kinds of application requirements. The other is the
great communication overhead presented in multicomputer and multichip
multiprocessor machines.

The objective of this work is to design and to develop a system architecture that
can be reconfigured to fit different application requirements and run with a reduced
communication overhead. This overhead can be reduced with a single-chip parallel
system [2]. The fitness for application requirements can be solved with a
reconfigurable architecture [3]. Therefore, we propose a Reconfigurable Chip-
Multiprocessor (RCMP) architecture, which have a flexible and parallel architecture
integrated in a single-chip. Our main goal is an RCMP architecture that improves
flexibility and scalability to achieve better performances, regardless of the application
requirements.

2 Related Works

The most important advantage of CMPs (Chip Multiprocessors) is to explore the
thread level parallelism that many applications present. Among papers presenting
CMPs and its advantages over traditional processor solutions, we highlight the most
relevant in the context of our research.

In Barroso et. al. [4], a chip multiprocessor research prototype is presented.
Besides the Alpha processor cores, it has a two level cache hierarchy and additional
circuit to provide some scalability. Piranha achieves performance gains by combining
several simple processor cores, instead of trying to outperform with some complex
cores. The results show that although a Piranha’s single core has worse performance
than the evaluated processors, the whole system has a performance gain of up to 2.9
times over those processors. Although Piranha does improves performance making
use of a CMP architecture and address the scalable characteristic by providing a
manner to add up new chips to the system, it does not provide flexibility and
scalability within the chip, as presented by our architecture. Scaling a Piranha system
is done through increasing the number of nodes, as in a multicomputer system.

Lee et. al. [5] presents a multiprocessor microarchitecture, called RAPTOR. It
integrates four RISC (Reduced Instruction Set Computer) processors, using the
SPARC version 9 instruction set architecture. It also integrates a graphics co-
processor and an external cache controller. A great amount of simulations were
performed to verify the described model and no performance evaluation was done. In
the same way Piranha presents a few issues, the architecture provides no flexibility
within the chip, and unlike Piranha, it provides no easy way to scale RAPTOR based
systems, as our architecture does.

Nikitovic et. al. [6] presents an adaptive CMP that allows dynamically disabling
some processing cores targeting energy savings. This is done without performance
loss, according to the workload needs. This system was designed focusing mobile
terminals. The performance and energy savings were evaluated using high level
simulation models. The results showed that, high energy savings without performance
loss can be achieved by disabling cores, not considering others techniques, such as

96 R. Fonte Boa et al.

frequency and voltage scaling. This approach brings versatility and ways of saving
energy, one of the most important trends these days. In our architecture, this can be
done by turning off the power supply of unused chip areas or chip elements not only
processors but I/O devices, memories and others.

3 Reconfigurable Chip-Multiprocessor Architecture

We propose a reconfigurable chip multiprocessor architecture (RCMP), as shown in
Figure 1. Our architecture makes use of reconfiguration concepts [3] to suit different
workloads features and different resource requirements. In order to fulfill a wide
variety of requirements and resource needs, our architecture presents the ability to
reconfigure all its architectural elements, processing elements (PE), storage elements
(SE) and interconnection elements (IE) as shown in Figure 1. Our architecture
reconfiguration is not constrained to a specific reconfigurable block as other
architectures are [7] [8].

Fig. 1. RCMP (Reconfigurable Chip-Multiprocessor)

The number of architectural elements may vary in quantity, configuration and type.
To suit different processing needs, the PEs can have several configurations and the
number of PEs can be altered, while SEs can be reduced or increased to fit the
application memory requirements. The topology is defined by how the IEs
interconnect the PEs and SEs and it can change. Therefore the communication among
these elements can happen through many ways. Our architecture can be homogeneous
or heterogeneous, that is, different elements can compose the architecture. One
example would be a superscalar and a RISC processor, configured and working
together. The memory architecture used by the two processors could be different. This
configuration makes the architecture heterogeneous. The element types and
configurations may be different and groups of elements, although being of same
types, do not have to be equally configured or to implement the same logic.

The PEs can be either general-purpose processors, specific-purpose processors or
even dedicated hardware. Depending on the workload characteristics, different type of
processing elements can be arranged and configured. Heterogeneous setups can merge
PEs with different architectures, different word width, different clock rates and
different purposes. The fact of being able to have different clock rates in each PE
makes the architecture flexible to workloads that cannot be divided equally among

 RCMP: A Reconfigurable Chip-Multiprocessor Architecture 97

multiple processors. To achieve a better timing while executing a workload, PEs can
be configured with a job assigned based clock frequencies.

The SEs are also reconfigurable and can have their configuration changed at any
time. SEs may be shared or non-shared register files, private or shared primary
memories, caches or buffers. The SE word size can vary depending on the PEs
architectures and to which PE or IE the memory connects to. SEs bottleneck problems
can be overcome by configuring the SEs to support different number of simultaneous
access, different clock rates and different policies. The SEs can be used to improve
interprocessor communication on fine-grained workloads, when configured as shared
register-files. This suits our architecture to workloads designed to execute in
multiprocessors. On the other hand, memory policies based on the NORMA (No
Remote Memory Access) model can be configured to suit multicomputer workloads.
The SEs can have different access policies such as CREW (Concurrent Read,
Exclusive Write), cache policies can also be different among the several on-chip SEs.

To interconnect the homogeneous and/or heterogeneous PEs and SEs, distinct IE
configurations can be used. The IEs can interconnect elements with different word
width, different throughput speed and different access policies. The interconnection
architecture can be a BUS communication topology, crossbar interconnections or
direct simplex communication links. An IE that connects two PEs having different
word-widths, can implement a conversion scheme that buffers the remainder parts of
one of the PEs data and deliver them to the second PE as several smaller data
fragments.

This paper only presents the RCMP architecture, highlighting its internal elements
and the ability to reconfigure the architecture internally. Although, the RCMP can be
seen as a constructive block of a more complex architecture, composed of several
RCMPs organized in a variety of configurations. Since the RCMP architecture is
flexible and scalable, when used as constructive blocks by another architecture, in a
higher abstraction level, the resulting architecture will also be flexible and scalable.
For instance, the RCMPs can be configured in a pipeline fashion to explore time and
space parallelism together. This can result in greater performance gains, since pipeline
techniques are well known solutions to achieve performance improvements.

4 Implementation Results

We chose digital image processing (DIP) area to verify the proposed architecture
since its operations are widely used in many applications e.g. games, digital T.V.,
digital videos, and so on. Besides, DIP operations demand high computational
resources since they have considerable amounts of composed data (matrices). Beyond
the operation algorithm complexity, DIP requires an inherited matrix manipulation

algorithmic complexity, which is)(2nO where n is the matrix dimension.

Among DIP operations, convolution is one of the most used one since it is applied
on several image filters. Because of that fact, we choose convolution operation as our
case study. Also, this operation can be parallelized since there is no data dependency,
because a convolution operation is composed of a filter kernel that is moved along an
image modifying its pixels. The kernel center pixel new value is the mean of the

98 R. Fonte Boa et al.

multiplication of image area where the kernel stands and the correspondent filter
kernel values. Equation 1 formally describes the convolution operation.

−= −=

×++=
2

2

2

2

]][[]][[]][[

k

k
uu

k

k
vv

vuMvyuxIyxP (1)

The convolution operation can be used in both static (images or photographs) and
dynamic (videos) image applications. The existent fixed and static parallel
architectures cannot suit different image applications since they can vary in storage,
processing and response time needs. Our architecture can be used in both types of
image applications because it can be reconfigured to fit their different characteristics
and resource needs and to improve application performance.

4.1 Convolution Implementation

We implemented a program that performs convolution operations on 512x512,
1024x1024 and 2048x2048 images, and executes over our proposed architecture. The
application is a convolution filter executed on an image.

To execute the image-processing application, we implemented three instances of
our CMP architecture with one, two and four Processing Elements (PEs). Depending
on the CMP configuration, the execution is sequential or parallel. In the case of
parallel configurations, with more than one PE, the convolution operation is
parallelized and the image is divided into n parts, where n is the number of PEs. Each
part is assigned to a specific PE, responsible for computing the convolution on the
image segment.

 (a) (b) (c)

Fig. 2. (a) Input Image. (b) Filtered image. (c) Negative-image of filtered image.

The architecture presents an important feature, its ability to be reconfigured to suit
different workload resource needs. We used this feature to divide the image to be
processed into different number of blocks depending on the RCMP configuration.
This flexibility on the number of PEs available for usage is a source for achieving
performance improvements. In order to verify our convolution implementation we
executed a high-pass filter in a 512x512 image, showed in Figure 2.a. Figure 2.b
shows the results of the filtering operation. The Figure 2.c shows the negative image
of the filtered one. We used the negative image to verify our implementation. The
edges of the negative image are not part of it, we included edges in order to show the
real negative image dimensions.

 RCMP: A Reconfigurable Chip-Multiprocessor Architecture 99

4.2 Reconfigurable Chip-Multiprocessor Architecture Implementation

Our architecture neither specifies the implementation platform nor the solution used
to implement the architectural elements. To implement our architecture’s prototypes,
we used FPGA technology, and the chosen reconfigurable device was the Xilinx
XC2V1500. We used softcores to implement the architectural elements, which are
supplied by Xilinx together with Embedded Development Kit (EDK).

(a)

(b)

(c)

Fig. 3. Implemented instances of RCMP proposed architecture: (a) Single-Processor, (b) Dual-
Processor, (c) Quad-Processor

The MicroBlaze softprocessor was used as the PE, which is a 32-bit RISC machine
with a three stage in-order single issue pipeline. This processor was configured to run at
the highest frequency available with the chosen implementation device, 100 MHz. All
of our instances had each processor connected to a private local SE, which stored the
convolution program. This SE was connected to the processor through the LMB (Local
Memory Bus), a high-speed simplex connection to the processor to local memory.

The data to be processed was stored in a data buffer shared among the processors.
This SE was connected to an OPB (On-Chip Peripheral Bus) that stands for general-
purpose interconnection. All the processors in a configuration have access to the
shared memory (data buffer). Each processor had a 16 KB local memory storing
program data and code, and in all configurations the shared memory was 32 KB.

We implemented three configurations of our proposed architecture, a single
processor (Fig. 3.a), a dual processor (Fig 3.b) and a quad processor (Fig 3.c)
instance. Configurations with an odd number of PEs were not implemented due to the
workload partitioning characteristics. Although not limited by the proposed
architecture, our prototypes only present static reconfiguration, and no kind of
dynamic reconfiguration was implemented.

5 Experimental Results

To compare our architecture with commercial ones, we implemented the convolution
operation using multi-thread in C programming language. We executed the in a Dual

100 R. Fonte Boa et al.

convolution Pentium III, running at 1GHz , with a 10-stage pipeline, 32 KB L1-cache
(instruction+data), a 256 KB L2-cache and 640 MB main-memory. The operating
system is Linux-based with an SMP kernel. During the tests only kernel processes
were running. This was done to achieve the minimum process concurrency rates
possible while measuring program response times.

The Dual-Pentium has the limitation of having only two PE. As this number is
fixed, we executed two versions of the convolution program: sequential and parallel
(with two threads). In our tests we used an equal number of threads and PEs since our
intention was to measure the response times obtained when the convolution operation
is executed using parallelism only, and not concurrency among threads or process.

Figure 4 shows the response times for the convolution operation for three different
image sizes (512x512, 1024x1024 and 2048x2048), executed on 1GHz-Dual Pentium
III for single and dual PEs, 100MHz-MicroBlaze for single, dual and quad PEs and
the projection for 1GHz-MicroBlaze for single, dual and quad PEs.

1,
22

95

0,
26

73

4,
91

81

1,
06

90

9,
15

54

4,
27

60

0,
15

87
0

19
,6

72
3

0,
57

22 2,
28

89

0,
99

24
0

0,
69

73
0

2,
83

32
0

0,
23

68
0 3,

87
09

0
1,

96
72

31
8

0,
12

29
52

0,
05

72
21

3

0,
02

67
25

2

0,
49

18
08

0,
10

69
00

9

0,
22

88
85

0,
91

55
40

2

0,
42

76
03

4

0,0000

2,5000

5,0000

7,5000

10,0000

12,5000

15,0000

17,5000

20,0000

1EP 2EP 4EP 1EP 2EP 4EP 1EP 2EP 4EP

512x512 1024x1024 2048x2048

T
em

p
o

 d
e

re
sp

o
st

a

MicroBlaze Dual MicroBlaze 1GHz

Fig. 4. 100MHz-MicroBlaze, 1GHz-Dual Pentium and 1GHz-MicroBlaze response times for
different image-sizes and different number of PEs

The values for quad-PEs could not be measured on the Dual Pentium since it has a
limited non-scalable and non-flexible architecture. As shown in Figure 4, the worst
case of 100MHz-MicroBlaze response times is only five times greater than the 1GHz-
Dual Pentium III. This result fulfills our expectations since the MicroBlaze have a
frequency ten times smaller than the Dual Pentium, and none of the architectural
improvements that the later has, such as ten-stage pipeline, cache memories and other
superscalar improvements.

Although the 100MHz-MicroBlaze presents worst results than 1GHz-Dual
Pentium, when we scaled the MicroBlaze frequency to 1GHz, we obtained response

 RCMP: A Reconfigurable Chip-Multiprocessor Architecture 101

times better than the Dual Pentium ones, as we can observe in Figure 4. The scaled
MicroBlaze best case response time was 3.9 times smaller than Pentium. Therefore
we can observe that the 100 MHz prototypes had a performance worse than Pentium
due to the frequency difference between both.

0

2

4

6

512x512 1024x1024 2048x2048 512x512 1024x1024 2048x2048

Speedup 1EP/2EP Speedup 1EP/4EP

S
p

ee
d

u
p

Dual MicroBlaze

Fig. 5. 100MHz-MicroBlaze and 1GHz-Dual Pentium speedups for different image-sizes and
different number of PEs

The Figure 5 presents the dual-PEs over the single-PE speedups of our 100MHz

implementations and Pentium tests. Besides that, it presents the speedup of our
implemented prototypes, quad-PE over single-PE.

As analyzed before, the MicroBlaze performed five times worse than Pentium.
This is due to the implementation device frequency limitation and Pentium
architectural improvements. Although, when increasing the number of PEs, the
MicroBlaze achieved a speedup greater than two, while Pentium had its values below
1.5. The MicroBlaze speedups greater than two, can be explained by the fact that the
convolution application, executed in configurations with multiple PEs, requires less
cycles to complete. This behavior is under investigation by the researchers.

The quad-PE speedup values were greater than four, and they can be explained by
the same reasons of the dual-PEs behavior. The quad-PEs results also show how the
flexibility of our architecture and its FPGA implementation can be used to improve
application performance, and how a fixed architecture such as Pentium III cannot
provide different resource configurations to different applications.

Figure 6 presents the speedups of the Dual-Pentium over our 1GHz-MicroBlaze
projection and our 100MHz-MicroBlaze over Dual-Pentium for different image sizes
convolved using single and dual-PE configurations. Considering the MicroBlaze
1GHz projection, we can observe in Figure 6 that if the implementation device
100MHz frequency limitation is overcome our architecture can achieve a significant
speedup when compared to Dual-Pentium III. These results can be seen in the first
group of columns in Figure 6 and can be explained by the fact that we have
improved the MicroBlaze frequency by ten and its response times were about five
times greater than Dual-Pentium as shown in the second (right to left) column groups
in Figure 6.

102 R. Fonte Boa et al.

0
1
2
3
4
5
6

Speedup
Dual/MicroBlaze 1GHz

1EP

Speedup
Dual/MicroBlaze 1GHz

2EPs

Sppedup
MicroBlaze/Dual 1EP

Sppedup
MicroBlaze/Dual 2EPs

S
p

ee
d

u
p

512x512 1024x1024 2048x2048

Fig. 6. 100MHz-MicroBlaze and 1GHz-Dual Pentium speedups for different image-sizes and
different number of PEs

Our prototypes overcame Pentium times even though they have a simpler
architecture with no cache memory and no superscalar improvements. This happens
because we do not use any operating system (OS) thus having no overhead on sharing
memory or assigning programs to specific processors. Besides, our architecture is
highly flexible and, as shown in our implementation and results, the gains obtained
are due to the ability to reconfigure the architecture to better suit different applications
needs. Our architecture, just like Pentium, is a general purpose architecture, although
we used no OS in our tests. The Pentium and other existent architecture, lacks
scalability and flexibility. This can be seen in Figures 4, 5 and 6 where the values for
quad-PE configurations could not be measured for Pentium, since it has only two
processors and this number is fixed.

The results presented and analyzed in this section, highlights the advantages
brought by a reconfigurable architecture. Our architecture can improve performance
better than a fixed architecture such as Dual Pentium-III SMP Machine. Due to the
use of reconfiguration techniques, we can configure our architecture to better suit
different applications, and different resource requirements. This makes our
architecture capable of addressing a wide variety of applications, and classes of
applications such as coarse-grained or fine-grained workloads. As shown in the
results, if the MicroBlaze frequency could be increased, the response time results
could be even better than the currently obtained ones.

6 Conclusions and Future Works

In this paper we presented the RCMP architecture. This architecture is proposed to
provide scalability and flexibility to a variety of workloads and still be able to execute
them with high performance. Three prototypes of our architecture were implemented,
featuring single, dual and quad PEs, thus we were able to measure the response times
of the convolution program, running in all three instances. These values were used as
a comparison base to verify our architecture gains and performance improvements.

We reached our objectives and the implemented prototypes confirm that the
architecture can improve application performance and be reconfigured to better suit
different application resource needs and requirements. Targeting achieving better

 RCMP: A Reconfigurable Chip-Multiprocessor Architecture 103

performances, our architecture can be implemented with some dedicated circuits
(ASICs) without any architectural change. The obtained results showed that the
proposed architecture performance gain over a Dual Pentium-III is a matter of clock
frequency. By scaling the architecture prototype clock frequency, our architecture
would outperform the Dual Pentium III.

Our main contribution is the proposal and verification of a novel CMP architecture
targeting reconfiguration to address different application workloads. Although we
could only run our prototypes at 100 MHz, through the projection, we were able to
observe that if implemented with ASIC technology or in a device without the 100
MHz frequency limitation, such as Xilinx Virtex 5 (500 MHz), we can outperform a
market headed general purpose architecture such as Pentium III, and provide
flexibility and scalability along with performance gains.

Some further works are: the implementation of the architecture with dedicated
processing elements targeting a specific application; prototyping in higher speed
devices, with higher clock frequencies; and architectural improvements, such as cache
memories and autonomous job scheduling. We also intend to implement dynamic
reconfiguration to verify which gains can be obtained with an adaptive CMP
architecture; heterogeneous setups where different processors address different
workloads requirements and resource needs and we intend to use some kind of OS.

References

1. D. Burger; et al. Scaling to the End of Silicon with EDGE Architectures Computer, IEEE
Computer Society, Vol. 37, No. 7, pp 44-55, July 2004.

2. L. Hammond, A. N. Basem, K. Olukotun. “A Single-Chip Multiprocessor”. In Computer
Magazine, IEEE Computer Society, vol.30, no.9, pp. 79-85, Sept., 1997.

3. K. Compton, S. Hauck. “Reconfigurable Computing: A Survey of Systems and Software”.
ACM Computing Survey, Vol. 34, No. 2, pp. 171-210, 2002.

4. L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,
R. Stets, and B. Verghese. “Piranha: a scalable architecture based on sigle-chip
multiprocessing”. In Proceedings of the 27st Annual International Symposium on Computer
Architecture, pages 282--293. IEEE Computer Society Press, 2000.

5. L. Sang-Won, S. Yun-Seob, K. Soo-Won, O. Hyeong-Cheol, and H. Woo-Jang. “Raptor: A
single chip multiprocessor”. In The First IEEE Asia Pacific Conference on ASICs, pages
217--220, 1999.

6. M. Nikitovic and M. Brorsson. “An adaptive chip-multiprocessor architecture for future
mobile terminals”. In Proceedings of International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES'02), pp. 43-49, Oct 2003.

7. Ye, Z. A., Moshovos, A., Hauck, S., and Banerjee, P., "CHIMAERA: A High-Performance
Architecture With a Tightly-Coupled Reconfigurable Functional Unit," In Proceedings of
the 27th International Symposium on Computer Architecture, pp. 225-235, 2000.

8. D. B. Gottlieb, J. J. Cook, J. D. Walstrom, S. Ferrera, C.-W. Wang, and N. P. Carter,
“Clustered programmable-reconfigurable processors", in Proceedings of the IEEE
International Conference on Field Programmable Technology, December 2002, pp.
134-141.

Virtual Link: An Enabler of Enterprise Utility
Computing

Krishna Kant

Intel Corporation
krishna.kant@intel.com

Abstract. Dynamically provisioned virtual clusters provide a means of
consolidating servers in a data center and for supporting utility comput-
ing. Data centers typically sport a large number of (layer 2) switches and
very few routers, yet, the existing layer-2 QoS are not well developed.
This paper proposes the notion of virtual link as an interconnection ab-
straction to provide granular QoS. The paper also presents an experimen-
tal study comparing virtual link based congestion control against other
alternatives for emerging 10 Gb/sec Ethernet links. It is shown that vir-
tual links can provide desired capabilities with a small perturbation to
existing standards and can work well in mixed legacy environments.

1 Introduction

Utility computing refers to the notion of treating the entire data center as a
pool of resources (computes, storage, special functions, etc.) which can be as-
signed dynamically to various applications as needed. Utility computing almost
demands cluster capable applications and is greatly helped by a single unified
fabric over which resources of various sorts can be accessed efficiently. We shall
call the set of nodes allocated to a given application as a “virtual cluster”. The
obvious advantage of the consolidation is the increase in server utilization, which
is often found to be in 5-10% range in current data centers. The ability to grow
or shrink individual virtual clusters can be used to adapt physical resources to
dynamically changing application needs and to minimize power consumption.

A unique feature of commercial data centers is that most of the interconnect
devices in a data center are (layer 2) switches, rather than (layer 3) routers.
In fact, smaller networks may not even have any routers except at the edges.
The main reasons for this are low cost, lower latency, and almost zero config-
uration effort, for switches. Given such an environment, layer3 QoS features
(e.g., diffserv, intserv, etc.) are inadequate within a data center. Furthermore, a
blind implementation of these features at layer 2 is undesirable as it would take
away the advantages of switches over routers. For example, setting up DSCP
parameters is known to be very tricky [6] and requires detailed knowledge of the
flows. Instead, our goal here is to define simpler mechanisms that can be largely
automated.

A virtual cluster can be thought of as the realization of a clustered application
and includes the virtual nodes (VN’s) on which the application runs, and the

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 104–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Virtual Link: An Enabler of Enterprise Utility Computing 105

virtual paths (VP’s) over which these VN’s communicate. We call the node as
virtual since it could well be implemented via a virtual machine running on a
physical node. A virtual path between VN’s can be further viewed as a sequence
of one or more virtual links (VL), where a VL is defined to span only a layer 2
domain. [An L2 domain is the set of layer 2 devices (switches) delimited by layer
3/4 devices (routers & servers)]. Thus, a VP results by stitching together VL’s
at the intervening routers, if any. Note that the communication between VN’s
that belong to the same physical node may use some efficient local mechanism
and is not addressed here.

The outline of the paper is as follows. Section 2 discusses related work in
the field. Section 3 discusses the support required for establishing, tearing down
and using virtual links. Section 4 discusses the QoS, congestion control and
reconfiguration issues related to virtual link. Finally, section 5 compares virtual
link based congestion control against endpoint control.

2 Related Work

Virtual LAN (VLAN) is a standardized mechanism (802.1q/p) for segmenting an
Ethernet network into “islands” such that traffic from of VLAN is not accessible
to another VLAN. The flows in each VLAN can be differentiated based on the
3-bit CoS (class of service) field in the extended Ethernet header. VLANs are
inadequate for providing virtual cluster abstraction since they are intended to
be static and do not provide any congestion control mechanisms.

The IEEE task force on Ethernet congestion management, known as 802.1ar,
is currently examining ways of improving congestion notification and manage-
ment [4]. The main objectives of this effort are to enable switches to mark pack-
ets and allow endpoint layer-2 to do 802.1x type link flow control at the level
of individual “virtual pipes” or CoS classes. Adding an ECN like feature [7] at
layer2 that TCP can exploit has also been considered here. These capabilities are
certainly helpful in supporting the virtual link concept addressed in this paper.

The label switched paths (LSPs) defined for the well known MPLS (multi-
protocol label switching) scheme provide virtual communication channels that
can pack a high degree of sophistication in terms of traffic engineering [1]. For
example, an extension of RSVP, called RSVP-TE, can be used for reserving
resources on LSPs (RFC3209). This helps to automate the setup. However, a
direct implementation of these layer-3 features would make the switches too
complex and expensive, and is not desirable.

The extension of Ethernet to metro distances needs to deal with several issues
including inadequacy of 4096 VLANs, scalability of broadcast procedures, and,
QoS and congestion control [2]. One method to provide QoS over MAN areas is
to make use traffic engineered MPLS paths and then run Ethernet protocol on
top of this. An alternative approach is to extend Ethernet frame format slightly
via VLAN stacking, also known as Q-in-Q mechanism. The former scheme is
unsuitable for data centers; the latter scheme can be used, but will require some
further extensions as discussed in section 3.1.

106 K. Kant

3 Supporting Virtual Links

Supporting virtual links requires some additional features which are listed below
and discussed in subsequent subsections.

1. A pair of send & receive queues to which one or more virtual links can be
mapped. We call these as virtual queue pairs (VQP) or simply VQ’s.

2. Every packet needs to carry additional information to use the appropriate
queues.

3. A signaling mechanism to setup, teardown and update virtual links.
4. A mechanism to convey switch congestion to the L2 boundary and local

propagation and handling at higher (i.e., L3 or L4) level.

3.1 Virtual Link Queues

Virtual link queues are necessary to provide isolation between VL’s and to con-
trol scheduling policies. Currently, the only queuing differentiation available in
the Ethernet is via the IEEE 802.1p/q standard, which adds a 4-byte TCI (tag
control info) field to Ethernet frames. Fig.1(a) shows the Ethernet-II frame for-
mat and Fig.1(b) shows the details of TCI field. As stated earlier, the CoS bits
are intended for traffic prioritization and are similar to IP layer ToS (type of
service) bits. CoS bits provide for only 8 queues, which is inadequate in the VL
context. Also, the purpose of CoS bits is prioritization (e.g., giving control mes-
sages – such as the signaling messages that we will introduce – higher priority
over others), and not really appropriate for VL application.

Fig. 1. a) Ethernet-II frame format, b) 802.1 header, c) Signaling msg format

The L2 Ethernet frames associated with IP and other higher layer protocols
should be able to convey the queue id to the switches on the path. This can be
done either by carrying the VQ id directly (say, 4-5 bits) or by carrying both VL
and VC id’s which can be mapped to VQ id’s locally at each switch. Although
the latter scheme is lot more flexible, it requires many more bits in the Ethernet
frame. Finding extra bits in Ethernet frames is quite challenging w/o perturbing
the standards substantially; therefore, we henceforth assume that VQ id’s are
carried directly.

Several approaches are possible to convey VQ id in Ethernet frames, but all
of them have some impact on standards. One simple idea is to designate, say, 64
high end VLAN bit patterns (out of a total of 4096) for 32 VQ id’s leaving 1 bit

Virtual Link: An Enabler of Enterprise Utility Computing 107

worth of information for congestion indication use. This along with canonical bit
(unused currently) can satisfy congestion indication requirements. Within a data
center, the number of VLANs is generally quite limited and thus the reduction
in the number of possible VLANs is not an issue. The more serious issue is the
potential use of high end VLAN bit patterns in real data centers. A somewhat
different idea is to exploit the Q-in-Q type of encoding used in metro Ethernet,
which basically adds additional Ethertype and TCI fields in the frame [2] (See
Fig 1(a)). As stated earlier, these fields are used for transportation of frames
between LAN segments. This encoding does require minor firmware updates
to the switches. However, if we want to use the outer TCI bits for VQ-id and
congestion indication, we will have to create yet another outer Ethertype so that
the scheme does not conflict with metro Ethernet usage. The main advantage of
doing so is that we now gain 4 bytes in each frame, which can be used to carry
VL or VC ids, if we so desire. The down side is higher processing overhead and
reduction of maximum data length by another 6 bytes.

The VQ id can be used by switches to implement a variety of scheduling
mechanisms, including weighted round robin (WRR) for dividing available BW
between competing flows. This is straightforward and not discussed any further.

3.2 Signaling Support for VL’s

The signaling protocol is needed to provision VC’s automatically since a manual
provisioning is a recipe for non-use. The signaling requires a new Ethernet frame
type similar to the one in Fig.1(a) but with a different Ethertype value.

Fig. 2. Illustration of VL setup in a L2 domain: a) Forward, b) Backward

Fig 1(c) shows the generic format for signaling messages using this new
ethertype. Here, the operation field indicates VL operations, including VL initf,
VL initb and VL ack for VL setup and a few others for VL teardown and param-
eter update. The field “other parms” include additional information that may
be necessary for setting up queue thresholds.

Virtual links can now be setup by sending a special message, say VL initf.
This message starts with the local VQ’s number and wiggles its way through
the switches on the path to the L2 end. At each switch, it sets up the queue
translation table (QTT). Fig. 2(a) illustrates this process for setup of a VL (with
id 46) from server D1 to D3 via switches 0-2. To start with, layer 2 of D1 creates
the table entry (46, –, 3) indicating that VQ 3 is used for VL 46 at this node. It

108 K. Kant

then sends a VL initf message to SW0. SW0 locally allocates a VQ id (say, 2)
and creates a table entry (3,2) indicating that what comes with VQ 3 must go
into VQ 2. The table will also store the VC id, requested BW, and other QoS
parameters (if any), but these are not shown for simplicity. SW0 then changes
the VQ id in the VL initf message to 2 and forwards it to SW1. This process
continues until the message reaches D3, which too sets up its table entry. This
table entry (46, 5, 4) says that a packet for VL 46 coming with VQ id 5, will
be placed in VQ 4. Note that the dynamic allocation of VQ ids makes it easy to
allocate only as many queues as are really required.

The operations in Fig. 2(a) only take care of forward VL setup. When D3
receives this message, it needs to echo a VL initb message towards D1, which
effectively does the same thing in the other direction. Fig. 2(b) shows the tables
at the end of complete setup. For simplicity, we have numbered send & receive
VQ’s identically, but this is not essential. Since messages can be lost, we also
need some handshake mechanism (e.g., like the one in TCP or SCTP) to recover.
The details of this are straightforward and will be omitted. Finally, we also need
signaling messages to tear down virtual links and to adjust their parameters.

The above setup procedures are not claimed to be unique – ATM, Frame
Relay, and most significantly MPLS LDP all use a similar scheme (with minor
variations of the theme). In fact, it is possible to do VL setup by extending
MPLS LDP protocol so that the switches examine the LDP messages [1]. We do
not follow this approach to avoid the need for MPLS capabilities.

The setup scheme can be extended to establish virtual paths, by successively
establishing virtual links across routers. The main difficulty here is the need to
reestablish VL’s as the routing table entries change. For lack of space we do not
discuss the details here.

3.3 Scalability and Reconfiguration Issues

Conceptually, it is nice to use a distinct virtual path for every VN to VN com-
munication; however, this can quickly become unscalable. In this section, we
discuss issues related to limited usage of VL’s.

To start with, we note that the main motivation for VL’s is to isolate flows
corresponding to different virtual clusters. Thus, if two or more VL’s of a given
VC happen to pass through a switch, they should all use the same virtual queue
at this switch. Although this can be enforced easily in the VL setup procedure
given in the last section, it is possible to simplify things even further. Note that
the end result of setting up all VL’s of a VC is to reserve a queue at each switch
port encompassed by this VC. This can be done trivially by reaching all VN’s
of the VC from any given node.

The establishment of virtual paths across routers could get rather complex
and may impact layer3. Fortunately, if the application is configured properly, the
inter-router traffic should be smaller and less latency sensitive than the traffic
within L2 domains. In this case, we can forego keeping any VL distinctions for
paths that cross router boundaries. Or, such paths can be aggregated into a
small set of “pipes” that exploit diff-serv and other IP level QoS features. For

Virtual Link: An Enabler of Enterprise Utility Computing 109

example, all IPC traffic may go through one pipe, all storage through another,
etc. The main attraction of this approach is that it limits the scope of VL’s and
thus enhances scalability w/o and substantial performance implications.

The idea of aggregating multiple VL’s into a smaller number of “pipes” or
classes can be taken further to enhance scalability. In particular, the queue pairs
are established based on the characteristics of applications running in the VC’s;
and thus the number of simultaneous queues is limited by the number of such
characteristics identified.

Let us now briefly address the issue of dynamic reconfiguration of virtual
clusters. We assume that any traffic flow that doesn’t use VL concept is routed
via VQ 0. The addition of a node to a VC is straightforward and will allocate
new queues only at new switches/routers that are used by this VC. However,
deletion of nodes from a VC must ensure that VQ’s are not deleted until they
become completely unused. This can be addressed easily via a reference count
type of scheme.

4 Layer 2 Congestion Control

Any discussion of QoS is incomplete w/o examining congestion control issues
since, for the most part, QoS is relevant only during congestion scenarios. The
Ethernet standard only provides the 802.1x (so called Xon/Xoff) flow control.
Unfortunately, this scheme applies to the entire link and does not provide flow
control at the level of individual flows. Thus, packets may be dropped for in-
dividual flows. A reliable transport protocol such as TCP or SCTP will react
to packet drops and reduce flows; however, dropping packets in a data center
environment is highly undesirable because of high data rates, bursty traffic, and
long latencies suffered by retransmitted packets. It follows that we need some
mechanism in switches to explicitly convey congestion situation to the endpoints.

A workable layer 2 congestion control scheme in switches must support two
basic functions: (a) Congestion detection and feedback to layer 2 edge, and (b)
Congestion control at or above layer2 edge. In the following, we discuss these
aspects briefly and then show that the congestion control can be simplified by
using virtual links.

Congestion detection is best done via queue thresholds which need to be set
judiciously. The VL signaling mechanism can be used for setting the thresholds.
The threshold crossing at a switch can be carried to the L2 edge in many ways,
as discussed in [4]. The basic schemes include implicit feedback (i.e., forward
or backward packet marking), explicit feedback (sending feedback packets from
endpoints), or mixed. Implicit schemes are generally preferred since they do not
increase traffic during congestion; however, they require additional bits in the
packets.

The congestion feedback mechanism discussed above brings the feedback only
to the L2 edge. How this feedback is used depends on various congestion control
options as illustrated in Fig. 3. In particular, bringing the feedback from a router
to the endpoint may either be via ECN (as a result of backpressure on the router),

110 K. Kant

Fig. 3. Congestion Feedback and control Fig. 4. Full Test Network

or explicitly via ICMP message. The consequences of latter mechanism are not
considered here due to lack of space.

5 Experimental Study of L2 Congestion Control

In this section, we compare virtual link based congestion control against other
alternatives in order to exhibit the pros and cons of virtual link based congestion
QoS and congestion management.

5.1 Congestion Control Mechanisms

For simplicity, let’s limit discussion to applications that use primarily a reliable
connection oriented communication mechanism (e.g., TCP or SCTP). Now, if no
VL support is available, the congestion will eventually manifest itself as packet
loss followed by the transport reaction to it. (We used TCP-Reno in these exper-
iments.) This is the baseline scenario studied here and is designated as L4-loss.

A slightly enhanced scheme is to enable the switches to report congestion
via the ECN mechanism, except that it is implemented at layer 2. We further
assume that TCP will examine these layer-2 ECN bits as well and take the same
action as with layer-3 ECN bits. We call this the L4-ECN method.

Climbing up the feature ladder, we assume switches can mark packets for
congestion but don’t do any traffic differentiation. We still assume an appropriate
signaling procedure to set congestion thresholds at switches. The idea now is to
do an intelligent flow control at the endpoint NIC and thereby enforce proper BW
allocation to various flows. We call this scheme as L2-FC. A concrete example
of such and scheme is explored in [3,5].

Here we describe the scheme in [5] only briefly. Initially, each L2 endpoint
sends out probes (or special signaling messages) to discover paths to all other
endpoints of this L2 domain. All these paths are then constantly monitored for
congestion at the endpoint. The feedback scheme is the mixed feedback discussed
earlier. In particular, a switch on the path updates the congestion indicator if its
current congestion level is higher than the one in the probe. Via this mechanism,
each L2 endpoint is able to maintain the maximum congestion level along each
path. This congestion level along with the desired weight (or relative BW) for

Virtual Link: An Enabler of Enterprise Utility Computing 111

various flows is used to do a bang-bang control for forcing the congestion along
the path down to a predefined nominal value.

The final scheme studied is the VL based congestion control, which we call
L4-VL. Although this scheme requires features (a)-(f), the congestion control is
still at the endpoint TCP level (hence the name L4-VL). This scheme requires
very little support from the endpoint NIC and does not require a sophisticated
congestion control to be built into the NIC. On the other hand, the scheme
provides no support for throttling UDP flows.

5.2 Congestion Control Performance

In this section we provide a detailed experimental comparison of the congestion
performance the schemes L4-Loss, L4-ECN, L2-FC and L4-VL. For the compar-
isons, we used the OPNET simulation package which provides comprehensive
implementations of all relevant networking layers (MAC, IP, TCP, ...) and pre-
built models of many commercial switches and routers. It also provides a few
application layers (e.g., database, FTP, VOIP, etc.). Yet substantial development
work was required in order to implement the following features: a) switch level
traffic differentiation, b) Endpoint layer 2 flow control, and c) Application level
flow control. The simulated network is shown in Fig. 4. It is important to note
here that the “clients” in Fig. 4 are not really the end-clients (usually outside the
Enterprise), but rather other servers (e.g., mid-tier servers making DB requests)
residing within the Enterprise.

Fig. 5. Throughput of VC1 client 1 Fig. 6. Throughput of VC1 client 2

All links in Fig. 4 follow the IEEE 10 Gb/s standard. This is done to emphasize
the emerging high speed data center environment. The physical cluster here is
divided up into 2 virtual clusters:

VC1: This includes clients 1 & 2 and server1. Here both clients 1 and 2 generate
database traffic over TCP.

VC2: This includes clients 3, 4 & 5 and server2. Each of these clients also
generates database traffic over TCP.

In both cases, the traffic is 100% database updates which means that the
congested flow direction is from client to server. (This scenario was chosen for

112 K. Kant

simplicity; the mechanisms do work well irrespective of the direction of con-
gestion.) The update sizes are assumed to be exponentially distributed with a
mean of 8KB. The interarrival times of clients are uniformly distributed with
maximum value twice that of the minimum value. The mean traffic driven by
each client plus the start and stop times of each client are shown in Fig. 4. The
start and stop times are staggered so that we can have a number of overload
scenarios.

Figs 5 and 6 show, respectively, the achieved throughput for VC1 and VC2
respectively. Here the intent is to give 2/3rd of the BW to VC1 and 1/3rd to
VC2. In other words, we expect VC1 to receive 6.67 Gb/s throughput under
stress conditions.

We start with the traffic evolution for VC1 by referring to Fig 5. For the first
15 ms, only clients 1&2 are on, and together drive 7 Gb/s. Not surprisingly, this
traffic is carried properly in all cases. At 15 ms, client 3 comes on and the total
traffic driven over SW1-SW2 link is 10 Gb/s. Without the ECN (case L4-Loss)
the highest traffic source (Client 1) experiences heavier losses than others and
effectively shuts down. As a result, the VC1 throughput drops down to 3 Gb/s
(Client 2 rate) for this case. This type of “shut-down” scenario was observed
consistently in many situations and points to the inadequacy of depending on
just the packet losses. In contrast, ECN is still capable of controlling the backlog
effectively (case L4-ECN), though not quite as well as cases L4-VL & L2-FC.

At time 50ms, client 4 comes on. The total BW driven through SW2-SW3
link is now 16 Gb/s and we are under severe congestion. Case L4-Loss now
experiences a connection reset due to too many retransmission timer expiries.
Case L4-ECN still survives but now shows its deficiency – w/o any differentiation,
TCP will simply tend to equalize BW of all the congested sources. As a result,
both VC1 and VC2 will achieve 5 Gb/s BW. Both cases L4-VL and L2-FC
maintain close to 2:1 throughput ratio between the two VCs in this case, as
required, however, there is some difference in their performance. In particular,
case L4-VL (virtual link) tends to favor VC1 a bit whereas case L2-FC (endpoint
control) favors VC2 somewhat. Note that the control in case (L4-VL) is more
variable because it is just TCP driven as opposed to case L2-FC which does
additional layer 2 flow-control.

At time 75ms, client 5 also comes on. Since this simply adds to the existing
overload, no change is expected. Surprisingly, however, case L4-ECN shows an
increase in VC1 throughput! To understand this, notice that until time 75ms,
the link from SW3 to Server2 was not saturated, but now it does get overloaded.
Consequently, TCP connections at clients 3-5 all back off hard (more so at
client 3) and this allows for higher VC1 throughput.

At time 90 ms, client 3 goes off. This has no impact on case L4-VL but both
cases L2-FC and L4-ECN have a throughput increase because of less VC2 traffic.
In fact, almost the entire VC1 traffic is able to get through in all three cases
primarily because Client 4 continues to remain mostly shutout due to congestion
on SW3-Server2 link. At time 120 ms, Client 2 also goes off, thereby reducing
VC1 rate down to 4 Gb/s. Client 5 then goes off at time 150 ms, but it does not

Virtual Link: An Enabler of Enterprise Utility Computing 113

affect VC1 traffic (because client 5 traffic has little interference with it). Finally,
at time 175 ms, VC1 traffic turns off completely.

Let us now briefly examine VC2 throughput in Fig 6. The behavior here is
in some ways complementary to that in Fig 5, since a favoring of VC1 implies a
disfavoring of VC2 and vice versa. The only point worth noting is that at time
175 ms, when VC1 traffic turns off completely, VC2 traffic actually surges to fill
the link because of the earlier backlog.

6 Conclusions

The main conclusion from the above and several other studies is that switch level
congestion detection and marking are essential for an acceptable performance. A
TCP level congestion control driven by this marking (L4-ECN) can control the
congestion but is unable to provide the desired QoS. Finally, both L2-FC and
L4-VL schemes can provide decent congestion control and QoS. However, the
two have somewhat different characteristics. The L4-VL scheme requires more
perturbation to the switch infrastructure, but does require embedding sophisti-
cated flow control in the NICs. The L2-FC scheme can also suffer from scalability
issues in large L2 networks.

A crucial consideration in proposing new features for existing networks is com-
patibility with legacy implementations. With the L2-FC scheme, a legacy NIC
will (a) ignore any congestion feedback and (b) will not even participate in the
probing done by the newer NICs. The consequence of (a) is eventual TCP-level
action based on packet losses. The consequence of (b) is imprecise accounting of
paths and path flow control at the newer NICs and hence inaccurate control. In
the L4-VL scheme, a non-VL capable switch will not understand signaling mes-
sages and would simply pass them on along the path. The normal packets also
will not get any differentiation at these switches but will be silently forwarded
along. Thus, if the legacy switches are not the sources of severe congestion, the
whole system will continue to perform well. If the legacy switches do experi-
ence congestion, the flows through them will be governed by the default TCP
behavior (i.e., TCP’s tendency to equalize flows).

Acknowledgements. The author would like to thank Gary Mcalpine for assis-
tance in detailed implementation and experimentation. Thanks are also due to
Raj Ramanujan for discussions relating to some of the ideas in the paper.

References

1. “QoS Support in MPLS networks”, MPLS/Frame Relay alliance whitepaper, May
2003.

2. G. Chiruvolu, An Ge, et. al., “Issues and approaches on extending Ethernet beyond
LANs”, IEEE Computer, March 2004, pp 79-86.

3. G. Mcalpine, M. Wadekar, et. Al., ”An architecture for congestion management in
Ethernet clusters”, IEEE IPDPS Workshop 9, April 2005, Denver, CO.

114 K. Kant

4. H. Barraas, M. Wadekar, et. al., “Problem Space for Ethernet Congestion Manage-
ment”, IEEE 802.1ar Congestion Management Group Presentation, sept 2004.

5. G. Mcalpine, ”Congestion Management for Switched Ethernet”, Proc. of high perf.
interconnects for distributed computing, July 2005.

6. S.H. Low, F. Paganini, et. al., “Linear stability of TCP/RED and a scalable control”,
Computer Networks, vol 43, no 5, pp633-647, 2003.

7. http://www.icir.org/floyd/ecn.html (collection of annotated references on ECN).

Pervasive Open Spaces: A Transparent and
Scalable Dome-Based Pervasive Resource

Allocation System

Amgad Madkour1,� and Sherif G. Aly2

The American University In Cairo, Egypt
1amadkour@eg.ibm.com

http://amgadmadkour.pioneersawg.com
2sgamal@aucegypt.edu

Abstract. Scalability imposes itself as a great setback for pervasive
computing research. This paper presents a novel approach for scalable
resource allocation which harnesses the power of scalable systems by cre-
ating what we call an open space. The fundamental concept behind open
spaces lies in utilizing resources beyond user’s current location within a
pervasive computing environment, while accommodating user mobility
patterns. We discuss the idea of domes that form an open space environ-
ment. We also discuss how resources are allocated and migrated through
domes. We present a schema of how resources can be dynamically allo-
cated and shared between users within the environment in a transparent
and efficient manner. We also discuss how we accommodate user mobility
to eventually achieve an open space structure.

1 Introduction

Pervasive computing defines a vision of bringing computers closer to people[1,2].
The main idea is to have machines adapting to human environments rather than
forcing humans to undergo such adaptation. Pervasive computing enlightens this
vision by providing ubiquitous services to users on an anytime, anywhere basis.
This paper addresses a number of resource-relatedpervasive computing challenges
mainly as it deals with localized scalability and uneven conditioning [3].

The dilemma of localized scalability exists when the interactions between
users and their environments grow in sophistication as the devices in the com-
puting environment itself also grow in sophistication.Uneven conditioning on the
other hand exists when resource-hungry users need more resources than what
is currently available to them. One solution for such problem was proposed by
Project Aura [5]. The solution informs users of a better spot to obtain a service,
as well as the resources necessary for the required task. However, such approach
requires knowledge of the exact task at hand, along with intelligence about the
distribution of resources.
� To whome correspondance should be addressed, Amgad Madkour is currently a Re-

search Engineer in IBM Egypt Research and Development Group.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 115–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 A. Madkour and S.G. Aly

In this work, we also take scalability into consideration. Scalability should be
recognized as a primary factor that influences the architecture and implementa-
tions of pervasive systems, similar to what has been done in distributed systems
[9].

The paper is organized as follows: In section 2 we describe the related work.
In sections 3 and 4 we define what Open Spaces are, and describe the basic
components that form them. In sections 5, 6 , 7 and 8 we discuss resource
allocation, mobility and limitations issue, and explain how resources are managed
and released from our domes respectively. In section 9 and 10 we present the
implementation and experimentation of the system.

2 Related Work

One of the main challenges is to define categories to tackle the issue of scalability.
Buckholz and Popien in [8] divided the scalability issue into a number of dimen-
sions: First, a numerical dimension that deals with the number of users in an
environment, and second, a geographic dimension that deals with the distance
between nodes in the environment that provides services. A third dimension,
namely administrative, deals with execution control over the system.

Many survey papers state different paradigms of how both context aware ser-
vices and users interact in accordance with their environment. Some scenarios
assume that both the user and context services are located beside each other.
Other scenarios assume that users are distant from context services, while still
obtaining services by other means [8]. One such example is the conference assis-
tant system that does not face scalability problems because of the assumption
that its environment is small enough to handle the requests it receives from room
visitors, and hence, scalability does not constitute a major issue [7]. The aim is
to realize a more global approach to solving pervasive computing requirements
where environments do not pose a limitation [8].

In this work, we also find great intimacy between work done in distributed file
systems and the proposed idea of Open Space in pervasive systems. Scale-related
aspects in distributed file systems were tackled by the Andrew and Coda dis-
tributed file system [9]. Location transparency was one of the main requirements
which enabled the system to have users unaware of where files are allocated and
stored.Some researchers consider pervasive computing to be a form of grid com-
puting since both of them utilizes the idea of using free or unused resources
[10,11,12].

3 Open Spaces

Open spaces is a pervasive environment that harnesses the power of scalable
systems in terms of available resources. Open spaces uses hybrid concepts from
distributed file systems, and grid computing and clusters to use any available re-
sources of the system. Clusters help in defining a region of inter-related resources.
We refer to cluster-like regions in our work as domes, which are explained later.

Pervasive Open Spaces 117

We use concepts of grid computing in extending our view of the system, where
we exploit available resources in a certain region.

We created a paradigm that allows a pervasive environment to have an ex-
tendable and expandable grid capable of foreseeing beyond its current location.
Users requesting resources in the Open Space will neither be bound by their
current location, nor their current cluster (dome). The Open Space structure
handles user requests on a more global scale in an invisible and transparent
manner. It uses inter-dome communication to satisfy user requirements instead
of the user searching for required resources.

Open Spaces is a two-part system that depends on both the infrastructure
of the dome, as well as sharable user devices. As a pervasive environment, the
system defines a protocol of communication between the dome and user devices
so that the dome would be able to use shared resources of devices. This requires
a layer to be present on user devices that will control its shared resources in the
Open Space environment. Such layer is responsible for keeping the dome up to
date about the resources status available at each device.

The types of resources that we deal with can vary from memory, processing
or storage resources. Resource discovery is done when any user enters the Open
Space environment and such user devices broadcast their current resources. Once
the user device sends information to its relevant dome about the current status of
its resources, and the amount that it will share, the dome keeps track of the device
movement in the whole environment and acquires resources when it needs them.

We defined a resource allocation mechanism that maximizes the chances of a
user performing resource consuming tasks, even if the user is using a device with
limited resources. The choice of which dome to acquire resources from is based
on the allocation mechanism that we have defined as explained in later sections.

We developed an application to perform complete simulation of our system
in order to observe various interactions between the entities. We simulated user
devices with a predefined sharable amount of resources and showed when and
how the device communicated with the dome in order to synchronize its available
resources. We also implemented inter-dome and intra-dome communications to
show how resource acquisition is performed. We also simulated user movement
in the Open space environment and showed how the environment handles user
mobility within the domes.

4 The Open Space Structure

Open Space consists of a number of overlapping and enclosing domes that com-
municate with each other forming an Open Space pervasive environment. Figure
1 shows how we can have two overlapping domes aiding each other to provide
resource allocation services for their users.

4.1 The Dome

A dome is a physically defined space that contains a number of wireless access
points. Such access points are used to reply on user resource requests within the

118 A. Madkour and S.G. Aly

Fig. 1. Two domes populated with users. Each dome is equipped with usable resources
that can be shared within the environment and managed by dome servers.

perimeter of the dome. The dome itself may have a collection of other micro
domes within it. The main motivation is that each dome will enclose a number
of local resources and mobile users in a specified region. It will also be the single
point of contact for users that wish to request resources.

The structure of the domes themselves can either be static, or may change
dynamically. However, within this work, we consider for the time being dome
structures that are static. In other words, each dome can represent a building
or a campus, or a subset of a campus. Each dome can have resources such as
computing devices similar to the ones mentioned in Figure 1. Such computing
devices are local to that specific dome.

We define wireless services that cover the perimeter of the dome. Therefore,
if a user is outside the range of any dome, the user will obviously not be able
to receive the domes services. Each statically defined dome is equipped with a
dedicated machine. We will refer to the machine as server which is a normal com-
puting device with reasonable processing and storage power. In our simulation
of the system, we defined the server to be equipped with a middleware called
the iKernel. The iKernel is responsible for the managing requests and allocation
of resources to and from users. We discuss iKernel in details in later sections.

4.2 The Dome Architecture

We have two architectures that will aid us in the development of domes: The
first architecture may have macro domes that enclose micro domes. This allows
us to have a wireless cluster of domes that intercommunicate together to allo-
cate resources for their users. This cluster maintains user location and resources
when roaming between enclosed domes. The intercommunication frees the user
to commute from one dome to another without worrying about losing resources,
thus removing the burden of location constraints, as with the case of hand-over
in cellular phones. The cluster mechanism will only operate if the whole cluster
of micro domes is inside a macro dome, which in turn is responsible for managing
the mobility of the user. This guarantees quality of service to the user as the
transition from one micro dome to another is still tracked by the macro dome
itself, which in turn holds the entire micro domes cluster.

Pervasive Open Spaces 119

The second architecture deals with a broader integration of domes. With such
architecture, we have two domes that have no macro domes. For those domes
to communicate they have to overlap in order to share resources between each
other efficiently. In the first architecture, we depended on the existence of a
macro dome that would facilitate and maintain communication between the
micro domes.

5 Resource Allocation and Limitations

We introduce how resource allocation is performed when a user needs more
resources than what his current device offers. After the user enters a dome, his
resources will be reported to the dome according to a specific policy that is
defined by the iKernel, as well as the middleware residing on the user device.
When the user allocates any resource on his device, the current amount will also
be reported to the dome. A policy governs the amount of resources that the user
shares within the dome. The amount can either be predefined or the user could
choose to allow sharing of his resources when the device is in idle state. These
policies aim to govern the misuse or unfairness of resource sharing inside the
dome. In this paper we assume that the resources will be allocated from idle
state devices.

5.1 Resource Allocation Mechanism

In case the dome cannot allocate enough resources for the current user, the dome
will proceed with the following procedures:

The dome’s iKernel will query its overlapping domes about their resources
and try to allocate the required amount of resources for the user. The minimum
logical amount of overlapping domes should be two domes. The user device
middleware sends a message to the dome that passes the request to its iKernel.
The iKernel searches the resources that have been reported and attempts to
determine the most appropriate resources to satisfy the user request. The iKernel
then sends a message to the device informing it of the coordinates of were to
acquire the resources needed. When the user device receives the request, it starts
to perform its task on peer to peer basis with the device that shared this resource.

In case the first procedure fails to acquire the resources, the domes iKernel
sends a message to the macro dome and tries to request information about
resources. Each dome can have only one macro dome which encloses it. The
macro dome replies with a message to the requesting dome informing it of the
availability of the requested resources. If the macro dome fails, it recursively
tries to search for resources on its overlapping domes then its macro dome and
so forth. When resources are found, the message is sent recursively back to the
initiating dome which in turn passes a message to the user informing him of the
resources coordinates. Each dome follows the same procedure explained before
to allocate the resources for the user.

In case both these procedures fail, the user will be in pending state inside the
dome, until the required resources can be allocated.

120 A. Madkour and S.G. Aly

6 Releasing Resources

Resources are released by the user when the user completely exits the dome. The
resources are returned back to the allocating dome, to be eventually reallocated
to users who may have a pending request. Any remaining resources are allocated
to any new user entering the dome. In case the user leaves a dome with some
of his resources still allocated, the dome actually tries to compensate for the
resources it will loose due to the departure of the user and tries to reallocate
them from its own resources. It will follow the same sequence we mentioned
before in case that it couldnt allocate enough resources.

7 Resource Mobility

We have two mobility scenarios in our dome environment. The first is Intra-
mobility in which the user may move from the macro dome into a micro dome.
The resources allocated from the macro dome will remain until the micro dome
that the user enters inside confirms that it has the necessary resources for the
user. The second scenario is Inter-mobility in which the user may move from one
macro dome to another macro dome. The main difference between the scenario
we have mentioned and the current one is that we want to connect larger regions
or domes together, where each region has its own pervasive environment.

8 Resource Management

The resources types shared among domes may include processing, memory, or
storage. Each dome is equipped with what is called a shared resources pool.
This pool includes all resources that are present at a certain point in time in
the dome, and the dome uses that pool to allocate resources for users requesting
them. Resources are not restricted to those local to the dome, but also include
ones that are associated with the user.

In case the policy of the user allows sharing of his own resources, then when
the user enters a dome, the resources that he has shared are placed inside the
pool. This scenario would be very effective if the user has idle resources which
another user maybe in dire need of to satisfy required resources.

Considering that we are in a pervasive environment, conventional operating
systems will not be of much help. We need a special layer to manage the devices,
as well as their resources (hardware or software). Such layer must have an efficient
management and allocation system. We have included in our simulation what we
mentioned before as a compact iKernel. The iKernel monitors all users entering
the dome, which in turn allocates and reallocates resources to them accordingly.
The iKernel has a defined mechanism to obtain resources as fast as possible using
the shortest path that is available to it. Our current schema assumes access to
overlapping domes, then access to macro domes. We believe that this schema
yields best results due to distance issues.

Pervasive Open Spaces 121

The iKernel will determine the closest and most appropriate dome to start al-
locating resources from according to the mentioned schema. Another responsibil-
ity of the iKernel is keeping track of any new domes that may be created. This is
done by a central server which keeps the iKernels of domes updated with the en-
vironment. Such policy ensures that the creation of a new dome is monitored by
the central server whose only task is to keep track of created and removed domes.

9 Open Space Implementation

9.1 iKernel

The iKernel is the core of the Open Space architecture were it is responsible for
management and allocation of requests from and to the user. The iKernel, which
maintains a basic queue data structure to keep track of requests and resources
that are currently available on a first come first serve manner also checks the
shortest path between the requesting device and the nearest available resource by
sorting a copy of system resources every time it receives a request to guarantee
that the user receives resources from the nearest neighbor on a first come first
serve queue. In our application, we created domes and their iKernel’s each on a
separate thread to fully simulate real deployment simulation.

The iKernel performs a number of major operations including checking for
resources, processing resource removal and allocating/reallocating resources.

9.2 Device Middleware

The second component is the middleware that resides on the user device. This
layer is the interface between the device resources and the iKernel in order for the
device to use shared resources from the dome. Such layer broadcasts its resources
upon entry by sending a report after each operation is done on the device. The
middleware is also responsible for establishing a peer to peer connection with the
device that contains the resources that the user or the system requires. After the
device finishes the task the middleware sends a message to the dome to return
the resources.

9.3 Dome Manager Server

The third and final component is the dome manager server which includes a layer
that keeps information about current domes in an environment, and synchronizes
with the rest of the domes on its list. As such, domes would be aware of candidate
domes to acquire resources from. The update about newly available domes to
the rest is done when a dome is added to the list of the dome manager server.

10 Experiment

We conducted three experiments using our simulator to demonstrate the be-
havior of our system as relates to the delay incurred upon allocating various

122 A. Madkour and S.G. Aly

resources. The three experiments were conducted to demonstrate such resource
allocation delay behavior in three scenarios, namely in the presence of overlap-
ping,macro and without the presence of domes.The ultimate objective of the
experiments is to prove that the utilization of dome-based structures can de-
crease the overall delay resulting from the search and allocation of resources.

10.1 Experimental Setup

For our experiments, we identify the presence of domes in our simulator using 2-
D planar coordinates. Each dome has an X and Y coordinates, as well as a radius.
We also assumed that resource allocation delay is proportional to the proximity
of the resources physical presence from the requesting device.Two types of delays
exist, namely REQD, and COMD. The former specifies the time taken to locate
and allocate a resource, and the latter specified communication delay to utilize
the required resource. The total delay TOTAL is the summation of REQD and
COMD.In the simulation, we fixed the location of the first user (DEV1) at X
and Y coordinates (100,100). We then relocated the second user (DEV2) to two
new locations. Both users are in different domes. DEV1 will attempt to acquire
256 MB of memory, however, it only owns half this amount, namely 128 MB of
memory. We then measure the delay in terms of allocation and utilization for
the three previously mentioned scenarios.

10.2 Experimental Results

The experiments show the effect of different scenarios mentioned earlier on the
overall delay that is incurred. We assume that for each scenario, one user is
fixed and the other user moves in three different locations. We show the overall
delay that is incurred in each location.In the graph illustrated in Figure 2, we
show the resulting delays between two devices without the intervention of domes.
This is the conventional scenario that devices go through in order to search for
resources. The device first attempts to contact the nearest device to establish a
connection. After that the second device then replies with the availability of its
resources and its approval of the first device process. This delay is even a best
case scenario, where the device successfully found the resources it requires from
the first trial. From our experiment we showed that we incurred a major delay
overhead simply to find the appropriate resource to use.

In our dome based system, the dome is delegated to search for the appropriate
resources necessary to satisfy the user device, which in turn decreases the delay
because the device communicates with the dome to obtain information about
where to acquire the resources from, instead of searching for the resource by
itself. Furthermore, the dome does not have to search for available devices upon
receiving a resource request, but rather, since resources are already registered
by devices upon entry into the dome, the resource search time is significantly
decreased.

In the graph illustrated in Figure 3, the time delay in both the overlapping and
macro dome scenario is very close since the delays are primarily influenced by the

Pervasive Open Spaces 123

Fig. 2. No Domes Delay Results

Fig. 3. Overlapping and Macro Dome Delay Results

distance between the device and the dome in order to allocate the resource. In
effect, whether the two devices are in the same dome, as in the case of the macro
dome scenario, or different domes, as in the case of the overlapping domes, it
is the distance between the device and the dome that matters, not the physical
alignment of the domes.

11 Conclusion and Future Work

In this paper we introduced the concept of dome-based Open Spaces which
enables service acquisition in a pervasive environment while keeping into consid-
eration user mobility. Our primary target in this paper was tackling the issues
of scalability and availability of resources to the users in the environment and
how we can achieve a more efficient communication delay than normal sharing
mechanisms.We plan to introduce AI techniques to the iKernel which would en-
able an efficient choice of domes based on the users history. Techniques of mobile
agents and constraint programming can help in making custom decisions about
the most appropriate dome to acquire resources from. Another issue that we are
planning to tackle is the security of information on other user devices. We are

124 A. Madkour and S.G. Aly

also planning on testing various fair resource sharing mechanisms other than the
one we defined in order to achieve maximum fairness in the system.

References

1. M. Weiser, ”The Computer for the 21st Century,” Scientific Am., Sept., 1991,
pp.940104; reprinted in IEEE Pervasive Computing, Jan-Mar.2002, pp.19-25.

2. D. Saha, A. Mukherjee, ”Pervasive Computing: A Paradigm for the 21st Century,”
Published by the IEEE Computer Society, March 2003.

3. M. Satyanaryanan, ”Pervasive Computing: Vision and Challenges,” IEEE Personal
Communications, Aug.2001, pp.10-17.

4. M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, K. Nahrstedt,
”A Middleware infrastructure for Active Spaces,” IEEE Pervasive Computing ,
October-December 2002 (Vol.1, No.4).

5. Project Aura at Carnegie Mellon University http://www.cs.cmu.edu/ aura/
6. Neuman, BC. ”Scale in distributed systems. In: Readings in Distributed Computing

Systems,” IEEE Computer Society, Los Alamitos, CA (1994) 463-489
7. Chen, G. Kotz, D., ”A survey of context aware mobile computing research,” Tech-

nical report TR2000-381, Department of Computer Science, Dartmouth College
(2003)

8. T. Buchholz and Linnhoff-Popien, ”Towards Realizing Global Scalability in Con-
text Aware Systems,” LoCA2005

9. M. Satyanarayanan, ”The influence of Scale on distributed File system design,”
IEEE Transactions on Software Engineering, Vol. 18 No.1, and January 1992

10. IT Professional’s editorial board, ”Grid Computing 101: Whats all the fuss about,”
IEEE Computer Society March, April 2004

11. Ian Forter, What is the grid, A Three Point Checklist, Argonne National Lab
http://wwwfp.mcs.anl.gov/ foster/Articles/WhatIsTheGrid.pdf

12. SETI, http://setiathome.ssl.berkeley.edu/
13. Xiaodong Li, Chang Liu, ”Towards a Reliable and Efficient distributed storage sys-

tem,” IEEE Proceedings of the 38th international Conference on System Sciences
2005

14. Loke, S.W., Krishnaswamy S., and Naing, T.T. ”Service Domains for Ambi-
ent Services: Concept and Experimentation. Mobile Networks and Applications”
(MONET) (Special Issue on Mobile Services), Springer

Computational Experience with Branch, Cut
and Price Algorithms in Grid Environments

Sonya Marcarelli, Emilio Pasquale Mancini, and Umberto Villano

Università del Sannio, Dipartimento di Ingegneria, RCOST, Benevento, Italy
{sonya.marcarelli, epmancini, villano}@unisannio.it

Abstract. This paper presents our computational experience with par-
allel Branch, Cut and Price algorithms in a geographically-distributed
grid environment. After a brief description of our framework for solving
large-scale optimization problems, we describe the experimental grid en-
vironment and the tests performed, presenting the obtained performance
results.

1 Introduction

In the field of integer optimization, Branch and Bound is one of the most common
methods used to solve hard optimization problems. It uses a divide-and-conquer
strategy to explore the set of feasible solutions and takes trace of them using a
search tree. Unfortunately, many real-world problems are NP-Hard and may re-
quire search trees of exponential size. Then, it is natural to try to parallelize the
search in order to make the solution more practical. Currently, there are several
frameworks using a parallel approach to solve optimization problems, while the
potential of computing grids seems to have been only partially exploited. This
paper aims to explore this field, since it describes our computational experience
in using the Branch, Cut and Price platform, described in [1], for solving large-
scale optimization problems in a grid environment. In a previous paper [1], we
have shown the tests performed in a cluster of Globus nodes on a single LAN.
Here, the target computing environment is a grid made up of two clusters be-
longing to two different LANs, where the front-ends have public addresses and
the compute nodes have private addresses.

The software system developed for our test is composed of two framework,
BCP-G and Meta-PBC, and a web portal, SWI-Portal. BCP-G is a customized
version of COIN/BCP, an open source framework developed within the IBM
COIN-OR project. The original COIN/BCP framework, based on the use of
PVM libraries, has been provided with a new MPI communication API able
to exploit the MPICH-G2 system, a grid-enabled MPI implementation [2, 3].
Meta-PBC is instead a brand new framework, implementing a master-worker
schema [4]. SWI-Portal is a web portal that manages users and jobs.

In the next section, we introduce the Branch, Cut and Price algorithms and
the architecture of our grid-enabled system. Then, we describe our experimen-
tal grid environment with the interconnection network used and we present

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 125–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

126 S. Marcarelli, E.P. Mancini, and U. Villano

several case studies and the obtained performance results. The paper closes with
a discussion on future work and our conclusions.

2 The Branch, Cut and Price Algorithms

Branch and Bound algorithms are among the most widely used methods for
solving complex optimization problems [5]. An optimization problem is the task
of minimizing (maximizing) an objective function, a function that associates a
cost to each solution. Branch and Bound uses a divide-and-conquer strategy that
partitions the solution space into subsets. As is well known, it is made up of two
phases: a branching one, where the subsets of solutions are examined forming a
tree structure called search tree, and a bounding one, where they are evaluated
finding upper and lower bounds to the optimal solution.

LP-based Branch and Bound is a Branch and Bound where the lower bound
is computed solving the LP-relaxation of the problem. For example, in a generic
MILP (Mixed Integer Linear Programming) problem, there is a finite number
of variables subject to the integrality constraint. By relaxing this constraint,
we have a LP-relaxation, whose optimal value is a lower bound to the original
problem. A typical branching operation is to select a variable with fractional
value in the LP solution.

Branch and Cut algorithms are a type of Branch and Bound where a finite
number of cuts, that is, valid inequalities, are dynamically added to the search
tree, in order to improve the lower bound to the LP-relaxation [6, 7].

Branch and Price algorithms are instead based on column generation in order
to solve problems with a very large number of variables. They use initially only
a small subset of the problem variables and of the respective columns in the
constraints matrix, thus defining a reduced problem. In fact, in the original
problem, there are too many columns and great part of them will have the
respective variables equal to zero in an optimal solution.

Branch, Cut and Price joins the two methods used by Branch and Cut and
Branch and Price, producing dynamically both cutting planes and variables [5].

3 The Architecture of the Solver System

The architecture of our solver [1] is shown in Fig. 1. In the figure, the upper
layer is the portal interface. In the middle, there are the two framework BCP-G
and MetaPBC, all of which rely on the lower layer (Globus and MPICH-G2).

BCP-G is an optimization framework based on the Branch, Cut And Price
method, which we have implemented from COIN/BCP, adding to it a new
communication interface written in MPI. COIN/BCP is an open-source frame-
work based on Branch, Cut and Price for solving mixed integer programming
problems [8]. It offers a parallel implementation of the algorithm based on
the message-passing environment PVM (Parallel Virtual Machine). COIN/BCP
implements a single-node pool algorithm, where there is a single central list

Computational Experience with Branch, Cut and Price Algorithms 127

of candidate sub-problems to be processed, owned by the tree manager. The mod-
ules communicate with each other by exchanging messages through a message-
passing protocol defined in a separate communications API.

Fig. 1. Solver architecture

Our communication interface in MPI is implemented by the two classes BCP
mpi environment and BCP mpi id, which manage the communications between
computational modules and the process ids, respectively. This new interface,
which is now integrated in the COIN-OR framework (http://www.coin-or.org/
download.html), allows the use of this framework in a Globus grid environment
through the grid-enabled implementation of MPI, MPICH-G2. The user has sim-
ply to write a Globus rsl script and, through the globusrun command, he/she
can launch the solver execution [9].

Meta-PBC is a parallel solver for solving optimization problems using the
Branch and Cut algorithm. It consists of three modules: manager, worker and
tree monitor [4]. The manager is responsible for the initialization of the problem
and manages the message handling between the workers. The worker is a sequen-
tial Branch and Cut solver, with additional functionality to communicate in the
parallel layer. The workers communicate with each other through the parallel
API to know the state of the overall solution process. The parallel interaction
between modules is achieved by a separate communication API. The current ver-
sion is implemented in MPI. In this way, the processes can be executed on a grid
using MPICH-G2. The tree monitor collects information about the search tree.

SWI-Portal is a web portal that allows users to submit jobs and hence to solve
optimization problems, to monitor their job, to view their output and to down-
load the results. Users interact with the portal, and, therefore, with the solvers
and the grid, through this interface. SWI-Portal is implemented using the Java
Server Pages technology (JSP). It consists of an user interface and of a set of
Java classes, wrapping the most important and useful Globus functions. Fur-
thermore, it uses a database to collect information on users, jobs and resources.

128 S. Marcarelli, E.P. Mancini, and U. Villano

All the services and the functions supplied by the SWI-Portal are grouped in
four subsystems. The first, the account subsystem, is responsible for managing
user access in conjunction with the users DB. It allows a user to register in the
system and to enter the portal, giving his login and password. The second one is
the scheduling subsystem. It invokes the Globus gatekeeper and the associated
job-manager to start the run with the parameters supplied by the user. The
subsystem also records information about the runs in the database. From the
pages of the Monitoring subsystem, a user can check the status and any other
information about all the started processes (such as output, error, rsl, and search
tree). Through the Download Subsystem, a user can download all information
regarding his jobs and/or cancel this from the server. More details about the
solver system architecture can be found in [1].

4 The Grid Testbed

To test the system on slow extra-LAN connections, we have configured an exper-
imental grid environment made up of two Rocks clusters (fab4 and e-science)
at two different sites at the University of Sannio [10]. Fig. 2 shows the archi-
tecture of our grid environment. Each cluster has front-end with public IP and
compute nodes with hidden IPs. We used 4 workstation on fab4, each equipped
with Pentium Xeon, 2.8 GHz CPU and 1 GB of RAM, and 16 workstations
on e-science, each equipped with Pentium Xeon, 2.8 GHz CPU and 1 GB of
RAM. The intra-cluster connection is 100 GigaEthernet. The two clusters are
not on the same campus LAN, and are actually connected by a very slow connec-
tion (the details are provided later). We installed on each front-end the Globus
Toolkit and the local Sun Grid Engine (SGE) scheduler. The Sun Grid Engine is
a distributed resource management (DRM) software and it provides functions to
utilize effectively the resources within the cluster as submitting, monitoring and
managing jobs. In particular, the Globus gatekeeper uses the SGE scheduler as
its job-manager. On each head node, we installed MPICH-G2, which allows inter-
cluster and intra-cluster communication. MPICH-G2, based on Globus Toolkit
services, allows to run MPI application on a grid environment. It uses TCP for
inter-machine messaging and a vendor-supplied MPI (where available) for intra-
machine messaging. MPICH-G2 requires point-to-point communication between
the nodes where the jobs are running. Unfortunately, this requires that all com-
pute nodes have public IP addresses, but this is in contrast with a classical
cluster configuration like ours, where the compute nodes have private IPs.

In order to solve this problem, and to use all of the processors available, we have
chosen a solution based on the Realm Specific IP (RSIP) framework and protocol.
RSIP is a network address translation technology that performs a function similar
to NAT. It allows the communication between two hosts belonging to different
address spaces. In our solution, we installed on each head node an RSIP server
and on each compute node an RSIP client. When a compute node of e-science
(RSIP client) wishes to contact a node of fab4, it queries the RSIP server for a
port number and a public IP address. The client then tunnels the packets to the

Computational Experience with Branch, Cut and Price Algorithms 129

Fig. 2. The Grid Testbed

Fig. 3. Bandwidth in log scale

RSIP server, which strips off the tunnel headers and sends the packets to the target
node. On incoming packets, the RSIP server looks up the client IP, based on port
number, adds the tunnel header and sends them to the RSIP client.

We measured the bandwidth of the extra-LAN connection between the two
clusters, including the overhead of the RSIP protocol, through a simple MPI
ping-pong program, which calculates the communication time between two pro-
cesses using blocking send and receive (Fig. 3). The figure shows the band-
width of the intra-cluster network, on e-science and fab4, and of the inter-cluster

130 S. Marcarelli, E.P. Mancini, and U. Villano

Table 1. Transmission latency

Latency (μs)

inter-cluster 650158.2
e-science 2067.8
fab4 1994.08

network. Moreover, Table 1 shows the transmission latency measured between
two nodes in a single cluster, and in different clusters (inter-cluster).

5 Case Studies

We present here the performance results obtained by our solver for the solution
of an optimization problem in the above-described grid environment. In partic-
ular, we have implemented a generic MIP solver to solve mixed integer linear
programming problems. A MIP problem has the following form:

min cT x s.t. Ax ≥ b xz ∈ Zn, xc ∈ Rn

where c ∈ Rn, A ∈ Rm × n, b ∈ Rm. In the computational experiments of BCP-
G with the MIP solver we take advantage of the MIPLIB library [11], which,
since its introduction, has become a standard test set, and is commonly used
to compare the performance of mixed integer optimizers. As LP solver, we use
CLP, an open source solver of the COIN-OR project. Table 2 shows the details
of the tested problem instances. Column name is the name of the problem
instance, rows the number of constraints, cols the number of variables, ints the
number of integer variables and nonzeros the number of nonzero elements in
the constraints matrix.

Table 2. Tested instances

name rows cols ints nonzeros

Stein45 331 45 45 1034
Misc07 212 260 259 8619
10teams 230 2025 —— 12150

Figures 4(a), 4(b), 4(c) compare the response times of BCP-G using differ-
ent scheduling strategies. Using the first strategy, s1, slave processes first are
spawned on e-science, and, only when all the nodes of this cluster have been
used, on fab4. In the second one, s2, we spawn immediately slave processes al-
ternatively on both clusters. Of course, in the second case the response time is
higher, especially for low number of hosts, due to the latency introduced by the
inter-cluster connection (its max measured bandwidth is 0,2 MB/s). All the tests
presented show that from 16 hosts onward the use of additional hosts does not
involve any significant gain in the solver performance. The reason is the used

Computational Experience with Branch, Cut and Price Algorithms 131

(a) stein45 (b) misc07

(c) 10teams

Fig. 4. Response times for the stein45, misc07 and 10teams problem, using two
scheduling strategies on a variable number of hosts

Fig. 5. The centralized approach

parallelization strategy along with the architecture of our grid environment. The
solver system uses a classical centralized approach where all the communications
are between the master and the slave processes. During the execution, there is
a large amount of data exchanged between the master and the slave processes.
In our tests, the master process, the tree manager, is on a compute node on
e-science and the slave processes are on all the other compute nodes. The use of
the additional compute nodes of fab4 increases the time spent in communication
and hence the parallel overhead because of the high transmission latency of the
extra-LAN connection. The alternative is to use a decentralized approach where
each cluster has its local pool of problems to solve in order to reduce the com-
munication on slow connections. Figure 5 and 6 show a centralized approach,

132 S. Marcarelli, E.P. Mancini, and U. Villano

Fig. 6. The decentralized approach

like our solver, and a decentralized approach in a grid environment made up of
three clusters on three LANs.

6 Related Work

Many software packages implementing parallel branch and bound have been
developed. SYMPHONY [5] is a parallel framework, similar to COIN/BCP, for
solving mixed integer linear programs; PICO [12]. PARINO [13] and FATCOP
[14, 15] are generic parallel MIP solvers. Some other parallel solver are PUBB
[16] and PPBB-Lib [17]. ALPS [18] is a framework for implementing parallel
graph search algorithms and MW [19] is a framework for making master-worker
application in grid-environment using Condor.

The literature dealing with the management and the performance of MPI
applications in grid environments made up of private IP clusters is relatively
limited. The paper [20] presents MPICH-GP, an extension of MPICH-G2 for
supporting Private IP, whereas [21] describes a solution based on IMPI standard
with Network Address Translation mechanism and [22] proposes a solution based
on RSIP. Papers on similar topics are [23] and [24]. The paper [25] presents
a performance analysis on hierarchical grid system with different bandwidths
between clusters.

7 Conclusions and Future Work

In this paper, we have described the configuration of our experimental grid en-
vironment, which is made up of two clusters located in two different LAN. We
have described the problems encountered using MPICH-G2 in such environ-
ment, where the compute nodes have hidden IPs, showing the solution based
on RSIP and its performance evaluation. The computational tests performed
and presented here led to unsatisfactory results, in that the high latency of the
extra-LAN connection minimizes the performance gains due to the use of a high
number of compute nodes. A grid is a set of resources of heterogeneous nature
with different computational power connected by network with different perfor-
mance characteristics. In this context, it is necessary to make grid-aware the

Computational Experience with Branch, Cut and Price Algorithms 133

application in order to achieve good performance. A simple master-worker ap-
proach, as our tests prove, is not a good solution because does not take into
account the topology of the grid environment. In our future work, we wish to
change the architecture of the solver system using a decentralized approach. We
would divide the search tree in many sub-trees and assign one of them to each
cluster, which will solve it individually (Fig. 6). In this way, we think that the
overhead introduced by slow networks, as in the case described in our tests,
should be reduced.

References

1. Mancini, E., Marcarelli, S., Ritrovato, P., Vasil’ev, I., Villano, U.: A grid-aware
branch, cut and price implementation. Lecture Notes in Computer Science 3666
(2005) 38–47

2. Ferreira, L., Jacob, B., Slevin, S., Brown, M., Sundararajan, S., Lepesant, J., Bank,
J.: Globus Toolkit 3.0 Quick Start. IBM. (2003)

3. Karonis, N., Toonen, B., Foster, I.: MPICH-G2: A Grid-Enabled Implementation
of the Message Passing Interface. J. of Parallel and Dist. Comp. 63 (2003) 551–563

4. Vasil’ev, I., Avella, P.: PBC: A parallel branch-and-cut framework. In: Proc. of
35th Conference of the Italian Operations Res. Society, Lecce, Italy (2004) 138

5. Ralphs, T., Ladanyi, L., Saltzman, M.: Parallel Branch, Cut, and Price for Large-
Scale Discrete Optmization. Mathematical Programming 98 (2003) 253–280

6. Margot, F.: BAC: A BCP Based Branch-and-Cut Example. (2003)
7. Cordiery, C., Marchandz, H., Laundyx, R., Wolsey, L.: bc-opt: a Branch-and-Cut

Code for Mixed Integer Programs. Mathematical Programming (86) (1999) 335–
354

8. Ralphs, T., Ladanyi, L.: COIN/BCP User’s Manual. (2001) http://www.coin-or.
org/Presentations/bcp-man.pdf.

9. Globus Alliance: WS GRAM: Developer’s Guide. (2005) http://www-unix.

globus.org/toolkit/docs/3.2/gram/ws/developer .
10. Papadopoulos, P.M., Katz, M.J., Bruno, G.: NPACI Rocks: tools and techniques

for easily deploying manageable Linux clusters. Concurrency and Computation:
Practice and Experience 15 (2003) 707–728

11. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed
integer programming library MIPLIB 3.0. Optima (58) (1998) 12–15

12. Eckstein, J., Phillips, C., Hart, W.: Pico: An object-oriented framework for parallel
branch and bound. Technical report, Rutgers University, Piscataway, NJ (2000)

13. Linderoth, J.: Topics in Parallel Integer Optimization. PhD thesis, School of
Industrial and Systems Engineering, Georgia Inst. of Tech., Atlanta, GA (1998)

14. Chen, Q., Ferris, M.C.: Fatcop: A fault tolerant condor-pvm mixed integer pro-
gramming solver. Technical report, University of Wisconsin CS Department Tech-
nical Report 99-05, Madison, WI (1999)

15. Chen, Q., Ferris, M., Linderoth, J.: Fatcop 2.0: Advanced features in an oppor-
tunistic mixed integer programming solver. Annals of Op. Res. (103) (2001) 17–32

16. Shinano, Y., Higaki, M., Hirabayashi, R.: Control schemas in a generalized utility
for parallel branch and bound. In: Proc. of the 1997 Eleventh International Parallel
Processing Symposium, Los Alamitos, CA, IEEE Computer Society Press (1997)

17. Tschoke, S., Polzer, T.: Portable Parallel Branch-And-Bound Library PPBB-Lib
User Manual. Department of computer science Univ. of Paderborn. (1996)

134 S. Marcarelli, E.P. Mancini, and U. Villano

18. Ralphs, T.K., Ladanyi, L., Saltzman, M.J.: A library hierarchy for implementing
scalable parallel search algorithms. J. Supercomput. 28(2) (2004) 215–234

19. Goux, J., Kulkarni, S., Yoder, M., Linderoth, J.: An enabling framework for master-
worker applications on the computational grid. In: HPDC ’00: Proceedings of the
Ninth IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC’00), Washington, DC, USA, IEEE Computer Society (2000) 43

20. Park, K., Park, S., Kwon, O., Park, H.: Mpich-gp: A private-ip-enabled mpi
over grid environments. In: Lecture Notes in Computer Science, Proc. of Paral-
lel and Distributed Processing and Applications, Second International Symposium
(ISPA04). Volume 3358., Berlin, DE, Springer (2004) 469–473

21. Velusamy, V., Bangalore, P., Raman, P.: Communication strategies for private-
ip-enabled interoperable message passing across grid environments. In: Proc.
of First International Workshop on Networks for Grid Applications. (2004)
http://www.broadnets.org/2004/workshop-papers/Gridnets/Velusamy V.pdf.

22. Das, D., Sabharwal, R., Saraswati, S., Anantharaman, P.N., Oh, J.: A network
architecture for enabling execution of mpi applications on the grid. International
Journal of Information Technology 11(4) (2004) 74–83

23. Heymann, E., Senar, M.A., Fernández, E., Fernández, A., Salt, J.: Managing mpi
applications in grid environments. In Dikaiakos, M.D., ed.: Grid Computing: Sec-
ond European AcrossGrids Conference, Lecture Notes in Computer Science. Vol-
ume 3165. (2004) 42–50

24. Choi, S., Park, K., Han, S., Park, S., Kwon, O., Kim, Y., Park, H.: An nat-based
communication relay scheme for private-ip-enabled mpi over grid environments.
In: International Conference on Computational Science. (2004) 499–502

25. Chen, C., Schmidt, B.: Performance analysis of computational biology applications
on hierarchical grid systems. In: CCGRID, IEEE Computer Society (2004) 426–433

Quorum Based Distributed Conflict Resolution
Algorithm for Bounded Capacity Resources

Armin Lawi, Kentaro Oda, and Takaichi Yoshida

Program of Creation Informatics, Kyushu Institute of Technology
680-4 Kawazu, Iizuka, Fukuoka 820, Japan

Abstract. The (m, h, k)-resource allocation is a conflict resolution prob-
lem to control and synchronize a distributed system consisting of n nodes
and m shared resources so that the following two requirements are sat-
isfied: at any given time at most h (out of m) resources can be used
by some nodes simultaneously, and each resource is used by at most k
concurrent nodes. The problem is a natural generalization of several well-
studied conflict resolution problems such as mutual exclusion, k-mutual
exclusion, generalized mutual exclusion and group mutual exclusion. The
problem can be solved by employing an �-mutual exclusion algorithm,
however, it is inefficient in terms of the message complexity and the max-
imum degree hk of concurrency may not be achieved. We thus propose
a new algorithm and a new quorum system (m, h, k)-coterie used in it,
and show that all requirements of the problem are guaranteed and the
maximum concurrency degree is achieved as desired. We also present
a natural extension of the new quorum system which resolves a more
general problem with distinct bounded capacities and also achieves the
maximum degree of concurrency, h

i=1 ki, of the problem.

Keywords: Concurrency, coteries, distributed conflict resolution, fault-
tolerance, mutual exclusion, quorum systems.

1 Introduction

Synchronizations adopting quorum systems are an important class of distributed
algorithms since they gracefully and significantly tolerate node and communi-
cation failures that may lead to network partitioning [1,2,3]. The distributed
mutual exclusion (mutex in short) given in [4] is a classical example of a dis-
tributed quorum based algorithm. If a node receives permissions from a quorum
of nodes, then the node may enter its critical section. (The critical section is
a specified part of the code in which the node accesses the inadvisable shared
resource). In order to ensure the safety property of the problem, i.e., at most
one node can be in its critical section at a time, any two quorums should have a
non-empty intersection and each node can only issue permission to one node at
a time. The set of quorums is called coterie [3].

Many distributed problems can be solved by using quorum-based algorithms,
including decentralized consensus, leader election and replica control. For in-
stance, in a replica control protocol, instead of having a single set of quorums,

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 135–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

136 A. Lawi, K. Oda, and T. Yoshida

it uses a quorum system wr-coterie [5] which consists of two type of quorums:
read and write quorums. Another direct natural generalization of coterie, called
k-coterie, has also been defined in [6,5,7] to resolve the k-mutex which relaxes
the safety property of mutex such that at most k nodes can access the critical
resource at a time. To guarantee the safety property of k-mutex, in a k-coterie,
there must be no more k pairwise-disjoint quorums in the system. The problem
of group mutual exclusion (GME) introduced by Joung [8] is another generaliza-
tion of mutex which synchronizes conflicting nodes in sharing m resources such
that at most one resource can be used by some concurrent nodes at a time. The
m-group quorum system has been proposed to resolve the GME problem in [8],
however, construction of such a good quorum system (i.e., a non-dominated m-
group quorum system) arises a more difficult problem. Moreover, the coterie
based mutex algorithm can directly be adopted to this problem; i.e., the con-
flicting nodes simply use a coterie to manage their mutual exclusive accessions
to the requested resources.

Recently, Lawi and Yamashita [9], and Joung [10] independently introduced
and defined (m, h, k)-resource allocation as a general conflict resolution prob-
lem which relaxes the safety requirement of the k-mutex and GME problems.
The problem models and designs a conflict resolution in a distributed system
consisting of n processes which share m resources. The system is said to be
(m, h, k)-resource allocated if the following conditions hold [9]:

– group h-exclusion: at most h (out of m) resources can be utilized by some
processes simultaneously at a time.

– k-concurrent entering: at most k (out of n) concurrent processes can
utilize the same resource at a time.

– liveness: a process requesting a resource will eventually succeed.

This problem is a natural generalization of some classical conflict resolution
problems. If the system only consisting of a single shared resource (m = 1),
the problem corresponds to the mutex when k = 1, and it corresponds to the
k-mutex when k is constantly determined. If m > 1, the problem corresponds
to the GME when h = 1 and k is undetermined, it corresponds to the gener-
alized mutex [11] when k = 1 and h is undetermined, and it corresponds to
the group k-exclusion [12,13] when h = 1 and k is constantly determined. The
problem also covers some generalized problems that have not yet been studied
such as when k ≤ 1 and h is constantly determined, and when k is constantly
determined and h is undetermined (and conversely). Moreover, the problem also
corresponds to some new generalizations of the writer-readers problem [14,15]
when its requirements are applied after relaxing or leaving strained.

In the (m, h, k)-resource allocation system, there at most hk nodes can en-
joy the access right since h resources are allowed to be used simultaneously
and k nodes are allowed to concurrently access for each resource. Lawi and Ya-
mashita [9] have introduced a new quorum system called m-group (h, k)-coterie
and showed that a quorum based algorithm adopting it can solve the (m, h, k)-
resource allocation problem. However, their algorithm may not allow nodes to ac-
cess h resources and hence the degree of concurrency may not reach hk. Another

Quorum Based Distributed Conflict Resolution Algorithm 137

quorum system, called (m, 1, k)-coterie, has also been introduced by Joung [10],
but it can only solve the problem when h = 1.

In this paper, we present a quorum based algorithm for (m, h, k)-resource
allocation problem. The problem can be solved by employing a k-coterie and
an h-coterie based algorithms separately, however, it is inefficient in terms of
message complexity and the maximum degree hk of concurrency may not be
achieved. We thus introduce a new quorum system called (m, h, k)-coterie, and
show that the quorum based algorithm adopting it, instead of a k-coterie, can
solve the problem in a more efficient way. That is, it guarantees that all require-
ments of (m, h, k)-resource allocation problem and achieves the maximum degree
hk of concurrency as desired. The properties (m, h, k)-coterie follow properties
of (extended) k-coteries in which a pair of intersecting and non-intersecting quo-
rums are associated with a bicoterie and a disjoint pair of coteries, respectively.
It will also easy to observe that the (m, 1, k)-coterie introduced in Joung [10]
is just one example of (m, h, k)-coterie when h = 1. We also present a natural
extension of the new quorum system which resolves a more general problem with
distinct bounded capacities, and show that the maximum degree of concurrency,∑h

i=1 ki, of the problem is also achieved. Some intuitive examples of the new
quorum system are also presented.

2 A Review of k-Coteries and Bicoteries

In this subsection, we review the concepts of k-coterie and bicoterie, which are
two building blocks of the proposed quorum system. Let P denote the set of
n nodes in the system. The term nodes may refer to processes in a network or
copies of a data object in a replicated database system.

Definition 1 (k-coteries [6]). A nonempty set C ⊆ 2P is a k-coterie under P
iff C satisfies the following properties:

1. Non-intersection: For any h-set H = {Q1, . . . , Qh ∈ C | Qi ∩ Qj = ∅,
i = j} ⊆ C, h < k, there exists Q ∈ C such that Q ∩ Qi = ∅, ∀Qi ∈ H.

2. Intersection: For any (k + 1)-set K = {Q1, . . . , Qk+1} ⊆ C, there exists a
pair {Qi, Qj} ⊆ K such that Qi ∩ Qj = ∅, 1 ≤ i = j ≤ k + 1.

3. Minimality: Qi � Qj, ∀Qi, Qj ∈ C, i = j. �
Example 1. The quorum system C={{1, 2}, {1, 3}, {1, 4},{2, 3}, {2, 4}, {3, 4}}
is a 2-coterie under P = {1, 2, 3, 4}.
Note that a 1-coterie is just called a coterie, all elements Q ∈ C are called
quorums, and not all nodes must appear in a k-coterie.

Definition 2. (Bicoteries [5]) A pair B = {C1, C2}, where C1 and C2 are sets
of subsets of P, is a bicoterie under P if the following two properties hold:
1. Intersection: ∀Q ∈ C1, ∀Q′ ∈ C2, Q ∩ Q′ = ∅.
2. Minimality: ∀Q, Q′ ∈ Ci (i = 1, 2), Q � Q′.

A bicoterie B = {C1, C2} is called a writer-readers coterie (or wr-coterie), only
if C1 is a coterie. �

138 A. Lawi, K. Oda, and T. Yoshida

3 The Algorithm

3.1 The (m, h, k)-Coteries

A simple approach to (m, h, k)-resource allocation can use an �-coterie based
mutex algorithm. The two requirements of the group h-exclusion and the k-
concurrent entering are independently solved using the h- and k-mutex algo-
rithms respectively, and a node can use a critical resource only if it gets the
access right from both of the h- and k-coterie based algorithms. This algorithm
is a natural one, however, the number of messages required per entry to the
resource will be doubled to the original algorithm. Therefore, it is inefficient in
terms of the message complexity. Intuitively, the number of messages can be re-
duced if we can find a new quorum system which combines the h- and k-coteries
into a single quorum system.

Let C and C′ be two k-coteries under P and P ′, respectively. We say that
they are disjoint if Q∩Q′ = ∅, ∀Q ∈ C, ∀Q′ ∈ C′. Clearly they are disjoint if P
and P ′ are disjoint.

Our new quorum system, (m, h, k)-coterie, is defined as follows:

Definition 3 ((m, h, k)-coteries). A collection of sets B = {C1, . . . , Cm},
where Ci is a k-coterie under P, ∀Ci ∈ B, is an (m, h, k)-coterie under P iff the
following conditions hold:

1. Disjoint: For any �(< h) mutually disjoint elements C′
1, . . . , C

′
� ∈ B, there

is another element C ∈ B such that C and C′
i are disjoint for all 1 ≤ i ≤ �.

2. Bicoterie: For any (h + 1)-set {C′
1, . . . , C′

h+1} ⊆ B, there exists a pair
(C′

i, C
′
j) forms bicoterie, ∀1 ≤ i = j ≤ h + 1. �

Example 2. The quorum system B1 = {C1, C2, C3, C4} is a (4, 2, 2)-coterie
on a set P = {1, 2, . . . , 16}, where

C1 = {{1, 2, 5, 7}, {3, 4, 6, 8}},
C2 = {{5, 6, 9, 11}, {7, 8, 10, 12}},
C3 = {{9, 10, 13, 15}, {11, 12, 14, 16}}, and
C4 = {{1, 3, 13, 14}, {2, 4, 15, 16}}.

The k-mutex algorithm in [6] can directly adopt an (m, h, k)-coterie, instead
of k-coterie, to resolve the (m, h, k)-resource allocation problem. The algorithm
simply modifies the quorum based k-mutex algorithm, but for the convenience of
reader, we roughly explain how it works, with its formal description in Figure 1.

Each node ui has queue sets called AGREEi, DISAGREEi, PERMi and QUEUEi,
respectively, store node ids which replied ack message, node ids replied wait,
message requests in which ui has sent ack, and message requests in which ui

has sent wait ordered by timestamps. The logical timestamp introduced by
Lamport [16] is used to avoid deadlocks and starvations. (Initially, the logical
timestamp of each user is zero). Since each user’s identifier is unique and non-
negative integer, then the lexicographical order of every users’ priority, i.e., the
pair of timestamp and identifier, (tsi, ui), forms a total order. Priority (tsi, ui)
of user ui is greater than (tsj , uj) of user uj , (tsi, ui) > (tsj , uj), iff

tsi < tsj , or tsi = tsj and ui < uj.

Quorum Based Distributed Conflict Resolution Algorithm 139

Let B = {C1, . . . , Cm} be an (m, h, k)-coterie under P in the algorithm.

1. When a node ui wishes to access a resource rv, it firstly increases its times-
tamp and chooses a quorum Q in a k-coterie Cv, and sends a message
req(tsi, ui) to every member in Q, where ti is ui’s current timestamp.

2. If ui receives a permission from all nodes in Q, then ui can enter its Critical
Section in order to use the resource rv. Otherwise, ui selects another quorum
Q′ and repeats to send its request to all members in Q′, or staying in state
Wait only if no quorum satisfies.

3. When node ui receives a request req(tsj, uj) from a node uj , ui checks
whether it has sent its permission or not. If ui has sent its permission to
another node ux, then a fair arbitration mechanism is used to determine
whether to let uj wait, or to acquire ux’s occupancy of ui’s permission.
Otherwise, ui sends its permission (ack message) to uj .

4. When node ui wishes to leave the resource rv, ui sends an exit message to
all nodes in AGREEi and DISAGREEi.

As suggested in the point 3, suppose ux’s request came first than uj at the
node ui. Although uj has higher priority than ux, ui may have sent its permission
to ux (instead of uj). Thus, a fair arbitration should be provided to overcome
this situation.

The Fair Arbitration Mechanism: Suppose that request of node ux is in-
cluded in the set PERMi (i.e., node ui has sent its permission to ux) and ux is
still in its trying section. Let (tsy, uy) is the highest priority in the QUEUEi.

– When node ui received message req(tsj, uj) from uj and the priority of
(tsj , uj) is higher than max{(tsx, ux), (tsy , uy}, then ui sends a reclaim
message to ux in order to acquire ux’s occupancy of ui’s permission.

– When node ui received message relinquish from ux (i.e., ui reclaimed ux’s
permission), then ui sends the returned permission to uj .

Theorem 1. The algorithm in Figure 1 solves the (m, h, k)-resource allocation
problem when an (m, h, k)-coterie is adopted.

Proof. Since each Ci in an (m, h, k)-coterie B is a k-coterie, by the definition of
k-coteries, the k-concurrent entering is guaranteed. The two properties Disjoint
and Bicoterie of (m, h, k)-coteries guarantee the group h-exclusion.

The algorithm implements priority mechanism using Lamport’s logical times-
tamp [16], then it is deadlock- and starvation-free. Therefore, the liveness con-
dition is guaranteed.

3.2 Examples of (m, h, k)-Coteries

1. Singleton (m, h, k)-coteries
A set B = {C1, . . . , Cm}, where Ci = {{ui}} for some h number of distinct
nodes in P , is called a singleton (m, h, k)-coterie. The singleton (m, h, k)-
coterie corresponds to the case of the centralized algorithm for the group

140 A. Lawi, K. Oda, and T. Yoshida

Trying Section{ //When ui wishes to access a resource rv

1: tsi++; // tsi is ui’s current logical time
2: Select a quorum Q in Cv;
3: send req(tsi, ui) to uj , ∀uj ∈ Q;
4: Add uj(∈ Q) answering ack into AGREEi;
5: if (there is a Q(∈ Cv) ⊆ AGREEi) {
6: state := Critical Section; }
7: else-if { // If there exists uj(∈ Q) answers wait

8: Add uj answering wait into DISAGREEi;
9: Select another quorum Q′ ∈ Cv such that

Q′ ∩ DISAGREEi = ∅ Q′ = max{|Q ∩ AGREEi|};
10: if (there is no quorum satisfy) {
11: state := Wait; }
12: Q := (Q′ − Q) and goto line 3; } }

Exit Section { // When user ui leaves resource rv

1: send exit to ∀uj ∈ (AGREEi ∪ DISAGREEi); }

When ui receives req(tsj , uj) message:
1: if (PERMi = ∅) {
2: send ack to uj and add req(tsj , uj) to PERMi; }
3: else-if { // If there exists (tsx, ux) ∈ PERMi
4: // Let (tsy, uy) is the highest priority in QUEUEi;
5: Insert req(tsj , uj) into QUEUEi;
6: if ((tsj , uj) > max{(tsx, ux), (tsy, uy)}) {
7: send reclaim to ux; }
8: else-if {
9: send wait to uj ; }}

When ui receives exit message from uj :
1: Remove request uj from PERMi;
2: if (QUEUEi
= ∅) {
3: // Let (tsy, uy) is the highest priority in QUEUEi;
4: Move req(tsy, uy) from QUEUEi to PERMi;
5: send ack to uy ; }

When ui receives reclaim message from uj:
1: if (ui not in critical section and uj ∈ AGREEi) {
2: Move uj from AGREEi to DISAGREEj ;
3: send relinquish to uj ; }

When ui receives relinquish message from uj :
1: // Let (tsx, ux) is the highest priority in QUEUEi;
2: if (tsx, ux) > (tsj , uj) {
3: Move req(tsj , uj) from PERMi to QUEUEi;
4: send ack to ux;
5: Move req(tsx, ux) from QUEUEi to PERMi; }

Fig. 1. The (m, h, k)-coterie based algorithm

Quorum Based Distributed Conflict Resolution Algorithm 141

(h, k)-exclusion problem where some nodes control the actual conflicts to
the corresponding resources.

2. Disjoint (m, m, k)-coteries

In case of h = m, (m, m, k)-coterie B can be easily constructed by assigning
m disjoint k-coteries to each Ci such that B = {C1, . . . , Cm}, where Ci is
k-coterie under Pi (⊆ P) and set {P1, . . . , Pm} is a pairwise-partition of P
for i = 1, . . . , m.

3. Simple uniform (m, h, k)-coteries

For the sake of simplicity we initially assuming that n = 2hk2 and m = 2h.
These restrictions will be removed in the next. We first partition P into m
subsets of P1, . . . , Pm, such that |Pi| = k2, 1 ≤ i ≤ m, and create a k-coterie
Ci on each set Pi by constructing k disjoint sets (or quorums) Qij , 1 ≤ j ≤ k,
where Qij = {ui

js | 1 ≤ s ≤ k}. For all 2 ≤ i ≤ m and 1 ≤ j ≤ k, let

Qij := Qi,j ∪ {ui−1
sj | 1 ≤ s ≤ k}, 1 ≤ j ≤ k.

Then, |Qij | = 2k. Finally let B = {C1, . . . , Cm}, where Ci = {Qi1, . . . , Qik}.

Lemma 2. Ci is a k-coterie under (Pi ∪ Pi−1), 2 ≤ i ≤ m.

Lemma 3. (Ci, Ci+1) is a bicoterie for any 1 ≤ i ≤ m−1, and Ci and Ci+2

are a disjoint for any 1 ≤ i ≤ m− 2.

Let us summarize.

Theorem 4. B is an (m, m
2 ,
√

n
m)-coterie. The size of each coterie Ci is

k(=
√

n
m) and the size of each quorum Qij is 2

√
n
m .

We can construct (m, m
t ,
√

n
m)-coteries, t = 1, 2, 3, . . . , �m

h � by a similar
procedure: As above, partition Pi into k k-subset Qij to create a k-coterie
Ci = {Qij}. Let

Qij := Qij ∪ (
t−1⋃
v=1

{ui−v
sj | 1 ≤ s ≤ k}).

Then we have, 1) |Qij | = tk for i ≥ t, 2) Qij∩Q(i+t)j′ = ∅ for all 1 ≤ j, j′ ≤ k,
and 3) Qij ∩ Q(i+v)j′ = ∅ for all 1 ≤ v < t and 1 ≤ j, j′ ≤ k.
Define B = {C1, . . . , Cm}.

Theorem 5. B is an (m, m
t ,
√

n
m)-coterie under P, t = 1, 2, . . . , �m

h �.

The (4, 2, 2)-coterie B1 given in the Example 2 is a simple uniform (m, h, k)-
coterie in which m, and h, k and t are equal to 4 and 2, respectively. A brief
description on constructing an (m, m

t ,
√

n
m)-coterie is given in Figure 2.

142 A. Lawi, K. Oda, and T. Yoshida

Qht,1

Qht,2

Qht,k

..
.

Q1,1

Q1,2

Q1,k

..
.

Q2,1

Q2,2

Q2,k

..
.

Qt,1

Qt,2

Qt,k

..
.

Q2t,1

Q2t,2

Q2t,k

..
.... ... Cht+1 (mod m). . .

C1 C2 Ct C2t Cht

Legend

: Bicoterie

: Quorum
Intersection

...

Fig. 2. Description of the construction (m, m
t
, n

m
)-coterie

3.3 Concurrency Degree and Message Performance

Theorem 6. The algorithm in Figure 1 adopting (m, h, k)-coteries achieves the
maximum degree hk of concurrency.

Proof. Each resource ri is associated with a k-coterie Ci in an (m, h, k)-coterie
B = {C1, . . . , Cm}. By the definition of k-coteries, each resource can be used by
at most k nodes at a time. The disjointness property guarantees that at most
h sets Cj are disjoint, 1 ≤ j ≤ m. Hence, at most hk nodes can use the critical
resource simultaneously.

Next, the number of messages required per entry to the resource is the same as
for the mutual exclusion algorithm [4] and hence for the k-mutex algorithm [6].
The message complexity of the algorithm in the best case is 3|Q|, since a node
ui wishing to access a resource rv sends req, receives ack, and sends exit to
and from all nodes in the selected quorum Q, where Q is the quorum in Cv(∈ B)
selected by ui. The worst case message complexity occurs whenever ui unsuc-
cessfully collects permission from all members in a selected quorum Q, then
ui selects another quorum Q′(∈ Cv) and tries to collect permission from that
quorum. For example, ui sends req to ux (for all ux = ui), ux sends reclaim
to uy, uy replies relinquish to ux, ux sends ack to ui, ui sends exit to ux,
and finally ux sends ack to uy. Thus, unfortunately, the number of messages
required per node to a resource can be as bad as 6n, where n is the number of
nodes in the system. To overcome the number of nodes that ui can repeatedly
sends messages, a bounding function f(n) (≥ c) is provided [6], where c is the
maximum quorum size of B. Therefore, the number of messages required per
node to the resource can be bounded from above by 6f(n), in the worst case.
If f(n) is equal to c, for instance, the message complexity in the worst case
is 6c.

4 The (m, h, ki)-Coteries: A Generalized Quorum System

A natural extension of the problem, called (m, h, ki)-resource allocation, can be
defined by relaxing the safety k-concurrent entering requirement.

Quorum Based Distributed Conflict Resolution Algorithm 143

ki-concurrent entering: at most ki (out of n) processes can access a same
corresponding resource ri at a time.

This generalized problem can further be solved using quorum based k-mutex
algorithm [6] by adopting an (m, h, ki)-coterie which is defined as follows.

Definition 4 ((m, h, ki)-coteries). A collection of sets B = {C1, . . . , Cm |
Ci is a ki-coterie under P , 1 ≤ ki < n} is said to be an (m, h, ki)-coterie under
P if the disjoint and bicoterie conditions hold.

The simple uniform (m, h, k)-coteries constructed in the Subsection 3.2 can also
be modified to construct uniform (m, h, ki)-coteries. By a similar procedure,
we can easily construct an (m, m

t , ki)-coterie, t = 1, 2, 3, . . . , �m
h �, where n =

th
∑

i k2
i , as follows. Again, we firstly partition Pi into ki ki-subset Qij to create

a ki-coterie Ci = {Qij}, 1 ≤ i ≤ m. Let

Qij := Qij ∪ (
⋃

1≤v≤t−1

{pi−v
sj | 1 ≤ s ≤ ki}).

Thus, |Qij | = tki for i ≥ t, Qij ∩ Q(i+t)j′ = ∅ for all 1 ≤ j, j′ ≤ ki, and
Qij ∩Q(i+v)j′ = ∅ for all 1 ≤ v < t and 1 ≤ j, j′ ≤ ki. Define B = {C1, . . . , Cm}.

Theorem 7. B is an (m, m
t , ki)-coterie under P, t = 1, 2, . . . , �m

h �.

Example 3. The quorum system B2 = {D1, D2, D3, D4} is a (4, 2, {2, 3, 3, 2})-
coterie on P = {1, 2, . . . , 25}, where

D1 = {{1, 2, 5, 7, 9}, {3, 4, 6, 8, 10}},
D2 = {{5, 6, 11, 14, 17}, {7, 8, 12, 15, 18}, {9, 10, 13, 16, 19}},
D3 = {{11, 12, 13, 20, 23}, {14, 15, 16, 21, 24}, {17, 18, 19, 22, 25}}, and
D4 = {{1, 3, 20, 21, 22}, {2, 4, 23, 24, 25}}.

Theorem 8. The algorithm in Figure 1 adopting (m, h, ki)-coteries achieves the
maximum degree of concurrency,

∑h
i=1 ki.

5 Conclusions

An (m, h, k)-resource allocation algorithm using a new quorum system called
(m, h, k)-coterie have been presented. All properties to the problem are satis-
fied and the maximum degree of concurrency, hk, is achieved as desired. Since
the algorithm directly uses the quorum base k-mutex algorithm [6] by adopting
(m, h, k)-coterie, the number of messages is the same as for a single k-coterie
based algorithm. We have also showed that a natural generalization of the
(m, h, ki)-resource allocation problem can also be solved by directly adopting
the relaxed (m, h, ki)-coterie and the maximum degree of concurrency,

∑h
i=1 ki,

can also be achieved with the same number of messages.

144 A. Lawi, K. Oda, and T. Yoshida

References

1. Agrawal, D., Abbadi, A.E.: An efficient and fault-tolerant algorithm for distributed
mutual exclusion. ACM Trans. Computer Systems 9 (1991) 1–20

2. Bernstein, P., Goodman, N.: The failure and recovery problem for replicated
databases. In: Proc. Principles of Distributed Computing (PODC). (1983) 114–122

3. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system.
Journal of the ACM 32 (1985) 841–860

4. Maekawa, M.: A
√

N algorithm for mutual exclusion in decentralized systems.
ACM Transaction on Computer Systems 3 (1985) 145–159

5. Ibaraki, T., Kameda, T.: A theory of coteries: Mutual exclusion in distributed
systems. IEEE Trans. on Parallel and Distributed Computing 4 (1993) 779–794

6. Fujita, S., Yamashita, M., Ae, T.: Distributed k-mutual exclusion problem and
k-coteries. In: Proc. 2nd International Symposium on Algorithms (LNCS 557).
(1991) 22–31

7. Kakugawa, H., Fujita, S., Yamashita, M., Ae, T.: Availability of k-coterie. IEEE
Transaction on Computers 42 (1993) 553–558

8. Joung, Y.J.: Quorum-based algorithms for group mutual exclusion. IEEE Trans-
action on Parallel and Distributed Systems 14 (2003) 463–476

9. Lawi, A., Yamashita, M.: A quorum based m-group (h, k)-exclusion algorithm. In:
Proc. International Symposium on Information Science and Electrical Engineering
(ISEE2003). (2003) 405–408

10. Joung, Y.J.: On quorum systems for group resources with bounded capacity.
In: Proc. 18th International Conference on Distributed Computing (LNCS 3274).
(2004) 86–101

11. Kakugawa, H., Yamashita, M.: Local coteries and a distributed resource allocation
algorithm. Trans. Information Processing Society of Japan 37 (1996) 1487–1498

12. Vidyasankar, K.: A simple group mutual �-exclusion algorithm. Information Pro-
cessing Letters 85 (2003) 79–85

13. Lawi, A., Oda, K., Yoshida, T.: A quorum based group k-mutual exclusion algo-
rithm for open distributed environments. In: Parallel and Distributed Processing
and Applications (LNCS 3758). (2005) 119–125

14. Manabe, Y., Tajima, N.: (h, k)-arbiters for h-out-of-k mutual exclusion problem.
Theoretical Computer Science 310 (2004) 379–392

15. Datta, A.K., Hadid, R., Villain, V.: A new self-stabilizing k-out-of-� exclusion
algorithm on rings. In: Self-Stabilizing Systems (LNCS 2704). (2003) 113–128

16. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558–565

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 145 – 154, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Performance Analysis of Semi-centralized Load Sharing

Hassan Barada1, Rachid Benlamri2, and Ali Al-Raqabani1

1 Etisalat University College, Emirates Telecommunications Corporation (Etisalat), UAE
2 Department of Software Engineering, Lakehead University, Canada

hbarada@euc.ac.ae, rbenlamr@lakeheadu.ca, ali@ies.etisalat.ae

Abstract. In a large distributed system, it is important that computers share the
loads submitted to the system in order to harness all its computing power. This
paper proposes and analyzes a new algorithm for sharing system loads based on
a coordinated dynamic semi-centralized scheme. In this scheme, load state in-
formation at each node is centrally collected by a coordinator to optimize the
transfer policy. This information is periodically broadcasted to nodes for decen-
tralizing the decision, making for best load allocation policy. The paper ana-
lyzes the algorithm for small systems as well as for large distributed systems.
Simulations results have shown that this semi-centralized scheme outperforms
probing-based schemes in most system loads.

1 Introduction

Load sharing is the process of sharing computational resources by distributing the
load of a distributed computing system among the various processing nodes in the
system. Two major load sharing schemes are reported in the literature [1]: centralized
scheme where a particular node is responsible for load sharing throughout the system,
and decentralized scheme where each node is responsible for sharing its own load.

In a centralized scheme, the central node maintains all information about the state
of nodes in the system. Whenever its state is changed, a node is required to inform the
central node. In a decentralized scheme, also known as probing scheme, load state in-
formation is exchanged between nodes through a particular communication model.
The centralized scheme is less reliable than the decentralized scheme in the sense that
the failure of the central node may cause the entire load sharing system to fail. Also,
the central node may potentially become a bottleneck of the system, limiting the load
sharing. On the other hand, the decentralized scheme suffers from the considerable
overhead resulting from probing a number of nodes before reaching a suitable node
for load sharing, if any. For a large cluster, the process of finding a suitable node
through either probing or broadcasting may congest the whole network. Finally, for
both schemes, the process of migrating jobs for load sharing purpose should be con-
trolled such that the incurred transfer cost is worth the enhancement in the processing
performance of the whole cluster.

A variety of load sharing algorithms have been devised to remedy some of the
above-mentioned problems [1-8]. These algorithms have also been classified in stud-
ies such as Svensson [2], Shrivaratri et al. [3], and Lewis and El-Rewini [4]. In this
paper an new algorithm is proposed and analyzed based on a semi-centralized load

146 H. Barada, R. Benlamri, and A. Al-Raqabani

sharing scheme that minimizes inter-processor communication overhead, avoids bot-
tlenecks, and provides an efficient job allocation policy. In particular, the proposed
load sharing system is suitable for large distributed systems organized into partitions.
At the partition level, the load sharing algorithm is centralized in the sense that the
load state information at each node is centrally collected to optimize the transfer pol-
icy of the load sharing algorithm. However, the collected information is periodically
broadcasted to all nodes for decentralizing the decision making for best load alloca-
tion policy. A similar load sharing strategy is applied across partitions.

The proposed semi-centralized load sharing scheme is analyzed in this paper ac-
cording to the receiver-initiated scheme where lightly-loaded nodes trigger the load
sharing process. The proposed algorithm is described in Section 2. The algorithm is
evaluated and analyzed in Section 3. Section 4 is a conclusion.

2 Proposed Load Sharing Algorithm

The proposed Coordinated Load Sharing (CLS) algorithm is designed to deal with
load sharing problems for large distributed systems. The system is organized into sev-
eral partitions, each of which consists of a number of interconnected nodes controlled
by a randomly chosen coordinator. Interconnections within and between partitions are
such that intra-partition bandwidth is much higher than inter-partition bandwidth. Par-
titions are interconnected through the randomly nominated coordinators whose job is
to coordinate the load sharing algorithm within a partition, while a global coordinator
is randomly selected among its peers to coordinate the whole system.

Each node in the system maintains its own load information and updates a load
state metric queue-length which is compared to a threshold value Tload to determine
whether the node is either overloaded or under-loaded. Accordingly, a node updates
the coordinator whenever its local load state crosses Tload.

In addition to its own load information, each node maintains a status-array which
contains the load state information of all other nodes in his partition. The status-array
at each node is updated every time the overall load state information is broadcasted by
the coordinator to the partition nodes. The broadcast process takes place once the
number of nodes for which there is a recent change of load state exceeds a certain
threshold value Tupdate. The load sharing activity of the receiver-initiated algorithm is
triggered by an under-loaded node (receiver) which requests a job from an overloaded
node. As soon as the departure of a job makes a particular node under-loaded, it starts
scanning its own local status-array searching for overloaded nodes within its parti-
tion. A node is selected randomly among the overloaded nodes in the partition and a
request-for-job message is sent to the selected node. The receiver of the request mes-
sage replies by sending a job from its processor queue regardless of its queue-length
at the time of request arrival.

A similar strategy is adopted across partitions. In particular, when a partition be-
comes under-loaded (case of Pload > Tpartition-load), it triggers a job request to an over-
loaded partition, randomly chosen from its global-array which contains the status of
each partition. Pload represents the number of under-loaded nodes in the partition
while Tpartition-load is a partition threshold value. The coordinator of the chosen over-
loaded partition replies to a job request by sending m jobs to the coordinator of

 Performance Analysis of Semi-centralized Load Sharing 147

requester partition. The m requested jobs are packaged and sent as a single block.
They are either extracted from the coordinator’s job-queue or randomly requested
from an overloaded node in that partition. Figure 1 describes the proposed algorithm.

Fig. 1. Receiver-initiated CLS Algorithm

When local job finishes execution:
 Update local status-array;
 if (queue-length crosses Tload) Send queue-length to Coordinator;
 if (queue-length) < Tload
 Search randomly for an overloaded node in local status-array;
 if (there exist an overloaded node)
 Send a job-request to the chosen overloaded node
When job submitted locally or received from a remote node:
 Queue job locally;
 Update local status-array;
 if (queue-length crosses Tload) Send queue-length to Coordinator;
When status-array received from Coordinator:
 Update local status-array;
if (Coordinator) and (queue-length received from a node):
 Update local status-array;
 Number-of-updates ++;
 if (number-of-updates = Tupdate) Broadcast status-array to all nodes;
 Number-of-update = 0;
 if (Pload crosses Tpartition-load) Send Pload to global-Coordinator;
 if (Pload > Tpartition-load)
 Search randomly for overloaded partition in local global-array;
 If (overloaded partition found)
 Send global job-request to chosen overloaded partition;
When a request for jobs received from remote partition:
 if (queue-length > Tload)
 if ((queue-length – T) m jobs)
 Send m jobs to the requester; Update local status-array;
 else Search randomly for an overloaded node in local status-array;
 Send a global-job-request to the chosen overloaded node ;
 When receiver reply to a global-request for jobs:
 Receive x jobs; Send jobs to the requester;
When a global-jobs request received from the Partition Coordinator:
 send m jobs to the Coordinator; Update local status-array;
 if (queue-length crosses Tload)
 Send queue-length to Coordinator;
When global-array received from the global Coordinator:
 Update local global-array;
if (load-state message received from a partition)
 Update global-array; Number-of-partition-updates ++;
 if (number-of-partition-updates = Tpartition-update)
 Broadcast global-array to all partitions’ coordinators;
 Number-of-partition-updates = 0;

148 H. Barada, R. Benlamri, and A. Al-Raqabani

3 Simulation Results

CLS algorithm is simulated using OMNET++ [11]. The distributed system is repre-
sented by a collection of N interconnected identical nodes. It is organized into sev-
eral partitions (LANs) according to proximity. Each partition consists of a number
of fully interconnected nodes that are physically close to each other. The bandwidth
within a partition is in the order of a thousand more than the bandwidth between
partitions.

As with most existing studies on load sharing, the mean response time of a job is
used as the performance index. It is studied as a function of the system load which is
the average load over all nodes in the system. The CPU overhead for send-
ing/receiving a job to/from a remote node was set to 2% of the job service time while
the CPU overhead for sending/receiving a control message was set to 0.3%. These
values are realistic in a network of workstations [3]. For simulations purposes, the
communication bandwidth between nodes in the same partition is set to 10Mb/s while
the communication bandwidth between nodes in different partitions is set to 10Kb/s.
The size of a control message is set to16 bytes and each element of the status-array
and the global-array used in CLS has a size of 16 bytes. The job size is fixed at
8Kbytes. The number of jobs per node which are generated using a Poisson distribu-
tion is 1000.

3.1 Analysis of CLS for One Partition

3.1.1 Sensitivity to Tupdate
In choosing the value of Tupdate, there is a tradeoff between the accuracy of informa-
tion that all nodes have about the system and the communication overhead due to
updating the nodes with accurate information. To find the best Tupdate to use, it was
varied in our simulations from 0% to 100% of the system size for sizes between 16
and 128 nodes in the partition. As a sample of the results, Figure 2 plots the mean re-
sponse time of a job against the system load for the receiver-initiated CLS for N=64.
The simulations show that CLS is not sensitive to the update-threshold at low to mod-
erate system loads (<80%) but are sensitive at very-high loads. The study also
shows that the best value for Tupdate is dependent on the system size N.

3.1.2 Sensitivity to N
Figure 3 plots the mean response time as a function of the system load for N = 16, 64
and 128 for the CLS algorithm. The values of Tupdate used are the best values for the
specific size. It is clear from the figure that the mean response time is not sensitive to
system size for low to moderate system loads. For high system loads, however, the
mean response time is lower for small system sizes than for medium to large system
sizes. Even though the best value for Tupdate is used, for small system sizes the over-
head due to broadcasting the status-array to all nodes is still much smaller than for
larger sizes. In general, the simulations have shown that the mean response time is not
sensitive to system size for sizes smaller than 50 nodes when using the best Tupdate
values.

 Performance Analysis of Semi-centralized Load Sharing 149

1

3

5

0.5 0.6 0.7 0.8 0.9 0.95

M
ea

n
 R

es
p

o
n

se
 T

im
e

1/4

1/3

1/2

2/3

3/4

1/1

Fig. 2. Receiver-initiated CLS: vary Tupdate, N = 64

1

3

5

0.5 0.6 0.7 0.8 0.9 0.95

M
ea

n
 R

es
p

o
n

se
 T

im
e

16

64

128

Fig. 3. Receiver-initiated CLS: vary N, best Tupdate

3.1.3 Sensitivity to Tload
The load threshold, Tload, has been studied in previous works for various load sharing
algorithms [2]. The performance of most load sharing algorithms in the literature was
assumed to be the same, in general, for Tload between 2 and 4. Eager et al. [7] have
found, however, that the best load-threshold value for some schemes depends on the
system load. A low threshold performs well at low loads while a high threshold is bet-
ter at high loads.

Figure 4 illustrates the behavior of the receiver-initiated CLS when varying Tload
for N=64. The best Tload is 2 for any system load and any system size. The perform-
ance of the algorithm degrades for higher Tload. At high loads, CLS is activated less
frequently than for low Tload. At the same time, if it is activated, there is a high

150 H. Barada, R. Benlamri, and A. Al-Raqabani

probability that an under-loaded node finds an overloaded node, leading to higher per-
formance due to sharing loads.

1

3

5

0.5 0.6 0.7 0.8 0.9 0.95

M
ea

n
 R

es
p

o
n

se
 T

im
e

2

3

4

5

Fig. 4. Receiver-initiated CLS: vary Tload, N = 64

3.2 Probing-Based vs. Coordinated Schemes

In this experiment, a comparison between the two load-sharing schemes, the coordi-
nated load sharing proposed in this work and the widely-used probing-based load
sharing, is presented. The parameters implemented in this experiment are the best ob-
tained from the analysis of both schemes. The probing scheme is analyzed in [10].
Figure 5 illustrates a comparison of the sender-initiated and receiver-initiated algo-
rithms of both schemes in addition to an algorithm that assumes no load sharing.

Comparing the performance between the sender-initiated algorithms of both
schemes, the probing scheme is a better scheme for low to moderate loads while the
coordinated scheme show superiority at high loads. At low to moderate loads the
probing overhead is low since a small number of nodes are probing while the load
sharing is great. These facts combined provide a better mean response time. However
at high loads, the probing overhead increases since a large number of nodes are prob-
ing while load sharing activities are minimum, which provides an increase in mean
response time. CLS algorithm, on the other hand, includes an overhead for periodi-
cally updating all nodes of the system. Although, this overhead is offset by the load
sharing at low to moderate loads, it is still much higher than the probing overhead in
the probing sender-initiated at these levels. At higher loads, however, the update
overhead does not increase while the probing overhead increases with the load in-
crease. That is why the coordinated scheme performs better at higher loads even
though in both algorithms the load sharing is minimal at these levels.

When comparing the performance between the receiver-initiated algorithms of both
schemes, it is clear that at all load levels, CLS outperforms the probing scheme. At
low to moderate loads the probing overhead is high since a large number of nodes are
probing. This high overhead is not offset by the great load sharing activity that is

 Performance Analysis of Semi-centralized Load Sharing 151

performed at this level. At high loads, even though the probing overhead is lower, the
load sharing activity is not as great. On the other hand, the update-overhead in CLS
constant and is not as dependent on the system load. Therefore, the mean response
time is a function only of how great the load sharing activity is.

In conclusion, it is clear that for low loads, the probing sender-initiated is still the
best algorithm to use as stated in the literature [1-8]. However, for moderate to high
loads it is more appropriate to use a receiver-initiated CLS; the subject of this paper.

0

2

4

6

8

10

12

14

16

18

0.5 0.6 0.7 0.8 0.9 0.95

M
ea

n
 J

o
b

 R
es

p
o

n
se

 T
im

e

No Load

Probe-recv

Probe-Sender

Coord-Recv

Coord-Sender

Fig. 5. Performance of five algorithms

3.3 Analysis of CLS for Multiple Partitions

3.3.1 Sensitivity to m
In this experiment, the number of partitions is set to 8 and each partition consists of
16 nodes. All partitions are assumed to be 80% loaded and Tpartition-update is set to 2.
Figure 6 illustrates the behavior of CLS with m = 3, 5, 7, and 10. As shown in the fig-
ure, 5 jobs is the ideal number of jobs to transfer between partitions in this case.
When using a very low m, the load sharing between partitions may be activated more
frequently since the destination partition may still be under-loaded after transferring a
small number of jobs. When using a high m, on the other hand, the communication
overhead in transferring a large number of jobs at every load sharing activity may be-
come very high to offset the improvement in sharing loads between partitions. This
conclusion was verified using different system sizes.

3.3.2 Sensitivity to TPartition-Update
The parameters for this experiment are the same as in the previous subsection except
that m is set to the best value obtained (i.e. 5) and Tpartition-update is varied between 2 and
8. Figure 7 plots the mean response time as a function of Tpartition-update. The best value
for 8 partitions is reported to be 2. It was verified that in general Tpartition-update of ¼ of
the number of partitions may be the best value to use. This value keeps the partitions
up-to-date with load of the system while keeping communication overhead in check.

152 H. Barada, R. Benlamri, and A. Al-Raqabani

2.7

2.8

2.9

3

3 5 7 10

m

M
ea

n
 R

es
p

o
n

se
 T

im
e

Fig. 6. Performance of CLS with varying m

2.7

2.8

2.9

3

2 4 6 8

Partition Update Threshold

M
ea

n
 R

es
p

o
n

se
 T

im
e

Fig. 7. Performance of CLS with varying Tpartition-update

3.3.3 Partitioning of a Single LAN
A single LAN means that all nodes are physically close to each other and all links
have the same bandwidth. In Figure 8, we compare CLS when applied to a LAN as-
sumed as a single partition with the CLS when applied to the same LAN but parti-
tioned into 4 partitions. The bandwidth of the links between the partitions is the same
as the bandwidth within the partitions.

The performance of the "partitioning" algorithm degrades exponentially with sys-
tem loads for a single LAN. The gap between the "partitioning" and "no partitioning"
algorithms gets wider as the system load increases. The overhead of applying CLS to
a partitioned LAN becomes intolerable at highly-loaded systems (> 85). This can
be explained easily by noticing that the flow of jobs between partitions go through the
coordinators only while the jobs in a single partition go directly to the destination
nodes. Therefore, there are more parallel transfers in a single partition which leads to
lower communication overhead.

This experiment verifies that partitioning a single LAN where all nodes are close to
each other limits the performance of CLS. Therefore it is important when devising a
load sharing algorithm based on partitioning the system; the partitioning should be
done according to proximity and bandwidth.

 Performance Analysis of Semi-centralized Load Sharing 153

1

3

5

7

9

11

13

0.5 0.6 0.7 0.8 0.9 0.95

M
ea

n
 R

es
p
o
n

se
 T

im
e

No Partitioning

Partitioning

No Load Sharing

Fig. 8. Partitioning vs. No Partitioning for a single LAN; N = 64

3.3.4 Partitioning of a Large DS
This experiment is done to measure the effectiveness of the proposed CLS for large
distributed systems. Large distributed systems can be typically divided into multiple
LANs according to proximity of nodes. The bandwidth of links is high between the
nodes in a LAN while the bandwidth is low across the LANs.

In Figure 9, the performance of the "No Partitioning" algorithm where the whole
system is treated as one partition and the "Partitioning" algorithm where the system is
partitioned into 4 partitions is compared. The bandwidth between the nodes in differ-
ent LANs is assumed to be in the order of one thousand less than the nodes within a
LAN. N = 64 and the partition size is 16 in the reported results.

As shown in the figure, for < 95%, it is clear that the "Partitioning" algorithm
outperforms the "No Partitioning" algorithm. The "Partitioning" overhead has been
offset by the high load sharing activity that occurs within a partition and the relatively
low activity that occurs across partitions. Only when the system is extremely highly-
loaded (95%), both algorithms behave in a similar manner. In this case, the load
sharing activity in both algorithms is very low.

4 Conclusion

A coordinated dynamic load sharing scheme which is highly suitable for large distrib-
uted systems was presented. The scheme is based on a semi-centralized load dissemi-
nation policy which allows the network not to be burdened with excessive load
sharing traffic. It has been simulated, analyzed, and its parameters optimized. simu-
lated and analyzed, and its parameters optimized. The analysis was done for small
systems as well as for large distributed systems. Simulations have verified that it is
important to partition the distributed system into a set of partitions according to prox-
imity and bandwidth of links. Partitioning a LAN where all links are of the same
bandwidth produced worse performance than using the LAN as a single partition.

154 H. Barada, R. Benlamri, and A. Al-Raqabani

Simulations results also have shown that the semi-centralized scheme outperforms
probing-based schemes in moderate to high system loads. The probing sender-
initiated algorithm, however, is still the best to use for low system loads.

1

3

5

7

9

11

13

0.5 0.6 0.7 0.8 0.9 0.95

M
ea

n
 R

es
p

o
n

se
 T

im
e

Partiitioning

No Partitioning

Fig. 9. Partitioning vs. No Partitioning for multiple LANs

References

1. D. Gupta and P. Bepari, “Load Sharing in Distributed System”, Proc. National Workshop
on Distributed Computing, 1999.

2. A. Svensson, “Dynamic Alternation between Load Sharing Algorithms”, Proc. of the 25th
Hawaii International Conference on System Sciences, 1992, pp. 193-201.

3. N. Shivaratri, P. Krueger, M. Singhal, “Load Distributing for Locally Distributed Sys-
tems”, IEEE Computer, Vol. 25, No. 12, 1992, pp. 33-44.

4. T. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice Hall, 1992.
5. O. Kremien, J. Kramer, J.Magee, “Scalable, Adaptive Load Sharing for Distributed Sys-

tems”, IEEE Parallel and Distributed Technology, 1993, pp. 62 – 70.
6. K. Kablan, W. Smari, J. Hakimian, “Adaptive Load Sharing in Heterogeneous Systems:

Policies, Modifications, and Simulation”, International Journal of Simulation Systems,
Vol. 3, No.1-2, 2002, pp. 89 – 100.

7. D. Eager, E. Lazowska , J. Zahorjan, “Adaptive Load Sharing in Homogeneous Distributed
Systems”, IEEE Transactions on Software Engineering, Vol. 12, No. 5, 1986. pp. 662-675

8. G.S. Hura, S. Mohan, T. Srikanthan, “On Load Sharing in Distributed Systems: A Novel
Approach”, Journal of Integrated Design and Process Science, Vol. 6, No.1, 2002, pp.
59 – 81.

9. G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts and Design, Ad-
dison-Wesley, 2001.

10. A. Al-Raqabani, H. Bararda, and R. Benlamri, “Performance of Probing and Coordinated
Load Sharing”, Proc. of the 17th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, 2005.

11. A. Varga, “Software Tools for Networking”, IEEE Network Interactive, Vol. 16, No. 4,
2002.

A Case for Non-blocking Collective Operations

Torsten Hoefler1,3, Jeffrey M. Squyres2, Wolfgang Rehm3,
and Andrew Lumsdaine1

1 Indiana University, Open Systems Lab, Bloomington IN 47405, USA
{htor, lums}@cs.indiana.edu

2 Cisco Systems, San Jose, CA 95134 USA
jsquyres@cisco.com

3 Technical University of Chemnitz, 09107 Chemnitz, Germany
{htor, rehm}@cs.tu-chemnitz.de

Abstract. Non-blocking collective operations for MPI have been in dis-
cussion for a long time. We want to contribute to this discussion and
to give a rationale for the usage these operations and assess their pos-
sible benefits. A LogGP model for the CPU overhead of collective algo-
rithms and a benchmark to measures it are provided and show a large
potential to overlap communication and computation. We show that non-
blocking collective operations can provide at least the same benefits as
non-blocking point to point operations already do. Our claim is that ac-
tual CPU overhead for non-blocking collective operations depends on the
message size and the communicator size and benefits especially highly
scalable applications with huge communicators. We prove that the share
of the overhead of the overall communication time of current blocking
collective operations gets smaller with bigger communicators and larger
messages. We show that the user level CPU overhead is less than 10% for
MPICH2 and LAM/MPI using TCP/IP communication, which leads us
to the conclusion that, by using non-blocking collective communication,
ideally 90% idle CPU time can be freed for the application.

Keywords: Collective communication, Overlap, Non-blocking commu-
nication, Message passing (MPI).

1 Introduction

Non-blocking collective operations and their possible benefits have already been
discussed at meetings of the MPI standardization committee. The final decision
to not include them into the MPI-2 standard fell at March 6, 19971. However,
the fact that the decision was extremely marginal (11 yes / 12 no / 2 abstain)
suggests that the role of non-blocking collective operations is still debatable. Our
contention is that non-blocking collective operations are a natural extension to
the MPI-2 standard. We show that non-blocking collective operations can be
beneficial for a class of applications to utilize the available CPU time more
efficiently and decrease the time to solution of these applications significantly.
1 See: http://www.mpi-forum.org/archives/votes/mpi2.html

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 155–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

156 T. Hoefler et al.

Further, we discuss two main problems of blocking collective communication
which limit the scalability of applications.

First, blocking collective operations have a more or less synchronizing effect
on applications which leads to unnecessary wait time. Even thought the MPI
standard does not define other blocking collective operations than MPI BARRIER
to be strictly synchronizing, most used algorithms force many processes to wait
for other processes due to data dependencies. In this way, synchronization with
a single process is enforced for some operations (e.g., a MPI BCAST can not
be finished until the root process called it) and the synchronizing behavior of
other operations highly depends on the implemented collective algorithm. In
either case, pseudo-synchronizing behavior often leads to many lost CPU cycles,
a high sensitivity to process skew (e.g., due to daemon processes which “steal”
the CPU occasionally and introduce a pseudo-random skew between processes
[1,2]), and a high sensitivity to imbalanced programming (e.g., some processes
do slightly more computation than others each round).

Second, most blocking collective operations can not take much advantage
of modern interconnects which enable communication offload to support effi-
cient overlapping of communication and computation. Abstractly seen, each su-
percomputer or cluster consists of two entities, the CPU which processes data
streams and the network which transports data streams. In many networks, both
entities can act mostly independently of each other, but the programmer has no
chance to use this parallelism efficiently if blocking communication (point-to-
point or collective) is used.

Another rationale to offer non-blocking semantics for collective communi-
cation is an analogy between many modern operating systems and the MPI
standard. Most modern operating systems offer possibilities to overlap compu-
tation on the host CPU with actions of other entities (for example harddisks
or the network). Asynchronous I/O and non-blocking TCP/IP sockets are to-
day’s standard features to communicate. The MPI standard offers non-blocking
point-to-point communication which can be used to overlap communication and
computation. It would be a natural extension to offer also a non-blocking inter-
face to the collective operations.

The next section describes related work in the field of overlap of computation
and communication and the avoidance of synchronization. Section 2 gives some
information about possible benefits of non-blocking collective communication.
Section 3 presents benchmark results for a selected set of operations followed by
a conclusion of this work.

1.1 Related Work

The obvious benefits of overlapping communication with computation and lever-
aging the hardware parallelism efficiently with the usage of non-blocking com-
munication is well documented. Analyses [3,4,5] try to give an assessment of
the capabilities of MPI implementations to perform overlapping for point-to-
point communications. Many groups analyze the possible performance benefits
for real applications. Liu et al. [6] showed possible speedups up to 1.9 for several

A Case for Non-blocking Collective Operations 157

parallel programs. Brightwell et al. [7] classifies the source of performance advan-
tage for overlap and Dimitrov [8] uses overlapping as fundamental approach to
optimize parallel applications for cluster systems. Other studies, as [9,10,11,12]
apply several transformations to parallel codes to enable overlapping. However,
little research has been done in the field of non-blocking collectives. Studies
like [13,14] mention that non-blocking collective operations would be beneficial
but do not provide a measure for it. Kale et al. [15] analyzed the applicabil-
ity of a non-blocking personalized exchange to a small set of applications in
practice. However, many studies show that non-blocking communication and
non-blocking collectives may be beneficial. Our work contributes to the field be-
cause we actually assess the potential performance benefits of a non-blocking
collective implementation.

2 Possible Performance Benefits

The most obvious benefits of non-blocking collective operations are the avoid-
ance of explicit pseudo synchronization and the ability to leverage the hardware
parallelism stated in Section 1. The pseudo-synchronizing behavior of most al-
gorithms cannot be avoided, but non-blocking collective operations process the
operation in the background, which enables the user to ignore most synchro-
nization effects. Common sources for de-synchronization, process skew and load
imbalance are not easily measurable. However, results can increase the applica-
tion running time dramatically, as shown in [16]. Theoretical [17] and practical
analyses [18,16] show that operating system noise and resulting process skew is
definitively influencing the performance of parallel applications using blocking
collective operations. Non-blocking collective operations avoid explicit synchro-
nization unless it is necessary (if the programmer wants to wait for the operation
to finish). This enables the programmer to develop applications which are more
tolerant of process skew and load imbalance.

Another benefit is to use the parallelism of the network and computation lay-
ers. Non-blocking communication (point-to-point and collective) allows the user
to issue a communication request to the hardware, perform some useful com-
putation, and ask later if it has been completed. Modern interconnect networks
can perform the message transfer mostly independently of the user process. The
resulting effect is that, for several algorithms/applications, the user can overlap
the communication latency with useful computation and ignore the communica-
tion latency up to a certain extent (or totally). This has been well analyzed for
point-to-point communication (see Section 1.1). Non-blocking collective opera-
tions allow the programmer to combine the benefits of collective communication
[19] with all benefits of non-blocking communication. The following subsections
analyze the communication behavior of current blocking collective algorithms
and implementations and show that only a fraction of the CPU time is in-
volved into communication related computation. In relation to previous studies
we show, theoretically and practically, that a similar percentage, in many cases
even more, idle CPU time as with non-blocking point-to-point communication

158 T. Hoefler et al.

can be gained. We assume that the biggest share of the remaining (idle) CPU
time can be leveraged by the user if overlap of communication and computation
together with non-blocking collective communication can be applied.

2.1 Modelling CPU and Network Activity

This subsection gives an estimation of the theoretical CPU idle time during a
collective operation. The CPU idle time during the communication will be mod-
elled and benchmarked. Precise models for collective operations are presented
in [20] and for barrier synchronization in [21]. Both studies show that the LogP
[22] or LogGP [23] model is able to predict the communication time sufficiently
accurately if the processes enter the collective operation simultaneously.

We analyze the three collective operations MPI BARRIER, MPI ALLREDUCE,
and MPI BCAST without loss of generality, in detail. As shown in [24,25,26],
these three operations are frequently used in real applications. However, the
results can also be applied to all other collective operations.

We assume the usual LogP/LogGP communication parameters (Latency,
overhead, gap, Gap ber byte and Processors) and γ to assess computation:

We derive simplified LogGP models for networks adhering the properties de-
fined in Section 2.2 in [21] (full bisectional bandwidth; full duplex; unlimited
forwarding rate; L, o are constant; o > L > g). We model point-to-point message
based implementations with logarithmic running time (O(log2P)) of all three op-
erations. We assume the dissemination principle to perform MPI BARRIER (1),
analyzed in [21]. Our model for MPI ALLREDUCE (2) assumes a simple bino-
mial tree reduce implementation followed by MPI BCAST and our MPI BCAST
(3) model assumes a binomial tree implementation (compare proposed models
in [20]).

tbarr = (2o + L) · �log2P � (1)
tallred = 2 · (2o + L + m ·G) · �log2P �+ m · γ · �log2P � (2)
tbcast = (2o + L + m · G) · �log2P � (3)

If we come back to the two entities, which are the network and the processor,
mentioned in Section 1, we realize that each parameter is “accounted” at a
specific entity. The processor is only used by o and γ while the network is used
to perform the message transmission (L,g,G). Using this information, we can
divide the equations presented above up into processing and network parts:

tCPU
barr = 2o · �log2P � tNET

barr = L · �log2P � (4)
tCPU
allred = (4o + m · γ) · �log2P � tNET

allred = 2 · (L + m · G) · �log2P � (5)
tCPU
bcast = 2o · �log2P � tNET

bcast = (L + m · G) · �log2P � (6)

We see that both, tCPU and tNET scale logarithmically with P . However, on
modern interconnects the parameters can differ significantly. The following sec-
tion provides an analysis of these parameters for modern interconect networks.

A Case for Non-blocking Collective Operations 159

2.2 Fitting the Model to Modern Architectures

Modern interconnect architectures, like InfiniBandTM, QuadricsTM, or
MyrinetTM, which are used for HPC systems, try to offload a huge share of
the communication into the network interface card. Traditional networks, like
Ethernet (without offloading), still use the CPU extensively to process network
protocols like TCP/IP. However, also Ethernet has been optimized for lower
host overhead with simplified protocols [27] as well as direct user level access
and protocol offloading [28]. All these new networks and approaches aim to re-
duce the overhead of the main CPU involved in communication (o parameter).
The L parameter is usually greater than the o in modern networks, and the gap
between tCPU and tNET grows with the message size as G ·m is added. This en-
ables efficient overlapping of computation and communication for point-to-point
communication which has been described in the related work section. However,
this idea can also be applied to collective communication. As one can see in
equations (4),(5),(6), the gap between Network and CPU occupancy also grows
with the number of involved processors P . This leads us to the prediction that
especially blocking collectives which communicate large data chunks with many
processors should be mostly utilizing the network (with an idle CPU). The only
exception could be reduction operations, like MPI ALLREDUCE, because they in-
clude processing (reduction) of values on the host CPU. However, in most cases,
the bandwidth of the CPU should be much higher than the network bandwidth.
In the following section, we evaluate these theoretical expectations with a cus-
tom benchmark set which measures the CPU usage during blocking collective
operations.

3 Benchmark Results

We implemented a benchmark which measures the CPU utilization for different
MPI collective operations. The benchmark uses the standard gettimeofday()
and getrusage() functionality of modern operating systems to measure the
idle time. It issues collective calls with different message sizes and communica-
tor sizes. The benchmark methodology is described as pseudocode in Listing 1.1.
The getrusage() call returns system time and user time used by the running
process separately. We chose a high number of iterations (10000) in the inner
loop (max iters, Line 5) to be able to neglect the overhead and relative impre-
ciseness of the system functions. We conducted the benchmark for different MPI
implementations shown in Table 1.

Many MPI libraries are implemented in a non-blocking manner which means
that the CPU overhead is, due to polling, 100% regardless of other factors. Only
LAM/MPI with TCP/IP and MPICH2 with TCP/IP used blocking communi-
cation to perform the collective operations. However, it is totally correct to use
polling to perform blocking MPI collective operations because, at least for sin-
gle threaded MPI applications, the CPU is unusable anyways and polling has
usually slightly lower overhead than interrupt based (blocking) methods.

160 T. Hoefler et al.

for(proc=1; proc<nproc; proc=proc*2) {

create_communicator(nproc, comm);

for(size=1; size<maxsize; proc=proc*2) {

4 gettimeofday(t1); getrusage(r1);

for(i=0; i<max_iters; i++)

MPI_Coll(comm, size, MPI_BYTE, ...)

getrusage(r2); gettimeofday(t2);

8 }}

Listing 1.1. Benchmark Methodology (pseudocode)

Table 1. Tested MPI Implementations

Implementation Networks

LAM/MPI 7.1.2 InfiniBand, TCP/IP
MPICH2 1.0.3 TCP/IP
Open MPI 1.1a3 InfiniBand and TCP/IP
OSU MVAPICH 0.9.4. InfiniBand

We investigated all collective operations for LAM/MPI and MPICH2 and
want to discuss the frequently used MPI ALLREDUCE (cf. [26]) in detail. Both
MPI ALLREDUCE implementations exhibit a similar behavior and use only a
fraction of the available CPU power for communicators with more than 8 nodes.
MPICH2 causes in the average of all measurement points less than 30% CPU
load while LAM/MPI consumes less then 10%. We see also that the data size
plays an important role because there may be switching points in the collective
implementation where the collective algorithms or underlying point-to-point op-
erations are changed (e.g., 128kb for MPICH2). However, this overhead includes
the TCP/IP packet processing time spent in the kernel to transmit the messages
which is measured with the getrusage() function as system time. User level,
kernel-bypass, and offloading communication hardware like InfiniBand, Quadrics
or Myrinet does not use the host CPU to process packets and does not enter the
kernel during message transmission. Figure 1 shows the user level CPU usage
(without TCP/IP processing) for both examples from above. It shows that the
CPU overhead for MPI ALLREDUCE, which implies a user level reduction oper-
ation in our case, is below 10% in the average for MPICH2 and below 3% for
LAM/MPI. These figures show also that the share of CPU idle time grows with
communicator and data size. Other collective operations which are not shown
here due to space restrictions exhibit a similar behavior.

However, generally speaking, the time to perform a collective operation grows
also with communicator and data size. This means that the overall (multiplica-
tive) CPU waste is even higher. Figure 2 shows the absolute CPU idle time
of both implementations, several collective operations, and a fixed communi-
cated data size with varying communicator sizes. The effect of growing CPU
waste during blocking collectives is clearly visible. Especially the MPI ALLTOALL

A Case for Non-blocking Collective Operations 161

 10 20 30 40 50 60Communicator Size 1
 10

 100
 1000

 10000
 100000

Data Size

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

CPU Usage (share)

 10 20 30 40 50 60Communicator Size 1
 10

 100
 1000

 10000
 100000

Data Size

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

CPU Usage (share)

Fig. 1. MPI ALLREDUCE (user time) overheads for LAM/MPI (left) and MPICH2
(right)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

C
P

U
 Id

le
 T

im
e

(m
s)

Communicator Size

ALLREDUCE
ALLTOALL

BCAST
GATHER
REDUCE

SCATTER

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

C
P

U
 Id

le
 T

im
e

(m
s)

Communicator Size

ALLREDUCE
ALLTOALL

BCAST
GATHER
REDUCE

SCATTER

Fig. 2. CPU idle time for some collective functions with varying communicator sizes
for a constant data size of 1kB (left: LAM/MPI, right: MPICH2)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000

C
P

U
 Id

le
 T

im
e

(m
s)

Data Size

ALLREDUCE
ALLTOALL

BCAST
GATHER
REDUCE

SCATTER
 0.01

 0.1

 1

 10

 100

 1000

 0 10000 20000 30000 40000 50000 60000 70000

C
P

U
 Id

le
 T

im
e

(m
s)

Data Size

ALLREDUCE
ALLTOALL

BCAST
GATHER
REDUCE

SCATTER

Fig. 3. CPU idle time for some collective functions with varying data size for a constant
communicator size of 16 processes (left: LAM/MPI, right: MPICH2)

operation, which usually scales worst, shows high CPU idle times with a growing
number of participating processes.

Figure 3 shows that absolute CPU idle time of both implementations, for a
fixed communicator size, and varying data sizes. The CPU waste is even higher
and scales worse than for the varying communicator size, nearly linearly with
the data size (the figures are plotted with a logarithmic scale).

162 T. Hoefler et al.

4 Conclusions

We show that the addition of non-blocking collective operations to the MPI-2
standard would be a natural extension to the existing interface. We model the
potential performance benefit of overlapping communication with computation
during collective operations. The model is proven and quantified with an ex-
tensive analysis of the CPU overhead for TCP/IP based networks. The results
show clearly that, using TCP/IP, more than 70% of the CPU time is wasted in
average during blocking collective operations. We assume that the gap is more
than 90% for offloading based networks such as InfiniBand, Quadrics or Myrinet
which do not process messages on the host CPU. Absolute measurements show
the wasted time per collective which can easily be converted into wasted CPU
cycles. These considerations lead to possible optimizations using non-blocking
collective operations.

We propose a simple double buffering scheme to enable the use of non-blocking
collective communication for existing parallel applications or algorithms. Exam-
ples include [29] and can be found at the LibNBC webpage [30]. Other double-
buffering based schemes to optimize parallel implementations of more algorithms
(e.g. Gaussian elemination) can be easily derived.

We implemented a portable library (LibNBC, [31]) supporting non-blocking
collective operations on top of MPI-1 and port scientific applications to use the
new semantics. However, implementing collective semantics on top of MPI-1
cannot easily take advantage of special hardware features to support collective
communication (e.g., a hardware barrier [32]). We are planning to move the
non-blocking collective implementation into the extensible Open MPI collective
framework [33] to enable hardware optimized non-blocking collectives. We do
also propose a MPI-2 extension [34] to support non-blocking collective operations
in the MPI standard.

The NBC library is available at: http://www.unixer.de/NBC/.

References

1. Wagner, A., Buntinas, D., Panda, D.K., Brightwell, R.: Application-bypass reduc-
tion for large-scale clusters. In: 2003 IEEE International Conference on Cluster
Computing (CLUSTER 2003), IEEE Computer Society (2003) 404–411

2. Terry, P., Shan, A., Huttunen, P.: Improving application performance on hpc
systems with process synchronization. Linux J. 2004(127) (2004) 3

3. Iancu, C., Husbands, P., Hargrove, P.: Hunting the overlap. In: PACT ’05: Pro-
ceedings of the 14th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT’05), Washington, DC, USA, IEEE Computer Society
(2005) 279–290

4. III, J.W., Bova, S.: Where’s the Overlap? - An Analysis of Popular MPI Imple-
mentations (1999)

5. Lawry, W., Wilson, C., Maccabe, A.B., Brightwell, R.: Comb: A portable bench-
mark suite for assessing mpi overlap. In: CLUSTER, IEEE Computer Society
(2002) 472–475

A Case for Non-blocking Collective Operations 163

6. Liu, G., Abdelrahman, T.: Computation-communication overlap on network-of-
workstation multiprocessors. In: Proc. of the Int’l Conference on Parallel and
Distributed Processing Techniques and Applications. (1998) 1635–1642

7. Brightwell, R., Underwood, K.D.: An analysis of the impact of mpi overlap and
independent progress. In: ICS ’04: Proceedings of the 18th annual international
conference on Supercomputing, New York, NY, USA, ACM Press (2004) 298–305

8. Dimitrov, R.: Overlapping of Communication and Computation and Early Bind-
ing: Fundamental Mechanisms for Improving Parallel Performance on Clusters of
Workstations. PhD thesis, Mississippi State University (2001)

9. Calland, P.Y., Dongarra, J., Robert, Y.: Tiling on systems with communication/-
computation overlap. Concurrency - Practice and Experience 11(3) (1999) 139–153

10. Baude, F., Caromel, D., Furmento, N., Sagnol, D.: Optimizing metacomputing with
communication-computation overlap. In: PaCT ’01: Proceedings of the 6th Inter-
national Conference on Parallel Computing Technologies, London, UK, Springer-
Verlag (2001) 190–204

11. Danalis, A., Kim, K.Y., Pollock, L., Swany, M.: Transformations to parallel codes
for communication-computation overlap. In: SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, Washington, DC, USA, IEEE Com-
puter Society (2005) 58

12. Abdelrahman, T.S., Liu, G.: Overlap of computation and communication on
shared-memory networks-of-workstations. (2001) 35–45

13. Dubey, A., Tessera, D.: Redistribution strategies for portable parallel FFT: a
case study. Concurrency and Computation: Practice and Experience 13(3) (2001)
209–220

14. Brightwell, R., Riesen, R., Underwood, K.D.: Analyzing the impact of overlap,
offload, and independent progress for message passing interface applications. Int.
J. High Perform. Comput. Appl. 19(2) (2005) 103–117

15. Kale, L.V., Kumar, S., Vardarajan, K.: A Framework for Collective Personalized
Communication. In: Proceedings of IPDPS’03, Nice, France (2003)

16. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer per-
formance: Achieving optimal performance on the 8, 192 processors of asci q. In:
Proceedings of the ACM/IEEE SC2003 Conference on High Performance Network-
ing and Computing, 15-21 November 2003, Phoenix, AZ, USA, CD-Rom, ACM
(2003) 55

17. Agarwal, S., Garg, R., Vishnoi, N.: The impact of noise on the scaling of collectives:
A theoretical approach. In: 12th Annual IEEE International Conference on High
Performance Computing, Goa, India (2005)

18. Jones, T., Dawson, S., Neely, R., Jr., W.G.T., Brenner, L., Fier, J., Blackmore, R.,
Caffrey, P., Maskell, B., Tomlinson, P., Roberts, M.: Improving the scalability of
parallel jobs by adding parallel awareness to the operating system. In: Proceed-
ings of the ACM/IEEE SC2003 Conference on High Performance Networking and
Computing. (2003) 10

19. Gorlatch, S.: Send-receive considered harmful: Myths and realities of message
passing. ACM Trans. Program. Lang. Syst. 26(1) (2004) 47–56

20. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra,
J.J.: Performance Analysis of MPI Collective Operations. In: Proceedings of the
19th International Parallel and Distributed Processing Symposium, 4th Interna-
tional Workshop on Performance Modeling, Evaluation, and Optimization of Par-
allel and Distributed Systems (PMEO-PDS 05), Denver, CO (2005)

164 T. Hoefler et al.

21. Hoefler, T., Cerquetti, L., Mehlan, T., Mietke, F., Rehm, W.: A practical Approach
to the Rating of Barrier Algorithms using the LogP Model and Open MPI. In:
Proceedings of the 2005 International Conference on Parallel Processing Workshops
(ICPP’05). (2005) 562–569

22. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramo-
nian, R., von Eicken, T.: LogP: towards a realistic model of parallel computation.
In: Principles Practice of Parallel Programming. (1993) 1–12

23. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: Incorpo-
rating Long Messages into the LogP Model. Journal of Parallel and Distributed
Computing 44(1) (1995) 71–79

24. Vetter, J.S., Mueller, F.: Communication characteristics of large-scale scientific
applications for contemporary cluster architectures. In: IPDPS ’02: Proceedings of
the 16th International Parallel and Distributed Processing Symposium, Washing-
ton, DC, USA, IEEE Computer Society (2002) 96

25. Brightwell, R., Goudy, S., Rodrigues, A., Underwood, K.: Implications of applica-
tion usage characteristics for collective communication offload. Internation Journal
of High-Performance Computing and Networking 4(2) (2006)

26. Rabenseifner, R.: Automatic mpi counter profiling. In: 42nd CUG Conference,
CUG Summit 2000. (2000)

27. Hoefler, T., Reinhardt, M., Mehlan, T., Mietke, F., Rehm, W.: Low overhead ether-
net communication for open mpi on linux clusters. In: Submitted to EuroPVM’06.
(2006)

28. Shivam, P., Wyckoff, P., Panda, D.: Emp: zero-copy os-bypass nic-driven giga-
bit ethernet message passing. In: Supercomputing ’01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing (CDROM), New York, NY, USA, ACM
Press (2001) 57–57

29. Hoefler, T., Gottschling, P., Rehm, W., Lumsdaine, A.: Optimizing a Conjugate
Gradient Solver with Non-Blocking Collective Operations. (2006) Accepted for
publication at the ParSim 2006 Workshop.

30. LibNBC: http://www.unixer.de/NBC (2006)
31. Hoefler, T., Lumsdaine, A.: Design, Implementation, and Usage of LibNBC. Tech-

nical report, Open Systems Lab, Indiana University (2006)
32. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: Adding Low-Cost Hardware Bar-

rier Support to Small Commodity Clusters. In: 19th International Conference on
Architecture and Computing Systems - ARCS’06. (2006) 343–350

33. Squyres, J.M., Lumsdaine, A.: The Component Architecture of Open MPI: En-
abling Third-Party Collective Algorithms. In: Proceedings, 18th ACM Interna-
tional Conference on Supercomputing, Workshop on Component Models and Sys-
tems for Grid Applications, St. Malo, France (2004)

34. Hoefler, T., Squyres, J., Bosilca, G., Fagg, G., Lumsdaine, A., Rehm, W.: Non-
Blocking Collective Operations for MPI-2. (2006)

Using Agreement Services in Grid Computing�

Michel Hurfin1, Jean-Pierre Le Narzul2,
Julien Pley1, and Philippe Räıpin Parvédy1

1 INRIA Rennes / IRISA, campus de Beaulieu, 35042 Rennes cedex, France
{hurfin, jpley, praipinp}@irisa.fr

2 GET ENST Bretagne / IRISA, campus de Rennes, 35512 Cesson-Svign, France
jlenarzu@irisa.fr

Abstract. The major purpose of a Grid is to federate multiple powerful
resources into a single virtual entity which can be accessed transparently
and efficiently by external users. As a Grid is usually an unreliable sys-
tem involving heterogeneous resources located in different geographical
domains, distributed and fault-tolerant resource allocation services have
to be provided. In particular when a crash occurs tasks have to be re-
allocated quickly and automatically, in a completely transparent way
from the users’ point of view. This paper presents Paradis, an adaptive
middleware based on a set of basic agreement services that has been in-
tegrated within an experimental Grid dedicated to genomic applications.

Keywords: Grid computing, dependability, agreement, task allocation.

1 Introduction

The major purpose of a Grid is to federate powerful distributed resources (com-
puters, clusters, storage facilities, ...) within a single virtual entity which can
be accessed transparently and efficiently by external users. In our study, we
consider a Grid composed of heterogeneous resources provided by various insti-
tutions. These potential contributors correspond to well-established institutions
that agree to share their resources and to trust each other. An example of such a
grid has been designed in the context of a project founded by the French Ministry
of Research called ”ACI GénoGRID”. This experimental Grid is dedicated to ge-
nomic applications and relies on the software presented in this paper. Its interest
is twofolds. First, it federates resources belonging to genomic/bioinformatics cen-
ters dispatched in the western part of France and thus provides to each biologist
a potentially higher computing power. Second, as this Grid is dedicated to a well-
identified community of users who share mutual interests and agree on some data
workflows, the amount of common information accessed and maintained through
the Grid (programs, files and databases) is huge.

We consider that a Grid is a federation of domains controlled by independent
and autonomous institutions. In each domain, an administrator is in charge of
managing the level of participation of its own institution in terms of computing
� This work is supported by the cooperation project CAPES/COFECUB 497/05.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 165–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 M. Hurfin et al.

power. The decision to include or to exclude some (or even all) local resources
from the Grid can be taken at any time by the local administrator without any
coordination with the others. A domain delimits a sub-part of the whole sys-
tem in which synchrony assumptions are guaranted. Indeed, resources within a
domain are connected through local area networks. Bounds on the transmission
delay exist and are known. For security purpose, interactions between domains
can be limited to a group of machine, one per domain that is responsible to
interact with the other domains. In a large scale Grid, the only reasonable as-
sumption is to consider that this set of proxies (belonging to different domains)
corresponds to an asynchronous distributed system. Such a system is charac-
terized by the lack of a global synchronized clock, and puts no bound on the
transmission delay of messages.

In this general context, we address two major issues that both require a con-
tinuous adaptation to the changing computing environment: resource allocation
and dependability. We aim at developing services that allow a Grid user to contin-
uously take full advantage of the computing power offered by the Grid. Whatever
the circumstances, a complete transparency and a quick response time are ex-
pected by the customers. To achieve this goal, all the dynamic changes of the
computing capacity of the Grid have to be observed and appropriate adapta-
tions must be performed. Most of the variations are due to an evolution of the
set of resources (failure, decision of the administrator, ...). In that case, each
time a resource disappears or appears, the tasks queuing for execution have to
be distributed among the remaining resources in an efficient way. But even when
the set of resources is stable, the proposed mechanisms have also to cope with
unreliable estimation of the workload of each resource. First, for some particu-
lar applications, the duration of a task cannot be estimated precisely. This may
create a difference between the estimated workload used by the task allocation
mechanism and the real workload. Second, the administrator of a domain may
refuse that his resources are exclusively devoted to the Grid. Some local applica-
tions can be launched concurrently by members of the institution without using
the Grid mechanisms. In that case the workloads of the used resources increase
without any control. In the above cases, adaptive mechanisms are necessary to
adjust the task allocation with regards to these unforecast workload changes.

We propose to address both issues (resource allocation and dependability) in
an homogeneous way using a slightly modified group concept. More precisely, all
interactions between domains corresponding to distinct organizations are man-
aged by a small group of registered processors (exactly one per domain). Each
member of this group acts as a master for its own domain and interacts with
the other members of the group to build consistent observations (1) of current
workloads in each domain and (2) of the current composition of the group. In
that sense, we argue that, in a distributed system prone to failures, an agree-
ment service is a key concept to transform several local views into a single global
one without opting for a centralized control approach and thus without having
a single point of failure. An agreement service allows all the domains to acquire
the same set of accurate data describing the current state of the Grid. Based on

Using Agreement Services in Grid Computing 167

this unanimous observation, each domain can locally enact the right adaptation
to react to the observed changes.

The overall paper is organized as follows. Section 2 outlines the relationships
with some related works. Section 3 focuses on the interactions between a user and
the Grid. Section 4 presents the multi-levels structure of the Grid that is a key
characteristic of our approach. Section 5 discusses the use of agreement services
to address the resource allocation issue and the dependability issue. Section 6
presents some algorithms and the architecture of the Paradis middleware .

2 Related Work

Grid computing projects [4,1] and public-resource computing projects [3] are
related to our work. Both share the objective of federating multiple computing
resources for use by cpu-intensive applications. Although it should be easier to
address the dependability issue in Grid computing platforms (i.e. institutional
projects) than in public-resource platforms, we observe that very few projects
has included sophisticated mechanisms for tolerating and masking failures.

In some systems [9,10,7], resources are managed by a controller in charge
of dispatching the tasks within the grid. This controller is also in charge of
detecting the failures of the resources and of reallocating the tasks. Of course,
the controller may also crash and thus particular mechanisms have to be provided
to mask the failure of a controller. In [7], a failed controller can be recovered by
restarting it on another machine. Data that is necessary to initialize the state of
a new controller is kept in a file (or a database) and is updated periodically by
the single active controller. Primary back-up mechanisms have been proposed
in [10] to implement a centralized and reliable control service. As pointed in [9],
implementing such a mechanism in an asynchronous system is far from being
trivial. Thus, the authors suggest to use an active replication mechanism to add
fault-tolerant properties to the controller. An atomic broadcast service is used
to ensure that all the replicas observe the same sequence of requests.

In all these works, the control is done by a set of replicas that have to observe
the state of the whole grid. In this paper, we investigate a new approach in
which the control is not centralized in a particular domain. Any institution that
provide some resources also provide at least one controller. Thus, the control is
equally shared across all the participants and no organization plays a central
role. For political reasons, this strategy is more appropriate. Additionally, the
controller attached to a particular domain is the only one that may observe the
state of the resources within its domain. As it only provides a partial information
to the other controllers, no controller has a view of the whole grid. For security
and confidentiality reasons, this stategy is also more appropriate.

3 Interactions Between a User and the Grid

In our approach, the preliminary registration of any application that will be
executed in the Grid is mandatory and has to be done once. In every domain, a

168 M. Hurfin et al.

copy of the application code and copies of the accessed data banks are created.
Then, a biologist can launch one of his favorite applications from anywhere
through one of the identified web portals. Once the submission is done, the
Grid user has no more to interact with the Grid to ensure the completion of his
application. When his execution terminates the user is informed by an email.

To benefit from the fact that many genomic applications can easily be split
into several independent elementary tasks, we impose some simple programming
rules. The main constraint is related to the high-level structure of the code corre-
sponding to the application. This code has to be divided into two different parts:
(1) an unique main task and (2) one or several elementary tasks. The functional
activities that have to be performed are described within the elementary tasks.
On the contrary the role of the main task consists mainly in initiating and coor-
dinating the activations of these elementary tasks. This control activity is done
using a set of three additional primitives called SUBMIT, WAIT and KILL. Once
the input data needed to execute an elementary task is available (extracted ei-
ther from the inputs provided to the global application by the user or from the
result returned by a elementary task previously executed), the execution of the
elementary task is submitted by the main task using the non-blocking primitive
SUBMIT. The WAIT primitive allows to block the progress of the main task till
all the mentioned elementary tasks have been completed. The WAIT primitive
is necessary to create a synchronization point when two sets of elementary tasks
have to be executed in sequence. The last primitive allows to stop the execution
of the specified elementary tasks. The role of supervision played by the main
task also includes the gathering of results returned by the elementary tasks and
the final generation of a unique result file accessible from the Web portals. In
our approach both elementary tasks and main tasks are taken into account by
the load balancing mechanism.

4 A Two-Level Organization

The Domain Level: A domain is a set of heterogeneous nodes which com-
municate in a synchronous way. A node can be either a resource of the Grid
or a machine devoted to control activities. The management of the domain is
organized according to the master-slave model: in each domain, a single node
named the master is selected to manage all the other nodes (named the slaves).
In particular, the master has to schedule all the tasks carried out in its domain.
At any time, the master can check the loads of its slaves. This information is
used to compute an appropriate local scheduling of tasks. The composition of
the domain is dynamic and consequently the computing capacity of the domain
can increase or decrease. We assume that resources always join or leave the do-
main by requesting to the master. Nodes fail only by crashing. A faulty node
behaves according to its specification until it stops prematurely and definitively
its computation. As a domain is synchronous, all the crashes can be detected in a
reliable way. When the crash of a resource is detected by the master, the master
distributes again the tasks (previously allocated to the faulty node) among the

Using Agreement Services in Grid Computing 169

remaining resources. The crash of the master has also to be tolerated. Some nodes
(the heirs) are preselected to replace the master when it disappears. Thanks to a
leader election protocol, a single heir is allowed to replace the previous master. If
no node can replace the master, all the domain becomes unavailable. Of course,
during the computation, the heirs have to keep track of the whole knowledge of
their master. As the role of these backups is just to ensure that there is not a
single point of failure per domain, we will no more discuss about them.

The Grid Level: The Grid is an asynchronous network connecting different
domains. To avoid a flood of the Grid, only one node per domain is allowed
to communicate with the other domains, this node is called the proxy. All the
proxies of the Grid constitute a group. In practice, a single node per domain
acts both as the proxy and the master. Like the composition of a domain, the
composition of the network of domains is also dynamic. Through invocations of
the join and leave operations, the local administrator of a domain can decide
(independently from the other administrators) to add or remove his own domain
from the Grid whenever he wants (maintenance and repair, alternating periods
of private and public use of the local resources, ...). A domain is unavailable if
no node of this domain can act as a proxy/master (occurrence of crash failures)
or if the domain has been disconnected from the Grid (occurrence of communi-
cation failures, temporary partitions). On one hand, join and leave operations
are intentional and broadcast to all the members. On the other hand, evolutions
caused by occurrences of failure are unpredictable and are not necessarily ob-
served by all the members of the group. The lack of bounds on communication
delays makes impossible to distinguish a slow proxy from a failed proxy. In the
proposed solution, each proxy is coupled with a failure detector module which
maintains a list of domains that it currently suspects to be unavailable. These
failures detectors are said “unreliable” because, the detection of a failed proxy
by other proxies may be delayed or an available proxy can be mistaken for a
faulty one by some proxy [2]. We assume that the failure detector belongs to
the class of failure detectors denoted ♦S: this class has been proved to be the
weakest one enabling to solve a problem, called the Consensus problem, that is
very close to the agreement problems we have to solve.

5 Agreement Problems

To address the resource allocation issue and the dependability issue, we propose
a solution based on the use of agreement services by the set of proxies. All the
required services are provided by the Eden framework and developed on top of
a consensus service. In the consensus problem, each process proposes an initial
value and then executes a consensus algorithm until one of the proposed values
is decided. Eden makes use of the unreliable failure detector concept to provide
Paradis with a reliable group communication service. Eden is based on a Generic
Agreement Framework, called gaf, described in [6]. In gaf, different instanti-
ations of the gaf parameters lead to generate different algorithms that solve
efficiently several agreement problems. An instantiation is given by a concrete

170 M. Hurfin et al.

agreement component that implements the interface of a particular agreement
service.

We identify three concrete agreement components which are: (1) Atomic
Broadcast; It ensures that messages sent to the group of proxies are delivered in
the same order to all the members. (2) Weak Interactive Consistency; It ensures
that all the members that propose a value decide a same vector of values. The
difference with a classical consensus is that the decided value should not be one
of the proposed values but a vector of the proposed values. (3) Group Member-
ship; It is in charge of managing the computation and installation of new views
whenever it is necessary. One important property of this service states that all
members of the group should reach consensus about the current membership
(who is in the group and who is not). They share a consistent knowledge of the
past history of the group, namely, the join and leave operations already executed
and the failures suspected to have occurred.

Eden publishes a unified interface to the concrete agreement components
needed by Paradis. This unified interface exports three operations: BROAD-
CAST, PROPOSE and RECEIVE. The BROADCAST operation is used by a
proxy to disseminate messages to the other proxies. It relies upon the service of
the Atomic Broadcast component to ensure that every proxy will receive mes-
sages in the same order. The PROPOSE operation allows a proxy to propose a
score for a given task. The Weak Interactive Consistency component used to im-
plement it ensures that every proxy will decide the same vector of scores. Finally,
the RECEIVE method is the counterpart of the BROADCAST and PROPOSE
operations; it ensures that every proxy will receive decisions on the vector and
messages in the same order. The Group Membership component is used to pro-
vide a proxy with information about suspected remote proxies. A proxy gets this
information through the RECEIVE operation of the Eden interface.

6 Architecture of Paradis

At every domain, the master/proxy has to manage the domain itself and the
coordination with the other masters/proxies. These two distinct roles are played
by two modules: Domain Manager and Grid Manager. The two modules
and the Web portal communicate via the exchange of notification events.

6.1 The Domain Manager

The execution of a main task or the execution of a set of elementary tasks
is asked through the generation of a request. This request is broadcast to all
the Domain Managers (DMs) using an atomic broadcast service. All the tasks
mentioned in the request will be executed within a single domain but perhaps
by different resources of this domain. As the resources are different and have
perhaps different workloads, the time required to execute a task may vary from
one machine to another. In Paradis, a bid mechanism is used to find, at a given
time, the best domain and the best distribution of the requests on the resources.

Using Agreement Services in Grid Computing 171

First let us assume that a request Ri is composed of a single task. When a
DM receives Ri from the GM, it determines which resource of its domain is the
most appropriate to execute the task by computing, for every resource Resj , a
bid bidi,j (also called a score) representing the capability of Resj to treat Ri as
quickly as possible. Actually, this bid corresponds to the estimation of the time
needed to complete Ri (waiting time before execution included). Thus it takes
into account the current workload of a resource and the estimated execution time
defined when the application has been registered. If Ri cannot be executed on
Resj for incompatibility reasons, then bidi,j = ∞. Once the DM has computed
the bids for all its resources, it will select the one Reswin with the lowest bid. If
this bid is over a dynamic threshold (whose initial value is defined for each type
of task and increases after each new computation of the bid of the task), the bid
is also set to ∞. When the request does not contain a single task to execute,
but a bag of tasks, there are many ways to calculate the bids, depending on the
strategy you want to implement. You may want to get the first result as soon as
possible, or you may prefer to get the whole bunch of results as soon as possible.

Once a bid has been computed, it is transmitted by the DM to the GM. At
the grid level, the bids are used to make auctions between the different domains.
Thanks to agreement protocols, all the GM agree on a single vector of bids (one
per domain of the Grid). The auction is won by the domain that has proposed
the lowest bid (different from ∞). The use of a dynamic threshold allows to
postpone the decision when the resources are already too busy.
When a DM (which has proposed the lowest bid) receives some request Ri to
treat from the Grid Manager (GM), it determines again which resource Res
is the most appropriate to execute it. If Res is not available at this moment,
then it adds the request to a list Wait Req of requests to execute. Once Res
is available, the DM executes the task Ti contained in Ri. Then it removes Ri

from Wait Req and add it to the list Exe Req of the requests that are being
executed. Once Ti is completed and has returned the result resulti, Res sends a
message 〈END, Ri, resulti〉 to the DM. The DM removes then the request from
Exe Req and notifies the GM that Ri is completed and has returned the result
resulti thanks to the notification 〈END, Ri, resulti〉 .

The task Ti contained in Ri may correspond to a main task. In this case,
the execution of Ti generates some new requests Rnew each time the SUBMIT
function is called. In that case, the DM notifies the GM that there is a new
request Rnew to send on the grid thanks to the notification 〈REQUEST, Ri〉 .

In case there is no available resource to execute the task Ti contained in Ri (it
is the case if the resource that was supposed to execute it has left the domain),
the DM has to notify the GM that it cannot treat Ri. This corresponds to the
notification 〈GIVEUP, Ri〉.

6.2 The Grid Manager

The role of a Grid Manager (GM) is to manage the distribution of the tasks
over the grid. It connects its own domain, represented by the Domain Manager
(DM), with the other domains. It communicates with the other GMs via Eden

172 M. Hurfin et al.

and with its coupled DM through notification events. It manages two lists of
tasks: a list of requests to allocate (called ”Buffer”) and a list of requests that
are already allocated but not terminated (called ”Allocations”) .

Figure 1 presents the protocol executed by the GM. It consists of two parts:
Actions in Part 1 are in response to messages received from the other GM
through Eden; Actions in Part 2 follow notification events coming from the
coupled DM or the portal.

Part 2 presents the 4 kinds of notification events a GM can receive from its
local DM or from the local portal. When a request is submitted to the grid
by a portal or by a DM, the GM is notified of this submission and broadcasts
the request to all the GM through the BROADCAST function of EDEN. A
notification of the end of the treatment of a request, of the kill of a request, or
of the giving up of a request1 received from the local DM is broadcast likewise.

Any message broadcast by a GM is received by every GM (sender included) via
the Receive Message() function of EDEN. This function returns the four types
of messages broadcast by GMs (REQUEST, END, KILL, GIVEUP) in Part 1
and two additional messages types: DECIDE and REMOVE. Part 1 concerns
the reactions to these messages.
- 〈REQUEST, R〉 informs the GM that there is a new request R to treat. It
adds R to Buffer, a FIFO that contains all the requests that are not allocated
yet (5).
- 〈DECIDE, [bid1, bid2, ..., bidn]〉 returns the bids of all the domains for request
Reqcurrent (6). The deterministic function Allocate() determines which domain
Dwin has proposed the best bid (7). The GM stores the information thatReqcurrent

will be executed on Dwin in the list Allocations (8). If Dwin corresponds to the
domain of the GM, then the latest forwards Reqcurrent to its DM thanks to the
function Execute() (10). Now that there is no current auction, a new one can be
started, the GM is ready to bid (9).
- 〈END, Req, result〉 informs the GM that the request Req has been treated and
returned the result result. Then, the GM removes Req from the list Allocations
(12) and call the function Store Result(Req, result) (13). This function will not
“automatically” store the results: it will store it only if the request had been
submitted to the grid by the local DM or the local portal.
- 〈KILL, Req〉 informs the GM that the request Req has to be killed (recall that
the code of the main task includes three primitives SUBMIT, WAIT and KILL).
The execution of the task is stopped (15) and the request if removed from the
list Allocations (16).
- 〈GIVEUP, Req〉 informs the GM that the domain in charge of Req has not
been able to treat it. The GM removes Req from Allocations and adds it again
to Buffer (19).
- 〈REMOVE, Dk〉 informs the GM that the domain Dk just left the grid (Either
after having called the Leave() function of EDEN or having left without a warn-
ing. In this case, the leave of Dk have been detected by the Failure Detection

1 This may happen if the domain does not have any resource to treat the request any
more.

Using Agreement Services in Grid Computing 173

Grid Manager GMx

Part 1
(1) State ← Join(Dx); Allocations ← Init Allocations(State);
(2) Buffer ← Init Buffer(State); ready to bid ← True;
(3) While (True) do
(4) switch msg ← Receive Message() :
(5) case 〈REQUEST,Req〉: Buffer ← Buffer ∪{Req};
(6) case 〈DECIDE, [bid1, ..., bidn]〉:
(7) Dwin ← Allocate ([bid1, ..., bidn]);
(8) Allocations ← Allocations ∪{(Reqcurrent, Dwin)};
(9) ready to bid ← True;
(10) If Dwin = Dx then Execute(Reqcurrent); endif;
(11) case 〈END,Req, result〉:
(12) Allocations ← Allocations \{(Req,)};
(13) Store Result (Req, result);
(14) case 〈KILL,Req〉:
(15) If {(Req, Dx)} ∈ Allocations then Kill(Req); endif;
(16) Allocations ← Allocations \{(Req,)};
(17) case 〈GIVEUP, Req〉:
(18) Allocations ← Allocations \{(Req,)};
(19) Buffer ← Buffer ∪{Req};
(20) case 〈REMOVE, Dk〉:
(21) If Dk = Dx then exit(); endif;
(22) Foreach (Reql, Dk) in Allocations do
(23) Allocations ← Allocations \{(Reql, Dk)};
(24) Buffer ← Buffer ∪{Reql};
(25) done;
(26) endswitch;
(27) If ready to bid then
(28) If (Reqcurrent ← Extract Buffer()) not NULL then
(29) local bid ← compute bid(Dx, Reqcurrent);
(30) PROPOSE (local bid);
(31) ready to bid ← False;
(32) endif;
(33) endif;
(34) done;
Part 2
(35) While (True) do
(36) Upon reception of notification (from portal or Dx), notification ∈
(37) {〈REQUEST, Req〉, 〈END,Req, result〉,
(38) 〈GIVEUP, Req〉, 〈KILL,Req〉}
(39) Broadcast (notification);
(40) done;

Fig. 1. Grid Manager’s protocol

module of Eden.). The GM removes from the list Allocations all the requests
that had been allocated to Dk (23-24) and add them to the list Buffer.

174 M. Hurfin et al.

When there is no current auction being processed, a new one can start if there
is some request to allocate in the buffer (27-28). The execution of Extract Buffer
leads to remove the first request from the list Buffer and to store it in Reqcurrent.
Then, the GM calls the function compute bid(Dx, Reqcurrent) (29). This call
makes the local DM compute the bid for the execution of Reqcurrent on the
resources of the domain. The GM sends then this bid to Eden (30) and puts a
lock on ready to bid to avoid concurrent bids (31).

7 Conclusion

This paper presents Paradis, an adaptive system based on a Consensus building
block that has been designed and implemented in a Grid dedicated to genomic
applications. Resource allocation and dependability are issues that require a
continuous adaptation to the changing computing environment. An agreement
service is used by all the domains to acquire the same set of accurate data
describing the current state of the Grid. Based on this unanimous observation,
each domain can enact the right adaptation to react to the discovery of changes.

References

1. J. Almond and M. Romberg, The Unicore project: Uniform access to supercom-
puting over the web. Proc. of the 40th Cray User Group Meeting, 1998.

2. T. Chandra and S. Toueg, Unreliable Failure Detectors for Reliable Distributed
Systems. JACM, 43(2):225-267, 1996.

3. W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade, R. Novaes, and M.
Mowbray, Labs of the World, Unite!!! J. of Grid Computing, 4(3): 225-246. 2006.

4. I. Foster and C. Kesselman, “The Globus Project”: A Status Report. Proc. of the
7th IEEE Heterogeneous Computing Workshop, pp. 4–19, 1998.

5. M. Hurfin, J.-P. Le Narzul, J. Pley, and P. Rapin Parvdy, A Fault-Tolerant Protocol
for Resource Allocation in a Grid dedicated to Genomic Applications Proc. of
the 5th Int. Conference on Parallel Processing and Applied Mathematics, (PPAM
2003).

6. M. Hurfin, R. Macdo, M. Raynal, and F. Tronel, A General Framework to Solve
Agreement Problems. Proc. of the 18th IEEE Int. Symposium on Reliable Dis-
tributed Systems (SRDS’99), pages 56-65, 1999.

7. J. In, P. Avery, R. Cavanaugh, L. Chitnis, M. Kulkarni and S. Ranka, SPHINX: A
Fault-Tolerant System for Scheduling in Dynamic Grid Environments. 19th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2005).

8. Mobach, D.G.A. Overeinder, B.J. Brazier, F.M.T., A WS-Agreement Based Re-
source Negotiation Framework for Mobile Agents , In: Scalable Computing 2006:
Practice and Experience, Vol. 7, No 1, pp. 23-36.

9. X. Zhang, F. Junqueira, M. Hiltunen, K. Marzullo, and R.D. Schlichting, Repli-
cating Nondeterministic Services on Grid Environments. Proc. of the 15th Interna-
tional Symposium on High Performance Distributed Computing (HPDC-15), June
2006.

10. X. Zhang, D. Zagorodnov, M. Hiltunen, K. Marzullo and R.D. Schlichting, Fault-
tolerant Grid Services Using Primary-Backup: Feasibility and Performance. Proc.
of the IEEE International Conference on Cluster Computing, pages 105–114,2004.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 175 – 184, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Open Environment for Compositional
Software Development

Ewa Ochma ska

Warsaw University of Technology, Faculty of Transport
00-662 Warsaw, Poland
och@it.pw.edu.pl

Abstract. The paper describes a concept of an open cooperative web platform
for developing, designing and executing “compositional” applications, here
interpreted as instances dynamically composed of three kinds of semantically
interrelated resources. The resources include interoperable components, textual
schemas describing their functionality and structuring rules as well as textual
definitions of application structure and content. The described open software
environment is built on top of emerging XML based standards and technologies
of web and grid services. Its functionality comprises managing application
resources and transforming them into contextual GUI which supports activities
of developing, composing and executing applications. Users and developers
contribute to evolutional growth of application resources by creating new
definitions, specifying new schemas and implementing components. Semantic
Web concepts with RDF/RDF Schema language are applied to organize
resource pools accessible in the environment framework.

1 Introduction

The imposing progress of software technologies supporting web based distributed
computing, certainly due to the open collaborative practices applied for developing
related standards and tools, has led to important solutions for sharing, combining and
reusing information, strongly based on the XML technology. The vision of Semantic
Web, as a pool of web information resources integrated by machines into a global
database, inspired tools describing data semantics like RDF and OWL.

The efforts concerned in sharing, combining and reusing application software to
process this information have resulted in service-oriented approach, presently
dominating but still less mature. The above mentioned collaborative practices did not
prove equally helpful for the needs of application software development. In spite (and
in some extent as a result) of the constantly growing use of Internet information
resources and web based applications, there is still deficiency of effective principles
for producing software and productive re-using of existing software on the web
application level. In recent years many activities have been concentrated on searching
and elaborating of methods for reusing ready-made pieces of software − leading to
component based solutions, and of procedures and tools for cooperative software
development [1, 2].

Increasing demand for sharing information and application resources across the
web resulted in the emerging technology of web services. Service-oriented concepts

176 E. Ochma ska

are currently perceived as most promising solution for Internet based heterogeneous
distributed applications. Web services supplemented by state awareness have been
also adopted in the context of grid infrastructures, providing middleware platform for
transparent controlled use of computing resources by means of cooperative web based
technologies [3].

The paper attempts to propose a particular light-weight approach to implement
ideas of collaborative and component oriented software engineering in a loosely
coupled frame of open distributed environment, in an infrastructure of web and grid
services. The idea of the environment openness implies rather “open software
resources” for virtual communities of users and developers than the classical meaning
of “open source software”. The approach focuses on creating methodology for sharing
and evolving software resources in the way similar to that in which currently data and
knowledge resources are being shared and evolved in the web. Functionality for using
and developing component-oriented software for various application domains is built
on top of above mentioned XML based web technologies. Presented solutions are
founded on a methodology for defining, creating and executing application instances,
which has been developed and previously applied for PDES simulation models [4].
Here the method is generalized to cope with different categories of “compositional”
applications and with other functional areas of the proposed environment. Such an
environment will support virtual communities of users and developers, involved in
developing, composing and exploiting various categories of software applications, for
which certain common characteristics can be defined on the category-specific level.

On general, method-specific level − developing, composing and dynamic creating
of application instances is category independent, however relying on descriptions of
their structure and content according to specifications of their semantic categories,
being processed and transformed as corresponding XML based descriptive resources,
organized by means of RDF statements. XML Schema is used for defining general
language and its category-specific dialects to describe compositional applications.
Using XML/XML Schema for description and validation is complemented with a
somewhat novel concept of inverse transformation of resulting schemas to support
user oriented functionality of the environment by a context-dependent GUI.

Model-driven in principle, the presented light-weight approach builds on popular
XML related web standards. Nevertheless, it can be utilized as a supporting level also
for heavier, strictly defined solutions. Dependencies between application content
description and implementation of components may be established basing on any of
presently available methods for component based software modeling and automatic
code generation, which tend to XML. This is the case e.g. for OMG solutions related
to MDA with UML/XML and UML/RDF transformation [5].

The second section explains ideas of applying web technologies in the framework
of three-dimensional XML based processing of application resources in the proposed
software environment. Its interrelated functional areas: • composing and executing
applications; • supporting user/developer in exploiting and creating application
resources; • providing and managing distributed pools of resources for virtual
communities of users/developers are discussed in the successive sections. Concluding
remarks point new semantic web technologies as a horizon for further research.

 An Open Environment for Compositional Software Development 177

2 Web Technologies Used in the Environment

The concept of compositional application bases on the observation that particular
categories of component-based applications can be built of similar types of similarly
structured components. An instance of such application can be dynamically composed
of semantically interrelated descriptive and programmatic resources: textual schema
describing components and their possible composition for a semantic category of
applications; textual definition describing contents and structure of an application;
programmatic implementation of interoperable components.

Assuming that the above mentioned textual descriptive resources are formulated
using XML notations, we enter the broad area of existing and dynamically emerging
XML related web standards and technologies, providing us with wide possibilities to
organize a user- and developer-oriented distributed environment for compositional
applications:

• Firstly, XML based definition of an application structure and content can be
validated against an appropriate schema describing semantics of the corresponding
application category, and the application instance can be composed by a standard
implementation of an XML parser, the same for any application of a given
category and basically common for any category of applications designed in the
frame of the presented methodology.

• Secondly, XML-based schemas and definitions describing application semantics
can be treated by the rich arsenal of XML transformation tools in order to generate
sophisticated interface for user/developers, guiding them though activities related
with executing applications, defining them in accordance with proper semantic
rules, specifying and implementing new categories of applications.

• Thirdly, the whole world of XML-
based technologies for distributed
web and grid architectures is avail-
able to organize schemas, defini-tions
and components into virtual pools of
distributed resources for
compositional applications, acces-
sible through communities of users
and developers in an open software
environment.

The functional areas corresponding to the
above mentioned concepts are organized
in three overlapping circles on Fig1., thus
depicting their mutual correlations. The
centre of the figure, where all the circles
are intersecting, represents resources for
compositional applications, as the basis
for each sub-area of the environment
functionality.

 Compositional
 applications

Distributed
environment

User/developer
interface

Application
resources

composing
executing

accessing
creating providing

managing

Fig. 1. XML-related standards and tech-
nologies supporting the open software
environment

178 E. Ochma ska

The functions of composing and executing applications, using XML-based
standards and tools of the left upper circle of the figure to validate resources and to
process them into executable instances of applications, are self-contained and
independent of underlying system. A compositional application can be automatically
executed after instantiating a proper structure of components by parsing its definition
validated against corresponding schema, without any intervention of a user, on a
single machine as well as in a configuration distributed across the web.

The second functional area concerns accessing application resources in order to use
them as well as creating new resources by defining applications, specifying semantic
categories and creating corresponding components. All these functions are placed in
the sub-area marked by the lower circle on Fig. 1, representing intelligent contextual
GUI driven by XSL Transformations completed by other standards and tools to bi-
directionally transform information between a virtual pool of application resources
and a user. The second circle augments the system configuration by the presence of
users, whose actual access to the environment is governed by the third functional area.

As a matter of fact the user-oriented functionality, to support exploiting and
evolving application resources, is designed for virtual communities of users
collaborating in the distributed environment rather then for a single user. The right
upper circle on the figure introduces the functions and means to embed the
environment in the web − again making use of XML-based nature of resources for
compositional applications. Those functions, focused on providing and managing
application resources, will be supported by tools of Semantic Web on top of the web
and grid services architecture.

3 Instantiating an Application

Compositional application semantics comprises description of possible types of its
components and rules for their possible structuring to compose an application. After
specifying a schema describing such semantics, we can use it as a guideline to define
applications conforming to the specification. Hence, compositional application is
understood as a piece of component-based software belonging to some semantic
category, for which rules of composition can be expressed in XML based notation.
Interconnected elements of Fig. 2 participate in creating its executable instance.

An instance of a defined application is
created by a composer as the interrelated
structure of instantiated components.
A definition specifies components and
their structuring (mutual relations) for a
particular application of a given semantic
category described by a corresponding
schema. A schema describes components'
semantics, their interfaces and composing
rules for a specific application category.

The thin black arrows on the figure
mark input and output of executable
program used for composing application: Fig. 2. Composing an application instance

application
instance

composer

components

schema

definition

 An Open Environment for Compositional Software Development 179

its input comprises a definition of an application and a set of components, its output
embodies an executable instance of application. The dashed arrow represents
validating role of a schema for the application composer. The thick white arrows
mark two semantic dependencies, crucial for the consistency of application resources:

• A textual definition of application has to be derived from a proper textual schema.
• Application components have to be implemented in accordance with their textual

description enclosed in a proper textual schema.

Expressing semantic rules for compositional applications in XML-based languages,
the basic approach consists in applying XML format to define an application and
XML Schema to specify its semantic category. The composer program instantiates an
application during standard process of parsing an XML document, validated against a
proper schema. Such approach has been proved useful in the case of DES applications
[4]. (An example, outlining an XSD schema for an application category from this
domain, is shown in Section 6.) However, relatively new standards for describing data
semantic concepts in the frame of web resources, can offer stronger means to express
semantics of compositional applications, as we suggest in conclusions.

The issues of dependencies between textual description of component semantics
and their implementation have to be considered, taking into account the state-of-the-
art methods for software resources description and automated generation, in particular
implementing components as Java classes in Java & XML development frame.

Both dependencies marked by thick white arrows on the figures are to be forced by
the regime of data-driven GUI to the software environment, with functionality derived
from the context of descriptive resources for particular application categories,
described in the following section.

4 Contextual User Interface to the Application Resources

The pool of resources for compositional applications will be used and evolved by
participants of virtual communities, acting in the distributed web based software
environment with functional structure shown on Fig. 3. Depending on the users’
scope of interest, aims and competences, they can play following different roles listed
below in order of increasing expertise:

• user, just executing some defined earlier application, providing proper input data
and consuming results

• advanced user, defining application of some selected category, according to his or
her particular needs

• developer/programmer introducing a new category of applications to a pool of
resources, accessible by his or her virtual community, by specifying schema and
providing (implementing and/or referring) proper components.

All the above mentioned activities of users can be performed in the frame of a
sophisticated contextual GUI, derived from application descriptive resources by
means of XML transformations. As it is shown on Fig. 3, transforming application
resources to that “intelligent” GUI lies in the central point of the environment
functional structure and supports all its basic functions.

180 E. Ochma ska

Fig. 3. Functional structure of the open software environment

Textual interface to the environment requires some “acting regulations” for
particular roles of users and developers, to formally design corresponding GUI
functionalities as well as mechanisms for proper transformation of application
resources. Using existing XSL standards for XML transformation, completed with
Java APIs for XML and JSP, the functions of GUI (hosted by a web browser or
another client agent) can be automatically generated from semantic descriptions
contained in XML definitions and schemas. E.g. a schema can be transformed into a
contextual creator guiding users through successive steps of defining applications
belonging to a particular semantic category, but tailored to their needs.

Furthermore, depending on the roles played by users, their GUI-based actions
produce “feedback” information completing and augmenting accessible application
resources. Definitions, schemas and components – produced by them inside their
contextual GUI – have to be transformed into proper formats before adding to the
resource pool. Software engine performing those bi-directional transformations co-
operates with other basic parts of the system. Two of them are also shown on the
figure. Register/ inspector and manager participate in accessing resources as well as in
organizing and managing them. Both those parts represent another functional area of
the presented environment, which is discussed in the next section.

The issues of instantiating and executing compositional applications seem to be
omitted on the figure. Note however, that the instantiation procedure described in the
previous section can also be viewed as an act of transforming application resources,
performed in the background of user-oriented interface. Controlling distributed
execution of application components, which should also be considered in the frame of
the presented approach, has to be placed in its third functional area, as related to the
distributed net configuration of the software environment.

5 Underlying Distributed System Architecture

Attempting to implement the open cooperative environment on the web platform,
we organize pools of resources for compositional applications, to be accessible for

Web

Pool of application
resources

definitions

components

Actions of users
/co-developers

executing

applications

defining
applications

implementing
software

components

Functions
of the environment

RESOURCE TRANSFORMATOR
between resource pool and

contextual user&developer GUI

RESOURCE MANAGER
coordinating access to resources

and updating them

RESOURCE
REGISTER & INSPECTOR

providing resources

developing
new categories

of schemas

schemas

 An Open Environment for Compositional Software Development 181

virtual communities of their users and developers, in a loosely coupled distributed
system architecture following current services-oriented trends, as outlined on
Fig. 4.

Internet
Server

Packages of
Java classes

 for application
components

SOAP
…

Java&XML, JSP
XSLT sheets

for processing
resources

Web browser
XML

XHTMLUser/
Developer

GUI

S
em

antic
W

eb

WSDL / UDDI XML schemas
for providing

resources
for application

categories

GT 4.0 middleware for
resource managing

& cooperation of users XML documents
 for application

definitions
Web&Grid services

Fig. 4. An architectural outline of the environment

The following aspects of the above outline are to be noticed.

• Middleware layer of open source Globus 4.0 Toolkit [6] is responsible for
managing application resources and organizing virtual communities of their users
and developers. Management concerns consistency of application resources, access
rights to resource pools, security, quality of execution etc.

• Providing access to automatically updated and selected resources distributed in the
web demands an effective way to register and find them, which is offered by
platform-independent mechanisms for accessing and discovering, proper to web
and grid services with WSDL/UDDI standards and their extensions.

• Grid services also bring in additional feature of state-consciousness useful for the
more advanced mode of composing and executing application as a set of
distributed concurrent components.

• Communicating with resources in distributed web based environment – as well
those in textual XML format as programmatic ones – is organized with use of
SOAP communication protocol.

• Assuming users/developers communication with the environment via web browser,
the formats resulting of transforming application resources to GUI content,
discussed in the previous section, follow XML/XHTML standards.

• As we may have to do with advanced semantics to describe certain categories of
application resources, and their general compositional rules as well − solutions
based on Semantic Web concepts come to play.

182 E. Ochma ska

6 Organizing Resources for Compositional Applications

The resources for compositional applications can be organized hierarchically. After
deciding a background structure for compositional applications of a certain domain,
the general description language is defined by corresponding upper level schema.
Then specific dialects are introduced, defined by schemas for application of particular
categories. The syntax and vocabulary of the general language establishes structural
shape of compositional applications by describing general classes of their components
and their composing rules. Category-specific lower level schemas extend basic
vocabulary and syntax by refined classes and additional composing rules semantically
specific to particular categories. Such two-level ordering of schemas − and of
corresponding classes of components − forms the simplest case of hierarchical
systemization of compositional application resources. To illustrate this idea by an
example, the listing shown on Fig. 5 outlines a schema for some category of
compositional applications in the domain of PDES models based on extended P/T
nets, hence shaped as bi-directional graphs with places and transitions.

Fig. 5. An outline of a schema for a category of compositional applications

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://model.resources.edu">

<!--semantic clases of places-->
<xsd:include schemaLocation="http://model.resources.edu/xsd/places.xsd"/>
<!--semantic clases of transitions-->
<xsd:include schemaLocation="http://model.resources.edu/xsd/transitions.xsd"/>
<!--general classes of place, transition and process,
 lists of general places and transitions, basic rules for bi-graph composition-->
<xsd:redefine schemaLocation="http://model.resources.edu/xsd/ptnet.xsd"/>

<xsd:complexType name="ListOfPlaces">
<xsd:complexContent>

<xsd:restriction base="ListOfPlaces">
<!--redefined list with category-specific semantic classes of places--> …

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfTransitions">
<xsd:complexContent>

<xsd:restriction base="ListOfTransitions">
<!--redefined list with category-specific semantic classes of transitions--> …

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

</xsd:redefine>
<xsd:complexType name="ThisCategory">

<xsd:complexContent>
<xsd:extension base="Proces"/>
<!--category-specific composition rules for semantic components--> …

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

 An Open Environment for Compositional Software Development 183

In general, resources can be organized in more levels of hierarchy − by introducing
other domains, sub-domains or sub-categories. Moreover, the resulting trees are not
necessarily disjoint; they may have common nodes, for it is possible (and desirable)
that some components, along with their descriptive and programmatic resources, are
used (re-used) by several categories. Note that the described hierarchical dependence
concerns application schemas − derived by redefining (extending, restricting) of
higher-level elements, as well as components − implemented by diversifying and
specializing higher-level classes. The third kind of resources, application definitions
are created at the semantic category level; however a horizontal dependence may be
taken into account when merging definitions (possibly of different semantic
categories) into a new definition of more composite application.

All application resources reside in the web and of course they are identified by
their URIs. XML-based descriptive kinds of resources are organized by target
namespaces of schemas for application categories according to their origins, levels of
semantic classifications etc. The resulting ways of identification are used in mutual
references between particular resources: Schemas for application categories refer to
their semantic fragments and higher-level ancestors. Schemas of semantic
components refer to their implementations. Definitions refer to their parts (member
definitions) and to proper schemas. All above mentioned references are integrating
resources needed to compose an application instance.

In spite of those built-in references in the form defined by XML/XML Schema
specifications, we need an independent description of mutual dependencies between
various resources accessible in virtual pools of the presented software environment.
The following table illustrates the principle of describing compositional application
resources by RDF statements. The rows contain exemplary RDF graphs for two types
of references between resources of the category of applications outlined on Fig. 5.

Table 1. RDF graphs of references between application resources

Type of references RDF graph

From schema for
application category
to its ancestor and
to schemas for
semantic
components

From schema for
semantic places
to implemented
semantic place
components

http://model.resources.edu/xsd/thisCategory.xsd

http://model.resources.edu/xsd/places.xsd

 http://model.resources.edu/xsd/ptnet.xsd

http://model.resources.edu/xsd/transitions.xsd

 http://resources.edu/references/base

http://model.resources.edu/semantic/places

http://model.resources.edu/semantic/transitions

http://model.resources.educlasses/pN.class

http://resources.edu/references/component

…

 http://model.resources.educlasses/p1.class

http://model.resources.edu/xsd/places.xsd

http://resources.edu/references/component

184 E. Ochma ska

7 Conclusions

The approach presented in the paper has been applied in the modelling & simulation
area, using XML data description meta-language in conjunction with XML Schema.
Aiming for generalization of this idea to encompass a variety of semantic application
categories in different domains, stronger semantic means should be introduced, as
extensions to emerging XML-based standards of Semantic Web. General semantic
rules for compositional approach as well as category-specific rules for particular
semantic categories of applications can be described by languages for data and
knowledge semantics like OWL, possibly extended by “annotations” to these
standards specific for compositional approach.

Semantic XML-based concepts, widely used to organize (structure, describe, find)
data and services, should be extended for organizing (structuring, describing, finding,
composing and developing) compositional applications. Transforming pure semantic
(textual) information about application categories and particular applications into
dynamic, context dependent GUI will support process of using and augmenting
software resources by virtual communities of software users and developers.

An important feature of the proposed distributed software environment is its
implicit self-evolving. The described methodology and architectural frame can
stimulate constant spontaneous but controlled growth of compositional software
resources.

The approach is service-oriented, basing on the widespread technologies of web
services and on their grid-oriented functionalities. Except for “compositionality”, it
poses in fact no limits for application specifics. Any new semantic category can be
introduced by means of textual XML-based description in correspondence with
proper software components.

It should be stressed that the proposed approach does not restrict compositional
applications to service-oriented frame. Current standards of web and grid services are
just exploited in order to provide the functionality of the environment. Nature of
application components can be strongly diversified among various application
categories, going outside and over classical definition of component, and in particular
representing web services.

References

1. Zhou J., Stålhane.T.: A Component-based Reference Model for Web-based Systems, Proc.
the 8th IASTED International Conference on Software Engineering and Applications,
November 9-11, 2004, MIT Cambridge, MA, USA

2. Goguen J., Kai Lin. Web-based Support for Cooperative Software Engineering. Annals of
Software Engineering, Vol.12, No.1, 2001

3. Open Grid Services Infrastructure (OGSI). http://www.ggf.org/ogsi-wg
4. Ochma ska E.: An Approach to Web-oriented Discrete Event Simulation Modeling.

Proceedings of the ICCS, Kraków 2004. LNCS 3036, Springer-Verlag 2004
5. MDA Specifications: The Architecture of Choice for a Changing World.

www.omg.org/mda/specs.htm
6. Globus Toolkit 4.0 Release Manuals. http://www.globus.org/toolkit/docs/4.0/

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 185 – 194, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Survivable Distributed Sensor Networks Through
Stochastic Models

Dong Seong Kim and Jong Sou Park

Network Security Lab., Hankuk Aviation University, Seoul, Korea
{dongseong, jspark1}@gmail.com

Abstract. The previous security architectures and mechanisms for distributed
sensor networks only focus on confidentiality, integrity and authentication.
The distributed sensor networks should have the ability to provide essential
services in the presence of attacks and failures, and recover full services in a
timely manner. In this paper, we present stochastic models for survivable dis-
tributed sensor networks. We define states of cluster based sensor networks
and analyze the distributed sensor networks using stochastic models in
mathematical manner. The evaluation results with the proof of concept sce-
nario show our approach has a feasibility to design survivable distributed
sensor networks.

1 Introduction

The security for distributed sensor networks is one of the challenging issues. Re-
cently, a lot of studies have proposed survey on security [6, 9, 18, 21] and security
architecture [1, 8, 11, 16, 17, 23] and security mechanisms [2, 7, 12, 15] for distrib-
uted sensor networks. They mostly focus on security in terms of confidentiality, integ-
rity and authentication. The distributed sensor networks should provide their essential
function in the presence of failures, intrusions. This property can be considered as
survivability of distributed sensor networks. Over the past few decades, a consider-
able number of studies have been made on survivability for conventional networks [3,
4, 8, 10]. But previous studies on survivability for conventional networks are infeasi-
ble since they haven’t considered the resource constraints on sensor nodes in distrib-
uted sensor networks. Also, several studies [13, 14, 19] have been conducted on
survivability for sensor networks. However, they use ‘survivability of sensor net-
works’ in term of link connectivity and stability between sensor nodes. The connec-
tivity and stability issues are also important to survivability of sensor networks but
they are lack of consideration of security. We view our approach as an initial contri-
bution towards designing a survivable distributed sensor networks. In order to provide
survivability of distributed sensor network, in this paper, we propose stochastic mod-
els for survivable distributed sensor networks. We simplify cluster based distributed
sensor networks as stochastic models and evaluate the models through numerical
model analysis with proof-of-concept scenarios.

186 D.S. Kim and J.S. Park

2 Related Works

There are a lot of surveys on security for distributed sensor networks survey. In this
paper, we introduce some relevant survey papers here. For securing a wireless sensor
network, Law and Havinga [9] summarized how to secure a wireless sensor network
using host and network-based defense guidelines. Shaikh et al.[18] proposed hypo-
thetical security framework for the distributed wireless sensor networks in order to
achieve highest level security and overall energy efficiency. The paper only addresses
requirements for securing distributed sensor networks in viewpoint of key manage-
ment, routing protocol, intrusion detection system, and trust management. F. Hu et al.
[6] analyzed security challenges in wireless sensor networks and summarized key
issues and current solutions. There are several works in the area of security architec-
ture for distributed sensor networks. Walters et al. [21] surveyed the major topics in
wireless sensor network security, and presented the obstacles and the requirements in
the sensor networks security. Undercoffer et al. [1] proposed security protocol for
sensor networks. Zia et al. [23] proposed a security framework for wireless sensor
networks. Schmidt et al. [17] proposed a security architecture for mobile ad hoc net-
work. The proposed design and prototype implementation results of pairwise key
management and cipher for a cluster based sensor networks. Savola et al. [16] pro-
posed an architecture for security management in self organizing mobile to estimate
security level of ad hoc network nodes. This architecture is very similar to that of
distributed intrusion detection system in mobile ad hoc network. Liu et al. [11] pre-
sented a design of a generic software architecture based on tiny active agents for sen-
sor networks and identify the key research issues for optimizing the architecture for
the constrained environment in sensor networks. As the subcomponents of security
architecture, A. Perrig et al. [15] proposed SPINS which has two secure building
blocks; SNEP provides data confidentiality, two party data authentication, and data
freshness and microTESLA provides authenticated broadcast. K. Jones et al. [7] pro-
posed a new frequency hopping strategy. Park et al. [12] proposed a lightweight secu-
rity protocol particularly, rekeying mechanism. Karlof et al. [2] propose a link layer
security architecture named TinySec. However, most of previous literature only con-
cerns data confidentially, integrity, authentication, and other cryptographic counter-
measure. In typical application scenarios, sensor nodes are spread randomly over the
terrain under scrutiny and collect sensor data. Sensor network has to fulfill its mis-
sion, in a timely manner, in the face of intrusions, attacks, accident and failures in
hostile environment. This is connected to survivability. R. Ellison et al. [4] proposed
how to design survivable network system with a case study. But this is only for gen-
eral network system design not for resource constrained distributed sensor networks.
Liu et al. [10] proposed a general framework for network survivability. This paper
showed how to derive survivability measures based on different definitions. Knight et
al. [8] surveyed and summarized the concept of survivability. In this paper, we follow
the definition of survivability introduced by Ellison et al. [3]; survivability is the
ability of a network computing system to provide essential services in the presence of
attacks and failures, and recover full services in a timely manner. Although K. Paul et
al. [14] proposed survivable ad hoc networks; they only considered survivability in
terms of link stability and path stability in mathematical form. Paul et al. [13]
also addressed survivability of ad hoc network in terms of routing and transmission

 A Survivable Distributed Sensor Networks Through Stochastic Models 187

algorithm. Snow [19] also addressed the reliability and survivability of wireless and
mobile networks. But they didn’t pay attention to survivability with respect to security
concepts. S. Zhu et al. [22] proposed LEAP (Localized Encryption and Authentica-
tion Protocol) and a key management protocol for sensor networks. They analyzed
LEAP and survivability only in viewpoint of key management such individual key,
group key cluster key and pairwise shared key. We propose a survivable distributed
sensor network model which focuses on survivability related to security point of view.
Our proposed model and its description will be presented in next section.

3 A Survivable Distributed Sensor Networks Model

The realistic implementation and test for distributed sensor networks is not easy. The
stochastic model is easier to design and simulate distributed sensor networks. In order
to reflect realistic sensor network model to our stochastic model, we use a cluster
based model for distributed sensor networks due to its advantages in terms of cost and
energy [5]. The conceptual example of cluster based model is depicted in Figure 1.
The sensor nodes are deployed in some applications fields. The sensor nodes select a
cluster head nodes and build several clusters. The sensor nodes exchange necessary
keys to utilize security mechanisms applied in distributed sensor networks [7, 11, 15,
22]. Each sensor node send collected data to its cluster head node, and cluster head
node send the collected data to base station. A base station is connected with the ac-
cess point to the legacy network such as Internet or satellite communication. We as-
sume that base stations are secure against any type of attacks. Sensor network can be
compromised by adversary. According to state of each sensor node in a cluster, the
state of cluster also can be expressed. We model the life time of each cluster consist-
ing of sensor nodes as a finite set of states. The transition of a state can be influenced
by many parameters (the parameters reflect state of sensor networks will be men-
tioned in section 4) and it exhibits random behavior. This randomness can be modeled
by some well known stochastic models such as Poisons process, Markov Chain, semi-
Markov process and so on [20]. The stochastic models are managed by base stations
or higher level by user. Our model utilizes software rejuvenation method to provide
survivability of distributed sensor networks. The more detailed stochastic model is
presented in section 3. Our model monitors the state of each cluster and counteract
with respect to the state of cluster based on stochastic model. If a sensor node in a
cluster is compromised (e.g. cluster 1 in Figure 1), the stochastic model changes its
state according to the stochastic model. The software rejuvenation method kills the
malicious nodes and isolates the node out of a single sensor cluster. But if total num-
ber of compromised sensor nodes is larger than some predefined threshold value (see
cluster 2, in Figure 2), the cluster will not be operated any more. Then, the overall
sensor networks also exclude the cluster. If head node gets compromised (Cluster 4 in
Figure 1), it’s a very critical case, the sensor node with the transmission range of the
head node have to immigrate to other cluster. Global intrusion detection systems in
sensor networks should monitor and detect malicious node and report them to another
sensor cluster head and add them to their new cluster members. The proposed sto-
chastic models are presented in next subsection.

188 D.S. Kim and J.S. Park

Fig. 1. A Cluster based Model for Distributed Sensor Networks

3.1 Semi-markov Process for a Cluster Based Sensor Network Model

As the behaviors of attacks, system responses to the attacks, intrusion detection, and
repairing mechanism cause sojourn time of some states to be non-exponential. Simple
Markov chain cannot represent this system and we build a cluster based model as
semi-Markov Process (SMP). SMP model for cluster based sensor network for dis-
tributed sensor networks is depicted in Figure 2. In this paper, our model consisted of
7 states; healthy state H, suspicious state S, compromised state C. The cluster starts
with healthy state H, adaptation state A, rejuvenation state R, graceful degradation
state GD, and failed state F. In order to build survivable distributed sensor network,
the model have to keep the cluster in healthy state as long as possible. If any kind of
intrusions into the resistance mechanisms is occurred using known or unknown vul-
nerabilities, the cluster transits its state to susceptible state S. This state is a critical
one because adversary wants to exploit the vulnerabilities and try to make sensor
nodes compromised. If the intrusion detection systems for distributed sensor networks
can successfully detect the state, it takes necessary actions and the cluster returns back
to the healthy state. A successful exploitation by the adversary causes the system to
transit its state to compromised state C, and then unwanted damage follows. Conse-
quently, the model can be represented by the states {H, S, C}. For the simplicity of
the model, we assume time and effort by adversary equivalently and use inter-
changeably. Traditional security mechanism has little countermeasure to take actions
after attacks. If intrusion detection system can identify the compromised state of a
cluster of sensor networks, it triggers the transition from compromised state C to
adaptation state A. This is a decision making state and the actions of survivability
commence from here. It assesses the impact of damages occurred and determines the
appropriate strategies for recovery of sensor networks. The actions to be taken depend
on the requirements of the survivability and types of attack detected. If the critical

 A Survivable Distributed Sensor Networks Through Stochastic Models 189

requirements of the system are integrity and confidentiality, then system is switched
to rejuvenation state R. We adopt software rejuvenation to counteract the adversary's
actions by killing or resetting the malicious node(s) and/or compromised node(s)
online and brought the cluster to healthy state H. It is noted that only compromised
nodes are killed or reset. And if it is sensed that the rejuvenation would not be suc-
cessful, it will entered to failed state F. On the other hand, if the requirement is avail-
ability of the system, then adaptation mechanism triggers the system to enter graceful
degradation state GD where it provides minimum and essential services. Accord-
ingly, we can formulate our model responses during and after attack by the states {A,
R, GD, F}. Unlike the traditional security systems which have deterministic re-
sponses, this response model exhibits randomness in determining the appropriate
strategies for recovery, discovering attacks and the assessment of damages. Therefore,
the stochastic model can be represented as {X (t): t 0} and state space Xs = {H, S,
C, A, GD, R, F}. In next sub section, we analyze the SMP model using embedded
Discrete Time Markov Chain (DTMC).

Fig. 2. Semi Markov Process model for a
cluster based sensor networks

Fig. 3. State Transition Diagram of Embed-
ded DTMC of SMP model

3.2 Discrete Time Markov Chain of SMP

The transition from one state to another in an SMP can be thought as two steps tran-
sitions logically. In the first stage, the process remains in state i for an amount of
time given by hi (t), where hi (t) is the sojourn time distribution of state i. In the next
stage, the process changes its state from i to j with the transition probability Pij [16].
Therefore, SMP is a combination of transition probability matrix P and a vector of
sojourn time distribution hi (t). As a result, the SMP shows the behavior of a Markov
Chain at the time of state transition. Figure 3 depicts the embedded Discrete Time
Markov Chain (DTMC) of the SMP model. According to the state transition dia-
gram of Figure 3, the steady state probabilities and other parameters of model are
denoted as;

190 D.S. Kim and J.S. Park

=cP Probability that makes successful attack when the system is in suspicious state

=aP Probability that successful attack is detected by intrusion detection system

=rP Probability that software rejuvenation is triggered by adaptation mechanisms

=hP Probability that software rejuvenation turns the system to healthy state

=gdP Probability that system goes to graceful degradation state

=Hh Mean sojourn time the system remains in healthy state

=Sh Mean sojourn time the adversary to exploit vulnerabilities until attack is successful

=Ch Mean sojourn time the intrusion detection system to detect the attack and trigger the

adaptation state

=Ah Mean sojourn time to apply the appropriate strategy for recovery

=Rh Mean sojourn time to apply rejuvenation

=GDh Mean sojourn time the system is in graceful degradation state under attacks

=Fh Mean sojourn time the system is in failure state

Our intention is only to describe and analyze the steady state model. The transient
analysis of the model requires actual probability distribution of the parameters which
is out of the scope of this paper. The state probability vectors of the embedded DTMC
and SMP are],,,,,,[FGDRACSH vvvvvvvv and],,,,,,[FGDRACSH ππππππππ , respectively.
To obtain the steady state probabilities, we need to solve the equation

vPv = (1)

P is the transient matrix of DTMC, we compute the steady state probabilities of

{ iπ , sXi ∈ } of the SMP by using equation,

=

j
jj

ii
i hv

hv

.

.π
(2)

Where ih is the mean sojourn time of state i. Moreover for steady sate case, we also

have,

,1=
i

iv sXi ∈ (3)

Rewriting equation (1) in the its elemental form we have,

)1()1()1(

,,,,,

,)1(

hRrgAcCF

rARgAGDaCAcSCHS

FhRGDcSH

pvppvpvv

pvvpvvpvvpvvvv

vpvvpvv

−+−−+−=

=====
+++−=

(4)

 A Survivable Distributed Sensor Networks Through Stochastic Models 191

Now, by solving the above equations using equation (3) we have,

)22(

1

hracracacc
H pppppppppp

v
−+++

= (5)

Rest of the values can be found in similar way. Lets assume the sojourn time of states
be },,,,,,{ FGDRACSH hhhhhhhh . Therefore, steady state probability of healthy state H is

given by,

FFRRGDGDAACCSSHH

HH
H hvhvhvhvhvhvhv

hv

++++++
=

.

.π

where,
hracracacc

H pppppppppp
v

−+++
=

22

1
(6)

Rest of the values can be calculated in similar way. If we assume the sojourn time
distribution of State H and State S have uniform distributions—U(0, TH) and
U(0, TS), then equation (6) can be rewritten as,

FFRRGDGDAACCSS
H

H

H
H

H

hvhvhvhvhvTv
T

v

T
v

++++++
=

2/
2

.

2
.

π

where,
hracracacc

H pppppppppp
v

−+++
=

22

1
(7)

In next section, we evaluate our model using proof of concept example.

4 Evaluation and Analysis

In this section, we evaluate our model suing proof of concept scenario examples. In this
paper, we focus on analyzing our model in terms of status of nodes’ state. A survivable
sensor networks should be in compromised state as short as possible and in healthy state
as long as possible. So suppose that the mean time of compromised state C is less than
that of both states H and S. On the other hand, rejuvenation must be faster than any
other activities to avoid denial of service attack. Accordingly, suppose that the mean
time of being in state R is shorter that that of F and GD. Under these constraints, the
followings the values are randomly chosen for our evaluation in time unit.

6.0=Hh , 35.0=Sh , 2.0=Ch , 5.0=GDh , 4.0=Ah , 3.0=Rh , 4.0=Fh (8)

For the case of DTMC, the steady state probabilities or the proportions of time each
state spends are,

3337.0=Hv , 3337.0=Sv , 1168.0=Cv , 0934.0=Av ,

0280.0=Rv , 0561.0=GDv , 0383.0=Fv
(9)

For the case of SMP the steady state probabilities are,

4621.0=Hπ , 2696.0=Sπ , 0539.0=Cπ , 1078.0=Aπ ,

0194.0=GDπ , 0518.0=Rπ , 0354.0=Fπ
(10)

192 D.S. Kim and J.S. Park

Suppose that the number of sensor nodes are deployed in a cluster is 100 out of multi-
ple clusters of sensor nodes. From equation (10), we can conclude by above observa-
tion that about 46 nodes are in healthy state while the number of nodes being stayed
in compromise, rejuvenation and failure state are 5, 5 and 4, respectively. This statis-
tics reveals the long term conditions of the distributed sensor nodes in a cluster.

Furthermore, we can determine the effect of rejuvenation and adaptation upon the
two extremity of the sensor networks; healthy and failure state. Figure 4 reveals that
rejuvenation can preclude the system to enter failure state. As the transition probabil-
ity of successful rejuvenation hP decreases, the steady state probability of the system

being stayed in failure state (
Fv for DTMC and Fπ for SMP) increases.

Fig. 4. Failure State Prob. vs. transition prob.
of rejuvenation

Fig. 5. Healthy state prob. vs. transition
prob. of rejuvenation

Figure 5 also shows that the probability of system being stayed in healthy state de-
creases with probability of successful rejuvenation hP . Figure 6 represents that the

steady state probability of being stayed in failure state (vF for DTMC and Fπ for
SMP) decreases as probability of triggering adaptation mechanism pa increases.

Fig. 6. Failure state prob. vs. transition prob. of adaptation

In this paper, we have only concentrated on building a framework of survivability
model for DSN. We have described and analyzed the steady state model of our
framework. SMP model can be scaled or modified if we add some more criterions.

 A Survivable Distributed Sensor Networks Through Stochastic Models 193

The stochastic model only concerns, up to now, number of compromised nodes in a
single cluster, and if we sum up all clusters into one, this model has scalability to
support large number of sensor cluster with large number of sensor nodes. In addition
to security related parameters such as compromised nodes, energy consumption in
routing and data dissemination is also important issues in distributed sensor networks.
And more detailed policy for rejuvenation as well as reconfiguration will be studied.

5 Conclusions

In this paper, we have proposed a model of survivable distributed sensor networks.
Our approach adopts software rejuvenation to rejuvenate the sensor nodes under at-
tack or and compromised in a single cluster of sensor networks. We analyzed our
model in mathematical manner and showed that software rejuvenation and adaptation
mechanisms based on SMP and DTMC can extenuate the failure probability while
increases the probability of the sensor networks being stayed in healthy state.

In future works, we will extend the proposed model to cover the large number of
sensor networks and consider other parameters such as energy consumption and data
dissemination and so on.

Acknowledgement

This research was supported by the MIC (Ministry of Information and Communica-
tion), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Advancement)
(IITA-2006-C1090-0603-0027).

References

1. Avancha, S., Undercoffer, J. L., Joshi, A., Pinkston, J.: Security for Sensor Networks.
Wireless Sensor Networks, Kluwer Academic (2004) 253–275

2. Karlof, C., Sastry, N., Wagner, D.: TinySec: A Link Layer Security Architecture for
Wireless Sensor Networks, In. Int. Conf. on Embedded Networked Sensor System, ACM
Press (2004) 162–175

3. Ellison, B., Fisher, D., Linger, R., Lipson, H., Longstaff, T., Mead, N.: Survivable Net-
works Systems: An Emergin Discipline. Technical Report, CMU/SEI-97-TR-013, Soft-
ware Engineering Institute, Carnegie Mellon University (1997)

4. Ellison, R. J., Linger, R. C., Longstaff, T., Mead, N. R.: Survivable Network System
Analysis: A Case Study, IEEE software, IEEE Computer Society, Vol. 16, No. 4 (1999)
70–77

5. Heinzelman, W. R., Chandrakasan, A., Balakrishnan, H.:Energy-Efficient Communication
Protocol for Wireless Microsensor Networks. In. Proc. of the 33rd Annual Hawaii Int.
Conf. on System Sciences, IEEE Computer Society (2000) 3005–3014

6. Hu, F., Tillet, J., Ziobro, J., Sharma N.: Secure Wireless Sensor Networks: Problems and
Solutions. J. on Systemics, Cybernetics and Informatics, Vol.1, No.9 (2004)

7. Jones, K., Wadaa, A., Olariu, S., Wilson, L.: Towards a New Paradigm for Securing Wire-
less Sensor Networks. New Security Paradigms Workshop, ACM Press (2003) 115–121

194 D.S. Kim and J.S. Park

8. Knight, J.C., Strunk, E.A., Sullivan, K.J.: Towards a Rigorous Definition of Information
Security Survivability, In. Proc. of the DARPA Information Survivability Conf. and Expo-
sition, IEEE Computer society (2003) 78–89

9. Law, Y. W., Havinga, P. J. M.: How to Secure a Wireless Sensor Network. In. Proc. of Int.
Conf. on Intelligent Sensors, Sensor Networks and Information Processing, IEEE Com-
puter society (2005) 89–95

10. Liu, Y., Trivedi, K. S.: A General Framework for Network Survivability Quantification.
In. Proc. of the 12th 12th GI/ITG Conf. on Measuring, Modelling and Evaluation of Com-
puter and Communication Systems (2004) 369–378

11. Liu, Z., Wang, Y.: A Secure Agent Architecture for Sensor Networks. In. Int. Conf. on Ar-
tificial Intelligence (2003)

12. Park, T and Shin, K.: LiSP: A Lightweight Security Protocol for Wireless Sensor Net-
works, ACM trans. on Embedded Computing Systems, Vol. 3, No. 3. (2004) 634–660

13. Paul, K., Choudhuri, R. R., Bandyopadhyay, S.: Survivability Analysis of Ad Hoc Wire-
less Network Architecture. Mobile and Wireless Communication Networks, Lecture Note
in Computer Science Vol. 1818, Springer Verlag (2000) 31–46

14. Paul, K., Choudhuri, R. R., Bandyopadhyay, S.: Survivable Ad Hoc Wireless Networks:
Some Design Specifications. In. Int. Conf. on Multiaccess, Mobility And Teletraffic for
Wireless Communications, Kluwer Academic Publishers (2000) 147–158

15. Perrig, A., Szewczyk, R., Wen, V., Culler, D.E., Tygar, J.D.:SPINS: security protocols for
sensor netowrks. In. Proc. of Int. Conf. on Mobile Computing and Networking. ACM
Press (2001) 189–199

16. Savola, R.: Architecture for Self-Estimation of Security Level in Ad Hoc Network Nodes.
In. Proc. of the 3rd Australian Information Security Management Conf. (2005) 88–94

17. Schmidt, S., Krahn, H., Fischer, S., Watjen, D.: A Security Architecture for Mobile Wire-
less Sensor Networks, Security in Ad-hoc and Sensor Networks, Lecture Notes in Com-
puter Science, Vol. 3313. Springer-Verlag, Berlin Heidelberg New York (2005) 166–177

18. Shaikh, R. A., Lee, S., Song, Y., Zhung Y.:Securing Distributed Wireless Sensor Net-
works: Issues and Guidelines. In. Proc. of Int. Conf. on Sensor Networks, Ubiquitous, and
Trustworthy Computing, IEEE computer society (2006) 226–231

19. Snow, A.P., Varshney, U., Malloy, A.D.: Reliability and Survivability of Mobile and Wire-
less Networks. IEEE Computer, IEEE Computer Society, Vol. 33, No. 7 (2000) 49–55

20. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. 2nd edn. John Wiley & Sons (2001)

21. Walters, J. P., Liang, Z., Shi, W., Chaudhary, V.: Wireless Sensor Network Security: A
Survey. In: Xiao, Y. (eds) : Security in Distributed, Grid, and Pervasive Computing, Auer-
bach Publica-tions, CRC Press. (2006)

22. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient security mechanisms for large-scale distrib-
uted sensor networks. In. Proc. of the 10th ACM Conf. on Computer and Comm. Security,
ACM Press (2003) 62–72.

23. Zia, T., Zomaya, A.: A Security Framework for Wireless Sensor Networks. In. Sym. Sen-
sor Applications, IEEE Computer Society (2006) 49–53

Design and Analysis of the M2LL Policy
Distributed Algorithm for Load Balancing in

Dynamic Networks

Jacques M. Bahi1, Raphaël Couturier1, and Abderrahmane Sider2,�

1 Laboratoire d’Informatique de l’Université de Franche-Comté (LIFC). IUT de
Belfort-Montbéliard, BP 527, 90016 Belfort Cedex, France

{jacques.bahi, raphael.couturier}@iut-bm.univ-fcomte.fr
2 Département d’Informatique, Université Abderrahmane Mira de Béjaïa,

Route de Targa Ouzemmour Béjaïa 06000, Algérie
abd_sider@yahoo.fr

Abstract. Load balancing a distributed/parallel system consists in al-
locating work (load) to its processors so that they all have to process
approximately the same amount of work or amounts in relation with
their computation power. In this paper, we present a new distributed al-
gorithm that implements the M2LL policy (Most to Least Loaded). M2LL
aims to indicate pairs of processors, that will exchange load, taking into
account actually broken edges as well as the current load distribution in
the system. The M2LL policy fixes the pairs of neighboring processors
by selecting with priority the most loaded and the least loaded of each
neighborhood. Our main result is that the M2LL distributed implemen-
tation terminates after at most (n/2).dt iterations where n and dt are
respectively the number of nodes and the degree of the system at time t.

Keywords: load balancing, dynamic networks, M2LL policy, distributed
algorithms.

1 Introduction

Solving of large-size problems and speeding up the execution for small instances
are the main purposes of parallel algorithms and architectures. Nowadays, the
need for parallelism is becoming critical in many fields of science ranging from
simulating fluid molecular dynamics and particle mechanics [7] to solving of
large optimization and scientific problems [6]. The data-parallel model for par-
allelization is based on splitting the data that has to be processed over several
processing units. The amount of data that is allocated to processors has to be
controlled because of two main reasons: the data associated with each processor
may increase or decrease depending on the computation being carried out and the
processors may have heterogeneous speeds. That is what makes load balancing
� Third author wishes to acknowledge gratefully the help of first authors and of Pr.

M. Kerkar from the Departement of Physics of the University of Bejaia, Algeria.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 195–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

196 J.M. Bahi, R. Couturier, and A. Sider

a fundamental problem that have to be addressed in the development of paral-
lel/distributed software. It consists in allocating, according to a load balancing
algorithm, the load to processors in relation to their computing powers. Load
balancing algorithms are usually characterized as static/dynamic, global/local,
sender/receiver initiated and/or synchronous/asynchronous [16,14,17,8].

Local load balancing algorithms are very attractive, because with this scheme,
processors know and use only direct neighboring load and load is exchanged only
with direct neighbors. These algorithms are iterative by nature, since they tend
to balance the load globally (in the system) by successively balancing the load
locally (in each neighborhood). The most popular local iterative algorithms are
those named FOS (First Order Scheme) [9,7,19,10,11,15] and their derived form
called DE (Dimension Exchange) [9,13,18]. The difference between diffusion and
dimension exchange resides in their ability to communicate with different nodes.
If a node can perform simultaneous communications with its neighbors then
diffusion is used to exchange load information in parallel with all of them (in
a single step of the algorithm). If not, then dimension exchange may be used
and in this case, a node exchanges load information, cyclically, with each of its
neighbors (only one per iteration). These algorithms were designed in a context
of spreading usage of computing clusters formed by connecting machines by a
rapid Ethernet-like network. But the recent evolution of network architectures
toward the use of the Internet gives rise to a new execution environment for dis-
tributed computing. It is well known that the Internet is subject to contention
and temporary link failures and processors may crash and recover. In this work,
we deal with this concern supposing that the number of processors does not
change and that a processor knows its living links and to what other processors
it can send/receive messages. A link is alive if it can transmit a message in each
direction [1]. Diffusion on dynamic networks has been investigated in [5,12,4].
Dimension Exchange on hypercube architectures with broken edges has been
studied in [3]. In this paper, we focus on adapting the most efficient DE-type
algorithm named GDE (Generalized Dimension Exchange) [18] so that it takes
into account broken edges. This enhanced version of GDE, called GAE (Gen-
eralized Adaptative Exchange), can be conducted according to several policies
[2]. We present a local, distributed and synchronous algorithm to implement the
M2LL (Most to Least Loaded) policy. M2LL is used by the GAE algorithm for
load balancing and aims at determining, for each iteration of GAE, all the pairs
of nodes that will have to exchange work. This process has to ensure that the
determined pairs are those that minimize the local unbalance of each neighbor-
hood. Fixed pairs are different from an iteration to another depending on load
differences between nodes and available live links. In order to take into account
broken edges at a given moment, we suggest the following solution: broken links
are simply not considered for finding a pair, moreover, nodes only deal with their
neighbors that have not chosen their pair yet.

In section 2, we first present an analysis of the problem. As we will see later,
a processor may face many problems, so we introduce messages that must be
exchanged to resolve them coordinately. Section 3 gradually presents how proces-

Design and Analysis of the M2LL Policy Distributed Algorithm 197

sors resolve these problems with the concepts of the "interest" for load balancing
and that of the "preference". In the last section, we detail the GAE algorithm
with the M2LL policy and we conclude with future work.

2 Problem Analysis

A distributed-memory parallel system of n processors connected with an inter-
connection network is modelled by a graph G = (V, E) where vertexes V and
edges of E respectively represent the processors and links between them. Let Et

B

be the set of broken edges in the graph G at time (iteration) t, N t
i = {j ∈ V :

(i, j) ∈ E ∧ (i, j) /∈ Et
B} the set of neighbor nodes of processor i at time t and

let |N t
i | = b. The aim of M2LL is to find for each processor i, a neighbor node

j ∈ N t
i called its pair and noted pairt

i . If i is the most loaded of N t
i

⋃
{i}, then

the processor j has to be the least loaded in N t
i and vice versa. The load of a

processor is a non-negative integer or real value noted wt
i .

2.1 The Point of View of a Processor

A processor starts by exchanging its load level with each of its neighbors. This
is achieved through a message having the form {id, iteration, load} where id is
an identifier of the sending node and iteration, the current iteration of the GAE
algorithm. Thus, each processor knows the load of each of its neighbors and can
order them by increasing load: wt

j0 ≤ wt
j1 ≤ ≤ wt

jb−2
≤ wt

jb−1
. From the

point of view of processor i which made it, this order implies that:

1. If wt
i ≥ wt

jb−1
then i is the "most loaded" of its neighborhood (if the inequal-

ity is strict) or, in the general case, belongs to the set of the "most loaded"
nodes.

2. If wt
i ≤ wt

j0
then i is the "least loaded" of its neighborhood (if the inequality

is strict) or, more generally, belongs to the set of the "least loaded" nodes.
3. If wt

j0
< wt

i < wt
jb−1

then i is neither the "most loaded" nor the "least
loaded" of its neighborhood.

In the last case, processor i cannot choose directly with which of its neighbors
it will balance its load. The idea that will allow it to choose a pair is to progres-
sively remove j0 and/or jb−1 by letting these nodes find firstly compared to node
i, with whose of their respective neighbors they will exchange load. Whenever a
processor neighbor of i takes its decision, it is removed from the list of possible
pairs of node i. The removing is performed after receiving a "decision message" of
the form {id, iteration, subiteration, decision} sent by the processor id to all of
its neighbors. Subiteration is associated with the current iteration of the M2LL
algorithm which is executed many times by a processor until it takes a decision
which in turn is transmitted in the boolean value decision and simply means
whether the processor id is to be removed or not. Processor i has to send such a
message after every M2LL sub-iteration to its neighbors which are not decided
yet so that they can update load orders of their respective neighborhoods. For
the time being, we will confine to case 1 and 2, since a processor in situation 3
will finish, after some M2LL sub-iterations (see 3.4) to be in either of them.

198 J.M. Bahi, R. Couturier, and A. Sider

2.2 A Problem of Choice

In case 1, processor i belongs to the set of the "most loaded" nodes of its neigh-
borhood. From its point of view, node j0 is the "least loaded" in this neighbor-
hood. If another processor in j1, j2, . . . has the same load as j0, it should also be
considered. In case 2, the situation of processor i is inverted relatively to case
1. Indeed, i belongs now to the set of the "least loaded" of its neighborhood
and consequently, it should take as pair the node jb−1 or nodes jb−2, . . . if they
have the same load as jb−1. So, we can see that whenever some processors have
the same (maximum or minimum) load and they belong to a common neighbor-
hood, then it will be necessary to "choose" one of them by some means to be
defined. Solving of this issue, referred to as the "problem of choice", is given in
section 3.3.

2.3 A Problem of Different Points of View

Until now, we investigated the situation of the neighborhood of processor i from
the point of view of i. However, since M2LL is distributed, every processor has
its own point of view of the load order that prevails in its neighborhood. For
example, let’s suppose that node i sees (views) it is in case 1. The question is
how do processors j0, j1 . . . (that are the least loaded from the point of view of
node i), see things in their respective neighborhoods. It is possible that they
see processors i and jb−1, jb−2 . . . as the "most loaded". In this situation, nodes
j0, j1 . . . should choose a processor among i and jb−1, jb−2 . . . according to the
devised solution for the "problem of choice". But it may be also that one or each
of them sees another processor, say h, more loaded than node i is. In this latter
case, M2LL specifies that processor j0 and/or j1 chooses the "most loaded"
to them (node h) and not choose i or one among jb−1, jb−2 Moreover, if
processors i and jb−1, jb−2 . . . know that one or several processors among j0, j1 . . .
consider another node more loaded than they are, then they can remove it (or
them) from the list of the "least loaded" nodes of their respective load orders.
This will somewhat simplify the resolution of the "problem of choice" since the
set of equally loaded processors is reduced.

Case 2 shows two analog problems. Indeed, processor jb−1 may see a node h
less loaded than i and j0, j1 Again M2LL states that it should choose h and,
if i and j0, j1 . . . know this information, they can remove jb−1.

2.4 A Problem of Centered Load

In the previous section, for case 1, we pointed out that jb−1 may see a processor
h less loaded than j0. It is clear too, that h may be more loaded than jb−1.
We can see now, that node jb−1 must be provided with some means to measure
the "distance" that separate it from processors h and j0. This measure should
apply for h whatever its load is in comparison with the load of node jb−1. Sup-
pose that these distances are respectively distancejb−1(h) and distancejb−1(j0).
If distancejb−1(h) > distancejb−1(j0) then processor jb−1 should choose h. If

Design and Analysis of the M2LL Policy Distributed Algorithm 199

distancejb−1(h) < distancejb−1(j0) then the processor jb−1 should choose node
j0. A particular case arises when distancejb−1(h) = distancejb−1(j0) and wj0 <
wjb−1 < wh . We say that processor jb−1 has a "centered load" between j0 and
h. Notice that, this problematic situation is visible only to processor jb−1. We
have to pay attention to this problem because it can cause a real deadlock for
the algorithm if it happens for all processors and no global knowledge about it
is permitted. Symmetrically, processor j0 also may experience a "centered load"
between a processor h from its own neighborhood and node jb−1. In the next
section, we will define the distance used by M2LL and show how it enables the
distributed solution of different points of view. Then we will look more closely to
the problem of choice taking into account the particular case of centered loads.

3 A Graduate Presentation of Our Solution

Definition 1 (Interest of a Processor for Load Balancing). The interest
of a processor j for load balancing from the point of view of a neighbor i, at time
t, is the quantity

interestti (j) =
∣∣wt

j − wt
i

∣∣ ≥ 0. (1)

In other words, it is the absolute value of the difference of their loads. It makes it
possible for processor i to measure its unbalance with its neighbor j. Notice that
the interest is symmetric for both nodes on a given non broken edge. If processors
and links are either of heterogenous computation powers or bandwidths then the
interest of processor j for load balancing should be weighed by the (i, j) link
bandwidth fij and by the powers si et sj . Consequently, the interest for load

balancing can be expressed by: interestti (j) = 1
fij

∣∣∣wt
j

sj
− wt

i

si

∣∣∣.
Definition 2 (The Best Interest). The best interest of processor i, noted
BestInterestti, is the highest interest (unbalance) in the neighborhood N t

i .

BestInterestti = max
k∈Nt

i

(
interestti (k)

)
(2)

If, as we mentioned it before, any other processor h is less loaded than node
j0, then considering node jb−1, we obtain interesttjb−1

(h) > interesttjb−1
(j0)

which implies BestInteresttjb−1
> BestInteresttj0 . The best interest represents

a measure of a processor’s point of view and is the maximum unbalance it sees
in its neighborhood. If it communicates it to its neighbors then they can as-
sess whether it can be a partner in the process of looking for a pair. This
is performed by letting every processor send a message which has the form
{id, iteration, subiteration, Interestedt

id, BestInteresttid}. The meaning of the
Interested boolean component is postponed to end of section 3.1. This message
type will be exchanged locally during a stage that we call interest exchange
phase. Based on collected information after this exchange, processor jb−1 se-
lects among nodes j0, j1 . . ., those that still consider it as the most loaded.
For example, if node j0 sends an interest message containing BestInteresttj0

200 J.M. Bahi, R. Couturier, and A. Sider

such that BestInteresttj0 = BestInteresttjb−1
then node jb−1 can end up to

a sure knowledge it is more loaded than processor j0. But if BestInteresttj0 >
BestInteresttjb−1

then node jb−1 now knows with certainty that processor j0 has
in view some other processors h more loaded than jb−1 and can then proceed to
remove j0 from its list of processors having minimal load. Thus, in addition to
enabling processors to solve the different points of view problem, the measure of
the best interest offers to both nodes jb−1 and j0, the possibility to limit their
set of processors that present a problem of choice.

Definition 3 (The Set of Interesting Processors). The set of interesting
processors for node i is defined by:

Bt
i =
{
j ∈ N t

i : BestInteresttj = BestInterestti
}

(3)

Bt
i is the set of processors that have the same maximal unbalance as i, they may

be more or less loaded than i and its elements are the only processors that will
likely form a pair with i.

3.1 The Most Interesting Processor and the Pair Processor

Let Bt
i = {b0, b1, b2} ⊆ N t

i be the set of interesting processors for node i
after the last interest exchange phase in a M2LL sub-iteration at GAE iteration t.
The solving of the problem of choice by a processor i lets it deterministically find
its most interesting processor, noted MostInterestingt

i, for the current M2LL
sub-iteration. MostInterestingt

i necessarily belongs to Bt
i .

It is easy to see that if a processor computes Bt
i then Bt

i = Ø and at minimum,
the cardinality of Bt

i is equal to 1. In this case, this unique processor is the most
interesting processor. Whenever the cardinality of Bt

i is greater than 1, processor
i has to solve its problem of choice (see details in 3.3). Figure 1 shows two of
three possible cases in a set Bt

i . In the first one (case (a)), processor 2 has a
centered load between two or several processors. We can see that processor 2
has a centered load problem to solve. In order to detect it, it is sufficient to
processor 2 to verify whether two or more interesting processors have different
loads. Cases (b) shows another situation where processor 2 is the least loaded
against the entirety of the Bt

2 set. In the third case (not depicted for space
reasons), node 2 is the most loaded.

Case with a Centered Load Problem. In figure Fig.1(a), we let processor 2
choose one node among the least loaded ones, i.e. among 0 and 1. This implies
that it is the most loaded in the pair being formed. Thus, this scheme makes
it possible to ensure load sharing by favoring load migration from over-loaded
to under-loaded regions. And finally, the problem of choice for processor 2 is
between {0, 1} and not {3, 4}. Let Lt

i = {bj ∈ Bt
i : wt

bj
< wt

i} be the set of
interesting processors that have smaller load than that of i and let P ref(.) be
a given solution for the problem of choice. The most interesting processor for a
node facing a problem of a centered load is defined according to formula 4.

MostInterestingt
i = P ref(Lt

i) if (
∣∣Bt

i

∣∣ > 1) ∧ ¬(|Lt
i| = |Bt

i | ∨ |Lt
i| = 0) (4)

Design and Analysis of the M2LL Policy Distributed Algorithm 201

10

20 30

30

10

2

0

1

3

4

(a) Load of processor 2 is centered be-
tween that of nodes 0, 1 and 3, 4

20

30

3

1

30

2 4

30

0

30

(b) Processor 2 is the least loaded in re-
lation with all its interesting processors

Fig. 1. The Set of Interesting Processors and the Problem of Choice

Case Without a Problem of Centered Load. If a processor does not face
a problem of centered load then it is necessarily in a second case: its load is
minimum (cf. processor 2 in Fig.1(b)) or maximum (not depicted) against two
or more neighbors. In this case, the choice of the most interesting processor
is equivalent to solving the problem of choice. For example, processor 2 will
have to choose from {0, 1, 3, 4}. More generally, the most interesting processor
is obtained by formula 5.

MostInterestingt
i = P ref(Bt

i) if (
∣∣Bt

i

∣∣ > 1) ∧ (|Lt
i| = |Bt

i | ∨ |Lt
i| = 0) (5)

Now it is time to explain the content of the Interestedt
i component of interest

exchange messages. A processor i sends a message containing false to all nodes
in Bt

i except its most interesting processor for which it will be true.

The Pair Processor. A processor i that found node j as its most inter-
esting processor can conclude that pairt

i = j iif MostInterestingt
i = j and

MostInterestingt
j = i. Whenever the node i finds its pair j, a simple compar-

ison of their load will make it clear which is the most loaded and which is the
least loaded and consequently, the direction of the load migration.

3.2 The Decision of a Processor

A processor j is declared to have taken its decision by a processor i and noted
decidedi(j) = true iff: i) interesti(j) ≤ 1 or ii) (i, j) ∈ Et

B i.e. the (i, j) link
is broken at time t or iii) pairt

j exists according to 3.1. Moreover, a processor
considers that it has taken its own decision and is noted decidedi(i) = true
iff: i) ∀j ∈ Ni : decidedi(j) = true or ii) pairt

i exists according to 3.1. After
one M2LL sub-iteration, each processor sends to all its neighbors a decision
message that contains its current state decidedi(i) in the decision component.
Based on this information, neighbors that have not taken their own decision yet
can eliminate it from their respective load orders.

202 J.M. Bahi, R. Couturier, and A. Sider

3.3 The Preference of a Processor

A processor i that considers node j as its most interesting processor according
to formula 4 or 5 is said to have a preference for j.

Definition 4 (The Preference of a Processor). The preference of a proces-
sor, simply noted P ref(.), is the process by which the problem of choice is solved.

A very simple preference consists in: i) arbitrarily choosing (the first, the last
or the node with lower identity) or ii) randomly choosing one of the conflicting
elements. In the following paragraph, we offer a solution that allows to maximize
the number of formed pairs. Besides, we address the problem of centered load,
when it spans the network and can lead to repetitive non-coinciding choices.

A Choice Based on the Degree of Freedom. The freedom degree of an
interesting processor is defined by the number of nodes that presents the best
interest for it; that is |Lt

i| or |Bt
i |. The preference based on this number consists

in favoring neighbour nodes that have a low degree of freedom when looking for
the most interesting processor. The problem amounts then to choose one node
from Lt

i or Bt
i that has the minimum freedom degree. Moreover, in order to avoid

the repetition of non-coinciding choices during two or more sub-iterations, we
associate a memory with least loaded nodes to store the freedom degree of their
more loaded neighbors. By iterating between nodes with stable freedom degrees,
least loaded processors are ensured to get coinciding choices after some finite
sub-iterations number.

3.4 M2LL Termination

Proposition 1. If the network topology (broken edges) does not change
during its execution then M2LL terminates after a maximum of (n/2)dt

max

sub-iterations. Besides, the safety of M2LL is ensured by means of the decision
concept and the choice based on the preference ensures its correctness.

Proof. Let dt
max be the degree of the graph G = (V, E, Et

B) at iteration t of
GAE and suppose it does not vary before t+1. If in the worst case non-coinciding
choices arise in the network, our solution ensures that a pair of processors would
take their own decision after a maximum of dt

max sub-iterations. The number
of possible pairs being at worst (n/2), it follows that (n/2)dt

max M2LL sub-
iterations will be necessary if they should all be formed.

4 The GAE Algorithm with the M2LL Policy

Algorithm 1 shows the GAE load balancing algorithm with the M2LL policy.
In stage 2, each processor exchanges load information locally on living links

then keeps iterating (lines 5-12) within M2LL until it finds a pair or that knows
all its neighbors took their decision. During one M2LL sub-iteration, a processor

Design and Analysis of the M2LL Policy Distributed Algorithm 203

Algorithm 1. Generalized Adaptative Exchange (GAE) with the M2LL policy
1. decidedt

i(i) = false;Pairt
i = UNKNOWN ; // GAE starts here

2. Exchange load information with neighbors;
3. bool localBalancet

i = ∀j ∈ N t
i : |wt

j − wt
i | ≤ 1;

4. if (localBalancet
i = false) then {

5. while (¬ decidedt
i(i)) do { // M2LL sub-iterations begin here

6. Find the processor MostInterestingt
i ;

7. ∀j ∈ N t
i : If ¬ decidedt

i(j) then exchange MostInterestingt
i with j ;

8. Find pairt
i ;

Pairt
i = j ⇔ ∃j ∈ N t

i : ¬ decidedt
i(j) ∧ MostInterestingt

i = j ∧
MostInterestingt

j = i
9. if (Pairt

i
= UNKNOWN) then decidedt
i(i) = true;

10. ∀j ∈ N t
i : If (¬ decidedt

i(j)) then exchange decidedt
i(i) with j ;

11. if (Pairt
i = UNKNOWN) then decidedt

i(i) = ∃j ∈ N t
i : ¬ decidedt

i(j);
12. } end while // M2LL sub-iterations end here
13. if (decidedt

i(i) = true) then {
14. if (Pairt

i = j
= UNKNOWN) then wt+1
i = wt

i + λ(wt
j − wt

i);
15. else wt+1

i = wt
i ;

16. Apply load migration;
17. } // GAE ends here
18. }

exchanges two kinds of messages: interest exchange and decision messages. At
step 7, the outcome of formula 4 or 5 is sent to adjacent nodes that are “not
decided yet”. The finding of the most interesting processor allows each node to
eventually find a pair. The necessary condition is stated in step 8. In the last
stage (line 10), each processor indicates to its neighbors participating in the
actual M2LL sub-iteration whether it has found a pair by a decision message. If
so, its neighbors that have not succeeded to take their decision after the actual
sub-iteration, remove it from their respective load orders.

5 Conclusion

In this paper we present a distributed algorithm for implementing the M2LL
policy. M2LL takes into account broken edges and may be used on either static
or dynamic topologies. The detailed analysis of load situations that can arise
in a given neighborhood, has made it possible to state the different problems
a processor may be faced when choosing its pair. Then, we detail our solution
based on the key notions of the "interest" of a processor for load balancing and
that of the "preference" of a processor whenever many of its neighbors present
the "best interest". Finally, we investigate M2LL termination and describe how
it is used by the GAE load balancing algorithm. In perspective, we plan to
experimentally compare the behavior of the GAE M2LL algorithm against the
RFOS diffusion-type algorithm [4] on dynamic networks.

204 J.M. Bahi, R. Couturier, and A. Sider

References

1. W. Aiello, B. Awerbuch, B. Zkfaggs, S.Rao, “Approximate load balancing on dy-
namic and asynchronous networks”, Proc. of the 25th annual ACM symposium on
Theory of computing, pages: 632–641, 1993.

2. J.M. Bahi, R. Couturier, and F. Vernier, “Load Balancing on Dynamic Net-
work”, Technical Report RR-2002-1, LIFC, Université de Franche-Comté, Septem-
ber 2002.

3. J.M. Bahi, R. Couturier, F. Vernier, “Broken Edges and Dimension Exchange Al-
gorithm on Hypercube Topology”, Proc. of the 11th Euromicro Conference on Par-
allel, Distributed and Network-Based Processing (Euro-PDP’03), 2003.

4. J.M. Bahi, R. Couturier and F. Vernier, “Accelerated diffusion algorithms on gen-
eral dynamic networks”, Proc. of 5th Int. Conference, PPAM Czestochowa, Poland,
LNCS Vol. 3019 : 77–82. PPAM, Springer-Verlag Heidelberg, 2003.

5. J.M. Bahi and J. Gaber, “Load Balancing on Networks with Dynamically Changing
Topology”, Europar Conference, Lecture Notes onComputer Science : 175–182, 2001.

6. J.M. Bahi, R. Couturier, P. Vuillemin ,”Solving nonlinear wave equations in the
grid computing environment: an experimental study”, in JCA (Journal of Compu-
tational Acoustics), 14(1), June 2006.

7. J. Boillat, “Load balancing and poisson equation in a graph”, Concurrency: Practice
and Experience, 2(4):289-313, 1990.

8. A. Cortes, A. Ripoll, M.A. Senar and E. Luque, “Performance Comparison of Dy-
namic Load-balancing Strategies for Distributed Systems”, IEEE Proc. of the 32th
Hawai Int. Conference on System Sciences, Vol.8 : 8041–8051, 1999.

9. G. Cybenko. “Dynamic load balancing for distributed memory multiprocessors”,
Journal of Parallel and Distributed Computing, Vol. 7 :279-301, 1989.

10. R. Diekmann, A. Frommer, and B. Monien, “Efficient schemes for nearest neighbor
load balancing” Parallel Computing, Vol. 25 (7) : 789-812, 1999.

11. R. Elsasser, B. Monien, and R. Preis, “Diffusion Schemes for Load Balancing on Het-
erogeneous Networks”, Theory of Computing Systems, vol. 35, pp. 305–320, 2002.

12. R. Elsasser, B. Monien,S. Schamberger, ”Load Balancing in Dynamic Networks”,
I-SPAN, 2004.

13. S. H. Hosseini, B. Litow, M. Malkawi, J. McPherson, and K. Vairavan, “Analysis of
a graph coloring based distributed load balancing algorithm”, Journal of Parallel
and Distributed Computing, 10(2):160–166, Oct. 1990.

14. V. Kumar, G.Y. Ananth, V.N. Rao, ”Scalable load balancing techniques for parallel
computers”, Technical Report 91–55, Dept. of Computer Science, University of
Minnesota, 1991.

15. T. Rotaru and H.H. Nageli, “Dynamic load balancing by diffusion in heterogeneous
systems”, Journal of Parallel and Distributed Computing, 64 :481–497, 2004.

16. M. H. Willebeek-LeMair, A. p. Reeves, “Local vs. Global Strategies for Dynamic
Load Balancing”, Proc. of the Int. Conference on Parallel Processing, Vol. 1 : 569–
570, 1990.

17. M. H. Willebeek-LeMair, A. p. Reeves, “Strategies for Dynamic Load Balancing
on Highly Parallel Computers”, IEEE Trans. on Parallel and Distributed Systems,
Vol. 4 N◦ 9 : 979-993, Septembre 1993.

18. C.Z. Xu and F.C.M. Lau, “Analysis of the Generalized Dimension Exchange
Method for Dynamic Load Balancing”, Journal of Parallel and Distributed Com-
puting, 16:385–393, 1992.

19. C.-Z. Xu and F.C.M. Lau," Optimal parameters for load balancing with the diffu-
sion method in mesh networks”, Parallel Processing Letters, 4(2) :139–147, 1994.

An Artificial Fish Swarm Algorithm Based and
ABC Supported QoS Unicast Routing Scheme in

NGI�

Xingwei Wang, Nan Gao, Shuxiang Cai, and Min Huang

College of Information Science and Engineering, Northeastern University, Shenyang,
110004, P.R. China

wangxw@mail.neu.edu.cn

Abstract. In this paper, by introducing knowledge of fuzzy mathemat-
ics, probability theory and gaming theory, a QoS unicast routing scheme
with ABC supported is proposed based on artificial fish-swarm algorithm.
Simulation results have shown that it is both feasible and effective with
better performance.

1 Introductions

NGI (Next Generation Internet) is becoming an integrated network [1-4] con-
verged seamlessly by heterogeneous multi-segment multi-provider sub-networks,
such as terrestrial-based, space-based, fixed and mobile sub-networks, etc. Its
backbone and access links become diversified. Several kinds of links may coexist
on each hop for the user to choose along the end-to-end path. It is possible for the
user to be ABC (Always Best Connected) [3-4] to NGI, the user can connect with
NGI anytime, anywhere in the currently best way and can switch to the better
way adaptively and transparently whenever it comes forth, and thus the so-called
global QoS (Quality of Service) roaming should be supported seamlessly [5]. QoS
routing is essential and ABC should be supported [4]. However, some character-
istics of NGI, such as its heterogeneity and dynamics, influence of terminal and
even network mobility, unavoidable message transfer delay and its uncertainty,
etc., make it hard to describe the network status used when routing in NGI ex-
actly and completely. On the other hand, the user QoS requirements are affected
largely by a lot of subjective factors and often can not be expressed accurately,
therefore the flexible QoS description should be provided. ABC means a user
can get the best available connection anytime, anywhere, however, ’best’ itself
is a fuzzy concept, depending on many factors, such as user QoS requirement,
cost a user willing to pay, user preference, terminal ability and access network
availability, etc. In addition, with the gradual commercialization of network op-
eration, ABC is not a user’s own wishful thinking and thus need to consider both
the network provider profit and the user profit with both-win supported [6].
� This work is supported by the National Natural Science Foundation of China under

Grant No. 60673159; Program for New Century Excellent Talents in University; Spe-
cialized Research Fund for the Doctoral Program of Higher Education; the Natural
Science Foundation of Liaoning Province under Grant No. 20062022.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 205–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

206 X. Wang et al.

In this paper, by introducing knowledge of fuzzy mathematics, probability
theory and gaming theory, a QoS unicast routing scheme with ABC supported is
proposed. In order to deal with imprecise network status information and flexible
user QoS requirement, it uses range to describe the user QoS requirement and
the edge parameter and introduces the user satisfaction degree function, the
edge evaluation function and the path evaluation function. Based on artificial
fish-swarm algorithm, it tries to find a QoS unicast path with Pareto optimum
under Nash equilibrium on both the network provider utility and the user utility
achieved or approached. Simulation results have shown that the proposed scheme
is both feasible and effective with better performance.

2 Problem Description

2.1 Network Model and Routing Request

A network can be modeled as a graph G(V, E), V is node set and E is edge
set. ∀vi, vj ∈ V (i, j = 1, 2, ..., |V |), there maybe exist several edges (representing
different kinds of links) between them. Just for simplicity, the node parameters
are merged into the edge ones in this paper. Therefore, ∀el ∈ E, consider the
following parameters: available bandwidth [BwlL , BwlH], delay [DllL , DllH] and
error rate [LslL , LslH]. A QoS unicast routing request is described as follows:
< [bw rqL, bw rqH], [dl rqL, dl rqH], [ls rqL, ls rqH], Cu >, and its elements rep-
resent the user bandwidth, delay, error rate requirement and the upper limit of
the cost the user will to afford respectively.

2.2 Edge Parameter Probability Model and User Satisfaction
Degree Function

The probability GeB(bwl) of el guaranteeing to provide a user bandwidth bwl

and the satisfaction degree SeB(bwl) for the user to get bandwidth bwl on el

actually are defined as follows:

GeB(bwl) =

⎧⎪⎨⎪⎩
1 bwl ≤ BwlL

(BwlH
−bwl

BwlH
−BwlL

)k + δB BwlL < bwl ≤ BwlH

0 bwl > BwlH

(1)

SeB(bwl) =

⎧⎪⎨⎪⎩
1 bwl ≥ bw rqH

e
−(

bw rqH−bwl
bwl−bw rqL

)2 + S1 bw rqL ≤ bwl < bw rqH

0 bwl < bw rqL

(2)

δB =
{

ε bwl = BwlH

0 otherwise (3)

S1 =
{

1 bwl = bw rqL

0 otherwise (4)

An Artificial Fish Swarm Algorithm 207

If the available bandwidth on P is bwP , the satisfaction degree SPB(bwP)
for the user to get bwP on P actually can be computed using formula (2), i.e.
SPB(bwP) = SeB(bwl).

Assume that the delay value is evenly distributed in [DllL , DllH][7], the proba-
bility GeD(dll) of the delay on el equaling to dll and the user satisfaction degree
SeD(dll) to the delay traversing through el being dll actually are defined as
follows:

GeD(dll) =

{
1

DllH −DllL
DllL ≤ dll ≤ DllH

0 otherwise
(5)

SeD(dll) =

{
1 − e

−(
dl rqH−dll

dll·σ1
)2

dll ≤ dl rqH

0 otherwise
(6)

If the delay on P is dlP , the user satisfaction degree SPD(dlP) to the delay
experienced by the user actually on P being dlP can be defined as follows:

SPD(dlP) =

⎧⎪⎨⎪⎩
1 dlP ≤ dl rqL

1 − e
−(

dl rqH−dlP
dlP −dl rqL

)2 + S2 dl rqL < dlP ≤ dl rqH

0 dlP > dl rqH

(7)

S2 =
{

ε Jp = 1 ∧ dlP = dl rqH

0 otherwise (8)

Assume that the error rate value is evenly distributed in [LslL , LslH], the
probability GeL(lsl) of the error rate on el equaling to lsl and the user satis-
faction degree SeL(lsl) to the error rate on el being lsl actually are defined as
follows:

GeL(lsl) =

{
1

LslH
−LslL

LslL ≤ lsl ≤ LslH

0 otherwise
(9)

SeL(lsl) =

{
1 − e

−(
ls rqH−lsl

lsl·σ2
)2

lsl ≤ ls rqH

0 otherwise
(10)

If the error rate is lsP on P , the user satisfaction degree SPL(lsP) to the error
rate on P being lsP can be defined as follows:

SPL(lsP) =

⎧⎪⎨⎪⎩
1 lsP ≤ ls rqL

1 − e
−(

ls rqH−lsP
lsP −ls rqL

)2 + S3 ls rqL < lsP ≤ ls rqH

0 lsP > ls rqH

(11)

S3 =
{

ε Jp = 1 ∧ lsP = ls rqH

0 otherwise (12)

Among them, k > 0; Si is a modification function (i = 1, 2, 3); Jp is the hop
number of the end-to-end path; ε is a positive decimal fraction much smaller
than 1; σ1 and σ2 are regulation factors for adjusting magnitudes of the corre-
sponding satisfaction degree values.

208 X. Wang et al.

2.3 Edge and Path Evaluation Function

The edge and path evaluation functions represent their adaptability membership
degrees to the user QoS requirements respectively.

Assume that the bandwidth occupied actually by the user on el and on P
are Bwlo and BwPo respectively, Bwlo ≤ BwlH , BwPo = M inel∈P {Bwlo}. Of-
ten Bwlo and BwPo are equal. The adaptability membership degree function
of Bwlo and BwPo to the user bandwidth requirement, that is, the edge and
path bandwidth evaluation function EBe(Bwlo) and EBP (BwPo) are defined
respectively as follows:

EBe(Bwlo) = SeB(Bwlo) · GeB(Bwlo) (13)

EBP (BwPo) = SPB(BwPo) ·
∏

el∈P

GeB(BwPo) (14)

Assume that the delay experienced by the user on el and P actually are Dllt
and DlPt respectively, DlPL =

∑
el∈P DllL , DlPH =

∑
el∈P DllH , Dllt ≤ DllH ,

the adaptability membership degree function of Dllt and DlPt to the user delay
requirement, that is, the edge and path delay evaluation function EDe(Dllt) and
EDP (DlPt) are defined respectively as follows:

EDe(Dllt) =

∫ DllH
DllL

SeD(Dllt) · GeD(Dllt)d(Dllt)∫ DllH
DllL

GeD(Dllt)d(Dllt)
(15)

EDP (DlPt) =

∫DlPH

DlPL
SPD(DlPt)d(DlPt)∫DlPH

DlPL
d(DlPt)

(16)

Assume that the error rate experienced by the user on el and P actually are
Lsla and LsPa respectively, LsPL = 1−

∏
el∈P (1−LslL), LsPH = 1−

∏
el∈P (1−

LslH), Lsla ≤ LslH , the adaptability membership degree function of Lsla and
LsPa to the user delay requirement, that is, the edge and path delay evaluation
function ELe(Lsla) and ELP (LsPa) are defined respectively as follows:

ELe(Lsla) =

∫ LslH

LslL

SeL(Lsla) · GeL(Lsla)d(Lsla)∫ LslH

LslL

GeL(Lsla)d(Lsla)
(17)

ELP (LsPa) =

∫ LsPH

LsPL

SPL(LsPa)d(LsPa)∫ LsPH

LsPL
d(LsPa)

(18)

Thus, the comprehensive quality evaluation function of the edge and the path
ECe(el) and ECP (P) are defined respectively as follows:

ECe(el) = αB · EBe(Bwlo) + αD · EDe(Dllt) + αL · ELe(Lsla) (19)

ECP (P) = αB · EBP (BwPo) + αD · EDP (DlPt) + αL · ELP (LsPa) (20)

An Artificial Fish Swarm Algorithm 209

Among them,αB , αD and αL represent the relative importance of the band-
width, delay and error rate to the user QoS requirement respectively,0 ≤ αB, αD,
αL ≤ 1, αB + αD + αL = 1. ECe(el) and ECP (P) are used to reflect the user’s
satisfaction degree to el and P .

2.4 Gaming Analysis

There are two players in the game, that is, the network provider and the user. The
user has n gaming strategies corresponding to n bandwidth allocation levels, de-
noted as< Bwo1 , Bwo2 , ..., Bwon >. Bwox indicates the bandwidth occupied ac-
tually by the user on the edge under his xth strategy. The network provider has m
strategies corresponding to m bandwidth prices, denoted as < pc1, pc2, ..., pcm >,
and reflecting different relationship between supply and demand and different
edge quality. Each strategy is composed of bandwidth base price and floating
price; base price is determined by the network provider according to the edge
type and does not take part in gaming; floating price is determined by gaming
between the network provider and the user according to the delay and error rate
of the edge. Under the strategy pair< Bwox , PBy +PF zw

y >, the cost CT l
xy paid

by the user for using bandwidth Bwox of el is as follows:

CT l
xy = PBy · Bwox + PF zw

y (21)

Accordingly, the cost CTP paid by the user for using P is as follows:

CTP =
∑
el∈P

CT l
xy (22)

Define the network provider and user utility matrix on el is [< uul
xy, nul

xy >
]n×m. where n rows and m columns are corresponding to the user’s n gam-
ing strategies and the network provider’s m gaming strategies respectively. <
uul

xy, nul
xy > denotes the user’s utility uul

xy and the network provider’s utility
nul

xy on el under the strategy pair < Bwox , PBy + PF zw
y >. uul

xy and nul
xy are

computed respectively as follows:

uul
xy =

Cl(Bwox) · ECe(el)
CT l

xy

· Λ (23)

Λ =

{
e
−ρ

(Bwox −bw rqH)
bw rqH Bwox ≥ bw rqH

1 Bwox < bw rqH

(24)

nul
xy =

CT l
xy − Cl(Bwox)
Cl(Bwox)

· Ω (25)

SD =
Bwox

BwlH

(26)

Ω =

{
e
− λ1

Bwox
·(k1·PBy+k2·PFy)

SD < δ
1 − e−λ2·Bwox ·(k1·PBy+k2·PFy) SD ≥ δ

(27)

210 X. Wang et al.

Among them, Cl(Bwox) is the cost of using Bwox on el; Λ and Ω are regulation
factor of the user utility and the network provider utility respectively; SD is a
indicator of bandwidth supply and demand relationship; δ is a preset threshold;
k1, k2, λ1, λ2 and ρ are regulation coefficients; λ1, λ2, ρ > 0, 0 ≤ δ, k1, k2 ≤ 1,
k1+k2 = 1. When the bandwidth Bwoxactually got by a user exceeds bw rqH , the
exceeded amount of bandwidth is useless for meeting with the user bandwidth
requirement, however it has influence on meeting with the other users’ bandwidth
requirement. Therefore, the more the excess is, the more severely the user utility
should be punished, which can prevent a user from attempting to occupy more
bandwidth greedily even if it has got enough bandwidth. SD reflects bandwidth
supply and demand relationship on an edge. The larger the value of SD is, the
more demanding the bandwidth is on the edge. When the value of SD is greater
than δ, the demand for bandwidth exceeds its supply on an edge; at this time, Ω
is an increasing function of price, that is, the network provider utility increases
with price, and the more demanding the bandwidth is, the faster the utility
increases. When the value of SD is less than δ, the supply of bandwidth exceeds
its demand on an edge; at this time, Ω is a decreasing function of price, that is,
the network provider utility increases when the price decreases, and the more
sufficient the bandwidth is, the faster the utility increases. k1 and k2 reflect the
relative influence of the basic price and the floating price of the bandwidth on
the network provider utility.

Assume that the edges in the graph corresponding to the links in the net-
work are provided by Q network providers, the user utility and the hth network
provider utility on P are defined respectively as follows:

TUP =

∑
el∈P uul

xy

Jp
(28)

TW h
P =

∑
elh

∈P nulh
xy

Jph
(29)

In formula (29), elh denotes the edges provided by the hth network provider
on P , nulh

xy denotes the hth network provider utility on elh , and Jph denotes
the number of the edges provided by the hth network provider on P . Obviously,∑

h Jph = Jp.
The goal of gaming on an edge is to determine an optimal strategy pair under

which the network provider utility and the user utility achieve or approach Pareto
optimum under Nash equilibrium. < uul

x∗y∗ , nul
x∗y∗ > with Nash equilibrium

achieved in [< uul
xy, nul

xy >]n×m should meet with:{
uul

x∗y∗ ≥ uul
xy∗ x = 1, 2, ..., n

nul
x∗y∗ ≥ uul

x∗y y = 1, 2, ..., m
(30)

Pareto superiority of < uul
xy, nul

xy > on el is defined as follows:

PAl
xy =

1
α · 1

uul
xy

+ β · 1
nul

xy

(31)

An Artificial Fish Swarm Algorithm 211

In formula (31), α and β are the preference weight to the network provider
and to the user respectively, 0 ≤ α, β ≤ 1, α + β = 1. Obviously, the larger the
value of PAl

xy is, the stronger the Pareto superiority of the network provider
utility and the user utility is under the corresponding strategy pair.

In [< uul
xy, nul

xy >]n×m, if there exists only one < uul
x∗y∗ , nul

x∗y∗ >, it is
the optimal network provider and user strategy pair; if there exist more than
one or no < uul

x∗y∗ , nul
x∗y∗ >, compare their Pareto superiority and select the

strategy pair with the largest value of PAl
xy as the optimal network provider

and user strategy pair (if there exist more than one such strategy pairs, select
one randomly).

2.5 Mathematical Model

It is described as follows:

Maximize{ECP (P)} (32)

Maximize{TUP} (33)

Maximize{TW h
P} (34)

Maximize{TUP +
∑

h

TW h
P} (35)

s.t.
BwPo ≥ bw rqL (36)

DlPL ≤ dl rqH (37)

LsPL ≤ ls rqH (38)

CTP ≤ Cu (39)

3 Algorithm Design

Artificial fish-swarm algorithm [8] is an artificial life computing method by sim-
ulating fish swarm behavior, trying to make the global optimum emerge out of
fish swarm by seeking the local optimum of individual fish.

3.1 Solution Expression and Generation

An artificial fish is corresponding to a problem solution, i.e. a QoS unicast path.
A solution is denoted as a vector and the edges of the path from source to
destination constitute the vector’s elements. The number of vector dimensions is
the solution length and its maximum is regarded as standard length. If a solution
does not reach the standard length, use the last edge of the path to extend and
make the vector reach the standard length. The initial solution is generated by
the random path algorithm [9].

212 X. Wang et al.

3.2 Fitness Function and Distance

The fitness function of the solution corresponding to the artificial fish fsk is
defined as follows:

FT (fsk) =
1

1
ECP (fsk) ·

∑
el∈P

NEl

PAl
xy

(40)

NEl =
{

1 Nash equilibrium
> 1 Non-Nash equilibrium (41)

The distance between two artificial fishes is defined as follows:

d(k, v) =‖ fsk − fsv ‖ (42)

d(k, v) is the number of different elements between fsk and fsv, and use
Dk(k, v) to denote the set of these different elements in fsk.

3.3 Artificial Fish Behavior and Its Selection

Use V Dk to denote the perceptive distance of fsk and all fsv which meet with
the condition d(k, v) < V Dk form the neighborhood of fsk. Let Sp be the
artificial fish movement step and θ be congestion degree factor. The prey behavior
is as follows:

Step1: Set the maximum non-movement times CN ; set the counter of non-
movement times Cn = 0.

Step2: For fsk, select a fsv from its neighborhood randomly.
Step3: If FT (fsv) > FT (fsk), fsk moves forward one step to fsv, s =

Random(Sp), Cn = 0; if s > d(k, v), s = d(k, v); select s edges from Dk(k, v)
randomly to do transformation and make them the same as the corresponding
edges of fsv, d(k, v) = d(k, v) − s.

Step4: Cn = Cn + 1. If Cn ≤ CN , go to Step2; otherwise, fsk move one
step randomly, s = Random(Sp), and select s edges from fsk randomly to do
transformation.

The swarm behavior is as follows:

Step1: Determine the neighborhood of fsk and its corresponding artificial fish
set Rk, nf = |Rk|.

Step2: Determine the central position fsc = (ec
1, e

c
2, ..., e

c
len) of all artificial

fishes in Rk, where ec
x is the most frequently used edge by artificial fishes in Rk

on the xth vector element (if there are several such edges, select one from them
randomly).

Step3: If FT (fsc)
nf > FT (fsk) · θ, fsk executes Step3 in the prey behavior and

move forward one step to fsc; otherwise, execute the prey behavior.

The follow behavior is as follows:

Step1: For fsk, select an fsv from Rk with the largest FT (fsv) (if there
are several such artificial fishes, select one from them randomly), fsmax = fsv,
FTmax = FT (fsv).

An Artificial Fish Swarm Algorithm 213

Step2: Determine the number nf of artificial fishes in the neighborhood of
fsmax. If FTmax

nf > FT (fsk)·θ, fsk executes Step3 in the prey behavior and move
forward one step to fsmax; otherwise, execute the prey behavior in section 3.3.

For behavior selection, fsk execute prey, swarm and follow behavior by sim-
ulation and get fskp , fsks and fskf

respectively, then select the correspond-
ing behavior with the largest value among FTp(fsk), FTs(fsk) and FTf (fsk)
to do.

3.4 Algorithm Procedure

The procedure of the proposed QoS unicast routing algorithm is described as
follows:

Step1: Initialization. Set artificial fish-swarm scale to be N ; starting from vs,
generate N artificial fishes according to section 3.1.

Step2: Check whether each fsk meets with formula (36)-(39) or not: if so, go
to Step3; otherwise, regenerate an artificial fish to substitute fsk according to
section 3.1, go to Step2.

Step3: For each fsk, compute the user utility and the network provider utility
on each edge according to formula (23) and (25), play game according to section
2.4(3), compute FT (fsk) according to formula (40), and denote fsk with the
current largest fitness value as fsk∗ .

Step4: Set the values of V Dk, Sp and θ; initialize the call-board and record
the current fsk∗ on it; set the iterative times to be I and j = 1.

Step5: Each fsk select one behavior to do according to section 3.3.
Step6: For each fsk, check whether it meets with formula (35)-(38) or not: if

so, go to Step7; otherwise, regenerate an artificial fish to substitute fsk according
to section 3.1, go to Step5.

Step7: For each fsk, compute FT (fsk) according to formula (40); if FT (fsk)
> FT (fsk∗), update the call-board and k∗ = k.

Step8: If j = I, output fsk∗ as the problem solution, the end; otherwise,
j = j + 1, go to Step5.

4 Conclusion

Simulations of the proposed QoS unicast routing scheme have been done on
NS2 (Network Simulator 2)[10]. Assume that there are three network providers
providing satellite, cellular and fixed links respectively, that is, there are three
kinds of links for a user to choose on each hop along the path. The proposed
scheme, the proposed microeconomics based fuzzy unicast QoS routing scheme
in [11], and the unicast routing scheme based on Dijkstra algorithm [12] have
been simulated on some physical and virtual network topologies. Simulation
results have shown that the proposed scheme is both feasible and effective with
better performance. In future, our study will focus on improving its practicality,
developing its prototype system and extend it to multicast scenario.

214 X. Wang et al.

References

1. Fawzi, D., Seshadri, M.: Challenges of Personal Environments Mobility in Hetero-
geneous Networks. Mobile Networks and Applications,Vol.8, No.1. (1982) 7–9

2. Willie, W.: Open Wireless Architecture and Enhanced Performance. IEEE Com-
munications Magazine, Vol.41, No.6. (2003) 106–107

3. Gustafsson, E., Jonsson, A.: Always Best Connected. IEEE Wireless Communica-
tions, Vol.10, No.1. (2003) 49–55

4. Gabor, F., Eriksson, A.: Aimo Tuoriniemi: Providing Quality of Service in Always
Best Connected Networks. IEEE Communications Magazine, Vol. 41, No. 7. (2003)
154–163

5. Theodore, B. Z., Konstantinos, G. V., Christos, P., et al: Global Roaming in Next-
Generation Networks. IEEE Communications Magazine, Vol.40, No.2. (2002) 145–
151

6. Quan, X. T., Zhang, J.: Theory of Economics Game. Beijing: China Machine Press,
(2003)

7. Lorenz, H., Ariel, O.: QoS Routing in Networks with Uncertain Parameters.
IEEE/ACM Transactions on Networking, Vol.6, No.6. (1998) 768–778

8. Li, X. L., S, Z. J., Q, J. X.: An Optimizing Method Based on Autonomous Animals:
Fish-swarm Algorithm. Systems Engineering-Theory & Practice, Vol.22, No.11.
(2002) 32–38

9. West, D.B: Introduction to Graph Theory. Beijing: China Machine Press. (2004)
136–142

10. Xu, L. M., Pang, B., Zhao, R.: NS and Network Simulation. Beijing: Posts &
Telecom Press. (2003) 1–9

11. Wang, X. W., Hou, M. J., Wang, J. W., et al.: A Microeconomics-based Fuzzy QoS
Unicast Routing Scheme in NGI. Springer LNCS 3824, (2005) 1055–1064

12. Wang, Z., Crowcroft, J.: QoS Routing for Supporting Resource Reservation. IEEE
Journal on Selected Areas in Communications, Vol.14, No.7. (1996) 1228-1234

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 215 – 220, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Efficient Parallel Algorithm for Ultrametric Tree
Construction Based on 3PR*

Kun-Ming Yu1, Jiayi Zhou2,** , Chun-Yuan Lin3, and Chuan Yi Tang4

1 Department of of Computer Science and Information Engineering, Chung Hua University
2 Institute of Engineering Science, Chung Hua University

3 Institute of Molecular and Cellular Biology, National Tsing Hua University
4 Department of Computer Science, National Tsing Hua University

300, Hsinchu, Taiwan, R.O.C
1 yu@chu.edu.tw, 2 jyzhou@pdlab.csie.chu.edu.tw,
3 cyulin@mx.nthu.edu.tw, 4 cytang@cs.nthu.edu.tw

Abstract. In the computational biology and taxonomy, to construct phylogenetic
tree is an important problem. A phylogenetic tree can represent the relationship
and histories for a set of species and helpful for biologists to observe existent
species. One of popular model is ultrametric tree, and it assumed the evolution
rate is constant. UPGMA is one of well-known ultrametric tree algorithm.
However, UPGMA is a heuristic algorithm, and it can not guarantee the
constructed tree is minimum size. To construct minimum ultrametric tree (MUT)
has been shown to be an NP-hard problem. In this paper, we propose an efficient
parallel branch-and-bound algorithm with 3-Point Relationship (3PR) to reduce
the construction time dramatically. 3PR is a relationship between a distance
matrix and the constructed phylogenetic tree. The main concept is for any two
species closed to each other in a distance matrix should be also closed to each
other in the constructed phylogenetic tree. We use this property to mark the
branching path with lower priority or higher, then we move the lower ranked
branching path to delay bound pool instead of remove it to ensure the optimal
solution can be found. The experimental results show that our parallel algorithm
can save the computing time and it also shows that parallel algorithm with 3PR
can save about 25% of computing time in average.

Keywords: phylogenetic tree, minimum ultrametric tree, parallel branch-and-
bound algorithm, 3-point relationship, 4-point relationship.

1 Introduction

To construct phylogenetic trees is an important problem in the computational biology
and in taxonomy, the phylogenetic tree can represent the histories for a set of species
and helpful for biologists to observe existent species or evaluate the relationship of
them. However, the real evolutionary histories are unknown in practice. Therefore,
many methods had been proposed and tried to construct a meaningful phylogenetic
tree, which is closing to the real one.

* The work is partially supported by National Science Council. (NSC 94-2213-E-216 -028).

** The corresponding author.

216 K.-M. Yu et al.

In the input of distance matrix, a phylogenetic tree is constructed according to the
distance matrix [10,11]. In general, these values are edit distances between two
sequences of any two species. There are many different models and motivated
algorithmic problems were proposed [1,9]. However, most of optimization problems
for phylogenetic tree construction have been show to be NP-hard [2-4,6,7]. An
important and commonly used model is assumed that the rate of evolution is constant.
Based on this assumption, the phylogenetic tree will be an ultrametric tree (UT),
which is rooted, leaf labeled, and edge weighted binary tree. Because many of these
problems are intractable and NP-hard, biologists usually construct the trees by using
heuristic algorithm. The Unweighted Pair Group Method with Arithmetic mean
(UPGMA, [1]) is one of the popular heuristic algorithms to construct UTs.

Although construct MUTs is an NP-hard problem, it is still worthy to construct for
middle-size of species. Thus, it seems possible to find an optimal tree using
exhaustive search. Nevertheless, for n species, the number of rooted and leaf label

tree is, it grows very rapidly. For example, 710)10(>A , 2110)20(>A , 3710)30(>A .

Hence, it is impossible to exhaustively search for all possible trees even n are middle-
size. Wu et al. [13] proposed a branch-and-bound algorithm for constructing MUTs to
avoid exhaustive search. The branch-and-bound strategy is a general technique to
solve combinatorial search problems.

In this paper, 3-Point Relationship (3PR) is used to construct MUTs more
efficiently. 3PR is the relationship between a distance matrix and the constructed
phylogenetic tree. The concept is that in triplet of species (a, b, c), any of two species
which is closed to each other in the distance matrix should aslo be closed to each
other in the constructed phylogenetic tree in a distance matrix. The experimental
results show that PBBU with 3PR can reduce about 25% computation time both in
sequential and parallel algorithms.

The paper is organized as follows. In section 2, some preliminaries for sequential
branch-and-bound algorithm and 3PR are given. Parallel algorithm is described in
section 3. Section 4 shows our experimental results, and final section is our conclusions.

2 Preliminaries

In this paper, we present PBBU with 3PR for construct minimum ultrametric tree. In
the following, we denote an unweighted graph G=(V,E,w) with a vertex set V, an edge
set E, and an edge weight function w. Some definitions are given as follows:

Definition 1: A distance matrix of n species is a symmetric nn× matrix M such that
0],[≥jiM for all 0],[=iiM , and for all nji ≤≤ ,0 .

Definition 2: Let),,(wEVT = be an edge weighted tree and Vvu ∈, . The path length

from u to v is denoted by),(vudT . The weight of T is defined by
∈

=
Ee

ewTw)()(.

Definition 3: For any M (not necessarily a metric), MUT for M is T with minimum
)(Tw such that },...,1{)(nTL = and],[),(jiMjidT ≥ for all nji ≤≤ ,1 . The problem

of finding MUT for M is called MUT problem.

 An Efficient Parallel Algorithm for Ultrametric Tree Construction Based on 3PR 217

Definition 4: Let P be a topology, and)(, PLba ∈ .),(baLCA denotes the lowest

common ancestor of a and b. If x and y are two nodes of P, we write yx → if and

only if x is an ancestor of y.

Definition 5: The distance between distance matrix and rooted topology of
phylogenetic trees is consistent if]),[],,[min(],[kjMkiMjiM < if and only if

),(),(),(kjLCAkiLCAjiLCA =< for any nkji ≤≤ ,,1 . Otherwise is contradictory.

2.1 Sequential Branch-and-Bound Algorithm for MUTs

In the MUT construction problem, the branch-and-bound is a tree search algorithm
and repeatedly searches the branch-and-bound tree (BBT) [8,14] to find a better
solution until optimal one is found. The BBT is a tree which can represent a topology
of UTs. Assume that the root of BBT has depth 0, hence each node with depth i in
BBT represents a topology with a leaf set {1,...,i+2}.

2.2 3-Point Relationship (3PR)

3PR is a logical method to check the LCA relation for any triplet of species (a, b, c) in
a distance matrix, which is preserved or not in the constructed phylogenetic trees. For
any two species (a, b), LCA(a, b) denotes the least common ancestor of (a, b). If (x, y)
are two nodes in a phylogenetic tree, x y is written if x is an ancestor of y. For a
triplet of species (a, b, c) in the distance matrix M, if the distance M[a, b] of species a
and b is less than M[a, c] and M[b, c], LCA(a, c)=LCA(b, c) LCA(a, b) (as ((a, b),
c); in Newick tree format). For a triplet of species (a, b, c), it is contradictive if the
least common ancestor relation in a distance matrix is not preserved in the constructed
phylogenetic tree. 3PR can be used to evaluate the qualities of constructed
phylogenetic trees. A phylogenetic tree is considered unreliable if the number of
contradictive triplets is large. The evaluated result may be useful for biologists to
choose a feasible phylogenetic tree construction tool.

3 Parallel Branch-and-Bound Algorithm with 3PR

Parallel Branch-and-Bound Algorithm with 3PR (PBBU with 3PR) is designed on
distributed memory multiprocessors and the master-slave architecture. The PBBU
uses a branch-and-bound technique to avoid exhaustive search of possible trees. For
load-balance purpose, the master processor (MP) contains a Global Pool and each
slave processor (SP) has Local Pool, moreover we use new data structure instead of
the link list to store BBT.

In [5], 3PR is applied as a tree evaluation method. We use this property to put
lower rank branching path to Delay Bound Pool (DBP) when selecting branch path in
the branch-and-bound algorithm. For example, Table 1 is the distance matrix and
Figure 1 shows two candidates when inserting the third species c. In PBBU without
3PR, both (a) and (b) candidates need to be added to the pool when branching.
However, topology of (b) is closing to distance matrix, it obtained higher rank, and (a)
has lower rank. In PBBU with 3PR, only (b) (with higher rank) candidate will be

218 K.-M. Yu et al.

selected due to the distance of a and c is greater than the distance of b and c. This
result is based on the conception that in a triplet of species (a, b, c), any of two
species which is closed to each other in the distance matrix should also be closed to
each other in the corresponding phylogenetic tree in a distance matrix. However, it
cannot be directly used to bound another branching path, and PBBU with 3PR put
others candidates to the DBP to ensure the optimal solution can be found.

Table 1. Distance matrix

 a b c

a 0 25 20

b 25 0 15

c 20 15 0

aa cc bb aa cc bb
(a) (b)

Fig. 1. Candidate BBT

4 Experimental Results

In the experimental results, we implement PBBU and PBBU with 3PR on a Linux
based PC cluster. Each computing node is an AMD Athlon PC with a clock rate of 2.0
GHz and 1GB memory. Each node is connected with each other by 100Mbps
network. There are two data sets used to test our algorithms. One is a random data set,
which is generated randomly. The distance matrix in the random data set is metric and
the range of distances is between 1 and 100. Another is a data set composed of 136
Human Mitochondrial DNAs (HMDNA), which is obtained from [12]. Its distance
matrix is metric and the range of distances is between 1 and 200. In order to eliminate
the problems of data dependence, for each testing data, we run 10 instances. Then we
compare the average, median, and worst cases.

Figure 2 and 3 show that PBBU with 3PR and delay bound technique can find the
optimal solution and save about 25% of computation time than PBBU without 3PR.
Because 3PR technique move lower ranking candidates which disaccording to 3PR to
delay bound pool, after that, the better bounding value can be found early. Afterward
it can bound more candidates to decreasing computation time.

Figure 4 is the speed-up ratio of HMDNA data set. We observed that the speed-up
ratio of 3PR is better than it without 3PR. Furthermore, the difference between 3PR
and without 3PR is larger when the number of processors increasing. Because of the
tighter bounding value can be found quickly with more processors. It also shows that
our algorithm is scalable in large number of computing resources. Figure 5 shows the
computation time of 16 processors of PBBU with 3PR for different number of
species. We can observe that the computation time grow rapidly when the number of
species increasing. Moreover, the reduced proportion between PBBU and PBBU with
3PR is increasing with larger number of species. We consider that large number of
species contains more candidates that a tighter bounding value which can be obtained
from 3PR technique can also bound grater number of candidates; it can decreasing the
computation time.

 An Efficient Parallel Algorithm for Ultrametric Tree Construction Based on 3PR 219

1 2 4 8 16

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Without 3PR vs. With 3PR (HMDNA)
Without 3PR
With 3PR

Number of processors

T
im

e
(s

ec
.)

Fig. 2. 3PR vs. Without 3PR (HMDNA)

1 2 4 8 16

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500
40000

Without 3PR vs. With 3PR (Random)
Without 3PR
With 3PR

Number of processors

T
im

e
(s

ec
.)

Fig. 3. 3PR vs. Without 3PR (Random)

1 2 4 8 16
0

1

2

3

4

5

6

7

8

9

10

11

Speed-up (HMDNA)
Without 3PR
With 3PR

Number of processors

S
pe

ed
-u

p
ra

tio

Fig. 4. Speed-up ratio (HMDNA)

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0
1000

2000

3000
4000

5000

6000
7000

8000

9000
10000

11000

12000

13000

Computing time (16 processors)
Without 3PR
With 3PR

Number of species

T
im

e
(s

ec
.)

Fig. 5. Computing time (16 processors)

5 Conclusions

In this paper, we have designed PBBU with 3PR for constructing MUTs problem. The
3PR is the relationship between distance matrix and constructed evolutionary tree. It
moves candidates which do not fit 3PR to delay bound pool in branch-and-bound
algorithm. After that, we can obtain the tighter bounding value quickly and uses it to
bound more candidates. In order to evaluate the performance of our proposed
algorithm, a random data set and a practical data set of HMDNA are used. The
experimental results show that PBBU with 3PR can find optimal solution for 36
species within a reasonable time on 16 PCs. Furthermore, the speed-up ratio shows
the performance of our algorithm is good in our PC cluster environment. Moreover,
the results also show that PBBU with 3PR can save about 25% in average of
computing time than PBBU without 3PR, and it assured the results are optimal with
the delay bound technique.

220 K.-M. Yu et al.

References

1. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein “Introduction to Algorithm,” MIT
Press, 1990.

2. W.H.E. Day “Computationally difficult parsimony problems in phylogenetic systematics,”
J. Theoretic Biol., 103, 1983, pp.429-438.

3. W.H.E. Day “Computational complexity of inferring phylogenies from dissimilarity
matrices,” Bulletin of Math. Biol., 49, 1987, pp.461-467.

4. W.H.E. Day, D.S. Johnson, and D. Sankoff “The computational complexity of inferring
rooted phylogenies by parsimony,” Math. Biosci., 81, 1986, pp.33-42.

5. C.T. Fan, “The evaluation model of evolutionary tree,” Master Thesis, Nationa Tsing Hua
University, 2000.

6. L.R. Foulds “Maximum savings in the Steiner problemin phylogeny,” J. Theoretic Biol.,
107, 1984, pp.471-474.

7. D. Gusfield “Algorithms on Strings, Trees, and Sequences, computer science and
computational biology,” Cambridge University Press, 1997.

8. M.D. Hendy and D. Penny “Branch and bound algorithms to determine minimal
evolutionary trees,” Math. Biol., 59, 1982, pp.277-290.

9. S. Kumer, K. Tamura, M. Nei “MEGA: Molecular Evolutionary Genetics Analysis
software for miceocomputers,” Comput. Appl. Biosci., 10, 1994, pp.189-191.

10. W.H. Li “Molecular Evolution,” Sinauer Associates, 1997.
11. R.D.M. Page “TreeView: An application to display phylogenetic trees on personal

computers,” Comput. Appl. Biosci., 12, 1996, pp.357-358.
12. L. Vigilant, M. Stoneking, H. Harpending, K. Hawkes and A.C. Wilson “African

Populations and the Evolution of Human Mitochondrial DNA,” Science, 253, 1991,
pp.1503-1507.

13. B.Y. Wu, K.M. Chao, and C.Y. Tang “Approximation and Exact Algorithms for
Constructing Minimum Ultrametric Trees from Distance Matrices,” J. Combinatorial
Optimization, 3, 1999, pp.199-211.

14. C.F. Yu and B.W Wah “Efficient Branch-and-Bound Algorithms on a Two-Level Memory
System,” IEEE Trans. Parallel and Distributed Systems, 14, 1988, pp.1342-1356.

Exploring Financial Applications on
Many-Core-on-a-Chip Architecture: A First

Experiment

Weirong Zhu1, Parimala Thulasiraman2,�,
Ruppa K. Thulasiram2, and Guang R. Gao1

1 Department of Electrical and Computer Engineering, University of Delaware,
Newark, DE, USA

2 Department of Computer Science, University of Manitoba Winnipeg,
MB, Canada

{thulasir, tulsi}@cs.umanitoba.ca,
{weirong, ggao}@weirong@capsl.udel.edu

Abstract. Computational requirements for solving models of financial
derivatives, for example, the option pricing problems, are huge and de-
mand efficient algorithms and high performance computing capabilities.
This demand has been rekindled by the recent developments in the mo-
bile technology making wireless trading a possibility. In this paper, we
focus on the development of a Monte-Carlo algorithm on a modern multi-
core chip architecture, Cyclops-64 (C64) under development at IBM as
the experimental platform for our study in pricing options. The timing
results on C64 show that various sets of simulations could be done in
a real-time fashion while yielding high performance/price improvement
over traditional microprocessors for finance applications.

1 Introduction

Research in financial derivatives is one of the important areas of computational
finance. Finance models used for evaluation and forecasting purposes to help
the investor with the selection process typically lead to large dynamic, nonlinear
problems that have to be solved in a short time span to beat the competitors
in the market place. The computational requirements for solving such financial
models are huge and demand efficient algorithms and high performance comput-
ing capabilities [1].

In our study, we focus on development of a Monte-Carlo algorithm with
historic volatility and GARCH (Generalized Auto Regression Conditional Het-
eroskedasticity) fitted volatility to price options accurately on Cyclops 64 (C64),
a modern many-core-on-a-chip architecture. The purpose is to facilitate pricing
of options in a real time fashion. Moreover, our earlier studies using Monte-Carlo
technique for the option pricing problem on distributed architectures yielded re-
sults [2,3] that are not amenable for real-time implementation, an important
requirement for current day trading scenario.
� Corresponding author.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 221–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 W. Zhu et al.

This is a first and preliminary study in option pricing on a many-core-on-a-
chip architecture. This study opens up many more studies and has many impli-
cations: (i) this could be a fore-runner for futuristic embedded architectures such
as mobile devices where the current chip technology could be replaced by a CMP
(Chip Multi Processor); (ii) wireless trading is becoming a reality in the recent
past [4,5,6] and the current work could become a fore-runner for real-time wire-
less trading; (iii) experience from the current study encourages us to look into
other computing techniques popularly used in finance, for example, binomial lat-
tice and finite-differencing technique for implementation on many-core-on-a-chip
architecture to enable real time trading.

1.1 Background and Related Work in Option Pricing

A Call Option [7] is a contract that gives the right to its holder (i.e. buyer)
without creating an obligation, to buy a pre-specified underlying asset at a pre-
determined price (strike price). Usually this right is created for a specific time
period (maturity date), e.g. six months. A Put Option gives to its holder the
right to sell. If the option can be exercised only at its expiration/maturity date
(i.e. the underlying asset can be sold only at the end of the life of the option),
the option is referred to as an European style Call/Put Option (or European
Call/Put). If it can be exercised on any date before its maturity, then the option
is referred to as an American style Call/Put Option (or American Call/Put).

Black and Scholes [8] proposed a model to price option, which has become
a classical and celebrated model for pricing options. This model is basically a
stochastic partial differential equation with option price as the unknown and
underlying asset price and the time being dependent variables together with
various parameters such as volatility of the asset price, expiration date, strike
price and interest rate. In the current study future asset prices are generated
with random number generated in the Monte-Carlo (MC) simulation and volatil-
ity is generated by two methods: historic volatility (based on the past changes
in the asset price) and GARCH fitted volatility. Clark [9] and Thulasiram et
al. [10] developed parallel algorithm for the binomial lattice approach [11] to
price options. Use of fast Fourier transform (FFT) technique for option pricing
was introduced by Carr and Madan [12]. Extending this model, Barua et al. [13]
have developed an efficient parallel algorithm to enable quicker and accurate
pricing of options by introducing data swapping technique in FFT. Mayo [14]
evaluated American options using the implicit finite-difference method giving a
fourth order accuracy in the log of the asset price and second order accuracy in
time. Thulasiram et al. [15] designed a second order L0 stable algorithm for the
pricing problem which achieves the same error bound as that of the traditional
Crank-Nicholson scheme, while at the same time assures that the error will not
propagate. Srinivasan [16] used the quasi MC simulation technique for option
pricing while Rahmail et al. [2] used the traditional MC simulation to study the
effect of incorrect volatility for underlying assets on option pricing errors.

MC simulation is a forward-based procedure. Option pricing via MC can be
divided into three basic steps: (1) simulate the stochastic process underlying

Exploring Financial Applications on Many-Core-on-a-Chip Architecture 223

stock returns, where each realization is a sample path; (2) evaluate the value of
the option in a backward manner in order to find the early exercise point and
obtain a sample point estimate; and, (3) average over multiple sample estimates
to form an interval estimate that includes some measure of precision (e.g., stan-
dard error). Obviously, the existence of the precision measure is an advantage of
MC over other numerical methods.

In this study, we explore the possibility of expediting the MC simulation using
a many-core-on-a-chip architecture in the hope that future hand-held devices will
be embedded with CMP architectures and hence achieving parallelism on such
devices.

2 Cyclops-64 Architecture

The Cyclops64 (C64), based on a cellular architecture, is a Many Core System
on Chip (SoC) petaflops supercomputer (see Figure 1) project under develop-
ment at IBM T.J. Watson Laboratory. C64 system consists of 13,824 C64 chip,
connected by a 3D mesh network. The C64 chip architecture (Figure 2) consists
of 160 hardware thread units, half as many floating point units, same amount
embedded SRAM memory banks, an interface to off-chip DDR SDRAM memory,
and bidirectional inter-chip connection ports on a single silicon chip. Each of the
80 processors have two thread units, a floating point unit, and two SRAM mem-
ory banks of approximately 32KB each. Five processors share a 32KB instruction
cache. Instead of data cache, a portion of each thread unit’s corresponding on-
chip SRAM bank is configured as the scratchpad memory (SP). Therefore, a
thread unit can achieve fast access to its own SP, i.e., one cycle for a store,
and two cycles for a load. The remaining sections of all on-chip SRAM banks
together form the global memory that is uniformly addressable from all thread
units. The C64 also employs the Network-on-Chip (NoC) concept, all on-chip

11.52TFlops
Rack

I−CacheProcessor

Chip

80Gflops

1Gflops
Processor

Intra−chip Network

144GB

1GB DRAM

Disk

C64

Other Devices

Chip

1GB DRAM
80Gflops
Board

4.7MB SRAM

C64 System: 1.1Pflops/13.8TB

60KB SRAM

1 x 3

12 x 8

FP

Unit
Thread

Thread
Unit SRAM

SRAM

MidPlane
3.84TFlops / 48GB

3 x 83 x 8

Fig. 1. Cyclops 64 Supercomputer

224 W. Zhu et al.

e
th

e
r
n
e
t

G
ig

a
b
it

3
D

−
m

e
s
h

Chip

A
−

s
w

it
c
h

Processor

Node

SP

GM

TU TU

O
ff
−

c
h
ip

FP

GM

HD

GM

M
e
m

o
r
y

SPSP SP

O
ff
−

c
h
ip

SPSP

TU

M
e
m

o
r
y

TUTU

FP

M
e
m

o
r
y

TU

O
ff
−

c
h
ip

FP

ATA

FP

TU

M
e
m

o
r
y

O
ff
−

c
h
ip

GM GM

SP

GM

TU

GM

SP

GM

Crossbar Network

Fig. 2. Cyclops 64 Node

resources are connected to a 96 ports on-chip crossbar network, which provides
a 4GB/s bandwidth per port per direction, 384 GB/s per direction in total. This
huge bandwidth sustains all the intra-chip traffic communication.

3 Experimental Results

3.1 Monte Carlo Experiment Design

In the Black-Scholes option pricing model volatility is not observable. In the ex-
periments we consider the following: (a) use of historical volatility of continuously
compounded stock returns; (b) use of GARCH-fitted volatility of continuously
compounded returns.

During the experiments we generated stock price series under the assumption
that prices follow a random walk with drift. We generated increments using the
normal probability distribution function. In various stages of the experiment
volatility of increments was: (i) Constant; (ii) Decreasing; (iii) Increasing; (iv)
Stochastic; (v) Decreasing and stochastic; and, (vi) Increasing and stochastic.

Using the generated volatilities σt and a pseudo-random number generator, we
generate stock price series that follow the geometric Brownian motion process:

lnSt = γ + δlnSt−1 + νt (1)

where γ is the drift in the stock price, σ is the variance rate (volatility) of the
stock price, In equation 1 we have γ > 0 to make sure that prices do not fall
below zero and that the increment is normally distributed:

νt ≈ N(0, σ2
t) (2)

We assumed the continuously compounded interest rate of 5% and the flat and
deterministic yield curve, as it is assumed in the Black-Scholes model. Expiration

Exploring Financial Applications on Many-Core-on-a-Chip Architecture 225

date was set at 3 months from the starting point (time t), and strike price was
varyied from 5 to 105 with the step size of 20. The starting prices P0 in all
cases were $5.00. Using these parameters, we calculated call prices for the non-
dividend paying stocks for each point in time t using all inputs as known. The
formula used in calculations is the classical option pricing formula (see [7]). Next,
we calculated option prices with all the same inputs but measured volatility.

In the first run of the experiment we estimated conditional volatilities and
used them in the option pricing formula. In the second run of the experiment we
estimated historical and GARCH-fitted volatilities of continuously compounded
stock returns [17]. After calculating option prices (CTRUE) using known data and
option prices using observable and measured data (CMEASURED), we calculated
the option pricing error E in the following way:

E = CMEASURED − CTRUE (3)

This would give us a dollar estimate of the error in case of using an improper
measure of volatility in the Black-Scholes option pricing formula.

The experimental results on C64 have both the pricing and performance re-
sults. We describe our experimental design for the current study to compute the
option values under two volatility criteria and the errors resulting from their use
for computing the option values. On a AMD-K7-II processor, with 6 possible
exercise prices, 6 patterns of volatility, and 1000 data points, one run of the
experiment using the E-Views statistical package for only 20 iterations took 4
hours and 45 minutes.

Figure 3 depicts one of the many sets of pricing errors that results from the
experimental study. This graph shows, which of the data generating processes
creates larger errors when we use GARCH-fitted volatility of continuously com-
pounded returns. The x-axis in all these figures corresponds to the strike prices
ranging from $5 -$105 and the y-axis corresponds to the option pricing errors:
-0.004 to 0.003 in fig 3 (a); -0.05 to 0.03 in fig 3 (b); -0.06 to 0.01 in fig 3 (c); -0.04
to 0.04 in fig 3 (d); -20.0 to 140.0 in fig 3 (e); -0.20 to 0.06 in fig 3 (f).

Figure 3 (a) corresponds to constant volatility, Figure 3 (b) corresponds to
decreasing volatility, Figure 3 (c) corresponds to increasing volatility, Figure 3
(d) corresponds to stochastic volatility, Figure 3 (e) corresponds to decreasing
and stochastic volatility, Figure 3 (f) corresponds to increasing and stochastic
volatility. The six legends below each of these figures identify the prices starting
from $5 to $105 in steps of $20 for respective figures.

During the experiments the drift component of the stock price is $0.006t,
where t stands for the number of days. Therefore, we are able to plot call pric-
ing error against various exercise prices and unconditional expectations of stock
prices (E[St] = 0.006 ∗ t). In this part of the experiment, GARCH model is
estimated for the sample size k with the mean equation that regresses contin-
uously compounded returns on a constant. We generate fitted volatility and
record the last value hk. This is our input into the Black-Scholes formula for
calculating the measured call price, CMEASURED

k . Next, we add one more data
point to the stock price series, estimate the GARCH model for the sample of

226 W. Zhu et al.

Fig. 3. Option pricing errors for stock prices generated using various patterns of volatil-
ity, average across series. GARCH-fitted volatility estimates based on continuously
compounded returns are used to generate option prices.

k + 1 observations, and use hk+1 to calculate CMEASURED
k+1 . Using this process,

we generate the time series of measured call prices CMEASURED
t .

As we can infer from Figure 3, in some cases (for example, cases b and e) option
pricing errors grow with higher sample size. This can be attributed to the non-
stationarity of option prices: as sample size increases, sample volatility of data
approaches infinity. Therefore, we get upward-biased estimates for the volatility
of stock prices. The comparative statistics of Black-Scholes model show that call
price increases when stock price volatility increases. Therefore, upward-biased
estimates of stock prices result in upward-biased estimates of option prices. This
situation could result in a false belief that there exists a Put-Call-Parity arbitrage
strategy based on erroneously calculated call prices. In case of constant and
stochastic volatility of prices (Fig. 3 (a and d)) the situation is not as clear.
Option pricing errors seem to be fluctuating around zero on the average.

In the following subsection, we demonstrate the performance results of running
the simulation on the C64 architecture.

3.2 Monte Carlo Simulation on C64

The performance of the Monte Carlo algorithm on C64 is compared to differ-
ent representative off-the-shelf processors: AMD Opteron 250, Intel Centrino,

Exploring Financial Applications on Many-Core-on-a-Chip Architecture 227

and Intel Pentium 4. The basic configurations of those processors are shown
in Table 1. The computation conducted on C64 is simulated with the FAST
simulator [18], which is a functionally accurate simulation tool set for the C64
cellular architecture. The parameter setting for 4 different simulations is shown
in Table 2.

Table 1. Processor Configurations

Processor Clock Cache off-chip Compiler
Rate Memory

Cyclops-64 500MHz No data cache 1GB DRAM gcc-3.2.3
Thread Unit 5MB on-chip for C64

SRAM memory
AMD Opteron 2.4GHz 1MB L2 cache 3GB gcc-3.2.3

for x86 64
Intel Centrino 1.86GHz 2MB L2 cache 512MB gcc-3.3.6
Intel Pentium4 3.2GHz 512KB L2 cache 1GB gcc-3.4.3

Table 2. Parameters for Monte Carlo Simulation

Parameter begprice step variety ARSIZE

sim-1 5 20 6 1000
sim-2 5 40 8 1000
sim-3 5 40 8 2000
sim-4 5 100 10 5000

For C64, a portion of each SRAM bank can be configured as the scratchpad
memory (16KB, in this case), which guarantees fast and predictable access la-
tency for the corresponding owner thread unit. For the Monte Carlo simulation,
we carefully design the code, such that the intermediate results of the computa-
tion can completely fit into a thread unit’s scratchpad memory. Only the latest
ith simulation results were stored on-chip for the next (i+1)th simulation. The
previous 1, , i− 1 results were stored off-chip.

We performed on average ten runs on each of the machine and obtained the
execution times as shown in Figure 4 for the simulation parameters chosen in
Table 2, where begprice is the beginning price of the simulation, step is the step
size on price, variety is the number of volatility patterns, and ARSIZE is the
number of data points in each simulation.

In the Monte Carlo simulation all the thread units can work independently
during the simulation. Since all the intermediate data needed for a thread unit’s
computation can fit into its own scratchpad memory, there is no runtime compe-
tition and conflict for shared resources, such as global on-chip memory. Through
calculations for all four groups of simulations, for the Monte Carlo option pricing
simulation, we can conclude that 1 C64 node delivers the performance equiva-
lent to 18 Opteron 250 CPU, 32 Intel Centrino CPU, and 28 Intel P4 3.2GHz
CPU. The approximate price for a C64 node would be quite similar to machines
built with those CPUs compared. The speedup of the parallel version can in-
crease linearly with the number of threads used (this is also demonstrated with

228 W. Zhu et al.

C64 Thread Unit, 500MHz
AMD Opteron 250, 2.4GHz
Intel Centrino, 1.8GHz
Intel P4, 3.2GHz

 0.1

 1

 10

 100

 1,000

 10,000

sim−4sim−3sim−2sim−1

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

Fig. 4. Execution Time of Monte Carlo Simulation

the simulation). Therefore, the C64 delivers huge performance/price improve-
ment over traditional microprocessors for computational finance applications.
Moreover, for the Monte Carlo simulation, since all data fits into the scratch-
pad memory, all the computation is performed locally for each thread units and
the power on the very long wires going to and from the crossbar is saved. In
such a situation, the power consumption of a C64 node is lower than or close to
machine built with conventional microprocessor. Given a C64 node delivers tens
of times performance, the C64’s performance/power consumption ratio is much
higher compared to other microprocessors. Unlike a traditional microprocessor,
which dies if any parts on the chip is broken, the C64 chip can still be in working
condition, even if one or more thread units/memory banks fail.

4 Conclusions

The current work is a first attempt to study (option pricing using Monte-Carlo
simulation). We showed that the use of incorrect volatility of the asset prices in
the Black-Scholes model would result in moderate to large errors in option prices.
We conclude that 1 C64 node delivers the performance equivalent to 18 Opteron
250 CPU, 32 Intel Centrino CPU, and 28 Intel P4 3.2GHz CPU. This translates
to high performance/price and performance/power consumption improvement
over traditional microprocessors for computational finance applications.

Acknowledgement

Part of this work was conducted while the second and third authors were vis-
iting University of Delaware in Summer 2005. These authors acknowledge the
financial support from Natural Sciences and Engineering Research Council of
Canada and the University Research Grant Program of the University of Man-
itoba. The first and last authors would like to acknowledge the support from

Exploring Financial Applications on Many-Core-on-a-Chip Architecture 229

IBM, in particular, Monty Denneau, who is the architect of IBM Cyclops-64
architecture, ETI, the Department of Defense, the Department of Energy (DE-
FC02-01ER25503), the National Science Foundation (CNS-0509332), and other
government sponsors. We would also like to acknowledge other members of the
CAPSL group at University of Delaware, who provide a stimulus environment
for scientific discussions and collaborations, in particular Juan del Cuvillo, and
Ziang Hu.

References

1. E. J. Kontoghiorghes, A. Nagurnec, and Berc Rustem. Parallel Computing in
Economics, Finance and Decision-making. Parallel Computing, 26:207–509, 2000.

2. Sergiy Rahmayil, Ilona Shiller, and Ruppa K. Thulasiram. Different Estimators of
the Underlying Asset’s Volatility and Option Pricing Errors: Parallel Monte Carlo
Simulation. In Proc. Intl. Conf. on Computational Finance and its Applications,
pages 121–131, Bologna, Italy, April 2004.

3. Gong Chen, Ruppa K. Thulasiram, and Parimala Thulasiraman. Distributed Adap-
tive Quasi-Monte Carlo Algorithm for Option Pricing on HNOWs Using mpC. In
Proc. 9th Annual Simulation Sympoisum, pages 90–97, Huntsville, AL, April 2006.

4. Kiran Kola. WAMAN:Web-mining-Assisted Mobile-computing-enAbled on-line op-
tioN pricing- a software architecture towards autonomic computing. Master’s the-
sis, Department of Computer Science, The University of Manitoba, Winnipeg, MB,
Canada, May 2006.

5. H. Kargupta, B. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar. Mobimine:
Monitoring the stock market from a pda. SIGKDD EXplorer, 3:37–46, 2002.

6. U. Varshney and R.J. Vetter. Mobile commerce:framework, applications and net-
working support. MONET, 7:3–4, 2002.

7. John C. Hull. Options, Futures and Other Derivatives. Prentice Hall, Upper Saddle
River, NJ, 5 edition, 2002.

8. F. Black and M. Scholes. The pricing of options and corporate liabilities. J.Political
Economy, 81:637–654, January 1973.

9. Iain J. Clark. Option Pricing Algorithms for the Cray T3D Supercomputer. Pro-
ceedings of the first National Conference on Computational and Quantitative Fi-
nance, September 1998.

10. R. K. Thulasiram, L. Litov, H. Nojumi, C. T. Downing, and G. R. Gao. Multi-
threaded Algorithms for Pricing a Class of Complex Options. In Proc. Intl. Parallel
and Distributed Processing Symp. (IPDPS01), San Francisco, CA, April 2001.

11. J.C. Cox, S.A. Ross, and M. Rubinstein. Option pricing: A simplified approach.
J. Financial Economics, 7:229–263, 1979.

12. Peter Carr and Dilip B. Madan. Option Valuation using the Fast Fourier Trans-
form. The Journal of Computational Finance, 2(4):61–73, 1999.

13. Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman. High Perfor-
mance Computing for a Financial Application using Fast Fourier Transform. In
LNCS Vol. 3648, Proc. European Parallel Computing Conference (EuroPar05),
pages 1246–1253, Lisbon, Portugal, aug-sep 2005.

14. A. Mayo. Fourth Order Accurate Implicit Finite Difference Method for Evaluating
American Options. In Proc. Intl. Conf. on Computational Finance 2000, London,
England, June 2000.

230 W. Zhu et al.

15. Ruppa K. Thulasiram, Chen Zhen, Amit Chhabra, Parimala Thulasiraman, and
Abba Gumel. A second order l0 stable algorithm for evaluating european options.
Intl. Journal of High Performance Computing and Networking (in press), 2006.

16. Ashok Srinivasan. Parallel an Distributed Computing Issues in Pricing Financial
Derivatives through Quasi Monte Carlo. In Proc. Intl. Parallel and Distributed
Processing Symp. (IPDPS02), Fort Lauderdale, FL, April 2002.

17. M. Chesney and L. Scott. Pricing European Currency Options: A Comparision of
the Modified Black-Scholes and a Random Variance Model. Journal of Financial
and Quantitative Analysis, 24:267–284, 1989.

18. Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. FAST: A functionally
accurate simulation toolset for the Cyclops64 cellular architecture. In Workshop on
Modeling, Benchmarking, and Simulation (MoBS2005), Madison, WI, June 2005.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 231 – 240, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Distributed Simulation-Based Computational
Intelligence Algorithm for Nanoscale Semiconductor

Device Inverse Problem

Yiming Li and Cheng-Kai Chen

Department of Communication Engineering, National Chiao Tung University,
1001 Ta-Hsueh Road, Hsinchu 300, Taiwan

ymli@faculty.nctu.edu.tw

Abstract. In this paper, a distributed simulation-based computational intelli-
gence algorithm for inverse problem of nanoscale semiconductor device is pre-
sented. This approach features a simulation-based optimization strategy, and
mainly integrates the semiconductor process simulation, semiconductor device
simulation, evolutionary strategy, and empirical knowledge on a distributed
computing environment. For a set of given target current-voltage (I-V) curves
of metal-oxide-semiconductor field effect transistors (MOSFETs) devices, the
developed prototype executes evolutionary tasks to solve an inverse doping pro-
file problem, and therefore optimize fabrication recipes. In the evolutionary
loop, the established management server allocates the jobs of process simula-
tion and device simulation on a PC-based Linux cluster with message passing
interface (MPI) libraries. Good benchmark results including the speed-up, the
load balancing, and the parallel efficiency are presented. Computed results,
compared with the realistic measured data of 65 nm n-type MOSFET, show the
accuracy and robustness of the method.

1 Introduction

Technology computer-aided design (TCAD) in semiconductor industry nowadays is
continuously playing a central role in metal-oxide-semiconductor field effect transis-
tors (MOSFETs) device fabrication [1-6]. For a set of given current-voltage (I-V)
curves of MOSFETs, inversely searching out an optimal fabrication configuration
forms an engineering’s inverse problem [7-9]. Conventional try-and-error procedure
has been used to seeking acceptable fabrication recipe. Unfortunately, such work has
significantly encountered serious challenges, and simultaneously complicates the
development of next generation technology due to evident variations of electrical
characteristics in modern 65 nm MOSFETs [10-12], for example. Any computation-
ally efficient approach is therefore required and also benefits sub-65 nm MOSFET’s
era. A simulation-based evolutionary TCAD methodology provides an alternative to
new technology development. It is known that time cost of computation of the process
simulation and device simulation dominates the efficiency of the simulation-based
computational intelligence method. This approach may work in real world applica-
tions once distributed computing techniques [13-22] could be properly incorporated.

In this work, a distributed implementation of the simulation-based computational in-
telligence technique [8] is presented for solving the semiconductor inverse problem on a

232 Y. Li and C.-K. Chen

PC-base Linux cluster. This approach successfully integrates a two-dimensional (2D)
process simulation, device simulation, computational intelligence algorithm [13, 23-24],
and empirical knowledge on our own cluster with message passing interface (MPI) li-
braries. According to achieved and accumulated experience from semiconductor foundry,
different empirical knowledge is implemented in the developed prototype. It plays a good
starting point in the loop of evolutionary processes. Fabrication steps are analyzed in the
stage of semiconductor process simulation. To simulate the device characteristics of 65
nm MOSFETs and beyond, quantum mechanical effects are taken into consideration to
accurately describe device’s transport phenomenon. A set of 2D density-gradient-drift-
diffusion equations [1-2] is numerically solved with an adaptive computing technique [1-
6]. A hybrid genetic algorithm, combining genetic algorithm with numerical optimization
method [23-24], is advanced in the simulation-based computational intelligence ap-
proach. The prototype of the simulation-based computational intelligence algorithm is
implemented in our PC-based Linux cluster, which is functioned with 16 CPUs. Based
upon a management server of the distributed system, all jobs of the process and device
simulations are gathered in a queue. The server is then dynamically allocated the jobs to
each CPU of the cluster. For a set of specified target of I-V curves as well as electrical
characteristics, the prototype will perform process and device simulations and search out
several suitable process recipes, such as doping profiles. The stopping criterion is subject
to a given error tolerance between the simulation and the specification of designed target.

Compared with realistic experimental data and process recipe, the achieved results
confirm the capability of the implemented prototype for a 65 nm n-type MOSFET (N-
MOSFET) on the PC-based cluster. The accuracy and computational performance in
terms of difference benchmarks are obtained. Distributed realization of the simulation-
based computational intelligence algorithm not only is of great worth in advanced TCAD
development but also provides a novel way to diagnosis of device characteristics in sub-
65 nm MOSFETs era. This paper is organized as follows. In Sec. 2, we state the method-
ology. In Sec. 3, results and discussion are presented. Finally, we draw conclusions.

2 The Evolutionary Technique and Distributed Implementation

The developed distributed simulation-based computational intelligence algorithm
includes 2D simulations of process and device, computational intelligence algorithm,
and empirical knowledge of fabrication technology. Architecture of the proposed
system is shown in Fig. 1. We utilize the distributed computation technique on the
hybrid evolutionary system and external simulators. The distributed system manage-
ment bridges the PC clusters and the simulation-based evolutionary system together.
It allocates the computing resources while the evolutionary system perform optimiza-
tion task. The simulation of process and device, shown in Algorithm 1, performs
simulation of several important fabrication processes to obtain the device geometry of
MOSFET and the corresponding doping profile. The output of the process simulation
is then used in the device simulation to examine device characteristics. Both the target
and simulated I-V curves are the input of the optimization kernel. After evolutionary
process, a set of newest updated parameters is proposed and suggested for the next
simulation of process and device. This work features the computational intelligence
approach in the inverse problem of the doping profile. The developed evolutionary
prototype, shown in Algorithm 1, is mainly relying on a hybrid genetic algorithm.

 A Distributed Simulation-Based Computational Intelligence Algorithm 233

This evolutionary technique works together with several practically empirical rules
that are necessary for pre-process of optimization, and significantly play good initial-
starting (and re-starting) points for all evolutionary steps. In this investigation, only
the hybrid genetic algorithm among evolutionary algorithms is enabled due to a mod-
erate number (about 30 parameters) of parameters to be optimized.

Fig. 1. A system diagram for the proposed system

Algorithm 1. A procedure of the proposed optimization system to solve the semiconductor
device inverse problem

While optimal recipe is not found
 Use current recipe to simulate I-V curves:
 Perform process simulation
 Obtain doping profile
 Perform device simulation
 Obtain simulated I-V curves
 Evaluate error (target and simulated I-V curves)
 Generate new recipe with empirical knowledge

Algorithm 2. A procedure of the inverse modeling problem

Initialize GA environment
Generate initial process recipes
While device electrical characteristic is not converged
 Invoke process simulator to obtain doping profile
 While I-V curves are not converged
 Invoke device simulator
 Retrieve I-V characteristic from device simulator
 Evaluate result (I-V curves and device electrical
characteristics)
 End while
End while

As shown in Algorithm 2, with a set of selected process recipes and device model
parameters, the external numerical programs are called to perform simulations of
process and device to retrieve the newest I-V curves and device characteristics. To-
gether with the specified target of I-V curves, the results are used in the calculation of

234 Y. Li and C.-K. Chen

the newest fitness score, and then the newest parameters are suggested for next simu-
lation and optimization. The fitness score is used to evaluate how well the solution
being tested that fits the desired outcome. Given by Eq. (1), the drain current (ID)

means the simulated data and the
target
DI is the specified target to be achieved. We

distributed the external simulation programs, which are the dominant parts of the CPU
time. In the procedure of the hybrid genetic algorithm, we only need to pass the
genes, which represent different sets of parameters to the management server, then
wait for the new fitness that returned from the PC cluster. The procedure of the distri-
bution method implemented in this work is shown in Algorithm 3.

2
target

target

)
)log(

)log()log(
(fitness

D

DD

I

II −≡
.

(1)

Algorithm 3. A working flow of the distribution which implemented in this work

While evolutionary system requires evaluation
 Acquire PC-Cluster manager to allocate resource
 For each assigned PC-Cluster’s CPU
 Calls external simulator for simulation
 Return results to PC-Cluster manager
 End for
 PC-Cluster manager returns results to evolutionary
system
End while

The physical-based empirical knowledge directly indicates the relationship of the
parameters and the tendency of device characteristics. During optimization processes,
once a larger error occurring in certain region of the I-V curves is observed, empirical
rules will be employed to destroy the evolution, which may result in different muta-
tion and is useful in the iteration loop of simulation and optimization. We adopt the
relationship of the target of the I-V curves to be optimized and several most con-
cerned physical quantities. For different regions of the I-V curves, we can firstly tune
the corresponding process or device parameters by following the empirically built-in
rules in our evolutionary prototype. The corresponding pseudo code of several con-
sidered empirical knowledge of fabrication technology is shown in Algorithm 4.

Algorithm 4. A procedure of the considered experimental engineering knowledge

Empirical Knowledge for MOSFET IV-Optimization
 For each I-V point PT in I-V curves
 {
 If(PT.voltage < 0.0)
 PT in Band-to-band tunneling model region
 Else if(PT.voltage >= 0.0 && PT.voltage < 0.6)
 PT in VT.Implementation region
 Else if(PT.voltage >= 0.6 && PT.voltage < 0.8)
 PT in Saturation region
 Else
 PT in Mobility model region
 }

 A Distributed Simulation-Based Computational Intelligence Algorithm 235

Number of Generations

0 100 200 300 400

F
itn

es
s

sc
or

e

0.5

0.6

0.7

0.8

0.9

1.0

Mutation rate = 0.1
Mutation rate = 0.3
Mutation rate = 0.5

Number of Generations

0 100 200 300 400 500 600

F
itn

es
s

sc
or

e

0.4

0.6

0.8

1.0

Process+Device
Process
Device

Fig. 2. (a) Performance comparisons among three different mutation rates, and (b) the perform-
ance comparisons among three different evolutionary strategies. There are totally 31 process
and device’s parameters to be optimized in the case of process and device simulations.

3 Results and Discussion

To inversely extract the doping profile of the designed 65 nm MOSFET for the given
target of the I-V data, the implemented evolutionary prototype is running on our PC-
based Linux cluster system with 16 CPUs. Figure 2a shows the comparison of the
three distinct GA configurations with different mutation rates for only device parame-
ters optimization. It is shown that the mutation rate = 0.3 has the best convergence
behavior. Under the same setting, the fitness score versus the number of evolutionary
generations is shown in Fig. 2b. It depicts the performance of the evolutionary tech-
nique with three different calibration strategies. If we partially optimize the process
parameters or the device parameters, the accuracy of extraction is limited. Results
suggest that it is necessary to extract process and device parameters simultaneously.
For the given target, if the inverse extraction considers only the parameters of device
modeling in the 2D device simulation, the fitness suggests that the proposed optimiza-
tion methodology seems to be invalid even for a long time evolution process. For the
simulation-based evolutionary technique with only the process-related parameters
(i.e., only the parameters of the doping profile), a better fitness score is expected.
However, the methodology with simultaneously considering the parameters of the
process and device physics impressively confirms its computational efficiency.

The extracted I-V curves for the explored 65 nm MOSFET are shown in Fig. 3.
The symbols are the desired target to be optimized, the solid lines are the final
achieved result, and the dashed lines are the original I-V characteristics corresponding
to the initial setting on the process and device simulations. We note that the target can
ideally be regarded as the realistic silicon data after fabrication and measurement. For
the 65 nm MOSFET, the optimized doping profiles are shown in Fig. 4. The deriva-
tion of the ratio of the on- and off-state currents consists of several mechanisms, such
as the level of the off-state current significantly affected by the implantations of the
threshold voltage, the lightly doped drain (LDD), and source/drain. The on-state cur-
rent is directly proportional to the adjustment of device’s mobility model, and the
implantations of the threshold voltage and LDD. Table 1 shows the partial list of
process parameters to be extracted with their numeric ranges for the explored 65nm
N-MOSFETs and the extracted results.

236 Y. Li and C.-K. Chen

Gate Voltage (V)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

D
ra

in
 C

ur
re

nt
 (

A
)

1e-14

1e-13

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

NMOS Targets
NMOS Optimized Simulation
NMOS Initial Simulation

Fig. 3. The achieved accuracy of the extracted I-V curves for the 65 nm N-type MOSFET. The
device is with the gate length L = 65 nm and device width W = 1 μm. Results are simultane-
ously obtained with considering device and process configurations. Symbols are measured data
and lines are eventually optimized result.

Channel direction from source to drain (m)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

D
op

in
g

C
on

ce
nt

ra
tio

n
(c

m
-3

)

-5.0e+18
0.0
5.0e+18
1.0e+19
1.5e+19
2.0e+19
2.5e+19
3.0e+19
3.5e+19

Initial doping profile

Optimized
doping profile

Depth into substrate (m)

0.00 0.05 0.10 0.15 0.20

D
op

in
g

C
on

ce
nt

ra
tio

n
(c

m
-3

)

-1e+19

-8e+18

-6e+18

-4e+18

-2e+18

0

2e+18
Initial doping profile

Optimized doping profile

Fig. 4. (a) A plot of the extracted doping profile of the 65 nm N-MOSFET. The result is corre-
sponding to the finally optimized I-V curves shown in Fig. 4. (b) Orange cutting-line (horizon-
tal direction) plots for the corresponding doping profiles from surface into substrate which
locates at the center of the device channel. (c) Pink cutting-line (perpendicular direction) plots
for the corresponding doping profiles from the source side to the drain side below the device
surface 50 nm.

Difference of the doping profile between the initial setting and final optimized re-
sults is shown in Fig. 4b. For the corresponding doping profiles, perpendicularly cut-
ting-line plots from surface into substrate which locates at the center of the device
channel are shown in Fig. 4b. A 30% difference is observed on the surface (i.e., the
position at 0 μm). The plot along the channel from the source side to the drain side
below the device surface 50 nm is shown in Fig. 4c. The difference is more than 50%
shown in the both sides of the device channel (i.e., near the source and drain sides,
respectively). Figure 5 is the achieved speed-up and efficiency for three different
optimization configurations, where the speed-up is the ratio of the execution time of
the simulation codes on a single processor to that on multiple processors. The effi-
ciency of the distributed system is defined as the speed-up divided by the number of
CPUs. It is found that the speed-up is about 13 for the simulation running on a

 A Distributed Simulation-Based Computational Intelligence Algorithm 237

Table 1. A partial list of process parameters to be extracted with their numeric ranges for the
explored 65nm N-MOSFETs

Process parameters Numeric range The calibrated results
for 65nm N-MOSFET

Well Imp. Energy 200 ~ 500 KeV 462
Well Imp. Dose 5e+12 ~ 5e+13 cm-2 2.6e+13
Well Imp. Tilt 0 ~ 45 (degree) 5

LDD Imp. Energy 10 ~ 50 KeV 30
LDD Imp. Dose 5e+12 ~ 5e+13 cm-2 3.7e+13
LDD Imp. Tilt 0 ~ 45 (degree) 30

LDD Imp. Rotation 0 ~ 360 (degree) 43
S/D Imp. Energy 10 ~ 80 KeV 17
S/D Imp. Dose 1e+13 ~ 1e+14 cm-2 2.1e+13
S/D Imp. Tilt 0 ~ 45 (degree) 2

Table 2. The achieved load balancing of the prototype running on the cluster with 16 CPUs
with respect to three different population (Pop) sizes

Time (min) Pop size

CPU 8 16 32

#1 250 492 1042

#2 259 501 1023

#3 234 511 982

#4 231 530 987

#5 229 481 1002

#6 245 521 1034

#7 225 481 1021

#8 254 485 1012

#9 -- 512 990

#10 -- 532 1015

#11 -- 498 986

#12 -- 492 989

#13 -- 487 996

#14 -- 490 1031

#15 -- 482 1027

#16 -- 521 981

%100
Max

MinMax ×− 13.12% 9.2% 5.8%

238 Y. Li and C.-K. Chen

16-CPUs PC-based cluster system, and the efficiency is maintained at about 80%.
Due to properties of distributed genetic algorithm without data exchanging, the pre-
sented work achieved to high performance. Preliminary results, shown in Table 2, are
the achieved load balancing of the established system. The distributed management
server properly maintains the load of each CPU in the cluster. For three different
population sizes, the maximum difference of the calculation time ranges from 5.8% to
13.2% where the optimization configuration is extracting process and device parame-
ters simultaneously. Small population size troubles the distribution in the evolutionary
process and results in poor load balancing among CPUs. Increase of population sizes
improves the load balancing among CPUs.

Number of CPUs
3 6 9 12 15

S
pe

ed
-u

p

3

6

9

12

15 Device
Process
Device+Process

Number of CPUs

3 6 9 12 15

Ef
fic

ie
nc

y
(%

)

75

80

85

90

95

100

Device
Process
Device+Process

(a) (b)

Fig. 5. The achieved performance versus the number of CPUs for three different optimization
configurations, where (a) is the speed-up and (b) is the achieved efficiency

4 Conclusions

We have presented a distributed realization of the simulation-based computational
intelligence algorithm for semiconductor device inverse doping profile problem. The
prototype has successfully implemented on our PC-based cluster and tested on the 65
nm MOSFET devices. In the evolutionary processes, various process and device pa-
rameters have simultaneously been considered, and therefore the doping profiles of
the 65 nm MOSFETs were successfully extracted according to the desired target
which reflects realistic measured silicon data well. Performed on the PC-based Linux
cluster with MPI libraries, preliminary performance of the distribution with dynamic
job allocating has been achieved in terms of the speed-up and the efficiency. We are
currently extending this approach to explore the inverse doping profile problem with
minimization of the characteristic fluctuation for sub-65 nm MOSFET devices.

Acknowledgments

This work was supported in part by Taiwan National Science Council (NSC) under
Contract NSC-94-2215-E-009-084, Contract NSC-95-2221-E-009-336, and Contract
NSC-95-2752-E-009-003-PAE, by the MoE ATU Program, Taiwan, under a 2006 grant,
and by the Taiwan Semiconductor Manufacturing Company under a 2005-2007 grant.

 A Distributed Simulation-Based Computational Intelligence Algorithm 239

References

1. Li, Y., Chou, H.-M., Lee, J.-W.: Investigation of Electrical Characteristics on Surround-
ing-Gate and Omega-Shaped-Gate Nanowire FinFETs. IEEE Trans. Nanotech. 4 (2005)
510-516

2. Li, Y., Chou, H.-M.: A Comparative Study of Electrical Characteristic on Sub-10 nm Dou-
ble Gate MOSFETs. IEEE Trans. Nanotech. 4 (2005) 645-647

3. Li, Y. Yu, S.-M.: A Two-Dimensional Quantum Transport Simulation of Nanoscale Dou-
ble-Gate MOSFETs using Parallel Adaptive Technique. IEICE Trans. Inf. Syst. E87-D
(2004) 1751-1758

4. Li, Y.: A Parallel Monotone Iterative Method for the Numerical Solution of Multidimen-
sional Semiconductor Poisson Equation. Comput. Phys. Commun. 153 (2003) 359-372

5. Li, Y., Sze, S. M., Chao, T.-S.: A Practical Implementation of Parallel Dynamic Load Balanc-
ing for Adaptive Computing in VLSI Device Simulation. Eng. Comput. 18 (2002) 124-137

6. Li, Y., Liu, J.-L., Chao, T.-S., Sze, S. M.: A new parallel adaptive finite volume method
for the numerical simulation of semiconductor devices. Comput. Phys. Commun. 142
(2001) 285-289

7. Binder, T., Heitzinger, C., Selberherr, S.: A Study on Global and Local Optimization
Techniques for TCAD Analysis Tasks. IEEE Trans. CAD. 23 (2004) 814-822

8. Li, Y., Yu, S.-M., Chen, C.-K.: A Simulation-Based Evolutionary Technique for Inverse
Problems of Sub-65nm CMOS Devices. In: Kosina, H., Selberherr, S. (eds.): Book of Ab-
stracts of the 11th International Workshop on Computational Electronics. Technische Uni-
versit¨at Wien (TU Wien), Institute for Microelectronics, Vienna, Austria (2006) 69-70

9. Dupre, L., Slodicka, M.: Inverse problem for magnetic sensors based on a Preisach for-
malism. IEEE Trans. Mag. 40 (2004) 1120-1123

10. Li, Y., Yu, S.-M.: Comparison of Random Dopant-Induced Threshold Voltage Fluctua-
tions in Nanoscale Single-, Double-, and Surrounding-Gate Field Effect Transistors. Jpn.
J. Appl. Phys. 45 (2006) 6860-6865

11. Li, Y., Yu, S.-M.: Study of Threshold Voltage Fluctuations of Nanoscale Double Gate
Metal-Oxide-Semiconductor Field Effect Transistors Using Quantum Correction Simula-
tion. J. Comput. Elec. 5 (2006) 125-129

12. Li, Y., Chou, Y.-S.: A Novel Statistical Methodology for Sub-100 nm MOSFET Fabrica-
tion Optimization and Sensitivity Analysis. In Extended Abstract of the 2005 Int. Conf.
Solid State Devices and Materials (2005) 622-623

13. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic
Publishers, Boston (2000)

14. Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning. New
York: Addison-Wesley (1989)

15. Thierauf, G., Cai, J.: Parallel evolution strategy for solving structural optimization. Eng.
Struct. 19 (1997) 318-324

16. Schoneveld, A., de Ronde, J. F., Sloot, P. M. A.: Task Allocation by Parallel Evolutionary
Computing. J. Paral. Distribu. Comput. 47 (1997) 91-97

17. Migdalas, A., Toraldo, G., Kumar, V.: Nonlinear optimization and parallel computing.
Paral. Comput. 29 (2003) 375-391

18. Van Veldhuizen, D. A., Zydallis, J. B., Lamont, G. B.: Evolutionary computing and opti-
mization: Issues in parallelizing multiobjective evolutionary algorithms for real world ap-
plications. In: Proc. ACM Symp. Appl. Computing (2002) 595-602

240 Y. Li and C.-K. Chen

19. Nanda, P. K. Ghose, B., Swain, T. N.: Parallel genetic algorithm based unsupervised
scheme for extraction of power frequency signals in the steel industry. IEE Proc.: Vision,
Image and Signal Processing. 149 (2002) 204-210

20. Lee, C.-H., Parl, K.-H., Kim, J.-H.: Hybrid parallel, evolutionary algorithms for con-
strained optimization utilizing PC clustering. In: Proc. Congress on Evolutionary Compu-
tation. 2 (2001) 1436-1441

21. Cantú-Paz, E., Goldberg, D. E.: Efficient parallel genetic algorithms: theory and practice,
Comput. Meth. Appl. Mech. Eng. 186 (2000) 221-238

22. High, K.A., LaRoche, R. D.: Parallel nonlinear optimization techniques for chemical proc-
ess design problems. Comput. Chemical Eng. 19 (1995) 807-825

23. Li, Y., Cho, Y.-Y.: Intelligent BSIM4 Model Parameter Extraction for Sub-100 nm
MOSFET Era. Jpn. J. Appl. Phys. 43 (2004) 1717-1722

24. Li, Y.: A Hybrid Intelligent Computational Methodology for Semiconductor Device
Equivalent Circuit Model Parameter Extraction. In: Anile, A.M.; Alì, G.; Mascali, G.
(eds.): Scientific Computing in Electrical Engineering. Springer-Verlag, Berlin Heidelberg
New York (2006) 345-350

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 241 – 250, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Monitoring Distributed Systems for Safety Critical
Software: A Goal-Driven Approach and Prototype-Tool

Guido Pennella1, Christian Di Biagio1, Alessandro Colicchia, Gianfranco Pesce2,
and Giovanni Cantone3

1 MBDA-Italy SpA, Via Tiburtina, Roma, Italy
{guido.pennella, christian.di-biagio}@mbda.it

2 Centro di Calcolo e Documentazione, Università degli Studi di Roma “Tor Vergata”,
Via O. Raimondo, Roma, Italy
gpesce@ccd.uniroma2.it

3 Dip. di Informatica, Sistemi e Produzione, Università degli Studi di Roma “Tor Vergata”,
Via O. Raimondo, Roma, Italy
cantone@uniroma2.it

Abstract. The reference company for this paper – a multination organization,
Italian branch, which works in the domain of safety-critical systems - evaluated
the major tools that the market provides for testing safety-critical software, as not
sufficiently featured for her quality improvement goals. Once that we had trans-
formed those goals in detailed technical requirements, and evaluated that it was
possible to realize them conveniently in a tool, we passed to analyze, construct,
and eventually utilize in field the prototype “Software Test Framework”. This
tool allows non-intrusive parallel measurements on different hard-soft targets of
a distributed system running under one or more Unix standard OS. This paper
reports on the characteristics of Software Test Framework, its architecture, and
results from a case study. Based on comparison of results with previous tools,
we can say that Software Test Framework is leading to a new concept of tool for
the domain of safety critical software.

Keywords: Software engineering, Distributed and parallel systems, Hard Real-
time Systems, Performance-measurement Tools.

1 Introduction

The development of safety critical software in industrial settings is usually influenced
by user non-functional requirements that concern the load (e.g. the usage of the CPU
and Memory in a period) of any computing node in a certain scenario, which is speci-
fied not exceed a fixed level.

Before designing safety-critical or mission-critical real-time systems, a specifica-
tion of the required behaviour of the system should be produced and reviewed by
domain experts. As the implementation advances, eventually it completes, the system
is thoroughly tested to be confident that it behaves correctly. In fact, recently, the
concept of software verification and validation has been extended up to include qual-
ity assurance for new digitalized safety-critical systems (EPRI, 1994). The test of the
system’s temporal behaviours seems best done when using a monitor, i.e. a system

242 G. Pennella et al.

able to observe and analyze behaviours shown by another remote system (a.k.a.: the
“target”). Several authors (e.g. (Tsai, 1995) suggest that it is useful and practical using
monitors to analyze the behaviour of a real-time system. Such a monitor could be
used either as an “oracle” (Weyuker, 1982) – or reporting on system failures – as
detected by the same monitor performing in the role of supervisor (Simser, 1996) –
respectively. In safety-critical applications, the system should be monitored by an-
other safety system to ensure continued correct behavior. To achieve these goals,
observed behaviors must be quickly accepted or rejected; this task is quite difficult to
enact when complex real-time systems are involved, and the requested response time
is not the range of human capabilities. Additionally, software practitioners cannot
diagnose, troubleshoot, and resolve every component affecting a critical software
performance by using just manual methods.

The goals (Basili, 1994) of the present paper are concerned with: (i) Expressing
the reference company need of testing safety-critical software in terms of conven-
iently feasible features and capabilities for the purpose measuring system test per-
formances, by focusing on measurement of CPU and memory loads, performance
monitoring of distributed heterogeneous processes and their threads, intrusiveness,
and other key attributes, from the point of view of the reference organization practi-
tioners, in the context of critical software development; (ii) Developing a new soft-
ware tool that meet those needs. (ii) Characterizing that tool, comparing it with
other testing tools, accepting it by a case study, and eventually accrediting the tool
in field.

In the remaining of the present paper, Section 2 analyze lacks of ready-to-use soft-
ware available to market. Section 3 transforms the reference organization’s needs and
goals in required testing features. Section 4 presents the philosophy, architecture, and
functionalities of Software Test Framework (STFW), a new prototype tool, which is
based on those features. Section 5 shows results from a case study, which involved
the se of STFW. Section 6 briefly compares STFW with major professional tools that
the market provides. Section 7 presents some conclusions and points to future
research.

2 Monitoring Tools: Off the Shelf Software Analysis

All the major tools for monitoring hard real-time software seems to present substan-
tial limits with respect to the ideal technology of our reference company.

Overall, all those tools shows a main limit: no one of them provides a module
built right for acquiring and sending-out data. Of course, they carry out those activi-
ties, but in different, often broad, ways. Let T1, T2, and T3 denote three tools ana-
lyzed (it is not our role to advertise or counter-advertise tools; so we do not mention
tool’s names) as, in our best knowledge, the most known system-load monitoring
tools.

In particular T1 is not so much intrusive, and sensitive data are continually re-
freshed. However, they reside on the target, which is expected to be not in charge of

 Monitoring Distributed Systems for Safety Critical Software 243

providing utility functions. T2 accesses the target system through TCP/IP, where no
sensor is installed: because of the consequent usage of system calls, the tool is
strongly intrusive. T3 is non-intrusive, but the set of data it is able to acquire is very
limited.

As a conclusive remark, the real trouble with traded tools seems to be that they as-
sume the point of view of the “System Administrator”, so answering questions like:
“What is the behaviour of my system”. Vice versa, as already mentioned, what our
reference company needs is a “Software Engineer” view, so answering questions like:
“What is the problem”, “Where is the problem”, “How system’s machines interact
during a problem” “Who generated the problem”.

3 Testing Features

Based on the expected use cases and the resulting requirements, a list of testing fea-
tures (F) follow, which characterize a software test framework and is able to satisfy
the needs that our reference organization expressed. Each of the shown features is
augmented with the F’s: (i) function or capability, (ii) measurement model applied (in
round brackets), (iii) relative importance or weight, as expressed by the involved
stakeholders [in square brackets] (not yet valorized).

− Heterogeneous targets monitoring (N|(Y, # heterogeneous target types) [w1].
− Average CPU percentage used during data acquisition on a target system. CPU and

memory (see F3) occupancies are calculated under their maximum load, i.e. when
all possible data are required for acquisition, and the acquisition interval is the one
suggested by the tool producer, respectively (%) [w2].

− Memory occupancy on a target system (%) [w3].
− Persistent data repository and management (N|Y) [w4].
− Tailor the test system to suit special user needs or purposes (N|Y) [w5].
− Un-intrusiveness (Intrusiveness:: time for data acquisition in seconds) [w6].
− Distributed targets monitoring. TCP/IP over Ethernet (N|Y) [w7].
− Plug-in architecture (N|Y) [w8].
− System CPU (idle and used) percentage measurement (N|(Y,%)) [w9].
− System memory load (free and occupied) measurement (N|(Y, MB)) [w10].
− Process CPU (idle and used) percentage measurement (N|(Y, %)) [w11].
− Process memory load (free and occupied) measurement (N|(Y, MB)) [w12].
− Thread CPU (idle and used) percentage measurement (N|(Y, %)) [w13].
− Thread memory load (free and occupied) measurement (N|(Y, MB) [w14].
− Support multi platform for all the major operative systems (N | (Y, Checkbox for

Lynux, Solaris, AIX, Linx, POSIX etc., respectively)) [w15].
− Allow regression testing (N|Y) [w147]
− Utilize software sensors (N|Y) [w17].
− Cost ($) [w18].

244 G. Pennella et al.

Let us note that features above are intentionally not concerned with software fault
tolerance (Randell, 1975), which we decided not to taken in consideration in this first
iteration of our work.

4 Software Test Framework

Software Test Framework is a complex analysis tool that deals with capturing re-
source occupation data of all target machines composing the distributed system.

In order to introduce minimal perturbation in the target system, STFW is developed
for performing flexible non-intrusive as-accurate-as-possible measurements. These
results can be achieved by employing a distributed architecture, which works on differ-
ent computers in such way that only the measurements operations are performed on the
target system, leaving the most complex elaborations and activities, such as the graphi-
cal plot, to other computers.

4.1 Architecture

STFW is build-up by three macro-units:

1. Target: it resides on each target machine and is responsible of the execution
of the measurements and the optimization of the sensor. It is build-up by two
sub-units:

a. Test Manager (TM): its task is to opportunely tailor the Sensor
b. Sensor: its task is to acquire information.

2. Analysis System: it does not reside on a target computer but on a different
machine; it is responsible of the analysis, interpretation and visualization of
data sent by Sensor, both in real and in deferred time. It is build-up by three
sub-units:

a. Data Manager: it is responsible for the interpretation of informa-
tion sent by Sensor, and forward the Data Plotter

b. Data Plotter: is able to graphically plot data that Data manager
sends

c. GUI (Graphical User Interface): sends Test Manager the informa-
tion to acquire, as specified by the user

3. Repository: it historicizes test related data; it does not reside on a target
computer but on a different machine.

The most interesting features and capabilities of STFW are:

• STFW supports regression test
• STFW supports data repository
• STFW supports threads monitoring
• Sensor is a tailor-made software
• Sensor is not intrusive
• Sensor supports process multiple instances
• Acquisitions form different targets are synchronous in the same conversation.

 Monitoring Distributed Systems for Safety Critical Software 245

Fig. 1. ST-FW Architecture

4.2 Usage

STFW is very easy to use. In the first step, the user sets the IP addresses of the Target
and Repository sub-system, respectively. Now, the user is allowed to start the test.
After a small time (1 – 20 sec), in which the Test Manager (TM) recompiles Sensor to
acquire only the specified information (Sensor loads only the needed modules), data
plotting is started on the user screen and, in parallel, the repository is populated.

The user, during the first step, can load and lunch a historicized test: as result, the
user is allowed to compare two different test in the same plot, the one historicized, and
the other one in running. Moreover, once a test is finished, the user can choose graphi-
cal or numerical presentation of results; plots are presented for each acquisition time.

4.3 Regression Test

STFW provides EXnee, which is an integrated and enhanced version of Xnee. This is
a free software tool, which is able to record and playback all events used by the X
Server. So, each time a user moves the mouse or digits a button on the keyboard,
Xnee records these events and is then able to reproduce all those actions. In this way,
Xnee is able to replicate all the activity performed by the user in the same temporal
sequence.

After a session of events is recorded, an STFW user can reproduce that session
every time that s/he wants. For instance, let a user start the execution of, and then in-
teract with, a (critical) software application. Of course, if the user makes decision to
change that software, Xnee allows that user (and all the authorized colleagues) to start
replication of all those interactions. Once that such a replication has been started, Xnee
is able to proceed autonomously (the physical presence of user is no more requested)

246 G. Pennella et al.

by replicating the user-system interactions and identifying differences in behaviors, if
any, due to the injection of software changes since the last build (regression test).

4.4 Tailoring

In our best knowledge, the measuring tools available are “heavy” both for data-
producers and data-consumers. They admit the worst configuration only, so that they
acquire all possible data. Consequently, the installation of all their data-acquisition
modules is permanently requested. As a result, consumers receive data that they never
requested. As a further result, the intrusiveness is unnecessary high; in fact, it is pro-
portional to the amount of data acquired.

Instead, STFW is a framework, fully tailor-made: tailoring introduces improvements
both on the producer side (unnecessary modules are not loaded), and the consumer side
(only explicitly requested data is processed and represented to the consumer).

In particular, concerning the consumer side, STFW is configurable to the different
operational environments. In order to allow the (static) specialization of STFW to
the particular operational environment, some parameters are specified for the frame-
work (i.e. operating system, process monitoring, thread monitoring etc.); parameters
are easily handled, due the STFW modular structure.

With respect to other monitoring technology, two turning point makes STFW a
new concept tool:

Concerning the target machine, STFW reduces the occupancy of the system re-
sources in term of memory and CPU percentage occupied, because only user-required
data is acquired (no overload of the system resources), and memory allocation is
minimal (only the requested modules are loaded, which correspond to the requested
data).

Concerning the consumer side, this is allowed to choose a-priori the data to ac-
quire, so not having to discriminate a-posteriori among all the received information
for the interesting data.

4.5 Intrusiveness

Intrusiveness represents the OS load for a software application. It is complementary
to, and can be quantified in terms of, CPU percentage and amount of memory used by
the application software itself in situation of maximum performance.

STFW is able to guaranty CPU occupancy under 1%, while acquire data with a
minimal interval of 1 second. Measures can be even more accurate specifying the
only processes or threads to be monitored in order to introduce the lighter computa-
tion possible. Let us note that major tools suggest acquiring data on the target system
with sampling period not less than 3 or 10 seconds, respectively. Such a STFW
advantage derives from its tailoring features (see Section 3.4) and the system architec-
ture of the Target module.

In distributed systems also network as to be considered as a limited resource.
STFW communication protocol between sensor and GUI is implemented in
order to transmit the only information required choosing a flexible and dynamic

 Monitoring Distributed Systems for Safety Critical Software 247

payload format. This means that even if a target’s specific information is required in
the configuration phase(i.e a particular process name), only available data will be
transmitted.

4.6 Parallelism, Synchronization, and Heterogeneity

Based on the architecture of our tool (see above), STFW supports data acquisition in
parallel from different – in case, heterogeneous - targets.

This leads STFW to be the eligible tool to analyze machines in distributed compu-
tation scenarios even when heterogeneous SO are present. On a target machine, a test
is build-up by a configuration phase.

and a subsequent conversation phase for data acquisition. When all the Sensors
have been configured, they synchronize on the reception of a start message. Follow-
ing the reception of this message, all Sensors start to acquire their data and finally
sending those data to the consumer.

Let us note that, in order to compare consistent data, starting and completing syn-
chronously acquisitions from different targets is an essential requirement. Because
the end of a communication time-window is in the control of the consumer, it is
enough to start (multi-point to point) communications at the “same” time, as STFW
actually does (notice that latencies - as introduced both by the TCP/IP over Ethernet,
and the OS scheduler – are negligible in common test environments, compared to
sampling interval).

4.7 Data Repository

The whole information, as each Sensor acquires, is stored in a relational data base
(DB). In order to keep intrusiveness in control, the DB is installed on the computer
that hosts the Analysis System, or any other machine but different from the ones
where Sensors are installed.

Storing data in a repository is useful because it allows reusing previous test cases,
analyzing previous results, and comparing such previous results with those generated
by running test cases.

4.8 Process and Thread Monitoring

STFW is able to acquire information about processes and threads, as in the followings:

• PID: Process Identifier
• TID: Thread Identifier
• PPID: Parent PID
• S: Status; can be Ready, Running or Waiting
• MO: Memory occupancy; is the sum of the amount of memory allocated for

the stack, the executable file, and data.
• CPUO: CPU occupancy; is the percentage of CPU used.

TID does not apply to processes. In case of threads, MO evaluates the stack size (a
thread shares text and data with its parent process).

248 G. Pennella et al.

5 Case Study

Let us present results from a case study, where we compared in real-time the behav-
iors of two applications running on two Single Board Computer (SBC). Monitored
attributes were the system’s target CPU occupancy, and the full information associ-
ated to the execution of two processes, Ubench 2.0 and Sensor, respectively. The
Ubench’s job consists in computing senseless mathematical operations for 3 min-
utes, and then, in the successive 3 minutes, performing senseless memory allocation
and disallocations (Ubench, 2006). The job of Sensor consists in auto-monitoring
activities.

We conducted the case study in an industrial environment, built-up by three calcu-
lus nodes, as in the followings: (1) Thales – Vmpc6a Single Board Computer (SBC)
with Lynx OS, (2) Concurrent - Intel SBC with Linux Red Hat Enterprise, and (3) x86
PC with Windows XP. Those nodes are one to each other connected through an
Ethernet LAN.

Each SBC was arranged to performed in the role of target system, and had its own
Test Manager and Sensor installed. The Windows PC was arranged to perform in the
role of consumer, and hosted the graphical console. Following the start of the GUI,
we passed to configure the targets by entering “CPU”, “Ubench” and “Sensor” and
then pressing the OK button. When the Sensors were compiled, installed and ready to
send data, we pressed the START button and then two plotting windows appeared on
the PC screen, which showed the required information only. Figure 2 shows an in-
stance of process-monitoring windows in STFW.

6 Comparative Analysis

Table 1 shows the limits of commercial measuring tool above mentioned with respect
to STFW. Anyway, the reader should notice that STFW is just a prototype (but in its
second internal release).

Fig. 2. Process-monitoring windows in STFW

 Monitoring Distributed Systems for Safety Critical Software 249

Table 1. Characterization of T1, T2 and T3 monitoring tools (N 0|Y 1; Li Linux 2.6;
Ly LynxOS; S Solaris)

F m T1 T2 T3 STFW
F1 0..1 0 0 0 1
F2 % 3 60 3 1
F3 MB 1 0 0,5 <2
F4 0..1 0 0 0 1
F5 0..1 0 0 0 1
F6 (sec.) 3 10 1 1
F7 0..1 0 1 0 1
F8 0..1 0 0 0 1
F9 0..1 1 1 1 1
F10 0..1 1 1 1 1
F11 0..1 1 0 0 1
F12 0..1 1 0 0 1
F13 0..1 0 0 0 1
F14 0..1 0 0 0 1

F15
SO
list

Li, Ly,
S, AIX

Li S
Li, Ly,
S, AIX

F16 0..1 0 0 0 1
F17 0..1 0 0 0 1
Cost 0..1Y 0 $$$ 0 0

7 Conclusion and Future Work

We have presented the philosophy, architecture and features of a new tool, STFW, for
testing time-behavior of safety-critical systems, and briefly compared that tool with
major system performance measurement tools, as available from the market, in our
best knowledge. STFW resulted to be much more supportive than other tools for our
reference professional engineers. The most important features, which make STFW
really a competitive tool, are: (i) Tailor-made non-intrusive data sensing; (ii) Syn-
chronous conversations for acquiring state information from distributed targets; (iii)
Repository of test cases for reuse, and their results for comparative analysis; (iv)
Thread monitoring, (v) Ability to perform regression test.

Thanks to STFW, each product can be validate and verified in real-time by moni-
toring and comparing results from different tests, and reproducing complete scenarios
build-up by different machines. Next step will be to extend STFW to VxWorksTM
(VxWorks, 2006), the world wide known SO for real-time system, and the most util-
ized for the control of automata.

References

1. Basili, V. R., Caldiera, G., and Rombach, H. D., The Goal Question Metric Approach, En-
cyclopedia of Software Engineering, Wiley&Sons Inc., 1994.

2. EPRI, Handbook for verification and validation of digital systems, Vol.1: Summary, EPRI
TR103291, Vol.1, 1994.

250 G. Pennella et al.

3. IEEE, IEEE/EIA 12207.0-1996 Industry Implementation of International Standard
ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for Information Technology Software
Life Cycle Processes, in IEEE/EIA 12207.0-1996, 1998, pp. i-75.

4. Leveson. N. G., Software safety: Why, what, and how. Computing Surveys,18(2):125-163,
June 1986.

5. Isaksen U., Bowen J. P., and Nissanke N., System and Software Safety in Critical Systems,
December 1996.

6. Lilja D. J., Measuring Computer Performance, Ed. Cambridge University Press, 2000.
7. Randell B., System Structure for Software Fault Tolerance, IEEE Trans. on Software En-

gineering, vol. SE-1, no. 2, pp.220-232, 1975.
8. Simser D. and R.E. Seviora, Supervision of Real-Time Systems Using Optimistic Path

Prediction and Rollbacks, Procs. Int’l Symp. Software Reliability Eng. (ISSRE), pp. 340–
349, Oct. 1996.

9. Tsai J.J., Yang S.J., Monitoring and Debugging of Distributed Real-Time Systems, J.J.
Tsai and S.J. Yang, eds., IEEE CS Press, 1995.

10. Ubench 2.0™ , http://www.phystec.com/download/ubench.html (last access, March 2006).
11. Weyuker E.J., On Testing Non-Testable Programs, The Computer J., vol. 25, no. 4, pp.

465–470, 1982.
12. VxWorks http://www.windriver.com (last access, April 2006).

A Profiling Approach for the Management of
Writing in Irregular Applications

M.B. Ibáñez, F. Garćıa, and J. Carretero

Universidad Carlos III de Madrid,
Departamento de Informática, Av. Universidad 30,

28911 Leganés (Madrid), Spain

Abstract. Parallel file systems often work guided by APIs which provide
hints to access storage in a coordinated manner. Nevertheless, the current
APIs do not offer the expressiveness necessary to specify I/O operations
conveniently in irregular applications. We characterize the state of irregu-
lar applications that precedes the performance degradation of the parallel
file system and we propose a schedule based on profile information.

1 Introduction

Large-scale applications that manipulate huge datasets obtain poor I/O per-
formance on modern parallel machines. Although there are parallel computers
with theoretical peak performance greater that 1 Tflops/sec, real applications
running on high-performance computers achieve I/O bandwidths of at most a
few hundred MB/sec [9].

Parallel file systems such as PVFS [1], GPFS [4] provide a high-performance
I/O infrastructure to handle large I/O requests but they perform poorly when
deal with numerous small requests. Parallel file systems often work guided by
APIs such as MPI-IO [5] which provide hints to access storage in a coordinated
manner [10], [7], [3]. The hints are proved to be useful when there is some reg-
ularity on the data access pattern. Nevertheless, there is an important class of
parallel scientific applications that perform accesses to data through one or more
levels of indirections and change their data access patterns during execution. For
these irregular applications, the current APIs do not offer the expressiveness nec-
essary to specify I/O operations conveniently. Thus it is necessary to determine
the conditions under which current APIs are helpful, when to change the opti-
mization strategy to a new one able to coordinate I/O accesses more efficiently.

This paper deals with periodical checkpointing I/O of irregular and dynamic
applications. It focus on characterization of irregular data access patterns that
provokes unexpected behavior from GPFS. Finally, the paper shows the benefits
of rescheduling writings based on profile information.

The rest of the paper is organized as follows. In Section 2, we describe the
data consistency technique used by GPFS. Section 3 presents the relevant char-
acteristics of our benchmark. In Section 4 we present a characterization of data
patterns that degrades performance of parallel file systems, and we also show how
to predict an imminent performance degradation for write access times by iden-
tifying unsafe variations in the time that tasks spend writing data. In Section 5

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 251–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

252 M.B. Ibáñez, F. Garćıa, and J. Carretero

we present a user-programming solution based on independent and contiguous
requests using MPI-IO. Finally, Section 6 concludes the paper.

2 Synchronizing Parallel Data Accesses in GPFS

The IBM General Parallel File System (GPFS) is a scalable, high performance
file system, available on the RS/6000 SP parallel supercomputing and on Linux
clusters [4],[8]. The system is a client/server architecture. It consists of compute
nodes (I/O clients) that have equal access to a set of shared disks through a
switching fabric. The GPFS disk drives are attached only to the I/O servers.

GPFS provides coherent caching at the client, optimized prefetching tech-
niques, and guarantees recoverability from any single point of failure. GPFS
uses data-shipping to guarantee user data consistency in applications that do
not require POSIX semantics, a technique that is partitioned and centralized.
Data-shipping binds each GPFS file block to a unique I/O node which is re-
sponsible for all the accesses to this block. The blocks are distributed to the
I/O nodes in round-robin manner. GPFS forwards I/O operations to the node
responsible for a particular data block rather than migrate access permission to
the node trying to write the data.

3 Molecular Dynamics Benchmark

Our benchmark is based on a N-body problem known as molecular dynamics
(MD). MD simulations consider the interaction of particles within a defined vol-
ume. Each particle interacts with the others within a specified cutoff radius.
At each time step, it is necessary to compute forces and update positions and
velocities of all particles. In the integration of the motion equations, the bodies
can move independently, leaving one area of the space and entering to another
one. In order to adapt to these changes, the application recalculate periodically
which particles can interact with which. Because of the dynamic nature of the
problem, the access pattern used to compute forces, temperature, energy and
pressure of the system in MD application is irregular (see Figure 1). The indi-
rectly referenced loop bounds of the inner j loop vary across iterations of the
outer i loop.

The irregularity of the access pattern makes difficult and expensive to opti-
mimize parallel accesses to the file, the optimizations must be repeated when
the distribution of the molecules changes. Therefore, this kind of applications
represent a challenge to parallel file systems.

4 Experimental Results

Our experimental platform is a Linux cluster [2], installed at Universidad Poli-
técnica de Madrid’s CeSViMa center. The cluster consists of 180 nodes, -168 com-
pute nodes and 12 I/O nodes- interconnected through Myrinet and GigaEther-
net. Each node is a dual processor Power970 at 2.2 GHz, 4GB of RAM, and runs

A Profiling Approach for the Management of Writing 253

DO i = 1, nlocal
DO j = nnlist(i), nnlist(i + 1) − 1

G = G + function(x(nlist(j)))
END DO

END DO

Fig. 1. Irregular pattern of MD program

Linux with 2.6.5 kernel. We use MPI as communication library (MPICH-1.2.6-1
implementation) and the IBM GPFS file system to store the files. Our tests run
on one processor per compute node and use the Gigabit Ethernet network.

4.1 Reference Patterns

Our profiling approach is based on a set of measures taken over a system where
the tasks have similar amount of data distributed uniformly through the file,
and the tasks perform fine-grain writings.

The first experiment is aimed at evaluating the write performance of GPFS for
discontiguous access patterns. We collect time information varying the number
of tasks from 1 to 8 and the size of the file from 1 to 8 blocks (in our system, 1
block has 512KB). Each task writes an equal number of bytes scattered randomly
across the entire file. The tasks write the entire file without holes or overlap. The
test does not use MPI Datatypes to create a mapped view of the file, instead
each task calculates the offset at which to access the file.

The measurements shown in Figure 2 demonstrate how I/O time decreases
when the number of tasks is increased and the benefit of working with small files
and a great number of processors. Figure 3 shows the average difference between
the time spent by the tasks in each execution. From this figure we conclude
that the standard deviation of time values is smaller for larger data files. We
observed a range of values for files of 4MB from 0.0360 secs to 0.0381 secs, that
is a difference of only 5.5% between the faster task and the slower one.

(a) Time performance

0,000000

0,020000

0,040000

0,060000

0,080000

0,100000

0,120000

0,140000

0,160000

1 2 3 4 5 6 7 8

Number of processors

T
im

e
 (

s
e
c
s
)

1 block

2 blocks

3 blocks

4 blocks

5 blocks

6 blocks

7 blocks

8 blocks

Fig. 2. Write performance of GPFS for discontiguous access patterns on a balanced
system

254 M.B. Ibáñez, F. Garćıa, and J. Carretero

(b) Standard deviation of time values

0,000000

0,005000

0,010000

0,015000

0,020000

0,025000

1 2 3 4 5 6 7 8

Number of processors

S
ta

n
d

a
r
d

 d
e
v
ia

ti
o

n
 o

f
ti

m
e

v
a
lu

e
s

2 block

3 blocks

4 blocks

5 blocks

6 blocks

7 blocks

8 blocks

Fig. 3. Standard deviation of time values of GPFS for discontiguous access patterns
on a balanced system

4.2 Test on Highly Unbalanced Systems

The next set of experiments represents steps of a MD-simulation which starts
with a balanced substance and evolves towards highly unbalanced distribution
of its molecules. When the substance is highly unbalanced, it has discontigu-
ous access patterns. These kind of patterns provoke execution failures during
checkpointing. We start by presenting experiments with three processors writ-
ing different amount of data in a file. Each processor uses fine-grain data accesses
through the entire file.

Every experiment S is characterized by a distribution matrix which columns
are labeled by the blocks of a file and the rows by the processors of the exper-
iment, an element Si,j represents the percentage of data that the processor Pi

writes in the block Bj .
In order to identify the balanced degree of a substance S, we define its distance

d with regard to the balanced substance S0 as the value obtained of the addition
of the values of the matrix |S − S0|. High distance values indicate substances
more unbalanced. S is renamed as Sd in order to emphasize its balanced degree.

Figure 4 shows the evolution of a substance which starts with a uniform
distribution of data among its three processors (S0), continues with an increase
in the amount of data handled by process P1 (S265 and S279), until a step where
process P1 writes almost all the file (S359). The execution of experiments S265,
S279 and S359 fails due to GPFS difficulty to handle fine-grain data accesses with
a data distribution among processors very unbalanced.

The previous failed behavior was reproduced in 17 of 37 experiments showed
at Figure 5. We repeated each experiment 5 times and we observed that all the
failures occur while GPFS deals with substances within the distance interval
[265, 359]. We call this interval the critical interval and the substances in the
interval critical substances. Thus, a way to prevent GPFS failures is to avoid the
execution of critical substances using the distance metric.

A Profiling Approach for the Management of Writing 255

S0

0

10

20

30

40

50

60

70

80

90

100

P0 P1 P2

Processors

P
e
r
c
e
n
ta
g
e

Block 0 Block 1 Block 2

0

10

20

30

40

50

60

70

80

90

100

P
e
r
c
e
n
ta
g
e

P0 P1 P2

Processors

S265

Block 0 Block 1 Block 2

0

10

20

30

40

50

60

70

80

90

100

P
e
r
c
e
n
ta
g
e

P0 P1 P2

Processors

S279

Block 0 Block 1 Block 2

0

10

20

30

40

50

60

70

80

90

100

P
e
r
c
e
n
ta
g
e

P0 P1 P2

Processors

S359

Block 0 Block 1 Block 2

Fig. 4. Evolution of data distribution among processors in a N-body simulation

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20

Experiment

D
is

ta
n

c
e
 t

o
 S

0

Successful data distribution Failing data distribution

Fig. 5. Effect of data distribution on GPFS execution

Nevertheless, the distance metric is an inaccurate indicator of upcoming GPFS
failures. At Figure 5 we also find critical substances that are handled correctly
by GPFS. In order to characterize a state close to the collapse of the system,
our next step is to analyze the behavior of critical substances that execute
correctly.

256 M.B. Ibáñez, F. Garćıa, and J. Carretero

4.3 Characterization of Execution Failures

In order to identify the factor that characterize a state close to the collapse of the
system, we reproduce two set of experiments. First, we test critical substances
that do not provoke failures of execution, and then we test substances that are
not in the critical interval. The substances chosen represent an evolution on
the data access patterns that are executed successfully. The sequence starts at
S0, it is followed by substances outside the critical interval and finishes with
substances within the critical interval close to the execution failure. We measure
the difference of times spent in I/O by all the processors of every experiment and
finally, we compare these differences for the two sets of experiments. At Figure 6
we show that the standard deviation of experiments within the critical interval,
is bigger than for the others.

Figure 7 examines in detail the left part of Figure 6 which corresponds to
the evolution of a substance from its balanced state (S0) to an unbalanced state
(S283) where GPFS collapses. The standard deviation time values becomes higher
as we approach the critical interval. The tendency to the standard deviation time
increase is bigger when we enter to the critical interval. Thus, we conclude that
for standard deviation of time greater than 0.08 GPFS may collapse.

5 Proposed Approach

To solve the problem there are two alternatives, to hint GPFS to disable normal
data shipping locking used by MPI-IO library or to schedule the writings to the
file in a different way. The former alternative is not feasible due to the MPI
implementation we use. We propose a schedule based on profile information
gathered in the successive steps of a MD-simulation. The schedule is described
by the algorithm at Figure 8.

The strategy presented follows two main steps. First, each iteration of the al-
gorithm finds the task with time value more distant from the mean of T values,

0

0,02

0,04

0,06

0,08

0,1

0,12

0 33 71 141 320 330 332 338 358 376 378

Substances

S
t
a
n

d
a
r
d

 d
e
v
ia

t
io

n

Critical interval

Fig. 6. Standard Deviation on times of execution of a set of benchmarks not failing in
execution

A Profiling Approach for the Management of Writing 257

S0

0

10

20

30

40

50

60

70

80

90

100

P0 P1 P2

Processors

P
e
r
c
e
n
ta
g
e

Block 0 Block 1 Block 2

P0

P1

P2

0

10

20

30

40

50

60

70

80

90

100

P
e
r
c
e
n
ta
g
e

Processors

S33

Block 0 Block 1 Block 2

P0

P1

P2

0

10

20

30

40

50

60

70

80

90

100

P
e
r
c
e
n
ta
g
e

Processors

S71

Block 0 Block 1 Block 2

P0

P1

P2

0

10

20

30

40

50

60

70

80

90

100

P
e
r
c
e
n
ta
g
e

Processors

S141

Block 0 Block 1 Block 2

P0

P1

P2

0

10

20

30

40

50

60

70

80

90

100

P
e
r
c
e
n
ta
g
e

Processors

S283

Block 0 Block 1 Block 2

Fig. 7. Evolution of a substance from balance to highly unbalanced state

In what follows we use the following terminology.
P = {P0, P1, ..., Pn−1} are the set of processes that write on file F.
T = {ti| i ε [0, ..., n − 1], ti is the time Pi spends writing on F}.
σT denotes the standard deviation of T .
σideal denotes the standard deviation of time values in the balanced substance.

1. while (σT + 0.08 > σideal)
tmax = max {t | t ε T }
Pmax = Pi ε P ∧ ti = tmax

to write Pmax’s data on F using independent and contiguous requests
T = T − {tmax}
P = P − {Pmax}

2. ∀ Pi ε P : to write Pi’s data on F using independent and contiguous requests

Fig. 8. Schedule based on profile information

258 M.B. Ibáñez, F. Garćıa, and J. Carretero

and its data is written on F. In the second step, the other tasks write concur-
rently the rest of the data on F. We tested this scheduling strategy successfully
on the substances presented at Figure 5, the time of execution is bigger but
GPFS executes correctly all critical substances. For all these substances, only
an iteration of the first step of the algorithm was necessary.

6 Conclusions and Future Work

In this paper we have shown that periodical checkpoint write operations of large-
scale irregular applications, are responsible not only of an important degradation
on file system performance but, in some cases, it provokes the collapse of the file
system. File system failures are triggered by a confluence of factors, namely the
tasks use fine-grain accesses through all the file, the difference in the quantity of
information written by the different tasks is high, and the file system does not
have information about user-level access patterns.

We have observed that the collapse of the file system is preceded by wide
fluctuations in the time that highly unbalanced tasks spend writing data. Ex-
perimentally we have determined that a time fluctuation becomes critical when
the standard deviation measured is greater of 0.08.

We have presented a user-programming solution based on independent and
contiguous requests that avoid the failure of the file system once that a critical
fluctuation is detected.

Although the solution presented depends on profile information gathered at
runtime, it is useful on irregular applications such as N-body simulations be-
cause their data pattern accesses change gradually through the time. For other
irregular applications, it is necessary to find measures based on distribution of
data among tasks able to predict the imminent collapse of the system.

Acknowledgments

This work has been supported by the Spanish Ministry of Science under the
TIN2004-02156 contract. The Universidad Politécnica de Madrid’s CeSViMa
center supported the infrastructure used in this work.

References

1. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R. PVFS: A Parallel File System
for Linux Clusters. 4th Annual Linux Showcase and Conference. (2000) pp. 317-327

2. Centro de Supercomputación y Visualización de Madrid (CeSViMa).:
http://www.cesvima.upm.es

3. Ching, A., Choudgary, A., Liao, W.: Noncontiguous I/O through PVFS. Proceed-
ings of the IEEE International Conference on Cluster Computing.(2002) pp. 405-
414.

4. IBM.: IBM General Parallel File System High Performance Cluster File System.
http://www-03.ibm.com/servers/eserver/clusters/software/gpfs.html

A Profiling Approach for the Management of Writing 259

5. The MPI Forum: MPI-2: Extensions to the Message-Passing Interface (1997).
6. Prost, J.-P., Treumann, R., Blackmore, R., Hartman, C., Hedges, R., Jia, B.,

Koniges, A., White, A.: Towards a High-Performance and Robust Implementation
of MPI-IO on top of GPFS. Euro-Par 2000, LNCS 1900, pp. 1253-1262.

7. Purakayastha, A., Ellis, C.S., Kotz, D.: ENWRICH: A Compute-Processor Write
Caching Scheme for Parallel File Systems. The Fourth Workshop on Input/Output
in Parallel and Distributed Systems (IOPADS). (1996). pp. 55-68.

8. Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File System for Large Computing
Clusters. FAST 2002 Conference on File and Storage Technologies. (2002) pp. 231–
244

9. Thakur, R., Lusk, E., Gropp, W.: I/O in Parallel Applications: The Weakest Link.
The International Journal of High Performance Computing Applications. Vol. 12,
N. 4.(1998) pp. 389-395.

10. Thakur, R., Gropp, W., Lusk, E.: Data Sieving and Collective I/O in ROMIO.
Proc. of the 7th Symposium on the Frontiers of Massively Parallel Computation.
(1999) pp. 182-189

Parallel Thermo-Mechanical Modelling
for Nuclear Waste Deposition

Jǐŕı Starý, Ondřej Jakl, and Roman Kohut

Institute of Geonics, Academy of Sciences of the Czech Republic
stary@ugn.cas.cz, jakl@ugn.cas.cz, kohut@ugn.cas.cz

Abstract. The context of the paper is finite element solution of tran-
sient thermo-elasticity problems, motivated by the global need to simu-
late the operation of nuclear waste repositories. In this context, the paper
deals with large-scale parallel processing of nonstationary heat equations,
when the linear systems arising in each time step are solved by the over-
lapping domain decomposition method. The numerical experiments are
performed on a large thermo-elasticity model simulating the behaviour
of spent nuclear fuel stored using the Swedish KBS-3 method. The devel-
oped parallel codes are based on the OpenMP and MPI standards and
their performance is investigated.

Keywords: Thermo-elasticity, finite element solver, parallelization, nu-
clear waste repository.

1 Introduction

One of the most urgent problems of the nuclear power industry is the manage-
ment of radioactive waste. Nuclear fuel discharged from reactors continues to
be radioactive for thousands of years and must somehow be disposed. In many
countries they try to find a solution in constructing special repositories in rock
formations hundreds of meters below the earth’s surface. So far, the projects
have not gone beyond experimental facilities. One of the most recognized meth-
ods of this type is the Swedish KBS-3 [5] and its prototype underground nuclear
waste repository located at Äspö. Its relevance for us is emphasized by the fact
that a similar conception of storage of the spent nuclear fuel is anticipated in
the Czech Republic, too.

The topic of our current work is mathematical modelling and computer sim-
ulation of the complex phenomena related to the operation of the nuclear waste
repositories such as that one at Äspö. In general, this topic involves demanding
multiscale and multiphysics simulations of various coupled processes such as heat
transfer, mechanical behaviour, water and gas flow and chemical interactions in
a long-term period.

In this paper, we assume some simplification of the problem outlined above.
Namely, we restrict ourselves to the modelling of thermo-mechanical processes
which are not fully coupled. Nevertheless, the numerical solution of the thermal
and mechanical parts leads to the repeated processing of large linear systems.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 260–268, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parallel Thermo-Mechanical Modelling for Nuclear Waste Deposition 261

The principal task of ours is to find efficient and parallelizable iterative solution
methods. For this purpose, we make use of the iterative solvers based on the con-
jugate gradient method with Schwarz-type preconditioners, advantageous from
the parallelization point of view.

2 On Thermo-elasticity

We consider the finite element solution of thermo-elastic models with one-direc-
tional coupling through thermal expansion term in the constitutive relations.
We suppose deformations to be very slow and not to influence temperature
fields. Thus, we can split the problem into two parts. First, we determine the
temperature distribution by the solution of the nonstationary heat equation.
Second, we solve the linear elasticity problem at given time levels.

The thermo-elasticity problem is mathematically formulated as follows: Find
the temperature τ = τ(x, t) and the displacement u = u(x, t),

τ : Ω × (0, T) → R , u : Ω × (0, T) → R3 ,

that fulfill the equations

κρ
∂τ

∂t
= k
∑

i

∂2τ

∂xi
2

+ Q(t) in Ω × (0, T) ,

−
∑

j

∂σij

∂xj
= fi (i = 1, . . . , 3) in Ω × (0, T) ,

σij =
∑
kl

cijkl [εkl(u) − αkl(τ − τ0)] in Ω × (0, T) ,

εkl(u) =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
in Ω × (0, T)

together with the corresponding boundary and initial conditions specified below.
The four expressions represent the heat conduction equation, equations of

equilibrium, Hook’s law and tensor of small deformations, respectively, with
symbols having the following meaning: κ is the specific heat, ρ is the density
of material, k are the coefficients of the heat conductivity, Q is the density
of the heat source, σij is the Cauchy stress tensor, εkl is the tensor of small
deformations, f is the density of the volume (gravitational) forces, cijkl are
the elastic moduli, αkl are the coefficients of the heat expansion and τ0 is the
reference (initial) temperature.

For the heat conduction, we use the boundary conditions

τ(x, t) = τ̂ (x, t) on Γ0 × (0, T) ,

−k
∑

i

∂τ

∂xi
ni = q on Γ1 × (0, T) ,

−k
∑

i

∂τ

∂xi
ni = H(τ − τ̂out) on Γ2 × (0, T) ,

262 J. Starý, O. Jakl, and R. Kohut

where Γ = Γ0 ∪ Γ1 ∪ Γ2. These conditions prescribe the temperature, the heat
flow through the surface heat flux q and the heat transfer to the surrounding
medium with the temperature τ̂out. The symbol H denotes the heat transfer
coefficient.

For the elasticity, we apply the boundary conditions

un =
∑

i

uini = 0 on Γ̃0 × (0, T) ,

σt = 0 on Γ̃0 × (0, T) ,∑
j

σijnj = gi (i = 1, . . . , 3) on Γ̃1 × (0, T) ,

which set the displacement, stresses and surface loading. Here, Γ = Γ̃0 ∪ Γ̃1.
The initial condition specifies only the initial temperature,

τ(x, 0) = τ̂0(x) in Ω .

After the variational formulation, the whole thermo-elasticity problem is
discretized by finite elements in space and by finite differences in time.
Employing the linear finite elements and the so-called backward Euler time
discretization, this leads to the computation of vectors τ j , uj of nodal tem-
peratures and displacements at the time levels tj (j = 1, . . . , N) with the time
steps Δtj = tj − tj−1. We get the time-stepping algorithm in Figure 1.

find τ 0: Mhτ 0 = τ0

find u0: Ahu0 = b0 = bh(τ 0)

for j = 1, . . . , N:

compute dj = Mhτ j−1 + qj
h

find τ j : (Mh + ΔtjKh)τ j = dj

find uj : Ahuj = bj = bh(τ j)

end for

Fig. 1. The time-stepping algorithm for the thermo-elasticity problem

Here, Mh is the capacitance matrix, Kh is the conductivity matrix, Ah is the
stiffness matrix, qh represents the heat sources and bh comes from volume and
surface forces including a thermal expansion term.

To optimize the processing, we use the adaptive time-stepping scheme based
on a local comparison of the backward Euler and Crank-Nicholson steps [1]. It
means that we can test the time change of the solution and change the time step
size if the variation is too small or large.

For more details on this point and other mathematical aspects sketched in
this section see [3] and the references therein.

Parallel Thermo-Mechanical Modelling for Nuclear Waste Deposition 263

3 Large Systems of Linear Equations

As one can see from Figure 1, the most of the computational work is involved in
the (repeated) solution of the linear system for the heat conduction of the form

(M + ΔtB)τ = q ,

solved for each time step, and in the solution of the linear system for the elasticity

Au = b ,

solved only at given time levels as a postprocessing task, providing the displace-
ments in mesh nodes under given temperature. We make use of the well-proven
preconditioned conjugate gradient (PCG) method for both systems. Whereas
in the sequential case the preconditioning is based on the incomplete factor-
ization, parallel solvers take advantage of the additive Schwarz method for the
preconditioning step.

More precisely, in the parallel solution the domain is decomposed into m non-
overlapping subdomains Ωk (1-D decomposition along the vertical Z axes), which
are then extended so that adjacent subdomains overlap by two or more layers
of elements. Using the one-level additive Schwarz method, the preconditioning
step can be expressed as

g = Gr =
m∑

k=1

IkA−1
k Rkr ,

where Bk are the finite element matrices corresponding to subproblems on Ωk

and Ik, Rk =IT
k are the interpolation and restriction matrices, respectively. If B

denotes the finite element matrix of the whole problem, then Bk =RkBIk. The
local subproblems are solved inexactly, when the matrices Bk are replaced by
their incomplete factorizations B∗

k.
In the preconditioner for the elliptic elasticity problems, we can employ a

coarse grid created algebraically by aggregation from the original fine grid nodes.
This approach results in the two-level Schwarz method [4] and ensures numerical
scalability, i.e. nearly constant number of iteration with increasing number of
subdomains.

On the other hand, in the parabolic problem of the heat conduction, when
reasonable assumptions hold (see [2]), we can maintain numerical scalability
without help of a coarse grid correction in the preconditioner, which makes the
set of concurrent subproblems inhomogeneous.

4 Parallel Implementation

The thermo-elasticity solver has been implemented in the framework of the in-
house finite element package GEM3, which serves both for experimental purposes
and practical computations.

264 J. Starý, O. Jakl, and R. Kohut

We conceived this implementation as an opportunity to make a practical
comparison between the two main paradigms in parallel programming, mes-
sage passing and shared memory, and its widely accepted representatives, MPI
and OpenMP standards, and implemented two variants of the thermo-elasticity
solver. Recall that OpenMP requires shared-memory parallel hardware, whereas
message passing of MPI is supported and generally available on all parallel ar-
chitectures. Of course, the codes reflect the different conception, syntax and
semantics of the MPI and OpenMP parallel constructs. They can be scaled in
the sense that the number of generated subproblems matches the number of
available processors.

Both variants of the solver, written in Fortran, follow the same algorithm
and the same parallel decomposition, described in the previous section. In this
decomposition, the k-th of m concurrent processes corresponds to the subprob-
lem Ωk and works with a locally stored portion of data, including the matrices
Mk, Kk and the vectors τk, qk, for example. The process simply follows the
time-stepping algorithm presented in Figure 1.

This approach has very modest requirements on data exchange. In fact, during
the iteration phase the k-th process needs to communicate just locally with its
neighbours, i.e. the (k+1)-th and (k−1)-th processes, mainly when the matrix-
by-vector multiplication or the preconditioning are performed. Moreover, the
amount of data transferred is quite small, proportional to the size of the over-
lapped region. Thus, the parallelization has very good dispositions to be efficient
and scalable.

5 The KBS Model

As mentioned in the Introduction, in the background of this work is its relevancy
to the highly urgent topic of the assessment of the underground repositories
of the spent nuclear fuel (SNF). The Äspö Prototype Repository in Sweden
is a full-scale experimental realization of the Swedish KBS-3 concept of SNF
repository [5], where modelling of such phenomena as heat transfer, moisture
migration, solute transport and stress/strain development can be verified. This
internationally recognized project has a great impact on analogous efforts in
other countries (including the Skalka interim repository project in the Czech
Republic) because from the modelling point of view the different concepts share
many similar aspects. That is why we have chosen this model for our numerical
experiments and validation of the solvers.

The underground part of the Äspö Prototype Repository is a 65 m long tunnel
situated 450 m below the surface. It has two sections with two and four deposition
holes, respectively, 1.75 m in diameter and 8 m deep, where the copper canisters
with SNF are emplaced, shielded by betonite clay.

This real situation is reflected in our latest mathematical KBS model, the
3-D finite element mesh of which is depicted in Figure 2. The computational
domain, dimensioned 158×57×115 m, is discretized by linear tetrahedral finite
elements with 2 586 465 degrees of freedom for the heat conduction and 7 759 395
degrees of freedom for the elasticity computations. The task is set up as a coupled

Parallel Thermo-Mechanical Modelling for Nuclear Waste Deposition 265

thermo-elasticity problem with thermal load caused by the radioactive waste
in the deposition holes, with exponential decays of the heat source. The time
interval of interest is 100 years, the adaptive time stepping begins with the
time step 10−4 and requires 47 time steps in total. The stress development is
monitored at three selected time levels. See [1] for details.

Fig. 2. The KBS-3 model: The finite element mesh of the whole domain and a detail
of two deposition holes

6 Computations

The main goal of the numerical experiments was to examine the behaviour and
performance of the solvers on a very large model and to validate their correctness.
With respect to our previous long-time experience with solvers for the elasticity
problems, the testing was focused on the solution of the thermal part of the
problem.

With courtesy of the Uppsala Multidisciplinary Center for Advanced Compu-
tational Science (UPPMAX, [6]), the solvers, originally developed on small local
computing facilities, could be ported to the following parallel systems, where the
experiments presented below were conducted:

Ra: A cluster delivered by Sun (2005) and based on the AMD Opteron CPUs. 99
nodes of three types with 280 cores in total (peak performance 1.34 TFlops),
688 GB of (distributed) memory, low-latency InfiniBand (10Gbit/s) and Gi-
gabit Ethernet interconnects, 12 TB of raw disk space. We employed com-
puting nodes Sun V20z with two AMD Opteron 250 processors (2.4 GHz).

Simba: A shared-memory multiprocessor of the type Sun Fire E 15000 (installed
in 2001), in total having 48 UltraSPARC-III/900 processors (theoretical peak
performance 86 GFlops), 48 GB of shared memory, Sun Fireplane system

266 J. Starý, O. Jakl, and R. Kohut

interconnect (9.6 GB/s) and 3.4 TB disk storage. Simba is a “virtual server”
on this system with 36 CPUs and 36 GB of main memory assigned.

Simba as a multiprocessor hosted both the MPI and OpenMP codes. On the
Ra cluster, just the MPI version could be tested.

Table 1. Number of PCG iterations depending on the time step size Δt (in years) and
number of processors #P

Time step Δt
#P 0.0001 0.001 0.01 0.1 1.0 5.0 10.0 100.0 1000.0

1 11 11 16 26 38 46 60 109 193
2 12 12 16 26 38 49 64 118 222
4 12 12 16 26 38 49 64 125 238
8 14 16 20 26 39 50 68 146 281

12 14 16 20 25 42 54 78 183 328
16 14 16 20 26 42 56 84 212 395
4 18 17 17 27 41 50 53 83 142

The results in Table 1 check the numerical scalability of the heat conduc-
tion parallelization. The scenario let the first time step to start from the initial
zero guess and the iterative loop to continue until the relative residual accuracy
10−6 was reached. The number of preconditioned conjugate gradient iterations
depending on the time step size Δt and the number of processors #P (equal to
the number of subproblems) was monitored and the results collected in Table 1.

The main part of the table gives the results achieved by the one-level additive
Schwarz preconditioner. We can observe that for a given time step size, the num-
ber of iterations is almost constant with the growing number of subproblems, i.e.
that the procedure is numerically scalable. This holds for sufficiently small time
step sizes, say Δt ≤ 5, which are acceptable for most of the applications. We can
also observe that for a fixed number of subproblems, the number of iterations
naturally grows with the increasing time step size. Such grow is acceptable even
for Δt ≤ 10. This fact supports the appropriateness of the one-level precondi-
tioner in most situations.

In case of larger time step sizes, the two-level preconditioner could be more
appropriate/efficient as the last row of Table 1 (for #P = 4) shows. With the
two-level approach, the local subproblems were solved inexactly by incomplete
factorization, as well as the subproblem on the coarse grid of 60×10×17 nodes
created by aggregation.

Now, let us consider the whole thermal part of the KBS model. The heat
conduction computation consists of 47 time steps. In each of these, the solution
of the linear system starts with the initial guess taken from the previous step
and continues up to the relative residual accuracy 10−6. The performance (wall-
clock time and relative speed-up related to the sequential code) of the solution
depending on the number of processors is shown in Figure 3. The Simba and Ra
machines and OpenMP and MPI codes are combined, where possible.

Parallel Thermo-Mechanical Modelling for Nuclear Waste Deposition 267

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 12 16
Num ber ofprocessors

C
o
m
p
u
ti
n
g
ti
m
e
s
 [
s
]

Sim ba:O penM P Sim ba:M PI Ra:M PI

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

2 4 6 8 10 12 14 16
Num ber ofprocessors

R
e
la
ti
v
e
s
p
e
e
d
-u
p

Sim ba:O penM P Sim ba:M PI
Ra:M PI Idealspeed-up

Fig. 3. Computing time (left) and speed-up (right) in dependence on the number of
processors of for various combinations of machines and codes (c.f. the legend in the
graphs)

Both the OpenMP and MPI solvers boast of a very good scalability up to
the 16 processors of Simba, confirming our theoretical expectations. In absolute
numbers, the MPI implementation was up to 36% faster than the OpenMP
code. Thanks to the newer CPUs, much better in raw performance, computing
times of the MPI solver on Ra are approximately five times shorter than those
of Simba, but the speedup is similar – and almost linear.

Unfortunately, the list of our results is incomplete due to the technical condi-
tions in the limited period of our access to the UPPMAX computing resources.
On Simba, the batch queue system reduced our computations to the maximum
of 16 processors. On Ra, the Infiniband interconnect did not work properly and
we experienced inadequately long computations with more than four processors.

7 Conclusion

This work informed about the development of parallel solvers for the simula-
tion of thermo-mechanical behaviour of nuclear waste repositories, based on the
conjugate gradient method and domain decomposition technique. The experi-
ments on the solution of the nonstationary heat conduction part of the KBS
model predict good efficiency and scalability of the new solvers. In particular,
the MPI code running on 16 processors shrank the processing by more than 12
times compared with the sequential solver. We consider this result to be a very
good starting point for efficient solutions of even more demanding large-scale

268 J. Starý, O. Jakl, and R. Kohut

simulation in the area of complex multiphysics modelling related with nuclear
waste depositions.

Acknowledgement. This work is supported by the contract No. 105/04/P036
of the Grant Agency of the Czech Republic and by the grant No. 1ET400300415
of the Academy of Sciences of the Czech Republic.

References

1. R. Blaheta, P. Byczanski, R. Kohut, A. Kolcun, R. Šňupárek: Large-Scale Modelling
of T-M Phenomena from Underground Reposition of the Spent Nuclear Fuel. In: P.
Konečný et al (eds.): EUROCK 2005, Impact of Human Activity on Geological
Environment. A.A.Balkema, Leiden, 2005, pp. 49–55.

2. X.-C. Cai: Multiplicative Schwarz methods for parabolic problems. SIAM Journal on
Scientific Computing 15, 1994, pp. 587–603.

3. R. Kohut, J. Starý, R. Blaheta, K. Krečmer: Parallel Computing of Thermoelastic-
ity Problems. In: I. Lirkov, S. Margenov, J. Wasniewski (eds.): Proceedings of the
Fifth International Conference on Large-Scale Scientific Computing LSSC’05 held
in Sozopol, Springer Verlag, Berlin, 2006, pp. 671–678.

4. B. Smith, P. Bjørstad, W. Gropp: Domain decomposition. Parallel multilevel meth-
ods for Elliptic Partial Differential Equations. Cambridge University Press, New
York, 1996.

5. C. Svemar, R. Pusch: Prototype Repository - Project description. IPR-00-30, SKB,
Stockholm, 2000.

6. UPPMAX home page, http://www.uppmax.uu.se (December 15, 2005).

A Markovian Sensibility Analysis for Parallel
Processing Scheduling on GNU/Linux

Regiane Y. Kawasaki1, Luiz Affonso Guedes2, Diego L. Cardoso1,
Carlos R.L. Francês1, Glaucio H.S. Carvalho1, Solon V. Carvalho3,

João C.W.A. Costa1, and Marcelino S. Silva1

1 Department of Electrical and Computing Engineering, Federal University of Pará
(UFPA), 66.075-900,
Belém, PA, Brazil

{kawasaki, diego, rfrances, ghsc, marcelino}@ufpa.br
2 Department of Computing Engineering and Automation, Federal University of Rio

Grande do Norte (UFRN), 59072-970,
Natal, RN, Brazil

affonso@dca.ufrn.br
3 National Institute for Space Research (INPE), Computing and Applied

Mathematics Laboratory (LAC), P.O. Box 515, 12245-970,
São José dos Campos, SP, Brazil

solon@lac.inpe.br

Abstract. Parallel Computing has become a powerful tool to overcome
certain types of computational problems in many areas such as engineer-
ing, especially due to the increasing diversity of platforms for execution
of this type of application. The use of parallel computing over LANs and
WANs is an alternative in the universe of dedicated environments (par-
allel machines and clusters), but, in some cases, it needs to imply QoS
(Quality of Service) parameters, so it can execute efficiently. In this sce-
nario, the deployment of resource allocation scheme plays an important
role in order to satisfy the QoS requirements for parallel applications. In
this paper we propose and present Markovian models for resource alloca-
tion (CPU allocation) schemes in a GPOS (General Purpose Operating
Systems), aiming at offering an optimization method which makes the
efficient performance of parallel and interactive applications feasible.

1 Introduction

In the last years, the set of platforms for the performance of parallel applications
has become diversified. In the beginning, these environments were limited to some
processor units linked by internal bus. However, today, typical platforms are great
sets of computers linked by many different networks [1]. The points which caused
that approach change were [2]: (a) the high cost for achievement and maintenance;
(b) the use of highly specific purpose, which usually generates a high degree of
idleness, characteristics which limited the achievement of parallel machines.

An alternative to this problem is to consider a differentiated treatment for the
parallel processes, whenever demanded, by means of QoS approach [3]. However,

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 269–278, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

270 R.Y. Kawasaki et al.

provision of QoS guarantees in GPOS or in other similar systems (like wireless
and cellular mobile networks) is a complex issue due to problems such as those
related to how to design the system behavior which needs process scheduling and
admission control. It becomes even more challenging when in a system a specific
process or groups of processes need a minimum of resource assurance. To do so,
Call Admission Control (CAC) must act together with the process scheduler, so
that, when the system detects that a determined application needs a resource
assurance, it may adjust the system to provide it [4].

When it is needed to conjecture about the system performance, usually a
model s constructed, which obtains its essential information. From this point, a
performance analysis is carried out in order to explore and identify the system’s
behavior, bottleneck, bounds, etc [5]. Due to the necessity of investigating the
feasibility of providing QoS to guarantee a minimum of resources to processes
that need a differentiated treatment in a general purpose operating system, in
case GNU/Linux, a performance model has been developed for the traditional
GNU/Linux scheduler. Besides the traditional GNU/Linux model, a different
model that reserves a percentage of the processor time for providing attention
to parallel tasks has also been developed. By solving these models, their perfor-
mance evaluation was compared to identify the changes in the system behavior
due to reserving the resource.

This paper is organized as follows. In Section 2 it describes the analytical
model of Linux scheduler architecture and a new scheduler model with resource
allocation. The sensibility analysis is based on a detailed mathematical model
followed by numerical results that are presented in Section 3, admitted with
or without resource reservation models. Finally, in Section 4 it shows the final
remarks of this work.

2 Linux Scheduler Analytical Model

The basic structure of the Linux scheduler is the process queue (struct runqueue).
This struct is defined inside the archive kernel/sched.c. The current O(1) sched-
uler keeps a runqueue per processor, which is responsible for containing all the
executable processes of a given processor. Thus, if a process is inserted in a
runqueue of a specific processor, it will only run on that processor [6]. Each
runqueue contains two priority arrays [7]: active and expired. Priority arrays are
data structures composed of a priority bitmap and an array that contains one
process queue for each priority.

Linux scheduler and admission control is depicted in Fig.1. Higher (parallel
jobs with QoS, kernel process) and lower priority jobs (compilers, browsers,
parallel - without QoS jobs, and others) arrive at the system according to two
mutually independent Poisson processes with parameters λ1 and λ2, respectively.
For the sake of simplicity, it is assumed that both services require a negative
exponential service time with rate μ. A job is removed from the active array if:
(a) its processing is finished, with rate qs1μ (for high priority jobs) and qs2μ (for
the other processes); or (b) it needs to be rescheduled to the high priority queue

A Markovian Sensibility Analysis for Parallel Processing Scheduling 271

or low priority queue in the expired array, with rates pr1μ or pr3μ, respectively.
The scheduling of a job in the low priority queue in the active array is tied to
the occupancy of the high priority queue in the active array in the sense that
it will only be scheduled if the high priority queue in the active array is empty.
When the processing queues are empty in an active array and there is a job to
be processed in the expired array, these arrays are switched. This switching (via
pointer) has an associated time of the 10−6s [7].

P1

P2

B1

B2

b1

p1

p2

b2

qs1

qs2
�

��

��

pr1
pr2

pr3
pr4

Fig. 1. System model

Given the assumptions presented above, it a Continuous-Time Markov Chain
(CTMC) [8] model of the system, whose state is defined as:

s = (b1, b2, p1, p2, ac|0 ≤ b1 ≤ B1; 0 ≤ b2 ≤ B2; 0 ≤ p1 ≤ P1; 0 ≤ p2 ≤
P2; ac = 0 or 1)

Where b1 and p1 are the number of processes in the high priority queues; and
b2 and p2 are the number of processes in the low priority queues; and Bi is
the buffer size of the queue i. At time, there is only one high priority queue in
the active array and only one low priority queue in the active array, and the
remainders are on the expired array. In order to indicate which queues are in
these arrays it is used the variable ac, in such a way that if ac = 0, then the
queues b1 and b2 will be in the active array and p1 and p2 in the expired array,
and when ac = 1, vice-versa.

Using standard techniques for the solution of Markov chains, the steady-state
probabilities of the CTMC are computed. Again because of the symmetry of
the system only the performance measurements associated with the condition
ac = 0 will be described, i.e., when b1 and b2 are in the active array, and p1

and p2 are in the expired array. Thus, let p(b1, b2, p1, p2, ac) be the steady state
probability of that Markov model, then the job blocking probability (Pbi) of a
job in the queue i, it is given by the probability of its priority queue is full. Eq.
(1) shows, for instance, that probability for the high priority queue in the active
array. The job blocking probability for other arrays may be computed at the
same way.

272 R.Y. Kawasaki et al.

Pb1 =
B2∑

b2=0

P1∑
p1=0

P2∑
p2=0

π(B1, b2, p1, p2, 0) (1)

The mean delay of the high priority queue and the low priority queue in the
active array may be computed as

Wb1 =

∑B1
b1=1

∑B2
b2=0

∑P1
p1=0

∑P2
p2=0 b1π(b1, b2, p1, p2, 0)

λ1(1 − Pb1)
(2)

Wb2 =

∑B1
b1=0

∑B2
b2=1

∑P1
p1=0

∑P2
p2=0 b2π(b1, b2, p1, p2, 0)

λ2(1 − Pb2)
(3)

Where, Pb2 is the job blocking probability on the low priority queue. Likewise,
since, at time, only p1 and p2 are in the expired array, the mean delay of the high
priority queue and the low priority queue may be, respectively, computed as

Wp1 =

∑B1
b1=0

∑B2
b2=0

∑P1
p1=1

∑P2
p2=0 p1π(b1, b2, p1, p2, 0)

μ(pr1 + pr2)(1 − Pp1)
(4)

Wp2 =

∑B1
b1=0

∑B2
b2=0

∑P1
p1=0

∑P2
p2=1 p2π(b1, b2, p1, p2, 0)

μ(pr3 + pr4)(1 − Pp2)
(5)

Where, Pp1 and Pp2 are the job blocking probability on the high and the low
priority queue in the expired array. The throughput of the jobs of the high
priority queue and the low priority queue in the active array are, respectively,
given by:

X1 = qs1μ

B1∑
b1>0

B2∑
b2=0

P1∑
p1=0

P2∑
p2=0

π(b1, b2, p1, p2, 0) (6)

X2 = qs2μ

B2∑
b2>0

P1∑
p1=0

P2∑
p2=0

π(0, b2, p1, p2, 0) (7)

2.1 Reservation Model

In this section, an extended model is proposed in order to describe a static
reservation allocation policy, where a percentage of the processor capacity (R) is
allocated to process one class of applications (Fig. 2). Using this policy, we can
divide the capacity of the processor in two variables, R (percentage reserved)
used for applications with high priority and (1 − R) for the other applications
in the system.

The state of the CTMC of that system is defined as: s=(b1, b2, p1, p2, bp, ac|0 ≤
b1 ≤ B1; 0 ≤ b2 ≤ B2; 0 ≤ p1 ≤ P1; 0 ≤ p2 ≤ P2; 0 ≤ bp ≤ Bp; ac = 0or1).

A Markovian Sensibility Analysis for Parallel Processing Scheduling 273

P1

P2

B1

B2

b1

p1

p2

b2

qs1

qs2

�

��

��

pr1

pr2

pr3

pr4

Bp

bp

(1-R)

R
�p

prp
qsp

�

Fig. 2. Resource allocation

Transitions from state s to all possible successor states are reported in Table 1
along with their rates and conditions under which the transitions exist; the last
column indicates the type of event to which a transition refers. When ac = 0, if
a job is generated in the high priority queue in the active array, the occupancy
of that queue, b1, will increase by one unit. A rescheduled job from that queue
will go to the high priority queue in the expired array with rate pr1(1−R) or to
the low priority queue in the expired array with rate pr3(1−R). In the first case
the job keeps the same priority and, in the latter, the priority is decreased. A job
can leave the high priority queue in the active array, after finishing its processing
with rate qs1(1 − R). An arrival in the low priority queue in the active array
takes place with rate and increases b2 by one unit.

Since the system under analysis is finite, when a buffer (active or expired arrays)
is full an incoming or rescheduled job is blocked. After switching, the queues that
were in the expired array (p1 and p2) become active and vice-versa. The variable bp
represents parallel jobs. We assumed that mtv = 10−6. The system is symmetric,
which makes quite natural the match of the other transitions of the model.

The variable bp represents parallel jobs. We assume that mtv = 10−6. The
system is symmetric, which makes quite natural the understanding of the Table 1.

Due to the lack of space and for simplicity only the performance measurements
of the high priority jobs (parallel) that demand QoS guarantees are presented.
Assuming that ac = 0, the mean delay perceived by that processes are computed
as

Wpb =

∑B1
b1=0

∑B2
b2=0

∑P1
p1=0

∑P2
p2=0

∑BP

bp=1 bpπ(b1, b2, p1, p2, bp, 0)

(λp + prpRμ)(1 − Pbp)
(8)

Where Pbp is blocking probability of high priority jobs that demand QoS guar-
antees derived as Eq.(1). The throughput is given by:

Xpb = qspRμ

B1∑
b1=0

B2∑
b2=0

P1∑
p1=0

P2∑
p2=0

BP∑
bp>0

π(b1, b2, p1, p2, bp, 0) (9)

274 R.Y. Kawasaki et al.

Table 1. Transitions from state s = (b1, b2, p1, p2, bp, ac) to successor state t for jobs
in priority policy

Successor State Condition Rate Event
(b1 + 1, b2, p1, p2, bp, ac) (b1 < B1) ∧ (ac = 0) λ1 A job arrives in high

priority class
(b1, b2 + 1, p1, p2, bp, ac) (b2 < B2) ∧ (ac = 0) λ2 A job arrives in low

priority class
(b1 − 1, b2, p1, p2, bp, ac) (b1 > 0) ∧ (ac = 0) qs1(1 − R)μ A job from high class

terminates
(b1 − 1, b2, θ, p2, bp, ac) (b1 > 0) ∧ (ac = 0)

θ = p1 + 1, if p1 < P1

θ = P1, if p1 = P1

pr1(1 − R)μ A job is rescheduled
to high priority class

(b1 − 1, b2, p1, θ, bp, ac) (b1 > 0) ∧ (ac = 0)

θ = p2 + 1, if p2 < P2

θ = P2, if p2 = P2

pr3(1 − R)μ A job is rescheduled
to low priority class

(b1, b2 − 1, p1, p2, bp, ac) (b1 = 0) ∧ (b2 > 0) ∧
(ac = 0)

qs2(1 − R)μ A job from low class
terminates

(b1, b2 − 1, θ, p2, bp, ac) (b1 = 0) ∧ (b2 > 0) ∧
(ac = 0)

θ = p1 + 1, if p1 < P1

θ = P1, if p1 = P1

pr2(1 − R)μ A job is rescheduled
to high priority class

(b1, b2 − 1, p1, θ, bp, ac) (b1 = 0) ∧ (b2 > 0) ∧
(ac = 0)

θ = p2 + 1, if p2 < P2

θ = P2, if p2 = P2

pr4(1 − R)μ A job is rescheduled
to low priority class

(b1, b2, p1, p2, bp + 1, ac) bp < Bp λp A job arrives in QoS
priority class

(b1, b2, p1, p2, bp − 1, ac) bp > 0 qspRμ A job from QoS class
terminates

(b1, b2, p1, p2, bp − 1, ac) bp > 0 prpRμ A job is rescheduled,
but before it is decre-
mented

(b1, b2, p1, p2, bp + 1, ac) bp < Bp prpRμ A job is rescheduled,
but after it is incre-
mented

(b1, b2, p1, p2, bp, ac + 1) (ac = 0)∧ ((b1 = 0)∧
(b2 = 0))∧((p1 > 0)∨
(p2 > 0))

mtv Change of arrays, b1

and b2 become ex-
pired

(b1, b2, p1, p2, bp, ac − 1) (ac = 1)∧((p1 = 0)∧
(p2 = 0))∧((b1 > 0)∨
(b2 > 0))

mtv Change of arrays, b1

and b2 become active

A Markovian Sensibility Analysis for Parallel Processing Scheduling 275

3 Performance Study

In this section some numerical results are presented to evaluate how adequate is
the Markov model to scheduling GNU/Linux with and without resource alloca-
tion policy. First, we present the performance of the Linux Markovian model. For
validation purpose, Linux scheduler was simulated by using an academic version
of a powerful tool named ARENA c©[9]. Some measures were obtained through
system calls which collect data for later analysis, minimizing the overhead in
kernel (this can be obtained in www.lprad.ufpa.br/parqos). Table 2 summarizes
the parameters used.

Table 2. Input data

High Priority Measures Low Priority: Measures
λ1 7 λ2 7,3
pr1 0,1 pr2 0
pr3 0,09 pr4 0,67
Avarage Buffer 5 Avarage Buffer 5

To validate the probability distributions adopted, models use input data ob-
tained from the real system. In these data, Kolmogorov-Smirinov (K-S) goodness
of fit tests were applied, using the trial version of BestFit c©tool [10].

These data were used as parameters of probability distributions in question
(Poisson for inter-arrivals times). The simulation results were collated with the
performance measures obtained from the real system. As the numerical results
of that comparison match (very similar), the values may be considered validated
for the analytical model.

To implement CPU allocation policy it is important to study the CPU be-
havior. Assuming the table above, it represents a situation where scheduler is
very busy and the inputs are Poisson traffic. A new application is added in λ1,
simulating a situation of great workload. Table 3 ilustrates the Markovian model
output. As expected, higher the traffic load, bigger the throughput and, for that
reason, longer the mean waiting time, longer is the blocking probability. In the
table, 0% represents the system behavior performance with just λ1 and λ2. λp is
derived from λ1(5%, 10%, 20%, 30%, 40%) and represents the impact of adding
an application to the system.

The investigation of the impact on increasing CPU allocation (sensibility anal-
ysis) is interesting because it shows the system behavior that determines at which
extent the CPU is efficiently and fairly used by all processes. The data in which
this analysis was conducted is described in Table 2, adding a load of 50% to λ1

(originated by the parallel application).
The Fig. 3.a shows the processes active high priority (parallel processes),

active low priority and expired low priority remain with values Queuing Waiting
Time almost constant with respect to several CPU allocation (from 0 to 50%).
This implies that the impact on the waiting time is low, for the processes high
priority, active low priority and expired low priority, with respect to the increase

276 R.Y. Kawasaki et al.

Table 3. Performance measurements

Queue Waiting Time
0% 5% 10% 20% 30% 40%

Active High Priority 0,21246 0,21491 0,21687 0,21943 0,22037 0,21995
Active Low Priority 0,59056 0,60058 0,60970 0,62533 0,63785 0,64774
Expired High Priority 6,05108 6,28370 6,48294 6,79442 7,01313 7,16437
Expired Low Priority 0,85739 0,87383 0,88871 0,91386 0,93334 0,94802

Blocking Probability
0% 5% 10% 20% 30% 40%

Active High Priority 0,09701 0,10763 0,11827 0,13925 0,15940 0,17838
Active Low Priority 0,44159 0,44832 0,45431 0,46434 0,47214 0,47817
Expired High Priority 0,43127 0,44343 0,45346 0,46847 0,47854 0,48530
Expired Low Priority 0,45635 0,46216 0,46734 0,47591 0,48241 0,48723

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

 Throughput / % of CPU allocation

 S
e
n

s
ib

il
it

y
 A

n
a
ly

s
is

 High priority
 Low priority
 System (High+Low)

(a)

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 Blocking Probability / % of CPU allocation

 S
e
n

s
ib

il
it

y
 A

n
a
ly

s
is

 Active High Priority
 Active Low Priority
 Expired High Priority
 Expired Low Priority

(b)

Fig. 3. (a) Queuing Waiting Time / % of CPU Allocation (b)Blocking Probability /
% of CPU Allocation

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

 Queue Waiting Time / % of CPU allocation

 S
e
n

s
ib

il
it

y
 A

n
a
ly

s
is

 Active High Priority
 Active Low Priority
 Expired High Priority
 Expired Low Priority

Fig. 4. Throughput / % of CPU Allocation

in the CPU allocation. On the other hand, the expired high priority processes
have their time substantially increased when the CPU allocation gets larger. (for
instance, 6 seconds of waiting to 0% of CPU allocation and 15 seconds to 50%
of CPU allocation).

A Markovian Sensibility Analysis for Parallel Processing Scheduling 277

The blocking probability presents their worst values for active low priority,
expired high priority and expired low priority (around 0.5 for 50% of CPU allo-
cation) (Fig. 3.b). The smallest blocking probability is related to the active high
priority processes.

Throughput is reduced approximately by 50% for both high priority and low
priority processes (considering 0 to 50% of CPU allocation) (Fig. 4).

4 Final Remarks

In this paper, a Markovian Linux scheduler model has been presented and pro-
posed for performance study and, in addition, an extended model, which uses
static resource allocation policy. Through the sensibility analysis, it has been
concluded that the performance of the parallel applications with QoS are greatly
improved in its throughput. However, others applications have suffered some lim-
itations. The contributions of this paper are: (1) Proposal of performance models
for GPOS scheduler; (2) Proposal of a resource (CPU) allocation scheme in a
parallel computing environment as well as showing through numerical results,
obtained from its Markovian model, improvement of performance of parallel ap-
plications when compared to other applications.

Currently, we are implementing another extended model which uses dynamic
CPU allocation policy. As future work, we are performing experiments with
Markov decision process to find optimal admission control and scheduling strate-
gies aiming at improving the resource (CPU and memory) allocation for parallel
applications.

This work is supported by CNPq and CAPES.

References

1. Zhang, Y., Sivasubramaniam, A., Moreira, J., Franke, H.: Impact of Workload and
System Parameters on Next Generation Cluster Scheduling Mechanisms. IEEE
Transactions on Parallel and Distributed Systems, Vol. 12 (2001) 967-985.

2. Hwang, K., Xu, Z.: Scalable Parallel Computing - Technology, Architecture and
Programming, WCB/ McGraw-Hill, (1998).

3. Niyato, D., Hossain, E.: Analysis of Fair Scheduler and Connection Admission Con-
trol in Differentiated Services Wireless Networks. IEEE International Conference
on Communications, Vol. 5 (2005) 3137 - 3141.

4. Carvalho, G., Rodrigues, R., Francs, C., Costa, J., Carvalho, S.: Modelling and
Performance Evaluation of Wireless Networks. Lecture Notes in Computer Science,
Vol. 3124. Heidelberg Germany (2004) 595-600.

5. Manolache, S., Eles, P., Peng, Z.: Schedulability Analysis of applications with
Stochastic Task Execution Times. ACM Transactions on Embedded Computing
Systems, Vol. 3. November (2004) 706-735.

6. Chanin, R., Corrêa, M., Fernandes, P., Sales, A., Scheer, R., Zorzo, A.F.: Analytical
Modeling for Operating System Schedulers on NUMA Systems, in Proc. of the
2nd International Workshop on Practical Applications of Stochastic Modelling,
PASM05, University of Newcastle upon Tyne, UK, July (2005).

278 R.Y. Kawasaki et al.

7. Love, R.: Linux Kernel Development, SAMS, 1st edn., (2003).
8. Wei, W., Wang, B., Towsley, D.: Continuous-Time Hidden Markov Models for Net-

work Performance Evaluation, Performance Evaluation, Vol.49, (2002), pp. 129-
146.

9. Rockwell Automatation - www.arenasimulation.com, accessed in 02/15/2006.
10. Palisade - www.palisade.com/bestfit, accessed in 02/18/2006.

Multiple Tasks Allocation in Arbitrarily
Connected Distributed Computing Systems
Using A* Algorithm and Genetic Algorithm�

Biplab Kumer Sarker1, Anil Kumar Tripathi2,
Deo Prakash Vidyarthi3, Laurence Tianruo Yang4, and Kuniaki Uehara5

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
2 Institute of Technology, Banaras Hindu University, Varanasi, India

3 Jawaharal Nehru University, New Delhi, India
4 Department of Computer Science, St. Francis Xavier University, Canada

5 Graduate School of Science and Technology, Kobe University, Japan

Abstract. A number of algorithms is proposed for allocation of tasks
in a DCS. Most of them did not consider allocation of various unrelated
tasks partitioned into modules by taking into account the architectural
capability of the processing nodes and the connectivity among them. This
work considers allocation of disjoint multiple tasks with corresponding
modules wherein multiple disjoint tasks with their modules compete for
execution on an arbitrarily networked DCS. Two algorithms have been
presented based on well-known A* algorithm and Genetic Algorithm
techniques. The proposed algorithms consider a load balanced allocation
for the purpose. The paper justifies the effectiveness of the proposed
algorithms using several case studies.

1 Introduction

Task allocation problem is considered as a NP-Hard problem in the literatures
[2]-[6], [8]-[11], [14], [9], even when processor capacities are not considered and
thus many heuristic solutions are possible for this problem. Most of the al-
gorithms for Task Allocation (TA) problem proposed by the scientists and re-
searchers [2]-[6] so far, do make one or more assumptions. These consider a single
task partitioned into corresponding modules for the execution and the repercus-
sion of a single task allocation on a DCS. These also consider a few [5] or a large
number of communicating tasks coming onto the DCS for processing [14]. More-
over, these works did not consider the connectivity of processing nodes, whereas
in reality, a DCS receives a number of tasks from time to time for the execu-
tion. Factually, a DCS facilitates concurrent execution of modules belonging to
various unrelated tasks [7], [12], [13]. The modules of any particular task, hav-
ing IMC (InterModule Communication), do cooperatively execute and do not
depend on the modules of the other tasks. This leads to the situation wherein,
a processing node may be assigned modules belonging to different tasks. It is
� The corresponding author’s email is sarker@unb.ca.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 279–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

280 B.K. Sarker et al.

to mention that the real issue of task allocation must not ignore the possibility
of multiple modules assignment of various tasks to the processing nodes in a
dynamic fashion [7]. Task allocation algorithms also suffer from the number of
constraints that are imposed by the task and the system as well [7].

Considering these views and furthermore taking into account the architectural
capability of the processing nodes and the optimality of the solution guaranteed
by A* based TA [2], in this paper we present two parallel algorithms for load
balanced allocation in a DCS based on A* algorithm [18] and GA-the genetic
behavior of the natural evolution. The paper is organized as follows. The next
section discusses the load parameter for multiple tasks which is used in our case
as a cost function to minimize turnaround time. This is the basis of effectiveness
of the allocation. In section 3, the A* algorithm for task allocation is proposed.
The next section discusses the proposed algorithm based on GA. Three case
studies are exemplified using two algorithms in section 5. Section 6 compares the
results of the proposed algorithms and discusses the effectiveness and scalability
of the algorithms.

1.1 Assumptions

As the task allocation problem remains to be NP-hard, various heuristic solutions
are proposed with one or more assumptions [2][18]. This work also makes certain
assumptions that are as follows.

1. The processing nodes in the DCS are heterogeneous. The tasks are disjoint
and have no inter-task communication. Only the modules within a task have
interdependencies and communication requirements.

2. Execution and communication matrices for the task graphs are assumed
to be given. These matrices are different for every task and calculated in units
of time. While partitioning the task into modules, we assume that the memory
requirements of the modules are also calculated.

3. The assumption of the availability of interconnection graph accommodates
irregular type of interconnection networks.

Here, in this paper, the word ‘processor’ and ‘processing node’, ‘assignment’
and ‘allocation’ have been used to refer the same.

2 Load

The tasks submitted into a DCS are partitioned into suitable modules and then
these modules are to be allocated to the processing nodes. Each task can be
represented by a Task Graph (TG) = (Vt, Et), where (1) Vt is a set of vertices,
each of which represents a module of the task m1, m2, ..., mn and (2) Et ⊆ Vt×Vt

is a set of edges each of which represents the Inter Module Communication
(IMC) between the two modules at the end of the edge. We can also represent
the network of processors p1, p2, ..., pn in a DCS as a Processor Graph PG =
(Vp, Ep); where vertices represent the processors and the edges represent the
communication links between processors (see Fig.1). The goal of TA is to allocate

Multiple TA in Arbitrarily Connected DCS 281

the Task Graphs (TG) to a network of processors in a DCS (i.e. to PG) to achieve
the minimum turn-around time of tasks [2].

m 11

m 21

m 41

m 31

10
50

20

5

m 12

m 22 m 32

m 13

m 23

m 33

10
5

40

p1 p2

p3 p4

T ask Graph(T 1) T ask Graph(T 2) T ask Graph(T 3) Proc essor Graph(PG)

Fig. 1. Example of task graphs T1, T2 and T3 with their modules and a DCS as proces-
sor graph

A processor’s load comprises of all the execution and communication costs
associated with its assigned modules of the task [6]. The time required by the
heaviest-loaded processor will determine the entire tasks’ completion time. So,
the TA problem must find a mapping of the set of m modules of l tasks to n
processors so as to minimize tasks completion time. Our goal is to allocate the
modules in such a way that does not cause any processing node to be overloaded
because an overloaded node may affect adversely in the turn around time of the
tasks in a heterogeneous DCS.

The load in a processing node p is calculated as follows [18].

k∑
l=1

mi∑
i=1

Xilp.Milp +
n∑

q=1
q �=p

k∑
l=1

mi∑
i=1

m∑
j=1
j �=i

(Cijl + CCpq).Milp.Mjlq (1)

where CC pq = Cfi.L
i
pq

Xilp = execution cost of ith module of lth task on processing node p
Cijl = Inter-Module Communication(IMC)Cost between ith and jth module of
task l
Milp = assignment matrix of ith module of lth task on processing node p

Milp =
{

1 if module mi of task l is assigned to processor p
0 otherwise

Mjlq = assignment matrix of jth module of lth task on any other processing
node q

Mjlq =
{

1 ifmodule mj of task l is assigned to processor q
0 otherwise

282 B.K. Sarker et al.

Li
pq= connection matrix of two processors p and q, describing the links (direct/

single indirect/ double indirect etc.) of connection paths among the processing
nodes in Processor Graph (PG).
Cfi= coefficient matrix which has n entries describing the IPC (Inter Proces-
sor Communication) costs for the links of connection paths among the process-
ing nodes. For example, Cf1=5 (for direct connection between the processors),
Cf2=10 (for processors which are indirectly connected by one link), Cf3= 20
(for processors which are indirectly connected by two links) etc.

The first part of the above equation 1 is the total execution cost of the mod-
ules of all the tasks allocated on a processing node p. The second part is the
communication overhead on p with the modules of the tasks allocated on the
other processing node such as q in the DCS. The ith entry of the coefficient
matrix Cfi corresponds to communication between two processors via i links. If
processors p and q are not directly connected, we find L2, multiply it by Cf2,
(2nd field of Cf), and check whether this comes out to be non-zero; if it does, we
replace L1 in calculation with L2; if not, we find out L3and multiply it with Cf3

and check whether the product comes out to be non-zero. We continue like this
until we find a non-zero value and then replace Li in calculation with this (it
is to be mentioned that we shall find a non-zero value within n multiplications,
where n is the no. of processing nodes).

2.1 Global Table(GT)

To allocate the modules optimally so that no processor becomes overloaded, the
load on each of the n processing nodes needs to be computed. By finding the
processing node with heaviest load, the optimal assignment out of all possible
assignments will allot the minimum load to the heaviest loaded processor. Thus
it is necessary to consider realistic view that only a finite number of modules
can be allocated to a processor depending on the architectural capability of the
processing nodes in a DCS. Consequently, earlier algorithms [2], [5], [6] have
continued to assume that all the modules will be eventually allocated no matter
how large the memory requirements are, and/or how many modules a processor
can accommodate and what is the current status of the system due to the existing
allocation. These algorithms do not consider the requirement of allocation of
modules of multiple tasks. In the proposed algorithms, we have shed off these
unrealistic assumptions and make use of a data structure STATUS associated
with every processor, which has two fields showing: the maximum number of
modules that can be allocated to the processor and the memory capacity of the
processor.

Whenever a module is chosen for allocation onto a processing node, the STA-
TUS is checked and it is ascertained whether the processor can accommodate the
module at hand. If not, another processor is chosen if available. The consequence
might be that a certain module is not allocated at all. This data structure is
implemented by constructing a Global table (GT) to maintain the track of max-
imum number of modules that can be allocated to a processing node depending
upon its memory capacity. This is a dynamic table, which keeps the information

Multiple TA in Arbitrarily Connected DCS 283

of the remaining memory of nodes and the number of modules can be allocated
on the nodes. Whenever a new task arrives, this GT is to be consulted and to
be modified.

3 Algorithm for TA Using A*

In the A* algorithm [1], [2], for a tree search, it starts from the root, usually
is called the start node (usually a null solution of the problem). Intermediate
tree nodes represent the partial solutions, and leaf nodes represent the complete
solution or goal. A cost function f computes each node’s associated cost. The
value of f for a node n, which is the estimated cost of the cheapest solution
through n, is computed as

f(n) = g(n) + h(n) (2)

where, g(n) is the search-path cost from the start node to the current node
and h(n) is a lower-bound estimate of the path cost from current node to the
goal node (solution), using any heuristic information available. To expand a
node means to generate all of its successors or children and to compute the
f value for each of them. The nodes are ordered for search according to the
cost; that is, the algorithm first selects the node with the minimum expansion
cost. The algorithm maintains a sorted list, called OPEN, of nodes (according
to their f values) and always selects a node with the best expansion cost. Be-
cause the algorithm always selects the best-cost node, it guarantees an optimal
solution [2].

To compute the cost function, g(n) is the cost of a partial assignment at node
n which is the load on the heaviest loaded processing node (pi); this is done using
the equation 1. For the computation of h(n), two sets Ap (the set of modules that
are already assigned to the heaviest loaded p) and U (the set of modules that are
unassigned at this stage of the search and have one or more communication links
with any module in set Ap), are defined. Each module mi in U will be assigned
either to p or any other processor q that has a direct or indirect communication
link with p. So, two kinds of costs with each mi’s assignment can be associated:
either Xilp(the execution cost of mi of task l on p) or the sum of communication
costs of all the modules in set Ap that has a link with mi. This implies that to
consider mi’s assignment, it is to be decided whether mi should go to p or not
(by taking the minimum of these two cases’ cost).

To support the run-time allocation of tasks to processors, we construct a
manager-worker style parallel algorithm whose pseudo-code is given in sec. 3.1
and 4.2. One processor called the manager is responsible for keeping track of
the assigned and unassigned tasks using a Global Table (GT) which is consulted
and updated during every allocation. It always consists of the information about
the total memory of the processing nodes and the remaining memory after as-
signment, no. of assigned modules and the remaining no. of modules can be
assigned.

284 B.K. Sarker et al.

3.1 The Algorithm

1. As a ‘Manager’ node, processor P0 maintains the status of the Global Table
(GT) for each processing node(P1, P2, ..., Pn) termed as ’worker’ in terms of
available memory (M) and the modules that are already assigned to it.

2. ‘Manager’ node maintains a list S of unallocated tasks with all modules (all
tasks are in S at the beginning) and a list OPEN, empty at the beginning.
Another list V is maintained by taking one Task ta from S and put it in
another list V and reset OPEN.

3. The ‘workers’ checks possible allocation of modules in V using the A*(2)
algorithm and verifying STATUS of them by P0; then allocate them; if not
possible, deallocate the partially allocated modules of the task and move onto
the next task, modifying the STATUS in between and update the Global Table
(GT)by the Manager.

4. If S is not empty yet, go to step 2.
5. Stop (end of allocation).

4 Algorithm for TA Using GA

A genetic algorithm emulates biological evolutionary theories to solve optimiza-
tion problems [15]. The chromosomes in a GA population typically take the
form of bit strings. But the chromosomes can take some other forms of string
as well, such as letters, digits and integers [16]. The GA, most often requires a
fitness function that assigns a score (fitness) to each chromosome in the current
population. The fitness of a chromosome depends on how well that chromosome
solves the problem at hand.

The fitness function in a genetic algorithm is the objective function that is to
be optimized. It is used to evaluate the search nodes, thus it controls the GA
[17]. As the GA is based on the notion of the survival of the fittest, the better
the fitness value, the greater is the chance to survive.

Thus, the simplest form of GA involves three types of operators: selection,
crossover, and mutation [16]. For the TA problem with multiple tasks alloca-
tion, we make the following assumptions:

1) The proposed algorithm makes use of a data structure for “chromosome”
to describe allocations. It is an array of positive integers showing the index of
the processing node to which a particular module is assigned. It has as many
elements as the total number of modules of all tasks.
2) Initially all the elements are zero indicating that none of the modules are
allocated to any of the processing node.
3) A data structure STATUS is associated with every processing node as de-
scribed in Sec. 2.

4.1 The Fitness Function

The fitness function, in our problem, is the inverse of the load (the sum of loads
on all the processors corresponding to a chromosome) described in the equation 1
of section 2.

Multiple TA in Arbitrarily Connected DCS 285

4.2 The Algorithm

1. ”Manager” node randomly generate five chromosomes, verify STATUS and
take one chromosome with maximum fitness value. Distribute the copy of
chromosome to the ”worker” nodes./* This fitness value is our threshold
limit. Any chromosome below the threshold will be rejected and not included
in the population. Each worker is considered as a processing node*/

2. Each worker nodes generate an initial population of 50 chromosomes above
the threshold limit with that chromosome randomly.

3. SELECT: probability of selection of parents is linearly dependent on the fit-
ness value. /* i.e. ax+b, where x is the fitness value, a and b are arbitrary
values.*/

4. Perform crossover with probability Pc at a randomly chosen point.
5. If

Total no. of Chromosome(generated) < 100
goto SELECT

6. Pick up ten chromosomes randomly, using the probability of selection as in
SELECT. Take out the one (chromosome) with maximum fitness.

7. Each ”worker” sends its one (chromosome) with maximum fitness to the
”Manager”.

8. ”Manager” receives chromosomes from the ”workers” and take out the one
(chromosome) with maximum fitness. This represents the allocation.

4.3 Description of SELECT

To effectuate the probability of selection, we would produce several copies of the
same chromosome. The idea is to take out chromosomes with their best fitness
values randomly from all the chromosomes (included copies). Let there be Pa

copies of chromosome a, where a =1 . . . n and Pb copies of chromosome b, where,
b = 1 . . .m.

Then we would generate a random number (chromosome) r and find out, to
which chromosome (a or b) this chromosome belongs. This can be done by the
following expression i.e.

if
n∑

a=1

Pa <
m∑

b=1

Pb (3)

then r belongs to chromosome b i.e. chromosome r is a copy of chromosome b.
However, this method would require memory for each copy of every chromo-

some. To save memory we could instead attach a field with each new chromosome
generated. In this field we store an ‘integer’ number directly proportional to the
fitness value of chromosome. Thus the chromosome represents ‘Xi’ copies of the
chromosome, where ‘Xi’ is the number in its field and i=1,2, . . . n.

When a chromosome is to be randomly selected, we generate a random number
in the range from 1 to

∑
(X 1 + X2+ . . .+X n), where Xi is the number in the

field associated with the ith chromosome. Let us say, the number generated is
Y and X1 + X2+ . . .+X k < Y < X1 + X2+ . . .+X k+1. Thus, the chromosome
selected is Xth

k+1 chromosome.

286 B.K. Sarker et al.

5 Implementation Results

In this section, we present three small examples with various number of TGs
and PGs to justify the proposed algorithm with respect to allocation and status
of the global table.

Case 1: We have considered a set of three tasks shown as TGs partitioned
with their corresponding modules T1(m11, m21, m31, m41), T2(m12, m22, m32),
T3(m13, m23, m33) and a DCS as PG, consists of four processors (p1, p2, p3, p4)
interconnected as shown in Fig. 2. Here, the IMC costs shown as in the figure 1
represent the communication costs between the modules of the tasks in time
unit. For example, the communication cost between m11 (the first module of
task T1) with m21 (the second module of task T1) is 10 unit. The adjacency ma-
trix Li

pq of processing nodes are assumed to be given which represents how the
processing nodes are connected among each other. For example, the processing
nodes p2 and p3 are not directly connected, so L1

p2p3 = 0. But they are connected
with at least one indirect link (through p1 or p4). So, L2

p2p3 = 1.
The results for case 1: Total cost (communication and execution) using A*

at all the processing nodes is 500 units. Total cost using GA at all the processing
nodes is 120 units.

Case 2: The algorithm is implemented with other two cases. In case 2, a DCS
consists of five tasks partitioned with their corresponding modules
T1(m11, m21, m31, m41, m51), T2(m12, m22, m32, m42), T3(m13, m23, m33, m43),
T4(m14, m24, m34, m44, m54, m64, m74), T5(m15, m25, m35, m45, m55, m65, m75,
m85) and a set of five processing nodes (p1, p2, p3, p4, p5) interconnected in some
fashion.

The results for case 2: Total cost using A* at all the processing nodes is
1585 units. Total cost using GA at all the processing nodes is 213 units.

Case 3: A set of 8(eight) tasks with their corresponding modules
T1(m11, m21, m31, m41), T2(m12, m22, m32, m42, m52), T3(m13, m23, m33, m43,
m53, m63), T4(m14, m24, m34, m44), T5(m15, m25, m35, m45, m55), T6(m16, m26,
m36, m46, m56, m66), T7(m17, m27, m37, m47), T8(m18, m28, m38, m48, m58) and a
set of 6(six) processors (p1, p2, p3, p4, p5, p6) have been considered.

The results for case 3: Total cost using A* at all the processing nodes is
1380 units. Total cost using GA at all the processing nodes is 213 units.

6 Comparative Observations

From the results and the tables 1-6, it is observed that

a) The total cost (communication and execution) of the allocation for tasks
using GA technique is much less than the cost of allocation using A* technique.

b) The tables show the status of allocation of every module of each task of
the DCS. By comparing the Tables 2 and 3, it is observed that according to the
V th column (Rmod), the results using GA (Table 2) shows better allocation than
the results using A*(Table 1). The results using GA achieves a good balanced
load allocation than the results using A* considering the existing architectural

Multiple TA in Arbitrarily Connected DCS 287

Table 1. The final status of the GT using
A* for case 1

Pnode Mmod Mcap Modassign Rmod Rmem

p1 4 10 m21m41m22 1 1
p2 3 8 m12m32m23 0 2
p3 4 9 m13m33 2 2
p4 5 12 m11m31 3 5

Table 2. The final status of the GT
using GA for case 1

Pnode Mmod Mcap Modassign Rmod Rmem

p1 4 10 m32m13 2 5
p2 3 8 m21m12 1 2
p3 4 9 m11m31m23 1 0
p4 5 12 m41m22m33 2 3

Table 3. The final status of the GT using
A* for case 2

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 50
m21m51m12m42

m33m43m14m34

m64m74

0 19

p2 9 40
m41m22m13m24

m25m85
3 21

p3 7 35
m32m23m44

m45m65
2 21

p4 6 30 m11m31m54m15 2 14
p5 4 10 m35m55m75 1 2

Table 4. The final status of the GT us-
ing GA for case 2

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 50
m11m13m14

m44m54m74

m35m65

2 24

p2 9 40
m21m51m12

m32m33m25

m75

2 23

p3 7 35
m22m42m43

m64m24m45
1 11

p4 6 30
m31m41m34

m15m55
1 14

p5 4 10 m23m85 2 5

Table 5. The final status of the GT using
A* for case 3

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 50
m21m51m12m42

m33m43m14m34

m64m74

0 19

p2 9 40
m41m22m13m24

m25m85
3 21

p3 7 35
m32m23m44m45

m65
2 21

p4 6 30 m11m31m54m15 2 14
p5 4 10 m35m55m75 1 2

Table 6. The final status of the GT using
GA for case 3

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 70
m21m53m15m26

m66m17m37

m28m48

1 28

p2 8 50
m31m41m14m24

m35m36m18
1 23

p3 6 40
m11m25m45m55

m46
1 26

p4 7 35
m42m423m33m44

m56m27m58
0 6

p5 6 40
m32m13m63m16

m38
1 22

p6 6 33
m12m22m52m43

m34m47
0 9

capability of the DCS for case 1. Regarding case 2 and 3, comparing the results
of the Tables 3-4 and 5-6, it is also noticed that the results using GA show a good
balanced allocation based on the V th column for each processing node than A*.

288 B.K. Sarker et al.

Fig. 2. Execution time using number of tasks = 400

0

0.5

1

1.5

2

2.5

3

3.5

P1 P2 P4 P8

no. of processing nodes

e
x

e
c

u
ti

o
n

 t
im

e

Task 60

Task 100

Task 400

Fig. 3. Execution time using GA based algorithm for number of tasks = 60, 100 and
400, respectively

6.1 Experimental Results

To investigate the effectiveness and the scalability of our proposed algorithms
we further experimented with large number of task graphs with corresponding
modules. For simulation purpose, we used Sun Fire 12K, 8 processors based
distributed multiprocessor systems and Message Passing Interface (MPI) as pro-
gramming environment with 60, 100 and 400 tasks with the corresponding mod-
ules. It is to mention that the tasks graphs and the corresponding modules are
generated randomly. It is found that for an amount of large number of tasks
(400 tasks), our A* based parallel algorithm performed better (Fig. 2) than the

Multiple TA in Arbitrarily Connected DCS 289

results using 60 and 100 tasks [18], respectively . Thus, we concluded that for a
large number of tasks our algorithm performed well and it is scalable with the
large number of increasing tasks. However, GA based algorithm performed bet-
ter for all the cases than A* based algorithm in terms of load balanced allocation
and running time (see Fig. 3).

7 Conclusion and Future Work

We have considered the problem of allocation for multiple disjoint tasks parti-
tioned into their corresponding modules and proposed two parallel algorithms
for this purpose. We have taken into account the dynamic situation of arrival
of tasks in arbitrarily networked DCSs and thus introduced a global table to
handle this situation. Our algorithms have been implemented with several case
studies. It has been shown that the algorithms are efficient in terms of good
load balanced allocations among the processing nodes in DCSs. We found that
the algorithm based on GA performs better. Furthermore, we have conducted
experiments for a large number of tasks with the corresponding modules. Com-
paring the results obtained using our algorithms, it is evident that GA based
algorithm can provide effective solution in terms of scalability and running time
for the TA problem for a large number of tasks coming onto a DCS.

References

1. N.J. Nilson, Problem Solving Methods in Artificial Intelligence. McGraw Hill In-
ternational Edition, 1971.

2. C.C. Shen and W.H. Tsai, “A Graph Matching Approach to Optimal Task As-
signment in Distributed Computing System Using A Minimax Criterion”, IEEE
Transactions on Computers, vol. C-34, no. 1, pp. 197-203, 1985.

3. A.K. Tripathi, D.P. Vidyarthi and A.N.Mantri, “A Genetic Task Allocation Algo-
rithm for Distributed Computing System Incorporating Problem Specific Knowl-
edge”, International Journal of High Speed Computing, vol. 8, no. 4, pp. 363-370,
1996.

4. A.K. Tripathi, B.K. Sarker, N. Kumar and D.P. Vidyarthi, “A GA Based Multiple
Task Allocation Considering Load”, International Journal of High Speed Comput-
ing, vol. 11, no. 4, pp. 203-214, 2000.

5. M. Kafil and I. Ahmed , “Optimal Task Assignment in Heterogeneous Distributed
Computing System”, IEEE Concurrency, vol. 6, no. 3, pp. 42-51, 1998.

6. Ramakrishnan, H.Chao, and L.A.Dunning, “A Close Look at Task Assignment in
Distributed Systems”, Proceedings of IEEE Infocom-91, pp. 806-812, 1991.

7. D.P.Vidyarthi, A.K.Tripathi and B.K.Sarker, “Allocation Aspects in Distributed
Computing System”, IETE Technical Review, vol. 18, no. 6, pp. 279-285, 2001.

8. P.Y.R.Richard Ma, E.Y.S.Lee and J. Tsuchiya, “A Task Allocation Model for Dis-
tributed Computing Systems”, IEEE Transactions on Computers, vol. C-31, no. 1,
pp. 41-47, 1982.

9. S.H.Bokhari, “On the Mapping Problem”, IEEE Transactions on Computers, vol.
C-30, pp. 207-214, March, 1981.

290 B.K. Sarker et al.

10. Pradeep K. Sinha, Distributed Operating System, IEEE Press, Prentice Hall of
India Ltd., 1998.

11. A.S.Tanenbaum, Distributed Operating Systems, Prentice-Hall, Englewood Cliffs,
1995.

12. A.K.Tripathi, B.K.Sarker, N.Kumar and D.P.Vidyarthi, “Multiple Task Allocation
with Load Considerations”, International Journal of Information and Computing
Science (IJICS), vol.3, no.1, pp. 36-44, 2000.

13. D.P.Vidyarthi, A.K.Tripathi and B.K.Sarker, “Multiple Task Management in Dis-
tributed Computing System”, Journal of the CSI, vol. 31, no. 1, pp. 19-25, 2001.

14. S. Menon, “Effective Reformulations for Task Allocation in Distributed Systems
with a Large Number of Communicating Tasks”, IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no.12, pp.1497-1508, 2004.

15. M. Sriniwas and L.M. Patnaik, “Genetic Algorithms: A survey”, IEEE Computer,
June, pp.44-52, 1994.

16. M. Mitchell, An Introduction to Genetic Algorithm, Prentice Hall of India. 1998.
17. A.K. Tripathi, D.P. Vidyarthi and A.N.Mantri, “A Genetic Task Allocation Algo-

rithm for Distributed Computing System Incorporating Problem Specific Knowl-
edge”, Int. Journal of High Speed Computing, vol. 8, no. 4, pp. 363-370, 1996.

18. B.K.Sarker, A.K. Tripathi, D.P. Vidyarthi, K. Uehara and L.T.Yang, “Load Bal-
anced Allocation of multiple Tasks in A Distributed Computing Systems”, Pro-
ceedings of EUC-2005, L.T.Yang et al. (eds), LNCS-3824, pp. 584-596, 2005.

Panconnectivity and Pancyclicity of
Hypercube-Like Interconnection Networks with

Faulty Elements�

Jung-Heum Park1, Hyeong-Seok Lim2, and Hee-Chul Kim3

1 School of Computer Science and Information Engineering,
The Catholic University of Korea, Korea

j.h.park@catholic.ac.kr
2 School of Electronics and Computer Engineering,

Chonnam National University, Korea
hslim@chonnam.ac.kr

3 Computer Science and Information Communications Engineering Division,
Hankuk University of Foreign Studies, Korea

hckim@hufs.ac.kr

Abstract. In this paper, we deal with the graph G0⊕G1 obtained from
merging two graphs G0 and G1 with n vertices each by n pairwise non-
adjacent edges joining vertices in G0 and vertices in G1. The main prob-
lems studied are how fault-panconnectivity and fault-pancyclicity of G0

and G1 are translated into fault-panconnectivity and fault-pancyclicity
of G0⊕G1, respectively. Applying our results to a subclass of hypercube-
like interconnection networks called restricted HL-graphs, we show that
in a restricted HL-graph G of degree m(≥ 3), each pair of vertices are
joined by a path in G\F of every length from 2m−3 to |V (G\F)|−1 for
any set F of faulty elements (vertices and/or edges) with |F | ≤ m − 3,
and there exists a cycle of every length from 4 to |V (G\F)| for any fault
set F with |F | ≤ m − 2.

1 Introduction

Linear arrays and rings are two of the most important computational struc-
tures in interconnection networks. So, embedding of linear arrays and rings
into a faulty interconnection network is one of the important issues in paral-
lel processing[9,13,15]. An interconnection network is often modeled as a graph,
in which vertices and edges correspond to nodes and communication links, re-
spectively. Thus, the embedding problem can be modeled as finding fault-free
paths and cycles in the graph with some faulty vertices and/or edges. In the em-
bedding problem, if the longest path or cycle is required the problem is closely
related to well-known hamiltonian problems in graph theory. In the rest of this
paper, we will use standard terminology in graphs (see ref. [3]).
� This work was supported by the Korea Research Foundation Grant funded by the

Korean Government(MOEHRD) (KRF-2005-041-D00645), and also supported by
the department specialization Fund, 2006 of The Catholic University of Korea.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 291–300, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

292 J.-H. Park, H.-S. Lim, and H.-C. Kim

Definition 1. A graph G is called f -fault hamiltonian (resp. f -fault hamiltonian-
connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are
joined by a hamiltonian path) in G\F for any set F of faulty elements with |F | ≤ f .

On the other hand, if the paths joining each pair of vertices of every length
shorter than or equal to a hamiltonian path are required the problem is con-
cerned with panconnectivity of the graph. If the cycles of arbitrary size (up to
a hamiltonian cycle) are required the problem is concerned with pancyclicity of
the graph.

Definition 2. A graph G is called f -fault q-panconnected if each pair of fault-
free vertices are joined by a path in G\F of every length from q to |V (G\F)|− 1
inclusive for any set F of faulty elements with |F | ≤ f .

Definition 3. A graph G is called f -fault pancyclic (resp. f -fault almost pan-
cyclic) if G\F contains a cycle of every length from 3 to |V (G\F)| (resp. 4 to
|V (G\F)|) inclusive for any set F of faulty elements with |F | ≤ f .

Pancyclicity of various interconnection networks was investigated in the litera-
ture. Recursive circulant G(2m, 4) of degree m was shown to be 0-fault almost
pancyclic in [2] and then m−2-fault almost pancyclic in [12]. Möbius cube of de-
gree m is 0-fault almost pancyclic[5] and m−2-fault almost pancyclic[8]. Crossed
cube and twisted cube of degree m were also shown to be m − 2-fault almost
pancyclic in [17] and in [18]. Edge-pancyclicity of some fault-free interconnection
networks such as recursive circulants, crossed cubes, twisted cubes was studied
in [1], [7], and [6]. The work on panconnectivity of interconnection networks has
a relative paucity and some results can be found in [4,10]. As the authors know,
no results on fault-panconnectivity were reported in the literature.

Many interconnection networks can be expanded into higher dimensional net-
works by connecting two lower dimensional networks. As a graph modeling of
the expansion, we consider the graph obtained by connecting two graphs G0 and
G1 with n vertices. We denote by Vi and Ei the vertex set and edge set of Gi,
i = 0, 1, respectively. We let V0 = {v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}.
With respect to a permutation M = (i1, i2, . . . , in) of {1, 2, . . . , n}, we can
“merge” the two graphs into a graph G0 ⊕M G1 with 2n vertices in such a
way that the vertex set V = V0 ∪ V1 and the edge set E = E0 ∪ E1 ∪E2, where
E2 = {(vj , wij)|1 ≤ j ≤ n}. We denote by G0 ⊕ G1 a graph obtained by merg-
ing G0 and G1 w.r.t. an arbitrary permutation M . Here, G0 and G1 are called
components of G0 ⊕G1.

Vaidya et al.[16] introduced a class of hypercube-like interconnection net-
works, called HL-graphs, which can be defined by applying the ⊕ operation
repeatedly as follows: HL0 = {K1}; for m ≥ 1, HLm = {G0 ⊕ G1|G0, G1 ∈
HLm−1}. Then, HL1 = {K2}; HL2 = {C4}; HL3 = {Q3, G(8, 4)}. Here, C4 is
a cycle graph with 4 vertices, Q3 is a 3-dimensional hypercube, and G(8, 4) is a
recursive circulant which is isomorphic to twisted cube TQ3 and Möbius ladder
with 4 spokes as shown in Figure 1. It was shown by Park and Chwa in [11] that
every nonbipartite HL-graph is hamiltonian-connected.

Panconnectivity and Pancyclicity of Hypercube-Like Networks 293

v
2

v
0

v
1

v
5

v
4

v
3

v
7

v
6

(a) G(8, 4)

v
2

v
0

v
1 v

5

v
4

v
3

v
7

v
6

(b) TQ3

v
2

v
0

v
1

v
5

v
4

v
3

v
7

v
6

(c) Möbius ladder

Fig. 1. Isomorphic graphs

In [13], a subclass of nonbipartite HL-graphs, called restricted HL-graphs was
introduced which is defined recursively as follows: RHLm = HLm for 0 ≤ m ≤ 2;
RHL3 = HL3\Q3 = {G(8, 4)}; RHLm = {G0 ⊕ G1|G0, G1 ∈ RHLm−1} for
m ≥ 4. A graph which belongs to RHLm is called an m-dimensional restricted
HL-graph. Many of the nonbipartite hypercube-like interconnection networks
such as crossed cube, Möbius cube, twisted cube, multiply twisted cube, Mcube,
generalized twisted cube, locally twisted cube, etc. proposed in the literature are
restricted HL-graphs. It was shown in [13] that every m-dimensional restricted
HL-graph, m ≥ 3, is m− 3-fault hamiltonian-connected and m − 2-fault hamil-
tonian. The result was utilized in [14] to find disjoint paths which cover all the
vertices between source-sink pairs in restricted HL-graphs.

We first investigate panconnectivity and pancyclicity of G0 ⊕ G1 with faulty
elements. It will be shown that if each Gi is f -fault q-panconnected and f + 1-
fault hamiltonian (with additional conditions n ≥ f+2q+1 and q ≥ 2f+3), then
G0 ⊕G1 is f + 1-fault q + 2-panconnected for any f ≥ 2. To study pancyclicity
of G0⊕G1, the notion of hypohamiltonian-connectivity is introduced. A graph G
is called f -fault hypohamiltonian-connected if each pair of vertices can be joined
by a path of length |V (G\F)| − 2, that is one less than the longest possible
length, in G\F for any fault set F with |F | ≤ f . We will show that if each Gi is
f -fault hamiltonian-connected, f -fault hypohamiltonian-connected, and f + 1-
fault almost pancyclic, then G0 ⊕ G1 is f + 2-fault almost pancyclic for any
f ≥ 1.

Our main results are applied to restricted HL-graphs. We will show that
every m-dimensional restricted HL-graph with m ≥ 3 is m − 3-fault 2m − 3-
panconnected and m− 2-fault almost pancyclic. Both bounds m− 3 and m− 2
on the number of acceptable faulty elements are the maximum possible. No-
tice that f -fault q-panconnected graph is f -fault hamiltonian-connected, and
that f -fault almost pancyclic graph is f -fault hamiltonian. Our results are not
only the extension of some works of [8,17,18] on fault-pancyclicity of restricted
HL-graphs, but also a new investigation on fault-panconnectivity of restricted
HL-graphs.

294 J.-H. Park, H.-S. Lim, and H.-C. Kim

2 Panconnectivity and Pancyclicity of G0 ⊕ G1

For a vertex v in G0 ⊕ G1, we denote by v̄ the vertex adjacent to v which is in
a component different from the component in which v is contained. We denote
by F the set of faulty elements. When we are to construct a path from s to t,
s and t are called a source and a sink, respectively, and both of them are called
terminals. Throughout this paper, a path in a graph is represented as a sequence
of vertices.

Definition 4. A vertex v in G0 ⊕ G1 is called free if v is fault-free and not a
terminal, that is, v /∈ F and v is neither a source nor a sink. An edge (v, w) is
called free if v and w are free and (v, w) /∈ F .

We denote by Vi and Ei the sets of vertices and edges in Gi, i = 0, 1, and by E2

the set of edges joining vertices in G0 and vertices in G1. We let n = |V0| = |V1|.
F0 and F1 denote the sets of faulty elements in G0 and G1, respectively, and F2

denotes the set of faulty edges in E2, so that F = F0 ∪ F1 ∪ F2. Let f0 = |F0|,
f1 = |F1|, and f2 = |F2|.

When we find a path/cycle, sometimes we regard some fault-free vertices
and/or edges as faulty elements. They are called virtual faults. If Gi is f -fault
hamiltonian-connected and f + 1-fault hamiltonian, i = 0, 1, then

f ≤ δ(Gi)− 3, and thus f + 4 ≤ n,

where δ(Gi) is the minimum degree of Gi.

2.1 Panconnectivity of G0 ⊕ G1

Hamiltonian-connectivity of G0 ⊕ G1 with faulty elements was considered in
[13]. In this subsection, we study panconnectivity of G0 ⊕G1 in the presence of
faulty elements. We denote by f0

v and f1
v the numbers of faulty vertices in G0

and G1, respectively, and by fv the number of faulty vertices in G0 ⊕ G1, so
that fv = f0

v + f1
v . Note that the length of a hamiltonian path in G0 ⊕G1\F is

2n− fv − 1.

Theorem 1. Let G0 and G1 be graphs with n vertices each. Let f and q be
nonnegative integers satisfying n ≥ f + 2q + 1 and q ≥ 2f + 3. If each Gi is
f -fault q-panconnected and f + 1-fault hamiltonian, then
(a) for any f ≥ 2, G0 ⊕G1 is f + 1-fault q + 2-panconnected,
(b) for f = 1, G0⊕G1 with 2(= f +1) faulty elements has a path of every length
q+2 or more joining s and t unless s and t are contained in the same component
and s̄ and t̄ are the faulty elements(vertices), and
(c) for f = 0, G0 ⊕G1 with 1(= f + 1) faulty element has a path of every length
q+2 or more joining s and t unless s and t are contained in the same component
and the faulty element is contained in the other component.

Panconnectivity and Pancyclicity of Hypercube-Like Networks 295

Proof. To prove (a), assuming the number of faulty elements |F | ≤ f + 1, we
will construct a path of every length l, q + 2 ≤ l ≤ 2n − fv − 1, in G0 ⊕ G1\F
joining any pair of vertices s and t.

Case 1: f0, f1 ≤ f .
When both s and t are contained in G0, there exists a path P0 of length l0
in G0 joining s and t for every q ≤ l0 ≤ n − f0

v − 1. We are to construct a
longer path P1 that passes through vertices in G1 as well as vertices in G0. We
first claim that there exists an edge (x, y) on P0 such that all of x̄, (x, x̄), ȳ,
and (y, ȳ) are fault-free. There are l0 candidate edges on P0 and at most f + 1
faulty elements can “block” the candidates, at most two candidates per one
faulty element. By assumption l0 ≥ q ≥ 2f + 3, and the claim is proved. The
path P1 can be obtained by merging P0 and a path P ′ in G1 between x̄ and
ȳ with the edges (x, x̄) and (y, ȳ). Here, of course the edge (x, y) is discarded.
Letting l′ be the length of P ′, the length l1 of P1 can be anything in the range
2q+1 ≤ l1 = l0+l′+1 ≤ 2n−fv−1. Since n ≥ f +2q+1, we have 2q+1 ≤ n−f0

v

and we are done.
When s is in G0 and t is in G1, we first find a free edge (x, x̄) in E2 such that

(x̄, t) is an edge and fault-free. The existence of such a free edge (x, x̄) is due to
the fact that there are δ(G1) candidates and that at most f + 1 faulty elements
and the source s can block the candidates. Remember f ≤ δ(G1)− 3. Assuming
x ∈ V0, a path joining s and x in G0 and an edge (x̄, t) are merged with (x, x̄) into
a path P0. The length l0 of P0 is any integer in the range q +2 ≤ l0 ≤ n−f0

v +1.
A longer path P1 is obtained by replacing the edge (x̄, t) with a path in G1

between x̄ and t of length l′′, q ≤ l′′ ≤ n − f1
v − 1. The length l1 of P1 is in the

range 2q + 1 ≤ l1 ≤ 2n− fv − 1. We are done since 2q + 1 ≤ n− f0
v as shown in

the previous subcase.
Case 2: f0 = f + 1 (or symmetrically, f1 = f + 1).

We have f1 = f2 = 0. First, we consider the subcase s, t ∈ V0. Letting P ′ be a
path in G1 joining s̄ and t̄, we have a path P0 = (s, P ′, t) between s and t. The
length l0 of P0 is any integer in the range q + 2 ≤ l0 ≤ n + 1. To construct a
longer path P1, we select an arbitrary faulty element α in G0. Regarding α as a
virtual fault-free element, find a path P ′′ in G0 between s and t. If α is a faulty
vertex on P ′′, let x and y be the two vertices on P ′′ next to α; else if P ′′ passes
through the faulty edge α, let x and y be the endvertices of α; else let (x, y) be
an arbitrary edge on P ′′. The path P1 is obtained by merging P ′′\α and a path
in G1 joining x̄ and ȳ with edges (x, x̄) and (y, ȳ). If α is faulty vertex on P ′′,
the length l1 of P1 is in the range 2q ≤ l1 ≤ 2n − fv − 1; otherwise, we have
2q + 1 ≤ l1 ≤ 2n− fv − 1. In any cases, we are done since 2q + 1 ≤ n + 2.

Secondly, we consider the subcase s ∈ V0 and t ∈ V1. We first find a hamil-
tonian cycle C in G0\F0 and let C = (s = z0, z1, z2, ..., zk), where k = n−f0

v −1.
Assuming z̄l = t without loss of generality, we can construct a path P0 by merg-
ing (z0, z1, ..., zl) and a path in G1 between z̄l and t with the edge (zl, z̄l). The
length l0 of P0 is any integer in the range q + l+1 ≤ l0 ≤ n−f1

v + l. Since l itself
is any integer in the range 1 ≤ l ≤ n− f0

v − 1, we have q + 2 ≤ l0 ≤ 2n− fv − 1.

296 J.-H. Park, H.-S. Lim, and H.-C. Kim

Finally, we consider the subcase s, t ∈ V1. We have a path P0 in G1 joining
s and t, and the length l0 of P0 is in the range q ≤ l0 ≤ n − 1. To construct a
longer path P1, we let C = (z0, z1, z2, ..., zk) be a hamiltonian cycle in G0\F0,
where k = n− f0

v − 1. If s̄ /∈ F , we assume w.l.o.g. s̄ = z0. Then, letting w.l.o.g.
z̄l = t, P1 is a concatenation of (s, z0, z1, . . . , zl) and a path in G1\s between z̄l

and t. The length l1 of P1 is in the range q + 3 ≤ l1 ≤ 2n− fv − 1. If s̄ ∈ F , we
let (x, x̄) be a free edge such that x̄ is adjacent to s. Then, letting w.l.o.g. x = z0

and z̄l = t, P1 is a concatenation of (s, x̄, z0, z1, . . . , zl) and a path in G1\{s, x̄}
between z̄l and t. Here, the length l1 of P1 is in the range q+4 ≤ l1 ≤ 2n−fv−1.
By the condition of n ≥ f + 2q + 1 and q ≥ 2f + 3, we can observe q + 4 ≤ n.
Therefore, we are done. This completes the proof of (a).

It immediately follows from Case 1 and the first and second subcases of Case 2,
where the assumption f ≥ 2 is never used, that for f = 0, 1, G0 ⊕G1 with f + 1
faulty elements has a path of every length q + 2 or more joining s and t unless
s and t are contained in the same component and all the faulty elements are
contained in the other component. Thus, the proof of (c) is done. To prove
(b), assuming w.l.o.g. s̄ /∈ F , it suffices to employ the construction of the last
subcase of Case 2. Note that in the construction, G1 is 1-fault q-panconnected.
This completes the proof. ��

Corollary 1. Let G0 and G1 be graphs with n vertices each. Let f and q be
nonnegative integers satisfying n ≥ f + 2q + 1 and q ≥ 2f + 3. If each Gi

is f -fault q-panconnected and f + 1-fault hamiltonian, then G0 ⊕ G1 is f -fault
q + 2-panconnected.

2.2 Pancyclicity of G0 ⊕ G1

In the presence of faulty elements, the existence of hamiltonian cycle in G0⊕G1

was considered in [13] as in Theorem 2. In this subsection, we investigate almost
pancyclicity of G0 ⊕ G1 with faulty elements. We denote by H [v, w|G, F] a
hamiltonian path in G\F joining a pair of fault-free vertices v and w in a graph
G with a set F of faulty elements. HH [v, w|G, F] is a hypohamiltonian path in
G\F between v and w.

Theorem 2. [13] Let a graph Gi be f -fault hamiltonian-connected and f + 1-
fault hamiltonian, i = 0, 1. Then,
(a) for any f ≥ 1, G0 ⊕G1 is f + 2-fault hamiltonian, and
(b) for f = 0, G0 ⊕G1 with 2(= f + 2) faulty elements has a hamiltonian cycle
unless one faulty element is contained in G0 and the other faulty element is
contained in G1.

Before presenting our theorem on pancyclicity, we will give two lemmas. The
proofs are omitted. They imply that to show an f -fault hamiltonian graph is f -
fault almost pancyclic, it is sufficient to consider only vertex faults and further
the maximum number of vertex faults. We call a graph G to be f -vertex-fault
almost pancyclic, if G\Fv contains a cycle of every length from 4 to |V (G\Fv)|
for any set of faulty vertices Fv with |Fv| ≤ f .

Panconnectivity and Pancyclicity of Hypercube-Like Networks 297

Lemma 1. Let a graph G be f -fault hamiltonian and f -vertex-fault almost pan-
cyclic. Then, G is f -fault almost pancyclic.

Lemma 2. Let a graph G be f -fault hamiltonian and almost pancyclic when the
number of faulty vertices fv = f . Then, G is f -vertex-fault almost pancyclic.

Theorem 3. Let Gi be f -fault hamiltonian-connected, f -fault hypohamiltonian-
connected, and f + 1-fault almost pancyclic, i = 0, 1. Then,
(a) for any f ≥ 1, G0 ⊕G1 is f + 2-fault almost pancyclic, and
(b) for f = 0, G0⊕G1 with 2(= f +2) faulty elements is almost pancyclic unless
one faulty element is contained in G0 and the other faulty element is contained
in G1.

Proof. To prove (a), we let |F | = f + 2, and assume F has only vertex faults
by virtue of the above two lemmas. Note that, by Theorem 2(a), G0 ⊕ G1 is
f + 2-fault hamiltonian. Assuming f0 ≥ f1 without loss of generality, we will
construct cycles in G0 ⊕ G1\F . By the condition in the theorem, there exist
cycles of length from 4 to n− f1 in G1\F1. Also, the cycle of length 2n− f0− f1

exists. So, the construction of remaining cycles of length from n − f1 + 1 to
2n− f0 − f1 − 1 will be given.

Case 1: f0 ≤ f .
Subcase 1.1: n > f0 + 2f1.

There exists a hamiltonian cycle C0 of length n− f0 in G0\F0. On C0, we have
n − f0 different paths Pk’s of length k for every 1 ≤ k ≤ n − f0 − 1. Among
them, there exists a Pk joining xk and yk such that both x̄k and ȳk are fault-free,
since we have n − f0 candidates and each of f1 faulty vertices in G1 can block
at most two candidates. Then, C = (Pk, HH [ȳk, x̄k|G1, F1]) is a cycle of length
n− f1 + k, 1 ≤ k ≤ n− f0 − 1.

Subcase 1.2: n ≤ f0 + 2f1.
We find two free edges (x, x̄) and (y, ȳ) in E2. Such free edges exist since there
are n(≥ f + 4) candidates and f + 2 blocking elements. Note that there are no
terminals. We will construct a cycle by merging H [x, y|G0, F

′] or HH [x, y|G0, F
′]

with H [x̄, ȳ|G1, F
′′] or HH [x̄, ȳ|G1, F

′′]. Here, F ′ (resp. F ′′) is a set of faulty
elements in G0 (resp. G1) regarding some fault-free vertices as virtual faults. By
taking account of f − f0 vertices in G0\F0 excluding {x, y} as virtual faults one
by one, we can construct paths of length from n − f − 2 to n − f0 − 1 between
x and y. Also, by taking account of f − f1 vertices in G1\F1 excluding {x̄, ȳ}
as virtual faults one by one, we can construct paths of length from n− f − 2 to
n− f1 − 1 between x̄ and ȳ. By merging two paths in G0 and G1, we can obtain
cycles of length from 2n− 2f − 2 to 2n− f0− f1. If 2n− 2f − 2 ≤ n− f1 + 1, we
will have all cycles of desired lengths. First, we have 2n − 2f − 2 ≤ n − f1 + 2
since (2n− 2f − 2)− (n− f1 + 2) = n− 2f + f1 − 4 ≤ (f0 + 2f1)− 2f + f1 − 4 =
f0 + 3f1 − 2f − 4 = 2f1 − f − 2 ≤ 0. Furthermore, careful observation on the
above equation leads to 2n−2f−2 ≤ n−f1+1 unless n = f0 +2f1 and f0 = f1.

For the remaining case that n = f0 + 2f1 and f0 = f1, it is sufficient to
construct a cycle of length n− f1 + 1. To do this, we claim that there exists an
edge (x, y) in G0 such that both x̄ and ȳ are fault-free. Let W = {w|w ∈ V0\F0,

298 J.-H. Park, H.-S. Lim, and H.-C. Kim

w̄ /∈ F}, and let B = V0\(F0 ∪ W). It holds true that |W | ≥ |B| since |W | ≥
n−f0−f1 = f1 and |B| ≤ f1. Let C0 be a hamiltonian cycle in G0\F0. If there is
an edge (a, b) on C0 such that a, b ∈ W , we are done. Suppose otherwise, we have
|W | = |B| and the vertices on C0 should alternate in W and B. Since G0\F0

is hamiltonian-connected, we always have such an edge (x, y) joining vertices in
W . Note that |W |, |B| ≥ 2, and that if there are no edges between vertices in
W , there can not exist a hamiltonian path joining vertices in B. Then, we have
a desired cycle (x, y, HH [ȳ, x̄|G1, F1]) of length n− f1 + 1.

Case 2: f0 = f + 1.
We find a hamiltonian cycle C0 in G0\F0, and let xk and yk be two vertices
in C0 such that both x̄k and ȳk are fault-free and there is a path of length k
between xk and yk on C0, 1 ≤ k ≤ n − f0 − 1. The existence of such xk and
yk is due to the fact that the length of C0 is at least three and f1 = 1. Let Pk

be the path of length k on C0 whose endvertices are xk and yk. We construct
cycles (Pk, HH [ȳk, x̄k|G1, F1]), 1 ≤ k ≤ n − f0 − 1, of length from n − f1 + 1
to 2n− f0 − f1 − 1. The hypohamiltonian path in G1 between ȳk and x̄k exists
since f1 = 1 ≤ f .

Case 3: f0 = f + 2.
We select an arbitrary faulty vertex vf in G0, regarding it as a virtual fault-free
vertex, find a hamiltonian cycle C0 in G0\F ′, where F ′ = F0\vf . The existence
of C0 is due to |F ′| = f + 1. Let Pk be an arbitrary path of length k on C0\vf

whose endvertices are xk and yk, 1 ≤ k ≤ n − f0 − 1. Then, we have a cycle
(Pk, HH [ȳk, x̄k|G1, ∅]) of length n− f1 + k for every 1 ≤ k ≤ n− f0 − 1.

The proof of (b) follows immediately from the proof of (a), where the assump-
tion f ≥ 1 is used only when f1 = 1 in Case 2. ��

3 Restricted HL-Graphs

In this section, we will show that every m-dimensional restricted HL-graph
is m − 3-fault 2m − 3-panconnected and m − 2-fault almost pancyclic. Fault-
hamiltonicity of restricted HL-graphs was studied in [13] as follows.

Theorem 4. [13] Every m-dimensional restricted HL-graph, m ≥ 3, is m − 3-
fault hamiltonian-connected and m− 2-fault hamiltonian.

3.1 Panconnectivity of Restricted HL-Graphs

By induction on m, we will prove that every m-dimensional restricted HL-graph,
m ≥ 3, is m− 3-fault 2m− 3-panconnected. The proofs of lemmas are omitted.

Lemma 3. The 3-dimensional restricted HL-graph is 0-fault 3-panconnected.

To prove Lemmas 5 and 6, we employ a property on disjoint paths in G(8, 4)⊕
G(8, 4) shown in Lemma 4. Two paths joining {s1, s2} and {t1, t2} such that
{s1, s2} ∩ {t1, t2} = ∅ are defined to be either s1-t1 and s2-t2 paths or s1-t2 and
s2-t1 paths. Two paths P1 and P2 in a graph G are called disjoint covering paths

Panconnectivity and Pancyclicity of Hypercube-Like Networks 299

if V (P1) ∩ V (P2) = ∅ and V (P1) ∪ V (P2) = V (G), where V (Pi) is the set of
vertices in Pi.

Lemma 4. For any four distinct vertices s1, s2, t1, and t2 in G(8, 4)⊕G(8, 4),
there exists a vertex z /∈ {s1, s2, t1, t2} such that G(8, 4) ⊕ G(8, 4)\z has two
disjoint covering paths joining {s1, s2} and {t1, t2}.
Similar to Lemma 4, we can show that G(8, 4)⊕G(8, 4) has two disjoint covering
paths joining every {s1, s2} and {t1, t2} with {s1, s2} ∩ {t1, t2} = ∅.
Lemma 5. Every 4-dimensional restricted HL-graph is 1-fault 5-panconnected.

Lemma 6. Every 5-dimensional restricted HL-graph is 2-fault 7-panconnected.

By an inductive argument utilizing Theorem 1(a) and Lemmas 3, 5, and 6, we
have Theorem 5.

Theorem 5. Every m-dimensional restricted HL-graph, m ≥ 3, is m − 3-fault
2m− 3-panconnected.

Corollary 2. Every m-dimensional restricted HL-graph, m ≥ 3, is m − 3-fault
hypohamiltonian-connected.

A graph G is called f -fault q-edge-pancyclic if for any faulty set F with |F | ≤ f ,
there exists a cycle of every length from q to |V (G\F)| that passes through an
arbitrary fault-free edge. Of course, an f -fault q-panconnected graph is always
f -fault q + 1-edge-pancyclic. From Theorem 5, we have the following.

Theorem 6. Every m-dimensional restricted HL-graph, m ≥ 3, is m − 3-fault
2m− 2-edge-pancyclic.

3.2 Pancyclicity of Restricted HL-Graphs

To show that every m-dimensional restricted HL-graph is m − 2-fault almost
pancyclic, due to Lemmas 1 and 2, we assume that the faulty set F contains
m− 2 faulty vertices. The proofs of lemmas are omitted.

Lemma 7. The 3-dimensional restricted HL-graph is 1-fault almost pancyclic.

Lemma 8. Every 4-dimensional restricted HL-graph is 2-fault almost pancyclic.

From Theorem 3(a) and Lemmas 7 and 8, we have Theorem 7.

Theorem 7. Every m-dimensional restricted HL-graph, m ≥ 3, is m − 2-fault
almost pancyclic.

Corollary 3. (a) Twisted cube TQm, m ≥ 3, is m−2-fault almost pancyclic[18].
(b) Crossed cube CQm, m ≥ 3, is m − 2-fault almost pancyclic[17].
(c) Multiply twisted cube MQm, m ≥ 3, is m− 2-fault almost pancyclic.
(d) Both 0-Möbius cube and 1-Möbius cube of dimension m, m ≥ 3, are m − 2-
fault almost pancyclic[8].
(e) The m-Mcube, m ≥ 3, is m− 2-fault almost pancyclic.
(f) Generalized twisted cube GQm, m ≥ 3, is m− 2-fault almost pancyclic.
(g) Locally twisted cube LTQm, m ≥ 3, is m− 2-fault almost pancyclic.
(h) G(2m, 4), m odd and m ≥ 3, is m− 2-fault almost pancyclic[12].

300 J.-H. Park, H.-S. Lim, and H.-C. Kim

References

1. T. Araki, “Edge-pancyclicity of recursive circulants,” Inform. Proc. Lett. 88, pp.
287-292, 2003.

2. T. Araki and Y. Shibata, “Pancyclicity of recursive circulant graphs,” Inform.
Proc. Lett. 81, pp. 187-190, 2002.

3. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 5th printing,
American Elsevier Publishing Co., Inc., 1976.

4. J.-M. Chang, J.-S. Yang, Y.-L. Wang, and Y. Cheng, “Panconnectivity, fault-
tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs,”
Networks 44, pp. 302-310, 2004.

5. J. Fan, “Hamilton-connectivity and cycle-embedding of the Möbius cubes,” Inform.
Proc. Lett. 82, pp. 113-117, 2002.

6. J. Fan, X. Lin, X. Jia, R.W.H. Lau, “Edge-pancyclicity of twisted cubes,” in Proc.
of International Symposium on Algorithms and Computation ISAAC 2005, pp.
1090-1099, Dec. 2005.

7. J. Fan, X. Lin, X. Jia, “Node-pancyclicity and edge-pancyclicity of crossed cubes,”
Inform. Proc. Lett. 93, pp. 133-138, 2005.

8. S.-Y. Hsieh and N.-W. Chang, “Cycle embedding on the Möbius cube with both
faulty nodes and faulty edges,” in Proc. of 11th International Conference on Par-
allel and Distributed Systems ICPADS 2005, 2005.

9. S. Latifi, N. Bagherzadeh, and R.R. Gajjala, “Fault-tolerant embedding of linear
arrays and rings in the star graph,” Computers Elect. Engng. 23(2), pp. 95-107,
1997.

10. M. Ma and J.-M. Xu, “Panconnectivity of locally twisted cubes,” Applied Mathe-
matics Letters 19, pp. 673-677, 2006.

11. C.-D. Park and K.Y. Chwa, “Hamiltonian properties on the class of hypercube-like
networks,” Inform. Proc. Lett. 91, pp. 11-17, 2004.

12. J.-H. Park, “Cycle embedding of faulty recursive circulants,” Journal of KISS
31(2), pp. 86-94, 2004 (in Korean).

13. J.-H. Park, H.-C. Kim, and H.-S. Lim, “Fault-hamiltonicity of hypercube-like in-
terconnection networks,” in Proc. of IEEE International Parallel and Distributed
Processing Symposium IPDPS 2005, Denver, Apr. 2005.

14. J.-H. Park, H.-C. Kim, and H.-S. Lim, “Many-to-many disjoint path covers in
hypercube-like interconnection networks with faulty elements,” IEEE Trans. on
Parallel and Distributed Systems 17(3), pp. 227-240, Mar. 2006.

15. A. Sengupta, “On ring embedding in hypercubes with faulty nodes and links”,
Inform. Proc. Lett. 68, pp. 207-214, 1998.

16. A.S. Vaidya, P.S.N. Rao, S.R. Shankar, “A class of hypercube-like networks,” in
Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing SPDP
1993, pp. 800-803, Dec. 1993.

17. M.-C. Yang, T.-K. Li, J.J.M. Tan, and L.-H. Hsu, “Fault-tolerant cycle-embedding
of crossed cubes,” Inform. Proc. Lett. 88, pp. 149-154, 2003.

18. M.-C. Yang, T.-K. Li, J.J.M. Tan, and L.-H. Hsu, “On embedding cycles into faulty
twisted cubes,” Information Sciences 176, pp. 676-690, 2006.

Embedding Starlike Trees into Hypercube-Like
Interconnection Networks�

Jung-Heum Park1, Hyeong-Seok Lim2, and Hee-Chul Kim3

1 School of Computer Science and Information Engineering,
The Catholic University of Korea, Korea

j.h.park@catholic.ac.kr
2 School of Electronics and Computer Engineering,

Chonnam National University, Korea
hslim@chonnam.ac.kr

3 Computer Science and Information Communications Engineering Division,
Hankuk University of Foreign Studies, Korea

hckim@hufs.ac.kr

Abstract. A starlike tree (or a quasistar) is a subdivision of a star tree.
A family of hypercube-like interconnection networks called restricted HL-
graphs includes many interconnection networks proposed in the literature
such as twisted cubes, crossed cubes, multiply twisted cubes, Möbius
cubes, Mcubes, and generalized twisted cubes. We show in this paper
that every starlike tree of degree at most m with 2m vertices is a spanning
tree of m-dimensional restricted HL-graphs.

Keywords: Spanning trees, restricted HL-graphs, path partition, inter-
connection networks.

1 Introduction

Much research has been done to investigate whether an interconnection network
contains a certain class of trees as spanning subgraphs. For spanning trees of
hypercubes, one of well-known interconnection networks, various trees were in-
vestigated such as binomial trees, caterpillars[1], double-rooted complete binary
trees[3], starlike and double starlike trees[2]. Other containment results can be
found in [3]. This paper deals with starlike trees for spanning trees of a family
of interconnection networks called restricted HL-graphs proposed in [6].

A d-star is a tree of degree d isomorphic to a complete bipartite graph K1,d. A
d-starlike tree (or a d-quasistar) is a tree formed from a d-star by the insertion of
vertices of degree two into the edges. A d-double starlike tree is a tree obtained
by connecting via an edge the roots of a d-starlike tree and a d′-starlike tree
with d′ ≤ d. Examples of a d-star, a d-starlike tree, and a d-double starlike
tree are shown in Figure 1. For two graphs G and H , G spans H if there is
a one-to-one mapping φ of V (G) into V (H) such that if (u, v) ∈ E(G) then

� This work was supported by grant No. R05-2003-000-11506-0 from the Basic Re-
search Program of the Korea Science & Engineering Foundation.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 301–310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

302 J.-H. Park, H.-S. Lim, and H.-C. Kim

(φ(u), φ(v)) ∈ E(H). A bipartite graph G is called equitable if G has a proper
bicoloring such that both color sets have the same cardinality. Nebeský[4] showed
that every equitable d-starlike tree with 2m vertices, d ≤ m, spans m-dimensional
hypercube Qm. No non-equitable d-starlike tree with 2m vertices spans Qm since
Qm itself is equitable. Kobeissi and Mollard[2] showed that every equitable d-
double starlike tree with 2m vertices, d ≤ 5 and d + 1 ≤ m, spans Qm.

(a) 4-star (b) 4-starlike
tree

(c) 4-double starlike tree

v
2

v
0

v
1

v
5

v
4

v
3

v
7

v
6

(d) G(8, 4)

Fig. 1.

Many interconnection networks can be expanded into higher dimensional net-
works by connecting two lower dimensional networks. As a graph modeling of
the expansion, we consider the graph obtained by connecting two graphs G0 and
G1 with n vertices. We denote by Vi and Ei the vertex set and edge set of Gi,
i = 0, 1, respectively. We let V0 = {v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}.
With respect to a permutation M = (i1, i2, . . . , in) of {1, 2, . . . , n}, we can
“merge” the two graphs into a graph G0 ⊕M G1 with 2n vertices in such a
way that the vertex set V = V0 ∪ V1 and the edge set E = E0 ∪ E1 ∪E2, where
E2 = {(vj , wij)|1 ≤ j ≤ n}. We denote by G0 ⊕ G1 a graph obtained by merg-
ing G0 and G1 w.r.t. an arbitrary permutation M . Here, G0 and G1 are called
components of G0 ⊕G1.

Vaidya et al.[7] introduced a class of hypercube-like interconnection networks,
called HL-graphs, which can be defined by applying the ⊕ operation repeatedly
as follows: HL0 = {K1}; for m ≥ 1, HLm = {G0⊕G1|G0, G1 ∈ HLm−1}. Then,
HL1 = {K2}; HL2 = {C4}; HL3 = {Q3, G(8, 4)}. Here, C4 is a cycle graph with
4 vertices, Q3 is a 3-dimensional hypercube, and G(8, 4) is a recursive circulant
which is isomorphic to twisted cube TQ3 and Möbius ladder with four spokes
(see Figure 1(d)). In [6], a subclass of nonbipartite HL-graphs, called restricted
HL-graphs was introduced by the authors which is defined recursively as follows:
RHLm = HLm for 0 ≤ m ≤ 2; RHL3 = HL3\Q3 = {G(8, 4)}; RHLm = {G0⊕
G1|G0, G1 ∈ RHLm−1} for m ≥ 4. A graph which belongs to RHLm is called
an m-dimensional restricted HL-graph. Many of the nonbipartite hypercube-
like interconnection networks such as crossed cube, Möbius cube, twisted cube,
multiply twisted cube, Mcube, generalized twisted cube, etc. proposed in the
literature are restricted HL-graphs. Some works on HL-graphs and restricted
HL-graphs were appeared in the literature; for example, hamiltonicity of HL-
graphs[5], fault-hamiltonicity of restricted HL-graphs[6].

Embedding Starlike Trees into Hypercube-Like Interconnection Networks 303

Concerning starlike trees as spanning trees of restricted HL-graphs, this paper
shows two main theorems in the following.

Theorem 1. Every d-starlike tree with 2m vertices is a spanning tree of m-
dimensional restricted HL-graphs for any 1 ≤ d ≤ m. Furthermore, an arbitrary
vertex of the restricted HL-graph plays a role of the root of the starlike tree.

To prove Theorem 1, we rely on path partitionability of restricted HL-graphs.
The path partition problem with which we are concerned in this paper is defined
as follows. Given k distinct sources s1, s2, . . . , sk in a graph G and k positive
integers l1, l2, . . . , lk with

∑
1≤i≤k li = |V (G)|, a k-path partition is a set of k

vertex-disjoint paths {P1, P2, . . . , Pk} such that each Pi is an si-path (that is,
si is an endvertex of Pi) with li vertices and

⋃
1≤i≤k V (Pi) = V (G). A graph G

is called to be k-path partitionable if for any k distinct sources associated with
positive integers li’s with

∑
1≤i≤k li = |V (G)|, G has a k-path partition.

Theorem 2. Every m-dimensional restricted HL-graph is k-path partitionable
for any 1 ≤ k ≤ m − 1, m ≥ 2.

The two main theorems utilize fault-hamiltonicity of restricted HL-graphs. A
graph G is called f -fault hamiltonian (resp. f -fault hamiltonian-connected) if
there exists a hamiltonian cycle (resp. if each pair of vertices are joined by a
hamiltonian path) in G\F for any set F of faulty vertices and/or edges with
|F | ≤ f . It was shown in [6] that every m-dimensional restricted HL-graph,
m ≥ 3, is m − 3-fault hamiltonian-connected and m− 2-fault hamiltonian.

Throughout this paper, a path in a graph is represented as a sequence of
vertices. We denote by H [v, w|G, F] a hamiltonian path in G\F joining a pair
of fault-free vertices v and w in a graph G with a set F of faulty elements. Gm

denotes an arbitrary m-dimensional restricted HL-graph. By definition, Gm is
isomorphic to G0⊕G1 for some m−1-dimensional restricted HL-graphs G0 and
G1. For a vertex v in G0 ⊕G1, we denote by v̄ the vertex adjacent to v which is
in a component different from the component in which v is contained.

2 Proof of Theorem 1

Each subtree of a starlike tree forms a path. We denote by T (a1, a2, . . . , ad) a
d-starlike tree with root r and r-paths of length ai, 1 ≤ i ≤ d. The starlike tree
has
∑

1≤i≤d ai +1 vertices. We assume without loss of generality that a1 ≥ a2 ≥
· · · ≥ ad.

Lemma 1. For d = 1, 2, every d-starlike tree with 2m vertices is a spanning tree
of Gm, m ≥ 2.

Proof. Let C = (x0, x1, . . . , x2m−1) be a hamiltonian cycle in Gm. The d-starlike
trees rooted at x0 can be constructed by removing an appropriate edge from C.
Precisely speaking, C\(x0, x2m−1) and C\(xa1 , xa1+1) are the desired trees for
d = 1 and d = 2, respectively. ��

304 J.-H. Park, H.-S. Lim, and H.-C. Kim

Lemma 2. Every 3-starlike tree with 2m vertices is a spanning tree of Gm,
m ≥ 3.

Proof. For m ≥ 4, we first find T (b, a3) rooted at an arbitrary vertex in G0

(or symmetrically in G1), where b = 2m−1 − a3 − 1. We have b ≥ 1 since
a3 + 1 ≤ (2m − 1)/3 + 1 < 2m−1 for any m ≥ 4. Let the r-path of length b be
r-z path, that is, z is an endvertex of the path. And then, we find a hamiltonian
path P = H [z̄, r̄|G1, ∅] in G1 between z̄ and r̄. We merge the r-z path and P
with two edges (z, z̄) and (r̄, r) into a cycle C of length a1 +a2 +1. The tree can
be obtained by removing an appropriate edge from C. Now, let m = 3. Gm is
isomorphic to G(8, 4). We construct a starlike tree rooted at v0. When a3 = 1,
letting x be any vertex in G(8, 4) adjacent to v0, (v0, x) is a path of length
a3 and the other two paths are obtained by removing an appropriate edge in
a hamiltonian cycle in G(8, 4)\x. When a3 ≥ 2 (by assumption, a1 = 3 and
a2, a3 = 2), we explicitly construct three paths (v0, v7, v6, v5), (v0, v4, v3), and
(v0, v1, v2). This completes the proof. ��

Lemma 3. Every 4-starlike tree with 2m vertices is a spanning tree of Gm,
m ≥ 4.

Proof. Let us consider the case of a3 + a4 ≤ 2m−1 − 2 first. Let T (b, a3, a4) be a
starlike tree rooted at any vertex r in G0, where b = 2m−1−a3−a4−1, and the
r-path of length b be r-z path. The r-z path and H [z̄, r̄|G1, ∅] are merged with
(z, z̄) and (r̄, r) into a cycle of length a1 +a2 +1. Removing an appropriate edge
from the cycle results in a desired tree. Now, we assume that a3 +a4 ≥ 2m−1−1,
that is, a1 = a2 = a3 = 2m−2 and a4 = 2m−2 − 1. When m ≥ 5, similar
to the previous case, the tree can be constructed by using T (b, a3 − 1, a4) and
H [z̄, r̄|G1, {x̄}], where b = 1 and x is the endvertex of r-path of length a3 − 1,
x = r. The hamiltonian path exists since G1 is 1-fault hamiltonian-connected.
When m = 4, we find T (3, 2, 2) in G0. Let r-paths of length 2 be r-x path and
r-y path, respectively. And then, we find a 3-path partition for r̄, x̄, and ȳ with
associated weights 4, 2, 2, respectively. The tree in G0 and the 3-path partition
in G1 are merged into the desired tree. The existence of path partition is due to
Lemma 5 in Section 3. ��

Lemma 4. For d ≥ 5, every d-starlike tree with 2m vertices is a spanning tree
of Gm, m ≥ d.

Proof. For the case of a1 > 2m−1, similar to the proof of Lemma 3, we find
T (b, a3, a4, . . . , ad) in G0 with b = 2m−1−

∑
3≤i≤d ai−1. The r-z path, the r-path

of length b is merged with H [z̄, r̄|G1, ∅] into a cycle of length a1+a2+1. It suffices
to remove an appropriate edge from the cycle. Now, we assume a1 ≤ 2m−1. We
let a′

2, a
′
3, . . . , a

′
d be positive integers satisfying (i) 1 +

∑
2≤i≤d a′

i = 2m−1, (ii)
a′

i = ai for i = d − 1, d, and (iii) a′
i ≤ ai for every 2 ≤ i ≤ d − 2. To show such

a′
i’s exist, we claim that ad−1 + ad + (d − 2) ≤ 2m−1 for any 5 ≤ d ≤ m. The

proof of the claim is by a simple calculation using ad−1 + ad ≤ 2(2m − 1)/d,
and omitted here. Moreover, we can see that there exist a′

i’s such that for some

Embedding Starlike Trees into Hypercube-Like Interconnection Networks 305

p, 2 ≤ p ≤ d − 1, a′
i < ai for all 2 ≤ i < p and a′

i = ai for all p ≤ i ≤ d.
Then, we find T (a′

2, a
′
3, . . . , a

′
d) in G0. Let the r-path of length a′

i be r-zi path
for each 2 ≤ i < p. To obtain a desired tree, it suffices to construct a p− 1-path
partition for r̄ and z̄i for all 2 ≤ i < p with associated weights a1 and ai − a′

i’s,
respectively. We have p− 1 ≤ d − 2 ≤ m− 2. The existence of path partition is
due to Theorem 2. ��

3 Path Partitions

Given k distinct sources s1, s2, . . . , sk in a graph G associated with k positive
integers l1, l2, . . . , lk, respectively, satisfying

∑
1≤i≤k li = |V (G)|, a k-path par-

tition consists of k disjoint paths Pi with li vertices, 1 ≤ i ≤ k, where each Pi

is an si-path. The sink of Pi is the endvertex of Pi different from si if li ≥ 2;
if li = 1, si is the sink as well as the source of Pi. For m = 2, 3, Theorem 2
holds true since the path partitions are constructed straightforwardly from the
hamiltonian cycles/paths. For some li’s, the 3-dimensional restricted HL-graph
G(8, 4) has a 3-path partition for any 3 sources as follows.

Lemma 5. G(8, 4) has a 3-path partition for any three sources if (l1, l2, l3) =
(3, 3, 2), (4, 2, 2), or (5, 2, 1).

Proof. The proof is by an immediate inspection and omitted here. ��

For m ≥ 4, we will prove a stronger result than Theorem 2 claims. We are to
pose an additional constraint on the k-path partition that for any vertex subsets
Wi with |Wi| ≤ m − k, 1 ≤ i ≤ k, the sink of each si-path should never be
contained in Wi. Here, we assume si /∈ Wi whenever li = 1. Otherwise, no graph
has such a k-path partition. Moreover, we assume without loss of generality that
no sources are contained in Wi for all i. A graph G is called strongly k-path
partitionable if G has a k-path partition satisfying the additional constraint for
any si, li, and Wi, 1 ≤ i ≤ k. Hereafter in this section, we will prove Theorem 3
by an induction on m.

Theorem 3. Every m-dimensional restricted HL-graph Gm is strongly k-path
partitionable for any 1 ≤ k ≤ m− 1, m ≥ 4.

Obviously, the theorem holds true for k = 1. From now on, we assume k ≥ 2.

Lemma 6. Every 4-dimensional restricted HL-graph G(8, 4)⊕G(8, 4) is strongly
k-path partitionable for any 2 ≤ k ≤ 3.

Proof. The proof is omitted due to space limit. ��

Let m ≥ 5. We denote by k0 and k1 the numbers of sources in G0 and G1,
respectively. Of course, k0 + k1 = k. Let I0 = {1, 2, . . . , k0} and I1 = {k0 +
1, k0 +2, . . . , k0 +k1}. We assume that S0 = {si|i ∈ I0} and S1 = {sj |j ∈ I1} are
sets of sources contained in G0 and G1, respectively, and that l1 ≥ l2 ≥ · · · ≥ lk0

306 J.-H. Park, H.-S. Lim, and H.-C. Kim

and lk0+1 ≥ · · · ≥ lk0+k1 . Let W 0
i = Wi ∩ V (G0) and W 1

i = Wi ∩ V (G1) for
each i ∈ I0 ∪ I1. We denote by k-PP[{(s1, l1, W1), . . . , (sk, lk, Wk)}|G] a k-path
partition in a graph G for si, li, and Wi, 1 ≤ i ≤ k, if any. Let Pi be the si-path
in the path partition, and let t(Pi) be the sink of Pi. We let L0 =

∑
i∈I0

li and
L1 =

∑
j∈I1

lj . If L0 = L1, we are done since the union of k0-path partition in
G0 and k1-path partition in G1 results in a k-path partition in Gm. We assume
without loss of generality L0 > L1.

3.1 k = 2

When l2 = 1, we have P2 = (s2) and P1 = H [s1, x|Gm, {s2}] for some vertex
x ∈ W1 ∪ {s1, s2}. When l2 = 2, for some vertex y adjacent to s2 with y ∈
W2 ∪ {s1}, we have P2 = (s2, y) and P1 = H [s1, x|Gm, {s2, y}] for some vertex
x /∈ W1 ∪ {s1, s2, y}. Note that Gm is 2-fault hamiltonian-connected. Let l2 ≥ 3.
We have two cases.

Case 1. s1, s2 ∈ V (G0).
When |W 0

2 | ≤ m − 3 and l2 < 2m−1, we find 2-PP[{(s1, l
′
1, ∅), (s2, l2, W

0
2)}|G0],

where l′1 = 2m−1 − l2. Let P ′
i be the si-path in the 2-PP. Then, P2 = P ′

2

and P1 = (P ′
1, H [x̄, y|G1, ∅]), where x = t(P ′

1) and y is a vertex in G1 with
y /∈ W1 ∪ {x̄}. When |W 0

2 | ≤ m − 3 and l2 = 2m−1 (l1 = 2m−1), we let P2 =
(H [s2, x̄|G0, {s1}], x) for some vertex x in G1 with x /∈ W2 and x̄ = s1, s2, and let
P1 = (s1, H [s̄1, y|G1, {x}]) for some vertex y in G1 with y /∈ W1∪{x, s̄1}. Finally
when |W 0

2 | = m − 2, we find 2-PP[{(s1, l
′
1, ∅), (s2, l

′
2, ∅)}|G0], where l′2 = l2 − 1

and l′1 = 2m−1− l′2. Let P ′
i be the si-path in the 2-PP. Then, P2 = (P ′

2, x̄), where
x = t(P ′

2), and P1 = (P ′
1, H [ȳ, z|G1, {x̄}]), where y = t(P ′

1) and z is a vertex in
G1 with z /∈ W1 ∪ {x̄, ȳ}.
Case 2. s1 ∈ V (G0) and s2 ∈ V (G1).
When |W 1

2 | ≤ m−3 and l1 ≥ 2m−1+2, we let x be a vertex in G1 with x /∈ {s2, s̄1}
and assume x ∈ W 1

1 if |W 1
1 | = m − 2. Find 2-PP[{(x, l′1, W

′
1), (s2, l2, W

1
2)}|G1],

where l′1 = 2m−1− l2 and W ′
1 = W 1

1 \x. Let P ′
1 and P ′

2 be the x-path and s2-path
in the partition, respectively. Then, P1 = (H [s1, x̄|G0, ∅], P ′

1) and P2 = P ′
2. When

|W 1
2 | ≤ m−3 and l1 = 2m−1+1, letting x be a vertex in G1 with x /∈ W1∪{s2, s̄1},

we have P1 = (H [s1, x̄|G0, ∅], x) and P2 = H [s2, y|G1, {x}] for some vertex y in
G1 with y /∈ W2∪{x, s2}. When |W 1

2 | = m−2 and s̄2 = s1, let (x1, x2, . . . , x2m−1)
be an s̄2-s1 hamiltonian path in G0. Then P2 = (s2, x1, x2, . . . , xl2−1) and P1 =
(x2m−1 , x2m−1−1, . . . , xl2 , H [x̄l2 , y|G1, {s2}]) for some vertex y in G1 with y /∈
W1 ∪ {s2, x̄l2}. When |W 1

2 | = m − 2 and s̄2 = s1, for a vertex y in G1 with
y /∈ W1 ∪ {s2}, let (x1, x2, . . . , x2m−1) be an s2-y hamiltonian path in G1. Then,
P2 = (x1, x2, . . . , xl2−1, ¯xl2−1) and P1 = (H [s1, x̄l2 |G0, { ¯xl2−1}], xl2 , . . . , x2m−1).

3.2 1 ≤ k1 ≤ k − 2 (k0 ≥ 2)

First, we will develop a basic procedure PP-A for constructing a k-path partition.
The procedure is applicable to the most of the subcases. Let X̄ = {x̄|x ∈ X} for
a vertex subset X of G0 ⊕G1.

Embedding Starlike Trees into Hypercube-Like Interconnection Networks 307

Procedure PP-A({(s1, l1, W1), . . . , (sk, lk, Wk)}, G0 ⊕G1)

1. Find l′i and l′′i , i ∈ I0, satisfying (A1) l′i + l′′i = li, 1 ≤ l′i ≤ li, (A2)
∑

i∈I0
l′i =

2m−1, and (A3) l′i = li for some i ∈ I0. Let I ′0 = {i ∈ I0|l′′i ≥ 1} and
k′
0 = |I ′0|.

2. Find k0-PP[{(s1, l
′
1, W

′
1), . . . , (sk0 , l

′
k0

, W ′
k0

)}|G0], where W ′
i = W 0

i if l′′i = 0;
W ′

i = (W̄ 1
i ∪S̄1)\S0 if l′′i = 1; W ′

i = S̄1 if l′′i ≥ 2. Let xi be the sink of si-path
in the k0-PP.

3. Find k′
0 + k1-PP[{(x̄i, l

′′
i , W 1

i)|i ∈ I ′0} ∪ {(sj , lj, W
1
j)|j ∈ I1}|G1].

4. The two path partitions are merged with edges (xi, x̄i) for i ∈ I ′0.

Lemma 7. When L0 ≥ 2m−1 + 2, Procedure PP-A constructs a k-PP unless
(a) k0 = 2, k1 = 1, l1 = 2m−1, l2 = 2m−1 − 1, l3 = 1, and s̄1 = s3, or (b)
k0 = k1 = 2, l1 = l2 = 2m−1− 1, l3 = l4 = 1, and {s̄1, s̄2} = {s3, s4}. There also
exist k-PP’s for the two exceptional cases.

Proof. Unless k0 = 2 and l2 = 2m−1 − 1, we claim that there exist l′i and l′′i ,
i ∈ I0, satisfying additional two conditions (A4) l′i = li if li ≤ 3 and (A5) if
li ≥ 4, either l′i = li or li = l′i + l′′i with l′i, l

′′
i ≥ 2, as well as A1, A2, and A3. The

proof of the claim is omitted. The k0-PP exists in G0 since |W ′
i | ≤ (m− 1)− k0

for every i. Note that k1 = k − k0 ≤ (m − 1) − k0. The existence of k′
0 + k1-PP

in G1 is straightforward.
For the case of k0 = 2 and l2 = 2m−1 − 1, in a very similar way, we will

construct a k-PP excluding the two exceptional cases. The k-PP’s for the excep-
tional cases will be obtained by using fault-hamiltonicity of G0 and G1. When
k1 = 1 and l1 = 2m−1 − 1 (l3 = 2), assuming w.l.o.g. s̄1 = s3, we let l′1 = 1
and l′2 = l2, and apply Procedure PP-A. Then, we obtain a desired k-PP. Let
k1 = 1 and l1 = 2m−1 (l3 = 1). Unless s̄1 = s3, letting l′1 = 1 and l′2 = l2,
Procedure PP-A is applied. For the exceptional case of (a), we first find 2-
PP[{(s1, l

′
1, W

′
1), (s2, l

′
2, W

′
2)}|G0], where l′1 = 2 and l′2 = l2 − 1. Let P ′

i be the
si-path in the 2-PP of G0 and let xi = t(P ′

i). Then, we have P2 = (P ′
2, x̄2).

To construct P1, we show that there exists a vertex y /∈ W 1
1 ∪ {s3, x̄2} in

G1 such that x̄1 and y are joined by a hamiltonian path in G1\{s3, x̄2}. If
m ≥ 6, the existence of y is obvious since G1 is 2-fault hamiltonian-connected.
If m = 5, remembering |W 1

1 | ≤ 2, the existence can be verified. Now, we have
P1 = (P ′

1, H [x̄1, y|G1, {s3, x̄2}]).
When k1 = 2, we have l1 = l2 = 2m−1 − 1 and l3 = l4 = 1. Unless

{s̄1, s̄2} = {s3, s4}, assuming s̄1 = s3, s4, Procedure PP-A with l′1 = 1 and
l′2 = l2 produces a desired 2-PP. Now, we consider the case of {s̄1, s̄2} = {s3, s4}
and assume w.l.o.g. s̄1 = s3 and s̄2 = s4. When m ≥ 6, we first choose a vertex
y in G1 with y ∈ W 1

2 ∪ {s3, s4}. Let C1 = (w0, w1, . . . , w2m−1−4) be a hamilto-
nian cycle in G1\{s3, s4, y}. For each vertex v in G0 adjacent to s1 such that
v = s2, ȳ, we can construct a path Pv of length 2m−1 − 1 in such a way that
Pv = (s1, v, wi, w(i+1) mod 2m−1 , . . . , w(i−1) mod 2m−1), where wi = v̄. There are at
least m − 3 such paths Pv. Among them, at least one path have the endvertex
w(i−1) mod 2m−1 ∈ W 1

1 . Note that |W 1
1 | ≤ |W1| ≤ m − k = m − 4. Let Pv be

308 J.-H. Park, H.-S. Lim, and H.-C. Kim

such a path. Then, we have P1 = Pv and P2 = (H [s2, ȳ|G0, {s1, v}], y). When
m = 5, there exists y in G1 such that y ∈ W 1

2 ∪ {s3, s4} and G1\{s3, s4, y}
has a hamiltonian cycle. Let C1 = (w0, w1, . . . , w12) be a hamiltonian cycle
in G1\{s3, s4, y}. There exist a vertex v in G0 adjacent to s1 such that s2

and ȳ are joined by a hamiltonian path in G0\{s1, v}. Then, we have P2 =
(H [s2, ȳ|G0, {s1, v}], y). Let v̄ = wi. Assuming w.l.o.g. w(i−1) mod 16 ∈ W 1

1 , we
have P1 = (s1, v, wi, w(i+1) mod 16, . . . , w(i−1) mod 16). Note that |W1|, |W2| ≤ 1.
Therefore, we have the lemma. ��

Lemma 8. When L0 = 2m−1 + 1, Procedure PP-A constructs a k-PP (a) if for
some j ∈ I1, s̄j ∈ S0, or (b) if for some i ∈ I0, either li ≥ 3 and |W 1

i | < m− k
or li = 2 and s̄i /∈ S1 ∪ W 1

i . For the remaining cases, there also exist k-PP’s.

Proof. The proof is omitted due to space limit. ��

3.3 k1 = k − 1 (k0 = 1)

Let Δ = l1−2m−1. Then, L0−Δ = L1+Δ = 2m−1. We denote by PR the reverse
of a path P , that is, PR = (vl, vl−1, . . . , v1) for P = (v1, v2, . . . , vl). A concatena-
tion of two paths (x1, . . . , xp) and (y1, . . . , yq) is the path (x1, . . . , xp, y1, . . . , yq).

Case 1. for all j ∈ I1, lj = 1 or lj ≥ 2 and |W 1
j | < m− k.

When k < m − 1, we let α be a vertex in G1 with ᾱ = s1 and α /∈ S1 ∪ W 1
1 if

|W 1
1 | < m − k or Δ = 1; if |W 1

1 | = m − k and Δ ≥ 2, let α be a vertex in W 1
1

with ᾱ = s1 and α /∈ S1. We find k-PP[{(α, Δ, W ′
1)} ∪ {(sj , lj, W

1
j)|j ∈ I1}|G1],

where W ′
1 = W 1

1 \α. And then, the k-PP in G1 and H [s1, ᾱ|G0, ∅] are merged with
(ᾱ, α). Now, let k = m−1. Notice that for all j ∈ I1, lj = 1 or lj ≥ 2 and W 1

j = ∅.
Letting l′2 = l2 + Δ, we find k1-PP[{(s2, l

′
2, W

1
1)} ∪ {(sj , lj , W

1
j)|j ∈ I1\2}|G1].

Let the s2-path in the k1-PP be (v1, v2, . . . , vl′2) with v1 = s2, and let x = vl2+1

and y = vl′2 . To obtain a k-PP, it suffices to construct P1 and P2. Let P2 =
(v1, . . . , vl2). If x̄ = s1, we have P1 = (H [s1, x̄|G0, ∅], vl2+1, . . . , vl′2). Assume x̄ =
s1. If Δ ≥ 2, we have P1 = (s1, vl2+1, . . . , vl′2 , H [ȳ, z|G0, {s1}]) for some vertex z

in G0 with z /∈ {s1, ȳ} ∪W 0
1 . If Δ = 1, we observe l2 ≥ 5. Letting u = vl2−2 and

v = vl2−1, we find 3-PP[{(ū, 2, W 0
2), (v̄, 2m−1 − 3, W 0

1), (s1, 1, ∅)}|G0]. Then, P2

is a concatenation of (v1, . . . , vl2−2) and the ū-path, and P1 is a concatenation
of (s1, vl′2 , . . . , vl2 , vl2−1) and the v̄-path.

Case 2. for some j ∈ I1, lj ≥ 2 and |W 1
j | = m− k.

Let a ∈ I1 be an index such that la ≥ 2, |W 1
a | = m − k (|W 0

a | = 0), and la ≥ lj
for any j ∈ I1 with lj ≥ 2 and |W 1

j | = m − k. Furthermore, we assume s̄a = s1

if la = 2 and for some j ∈ I1 with j = a, lj ≥ 2 and |W 1
j | = m − k. We first

find k1-PP[{(sa, l
′
a, W 1

1)} ∪ {(sj , lj , W
1
j)|j ∈ I1\a}|G1], where l′a = la + Δ. Let

the sa-path in the k1-PP be (v1, v2, . . . , vl′a). Let z = vla , x = vla+1, y = vl′a ,
and v = vla−1. And let u = vla−2 if la ≥ 3. We denote by Qz the sa-z subpath
(v1, . . . , vla) of the sa-path. Let Rz = (vla+1, . . . , vl′a) so that the sa-path is a
concatenation (Qz, Rz) of Qz and Rz. Similarly, let Qv = (v1, . . . , vla−1) and
Rv = (vla , . . . , vl′a), etc. To obtain a k-PP, it remains to construct Pa and P1.

Embedding Starlike Trees into Hypercube-Like Interconnection Networks 309

When z /∈ W 1
a , we have Pa = Qz and P1 = (H [s1, x̄|G0, ∅], Rz) if x̄ = s1; if

x̄ = s1, Pa = (Qv, v̄) and P1 = (H [s1, z̄|G0, {v̄}], Rv).
Let z ∈ W 1

a . When v̄ = s1, let Pa = (Qv, v̄). If z̄ = s1, P1 = (H [s1, z̄|G0, {v̄}],
Rv); otherwise, P1 = (s1, Rv, H [ȳ, w|G0, {s1, v̄}]) for some w in G0 with w /∈
{s1, v̄, ȳ} ∪W 0

1 . When v̄ = s1 and la ≥ 3, we have two constructions. If k ≥ 4 or
k = 3 and |W 0

1 | < m−k, we find 3-PP[{(ū, 2, ∅), (s1, 1, ∅), (ȳ, 2m−1−3, W 0
1)}|G0].

Then, Pa is a concatenation of Qu and the ū-path, and P1 is a concatenation of
(s1, Ru) and the ȳ-path. If k = 3 and |W 0

1 | = m−k, letting w /∈ {s1, ȳ} be a vertex
in G0 adjacent to ū, we have Pa = (Qu, ū, w) and P1 = (H [s1, ȳ|G0, {ū, w}], RR

u).
When v̄ = s1 and la = 2 (sa = v, s̄a = s1), by the choice of sa, for every

j ∈ I1\a, lj = 1 or lj ≥ 2 and |W 1
j | < m−k. Let k < m−1 first. If W 1

a \W 1
1 = ∅,

let t1 be a vertex in W 1
a \W 1

1 and let W ′
a = W 1

a \t1 and W ′
1 = ∅; otherwise

(W 1
a = W 1

1), let t1 be a vertex in W 1
a and let W ′

a = W 1
a \t1 and W ′

1 = W 1
1 \t1. Find

k1+1-PP[{(t1, Δ, W ′
1), (sa, la, W ′

a)}∪{(sj , lj, W
1
j)|j ∈ I1\a}|G1]. If W 1

a \W 1
1 = ∅,

P1 is obtained by concatenating H [s1, w̄|G0, ∅] and the reverse of t1-path in
k1 + 1-PP, where w is the sink of t1-path. If W 1

a = W 1
1 and Δ ≥ 2, P1 is a

concatenation of H [s1, t̄1|G0, ∅] and the t1-path in the k1 + 1-PP.
If W 1

a = W 1
1 and Δ = 1, we have two constructions. For m ≥ 6, we let b be

an index in I1 such that lb ≥ lj for any j ∈ I1\a. Obviously, lb ≥ 5. Letting
l′b = lb + 1, we find k1-PP[{(sb, l

′
b, W

1
1)} ∪ {(sj , lj , W

1
j)|j ∈ I1\b}|G1]. Let the

sb-path in the k1-PP be (w1, . . . , wlb , wlb+1), and let p = wlb−2 and q = wlb−1.
There exists a vertex w in G0 adjacent to p̄ with w /∈ {s1, q̄} ∪ W 0

b . Then, we
have Pb = (w1, . . . , wlb−2, p̄, w) and P1 = (H [s1, q̄|G0, {p̄, w}], wlb−1, wlb , wlb+1).
For m = 5 (k = 3), let ta be a vertex in G1 adjacent to sa with ta /∈ {sb} ∪W 1

a .
Let Pa = (sa, ta). There exists a vertex w in G1 with w /∈ {sa, ta, sb} ∪W 1

1 such
that G1\{sa, ta, w} has a hamiltonian cycle C. Then, P1 = (H [s1, w̄|G0, ∅], w).
Pb is obtained by removing one of the two edges on C incident to sb since
|W 1

b | < m − k = 1. Finally, let k = m − 1. Note that W 1
j = ∅ for any j ∈ I1\a.

Letting l′b = lb + Δ, we find k1-PP[{(sb, l
′
b, W

1
1)} ∪ {(sj , lj, W

1
j)|j ∈ I1\b}|G1].

Let the sb-path in the k1-PP be (w1, . . . , wl′
b
) and let x = wlb+1. Then, we have

Pb = (w1, . . . , wlb) and P1 = (H [s1, x̄|G0, ∅], wlb+1, . . . , wl′b).

3.4 k1 = 0 (k0 = k)

Case 1. k ≤ m− 2.
Let us first consider the case that there exists i ∈ I0 such that li = 1 or li ≥ 2
and |W 0

i | < m − k. We are to define l′i and l′′i , i ∈ I0, satisfying (i) l′i + l′′i = li,
1 ≤ l′i ≤ li, (ii)

∑
i∈I0

l′i = 2m−1, (iii) l′i = li for some i ∈ I0 such that li = 1 or
li ≥ 2 and |W 0

i | < m − k, (iv) l′i < li for all i with li ≥ 2 and |W 0
i | = m − k,

and (v) l′i = li for all i with li = 2 and |W 0
i | < m − k, and either l′i = li or

l′i ≤ li − 2 for all i with li ≥ 3 and |W 0
i | < m − k. It is not difficult to see that

there exist l′i’s and l′′i ’s satisfying all the above five conditions unless (a) k = 3,
l1 = l2 = 2m−1 − 1, l3 = 2, |W 0

1 |, |W 0
2 | < m − k, and |W 0

3 | = m − k, or (b) for
some p ∈ I0, lp ≥ 2m−1 − (k − 2), |W 0

p | < m − k, li ≥ 2 and |W 0
i | = m − k for

any i ∈ I0\p.

310 J.-H. Park, H.-S. Lim, and H.-C. Kim

We let W ′
i = ∅ if l′i = 1; W ′

i = W 0
i if 2 ≤ l′i = li; W ′

i = ∅ if 2 ≤ l′i < li. Then,
|W ′

i | < m − k for every i. There exists a k0-PP[{(si, l
′
i, W

′
i)|i ∈ I0}|G0]. Letting

I ′0 = {i ∈ I0|l′i < li} and k′
0 = |I ′0|, we find k′

0-PP[{(x̄j, l
′′
j , W 1

j)|j ∈ I ′0}|G1],
where xj is the sink of sj-path in the k0-PP. Merging the two PP’s results in a
desired k-PP. We omit the constructions of k-PP’s using fault-hamiltonicity of
G0 and G1 for the two exceptional cases (a) and (b) due to space limit. Now, we
assume that for all i ∈ I0, li ≥ 2 and |W 0

i | = m− k (|W 1
i | = 0). There exist l′i’s

and l′′i ’s satisfying (i) l′i + l′′i = li, 1 ≤ l′i < li and (ii)
∑

i∈I0
l′i = 2m−1. We find

a k0-PP[{(si, l
′
i, ∅)|i ∈ I0}|G0]. And then, letting xi be the sink of si-path in the

k0-PP in G0, we find k0-PP[{(x̄i, l
′′
i , ∅)|i ∈ I0}|G1] and merge the two PP’s.

Case 2. k = m− 1.
Recall the assumption l1 ≥ l2 ≥ · · · ≥ lk. We first consider the case that (k −
3) + lk−1 + lk ≤ 2m−1 and l1 ≤ 2m−1. There are l′i and l′′i , i ∈ I0\1, satisfying
(i) l′i + l′′i = li, 1 ≤ l′i ≤ li, (ii)

∑
i∈I0\1 l′i = 2m−1, and (iii) l′k−1 = lk−1 and

l′k = lk. We let W ′
i = W 0

i ∪ {s1} if l′i = li and |W 0
i | < m − k; W ′

i = W̄ 1
i if

l′i = li − 1; W ′
i = W 0

i , otherwise. Regarding s1 as a non-source vertex virtually,
we find k0 − 1-PP[{(si, l

′
i, W

′
i)|i ∈ I0\1}|G0]. Let the sa-path in the k0 − 1-PP

passes through s1, that is, the sa-path be (v1, . . . , vl′j) with vi+1 = s1 for some
i. Let I ′0 = {i ∈ I0|l′i < li} ∪ {1, a} and k′

0 = |I ′0|. Clearly, k′
0 < k0. Letting xi be

the sink of si-path in the k0− 1-PP, we find k′
0-PP[{(x̄a, l1− l′j + i, W 1

1), (v̄i, la−
i, W 1

a)} ∪ {(x̄i, l
′′
i , W 1

i)|i ∈ I ′0\{1, a}}|G0]. To obtain a k-PP, the two PP’s are
merged. For the case that (k − 3) + lk−1 + lk ≤ 2m−1 and l1 > 2m−1, regarding
s2 as a virtual non-source vertex, we can construct a k-PP in a similar to the
previous case. For any k = m−1 ≥ 4, it holds true that (k−3)+lk−1+lk ≤ 2m−1

unless k = 4 and l1 = l2 = l3 = l4 = 2m−2. For the last subcase, a k-PP can
be obtained using fault-hamiltonicity of G0 and G1. The construction is also
omitted here.

References

1. T. Dvořák, I. Havel, J.-M. Laborde, and M. Mollard, “Spanning caterpillars of a
hypercube,” J. Graph Theory 24(1), pp. 9-19, 1997.

2. M. Kobeissi and M. Mollard, “Spanning graphs of hypercubes: starlike and double
starlike trees,” Discrete Mathematics 244, pp. 231-239, 2002.

3. F.T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees,
hypercubes, Morgan Kaufmann Publishers, 1992.

4. L. Nebeský, “Embedding m-quasistars into n-cubes,” Czechoslovak Mathematical
Journal 38(113), pp. 705-712, 1988.

5. C.-D. Park and K.Y. Chwa, “Hamiltonian properties on the class of hypercube-like
networks,” Inform. Proc. Lett. 91, pp. 11-17, 2004.

6. J.-H. Park, H.-C. Kim, and H.-S. Lim, “Fault-hamiltonicity of hypercube-like inter-
connection networks,” in Proc. of the IEEE International Parallel and Distributed
Processing Symposium IPDPS 2005, Denver, Apr. 2005.

7. A.S. Vaidya, P.S.N. Rao, S.R. Shankar, “A class of hypercube-like networks,” in
Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing SPDP
1993, pp. 800-803, Dec. 1993.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 311 – 321, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Reconfigurable Interconnects in DSM Systems:
A Focus on Context Switch Behavior

I. Artundo1, D. Manjarres1, W. Heirman2, C. Debaes1, J. Dambre2,
J. Van Campenhout2, and H. Thienpont1

1 Department of Applied Physics and Photonics (TONA),
Vrije Universiteit. Pleinlaan 2, 1050 Brussel, Belgium

{iartundo, dmanjarres, christof.debaes, hthienpo}@tona.vub.ac.be
2 Electronics and Information Systems Department (ELIS),

Universiteit Gent, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
{wim.heirman, joni.dambre, jan.vancampenhout}@elis.ugent.be

Abstract. Recent advances in the development of reconfigurable optical
interconnect technologies allow for the fabrication of low cost and run-time
adaptable interconnects in large distributed shared-memory (DSM)
multiprocessor machines. This can allow the use of adaptable interconnection
networks that alleviate the huge bottleneck present due to the gap between the
processing speed and the memory access time over the network. In this paper
we have studied the scheduling of tasks by the kernel of the operating system
(OS) and its influence on communication between the processing nodes of the
system, focusing on the traffic generated just after a context switch. We aim to
use these results as a basis to propose a potential reconfiguration of the network
that could provide a significant speedup.

Keywords: Reconfiguration, interconnection network, distributed shared
memory, multiprocessors, context switch.

1 Introduction

In DSM multiprocessor machines all the memory of the system is physically
distributed among its nodes, and they can access data located in the memory of other
nodes in a software transparent way. The interconnection network is thus part of the
memory hierarchy and therefore high network latencies cause a significant
performance bottleneck in program execution [1]. This situation will become worse in
the future, as a result of increasing hardware performance, the rapid growth in
instruction level parallelism and the use of multiple process contexts [2].
Reconfigurability in this aspect will allow the system to rearrange the interprocessor
communications network to form topologies that are best suited for the particular
computing task at hand, allowing for a network topology that closely matches the
traffic patterns exhibited by the current application [3].

Optics is a great candidate to introduce fast interconnection networks in the
architecture of multiprocessor systems [4]. By using optical interconnects at the scale
of the link lengths found in multiprocessor machines, an increase in connectivity and
higher communication bandwidths can be achieved, as well as the elimination of

312 I. Artundo et al.

frequency dependent cross-talk with galvanic isolation. One important aspect that has
not been yet exploited so far is their inherent ability to switch the light paths easily in
a data transparent way, paving the way towards adaptable network topologies.

It is necessary to determine the architectural for such networks and to propose an
efficient way to reconfigure. For the leading low-cost solutions, a designer must
overcome the fact that switching speed and connectivity do not come for granted, so it
is necessary to find communication and reconfiguration schemes that not only
overpass these limitations but try to use them at their advantage. Communication
patterns lasting long enough compared to optical switching times must be found so
that we can allow for a slow reconfiguration rate of the links in the topology. The
frequent context switches that happen in modern operating systems are the perfect
event to be used as a trigger, to establish a regular and profitable reconfiguration on
the interprocessor communication network. The peak bandwidth and congestion
expected in those intervals will be the key element in this study.

It is the goal of this work to investigate the communication patterns found on a DSM
interprocessor network related to the task scheduling. We will first give an introduction
to reconfigurability in interconnection networks. Later on, we will enter in detail on the
context switch behavior of the operating system and the mechanisms to use it as a trigger
for adapting the network to certain communication patterns. Finally, we will present the
results obtained by running full system simulations of real parallel benchmarks and we
will discuss them proposing a possible optical implementation of the system.

2 Reconfiguration in Interprocessor Networks

Through reconfiguration the system can adapt the interconnection network to better fit
the real-time communication needs, which depend upon the application that is
running in the machine. This will alleviate the large bottleneck affecting the current
communication networks and moreover can serve as a backup network in case there is
a failure in any of the components of the system.

The proposed interconnection network architecture for the DSM system consists of a
fixed base network connecting all the nodes (processors and local memories), arranged
in a torus topology. In addition, a certain number of freely reconfigurable point-to-point
links will be provided (see Fig. 1) between nodes that are expected to have a large
communication load. These new links can be used as direct shortcut connections to
route the traffic between processor node pairs on the network. Afterwards, the extra
links will be reassigned according to the new congestion measurements.

Fig. 1. Torus topology of the 16-node base interconnection network and reconfigurable optical
layer with some assigned extra links

 Reconfigurable Interconnects in DSM Systems: A Focus on Context Switch Behavior 313

This setup, compared to the case where all links in the network are available to be
used for the topology reconfiguration, has a number of advantages because the base
network will always be available. It is therefore impossible to disconnect parts of the
network, greatly reducing the complexity in the reconfiguration algorithms. However,
this reconfigurability can offer advantages to a system considering some requirements
are met beforehand.

In this study, we focus our architectural study primarily on the occurrence of
events to act as trigger conditions that can lead to a reconfiguration. These events will
be the context switches happening on the OS, expected to impose higher demands on
the interconnection network during short intervals of time. The right placement of the
extra links in the topology and the implementation of such a network are questions
already treated in our previous works [5][6].

3 Context Switching in the Operating System

During normal execution, only one process per processor can be executed. After a
certain time interval, this processor can switch to another process; this procedure is
known as context switch. [7]. The OS used in this work, Solaris 9, has a good support
for multiprocessor systems and it is based on a process-thread model where processes
are divided in threads in order to be managed by the scheduler [8].

3.1 Scheduling of Processes and Threads, and Temporal Patterns

The OS uses several structures to define each process and thread, like indexed tables
or arrays, describing every aspect involved in the process. After a processor has
finished its allocated time-slot, a scheduler interrupts its execution, write all relevant
processor state information to the memory space pointed by a context register and will
pass execution to a next process.

The execution of different tasks is controlled by the scheduler, enabling processes
and threads to work on one system by switching constantly between them on a short
time interval. Previous works [9] have demonstrated the relationship between task
scheduling and the end-point or network contention in dynamical interconnections,
proposing new scheduling models that could be used to be aware of the
communication layer state.

The process scheduler of Solaris is developed in a multilayer process-thread model.
Solaris sets fixed time-slices that range between 20 ms and 200 ms for the lowest
priorities in the system, which are the threads belonging to user processes. This means
that it can be expected that the interprocessor network will be under heavy load with
communication peaks at predetermined intervals of time, in correspondence with the
tines when the context switches occur.. Overall, these intervals are in no way regular
along time, because the execution is always being interrupted and continued.
However, intervals in the order of tens or even hundreds of milliseconds will be long
enough to be profitable for reconfiguration, even for slow switching technologies that
can prepare and adapt the network to the expected burst of incoming traffic due to
these process/context switches.

314 I. Artundo et al.

3.2 Reconfiguration Through the Context Switches

By a context switch, the kernel saves the state of the current running process or thread
and then loads the state of the next one to be executed. Just after the context switch,
the processor will work with a completely different set of code and data, therefore the
data in the cache will be invalidated and a communication peak to this processor will
occur to fill the caches. All these operations will generate a sudden burst of traffic on
the network as these structures are moved from caches and memories. After an initial
peak relativily high traffic can continue to the same destinations.

An OS that can make use of a reconfigurable interconnection network will need to
track every context switch and keep record of the traffic patterns it generates. It will
be able then to inform the interconnection hardware when and how a reconfiguration
can take place. As there is no practical way to predict in advance the occupancy of the
network due to the new traffic and its destination, the system will determine to which
node most of the traffic was flowing last time the same context was run, and prepare
the network in consequence for this expected increase of load. The reconfiguration
would then be triggered always by a context switch. The performance gain obtained
will be optimum in case the network reconfiguration fits the expected traffic to a
certain destination after a context switch.

4 Simulation Environment

For studying all the aspects involved in these contexts switches and build a coherent
reconfiguration architecture, we have established a full-system simulation
environment based on the commercially available Simics simulator [10]. A more
detailed description of our environment can be found in [11].

The interconnection network is a custom extension to Simics, where we modeled a
4x4 torus network with contention and cut-through routing. In our simulations, only
two multithreaded benchmark applications were strictly run at the same time as the
main load, so we can suppose with a high level of certainty that on a context switch
we will switch between the benchmarking applications and no other default Solaris 9
daemons exist on the machine. We focus our results on two types of loads: in one case
we have loaded the machines with two simultaneous runs of multitreading
applications from the SPLASH-2 scientific benchmark [12]. In this case the Barnes
algorithm is concurrently run with FFT, Radiosity, etc. Secondly, the Apache web
server v.1.3 concurrently run with the SURGE request generator [13]. Each of the
above user process will start 16 threads, so that at all time as much as 32 threads will
be competing to be run on the 16 processors of the machine. Since in the proposed
reconfiguration scheme, performance scales with the number of threads and
processing nodes, our simulation results would benefit from higher processor counts.
There was a certain level of noise (2-5%) on application runtimes, stemming from the
initial state of the cache memories as well as other scheduled internal tasks of the OS
at the beginning of the simulations.

 Reconfigurable Interconnects in DSM Systems: A Focus on Context Switch Behavior 315

Interrupts and system calls are managed by the OS in the machine, and in most
cases do not require a whole process switch, so the context switches produced by
them tend to be short and with low communication rates. We will not take them into
account since their characteristics (in length and bandwidth consumption) did not
offer a proper base to be used by a possible reconfiguration trigger. When filtering
these short interrupts and system calls, we have only used execution intervals on
every node lasting at least 10 ms.

5 Evaluating Communication and Reconfiguration

In this section we present a study of the dynamics of the context switches happening
on the system, and show how they can be used as a reconfiguration trigger. To show
a preliminary effect of such reconfiguration, we will use this data to run the
simulations again, this time enhanced by the extra links placed between several pairs
of nodes that are expected to have a high communication load due to a context
switch.

5.1 Context Switch Communication Patterns

Within Simics, we have developed a module that monitors the occurrence of
context switches in the simulated machine. From the possible events that can
produce a context switch, we are mainly interested in process switches because they
involve more data interchanged due to cache invalidation. In Table 1, values related
to the average and maximum lengths of the contexts, as well as the number of
switches, are presented during a 1400 ms SPLASH-2 and Apache benchmark
execution.

Table 1. Time elapsed between several context switches

Length (ms)
Application Mean Max

Switches

SPLASH-2: FFT 9.94 12.96 303
SPLASH-2: Cholesky 7.89 13.35 3402
SPLASH-2: Ocean 10.35 14.10 3637
SPLASH-2: Radiosity 10.48 14.28 133
SPLASH-2: Barnes 14.42 224.236 111
Apache Web server 86.58 1119.081 115

The different behavior for every application and their interaction with the OS can
be clearly seen here in the number of context switches occurred during simulation.
Cholesky and Ocean were the more parallel multithreaded applications, resulting in
much more switches on the system than the other ones. A large variation in the
lengths can be observed for Barnes since mean and maximum values are highly
separated. We have plotted in Fig. 2 histograms of the context durations for the
execution of the Barnes algorithm and the Apache web server.

316 I. Artundo et al.

(a) Distribution of the contexts according to their duration (Barnes)

(b) Distribution of the contexts according to their duration (Apache)

Fig. 2. Histogram distribution of the length of the contexts for Barnes and Apache. More than
1300 contexts last for less than 10 ms, and we can clearly observe a second peak of contexts
around 50 ms.

Despite the fact that we have already filtered the context switches per node with
lengths not enough to be considered profitable to trigger a reconfiguration (< 1 ms),
the majority of them have a short duration. It is remarkable that the number of longer
contexts is still significant, taking into account that the simulation time was less than
1.5 seconds.

With Apache, the context lengths are considerably longer, with some contexts
lasting for even more than one second. While in the Barnes simulations every node
was sharing data and a lot of interaction occurred, in Apache the different concurrent
processes are more independent and run during longer time intervals. The process that
contains the Apache’s kernel will receive the largest lump of traffic, resulting in a
large amount of interprocessor communication on this node.

 Reconfigurable Interconnects in DSM Systems: A Focus on Context Switch Behavior 317

Fig. 3. Detail of outgoing traffic observed in a single node of the system during simulated time.
Dashed lines are shown when a context switch occurs.

We show how the generated traffic is correlated with the context switches. In Fig. 3
the traffic flow of one single node is presented while context switches are indicated
by vertical lines. At first glance, we can see how just after every context switch the
bandwidth consumed on the network increases due to load/store operations from
memories. This sudden rise, compared to the mean bandwidth consumed during the
rest of the execution, is what we will consider a traffic burst. In some cases, we can
even observe a peak of bandwidth consumption just before a context switch is
happening, or even when no context switches are happening at all. This means that
also other bursts of traffic are generated by the running application.

Next we focus on the time length of these bursts. Hereto, we first define exactly
how the length of the burst is measured, i.e. the burst duration is the time difference
between the moment of maximum bandwidth of the burst and the moment when
traffic drops to 10% of that maximum (see Fig. 4). If we define Tk,l(t) as the instant
traffic flowing from node k to node l at time t, and i

k the time where context switch i
is happening at node k, we have that the bursts of traffic happening just after a context
switch will be represented by:

Bi
k,l (t – i

k) = Tk,l (t) .
i
k ≤ t < i+1

k (1)

We can furthermore define Bi
k,l as the average context switch traffic between nodes

k and l, and B as the average traffic after a burst. The amount of traffic moved by a
burst is therefore directly related to the burst length. However, this traffic measured
on one node can go to or arrive from different destinations. The proposed
reconfiguration scheme would only add one extra link to a pair of nodes and hence it
is needed to predict which node pair is going to show the highest traffic for a next
context switch.

After a context switch there was always one destination that was getting the
majority of generated traffic, usually with a bandwidth that was 3-4 times higher than
averaged traffic to other destinations. It will be critical to accurately know the final

318 I. Artundo et al.

Fig. 4. Diagram of a traffic burst generated after a context switch

destination of this majority of this data communication in order to rearrange the
topology and set the new extra link to the proper end node.

5.2 Context-Switch Triggered Reconfiguration

Once the behavior of the communication system was monitored and measured, we
have a base to establish the reconfiguration scheme that is triggered by the context
switches. Reassigning dynamically the extra links to different node pairs with the
higher instant load is expected to result in a speedup of the application running on the
system. No limits are imposed on which 16 node pairs are connected at each time (the
results of adding more realistic constraints can be found in in [5][6]). Therefore, the 16
busiest node pairs in every reconfiguration interval can be directly connected by extra
links according to measurements done on the previous reconfiguration interval.

This way, for the last part of this study we implemented a basic reconfiguration
scheme. For this preliminary study on the effects of reconfiguration we had no insight
on the scheduler of the Solaris OS, and therefore could not use any information on the
prediction for when and to which process a processor will switch. To get however
some insight into the excepted performance speed-up, we partitioned the simulated
time in discrete reconfiguration intervals such that the topology changes take place at
certain moments (see Fig. 7). These intervals should be long enough to amortize on
the temporal cost of reconfiguration, during which the extra links are being
repositioned and are unusable. The trigger event for a new reconfiguration would be a
context switch happening on the system, and the length would be that of the new
context. Of course, a prediction model is needed to adapt the network for the
upcoming switch, as it is unknown a priori when a switch will happen.

As a basic prediction model, previously described in [14], we have divided the
simulation time in reconfiguration intervals treconf. For now, we have not considered
any down-time (due to extra link selection and optical switching, tse+tsw as shown in
Fig. 5) that occurs during network readjustments to keep the performance study
independent of the chosen switching technology. As long as the reconfiguration
interval is chosen to be significantly longer than both, this is a good approximation.

 Reconfigurable Interconnects in DSM Systems: A Focus on Context Switch Behavior 319

We have furthermore assumed equal characteristics for the extra links and the base
network links, yielding the same average per-hop packet latency for both types of
links. The destination node of the extra link will be that measured to have the largest
bandwidth consumption on previous reconfiguration intervals.

Fig. 5. In every reconfiguration interval, the system is monitoring the traffic flow, such that it
can adjust the topology to accommodate the expected communication needs after a context
switch

These connections are established just before a relevant context switch is expected.
Of course, this will always be restricted to the prediction model used for determining
the occurrence of a switch to a certain context and the destination of most of the
traffic generated for that event. As computer communication is basically
unpredictable, it is necessary to constantly monitor the communication flow on the
network and extract valuable information on the detected traffic patterns,
incorporating it into a prediction model that will do the reconfiguration job.

We proceeded with an implementation based on the accesses to the context register
for determining the switches from the OS. In a real life case, we will not have perfect
prediction of the context switches, and there will be a slight time shift between
prediction and actual occurrence.

After adding the extra links on reconfiguration intervals triggered by context
switches of no less than 100 s, latency was greatly reduced for a large percentage of
the traffic, and the base network was relieved so that less congestion occurred. We
found speed-ups in the overall execution time between 8-11% for most of the
SPLASH-2 applications. This can be translated into a larger improvement in
communication latency that better reflects the performance gain directly obtained by
the reconfiguration. Further work is still undergoing to more accurately implement
the reconfiguration and obtain a better performance. A more pronounced gain is
expected with a more precise prediction of the moment the context switches are
happening and with a better determination of the most active communication partner
after the context switch. Simulating also larger networks will lead to higher savings
in hop distances between nodes and hence better performance improvements. Future
work will include expanding the prediction model to more accurately follow the
congestion on the network caused by different factors, and not only limited to
context switches.

Observer

Network

Measurement

Topology reconfiguration

time

Extra links live t reconf t se t sw

320 I. Artundo et al.

6 Reconfigurable Optical Network Implementation

Our proposal to build the reconfiguration layer of the interconnection network would
consist of a wavelength tunable optical transmitter per processor node, broadcasting
data on one of a fixed number of source wavelengths. Each processor node would also
incorporate an optical receiver which is sensitive to one wavelength only. Hence, by
tuning the wavelength of each transmitter one would address the destination. For
scalability issues it is also desirable to implement a design that broadcasts to only to a
subset of destinations. This reduces the connectivity of the reconfigurable network but
the scheme can be incorporated in larger DSMs. More on this proposed optical
implementation that we are currently pursuing can be found in [15].

7 Conclusions

The context switch offers a recurrent event that can be used as a base to predict high
periods of heavy load in the internal communication of the machine. We can conclude
that there are indeed clear intervals corresponding to switches with correlated bursts
of high communication. Moreover, in many cases, the presence of these bursts is
overlapped with peaks of traffic coming from the normal execution process and a
reconfiguration which takes place on this moment can take profit for the whole
context traffic.

However the observed variability of the context switch durations in this study
requires more attention in distinguishing and predicting context switches by the
operating system. We briefly showed the possibility of using these traffic bursts by a
reconfigurable network that is able to modify its topology over the time, obtaining a
first significant speed up around 9-11% in the overall execution time. This
interconnect would be possible to implement by current slow, low-cost optical
switching technologies.

References

1. Dai, D., Panda, D.K.: How Much Does Network Contention Affect Distributed Shared
Memory Performance?, Proc. of the Int. Conf. on Parallel Processing, (1997) 454-461

2. Krewell, K.: Best servers of 2004: where multicore is the norm, Microprocessor report,
January (2005)

3. Krishnamurthy, P.: “Reconfigurability of the interconnect architecture for chip
multiprocessors”, Proc. of the 4th International Symposium on Information and
Communication Technologies, (2005) 136–141

4. Mohammed, E. et al.: “Optical interconnect system integration for ultra-short-reach
application,” Intel Technology Journal, Vol. 8, Num. 2, (2004)

5. Heirman, W., Artundo, I., Desmet, L., Dambre, J., Debaes, C., Thienpont, H., Van
Campenhout, J.: "Speeding up multiprocessor machines with reconfigurable optical
interconnects", Proc. of SPIE, Optoelectronic Integrated Circuits VIII, Vol. 6124 (2006)
156-167

6. Artundo, I., Desmet, L., Heirman, W., Debaes, C., Dambre, J., Van Campenhout, J.,
Thienpont, H.: Selective optical broadcasting in reconfigurable multiprocessor
interconnects, Proc. of SPIE Photonics Europe, Vol. 6185, (2006)

 Reconfigurable Interconnects in DSM Systems: A Focus on Context Switch Behavior 321

7. Tanenbaum, A.S.: Modern Operating Systems 2nd ed., ISBN 0130313580, Prentice Hall,
(2001)

8. Multithreading in the Solaris Operating System, Sun Microsystems technical whitepaper,
(2002)

9. Sinnen, O., Sousa, L.A.: Communication contention in task scheduling, IEEE Transactions
on Parallel and Distributed Systems, Vol. 16, (2005) 503-515

10. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation Platform, IEEE
Computer, (2002) 50-58

11. Heirman, W., Dambre, J., Artundo, I., Debaes, C., Thienpont, H., Stroobandt, D., Van
Campenhout, J.: Predicting Reconfigurable Interconnect Performance in Distributed
Shared-Memory Systems. Integration, the VLSI Journal: Special Issue on System Level
Interconnect Prediction (to appear), (2007)

12. Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: The SPLASH-2 programs:
characterization and methodological considerations, Proc. of the 22nd Annual International
Symposium on Computer Architecture, (1995) 24-36

13. Barford, P., Crovella, M.: Generating representative web workloads for network and server
peformance evaluation, Proc. ACM SIGMETRICS, (1998) 151-160

14. Heirman, W., Dambre, J., Van Campenhout, J.: Congestion Modeling for Reconfigurable
Inter-Processor Networks, Proc. of the International Workshop on System Level
Interconnect Prediction, (2006) 59-66

15. Artundo, I., Desmet, L., Heirman, W., Debaes, C., Dambre, J., Van Campenhout, J.,
Thienpont, H.: Selective Optical Broadcast Component for Reconfigurable Multiprocessor
Interconnects, Journal on Selected Topics in Quantum Electronics: Special Issue on
Optical Communications, Vol. 12 (2006) 828-837

Cross-Layer Scheduling Algorithm for WLAN
Throughput Improvement

Sung Won Kim

School of Electrical Engineering and Computer Science, Yeungnam University,
Gyeongsangbuk-do, 712-749, Korea

ksw@ieee.org

Abstract. Throughput improvement is critical in wireless communica-
tion networks, since the wireless channel is often shared by a number
of nodes in the same neighborhood. With cross-layer design, bandwidth
can be shared more efficiently by competing flows in proportion to their
channel conditions. In this paper, we propose a cross-layer design for
throughput improvement in IEEE 802.11 wireless local area networks
(WLANs). Our protocol is derived from the Distributed Coordination
Function (DCF) in the IEEE medium access control (MAC) protocol.
Simulation results show that the proposed method achieves the improved
throughput compared with IEEE 802.11. An important feature of the
proposed method is its backward compatibility, which allows the pro-
posed method can work with legacy IEEE 802.11 nodes.

1 Introduction

IEEE 802.11 wireless local area networks (WLANs) [1] have become increasingly
prevalent in recent years. In IEEE 802.11 WLANs, a channel is shared by all
nodes in the neighborhood of an access point (AP). Dividing the limited channel
bandwidth efficiently among nodes is an important and challenging problem.

Currently, there has been a shift in the design of recent generation wireless
networks to support the multimedia services [2]–[4], so-called cross-layer design.
To improve the system throughput by using the cross-layer design, bandwidth
should be shared by all competing nodes proportional to a channel condition of
each link. Links that have a better channel condition must be assigned higher
priority, so that they can obtain higher bandwidth. The key challenge in WLAN
is that there is no centralized scheduling server, as in the case of a router output
port in a wireline environment. Instead, the scheduling operation is distributed
among wireless nodes with packets to transmit.

An opportunistic scheduling algorithm that exploits the inherent multi-user
diversity has been implemented as the standard algorithm in the third-generation
cellular system IS-856 [5] (also known as high data rate, HDR). To enable the
opportunistic multi-user communications, timely channel information of each
link is required for an effective scheduling. Just as all the previous schemes have
assumed, the exploitation of timely channel information is possible in cellular
networks where the base station acts as a central controller and control channels
are available for channel state feedback.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 322–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cross-Layer Scheduling Algorithm for WLAN Throughput Improvement 323

When it comes down to WLANs, it is difficult to utilize the multi-user di-
versity. The AP cannot track the channel fluctuations of each link because of
the single shared medium and the distributed Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) Medium Access Control (MAC) pro-
tocol. Wang et al. [6] presented the opportunistic packet scheduling method
for WLANs. The key mechanisms of the method are the use of multicast RTS
(Request-To-Send) and priority-based CTS (Clear-To-Send) to probe the chan-
nel status information. Since their method requires the modification of RTS and
CTS in the standard, the scheme cannot be directly applied into widely deployed
IEEE 802.11 typed WLANs.

On the other hand, this form of the multi-user wireless system produces asym-
metric traffic loads where most of the traffic loads converge into APs. For ex-
ample, Internet access or mobile computing uses transmission control protocol
(TCP) or user datagram protocol (UDP) in which the offered traffic load is
strongly biased toward the downlink (from AP to nodes) against the uplink
(from nodes to AP) or the direct link (from nodes to nodes). Thus, these traf-
fic flows for the downlink are completely blocked due to the CSMA/CA MAC
protocol in distributed environments.

To alleviate the bottleneck problem in the downlink and exploit the multi-user
diversity in WLANs, we propose a cross-layer design combining the opportunis-
tic downlink packet scheduling and MAC protocol. The remainder of this paper
is organized as follows. The next section presents related works. Section 3 de-
scribes the proposed method. In Section 4, we investigate the enhancement of the
proposed method with some numerical results. Finally, the paper is concluded
in Section 5.

2 Related Work

2.1 IEEE 802.11 DCF

MAC protocol in the IEEE 802.11 standard consists of two coordination func-
tions: mandatory Distributed Coordination Function (DCF) and optional Point
Coordination Function (PCF). In the DCF, a set of wireless nodes communicates
with each other using a contention-based channel access method, CSMA/CA.
CSMA/CA is known for its inherent fairness between nodes and robustness. It
is quite effective in supporting symmetric traffic loads in ad hoc networks where
the traffic loads between nodes are similar.

The DCF achieves automatic medium sharing between compatible nodes
through the use of CSMA/CA. Before initiating a transmission, a node senses
the channel to determine whether or not another node is transmitting. If the
medium is sensed idle for a specified time interval, called the distributed inter-
frame space (DIFS), the node is allowed to transmit. If the medium is sensed
busy, the transmission is deferred until the ongoing transmission terminates.

If two or more nodes find that the channel is idle at the same time, a collision
occurs. In order to reduce the probability of such collisions, a node has to perform
a backoff procedure before starting a transmission. The duration of this backoff

324 S.W. Kim

is determined by the Contention Window (CW) size which is initially set to
CWmin. The CW value is used to randomly choose the number of slot times
in the range of [0, CW − 1], which is used for backoff duration. In case of
an unsuccessful transmission, the CW value is updated to CW × 2 while it
does not exceed CWmax. This will guarantee that in case of a collision, the
probability of another collision at the time of next transmission attempt is further
decreased.

A transmitter and receiver pair exchanges short RTS and CTS control packets
prior to the actual data transmission to avoid the collision of data packets. An
acknowledgement (ACK) packet will be sent by the receiver upon successful
reception of a data packet. It is only after receiving an ACK packet correctly that
the transmitter assumes successful delivery of the corresponding data packet.
Short InterFrame Space (SIFS), which is smaller than DIFS, is a time interval
between RTS, CTS, data packet, and ACK packet. Using this small gap between
transmissions within the packet exchange sequence prevents other nodes from
attempting to use the medium. As a consequence, it gives priority to completion
of the ongoing packet exchange sequence.

2.2 Rate Adaptation

In [11], the auto-rate fallback (ARF) protocol for IEEE 802.11 has been pre-
sented. If the ACKs for two consecutive data packets are not received by the
sender, the sender reduces the transmission rate to the next lower data rate and
starts a timer. When, the timer expires or ten consecutive ACKs are received,
the transmission rate is raised to the next higher data rate and the timer is can-
celed. However, if an ACK is not received for the immediately next data packet,
the rate is lowered again and the timer is restarted. The ARF protocol is simple
and easy to incorporate into the IEEE 802.11. However, as pointed out in [12], it
is purely heuristic and cannot react quickly when the wireless channel conditions
(e.g. signal to noise ratio, SNR) fluctuate.

In the above algorithms, the rate adaptation is performed at the sender. How-
ever, it is the receiver that can perceive the channel quality, and thus determine
the transmission rate more precisely. Observing this, the authors in [13] have pre-
sented a receiver-based auto-rate (RBAR) protocol assuming that the RTS/CTS
mechanism is there. The basic idea of RBAR is as follows. First, the receiver
estimates the wireless channel quality using a sample of the SNR of the re-
ceived RTS, then selects an appropriate transmission rate for the data packet,
and piggybacks the chosen rate in the responding CTS packet. Then, the sender
transmits the data packet at the rate advertised by the CTS. The simulation
results in [13] show that the RBAR protocol can adapt to the channel condi-
tions more quickly and in a more precise manner than does the ARF protocol,
and thus it improves the performance greatly. Heusse et al. [14] have observed
that in multi-rate WLANs, when certain mobile nodes use a lower bit rate than
others, the performance of all nodes is considerably degraded. Specifically, the
throughput of a high-bit nodes is down-equalized to that of the lowest bit-rate
peer.

Cross-Layer Scheduling Algorithm for WLAN Throughput Improvement 325

2.3 Throughput Fairness

Recently, throughput unfairness between the uplink and the downlink in IEEE
802.11 WLANs has received attention. In [7], the authors observe a significant
unfairness between the uplink and the downlink flows when the DCF is employed
in a WLAN. The TCP fairness issues between the uplink and the downlink in
WLANs has been studied in [8]. Uplink flows receive significantly higher through-
put than downlink flows. They find that the buffer size at the AP plays a key
role in the observed unfairness, and propose a solution based on TCP receiver
window manipulation. The fairness problem between uplink and downlink traffic
flows in IEEE 802.11 DCF is also identified in [9]. Since in DCF, the AP and
the nodes have equal access to the channel, when the downlink has a higher
traffic load than the uplink, the downlink becomes a bottleneck. To solve this
problem, the paper proposed a controllable resource allocation scheme between
uplink and downlink flows, which adapts the parameters according to the dy-
namic traffic load. The scheme also improves the system utilization by reducing
the collision probability. Wu and Fahmy [10] proposed a bandwidth sharing al-
gorithm to achieve long-term throughput fairness in IEEE 802.11 WLANs. The
algorithm does not require any change of the MAC frame format, which allows
legacy IEEE 802.11 nodes to seamlessly coexit with the proposed method.

3 Cross-Layer Scheduling Algorithm

3.1 System Model

Each node can directly communicate only with the AP (uplink or downlink),
since we focus on AP-coordinated wireless network. We propose that the AP de-
termines the downlink channel access method according to the operation mode,
DCF and ACF (AP Coordination Function). In DCF, the AP accesses the down-
link channel by using the CSMA/CA. Nodes and AP use the DCF mechanism
with RTS/CTS handshaking, where the next channel access should wait for DIFS
and backoff window time after previous ACK packet. A two-way handshaking
technique without RTS/CTS handshaking called basic access mechanism is not
considered in this paper although our proposed method can be easily extended
to the basic access mechanism. In ACF, the AP waits only for SIFS period in-
stead of DIFS and backoff period. By shorting the interval period, the AP can
access the channel without collision because all other nodes should wait at least
DIFS period which is longer than SIFS period.

3.2 Multi-user Diversity

To switch between the two channel access methods, we propose that the AP
has counters for the uplink and the downlink, denoted by U(n) and D(n), re-
spectively. The counter values increase whenever there is a successful packet
transmission in the uplink or the downlink. For example, when a packet is trans-
mitted through the uplink at time n, the counter values are updated as

326 S.W. Kim

U(n) = U(n− 1) + 1, (1)
D(n) = D(n− 1). (2)

When D(n) ≥ U(n), which means the accumulated number of the downlink
successful packet transmission is larger than that of the uplink, the operation
mode of the AP is set to the DCF. On the contrary, when D(n) < U(n), the
operation mode of the AP is changed to the ACF. The two counters, U(n) and
D(n), also update the values in the ACF and the operation mode will be changed
to the DCF as soon as D(n) ≥ U(n). By using these two operation modes, more
throughput is allocated to the downlink.

In DCF, the packet scheduling algorithm adopts the first-in first-out (FIFO)
algorithm. In ACF, the AP schedules the packet based on the channel qual-
ity. Thus, the AP has to track the channel information. In order to track the
latest channel quality, it is necessary to send the control packet to the node.
However, this method will increase the overhead and need the modification of
the IEEE 802.11 standard. Our design goal is that the proposed method can
be implemented without the modification of the nodes already deployed in the
system. Thus, we propose that the AP updates the channel quality of each link
after every successful packet transmissions. The channel quality is reported from
the physical layer by measuring the SNR of the CTS and ACK control pack-
ets. This estimation of the channel quality may not be the timely information.
However, the estimation error is in the acceptable range as will be shown in the
next section. Moreover, the proposed method can be implemented without the
modification of the deployed nodes.

The AP lists all the communication links according to the channel quality.
When the AP is in the ACF, the link that recorded the best channel quality
in the previous successful transmission is given the first chance to transmit the
packet in the queue. When there is no packet in the queue for that link, the next
best channel quality link is given the second chance.

4 Performance Analysis

4.1 IEEE 802.11 DCF

Let N be the number of active nodes except AP. Then the probability that the
successful packet transmission is performed by node n is given as

Pn =
1

N + 1
, for n = 1, 2, ..N. (3)

The same probability applies to the AP. Let Γ be the maximum available system
throughput. Then, the system throughput allocated to the downlink, Γd, and the
uplink, Γu, are given as

Γd = Γ × Pn = Γ
1

N + 1
, (4)

Γu = Γ × (1 − Pn) = Γ
N

N + 1
, for n = 1, 2, ..N, (5)

Cross-Layer Scheduling Algorithm for WLAN Throughput Improvement 327

where the packet size is assumed to be the same for all the transmission. When
the packet sizes for the uplink, Su, and for the downlink, Sd, are different, (4)
and (5) are changed to

Γd = Γ Sd

SuN+Sd
, (6)

Γu = Γ SuN
SuN+Sd

. (7)

In this case, the ratio between the uplink throughput Γu and the downlink
throughput Γu is given as

Γd

Γu
=
(

Γ
Sd

SuN + Sd

)/(
Γ

SuN

SuN + Sd

)
=

Sd

Su
× 1

N
. (8)

Thus, in DCF, the allocated downlink throughput decreases as the number of
nodes increases because the system throughput is shared equally between nodes.

This method is not efficient when the traffic load is asymmetric between the
uplink and the downlink such as TCP and UDP. Even in the case of symmetric
traffic load, the downlink traffic in DCF gets less throughput than that of the
uplink and this causes the increased delay of the downlink traffic.

4.2 Simulation Parameters

We evaluate the performance of the proposed method by computer simulations.
The IEEE 802.11 DCF is compared with the proposed method, named CROSS.
The parameter values used to obtain numerical results for the simulation runs are
based on the IEEE 802.11b direct sequence spread spectrum (DSSS) standard [1].

To reflect the fact that the surrounding environmental clutter may be signif-
icantly different for each pair of communication nodes with the same distance
separation, we use the log-normal shadowing channel model [15]. The path loss
PL in dB at distance d is given as

PL(d) = PL(d0) + 10n log(d/d0) + Xσ, (9)

where d0 is the close-in reference distance, n is the path loss exponent, and Xσ

is a zero-mean Gaussian distributed random variable with standard deviation
σ. We set n to 3.25 and σ to 5.2 according to the result of measurements for
an office building model [15]. To estimate PL(d0), we use the Friis free space
equation

Pr(d0) =
PtGtGrλ

2

(4π)2d2
0L

, (10)

where Pt and Pr are the transmit and receive power, Gt and Gr are the antenna
gains of the transmitter and receiver, λ is the carrier wavelength, and L is the
system loss factor which is set to 1 in our simulation. Most of the simulation
parameters are drawn from the data sheet of Cisco 350 client adapter. The
received power is

Pr(d) = Pt − PL(d). (11)

328 S.W. Kim

The minimum received power level for the carrier sensing is set to -95 dBm,
which is the noise power level. The long-term signal-to-noise ratio (SNR) is

SNRL = Pt − PL(d) − η + PG, (12)

where η is the noise power set to -95 dBm and PG is the spread spectrum
processing gain given by

PG = 10 log10

C

S
, (13)

where C is the chip rate and S is the symbol rate. Since each symbol is chipped
with an 11-chip pseudonoise code sequence in the IEEE 802.11 standard, PG
is 10.4 dB. The received SNR is varied by the Ricean fading gain δ. Under this
model, the SNR of the received signal is

SNR = 20 log10 δ + SNRL. (14)

For the data rate in the physical layer for each communication link, we as-
sume that the system adapts the data rate by properly choosing one from a set
of modulation scheme according to the channel condition. The set of modula-
tion schemes used in our simulation studies are BPSK, QPSK, 16QAM, 64QAM,
and 256QAM. For simplicity, we ignore other common physical layer components
such as error correction coding. With 1 MHz symbol rate and the above modu-
lation schemes, the achieved data rates are 1, 2, 4, 6, and 8 Mbps, respectively.

We assume that all nodes except the AP are randomly distributed in the circle
area with diameter 150 meters and move randomly at speed 0.1m/sec. The AP is
located at the center of the area. To evaluate the maximum performance, traffic
load is saturated in each nodes and the destination addresses of the packets are
the AP. In the AP, there are N connections, each for one node, and packets are
generated for each connections with the same pattern as those in each nodes.
To make an asymmetric traffic load condition between uplink and downlink, the
size of the downlink and uplink packets are 1024 and 64 bytes, respectively. The
number of node N is set to 25. The effects of the uplink packet size and the
number of nodes on the performance are also evaluated by the simulation.

4.3 Numerical Results

The effect of the uplink packet size on the downlink and uplink throughtput is
shown in Fig. 1. The uplink packet size in the figure is normalized to 64 bytes. As
explained in (7), the uplink throughput of DCF increases as the uplink packet size
increases. This trend also applies to CROSS because the relative overhead size
such as RTS, CTS, ACK, backoff, and collision period is reduced as the uplink
packet size increases. DCF provides larger uplink throughput because it gives
the same channel access chance to all the active nodes. Note that the most of the
system throughput of DCF is allocated to the uplink which leads to the downlink
bottle neck problems in asymmetric traffic load conditions. As explained in (8),

Cross-Layer Scheduling Algorithm for WLAN Throughput Improvement 329

(a) (b)

Fig. 1. Downlink and uplink throughput versus normalized uplink packet size

0 5 10 15 20 25 30
0

5

10

15

20

25

Sy
st

em
 th

ro
ug

hp
ut

Normalized uplink packet size

 CROSS
 DCF

Fig. 2. The effect of the uplink packet size on the system throughput

the downlink throughput of DCF decreases as the uplink packet size increases.
This trend also applies to CROSS. Compared with DCF, the proposed method
provides larger throughput to the downlink and can mitigate the bottleneck
problem of asymmetric traffic load condition.

The effect of the uplink packet size on the system throughput is shown in
Fig. 2. As the uplink packet size increases, the system throughput increases.
This is because the throughput increase of the uplink is more than that of the
downlink. It is also shown that the proposed method outperforms than DCF.

The system throughput of the proposed method is compared with DCF in
Fig. 3 by changing the number of nodes. In DCF, the system throughput de-
creases as the number of nodes increases. This decrease of the system throughput
mainly comes from the increased collision between the packet transmissions. The
probability of the packet collision increases as the number of nodes increases.
On the contrary, the proposed method maintains a constant system throughput

330 S.W. Kim

0 10 20 30 40 50
0

2

4

6

8

10

12

14

Sy
st

em
 th

ro
ug

hp
ut

Number of nodes

 CROSS
 DCF

Fig. 3. The effect of the number of nodes on the system throughput

because it provides contention-free access method for the AP. Also note that the
proposed method provides more system throughput than DCF because faster
data rate is provided for the packet transmission during the ACF.

5 Conclusion

In order to increase the system throughput of WLAN, efficient cross-layer meth-
ods are actively worked. In this paper, we proposed the cross-layer method that
combines the scheduling method, MAC layer protocol, and physical layer infor-
mation. Depending on the channel conditions, channel access method and the
scheduling method are dynamically changed. In the performance analysis and
the simulation results, we showed that IEEE 802.11 DCF has the problem of
throughput unfairness between the uplink and the downlink. It is also shown
that the proposed method provides more system throughput than IEEE 802.11
DCF and alleviates the problem of throughput unfairness.

References

1. IEEE Std 802.11b-1999: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the
2.4 GHz Band. (1999)

2. Zhang, Y.J., Letaief, K.B.: Adaptive resource allocation and scheduling for multi-
user packet-based OFDM networks. In: Proc. IEEE ICC 2004. Volume 5., Paris,
France (2004) 2949–2953

3. Johnsson, K.B., Cox, D.C.: An adaptive cross-layer scheduler for improved QoS
support of multiclass data services on wireless systems. IEEE J. Select. Areas
Commun. 23 (2005) 334–343

Cross-Layer Scheduling Algorithm for WLAN Throughput Improvement 331

4. Shakkottai, S., Rappaport, T.S., Karlsson, P.C.: Cross-layer design for wireless
networks. IEEE Commun. Mag. (2003) 74–80

5. IS-856: CDMA 2000 standard: High rate packet data air interface specification.
(2000)

6. Wang, J., Zhai, H., Fang, Y.: Opportunistic packet scheduling and media access
control for wireless LANs and multi-hop ad hoc networks. In: Proc. IEEE WCNC
2004, Atlanta, Georgia (2004) 1234–1239

7. Grilo, A., Nunes, M.: Performance evaluation of IEEE 802.11e. In: Proc. IEEE
PIMRC 2002, Lisboa, Portugal (2002)

8. Pilosof, S., Ramjee, R., Raz, D., Shavitt, Y., Sinha, P.: Understanding TCP fairness
over wireless LAN. In: Proc. IEEE Infocom 2003, San Francisco, CA, USA (2003)

9. Kim, S.W., Kim, B., Fang, Y.: Downlink and uplink resource allocation in IEEE
802.11 wireless LANs. IEEE Trans. Veh. Technol. 54 (2005) 320–327

10. Wu, Y., Fahmy, S.: A credit-based distributed protocol for long-term fairness in
IEEE 802.11 single-hop networks. In: Proc. IEEE WiMob 2005. (2005) 98–105

11. Kamerman, A., Monteban, L.: WaveLAN-II: A high-performance wireless LAN for
the unlicensed band. Bell Labs Tech. J. 2 (1997) 118–133

12. Qiao, D., Choi, S., Shin, K.G.: Goodput analysis and link adaptation for IEEE
802.11a wireless LANs. IEEE Trans. Mob. Comput. 1 (2002) 278–292

13. Holland, G., Vaidya, N., Bahl, P.: A rate-adaptive MAC protocol for multi-hop
wireless networks. In: Proc. IEEE/ACM MOBICOM 2001, Boston, MA, USA
(2001) 236–251

14. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance anomaly
of 802.11b. In: Proc. IEEE Infocom 2003, San Francisco, CA, USA (2003)

15. T. S. Rappaport: Wireless communications: principles and practices, 2nd Ed.
Prentice Hall (2002)

Power Saving Mechanisms of IEEE 802.16e:
Sleep Mode vs. Idle Mode�

Beomjoon Kim1,��, Jaesung Park2, and Yong-Hoon Choi3

1 Department of Electronic Engineering, Keimyung University, Daegu, 704-701, Korea
bkim@kmu.ac.kr

2 Department of Internet Information Engineering, The University of Suwon,
Gyeonggi-do, 445-743, Korea
jaesungpark@suwon.ac.kr

3 Department of Information and Control Engineering, Kwangwoon University,
Seoul, 139-050, Korea
yhchoi@kw.ac.kr

Abstract. IEEE 802.16e standard specifies two mechanisms, sleep mode
and idle mode, for the power-efficient operation of a mobile station
(MS). Despite the common purpose, these two mechanisms are differ-
ent in terms of MS’s handover and wakening-up process. Recently, each
of them is selected as a required feature in the system profile developed
by WiMAX forum, which means that they should be implemented in
a single MS for the certification. Therefore, the MS supporting the two
mechanisms at the same time will require a method to make a better
choice considering the situation that it is placed. As the first step toward
designing the method, this paper focuses on evaluating the performance
of sleep and idle mode in terms of terminal mobility. Analytic results
verified by simulations show that idle mode performs better than sleep
mode in supporting mobility.

1 Introduction

In IEEE 802.16 Working Group (WG), Task Group (TG) e has recently com-
pleted a project to specify a mobile broadband wireless access (BWA) system
based on the baseline standard [1] that mainly concerns fixed terminals. The
official standard of IEEE 802.16e-2005 [2] has been published in Feb. 2006.

In the mobile systems based on [2] such as Mobile WiMAX [3] and WiBro
(Wireless Broadband) of South Korea, a mobile station (MS) will be powered by
battery. Therefore, the power-efficient operation of a MS is one of the important
factors that will affect the wide deployment of the Mobile WiMAX and WiBro
systems. Reflecting the importance, the standard specifies two mechanisms, sleep
� The present research has been conducted by the Bisa Research Grant of Keimyung

University in 2006 and the Research Grant of Kwangwoon University in 2006.
�� Correspondence to: Beomjoon Kim, Dept. Electronic Engineering, Keimyung

University, 1000 Sindang-Dong, Dalseo-Gu, Daegu, 704-701, Korea. Email:
bkim@kmu.ac.kr

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 332–340, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Power Saving Mechanisms of IEEE 802.16e: Sleep Mode vs. Idle Mode 333

mode and idle mode, in order to achieve the low power consumption in a MS.
These two modes lead a MS to very similar operation in that the MS is allowed
to power down physical operations related to communicating with a base station
(BS) and guaranteed delivery of downlink traffic by periodic messaging. However,
they have a few substantial differences in MS’s performing handover or returning
to awake mode for normal operation.

Sleep mode is available only for the current serving BS, which means that if
a MS in sleep mode moves away from the current BS’s coverage and decides to
perform handover, it has to quit sleep mode without any active connection. In
fact, it is highly probable for the MS to request another sleep mode initiation
after the handover because whether or not there is traffic to or from the MS
has nothing to do with the handover. As a consequence, the handover process
performed without regard to the existence of active connections may degrade the
power saving efficiency of sleep mode due to uplink transmissions and downlink
receptions during the handover process.

On the other hand, idle mode is originally designed to provide a seamless
operation under the concept of ‘paging group.’ A paging group is comprised of
a number of BSs, and each BS in the paging group may be regarded as identical
by a MS in idle mode. It means that a MS can maintain idle mode as long as
it stays within the paging group. Even in the case that the MS moves outside
the paging group, rather a simple process may cover the change in its location,
if secure location update [2] is available.

Despite the unnecessary handover process, sleep mode has an advantage of
quick returning to awake mode for normal operation, i.e. without any additional
procedures. It is because the MS in sleep mode maintains registered state with its
current serving BS so that all the information and parameters needed for resum-
ing communication are still valid. However, idle mode compromises the prompt
transition to awake mode because de-registration from the network is forced at
the initiation of idle mode. Every time a MS terminates idle mode, therefore,
the process called ‘network re-entry’ should be performed before communicating
with the BS where the MS is now attached. During the network re-entry, the
MS has to obtain, negotiate, adjust, and update a set of parameters related to
physical transmission, capability, and security.

As briefly discussed so far, sleep mode and idle mode have their own merit
and demerit; sleep mode is more appropriate for the services that require a quick
response like push-to-talk while idle mode is more appropriate for MSs moving
fast. Accordingly, the WiMAX Forum has decided to include both sleep and idle
mode as required features in the system profile for certification; it means that
these two modes will be implemented in a single MS. In such a case, the MS
will require a method to determine which mode is better to choose considering
the requirements for applications running on it, its mobility, and etc. In order
to design the method, the performance of sleep mode and idle mode need to be
evaluated and compared in all aspects.

It is very recent that the official IEEE 802.16e standard has been published,
so that there are only few works dealing with this issue. Although the work

334 B. Kim, J. Park, and Y.-H. Choi

in [4] proposed a good model for evaluating the performance of sleep mode,
it targets only sleep mode and based on the old version of the draft of the
standard. Besides, MS’s mobility is not considered at all. For more generalization,
this paper evaluates the performance of idle mode as well as sleep mode, and
investigates the affect of the MS’s mobility on the performances of sleep mode
and idle mode.

2 Description of Sleep Mode and Idle Mode

In this section, we provide a brief description of sleep and idle mode operations.
For more details, readers are recommended to refer to the standard [2].

2.1 Sleep Mode

Basic Operation. Sleep mode may have three types of power saving classes
that are differentiated by the traffic type of the associated service and corre-
sponding sleep window management policy. In this subsection, we describe the
basic operation of power saving class of type 1 that is designed for best effort
services.

MS

BS

No data transmission
or reception during this period

MOB_SLP-REQ/RSP

Start-
frame-number

S L

(negative)
MOB_TRF-INDs

S: sleep interval
L: listening interval

S L S L

…

downlink traffic
to MS

L

(positive)
MOB_TRF-IND

sleep mode transition to
awake mode

awake
mode

Fig. 1. Basic operation of power saving class of type 1 of sleep mode

Fig. 1 shows the basic operation of power saving class of type 1. If there has
been no data transmission or reception for a time period, a MS may decide
to enter sleep mode. In order to initiate sleep mode, the MS transmits a sleep
request message (MOB SLP-REQ) to the current serving BS. In response to the
request message, the BS transmits a response message (MOB SLP-RSP) which
may approve the request. During this negotiation, several parameters related to
the sleep mode operation are determined such as start-frame-number, initial-
sleep window, listening window, final-sleep window base, final-sleep exponent,
and so on.

After receiving the response message, the MS begins the sleep mode operation
at the start-frame-number indicated by the response message. The sleep mode
operation is interleaved with listening intervals, and a traffic indication message
(MOB TRF-IND) is received in every listening interval. The length of each listening

Power Saving Mechanisms of IEEE 802.16e: Sleep Mode vs. Idle Mode 335

interval is determined by the listening window. Between two listening intervals,
sleep interval appears in which the MS may ‘sleep.’ The length of the sleep
interval is determined by the sleep window.

Every time a MS receives a traffic indication message saying that there is no
traffic to receive (a negative indication), the sleep window is increased by two
until it reaches a maximum value. The maximum value of the sleep window is
determined by

final-sleep window base ∗ 2final-sleep window exponent. (1)

If there is downlink traffic addressed to the MS in sleep mode, it is notified by a
positive indication at the very next listening interval. By receiving the positive
indication, the MS terminates sleep mode and makes a transition to awake mode
for normal operation.

Power Saving Class of Type 2 and 3. Unlike power saving class of type 1,
the sleep window for power saving class of type 2, once defined, keeps the same
value because it targets services with a constant transmission rate such as voice
over IP (VoIP). The sleep window for power saving class of type 3 may also vary
and is determined each time a sleep interval begins. This type of power saving
class may be associate with the delivery of periodic control and management
messages to the MS in sleep mode.

The power saving class of type 2 and 3 are somewhat different from type 1 be-
cause they are designed to transmit data for active services or periodic control
and management messages; they do not require the function of traffic indica-
tion. Therefore, only power saving class of type 1 is considered in the rest of this
paper.

Sleep Mode and Handover. Simply, sleep mode does not support inter-BS
continuity. There may be a few reasons for this interruption, but the main reason
is that the MS in sleep mode is regarded as still active but just conservative in
its battery consumption. It means that the MS maintains a registered state with
the current serving BS while in sleep mode. This concept facilitates the quick
transition to awake mode because the serving BS keeps almost all the information
about the MS.

For handover, however, the MS has to perform the same procedures as other
MSs that operate in awake mode with active connections. Note that any uplink
transmission to perform handover terminates sleep mode. Therefore, the sleep
mode operation should be interrupted by handover, and the MS may initiate
another sleep mode at the new serving BS after the handover, if necessary.

2.2 Idle Mode

Basic Operation. The idle mode operation is quite similar to sleep mode
in that a MS repeats power-down and power-up till it exits idle mode by an
indication of downlink traffic. The main difference is that idle mode adopts the
concept of paging group in order to guarantee MS’s seamless idle operation

336 B. Kim, J. Park, and Y.-H. Choi

within a paging group. Fig. 2-(a) shows a paging group that is comprised of a
number of BSs.1 Every member BS of a paging group is set to have the same
configuration related to the idle mode operation, and shares the list of idle MSs
in the paging group so that idle MSs need not care about their location within
the paging group.

MS
paging group A

periodic paging
with paging group

identifier ‘A’

paging group B

periodic paging
with paging group

identifier ‘B’

(a) Paging group

MS

BS

No data transmission
or reception during this period

DREG-REQ/RSP

D P

MOB_PAG-ADVs

D: paging unavailable interval
P: paging available interval

D P D P

…

downlink traffic
to MS

L

MOB_PAG-ADV

idle mode network
re-entry

awake
mode

(b) Idle mode operation

Fig. 2. Idle mode operation with paging group

There are three main parameters: paging group identifier, paging cycle, and
paging offset. They are determined at the initiation by exchanging the messages
(DREG REQ/RSP) as shown in Fig. 2-(b). Paging group identifier is shared by every
member BS and included in every paging message (MOB PAG-ADV) to inform the
idle MSs of the paging group that they are located. Two remaining parameters,
paging cycle and paging offset, are used for determining the starting point of
each paging interval. They are also shared by every member BS so that MSs
are able to receive the paging messages from any BS in the paging group. If the
current frame number Nf meets the following condition

Nf modulo paging cycle == paging offset, (2)

paging interval starts and continues for coming N frames. Note that the length
of the paging interval N is already determined as a system parameter.
1 How many BSs may be comprised in a paging group is up to the system design and

service provider’s requirement.

Power Saving Mechanisms of IEEE 802.16e: Sleep Mode vs. Idle Mode 337

Paging and Network Re-entry. If there comes downlink traffic addressed
to a MS in idle mode, every member BS in the paging group pages the MS at
the very next paging interval. Unlike sleep mode, a MS cannot be registered to
any BS. Therefore, a few BS-specific parameters used before entering idle mode
will not be valid any more if the MS’s current attachment BS has been changed.
Therefore, when a MS terminates idle mode, it has to always perform the process
called network re-entry to obtain, negotiate, adjust, and update the BS-specific
parameters. The detailed procedures of the network re-entry process is up to
its implementation; the standard [2] specifies an optimization to expedite the
network re-entry process as an option.

Location Update. A MS in idle mode may travel outside the current paging
group. It is known to MS by either missing the paging message at the expected
paging interval due to the changed paging cycle and offset or the paging group
identifier in the paging message if it happens to receive the paging message.

In such a case, the MS is needed to update the values of paging group identifier,
paging cycle, and paging offset, which is referred to as location update (LU)
process. After the location update process, idle mode continues. There are two
kinds of location updates: secure and unsecure location updates. The secure
location update process may be simpler than the network re-entry process while
the unsecure location update requires the same procedures as the network re-
entry process.

LU may be triggered by a timer. Even if there is no change in paging group,
an idle MS has to perform LU before the timer is expired.

3 Evaluation Methodology

3.1 Cost Equations

The power consumed during sleep and idle mode is categorized according to the
cost for:

• message transactions for handover, LU, or network re-entry
• decoding downlink frames in listening or paging interval.

Then, the cost equations of sleep mode (Cs) and idle mode (Ci) are expressed
as the combination of the costs as follows:

Cs = Cl + Ch

Ci = Cp + Cu + Ce.
(3)

Here, Cl and Cp denote the costs for decoding the frames in listening interval
and paging interval, and Ch, Cu, and Ce denote the costs for handover, LU,
and network re-entry process. Each term of the cost equations is derived in a
numerical way referring to [4], but the derivations are not included in detail in
this paper due to page limit.

338 B. Kim, J. Park, and Y.-H. Choi

3.2 System Parameters

The value of parameters needed for calculating the cost equations are determined
in consideration of ongoing discussions in WiMAX Mobile Task Group (MTG)
[3], and they are summarized in Table 1. Concerning a parameter, the unit of
frames may be converted to the unit of time under the assumption that the
length of a frame is 5 msec [3], and vice versa.

Table 1. System Parameters for Sleep Mode and Idle Mode

parameter definition value
Smin minimum sleep window 2 frames
Smax maximum sleep window 1024 frames

L listening window 2 frames
U paging available interval 2 frames
V paging unavailable interval 1024 frames
y maximum distance of a cell 3

from the center cell in a paging group
Tl timer for location update 4096 seconds
R cell radius 1 km

3.3 Approximation of Power Consumption

In order to calculate the cost equations derived in Section 3, a unit value of
cost is assigned to αl and αp assuming that αl is equal to αp. Since no informa-
tion is available yet about the actual power consumption of a network interface
card implemented based on [2], the ratio between the power consumed by up-
link transmission and downlink decoding is assumed to be 1, referring to [7]
which discusses on the power consumption of a real network interface card for
IEEE 802.11 Wireless LAN. Considering the usual four message transactions for
ranging, capability negotiation, privacy key exchange, and registration, a single
handover or network re-entry process is assumed to require the cost which is
eight times higher than the unit cost. Also, only unsecure LU is considered so
that location update requires the same cost as handover or network re-entry.
Finally, we have

βh = βu = γe = 8αl = 8αp. (4)

For simplicity, the unit cost is set to 1 in the calculation of each cost equation.

3.4 Simulation

For the purpose of verification, simulations are conducted with the parameters
in Table 1. The detailed operations of sleep mode and idle mode are imple-
mented through C programming. A simulation runs for inter-traffic arrival time
that follows the exponential distribution. During the simulations, the number
of the listening intervals, paging intervals, handovers, and location updates are
captured and used for calculating the cost equations.

Power Saving Mechanisms of IEEE 802.16e: Sleep Mode vs. Idle Mode 339

4 Result and Discussion

In Fig. 3, the total power cost are compared between sleep mode and idle mode
in terms of MS’s average cell-residence time in unit of minutes. Note that λ
is converted to the number of traffic arrivals per day and set to 48 for this
result.

0 200 400 600 800 1000 1200
700

720

740

760

780

800

820

840

860

880

900

MS’s cell−residence time

to
ta

l p
ow

er
 c

os
t

sleep mode (ana.)
sleep mode (sim.)
idle mode (ana.)
idle mode (sim.)

Fig. 3. Total cost of sleep mode and idle mode per MS’s cell-residence time (λ = 48,
R=1 km)

Overall power cost of sleep mode is much higher than idle mode. Especially, for
a small value of the cell-residence time that corresponds to MS’s high mobility,
much more power is consumed in sleep mode than in idle mode, and the difference
between the two decreases gradually as the cell-residence time increases. It is
because the main factor that makes the difference is Ch that is applicable only
to sleep mode. Note that the effect Ce is very marginal in this result because
network re-entry is processed only once during idle-residence time.

Inversely, sleep mode may not be so bad for the MSs that are stationary or
nomadic. For example, for a long cell-residence time, i.e. 1200 minutes or more,
handover is not triggered so often that the power consumed by handover process
may be regarded as trivial, if quick transition to awake mode precedes the power
consumption. This issue is very interesting, although it is not managed in quan-
titative way at this moment. Another work is in progress for more understanding
of this issue as our second step.

340 B. Kim, J. Park, and Y.-H. Choi

5 Conclusions

In this paper, we have analyzed the power saving efficiency of sleep mode and
idle mode specified in IEEE 802.16e standard. As shown in the results, idle mode
always performs better than sleep mode in supporting terminal mobility.

One thing we have to address here is that only one factor, mobility, has been
considered to compare the performance of the two mechanisms. That is, the
results do not capture the main advantage from sleep mode, quick transition
to awake mode, because the performances of sleep mode and idle mode are
evaluated only for a single session of sleep and idle mode operations. Currently,
another work is in progress to evaluate sleep mode and idle mode in terms of
latency in returning to awake mode with the detailed analysis of the power
consumed during network re-entry from idle mode.

References

1. IEEE Std 802.16-2004: IEEE Standard for Local and Metropolitan Area Network -
Part 16: Air Interface for Fixed Broadband Wireless Access Systems. (2004)

2. IEEE Std 802.16e-2005: Part 16: Air Interface for Fixed and Mobile Broadband
Wireless Access Systems - Amendment 2: Physical and Medium Access Control
Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigen-
dum 1. (2006)

3. The WiMAX Forum: available at http://www.wimaxforum.org/
4. Y. Xiao: Energy Saving Mechanism in the IEEE 802.16e Wireless MAN. IEEE

Comm. Lett. 9 (7) (2005) 595-597
5. I. F. Alkyildiz and W. Wang: A Dynamic Location Management Scheme for Next-

Generation Multitier PCS Systems. IEEE Trans. Wireless Comm. 1 (1) (2002) 178-
189

6. K. L. Yeung and S. Nanda: Optimal Mobile-Determined Micro-Macro Cell Selection.
In the proceeding of IEEE PIMRC’1995 (1995) 294-299

7. M. Stemm and R. Katz: Measuring and Reducing Energy Consumption of Network
Interfaces in Hand-held Devices. IEICE Trans. Comm. E80 (8) (1997) 1125-31

Routing Based on Ad Hoc Link Reliability

Kwonseung Shin1, Min Young Chung1, Jongho Won2, and Hyunseung Choo1,�

1 School of Information and Communication Engineering
Sungkyunkwan University

440-746, Suwon, Korea +82-31-290-7145
{manics86, mychung, choo}@ece.skku.ac.kr

2 Electronics and Telecommunications Research Institute
305-700, Daejeon, Korea +82-42-860-6632

jhwon@etri.re.kr

Abstract. An ad-hoc network is a group of mobile nodes acting as
routers in infrastructureless networking situations. The ad-hoc node has
a precondition of mobility, allowing path to be easily disconnected when
transmitting data, thereby increasing network overhead. However, most
ad-hoc routing protocols set up the path based only on the number of
hops without considering other practical issues and factors. Here we con-
sider a path with the least substantial number of transmissions (SNT)
from source to destination based on reliabilities of links. This includes
retransmissions due to unreliable links. In this paper, an efficient ad-hoc
link reliability based routing (ALR) protocol suitable for mobile ad-hoc
network in terms of SNT, is proposed. The network overhead and data
transmission delay are reduced, by considering both ad-hoc link relia-
bility and the number of hops. Our empirical performance evaluation
comparing to AODV [1] shows that the enhancement is up to about 31%
for SNT depending upon the mobility of nodes.

1 Introduction

An ad-hoc network [2] is a group of wireless mobile nodes, requiring no fixed
network infrastructure such as base stations or access points. As a result of
this advantage, ad-hoc networks can be used in military, emergency and relief
scenarios. Nodes assist each other by conveying information, thereby creating
virtual connections between each other. Routing protocols play an essential role
in the creation and maintenance of these connections. Each node in the ad-hoc
network acts as a router in a wired network. The mobility of these router-like
nodes is a precondition of an ad-hoc network. Therefore, standard route protocols
of wired networks cannot be directly applied. A considerable number of studies
[1,3,4,5,6,7,8,9] have been conducted regarding the ad-hoc network.

As mentioned above, the ad-hoc network is a group of router-like nodes rep-
resenting mobility. A path containing nodes that have high mobility is easily
disconnected during data transmission, resulting in an increase in network over-
head. Each node has varying ad-hoc link reliability which is a result of the
� Corresponding author.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 341–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

342 K. Shin et al.

mobility characteristics. However, most ad-hoc routing protocols set up the path
only using the number of hops, without considering the link reliability. Although
link state routing algorithm [10] considering the delay and the reliability of link
has proposed, it cannot be applied to the ad-hoc network containing the nodes
which have high mobility.

In this paper, we propose an efficient ad-hoc routing protocol, considering a
path with the substantial number of transmissions (SNT) from source to destina-
tion based on reliabilities of links. This reduces network overhead, and increases
the efficiency of data transmission. The reliability of nodes can be computed by
observing neighboring nodes. A detailed mechanism of computing the reliability
from observed beacon messages, is currently being worked on. This paper focuses
on the efficient routing protocol suitable for the dynamic ad-hoc network.

2 Related Work

The Ad-hoc On Demand Distance Vector (AODV) routing protocol [1] uses a
reactive approach for finding routes. Thus, a route is established for transmitting
data, only when it is required by the source node. When the source node desires
initiating a path to the destination node, it broadcasts a Route Request (RREQ)
message. Table 1 shows the fields of RREQ packet.

Table 1. RREQ packet

Field Description

RREQ ID A sequence number which identifies the particular
RREQ when taken in conjunction with the originat-
ing node’s IP address.

Hop Count The number of hops from the Originator IP Address
to intermediate nodes forwarding the RREQ.

Destination IP Address The IP address of the destination for which a route
is supplied.

Destination Sequence Number The destination sequence number associated with
the route. This represents the freshness of the route.

Originator IP Address The IP address of the node originating the RREQ
for which the route is supplied.

When an intermediate node receives a RREQ, it either forwards it on, or
prepares a Route Reply(RREP) if it has a fresh route to the destination. The
freshness of a route at the intermediate node is determined by comparing the
destination sequence number in the RREQ. Intermediate nodes discard the du-
plicate copies when the RREQ has been received multiple times. The interme-
diate nodes set up a reverse path entry for the source node in its route table. In
this way, the node knows where to forward a RREP to the source if a RREP is
received later.

Routing Based on Ad Hoc Link Reliability 343

D

S
Reverse Route Entry

Propagation of RREQ

D

S
Reverse Route Entry

Propagation of RREQ

(a) Propagation of RREQ

D

S
Path of RREP

D

S
Path of RREP

(b) Path of a RREP

Fig. 1. Path discovery mechanism

When the destination node eventually receives the RREQ, it creates a RREP
and unicasts it toward the source node. When an intermediate node receives
the RREP, it sets up a forward path entry to the destination in its route table.
In this way, the forward path from source to destination node is set up. Fig. 1
indicates the process of forwarding RREQ and RREP. Depending on only the
number of hops, the AODV sets up the path. Therefore, when the node, which
has high mobility, is in the path, the route is inefficient because it has a high
probability of being disconnected.

3 The Proposed ALR Scheme

In this section, an efficient ad-hoc link reliability based routing (ALR) algorithm
is proposed, considering both ad-hoc link reliability and the number of hops. The
mobility of nodes in an ad-hoc network results in large variation of routing in-
formation. When many nodes exist in the network with high mobility, network
overhead significantly increases. However, most ad hoc routing protocols set up
the minimum hop path without considering the link reliability caused by the
mobility of nodes. Hence, these protocols are inefficient in such dynamic envi-
ronments. Therefore, a scheme which can represent both ad-hoc link reliability
and the number of hops as a cost, is introduced. Then, an ad-hoc link reliability
based routing protocol is proposed, by applying this scheme to the AODV.

3.1 Basic Mechanism

It can be considered that an ad-hoc network is represented by graph G = (V, E)
with n nodes and l links where V is a set of nodes and E is a set of links. Each
link e = (i, j) ∈ E is associated with ad-hoc link reliability r(e). (0 ≤ r(e) ≤ 1).
The path is defined as a sequence of links, such that (i0, i1) → (i2, i3) → · · · →
(in−1, in), belongs to E. Let an ordering set P (i0, in) = {(i0, i1), (i1, i2), · · · ,
(in−1, in)} denote the path from node i0 to node in. The length of the path
P (i0, in), denoted by n(P (i0, in)), is defined as the number of links in P (i0, in).

344 K. Shin et al.

The reliability of P r(P) is given by the product of the reliability of the links in
the P :

r(P (i0, in)) =
∏

e∈P (i0,in)

r(e) (1)

i0 i1 in-1 ini2
R1 R2 Rn

i0 i1 in-1 ini2
R1 R2 Rn

Fig. 2. The reliability of path

Fig. 2 represents a certain path P (i0, in) which its n(P) is n and r(P) is
n∏

i=1

Ri.

Rk means the ad-hoc link reliability of link (ik−1, ik) ∈ P (i0, in). When a data
packet is transmitted through a link, which has a reliability of R, the average

number of transmissions is
∞∑

i=1

i(1 − R)i−1R =
1
R

. It is assumed that the i0

transmits a data packet to the in through the path shown in Fig. 2. The i0 has to

transmit a data packet to i1 an average of
n∏

i=1

1
Ri

times, because the r(P (i0, in))

is
n∏

i=1

Ri. Similarly, because r(P (i1, in)) is
n∏

i=2

Ri, the data packet has to be

transmitted
n∏

i=2

1
Ri

times on average by i2. The average number of transmission

through the path P (in−1, in) is
1

Rn
using the same token. Therefore, when the

source node is i0 and destination node is in as presented in Fig. 2, the cost of
path c(P) can be represented as follows.

c(P) =
1

R1R2 · · ·Rn
+

1
R2R3 · · ·Rn

+ · · ·+ 1
Rn

=
n∑

i=1

1
n∏

j=i

Rj

(2)

The value of c(P) represents the substantial number of transmissions (SNT)
when a data packet is forwarded. Hence, regarding the network overhead and
delay, the path P with the minimum SNT , is the optimal path. In the subsequent
section, AODV is improved, by applying the proposed basic mechanism.

3.2 Extended AODV

An additional field called SNT is employed. The value of c(P) described in
Section 3.1 is contained in the SNT field. In Fig. 2, it is assumed that the source

Routing Based on Ad Hoc Link Reliability 345

node i0 forwards RREQ to set up the path to in. In the RREQ, which is received
by a certain intermediate node ik, the cost of the path P (i0, ik−1) must have
been recorded, because AODV uses a distributed routing algorithm. (2) can be
rewritten as follows:

c(P) = (· · · (((1
R1

)
1

R2
+

1
R2

)
1

R3
+

1
R3

) · · ·) 1
Rn

+
1

Rn
(3)

Therefore, the value of SNTk which is recorded in the SNT field at ik, is calcu-
lated as follows:

SNTk =
1

Rk
(SNTk−1 + 1) , where SNT0 = 0 (4)

When the source node desires initiation of the path to the destination, it
broadcasts a RREQ message with SNT written as 0. The intermediate node
receiving the RREQ, forwards it with SNT computed by (4). Accordingly, the
destination node is able to know the cost of each path.

Reverse Path Setup. In AODV, the intermediate nodes discard the duplicate
RREQ. However, for proper operation of the proposed scheme, the RREQ re-
ceived later which has a lower cost must also be forwarded. The number of hops
and cost to the source node is maintained in each reverse path route entry. As
multiple RREQs can be forwarded, there can be more than one reverse path.
The number of hops in reverse path route entry is used to distinguish each path.
This will be presented in the next section. The detailed process of forwarding
the RREQ in the intermediate node is presented in Fig. 3.

START

END

Create
Reverse path route entry

Forward
RREQ

Duplicate
RREQ?

Min_SNT�SNT
Drop

RREQ

YES

YES

NO

NO

START

END

Create
Reverse path route entry

Forward
RREQ

Duplicate
RREQ?

Min_SNT�SNT
Drop

RREQ

YES

YES

NO

NO

Fig. 3. The process of forwarding RREQ in the intermediate node

346 K. Shin et al.

Forward Path Setup. The intermediate nodes receiving the RREP update in
the route table. The cost to the destination node is maintained in each entry of
the route table. In Fig. 2, the destination node in enters 0 in the SNT field and
forwards the RREP. Then, a certain intermediate node ik can obtain the cost to
the destination node from following equation:

SNTk−1 = SNTk + SNTk
1

Rk
, where SNTn = 0 (5)

Another field, called Path Length, which represents the number of hops be-
tween source node and destination node, is employed. This field has a fixed
value while the Hop Count is increased during the forwarding process. As de-
scribed in previous section, several reverse path route entries may exist in some
nodes. Intermediate nodes select the entry with the same Hop Count value as
the subtracted Hop Count value from Path Length in the RREP.

Case Study. Fig. 4 is good illustrative example of the proposed mechanism.
The ad hoc link reliability is marked at each edge. In the topology presented
in Fig. 4, the path is set like solid arrows in Fig. 4(a) by AODV. The most
reliable path is represented as solid arrows in Fig. 4(b). On the other hand, the
proposed ALR scheme sets up the path as shown in Fig. 4(c), which is the least
SNT path. The three kinds of paths are compared with regard to the number of
hops, reliability, and SNT in Table 2. As mentioned in Section 3.1, the value of
SNT means the substantial number of transmissions when a data packet is sent
from source to destination. Therefore, the least SNT path is the most efficient
path in the topology represented in Fig. 4.

Table 2. Comparison of three kinds of paths

Type of path Length of path Reliability of path SNT

Minimum hop path 2 0.04 30

Most reliable path 5 0.656 6.476

Least SNT path 4 0.518 5.818

4 Performance Evaluation

Random graphs are the acknowledged model for different kinds of networks.
There are many algorithms and programs, but the speed is usually the main
goal, not the statistical properties. In the last decade the problem was worked
by Waxman [11], Doar [12], Toh [13], Calvert et al. [14], and Kumar et al. [15].
They have developed fast algorithms to generate random graphs with different
properties, similar to real communication networks. However, none of them have
discussed the stochastic properties of generated random graphs. Rodionov and
Choo [16] have formulated two major demands to the generators of random

Routing Based on Ad Hoc Link Reliability 347

V6V5

V2

VD

V4V3

VS

V1

V0

0.2

0.2

0.9

0.9 0.9

1

0.90.8
0.80.6

0.6 0.8

0.2 0.6

0.8

(a) Minimum hop path

V6V5

V2

VD

V4V3

VS

V1

V0

0.2

0.2

0.9

0.9 0.9

1

0.90.8
0.80.6

0.6 0.8

0.2 0.6

0.8

(b) Most reliable path

0.90.9
V6V5

V2

VD

V4V3

VS

V1

V0

0.2

0.2

0.9

1

0.90.80.8
0.6

0.6 0.8

0.2 0.6

0.8

(c) Least SNT path

Fig. 4. Three kinds of paths

graph: attainability of all graphs with required properties and the uniformity of
their distribution. If the second demand is sometimes difficult to prove theoret-
ically, it is possible to check the distribution statistically. The random graph is
similar to real networks. The random networks used in this paper are generated
by modifying Rodionov and Choo’s mechanism to include properties of ad hoc
netowrks. The proposed method of setting up the path is implemented in JAVA.
The 10 different networks with 100 nodes are generated and locations of nodes
are placed randomly with density of 0.003 nodes/m2. The transmission radius
of each node is set as 30m. Nodes are divided into two types such as stable and
dynamic nodes. The link reliability of each stable node is uniformly selected in
(0.9, 1) and that of each dynamic node in (0.3, 0.9). In the first stage, the fraction
of dynamic nodes is 0.1, and then the evaluation is performed, by incrementing
the fraction of dynamic nodes by 0.1 until 0.9 for 10 different random ad-hoc
networks.

The proposed ALR scheme is compared with conventional AODV with regard
to the number of hops, ad-hoc link reliability, and the SNT. Fig. 5 presents
the simulation results for the variation of the average number of hops. The
Protocol Only Based on Reliability is the mechanism implemented to set up the
most reliable path. Conventional AODV sets up the same path regardless of the

348 K. Shin et al.

Fig. 5. The length of path

Fig. 6. The substantial number of transmissions

variation in path reliability. However, the proposed scheme sets up the different
route to find more efficient path.

As described in Section 3.2, the value of SNT is the substantial number
of transmissions when a data packet is transmitted from source to destination.
Therefore, this value represents both network overhead and delay. Fig. 6 presents
the variation of SNT according to incrementing the fraction of dynamic nodes.
The proposed scheme sets up the least SNT path. Fig. 6 shows that the net-
work overhead and data transmission delay are reduced up to 31.3% compared
conventional AODV, when the fraction of dynamic nodes is 90%.

Routing Based on Ad Hoc Link Reliability 349

5 Conclusion and Future Work

In this paper, a scheme representing both ad-hoc link reliability and the number
of hops as a cost, is introduced. Then, an ad-hoc link reliability based routing pro-
tocol is proposed, by applying this scheme to the AODV. It is demonstrated that
this sets up the optimal path with regard to network overhead and data trans-
mission delay in the ad-hoc network, with a precondition of mobility. Current
work is focused on developing a detailed mechanism of computing the reliability
from observed beacon messages.

Acknowledgments. This research was supported by Ministry of Information
and Communication, Korea under ITRC IITA-2005-(C1090-0501-0019).

References

1. C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vec-
tor (AODV) Routing,” Network Working Group, Request for Comments: 3561.
http://www.ietf.org/rfc/rfc3561.txt, 2003.

2. S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Proto-
col Performance Issues and Evaluation Considerations,” Network Working Group,
Request for Comments: 2501. http://www.ietf.org/rfc/rfc2501.txt, 1999.

3. R. Ogier, F. Templin, and M. Lewis, “Topology broadcast based on reverse-path
forwarding routing protocol (TBRF),” Network Working Group, Request for Com-
ments: 3684. http://www.ietf.org/rfc/rfc3684.txt, 2004.

4. C.-C. Chiang, “Routing in clustered multihop mobile wireless networks with fading
channel,” Proceedings of IEEE SICON, pp. 197-211, 1997.

5. E. T. Clausen and E. P. Jacquet. “Optimised Link State Routing Pro-
tocol (OLSR),” Network Working Group, Request for Comments: 3626.
http://www.ietf.org/rfc/rfc3626.txt, 2003.

6. D. B. Johnson, David A. Maltz, and Yih-Chun Hu, “The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR),” IETF MANET Work-
ing Group, INTERNET-DRAFT. http://www.ietf.org/internet-drafts/draft-ietf-
manet-dsr-10.txt, 2004.

7. Y.-B. Ko, N.H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc networks,”
Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile
Computing and Networking (Mobicom’98), 1998.

8. S. Murthy J.J. Garcia-Luna-Aceves, “A routing protocol for packet radio net-
works,” Proceedings of the First Annual ACM International Conference on Mobile
Computing and Networking, Berkeley, CA, pp. 86-95, 1995.

9. L. Villasenor-Gonzalez, Y. Ge, and L. Lamont, “HOLSR: a hierarchical proactive
routing mechanism for mobile ad hoc networks,” IEEE Communications Magazine,
vol. 43, no. 7, pp. 118-125, 2005.

10. G. Xue, “End-to-End Data Paths: Quickest or Most Reliable?,” IEEE Communi-
cations Letters, vol. 2, no. 6, pp. 156-158, 1998.

11. B.M. Waxman, “Routing of Multipoint Connections,” IEEE JSAC, vol. 9, pp.
1617-1622, 1993.

12. M. Doar, “A Better Mode for Generating Test Networks,” IEEE Proc. GLOBE-
COM96, pp. 86-93, 1996.

350 K. Shin et al.

13. C.-K. Toh, “Performance Evaluation of Crossover Switch Discovery Algorithms for
Wireless ATM LANs,” IEEE Proc. INFOCOM96, pp. 1380-1387, 1993

14. K.L. Calvert, M. Doar, and M. Doar, “Modelling Internet Topology,” IEEE Com-
munications Magazine, pp. 160-163, June 1997.

15. R. Kumar, P. Raghavan, S. Rajagopalan, D Sivakumar, A. Tomkins, and E Upfal,
“Stochastic models for the Web graph,” Proc. 41st

16. A.S. Rodionov and H. Choo, “On Generating Random Network Structures: Con-
nected Graphs,” Springer-Verlag Lecture Notes in Computer Science, vol. 3090,
pp. 483-491, September 2004.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 351 – 357, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Tracking Anomalous Behaviors of Name Servers by
Mining DNS Traffic

Yao Wang, Ming-zeng Hu, Bin Li, and Bo-ru Yan

Research Center of Computer Network and Information Security Technology,
Harbin Institute of Technology, Harbin 150001, Heilongjiang, China

{wangyao, mzh, libin, yanboru}@pact518.hit.edu.cn

Abstract. This paper seeks to quantitatively understand the nature of the cur-
rent threat towards the common name servers. A new tracking technique based
on statistical model is proposed to locate the anomalous name servers by ana-
lyzing the real-world DNS traffic. After summarizing the attacks towards DNS,
the detection method based on associative feature analysis is presented. Ex-
periments are conducted which highlighting both the payload anomaly and the
data flow anomaly, and the experimental results reveal the efficiency of our
method in detecting the anomalous behaviors of name servers.

1 Introduction

The Domain Name System (DNS) is a vital component of Internet infrastructure. As a
hierarchical database distributed around the world, its primary function is to translate
human-readable domain names to the corresponding IP addresses and providing the
routing information of Email [1, 2]. As the most successful distributed system on the
Internet, A great deal of daily network applications such as emails and web surfing all
need DNS work properly. At the same time, many rising network applications ranging
from load balance to service discovery also nearly depend on DNS. If an application
fails to receive a reply for its DNS query, a denied service occurred; if a forged or
malicious reply is received, a DNS hijacking happened. However, the key role of
DNS is not seriously concerned about. Most regard the system as well behaved and
quite reliable, yet there is surprisingly little data to support this claim. Actually, DNS
has become prone to security intrusions and there are many configuration errors ex-
isted in the enormous global system [3], even in giant computer corporations such as
Microsoft [4].The complexity of distributed system leaves DNS vulnerable to security
threats, configuration errors, and system failures. Operators face the increasingly
difficult task of finding and responding to unconscious failures and intended attacks.

In this paper, we proposed an associative feature analysis approach based on statis-
tical models to track the anomalous behaviors of common name servers. In collabora-
tion with a major commercial Internet Service Provider (ISP) in China, we captured
and analyzed the real DNS traffic in the large-scale network environment.

The rest of the paper is organized as follows. After presenting the related work in
Section 2, we give a brief overview of DNS attacks and the data set in Section 3.
Subsequently, in Section 4, we describe the anomalous behavior detection methodol-
ogy of name servers, and present the pragmatic analysis process of data set obtained

352 Y. Wang et al.

from the backbone with Section 5 detailing the results of this study. Finally, in Sec-
tion 6, we conclude with a discussion of the results and implications for future work.

2 Related Work

Plenty of measures have been presented to study the performance and implementation
errors of root servers. Danzig et al. performed an extensive study of the DNS traffic
on the ISI (Information Sciences Institute) root server in 1992 [5]. They observed a
variety of DNS implementation bugs such as recursion loops and poor failure detec-
tion algorithms. The finding is such errors incurred unnecessary wide-area DNS traf-
fic by a factor of twenty. In 2001, Brownlee et al. [6] measured passively on the DNS
traffic directed toward the F-root server and identified some queries repeated, to pri-
vate address space or invalid top-level domains (TLDs), they also found some new
errors such bogus A queries, source port zero and requests trying to update root serv-
ers. In a further work, Jung et al. [7] studied the prevalence of failures and errors
interacting with root/gTLD servers. They observed that a significant fraction of look-
ups never receive an answer and furthermore, DNS server implementations continue
to be overly persistent in the face of failures.

In spite of suffering from all kinds of attacks such as publicized DDoS attacks [8],
the root servers themselves are well equipped and monitored closely to guard against
these compromises, which make exploits towards the top-level servers arduous and
cause adversary transfer their attentions to local name servers run by ISPs or large
corporations. In contrast with root servers, local name servers are lack of enough
ammunition to fight back intended attacks and unconscious failures. However, to the
best of our knowledge, there are no efforts to detect the anomalous behaviors of
common name servers systematically from the point of view of traffic analysis in a
large-scale backbone environment. Furthermore, the unique characteristic of DNS
data flow such as small in packet size and little in message amount make it more
difficult to distinguish anomalous behaviors from normal ones.

3 Background

In this section, we analyze the real data of DNS traffic from a commercial ISP in
China first and then summarizing the common characteristics of the prevalent DNS
attacks.

3.1 Data Set

The network environment concerning in this study is backbone level. We captured
two traces of DNS traffic as detailed in Table 1.

Table 1. Traces of DNS traffic gathered from backbone

Name Size Queries Distinct queries
Trace 1 110.3M 216876 91648
Trace 2 289.6M 499505 200450

 Tracking Anomalous Behaviors of Name Servers by Mining DNS Traffic 353

The percentage of each query type in the two traces is listed in Table 2. It shows
that queries aiming at host address including both IPv4 and IPv6 contributed about
half of the total number of queries. At the same time, CNAME lookups varied signifi-
cantly from 17.17% in Trace 1 to 9.79% in Trace 2. Besides, there are still some mal-
formed DNS queries with an illegal query ID such as "0" which often related with
software bugs, misconfigurations and malicious attacks.

Table 2. Percentage of query types (%)

Query type Ratio(Trace 1) Ratio(Trace 2)
A 43.43 47.05

 NS 0.17 0.22
CNAME 17.17 9.22

SOA 10.94 11.98
PTR 17.98 19.17
MX 2.26 2.57
TXT 0.15 0.21

AAAA 6.90 8.66
SRV 0.01 0.01
A6 0.80 0.67

ANY 0.16 0.20
Other 0.03 0.04

3.2 Taxonomy of DNS Attacks

The main kinds of DNS attacks are DNS Spoofing, Cache Poisoning, Denial of Ser-
vice and Server Compromising respectively. We summarized their characteristics
according to the attack attributes as showed in Table 3.

Table 3. Comparison of Attack methods of DNS

Attack type Mode Traffic Target Method Difficulty
DNS Spoofing P small C/S spoofing easier

Cache Poisoning A large S spoofing easy
Denial of Service A huge S resource consumption harder

Server Compromising A large S vulnerability intrusion hardiest
Mode: P passive A active Target: C client S server

Table 3 shows that most attacks generated large traffic and targeted the name serv-

ers rather than clients. Therefore, by monitoring the query amount and the correlation
between clients and servers, the anomalous behaviors of name servers can be de-
tected.

4 Anomalous Behavior Detection Methodology for Name Servers

As mentioned, our study attempts to develop appropriate techniques that can effec-
tively identify possible anomalous behaviors of name servers under the large scale
network traffic. As we all know, the traffic-based method doesn’t need to scan every

354 Y. Wang et al.

bit of each packet, however, as an application level protocol, some payload of DNS
packet such as odd value in query type is helpful in locating the range of anomalous
behaviors. In fact, there are two kinds of anomalous behaviors, one is caused by in-
tended attacks and another is caused by the vulnerabilities of name servers in software
design, coding, or system configuration. The former can be detected by the traffic-
based method, whereas the latter has to appeal to payload detection. So we present an
associative detection method by mining not only attributes of traffic protocol but also
specific payload of DNS packet. Of course, there is no "one size fits all" solution, but
our approach can detect the anomalous behaviors of name servers more accurately
and efficiently.

4.1 Statistical Models

By statistically analyzing traffic (either by sniffing or sampling packets), we were
able to infer the overall anomalous behaviors of common name servers over time.
Here we adopt the statistical models mentioned in [9] to identify the anomalous name
servers.

Let x1, x2, …, xn be a random sample of size n from a p-dimensional normal distri-
bution, the mean vector is given as formula (1):

=

=
n

i
ix

n
x

1

1
 (1)

and the estimate of the covariance matrix is formulated as (2):

=

−−
−

=
n

i

T
ii xxxx

n
S

1

))((
1

1
 (2)

For an assigned significance level α, if Δi is larger than Δ*, then observation vector
xi is identified as an outlier. Here, each Δi is a function corresponding to the observa-
tion vector xi, whereas the quantity Δ* is the critical value to compare with Δi. The
criterion for identifying the outliers is provided as (3):

[] α=Δ>Δ *Pr iobability (3)

where Δi is given as formula (4):

)()(1 xxSxx i
T

ii −−=Δ − for i =1, 2, …, n (4)

and Δ* is given as formula (5):

1,;

1,;
2

*)1(

)1(

−−

−−

+−−
−

=Δ
pnp

pnp

npFpnn

Fnp

α

α (5)

4.2 Anomalous Behavior Detection Based on Associative Feature Analysis

We assign some features as the p-dimensional attribute to represent the DNS traffic.
Basic features include source IP address, destination IP address, query type, action

 Tracking Anomalous Behaviors of Name Servers by Mining DNS Traffic 355

(query or response), and number of packets. Derived features include time-window
based features which are constructed with similar characteristics during a given period
time of T, since typically Denial of Service (DoS) and Cache Poisoning attacks involve
hundreds of connections. The time-window based features here are listed as followed:

 CLT_QR: per client queries
 SRV_RS: per server responses
 CLT_QR_SRV: per client query the servers
 SRV_RS_CLT: per server response the clients

We separate the traffic according to action, the basic feature, which value 0 denot-
ing query and value 1 denoting response respectively. At the same time, we divide the
time-window based features into two groups: CLT_QR and CLT_QR_SRV desig-
nated to detect query frequency anomaly (QFA) SRV_RS and SRV_RS_CLT
designated to detect response frequency anomaly (RFA). Furthermore, payload anom-
aly (PLA) is detected according to formula (6):

∉
∈

=
Ni

Ni
i Tt

Tt
tP

,1

,0
)((for i = 1, 2, …, n) (6)

where P(ti) is the anomaly degree of each query type ti and TN is the set of normal
query type defined in [2]. Then, the packets which P(ti) equals 1 will be picked out for
further investigation.

5 Experimental Results

The results of PLA detection are demonstrated in Table 4(for Trace 1) and Table 5(for
Trace 2) respectively. From the experimental results, we conclude that:

• The anomaly query type appeared most frequently in both the traces is Type 0,
and this phenomena are explained by some offending ISPs as the result of
global load balancing and geographic routing based on QoS algorithms. The
packets appear to be harmless but very persistent. So the real cause needs fur-
ther investigation.

• Some anomaly query types are launched by the same client such as Type 885
and 887 showed in Table 4. This suspicious client maybe a victim of software
vulnerabilities, and it proved that our PLA detection is useful in DNS failure
diagnosis.

Table 4. Anomaly Query Type(Trace 1)

Anomaly type Number of IPs Number of queries
0 4 36

39 1 1
375 1 13

885&887 1 20

356 Y. Wang et al.

Table 5. Anomaly Query Type(Trace 2)

Anomaly type Number of IPs Number of queries
0 9 175

39 3 3
301 1 1
349 1 4
611 1 7
887 1 16
1911 1 3

The results of the QFA detection of the trace data are presented in Fig.1.

(a) QFA detection (Trace 1) (b) QFA detection (Trace 2)

Fig. 1. QFA detection based on features of CLT_QR and CLT_QR_SRV

The points labeled N represent the normal query behaviors. The points labeled S
are identified as an anomaly on the basis of CLT_QR_SRV alone; the points labeled
Q are identified as an anomaly on the basis of CLT_QR alone; and points labeled A
are identified as anomaly on the basis of associative feature analysis of the
CLT_QR_SRV and CLT_QR at the significance level α = 0.001. The anomalous
queries launched by clients are detected more accurately in our QFA method than the
isolated feature analysis. For example, as illustrated in Fig.1(b), if using only
CLT_QR_SRV, the points which number of servers queried are 123,191 and 279 will
be labeled as Anomaly because of their high values in CLT_QR_SRV, however,
through our QFA detection, they are filtered accurately, and the point which queried
114 servers is labeled as anomaly.

Fig.2 demonstrates the results of RFA detection of the trace data based on
SRV_RS_CLT and SRV_RS. The points labeled C are identified as an anomaly on
the basis of SRV_RS_CLT alone; the points labeled SA are identified as a suspicious
anomaly because some popular name servers usually served a great deal of clients
and generated huge amount of responses, therefore, we will verify these points la-
beled SA combining with Large Scale Network Topology Measurement System
in [10].

 Tracking Anomalous Behaviors of Name Servers by Mining DNS Traffic 357

 (a) RFA detection (Trace 1) (b) RFA detection (Trace 2)

Fig. 2. RFA detection based on features of SRV_RS and SRV_RS_CLT

6 Conclusions and Future Work

In this paper, we outline an associative feature analysis approach based on statistical
models to track the anomalous behaviors of common name servers. Through the de-
tection of QFA, RFA and PLA, the anomalous behaviors of common name servers in
the backbone are identified with an assigned significance level. The experimental
results indicate the efficiency of our method in tracking the anomalous behaviors of
name servers. To overcome the potential bias in the anomaly detection and to pinpoint
the genuine causes of the anomalous behaviors, a further verification system is re-
quired to query the suspicious name servers in the future work.

References

1. Mockapetris, P.V.: Domain Names: Concepts and Facilities. RFC 1034, 1987
2. Mockapetris, P.V.: Domain Names: Implementation and Specification. RFC 1035, 1987
3. Pappas, V., Xu, Z.G., Lu, SW., Massey, D., Terzis, A., Zhang L.X.: Impact of Configura-

tion Errors on DNS Robustness. In: SIGCOMM'04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer communications.
ACM Press, New York (2004) 319–330

4. Thurrott, P.: Microsoft Suffers Another DoS Attack. http://www.winnetmag.com/
WindowsSecurity/Article/ArticleID/ 19770/WindowsSecurity 19770.html, 2001

5. Danzig, P.B., Obraczka, K., Kumar, A.: An Analysis of Wide-area Name Server Traffic: A
Study of the Domain Name System. Proceeding of ACM SIGCOMM (1992) 281−292

6. Brownlee, N., Claffy, K., Nemeth, E.: DNS Measurements at a Root Server. IEEE Global
Telecommunications Conference, San Antonio, TX (2001) 1672−1676

7. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and the Effectiveness of
Caching. In: Proceedings of the First ACM SIGCOMM IMW, ACM Press (2001) 153–167

8. CAIDA. Nameserver DoS Attack October 2002. http://www.caida.org/projects/dns-
analysis/, 2004

9. Ram, S., William, R.W.: A Statistical Technique for Computer Identification of Outliers in
Multivariate Data. http://www.nasa.gov/centers/dryden/pdf/87795main_H-657.pdf

10. Zhang, H.L, Fang, B.X, Hu, M.Z.: A survey on Internet measurement and analysis. Journal
of Software, (2003) 14(1):110−116

On Recovery Algorithm for Fault-Tolerance
in Multicast Trees�

Seong-Soon Joo1, Moonseong Kim2, Yoo-Kyoung Lee1,
and Young-Cheol Bang3

1 Broadband Convergence Network Research Division
Electronics and Telecommunications Research Institute, Korea

{ssjoo, leeyk}@etri.re.kr
2 School of Information and Communication Engineering

Sungkyunkwan University, Korea
moonseong@ece.skku.ac.kr

3 Department of Computer Engineering
Korea Polytechnic University, Korea

ybang@kpu.ac.kr

Abstract. Since the multicast communication is the best technology to
provide one to many communication, more and more service providers are
using this technology to deliver the same service to multiple customers.
These applications require seamless and real time services. With the de-
ployment of the high-speed networks, real time services can be supported
by reserving network resources in advance. In the case of seamless ser-
vices, there should be no links or nodes failure in given networks. In real
life networks, however, such failures are frequently happened more than
we are expecting. In this paper, we propose a fault tolerant algorithm
based on spanning trees that can be restorable using locally distributed
mechanism in the case of multiple link-failures, if a tree existed. We also
show that our algorithm can restore a multicast tree with constant re-
covery cost. We strongly believe our method can be generalized to apply
to any type of tree-construction algorithm that requires the Quality of
Service (QoS) in terms of reliability.

1 Introduction

Several protocols and algorithms have been developed and implemented for mul-
ticast communications. Algorithms for the tree construction in multicast pro-
tocols can be categorized as followings. Source-Based Algorithms (SBA) and
Core-Based Algorithms (CBA) [1]. SBA constructs a tree rooted at source that
originates and sends messages to each destination in the multicast group. SBA is
currently used as the tree construction algorithm for Distance Vector Multicast
Routing Protocol (DVMRP) [2], Protocol Independent Multicast Dense Mode
(PIM-DM) [3], and Multicast Open Shortest Path First (MOSPF) [4]. On the
other hand, CBA that is used for many-to-many multicasts selects a core node as
� Dr. Bang and Kim are the corresponding authors.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 358–367, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Recovery Algorithm for Fault-Tolerance in Multicast Trees 359

a root of the multicast tree. Then, a tree rooted at the core node is constructed
to span all members in the multicast group. Thus, it is very important to select
the best core node as much as possible. To send messages originated at source,
messages are sent to the core and distributed to destinations along the path to
the core node. Once messages are reached at the core node, messages are sent to
remaining destinations. Multicast protocols that use CBA as a tree construction
algorithm include Protocol Independent Multicast Sparse Mode (PIM-SM) [3]
[5] and the Core-Based Tree (CBT) protocol [6] [7] [8] [9].

New communication services involving multicast communications and multi-
media applications are becoming widespread. These applications require seam-
less and real time services within a certain delay bound. With the deployment
of the high-speed networks and real time services can be supported by reserving
network resources in advance. In the case of seamless services, there should be
no links or nodes failure in given networks. In real life networks, however, such
failures are frequently happened more than we are expecting. In the case that
a node or link constituting a multicast tree fails, multicast members of subtree
rooted at node that fails or has a failed outgoing link cannot receive message.
This reason is that a multicast tree is disconnected. To support seamless and
real-time services, hence, multicast routing should be reliable so that there must
be a simple but very efficient mechanism that recovers from failures very fast.

In this paper, we introduce a very efficient algorithm for a spanning tree based
multicast tree that can be restorable using locally distributed mechanism in the
case of link-failure, if a tree exists. We also show that our algorithm can restore a
multicast tree with constant recovery cost. We strongly believe our method can
be generalized to apply to any type of tree-construction algorithm that requires
the Quality of Service (QoS) in terms of reliability. The rest of the paper is orga-
nized as followings. In Section 2, we introduce motivation and preliminaries, and
details of our algorithm is presented in Section 3. The performance evaluation
is clearly analyzed in Section 4, and we conclude our paper in Section 5.

2 Preliminaries and Motivation

CBT forms a backbone within a connected group of nodes called cores. The
backbone is formed by selecting one router, called the primary core, to serve as
a connection point for the other cores, called secondary cores. Secondary cores
remain disconnected from the primary core until they are required to join the
multicast group. A router wishing to participate in the multicast communication
sends a JOIN REQUEST towards the nearest core. The message travels hop-by-
hop on the shortest path to the core. When the message reaches a core or an
on-tree node, a JOIN ACK is sent back along the reverse path, forming a new
branch from the tree to the requesting router. If the core that is reached is a
secondary core and is off-tree, then it connects to a primary core using the same
process.

In the event of a link failure, the child node that detects the failure follows
a particular strategy in order to reconnect to the multicast tree. If that node’s

360 S.-S. Joo et al.

next hop to the nearest core is through one of its immediate children, it sends a
message, called a FLUSH message, to its children. The FLUSH message travels
down the tree, forwarded from parent to child, removing the connection between
the parent and child. This message tears down the tree to the individual receivers,
which then attempt to reconnect along their best path to a core. If the next hop
to the core is not through a child, the detecting node attempts to reconnect
itself by sending a REJOIN REQUEST towards the nearest core and does not
send the FLUSH message to its children. When the request reaches an on-tree
node, that node returns a JOIN ACK that rebuilds the branch down to the
sending node. It also sends the REJOIN REQUEST to its parent for forwarding
to the primary core. The forwarding of the REJOIN REQUEST back up the
constructed tree is a mechanism used to detect loops that may have formed.

Fig. 1. Looping in a disconnected subtree

If a node receives a REJOIN REQUEST that it originated, then a loop has
formed, as shown in Fig. 1. The node detecting the loop removes the link to
its parent by sending a message called a QUIT REQUEST is received at the
primary core, that core sends a unicast acknowledgment to the originator of the
rejoin request to verify the absence of a loop. This unicast message is needed
because if a loop had formed and the REJOIN REQUEST was lost before it was
returned to the originator, then the loop would not have been detected. However,
if the originator never receives the acknowledgment, it can assume that a loop
has formed, quit from its parent by sending a quit message, and attempt to
rejoin again.

In order to resolve the problem of loops forming after link faults, the protocol
specification of CBT [8] [9] was modified to eliminate the possibility of generating
loops when faults are detected. Rather than trying to reconnect the subtree, the
subtree is flushed and all group members in the subtree attempt to rejoin the
tree individually (refer Fig. 4). This eliminates the problem of loop formation
when rejoining the multicast tree. However, there are three drawbacks to this
approach. A substantial delay in rebuilding the trees, a substantial increase in
network traffic as the control messages, and overhead at the on-tree routers.

Schwiebert and Chintalapati have recently proposed a improved CBT for fault
recovery [10], their algorithm hereafter referred to as ICBT. Although faults

On Recovery Algorithm for Fault-Tolerance in Multicast Trees 361

may seem to be uncommon events, the chance of faults is higher than one might
expect. For example, it was recently observed that the Internet occasionally
experiences periods of routing instability, also known as routing flaps, when
the network can temporarily lose connectivity as floods of routing updates are
processed [11]. This network instability could lead to timeouts that result in
the flushing of subtrees due to these transient faults. Hence, authors modified
the REJOIN REQUEST in the original protocol. Instead of having the on-tree
router sends the REJOIN ACK, the REJOIN ACK is sent by the core of the
CBT (refer Fig. 5).

3 New Proposed Protocol Based on Spanning Trees

The REJOIN REQUEST message generally was used to reconnect disconnected
trees. But when the message routes through one of the descendants of the root
of the disconnected subtree, a loop problem is formed (refer Fig. 1) and the
tree is not reconnected. In the specification of CBT, the protocol eliminates
the possibility of generating loop problem. Hence, the subtree is flushed and all
multicast members in the subtree attempt to rejoin the tree individually (refer
Fig. 4). But the method has lots of drawbacks, which are additional network
traffic and extended reconnection time period. A recently proposed ICBT [10]
rarely flushes the subtree (refer Fig. 5). It eliminates this overhead and delay in
most cases. However, there exists the loop as ever. Though a descendant of the
root of the disconnected subtree becomes the root of the disconnected subtree,
ICBT cannot help avoiding the loop problem, repeatedly.

In order to reconnect with loop-free, we propose the new protocol based on
Spanning Trees. For given a network, the core node firstly calculates the Span-
ning Tree and sends the Spanning Tree information to all nodes. Hence, each
node of the network has the information which is neighbor nodes list in Spanning
Tree. Also, the core node notifies that neighbor links are on-tree or off-tree. Ini-
tially, the set of on-tree links is current multicast tree as Fig. 2(a). The on-tree
link is in multicast tree, otherwise it is off-tree in Spanning Tree. The multi-
cast tree has to be composed of on-tree links. In the event, each node knows
that its on-tree or off-tree links. This information is very important for quickly
recovering. This example presents its using.

In the original specification of CBT, the root of the disconnected subtree
would send a REJOIN REQUEST toward the core using the appropriate uni-
cast routing protocol. However, our proposed scheme needs not the appropriate
unicast routing protocol, because all node has the neighbor node list information
in Spanning Tree. Quite simply, the root of the disconnected subtree has to send
a REJOIN REQUEST toward neighbor nodes with not on-tree link, as shown
in Fig. 2(b) and Fig. 3. As described in Fig. 2(c), if the neighbor node received
the message is not on-tree router, then it forwards the message to neighbor node
along the link in Spanning Tree, repeatedly. The subtree is, thus, reconnected
as Fig. 2(d). Our proposed protocol has a constant recovery cost. It has been
proved in next section.

362 S.-S. Joo et al.

(a) Given network, Spanning Tree,
and initial multicast tree

(b) Link failure and recovery step 1

(c) Recovery step 2 (d) New multicast tree

Fig. 2. Scenario for proposed algorithm

4 Performance Analysis

Obviously, it is very difficult for us to make a precise performance comparison of
all the schemes mentioned above in Section 2. So we just make simple scenario.
We consider that a computer network is represented by a graph G = (V, E)
with |V | nodes and |E| links, where V is a set of nodes and E is a set of links,
respectively. We assume that there exists a Spanning Tree, �, such that the tree
degree is a constant, Deg, with tree height H . In other words, |V | =

∑H
h=0 Degh.

Suppose there are |M | nodes which are all members of multicast group M , and
distribute uniformly in the |V | nodes. We define the probability of multicast
member existence is Pm. Hence, |M | is

∑H
h=0�Degh · Pm�. And we obtain also

the multicast tree T (VT , ET) ⊆ �, and then we can conjecture the range of |ET |.

|M | − 1 ≤ |ET | ≤ |V | − 1 (1)

For the uniform random variable |ET |, the expectation E[|ET |] is as follows:

|ET |Avg = E[|ET |] =
⌊ |V |−1∑

l=|M|−1

l /
(
|V | − |M |+ 1

) ⌋
. (2)

In order to resolve the problem of loops forming after link fault, the protocol
specification of CBT [8][9] flushes the subtree and all group members in the

On Recovery Algorithm for Fault-Tolerance in Multicast Trees 363

subtree attempt to rejoin the tree individually. The average number of subtree’s
links is as follows:

|EsubT |Avg =
⌊ |ET |Avg∑

l=|M|−1

l /
(
|ET |Avg − |M |+ 2

) ⌋
. (3)

And then the average number of group members in the subtree, TsubT (VsubT ,
EsubT) is (|EsubT |Avg + 1) · Pm. The probability such that a link (in �) is in
on-tree is denoted Pon after flushing the subtree. Otherwise, Poff = 1 − Pon.

Pon = P rob{ link ∈ T \ TsubT | ∀link ∈ � } =
|ET |Avg − |EsubT |Avg

|V | − 1
(4)

For arbitrary node in the subtree, the average hop number of attempts for finding
the on-tree node is as follows (See Fig. 3):

C∑
i=1

i · P i−1
off · Pon (5)

where C = |V | − (|ET |Avg − |EsubT |Avg + 1).

Fig. 3. Finding on-tree router

Since the on-tree router received REJOIN REQUEST sends REJOIN ACK,
the recovery cost for CBT is as follows:

CostCBT = 2 ×
(
(|EsubT |Avg + 1) · Pm

)
×

C∑
i=1

i · P i−1
off · Pon . (6)

Let Rs be the root of the disconnected subtree and Ron be the first on-
tree router received the REJOIN REQUEST. After detecting link failure, Rs

sends a LOOP FORMED message to Ron. And then Ron becomes the root of
the disconnected subtree. The average number of attempts for finding Ron (the
Next Subtree Root 2, in Fig. 5) is as follows equation (8).

Ponsub = P rob{ node ∈ VsubT \{Rs} | ∀node ∈ VT \{Rs} } =
|EsubT |Avg

|ET |Avg
(7)

∞∑
i=1

i · Ponsub
i−1 · (1 − Ponsub) (8)

364 S.-S. Joo et al.

Fig. 4. CBT recovery mechanism

Also, each attempt’s cost is as follows equation (10).

Pon = P rob{ link ∈ T \ FL | ∀link ∈ � \ FL } =
|ET |Avg − 1
|V | − 2

, (9)

where FL = {failure link}.
|V |−1−|ET |Avg∑

i=1

i · (1 − Pon)i−1 · Pon (10)

When Ron receives the LOOP FORMED message, it sends a REVERSE EDGES
message up the tree to Rs. Rs then sends a REVERSE ACK toward Ron. A new
REJOIN REQUEST is initiated by Ron. Instead of having the on-tree router
send the REJOIN ACK, the REJOIN ACK is sent by the core of the CBT in
ICBT [10]. The average REJOIN REQUEST and REJOIN ACK cost are as
follows equation (12).

H̃ =
⌊

logDeg

(
(|ET |Avg − |EsubT |Avg − 1)(Deg − 1)/Deg + 1

)⌋
(11)

H̃∑
h=0

h ·Degh/
(
|ET |Avg − |EsubT |Avg − 1

)
(12)

Therefore, the average recovery cost for ICBT is as follows:

CostICBT = 3 × equation(10) × equation(8) + 2 × equation(12) . (13)

However, our proposed protocol is assumed that one has the spanning tree �
information. So it has to easily find the on tree link node in � with no loop. We
calculate the average recovery cost is as follows equation (15).

Pon = P rob{link ∈ Link | ∀link ∈ LINK} =
|ET |Avg − |EsubT |Avg − 1
|V | − |EsubT |Avg − 2

,

(14)
where Link = T \TsubT \{failure link} and LINK = �\TsubT \{failure link}.

CostOur = 2 ×
|V |−1−|ET |Avg∑

i=1

i · P i−1
off · Pon, (15)

where Poff = 1 − Pon .

On Recovery Algorithm for Fault-Tolerance in Multicast Trees 365

Fig. 5. ICBT recovery mechanism

Fig. 6. Our recovery mechanism

We set several parameters to calculate the numerical result of each scheme. In
Fig. 7, we take Deg = 2, Pm = 0.2, and 2 ≤ H ≤ 15. In particular, |V | = 65, 535
for H = 15. We can see that the performance of our proposed scheme is much
better than those of the other two. Furthermore, CostOur is an almost constant
function.

Theorem 1. Let Deg be a constant is great than 1. Then our recovery cost,
CostOur, is always a constant when the height H is large.

Proof. Since Deg > 1 and |V | =
∑H

h=0 Degh, limH→∞ |V | = ∞ . Let Pm be a
positive probability of multicast member existence. Then 0 < Pm ≤ 1. Since
|M | = |V |·Pm, limH→∞ |M | = ∞ . Hence, because |M |−1 ≤ |ET |Avg ≤ |V |−
1, limH→∞ |ET |Avg = ∞ .

Since |ET |Avg < |V |, we take |V | = k · |ET |Avg,
∀k > 1. limH→∞

(
|V | − 1 −

|ET |Avg

)
= |ET |Avg ·

(
k − 1

)
− 1 = ∞ . So, we obtain 2

∑∞
i=1 i · P i−1

off · Pon

as CostOur when H is large.

2
∞∑

i=1

i · P i−1
off · Pon = 2Pon

∞∑
i=1

i · P i−1
off ≈ 2Pon

∞∑
i=1

d

d Poff
P i

off

≈ 2Pon
d

d Poff

∞∑
i=1

P i
off = 2Pon

d

d Poff

(Poff

1 − Poff

)
= 2Pon

1
(1 − Poff)2

=
2

Pon
.

366 S.-S. Joo et al.

2 4 6 8 10 12 14
H H»V»=DegHL

5

10

15

20

25

30

Cost Recovery Cost with Deg:2 and Pm:0.2

Cost Our

Cost ICBT

Cost CBT

Fig. 7. Recovery costs under different H , Deg = 2, and Pm = 0.2

4 6 8 10
H H»V»=DegHL

1

2

3

4

5

6

7

8

Cost Our Method Recovery Cost with Deg=3

Pm: 0.7

Pm: 0.5

Pm: 0.3

Fig. 8. Our protocol recovery cost under different H and Deg = 3

Since Pon, equation (14), is a constant, trivially, CostOur is
2

Pon
∈ O(1). See

Fig. 8. �

5 Conclusion

With the proliferation of multimedia group applications, the construction of mul-
ticast trees satisfying the QoS requirements is becoming a problem of the prime
importance. Furthermore, with the deployment of the high-speed networks, real
time service can be supported by reserving network resources in advance. In
the case of seamless services, there should be no links or nodes failure in given
networks. However, such failures are frequently happened more than we are
expecting in real life networks. In the case that a node or link constituting a
multicast tree fails, multicast members of subtree rooted at node that fails or
has a failed outgoing link cannot receive message. To support seamless and real-
time service, multicast routing should be reliable so that there must be a simple
but very efficient mechanism that recovers from failures very fast. In this paper,
we propose a very efficient algorithm for a spanning tree based multicast tree
that can be restorable using locally distributed mechanism in the case of mul-
tiple link-failures, if a tree exists. We also show that our algorithm can restore
a multicast tree in constant recovery cost. We strongly believe our method can

On Recovery Algorithm for Fault-Tolerance in Multicast Trees 367

be generalized to apply to any type of tree-construction algorithm that requires
the QoS in terms of reliability.

References

1. B. Wang and J. C. Hou, “Multicast Routing and its QoS Extension: Problems,
Algorithms, and Protocols,” IEEE Networks, January, 2000.

2. T. Pusateri, “Distance Vector Routing Protocol”, draft-ietf-idmr-dvmrp-v3-07,
1998.

3. D. Estrin et al., “Protocol Independent Multicast (PIM) Sparse Mode/Dense
Mode,” Internet draft, 1996.

4. J. Moy, “Multicast Extension to OSPF,” Internet draft, 1998.
5. S. Deering et al., “Protocol Independent Multicast-Sparse Mode (PIM-SM): Moti-

vation and Architecture,” Internet draft, 1998.
6. A. Ballardie, P. Francis, J. Crowcroft, “Core Based Trees (CBT),” ACM SIG-

COMM, pp. 85-95, 1993.
7. A. Ballardie, “Core Based Trees (CBT) Multicast Routing Architecture,” RFC

2201, Internet Engineering Task Force, September 1997.
8. A. Ballardie, “Core Based Trees (CBT version 2) Multicast Routing – Protocol

Specification –,” RFC 2189, Internet Engineering Task Force, September 1997.
9. A. Ballardie, B. Cain, and Z. Zhang, “Core Based Trees (CBT version 3) Multicast

Routing – Protocol Specification –,” Internet Draft, draft-ietf-idmr-cbt-spec-v3-
01.txt, Internet Engineering Task Force, August 1998.

10. L. Schwiebert and R. Chintalapati, “Improved Fault Recovery for Core Based
Trees,” Computer Communications, vol. 23, pp. 816-824, 2000.

11. C. Labovitz, R. Malan, and F. Jahanian, “Internet Routing Instability,”
IEEE/ACM Transactions on Networking, vol. 6, pp. 515-528, 1998.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 368 – 376, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Low Cost and Effective Link Protection Approach for
Enhanced Survivability in Optical Transport Networks

Francesco Palmieri and Ugo Fiore

Federico II University, Centro Servizi Didattico Scientifico, Via Cinthia 45,
80126 Napoli, Italy

{fpalmieri, ufiore}@unina.it

Abstract. A well-recognized problem in high-speed all-optical networks is that
fibres and switches frequently fail. When a network, designed in a non-robust
way, encounters such kind of problem it can become highly vulnerable, i.e. ex-
periencing large fractions of connections disruption. This makes resiliency a
key issue in network design and thus efficient protection schemas are needed so
that when a failure occurs, the involved traffic must be immediately rerouted
over a predetermined backup path without affecting the user-perceivable service
quality. In this paper we propose a new protection scheme, achieving robustness
through a new low complexity link protection algorithm, which can be used to
select end-to-end totally disjoint backup paths between each couple of nodes in
a mesh network, providing restoration speeds comparable to ring restoration.
Many research efforts in this area are targeted at optimization, with the objec-
tive of using as much capacity as possible while trying to guarantee adequate
levels of protection. The design requirements for our scheme were instead sim-
plicity and performance, aiming at providing a way of quickly computing
backup paths for each link without taking resource optimization issues into con-
sideration. We believe that the novel formulations and results of this paper, may
be of interest for a network operator wishing to improve connections reliability,
at a low implementation cost.

Keywords: Network resiliency, Link protection, Fast rerouting.

1 Introduction

Because of the convergence of voice, video, and broadband data services that has
taken place in the last years, service providers’ transport infrastructures now carry
huge quantities of critical, delay and loss-sensitive traffic. In this environment back-
bone transport network robustness become a key element in network management and
design and better than “best effort” protection against network failures will be one of
the most important QoS parameters. Link and component faults in the network are,
because of the statistical nature of these events, a serious issue that could impede
achieving the reliable, timely delivery of data and the desired quality of service. In the
past years backbone faults were only handled with redundancy and dynamic routing
protocols that automatically updated, at the fault detection time, the network topology
and computed new routes that avoid the failure, but in most cases the switchover time

 A Low Cost and Effective Link Protection Approach 369

due to the traditional routing protocol convergence was not fast enough to prevent
real-time data and voice service disruptions. For example, in a modern all-optical
wavelength switched network, allowing transmission speeds of up to 40 Gbps (OC-
768), the failure of a network element (e.g., fiber link, cross-connect node, etc.) can
cause the failure of hundreds of high speed optical channels, thereby leading to very
large data loss [1], so fault processing and restoration times are required to be as short
as possible (usually lasting less than 50ms) to avoid any user perceivable degradation.
A straightforward solution for protecting mission-critical connections from a single
link or node failure is to use a predetermined backup path, link or node-disjoint from
the active one, from the same source (ingress) node to the same destination (egress)
node. Such a failure-independent scheme can realize very fast restoration by eliminat-
ing route computation and ensures that no single failure can cause blocking on a net-
work path. The problem of finding such pre-determined backup paths, operating as
protection cycles around the failure is, therefore, strictly combinatorial on the network
topology graph, without any relation to the probability of failures [2]. This technique
has been originally introduced in SDH networks, typically based on a physical ring
topology. On a network element failure in such a ring all traffic may be routed along
the fault-free “curve” of the ring, given that enough capacity is available. Such a net-
work element may be either a single fiber link or a node, hence these protection cy-
cles provide protection against both link and node failures. Similarly, as carriers shift
their attention from ring-based solutions to meshed networks, the same technique can
be exploited to enable node as well as link protection in multi-homed meshes, by de-
termining the better available path cycling around the failure. Resiliency (and hence
robustness) in meshed networks can now be achieved by several mechanisms varying
from path protection/restoration, through dedicated link protection, to shared path
protection [3, 4, 5, 6, 7].

Our work focuses on the routing issue for protection switching. In particular, we
study the probl em of finding for each link a totally disjoint near-optimal protection
path in the network, so that a single link failure will not disrupt the network service
that will be immediately restored along the pre-computed protection path. We are also
implicitly concerned with finding for each link a set of backup path configurations
that minimize the blocking probabilities. A connection over a link detecting a loss of
signal may find itself blocked if no link or wavelength is available on the backup
path, that is, any resource on its pre-determined backup path is being used at that
moment by another connection (or failed on its own merit). However, the objectives
of the different connections can be in conflict with each other and there may be many
configurations in which reducing the blocking probability of one connection is only
possible at the expense of increasing it for another. In this scenario, we propose a
novel link protection mechanism that is characterized by a relatively good computa-
tional efficiency in determining near-optimal backup paths, and aiming to ensure
through the above paths restoration speeds comparable to ring restoration. In fact
these advantages made this type of link protection very suitable for MPLS-based net-
works [8] implementing fast restoration policies through pre-signaled backup paths.
We considered a pure link protection mechanism, meaning that in case of link failure,
the aggregated flow carried by the link is rerouted around the failed connection on the
best available protection path, thus requiring an edge connectivity of at least 2 from
the network, and that each link is assigned an available protection path. Our solution

370 F. Palmieri and U. Fiore

can cope with one failure at a time, and thus requires that all the previous failures (as
well as repairs) have been taken care of and reported to the entity that computes the
backup paths. This requires extensive signaling [7], and may be difficult and ineffi-
cient, especially if the rate of failures and repairs is high. The bandwidth on the pro-
tection paths can be reserved and therefore each link capacity can be divided into
three categories: capacity allocated to primary connections, protection capacity re-
served for restoration of connections affected by failures of other links, and unused
capacity. Knowing the demands’ volumes in advance, the network flows can be redis-
tributed such that nearly 100% of connections affected by a link failure can be
restored. Of course, this must be done at the cost of reducing the overall network
utilization degree under normal conditions.

The outline of the rest of this paper is as follows. Section 2 presents some back-
ground material related to protection switching, to provide a better understanding of
the context in which we propose our algorithm. The model, the basic ideas, and a de-
tailed description of our algorithm are discussed in Section 3. Finally, Section 4 pre-
sents our conclusions and directions for future work.

2 Protection Switching Strategies and Choices

Protection switching is a mechanism conceived for providing reliable connection-
oriented services resilient to network failures. With protection switching, a network
provisions a protection (backup) path between the source and destination of each link
or traffic engineered path when a connection request is initiated. The working and
protection links and paths are routed in the network such that any network failure
would affect at most one of them. In a normal situation, the source/destination pair of
a connection communicate over the working link or primary path. However, when
there is a network failure breaking the working path, the source and destination can
immediately switch their communication channel to the protection path, so that
transmission of data will not be disrupted by the network failure. From the perspec-
tive of the end users, the link failure is invisible to them as long as switching is fast
enough. There are two prevailing schemes to guard against link failure in protection
switching: path and link protection. Path protection reserves network resources for a
preset protection path in addition to the primary path. Since it is impossible to foresee
which link on the primary path will fail, the system allocates another path, which is
completely link-disjoint from the primary path, that is, the primary path shares no
common link with its associated protection path. When a link fails, the source and
destination nodes of a call on the failed link are informed of the failure, and the com-
munication is switched to the protection path that can be totally dedicated to the pri-
mary path, without any common resource with other backup paths or shared with
other paths to improve network resource utilization.

On the other side, Link Protection reroutes all the connections on the failed link
around it. When accepting a connection request, the link protection scheme will re-
serve the network resource for the associated protection path. Clearly, in link protec-
tion, the primary link and its backup path must be fiber-disjoint so that the network is
survivable under single-fiber failures. Note that the protection path connects the two
nodes adjacent to the failed link. When a link failure occurs, the node adjacent to and

 A Low Cost and Effective Link Protection Approach 371

upstream of the failed link immediately redirects the traffic along the predetermined
protection path to the node on the other end of the failed link to restore transmission.
The backup path in link protection can be determined according to two different
strategies, namely Dedicated and Shared link protection:

− In dedicated-link protection, at the time of connection setup, for each link of the
primary path routing the connection, a backup path and wavelength are reserved
around that link, and are dedicated to that connection.

− In shared-link protection, at the connection setup time, for each link of the primary
path, a backup path and wavelength are reserved around that link. However, the
backup wavelengths reserved on the links of the backup path may be shared with
other backup paths. As a result, backup channels are multiplexed among different
failure scenarios (which are not expected to occur simultaneously), and therefore
shared link protection is more capacity efficient when compared with dedicated-
link protection.

Both models have their pros and cons. When failure recovery must be instantane-
ous, it is adequate to use 1+1 protection, namely, transmit the same information on
both the protection path and the primary path. Such a scheme, however, requires al-
most totally dedicated resources along each backup path and is normally useful only
for the most critical traffic streams that are absolutely intolerant to recovery delay.
Otherwise, if a small recovery delay is acceptable, the protection path need only be
used as a backup after a failure on the primary path is detected. In that case, the
backup path can be shared, fully or partially, among several links and connections. In
general, however, it may not be possible to allocate a dedicated backup path on the
same wavelength around each link of the primary connection path, thus dedicated link
protection is very often totally unfeasible. Hence, we will not further consider dedi-
cated-link protection.

In the context of this work we focus our attention on link protection since some
advantages of link protection over path protection have certain direct implications in
the area of network management and may be consequently of some interest for a net-
work operator. The drawback with Path Protection is that information about a failure
has to propagate back to the source nodes of all connections routed through the failed
link. In some cases, the time taken for this propagation to the source may not be ac-
ceptable. Path protection only requires that the source and destination node be aware
that a failure occurred somewhere along the primary path. Localization of the failure
is not important, since protection takes place in the same way regardless of where the
failure occurs. Thus, once the protection path has been set up, the network manage-
ment does not need to have detailed knowledge of the nature of the failure to imple-
ment protection. Consequently, path protection can then be better handled by higher
layer mechanisms. For link protection, local information is needed by the nodes adja-
cent to the failure, but there is no need to manage protection on a path-by-path basis.
Very high speed protection arrangements, usually handled at the lower layer can
therefore be better ensured by link protection. Typically the Network Management
when handling protection requires a sufficiently detailed knowledge about the loca-
tion of the failed link and of course about the available restoration paths. Thus, our
choice is due to the fact that visibility by the network management system across lay-
ers may be useful for performing protection more efficiently. Link protection schemes

372 F. Palmieri and U. Fiore

usually allocate backup paths for each link separately for each path [9], [10], while
aiming at optimizing resource usage. This has the advantage of providing easier ser-
vice differentiation and better bandwidth utilization. However, all the computation
required must be repeated at each connection request. This may not be efficient, if we
recall that this kind of backup paths should be short-lived, and are deemed to be sub-
stituted by better-suited paths as soon as signaling provides them. In our model, paths
are computed for each link, irrespective of usage. The drawback is that the entire link
active capacity must be switched on the backup path, thus limiting the usable capacity
of any link to half its residual capacity. However, this approach benefits of much
faster backup path computation, that can be therefore performed more often, to ac-
commodate for topology or traffic changes.

3 Our Link Protection Algorithm

We consider a circuit-switched all-optical network. There are n nodes and m links in
the network and each link has a fixed number of wavelengths. In our resiliency model
fixed alternate path rerouting is used to protect the traffic flowing on each link. This
technique involves maintaining at least a pre-determined link disjoint route cycling
around each link termination pair (vi,vj). The overall network is required to be totally
resilient to any single link failure. The naïve algorithm for calculating all the protec-
tion cycles is based on temporarily removing one link at a time and solving the Single
Source Shortest Paths (SSSP) problem for one of the terminations of the removed
link. The whole protection framework can be modeled as below.

3.1 Problem Statement

Let G=(V,E) be an undirected, unweighted graph. We let |V|=n and |E|=m. The dis-
tance (vi,vj) from vi to vj in the graph is the smallest length of a path from vi to vj in
the graph. We denote, for the generic link (vi,vj) the node vi as the start node and vj as
the end node. The next hop (vi,vk) is the first node in the shortest path from vi to vk in
the graph. If (vi,vj) is a link in the graph, and more than one equal-cost shortest path
from vi to vk exists in the graph, we also denote by (vi,vk) the set of next hops of the
shortest paths from vi to vk. The algorithm computes the backup distances, i.e. the dis-
tances along the backup paths. For each edge (vi,vj) of the graph, the backup distance
(vi,vj) is the minimum distance of vertex vj from vertex vi in G\(v ,vj). A backup path

is one of the corresponding paths. We assume that G is bridge-connected. A bridge of
a graph is a link whose removal disconnects the graph. The presence of bridges can be
detected in linear time [11], so that a preprocessing phase can discover them and pre-
vent further processing. Anyway, in line of principle, the occurrence of bridges should
be avoided at network design time.

3.2 Outline of the Protection Path Selection Algorithm

The backup distance (vi,vj) is computed as follows: the alternate path from vi to vj,
i.e. not comprising the edge (vi,vj) must touch an intermediate vertex vk. The shortest
backup path of (vi,vj) is then the composition of the shortest path from vi to vk, plus the
shortest path from vk to vj, minimized over all the intermediate vertices. It should be

 A Low Cost and Effective Link Protection Approach 373

noticed that the shortest path (in the initial graph) from vi to vk might include (vi,vj),
and so that path would not provide a backup alternative in case of failure of (vi,vj). It
is straightforward to verify if vj belongs to the shortest path from the start vi to an in-
termediate vk. If it does, it must be the first hop, otherwise a shorter path could be ob-
tained by short-cutting all the nodes traversed between vi and vj.

jki vvv ≠),(π . (1)

To check that the start node vi does not belong to the shortest path from an inter-
mediate vk to the end node vj, one should follow that path entirely, because by the
same argument used above, if vi belongs to such a shortest path, it can only be the
next-to-last node (penultimate hop). But if the graph is undirected, the existence of a
shortest path from vk to vj implies the existence of a shortest path from vk to vj, ob-
tained by simply reversing the order in which nodes are traversed. Then, the same test
as in (1) will suffice for determining the suitability of vk as an intermediate node.

ikj vvv ≠),(π . (2)

In cycles having an even number of vertices, it might also happen that, as in the
leftmost graph in figure 1 below, the next hop of vi going towards vk is vj, barring the
use of vk as a suitable intermediate node, and the next hop of vj going towards vl is vi,
barring the use of vl as a suitable intermediate node.

vl vk

vi vj

(vi,vk)=vj

(vj,vk)=vi

vl vk

vi vj

Fig. 1. Special case (left) and backup path for an even cycle (right)

When vk is reachable from vl, however, there exist other (equal-cost) paths from vi
to vk and vj to vl, respectively using vl and vk as next hops, so that | (vi,vk)| > 1. Thus
the alternate path to be used as backup path for the link (vi,vj) is given by the nodes in
the cycle. A node vk can’t be used as a valid intermediate only when:

a) the shortest path from the end node to the intermediate vk is unique, and
b) the start node is the next hop of that shortest path, that is, vk is a valid inter-

mediate node for the backup path of (vi,vj) iff

ikjkj vvvvv ≠∨>Π),(1),(π . (3)

This condition is easy to check and doesn’t increase the complexity of the inner loop.

374 F. Palmieri and U. Fiore

3.3 Implementation and Complexity Analysis

First, an APSP (All-Pairs Shortest Paths) algorithm finds the shortest paths between
all the pairs of nodes in a graph. Many subcubic algorithms exist for the APSP prob-
lem [12], and in particular, for undirected graphs with nonnegative integer weights,
the Thorup algorithm runs in O(nm) time.

Fig. 2. Pseudo code for the algorithm

Some modifications are needed in order to save information about equal-cost paths.
If two or more next hops lead to paths having the same minimal cost, the existence of
such paths will be recorded. Since this operation involves a single status information,
the complexity of the APSP problem remains thus unchanged. The scanning phase
uses the previously gathered information about shortest paths and next hops. It is a
Floyd-like iteration. For each edge, each vertex is selected as an intermediate node if
it provides a backup path shorter than the current one and it does not violate (1) and
(2). The length of the alternative path is recorded, along with the intermediate node vk
selected, and the next hop vl of the end node back to the intermediate node vk, i.e., the
next-to-last node in the path from the intermediate vk towards the end node vj. This
phase always concludes with the discovery of the shortest backup path, since all valid
intermediate nodes are checked and the shortest backup path must traverse one such
node. It can be performed in O(nm) time.

Fig. 3. Pseudo code for the scanning phase

apsp() {compute the All-Pairs Shortest Paths}
scan_intermediates() {find the best viable intermediate}
build_paths() {constructs the backup paths }

for each link (vi,vj) do
'(i,j) := + ;

end for
for each link (vi,vj) do

for each node vk do
if (NUM_PATHS(i,k) > 1 or NEXT_HOP(i,k) j) and
 (NUM_PATHS(j,k) > 1 or NEXT_HOP(j,k) i) then

if ((vi,vk) + (vk,vj) < (vi,vj)) then
(vi,vj) := (vi,vk) + (vk,vj);

INTERMEDIATE(i,j) := vk;
LAST(i,j) := NEXT_HOP(j,k);

end if
end if

end for
end for

 A Low Cost and Effective Link Protection Approach 375

Finally, the computed paths can be made explicit. For each link (vi,vj), the alterna-
tive path is given by the composition of the path from the start node vi to the interme-
diate vk (care being taken that the end node vj is not the next hop for that path), one of
the (possibly many) equal-cost paths from the intermediate node vk to the next-to-last
node vl, and finally the last link from vl to the end node vj. This operation also can be
carried out in O(nm) time. The overall complexity of our algorithm is thus dominated
by the initial phase. The algorithm implementation, running on an Linux RedHat HP
DL380 server, has been checked for correctness against a sufficiently large number of
both known and randomly generated meshed network topologies without exhibiting
any misbehavior or functional anomaly.

4 Conclusions and Future Work

The advent of Wavelength Division Multiplexing (WDM) and mesh optical networks
is providing further stimulus for carriers to require new backbone protection solutions
and revisit their resiliency strategies. New network attributes and properties are be-
coming essential to guarantee adequate service levels and to assure investment protec-
tion. That is, when a link or node failure occurs in the network, the affected traffic
must be instantaneously rerouted over a properly crafted backup path without affect-
ing the users’ traffic involved. Accordingly, we proposed a new protection scheme,
achieving robustness through a new low complexity link protection algorithm, which
can be used to select end-to-end totally disjoint backup paths between each couple of
nodes in a mesh network, providing total resiliency to single link failure and restora-
tion speeds comparable to ring restoration. Many research efforts in this area are tar-
geted at optimization, with the objective of using as much capacity as possible while
trying to guarantee adequate levels of protection. The design requirements for our
scheme were instead simplicity and performance, aiming at providing a way of
quickly computing backup paths for each link without taking resource optimization
issues into consideration. We believe that the novel formulations and results of this
paper, may be of interest for a network operator wishing to improve connections reli-
ability, at a low implementation and management cost.

References

1. Mukherjee, B.: “WDM optical communication networks: Progress and challenges,” IEEE
Journal on Selected Areas in Communications, vol. 18 (2000), 1810-1824.

2. Ellinas, G., Hailemariam, A.G., and Stern, T.E.: “Protection cycles in mesh WDM net-
works,” IEEE Journal on Selected Areas in Communications, vol. 18 (2000), 1924-1937.

3. Doucette, J., Grover, W.D.: ”Comparison of Mesh Protection and Restoration Schemes
and the Dependency on Graph Connectivity”. Third International Workshop on the Design
of Reliable Communication Networks (DRCN 2001) Budapest, Hungary (2001).

4. Dziong, Z., Nagarajan, R., Qureshi, A., Wang, Y.T.: ”Shared Protection Schemes in
Meshed Optical/SONET Networks”. NFOEC 2003, Orlando, Florida, USA, (2003).

5. Gerstel, O., Ramaswami, R.: “Optical layer survivability-an implementation perspective,”
IEEE Journal on Selected Areas in Communications, vol. 18 (2000), 1885-1899.

376 F. Palmieri and U. Fiore

6. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, part I - protection; in
Proceedings IEEE INFOCOM '99, vol. 2, pp. 744-751, Mar. 1999; part II in Proc. ICC '99,
vol. 3 (1999), 2023-2030.

7. Anderson, J., Doshi, B.T., Dravida, S., Harshavardhana, P.: ”Fast restoration of ATM
Networks”. IEEE JSAC Vol.12, No.1 (1994).

8. Ping Pan, E., G. Swallow, G., Atlas. A: ”Fast Reroute Extensions to RSVP-TE for LSP
Tunnels”. IETF RFC 4090 (2005).

9. Kodialam, M., Lakshman, T.V.: “Dynamic Routing of Locally Restorable Bandwidth
Guaranteed Tunnels using Aggregated Link Usage Information”, IEEE INFOCOM ’01
(2001), 884-893.

10. Li, L., Buddhikot, M.M., Chekuri, C., Guo, K.: “Routing Bandwidth Guaranteed Paths
With Local Restoration in Label Switched Networks”, IEEE Journal on Selected Areas in
Communications, vol. 23, No.2, (2005), 437-449.

11. Tarjan, R.E.: “A note on finding the bridges in a graph”, Info. Process. Lett., 2 (1974),
160-161.

12. Zwick, U.: “Exact and Approximate Distances in Graphs - A Survey”, Lecture Notes in
Computer Science, Vol. 2161, Springer-Verlag, Berlin Heidelberg New York (2001),
33-48.

WR-Grid: A Scalable Cross-Layer Infrastructure
for Routing, Multi-dimensional Data

Management and Replication in Wireless Sensor
Networks

Gabriele Monti1, Gianluca Moro1, and Claudio Sartori2

Dept. of Electronics, Computer Science and Systems
University of Bologna

1Via Venezia, 52
Cesena (FC), I-47023, Italy

{gmonti, gmoro}@deis.unibo.it
2Viale Risorgimento, 2

Bologna (BO), I-40126, Italy
csartori@deis.unibo.it

Abstract. In this paper we propose a fully decentralized cross-layer in-
frastructure that creates self-organizing networks where wireless commu-
nications occur through multi-hop routing among sensors. The resulting
sensor network is able to efficiently index and query multi-dimensional
data without reliance either on Global Positioning System (GPS) or
flooding/broadcasting operations. It does not suffer from the dead-end
problem, which occurs in geographic-based approaches, and both rout-
ing and querying operations can scale to large/dense sensor networks.
The efficiency and robustness of resulting sensor networks is controlled
through a data replication strategy, which helps also in balancing the
energy consumption among devices by distributing the workload among
them.

1 Introduction

Wireless sensor networks are revolutionizing remote monitoring applications be-
cause of their ease of deployment and ad-hoc connectivity. They are generally
formed by a large set of low cost miniaturized radio devices with a limited bat-
tery resource. Most of the energy consumption is due to radio transmissions
and hence protocol design for sensor networks is directed towards reducing com-
munications in the network. Large-scale sensor networks would be expected to
serve a substantial number of queries simultaneously for several applications,
such as weather monitoring application, precision agriculture, building automa-
tion, industrial monitoring etc. It has been showed that multi-dimensional data
indexing structure can greatly improve query processing efficiency in sensor net-
works [1]. However distributed data indexing increases the efficiency of searches
if there is an underlying level of the network performing physical routing with-
out propagating each message to the entire network. In several proposals the

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 377–386, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

378 G. Monti, G. Moro, and C. Sartori

routing service relays on Global Positioning System (GPS), but its high cost,
the huge power consumption and the imprecision makes GPS an inadequate
solution for sensor networks. Moreover GPS is unable to provide localization
and, consequently, the routing, either in indoor environments or with adverse
climatic conditions. In this work we introduce the WR-Grid that extends the
infrastructure developed in [2] with data replication. The infrastructure allows
multi-dimensional data management and routing, and it is based on the gen-
eration and indexing of virtual coordinates. The indexing technique supports
both routing and query processing in a cross-layer manner. This infrastructure
does not suffer from dead-ends problem caused by the inherent greedy nature
of algorithms based on geographic routing (such as [3]), besides, it does not
require GPS for performing the routing. Moreover it ensures the storage load
balancing among nodes. The replication strategy offers improvements and new
features with respect to the preceding solution. As will be illustrated in the ex-
perimental results the replication reduces the average number of hops in the
network up to 50%, improving significantly both the energy consumption and
the workload balancing among sensors. Finally, thanks to the replications, whose
number can be arbitrarily chosen, the resulting sensor network tolerates node
disconnections/connections due for instance to failures or switching off/on of
sensors. The paper is organized as follows. Section 2 discusses related works.
In Section 3 we briefly describe the original infrastructure while in Section 4
we address data management issues and we describe the replication extension.
Section 5 illustrates some application scenario and experimental results com-
pared with GPSR, one of the most efficient solution for message routing without
GPS. Section 6 concludes the paper with open issues and perspective works.

2 Related Works

There have been different approaches for storing data in sensor networks. Earlier
sensor network systems stored sensor data externally at a remote base station
(External Storage) or locally at the nodes which generated them (Local Stor-
age). In wireless sensor networks, data or events will be named by attributes
or represented as virtual relations in a distributed database. Many of these at-
tributes will have scalar values: e.g., temperature and light levels, soil moisture
conditions, etc. In these systems one natural way to query for events of interest
will be to use multi-dimensional range queries on these attributes. A different
approach has been taken by works on data-centric routing in sensor networks to
cope with such requirements [1,4,5,6], in particular where data generated at a
node is assumed to be stored at the same node, and queries are either flooded
throughout the network [4]. In a GHT [7], data is hashed by name to a location
within the network, enabling highly efficient rendezvous. GHTs are built upon
the GPSR [3] protocol and leverage some interesting properties of that protocol,
such as the ability to route to a node nearest to a given location. In DIFS [8],
Greenstein et al. have designed a spatially distributed index to facilitate range
searches over attributes. Like us, Li et al. [1] have built a distributed index

WR-Grid: A Scalable Cross-Layer Infrastructure 379

(DIM) for multidimensional range queries of attributes but they require nodes
to be aware of their physical location and of network perimeter; moreover they
exploit GPSR for routing.

3 WR-Grid

WR-Gridis an extension of W-Grid, which has been presented in [9] and [2],
in this paper we will briefly describe the concept of virtual coordinate and the
process of virtual coordinate generation, we will give some hints on how rout-
ing works and how sensors failure are managed. Then we will study in depth
data replication, which is the contribution of this paper. The reader is referred
to the above cited works for technical details. We consider the case of sensors
equipped with a wireless device. Each one is, at the same time, client of the
network (e.g. submitting queries and generating data), and responsible for man-
aging others sensors communications (e.g. routing queries and data). The main
idea in WR-Grid is to map sensors on a binary tree and to build a total order
relationship among them. Each node of the tree is assigned a WR-Grid virtual
coordinate which is represented by a binary string. From now on we will refer
to the participants of the network as nodes or sensors indistinctly.

3.1 Virtual Coordinate Generation and Selection

When a sensor, let us say s, turns on for the first time, it starts a wireless channel
scan (beaconing) searching for any existing WR-Grid network to join (namely
any neighbor device that already holds WR-Grid virtual coordinates). If none
WR-Grid network is discovered, s creates a brand new virtual space coordinate
and elects itself as root by getting the virtual coordinate ”∗”1. On the contrary, if
beaconing returns one or more devices which hold already a WR-Grid coordinate,
s will join the existing network by getting an appropriate virtual coordinate.

Coordinate Setup. Whenever a node needs a new WR-Grid coordinate, an
existing one must be split. The term ”split” may seem misleading at the moment,
but its meaning will become clear in Section 4. A new coordinate is given by
an already participating sensor sg, and we say that its coordinate c is split by
concatenating a 0 or a 1 to it. The result of a split to c will be c′ = c+1 and c′′ =
c + 0. Then, one of the new coordinates is assigned to the joining sensor, while
the other one is kept by the giving sensor that will then hold two coordinates.
No more splits can be performed on the original coordinate c since this would
generate duplicates. In order to guarantee coordinates’ unambiguousness even in
case of simultaneous requests, each asking sensor must be acknowledged by the
giving sensor sg. Thus, if two nodes ask for the same coordinate to split, only
one request will succeed, while the other one will be cancelled.

Coordinate Selection. At coordinate setup, if there are more neighbors which
already participate the WR-Grid network, the joining sensor must choose one
1 It is conventional to label ” ∗ ” the root node.

380 G. Monti, G. Moro, and C. Sartori

of them from which to take a coordinate. The selection strategy we adopt is to
choose the shortest coordinate 2 in terms of number of bits. If two or more strings
have the same length the sensor randomly chooses one of them. Experiments have
shown that this policy of coordinate selection reduces as much as possible the
average coordinates length in the system. In the resulting tree structure, parent-
child relationships can be set only by nodes that are capable of bi-directional
direct communication. This property is called integrity of coordinates and it is
crucial for the network efficiency:

Definition 1. Let c be a coordinate at a sensor s that has been split into c′ and
c′′ and let NEIGH(s) be the set of its neighbors. We say that c has integrity if
the child that has been given away by s is held by a sensor s′ ∈ NEIGH(s).

If each coordinate satisfies this constraint, it will be possible to route any request
or message by following the paths indicated by the tree structure and without
dead-ends.

3.2 Routing Algorithm

As we stated in the previous subsection, the coordinate creation algorithm of
WR-Grid generates an order among the nodes and its structure is represented by
a binary tree. The main benefit of such organization is that messages can always
be delivered to any destination coordinate, in the worst case by traveling across
the network by following parent-child relationship. The routing of a message is
based on the concept of distance among coordinates. The distance between two
coordinates c1 and c2 is measured in logical hops and correspond to the sum of
the number of bits of c1 and c2 which are not part of their common prefix. For
instance:

d(*0011,*011) = 5

Given a message and a target binary string ct each sensor si forwards it to the
neighbor that present the shortest distance to ct. It is important to notice that
each sensor needs neither global nor partial knowledge about network topology
to route messages, its routing table is limited to information about its direct
neighbors’ coordinates. This means scalability with respect to network size.

3.3 Sensors Failure

Sensors usually have scarce resource, they especially suffer of power constraints
and this can lead to failures that could affect routing efficiency. During a routing
operation it may happen that a sensor cannot find any neighbor that improves
its distance from the destination coordinate (dead end). This means that a link
has broken since WR-Grid total order relation guarantees delivery in any case. A
solution to sensors failures is described in [2], therefore here we just specify that
every recovery operation is only triggered when failures are detected, in order to
avoid any network efficiency loss.
2 among the ones that still can be split, see Coordinate Setup.

WR-Grid: A Scalable Cross-Layer Infrastructure 381

4 Data Management and Replication in WR-Grid

WR-Grid distributes data (tuples of attributes) gathered by sensors among them
in a data-centric manner. Values of surveys are hashed3 into binary strings and
stored at nodes whose WR-Grid coordinates have the longest common prefix with
those strings. Thus, a WR-Grid network acts directly as a distributed database
in which data proximity is preserved, i.e. logically close sensors store similar
data. Probably, the most important feature that a distributed database must
satisfy is storage load balancing among participants, especially in case of not
uniform distributions of data. In fact, if the managed information do not dis-
tribute uniformly in the domain space it can happen that virtual coordinates
store different number of data. Nodes that manage more data will likely receive
a higher number of queries than the others causing bottlenecks and loss of effi-
ciency for the entire network. In order to improve the data distribution balance
we implemented a storage load balancing algorithm (SLOB).

4.1 Storage Load Balancing in WR-Grid

We introduced a maximum number of data that a region/coordinate can man-
age, defined as bucket size (b). The value for b can be the same for each node or,
in environments where devices have different characteristics, it can be propor-
tional for instance to the storage and/or communication bandwidth capabilities.
Whenever a sensor receives a new data it checks whether the space represented
by the coordinate that must store the data is full or not. In case it is full the
coordinate is split, but, differently from what it happens when a new node joins
the network, in this case both the resulting subspaces are stored at the sen-
sor. The bucket size guarantees that each coordinate contains at most the same
quantity of information. However, this trick does not balance the storage load
on its own. In fact, nodes holding spaces with a higher number of data will split
more frequently that the others. The result will be that those nodes will manage
more coordinates if we do not find a way for them to give away the ones in
excess, which is exactly the goal of the SLOB Algorithm. Periodically each node
evaluates the average storage load and the correspondent Root Mean Square
Error. The purpose of this evaluation is discovering local unbalanced situations
and trying to fix them through coordinates transfers. By solving local unbalanc-
ing the algorithm is able to create a balanced network storage load, please refer
to [2] for a detailed description of it.

4.2 WR-Grid Replication

Our previous work [2] was intended for use into Ad-hoc networks, which have
different characteristics from sensor networks. In sensor networks the most im-
portant operations are data gathering and querying, therefore is necessary to
guarantee the best efficiency during these tasks. In particular, data sensed by
3 See [10] for details about hashing function.

382 G. Monti, G. Moro, and C. Sartori

the network should be always available for users’ queries and query execution
latency must be minimized. In order to achieve these results we introduced repli-
cation of data in WR-Grid. Data replication is obtained by generating multiple
virtual coordinate spaces (namely multiple trees T). In this way, each informa-
tion is replicated on every existing space, resulting in more than one benefit for
network performances:

– higher resistance to sensors failure. Having multiple virtual spaces im-
plies the existence of different paths for each coordinate and the possibility
of changing routing space in case of dead-end;

– reduction of query path length and latency. Multiple realities mean
multiple order relationship and therefore a reduction of the probability that
two nodes physically close have very different virtual coordinates. Which
may happen whenever a multi-dimensional space is translated into a one-
dimensional space.

For what concerns replication implementation in WR-Grid, we must say that the
changes to the algorithm (Section 3) are few. Supposing that each sensor is given
an unique identifier ID(s), each reality is uniquely identified by the root node
ID. Each coordinate c is coupled with its reality identifier so that each couple
(ID, c) will be unique. During coordinate creation, sensors take a coordinate
from every reality they discover from neighbors. At periodic beaconing, if any
new reality is discovered a new coordinate from that reality is taken, allowing
a progressive spread of the various realities to every participant of the network.
During routing toward a target coordinate, sensors will evaluate their distance
with respect to each reality and will route on the reality that takes closer to the
target. Nothing else changes from what described in Section 3.

It is well known, from database literature, that replication has also draw-
backs. Generally it has a negative impact in case of data updates, since it needs
each existing replica to be affected by changes in order to maintain consistency.
However we can observe that usually sensor networks are more like a stream of
information in which older surveys can be replaced by newer ones or just stored
with the newer one to maintain historical information. We can say that updates
represent a limited problem and we can therefore focus on new data insertion.
Since it is costly (in terms of network traffic) to replicate each tuple/record in
each reality, analysis will be presented in section 5.1 in order to find out the best
replication configuration which guarantees query efficiency at reasonable costs.

5 Application Scenarios and Experimental Results

Sensor networks are intended for monitoring specific phenomenon or environ-
ments, they survey various kind of data such as temperature, humidity, pressure,
light, etc. We can see the example of an environment monitoring application in
which sensors survey temperature (T) and pressure (P), to which we refer as d1

and d2. Each event is inserted in the distributed database implicitly generated
by WR-Grid, reporting for instance date and time of occurrence. Without loss of

WR-Grid: A Scalable Cross-Layer Infrastructure 383

generality we can define a domain for T and P let us say Dom(d1) = [−40, 60]
and Dom(d2) = [700, 1100]. We present an example of range query submitted to
the network.

Return the times at which sensors surveyed a temperature ranging
from 26 to 30 Celsius degrees and pressure ranging from 1013 to
1025mbar. We must calculate the correspondent binary string for the four
corner of the range query, namely:

(26,1013) (26,1025) (30,1013) (30,1025)
c1 = *11011000 c2 = *11011001
c3 = *11011010 c4 = *11011011

Now all we have to do is querying the sensors whose coordinate have ∗110110 as
prefix.

5.1 Experimental Results

In our previous works [2] we evaluated the performances of our algorithm with re-
spect to the Average Path Length (APL, measured in hops) covered by messages
and to the average storage load at each sensor. Simulation results validated the
goodness of virtual coordinates idea, routing algorithm and storage load balanc-
ing algorithm. In this paper we exploited our Java simulator in order to evaluate
the impact of multiple realities policy. We ran simulation on an area of 1500 by
1500 meters in which about 200 sensors with a supposed radio transmission of
100 meters are spread. Coordinate creation is gradual, the simulator randomly
choose one or more sensor to elect as root of realities, then, as described in
Section 3 we let periodic beaconing to build the WR-Grid network. Beside coor-
dinate creation we simulated the survey of events (3000 in each run) by sensors
and their consequent insertion in the network. We also simulated the execution
of queries of randomly chosen data from randomly chosen sensors. Simulation

Fig. 1. Query path length for different numbers of realities in the network

384 G. Monti, G. Moro, and C. Sartori

0

100000

200000

300000

400000

500000

600000

1 2 4 8 16
Number of replicas

N
et

w
or

k
w

or
kl

oa
d

Queries Workload Insertions Workload Total workload

0

100000

200000

300000

400000

500000

1 2 4 8 16
Number of replicas

N
et

w
o

rk
 w

o
rk

lo
ad

Queries workload Insertions workload Total workload

Fig. 2. Sensors workload for different numbers of replicas and Query/insertion ratio
(10/1 and 5/1)

reported information about the number of hops covered by queries (query path
length), the number of data stored per node (storage load) and the number of
times each node is request to route a query (workload) during the simulation.
We analyzed average and Mean Square Error of those measures with different
numbers of replicas in the system and different query/insertion ratios (10/1,
5/1). Figure 1 shows that as the number of realities increases the routing perfor-
mances of WR-Grid improves considerably (average hops are halved compared to
W-Grid). This is the demonstration that multiple realities reduce the probability
that two nodes physically close are distant according to the order relationship.
It is important to notice that this benefit follows a logarithmic curve, therefore,
once that a certain number of coordinate (we can say around 10) is reached,
it is no more convenient to increase it. In Figure 2 and 3 can be observed a

WR-Grid: A Scalable Cross-Layer Infrastructure 385

0

500

1000

1500

2000

2500

1 2 4 8 16
Number of replicas

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

StDev w orkload 5/1 StDev w orkload 10/1

Fig. 3. MSE of sensors workload for different numbers of replicas

consequence of the improvement in routing efficiency. Since the average hops
per query is reduced also the average sensor workload is reduced. At the same
time it is possible to see that the MSE of that measure decreases, meaning a
better balance in the workload per sensor. By observing Figure 3 we can say
that multiple realities improve storage load balancing too and surely this has a
positive effect on sensors energy consumption since it implies a more balanced
request load per node. On the other side replication implies higher cost at in-
sertion time, more precisely, in case of n realities each event must be inserted
in n different indexes. Therefore the number of replica should be limited to the
smallest necessary in order to guarantee data availability and routing efficiency.
In summary, from our simulation results regarding a scenario of 200 sensors
distributed in an area of 2250000 square meters, each one with a radio range
transmission up to 200 meters, the best number of replications is 4-5. With a
higher number the increase of routing efficiency and balancing cannot be justified
by the increase of replication costs.

6 Conclusions and Future Work

In this paper we presented WR-Grid which extends our previous work W-Grid
by adopting a replication methodology. WR-Grid acts as a distributed data-
base without needing neither special implementation nor specific reorganization
while data of any dimension can be efficiently managed and queried. We have
evaluated the benefits of replication on data management, highlighting from ex-
perimental result that it can halve the average number of hops in the network.
The direct consequence of these results are a significant improvement both on
energy consumption and the workload balancing among sensors (number of mes-
sages routed by each node). Finally, thanks to the replications, whose number

386 G. Monti, G. Moro, and C. Sartori

can be arbitrarily chosen, the resulting sensor network tolerates sensors discon-
nections/connections due to failures of sensors. Next future works will concern
other analysis and experiments and the introduction of path learning capability
at nodes in order to achieve further performance improvements.

References

1. Li, X., Kim, Y., Govindan, R., Hong, W.: Multi-dimensional range queries in
sensor networks. In: SenSys ’03: Proceedings of the 1st international conference
on Embedded networked sensor systems, New York, NY, USA, ACM Press (2003)
63–75

2. Moro, G., Monti, G.: W-Grid: a Cross-Layer Infrastructure for Multi-Dimensional
Indexing, Querying and Routing in Ad-Hoc and Sensor Networks. In: P2P 2006:
Sixth IEEE International Conference on Peer-To-Peer Computing, Cambridge, UK,
IEEE Computer Society (2006) 210–220

3. Karp, B., Kung, H.: GPRS: greedy perimeter stateless routing for wireless net-
works. In: MobiCom ’00: Proceedings of the 6th annual international conference
on Mobile computing and networking, ACM Press (2000) 243–254

4. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE Trans.Netw. 11(1) (2003) 2–16

5. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A two-tier data dissemination model
for large-scale wireless sensor networks. In: MobiCom ’02: Proceedings of the 8th
annual international conference on Mobile computing and networking, New York,
NY, USA, ACM Press (2002) 148–159

6. Xiao, L., Ouksel, A.: Tolerance of localization imprecision in efficiently managing
mobile sensor databases. In: MobiDE ’05: Proceedings of the 4th ACM interna-
tional workshop on Data engineering for wireless and mobile access, New York,
NY, USA, ACM Press (2005) 25–32

7. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.:
Data-centric storage in sensornets with ght, a geographic hash table. Mob. Netw.
Appl. 8(4) (2003) 427–442

8. Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S., Shenker, S.: Difs: A
distributed index for features in sensor networks. In: Proceedings of first IEEE
WSNA, IEEE Computer Society (2003) 163–173

9. Moro, G., Monti, G., Ouksel, A.: Routing and localization services in self-organizing
wireless ad-hoc and sensor networks using virtual coordinates. In: ICPS’06: Inter-
national Conference on Pervasive Services. IEEE Computer Society (2006) 243–246

10. Ouksel, A., Moro, G.: G-Grid: A class of scalable and self-organizing data structures
for multi-dimensional querying and content routing in P2P networks. In: Agents
and Peer-to-Peer Computing, Springer-Verlag (2004) 123–137

Making Wide-Area, Multi-site MPI Feasible
Using Xen VM

Masaki Tatezono1, Naoya Maruyama1, and Satoshi Matsuoka1,2

1 Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro, Tokyo, 152–8552 Japan
{masaki.tatezono, naoya.maruyama, matsu}@is.titech.ac.jp

2 National Institute of Informatics, 2-2-1 Hitotsubashi, Chiyoda, Tokyo, 101–8430
Japan

Abstract. Although multi-site MPI execution has been criticized in the
past as being ”impractical” due to limitations in network latency and
bandwidth, we believe many of the obstacles can be overcome by various
means for wider classes of applications than previously believed. One
such technique is transparent dynamic migration of MPI, coupled with
aggressively performance-oriented overlay networks, assuming availabil-
ity of gigabits of bandwidth on future WANs. The problem, of course, is
to investigate the exact implications to application performances given
the arsenal of such techniques, but such work has been quite sparse. Our
current work involves using Xen as the underlying virtual machine layer
to implement such migration, along with performance-optimizing migra-
tion strategies—this particular paper deals with performance evaluations
of MPI on Xen VMs including what are the possible performance hin-
drances, implications of migrations, as well as the effect of variations in
latencies and bandwidth parameters as realized by the overlay network
using a software network emulator.

Keywords: MPI, cluster computing, grid computing, virtualization.

1 Introduction

Executing MPI on wide-area, multi-site clusters has been considered impractical.
One of the reasons for this impracticality is heterogeneity of clusters. Using mul-
tiple clusters with different hardware and software is hard for typical applications
users. Another reason is regarded as low performance of wide-area networks, im-
posing high communication overhead. Finally, the asymmetric networks caused
by firewalls and NATs make multi-site MPI execution further difficult.

To achieve efficient multi-site MPI execution, we envision that the application
user runs his programs on a virtual cluster that actually runs on multiple phys-
ical clusters connected with future high-speed wide-area networks. The virtual
cluster hides heterogeneity of different system configuration using virtual ma-
chine monitors (VMMs) such as Xen [1]. It also hides the network asymmetry
using overlay networks as a virtual network substrate. Moreover, it can exploit
dynamic migration of VMs to use available resources more efficiently. For ex-
ample, when a cluster of faster CPUs and larger memory becomes available for

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 387–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

388 M. Tatezono, N. Maruyama, and S. Matsuoka

use, an already-running virtual cluster can be migrated to the cluster for better
performance.

There exists some past work that attempts to combine VMMs with overlay
networks for multi-site MPI execution, such as Violin [2]. However, its evaluation
of MPI performance has been done only with a single program, HPL, in a single
site. Also, as far as we know, there is no performance evaluation on multi-site,
wide area virtual clusters. Thus, the performance of more diverse set of appli-
cations, running on wide-area overlay networks, is still unknown and remains to
be evaluated.

The primary purpose of this paper is a study of performance of MPI on a
virtual cluster using Xen as a VMM and various overlay network configura-
tions. First, we compare performance of NAS Parallel Benchmarks (NPB) on
Xen-based virtual cluster with the native cluster with the same hardware con-
figuration, consisting of up to 128 physical nodes. Next, we investigate the effect
of overlay networks to application performance using different overlay network
implementations.

These experimental studies show that the performance of Xen for MPI exe-
cution platform is comparable to native machines in terms of pure CPU perfor-
mance. The average performance degradation of virtual clusters was less than
20%. We also show that doubling the number of nodes from 32 to 64 by adding
another cluster cannot lead to speedups due to the bottleneck inter-cluster link.
Based on these results, we discuss how to mitigate such network bottlenecks and
the requirements to achieve high-performance MPI execution on virtual clusters.

2 Virtualization of Compute Hosts

We describe requirements on virtualization of compute hosts. First, the per-
formance overhead should be minimal. Second, it must support light-weight
dynamic VM migration. Third, it should not impose particular constraints to
user-level programs; In other words, off-the-shelf MPI implementations and its
applications should work with little adaptation.

With the recent advance in virtualization techniques, we see these require-
ments are achievable using available VMMs, such as Xen and VMWare ESX
Server [3]. For example, Xen is reported to migrate a VM within 60ms on a
LAN environment [4], with negligible CPU performance overhead [1]. Thus, we
choose to use existing implementations of VMMs. We describe our current in-
stance of this approach using Xen in Section 4.

3 Overlay Networks

We describe key requirements on underlying overlay networks where virtual com-
pute hosts are hosted, and our approach to them.

3.1 Requirements

We require the following four criteria to be satisfied.

Making Wide-Area, Multi-site MPI Feasible Using Xen VM 389

Providing Constant IP Addresses. To support migration of MPI processes,
hosts’ IP addresses need to be constant. The reason for this is that typical
MPI implementations do not allow IP addresses to change at run time. We
see this complexity should be handled by the overlay network layer, instead
of the virtual cluster user.

Low Overhead. Since we intend virtual clusters as MPI execution platforms,
the overhead needs to be kept minimal.

Security. To operate across WANs we need some level of security. At a min-
imum, we require overlay networks to have standard secure authentication
mechanisms, such as SSL or SSH. Furthermore, since some user may require
encryption of messages in communication links, it is preferable to be able to
support message encryption.

Reachability of Compute Nodes. Typical MPI, such as MPICH [5], make a
connection for each pair of participating processes, thus requiring that each
process is able to connect to every other process. Although this requirement
is not an issue on LAN clusters, such implementations cannot operate across
firewalls and NATs. Even so-called “grid-enabled” MPI implementations,
such as GridMPI [6] and MPICH-G2 [7], require each process to be globally
accessible. Therefore, overlay networks have to provide reachability across
firewalls and NATs even for compute nodes.

3.2 Approach

To achieve the requirements, we employ site-to-site VPNs as overlay networks.
As depicted in Figure 1, in a site-to-site VPN, the physical gateway for each site
establishes a secure connection to every other gateway. This achieves security
by requiring authentication and possibly encryption of messages. By assuming
the gateways are globally addressable with no firewalls, it provides reachability
of compute nodes across firewalls and NATs.

The expected performance of this approach is superior to other alternatives,
such as client-to-server VPNs, where each participating node connects to a single
VPN server. Since packets traverse the additional layer only when crossing a site
boundary, the expected performance overhead is less than that of the client-to-
server VPN approach. A downside of this approach is that since it is the gateway
of each LAN that makes a tunneling connection to every other gateway, it forces
even underlying physical networks to join the virtual network, resulting in a
significant change in the original network administration. We expect this is not
necessarily a limiting barrier in HPC cluster environments.

4 Components of the Prototype Virtual Cluster

To evaluate the feasibility and performance of virtual clusters, we construct
prototype virtual cluster environments using existing VMM and VPN imple-
mentations that satisfy our requirements.

As a VMM, we choose Xen for its performance and support of dynamic VM
migration (a.k.a., live migration [4]). It optimizes virtualization performance by

390 M. Tatezono, N. Maruyama, and S. Matsuoka

Guest OS

Host OS

Guest OS

Host OS

Guest OS

Host OS

Guest OS

Host OS

GW

Network A Network B

GW

VPN
tunneling

Fig. 1. Site-to-site VPN

para-virtualization, and is reported that the downtime during VM migration is
as low as 60ms in a LAN environment [4].

Among existing implementations of overlay networks, we use OpenVPN, an
open-source VPN implementation [8], and PacketiX, a commercial product by
SoftEther Corporation [9], as sample implementations. Both implementations
provide a software-emulated virtual Ethernet over the standard TCP/IP net-
work. They support secure authentication and message encryption via SSL with
X.509 certificates. Providing constant IP addresses is also doable by configuring
a single-subnet site-to-site VPN. Although PacketiX employs performance op-
timization mechanisms, including parallel connections and automatic tuning of
its number, its performance for HPC applications is still unknown.

5 Experimental Studies

To evaluate performance implication of virtual clusters, we conduct several ex-
periments using our prototype virtual cluster. First, to examine the baseline
performance of Xen-based virtual clusters , we compare performance of MPI
applications on virtual compute nodes with native compute nodes. Note that
to observe the overhead caused by host virtualization, we do not used VPNs
for this experiment. Second, we evaluate the performance of virtual clusters on
multi-site environments. In this study, we do not deploy the virtual clusters on
real multi-site environments; rather we use software-emulated two-site clusters.

5.1 Experimental Setups

Our experimental platform consists of an x86 cluster, called PrestoIII cluster,
a pair of VPN tunneling machines for each of OpenVPN and PacketiX, and a
NIST Net network emulator.

PrestoIII: Base Evaluation Platform. PrestoIII cluster consists of 256 com-
pute hosts of dual AMD Opteron 242 1.6GHz with 2GB of RAM, running Linux
kernel v2.6.12.6. Each node has a gigabit Ethernet interface, connected to a 24-
port gigabit switch of Dell PowerConnect 5224. As depicted in Figure 2, the
entire cluster nodes are interconnected with twelve of the 24-port switches and
an 8-port gigabit switch of 3Com SuperStack3 3848. Each of the Dell PowerCon-
nect 5224 hosts 20 compute hosts, and is further connected to the 3Com switch
with four 1Gbps uplinks.

Making Wide-Area, Multi-site MPI Feasible Using Xen VM 391

DELL PowerConnect
5224

1Gbps

DELL PowerConnect
5224

1Gbps

3com
Super Stack3 3848

4Gbps 4Gbps

20 nodes 20 nodes
256 nodes

Fig. 2. PrestoIII Networking

NIST Net

or

PacketiX
or

OpenVPN

64 nodes
32 nodes

1Gbps

32 nodes

1Gbps

HP Procruve 2848 PLANEX SF-0444G

1Gbps 1Gbps

Fig. 3. Overlay Network Testbeds

Virtual Machines. Each of the PrestoIII cluster nodes hosts a single VM
(a.k.a., DomU), using Xen v3.0.2 on Linux kernel v2.6.16 with the Xen patch
applied. Each VM and its host OS (a.k.a., Dom0) are assigned 512MB and
128MB of RAM, respectively.

Overlay Network Testbeds. Three kinds of overlay network testbeds are
used: OpenVPN and PacketiX VPNs, and latency-inserted emulated two-site
environments, as shown in Figure 3. To emulate a wide-area link, a software-
implemented network emulator called NIST Net [10] is used. It allows to insert
configurable amount of delay into a standard Linux packet router.

OpenVPN site-to-site VPN. Two 32-node clusters are created using
PrestoIII compute nodes, each of which is interconnected with a 48-port
gigabit switch. The switch is then connected to a VPN tunneling gateway
implemented with OpenVPN v2.0.7. Its encryption and compression options
are disabled. Each gateway runs on a node with the same configuration as
the compute nodes of PrestoIII cluster, but with an additional gigabit NIC.

PacketiX site-to-site VPN. The PacketiX site-to-site VPN testbed is orga-
nized in the same way as the OpenVPN site-to-site testbed, except for the
gateway machines. A pair of Windows XP machines with PacketiX v2.0 is
used. They run on Intel Pentium4 662 3.6GHz with 1GB RAM, and two
gigabit NICs. PacketiX’s encryption and compression options are disabled.

Emulated Two-Site Clusters using NIST Net. This testbed differs from
the other testbeds only on the inter-cluster link. The two clusters are in-
terconnected by a linux router with NIST Net version 2.0.12b. It runs on
AMD Athlon MP 2000+ 1.6GHz with 1GB of RAM, running Linux kernel
v.2.4.31. It has two gigabit NICs, each of which is connected to one of the
clusters via a gigabit switch.

Network and MPI Benchmark Programs. To evaluate latencies and band-
widths, NetPIPE v3.6.2 is used. For the studies of MPI performance, NPB v.3.1
with MPICH 1.2.7p1 is used.

392 M. Tatezono, N. Maruyama, and S. Matsuoka

(a) CG (b) LU

(c) EP (d) BT

Fig. 4. The relative performance of NPB class B benchmarks

5.2 Network Benchmark Results on Xen VMs

To evaluate the performance of network I/O on Xen VMs, we compare the
latency and bandwidth on Xen guest OSes with those on native and Xen host
OSes. On two of the PrestoIII compute nodes, we used NetPIPE’s ping-pong
test, which bounces messages of increasing size between two processes.

The latencies on the Xen guest, Xen host, native OSes were 0.08ms, 0.05ms,
and 0.04ms, respectively. The bandwidths on the Xen guest, Xen host, native
OSes were 430Mbps, 883Mbps, and 896Mbps, respectively. Thus, the latency on
the Xen guest OS was about twice as long as the native OS, while the bandwidth
on the guest OS was about half of the native OS.

5.3 MPI Benchmark Results on Xen VMs

Figure 4 shows the performance of NPB CG, LU, EP, and BT class B on a cluster
of Xen VMs and another cluster of native machines. The x-axes represent the
number of processors used, while the y-axes the relative performance to the
experiment using four processors. The performance metric is MOPS (i.e., mega
operations per second).

Each graph in Figure 4 shows that the difference between the native and VMs
is small: less than 20%, and nearly 0% in the case of EP and LU.

5.4 Network Benchmark Results on the Overlay Network Testbeds

Table 1 shows latencies and bandwidths of the site-to-site VPN and emulated
two-site testbeds. We conducted the ping-pong tests over the OpenVPN and

Making Wide-Area, Multi-site MPI Feasible Using Xen VM 393

Table 1. Latencies and bandwidth of the overlay networks

Latency (ms) Bandwidth (Mbps)
Native 0.04 896
OpenVPN 0.15 290
PacketiX 0.36 170
0ms 0.12 700
0.1ms 0.28 636
0.5ms 0.65 392

PacketiX gateway machines as well as the NIST Net router. The graph named
“Native” in each figure shows the performance when no gateway or route is
interposed between the two switches.

As shown in Table 1, the latency overhead by OpenVPN and PacketiX was
0.11ms and 0.32ms, respectively; The bandwidth of OpenVPN was decreased by
a factor of three to five. To identify the reason of the low bandwidth, we mea-
sured the CPU usage of the OpenVPN gateway machines during the NetPIPE
experiments. We see that on each gateway, the CPU usage was always close to
100%. We predict that the bandwidths of the VPN gateways are bound by CPU
performance. Further analysis of the bottleneck remains to be conducted.

5.5 MPI Benchmark Results on the Overlay Network Testbeds

Figure 5 shows the results of four MPI benchmarks on the OpenVPN and Pack-
etiX site-to-site VPN testbeds as well as emulated two-site testbeds. We con-
figure the NIST Net emulator to impose delays of 0ms, 2.5ms, and 5.0ms. The
0ms-delay network gives the baseline performance using two clusters excluding
the effect of VPN overhead. We also present the performance when 64 nodes in
PrestoIII are used without the overlay networks to show the ideal performance of
the 64-node cluster. The heights of the bars represent the relative performance of
each configuration against the configuration using 32 native machines in a single
cluster. The performance metric is MOPS. Note that the Y value greater than
1 means that its configuration achieves speedup by using 64 multi-site nodes
against 32 nodes.

On these results, we point out three remarks. First, as expected, the perfor-
mance of NPB EP is mostly irrelevant to underlying networks, and achieves a
linear speedup using two 32-node clusters. Second, we see that the native ma-
chines and the Xen VMs exhibit almost the same performance patterns with
respect to the variations in underlying networks. Third, the achieved speedups
using two 32-node clusters are less than 1 for most cases except for EP, while
those using a 64-node cluster are greater than 1.2 in both LU and BT. Thus, in
these configurations, using two 32-node clusters does not make the performance
better than a single 32-node cluster. On native machines, using OpenVPN de-
grades the performance of CG, LU, and BT, to 22%, 54%, and 28%, of the single
64-node cluster, respectively; the 0ms-delay network does to 31%, 79%, and 41%.

394 M. Tatezono, N. Maruyama, and S. Matsuoka

Fig. 5. Performance of the NPB benchmarks on the overlay networks

These results suggest that the most significant source of overhead of site-to-site
VPNs comes from the inter-cluster link, not the VPN gateways.

6 Discussion and Future Directions

6.1 Performance Implications of Using VMs for MPI

The experimental results of MPI on Xen-based VMs using a physical single clus-
ter shows that virtualization overhead ranges from 0% to 20% on 4–128-node
clusters. Within four benchmarks, CG, which is the most communication in-
tensive, exhibits the largest overhead. On the other hard, EP, which is mostly
compute-intensive, achieves nearly the same performance as that on native ma-
chines. Therefore, we see that major source of overhead in MPI execution comes
from its communication.

While some users would find 0–20% degradation unacceptable, we see that
the advantage of VMs would outweigh for other users. One of such advantages is
isolation of system environments. For example, virtual clusters allows the user to
customize environments without modifying underlying resources. Such isolation
is likely to be useful in resource-sharing environments such as computing centers.

6.2 Overlay Networks for MPI Execution

To improve the site-to-site VPN performance, we explore three directions. First,
we will investigate optimization of collective operations. As discussed in Sec-
tion 5.5, wide-area links are the most significant bottleneck in site-to-site VPNs.
Thus, MPI performance could be improved by optimizing its collective opera-
tions for multi-site execution, as proposed by Kielmann et al. [11].

Second direction is to schedule wide-area communication based on load imbal-
ance of parallel programs. Although load balancing is one of the research areas
that have been received the most attention, the problem still exists in a wide va-
riety of scientific programs. Our idea is to give a higher priority to the processes

Making Wide-Area, Multi-site MPI Feasible Using Xen VM 395

that are predicted to reach a barrier point later than the other processes. The
VPN tunneling machine, in turn, could prioritize the messages to and from those
higher-priority processes. We expect this priority-based scheduling to hide laten-
cies of WANs to some extent.

Third, we will explore more advanced alternatives such as parallel implemen-
tations that use available multiple processors and nodes. Although the main
bottleneck lies in wide-area links, we still expect there is a chance to improve
the MPI performance by increasing the performance of VPN gateways.

7 Related Work

Virtual Workspace [12] deploys VMs by extending Workspace Service of Global
Toolkit 4. Unlike our proposed virtual cluster vision, it does not do dynamic
VM migration. Besides, in Virtual Workspace, no mechanism is provided for
the reachability across NATs and firewalls. VioCluster [13] uses UML to vir-
tualize compute nodes, and VIOLIN [2] as underlying overlay networks. With
experimentation using HPL on a single-site VioCluster, they estimated the per-
formance overhead of VioCluster is at most 15%. They have not evaluated per-
formance of multi-site MPI executions.

There has been some work on MPI that extends the standard single-site MPI
execution model to multi-site execution, such as MPICH-G2 [7], GridMPI [6],
and MagPIe [11]. Although none of the past work can achieve the potential
optimization through the VM migration, their optimized collective operations
for wide-area links would be beneficial in our virtual cluster environments.

8 Conclusion

We have discussed the motivation and requirements of virtual clusters, and pre-
sented our current approach to them. It consists of Xen for virtualization of
compute nodes, and site-to-site VPNs for overlay networks. The experimental
studies suggest that, while the overhead caused by Xen VMs is relatively small,
the underlying network can significantly degrade application performance. Fi-
nally, we discussed the possible strategies to mitigate the performance problem.

Our future work includes more elaborate performance studies as well as those
discussed in Section 6. In addition, based on the detailed performance studies, we
will explore the possibility of constructing performance models for MPI on vir-
tual clusters. With the performance models, we plan to study global scheduling
algorithms for virtual clusters on grids.

Acknowledgments

This work is supported in part by Japan Science and Technology Agency as a
CREST research program entitled “Mega-Scale Computing Based on Low-Power
Technology and Workload Modeling”, and in part by the Ministry of Education,

396 M. Tatezono, N. Maruyama, and S. Matsuoka

Culture, Sports, Science, and Technology, Grant-in-Aid for Scientific Research
on Priority Areas, 18049028, 2006.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauery,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP, Bolton
Landing, New York (2003)

2. Jiang, X., Xu, D.: Violin: Virtual internetworking on overlay infrastructure. In:
Department of Computer Sciences Technical Report CSD TR 03-027, Purdue Uni-
versity (2003)

3. VMWare: Esx server architecture and performance implications. White Paper
(2005)

4. Clark, C., Fraser, K., Hand, S., Hanseny, J.G., July, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: NSDI. (2005)

5. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing
22(6) (1996) 789–828

6. GridMPI: Gridmpi project. http://www.gridmpi.org/ (2006)
7. Karonis, N.T., Toonen, B., Foster, I.: MPICH-G2: A grid-enabled implementation

of the message passing interface. Journal of Parallel and Distributed Computing
(JPDC) 63(5) (2003) 551–563

8. OpenVPN Solutions LLC: Openvpn. http://openvpn.net/ (2006)
9. SoftEther Corp.: Packetix. http://www.softether.comn/ (2006)

10. Carson, M., Santay, D.: NIST Net: A linux-based network emulation tool. SIG-
COMM Comput. Commun. Rev. 33(3) (2003) 111—126

11. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: Magpie:
Mpi’s collective communication operations for clustered wide area systems. In:
PPoPP, Atlanta, GA (1999) 131–140

12. Foster, I., Freeman, T., Keahey, K., Cheftner, D., Sotomayor, B., Zhang, X.: Virtual
clusters for grid communities. In: CCGRID. (2006) 513–520

13. Ruth, P., McGachey, P., Xu, D.: Viocluster: Virtualization for dynamic computa-
tional domains. In: IEEE International Conference on Cluster Computing, Boston,
MA (2005)

Virtualizing a Batch Queuing System at a
University Grid Center

Volker Büge1,2, Yves Kemp1, Marcel Kunze2, Oliver Oberst1,
and Günter Quast1

1 Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH),
Postfach 6980, 76128 Karlsruhe, Germany

2 Institut für Wissenschaftliches Rechnen, Forschungszentrum Karlsruhe,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

kemp@ekp.uni-karlsruhe.de, volker.buege@iwr.fzk.de

Abstract. Computing clusters of High Energy Physics institutes at uni-
versities are often shared between different user groups, having their
own requirements concerning the computing infrastructure. Those re-
quirements can lead to incompatibilities between the needed operating
systems, software packages, access policies or different grid middlewares.
Some of the above incompatibilities can be solved by providing differ-
ent portal machines for each group. Incompatibilities at the level of the
shared worker nodes of the cluster are, however, difficult to overcome.

In this paper, an approach to overcome this incompatibility using the
virtualization technique Xen is presented. Each physical worker node
hosts different virtual machines, acting as virtual worker node for every
group supported at the site. Ways to integrate this into an existing batch
queue are shown.

The performance of different programs used in High Energy Physics
on native and virtual machines are also presented.

Keywords: Xen, virtualization, batch queuing system, High Energy
Physics.

1 Introduction

Computing clusters built at universities are often shared between several user
groups. They can be member of the same institute working on different projects.
Some clusters are also shared between groups from different institutes, or even
departments of the same university. Often, the particular project software is
complex and does not allow an easy recompilation on different platforms. Each
project therefore has a preferred computing platform. The platforms are varying
in terms of required hardware, installed operating system, and installed system
software. Meeting the hardware requirements for all groups sharing a cluster can
only be done during the planning phase of a cluster, and will potentially result
in a compromise between different groups. Once the cluster is built, not much
space is left for changes in the hardware requirements.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 397–406, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

398 V. Büge et al.

If groups agree on common hardware requirements, they had two choices for
the operating system in the past: Either they install a common operating system
on all worker nodes or they install subsets of the worker nodes with different
operating systems in order to meet the specific needs of the different groups.
Of course the ideal case is a common operating system. This ensures the most
effective way of resource sharing, as every user can potentially access all nodes
at all time. Only a common operating system on all nodes enables benefits from
opportunistic use of the resources. There are, however, cases, where a common
operating system for all computing nodes has disadvantages:

– The hardware has a mixed 32/64 bit architecture. In this case, the uniformity
requirement forces the OS to be 32 bit, which does not make use of benefits
of the 64 bit extensions. Some users could use these benefits for certain steps
in their projects.

– The hardware consists of 64 bit processors. One group can only use a 32 bit
operating system, whereas the other groups could benefit from a 64 bit op-
erating system.

In some cases, different groups cannot agree on one common operating system.
Partitioning the cluster into different subsets of nodes is then the only feasible
way of sharing at least some resources of the common infrastructure like storage,
network or cooling. If the partitioning is static or varies only seldom, the oppor-
tunistic use of the computing resources is not possible. Dynamically changing
the installed operating system to always map the needed computing resources
to the installation is a difficult task, the switch from one operating system to
another is rather time consuming.

Here virtualization comes into game: Using virtualization techniques it is eas-
ily possible to install and run different operating systems in virtual worker nodes
on the same physical host at the same time. In contrast to the above “vertical
partitioning” of the cluster, a “horizontal partitioning” using virtualization tech-
niques is much more flexible, can integrate better into an existing cluster, and
allows an optimal resource sharing of the computing resources. Figure 1 schemat-
ically shows the two different partitioning approaches.

Any partitioning of a cluster using virtualization techniques presents an ad-
ditional layer of complexity to a cluster. In the following we will investigate

Fig. 1. A cluster of four physical hosts is partitioned vertically (left picture) and hor-
izontally using virtualization techniques (right picture). In the horizontal partitioning
scheme, all VMs are running at the same time, the resource allocation can be adjusted
dynamically.

Virtualizing a Batch Queuing System at a University Grid Center 399

performance issues and present a proof-of-principle implementation of a hori-
zontally partitioned cluster using virtualization techniques.

2 Computing Requirements of a Typical HEP Institute

Current and future data sources like the large HEP experiments at the Tevatron
or the Large Hadron Collider (LHC) deal with large data production rates.
Therefore the demand for computing power and mass storage has significantly
increased over the past years.

For example the CMS detector [1] records the results of proton-proton colli-
sions at a rate of 40 million per second. The average size of such a collision event
is about 1.5 MB, which leads to a data rate of 60 TB per second. Online data
reduction selects and records 150 events per second for further processing and
reconstruction, leaving a data rate of ≈200 MB per second for storage [2]. In
addition to the experiment data, events simulated with Monte Carlo techniques
have to be generated and stored as well. This simulated data reflects our present
knowledge or anticipations of the underlying laws of nature.

The CMS experiment alone will record up to 1.5 PB per year. Storage of
similar size and significant computing time are required to provide the simulated
data. The requirements of all four LHC experiments concerning computing power
and storage space [2] in 2009 are:

– CPU: 200 Mega SpecInt2000
– disk space: 90 PB
– mass storage systems: 90 PB

In the case of the CMS collaboration more than 2000 physicists of 182 insti-
tutes of 38 nations need access to these computing and storage resources. Due
to funding constraints and the requirement of redundant data storage it is not
possible to build one large central computing facility which accepts the data and
offers the needed computing resources to physicists. Instead, all four LHC and
other HEP collaborations make use of grid technologies to interconnect distrib-
uted computing and storage. This approach offers the opportunity to integrate
resources available at smaller sites into the grid. Many of the institutes in the
collaboration already have clusters of different size. The main benefits of such
an integration are:

– Minimization of idle times by allowing opportunistic use.
– Interception of peak loads.
– Shared deployment of common services.

As an example of such a typical institute cluster, the IEKP Linux cluster con-
sists of 40 computing nodes (based on x86 or x86-64), 5 file servers with a total
capacity of 20 TB and 6 portal machines for software development. The situation
at the IEKP is typical also in another aspect: Its cluster serves three different
groups which work on different large-scale international projects (CDF [3], CMS
and AMS [4]), each having different software and different computing require-
ments. In terms of operating system these are:

400 V. Büge et al.

– The CDF software is developed and tested with ScientificLinux Fermilab
Edition version 3. ScientificLinux [5] is a Linux distribution mainly main-
tained by the Fermilab and CERN computing division and largely used in
science. It is based on a recompiled RedHat Enterprise Server. The CDF
software needs a 32 bit operating system.

– The CMS group favors the ScientificLinux CERN Edition version 3 at the
moment. At the end of 2006, a transition is planned to ScientificLinux CERN
Edition version 4.

– The AMS group does not have special operating system requirements. They
would, however, benefit from a 64 bit operating system.

The IEKP cluster is not only serving local users from these three groups:
The IEKP cluster is connected to the WorldWide LHC Computing Grid and
the SAMGrid [6,7]. Users from all over the world can, provided they have the
permissions, submit their jobs to the IEKP computing cluster. This is, however,
only possible if the underlying operating system is standardized.

The operating system of the nodes is, by consensus, ScientificLinux CERN
version 3. The schedules for a transition to a newer operating systems will vary
among the different collaborations. Therefore, the cluster must either be parti-
tioned vertically or horizontally.

Our implementation of the concept of horizontal partitioning using virtual-
ization technologies is driven by the following demands:

– Enabling opportunistic use of computing resources.
– Providing both 32 bit and 64 bit operating systems.
– Local users and grid users run on different virtual worker nodes.
– Security and privacy improvements for all users provided by machine isolation.

Using virtualization techniques on the worker nodes and in the batch queuing
system, clusters at universities shared among different user groups get the best
possible performance out of their resources. The resources can even be shared
across department boundaries and unused office computers can be integrated in
a dynamic cluster during night time.

3 Virtualization of a Batch Queuing System

Users do not log in to the computing nodes, but they submit their jobs from a
portal machine to a computing node via the batch queuing system. The priori-
tization of the jobs and users is done by a scheduler, which is either integrated
into the batch queuing system, or a separate product interacting with the batch
server. Maui/Torque [8,9] is an example of a frequently used batch system with
a powerful scheduler also employed at the IEKP.

3.1 General Concepts of Batch System Virtualization

Three categories of batch queuing systems can be distinguished in terms of
implementing a horizontal partitioning of a cluster:

Virtualizing a Batch Queuing System at a University Grid Center 401

– The batch queuing system provides control mechanisms for the virtual ma-
chines and can group different virtual machines to one physical host. In
this case implementing a horizontal partitioned cluster means choosing the
best fitting virtualization technique and providing the different operating
systems.

– The batch queuing system does not provide native control mechanisms for
the virtual machines. It has, however, the capability of grouping different
virtual machines to one physical host. In addition to the choice of the virtu-
alization technique and the preparation of the operating systems, one must
implement the control mechanisms. Most batch queuing systems offer the
possibility to run “prelude scripts”. This feature can be used to adequately
prepare the virtual machine before the execution of the job.

– The batch queuing system does not provide native control mechanisms for
virtual machines. Grouping different virtual machines to one physical host
is also not possible. In this case both features have to be implemented in
around the batch queuing system.

The cluster virtualization we present in the following is based on the Maui/-
Torque framework which falls into the third category. We therefore need a special
program which we will present later in this paper. The general ideas of this
approach can be adapted to other batch queuing systems. The concepts are also
independent from the chosen virtualization product.

3.2 Choice of Virtualization Technique

Running one or several virtual machines on one physical host satisfies many
different use cases: Various different virtualization techniques and virtualization
products exist. A major application field for virtualization techniques is server
consolidation. Another interesting use case is the horizontal partitioning of a
cluster that will be discussed in this paper.

In order to benefit from the usage of virtualization techniques in a horizontally
partitioned cluster, the following aspects have to be taken into account:

– Support of commodity operating systems like Linux or Windows.
– Acceptable overhead in performance.
– Easy installation and maintenance of virtual machines.
– Isolation of virtual machines from host system.
– Steering of virtual machines using scripts.
– Acceptable additional costs per existing physical host.

Several VMware [10] products, User Mode Linux (UML) [11] and Xen [12]
have been investigated on with respect to the above requirements. The VMware
player lacks the scripting abilities. The VMware ESX Server is a commercial
product and might therefore not be affordable for smaller working groups. Bench-
marks [13] show that Xen has a better performance than UML, making it the
candidate of choice for such a partitioning. In order to measure the performance

402 V. Büge et al.

impact of Xen in a virtualized batch system, two additional benchmarks are
conducted.

A first benchmark contains IO and CPU intensive standard applications of
the CMS software framework like Monte Carlo simulations of particle collisions
in High Energy Physics as well as simulations of the interaction of particles with
matter. The execution of this benchmark on a native Dual Opteron system with
4 GB of memory and in a virtual machine, hosted on the same system shows a
decrease of performance below 4%.

A second benchmark measures the execution time of an application based on
the GalProp program [14] and used by the AMS group. This application can be
compiled as a 32 bit and a 64 bit application. The benchmark was run on a Dual
Opteron system with 2 GB of memory in a native 32 bit operating system. On
an identical system a 64 bit version of the application was executed in a virtual
machine. Both the VM and the host system are 64 bit systems. In this scenario
the job execution takes 22% less CPU time than in the native 32 bit scenario.

The results of both benchmarks support the choice of Xen as virtualization
technique for the following implementation of a horizontal partitioning of a clus-
ter. The loss in performance is either minimal for native 32 bit applications. One
can even see a gain in performance when using virtualization techniques to offer
the user the optimal environment.

3.3 Preparation of the Worker Nodes

As we have seen in the previous section, we opt for the Xen virtualization tech-
nique, which we install on the physical node. The privileged domain, Dom0, only
has the task to manage the virtual machines and eventually allow an ssh login
from an administrator. User jobs running in the Dom0 would introduce a dis-
parity between the Dom0 and the unprivileged domains, the DomUs. Instead,
we use the benefits from the encapsulation in the virtual machines. This way,
jobs running in a virtual machine cannot influence other virtual machines.

The operating system for the virtual machines is provided by the NFS server.
It could also be installed locally into an image or a partition. As a first ap-
proach one would boot up the required operating system when a job needs to
be computed in the virtual worker node. We do, however, not recommend this:

– Short jobs or interactive jobs should have a very short waiting time, ideally
no waiting time at all if free resources are available. Booting up a DomU
can take up to a couple of minutes, depending on the installation details and
potential file system checks at boot time.

– The waiting time is even increased by another factor: The time the batch
server needs to register the virtual worker node into its list of available
resources.

We suggest another approach: Each virtual worker node which could potentially
be required at some time is running all the time, but with a minimum of memory
allocation. In our case, the virtual worker nodes are stable with only 32 MByte

Virtualizing a Batch Queuing System at a University Grid Center 403

of dedicated RAM. Only the virtual worker nodes to which a job is submitted
get a higher share of the total RAM. Using Xen, increasing the memory alloca-
tion for one DomU is almost instantaneous. Furthermore no time is lost for the
registration of the virtual worker node with the batch server.

The CPU overhead of running several virtual worker nodes in parallel is min-
imal: Only the virtual worker node in which the user job is executed gets CPU
time. All other virtual worker nodes do not have much CPU activity.

3.4 Integration into a Batch Queuing System

After having virtualized the computing nodes, one has to register the different
nodes with the batch queuing system. As Maui/Torque cannot group virtual
worker nodes to one physical host, this feature must be implemented around the
batch queuing system in an external program.

The overall sketch of such a program is drawn in figure 2. The program is
implemented as a daemon, which runs continuously. As a first step, the daemon
must make sure that it has the full control over all nodes and all jobs. In the
Maui/Torque wording, this is done by setting all nodes offline and all jobs to
hold. At this moment no jobs can be submitted to any virtual worker node.

The daemon then queries the scheduler. A priority is assigned to each job
waiting in the queue by the scheduler, according to fair share, expected running
time, waiting time, and other criteria. The daemon sorts the jobs according to
their priority. The priority assignment policy is not touched. This remains the
task of the scheduler which is of utmost importance for shared computing centers
with existing policies.

In a next step, the daemon determines the free resources by querying the
batch queuing server. In this context, a free resource is a resource that can
accept another job. Again, the daemon allows for implementing a site policy.
One site could for example allow three jobs on one CPU, or one IO and one
CPU intensive job per physical host. The daemon does not change this allocation
policy. If there are free resources, the next jobs in the prioritized list are sent to
the free resources.

Before sending a job to a virtual worker node, the physical host and the virtual
worker node needs to be prepared. When the decision is made that a job should
run on one virtual worker node, its memory allocation is set to the maximum
possible. In addition, the state of the virtual worker node is set to “free”, and
the job is released. This way the daemon can control which job is submitted to
which virtual worker node, ensuring that the job runs in the correct operating
system, and that the physical host can offer resources to the virtual worker
node.

After the job is submitted to the virtual worker node, the state of the node is
set to “offline” again to make sure no other job can be submitted to this virtual
worker node. After a short waiting period, the whole procedure is repeated again.

Such a daemon has been implemented in the Perl programming language. It
has been interfaced to the Maui/Torque batch queuing system and is running
on a test system at the IEKP.

404 V. Büge et al.

Fig. 2. General sketch of a daemon implementing the grouping of virtual machines to
one physical host. The gray shaded areas represent standard interfaces to the external
scheduler and batch system.

4 Conclusions and Outlook

When different groups with divergent operating system requirements want to
concurrently share the same computing resources in a cluster, the cluster must
be partitioned. A situation with many different groups is common at institutes
of universities, one example being the cluster of the Institut für Experimentelle
Kernphysik of the University of Karlsruhe.

When partitioning a cluster, one should chose a scheme with the following
features:

– Flexibility in the response to changing occupancy patterns.
– Guarantee an optimal operating system for every job.

Virtualizing a Batch Queuing System at a University Grid Center 405

– Leave the choice of the base operating system to the system administrator.
– Only minimal changes to the base operating system and the batch queue.
– No change in existing prioritization policies.
– Good performance of the worker nodes.

The horizontal partitioning scheme presented in this paper matches all these
requirements best.

The performance of the worker nodes is very good when using the virtual-
ization technique Xen: A 32 bit HEP benchmark application does not show a
noticeable drop in performance when run in a virtualized environment. Another
benchmark application that can be recompiled as a 64 bit application fully ben-
efits from virtual 64 bit worker nodes.

We present an implementation of a horizontally partitioned cluster using Xen
on a test system at the IEKP. A program was written to group different virtual
worker nodes to one physical host. This program interacts with the batch queuing
system, but does not touch the prioritization policy or the resource allocation
by the batch system. It would be preferable to have the node grouping feature
already implemented in the batch system. This would increase the acceptance
at computer centers as well as the overall stability and maintainability of a
horizontally partitioned cluster.

The method of horizontal partitioning of a cluster using virtualization tech-
niques is not restrained to existing clusters. Horizontal partitioning allows the
formation of dynamic clusters in a decentral environment with computing re-
sources from different administrative domains. As an example, office computers
from different departments of a university or company can be combined to one
cluster during night time and used by several groups, provided that they deploy
virtual machines containing their operating system and their software. Even a
mixed cluster of dedicated computing nodes and office computers can be imag-
ined, providing a maximum of flexibility and hence the best possible utilization
of computing resources.

Acknowledgments

We are grateful to Fred Stober, Iris Gebauer, Christophe Saout and the adminis-
tration team of the IEKP. We wish to thank the Bundesministerium für Bildung
und Forschung BMBF for financial support.

References

1. CMS Outreach, Compact Muon Solenoid Outreach Activities. http://cmsinfo.
cern.ch/

2. LHC Computing Grid Technical Design Report. LCG-TDR-001, CERN-LHCC-
2005-024, 20 June 2005.

3. CDF, Collider Detector at Fermilab. http://www-cdf.fnal.gov/
4. AMS,Alpha-MagneticSpectrometer.http://ams.cern.ch/AMS/ams homepage.html

5. ScientificLinux Homepage. https://www.scientificlinux.org/

406 V. Büge et al.

6. Worldwide LHC Computing Grid Homepage. http://lcg.web.cern.ch/LCG/
7. CDF way to the Grid. S. Sarkar, I. Sfiligoi, 2005.
8. Maui Cluster Scheduler http://www.clusterresources.com/pages/products/

maui-cluster-scheduler.php

9. Torque Resource Manager http://www.clusterresources.com/pages/products/

torque-resource-manager.php

10. VMware Homepage. http://www.vmware.com/
11. User Mode Linux Homepage. http://user-mode-linux.sourceforge.net/
12. Xen Project Homepage. http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
13. Xen: Scientific Use Cases and Performance Comparisons. M. Hardt, R. Berlich,

2005.Virtualization for Grid-Computing. M. Hardt, 2005.
14. GalProp Home page http://www.mpe.mpg.de/∼aws/propagate.html

Power Management in Grid Computing with Xen

Fabien Hermenier, Nicolas Loriant, and Jean-Marc Menaud

OBASCO project
École des Mines de Nantes - INRIA, LINA

4, rue Alfred Kastler
44307 Nantes Cedex 3, France

{fabien.hermenier, nicolas.loriant, jean-marc.menaud}@emn.fr

Abstract. While chip vendors still stick to Moore’s law, and the per-
formance per dollar keeps going up, the performance per watt has been
stagnant for last few years. Moreover energy prices continue to rise world-
wide. This poses a major challenge to organisations running grids, indeed
such architectures require large cooling systems. Indeed the one-year cost
of a cooling system and of the power consumption may outfit the grid
initial investment.

We observe, however, that a grid does not constantly run at peak
performance. In this paper, we propose a workload concentration strat-
egy to reduce grid power consumption. Using the Xen virtual machine
migration technology, our power management policy can dispatch trans-
parently and dynamically any applications of the grid. Our policy concen-
trates the workload to shutdown nodes that are unused with a negligible
impact on performance. We show through evaluations that this policy
decreases the overall power consumption of the grid significantly.

1 Introduction

The number of applications requiring gigantic storage and computational capa-
bilities has increased the interest in grid computing in the last few years. At the
same time, chip vendors have been producing more and more powerful CPUs at
lower prices. Past work has mostly focused on designing efficient and scalable
grids. Nevertheless, energy consumption has recently become a major concern
for organisations running grids. Indeed, power consumption is an important por-
tion of the total ownership cost, it determines the size of the cooling system and
of the electrical backup power generators. The cost of a cooling system with the
power consumption may sometimes exceed the grid initial investment. Moreover,
intensive power consumption increases the chance of component failure. Thus,
power consumption must be a key feature in grid design.

In the meantime and despite numerous users submitting jobs, a grid must
rarely maintain peak performances constantly. For example, the average load of
the grid of the École des Mines de Nantes subatomic research lab is about 70%.
Moreover, many applications have specific needs e.g. middleware or operating
system. For example, Aliroot(the application of the subatomic department of
the École des Mines of Nantes), requires a specific middleware (Allien) and a

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 407–416, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

408 F. Hermenier, N. Loriant, and J.-M. Menaud

particular Linux distribution (Scientific Linux Cern). All those problems argues
for a generic power management system adapted to grid.

In this paper, we present our prototype on power management for grid ar-
chitectures. Our prototype is based on Xen virtual machine hypervisor so that
our solution is transparent to user. Based on workload probes (CPU load, mem-
ory, NICs throughput etc.), the policy migrates virtual machines to concentrate
the workload on fewer nodes of the grid, thus allowing unused nodes to be shut
down. We present performance results over different application workloads and
show the effictiveness of our algorithm.

The rest of the paper is organised as follows. Section 2 presents existing power
management policies for cluster computing. Section 3 reviews the virtual machine
technology and then Section 4 describes our implementation. Section 5 shows
performance results and Section 6 concludes.

2 Energy Management

Most existing work on power management has focused on CPUs and laptops. In-
deed, battery duration is a critical problem for users and CPU is by far the most
power consuming component of a computer1. Today, most processors feature
DVFS (Dynamic Voltage and Frequency Scaling) even server designed proces-
sor. A DVFS processor has a set of levels (voltage and frequency pairs). A default
policy integrated in the BIOS can be overloaded by the operating system. OS and
system select the level according to performance and temperature constraints.

The rest of this section describes IVS, CVS and VOVO, three power man-
agement policies for single system or clusters and the problem of computation
migration in grid computing.

2.1 IVS – Independent Voltage Scaling

Independent Voltage Scaling is a node-local policy for power management. In
this approach, every node must be a DVFS processor. Each node adjuts its
processor voltage and frequency to the lowest possible value such that there is
not much impact on performance. IVS is very simple and it does not require
any specific environment or information about running applications. Elnozahy
et al. [1] report power savings of up to 30% depending on applications. In order
to minimize the impact on performance, Chen et al. [2] applied IVS only to
nodes not in the critical path of running applications.

2.2 CVS – Coordinated Voltage Scaling

In contrast to IVS, Coordinated Voltage Scaling is a global policy. Each node
periodically informs a monitor of its workload. The monitor evaluates the overall
1 Although, network interfaces should not be neglected, especially in grids where low-

latency NICs and Gigabit cards are common.

Power Management in Grid Computing with Xen 409

workload, estimates an average load and broadcasts it to every nodes. Then the
nodes adapt their voltage and frequency to this average. This strategy tends to
decrease the variance of the frequency distribution across the grid.

CVS is effective when the workload is uniformly distributed among nodes.
Elnozahy et al. [1] evaluate the power savings of CVS to be about 25%. Nev-
ertheless, the effectiveness of CVS is questionable when workload distribution
is not uniform, indeed, nodes with an bigger workload are slowed down, thus
decreasing the overall performance.

2.3 VOVO – Vary On, Vary Off

Pinheiro et al. [3] and Chase et al. [4] have proposed Vary On Vary Off, which
dynamically adapts the number of nodes available according to the grid work-
load.

VOVO applies a workload concentration strategy. Similarly to CVS, a monitor
estimates the overall workload, from which VOVO deduces the number of nodes
required. When too many nodes are in use, jobs are migrated or balanced to
concentrate the workload. Then unused nodes are simply shut down. The monitor
may define a performance tolerance to possibly overload some nodes to further
increase power savings.

VOVO has been found to give a power savings of 31% to 86% [1], indeed
VOVO is fully effective when a large cluster is almost unused. However VOVO
requires job migration technology, that can be implemented at several level. At
the application level, users have to develop their own load balancer. While at
the operating system level, a specific OS has to be installed on every machines
and these must be identical. While this is rarely an issue in clusters, grids are
more heterogeneous.

Designing the migration mechanism at the application[5], middleware, or op-
erating system[6] levels is hardly feasible, as energy saving is an issue for orga-
nizations running grids, not for users developing applications. In our context,
we suppose that grid are built by aggregations of primary cluster. Each clus-
ter is managed by different organizations with their specific applications. Thus,
various frameworks and middleware are used to develop grid applications. It is
unfeasible to impose one of them on the entire grid as these are specific to the
kind of applications developed (computationnal, data, services) [7].

3 Virtual Machines

The goal of a virtual Virtual machines is to provide each of multiple users with
the illusion of having an entire computer (a virtual domain), all on a single
physical computer (the host). This technology, also known as virtualization, dif-
ferentiates from application virtual machines such as Sun Microsystem’s Java
Virtual Machine that isolates Java code from the underlying hardware and op-
erating system thus releasing the developer with porting issues.

In a virtualized environment (see Figure 1), a piece of software called the hy-
pervisor or the virtual machine monitor must enforce isolation between multiple

410 F. Hermenier, N. Loriant, and J.-M. Menaud

virtual domains and must partition resources (CPUs, RAM, HDDs, NICs, etc)
among them. The rest of this section describes virtualization and paravirtual-
ization, the two major ways to implement an hypervisor.

Fig. 1. Architecture of a Xen virtualised System

In contrast to emulation, virtualization reproduces the host architecture iden-
tically for the virtual machines. Hypervisors such as VMWare [8] run most in-
structions of the virtual domains directly on the host processor. The hypervisor
must trap sensitive instructions that can not be executed safely such as TLB op-
erations. While virtualization restricts the virtual architecture to the host one, it
stills allows running unmodified OS images with much better performance than
emulation.

Paravirtualization [9,10] has been introduced to overcomes the performance
loses of virtualization due to sensitive operations. It explicitly requires porting
the OS to a particular hypervisor. The architecture presented to the virtual
machines slightly differs from the host architecture in order to eliminate “coop-
eratively” sensitive operations.

Virtualization thus makes it possible hosting a lot of virtual domains on the
same machine without constraints. Each domain could use its own operating
system, middleware or applications without risk of conflicts with others system.
This advantages make that virtualization appreciable in grid computing: Cohab-
itation with the local organisation is safer and a migration mechanism of virtual
domain makes deployment easier[11].

4 Our Solution

Our solution is a dynamic placement system for virtual domains on a grid vir-
tualized with Xen (an hypervisor for each node). The placement algorithm aims
to save energy by concentrating virtual domains on the smallest subset of nodes
possible. Nodes not hosting virtual domains can be stopped, in order to reduce
the overall power consumption. At present, the distribution criterion for virtual
domains placement is based on CPU usage but could be extended to take other

Power Management in Grid Computing with Xen 411

criteria into account, e.g. network traffic or memory usage. Distribution of
virtual domain is made with a minimal service interruption with xen migration
mechanism[12]. The problem of data migration is solved by using a files server
that exports operating systems and datas for each virtual domain.

Our solution is transparent for users of virtual domains and does not require
any adaptations or specific operating system2. The architecture is based on a
client/server model. A standard pre-made domain is running on each node. That
domain, called Domain 0, runs a tool, the harvesting agent, that monitors CPU,
memory and network. This supervisor monitors the resource usage of the node,
and how this resources are divided among the node’s virtual domains.

Each harvesting agent periodically sends a report to the decision agent which
analyses them to get an overview of the grid and of its virtual domain resource
usage. Then an algorithm determines actions to be taken by the various nodes
(virtual domain migration, boot, shutdown).

4.1 Resource Collection

The harvesting agent uses functionalities offered by the xenstat library provides
with Xen. This library allows the domain-0 to obtain statistics generated by the
hypervisor, for each virtual domain, including information concerning allocated
memory, bytes sent and/or received by the virtual network interface or the quan-
tity of time used by the virtual CPU. By retrieving this information periodically,
it is possible to know the percentage of CPU consumed by each virtual domains
and, by summing them, the global CPU usage of the node (in this case, the
result obtained does not consider the load of the hypervisor.) A report is made
and sent to the decision agent. The harvesting agent is responsible for notifying
the decision agent of changes in a node’s state: When a node is stopped or ready
to accept virtual domains, its harvesting agent send a departure or arrival no-
tification, respectively. Thus, the decision agent knows the placement of virtual
domains among the grid, and what nodes are available or offline.

4.2 The Decision Agent

This agent runs on its own machine. According to reports and notifications
packets sent by nodes, the agent constructs two representations of the grid. A
node based view gives information relative to the grid components: IP, MAC
address, and state (online or offline) of each nodes. A virtual domain based view
gives information about their location, their current resource consumption and
the level of saturation of their host. The decision agent then uses this information
to concentrate virtual domains in the smallest possible subset of nodes while
avoiding saturation. The algorithm is based on two variables: a saturation and
an underload threshold. Decisions are taken by comparing the current load of
each node with its thresholds.
2 Actually it requires to use a Xenified OS, but that limitation disappears with the

help of hardware virtualization.

412 F. Hermenier, N. Loriant, and J.-M. Menaud

In order to concentrate virtual domains without overloading nodes, the al-
gorithm selects virtual domains that consumes the highest amount of CPU on
the lowest loaded node then move it on a more loaded node. As we suppose
an homogeneous environment, CPU consumption of that domain should remain
almost identical on the new node. So, the destination node is chosen such that
the sum of the current destination node load and the current domain load is un-
der the overload threshold. The first acceptable node is picked. This operation
is repeated in the next iteration if the node is still underloaded and if a more
appropriate place is available for virtual domains.

Virtual domains concentration could be dangerous in a certain way, as virtual
domains does not continually do the same job and thus its CPU consumption
may vary. Then, it is possible that if some domains increase their CPU con-
sumption, the nodes that host them will be overloaded. To limit the performance
degradation, we reduce the load in the following way: the domain having the low-
est load will be moved to a node that can host it. The destination node should
have the maximum CPU usage without being overloaded (before and after the
migration). If no node is available, a new node in the “offline nodes set” will be
initialised and domain will be migrated on.

When a decision is made by the agent, it will send the corresponding action
to the appropriate node. Actions are shell commands, that will be executed in
Domain 0. As we want to migrate virtual domains to save power by a VOVO
system, three kinds of actions can be sent to a node. The most used action is to
migrate a specific virtual machine to a new node. Others actions, specific to the
VOVO aspect of our solution cause a node to be halted or booted.

5 Evaluation

The evaluation of our solution aims to show that dynamic placement of virtual
domains allows a good energy saving with a tolerable performance degradation.
We compare energy economy and performance degradation of our solution and
a traditional IVS solution.

In order to evaluate our solution in a predictable environment, we developed
a benchmark that sends “load request” to clients. This tool was tuned to make
each client consumes a certain amount of CPU time. For each experiment we ran
the tests three times. First, in a native environment, each application runs on a
separate node, without any power management policy. Second, a standard IVS
policy is used on each node. Third, we ran the benchmark with our prototype.
In this case, the applications ran on virtual domains that were dynamically
migrated between a variable amount of actives nodes, depending on the CPU
resource needs).

Our grid is composed by four Sun V20Z stations. Each machine contains
4GB of RAM, 2 Opteron 250 and run a GNU/Linux distribution with Xen 3.0-
testing (based on a 2.6.16 kernel). All applications are compiled in 32bits mode.
A file server contains all applications and OSs used by nodes in order to make
administration easier. All machines (4 nodes and 1 file server) are connected

Power Management in Grid Computing with Xen 413

throught a Gigabit network. The IVS software used for the second test is based on
powernowd and the nodes’ overload and underload threshold chosen to migrate
virtual machines were respectively 80% and 70%. In all situations, we measure
the effective CPU consumption of each node, distribution of CPU time between
domains and Watts consumed by the grid (not including the file server).

Our benchmark evaluates the dynamic behaviour (migration, turning nodes
on and off) of our strategy and its benefits in comparison to IVS. We adapt
it to create four different scenarios (one per benchmark client). Each scenario
creates high-load peaks or low-usage periods at different times. This evaluation
simulates a grid supporting a variety of different services. Figures 2(a) and 2(b),
and Table 1 show the nodes’ CPU utilization and the domain location over
time. First, we observe that the IVS strategy has CPU average load that is
almost equal for all four nodes (approximately 60%), whereas our solution tends
to concentrate all the work on three nodes. Second, the CPU average load for
each node is less variable in time for our solution due to the policy’s decisions.

Table 1. CPU average utilization with dynamic evaluation

IVS

node1 = 51.16%(δ = 37.73)

Virtualization

node1 = 82.69%(δ = 20.35)
node2 = 65.42%(δ = 36.23) node2 = 84.08%(δ = 6.91)
node3 = 68.11%(δ = 22.13) node3 = 09.52%(δ = 9.58)
node4 = 59.59%(δ = 33.39) node4 = 65.68%(δ = 28.3)

The four different scenarios are built to cover different situations that illus-
trate advantages and drawbacks of domain distributions. A positive effect of
concentration appears around 1100s (Figure 5), where two of the four nodes are
disactivated by migrating virtual Domains 1 and 4 to Node 2. These migrations
are possible because the two domains consumes almost no resources at that mo-
ment. An overview of a virtual domain repartition appears around 1600s. On
Node 2 from which virtual Domain 3 was migrated to Node 1, in order to leave
CPU time for virtual Domain 2. Thus, domains that need an important amount
of resources have a higher priority than small domains. This exclusion of “small”
domains avoid performance loss.

A side effects of migration can be seen on Node 4, at about 400s. To free some
resource on Node 1, Node 4 was booted, but during the boot time, the load
decreased, and finally Node 4 received a virtual domain only for 30 seconds and
consumed 3% CPU time before being shut down and turned on again two minutes
later. As it is impossible to precisely predict the future needs of domains, it is
hard to avoid such “useless” boots. Nevertheless, it would be possible to define
a minimum up time to avoid node rebooting constantly.

We can see in Table 2 and Figure 5, that the energy saving of our solution is
appreciable but there is a small performance degradation (the cumulated time
of execution increases by 20 minutes). This is due to the time needed by a node
to boot (approximately 3 minutes). To evaluate the time lost due to reboot,

3 Considering time increase.

414 F. Hermenier, N. Loriant, and J.-M. Menaud

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
1

Domain-1

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
2

Domain-2

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
3

Domain-3

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
4

Time (in sec.)

Domain-4

(a) Native Execution with IVS

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
1

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
2

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
3

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

%
 C

P
U

 N
od

e-
4

Time (in sec.)
boot time Domain-4 Domain-3 Domain-2 Domain-1

(b) Virtual Environment with migrations

Fig. 2. Global CPU consumption

Table 2. Execution time and average energy consumption

Environment Execution time Energy
Cumulated Δ with Native Consumption Gain3

Native 118:39 - 651.12 W -
IVS 119:01 +0.3% 636.57 W 1.93%
Virtual 139:37 +17.67% 498.13 W 9.97%

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40

E
ne

rg
y

(W
at

ts
)

Time (min)
Native execution IVS execution prototype

Fig. 3. Global energy consumption

Power Management in Grid Computing with Xen 415

we re-ran the experiment with virtual environment without shutting down or
booting nodes. Migration is still effective but boot time is reduced to zero. In this
situation, the performance decreases only by 8.53% (with a cumulated execution
time increased by 10 minutes).

This evaluation shows that our solution allows important energy savings, es-
pecially in a stable environment, but in a very dynamic situation, the boot time
of nodes slightly reduces the benefit of our solution. About 50% of the over-
head of our solution is due to boot time. Software solution such as hibernate or
suspend-to-ram may greatly minimise that issue.

6 Conclusion and Future Work

In this paper we have show that the Xen live migration allows to adapt the
VOVO power saving strategy to grid computing considering its complex in-
frastructure. Contrary to traditionnal VOVO systems, the abstraction layer of-
fered by Xen provides a generic computation migration process based on virtual
domains placement. The computation concentration is done by dynamically mi-
grating virtual domains, considering their resource needs. This concentration of
virtual domains on the minimal subset of nodes allows to shut down unused
nodes, thus to save energy. By separating the migration and the placement con-
cern at the hypervisor level, our solution is completly transparent to developers
and users. Evaluations show our power managment policy based solely on CPU
load may significaly decrease power consumption in grid with variously loaded
machine.

As future work, we intend to extend our power management policy to a multi-
criterion system, especially to include network traffic information. Indeed, the
network hardware of a grid also consumes a non neglectible amount of electrical
power. Our policy could tighten or regroup on a single node, highly communi-
cating virtual domains in order to reduce network traffic. Utilization of software
suspend will allow to reduce performance loss due to node boot time and increase
the grid reactivity.

References

1. Elnozahy, E.N., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: Pro-
ceeding of the second Workshop on Power Aware Computing Systems, Cambridge,
MA, USA (2002) 179–196

2. Chen, G., Malkowski, K., Kandemir, M., Raghavan, P.: Reducing power with
performance constraints for parallel sparse applications. In: IPDPS’05: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 11, Washington, DC, USA, IEEE Computer Society (2005)
231.1

3. Pinheiro, E., Bianchini, R., Carrera, E., Heath, T.: Dynamic cluster reconfiguration
for power and performance. In Benini, L., Kandemir, M., Ramanujam, J., eds.:
Compilers and Operating Systems for Low Power. Kluwer Academic Publishers
(2002)

416 F. Hermenier, N. Loriant, and J.-M. Menaud

4. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Manag-
ing energy and server resources in hosting centers. In: SOSP ’01: Proceedings of
the eighteenth ACM Symposium on Operating Systems Principles, Banff, Alberta,
Canada, ACM Press (2001) 103–116

5. le Mouël, F., André, F., Segarra, M.T.: AeDEn : An adaptive framework for
dynamic distribution over mobile environments. Annals of telecommunications 57
(2002) 1124–1148

6. Gallard, P., Morin, C.: Dynamic streams for efficient communications between
migrating processes in a cluster. In: Euro-Par 2003: Parallel Processing. Volume
2790 of Lect. Notes in Comp. Science., Klagenfurt, Austria, Springer-Verlag (2003)
930–937

7. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Software–Practice and Experience
32 (2002) 135–164

8. Berc, L., Wadia, N., Edelman, S.: VMWare ESX server 2: Performance and scala-
bility evaluation. Technical report, IBM (2004)

9. Whitaker, A., Shaw, M., Gribble, S.D.: Scale and performance in the Denali iso-
lation kernel. In: Proceedings of the 5th symposium on Operating systems design
and implementation (OSDI), Boston, MA, USA (2002) 195–209

10. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of
the 19th ACM Symposium on Operating Systems Principles, Bolton Landing, NY,
USA, ACM Press (2003) 164–177

11. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. Lecture Notes in Computer Science 2150 (2001) 1–??

12. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt,
I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the
2nd USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’05), Boston, MA, USA (2005)

Dynamic Virtual Worker Nodes
in a Production Grid

Stephen Childs, Brian Coghlan, and Jason McCandless

Department of Computer Science, Trinity College Dublin
childss@cs.tcd.ie

Abstract. There is a growing body of opinion that virtual machines
(VMs) provide a good environment for executing user jobs on Grid com-
pute nodes. Sites which execute jobs in specially-created virtual ma-
chines can provide levels of isolation and customisation that are unob-
tainable when jobs run directly on the hardware. Various solutions have
been proposed for initiating and controlling such dynamic virtual envi-
ronments, but issues of integration with a production Grid middleware
stack have not received much attention. In addition, solutions proposed
to date often require significant user involvement in the process of locat-
ing and initiating VMs. We outline a scheme for transparently providing
dynamically-instantiated VM-based worker nodes in the EGEE produc-
tion grid. By extending server-side software, the use of virtual machines
is made invisible to the user. Users simply specify the details of their re-
quired execution environment in the standard job description language.
Resource brokers then locate sites that advertise support for that par-
ticular environment. Sites that support dynamic virtual worker nodes
advertise support for the various environments that they know how to
create; the site’s compute element is responsible for instantiating a VM
that conforms to the environment description requested and for execut-
ing the job in that VM’s context. We also evaluate the VM management
tools available to implement such a scheme and describe their possible
integration with LCG and gLite middleware.

1 Introduction

The case for using VM-based worker nodes as the fundamental unit of execution
in Grid computing has been well made by a number of researchers [1,2]. In brief,
VMs provide enhanced security by isolating users from each other and from the
real hardware, they allow comprehensive customisation (right down to the OS
kernel level) of the environment in which users’ jobs run and they make it easier
to manage large systems by establishing a common hardware platform on which
services are run.

There has been progress in defining processes for requesting, creating and con-
trolling VMs in a Grid environment. The Globus Virtual Workspaces project has
established generic abstractions, protocols and tools [3] that can be used with
Dynamic Virtual Environments (DVEs) implemented in a variety of technolo-
gies. Their method is compatible with their web services-based Globus Toolkit

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 417–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

418 S. Childs, B. Coghlan, and J. McCandless

4 (GT4). An alternative system comes from researchers at the University of
Florida: their In-Vigo project [4] also includes mechanisms for dynamic control
of virtual machines.

Good work has been done on the lower levels of VM management in a Grid
environment: languages and interfaces now exist for describing the desired prop-
erties of a VM and bindings are available to a variety of VMMs. However, work
remains to be done to integrate such low-level mechanisms into existing Grid ar-
chitectures. Until this is done, it will remain difficult to persuade users and site
admins to use VMs as the primary execution environment, despite the benefits
listed above. There are three main issues that need to be addressed to properly
integrate dynamic worker nodes with a production Grid infrastructure.

1.1 Integration with Production Grids

The first issue is backward compatibility. Users want an execution environment
configured according to their needs, with appropriate application software, com-
pilers and libraries installed. They are not concerned with the implementation of
this execution environment, as long as it is suitably configured. This implies that
the details of VM configuration should be hidden from the user. Users employ
their existing job description languages (e.g. Globus RSL [5], Condor ClassAds
[6], EGEE JDL [7]) to describe their requirements, and the Grid middleware uses
these requirements to locate (or initiate) an execution environment that conforms.
These requirements will be used at various levels: a matchmaker (or resource bro-
ker) will use them to locate conforming sites, and the computing element (CE) at
a particular site will use them as a recipe for creating new virtual WNs.

Another issue is security and accountability. As the Grid middleware is de-
signed specifically to provide access to large numbers of resources within differ-
ent administrative domains, it is vital to prevent the abuse of the technology
to mount large-scale attacks. Virtual machines can potentially help in the task
of securing the infrastructure. For example, they can be used to isolate a user’s
login session so that the effects of malicious activity are limited to a single
virtual machine which can be easily suspended or shut down. The ability to
suspend is likely to be a valuable diagnostic aid. It is important for the VM
management to use the same security infrastructure as the other Grid services:
in most production Grids today this implies compatibility with the Globus Se-
curity Infrastructure [8] (GSI) at least and preferably also support for role-based
authorisation systems such as VOMS [9].

The third issue is that of complex inter-dependencies. Production grids are a
complex ecosystem of interdependent software services. Careful thought needs to
be given to the level in the Grid stack at which VM services should be imple-
mented. There are many services whose interactions with the VM service need to
be considered: matchmaking, information systems, job submission and file stag-
ing, local resource management systems (LRMS) and data management. For ex-
ample, if worker nodes are to be created dynamically, the LRMS must be able to
cope with the appearance and disappearance of nodes – the VM service will poten-
tially need to communicate changes to the LRMS. At each level, the VM service

Dynamic Virtual Worker Nodes in a Production Grid 419

will need to interact with other services to provide seamless integration that al-
lows users to benefit from VM technology without having to drastically change
their working practices. We will return to this topic in more detail in Section 2.

1.2 Target Grid Architecture

We now briefly describe features of the EGEE production grid that are relevant
to this work; further details can be found in [10]. At each site there is one (or
more) Computing Element (CE) which serves as an interface to the clusters at
the site. In LCG, the CE runs a Globus 2.4 gatekeeper with jobmanagers that
interface to various Local Resource Management Systems (LRMS); the LRMS
has final reponsibility for scheduling the job on a worker node. Each site also
hosts an information index (BDII) that aggregates information about resource
capabilities at the site. Sites are then joined together to form a Grid via central
BDIIs that aggregate the information from the various site BDIIs. Many central
BDIIs are deployed, each of which effectively provides a custom view of the Grid.
The other important central service is the Resource Broker (RB); again, there
can be many of these deployed. RBs are responsible from matchmaking between
users and sites: they search the resources advertised by sites and try to find the
closest match to requirements specified by the user in his job description. Our
goal is to provide backward compatibility from the user’s point of view. This
implies that modifications must be made by the resource provider at their site,
rather than to the central services or the user’s job submission code.

1.3 Guiding Principles

In order to implement a practical solution that is compatible with currently-
deployed large-scale Grid infrastructure, we have adopted a number of guiding
principles: the resource provider should manage the provision of virtual envi-
ronments (so the use of VWNs should be transparent to the user); a single
standard security scheme compatible with that deployed on the production Grid
should be used; existing tools should be used as much as possible; details of VM
management should be hidden from Grid users.

The aims of this paper are two-fold: firstly, to analyse the problem of in-
tegrating dynamic virtual worker nodes into a production Grid infrastructure,
and secondly, to provide a preliminary sketch of how this might be implemented
within the context of the EGEE grid.

2 Analysis of the Problem

We now break down the problem of integrating dynamic virtual worker nodes
into its component parts.

2.1 Describing Execution Environments

A fundamental requirement is to provide users with a means of comprehensively
describing the execution environment they need. This requirement already exists

420 S. Childs, B. Coghlan, and J. McCandless

in the Grid world as users need to locate sites with worker nodes that have the
software and OS required to run their job successfully. For example, the EGEE
Job Description Language (based on Condor ClassAds) allows users to describe
their job in terms of key-value pairs, using the GLUE Schema [11] to provide
a standardised language for describing hardware and software capabilities. A
system supporting dynamic virtual worker nodes requires that these descriptions
can be used as input to a VM manager, enabling it to instantiate VMs with
appropriate configurations. Therefore, there must be a scheme for translating
user requirements into the specification language used by the VMM.

2.2 Transmitting User Requirements

It is not enough to decide on a common language for describing execution envi-
ronment requirements: it must be possible to transmit these to all parties within
the system who need them. Again, this requirement is not unique to the virtual
worker node context — local batch systems also require as much information as
possible on users’ requirements in order to make good scheduling decisions. Un-
fortunately this is an area where the EGEE middleware is recognised to be weak:
despite repeated requests from site admins and others, most of the information
supplied by the user in their job description is discarded before submission to
the site Computing Element. There is ongoing work to solve this problem in the
gLite middleware [12].

2.3 Interaction with the Information System

The information providers at a site advertise the capabilities of that site’s re-
sources: installed versions of OS and middleware, CPU and memory capacity of
compute nodes, VOs supported, number of CPUs available, etc. With dynamic
virtual nodes, a site could advertise capabilities that are not actually online, but
which can be quickly instantiated by creating VMs. For example, a site with
system images for Fedora Core 4, Scientific Linux 3 and Debian could advertise
support for all three OS even though only a subset of these might be running
on worker nodes at a particular time.

The introduction of virtual worker nodes brings a new requirement for “truth
in advertising”. Sites currently advertise the number of CPUs available based on
the capacities of the physical worker nodes. Information providers at a site with
virtual VMs must be careful not to advertise resources that cannot be delivered.
For example, it should only advertise as many free CPUs as it can create new VMs.
We will return to this topic later on when outlining a sample implementation.

2.4 Efficient Initiation of VWNs

A number of techniques could be used here. Instantiated VMs should be left
running after a job completes as long as there are free VM slots in the virtual
cluster. This allows the CE to start incoming jobs that match that VM slot
without VM startup overhead. In a multi-VM per node cluster, copy-on-write
could be used to quickly start multiple VMs from a single image.

Dynamic Virtual Worker Nodes in a Production Grid 421

2.5 Multi-level Matchmaking

In existing Grids, matchmaking occurs at a relatively coarse grain: the RB selects
a particular CE (representing one or more clusters) based on the requirements
specified by the user. Dynamic worker nodes add at least two further locations
where matchmaking is needed: firstly, the VM management service on the CE
must decide on which VM host to initiate a new VM, and secondly the CE needs
to be able to target a job to a particular virtual WN based on the requirements.
The second requirement is not exclusive to dynamic virtual nodes, as it arises
whenever clusters are significantly heterogeneous.

A CE/VManager could use an algorithm like this to select a destination WN:
1. A job arrives at the site from the resource broker; 2. The CE reads the require-
ments associated with the job and looks for a running and idle WN that meets
those requirements; 3. If it finds a matching WN, it sends the job there; 4. If it
doesn’t find an active VM, it selects a suitable VM host and instantiates a new
VM there conforming to the requirements. The process then resumes from step 2.

2.6 Compatibility with LRMS

The compute nodes at Grid sites are generally organised as homogeneous clusters
managed using an LRMS such as Torque or LSF. The makeup of clusters nor-
mally changes quite rarely and so LRMSes do not always provide good support
for dynamic reconfiguration. For example, in the popular Torque system, the list
of nodes making up the cluster is defined in a configuration file that is only read
at server startup. If worker nodes are to be created and destroyed dynamically,
we need to define a good scheme for making the LRMS aware of the existence of
nodes. This could be as simple as pre-configuring the LRMS with a large pool of
compute nodes, providing slots which are then populated by individual VMs as
they come up and down. Alternatively, a more sophisticated scheme could use
the configuration API of an LRMS to directly inform it of changes in the state
of the cluster due to VMs being created or destroyed.

The details of the interaction between the VM manager and any one LRMS
will be dependent on the features supported by that LRMS; it may be necessary
to define a generic control interface that is implemented by LRMS-specific plu-
gins. What is important is that dynamic worker nodes can be integrated into an
existing LRMS used by site admins to schedule access to their compute resources.
If this process can be facilitated, it will make the use of VMs more attractive.

It should be noted that the constraints outlined above make Condor a particu-
larly attractive candidate LRMS for virtual clusters: it natively supports match-
making at a fine-grained level and is designed to cope with rapidly-changing
pools of machines.

3 Evaluation of Potential Components

3.1 Specification and Requirements

One of the most important components of the system is a language for describing
the capabilities of execution environments. Such a language is potentially used at

422 S. Childs, B. Coghlan, and J. McCandless

multiple levels throughout the system: the user describes her desired execution
environment at job submission time, a matchmaker searches the infromation
system for matching resources, a virtual machine manager at a site potentially
uses it to locate or create conforming VMs, and a VM image repository may use
it to advertise the configurations available for use.

The GLUE schema is widely used on the Grid to describe the capabilities
of sites. It is usually implemented using the Lightweight Directory Interchange
Format (LDIF). The schema provides a detailed mapping for a wide range of
resource properties including both hardware (CPU speed, memory size, etc.) and
software (OS release, middleware version, VO-specific software tags, etc.).

The ClassAd format was developed within the Condor project and named by
analogy to classified advertisements in newspapers that describe goods or services
for sale. It is used by resources to advertise their capabilities and the kinds of jobs
they are willing to accept, and by jobs to describe their characteristics and those
they require from an executing site. A matchmaker performs a pair-wise com-
parison between job and resource ClassAds to work out where to execute a job.
EGEE’s JDL format is based on ClassAds and has a simple key-value structure.

The Globus Virtual Workspaces project includes a WSDL schema for de-
scribing virtual workspaces and their associated services. The attractions of this
approach are compatibility with widely-deployed web services (include GT4).
However, the current implementation seems to be quite limited compared to
more mature techonologies.

3.2 VM Management

One of the most basic requirements is a control interface for creating, controlling
and destroying VMs. The Grid middleware can either talk directly to the native
control interface of a particular VMM or use a generic VM control interface
which has plugins for specific VMMs. Whichever approach is taken, support for
authentication and authorisation is essential.

The advantage of using native control interfaces is that all functionality of
the VMM can be accessed directly. The main disadvantage is that new bind-
ings have to be written for each VMM to be supported. Xen [13] exports an
XML-RPC interface for managing VMs. This provides a standardised API that
can be used from almost any language, either locally or remotely. However, the
Xen system does not support GSI authentication. VMWare Server provides a
scripting interface [14] that is accessible from COM or Perl; this would also need
to be augmented with GSI security.

Alternatively, there are a number of generic APIs available for controlling dy-
namic virtual environments. Globus Virtual Workspaces [15] provides WSDL-
based description of virtual environments and back-end plugins to implement
them in various technologies including Xen virtual machines and Unix user ac-
counts. This API is tightly integrated with GT4 and so natively supports Grid
standards including GSI security and OGSA. The VMPlants system [16], imple-
mented in Java, provides “VMShops” that are a front-end for requesting VMs,
and “VMPlants” (installed on each physical resource) that support various VM

Dynamic Virtual Worker Nodes in a Production Grid 423

Fig. 1. Proposed architecture for integrating virtual WNs

implementations. It also provides a directed acyclic graph (DAG) notation for
describing the configuration of VMs; this allows for good reuse of stored system
images.

4 Proposed Architecture

4.1 VM Management

A virtual cluster manager (VCMan) runs on the CE at each site. VCMan inter-
acts with the job submission service, the information provider, and with virtual
machine creators (VW services) on each of the VM hosts in the cluster. Although
VCMan is logically a single service, in practice it may be implemented as a set of
plugins called by existing Grid services, rather than as a free-standing daemon.

All control interfaces should be secured using GSI authentication and accessed
in the context of the user’s proxy. If calls to VM services are made directly from
the job submission control flow, this should happen automatically. We intend to
install the Globus virtual workspace service on each VM host. We selected this
technology because of its native support for GSI authentication and its interface
to Xen.

424 S. Childs, B. Coghlan, and J. McCandless

4.2 Computing Element

The EGEE infrastructure currently supports two forms of Computing Element:
the LCG2 CE based on a Globus Toolkit 2.4 gatekeeper, and the gLite CE, which
uses Condor. We will be developing with the gLite CE for the following reasons:
the gLite CE natively supports web services which should help in integration with
Globus Virtual Workspaces; the gLite CE already uses Globus Virtual Workspaces
code, albeit with a focus on dynamic account creation; work is already being done
to improve transmission of user requirements to the gLite CE [12].

4.3 Image Repository

A system is needed for describing the capabilities provided by a particular file sys-
tem image and for advertising the available capabilities. Eventually this process
should provide support for uploading images with associated descriptions and au-
tomatically publishing the appropriate information. For our initial prototype we
intend to use a simple text database which maps images (identified by filesystem
paths) to the capabilities they provide (described using the GLUE schema).

For now, all virtual worker node (VWN) hosts will be installed with a standard
set of images. If performance is adequate, these images could even be read from
a mounted network file system. Alternatively, images might be automatically
replicated to local storage (this may be necessary in any case if copy-on-write
functionality is needed on the VWN host).

It should be noted that the problem of FS image management for virtual
clusters is difficult to solve in general, and is an active area of research within
the virtualisation community parallax:warfield:hotos:05. We hope that as this
research progresses, standard solutions will become available that are suitable
for use in a Grid context.

4.4 Information System

The CE publishes data that is a combination of static data set at configuration
time and dynamic data retrieved by directly querying the state of the LRMS. For
example, the operating system release is currently a static parameter, whereas
the number of free CPUs is obtained from the LRMS. The information provider
system supports a plugin architecture allowing new components to be written
to populate a particular data set.

The first challenge is to advertise the capabilities of the site responsibly, repre-
senting the range of potential environments that can be created without present-
ing an misleading picture. For example, a site supporting VClusters does want
to advertise the different flavours of OS it can support, but shouldn’t present an
excessive number of CPUs merely because it is able to create VWNs at will.

The GLUE schema allows for multiple clusters to be advertised by a site. This
feature is already being used within EGEE to publish information that better
reflects the structure of a heterogeneous site [17]. We will use this feature to
publish multiple clusters for the different capabilities provided by VM images.

Dynamic Virtual Worker Nodes in a Production Grid 425

Memory sizes and CPU speeds are fixed for physical machines; for virtual
machines, they depend on parameters set when the VM is created. To publish
all possible combinations of software and hardware capabilities, an extremely
large number of clusters would have to be configured. For the moment, we plan
to publish one distinct cluster per OS as this is one of the most significant
variables. The maximum memory published could be set either to the maximum
available for VM creation, or to the maximum size of any one VM. Eventually
the information published should be sourced dynamically from the capabilities
described in the image repository. As a first step, we will statically configure a
set of clusters corresponding to the installed VM images.

Figure 1 shows the various modules involved in our prototype: the hatched
boxes represent new code. The virtual machines will be controlled via the autho-
risation control path, in the same way as account-based workspaces are currently
created. The design is still at an early change and will almost certainly change
as work progresses.

5 Conclusion

We have presented an analysis of the issues involved in integrating dynamic
virtual WNs into a production Grid, with particular reference to the EGEE
infrastructure. We envisage a backwards-compatible approach where resource
providers modify their clusters and compute elements, but publish information
in such a way that virtual environments are created straight from unmodified
job submissions.

This paper is preliminary in nature and is intended to open up discussion on
the functionality needed by VM management systems and Grid middleware if
they are to be truly integrated. We hope to develop a working prototype in the
near future, and to gain further insights through that development process.

References

1. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A Case for Grid Computing on
Virtual Machines. In: Proceedings of the International Conference on Distributed
Computing Systems. (2003)

2. Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual Workspaces: Achieving
Quality of Service and Quality of Life in the Grid. Scientific Programming Journal
(2006)

3. Keahey, K., Doering, K., , Foster, I.: From Sandbox to Playground: Dynamic Vir-
tual Environments in the Grid. In: 5th International Workshop in Grid Computing
(Grid 2004). (2004)

4. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes, J., Krsul, I., Mat-
sunaga, A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From virtualized
resources to virtual computing Grids: The In-VIGO system. Future Generation
Computer Systems 21 (2005)

5. Globus: The Globus Resource Specification Language (RSL), specification 1.0.
(http://www-fp.globus.org/gram/rsl_spec1.html)

426 S. Childs, B. Coghlan, and J. McCandless

6. Solomon, M.: The ClassAd language reference manual. http://www.cs.wisc.edu/
condor/classad/refman.pdf (2004)

7. European Data Grid: The EDG job description language (JDL). (http://
server11.infn.it/workload-grid/docs/DataGrid-01-TEN-0142-0 2.pdf)

8. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for compu-
tational grids. In: Proc. 5th ACM Conference on Computer and Communications
Security Conference. (1998) 83–92

9. Alfieri, R., Cecchini, R., Ciaschini, V., dell Agnello, L., Frohner, A., Gianoli, A.,
Lőrentey, K., Spataro, F.: VOMS, an authorization system for virtual organi-
zations. In: 1st European Across Grids Conference, Santiago de Compostela,
Springer-Verlag LNCS 2970 (2003) 33–40

10. Peris, A.D., Lorenzo, P.M., Donno, F., Sciaba, A., Campana, S., Santi-
nelli, R.: LCG-2 user guide. LHC Computing Grid Manuals Series.
https://edms.cern.ch/file/454439/2/LCG-2-UserGuide.pdf (2005)

11. Andreozzi, S., Burke, S., Field, L., Fisher, S., Konya, B., Mambelli, M.,
Schopf, J.M., Viljoen, M., Wilson, A.: GLUE schema specification version 1.2.
http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/V12 (2005)

12. Prelz, F.: Passing requirement information to the gLite CE via BLAHPD. In:
HEPIX conference. (2006)

13. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, ACM (2003)

14. VMware: VMware scripting API user’s manual. http://www.vmware.com/pdf/

Scripting API 215.pdf (2005)
15. Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D.: Virtual Workspaces in

the Grid. In: Proceedings of Europar 2005. (2005)
16. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: VMPlants:

Providing and Managing Virtual Machine Execution Environments for Grid Com-
puting. In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing.
(2004)

17. Traylen, S.: How to publish different memory limits for different queues on the
same ce. http://goc.grid.sinica.edu.tw/gocwiki/How to publish different

memory limits for different queues on the same CE (2005)

Performance Models for Virtualized
Applications�

Fabŕıcio Benevenuto1, César Fernandes1, Matheus Santos1, Virǵılio Almeida1,
Jussara Almeida1, G.(John) Janakiraman2, and José Renato Santos2

1 Computer Science Department
Federal University of Minas Gerais - Brazil

{fabricio, cesar, mtcs, virgilio, jussara}@dcc.ufmg.br
2 HP Labs

Palo Alto - USA
{john.janakiraman, joserenato.santos}@hp.com

Abstract. This paper develops a series of performance models for pre-
dicting performance of applications on virtualized systems. It introduces
the main ideas of performance modeling and presents a complete case
study of an application running on Linux that is migrated to a virtual-
ized environment consisting of Linux and Xen. The paper describes the
models, the process of obtaining measurements for the models and cal-
culates performance metrics for the two environments. A validation of
the results is also discussed in the paper.

1 Introduction

Virtualization can be understood as a technique to partition resources of a ma-
chine in multiple environments, creating a new level of indirection between phys-
ical resources and applications. Recently, virtualization technologies are experi-
encing a renewed interest as a way to improve system security, reliability, and
availability, reduce costs, and provide flexibility. Particularly, such benefits are
gaining popularity with Virtual Machines Monitors (VMM), providing software-
based solutions for building shared hardware infrastructures.

Virtual machines provide a suitable environment to consolidate multiple ser-
vices into few physical machines. Nevertheless, in order to migrate applications
from physical machines to virtualized consolidated platforms, one needs to be
able to estimate the performance these applications will achieve on the new en-
vironment. Will migrated applications run with competitive performance as they
run on their current environment? How many servers will be needed to create a
virtual environment able to support the execution of the services provided, with
acceptable performance? What is the best configuration of resources on the vir-
tual environment for a certain application? Therefore, there is a current need for
new tools for predicting performance, providing information for resource alloca-
tion, and determining optimal system configuration. This work gives the first
� This work was developed in collaboration with HP Brazil P&D.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 427–439, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

428 F. Benevenuto et al.

step in this direction. We propose simple queuing models for predicting the per-
formance that applications, currently running on Linux system, will achieve if
migrated to a Xen virtual system, with same hardware configuration. We further
validate these models with experimental results.

The rest of the paper is organized as follows. The next Section presents related
work. Section 3 discuss background on performance modeling. Section 4 reviews
the main architectural aspects of Xen, describes the tools and the experimental
environment used for the performance evaluation. Section 5 discuss experimental
results, whereas Section 6 presents analytic equations for virtual systems and
compares analytical and experimental results. Finally, Section 7 concludes the
paper and presents directions for future works.

2 Related Work

Three popular virtual systems are VMware [11], Denali [12], and Xen [1].
VMware is responsible for several products using different virtualization strate-
gies. Denali was projected to support a large number of VMs, where each VM is
able to execute only one application. Unlike Denali, Xen was designed to support
VMs able to execute an entire operating system and thus, more than one appli-
cation. The focus of our model and analysis is the Xen VMM, which is briefly
described in Section 4.1.

The first studies and applications of virtualization emerged in 1960, when
virtualization was described as an evolution of the study of time sharing and
multiprogramming [13]. One of the most popular virtual environments at that
time was the IBM VM/370. Bard et. al proposed analytical models for VM/370
to estimate performance metrics such as CPU utilization, and developed a per-
formance predictor tool for this environment [14].

More recently, queuing network models for performance prediction of virtual
environments were proposed in [7,3]. However, the proposed models were not
validated for any specific virtual architecture. In this work, we propose specific
analytic models for the Xen architecture, validating these models with experi-
mental results.

Recently, Cherkasova et al. [2] proposed a methodology to measure separately
the CPU overhead on the IDD due to I/O operations of a guest VM. The idea
is to count the cost and the number of page exchanges between a certain guest
virtual machine and the IDD to estimate the amount of CPU usage of the IDD
consumed in behalf of a certain virtual machine. Other studies also provided per-
formance evaluation of applications running on Xen [8,4]. In common, all these
efforts are based solely on experimental evaluation of Xen and its applications.

3 Performance Models

A model is a representation of a system. Performance models [7] are useful for
predicting the values of performance measures of a system from a set of values of
workload, operating system, and hardware parameters. Performance prediction

Performance Models for Virtualized Applications 429

is the process of estimating performance measures of a computer system for a
given set of parameters. Typical performance measures include response time,
throughput, resource utilization, and resource queue length. The input parame-
ters to such a model fall into one of three categories: workload, basic software,
and hardware parameters. The workload parameters describe the load imposed
on the system of interest by the applications, i.e., the transactions submitted
to it. The software parameters describe features of the basic software, such as
the Xen virtual machine monitor overhead. Examples of such parameters are
virtualization overhead, CPU dispatching priority, etc. Examples of hardware
performance parameters include the components of the servers that supports a
Xen system, such as processor speeds, disk latencies and transfer rates, and local
area network speed. The output of a performance model is a set of performance
measures, such as response times, throughput, and resource utilizations.

The emphasis of this paper is on how to build performance models for vir-
tualized applications. We start out with simple models that provide bounds on
some performance metrics. For example, one common question in the analysis
of virtualized systems is “what is the maximum theoretical value of the arrival
rate λ for a given virtualized system?” This question has an easy answer that
depends solely on the service demands of all resources. Note that the service
demand Di, the utilization Ui, and the arrival rate λ are related by λ = Ui/Di

for all resources i. Because the utilization of any resource cannot exceed 100%,
we have that λ ≤ 1/Di for all i’s. The maximum value of λ is limited by the
resource with the highest value of the service demand, called the bottleneck
resource. Thus,

λ ≤ 1
maxK

i=1 Di
(1)

In order to estimate more accurate performance metrics, models have to consider
contention for resources and the queues that arise at each system resource—
CPUs, disks, memory and communication devices. Queues also arise for soft-
ware resources, such as threads, database locks, and protocol ports. The various
queues that represent a virtualized system are interconnected, giving rise to a
network of queues, called a queuing network (QN). A common question that
could be answered by a queuing network model of a virtualized system is: “what
will the average response time of application Y be when it is migrated from a pure
Linux to a Linux/Xen environment that has the same system configuration?”
To answer this question, we need models that present details of the system. The
level of detail at which resources are depicted in a QN model of a virtualized
system depends on the reasons to build the model and the availability of detailed
information about the operation and availability of detailed parameters of spe-
cific resources. In other words, models depend on data collected by measurement
tools in virtualized systems. The basic input parameters that we use in our per-
formance models are service demands and arrival rates. Service demand is the
sum of the service time at a resource (e.g. processor, disk, network) over all visits
to that resource during the execution of a transaction or request. In a queuing
network model, not all requests that flow through the resources of a system are

430 F. Benevenuto et al.

similar in terms of the resources used and the time spent at each resource. There-
fore, Workload may be broken down into several workload components, which
are represented in a QN model by a class of requests. Different classes may have
different service demand parameters and different workload intensity parameters.
Classes of requests may be classified as open or closed depending on whether the
number of requests in the QN is unbounded or fixed, respectively. Open classes
allow requests to arrive, go through the various resources, and leave the system.
In this paper we initially present a simple model that estimates bounds on the
performance of a virtualized system and then we develop an open-class queuing
network model that represents applications running on Linux and Xen.

4 Case Study

In order to demonstrate the causes of virtualization overhead on the Xen VMM,
we provide a performance evaluation of three benchmarks running on Xen and
Linux. Then, we use a simple case study of a Web server to validate the perfor-
mance models. The goal is to predict the performance a Web server application,
currently running on a non-virtual system, will achieve if migrated to a Xen vir-
tual machine. Our research strategy consists of a performance study of a simple
Web server which provides only static content. In addition to this case study,
we presented some results to discuss which components of the Xen environment
need to be considered in a model. Next, we briefly describe the Xen virtual ma-
chine monitor and Xen I/O model. Our discussion focuses on aspects which are
more relevant for the performance evaluation presented. Then, we present the
tools and the hardware platform used.

4.1 Xen Architecture

Xen is a free and open-source virtual machine monitor (VMM) which allows
multiple (guest) operating system (OS) instances to run concurrently on a sin-
gle physical machine. It uses paravirtualization, where the VMM exposes a vir-
tual machine abstraction slightly different from the underlying hardware. The
Xen system has multiple layers. The lowest and most privileged is called VMM.
Each guest OS runs on a separate virtual machine called domain. The domains
are scheduled by the VMM to make effective use of the available physical CPUs.
Each application, running on a guest OS, accesses hardware devices via a special
privileged virtual machine called isolated driver domain (IDD), which owns spe-
cific hardware devices and run their I/O device drivers. All other domains (guest
domains in Xen terminology) run a simple device driver which communicates
with the driver domain to access the real hardware devices. Figure 1 provides an
overview of Xen I/O model. The IDD can access directly the hardware devices it
owns. However, a guest domain accesses the hardware devices indirectly through
a virtual device connected to the IDD. The IDD maps through bridges or routing
the physical interface to its virtual interface which communicates with the guest
virtual interface. The guest domain exchanges requests and responses with the

Performance Models for Virtualized Applications 431

Channel
I/O

Domain
GuestI/O Driver Domain

Bridge

Peth0 BackendFrontend
VifVif

Hardware

Virtual Machine Monitor

NIC

Fig. 1. Overview of Xen I/O model

IDD over an I/O channel. In order to avoid copying, references to page-sized
buffers are transferred over the I/O channel instead of the actual I/O data.

4.2 Monitoring Framework

In order to develop performance models, we need to be able to measure the
virtualized system. We developed an application called Xencpu to measure CPU
busy time on Xen. This tool is based on the source code of xm top tool, provided
with Xen, and was designed aiming at the automatic execution of our scripts.
The CPU busy time on the Linux system is obtained based on information from
/proc directory. Disk busy time, on both Xen and Linux, was also obtained from
the /proc directory. Other parameters such as experiment duration and number
of processed requests are obtained with scripts or from the benchmarks used.

4.3 Workload

The workload used is generated by the following benchmarks:

- Web server: we used httperf [9] as clients and Apache [10] version 2.0.55
as the Web server. The httperf is a tool which allows generating several HTTP
workloads and measuring the performance of the Web server from the point of
view of the clients. We run httperf on a client machine, sending requests with rate
λ to the server, measuring throughput and server response time of the requests.
The workload used is part of a set of workloads from SPECWeb99 [7] and it
does not contain dynamic content.
- Disk intensive application: This benchmark consists of copying a 2 GB file
from a directory to another, on the same partition. We use this benchmark to
analyze the impact of disk activity on the virtual environment overhead.
- CPU intensive application: It consists on a kernel compilation, which evo-
cates several functions, stressing system CPU.

4.4 Experimental Setup

For all experiments, we use a two 64-bit CPU 3.2 GHz Intel Xeon server, with
2 GB of RAM, one disk with 7200 RPM and 8 MB of cache, and two Broadcom

432 F. Benevenuto et al.

Realtek gigabit Ethernet card. The server is directly connected to a client ma-
chine, an one-CPU AMD Athlon64 3 GHz, with 2 GB of RAM, and two Realtek
gigabit Ethernet card. We configure Xen to use i386 architecture. We use Xen
version 3.0 and the virtual machine runs XenoLinux derived from Linux De-
bian Etch i386 distribution, kernel 2.6.12. The client machine also uses the same
Linux distribution and kernel. The virtual machine is configured to use 512 MB
of RAM as well as the IDD. The Borrowed Virtual Time (BVT) is used as the
Xen scheduler. To provide a fair comparison between Linux and the Xen VM,
we also use 512 MB of RAM on Linux.

5 Performance Evaluation

This Section presents an experimental performance study of applications running
on the Xen VMM. Unlike previous work [2,8,4], the focus of our analysis is on
collecting metrics to support the design and validation (next Section) of models
for performance prediction. We configure the virtual environment with one IDD
and one guest, each one using a different CPU. The Linux system uses two SMP
CPUs. Each result is an average of 20 runs. With a confidence level of 90%, the
results differ from the mean by 10% at maximum.

In order to demonstrate the causes of virtualization overhead on the Xen
VMM, we compare the three benchmarks described in Section 4.3 running on
Linux and Xen systems. Figure 2 shows a kiviat representation which compares
CPU and disk utilization on Linux and Xen systems for the three benchmarks.
In a kiviat graph each radial line, which starts on the central point 0, represents
one metric with maximum value 1 [5]. We plot six metrics on this graph, namely,
the CPU utilization on the two Linux CPUs, on the IDD and on the VM, and
disk utilization on both systems. Each curve represents a benchmark. Observing
the disk-bound benchmark curve, we see that disk utilization is 1 (i.e., 100%)
for both systems, and the VM CPU utilization is slightly higher than the sum
of the utilizations of the two CPUs on Linux. Note that there is a significant
load on the IDD CPU, since it works as interface for the hardware to the VM.
For the kernel compilation benchmark, the VM CPU utilization is 1, which is
also the sum of the CPU utilizations of the two CPUs running Linux. Since
this benchmark does not execute a representative number of I/O operations, the
CPU utilization on the IDD is almost 0. Note that the disk activity is negligible
for the Web server, but there is a considerable CPU processing on the IDD due
to network I/O operations.

Based on these observations, we can conclude that the assignment of CPU
resources to VMs and IDDs can affect critically system performance, since the
IDD processing is significant for workloads which stress I/O operations. We
discuss how to predict the performance of each of these components separately in
the next Section. We focus the rest of our analysis on the Web server benchmark.
Figure 2 shows that disk utilization is almost zero for this benchmark. Thus, we
do not consider disk residence time in our experiments and models. Our Web
server provides only static content and uses a hardware platform with two CPUs

Performance Models for Virtualized Applications 433

Fig. 2. Kiviat graph: comparison of CPU and disk utilization on Xen and Linux

and one disk. The two processors work in parallel on the Linux system. On the
other hand, in a Xen environment the two CPUs are used to process each request.
In the virtual environment, we assign one CPU for the IDD and one CPU for the
guest VM. The requests are processed by the Web server running on the guest
virtual machine. The VM is not able to access directly network and disk, and
thus, it uses the IDD to access them. Figure 5 summarizes the experimental and
analytical results. The analytical results will be explained on the next Section.

Figures 5(a) and 5(b) show the measured CPU utilization and demand as a
function of request rate. Note that CPU utilization increases linearly with re-
quest rate for both IDD and VM. Moreover, the CPU utilization consumed by
the IDD represents a significant overhead and must be considered by our mod-
els. As we will further discuss, the ratio between the CPU demands (and thus
CPU utilizations) for the IDD and the VM is fairly constant over the range of
request rates we experiment with. Figures 5(c) shows average response time as
a function of request rate. As one might expect, average response time is sig-
nificantly longer at the virtual environment for request rates greater than 7000
requests per second, when the server starts to become overloaded. Clearly, the
VM is the bottleneck in the Xen system, and performance degrades significantly
with λ ≥ 7800 requests/sec. From this point on, the overloaded server experi-
ences significant delays in accepting connections from the client, which causes
httperf not to send requests on the ratio we desire, limiting our experiment to
this ratio. The Xen virtual environment is able to provide the same throughput
of the Linux system, at the cost of a higher CPU utilization.

6 Performance Models for Xen-Based Applications

This Section presents simple analytic models based on queueing network theory
for applications running on the Xen virtual environment. Figures 3(a) and 3(b)
present our model representations for the Linux system and the virtual environ-
ment using Xen VMM, respectively. These two systems are not equivalent, since
in the Xen environment, the guest VM needs to use the IDD to access the hard-
ware components. Note that Figure 3(b) represents the configuration of the XEN

434 F. Benevenuto et al.

λ

OUT

Disk

Linux Environment

Processors

IN

(a) Web server running on Linux

IDD

VM
λDisk

Processors

OUT

Xen Environment

IN

(b) Web server running on Xen

Fig. 3. Queue network model representation for Linux and Xen environments

system used in our experiments, with IDD and VM running on separate indepen-
dent CPUs. Nevertheless, we note that alternative system configurations, where
either IDD or VM receives only a fraction of a CPU, would lead to different
model representations. In the rest of this Section, we discuss asymptotic bounds
and average value equations for open class queuing network models, validating
these bounds with the experimental results discussed in Section 5.

6.1 Asymptotic Bounds

Asymptotic bound analysis can be quite useful to determine the maximum load
a system can support while still providing reasonable response times (i.e., before
saturation). The maximum rate, λmax, the system can support without satura-
tion is given by equation 1. As discussed previously, the maximum request rate
reached in our experiments is λ = 7800. Considering DV M

CPU as the CPU demand
for the VM, equation 1 yields a λmax ≤ 1

DV M
CP U

= 1
0.000127 = 7874, which is very

close to the measured value.

6.2 Queuing Network Model

This Section presents an analytical model for an application on the Xen VMM.
The strategy for building the performance model is to define a slowdown fac-
tor [7,3] (i.e., Sv) of an application running on a virtual machine which is a
function of the number of privileged instructions executed by the guest VM and
of the number of instructions needed to emulate a privileged instruction. How-
ever, the fraction of privileged instructions executed by a VM and the average
number of instructions required by the VMM to emulate a privileged instruc-
tion are not easy to be measured on a real system. We propose an equation
to capture the overhead of virtualization of an application. The slowdown of a
given application can be computed as the busy time of resource k on the virtual
environment, BV irt

k , divided by Bk the busy time of resource k to execute the
same application on an equivalent non-virtual system.

Sv =
BV irt

k

Bk
(2)

Performance Models for Virtualized Applications 435

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 2000 3000 4000 5000 6000 7000 8000

ra
tio

Rate (req/sec)

CPU Slowdown
IDD/VM CPU ratio

Fig. 4. Slowdown and CostIDD
V Mi

for the Web server benchmark

The slowdown can be interpreted as the overhead introduced by virtualization
to execute a certain application. It means that applications running on virtual
machines will see their CPU time increased Sv times. Sv will be used to calculate
the input parameters (i.e., service demands) for the virtualized performance
model. Queuing models will be used to predict the performance of applications
migrating from non-virtual environments to virtualized environments.

As described in Section 4.1, the Xen architecture is divided in two different
kinds of components: the IDD and the VMs. The Xen I/O model, also used by
other virtual systems [12], use a page exchange mechanism between the IDD and
the guest VM. In this context, the CPU time required by the IDD to process
a package of 36 and 1448 bytes is the same if the number of page exchanges
to deliver these packages are the same [2]. In order to compute the IDD CPU
overhead (i.e., the CPU time demanded by the IDD) due to an application
running on a guest VM we define CostIDD

V Mi
as:

CostIDD
V Mi

=
BIDD

CPU

BV Mi

CPU

(3)

where BIDD
CPU is the portion of CPU time consumed on the IDD on behalf of the

application running on the guest V Mi and BV Mi

CPU is the CPU time consumed
by the guest V Mi. In [2], it is discussed how to isolate the CPU cost of the
IDD of a certain VM, even when running multiple VMs simultaneously. Since
the virtualization overhead is divided in these two kinds of components (IDD
and VMs), we consider Sv as the overhead factor relative to the VM part of
the virtualization slowdown. We estimate the IDD CPU utilization due to I/O
operations of a certain VM, considering that CostIDD

V Mi
is constant relative to

request rate, as supported by the experimental results shown in Figure 4.
Figure 4 displays the VM CPU slowdown and CostIDD

V Mi
as a function of λ.

We compute Sv based on busy time measured on the VM and the sum of the
busy time of the two CPUs on Linux. The slowdown obtained is around 1.2.
For practical use, a table of slowdown factor per class of applications can be

436 F. Benevenuto et al.

built from experimental measurements. Note that we are comparing the sum
of busy time of the two CPUs on Linux with only one CPU on the VM, and
the slowdown factor does not consider the IDD CPU cost. The slowdown factor
stems from several factors such as the emulation of TCP checksum, which is
done by hardware on Linux. Note that the CostIDD

V Mi
for the system under study

is also constant and around 0.34. Considering this evidence, we assume CostIDD
V Mi

is also a constant in our analysis. In Section 7, we discuss how to generalize the
model to represent this part of the overhead for any type of application.

Based on equations (2) and (3) we can calculate the service demand for the
virtual environment. Let V M1, V M2, ..., V Mn be virtual machines that share
the same hardware platform. The service demand at resource k for the new
environment, DV Mi

k , is given by:

DV Mi

k = Dk
Sv

PV Mi

(4)

where Dk stands for the demand of resource k for Linux running the same work-
load as V Mi, and PV Mi is the speedup of the hardware of virtual machine V Mi

compared to the non-virtualized hardware. Note that we do not use the same
speedup for the IDD and VM, since these components can use different amounts
of resources. For instance, we can configure a virtual environment assigning 1
CPU for the IDD and 3 CPUs for a certain VM. The utilization of resource k
on V Mi can be obtained by the following equation:

UV Mi

k = λDV Mi

k (5)

The utilization can also be calculated based on the utilization measured on
Linux, as we did for service demand. The CostIDD

V Mi
can be used to calculate the

IDD demand for a certain class of applications as

DIDD
CPU = DV Mi

CPU

CostIDD
V Mi

PIDD
(6)

where PIDD is the speedup of the IDD relative to a baseline Xen configuration.
Note that the speedup of the IDD is not relative to the non-virtual system. We
introduced PIDD so that the model can predict resource allocation for the IDD.

Based on equations 4 and 5, the estimated residence time Rk at resource k
for a open class system is given by:

Rk =
DV irt

k

1 − UV irt
k

(7)

The response time, RV irt, on the virtual system can be obtained as the sum
of the residence time at all resources:

RV irt = RV M
CPU + RIDD

CPU + RDisk (8)

Figure 5 represents, on the same graphs, both the experimental and the an-
alytical results. We use the values of Sv and CostIDD

V Mi
presented on Figure 4

Performance Models for Virtualized Applications 437

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1000 2000 3000 4000 5000 6000 7000 8000

C
P

U
 U

til
iz

at
io

n

Rate (req/sec)

VM Measured
VM Model

Linux 0
Linux 1

IDD Measured
IDD Model

(a) CPU utilization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1000 2000 3000 4000 5000 6000 7000 8000

C
P

U
 D

em
an

d
(m

se
c/

re
q)

Rate (req/sec)

VM Measured
VM Model

Linux 0
Linux 1

IDD Measured
IDD Model

(b) CPU demand

 0

 5

 10

 15

 20

 25

 1000 2000 3000 4000 5000 6000 7000 8000

R
es

po
ns

e
T

im
e(

m
se

c)

Rate (req/sec)

Xen Measured
Xen Model

Linux Measured

(c) Response Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10000 20000 30000 40000

R
es

po
ns

e
T

im
e

(m
s)

Request Rate (req/s)

Pvm=1,Pidd=1
Pvm=2,Pidd=1
Pvm=3,Pidd=1
Pvm=4,Pidd=1
Pvm=4,Pidd=2

(d) Predicting best configuration choices

Fig. 5. Analytical and experimental results for the Web server benchmark

as parameters for the models. Both, CPU demand and utilization models for
Xen IDD and VM are exactly the same as the ones obtained with experimental
measurements since the Sv and CostIDD

V Mi
factors were obtained with the same

experiments. Figure 5(c) shows the calculated response time as a function of
request ratio. When the request ratio is about to reach its upper bound, the re-
sponse time start increasing quickly for both experimental and analytical results.
The model response time is sub-estimating the measured response time, which
was expected since there is a small network overhead and disk is not represented
in the model. This result validates the proposed models and shows that they can
be used to predict performance of an application running on a Xen VM.

In order to show another applicability of the models, consider a situation
where one wants to know how powerful should be a hardware platform to sup-
port with quality of service high request ratios. Figure 5(d) exhibits the server
response time as a function of the request rate for different speedups of the VM
(PV M), and different speedups of the IDD (PIDD). We use the same slowdown
factor and Linux demands of the experimental results for plotting the graph. As
we increase the VM speedup the maximum request rate also increases. However,
for PV M = 3 and PV M = 4 the maximal request rate is basically the same
since the system bottleneck is the IDD. When the IDD speedup is increased, the
maximum request rate is also increased. This example shows how models can

438 F. Benevenuto et al.

Non−Virtual

(Characteristics)

Non−Virtual

Behaviour
Behaviour VirtualSlowdown

...
Speedup

Model Database

SystemWorkload

Fig. 6. Performance predictor tool architecture

be used to identify system bottleneck and consequently help to define the most
adequate system configuration. Note that the virtual environment may need a
high speedup compared to the non-virtual system to achieve the same perfor-
mance. Increase in hardware cost may be counterbalanced by reduced costs in
infrastructure management.

7 Conclusions and Future Work

This work proposes and validates simple analytic models to predict how ap-
plications will perform on Xen VMs, based on the performance of applications
running on non-virtual environments. We envision two directions towards which
our work can evolve. First, our assumption that CostIDD

V Mi
is constant, verified

to be true for the web server benchmark in our experiments, may be relaxed.
In other words, our models can be generalized to represent the overhead of the
IDD performed on behalf of application programs as a special workload class
in a multi-class queuing model [6]. In the case that CostIDD

V Mi
is not constant,

the service demands of the special overhead class are load dependent. Second,
we believe that our models can support the design of performance predictor
tools as well as self-adaptive virtual systems. Figure 6 represents the design of a
performance predictor tool where a database of benchmarks and their Sv (and
other parameters) are used to predict the performance of applications. The main
idea is to obtain metrics from the non-virtual environment and based on pre-
viously established information, such as slowdown, to estimate the performance
of that application on the virtual environment. We plan to create such tool as a
result of the consolidated models. Another interesting direction is to derive Sv

experimentally, capturing metrics from the non-virtualized environment.

References

1. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield”. Xen and the Art of Virtualization. In Proc. of 19th
ACM Symposium on Operating Systems Principles, Oct 2003.

2. L. Cherkasova and R. Gardner”. ”measuring CPU overhead for I/O processing in
the Xen virtual machine monitor”. In Proc. of USENIX Annual Technical Confer-
ence, Apr 2005.

3. D. Menascé. Virtualization: Concepts, Applications, and Performance. In Proc.
of The Computer Measurement Group’s 2005 International Conference, Orlando,
FL, USA, Dec 2005.

Performance Models for Virtualized Applications 439

4. D. Gupta, R. Gardner, and L. Cherkasova”. XenMon: QoS Monitoring and Per-
formance Profiling Tool. Technical Report HPL-2005-187, HP Labs, Oct 2005.

5. R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley and
Sons, INC, 1st edition, 1991.

6. D. Menasce, V. Almeida, and L. Dowdy. Capacity Planning and Performance
Modeling: From Mainframes to Client-Server Systems. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1994.

7. D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida. Performance by Design:
Computer Capacity Planning By Example. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2004.

8. A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel”. Diag-
nosing Performance Overheads in the Xen Virtual Machine Environment. In Proc.
of First ACM/USENIX Conference on Virtual Execution Environments (VEE’05),
Chicago, IL, Jun 2005.

9. D. Mosberger and T. Jin”. httperf: A Tool for Measuring Web Server Perfor-
mance. In Proc. of First Workshop on Internet Server Performance, pages 59—67,
Madison, WI, Jun 1998.

10. A. W. Site. http://httpd.apache.org.
11. VMWare Web Site. http://www.vmware.com.
12. A. Whitaker, M. Shaw, and S. Gribble”. Scale and Performance in the Denali Iso-

lation Kernel. In Proc. of Operating Systems Design and Implementation (OSDI),
Dec 2002.

13. Y. Bard. Performance Analysis of Virtual Memory Time-Sharing Systems. Proc.
of IBM Systems Journal, 14(4):366–384, 1975.

14. Y. Bard. An analytic Model of the VM/370 System. Proc. of IBM Journal of
Research and Development, 22(5):498–508, Set 1978.

Dynamic Virtual Clustering with Xen and Moab

Wesley Emeneker1, Dave Jackson2, Joshua Butikofer2, and Dan Stanzione1

1 Fulton High Performance Computing Institute
Arizona State University

2 Cluster Resources
1{Wesley.Emeneker, dstanzi}@asu.edu,

2{jacksond, josh}@clusterresources.com

Abstract. As larger and larger commodity clusters for high perfor-
mance computing proliferate at research institutions around the world,
challenges in maintaining effective use of these systems also continue to
increase. Among the many challenges are maintaining the appropriate
software stack for a broad array of applications, and sharing workload
across clusters. The Dynamic Virtual Clustering (DVC) system inte-
grates the Xen virtual machine with the Moab scheduler to allow for
creation of virtual clusters on a per-job basis. These virtual clusters can
provide a unique software environment for a particular application, or
can provide a consistent software environment across multiple heteroge-
neous clusters. In this paper, the overhead of Xen-based DVC vs. native
cluster performance is examined for workloads consisting of both serial
and MPI-based parallel jobs.

Keywords: Xen, HPC, Dynamic Virtual Cluster, Moab.

1 Introduction

With the proliferation of high performance compute clusters in research environ-
ments, the existence of several HPC clusters on a research campus is common-
place. Effectively leveraging the resources of multiple clusters in order to increase
job throughput and decrease turnaround time is a difficult task. In many cases,
it is relatively simple to physically interconnect the networks of multiple clus-
ters on a limited geographic scale to form a campus area grid [2]. However, the
simple existence of the network connections does not make it possible to share
workloads between clusters. Among the many challenges, the software environ-
ments across clusters may be sufficiently different as to prevent portability of
jobs, different filesystems may be available on different clusters, and resource
management software must be aware of the various resources available.

The application of the Xen paravirtualization technology to cluster comput-
ing promises mitigation of the heterogeneous software environment problem by
abstracting the software environment across clusters. This paper describes the
design of a system integrating Xen, the Moab cluster scheduler, and the Torque
resource manager which allows the automatic creation and destruction of “virtual
clusters” within individual clusters or spanning multiple clusters. This system,

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 440–451, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Dynamic Virtual Clustering with Xen and Moab 441

Dynamic Virtual Clustering (DVC), allows software environments customized
to a particular group or job to be deployed on a per job basis as part of the
normal operation of HPC clusters. The DVC system makes it practical to run
jobs within a single cluster that requires a custom software environment, to run
jobs intended for one cluster on a remote cluster transparently to the user, and
even to run single jobs that span multiple clusters, all with no disruption to the
“normal” cluster environment.

The rest of this paper looks at the possibilities of DVC and many of the is-
sues encountered with dynamically creating and destroying clusters of virtual
machines. Section 2 looks at work on using virtual machines in a distributed
computing environments, and examines projects that may bring increased capa-
bility to cluster computing with Xen. After examining issues encountered when
applying Xen to High Performance Computing (HPC), we propose a prototype
DVC setup and parallel job preemption implementation in section 4. We also
examine the initial implementation of DVC with the Moab cluster scheduler and
characterize the overhead and performance of several workloads in section 6. In
addition to the overhead and performance measurements, we show initial results
for the preempt/restart plan presented in section 4. Finally, section 7 analyzes
the results seen, and proposes improvements and features to be implemented
before DVC can become a viable clustering setup.

2 Related Work

The merits of using Xen for High Performance Computing (HPC) have been
examined in [5,1,8,14,10]. Several ideas for using virtual machines in a distributed
fashion have been proposed and implemented [12], but very little application of
Xen to HPC, especially in a campus area grid, has been done.

Many projects currently under development today are concerned with maxi-
mizing the performance and increasing the capability of virtual machines. Intel’s
Vanderpool and AMD’s Pacifica CPU extensions[11,13] are examples of projects
that aim to increase the capabilities of virtual machines.

The hardware virtualization support supplied by Intel and AMD allows mul-
tiple virtual machines to run on the same computer without requiring any mod-
ifications to the guest OS. While VMware has been doing this for many years,
the loss of performance incurred by using VMware[5] makes it unsuitable for
HPC clusters. The current Xen approach to virtualization requires the OS to
be ported to the paravirtualized interface, which for some proprietary OSs may
be impossible. By taking advantage of the Vanderpool and Pacifica technology,
Xen will no longer require an OS to be ported in order to run it as a guest.

3 Dynamic Virtual Clustering

The goal of DVC is to allow any cluster job, whether serial or parallel, to run on
any available cluster resource transparently. For multi-cluster use, DVC requires
that the various clusters be connected in a campus area grid [2]. A campus

442 W. Emeneker et al.

Fig. 1. A Campus Area Grid Fig. 2. Virtual machines in a cluster
environment

area grid requires that each cluster’s internal network be connected so that all
compute nodes across the grid are visible to one another, as depicted in figure 3.
Once this connection is in place, DVC allows jobs to move between clusters, or
even span them.

The three primary capabilities of DVC are:

1. The ability to run jobs within a cluster that would otherwise require modi-
fications to the clusters software environment

2. The ability to run a job submitted to one cluster unmodified on a second
cluster, even if the second cluster has a substantially different software stack.

3. The ability to transparently run a single job that spans multiple clusters,
either to increase total throughput or to increase the maximum possible job
size

In addition to these three additional capabilities, a properly constructed Xen-
based DVC system has the ability to add transparent preemption/restart and
migration to all jobs on the cluster.

Capability (1) above derives from the ability of a Xen VM to provide image
customization. A Xen image can be created that has exactly the software stack
required for a particular job, including the correct set of libraries, licenses, user
accounts, etc. When a job requiring a particular image is to be run, the DVC
system in conjunction with the resource management software:

1. Selects the correct Xen image for that job based on the queue to which the
jobs was submitted or tags in the submission script

2. Stages this image to the nodes scheduled for the job
3. Boots the image on each node, supplying the appropriate network configu-

ration information

Dynamic Virtual Clustering with Xen and Moab 443

4. Starts the appropriate resource management daemons within each VM in
the virtual cluster, allowing jobs running inside the VMs to be monitored

5. Informs the resource management software of the existence of the new virtual
nodes

6. Launches the job within the virtual nodes

When the job is completed, the DVC software must:

1. Detect the termination of the job
2. Shut down and remove all the VMs associated with the job
3. Inform the resource management software that the virtual nodes no longer

exist

Once virtual clusters can be transparently created and destroyed in this man-
ner, it is possible for jobs with widely varying software requirements to be run
on a single cluster with substantially lower administration overhead than would
otherwise be required. For example, jobs requiring different versions of MPI can
be run each in their own virtual cluster without the need for scripts to change
the default environment (e.g. changing a symbolic link to /usr/bin/mpirun), or
without extensive use of environment variables.

The second capability of DVC stated above is the ability to load balance jobs
between clusters.

If one cluster in the campus grid is heavily loaded, and other clusters are
lightly loaded, DVC allows jobs to be forwarded (load balanced) to lightly loaded
clusters. In this case, forwarding means jobs submitted to the heavily loaded
cluster are executed on the lightly loaded cluster using the software image of the
original cluster to which the job was submitted. The capacity of a cluster to run
jobs is generally constrained by the number of processors in in the cluster. Using
DVC to accomplish job migration has several advantages:

– Jobs do not need to be modified to account for differences between cluster
software environments.

– Job capacity is increased by allowing multiple cluster’s processors to be used.
– Increasing the job capacity decreases average job turnaround time.

For load balancing to occur, DVC follows the same procedures described above
with the following addition.

1a. Find a cluster capable of running the job, and exchange job information

With this modification, job forwarding can be accomplished.
The third capability of DVC, cluster spanning, provides increased capabil-

ity and increased capacity in a multi-cluster environment. Previous work[6,7]
has demonstrated that spanning jobs across multiple clusters results in higher
total throughput, even when limited bandwidth is available between clusters.
Spanning jobs across clusters allows:

– Jobs too large for any single cluster to be run across multiple clusters. Given
2 32-node clusters, a single 64 node job could be spanned across them.

444 W. Emeneker et al.

– When a job has insufficient resources on one cluster, the resources of multiple
clusters can be combined to fulfill the job requirements. Given 2 32-node
clusters each with 16 nodes free, a 32 node job can be spanned across the
clusters to meet resource requirements.

Job spanning is more difficult for schedulers than capabilities 1 and 2. For span-
ning to occur, a scheduler must be able to determine which nodes are available
for use, and be able to loan (give temporary control) them to the requesting
scheduler. As with job migration, the following procedures must be changed:

1a. If no cluster can individually run the job, borrow nodes from one or more
clusters
(a) Notify the loaning scheduler to not schedule on borrowed nodes
(b) Add borrowed nodes to local resource pool

Once the job is completed, additional steps must be taken to return the borrowed
nodes to the originating cluster.

4. Remove borrowed nodes from resource pool
5. Notify loaning scheduler that borrowed nodes are available for scheduling

Although using VMs will degrade the performance of each individual host[5],
the capabilities that VMs give may increase cluster utilization overall. Figure 3
shows several possibilities for cluster spanning and migration. In the drawing,
each cluster has a different software image, but by using DVC we can use the
required image on any cluster in the campus area grid.

While the possibilities of environment customization, job migration, and job
spanning are enticing, there are many issues that must be dealt with before DVC
can become useful.

4 Challenges in Dynamic Virtual Clustering

There are many potential benefits of using DVC in a multi-cluster environment.
These include simplified cluster job spanning, easier administration, and better
isolated and controlled cluster jobs. Despite these benefits, dynamically creating
a cluster of virtual machines tailored to run a single job creates substantial over-
head. Allocating and assigning resources, starting the tailored virtual machines,
running the job, and finally destroying the virtual cluster are intimately in-
volved with dynamically creating virtual clusters. Here we examine and propose
solutions to the major issues of the initial implementation of Dynamic Virtual
Clustering.

4.1 Design Decision 1: Assigning Network Addresses

Schedulers and resource managers must be aware of and know how to contact
every node in the cluster, whether real or virtual. IPs and hostnames assigned
to virtual machines must be capable of being looked up by the scheduler and
resource manager. There are two main ways to assign IPs and hostnames to
virtual machines and each method has its disadvantages.

Dynamic Virtual Clustering with Xen and Moab 445

Dynamic Assignment: DHCP is a common tool for assigning IP addresses in
clusters. While this approach works well for real cluster nodes, for virtual nodes
this technique presents difficulties. For virtual machines, the scheduler must be
able to generate a list of unique MAC addresses that do not conflict with any
node accessible in the network. The scheduler must be able to determine which
MAC addresses are no longer in use, and be able to reassign and reuse them.
However, most schedulers don’t operate at the MAC address level, but rather at
the IP or hostname level. Static assignment bypasses assigning MAC addresses
and directly uses IPs and hostnames.

Static Assignment: With this approach to IP and hostname assignment, we
require the environment to parse and use environment variables passed on the
kernel command line. While each virtual machine will get a different IP and
hostname, the variables passed to the kernel are incapable of changing for as
long as the environment exists, therefore the assigned variables are “static”. By
using IPs and hostnames that are capable of forward and reverse DNS resolution,
we can ensure that any virtual machine created will be able to be used by the
controlling resource manager and scheduler.

This approach has distinct advantages over dynamic assignment. It is much
simpler to define a set of names and IP addresses (instead of MACs) that can
be looked up by the scheduler and resource manager and assigned to a VM.
Additionally, by prepending a marker to the host’s hostname, we have a simple
way to both denote which machines are virtual.

Design Decision: Define a list of virtual machines hostnames and IPs in DNS or
a host lookup file to ensure forward and reverse lookup capability. VM hostnames
and IPs are assigned by prepending an arbitrary marker to the host’s hostname
(in this case, a “v ”) to denote a virtual machine. The IPs are looked up by
the scheduler and passed on the kernel command line when the VM is booted.
In addition to this, the scheduler must also add the newly created host to the
resource manager so that job can be scheduled on the VM.

4.2 Design Decision 2: Resource Management and Creation

In a virtual cluster the batch scheduler must be capable of controlling job exe-
cution and managing resources available to each virtual machine. Each node in
a typical Torque cluster runs a “mom” that is capable of reporting job status
and resource consumption to the scheduler as well as controlling job execution.
Although virtual nodes are not as permanent as nodes in a real cluster, the
scheduler must be able to control the execution of any job assigned to the vir-
tual cluster. The temporary nature of virtual clusters implies that the Torque
resource manager should not have a permanent list of all possible virtual nodes.

Design Decision: Each virtual node must have a “mom” reporting to a sched-
uler in order to be able to schedule jobs, monitor resource consumption, and
control job execution on the virtual node. The batch scheduler must dynamically

446 W. Emeneker et al.

add or remove virtual nodes from the Torque resource manager upon creation
or destruction of a virtual cluster.

4.3 Design Decision 3: Image Management

Managing VM images is a vital part of successfully deploying a Dynamic Virtual
Cluster. Several steps must be taken to ensure that every node in the virtual
cluster has the same and correct image.

Staging: Distributing VM images is a time consuming job. While it is possible
to use a central NFS server as a repository for all images, each VM will generally
require write access to the image. This requires either a separate image for each
VM, or a Copy-On-Write image for each VM. The cost of either is substantial
for a central repository.

The second approach to filesystem staging gives each host a copy of the filesys-
tem to reside on a local disk. Any VM booted on a host can use the local im-
age instead of a remote image, thereby removing one possible bottleneck. Even
though this approach provides a few advantages over a central repository, the
issue remains of using trusted images.

Trust: Trust is an important part of using VM images. In a homogeneous virtual
cluster, each filesystem image must be identical to the base image that all VMs
expect to use. By performing a hash of the local image, we can check (to a high
degree of confidence) that a local image hash is identical to the precomputed
remote image hash.

Removal: In the DVC setup proposed, each Xen VM is given a locally owned
image that it can read and write. Because each VM is capable of modifying
its local image, the possibility of image skew and image fill creeps in. Therefore,
each image used by a VM is deleted after the VM is destroyed. The disadvantage
to this approach is that an expensive copy operation must take place each time
a VM is to run on the machine.

Design Decision: Each image is copied from a trusted location to a unique
temporary location that only exists while the virtual machine exists.

4.4 Parallel Preemption and Restart

Checkpointing, preempting, and restarting parallel programs are notoriously
hard problems. Although it is well understood how to checkpoint serial and
parallel jobs at the application level [3,9], a synchronized save of distributed
processes for a coherent distributed state is difficult. The Xen hypervisor is ca-
pable of saving the entire state (including the network state) of any guest domain
running on a host. With the assumption that network communication between
distributed processes uses a reliable protocol, we must save each environment in
time to prevent any network timeouts from occurring, thus a coherent distributed
state should exist.

Dynamic Virtual Clustering with Xen and Moab 447

Preempting and restarting distributed processes running inside Xen guest do-
mains hinge on the synchronization of all saves. One method for preemption
requires a script to open multiple ssh sessions simultaneously. Once each pre-
emption requested guest is checked for existence, all requested guests are saved.
A second method for preemption relies on the synchronized time of each host in
the group of domains to checkpoint. While network time protocols cannot syn-
chronize host clocks precisely, the clocks can be set to within a few milliseconds
of each other. By relying on independent programs on each host that are set to
save the state of a guest at a future time, we can reliably save the state of a set
of distributed processes.

Design Decision: Use a script to open multiple ssh sessions in order to save
multiple guest environments simultaneously.

5 Methodology

5.1 Initial Implementation

In order for DVC to become a transparent cluster service, the batch scheduler
must be able to create VMs, run jobs inside them, and destroy them without
user intervention. A basic DVC system has been implemented within the Moab
cluster scheduler. This system has been used to test the overhead of VM creation,
runtime, and clean up.

Moab: Moab is both a cluster scheduler and a policy engine. In addition to
managing and running traditional cluster jobs, Moab is able to schedule in a
grid environment where multiple clusters are presented as a pool of resources.
Flexible policy settings within the Moab scheduler are able to ensure both fair
use of resources and required levels of quality of service. These features, and the
following specific capabilities, make Moab a good platform for implementing and
deploying DVC:

– Borrowing nodes from other clusters running the Moab scheduler
– The ability to interface with multiple resource managers (TORQUE, LSF,

SGE, bproc, etc.)
– Providing an interface allowing external scripts to give and receive data from

Moab

As part of this project, in collaboration with Moab developers, several exper-
imental capabilities have been added:

1. Detection of VM filesystem images available for virtualization on each phys-
ical node

2. Scheduler creation, destruction, and management of virtual nodes
3. Dynamic addition and removal of virtual nodes from resource manager
4. Job scheduling within virtual node clusters
5. Removal of VM host resources from scheduler

448 W. Emeneker et al.

These capabilities, combined with the fact that TORQUE is a freely avail-
able, actively maintained, and widely used resource manager make the Moab/
TORQUE combination a solid choice for deploying Dynamic Virtual Clustering.

Manual Virtualization: The first step towards creating a DVC system is to
manually create virtual machines that the batch scheduler can identify and use
for jobs. This step is accomplished in Moab with a set of plugin scripts that
create virtual nodes and register them with the cluster for scheduling. With the
VM creation scripts, Moab is able to construct a Xen domain configuration file
on the fly with the necessary options (name, memory, fs image, etc.). In order to
keep virtual machines on the same node separate, each virtual node has a unique
directory containing the requisite filesystem images. With the virtual node setup
and creation accomplished, it becomes possible to schedule on the new virtual
node by registering the node with both the resource manager and scheduler.

Queue Virtualization: Building upon manual virtualization, queue virtualization
is able to take any job submitted to a “virtualize” queue which will create the
necessary virtual nodes, schedule the job on the recently created virtual cluster,
and finally destroy the virtual cluster.

5.2 Experimental Setup

For this testing, two clusters were used- one 14 node cluster and one 12 node
cluster. All nodes contained identical hardware.

– Host machine: CentOS 4.3, Xen Linux 2.6.16 domain-0
– Host specifications: Dual Xeon EM64T 3.6 Ghz processors, 8GB RAM, Gi-

gabit Ethernet.
– Guest machine: CentOS 4.2, Xen Linux 2.6.16 domain-U, 1GB image size
– Resource Manager: Torque 2.1.0
– Batch Scheduler: Moab

All cluster nodes were connected with a single private Gigabit Ethernet switch.

6 Results

6.1 Test Plan

In this section, measurements are presented for the overhead associated with
DVC. The types of overhead examined include the time required for the staging,
configuration, booting, runtime and clean up of all VMs in a virtual cluster, as
well as the amount of memory consumed.

The loss of CPU performance has been examined numerous times as seen
in [1,10,14,4], and won’t be shown here. For this set of measurements, VM disk
usage was not a factor for 2 reasons:

1. All jobs used network mounted filesystems to read and write data. No user
was allowed to write data to the VM disk.

2. The VM disk image is a constant size on the host hard disk.

Dynamic Virtual Clustering with Xen and Moab 449

The last major source of resource consumption is RAM. Consumed RAM is
largely subject to the software environment of the virtual machine, but must be
taken into account when dynamically creating virtual machines. The following
sources of overhead in dynamic virtual clusters were measured.

– VC creation overhead: Filesystem staging, configuration creation, boot time
– Environment overhead: Memory

Fig. 3. VM Creation Overhead

Figure 3 shows virtual machine stag-
ing overhead. Each virtual cluster must
be created on-the-fly, and it is desirable
to do so in parallel in order to decrease
wait time. However, there is significant
overhead of 65-75 seconds involved in
copying a 1GB image from a trusted lo-
cation to 1-14 nodes. The jump in time
from creating 14 VMs to creating 16
VMs occurs because 14 nodes is a self-
contained cluster. Any more than 14
virtualized nodes requires nodes from
the second cluster to be virtualized. Af-
ter the jump in time from 14 to 16 vir-
tual machines, the graph levels off to an
average staging time of under 90 sec-
onds when the second cluster is in use.

On top of this image overhead, VM boot time and extra resource consumption
must be considered and are listed in table 1. The times presented in this table
are the averaged results of 15 independent tests.

Table 1. Virtual machine overhead

Guest Startup 23 seconds
Guest Shutdown 11 seconds
Guest Destruction < 1 second
RAM consumed by environment 50MB RAM

While the DVC scheme proposed in this paper does not require a guest to
shutdown cleanly, the shutdown time is shown along with guest destruction time.

Combining each type of overhead, the average time-to-ready of each VM is
approximately 2 minutes. While a 2 minute startup delay is acceptable for many
cluster applications, for short running and development jobs the delay may take
a large percentage of the total run-time.

6.2 Analysis

Each measured source of overhead decreases the capability of a virtual cluster;
however, if the overhead is small, the advantages of using DVC can outweigh the
overhead incurred by VM use.

450 W. Emeneker et al.

– Creation: The time taken to stage and boot a virtual machine is the largest
source of DVC at approximately 2 minutes. While this may seem significant,
for a cluster job running more than 1 hour, a 3% increase in total run-time
is incurred, a small difference compared to the normal run-time.

– Resource Consumption: Like creation time, RAM consumption by the VM
environment subtracts only a small percentage from the available memory.
Most new HPC nodes have at least 1GB of RAM per processor. Given that
50MB of memory is used by the VM, 5% of the memory available to a
job would be wasted. As more memory is given to a VM, the smaller this
percentage becomes.

– Destruction: VM destruction requires the least overhead of all those mea-
sured. However, improvements to DVC creation by allowing VM images to be
reused instead of deleted can save staging costs at the price of increasing VM
destruction time. With image reuse, we can cut DVC creation/destruction
time from approximately 2 minutes to less than 1.

Given the overhead presented above and the loss of performance[5,1,4] in-
curred by VM use, the total loss of resources (CPU, RAM and time) is approxi-
mately 10%. While this percentage is non-trivial, the capabilities that DVC can
give- job migration and cluster spanning- can allow us to increase the capability
of multiple clusters.

6.3 Preempt and Restart

In order to verify the validity of the claim that parallel preemption and restart is
possible with Xen, we attempted to preempt and restart the HPCC benchmark
suite. Jobs using up to 8 nodes have been successfully preempted and restarted
consistently. At the time of this writing, preempting and restarting larger jobs
is not yet stable.

7 Conclusions and Future Work

Dynamic Virtual Clustering holds promise for multi-cluster environments. With
the capabilities of customized software environments, job migration, and job
spanning, we can more efficiently schedule clusters in order to increase through-
put and decrease job turnaround time[7,6].

The use of virtual machine image customization makes it possible to cus-
tomize cluster images and provide a homogeneous software environment on top of
heterogeneous clusters. Forwarding jobs between clusters allows load-balancing
of cluster jobs between heavily and lightly loaded clusters to increase job through-
put and decrease turnaround time. Finally, DVC makes spanning jobs over
multiple clusters possible to increase both the capability of a multi-cluster
environment.

Future work includes modifying Xen to allow paused environments to be
saved and restarted, modifying the Moab cluster scheduler to bring take into ac-
count resource consumption and image reuse, and deploying DVC in much larger
clusters.

Dynamic Virtual Clustering with Xen and Moab 451

References

1. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM Press.

2. John Brooke, Martyn Foster, Stephen Pickles, Keith Taylor, and Terry Hewitt.
Mini-Grids: Effective Test-Beds for GRID Application. In Grid Computing - GRID
2000: First IEEE/ACM International Workshop, page 158, 2000.

3. K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

4. B. Clark, T. Deshane, E. Dow, S Evanchik, M. Finlayson, J. Herne, and J.N.
Matthews. Xen and the Art of Repeated Research. In Proceedings of the Usenix
annual technical conference. July 2004.

5. Wesley Emeneker and Dan Stanzione. HPC Cluster Readiness of Xen and UML.
In In Proceeding of IEEE International Conference on Cluster Computing (Cluster
2006) , 2006.

6. William Jones, Louis Pang, Dan Stanzione, and Walter Ligon. Bandwidth-aware
Co-allocating Meta-schedulers for Mini-grid Architectures. International Confer-
ence on Cluster Computing (Cluster 2004), 2004.

7. William Jones, Louis Pang, Dan Stanzione, and Walter III Ligon. Characteriza-
tion of Bandwidth-aware Meta-schedulers for Co-allocating Jobs Across Multiple
Clusters. Journal of Supercomputing, Special Issue on the Evaluation of Grid and
Cluster Computing, 2005.

8. Nadir Kiyanclar, Gregory A. Koenig, and William Yurcik. Maestro-VC: A Par-
avirtualized Execution Environment for Secure On-Demand Cluster Computing.
ccgrid, 2:28, 2006.

9. Friedemann Mattern. Efficient algorithms for distributed snapshots and global
virtual time approximation. Journal of Parallel and Distributed Computing, 18(4),
1993.

10. Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and
Willy Zwaenepoel. Diagnosing performance overheads in the xen virtual machine
environment. In VEE ’05: Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments, pages 13–23, New York, NY, USA,
2005. ACM Press.

11. Mendel Rosenblum and Tal Garfinkel. Virtual Machine Monitors: Current Tech-
nology and Future Trends. Computer, 38(5):39–47, 2005.

12. Nut Taesombut and Andrew A. Chien. Distributed Virtual Computers: Simplifying
the Development of High Performance Grid Applications. 2004.

13. R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson,
S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. Intel Virtualization Technology.
Computer, 38:48–56, May 2005.

14. X. Zhang and K Keahey. Evaluation of a Virtual Xen Cluster Using the Pallas
MPI Benchmarks Suite, April 2005.

Performance Enhancement of SMP Clusters with
Multiple Network Interfaces Using Virtualization

Peter Strazdins1, Richard Alexander2, and David Barr2

1 Department of Computer Science, Australian National University
Peter.Strazdins@cs.anu.edu.au

2 Alexander Technology, Canberra
{richard, david}@alexandertechnology.com

http://www.alexandertechnology.com

Abstract. Clusters of small-scale SMP/CMP nodes are becoming increasingly
popular due to their cost-effectiveness. As these nodes are typically capable of
supporting a number of network interfaces similar to the number of CPUs, the
issue arises how to optimally configure the cluster for optimum communication
performance. This paper evaluates a number of configurations on a 4-CPU Opteron
cluster with multiple Gigabit Ethernet interfaces. Techniques include channel
bonding and using independent communication pathways. With the latter, the use
of virtualization via the Xen Virtual Machine Monitor offers the best potential to
parallelize all stages of message transmission, for the case when multiple CPUs
on a node are communicating simultaneously. Network-level microbenchmarks
indicate the best performance is achieved with a configuration where guest virtual
machines running on each CPU communicate directly with a dedicated interface,
bypassing the virtual machine monitor. Channel bonding also proved to be more
effective over multiple communication streams than over single.

1 Introduction

Cluster computers, assembled from COTS commodity-off-the-shelf compute nodes and
communication networks, have proved a highly cost-effective solution to high perfor-
mance computing demands, and have gained dominance in this market. COTS technol-
ogy has provided high increases in computational speed for a given cost, but in terms of
communication networks, the definition of COTS is not only less clear, but their perfor-
mance increase has not matched that of the compute nodes. While (Gigabit) Ethernet
continues to be the most widely used (and most strongly fits the COTS criterion) com-
munication network, there are more specialized networks available, such as InfiniBand,
Myrinet and Quadrics.

While low-end SMP nodes have long been seen as highly cost-effective in the clus-
ter context [1,2,3], the recent advent of Chip Multiprocessing (CMP) promises an even
higher price-performance advantage. CMP adds a new dimension to the question of the
optimal number of CPUs for a cluster computer node. The key issue is that the commu-
nication and computational performance must be balanced for a cluster configuration to
be cost-effective.

However, many of the COTS processor systems which may be selected for a cluster
compute node come with motherboards supporting multiple I/O connections. Typically
on these motherboards, the main system bus is connected to a number of PCI buses, each

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 452–463, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Enhancement of SMP Clusters 453

of which may have a number of slots where I/O devices can be connected. For example,
the IWILL DK8-HTX motherboard for Opteron systems has AMD-8111 I/O Hub and
AMD-8131 PCI-X Tunnel chips, between them having three PCI-X/PCI buses and 14
device slots, as well as two in-built Gigabit Ethernet controllers [4]. Since network in-
terfaces are themselves I/O devices, this permits a considerable number of interfaces to
be connected1, which can potentially provide an aggregate communication bandwidth
to match the nodes’ aggregate compute performance for a moderate number of CPUs.
As the network’s cost (interface cards and switches) is typically a small fraction of an
Ethernet-based cluster’s overall cost [1], multiple network interfaces may prove to be
similarly cost effective as multiple CPUs. This is particularly the case when the ports
of the switch are under-utilized, in which case the extra cost is only in the cards, which
for Gigabit Ethernet is typically under a few hundred dollars each.

In recent years, there has been a resurgence of interest in virtual machines (virtu-
alized operating systems), largely due to the increased encapsulation that this offers,
which in turn offers advantages in flexibility, security, performance isolation and mi-
gration [5,6]. There are various techniques which may accomplish this, but one of-
fering both potentially high performance and high functionality is known as para-
virtualization. Xen [5] is an x86-based virtual machine monitor for Linux which uses
this technique. The para-virtualization approach of Xen offers an easy way of dedicat-
ing network interfaces to instances of virtual machines (which in turn may be running
simultaneously on multiple CPUs).

This paper is concerned with an increasingly important issue in cluster design of how
to determine the optimal number of CPUs and network interfaces per node, and of how
to configure the interfaces. To this end, the paper evaluates various multiple network in-
terface configurations on an SMP cluster with at least as many CPUs. In terms of config-
urations, we explore two broad possibilities for multiple CPU nodes: channel bonding,
where all interfaces may be used to send parts of a message (individual packets, in the
case of Ethernet [7]); and setting up independent network interfaces for a particular
source (or destination) CPU. Our emphasis is on Gigabit Ethernet interfaces, due to
their relatively low cost and wide deployment. A key issue in this context is the degree
of parallelization possible over the stages of message transmission: the TCP/IP stack,
the access of the network interfaces (either network interface cards (NICs) or chips),
and the transmission across the communication channel. PCI bus configurations can
also play an important role in this process. For independent network interface configu-
rations, dedicating network interfaces to virtual machine instances offers the potential
of parallelization over all stages of message transmission. Thus, this paper is will also
explore the potential benefits, and overheads, of virtualization in these configurations.

This paper is organized as follows. Section 2 discusses related work, and defines
the new contributions made in this paper. Background information on Xen and TCP/IP
stack processing is given in Section 3. A variety of multiple network interface con-
figurations that we will study is described in Section 4, with the experimental setup
described in Section 5. Performance results are given in Section 6 and conclusions are
given in Section 7.

1 Although in practice, bus bandwidth limitations and the number of interrupt requests available
would limit this number.

454 P. Strazdins, R. Alexander, and D. Barr

2 Related Work

There are a number of performance evaluations of cluster networks with SMP nodes in
the literature (e.g. see [2,8] and the references within). These typically evaluate the ef-
fect of connecting cluster nodes with different networks (interface card and switch com-
binations), but use configurations with a single network interface for communication.

Gigabit Ethernet-based networks, due to their popularity, have also been evaluated.
[7] examines the effects of channel bonding of a dual Xeon connected with dual In-
tel/Pro 1000 ports; it concluded that the channel bonding provided by the Linux kernel
was mostly ineffective, and even degraded performance for medium-sized messages.
However, it concluded that the related technique of striping the data at the socket level
(which permits more independent TCP/IP stack processing for each interface) could
almost double the bandwidth.

Network I/O performance has recently been recognized as an important issue for
Xen [9]. Here, a multiple TCP stream configuration showed that the Xen ‘driver do-
main’ (see Section 3) achieved 69% and 100% of the native Linux’s receive and send
performance, respectively; whereas a normal (guest) VM under Xen achieved 33% and
20% respectively. Subsequent optimizations improved the driver domain’s receive per-
formance to 90%, and the VM’s send performance to 90% [10]. The configuration used
here is the most similar to ours so far, in that the experiment aggregated the performance
of 4 server processes, each connected to an independent NIC (c.f. the *.indep.4p
configurations of Section 4). However, the server was not an SMP, and the clients were
on 4 separate machines; thus, their configurations emphasise the CPU overheads of Xen
more than ours.

There has been recent interest in the use of virtualization for cluster computing.
Key issues include reducing the performance (particularly for message passing) and
management overheads, with preliminary solutions being proposed and evaluated [6].
The solution for reducing messaging passing overheads is called virtual machine mon-
itor bypass (VMM-bypass), and is elaborated in [11]. This solution can be applied
to networks with OS bypass capabilities (also known as user-level communication),
in this case InfiniBand, which can similarly be used to bypass the virtual machine
monitor. The results show that the performance of communication under bypass of
the Xen monitor approaches that of the original InfiniBand driver. However, there is
not a clear evaluation of how large the overheads were originally under Xen without
bypass.

This paper’s contributions are that it makes a comparison of various multiple network
interface configurations for clusters with multiple CPU nodes. Techniques used include
channel bonding and VMM-bypass; however the latter is used to set up independent
communication channels, and is a more generic approach as it does not require OS
bypass capabilities of the network. In the comparison of the multiple configurations,
we also evaluate the overhead of Xen at the MPI level.

3 Background

This section gives background information which is relevant to the experiments on var-
ious the GigE network interface configurations described subsequently.

Performance Enhancement of SMP Clusters 455

Various references [5,12,11] describe the approach of Xen to virtualization, which
the reader is referred to. Xen requires one special guest VM, called domain0, to be
present; this is used to manage a number of guest VMs. These guest VMs can commu-
nicate to each other using shared pages; communication to external VMs occurs through
a virtual interface. Data is transferred via pseudo-device drivers to domain0; by default,
only this domain has access the native device interfaces. Apart from the processing of
interrupts, which are fielded first by the VMM, device access from domain0 proceeds
very similarly as it would under the corresponding Linux kernel that XenoLinux is
based on. For this reason, domain0 is also referred to as the ‘driver domain’ [10].

The Linux kernel 2.6 has sophisticated TCP/IP stack processing on multiple CPU
systems. Due to its widespread importance, studies have recently emerged analysing
the parallelization strategies used in Linux [13,14]. Two kinds of locks are required
for TCP/IP stack processing: locks related to connection, and locks associated with
particular sockets, with the latter typically requiring more frequent access.

Two broad parallelization strategies exist: connection-parallel and message-parallel,
with the former being regarded as superior [13,14]. The message-parallel strategy paral-
lelizes the processing (of different segments) of a single transmission; it can be
employed when channel bonding is in use, but typically requires large message sizes
to become effective. The connection-parallel strategy allows messages using different
sockets to proceed in parallel; this eliminates contention on the per-socket locks [13],
and thus explains why socket striping achieves better performance than channel bond-
ing (as reported in [7]).

4 Multiple Network Interface Configurations

Figure 1 shows the configurations for nodes with 2 network interfaces (and 2 CPUs).
The acronym NIC should be regarded here as denoting any kind of network interface,
whether implemented on a card or on a chip (note also that some cards have dual inter-
faces). In each case, there are MPI process pairs 0 and 2, and 1 and 3; it can be assumed
that communication only occurs between pairs. The diagram indicates communication
paths between these processes, rather than physical connectivity. In fact, both connec-
tion paths (denoted Nic1 and Nic2) go through the same switch, and in all cases it is
possible for any process to communicate with any other.

Configuration driver.bond.2p runs MPI processes on the driver domain
(domain0), using channel bonding to combine the aggregate performance of the two
connecting interfaces. Configuration driver.indep.2p is similar, except traffic be-
tween the pairs occurs independently on separate NICs; this is achieved by each node
being given two IP addresses and binding each to two separate Ethernet interfaces (e.g.
eth1 and eth2). The route add command is used to route traffic to each of the
IP addresses of the other node through one of these interfaces. MPI processes are then
configured using a list of the four IP addresses. This ensures that different sockets are
used for each stream, thus providing a simple way of ensuring that a connection-parallel
strategy is employed.

Configuration guest.bond.2p requires two Xen guest domains (1 and 2) to be
configured on each node, with the MPI processes being assigned to each of the four

456 P. Strazdins, R. Alexander, and D. Barr

VMs (with each assigned a different IP address). Communication occurs through do-
main0, which uses bonding of the two NICs. Configuration guest-byp.indep.2p
is similar, except it uses VMM-bypass: i.e. the NICs are unbound from domain0 and
each independently bound to one of VMs. As Xen binds a VM to a CPU (see Section
4.1), this results in processes and NICs being automatically bound to a specific CPU.

P2P0

P3P1

Nic1

Nic2

Dom0 Dom0

P2P0

P3P1

Nic1

Nic2

Dom0 Dom0

(a)driver.bond.2p (b) driver.indep.2p

P2

Dom2

Dom1 P0 Dom1

P3 Dom2P1

Nic1

Nic2

Dom0 Dom0

P2

Dom2

Dom1 P0 Dom1

P3 Dom2P1

Nic1

Nic2

Dom0 Dom0

(c)guest.bond.2p (d) guest-byp.indep.2p

Fig. 1. 2-way NIC configurations

For a baseline comparison, there are also 2 process (1 pair) versions of these config-
urations, denoted similarly but with the suffix ‘.1p’. There are similarly 4 pair versions
of the above configurations, which use 4 NICs (and use 4 CPUs, with 4 IP addresses
per node), denoted with the suffix ‘.4p’.

In terms of parallelization of the TCP(/IP) stack, the guest-byp.indep.* con-
figurations offers fully independent processing for multiple network interfaces. The
host-indep.* configurations offer socket-level parallelism, whereas the *.bond.* con-
figurations offer connection-level parallelism.

The characteristics of intra-node communication are also of interest (this would cor-
respond to a situation as on Figure 1, except P0 and P2 are on one node, and P1
and P3 are on the other). For the driver.* configurations, these will occur via a
shared memory transport. For the guest*.* configurations, these occur via virtual
interfaces, implemented in turn by event channels, which can exchange data by shared
pages [11]. If this is the case, while there would be some overhead of invoking the Xen
VMM (to service requests in the event channels), there need be little or no copying
overhead for the data.

4.1 Modifying Xen for domain0 Bypass

Normally, guest domains under Xen perform I/O via a virtual interface to domain0;
domain0 then accesses these hardware devices directly [12]. This is done by setting the
vif variable in the guest domain’s configuration file.

If this is omitted, no virtual interfaces are set up; however, an actual (PCI-connected)
network interface can be set up to perform I/O instead [12]. This can be specified in
the guest domain’s configuration file by setting the pci variable to the desired bus

Performance Enhancement of SMP Clusters 457

and slot number, e.g. to connect to the card on slot 4 of PCI bus 3, the setting is
pci=[’03,04,0’].

The binding of a guest domain to a single CPU is similarly specified in its configu-
ration file. It remains to ensure that before the guest domains are brought up, these slots
are unbound from domain0, and, for maximum efficiency, the interrupt requests arising
from that slot are directed to the same CPU. In Linux, this can be done by creating a
file /proc/irq/i/smp affinity which contains the CPU’s number, where i in
the interrupt request number of that slot.

Note that in this context, the VMs form the nodes of a (virtual) cluster which will be
used to run parallel jobs and so must ‘trust’ each other; thus, there is less of a security
issue here in bypassing Xen’s driver domain.

5 Experimental Setup

We use a 2 node cluster for our experimentation. Each node consists of dual SMP dual-
core 2.2 GHz AMD Opteron processors with a 2-way 64 KB level 1 data cache and
an 8-way 512 unified L2 cache, and 4 GB of RAM. The nodes have an IWILL DK8-
HTX 815 motherboard, with 800 MB/s HyperTransport links. The motherboard has
in-built dual Intel 82541GI/PI GigE controllers. External NICs can be connected to two
slots connected to the same 64-bit 33/66/100 MHz PCI-X bus, and to one slot connected
to a third 32-bit 66 MHz PCI 2.2 bus. For external NICs with dual Ethernet ports, this
permits up to 8 Gigabit Ethernet interfaces on this motherboard.

One of the in-built GigE chips is configured to Ethernet interfaces eth1 (the other
is needed by the driver domain as a control interface). A Pro/1000 MT NIC with an
Intel 82541PI chip is configured to eth4. The nodes also have a Pro/1000 MT NIC
(Intel 82546GB chips) with dual interfaces; these are configured to eth2 and eth3.
Inspection of the Linux device driver code indicates that the 82546 chip supports seg-
mentation bypass, i.e. offload of some of the IP stack, but that there is no offload for
the 82541 chip. Note that the same device driver is used for all interfaces. The lspci
command indicates eth1, eth2 and eth3 are on PCI bus 3, which is running at 66
MHz in 32-bit mode (total bandwidth of 240 MB/s), and that eth4 is on PCI bus 1,
also running at 66 MHz in 32-bit mode.

The networks are configured with am Ethernet Message Transfer Unit of 4148 bytes
- sufficient to hold a 4KB payload under TCP/IP. This value was found to be optimal
under elementary network bandwidth tests.

The system software is based on the Linux Dapper Drake 6.0.6 distribution, with a
XenoLimux 3.2.2 kernel. This is based on the Linux kernel 2.6.16 SMP, which both
the driver and guest domains are based on. gcc 4.0.3 comes with this distribution. The
channel bonding driver, when used, is that which comes with the Linux kernel.

5.1 Benchmark Programs

Our benchmark programs use the MPICH-2 MPI implementation under the MVAPICH-
2 package from the Ohio State University [15]. MPI is configured to only use interfaces
eth1 to eth4.

458 P. Strazdins, R. Alexander, and D. Barr

To test raw communication performance, we use the latency and bandwidth (uni-
and bi-directional) benchmarks program, also available under the MVAPICH-2 pack-
age [15,8]. The latency tests give the averaged timings for r = 100 ping-pong tests2.
The uni-directional bandwidth test is for g = 64 one-way messages followed by an ac-
knowledgement, repeated r = 20 times. The bi-directional bandwidth tests are similar,
except each nodes posts g receives and then sends g messages. All tests have a warm-up
period of r/10 un-timed messages (of the same length as those to be measured).

The latency test is useful as it represents the communication performance of where
a node on the ‘critical path’ of a parallel computation is waiting on a message. The uni-
directional bandwidth test is aimed to demonstrate the maximum one-way bandwidth
performance. It models pipelined communication, such as is used in applications such
as parallel Linpack. The bi-directional tests can show saturation effects (in the PCI bus
and/or network interfaces); it also models important communication patterns such as
all-to-all exchange.

The benchmarks use MPI Wtime() to measure time, which in this case, is based
on gettimeofday(). This should return the actual wall time irrespective of whether
running on real or virtualized hosts.

These benchmarks normally run as 2 MPI processes. For our experiments, they were
modified to run as pairs of MPI processes; in this case 1, 2, or 4 pairs being of in-
terest. Also, calls to sched setaffinity() were used to bind processes to the
CPU corresponding to their process number. Timings for each pair are recorded. Our
methodology involves performing 10 timings for each data point on an otherwise qui-
escent system; while the average is of most interest, variations may indicate ‘stress’ on
the kernel and/or an asymmetry in the loads over each CPU from message processing.

5.2 System Integrity Issues

The use of 4 network interfaces in the 4 CPU nodes initially created problems. It caused
communication-intensive applications to hang or crash. The problem was traced to the
handling of interrupt requests, due to the limited number available on the DK8-HTX
motherboard. Some local disk I/O interrupts, as they shared the same interrupt number
as one of the network devices were lost.

The solution was to configure the operating system (domain0) to implement its
filesystem on a network bootable RAM disk rather than the local disk.

This problem does however indicate a practical limitation to the number of network
interfaces that can be used simultaneously on a given motherboard.

6 Results

In Section 6.1, we report the performance of the single pair configurations. Native Linux
performance is also included and the bandwidths of the separate interfaces are also mea-
sured. From this, we can evaluate the overhead of Xen and gain a baseline to understand
the performance of multiple interfaces, which is presented in Section 6.2.

2 r is increased by a factor of 10 for small messages.

Performance Enhancement of SMP Clusters 459

6.1 Baseline Performance

For single pair performance (interface eth1), the unidirectional bandwidth approaches
110 MB/s, close to the theoretical maximum of Gigabit Ethernet (125 MB/s), for all
but the guest.bond.1p configuration. The bi-directional case is similar, except the
bandwidth approaches 135 MB/s. In both cases, the *.indep configurations perform
best, being virtually indistinguishable from each other. Similar to [7], channel bonding
in the driver domain gives lower performance, especially in the 1KB – 256 KB region,
but in the unidirectional case for messages over 1 MB it has slightly faster performance.
The performance of the guest.bond configuration, which performs communication
via Xen’s virtual interfaces to domain0 (which in turn is configured to use channel
bonding) approaches 50MB/s in both cases – much lower than the others; this trend we
will see maintained. The bandwidth across eth2 and eth3 was about 15% faster in
the bi-directional case, and eth4 was slower with a maximum bandwidth of 90 MB/s.

For the latency tests, the results are similar to the unidirectional bandwidth case,
with the bandwidth increasing sharply at 1 KB. However, driver.bond suffers a
greater (30-50%) performance loss over the 32 – 256 KB range. Table 1 summarizes
performance at the endpoints.

Table 1. Inter-node Latency Test Performance summary for 1-pair configurations

*.indep driver.bond guest.bond
time at 1 B (μs) 87 91 106

B/W at 4 MB (MB/s) 107 105 51

The above experiments were also run under native Linux (based on the same ker-
nel and distribution as for XenoLinux) with independent channels; we call this the
native.indep.1p configuration. The results were identical to driver.indep.
1p, except that the latency test yielded a marginally higher bandwidth of 109 MB/s (at
4 MB); this indicates the messaging performance under domain0 is essentially identical
to native Linux.

Intra-node performance was measured similarly, by running the MPI processes on
the same physical host; the results a summarized in Table 2. The driver.* con-
figurations use a shared memory transport; the guest*.* configurations use virtual
interfaces; by comparison with Table 1, this has a very similar bandwidth to that of
inter-node communication. The uni- and bi-directional bandwidths for large messages
were the same as for the latency tests.

Table 2. Intra-node latency test performance summary for 1-pair configurations

driver.* guest*.*
time at 1 B (μs) 18 530

B/W (MB/s) at 4 MB 30 50

460 P. Strazdins, R. Alexander, and D. Barr

6.2 Multiple Interface Performance

Figure 2 gives the bandwidths for 2 pair performance (using interfaces eth1 and
eth4). Figure 3 gives the performance for 4 pairs; configuration guest.bond.4p is
omitted here, due to it being insufficiently stable to complete the tests.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

4Mb1Mb32Kb1Kb32b1b

driver.indep
guest-byp.indep

driver.bond
guest.bond.

 0

 50

 100

 150

 200

 250

4Mb1Mb32Kb1Kb32b1b

driver.indep
guest-byp.indep

driver.bond
guest.bond

(a) uni-directional (b) bi-directional

Fig. 2. Bandwidth (MB/s) versus message size for 2-pair configurations

For the latency tests (not graphed), the results are similar to the 1-pair tests, with
again driver.bond suffering a 30-50% performance loss over the 32 – 256 KB
range. Table 3 summarizes performance for large messages.

Table 3. Latency test bandwidth at 4 MB for 2- and 4-pair configurations

driver.indep guest-byp.indep driver.bond guest.bond
2-pairs 172 200 144 86
4-pairs 296 296 256 –

Overall, it can be seen that the *.indep configurations consistently give the best
performance, with the guest-byp.* configuration performing the same on some
tests, and ≈ 10% better on others. In the 4-pair case, it achieves 300 MB/s and 345
MB/s for uni- and bi-directional bandwidth, respectively. This is comparable with the
maximum expected uni-directional bandwidth, which is 354 MB/s; this is the sum of
the bandwidth on PCI bus 3 (264 MB/s) plus the bandwidth over eth4 (90 MB/s – see
Section 6.1).

Comparing the results in Section 6.1 and Figures 2–3, we see a clear (although sub-
linear) increase in bandwidth as network interfaces (and communication streams) are
added. In particular, driver.bond improves its performance as communication in-
tensity increases, and also demonstrates benefit from multiple communication streams.

Performance Enhancement of SMP Clusters 461

 0

 50

 100

 150

 200

 250

 300

4Mb1Mb32Kb1Kb32b1b

driver.indep
guest-byp.indep

driver.bonded

 0

 50

 100

 150

 200

 250

 300

 350

4Mb1Mb32Kb1Kb32b1b

driver.indpt
guest-byp.indep

driver.bond

(a) uni-directional (b) bi-directional

Fig. 3. Bandwidth (MB/s) versus message size for 4-pair configurations

However, from extrapolating the trends, it seems likely that there would be diminishing
returns from adding more interfaces, at least on the motherboard used.

It should be noted that there was a significant variation in the measurements for
the driver.indep.4p tests (the averaged results are over 10 measurements). The
driver.bond configurations experienced some variations, but these were signifi-
cantly reduced once CPU affinity was imposed. CPU affinity did not however seem
to have a large impact on average performance. guest-byp.indep showed very
small variability in all tests; it can be noted that affinity is enforced in the guest*.*
configurations.

The native.indep.2p results were indistinguishable from that of the
driver.indep.2p. However, the native.indep.4p results showed conflicting
differences over driver.native.4p: the latency test showed a bandwidth of only
256 MB/s at 4MB, but the uni-directional bandwidth was much higher, peaking at 335
MB/s. Bi-directional bandwidth shows great variability in the 4–64 KB range, peaking
at 382 MB/s at 8 KB, but decreased to 300 MB/s after 256 KB. In this situation, while
communication performance is different in domain0 over native Linux, neither shows
conclusively better performance overall.

7 Conclusions and Future Work

Our preliminary experiments on a 4 CPU Opteron-based Gigabit Ethernet clusters in-
dicate that worthwhile improvements in communication bandwidth can be achieved by
using multiple network interfaces. With one communication stream per process pair,
configuring streams to run independently across separate interfaces generally yielded
significantly better performance than did channel bonding. However, relatively better
gains for channel bonding were observed as the number of streams and communica-
tion intensity increased. The best performance came from configurations using Xen
virtualized hosts with VMM-bypass for network I/O. This is because it has the greatest

462 P. Strazdins, R. Alexander, and D. Barr

potential of parallelism in TCP/IP stack processing, as well as providing natural affinity
between CPU and network interface interrupt processing. However, in the setup used,
its advantage over independent streams in Xen domain0 was not decisive.

While it is easy to enable VMM-bypass for network-based communication in Xen to
optimize inter-node communication, intra-node communication between Xen guests on
the same node is currently an order of magnitude slower than the native shared memory
transport. This would counteract the advantages of VMM-bypass for configuring an
SMP cluster with a Xen guest on each CPU.

Xen communication bandwidth, going through the VMM, is still generally within
a factor of two of the best configuration possible. Communication performance of the
Xen driver domain (domain0) closely matched that of native Linux for single network
interfaces and 1-pair configurations, although for 4-pair configurations, there was some
variability but no decisive overall difference.

Future work includes optimizing communication performance between Xen guests
on the same node; this could be implemented as a shortcut to a shared-memory transport
in the virtual interface implementation. Once this is done, application-level performance
could be meaningfully evaluated over the configurations studied here. Other directions
for future work include evaluating these effects on nodes of different motherboards;
particularly interesting will be the 8 CPU case.

It is foreseeable that virtualization, with a combination of VMM-bypass and op-
timization, may actually offer performance advantages in SMP clusters. As well as
permitting some advantages in average performance, configurations of one virtual ma-
chine per CPU show low variability in performance, due to the increased encapsulation
afforded by para-virtualization.

Acknowledgements

The authors thank Alistair Rendell for helpful suggestions in the experimentation and
the preparation of the manuscript. We also thank Tony Breeds for setting up the software
distribution and some of the result-generating infrastructure used in this work, and thank
Brendan Howe for technical support.

References

1. Aberdeen, D., Baxter, J., Edwards, R.: A 98c/MFLOP Ultra-Large Scale Neural Network
Training on a PIII Cluster. In: Proceedings of Supercomputing 2000. (2000)

2. Capello, F., Richard, O., Etiemble, D.: Understanding performance of SMP clusters running
MPI programs. Future Generation Computer Systems 17 (2001) 711–720

3. Pukayastha, A., Guiang, C.S., Schulz, K., Minyard, T., Milfeld, K., Barth, W., Hurley, P.,
Boisseau, J.R.: Performance Characteristics of Dual-processor HPC Cluster Nodes based on
64-bit Commodity Processors. In: Proceedings of the Linux Clusters Institute (LCI) Interna-
tional Conference: the HPC Revolution. (2004)

4. Advanced Microelectronic Devices: AMD Microprocessor Solutions. (http://www.amd.com/
us-en/Processors)

5. Barham, P., Dragovic, B., Fraser, K., Harris, S.H.T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of SOSP 03: the Nine-
teenth ACM Symposium on Operating Systems Principles, Ney York, ACM (2003) 164–177

Performance Enhancement of SMP Clusters 463

6. Huang, W., Liu, J., Abali, B., Panda, D.: A Case fopr High Performance Computing with
Virtual Machines. In: Proceedings of ICS06: International Conference of Supercomputing,
Cairns (2006)

7. Turner, D., Oline, A., Chen, X., Benjegerdes, T.: Integrating New Capabilities into NetPIPE.
In: 10th European PVM/MPI User’s Group Meeting, Venice, Springer (2003) 37–44

8. Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu, W., Buntinas, D., Wyckoff, P.,
Panda, D.: Performance Comparison of MPI Implementations over Infiniband, Myrinet and
Quadrics. In: Proceedings of the SuperComputing 2003 Conference, Phoenix (2003)

9. Menon, A., Jose Renato Santos, a.Y.T., Janakiraman, G., Zwaenepoel, W.: Diagnosing Per-
formance Overheads in the Xen Virtual Machine Environment. In: First ACM/USENIX
Conference on Virtual Execution Environments (VEE’05). (2005) 13–25

10. Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing Network Virtualization in Xen. In:
Proceedings of the 2006 USENIX Annual Technical Conference, Boston (2006) 15–28

11. Liu, J., Huang, W., Abali, B., Panda, D.: High Performance VMM-Bypass I/O in Virtual Ma-
chines. In: Proceedings of the 2006 USENIX Annual Technical Conference, Boston (2006)

12. University of Cambridge Computing Laboratory: The Xen virtual machine monitor.
(http://www.cl.cam.ac.uk/Research/SRG/netos/xen)

13. Willmann, P., Rixner, S., Cox, A.L.: An Evaluation of Network Stack Parallelization Strate-
gies in Modern Operating Systems. Technical Report TR06-872, Rice University Computer
Science (2006)

14. Bhattacharya, S.P., Apte, V.: A Measurement Study of the Linux TCP/IP Stack Performance
and Scalability on SMP systems. In: Proceedings of the 1st International Conference on
COMmunication Systems softWAre and middlewaRE (COMSWARE), New Delhi (2006)

15. Nowlabs, Ohio State University: MVAPICH2 Toolset. (http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/)

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 464 – 473, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Architectural Characterization of VM Scaling on an
SMP Machine

Padma Apparao, Ravi Iyer, and Don Newell

Systems Technology Lab
Intel Corporation

padmashree.k.apparao@intel.com

Abstract. The use of virtualization as a means to consolidate multiple
applications on the same server platform continues to grow in the datacenter.
However, the performance implications in a virtualized environment are not yet
thoroughly understood for key commercial server workloads. In this paper, our
goal is to provide architectural insights into the performance of server
application scaling in a virtualization environment. We do so by studying the
scaling behavior of a compute intensive application, namely SPECjbb2005
which is a commercial Java server benchmark. When comparing to native
execution, the performance of a single virtual machine running SPECjbb2005
appears to be comparable. However, as the number of virtual machines is
increased, the performance degradation was found to be significant. A detailed
investigation into overheads of virtual machine scheduling and context
switching overhead was conducted. Based on this investigation, we show how
the number of instructions executed per operation, the cycles per instruction,
and the cache misses and the TLB misses all are affected when scaling virtual
machines. We also compare the performance of the simultaneously running
virtual machines and discuss fairness and prioritization implications of
scheduling decisions.

Keywords: virtualization, servers, performance, scalability, Xen, architectural
characterization, Java.

1 Introduction

While virtualization [11]has been around for several decades, it has re-emerged in
recent years as an effective means to consolidate multiple applications on to a single
platform. Several companies are now providing hardware and software virtualization
solutions [1,[6][7][13][21]as they see a growing rate of adoption. Applications with a
varied set of requirements can share the same physical resources (cores, memory, I/O
devices, etc) and provide benefits in terms of reduced total cost of ownership to the
server administrator. Virtualization techniques are also used to provide benefits such
as security, isolation, debugging, binary compatibility and performance monitoring. In
this paper, our primary focus is on evaluating the performance characteristics of a
commercial server application when running in a virtualized environment.

As virtualization-based usage models are adopted, researchers are now attempting to
analyze the overheads involved [4][5]and look for solutions. However, there are only a

 Architectural Characterization of VM Scaling on an SMP Machine 465

limited number of studies that focus on the architectural characteristics of virtual
machine execution. In this paper, we study the performance and scalability of a
compute-intensive commercial server workload (SPECjbb2005) running within virtual
machines. Our measurement-based methodology employs an Intel Xeon platform with
two cores running at 3.3 GHz frequency. We run our workloads on the Xen hypervisor
and employ several performance tools (Oprofile/Xenoprofile [[2][20], top/xmtop and
hardware performance counters) to extract overall system performance (CPU
utilization, context switches, etc) and architectural behavior (instructions, cycles per
instruction, cache misses, TLB misses, etc). For comparison, we also measure the
performance of SPECjbb2005 in a native (non-virtualized) platform. We expect that
the findings from out study will be useful to VMM architects and platform architects as
it provides insight into performance bottlenecks.

The rest of the paper is organized as follows: In section 2, we provide background
on the various virtualization techniques used commercially. We also discuss the typical
overheads for virtualization. In Section 3, we describe the platform under test, the tools
and methodology used for measurement and analysis. Section 4 presents the results and
analysis of SPECjbb2005 wherein we present the raw performance of SPECjbb in
native and virtualized environments. We look at the scaling of VMs and the how the
virtualization overheads change with scaling. At the end of this section we present the
scheduling effects and the effects on the virtualization overheads. Finally, we discuss a
methodology for developing a performance model to project VM scaling. Section 7
summarizes this work and provides a direction for future work in this area.

2 Overview of Virtualization

The most recent virtualization solutions are either based on total virtualization or
para-virtualization. In this virtualization models, multiple virtual machines are
supported on top of the host machine running the same ISA. Earlier versions of
virtualization provided support for unmodified guest operating systems (OS) to
execute without any awareness of the underlying virtualization layer. This total
virtualization [19] demands relatively complex implementation of hypervisor which
depends on techniques like ring compression and binary patching to enable this
environment. This complexity and performance overhead in the hypervisor can be
reduced by making the host hardware and the guest operating system aware of
virtualization. First is referred to as hardware assisted virtualization. Recently
processor vendors like Intel and AMD are adding hardware support for virtualization
[1,13] which reduces the burden on the hypervisor by providing the virtualization and
isolation hooks in the processor hardware.

While hardware supported virtualization makes the hardware aware of
virtualization, para-virtualization (Fig. 1) makes the guest OS aware of virtualization.
This provides an environment where the guest operating system works in concert with
the hypervisor to provide an efficient and simpler virtualization environment. Current
developments in Xen/Linux and Microsoft Windows® virtualization solutions are
moving in this direction. In this paper we focus on Xen, the popular open source para-
virtualized virtual machine monitor (VMM) based on Linux.

466 P. Apparao, R. Iyer, and D. Newell

Guest 1 Guest 2

Physical Machine

Proc Mem IO

Hypervisor/VMM

Virtual Machine

Proc Mem IO

Virtual Machine

Proc Mem IO

Virtualization Aware Guest OS

Application Application Application Application

Virtualization Aware Guest OS

Guest 1 Guest 2

Physical Machine

Proc Mem IO

Hypervisor/VMM

Virtual Machine

Proc Mem IO

Virtual Machine

Proc Mem IO

Virtualization Aware Guest OS

Application Application Application Application

Virtualization Aware Guest OS

Fig. 1. Para-virtualization Architecture

2.2 Virtualization Overheads

The function of the hypervisor is to own and control physical resources of the host and
expose virtual machines to guests running on it. The resources virtualized are
processor, memory and IO. Depending on the mode of virtualization, the complexity
and cost of virtualization varies. For example the cost of para-virtualization is much
lower as compared to total virtualization. Overheads of virtualization are caused by the
guest VM making access to platform resources such as processor, memory, and IO. All
these result into a trap in the include traps into the hypervisor (the VMM) which
handles the VM access. Typical overheads are page faults, context switches and
interrupts. The VMM intervenes to provide the necessary resources to the VM and this
impacts the performance of the workload running in the guest VM. In this paper we
quantify the overheads of running SPECjbb2005 in a VM and also show how these
overheads change with scaling and the architectural effects of the overhead events.

3 Workloads and Methodology

In this section, we describe the workloads and evaluation methodology for
characterizing virtualization performance. We chose SPECjbb2005 [24]as the
compute intensive workload as it is well known server benchmark and does no I/O.

3.1 The SPECJBB2005 Benchmark

SPECjbb is a server-side benchmark for evaluating the performance of the servers
running online transaction processing (OLTP) workloads. SPECjbb resembles TPC-C
[25] but is implemented in Java and emulates a 3-tier system with emphasis on the
middle tier. The benchmark is extremely sensitive to heap size and memory
management; and is essentially compute and memory intensive as a result.

3.2 Platform Configuration

The system we have chosen for performing our performance work is an Intel Xeon
system with two processors and 16GB memory. Each processor is an Intel Pentium 4
processor (with no hyperthreading) with three levels of cache (16KB L1, 1MB L2 and

 Architectural Characterization of VM Scaling on an SMP Machine 467

8M L3). We use the Xen (xen-unstable version 3.0.2) with built in support for PAE
(page address extensions for large memory sizes). When running natively we run
single and 8 multiple instances of SPECjbb to study scaling. In case of virtualization,
Xen could only support 16GB of memory and therefore we were able to run only 4
VMs with 3GB each.

3.3 Performance Profiling Tools

In native linux, one can use standard tools like sar, vmstat, iostat, top, etc., to look at
performance data. However, under virtualization, to measure number of interrupts
received by each guest VM, there is no easy way other than instrumenting the VMM.
The unstable version of Xen we have used for our characterization work has
Xenoprofile [2]a CPU performance profiling tool. The lack of java support in
Oprofile (and Xenoprofile) forced us to use Xen enabled Emon for gathering
performance counter information for SPECjbb. We could gather and calculate
metrics like CPI, MPI, Pathlength, DTLB and ITLB page walks events with the tools
mentioned above.

4 Performance of SPECjbb2005

In this section, we describe the raw performance of SPECjbb2005 when running
natively and inside VMs. As the single VM performance was not very interesting due
to only 2-3% degradation, we focused on VM scaling.

Native and VM scaling of SPECjbb2005

0%
20%
40%
60%

80%
100%
120%

2P / 1VM 2 instances /
2VM

3 instances /
3VM

4 instances /
4VM

Native Virtualized

Fig. 2. SPECjbb2005 Performance Scaling

SPECJBB Performance Metrics

0%
20%
40%
60%
80%

100%
120%
140%
160%

Native 2P 1VM2P 2VM 2P 3VM 2P 4VM 2P

CPI Pathlength Performance

Fig. 3. Architectural Characteristics

4.1 VM Scaling Performance

Figure 2 shows the performance impact when running multiple instances of the
benchmark natively and in multiple VMs each with 2 virtual cpus. All the
performance data (y-axis) is normalized to single benchmark instance running
natively. In each pair of bars, the first bar shows native performance and the second
bar shows performance in virtualized case. The drop in performance is much higher in
case of virtualization due to the higher overhead of context switches in a virtualized
environment.

As seen in Figure 3 the pathlength (instructions per java operation) has remained
constant across all the configurations while the CPI has increased by about 20% for
each additional benchmark instance we created. Figure 4 shows MPI (misses per

468 P. Apparao, R. Iyer, and D. Newell

instruction) numbers for trace, L2 and L3 caches and TLBs as well as flush statistics
for trace cache and TLBs. All the data is normalized to the single instance of the
benchmark running natively. The increase in trace cache and ITLB flushes indicate
increased context switch activity which affects performance. Figure 5 shows
breakdown of CPI into various components. From this we can say that L2 and L3
MPI increase has contributed most to the CPI increase. This increase in MPI suggests
that scheduling algorithms used by VMM may not be cache friendly.

SPECjbb2005 Scaling Performance Metrics

0%

50%

100%

150%

200%

250%

Native 2P 1VM 2P 2VM 2P 3VM 2P 4VM 2P

ITLBMPI ITLBPWPI ITLB Flushes
DTLBPWPI L2MPI TraceCache FlushesPI
TraceCacheMPI L3MPI CPI

Fig. 4. Micro-Architectural Characteristics

CPI Breakdown for SPECjbb2005

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Native 1VM 2VM 3VM 4VM
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

L2 MPI L3 MPI ITLB page walk cycles

DTLB Page walk cycles Store buffer stalls Measured CPI

Fig. 5. CPI Breakdown

4.2 Virtualization Overheads

The overheads of virtualization are due to context switches, interrupts and page faults,
which are enhanced from native Linux performance due to the extra layer of VMM
software. When running natively we saw every little overhead going from 1VM to
4VMs. We calculated the time spent in processing say a context switch, a local TLB
flush, interrupt processing and page fault handling using instrumentation of the source
code.

4.2.1 Context Switches
As can be seen in Figure 6 the context switches events/sec increase by 3000% from
1VM to 4VM and the cost of processing these increases to 600%. A context switch
will involve a local TLB flush and may on a smp machine involve a global iTLB
flush (flush of all TLBs). A secondary effect of a context switch is the pollution of the
cache by the switched out process. So when the process is rescheduled again it has to
load its cache again and hence experiences a number of L2 misses. In the case of our
workload we have seen an increase of 2x in the L2 MPI which contributes
significantly to the CPI. Similarly the instrumentation to count the number of local
TLB flushes shows an increase by about 2x going from 1VM to 4VMs with the
throughput per event going down by 3x. The iTLB flushes have a direct impact on
the performance because when the iTLB is flushed on a context switch, when the
process is brought back in it will experience a lot of iTLB misses for the next process
which may results in a page walk. The data presented earlier in Figure 4 shows that
the iTLB MPI increases by 1.5x, the L2 MPI increases by 2x and the iTLB page walk
stall cycles also increase by 2x. All these contribute to the CPI for the workload as
was shown earlier in Figure 5.

 Architectural Characterization of VM Scaling on an SMP Machine 469

Vitualization overhead events

0%

1000%

2000%

3000%

4000%

cs/sec tlb flushes page faults/sec interrupts/secE
v

e
n

ts
/s

e
c

n
o

rm
a

li
z
e

d
 t

o
 1

V
M

1VM 2VMs 3VMs 4VMs

Fig. 6. Overhead events

0%

100%

200%

300%

400%

500%

600%

700%

cy
cle

s/c
s

bo
ps

/cs

tlb
flu

sh
es

cy
cle

s/f
lu

sh

bo
ps

/flu
sh

int
err

up
ts/

se
c

cy
cle

s/i
nte

rru
pt

bo
ps

/in
ter

ru
pt

pa
ge

 fa
ult

s/s
ec

cy
cle

s/p
f

bo
ps

/pf

hy
pe

rca
lls

1vm_12

2vm_12

3vm_12

4vm_12

Fig. 7. Overheads events and their costs

5 VM Scheduling Policies

Since one of the interesting evolving usage models in enterprise computing is utility
or pay-per-use computing models (like Azul [[6],[7]]), an interesting study was to
find out how the different scheduling policies affect the performance of individual
VMs and what impact this has on the virtualization overheads.

Table 1. Virtualization overheads with scheduling parameters

Scheduling
parameters

Throughp
ut cs/sec

tlb
flushes/se
c

interrupts/
sec

page
faults/sec

default 100% 100% 100% 100% 100%
s21_21_21_37 129% 7% 113% 154% 105%
s20_20_20_40 140% 9% 114% 154% 99%
s19_19_19_43 132% 10% 91% 155% 101%

Table 1 shows the effect of the scheduling parameters on the virtualization
overheads. We notice that as we change the scheduling overheads the context switch
rate drops considerably. In the default case dom0 is given a time slice of 15ms out of
every 20ms and even though dom0 (cpu0) is not running the benchmark, it will be
scheduled and that actually impacts the performance. By lowering the time slice for
dom0 to 5 ms and adjusting the parameters we were able to drop the context switch rate.

Table 2. Scheduling and its effects on Context Switches

Throughp
ut cs/sec cycles/cs bops/cs

1vm_012 1.00 1.00 1.00 1.00
2vm_012 0.83 36.76 6.10 0.02
3vm_012 0.71 37.25 6.21 0.02
4vm_012 0.64 38.29 6.39 0.02
4VM (with selective
scheduling) 0.89 3.47 5.70 0.26

Another interesting data point that we observed was with default scheduling the
4VMs could achieve only 64% of the 1VM throughput. However adjusting the
scheduling parameters we could get the scaling to be much better (89%) of the 1VM

470 P. Apparao, R. Iyer, and D. Newell

throughput. This is directly related to the context switch overhead and as can be seen
from Table 2 with selective scheduling we could drop the context switch increase
from 39x to only 3x, and increasing the work done between context stitches to 26%
instead of only 2% (with default scheduling). We noticed that the cycles per context
switch did not decrease very significantly but the number itself decreases showing
that the VMs are very sensitive to scheduling parameters.

6 Inferences on VM Modeling Approach

Our experiments have given us insight into the various overhead involved with
virtualization and their costs and impacts on performance. With this, one can develop
a model to project the performance of a large number of VMs. For example, we start
with the known configuration and the performance in that configuration. We then
look at all the events that add overhead, such as context switches, interrupts, page
faults, and traps etc. We can compute the direct impact of these overheads by
measuring the instructions executed for these overheads, the indirect impact of these
overheads is the contribution to the CPI and Pathlength. As mentioned in earlier
sections, the overhead events contribute to the CPI and their costs can be almost
directly correlated to the CPI increase.

In order to estimate the pathlength behavior, we need to understand the additional
system events (such as context switches and page faults) that occur due to
virtualization. In order to estimate the CPI behavior, each of the architectural events
(like L2 MPI and TLB Misses) needs to be modeled. In this section, we provide a
summary of these two behaviors based on the individual components.

Table 3. Virtualization overheads

Throughp
ut cs/bop cycles/cs

flushes/b
op

cycles/flu
sh

interrutps
/bop

cycles/int
errupt pf/bop cycles/pf

1VM 15059 0.002951391 2097 0.001599 2645 0.003381 25074 0.230119 773
2VM 12517 0.309907326 7625 0.003099 2330 0.004063 26414 0.526396 560
3VM 10714 0.365448945 7779 0.004159 2202 0.004725 27108 0.895911 497
4VM 9600 0.419439583 8011 0.005278 2036 0.005253 28164 1.172152 455

As can be seen from Table 3 the context switches increases significantly from 1Vm
to 2VMs and then starts to stabilize and thus can be treated almost as a constant in our
model. The cycles/context switch increase slightly as we scale. We notice a similar
kind of behavior with page faults and in order to understand page faults in greater
depth for our model, we need to understand the instructions executed during a page
fault and how it would impact the pathlength and performance. SPECjbb2005 being a
compute intensive workload does not have many interrupts and the tlb flushes are also
within noise. In summary the context switches is the key parameter that is changing as
we scale the VMs.

If we fit the points to a curve, the equation turns out to be a linear one.

Equation: - y=0.0006x +0.0015

Such a characterization needs to be done for more cache sizes and configurations to
capture the entire parameter space and the effects of scaling VMs.

 Architectural Characterization of VM Scaling on an SMP Machine 471

Other parameters such as tlb misses, page walks, also can be characterized in a
similar fashion. Once all of the parameters are well understood, the CPI can be
estimated by using an equation similar to

System CPI = Core CPI + MPI*memory latency* Blocking factor + TLBmisses *
page walk latency * blocking factor

The blocking factor is the fraction of time that the processor/core is stalled waiting
for the resource unit and it is determined by experimental measurements and
simulations various platform characteristics such as bus frequency, core frequency
and core micro-architecture. The Core CPI is a function of architectural events that
actually cause a slow down, such as an iTLB miss, a dTLB miss, a store buffer stall, a
trace cache miss etc. Knowing the virtualization overheads and their costs, one can
calculate their contribution to the CPI.

In this paper, we only presented some examples of architectural characterization. A
more detailed investigation into this and the development of a full virtualization
model is underway.

Modeling the L2 MPI behavior

y = 0.0006x + 0.0015

R2 = 0.9844

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

0 1 2 3 4 5

Number of VMs

M
P

I

Fig. 8. Modeling of L2 MPI behavior

7 Summary and Future Work

In this paper we have presented our experiments with a compute intensive workload
namely SPECjbb2005 to understand its behavior in a virtualized environment. Our
experiments showed that the workload does not suffer from much performance
degradation while running virtualized. A significant degradation of 36% was seen as
we scale the VMs from 1 to 4. Of the various overheads in virtualization, this
workload is purely affected by the context switches. We instrumented Xen code to
count the number and the cost of context switches, the itlb flushes, page faults, and
interrupts to account for the loss in performance. We have shown that the context
switch overhead increases dramatically with only 4VMs. The indirect impact of these
overheads is the change in the architectural metrics like CPI the major contribuor of
which are L2 MPI and iTLB and dTLB MPI. We finally present an introduction to a
model whereby one can project the scaling of a workload for a large number of VMs.

In this paper we have the overheads introduced due to virtualization but we have not
been able to point this to the functionality in the VMM where these overheads are arising
due to the lack of java profiling tools.in a virtualized environment. In our future work we
want to experiment with more workloads that stress other virtualization techniques (e.g.
network and disk I/O).

472 P. Apparao, R. Iyer, and D. Newell

References

[1] Advanced Micro Devices. AMD64 Virtualization Codenamed "Pacifica" Technology,
Secure Virtual Machine Architecture Reference Manual, May 2005.

[2] A. Menon, J. R. Santos:, http://xenoprof.sourceforge.net/xenoprof_2.0.txt (Accessed June
2006).

[3] A. Menon, A. Cox, W. Zwaenepoel, Optimizing Network Virtualization in Xen, 2006
USENIX Annual Technical Conference.

[4] A. Menon et al. Diagnosing Performance: Overheads in the Xen Virtual Machine
Environment. In First ACM/USENIX Conference on Virtual Execution Environments
(VEE’05), June 2005.

[5] A Singh. An Introduction to Virtualization. http://www.kernelthread.com/publications/
virtualization (Accessed June 2006)

[6] Azul Virtual Machine Software, Azul Systems. http://www.azulsystems.com/products/
cpools_avm.ht

[7] Azul Compute Pools, Azul Systems. http://www.azulsystems.com/products/cpools.html
[8] B. Clark et al. Xen and the Art of Repeated Research. In proceedings of USENIX 2004

Annual Technical Conference, Boston, MA.
[9] D. Gupta et al. Enforcing Performance Isolation Across Virtual Machines in Xen.HP

Labs, Technical Report HPL-2006-77.
[10] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford. Xenoservers: Accountable

Execution of Untrusted Programs. In Workshop on Hot Topics in Operating systems,
1999.

[11] G. J. Popek, R. P. Goldberg, "Formal Requirements for Virtualizable Third Generation
Architectures," Comm. of the ACM, 17(7), pp. 412-421, July 1974.

[12] H. K. F. Bjerke. HPC Virtualization with Xen on Itanium. MSc Thesis. July, 2005.
[13] Intel Virtualization Technology Specification for the IA-32 Intel Architecture, April 2005
[14] J.E. Smith, and R. Nair. Virtual Machines: versatile platforms for systems and processes.

Morgan Kaufmann publishers. May 2005.
[15] J. F. Kloster, J. Kristensen and A. Mejlholm. Efficient Memory Sharing in the Xen

Virtual Machine Monitor. Technical Report. Department of Computer Science, Aalborg
University, Jan 2006.

[16] K. Duda and D. Cheriton, "Borrowed Virtual Time (BVT) Scheduling: Supporting
Lantency-sensitive Threads in a GeneralPurpose Scheduler," in Proceedings of the
Seventeenth ACM Symposium on Operating Systems Principles (SOSP'99), Kiawah
Island Resort, SC, December 1999, pp. 261--276.

[17] K. Lawton: Bochs: http://en.wikipedia.org/wiki/Bochs (Accessed June 2006).
[18] L. Cherkasova and R. Gardner. Measuring CPU Overhead for I/O Processing in the Xen

Virtual Machine Monitor. In Proceedings of the USENIX Annual Technical Conference,
April 2005.

[19] M. Rosemblum and T. Garfinkel. Virtual Machine Monitors: Current Technology and
Future trends. IEEE Computer, 38(5): 39-47, 2005.

[20] Oprofile. http://oprofile.sourceforge.net (Accessed June 2006).
[21] P Barham, B. Dragovic, K. Fraser, et al. “Xen and the Art of Virtualization.” SOSP 2003.
[22] P. Barham et al. Xen and the Art of Virtualization. In proceedings of the ACM

symposium on operating systems principles, Oct 2003.
[23] R. Sailer et al. Building a MAC-Based Security Architecture for the Xen Open-Source

hypervisor. ACSAC 2005 -21st Annual Computer Security Applications Conference,
ASCA, September 2005.

 Architectural Characterization of VM Scaling on an SMP Machine 473

[24] SpecJbb2005 Java Server Benchmark. SPEC. http://www.spec.org/jbb2005/
[25] TPC-C Online Transaction Processing BenchmarkTPC. http://www.tpc.org/tpcc/default.asp
[26] SWsoft Virtuozzo, “Top Ten Considerations for Choosing a Server Virtualization

Technology”.
[27] SWsoft Virtuozzo “An Introduction to OS Server Virtualization and a New Approach to

Server Consolidation.”

Paravirtualization for HPC Systems�

Lamia Youseff1, Rich Wolski1, Brent Gorda2, and Chandra Krintz1

1 Department of Computer Science
University of California, Santa Barbara

2 Lawrence Livermore National Lab (LLNL)

Abstract. In this work, we investigate the efficacy of using paravirtualizing soft-
ware for performance-critical HPC kernels and applications. We present a com-
prehensive performance evaluation of Xen, a low-overhead, Linux-based, virtual
machine monitor, for paravirtualization of HPC cluster systems at LLNL. We in-
vestigate subsystem and overall performance using a wide range of benchmarks
and applications. We employ statistically sound methods to compare the perfor-
mance of a paravirtualized kernel against three Linux operating systems: RedHat
Enterprise 4 for build versions 2.6.9 and 2.6.12 and the LLNL CHAOS kernel.
Our results indicate that Xen is very efficient and practical for HPC systems.

1 Introduction

Virtualization is a widely used technique in which a software layer multiplexes lower-
level resources among higher-level software programs and systems. Examples of vir-
tualization systems include a vast body of work in the area of operating systems [32,
31, 25, 30, 4, 16], high-level language virtual machines such as those for Java and .Net,
and, more recently, virtual machine monitors (VMMs). VMMs virtualize entire soft-
ware stacks including the operating system (OS) and application, via a software layer
between the hardware and the OS of the machine. VMM systems enable application
and full-system isolation (sand-boxing), OS-based migration, distributed load balanc-
ing, OS-level check-pointing and recovery, non-native (cross-system) application exe-
cution, and support for multiple or customized operating systems.

Virtualization historically has come at the cost of performance due to the additional
level of indirection and software abstraction necessary to achieve system isolation. Re-
cent advances in VMM technology however, address this issue with novel techniques
that reduce this overhead. One such technique is paravirtualization [1] which is the
process of strategically modifying a small segment of the interface that the VMM ex-
ports along with the OS that executes using it. Paravirtualization significantly simplifies
the process of virtualization (at the cost of perfect hardware compatibility) by eliminat-
ing special hardware features and instructions in the OS that are difficult to virtualize
efficiently. Paravirtualization systems thus, have the potential for improved scalability
and performance over prior VMM implementations. A large number of popular VMMs
employ paravirtualization in some form to reduce the overhead of virtualization includ-
ing Denali [1], IBM rHype [41], Xen [28, 40, 11], and VMWare [20, 33, 38]. More-
over, hardware vendors now employ new ways of enabling efficient virtualization in

� This work is sponsored in part by LLNL and NSF (CNS-0546737 and ST-HEC-0444412).

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 474–486, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Paravirtualization for HPC Systems 475

the next-generation processors [37, 29] which have the potential to further improve the
performance of VMM-based execution.

Despite the potential benefits, performance advances, and recent research indicating
its potential [22, 44, 15, 19], virtualization is currently not used in high-performance
computing (HPC) environments. One reason for this is the perception that the remaining
overhead that VMMs introduce is unacceptable for performance-critical applications
and systems. The goal of our work is to evaluate empirically and to quantify the degree
to which this perception is true for Linux and Xen.

Xen is an open-source VMM for the Linux OS which reports low-overhead and ef-
ficient execution of Linux [40]. Linux, itself, is the current operating system of choice
when building and deploying computational clusters composed of commodity compo-
nents. In this work, we study the performance impact of Xen using current HPC com-
modity hardware at Lawrence Livermore National Laboratory (LLNL). Xen is an ideal
candidate VMM for an HPC setting given its large-scale development efforts [28, 42]
and its availability, performance-focus, and evolution for a wide range of platforms.

We objectively compare the performance of benchmarks and applications using a
Xen-based Linux system against three Linux OS versions and configurations currently
in use for HPC application execution at LLNL and other super-computing sites. The
Linux versions include Red Hat Enterprise Linux 4 (RHEL4) for build versions 2.6.9
and 2.6.12 and the LLNL CHAOS kernel, a specialized version of RHEL4 version 2.6.9.

We collect performance data using micro- and macro-benchmarks from the HPC
Challenge, LLNL ASCI Purple, and NAS parallel benchmark suites among others, as
well as using a large-scale, HPC application for simulation of oceanographic and clima-
tologic phenomena. Using micro-benchmarks, we evaluate machine memory and disk
I/O performance while our experiments using the macro-benchmarks and HPC appli-
cations assess full system performance.

We find that Xen paravirtualization system, in general, does not introduce significant
overhead over other OS configurations that we study – including one specialized for the
HPC cluster we investigate. There is one case for which Xen overhead is significant:
random disk I/O. Curiously, in a small number of other cases, Xen improves subsys-
tem or full system performance over various other kernels due to its implementation
for efficient interaction between the guest and host OS. Overall, we find that Xen does
not impose an onerous performance penalty for a wide range of HPC program behav-
iors and applications. As a result we believe the flexibility and potential for enhanced
security that Xen offers makes it useful in a commodity HPC context.

2 Background and Motivation

Our investigation into the performance implications of coupling modern virtualization
technologies with high performance computing (HPC) systems stems from our goal
to improve the flexibility of large-scale HPC clusters at Lawrence Livermore National
Laboratory (LLNL). If virtualization does not impose a substantial performance degra-
dation, we believe it will be useful in supporting important system-level functionalities
such as automatic checkpoint/restart and load balancing.

For example, several researchers have explored OS and process migration, such as
Internet Suspend/Resume [21] and μDenali [39]. Recent studies on OS image

476 L. Youseff et al.

migration [17, 12] illustrate that migrating an entire OS instance with live interactive
services is achievable with very little down time (e.g. 60ms) using a VMM. To be ef-
fective in a production HPC environment, however, the operating system and language
systems must all be commonly available and standardized to ease the system adminis-
tration burden. Thus it is the virtualization of Linux (the basis for a large proportion of
cluster installations) that is of primary interest.

In addition, it is possible for one cluster to run different Linux images which aids
software maintenance (by providing an upgrade path that does not require a single OS
“upgrade” event) and allows both legacy codes and new functionality to co-exist. This is
important for legacy codes that execute using a particular version of the OS and/or ob-
solete language-level libraries that depend on a specific OS kernel release level. VMMs
also enable very fast OS installation (even more when coupled with effective check-
pointing), and thus, their use can result significant reductions in system down time for
reboot. Finally, VMMs offer the potential for facilitating the use of application-specific
and customized operating systems [22, 44, 15, 19].

Though many of the benefits of virtualization are well known, the perceived cost
of virtualization is not acceptable to the HPC community, where performance is criti-
cal. VMMs by design introduce an additional software layer, and thus an overhead, in
order to facilitate virtualization. This overhead however, has been the focus of much
optimization effort recently. In particular, extant, performance-aware, VMMs such as
Xen [28], employ paravirtualization to reduce virtualization overhead. Paravirtualiza-
tion is the process of simplifying the interface exported by the hardware in a way that
eliminates hardware features that are difficult to virtualize. Examples of such features
are sensitive instructions that perform differently depending on whether they are exe-
cuted in user or kernel mode but that do not trap when executed in user mode; such
instructions must be intercepted and interpreted by the virtualization layer, introducing
significant overhead. There are a small number of these instructions that the OS uses
that must be replaced to enable execution of the OS over the VMM. No application
code must be changed to execute using a paravirtualizing system such as Xen. A more
detailed overview of system-level virtual machines, sensitive instructions, and paravir-
tualization can be found in [34].

To investigate the performance implications of using paravirtualization for HPC sys-
tems, we have performed a rigorous empirical evaluation of HPC systems with and
without virtualization using a wide range of HPC benchmarks, kernels, and applica-
tions, using LLNL HPC hardware. Moreover, we compare VMM-based execution with
a number of non-VMM-based Linux systems, including CHAOS (a Linux distribution
and kernel based on Red Hat Enterprise Release 4) that is currently employed by, and
specialized for LLNL users and HPC clusters.

3 Methodology and Hardware Platform

Our experimental hardware platform consists of a four-node cluster of Intel Extended
Memory 64 Technology (EM64T) machines. Each node consists of four Intel Xeon
3.40 GHz processors, each with a 16KB L1 data cache and a 1024KB L2 cache. Each
node has 4GB of RAM and a 120 GB SCSI hard disk with DMA enabled. The nodes

Paravirtualization for HPC Systems 477

are interconnected with an Intel PRO/1000, 1Gigabit Ethernet network fabric using the
ch p4 interface with TCP/IP.

We perform our experiments by repeatedly executing the benchmarks and collecting
the performance data. We perform 50 runs per benchmark code per kernel and com-
pute the average across runs. We perform a t-test at the α ≥ 0.95 significance level
to compare the means of two sets of experiments (e.g. those from two different ker-
nels). The t-test tells us whether the difference between the observed means is statisti-
cally significant (see [23] and [8] for clear and readable treatments of the procedure we
employ).

3.1 HPC Linux Operating System Comparison

We empirically compare four different HPC Linux operating systems. The first two are
current releases of the RedHat Enterprise Linux 4 (RHEL4) system. We employ builds
v2.6.9 and v2.6.12 and refer to them, respectively, as RHEL2.6.9 and RHEL2.6.12.

We also evaluate the CHAOS kernel. CHAOS is the Clustered, High-Availability,
Operating System [13, 10] from LLNL. CHAOS is a Linux distribution based on
RHEL4 v2.6.9 that LLNL computer scientists have customized for the LLNL HPC clus-
ter hardware and for the specific needs of current users. In addition, CHAOS extends
the original distribution with new administrator tools, support for very large Linux clus-
ters, and HPC application development. Examples of these extensions include utilities
for cluster monitoring, system installation, power/console management, and parallel job
launch, among others. We employ the latest release of CHAOS as of this writing which
is v2.6.9-22; we refer to this system as CHAOS kernel in our results.

Our Xen-based Linux kernel (host OS) is RHEL4 v2.6.12 with a Xen 3.0.1 patch.
Above Xen, the guest kernel is a paravirtualized Linux RHEL4 v2.6.12, which we con-
figure with 4 virtual CPUs and 2GB of virtual memory. We refer to this overall con-
figuration as Xen in our results. Xen v3 is not available for Linux v2.6.9, the latest
version for which the CHAOS extensions are available. We thus, include both v2.6.9
and v2.6.12 (non-CHAOS and non-XEN) in our study to identify and isolate any per-
formance differences between these versions.

Table 1. Benchmark Overview

Benchmark Category Code Name What it measures

M
ic

ro Memory Stream Mem read/write rate (MB/s)
Disk I/O Bonnie Seq & Rand disk I/O (MB/s)

M
ac

ro Parallel Benchmarks

NAS Parallel Benchmark; class C Total time (s) and
Multigrid (MG) in: 5123 millions of operations
LU Solver (LU) in: 1623 per second (Mops)
Integer Sort (IS) in: 227

Embarrassingly parallel (EP) in: 232

Conjugate gradient (CG) in: 150000

A
pp Scientific Simulations MIT GCM exp2 Total time (s)

478 L. Youseff et al.

3.2 Benchmarks

We overview the benchmarks that we use in this empirical investigation in Table 1. The
benchmarks set consists of micro-benchmarks, macro-benchmarks, and real HPC appli-
cations. We employ the same benchmark binaries for all operating system configurations.

Our micro-benchmark set includes programs from the HPC Challenge [24] and
LLNL ASCI Purple Benchmark suite [3]. The programs are specifically designed to
evaluate distinct performance characteristics of machine subsystems. In this work, we
focus on memory and disk I/O benchmarks since the other macro-benchmarks and
codes we use for evaluation test other performance characteristics more directly.

We use the HPCC/LLNL ASCI Purple benchmark Stream [36] to evaluate memory
access performance. Stream reports the sustainable memory bandwidth in MB/s for four
different memory operations: Copy (read/write of a large array), and three operations
(Scale, Sum, and Triad) that combine computation with memory access to measure the
corresponding computational rate for simple vector operations.

For evaluation of disk performance, we employ Bonnie [9]. Bonnie is a disk stress-
test that uses popular UNIX file system operations. Bonnie measures the system I/O
throughput for six different patterns of reads, writes, and seeks. We employ three dif-
ferent file sizes: 100MB, 500MB and 1GB for our experiments to eliminate any cache
impact on measured performance.

To evaluate the full system and computational performance, we employ several pop-
ular macro-benchmarks from the NAS Parallel benchmark suite [6, 5]. The former set is
from the NASA Advanced Supercomputing (NAS) facility at the NASA Ames Research
Center. The suite evaluates the efficiency of highly parallel HPC computing systems in
handling critical operations that are part of simulation of the future space missions. The
benchmarks mimic the computational, communication, and data movement character-
istics of large-scale, computational fluid dynamics (CFD) applications.

We also include an HPC application in our study, the General Circulation Model
(GCM) from the Massachusetts Institute of Technology (MIT). GCM is a popular
numerical model used by application scientists to study oceanographic and climato-
logic phenomena. GCM simulates ocean and wind currents and their circulation in the
earth’s atmosphere thousands of years in advance. A widely used implementation of
GCM is made available by MIT Climate Modeling Initiative (CMI) team [27]. Re-
searchers commonly integrate this implementation into oceanographic simulations. The
MIT CMI team supports a publicly available version [2, 26], which we employ and re-
fer to in this paper as MIT GCM. The MIT GCM package has been carefully optimized
by its developers to ensure low overhead and high resource utilization.

The package includes a number of inputs. We use the sequential version of exp2 for
this study. Exp2 simulates the planetary ocean circulation at a 4 degree resolution. The
simulation uses twenty layers on the vertical grid, ranging in thickness between 50m at
the surface to 815m at depth. We configure the experiment to simulate 1 year of ocean
circulation at a one-second resolution.

4 Micro-benchmarks
In this section, we evaluate the impact of Xen on specific subsystems of our cluster
system. We consider memory and disk I/O subsystems.

Paravirtualization for HPC Systems 479

4.1 Memory Access Performance

Sustainable memory bandwidth is another important performance aspect for HPC sys-
tems, since long cache miss handling can hinder the computational power attainable by
any machine. To study the impact of paravirtualization on sustainable memory band-
width, we use Stream [36], which we configure with the default array size of 2 million
elements.

0

500

1000

1500

2000

2500

3000

Add Copy Scale Triad

R
at

e
in

 M
b

/s

CHAOS kernel
Xen Kernel
RHEL 2.6.9
RHEL 2.6.12

Fig. 1. Stream memory performance (Mb/s)

Figure 1 shows the results. CHAOS
attains the highest memory band-
width for all stream operations. This
is the result of CHAOS optimiza-
tions by LLNL computer scientists
for memory-intensive workloads. Sur-
prisingly, Xen attains consistently
higher memory bandwidth by approx-
imately 1-2% for every operation over
RHEL2.6.12. The t-value for the dif-
ference ranges between 12-14, indi-
cating that the differences between
Xen and RHEL2.6.12 measurements
is statistically significant.

Since Xen uses asynchronous I/O rings for data transfers between the guest OS and
the host OS, it is able to reorder requests and amortize each for better memory perfor-
mance. The Xen I/O ring algorithm was wise enough to arrange the requests produces
by domU on behalf of the stream code, and exploited their sequential nature to gain
performance and memory bandwidth. On the other hand, these gains are less apparent
between the Xen and RHEL2.6.9 configurations.

4.2 Disk I/O Performance

Disk performance of virtualized systems is also a concern for applications that perform
significant disk I/O such as those for scientific database applications. To measure this
performance, we use the Bonnie I/O benchmark. For the Xen kernel, we configure an
LVM-backed virtual block device (VBD).

Bonnie reads and writes sequential character input and output in 1K blocks using the
standard C library calls putc(), getc(), read(), and write(). For the Bonnie
rewrite test, Bonnie reads, dirties, and writes back each block after performing an
lseek(). The Bonnie random I/O test performs an lseek() to random locations in
the file, then then read() to reads a block from that location. For these events, Bonnie
rewrites 10% of the blocks.

Figure 2 shows the performance of Bonnie for the four kernels relative to the perfor-
mance of CHAOS. The x-axis is the performance of the different disk I/O metrics, for
different file sizes (y-axis). The first three bars in each group show the performance of
the sequential output tests; the next two bars are for the sequential input test; the sixth
bar is for the random test; and the last bar is total time.

Xen has a higher per-character output, per-block output, and rewrite rate for all file
sizes relative to CHAOS. Xen performance is slower for sequential output rewrite for

480 L. Youseff et al.

0

1

2

3

4

5
C

H
A

O
S

/ 1
00

M
B

Xe
n

/ 1
00

M
B

R
H

EL
2.

6.
9

/ 1
00

M
B

R
H

EL
2.

6.
12

/ 1
00

M
B

C
H

A
O

S
/ 5

00
M

B

Xe
n

/ 5
00

M
B

R
H

EL
2.

6.
9

/ 5
00

M
B

R
H

EL
2.

6.
12

/ 5
00

M
B

C
H

A
O

S
/ 1

G
B

Xe
n

/ 1
G

B
R

H
EL

2.
6.

9
/ 1

G
B

R
H

EL
2.

6.
12

/ 1
G

B

K
er

n
el

 P
er

fo
rm

an
ce

 a
s

a
fr

ac
ti

o
n

o

f
C

H
A

O
S

 p
er

fo
rm

an
ce

Sequentional output Per_Char
Sequentional output Per_Block
Sequentional output Rewrite
Sequentional input Per_Char
Sequentional Input Per_Block
Random Seeks
Real-Time

100MB file

500MB file

1GB file

12.3 11.7

Fig. 2. Bonnie Disk I/O bandwidth rate and real-time relative to CHAOS performance

the 1GB file. CHAOS has not been optimized for disk I/O. The 1GB sequential output
rewrite performance using Xen is the result of Xen’s disk scheduling algorithm. As
described previously, Xen used an I/O descriptor ring for each guest domain, to reduce
the overhead of domain crossing upon each request. Each domain posts its request in
the descriptor ring; the host OS consumes them as they are produced. This results in
producer-consumer problem that the authors of Xen describe in [28]. The improvements
from Xen I/O are the result of reordering of I/O requests by the host OS to enable
highly efficient disk access. In the case of sequential output for 1GB files, the requests
are very large in number and randomly generated across the file. This prevents Xen
from making efficient use of the I/O rings and optimizing requests effectively. This
effect is also apparent and significant in the results from the random seek tests. These
results indicate that if random seeks to large files is a key operation in a particular HPC
application, the Xen I/O implementation should be changed and specialized for this
case. This scenario is fortunately not common in HPC applications.

The sequential character performance is not significantly different across kernels.
However, for sequential input per block, Xen disk I/O speed lags behind the other three
kernels by about 11-17%. This performance degradation is caused by Xen’s implemen-
tation of I/O buffer rings. The default size of the buffer rings fail to optimize block
input performance. However, tuning the I/O buffer rings in Xen Dom0 can improve on
the performance for such workloads.

5 Macro-benchmarks

Paravirtualization offers many opportunities to HPC applications and software sys-
tems, e.g., full system customization, check-pointing and migration, etc. As such, it is

Paravirtualization for HPC Systems 481

0.8

0.9

1

1.1

1.2

EP IS MG LU CG EP IS MG LU CG

P
er

fo
rm

an
ce

 in
 t

im
e

an
d

 t
o

ta
l M

o
p

s
re

la
ti

ve
 t

o
 C

H
A

O
S

 k
er

n
el

CHAOS kernel
Xen kernel
RHEL269 kernel
RHEL2612 kernel

Total Time Total Mops

37
.2

9

1.
59

37
.7

5

37
.1

3

64
.2

1

1.
30

1.
283.
34

12
8.

34

12
7.

77

12
7.

74

12
7.

24

0

20

40

60

80

100

120

140

CHAOS Kernel Xen Kernel RHEL2.6.9 Kernel RHEL2.6.12 Kernel

T
im

e
in

 s
ec

o
n

d
s

User Time

System Time

Real time

(a) (b)

Fig. 3. Xen performance for NAS Benchmark and GCM Application. (a) shows the NAS Parallel
Benchmark performance relative to CHAOS. The left half (first benchmark set) is for total time
(lower is better); the right half is for Mops (higher is better). (b) is the MIT GCM performance in
seconds (lower is better).

important to understand the performance implications that such systems impose for a
wide range of programs and applications. We do so in this section for the popular NAS
parallel benchmarks and the MIT GCM oceanographic and climatologic simulation sys-
tem. This set of experiments shows the impact of using Xen for programs that exercise
the complete machine (subsystems in an ensemble).

5.1 NAS Parallel Benchmarks (NPB)

For the first set of experiments we employ the NAS parallel benchmarks (NPB) as we
describe in Section 3. The benchmarks mimic the computational, communicational and
data movement characteristics of large scale computational fluid dynamics applications.

Figure 3 (a) shows the performance of the NPB codes(x-axis) for our different ker-
nels relative to CHAOS (y-axis). EP, IS and MG are the Embarrassingly Parallel, Integer
Sort, and Multi grid codes respectively, while LU is the Linear solver code and CG is
the Conjugate gradient code. For all of the codes, we choose to run class C benchmark
sizes to better asses the different performance implications of virtualization. We present
two different metrics for each of the five benchmarks. The left five sets of bars reflect
total execution time. The right five are for the total millions of operations per second
(Mops) the benchmarks achieve.

All of the kernels perform similarly for EP, IS, and MG. The differences between the
bars, though visually different in some cases, are not statistically significant when we
compare them using the t-test with 95% confidence. This is interesting since the bench-
marks are very different in terms of their behavior: EP performs distributed computation
with little communication overhead, IS performs a significant amount of communica-
tion using collective operations, and MG employs a large number of blocking send
operations. In all cases, paravirtualization imposes no statistically significant overhead.

LU decomposition shows a performance degradation of approximately 5% for
RHEL2.6.12 for both total time and Mops. The reason for this is due to overhead this
kernel places on computation. CHAOS optimizes this overhead away and RHEL2.6.9

482 L. Youseff et al.

makes up for this loss due to its low overhead on MPI-based network latency, which we
studied in details in [43]. Xen implements a different CPU scheduling policy: a very
efficient implementation of the borrowed virtual time (BVT) scheduler [14]. BVT and
the overhead of scheduling in general positively impacts the Mflops rate of Xen-based
sequential linear solvers. However, Xen network performance places a subtle perfor-
mance penalty on MPI-based LU code performance. A combination of the scheduling
policy and network performance enabled by Xen enables the Xen system to avoid the
overhead which was endured by RHEL2.6.12. Xen’s computational and communica-
tions performance was studied in more details in [43].

The Conjugate Gradient (CG) code computes an approximation to the smallest eigen-
value of a large sparse matrix. It combines unstructured matrix system vector multipli-
cation with irregular MPI communications. CG executes slower using CHAOS than
using the other kernels by about 5%. The statistical difference however was not signifi-
cant, which may mean that the differences was introduced due to noise in the readings.
We support this claim using the standard deviation of the 50 measurements that we col-
lected using this kernel: This value is 31 for an average measurement of 607s, in terms
of Mops this value is 12 for an average of 237s. In summary, Xen performs consistently
comparable to CHAOS and the two RHEL kernels and delivers performance similar to
that of natively executed parallel applications.

5.2 MIT GCM

To evaluate the use of virtualization for real HPC applications, we employ the MIT
General Circulation Model (GCM) implementation. MIT GCM is a simulation model
for oceanographic and climatologic phenomena. The execution of the MIT GCM us-
ing the exp2 input, involves reading several input files at the beginning of the run
for initialization, processing a computationally intensive simulation, check-pointing the
processed data to files periodically, and outputting the final results to several other files.
The total amount of data that is read and written by the system during each run is ap-
proximately 33MB. The individual writes are on the order of 200B per call to write()
and the total size of each file is approximately 1MB.

We use the Linux time utility to measure the performance of MIT GCM which re-
ports the time spent executing user code (User Time), the time spent executing system
code (System Time), and the total time (Real Time). We present the results in Figure 3
(b). The y-axis is the time in seconds for the kernels shown on the x-axis.

From the experiments, we found Xen execution time of MIT GCM to be slightly
faster than that for CHAOS. The difference however, is not statistically significant
given a 95% confidence level. Similarly, the difference in performance between Xen
and RHEL kernels is negligible.

Our experience with the system indicates that the difference between Xen and
CHAOS is primarily due to the disk I/O activity. We also observe that Xen User Time
and CPU usage is consistently and uniformly different from that of the other kernels.
This is due to the way Xen computes user and system time in the Linux time utility in
error. This is a Xen implementation bug that will be fixed in the next version of Xen.

These results are extremely promising, despite the time utility bug. They show that
Xen achieves performance equal to that of the RHEL kernels and slightly better than

Paravirtualization for HPC Systems 483

that of CHAOS. In addition, our results from the prior section on disk I/O indicate that
Xen is able to mask I/O overhead for common disk activities. Our results show, that
Xen can satisfy the performance requirements of real HPC applications such as GCM.
We plan to investigate how other applications behave over Xen as part of future work.

6 Related Research

The work related to that which we pursue in this paper, includes performance stud-
ies of virtualization-based systems. We investigate a wide range of metrics for HPC
benchmarks, applications, and systems. We consider both subsystem performance for a
number of important HPC components as well as full-system performance when using
paravirtualizing systems for HPC cluster resources (IA64, SMP machines).

Other work investigates the performance of Xen and other similar technologies in a
non-HPC setting [28, 11]. This research shows the efficacy and low overhead of par-
avirtualizing systems. The benchmarks that both papers employ are general-purpose
operating systems benchmarks. The systems that the authors evaluate are IA32 and
stand-alone machines with a single processor. Furthermore, those papers investigate the
performance of the first release of Xen, which has changed significantly. We employ the
latest version of Xen (v3.0.1) that includes a wide range of optimization and features
not present in the earlier versions, as well as running on SMP machines.

Other work investigates the performance of Xen for clusters as part of an unpub-
lished class project [18]. Researchers have also explored the impact of Xen on network
communication [7, 35], the latter provides a minimal evaluation of Xen for an IA64
cluster. The authors of [35] investigate different network switch fabric on Linux clus-
ters including Fast Ethernet, Gigabit Ethernet, and different Myrinet technologies. More
recent studies evaluate other features of Xen such as the performance overhead of live
migration of a guest OS [12]. They show that live migration can be done with no per-
formance cost, and with down times as low as 60 mseconds. These systems do not
rigorously investigate the performance overheads of doing so in an HPC setting.

7 Conclusions and Future Work

Paravirtualizing systems such as Xen, expose opportunities for improved maintenance
and customization for HPC systems. In this paper, we evaluate the overhead of using
Xen in an HPC environment. We compare three different Linux configurations against
a Xen-based kernel. The three non-Xen kernels are those currently in use at LLNL for
HPC clusters: RedHat Enterprise 4 (RHEL4) for build versions 2.6.9 and 2.6.12 and the
LLNL CHAOS kernel, a specialized version of RHEL4 version 2.6.9. We perform ex-
periments using micro- and macro-benchmarks from the HPC Challenge, LLNL ASCI
Purple, and NAS parallel benchmark suites among others, as well as using a large-scale,
HPC application for simulation of oceanographic and climatologic phenomena. As a
result, we are able to rigorously evaluate the performance of Xen-based HPC systems
relative to non-virtualized system for subsystems independently and in ensemble.

Our results indicate that, in general, the Xen paravirtualizing system poses no sta-
tistically significant overhead over other OS configurations currently in use at LLNL

484 L. Youseff et al.

for HPC clusters – even one that is specialized for HPC clusters – in all but two in-
stances. We find that this is the case for programs that exercise specific subsystems, a
complete machine, or combined cluster resources. In the instances where a performance
difference is measurable, we detail how Xen either introduces overhead or somewhat
counter-intuitively produces superior performance over the other kernels.

As part of future work, we will empirically evaluate the Linux v2.6.12 CHAOS ker-
nel as well as Infiniband network connectivity. In addition, we are currently investi-
gating a number of research directions that make use of Xen-based HPC systems. In
particular, we are investigating techniques for high-performance check-pointing and
migration of full systems to facilitate load balancing, to isolate hardware error man-
agement, and to reduce down time for LLNL HPC clusters. We are also investigating
techniques for automatic static and dynamic specialization of OS images in a way that
is application-specific [22, 44].

References

[1] A. Whitaker and M. Shaw and S. Gribble. Scale and Performance in the Denali Isolation
Kernel. In Symposium on Operating Systems Design and Implementation (OSDI), 2002.
"http://denali.cs.washington.edu/”.

[2] A. Adcroft, J. Campin, P. Heimbach, C. Hill, and J. Marshall. MIT-GCM User Manual.
Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 2002.

[3] LLNL ASC Purple Benchmark Suite. "http://www.llnl.gov/asci/purple/benchmarks/”.
[4] J. D. Bagley, E. R. Floto, S. C. Hsieh, and V. Watson. Sharing data and services in a virtual

machine system. In SOSP ’75: Proceedings of the fifth ACM symposium on Operating
systems principles, pages 82–88, New York, NY, USA, 1975. ACM Press.

[5] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The nas
parallel benchmarks 2.0. The International Journal of Supercomputer Applications, 1995.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga. The nas parallel benchmarks. The International Journal of
Supercomputer Applications, 5(3):63–73, Fall 1991.

[7] H. Bjerke. HPC Virtualization with Xen on Itanium. Master’s thesis, Norwegian University
of Science and Technology (NTNU), July 2005.

[8] BMJ Publishing Group: Statistics at Square One: The t Tests, 2006.
"http://bmj.bmjjournals.com/collections/statsbk/7.shtml”.

[9] Bonnie Disk I/O Benchmark. "http://www.textuality.com/bonnie/”.
[10] R. Braby, J. Garlick, and R. Goldstone. Achieving Order through CHAOS: the LLNL HPC

Linux Cluster Experience, June 2003.
[11] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. N. Matthews.

Xen and the art of repeated research. In USENIX Annual Technical Conference, FREENIX
Track, pages 135–144, 2004.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.
Live Migration of Virtual Machines. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’05), Boston, MA, USA, May 2005.

[13] Clustered High Availability Operating System (CHAOS) Overview.
"http://www.llnl.gov/linux/chaos/”.

[14] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose schedular. In Symposium on Operating Sys-
tems Principles, pages 261–276, 1999.

Paravirtualization for HPC Systems 485

[15] Eric Van Hensbergen. The Effect of Virtualization on OS Interference. In Workshop
on Operating System Interference in High Performance Applications, held in cooperation
with The Fourteenth International Conference on Parallel Architectures and Compilation
Techniques: PACT05 , Septmber 2005. "http://research.ihost.com/osihpa/”.

[16] S. W. Galley. PDP-10 virtual machines. In Proceedings of the workshop on virtual com-
puter systems, pages 30–34, New York, NY, USA, 1973. ACM Press.

[17] J. Hansen and E. Jul”. Self-migration of Operating Systems. In ACM SIGOPS European
Workshop (EW 2004), pages ”126–130”, ”2004”.

[18] H.Bjerke and R.Andresen. Virtualization in clusters, 2004.
"http://haavard.dyndns.org/virtualization/clust virt.pdf”.

[19] E. V. Hensbergen. PROSE : Partitioned Reliable Operating System Environment. In IBM
Research Technical Report RC23694, 2005.

[20] J. Sugerman and G. Venkitachalam and B. Lim. Virtualizing I/O devices on VMware
workstations hosted virtual machine monitor. In USENIX Annual Technical Conference,
2001.

[21] M. Kozuch and M. Satyanarayanan. Internet suspend/resume. In WMCSA ’02: Proceedings
of the Fourth IEEE Workshop on Mobile Computing Systems and Applications, page 40,
Washington, DC, USA, 2002. IEEE Computer Society.

[22] C. Krintz and R. Wolski. Using phase behavior in scientific application to guide linux
operating system customization. In Workshop on Next Generation Software at IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), April 2005.

[23] R. J. Larsen and M. L. Marx. An Introduction to Mathematical Statistics and Its Applica-
tions. Prentice Hall, Third Edition, 2001.

[24] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J. McCalpin,
D. Bailey, and D. Takahashi. Introduction to the hpc challenge benchmark suite, March
2005. ”http://icl.cs.utk.edu/projectsfiles/hpcc/pubs/hpcc-challenge-benchmark05.pdf”.

[25] S. E. Madnick and J. J. Donovan. Application and analysis of the virtual machine approach
to information system security and isolation. In Proceedings of the workshop on virtual
computer systems, pages 210–224, New York, NY, USA, 1973. ACM Press.

[26] J. Marotzke and R. G. et al. Construction of the adjoint MIT ocean general circulation
model and application to Atlantic heat transport sensitivity. Journal of Geophysical Re-
search, 104(C12), 1999.

[27] MIT’s Climate Modeling Initiative. "http://paoc.mit.edu/cmi/”.
[28] P. Barham and B. Dragovic and K. Fraser and S. Hand and T. Harris and A. Ho and R.

Neugebauer. Virtual machine monitors: Xen and the art of virtualization. In Symposium on
Operating System Principles, 2003. "http://www.cl.cam.ac.uk/Research/SRG/netos/xen/”.

[29] AMD Virtualization Codenamed ”Pacifica” Technology, Secure Virtual Machine Architec-
ture Reference Manual, May 2005.

[30] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421, 1974.

[31] G. J. Popek and C. S. Kline. The PDP-11 virtual machine architecture: A case study. In
SOSP ’75: Proceedings of the fifth ACM symposium on Operating systems principles, pages
97–105, New York, NY, USA, 1975. ACM Press.

[32] R.A. Meyer and L.H. Seawright. A Virtual Machine Time Sharing System. In IBM Systems
Journal, pages 199–218, 1970.

[33] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current technology and future
trends. Computer, 38(5):39–47, 2005.

[34] J. E. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and Processes.
Morgan Kaufmann/Elsevier, 2005.

486 L. Youseff et al.

[35] P. J. Sokolowski and D. Grosu. Performance considerations for network switch fabrics on
linux clusters. In Proceedings of the 16th IASTED International Conference on Parallel
and Distributed Computing and Systems, November 2004.

[36] The memory stress benchmark codes: stream. "http://www.llnl.gov/asci/
purple/benchmarks/limited/memory/".

[37] Enhanced Virtualization on Intel Architecture-based Servers, March 2005.
[38] C. A. Waldspurger. Memory resource management in vmware esx server. SIGOPS Oper.

Syst. Rev., 36(SI):181–194, 2002.
[39] A. Whitaker, R. Cox, M. Shaw, and S. Gribble. Constructing services with interposable

virtual hardware, 2004.
[40] Xen Virtual Machine Monitor Performance. "http://www.cl.cam.ac.uk/

Research/SRG/netos/xen/performance.html".
[41] J. Xenidis. rHype: IBM Research Hypervisor. In IBM Research, March 2005.

"http://www.research.ibm.com/hypervisor/”.
[42] XenSource. "http://www.xensource.com/”.
[43] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. Paravirtualization for HPC Systems. Tech-

nical Report Technical Report Numer 2006-10, Computer Science Department University
of California, Santa Barbara, Aug. 2006.

[44] L. Youseff, R. Wolski, and C. Krintz. Linux kernel specialization for scientific application
performance. Technical Report UCSB Technical Report 2005-29, Univ. of California, Santa
Barbara, Nov 2005.

Xen-OSCAR for Cluster Virtualization

Geoffroy Vallée and Stephen L. Scott�

Oak Ridge National Laboratory, Oak Ridge, TN, USA
{valleegr, scottsl}@ornl.gov

Abstract. New virtualization solutions such as Xen allow users to ex-
ecute hundreds of virtual machines on a single physical machine. The
interest of these solutions have been proven for system isolation and se-
curity features, especially for Internet Service Providers (ISPs), as well
as for high performance computing.

A natural question is to know if it is possible to use all these virtual
machines at the same time, creating a virtual cluster. This might be
an interesting solution for the development and the experimentation of
cluster applications.

This document presents an extension of OSCAR for the deployment
and the management of Xen virtual machines. We also analyze in this
paper the interest of virtualization for the development, the testing and
the experimentation of applications for clusters, in particular with the
use of a fully virtualized cluster.

Keywords: para-virtualization, Xen, virtual cluster, OSCAR, system
software management.

1 Introduction

Machine virtualization is an important topic today and seems to be a suitable
solution for resource sharing providing to users a full virtual machine (VM) that
can not corrupt the physical machine. The Xen Virtual Machine Monitor [4,13]
provides such a secure and full-featured virtualization solution.

At the same time, Linux clusters are widely adopted as supercomputing in-
frastructure facilities. So a natural question is then to know if it is possible to use
several virtual machines in order to create a “virtual cluster”; a virtual cluster
being a cluster composed of both physical systems and virtual machines, just
virtual machines (on a single or several physical machine), or a mix of physical
and virtual machines. Previous studies have proven that the use of solution like
Xen is suitable for high performance computing [8]. Of course, depending on the
configuration of the virtual environment, a virtual cluster can not be as efficient
as a real cluster because resources are shared by the VMs (concurrent access to
physical resources). However virtual clusters may be interesting as development,

� ORNL’s work was supported by the U.S. Department of Energy, under Contract
DE-AC05-00OR22725.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 487–498, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

488 G. Vallée and S.L. Scott

testing and experimentation platform, even if today, no solution for system man-
agement of such environment is available, with a full set of features traditionally
provided by system management software [7].

This paper presents an extension of OSCAR, system management tool for
clusters, for the deployment and the management of Xen virtual machines. More
precisely, this study of cluster virtualization using Xen aims to identify impact of
such a solution for the development, testing and experimentation of cluster soft-
ware. We look at virtualization as an “end-to-end” solution, from the deployment
of the virtual cluster to the execution of parallel applications.

The remainder of this paper is organized as follows: Section 2 presents the
terminology used in this document. Section 3 presentsXen-OSCAR , a tool for
the deployement and management of a virtual cluster based on Xen VMs within
a cluster. Section 4 concludes.

2 Terminology

The execution of a virtual machine (VM) implies that one or several virtual
systems are running concurrently on top of the same hardware, each having
its own view of available resources. The operating system (OS) of the VMs
is called guest OS. VMs are running concurrently on top of the hardware. A
Hypervisor manages this concurrent execution and does the mapping between
the resource vision of the VMs and the real hardware. The Hypervisor is typically
a small system running on side of the VMs therefore does not include drivers and
specific mechanisms to access the physical hardware. Therefore, the Hypervisor
is coupled to a traditional OS, called host OS.

Using virtual machines, it is possible to create a virtual cluster ; cluster com-
posed of virtual machines (it may also be composed of standard physical sys-
tems). If the cluster is only composed of virtual machines and on a single host
OS, the cluster is called fully virtualized cluster.

3 Cluster Virtualization

The Hypervisor mechanism allows users to create multiple virtual machines on
a single physical machine. These virtual machines can communicate together
through the network: a virtual NIC is created by default on the host OS to
communicate with the virtual machine; Xen also automatically creates a bridge
on the host OS between all virtual NICs and the local system, allowing virtual
machines to be on the same network as the host OS. Therefore, the use of virtual
machines for the virtualization of compute nodes within a cluster is possible; us-
ing multiple virtual machines on multiple physical machines, or multiple virtual
machines on a single physical machine, depending on the nature of the use (e.g.
development or production).

Nevertheless, solutions like Xen were orginally intended for the virtualization
of single machines and were not intended to provide a solution for virtual clus-
tering. To have a complete solution for virtual clustering, several issues have to

Xen-OSCAR for Cluster Virtualization 489

be addressed: (i) is it possible to use traditional solutions for system software
management of clusters? (ii) is it possible to use traditional tools for the devel-
opment and the profiling of applications? (iii) what is the virtualization impact
on the execution of parallel applications traditionally executed on clusters?

Today, several tools (software suites) are available for the installation and
management of clusters, like OSCAR [3,5] or Rocks [11,12]. The main goal of
these projects is to ease the installation and the management of clusters by
installing and managing the system, middleware, runtime and applications across
the cluster.

These tools allow users to create and manage a Beowulf cluster without partic-
ular expertise in system and cluster management. For instance, OSCAR creates
images on the head node and then deploys this image on all compute nodes.

Because of our famillarity with OSCAR, we are members of the core devel-
opement team, OSCAR has been selected as the clustering suite for this study.
We also selected OSCAR because it allows users to define multiple images for
compute nodes that may be based on different Linux distributions or providing
a different software stack (e.g. MPI vs. PVM), enabling system customization
(customization benefits are describe in Section 3.2).

3.1 OSCAR Overview

OSCAR allows one to install a cluster in 8 steps. During the first step, the
user can choose software components (e.g. PVM , MPI) to be installed on
the cluster. The second step configures these software components. The third
step installs OSCAR packages [2] on the headnode, installing tools to create and
deploy images for compute nodes. Software components on the headnode such as
runtime and daemons are also installed on the headnode. The fourth step creates
a image for compute nodes. The fifth step allows users to define the compute
nodes, i.e., the number of compute nodes and their IP addresses. The sixth step
allows users to assign a MAC address to an IP address for each compute nodes.
The DHCP server is also setup. Then compute nodes can be network booted.
During the boot process, the compute nodes contact the headnode which assigns
an IP address and then transfers the image. The seventh step configures the
cluster (some software components need a specific action after the installation
of the software itself, i.e. perform a post-installation action). Finally, the eighth
step tests the cluster.

The creation and the deployment of images for the compute nodes is currently
based on System Installation Suite (SIS) [15]. SIS is based on three components:
(i) System Imager, (ii) System Installer and (iii) System Configurator. As de-
scribed in the above OSCAR steps, first an image for compute nodes is cre-
ated on the headnode (using System Imager) after which, it is possible to boot
the compute nodes and to initiate the installation. Compute nodes are network
booted. The headnode is contacted and based on the MAC address of the com-
pute node, an IP address and an image are assigned. The image is transfered
from the headnode to the compute node with the rsync command (via System In-
staller). When the image is copied on the compute node, System Configurator can

490 G. Vallée and S.L. Scott

perform any last updates on the system to finish the node configuration (e.g.
setup the boot loader). It is then possible to reboot the compute node as the
system has been installed.

OSCAR currently supports Red Hat Entreprise Linux, Fedora Core, Man-
driva, Suse, and provides an experimental version for Debian. It also provides a
large set of software components, for instance PVM, MPICH, LAM-MPI, Open-
MPI, Ganglia, Torque, or SGE.

3.2 Xen-OSCAR: Tool for Cluster Virtualization

Xen-OSCAR is an extension of OSCAR allowing the use of Xen virtual machines
on a single machine or on remote machines. For that, it is necessary to be able
to deploy and manage host OS as well as the system of virtual machines.

Therefore Xen-OSCAR is composed of two components: (i) an OSCAR pack-
age for the creation of an image for the deployment of the host OS on remote
machines, and (ii) a network abstraction layer that gives the illusion that vir-
tual machines are standard physical computing resources (it is then possible to
fully benefit from existing OSCAR features including mature project for system
management).

Xen-OSCAR has been developed to allow users to setup a virtual Beowulf clus-
ter which may be composed of a mix of physical machines and virtual machines,
since a network abstraction (composed of the default bridging mechanisms pro-
vided by Xen and our network boot emulation) hides the virtual nature of Xen
virtual machines without impling any restriction regarding standard machines
(i.e. a system without any virtual machine).

Management of Host OS for Xen. The first challenge for the deployment of
virtual machines within a distributed or a parallel environment is the deployment
of the host OS. In the Xen case, the host OS has to be composed of a standard
operating system plus the Xen kernel and Xen tools.

Therefore an OSCAR package for Xen has been created. This package, when
selected for an OSCAR image, automatically installs and configures Xen into
the image for compute nodes.

The standard OSCAR installation process may be then used to automatically
deploy the host OS on remote machines. OSCAR also allows the user to specify
the software stack that has to be installed on the host OS. For instance, since
the host OS aims only at being the interface between the Hypervisor and vir-
tual machines, clustering tools such as MPI may not be needed. Such software
components can be easily removed from the image (OSCAR provides a simple
interface for the selection of OSCAR packages, named OSCAR Selector). At the
end OSCAR guarantees that no unecessary overhead will be created on the host
OS by unecessary deamons or runtimes, allowing user to create a customized
image for host OS. Another full-featured image for cluster computing will be
created for VMs, as described in the following paragraph.

Management of Xen Virtual Machines. Once the host OS is deployed, it is
then possible to deploy and create virtual machines. Comparing the installation

Xen-OSCAR for Cluster Virtualization 491

of the Xen virtual machines and the real machines, major differences are the
boot sequence and the file system used by the VMs.

For a physical machine, within a cluster, a device such as the disk or CDROM
may boot compute nodes or a network boot mechanism such as PXE, allowing
compute nodes to contact the head node to transfer the node image. With a
virtual machine based on Xen, it is not possible to have a full boot sequence as
network boot is not possible. An approach to address this issue is to simulate
a boot sequence using a specialized virtual machine that acts like a bootable
CDROM. This issue is detailed further in this section.

Fig. 1. Example of Mapping Between Physical Partitions and Partitions Used by Vir-
tual Machines

For the “disk virtualization” the problem is different. Tools like OSCAR ex-
pect that a full hard drive is available for the system. This hard drive is first
partitioned, formated, and then the system is installed. It is not possible to
do that with a virtual machine because even if the virtual machine has the
vision of a single hard drive (see Figure 1), partitions have to be described
before the “boot” of the virtual machine. This issue is detailed further in this
section.

To ease the use of virtual machines, a tool for virtual machine specification
has been developed. This can be done through an XML file and allows the user
to specify VM’s characteristics via a simple high-level description. Listing 1.1
gives an example of such a configuration file for a virtual machine having 128
MB of memory, for which the system is installed on a 1000MB file (virtual block
device), and having one virtual NIC, linked to the host OS (TUN/TAP) with the
00:01:02:03:04:05 MAC address. The XML DTD for such a profile is provided in
Listing 1.2.

This configuration file is then analyzed for the creation of the Xen configura-
tion file and for the initialization of the file system for the VM.

492 G. Vallée and S.L. Scott

Listing 1.1. Example of VM Specification

Listing 1.2. DTD for VM’s Profiles

<?xml version=" 1.0 " encoding="ISO−8859−1"?>
<!−−
DTD fo r V3M p r o f i l e s .
−−>
<!ELEMENT p r o f i l e (name , type , memory? , image ,
v i r t u a l_d i sk s ? , cdrom? , n i c1 ? , n i c2 ?) >
<!ELEMENT name (#PCDATA)>
<!ELEMENT image (#PCDATA)>
<!ATTLIST image s i z e CDATA #IMPLIED>
<!ELEMENT memory (#PCDATA)>
<!ELEMENT v i r t u a l_d i sk s (v i r tua l_d i sk +)>
<!ELEMENT v i r tua l_d i sk (#PCDATA)>
<!ATTLIST v i r tua l_d i sk id CDATA #REQUIRED>
<!ELEMENT cdrom (#PCDATA)>
<!ELEMENT n ic1 (type , mac)>
<!ELEMENT n ic2 (type , mac)>
<!ELEMENT mac (#PCDATA)>

Virtual Network Boot. Because of the lack of a full boot sequence for Xen
virtualmachines, a virtual network boot is necessary for the installation of the VM’s
system via OSCAR. One approach is to use a Xen image to emulate a network
boot. The goal of this image is: (i) to create a virtual compute node with a virtual
hardware and (ii) to connect to the headnode to get configuration information, and
(iii) initialize the virtual hardware and install the system. The protocol is based
on protocol used by OSCAR to install real compute nodes (see Figure 2).

The Xen image for the emulation of a network boot is based on a minimal
Linux distribution providing all the tools necessary for the installation of the
compute node via OSCAR (such as DHCP, rsync, System Configurator) and a
specific script to perform the node installation (based on SIS scripts). This script
is automatically called after the boot on the VM, and automatically stops the VM
when the system installation is done. Thus, for users, the installation process is
completely transparent, the same as a standard OSCAR node installation. When
the compute node is installed, Xen-OSCAR has changed the Xen configuration
file for the VM in order to not emulate the network boot but to start the compute

Xen-OSCAR for Cluster Virtualization 493

Fig. 2. Netboot Emulation for System Installation of Xen VMs Using OSCAR

node. User believes that it is the same VM as the one used during the installation
process, the installation has been completely transparent to the user, thanks to
our network abstraction for Xen VMs.

Disk Virtualization. In a physical cluster, quite frequently compute nodes
have the same configuration; they use the same partitions to install the system
and mount a network file system from the headnode. Since Xen allows the spec-
ification of the mapping between a disk partition or a file (used as virtual block
device) and a virtual disk for a virtual machine, virtual compute nodes have the
same disk configuration (in our case, we use the first partition of the first virtual
IDE disk, for simplification purposes or files used as virtual block devices). This
virtual partition is then mapped on a physical partition on the hard drive that
is specific to a virtual machine (see Figure 1).

OSCAR partitions and formats the partitions of the disk of the compute
nodes. It is not possible to do that with virtual compute nodes as partitions
for the system have to be created and formated before to starting the VM and
each of them have to be described in the Xen configuration file associated to
the VM. Therefore, during the virtual network boot for the node installation,
the hard drive does not have to be partitioned. Partitioning and formatting is
automatically done before the initialization of OSCAR thanks to information
users give through the VM configuration.

FullyVirtualizedClusterCase. To illustrate one possible use of Xen-OSCAR,
we detail the use of a fully virtualized cluster (i.e., a virtual headnode and

494 G. Vallée and S.L. Scott

virtual compute nodes) as development environment. The virtual headnode has
two virtual NICs: the first NIC allows communications with the host OS through
the Xen bridge and the second NIC allows communications with compute nodes.
Compute nodes are setup with only one virtual NIC which is on the same virtual
network as the second NIC of the headnode. In order to identify each of the
compute nodes, they have a specific MAC address. This virtual MAC address is
the identifier of the compute node during the installation process.

To use such a case, a GUI for the description the virtual cluster has been
developed and allows the launch of Xen-OSCAR scripts.

Once the virtual cluster is described, the GUI allows users to initiate the setup
of the virtual cluster in three steps. The first step creates the partitions on the
physical disk for the virtual cluster and creates the file system for the headnode.
In the second step, the image of the headnode is installed. During the third step,
Xen-OSCAR automatically creates configuration files for Xen (for the headnode
and the compute nodes) and also creates images for the virtual network boot of
compute nodes.

Once the virtual hardware is setup and mapped on a physical partition, it is
possible to boot the headnode.

Next section presents a study of such a fully virtualized cluster for develop-
ment purpose.

3.3 Development of Applications Using a Virtual Cluster

To develop applications for clusters, developers need to have: (i) the appropriate
environment (i.e. runtime and middleware such as MPI, PVM) and (ii) standard
tools like debuggers and profilers.

Standard runtime and middleware for clustering are installed by OSCAR;
a virtual cluster managed with such a tool may be used for the development
of applications for clusters. However, developers have to remember that the
execution on a virtual cluster is not comparable to the execution on a real cluster.
For instance, processes of a parallel application may not be able to run at the
same time because of concurrent access to the physical resources. Therefore,
techniques like co-scheduling [6] cannot be applied on a virtual cluster and it
may be difficult for the programmers to analyze the global execution behavior
of the application using a virtual cluster.

Application debugging and profiling is much more difficult because these tools
very often access low level information, executing protected processor instruc-
tions which are not virtualized by Xen. The kernel of the virtual machine is
not running in the ring 0 of privileges and therefore the kernel (or kernel mod-
ule or application) cannot execute low level protected instructions if they do
not have a Hypervisor interface to do it. For instance, PAPI [1] or oprofile [10]
cannot directly access some processor instructions (such as access to the msr
register of x86 processors) and need to be ported to Xen. Oprofile has been
ported to the Xen kernel (through a kernel patch) thanks to the Xenoprof [9]
project.

Xen-OSCAR for Cluster Virtualization 495

3.4 Execution of Parallel Applications

Applications for clusters are mostly parallel applications like MPI applications.
Therefore, it is critical to analyze the execution of such application using a
virtual cluster. We do not try to analyze the efficiency of the execution as this is
pointless since the use of a virtual cluster will not allow users to have performance
comparable to a real cluster (because of the resource sharing). This analysis is
aimed at determining if a virtual cluster may be used for experimentation, i.e.
to analyze if the behavior of an application is representative and comparable to
a real execution.

With a virtual cluster, virtual machines are scheduled on a single physical
machine. Several studies on the execution of such an application on clusters has
shown that to guarantee efficiency, communicating processes must run simulta-
neously in order to get the full benefit of parallelism [6]. Unfortunately, virtual
machines cannot execute at the same time if the physical machine does not offer
multiple processors, and even if the physical machine has multiple processors,
there is no guarantee that virtual machines will be executed at the same time.
Therefore, there is no guarantee that communicating processes can be executed
in parallel and thus, they may be stopped everytime they want to communicate
with another process on another virtual machine, decreasing the global perfor-
mance of the application.

In this section, we study the impact of virtualization on the execution of
MPI applications. We used a virtual cluster of 10 virtual machines, each virtual
machine having 64MB of memory. The machine used is a Pentium 4, 1.7GHz
with 1GBytes of memory and a 250GBytes EIDE hard drive. All experiments
were made with Xen-2.0.6 which is based on the kernel-2.6.11.10. We used Xen-
2.0.6 and we made evaluations with different Xen policies for the scheduling of
virtual machines. Unfortunately it was not possible to boot the Xen kernel with
the Atropos policy, the kernel froze during the boot sequence.

The benchmark used is Beff [14]. Beff calculates the effective bandwidth, i.e.
the accumulated bandwidth of the communication network of parallel and/or
distributed computing systems. Several message sizes, communication patterns
and methods are used. The algorithm uses an average to take into account that
short and long messages are transferred with different bandwidth values in real
applications. We executed the benchmark with varying sizes of the MPI appli-
cations (from 2 processes up to 10 processes, with 1 process per compute node)
and for each size we made 5 runs of the benchmark.

Figure 3 shows both the effective bandwith for different sized MPI applica-
tions (from 2 processes up to 10 processes with 1 process per compute node)
and the bandwith for a ping pong communication between the two first MPI
processes. The effective bandwith deceases according to the number of MPI
processes. Moreover, the two scheduling policies offer the same kind of global
performance. If the application is communication intensive, global performance
is very poor and does not exceed 8 MB/second. Performances with the Borrowed
Virtual Time policy is more constant: virtual machines with active processors
have more time slices, therefore processes (and so virtual machines) blocked

496 G. Vallée and S.L. Scott

Fig. 3. Bandwith Performance (Beff Benchmark) for Both the Default and the Round
Robin VM Scheduling Policy of Xen

because pending communications are penalized. On the other hand, with the
round robin policy, all virtual machines have the same execution time and are
scheduled periodically. Therefore, we can see that depending on the communica-
tion pattern of the application, global performance may vary. It is also interesting
to note that even if the results may vary, the standard deviation is pretty good.
Therefore results for a specific application can be considered as representative
for execution on a virtual cluster.

The bandwith with the Borrowed Virtual Time policy decreases according to
the number of MPI processes because the scheduling of the virtual machines is
not lead by communications but only by computation. Therefore, there is no
guarantee that the two virtual machines on which MPI ping pong processes are
running are efficiently scheduled. In the other hand, the round robin policy guar-
antees that the two first MPI processes are scheduled one after the other (modulo
allocation of time slices for other virtual machines) and therefore, performance
does not decrease quickly as it does with the Borrowed Virtual Time policy. The
standard deviation for the two scheduling policies is acceptable and results may
considered as representative.

Figure 4 shows the latency for a ping pong communication between the two
first MPI processes. The latency with the Borrowed Virtual Time policy increases
according to the number of MPI processes. Communication is made through
the memory of the physical machine and the scheduling of virtual machines
being lead by the computing activity. Virtual machines that block often, e.g.
blocking communications, are penalized. With the round robin policy, machines
that block often because of I/O are not penalized as much. Moreover, results
for the Borrowed Virtual Time policy do not have a good standard deviation,
results are not constant and cannot be considered as representative. On the other
hand, the standard deviation for the round-robin policy is good, results can be
considered as correct. In conclusion, analyzing the MPI latency, the round robin
policy is better than the Borrowed Virtual Time policy.

Xen-OSCAR for Cluster Virtualization 497

Fig. 4. Pingpong Latency (Beff Benchmark) with the Default VM Scheduling Policy
of Xen

4 Conclusion

This paper presents a study of the use of virtual clusters based on Xen for the
development of parallel applications and their experimentation. Our study shows
that the use of a virtual cluster is not comparable to a physical cluster because:
(i) the tools for cluster management, like OSCAR, have to be adapted in order
to be used for the management of virtual clusters, (ii) development tools like
profilers have to be ported on the Xen architecture, and (iii) the execution of
parallel applications is deeply influenced by the scheduling policy of the VMs;
the execution behavior may differ greatly between two experiments.

As part of the work to port existing cluster software to Xen, a set of tools,
such as oprofile and OSCAR, have be adapted to Xen to ease the use of a virtual
cluster. We also saw through the creation of Xen-OSCAR and the port of Papi
that the modifications porting existing software to Xen is minimal. However,
because all tools have not been ported to Xen, developers and users may not
have their favorite environment for their virtual cluster.

Finally, hardware support for virtualization (the Intel VT technology and
AMD Pacifia technology) is supported by the latest Xen release and should
increase the interest in virtual clusters (no modifications should be needed for
the execution of OSes, runtimes, middleware and applications). However, our
experiments have shown that developers and users will still have to pay attention
to the scheduling policy of the VMs.

References

1. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors. In The International
Journal of High Performance Computing Applications, volume 14, pages 189–204,
2000.

2. Core OSCAR Team. HOWTO: Create an OSCAR package, January 2004.
http://oscar.openclustergroup.org/tiki-index.php.

498 G. Vallée and S.L. Scott

3. Benoît des Ligneris, Stephen L. Scott, Thomas Naughton, and Neil Gorsuch. Open
Source Cluster Application Resources (OSCAR) : design, implementation and in-
terest for the [computer] scientific community. In Proceeding of 17th Annual Inter-
national Symposium on High Performance Computing Systems and Applications
(HPCS 2003), pages 241–246, Sherbrooke, Canada, May 11-14, 2003.

4. B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham,
and R. Neugebauer. Xen and the art of virtualization. In Proceedings of the ACM
Symposium on Operating Systems Principles, October 2003.

5. Richard Ferri. The OSCAR revolution. Linux Journal, (98), June 2002.
http://www.linuxjournal.com/article.php?sid=5559.

6. Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini, and Juan Fernandez. Flex-
ible coscheduling: Mitigating load imbalance and improving utilization of hetero-
geneous resources. In ipdps, April 2003.

7. Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K. Panda. A case for high
performance computing with virtual machines. In The 20th ACM International
Conference on Supercomputing (ICS’06), June 2006.

8. Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. High perfor-
mance vmm-bypass i/o in virtual machines. In USENIX Annual Technical Con-
ference 2006, June 2006.

9. Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and
Willy Zwaenepoel. Diagnosing Performance Overheads in the Xen Virtual Machine
Environment. In First ACM/USENIX Conference on Vitual Execution Environ-
ments (VEE’05), 2005.

10. Oprofile, 2003. http://oprofile.sourceforge.net.
11. Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno. Npaci rocks: Tools and

techniques for easily deploying manageable linux clusters. In CLUSTER, 2001.
12. Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno. Npaci rocks: tools

and techniques for easily deploying manageable linux clusters. Concurrency and
Computation: Practice and Experience, 15(7-8):707–725, 2003.

13. Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield, Dan
Magenheimer, Jun Nakajima, and Asit Mallick. Xen 3.0 and the art of virtual-
ization. In Proceedings of the Linux Symposium 2005, volume 2, pages 65–78, Jul
2005.

14. Rolf Rabenseifner. Effective bandwidth (beff) benchmark. http://www.hlrs.de/
mpi/b_eff/.

15. System installation suite. http://sisuite.org/.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 499 – 508, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Job Scheduling for
Loosely-Coupled Inhomogeneous Nodes

Using Data Envelopment Analysis

Michael Alexander

Wirtschaftsuniversität Wien
Department of Informations Systems,

Augasse 2-6, 1090 Vienna, Austria
malexand@wu-wien.ac.at

Abstract. Job Scheduling in high performance computing (HPC) clusters and
grids has traditionally been performed by job entry and management systems,
such as the Portable Batch System that place their emphasis on job management
and only to a lesser extent on job scheduling. In grid infrastructures and
emerging, virtual machine-based HPC environments, the previous assumption
on relative homogeneity of nodes does not hold any more. In contrast, loosely
coupled nodes in these settings are more heterogenous than ever. This places
new demands on job scheduling, where a large number of different nodes create
the problem of optimally laying out compute jobs across the network for
efficient resource allocation. The proposed approach presented utilizes non-
parametric Data Envelopment Analysis (DEA) to derive a workload-type
proximity factor for a given node type. An experimental factor determination is
performed using 5 physical and one virtual nodes.

Keywords: HPC, Job Scheduling, Xen, DEA, Data Envelopment Analysis.

1 Introduction

High performance computing (HPC) clusters and grids rely on batch job entry and job
scheduling systems [8] and [9] to manage compute jobs. In homogenous cluster
architectures, nodes are similar, so the emphasis is to level the load between them
through queues, priorities and job parameters. Yet in grid infrastructures, virtual
machine (VM) environments or heterogenous clusters, nodes may differ substantially
ranging from the class of machine to its individual population parameters such as
RAM etc. Hence, the run-time performance for a particular job type may not be a-
priori as universally understood as for homogenous clusters. Still, these distributed
compute networks tend to have their compute jobs allocated in similar mechanisms to
the orthodox homogeneous cluster case. This paper based on [1] and [2] presents a
novel approach to determine node affinity for a compute job by means of execution
efficiency measurement through non-parametric Data Envelopment Analysis (DEA).
It is shown, that the method can provide an efficiency affinity factor that could be
used to by schedulers to allocate compute jobs efficiently across the network.

500 M. Alexander

2 Data Envelopment Analysis

Data Envelopment Analysis is a mathematical programming approach which allows
for comparisons of decision making units (DMUs) with similar objectives.It uses the
Linear Programming Method for numerical computation. DEA has first been
described by Charnes et al. [6] with further refinements for optimal input-output
targets by Thanassoulis and Dyson [13] and unit raking by Andersen and Petersen [4],
amongst others.

DEA is a nonparametric efficiency analysis method, which uses an empirical
production function describing the set of DMUs under consideration. Its main
advantage to econometric and descriptive (such as ratio based and statistical)
efficiency analysis is its ability to handle input and output vectors consisting of
many elements which are common to complex systems. No assumptions on the
form of the production function, common to parametric approaches, have to be
made. Also, DEA is not susceptible to problems in parameter estimation, if e.g.
input variables show conlinearity, or autocorrelation of an error term with the
output variable is present. DEA determines the relative efficiency of units within
the DMU set. Efficiency is determined as relative to a virtual (constructed) frontier
curve, which describes the best possible achievable output for a given level of
input. Statistical techniques, in turn, frequently measure the deviation from a me-
dium reference curve. Furthermore, DEA allows for use of different units of input
and output measure, such as time, cost, units of labor etc. A DMU is Pareto
efficient, if no other DMU or combination of DMUs can improve one output,
without lowering another output level or the increase of an input level.

The following diagram in [1] shows a simplified graphical representation of a
DEA problem with two inputs x

1
, x

2
 and one output. The convex envelope is the

efficiency frontier, spawning a hull over the feasible region.

x1 Empirical production function frontier

F1
F2

F3

F5

x1 F5’

x2 F5 x2 F5’

F4

0
x2

F5’

x1 F5

Fig. 1. DEA Efficiency Frontier Curve

 Job Scheduling for Loosely-Coupled Inhomogeneous Nodes Using DEA 501

x
1

and x
2

are two inputs, and F
1..5

denote the DMUs
1..5

. F
1-4

 are all relatively

efficient, being on the efficiency frontier. F5, in turn, is deemed inefficient. The
graphical representation of the measure of X-inefficiency is given by the quotients of
the rays:

0F5
F5 = -----------

0F5
(1)

The DMU’s F
2

and F
3

are the peer units of F
5
; their input times a scaling-down

factor determined by linear programming produce the same output as F
5
. Their unit

weights, l
2,3

are described by the ray quotients

g p p
F3F5 /F3F2 F2F5 /F3F2

respectively.
The principal idea, on which DEA is based, is to measure relative efficiency for a

set of n DMUs not by using an average composite with fixed weights for inputs x
ij
,

but by allowing input weights to be variable for each x
ij
. Hence, DMUs can be

classified relatively efficient through strength in a particular factor. Generally, an m+s
dimensional supported hyperplane is formed. The generic equation for a hyperplane
in R

m+s
with the normal variables {m

1..s
, u

1..m
} is:

s m

ryr – ixi + w = 0

r = 1 i = 1
(2)

with the conditions for fulfilling the “supported” criterion that a) all points having to
be located on or below the envelope surface and b) at least one point has to be an
element of the surface. The following figure is a graphical example representation of
a VRS (variable returns to scale) surface.

y

x2

x1

Fig. 2. VRS Surface Example (Source: Ali and Seiford [3], p. 122 - modified)

DEA, as introduced by Charnes et al. [6], is derived from the following
mathematical programming problem, which maximizes the virtual (composite) output

502 M. Alexander

 to input quotient. This is the output oriented form of the problem. Alternatively, an
input oriented DEA problem minimizes the inputs, while holding the output level
constant. Most DEA applications use the input oriented measure as the prime
indicator, as does the following cluster node efficiency analysis.

max h0 u v

uryr0
r

vixi0
i

--------------------=

s.t. uryrj
r

vixij
i

------------------- 1 ur vi 0

for j 0 ... n,,=

(3)

The nonlinear programming problem above is transformed into a linear programming
(LP) for solving an LP problem for each DMU. Like other linear programming
problems, DEA models can be formulated in one of two forms, which are reciprocal-
dual against each other. Based on computational considerations for large problems,
the form which has the lower number of constraints should be chosen. In DEA, the
primal problem is also called multiplier problem, the dual problem is called an
envelopment problem. Furthermore, DEA assumes that if DMU j is capable of
producing a given input-output combination, another DMU can do the same.
Restrictions here need modified DEA models by adding linear programming
constraints.

The method carries disadvantages as well: the main one being, that in theory, in a
system of m inputs and s outputs m x s efficient units are possible, supporting the
hyperplane. Consequently, the strongest propositions DEA produces are those on
inefficient units. Secondly, no statistical hypothesis testing methods are available.
Thirdly, there are no provision for handling disturbance-random error, such as for
measurement error.

2.1 Banker, Charnes and Cooper (BCC) Model

The Banker, Charnes and Cooper (BCC) [5] model is an extension of the original
Charnes, Cooper and Rhodes (CCR) [6] model, providing for variable returns to scale.
The following convexity constraint is added to the model for non-increasing returns
as needed for compute nodes in which the addition of resources lead to a less proportional
increase in output:

j

j 1=

n
1

(4)

is added. The variable u
0
denotes the corresponding returns to scale indicator in the

primal. The BCC efficiency measure represents true technical efficiency, compared to
the CCR model.

 Job Scheduling for Loosely-Coupled Inhomogeneous Nodes Using DEA 503

Primal BCC Problem

max ryr0
r 1=

s

u0–

iXi0

i 1=

m

1=s.t.

ryrj

r 1=

s

ixij

i 1=

m
– u0– 0 j 1 ... n=

r 1 ... s=

i 1 ... m=

r– –

i– –

(5)

Dual BCC Problem

min 0 sr

r 1=

s
– si

i 1=

m

–

yrj j

j 1=

n

sr– yr0= r 1 ... s=

i 1 ... m=xij j
j 1=

n

0xi0– si+ 0=

s.t.

j
j 1=

n
1=

j sr si 0

(6)

The dual uses DMU weights and the slack variables.

2.2 Target Choice

Target choice models allow to determine input and output target levels which render
relatively inefficient DMUs efficient. The determination of these optimal target levels
is based on the projection of the inefficient DMUs towards the frontier.

Given that DEA does not distinguish between different regions under a frontier
hyperplane, q

j
< 1 , q

j
< 1 hence, the preferences for improvement are crucial. Fig. 3.

shows three possible projections of F
3

on the efficiency frontier for an input
minimization case. The most common approach is radial expansion, which is

depicted by the ray F3F3 going through (0,0). In the two input case shown,
improvement priority can be on X

1,2
 alternatively, shown by lines which lie

504 M. Alexander

X1

F3’x1 F3
X1 F3

F3’x2

F2

0

F1

X2 F3

F3’ radial

Fig. 3. Target Input Choice

orthogonally to the category axes. It is important to note that these extensions require
separate minimization/maximization runs for each problem and can not be calculated
from a CCR or BCC result, since changes in one input/output affect the whole
input/output vector.

Thanassoulis and Dyson [13] have extended the CCR/BCC model for several
preference cases. The study uses a radial type uniform input lowering strategy target
choice strategy. Here, the solution presented is characterized by having a minimum
in the sum of slacks weighted by the inverse average value on each input or output
variable. Before, the radial efficiency is maximized. Alternatively, target choice
could set a priority for each output variable expansion or input variable reduction,
with an “infinite” size solution set. The model for target choice employed consec-
utively is based on Thanassoulis and Dyson’s weights based general preference
structure model.

wr
+
zr

r R0

wi
-
pi

i I0

– di
-

i I0

dr
+

r R0

++

s.t. zryrj0 iyrj
j 1=

n
– 0=

pixij0 iyrj

j 1=

n

– 0=

jxjr
j 1=

n
dr

+
– yrj0

=

jxij

j 1=

n

di
-

+ xij0
=

r R0

i I0

i I0

r R0

max

 Job Scheduling for Loosely-Coupled Inhomogeneous Nodes Using DEA 505

zr 1 r R0

r I0

j

pi 1

j 0

pi zr

di
-

dr
+

0

free i I0

i I0

and r R0

and r R0 (7)

The model attaches the weights w
r
+ w

i
-to the outputs/inputs which are modeled as

factors z
r
, p

i
. The former represents the target output increase, the latter the input

decrease. I, R are input-output index sets I={1,...,i} R={1,...,s}. After specifying the
relative priority of all i and s, the model gives the targets (x

ij0
”, y

rj0
”).

3 Experimental Factor Determination

In the following experiment, five physical and one virtual node were used calculate the
nodal type efficiency factor for a sparse matrix multiplication work-load using the
JASPA benchmark tool [10]. The matrix A to generate computational load is a large
dimension 90449 matrix with 2455670 non-zero elements [11] with the operation B =
A x A. Table 1 lists the data for the respective nodes1, whereby the input variable CPU
denotes the central processing unit number of cores, cache, the total per CPU cache size
in kB, RAM the random access memory per CPU, power the estimates power uage [7]

Table 1. Nodal Input Data

CPU Cache RAM Power BogoMIPS Cost Matrix IO

frankfurt 2 2048 2 250 5980.16 4500 6.026 62.3

boo 4 4096 2 300 5324 2200 5.477 90.9

clusterlogin 1 1024 1 200 5989.87 1100 6.102 62.5

pallando 8 1024 0.82 1200 1401 3000 10.816 47.0

xmbsp 2 1024 0.262 1200 1401 3000 10.811 11.5

athlon 1 256 0.5 180 2946.91 150 6.628 28.3

1 The Nodenames:Type are {frankfurt:Dual Xeon Blade}, {boo:Dual Xeon 5160 MacPro),

{clusterlogin:HP single P4), {pallando:8-wayP3 SMP), {xmbsp:Xen 2 VCPU VM as single
VM on a phyiscal machine}, {athlon:Single Athlon). frankfurt ran Fedora Core 3 Linux, all
other nodes Debian Sarge.

506 M. Alexander

in watt under full load, BogoMIPS are Linux Kernel CPU delay loop measurement
instructions per second per core, cost the estimates present market value of the node in
Euro. The output variables here are the matrix multiplication total time in seconds and
an IO value of reading 1GB sequentially from a raw disk device in seconds.

Table 2 and 3 give the efficiency factor results using a convex, non-increasing
returns. input oriented BCC model with radial expansion and super-efficiency values for
efficient nodes. The node frankfurt was found as the only one inefficient one which is
consistent with a high DEA dimensionality of 14 (7 inputs and 2 outputs). The entries
under the respective inputs and outputs are the weights resulting from the model run.
The other nodes, using super-efficiency would still remain efficient with a maximum
radial expansion of the inputs times the listed factor. Hence, the node found most
efficient is athlon with the input:cost and the output:matrix supporting the hyperplane.

Table 2. Efficiency Factors (a)

Node
Efficiency

Factor
CPU Cache RAM Power BogoMIPS Cost

 frankfurt 87.38% 0.00 0.00 0.00 0.00 0.00 0.00

 boo seea 0.01 0.00 0.00 0.00 0.00 0.00

 clusterlogin 242.83% 0.82 0.00 0.00 0.00 0.00 0.00

 pallando seea 0.01 0.00 0.20 0.00 0.00 0.00

 xmbsp 399.58% 0.50 0.00 0.00 0.00 0.00 0.00

 athlon 874.67% 0.00 0.00 0.00 0.00 0.00 0.01

a
 Node remains efficient in the model on any increase in input reseources.

Table 3. Efficiency Factors (b)

IO Peers Matrix

 frankfurt 0.01 boo (0.23)
clusterlogin (0.57)
athlon (0.19)

0.06

 boo 46.82 1 0.06

 clusterlogin 0.05 1 0.53

 pallando 90.25 0 56412.86

 xmbsp 0.00 0 0.84

 athlon 0.00 1 2.69

 Job Scheduling for Loosely-Coupled Inhomogeneous Nodes Using DEA 507

Table 4. Target Choice

Input,
Output

Actual Target Improvement

Cost 4500 1191.22 -73.53

BogoMIPS 5980.16 5188.26 -13.24

Power 250 214.01 -14.39

RAM 2 1.14 -42.99

Cache 2048 1615.67 -21.11

CPU 2 1.74 -13.24

Disk IO 62.28 62.28 0

Matrix 6.03 6.06 0.55

Table 4 lists the resulting target choice values for the inefficient node frankfurt. In
order to be efficient, the cost would have to be reduced to at least 1192.22 Euro, the
BogoMIPs to 5188.24 and the power intake to at least 214.01 Watt etc., while the
matrix multiplication output computation with the calculated input values is project to
go up slightly to 6.06.

4 Conclusions and Future Work

This paper proposes the addition of a workload type-to-node efficiency factor to HPC
cluster and grid job scheduler algorithms. Using non-parametric Data Envelopment
Analysis (DEA), pernode efficiency factors are derived from a select number of node
specifica of differing data types and scales as inputs, that are mapped to reference
nodal compute and IO workload performance figures. The method shows its utility in
identifying the node a given sparse matrix multiplication and sequential disk IO
workload would intuitively be most efficient to run on. High degree of heterogeneity
in compute clusters and grids make an optimized workload to node allocation difficult
to determine over all nodes. Hence, large cluster and grid networks of dissimilar
virtual machines are believed to benefit from the proposed workload-to-nodal type
efficiency measure based scheduling. Future work will include adding a
parameterized Xen load-curve to the model in order to adapt the approach to a
multiple virtual machine on a single physical node case.

References

[1] M. Alexander. Payment Systems Efficiency and Risk, Doctoral Thesis, University of
Vienna, 1997.

[2] M. Alexander. Chapter Complex Decision Analysis using Non-Parametric Data
Envelopment Analysis. In: Qudrat-Ullah, H., Spector, M and Davidsen, P. Com-plex
Decision Making: Theory and Practice. Springer, 2006 (forthcoming).

508 M. Alexander

[3] A. I. Ali and Lawrence M. Seiford. The mathematical programming approach to
efficiency analysis. in: Fried, Harold O., C.A. Knox Lovell and Shelton S. Schmidt, ed.
The measurement of productive efficiency: techniques and applica-tions. Oxford: Oxford
University Press, 1993.

[4] P. Andersen, P. and N. C. Petersen. A procedure for ranking efficient units in data
envelopment analysis. Management Science Vol 39 (October), 1993: 1261-1264.

[5] R.D Banker, A. Charnes and W. W. Cooper. Models for estimating technical and scale
efficiencies in data envelopment analysis. Management Science 30, 1984: 1078-1092.

[6] A. Charnes, W. Cooper and E. Rhodes. Measuring the efficiency of decision making
units. European Journal of Operations Research (2), 1978, pp. 429-444.

[7] F. Hermenier, N. Loriant and J.M. Hermenier. Power Management in Grid Computing
with Xen. Workshop on XEN in HPC Cluster and Grid Computing Environments as part
of ISPA'2006 (forthcoming).

[8] Cluster Resources. Moab Workload Manager.http://www.clusterresources.com
[9] Cluster Resources. TORQUE Resource Manager.http://www.clusterresources.com

[10] JASPA http://www.dl.ac.uk/TCSC/Staff/Hu_Y_F/SOFTWARE/JASPA/JASPA_1.0.tar.gz
[11] MatrixMarket. Matrix S3DKQ4M2. http://math.nist.gov/Matrix-Market
[12] Portable Batch System. http://www.openpbs.org
[13] E. Thanassoulis and R. Dyson. Estimating preferred target input-output levels using data

envelopment analysis. European Journal of Operations Research (56), 1993: 80-97.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 509 – 518, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semantic Description of Grid Based Learning Services

Gustavo Gutiérrez-Carreón, Thanasis Daradoumis, and Josep Jorba

Open University of Catalonia, Av. Tibidabo 39-43 - 08035 Barcelona, Spain
{ggutierrezc, adaradoumis, jjorbae}@uoc.edu

Abstract. Grid technology has emerged as a powerful tool to increase the
capabilities of e-learning frameworks. Learning services are fundamental
components representing functionalities that can be easily reused without
knowing the details of how services have been implemented. On the one hand, a
problem that still remains unsolved is how to use and integrate low-level
learning services to compose more complex high-level services or tools that
make sense to both tutors and learners. On the other hand, the approaches that
are currently used to implement an e-learning framework developed with
learning services based on the Grid are limited in semantic expressiveness for
matching services and only support keyword based search. Due to the
complexity of these two related problems, the paper focuses on the second one
by proposing an initial model for Semantic Description of Grid based Learning
Services based on OWL–S (Semantic Markup for Web Services) that facilitates
learning service providers the description and categorization of atomic, simple
or compose services and allow service requesters to specify their needs. This
model aims at offering a mechanism for automatic Grid Learning Service
discovery, invocation, composition and interoperation.

Keywords: Learning Grid, Learning Services, Semantic Web.

1 Introduction

Web services have fundamentally changed the way that e-learning frameworks were
developed. IMS Global Learning Consortium1 proposes an Abstract framework [1]
representing a set of services used to construct an e-learning system in its broadest
sense. One of the design principles for the abstract framework is the adoption of
service abstraction to describe the appropriate e-Learning functionality (Figure 1).

Currently Globus Toolkit (GTS3) [2] is a set of a variety of tools that has been
commonly used to implement Grid Services. In a Grid environment, service
description is based on WSDL[3] and the fundamental message enveloping
mechanism is SOAP[4]. WSDL provides a simple way for service providers to
describe the basic format of requests to their systems regardless of the underlying
protocol or encoding. Globus Metacomputing Directory Service (MDS) implements a
standard Web Services interface to a variety of local monitoring tools and constitutes

1 IMS develops and promotes the adoption of open technical specifications for interoperable

learning technology.

510 G. Gutiérrez-Carreón, T. Daradoumis, and J. Jorba

the tool in GTS3 that is used to register Grid services while UDDI has been used in
the web community for business service discovery. Both of them only support
keyword based search and are limited in semantic description. Open Grid Service
Architecture (OGSA) [5] identifies state modeling and management as a fundamental
requirement for service-oriented architectures whereby the Web Services Resource
Framework (WSRF [6]) defines conventional interfaces and behaviors for
representing, abstracting, and manipulating the state in a Web services framework.
The creation of a new grid service instance involves the creation of a new process in
the hosting environment, which has the primary responsibility of ensuring that the
services it supports adhere defined grid service semantics.

Fig. 1. A logical architecture for an eLearning system [1]

Powerful tools should be enabled by service descriptions across the Web service
lifecycle. Semantic Markup for Web Services (OWL-S, formerly DAML-S)[7] is an
ontology of services that makes these functionalities possible. These semantically rich
descriptions enable automated machine reasoning over service and domain
descriptions, thus supporting automation of service discovery, composition, and
execution, and reducing manual configuration and programming efforts.

Learning objects become more and more available on the Web as well as services
with well-defined machine interpretable interfaces. Automated composition of
learning resources, exposed as web services, can then match a personalized learning
need [8]. Semantic description offers a mechanism to generate annotation registries of
a set of diverse learning resources over and above the course materials or learning
objects in an e-learning framework. These annotations provide access to marked-up
resources, which enables ontologically guided or semantic search. Semantic Learning
Webs depend on four things: annotated educational resources, a means of reasoning
about them, a means of retrieving the most suitable one, and a range of associated
services [9].

 Semantic Description of Grid Based Learning Services 511

The Semantic Grid merges the semantic web with grid computing and it emerges
as an important alternative in e-learning systems in order to maintain dynamism in
terms of resources, content and participants as well as to support effective E-learning
strategies [10].

In this paper we propose a model for grid learning services semantic description
based on OWL-S standard that can be used for both low-level learning services and
more complex high-level ones. The rest of the paper is organized as follows: In
section 2 we review some efforts for Grid based Learning Services semantic
description and discovery. The proposed model is discussed in Section 3 whereby in
Section 4 we apply the model in a Simple Sequencing Learning Service scenario
supported by low-level services. Finally in Section 5, we present the conclusions and
future work.

2 A Review of Grid Learning Services

Finding services with desired features becomes every time more challenging because
the number of Web services is continually increasing. Current standards in Web
Services and Grid communities (including UDDI and WSDL) do not directly support
semantic description and discovery of services [11]. Semantic discovery is the process
of discovering services capable of meaningful interactions, even though the languages
or structures which they are described may be different [12].

2.1 Grid Learning Services Semantic Description

Some efforts in grid learning services semantic description are made in [13] with
semantic search of Learning Services in a Grid Based Collaborative System. This
work proposes a user-centric conception to model the abstractions that educators use
to describe their learning activities. This method is based on a conceptual model of
learning interaction that allows educators to search for services in an easy and suitable
way without knowing about the functional specification of services and they only
need information related to collaborative learning activities.

Another related work is OntoEdu [14] where ontologies are used to describe
concepts of a networked education platform and their relations. In OntoEdu, the
education ontology includes two big parts: an activity ontology (AO) and a material
ontology (MO). The AO is implemented based on a service oriented approach with
metadata descriptions using the OWL-S model. This project is oriented towards
adaptability and automatic composition of the function user requested.

The SELF project [10] proposes an e-learning framework resulting from the
integration of available technologies, specifically the semantic web, grid,
collaborative and personalization tools, and knowledge management techniques.
SELF provides intelligent search matching and inference support making use of
semantic description tools. A main drawback of this project is that it makes use of
technologies that are not specialized in learning systems.

Some initial efforts have been made in [8] who employed a semantic specification
of learning objects (LOs) formatted in OWL-DL that can be used both to retrieve LOs

512 G. Gutiérrez-Carreón, T. Daradoumis, and J. Jorba

from a repository satisfying a user request and to compose such discovered LOs in a
courseware. The proposed approach also copes with non-exact solutions to the
courseware composition.

2.2 Semantic Discovery and Grid Learning Services Matching

In general, a semantic discovery process relies on semantic annotations, containing
high-level abstract descriptions of service requirements and behavior. Metadata is an
essential element in semantic discovery with the capability to expand service
descriptions with additional information. The achievement of dynamic composition
and automation of services involves discovering new services at run time by software
components without human interaction. SOAP provides description of message
transport mechanisms and WSDL describe the interface used by each learning
service. However, neither SOAP nor WSDL are of any help for the automatic location
of learning services on the basis of their capabilities. Paolucci [11] comments that in
order to enable automation of this process we need a meaningful description of the
service and its parameters that can be processed automatically by tools and means to
process the context of description by discovery engines.

In this sense, there are some works that aim to improve the semantic services
capability of matching. On the one hand, in [12] Paolucci focuses primarily on
comparing inputs and outputs of a service as semantic concepts represented in OWL
to improve UDDI [15]. This work proposes a way of ranking semantic matching
results. This ranking can be used in conjunction with other user-defined constraints to
inform of an exact, or potentially useful web-service capability match. On the other
hand, there are important lines of research that propose extensions to Web service
description WSDL in two ways, annotated WSDL and WSDL-S files [16]. These
approaches try to adhere to the current standards while trying to maximize semantic
representations required for automation.

In sum, the works presented above try to provide a solution to the complex
problem of grid learning services semantic description, but they are either limited in
semantic expressiveness for matching services or they do not face at all the difficult
task of using and integrating low-level learning services to compose more complex
ones. Both these features could greatly enhance and facilitate the tutor’s and learners’
labor in a complex web-based learning scenario. For this reason, we present an initial
effort towards developing a new model for grid-based learning services semantic
description whose ultimate aim is to offer a mechanism for automatic Grid Learning
Service discovery, invocation, composition and interoperation. This paper focuses on
the first feature the details of which are described in the next section.

3 A Model for Semantic Description of Grid Based Learning
Services

OWL-S is motivated by the need to provide three essential types of knowledge about
a service [7] (Figure 2): the Service Profile describes what the service does by
specifying the input and output types, preconditions and effects, the Service Model
describes how the service works, the Service Grounding contains the details of how

 Semantic Description of Grid Based Learning Services 513

Fig. 2. The top level of the service ontology

an agent can access a service by specifying a communications protocol, parameters to
be used in the protocol and the serialization techniques to be employed for the
communication.

Our model proposes a mechanism using OWL-S to describe semantically a Grid
Based Learning Service (GBLS). One the one hand, we identify the principle
characteristics of a GBLS related to an e-learning environment and the activities that
support it. On the other hand, we consider a Grid Based Learning Service (GBLS) as
a granular functional component with some input information, a functional activity
and some output information. In this sense we form two conceptual groups of
properties to achieve a complete description of a GBLS: the Learning Services
Identification (LSI) and the Learning Services Access Point (LSAP) (Figure 3).

Fig. 3. Parts of the conceptual model for a GBLS semantic description

The LSI element constitutes a set of parameters used to define the principle
characteristics of a GBLS. Table 1 describes it in more detail.

Table 1. LSI Elements

Learning Services Identification
Element Description OWL’s Element Parameter
Name The name of a service Service Profile ServiceName
Category Depending on the e-learning

framework, services providers
could construct the domain of
categories for each group of
learning services

Service Profile ServiceCategory

Description General description of a service Service Profile textDescription

The LSAP element is characterized by the most important functional properties of
a GBLS and is described in Table 2.

514 G. Gutiérrez-Carreón, T. Daradoumis, and J. Jorba

Table 2. Properties and resulting parameters of LSAP

Learning Services Access Point
Element Description OWL’s Element Parameter
Activity Activity in the e-learning

framework supported by a
service

Service Model hasParameter

User Defines the profile that makes
use of a service (learner, teacher,
another process, etc)

Service Model hasParameter

Related
Services

Specifies one or more services
related to a service

Service Model hasParticipant

Process A service is described as a
functional process

Service Model Pocess

Errors Specifies the errors resulting
from the execution of a service

Service Model hasParameter

Bindings Definitions included in a WSDL
description of a learning service

Service Grounding WsdlAtomicProces
sGrounding

On the one hand, the LSI contains basic information related to a learning service,
allowing a user centric search. This model is generic enough to be implemented in
any e-learning framework supported by GBLS and can be used for describing both
low-level and composed services. In that sense, the domain of categories could be
adapted to any ontology or taxonomy of services. For example, if we adopt the IMS
Abstract Framework [1] Service’s categories, we can obtain a taxonomy of learning
tools supported by Common Services and they are in turn supported by Basic Services
(Figure 4). On the other hand, LSAP allows the construction of an ontology domain
for functional parameters related to the e-learning framework. This semantic
description, in combination with the modifications suggested in [17], allows
capability-based search as well as discovery of learning services based on the inputs
and preconditions that need to be satisfied and on the outputs and effects that need to
be produced. The Bindings element of LSAP is a parameter of WSDL describing the
interface of each learning service. Both elements of the model are necessary to deal
with the problem of using and integrating low-level services to compose more
complex high-level services or tools. In particular, the LSAP describes grid-based
learning services as processes, which allows one to specify whether a service is an
atomic, simple o composite process as well as its relationship with the other services.

Fig. 4. Service Categories for the IMS Abstract Framework

 Semantic Description of Grid Based Learning Services 515

4 An Example Scenario

At this stage of our research work, to implement and test our approach, we used a
rather simple scenario which is based on a Simple Sequencing Services Tool formed
by a collection of lower level services of the Carnegie Mellon Learning System
Architecture Lab [18]. We point here that this tool has not been designed to be used in
a Grid environment. However, we found that these services could be adapted to our
definition and deployment and be used into a grid service environment since they are
completely based on a web services specification. For this reason we decided to use
this tool for the complete specification both of the Learning Service Identification and
Access Point, which is required in our model representation. In this example, the
Sequencing Control Service is supported by the set of low-level services shown in
Figure 5.

Fig. 5. A set of low-level services from the IMS Abstract Framework

For the sake of example, we are going to focus on the Rollup Services of the
Sequencing Tool. This service description can be found in [18] and its properties are
shown in Table 3. We used the OWL-S Editor tool [19] to implement our model’s
description. The graphical result of the model implementation is shown in Figure 6.

Table 3. Properties and resulting parameters of the model description that could be
automatically linked using services semantic description

Property Parameter Value
Name Rollup Service
Category Sequencing Control Services
Description Perform the rollup process and update the tracking

model for the learner
Activity Activity tree
User Learner
Errors Data errors

Processing Errors
Process Overall Rollup Process
Bindings WSDL file

In this Figure, we can observe that the relation of the services with each one of the
parameters that define the model is represented by a link specifying each parameter in
relation to the OWL-S model.

516 G. Gutiérrez-Carreón, T. Daradoumis, and J. Jorba

Fig. 6. The graphical result of the model implementation

An example of some request parameters and their OWL description in our model
representation is shown below.

<process:Process rdf:ID="Process">
 <process:hasParameter>
 <process:Input rdf:ID="User">
 <rdfs:comment

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
learner
</rdfs:comment>

 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.w3.org/2001/XMLSchema#anySimpleType

 </process:parameterType>
 </process:Input>
 </process:hasParameter>

 <service:presents>
 <profile:Profile rdf:ID="Description">
 <profile:textDescription
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Perform the rollup process and update the tracking Model for the learner
 </profile:textDescription>
 <profile:hasParameter rdf:resource="#learner"/>
 <service:presentedBy rdf:resource="#Rollup_Services"/>
 <profile:hasParameter rdf:resource="#end_activity"/>
 <profile:hasParameter rdf:resource="#root_activity"/>
 <profile:hasParameter rdf:resource="#activity_tree"/>
 </profile:Profile>
 </service:presents> ….

The model can be used in a similar way to develop the semantic description of the

rest of the Rollup Service properties and resulting parameters.

 Semantic Description of Grid Based Learning Services 517

The mechanism to process this OWL file, initially proposed in [18], throws a
UDDI registry and is extended to send and receive semantic queries using a
matchmaker. The OWL-S matching component in this architecture is tightly coupled
with the UDDI registry.

5 Conclusions and Future Work

In this work we proposed a model for semantic description of Grid-based Learning
Services (GBLS) to offer a new alternative for improving GBLS search and
discovery. The model proposed is based on two principle characteristics of grid
learning services: Service Identification and Services Access Point. Each one of these
elements is related to some objects within an e-learning framework. We showed that,
with the appropriate modifications of UDDI or a WSDL-S adaptation, this description
can lead to an automatic discovery and invocation of GBLS. This model represents an
alternative for semantic description of service properties, parameters and
relationships, which facilitates services automatic discovery and invocation without
human intervention while it provides sufficient information for human search. In the
proposed model, GBLS are described as a process, which allows services to be
invoked as an atomic, simple or composed process. The proposed model also supports
a set of characteristics included in the grid learning service WSDL description. The
current results of this work present a learning services conceptual description as well
as an initial implementation and use of the model. On the one hand, future work aims
at a full implementation and use of the model for searching, discovery and
composition of GBLS in a real Learning Grid environment. On the other hand, we
plan the construction of a complete conceptual model of interactions related to a
learning collaborative scenario based on Grid.

References

1. IMS Global Learning Consortium, IMS Abstract Framework: White Paper, 2003
2. I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP

International Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, pp 2-13, 2005.

3. E.Christensen, F.Curbera, GMeredith, and S.Weerawarana. Web Service Description
Language (WSDL) 1.1 http://www.w3.org/TR/2001/NOTE-wsdl20010315, 2001

4. Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,Henrik Frystyk
Nielsen, SOAP Version 1.2 Part 1: Messaging Framework, http://www.w3.org/TR/2003/
REC-soap12-part1-20030624, 2003

5. Liang-Jie Zhang, Jen-Yao Chung, Qun Zhou, Developing Grid computing applications,
2002

6. I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham, D. Snelling, S. Tuecke,
Modeling and Managing State in Distributed Systems: The Role of OGSI and WSRF,
Proceedings of the IEEE, 93(3), 2005.

7. Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, James Hendler, Ian
Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
OWL Web Ontology Language Reference, 2004.

518 G. Gutiérrez-Carreón, T. Daradoumis, and J. Jorba

8. Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donin, Azzurra
Ragone1, Semantic-Based Automated Composition of Distributed Learning Objects for
Personalized E-Learning, 2004

9. Stutt and Enrico Motta , Semantic Webs for Learning: A Vision and Its Realization,
Arthur, 2004

10. Zaheer Abbas, Muhammad Umer, Mohammed Odeh, Richard McClatchey, Arshad Ali,
Farooq Ahmad, A Semantic Grid-based E-Learning Framework (SELF), NUST Institute of
Information Technology, CCCS Research Centre, University of the West of England, 2005

11. Massimo Paolucci, Takahiro Kawamura, Rerry R. Payne, and Katia Sycara. Semantic
matching of web services capabilities, 2002.

12. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara, Importing the
Semantic Web in UDDI, Robotics Institue, Carnegie-Mellon University, USA, 2002

13. Guillermo Vega-Gorgojo, Miguel L. Bote-Lorenzo, Eduardo Gómez-Sánchez, Yannis A.
Dimitriadis, Juan I. Asensio-Pérez, Semantic Search of Learning Services in a Grid-Based
Collaborative System, School of Telecommunications Engineering, University of
Valladolid, 2003.

14. Cui Guangzuo, Chen Fei, Chen Hu, Li Shufang, OntoEdu: A Case Study of Ontology-
based Education Grid System for E-Learning, Modern Education Technology Center at
Peking University, 2004.

15. Luc Moreau, Simon Miles, Juri Papay, Keith Decker, Terry Payne, Publishing Semantic
Descriptions of Services, University of Southampton, UK. 2005

16. Preeda Rajasekaran, John Miller, Kunal Verma, Amit Sheth, Enhancing Web Services
Description and Discovery to Facilitate Composition, University of Georgia, Athens, 2004

17. Naveen Srinivasan, Massimo Paolucci. Katia Sycara, Semantic Web Service Discovery in
the OWL-S IDE, 2006

18. Simple Sequencing Services, Carnegie Mellon Learning System Architecture Lab,2002
19. Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin Sadaati,

and Rukman Senanayake, The OWL-S Editor – A Development Tool for Semantic Web
Services, SRI International, Menlo Park, California, USA, 2004

A QoS Oriented Broker System for Autonomic
Web Services Selection

Young-Jun Seo and Young-Jae Song

Dept. of Computer Engineering, Kyunghee University,
1, Sochen-dong, Gihung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea

yjseo@khu.ac.kr, yjsong@khu.ac.kr

Abstract. With the growing popularity of web services, web services
standards enable the development of large-scale applications in open en-
vironments. In particular, they enable services to be dynamically bound.
Unfortunately, current techniques fail to address the critical problem of
selecting the right service instances. If one needs to be chosen among
many similar web services, a service consumer needs quality information
of web service in general. Therefore, a device that can share quality infor-
mation among service consumers is needed in order to solve the problem
of web service selection. This paper presents a design specification and
service selection method of Agent-based QoS Broker(AQB) system on
behalf of service consumers. An object-oriented approach has been used
for system analysis by UML and it was possible to analyze static aspects
and dynamic ones of the system. An agent selection rule has been used to
select the part needed by an agent in the system. An interaction between
agent’s role and agent has been shown by diagram. An agent perform
the function such as collection, feedback of QoS metrics value and service
selection through broker.

1 Introduction

Recently, web service has come upon as an alternative in order to solve the
problem of integrated technologies among enterprises. And web service integrate
individual applications into low-cost and high-efficiency. According to IDC, the
sales of web service related SW was expected 3 billion dollars in 2004 and this is
only 1.6% of 188 billion dollars which is total amount of SW market that year.
However, it is expected to be 11 billion dollars in 2008 by increasing 58% per
year for 5 years[1].

But, there are some increasing problems to be solved as web service has be-
come activating. The focusing element among these is the web service selection.
The techniques(WSDL and UDDI) which are publishing and finding the present
service depend on only static description of service interface and they have a
disadvantage which is not able to describe runtime service selection based on
nonfunctional attributes evaluation[2]. When it needs to choose one among the
similar web services, service consumer generally needs quality information of
web service. Therefore, a device that is able to share quality information among

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 519–531, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

520 Y.-J. Seo and Y.-J. Song

service consumers is needed to solve the problem of web service selection. By
using shared quality information, service consumers know quality reputation of
required service. The purpose of QoS-oriented service selection is to select opti-
mal web service for the current task and some particulars should be considered
in the process as followed. There are more discussions on the using milestone
of selection mechanism, the kind of information needed in the selection process,
the achieving method of information, and the method of using information in
the selection process.

This paper on behalf of service consumers defines the architecture of Agent-
based QoS Broker(AQB) system which selects optimal web service autonomously
and design specification. A theory of agent is accepted widely and suitable for
related system developing in the circumstance of distributed and heterogeneous
environment like web service[3]. So, in this paper I extracted agents by using
agent selection rules and injected the roles into system design. Agent’s roles
could be divided into big three. First, it collects QoS metrics value while mov-
ing QoS brokers. Second, it selects the most appropriate service as comparing
with measured QoS parameter. Third, it has to feed-back QoS metrics value of
service which is selected by monitoring. QoS broker is a storage that shares QoS
parameter of services as it collects and stores QoS metrics values and offers them
to agents. Therefore, service consumer’s application can choose an optimal web
service that is suitable for quality preference and be possible to construct on
run-time.

This paper is organized as followed. Section 2 introduces research trends of
web service selection and a theoretical background of agent as related work.
Section 3 describes problem domain of agent-based QoS broker system and design
specification. Problem domain is described by system architecture and design
specification does modeling by using UML. Section 4 describes the best web
service selection method which find a service provider providing the optimum
quality that the consumer needs in a position of service consumer. Comparative
evaluation is done with established approaches through qualitative method in
Section 5 and finally Section 6 describes conclusions and further research.

2 Related Work

This section explains research trends of web service selection and agent’s char-
acteristics.

2.1 Web Service Selection

The study of de Moor[4] proposed selection mechanism which web service se-
lection is executed in the process of software development cycle. It does not
depend on software developer to select service, but includes members of virtual
community. Information can be achieved from community members while de-
veloping. However, it is not said clearly how to use information in the selection
process.

A QoS Oriented Broker System for Autonomic Web Services Selection 521

In the research of Maximilien[5], the system is proposed that a proxy agent
collects information for the service and interacts other proxy agents to maxi-
mize that information. Agents connect with service broker that is located be-
tween service consumers and providers. Service broker has not only rating of
observed QoS, but also information for the service. Even though the method is
not described in details, information is combined with historical usage and that
information is used to select service.

Liu[6] suggested a dynamic selection mechanism that web service selection is
executed based on QoS computation and policing on run-time. The system uses
an extensible QoS computation model to select web service. Web service is so
various that single static model cannot define all QoS parameter, on the other
side domain-specific parameter for a service cannot apply to other services per-
fectly. Therefore, general quality criteria have been defined including execution
price, execution duration, and reputation. Execution price is the cost that service
requestor has to pay a service provider to use the service. Execution duration is
the time that takes from the call service to getting back the result. Reputation is
a parameter that can be described by user for the particular web service. These
QoS parameters can be decided by getting information from service providers
or execution monitoring from clients. In order to execute selection, central QoS
registry of the system gets data collected from clients and store at a matrix of
web service data. Each row of matrix presents web service and each column does
QoS parameter. And it executes data computation like normalization. Clients are
able to access registry and service will be provided based on preferred parameter
by client.

Day[7] suggested a dynamic selection method based on QoS information. In
that study, central forum system is used to state interaction between client and
web services and it allows deducing an optimal service from a lot of potential
services and selecting. While clients call a service, information for the call is
marked up and central forum will be reported. Interaction describes QoS in-
formation from observing interaction attempt and system context information
from the calling period. QoS information deals observed availability, reliability,
and execution time of the service and system context information includes CPU,
memory usage, and the numbers of bandwidth, running process. Clients deduce
from these interactions to decide which service should provide good QoS. Clients
can access various services information and deduce these data from rule-base ex-
pert system or naive Bayesian classifier. Expert system ranks each service based
on observed values for the particular QoS parameter and user-defined weight.
Classifier classifies service as one of the five categories, i.e. ”excellent”, ”good”,
”adequate”, ”poor”, and ”terrible”, based on observed QoS parameters.

3 Problem Domain and System Design

3.1 Problem Domain

Problem domain applied in this paragraph added QoS Broker and Agent Server
to established web service architecture on the base of proposed architecture in

522 Y.-J. Seo and Y.-J. Song

Agent Server

Service Providers

Consumer
application

Provider A

Service 1
Impl A

Service 2
Impl A

Provider B

Service 1
Impl B

UDDI Registry

UDDI
Server DB

QoS Brokers

Broker
Server DB

M
Internet

Config

S

QoS
Preference

M
Application

objects

interaction

communication

operation

Fig. 1. System Architecture for Problem Domain

the study of Maximilien[2]. QoS Broker is used to share experience information of
QoS among consumers. Agent Server generates an agent that helps selecting ser-
vice with the optimal QoS. Agent is divided into mobile agent and static agent up
to whether mobile is needed. Figure 1 shows whole structure of problem domain
via system architecture. Here, agent with character of mobile was marked as M.

Fig. 2. Activity Diagram

A QoS Oriented Broker System for Autonomic Web Services Selection 523

3.2 Activity Diagram

Before discussing the functions provided by system, we need a business model-
ing process that can make us to grasp improved business. Therefore, Figure 2
describes specific business process by using activity diagram. To make sure of
responsible domain, it employs swimlane. This swimlane does not connect to a
class or an object. And swimlane except system can be an actor.

Step 1. Service consumer connects to purchasing page and inputs inquiry of
service wanted and QoS preference.

Step 2. Before proceeding selection process, system decides if requested service
is validity.

Step 3. If so, he/she starts purchasing and connects decentralized Quality
Broker while moving agent. Agent collects QoS metrics value from each broker.
This step continues until completing collecting from all brokers.

Step 4. QoS parameter is measured from QoS metrics values. For instance, in
the case of availability parameter, it will be measured on the basis of the number
of successful executions and total number of invocations.

Step 5. Agent of system selects the optimal service through Decision mak-
ing procedure. In the Decision making procedure, QoS parameters are applied
to decision making algorithm like PROMETHEE[8] and outranking relation of
services are computed. According to this evaluation, the service of biggest value
is the best choice.

Step 6. When service is to be chosen, payment information is inputted.
Step 7. Consumer invokes corresponded service with specification information,

for example, WSDL, of selected service.
Step 8. After monitoring QoS metrics value while agent use service, it gives

feedback to Quality Broker. Stored QoS metrics values will be used in the selec-
tion process of service hereafter.

3.3 Event Table

An event table can decompose complex system into manageable task units based
on event. An event table includes rows and columns, representing events and
their details respectively[9]. An event drives all system processing and happens
specific time and place. Trigger is a data arrival or a point of time when system
has to deal with. And source is an external agent or actor that supplies data
to the system. A use case is an action that has to be operated by the system
when an event happens. A response is an output produced by the system and a
destination is an external agent or an actor what is received data from the system.

3.4 Use Case Diagram

Use case diagram is a graphic model which summarized functions that have to
be supplied from new system and refers to event table in order to identify actor
and use case. Actor will be identified by observing trigger and source column of

524 Y.-J. Seo and Y.-J. Song

Table 1. System Event Table

Event Trigger Source Use Case Response Destination
1. Consumer
wants to
check ser-
vice validity

Service
inquiry

Consumer Check ser-
vice validity

Service
validity
details

Consumer

2. Consumer
places a pur-
chasing

New pur-
chasing

Consumer Make a pur-
chasing

Purchasing
confirmation
Transaction

Consumer
Bank

3. Consumer
changes
or cancels
purchasing

Purchasing
change
request

Consumer Update pur-
chasing

Change
Confir-
mation
Transaction

Consumer
Bank

4. Consumer
updates ac-
count infor-
mation

Consumer
account
update
notice

Consumer Update
consumer
account

Change
Confirma-
tion

Consumer

5. Time
to produce
transaction
summary
reports

End of day Produce
transaction
summary
reports

Transaction
summary
reports

Consumer

event table and use table will be defined by observing use case column. If it is the
case that one use case asks the service of another, the relationship <<include>>
will be set up between two use cases. For example, ”Make a purchasing” use case
has to confirm validity of service first in Figure 3, there has been a relationship
set up between ”Check service validity” and <<include>>.

Fig. 3. Use Case Diagram

A QoS Oriented Broker System for Autonomic Web Services Selection 525

3.5 Class Diagram

Before describing class diagram, some class has to be chosen as an agent from
classes. In this paper, I have classified agent into collaborative learning agent,
interface agent, collaborative agent, and smart agent like Figure 4 with referring
agent classification proposed by Nwana[10].

LearnCooperate

Autonomous
Interface

Agent

Collaborative
Learning Agent

Collaborative
Agent

Smart
Agent

Fig. 4. A Part View of an Agent Typology[10]

However, not this classification is always clear and it is classified up to at-
tribute emphasized especially. For instance, collaborative agent is rather em-
phasized agent to emphasize autonomous and cooperate attribute than learn
attribute. Following Listing 1 is decision rule for three attributes to induce four
types of agent[3].

1. Autonomous
(a) Does it need internal knowledge?
(b) Does it make decision by itself?
(c) Can it be tolerant of unexpected or wrong inputs?

2. Learn
(a) Is its knowledge updated continuously?
(b) Does it interact with external entities?

3. Cooperate
(a) Does it operate cooperatively?
(b) Is it operated in multi-threaded style?

Listing 1. Agent Selection Rule[3]

Three agents have been chosen on the basis of design specification so far.

– Messenger Agent(Interface Agent - rule 1.a, 1.c, 2.b) : It roles a messenger
between application of operates consumer and Decision Maker Agent. That
is, if a consumer begins purchasing, it passes a corresponded request to
Decision Maker Agent and shows the result to the consumer.

526 Y.-J. Seo and Y.-J. Song

Fig. 5. Class Diagram

– QoS Collector Agent(Collaborative Agent - rule 1.a, 3.a, 3.b) : It operates a
function that collects QoS metrics value of service while moving QoS brokers.
It is very important for this agent to cooperate with other agents and it should
be suitable for distributed environment. It also does feedback to Quality Bro-
ker after monitoring QoS metrics value while services are binding.

– Decision Maker Agent(Collaborative Agent - rule 1.a, 1.b, 3.a) : This is the
main role and has an internal decision making algorithm. It deals ranking of
services on the basis of QoS metrics value collected by QoS collector agent
and decides the optimal service with the highest ranking.

Figure 5 is the class diagram including three selected agents.

3.6 Sequence Diagram

Sequence diagram shows the order of interaction among objects in the single use
case. To identify all objects and actors on the scenario, it only uses object and
act of each class diagram and use case diagram. Figure 6 is a sequence diagram
in order to describe control flow of ”Make a purchasing” use case. The next is
an outlined explanation of Figure 6.

– Before purchasing service, to confirm whether service is valid.
– If valid, AgentServer sets up three agents for initialization.
– After QoSPreference of consumer application is delivered to MsgAgent, De-

cisionMakerAgent starts working for service selection.
– QoSCollectorAgent collects QoS metrics values from WSBrokers.
– Having collected, DecisionMakerAgent measures QoS parameter.
– Selection is done by delivering list of service with ranking information to

consumer application and best service is binding.

A QoS Oriented Broker System for Autonomic Web Services Selection 527

– QoSCollectorAgent monitors QoS metrics value while binding and feedback
to WSBroker.

– WSBroker inputs values from feedback related to QoSSet.

Fig. 6. Sequence Diagram

4 Service Selection Method

In order to select the best web service with result values calculated by 5 quality
criteria, this paper adopted PROMETHEE approach among MCDM approaches
and following three stages are necessary[8]. The algorithm can be summarized
as follows:

At the first stage, weight, preference function and threshold by evaluation cri-
teria were decided. In Min/Max, Max means an index which gives more positive
influence to the relevant web service selection as the evaluation criteria value
increases and Min means an opposite case. Weight is decided by experiences of
the past and opinions of service consumers. Preference function is defined with
6 kinds and each function is selected by the type of criteria.

At the second stage, leaving flow, entering flow and net flow of the preference
are calculated. First, the preference function value per quality criteria should
be calculated and the preference function value pk(WSPi, WSPj) of the basis
k means pk(fk(WSPi), fk(WSPj)) which is the difference between WSPi and
WSPj . The preference index Π(WSPi, WSPj) is a measure for the intensity of

528 Y.-J. Seo and Y.-J. Song

Algorithm 1. Pseudo Code of QoS Decision Making Algorithm
Define attributes of QoS criteria
Construct QoS Matrix
/* Compute preference function value between WSi and WSj*/
While more QoS criteria Do

For i=1 to N
For j=1 to N

Compute difference evaluation value between WSi and WSj

If the more value increases, the more positive influence have then
If result > 0 then

Compute preference function value
Endif

Else
Set preference function value to zero

Endif
Endfor

Endfor
Endwhile
/* Compute preference index value between WSi and WSj*/
For i=1 to N

For j=1 to N
Compute weighted average of the preference function values between WSi and WSj

Endfor
Endfor
/* Compute leaving, entering flow between WSi and WSj*/
For i=1 to N

For j=1 to N
Compute average of the preference index values between WSi and WSj

Endfor
Endfor
/* Compute net flow between WSi and WSj*/
For i=1 to N

Compute difference value between leaving flow and entering flow of WSi

Endfor
Choose WSi with maximum net flow value

the service consumer’s preference for an alternative WSPi in comparison with
an alternative WSPj for the simultaneous consideration of all quality criteria.
It is basically a weighted average of the preference functions pk(WSPi, WSPj).

The outranking relation of alternatives is calculated by figuring out leaving
flow(φ+), entering flow(φ−) and net flow(φ) like equation 1 with preference index
Π(WSPi, WSP j).

φ+(WSPi) =
1
N

N∑
n=1
n
=i

Π(WSPi, WSPn) (1)

φ−(WSPi) =
1
N

N∑
n=1
n
=i

Π(WSPi, WSPn)

A QoS Oriented Broker System for Autonomic Web Services Selection 529

φnet(WSPi) = φ+(WSPi) − φ−(WSPi)

At the third stage, the outranking relation is evaluated. The higher the leaving
flow and the lower the entering flow, the better the alternative. In case a complete
pre-order is requested, PROMETHEE II yields the so-called net flows. As the
net flow φnet(WSP) of preference is higher, the relevant WSP means the more
superior alternative.

5 Comparative Evaluation

Comparative evaluation between established approaches which are described ear-
lier in related work and the approach proposed in this paper is the same as
Table 2, each features are as followed[4,5,6,7].

Table 2. Comparative Evaluation of Web Service Selection Approaches

���������F eatures
Approach

de
Moork[4]

Maximilien[5] Liu[6] Day[7] AQB Sys-
tem

Employment time Design-
time

Run-time Run-time Run-time Run-time

Kinds of Information User,
com-
munity
require-
ments

Service loca-
tions, QoS
ratings

QoS data Client-
specific
data

QoS pa-
rameter

Methods of getting
information

Involving
users in
devel-
opment
cycle

Proxy agents Client feed-
back

Client
feedback

Agents
feedback

Methods of using in-
formation

No ex-
plicit
method

No detail
method

NormalizationRule-base
expert
system,
Naive
Bayesian
classifier

Multiple
Criteria
Decision
Making

First, the employment time of selection mechanism. All comparable approaches
apart from de Moor’s approach selected web service dynamically on run-time. On
the other hand, users and community members operated selection mechanism
on design time by de Moor’s approach.

Second, kinds of information needed in the selection process. Most researches
except de Moor’s approach used QoS data in the selection process. As a character
of web service, at the time when consumer uses web service, quality is the main
decision element to choose web service. So, approach presented in this paper has
been only considered performance, safety, and cost related QoS parameter.

530 Y.-J. Seo and Y.-J. Song

Third, methods of getting information. In Liu and Day’s approach, client does
feed-back QoS registry or forum system in direct. But, the approach proposed
by with Maximilien use agent to feedback to broker.

Fourth, methods of using information in the selection process. There was no
clear explanation how to use information in the process of selection in De Moor
and Maximilien’ approach. While Liu’s approach operates the same computation
such as normalization and Day’ approach inducts through rule-base expert sys-
tem or naive Bayesian classifier. Information was used for MCDM approach like
PROMETHEE in the presented approach. When PROMETHEE compares with
other approaches like MAUT and AHP, it has an advantage that even though
comparative alternative has been added or deleted, it can overcome the problem
that it has to operate pair-wise comparison again. Therefore, it is the appropri-
ate approach[11] for the matter of web service selection that asks a lot of quality
attributes which measured and evaluated at the same time.

6 Conclusion

This paper has presented the architecture of Agent-based QoS Broker system
which agents on the basis of shared QoS through broker select service au-
tonomously and the design specification. We used object-oriented approach by
using UML for system analysis, and through this, we have been able to analyze
static side and dynamic side of system. Agent selection rule has been used to
select some part that agent needs from the system, and though diagram, inter-
action been shown among agent’ role and agent. Agent operates QoS metrics
value collection, service selection, feedback of QoS metrics value through broker.
Especially, decision making result that happens from the procedure of agent’
service selection supports consumer to bind the optimal service on run-time. In
future work, we will expand our selection algorithm to take into account the
trust relationship between brokers. Also, system architecture and design should
be expanded in order to suit for service composition environment and there is a
need to describe service selection algorithm inside.

References

1. Sandra Rogers, ”Web Services Software 2004-2008 Forecast”, IDC, Apr, (2004).
2. E. Michael Maximilien, Munindar P. Singh, ”A Framework and Ontology for Dy-

namic Web Services Selection” IEEE Internet Computing, Vol. 8, No. 5, pp. 84-93,
(2004).

3. Sooyong Park, Jintae Kim, Seungyun Lee, ”Agent-Oriented Software Modeling
with UML Approach”, IEICE Transaction on Information and Systems, Vol.E83-
D, No.8, Aug, (2000).

4. Aldo de Moor, Willem-Jan van den Heuvel, ”Web service selection in virtual com-
munities”, In 37th Hawaii International Conference on System Sciences, Jan, (2004).

5. E. Michael Maximilien, Munindar P. Singh, ”Agent-based architecture for auto-
nomic web service selection”, In Workshop on Web Services and Agent-based En-
gineering at Autonomous Agents and Multi-Agent Systems, (2003).

A QoS Oriented Broker System for Autonomic Web Services Selection 531

6. Yutu Liu, Anne Ngu, Liangzhao Zheng, ”QoS computation and policing in dynamic
web service selection (to appear)” In Proceedings of the WWW 2004, May, (2004).

7. Julian Day, Ralph Deters, ”Selecting the best web service”, In Proceedings of the
IBM Centers for Advanced Study Conference (CASCON ’04), pp.293-307, (2004).

8. Brans, J. and P. Vincke, ”A Preference Ranking Organization method(The
PROMETHEE Method for Multiple Criteria Decision-Making)”, Management Sci-
ence, Vol. 31, No. 6, (1985), 647-656

9. John W. Satzinger, Rober B. Jackson, Stephen D. Burd, ”Systems Analysis and
Design in a Changing World”, Course Technology, (2002).

10. Nwana, H. S., ”Software Agents: An Overview”, Knowledge Engineering Review,
Vol.11, No.3, pp.205-244, Oct, (1996).

11. K.H.Bennett, and others, ”A Broker Architecture for Integrating Data Using a
Web Services Environment”, ICSOC, Vol.2910, pp.409-422, (2003).

XML Based Semantic Query Mechanism on Grid

Jinguang Gu1,2 and Baowen Xu2

1 College of Computer Science and Technology,
Wuhan University of Science and Technology, Wuhan 430081, China

2 College of Computer Science and Engineering,
Southeast University, Nanjing 210096, China

{sam, bwxu}@seu.edu.cn

Abstract. Semantic heterogeneity and few compatible data sources are
two problems in data grid service. This paper introduces a novel wrapper-
mediator based semantic data grid service mechanism, it uses ontology
based semantic information to wrap the heterogeneous data source, and
employs mediator structure to supply accessing interface for the data
sources. The extension of XML algebra with semantic query enhanced
and semantic grid communication mechanism are also discussed to enable
semantic querying on data gird environment.

1 Introduction

We witness a rapid increase in the number of web information sources that
are available online. The World-Wide Web(WWW), in particular , is a pop-
ular medium for interacting with such sources[1]. How to integrate and query
distributed and heterogeneity information, especially semi-structured and non-
structured information is the problem we need to solve. Data grid technology is
the standard means of realizing the needs. However, the studies in data grid tech-
nology still have the shortcomings as follows: 1)The flexibility of the grid tech-
nology is limited. Taking OGSA-DAI[2] for example, it only supports the limited
related database and native XML database. However, most information on Inter-
net comes from web-based semi-structured data environment, such as company
web application and XML-based e-commerce platform; furthermore, OGSA-DAI
does not have the effective mechanism for other data sources to be integrated
into the grid environment. 2) The individual node in the grid environment may
exist in varied semantic environment; different data resource is constructed in
accordance with different semantic standard. The present data grid does not
take into consideration the semantic heterogeneity among different nodes. Many
projects are focusing these two topics about data grid, GridMiner[3] and OGSA-
WEB[4] are two novel projects focusing on the first one, they use a OGSA-DAI
compatible architecture to support semi-structure information sources on the
internet; DartGrid II[5] and SemreX[6] are excellent projects focusing on the
second topic.

This paper focusses on these two topics too. It employs a mediator-wrapper
framework to support different information sources and enable semantic infor-
mation operation on different grid nodes. And it uses XML query style language

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 532–541, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

XML Based Semantic Query Mechanism on Grid 533

to retrieve information from different grid nodes, because XML is rapidly be-
coming a language of choice to express, store and query information on the
web, other kinds of web information such as HTML-based web information can
be transferred to XML based information with annotation technologies. Users
can query information with XML languages, XPath based languages such as
XQuery, XUpdate are suitable for retrieving information in distributed inte-
gration systems. The remainder of this paper is structured as follows. Sec-
tion 2 gives the general discussion about framework of the mediator-wrapper
based semantic data grid (SDG for short), and proposes the knowledge fu-
sion mechanism on the mediator node from the local wrapped grid nodes.
Section 3 discusses the knowledge communication mechanism to support seman-
tic querying and knowledge fusion. Section 4 discusses ontology enabled query-
ing planning on XML based grid nodes, such as ontology enhanced XML query
algebra and XML query planning algorithm. Section 5 summarizes the whole
paper.

Grid Infrastructure
and Middleware

(OGSA)

Cluster
Element

Node

Cluster
Element

Cluster
Element

Local Network

MPP
Element

Work
-station

SMP
Element

Local Network

Computing resources

SDG node

SDG Node

General Grid node

SDG Adapter Service

Grid middleware

SDG Adapter Service

SDG Repository Node

SDG Access Node

Fig. 1. General Architecture of Semantic Data Grid

2 Mediator-Wrapper Based Semantic Data Grid Service

Semantic Data Grid (SDG) must satisfy the following requirements:

– The architecture must be opening and compatible with existing standard
such as the framework of OGSA[7] or WSRF[8] considering compatible with
OGSA-DAI;

– It must provide flexible method for integrating various data sources includ-
ing relational databases, Native XML databases, or Web based application
systems;

534 J. Gu and B. Xu

– It must support the global semantics to the users who access semantic data
grid.

The general architecture of semantic data grid can be illustrated in fig 1. It uses
a semantic grid adapter service to support semantic operation on the gird. This
paper employs a mediator-wrapper method to construct the adapter service,
which can be expressed by figure 2(a). The function of the wrapper of local
grid nodes is to describe its semantics and its mapping relationship with other
nodes, the information source of these nodes include both free and commercial
databases, flat files services, web services or web based applications, HTML files
and XML files, and the semantic information of every local gird node is described
with the language based on its ontology. The mediator node constructs the global
semantics of the local nodes, the semantic communication mechanism between
the mediator and wrapper nodes is discussed in the following section.

a Mediator-wrapper based semantic data grid (b) Semantic Query mechanism with GAV style request

SDG Mediator

User Query Results

SDG Mediator

MySQL CVS

SDG Mediator

Web Applications

Oracle

Wrapper Wrapper Wrapper

Wrapper Semantic based Mediator

Semantic based Query

Query Optimizing

Distributed Query

Wrapper

Wrapper

Query Planning

Semantic Communication

Query Result

Source

Source

Fig. 2. Mediator-Wrapper based Semantic Data Grid

To support OGSA-DAI interface, this paper develops a Ontology to XML
(OTX as short) algorithm to generate a virtual data source (VDS) of OGSA-
DAI[9]. To illustrate the algorithm, we first define the ontology based knowledge
on the mediators and wrappers.

Definition 1. A knowledge schema is a structure KB := (CKB , RKB, I, ιC , ιR)
consisting of (1) two sets CKB and RKB, (2) a set I whose elements are called
instance identifiers or instances, (3) a function ιC : CKB → �(I) called concept
instantiation, (4) a function ιR : RKB → �(I+) called relation instantiation.

There are four basic relations: part-of, kind-of, instance-of and attribute-of,
which denote respectively the relation between portion and whole, the relation
of concept hierarchy, the relation between concept and instance, the relation of
attributes. The OTX can be express in algorithm 1.

XML Based Semantic Query Mechanism on Grid 535

Algorithm 1. OTX

Input: S = (CS, RS)//parse ontology, acquire conceptual model
Output: XML Schema
foreach ci ∈ CS do1

if kind of(ci, cx) /∈ RS then2

output <complexType name=ci+”Type”/ >3

else4

output <complexType name=ci+”Type” base=cx+”Type”5

derivedBy=”extension”>
end6

end7

foreach CAj ∈ CA(ci) do8

// CA(ci) = {CA1, CA2, . . . , CAp} is the attribute of ci, and

CAi = (nCAi, vi)
if attibute of(cy , ci) ∈ RS) then9

output <element name=”nCAj” type=cy+”Type”/>10

else11

output <element name=”nCAj” type=”vj”/>12

end13

output </complexType>14

end15

foreach ci ∈ CS do16

output <element name=”ci” type=ci+”Type”/>;17

end18

3 Communication Mechanism with Semantic Grid

It is very important to develop a knowledge communication and coordinating
mechanism to support the ontology fusion and semantic query on different data
grid nodes. This paper employs a Knowledge Communication and Manipulation
Language for Semantic Grid, or KCML for short to support this mechanism,
which is an extension of the KGOL[10] language. One function of KCML is
to coordinate with each grid node to build the mediator-wrapper architecture
dynamically. The other function is to build global knowledge on the mediator and
enable semantic query. The communication language is build on SOAP, following
the expression of SOAP’s class XML, supporting SOAP over HTTP, HTTPS or
other rock-bottom communication protocol. The language could describe as:

KCML ::= V er|Operation|Sender|Receiver|Language|Content.
The field Ver is for keeping Expanding, showing which version language was

used. The new version language has compatibility downwards, supporting the old
communication mechanism; Operation gives basic communication atom which
will be described next; Content describes what is communicated; Sender defines
sender’s information, including user, address (such as IP ,e-mail,URL, port);
Receiver defines receiver’s information (usually, receiver should be Web Service
or Grid Service), ,including type (HOST, Web Service or Semantic Web Service),
address(such as IP address, e-mail, URL, port, if receiver is Web Service, also

536 J. Gu and B. Xu

including service address), identifier; language defines which language is used
this communication, including RDF/RDFs, DAML+OIL, OWL etc.

3.1 Basic Communication Atom

To simplify the content of this paper, we only discuss the atom of KCML lan-
guage which support ontology fusion and semantic querying. The atom includes
query operation, join operation and union operation etc. as following[11]:

– Selection. σF (c) = {x|x ∈ ιC(c) ∧ F (x) = true} where F is composed of
logic expression, supporting logic operation ∧, ∨, ¬, ∀, ∃, <, >, ≤, ≥, =, =
and ∈. c is concept element of knowledge instance;

– Join. � (c1, p, c2) = {x, y|x ∈ ιC(c1) ∧ y ∈ ιC(c2) ∧ p(x, y) = true}, where p
is join condition, c1 and c2 is concept element;

– Union. c1∪c2 = {x|x ∈ ιC(c1)∧x ∈ ιC(c2)}, c1 and c2 is the same as above;
– Minus. c1 − c2 = {x|x ∈ ιC(c1 ∧ ¬c2)}, c1 and c2 is the same as above;
– Projection. πP (c) =

⋃
pi∈P

{y|∃x, (x, y) ∈ ιR(pi) ∧ x ∈ ιC(c)}, where c is

concept element, P is a set of relationship and P = {p1, p2, . . . , pk};

3.2 Semantic Fusion Atom

The mediator node constructs the global semantics of the local nodes based
on ontology via ontology fusion mechanism[12] based on the ontology mapping
patterns in gird environment, the patterns of ontology mapping can be catego-
rized into four expressions: direct mapping, subsumption mapping, composition
mapping and decomposition mapping[13], a mapping can be defined as:

Definition 2. A Ontology mapping is a structure M = (S,D,R, v), where
S denotes the concepts of source ontology, D denotes the concepts of target on-
tology, R denotes the relation of the mapping and v denotes the confidence value
of the mapping, 0 ≤ v ≤ 1.

A direct mapping relates ontology concepts in distributed environment directly,
and the cardinality of direct mapping could be one-to-one. A subsumption
mapping is a 6-tuple SM = (Dm,Rm,Bm,!m, Im, v), where Dm is a direct
mapping expression; Rm is the first target concept, which is the most special-
ized ontology concept. The mapping between the source ontology and Rm is
denoted as Root ontology concept mapping; Bm is the last target concept,
which is the most generalized ontology concept. The mapping between the source
ontology and Bm is denoted as Bottom ontology concept mapping; !m is
inclusion relation between target ontology concepts; Im is the inverse mapping.
Subsumption mapping is used to denote concept inclusion relation especially
in the multiple IS-A inclusion hierarchy. The composition mapping is a 4-
tuple CM = (Fm,Am,Bm, v), where Fm is a direct mapping expression; Am is
chaining of role(s) between target ontology concepts; Bm is the last target sym-
bol, which is the node of chaining target role(s), and composition mapping is

XML Based Semantic Query Mechanism on Grid 537

used to map one concept to combined concepts. For example, the mapping ad-
dress=contact(country, state, city, street, postcode) is a composition mapping,
in which the concept address is mapped to combined concept “contact, coun-
try, state, street, and postcode” of local schema elements. The decomposition
mapping is a 4-tuple CM = (Am,Bm,Lm, v), where Am is chaining of role(s)
between source ontology concepts; Bm is the last target symbol, which is the
node of chaining source role(s); Lm is a direct mapping expression. Decomposi-
tion mapping is used to map a combined concept to one local concept, and the
example for the decomposition mapping is the reverse of the composition.

Algorithm 2. XPlan(σ(X,Y), FL)

Input: σ(X, Y) is the query needed to be processed, FL is the fusion connection
list.

Output: P is the query planning sequence
P ← ∅, Sq ← ∅;1

foreach x ∈ X do2

switch Mappings of X node in fusion list FL do3

case directfusion4

P ← P + (σ(x,Y), {σ(x, Y), σ(x1 : S1, Y), σ(x2 : S2, Y), . . . , σ(xn :5

Sn, Y)},∪);
case subsumption or composition6

P ← P + (σ(x,Y), {σ(x1 : S1, Y), σ(x2 : S2, Y), . . . , σ(xn :7

Sn, Y)},∪);
end8

end9

Sq ← Sq + σ(x1 : S1, Y) + σ(x2 : S2, Y) + . . . + σ(xn : Sn, Y);10

end11

foreach σ(x,Y) ∈ Sq do12

foreach y ∈ Y do13

switch Mappings of Y concept in fusion list FL do14

case directfunsion15

P ← P + (σ(x, y), {σ(x, y), σ(x : S1, y1), σ(x : S2, y2), . . . , σ(x :16

Sn, yn)},∪);
case subsumption17

P ← P + (σ(x, y), {σ(x : S1, y1), σ(x : S2, y2), . . . , σ(x :18

Sn, yn)},∪);
case decomposition19

P ← P + (σ(x, y), {σ(x : S1, y1 ∧ F), σ(x : S2, y2 ∧ F), . . . , σ(x :20

Sn, yn ∧ F)}, �, F);
end21

end22

end23

end24

return P ;25

The KCML language must support the mapping patterns between different
semantic nodes on gird, we use Match atom to support it, it can be defined as

538 J. Gu and B. Xu

M(c, d, r) = {(x, y)|x ∈ ιC(c) ∧ y ∈ ιC(d) ∧ (x, y) ∈ ιR(r)}, where c is different
concept from d, r is relationship of mapping.

The knowledge stored at mediator can be described as the ontology fusion
connections list, which can be described as definition 3. The corresponding fusion
connection lists of the mapping patterns can be denote as Fcd, Fcs and Fcc

respectively.

Definition 3. Fusion Connection is a structure Fc(O1 : C1, O2 : C2, . . . , On :
Cn,M), where C1 denotes a concept or concept set of ontology O1, C2 denotes a
concept or concept set of Ontology O2, M denotes the mapping patterns between
C1 , C2 , . . . and Cn.

4 Semantic XML Query Rewriting and Planning

The semantic query in a mediator-based SDG can be express as figure 2(b).
The user’s request is rewritten and modified accordingly based on the global
semantics, and is due processed optimally. Corresponding operation plan is made
and passed by the wrapper to each data source node for operation. From above
description, we know that this paper employs the GAV(Global as View) method
to process the user’s query[1]. The query can be described as an XML query with
semantic enhanced, which can be described as an extension of XML algebra, and
it will be discussed in the following subsection. Because common XML query
languages such as XQuery and XUpdate can be transferred into XML query
algebra, so the extension is manageable.

4.1 The Extension of XML Algebra with Semantic Query Enhanced

This paper extended XML algebra TAX[14] to enable semantic querying on
mediated gird nodes, TAX uses Pattern Tree to describe query language and
Witness Tree to describe the result instances which satisfy the Pattern Tree. The
definition of pattern tree with ontology extension can be described as follows:

Definition 4. An Ontology Enhanced Pattern Tree is a 2-tuple SPT := (T , F),
where T := (V, E) is a tree with node identifier and edge identifier. F is a
combination of prediction expressions.

The prediction expression F supports the following atomic condition or se-
lection condition[15]. Atomic condition have the form of X op Y , where:

– op∈{=, =, <,≤,>,≥,∼, instance of, isa, is part of, before, below, above}
– X and Y are conditional terms, which are attributes ,types,type values v : τ

and v ∈ dom(τ), ontology concepts and so on;
– ∼ stands for the estimation of semantic similarity.

The selection condition is:

– Atom conditions are selection conditions;
– If c1 and c2 are selection conditions, then c1 ∧ c2, c1 ∨ c2 and ¬c1 are both

selection conditions;
– No others selection conditions forms.

XML Based Semantic Query Mechanism on Grid 539

4.2 XML Query Rewriting and Planning

The query planning is based on the semantic XML query rewriting technology.
In order to simplify the discussion, this paper just pays attention to the query
planning mechanism of the selection operation. Briefly, a selection operation can
be expressed as σ(X : S, Y) {X ⊆ Pi ∪ Po, Y ⊆ PE}, where Pi is the input
pattern tree, Po is output pattern tree, PE is predication list, S denotes the
site in which the query will be executed. We define two operators ∪ and � to
represent Union and Join operation separately, and define the operator ⇒ to
represent the query rewriting operation, and we use σ(X : S0, Y) or σ(X, Y) to
denote the user’s query from the mediator site.

Firstly, we propose how to rewrite pattern tree (which is the X element of
expression σ(X, Y)), there maybe several cases as follows:

1. X is one of the elements of input pattern tree or output pattern tree, and
it is also a concept in the global ontology hierarchy. Xi(1 ≤ i ≤ n) are
the concepts for different local ontologies. X and Xi were combined into
one concept in the integrated global ontology with strong direct mappings,
which means that X and Xi can match each other, then we can rewrite X
as X ∪

⋃
1≤i≤n

Xi. The responding selection rewriting can be expressed as:

σ(X, Y) ⇒ σ(X, Y) ∪ σ(X1 : S1, Y) ∪ σ(X2 : S2, Y) . . . ∪ σ(Xn : Sn, Y) (1)

2. The concept of X is generated by the subsumption mapping or composi-
tion mapping of Xi(1 ≤ i ≤ n), then we can rewrite X as

⋃
1≤i≤n

Xi. The

responding selection rewriting can be expressed as:

σ(X, Y) ⇒ σ(X1 : S1, Y) ∪ σ(X2 : S2, Y) . . . ∪ σ(Xn : Sn, Y) (2)

And then, we propose how to rewrite the predication expressions (which is
the Y element of the expression σ(X, Y), there are also several cases, which can
be described as follows:

1. If there are lots of concept Yi(1 ≤ i ≤ n) combined in the concept Y of global
Ontology, we can rewrite Y as Y ∪

⋃
1≤i≤n

Yi. The corresponding selection

rewriting can be described as:

σ(X, Y) ⇒ σ(X, Y) ∪ σ(X : S1, Y1) ∪ σ(X : S2, Y2) . . . ∪ σ(X : Sn, Yn) (3)

2. If the concept Y is generated by the subsumption mapping of Yi(1 ≤ i ≤ n),
we can rewrite Y as

⋃
1≤i≤n

Yi. The corresponding selection rewriting can be

described as:

σ(X, Y) ⇒ σ(X : S1, Y1) ∪ σ(X : S2, Y2) . . . ∪ σ(X : Sn, Yn) (4)

540 J. Gu and B. Xu

3. If the concept Y is generated by the composition mapping of Yi(1 ≤ i ≤ n),
suppose the composition condition is F , we can rewrite Y as (Y1 + Y2 +
. . . Yn) ∩ F . The corresponding selection rewriting can be described as:

σ(X, Y) ⇒ σ(X : S1, Y1∧F) � σ(X : S2, Y2∧F) . . . � σ(X : Sn, Yn∧F) (5)

It is worth to point out that rewriting process may require a recursion in the
transitivity property of semantic mapping. The query planning is a sequence,
each node of the sequence can be denoted as Pn = (Qn, Sn, Cn, Fn), where Qn is
the query which is needed to rewrite, Sn is a set of sub query executed on different
sites, Cn denotes the connection operator, in most time, it is ∪ or � operator,
Fn is the predication which denotes the connection conditions. Pn represents the
query rewriting procedure of query Qn. The query planning procedure of user’s
query σ(X, Y) can be expressed in algorithm 2.

5 Discussion and Conclusion

Semantic data grid service mechanism we present in this paper wrapped various
information source through ontology semantic, and used Mediator-Wrapper to
support the heterogeneous data source, employed mediator structure to realize
virtual data gird service which supports semi-structured information retrieving
language. The extension of XML algebra with semantic query enhanced and
semantic grid communication mechanism are also discussed to enable semantic
accessing on data grid environment. However, query optimizing in distributed
web sites and the capability of different nodes and network were not considered
in the query planning mechanism discussed in this paper, future research will be
focused on this topic.

Acknowledgment

This work was partially supported by a grant from the NSF (Natural Science
Fundation) of China under grant number 60425206, and it was partially sup-
ported by a grant from NSF of Hubei Prov. of China under grant number
2005ABA235 and a grant from the NSF of Hubei Education Agency of China
under grant number Z200511005.

References

1. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Query heterogeneous information sources
using source descriptions. In: Proceedings of the 22nd VLDB Conference, Mumbai,
India, Morgan Kaufmann Publishers Inc (1996) 251–262

2. Antonioletti, M., Atkinson, M., Baxter, R., et al.: The design and implementation
of Grid database services in OGSA-DAI. Concurrency and Computation: Practice
and Experience 17 (2005) 357–376

XML Based Semantic Query Mechanism on Grid 541

3. Wöhrera, A., Brezanya, P., Tjoab, A.M.: Novel mediator architectures for Grid
information systems. Future Generation Computer Systems 21 (2005) 107–114

4. Pahlevi, S.M., Kojima, I.: OGSA-WebDB: An OGSA-Based System for Bringing
Web Databases into the Grid. In: Proceedings of International Conference on Infor-
mation Technology: Coding and Computing (ITCC’04), IEEE Computer Society
Press (2004) 105–110

5. Chen, H., Wu, Z., Mao, Y.: Q3: A Semantic Query Language for Dart Database
Grid. In: Proceedings of the Third International Conference on Grid and Cooper-
ative Computing (GCC 2004), Wuhan, China, LNCS 3251, Springer Verlag (2004)
372–380

6. Jin, H., Yu, Y.: SemreX: a Semantic Peer-to-Peer Scientific References Sharing
System. In: Proceedings of the International Conference on Internet and Web
Applications and Services (ICIW’06), IEEE Computer Society Press (2006)

7. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: Grid Services for Distributed
System Integration. IEEE Computer 35 (2002) 37–46

8. Czajkowski, K., Ferguson, D.F., Foster, I., et al.: The WS-Resource Framework.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf (2004)

9. Zhang, L., Gu, J.: Ontology based semantic mapping architecture. In: Proceedings
of 2005 International Conference on Machine Learning and Cybernetics, Guang
Zhou, China (2005) 2200–2205

10. Zhuge, H., Liu, J.: A Knowledge Grid Operation Language. ACM SIGPLAN
Notices 38 (2003) 57–66

11. Sheng, Q.J., Shi, Z.Z.: A Knowledge-based Data Model and Query Algebra for
the Next-Gereration Web. In: Proceedings of APWeb 2004, LNCS 3007 (2004)
489–499

12. Gu, J., Zhou, Y.: Ontology fusion with complex mapping patterns. In: Proceed-
ings of 10th International Conference on Knowledge-Based, Intelligent Information
and Engineering Systems, Bournemouth, United Kingdom, LNCS, Springer Verlag
(2006) 738–745

13. KWON, J., JEONG, D., LEE, L.S., BAIK, D.K.: Intelligent semantic concept
mapping for semantic query rewriting/optimization in ontology-based information
integration system. International Journal of Software Engineering and Knowledge
Engineering 14 (2004) 519–542

14. H.V.Jagadish, L.V.S.Lakshmanan, D.Srivastava, et al: TAX: A Tree Algebra for
XML. Lecture Notes In Computer Science 2379 (2001) 149–164

15. Hung, E., Deng, Y., V.S.Subrahmanian: TOSS: An Extension of TAX with On-
tologies and Simarity Queries. In G.Weikum, ed.: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, Paris, France, ACM
Press (2004) 719–730

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 542 – 549, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Novel Memory-Oriented OWL Storage System*

Dongwon Jeong1, Myounghoi Choi1, Yang-Seung Jeon3, Youn-Hee Han2,
Young-Sik Jeong3, and Sung-Kook Han3

1 Dept. of Informatics and Statistics, Kunsan National University,
Gunsan, Jeollabuk-do, 573-701, Korea

{djeong, cmh775}@kunsan.ac.kr
2 School of Internet-Media, Korea University of Technology and Education,

Cheonan, Chungnam, 330-708, Korea
yhhan@kut.ac.kr

3 Dept. of Computer Engineering, Wonkwang University,
Iksan, Jeollabuk-do, 570-749, Korea

{globaljeon, ysjeong, skhan}@wku.ac.kr

Abstract. A novel memory-oriented OWL storage system is proposed. Seman-
tic Web is recognized as the next generation Web and OWL (Web Ontology
Language) is one of the most important technologies to achieve the Semantic
Web. Even though several memory-oriented storage systems have been pro-
posed to manage and handle OWL documents, they still suffer from low per-
formance. In this paper, we propose a new memory-based OWL storage system
to resolve the problem. This paper describes the proposed storage model and
shows the experiment and comparison result. The evaluation result shows our
storage system provides higher performance than other systems. Therefore, it
enables us to develop and provides high quality Semantic Web services.

1 Introduction

Semantic Web is recognized as a next framework for an advance of the current Web.
To realize the Semantic Web, many technologies such as XML, RDF, RDF Schema,
OIL, and DAML have been proposed [1, 2, 3, 4]. However, there still exit several
issues such as no reasoning function and high implementation complexity due to
various suggestions.

To resolve these issues, OWL (Web Ontology Language) has been developed as an
international standard of W3C [5]. Recently, many Web pages have been building
using OWL language to endow them with an intelligent function (Inference facility).
We can verify the fact that one million or more Web pages have been built with OWL
for about one year since OWL had been selected as the international standard. We
believe that the OWL document will increase by geometric progression.

With this situation, one of the most crucial issues is how to efficiently store a very
large OWL data into memory. There are two types of storages to load and manage
OWL data. The first is memory-based (memory-oriented) storages that load OWL
ontologies on memory, and the other is permanent storages that load OWL ontologies
into such as relational databases or object-oriented databases [6, 7, 8, 9, 10, 11, 12, 13].

* This work was supported in part by MIC & IITA through IT Leading R&D Support Project.

 A Novel Memory-Oriented OWL Storage System∗ 543

The goal of this paper is to develop an enhanced memory-based storage model. In
other words, it is on how to effectively load a very large OWL ontology on memory.
To resolve this issue, several memory-based storage systems have been presented such
as Sesame and OWLJessKB.

However, the previous systems have several issues to deal with very large OWL
data sets (OWL ontologies). Most systems are based on the triple (3-tuple) model.
Hence, it exponentially increases the structural complexity and requires high response
time. Most of all, their memory-based loading time is time-consuming.

This paper proposes a novel memory-based loading system to efficiently load very
large OWL data sets. Especially, this paper proposes a new memory-based storage
model and shows the performance evaluation of the previous systems and our system,
which is proposed in this paper.

The outline of this paper is as follows: Section 2 introduces the proposed storage
model and Section 3 shows its implementation. Section 4 presents the evaluation
methodology such as experiment data sets, system environment, and comparative
item. Section 5 shows the evaluation result and Section 6 concludes this paper.

2 Framework of Storage System

This section describes the proposed memory-based storage model, i.e., in-memory-
based loading system. In fact, storage systems could be classified into two types:
Persistent storage system and memory-oriented storage system. We are studying on
the relational database-based persistent storage system, but this paper just focus on the
memory-oriented storage system.

2.1 Conceptual Storage Model

Fig. 1 illustrates the conceptual structure of the proposed storage model. In this figure,
first, an OWL document is parsed to check its validation and extract a data set, which
is suitable for the defined memory structure in the proposed system. In other words,
the original OWL documents are translated to the memory storage structure model.
Once the parsing operation is finished, the extracted data set is loaded on the memory.
A user gives a query and the query processing agent obtains its result from the stored
data set on memory. The query could be composed in SQL style or the others such as
KIF, RQL, or SPARQL [15, 16, 17].

Currently, in our system, queries should be composed as SQL (SQL statement) and
the query processing agent parse the queries and return the results to users. If it is in
other languages, the agent translates it into a SQL statement. In addition, a module for
reverse parsing might be added to show the query result as an OWL document.

2.2 Memory-Based Storage Model Definition

As shown in Fig. 1, the storage system input is a set of OWL ontologies and its result
could be an OWL document or a value set. Operations for parsing and storing are
required. The input ontologies are loaded on memory and stored into the defined
memory storage structure. The proposed storage system also has operations to return
query results to users. When they are sequentially denoted as I, OP, M, QP, and O, the
proposed storage model is defined as Definition 1.

544 D. Jeong et al.

OWL Data Sets
(Ontologies)

Parsing

OWL data sets

Metadata

SQL Query Processing

Users

Query Processing

Reasoning

OWL Documents

Results

SQL Statements

Final Results

Translating

Memory

Fig. 1. Conceptual model of the proposed storage system

Concept_Definition

Concept_Axiom

Concept_Property

Concept_Prop_Axiom

Instance_Definition

Instance_Axiom

Instance_Property

Ontology_Profile Prefix_Definition Description_Definition

N N1

1

N

N
1 N

1

NNN

1

specialize_by

specialize_by

specialize

qualified_by

qualify

qualified_by qualified_by

involved_by

1qualify 1qualify

1

specialize

involve involved_by involve

1
N

Fig. 2. Metamodel of the storage structure for loading and storing OWL data sets on memory

Definition 1. SM, denoting the proposed model, is defined as follows.

SM = (I, OP, S, QP, O), where
I: Original OWL documents (OWL data sets, OWL ontologies)
OP: Operations for parsing and storing
M: OWL data on memory
QP: Operations for query processing including reasoning function
O: Query results to be returned to users

 A Novel Memory-Oriented OWL Storage System∗ 545

Fig. 2 shows a metamodel of the defined storage structure (M in Definition 1) to store
OWL data sets in memory. An OWL ontology basically consists of a triple (Subject,
Predicate, Object). In this paper, both of Subject and Object are described as Concept
or Instance. In the OWL specification, they are defined as Class and Individual. On-
tology_Profile includes header information in OWL ontologies. Prefix_Definition
respectively store full prefix names and an abbreviation of each full prefix.

3 Implementation

We implemented a prototype for the proposed storage model and Fig. 3 shows its
snapshots. Fig. 3-(1) shows all of the parsing and translating results. The translation
results are illustrated in Fig. 3-(2). Conversion accuracy of the implementation proto-
typing has been proved with several OWL ontologies. Especially, it satisfies the Web
Ontology Language Test Cases by W3C.

(1) Snapshot of the Parsing and Translating Interface

(2) Snapshot of the Translation Result (Viewing the Results)

Fig. 3. Snapshot of the implementation

4 Evaluation Methodology

This section describes an evaluation methodology including the system environment,
data sets for the experiment, and comparative items.

4.1 Target Systems and Experiment Environment

Target Systems
We already introduced the OWL storages in Section 1, but the target systems in this
paper include Sesame and OWLJessKB. The others are not been considered because

546 D. Jeong et al.

they provide neither APIs for prototyping nor an exact storing model [20, 21]. Ex-
actly, Sesame supports Sesame-DB and Sesame-Memory. Sesame-DB is a persistent
storage system and Sesame-Memory is a memory-oriented storage system. This paper
focuses on the evaluation of memory-based (memory-oriented) systems, thus Sesame-
Memory is chosen as a target system.

Experiment Data Sets
We gathered several OWL ontologies, which are widely used to introduce to OWL or
describe models and tools for OWL data management and used the sets to prove the
translation precision of the proposed storage model. However, each ontology size is
not acceptable for the performance evaluation. Therefore, we generated an OWL data
set using a data generator (UBA), which has been developed by SWAT project team
at Lehigh University [19]. The team proposed a permanent storage system and also
presented the evaluation research results comparing it with several storage systems
[20, 21]. We also generate the same data sets using the UBA. In other words, we
created five OWL data sets: LUBM(1,0), LUBM(5,0), LUBM(10,0), LUBM(20,0),
and LUBM(50,0). LUBM(N,S) denotes the dataset contains N universities using a
seed value of S. Refer [21] to see the descriptions on the UBA (Univ-Bench Artificial
Data Generator) and LUBM.

System Environment for the Experiment
Our experiment environment (System environment) is almost same with the setting in
[21]. The comparative evaluation is accomplished by indirect comparison with the
result described in [21]. Even though the evaluation is based on the indirect compari-
son, our system environment is almost same with the environment in [21] and most of
all the CPU capability is lower. Therefore, we believe that our evaluation methodol-
ogy provide the reliability of the experiment result. The summarization of evaluation
is as follows:

 CPU: Pentium 4 (1.70 GHz)
 Memory size (RAM): 256MB
 Heap memory size: 512MB
 Hard dist size: 80GH
 Platform: Windows XP Professional OS
 Java SDK version: Java SDK 1.5.0
 DBMS: Oracle 10g

4.2 Comparative Item

The comparative item is the loading time. We repeated the experiment five times to
obtain more precise evaluation results. As described, the data set includes five ontolo-
gies created with conditions LUBM(1,0), LUBM(1,0), LUBM(1,0), LUBM(1,0),
LUBM(1,0), which contain OWL files for 1, 5, 10, 20, and 50 universities respec-
tively. It means an ontology, created under a condition LUBM(1,0), consists of OWL
files. Every university contains 15 or more departments. With these experiment sets,
we estimate the loading time of each ontology (OWL file set). The loading time is the
sum of parsing time and storing time the parsed data set to a database.

In this paper, we use the experiment result described in [21]. It means that the com-
parative evaluation is accomplished by indirect comparison. Even though the evalua-

 A Novel Memory-Oriented OWL Storage System∗ 547

tion is based on the indirect comparison, our system environment is almost same with
the environment in [21] and most of all CPU capability is lower. Therefore, we believe
that our evaluation methodology provide the reliability of the experiment result.

5 Evaluation Results and Discussions

Table 1 shows the OWL data set loading time for all of the chosen target systems
including the proposed system. Fig. 4 depicts how the loading time grows as the
OWL set size increases. In Fig. 4, the dashed lines mean the systems cannot load
corresponding data sets. First in case of OWLJessKB, it could not load the OWL data
set generated with options from LUBM(5,0) to LUBM(50,0).

Table 1. Experimental evaluation result on loading time of the systems

 Data Set The num. of Instances Load Time(hh:mm:ss)
Sesame-Memory 00:00:13
OWLJessKB 03:16:12
Proposed System

LUBM
(1, 0)

103,397
00:00:12

Sesame-Memory 00:01:53
OWLJessKB -
Proposed System

LUBM
(5, 0)

646,128
00:01:18

Sesame-Memory 00:05:40
OWLJessKB -
Proposed System

LUBM
(10, 0)

1,316,993
00:04:11

2,000

4,000

6,000

8,000

10,000

12,000

2,000

4,000

6,000

8,000

10,000

12,000

L
oa

di
ng

 T
im

e
(U

ni
t:

 S
ec

on
d)

Test Data Sets

LUBM(1,0)

0

LUBM(5,0) LUBM(10,0) LUBM(20,0) LUBM(50,0)

50

100

150

200

250

LUBM(1,0)
0

LUBM(5,0) LUBM(10,0)

300

350

13

12

113

78

340

251

50

100

150

200

250

LUBM(1,0)
0

LUBM(5,0) LUBM(10,0)

300

350

13

12

113

78

340

251

: OWLJessKB

: Sesame-Memory

: Proposed

Fig. 4. Graphical description of the loading time experiment results

548 D. Jeong et al.

With LUBM(1,0) data set, OWLJessKB requires 12,000 seconds to load on mem-
ory. On the other hand, Sesame-Memory and our system take 13 seconds and 12 sec-
onds respectively and our systems shows a little better loading performance. As for
LUBM(5,0) and LUBM(10,0), both (Sesame-Memory:Our System) consume 113: 78
and 340:251 respectively. Both systems could not load data sets, LUBM(20,0) and
LUBM(50,0). As a result, the proposed storage model is more efficient than the others.

6 Conclusion and Further Study

To realize the emerging Semantic Web, several technologies have been developing.
Most of all, OWL is accepted as one of the most important and state-of-the-art tech-
nologies toward the ideal Semantic Web. There might be many issues and one of the
most important issues is how to efficiently store a very large OWL data into memory,
i.e., load and store into memory.

In this paper, a novel memory-based OWL storage model was proposed. With the
simple introduction to the proposed storage model, the experiment result on the load-
ing time has been described to show the predominance of our proposed storage
model.

Further studies include additional and complementary experiments: (1) Query re-
sponse time and (2) Query answer soundness (accuracy). This paper focused on the
development of an efficient memory-oriented storage model. However, a new perma-
nent storage model, which is better than existing models, should be developed for
practical usability of OWL. Most of permanent models are based on the triple struc-
ture. However, almost all data are stored in relational database model. It means a
relational model-based permanent storage model should be proposed to make reflect
the current realistic situation. The proposed our storage model is designed using rela-
tional model concept not triple model. Therefore, we believe our memory-based
model can be effectively used to develop a new persistent storage model.

References

1. François Yergeau, John Cowan, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve
Maler, Extensible Markup Language (XML) 1.1, W3C Recommendation, 4 February
2004.

2. Resource Description Framework (RDF), http://www.w3.org/RDF/.
3. Dave Bechett, RDF/XML Syntax Specification (Revised), W3C Recommendation, 10

February 2004.
4. Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, Peter F.

Patel-Schneider, and Lynn Andrea Stein, DAML+OIL Reference Description, W3C Note,
18 December 2001.

5. M.K. Smith, C. Welty, and D.L. McGuinness ed., OWL Web Ontology Language Guide,
W3C Recommendation, 10 February 2004, http://www.w2.org/TR/2004/REC-owl-guide-
20040210/.

6. Maria del Mar Roldan-Garcia and Jose F. Aldana-Montes, A Tool for Storing OWL Using
Database Technology, November 2005.

 A Novel Memory-Oriented OWL Storage System∗ 549

7. Pan, Z. and heflin, J., DLDB: Extending Relational Databases to Support Semantic Web
Queries, In Workshop on Practical and Scaleable Semantic Web Systems, The 2nd Inter-
national Semantic Web Conference (ISWC2003), 2003.

8. Broekstra, J. and Kampman, A., Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema, The 1st International Semantic Web Conference (ISWC2002),
2002.

9. OWLJessKB: A Semantic Web Reasoning Tool, http://edge.cs.drexel.edu/assemblies/
software/owljesskb/.

10. Grosof, B.N., Horrocks, I., Volz, R., and Decker, S., Description Logic Programms: Com-
bining Logic Programms with Description Logic, In Proceedings of the 12th international
World Wide Web Conference, 2003.

11. Horrocks, I., Li, L., Turi, D., Bechhofer, S., The Instance Store: Description Logic Rea-
soning with Large Numbers of Individuals, 2004.

12. SourceForge.net, Jena2 Database Interface - Database Layout, November 2004,
http://jena.sourceforge.net/DB/layout.html.

13. Jena: A Semantic Web Framework for Java, http://jena.sourceforge.net/.
14. Jess: A Rule Engine for the Java Platform, http://herzberg.ca.sandia.gov/jess/.
15. Gensereth, M. and Fikes, R. Knowledge Interchange Format, Stanford Logic Report

Logic, Stanford University, http://logic.stanford.edu/kif/kif.html.
16. G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis, M.

Scholl, and K. Tolle, Querying the Semantic Web with RQL, Elsevier Science, Computer
Networks and ISDN Systems Journal, Vol. 42, No. 5, pp. 617-640, August 2003.

17. Eric Prud'hommeaux and Andy Seaborne, SPARQL Query Language for RDF, W3C Can-
didate Recommendation, 6 April 2006.

18. Jeremy J. Carroll and Jos De Roo, OWL Web Ontology Language Test Cases, W3C Rec-
ommendation, 10 February 2004.

19. Yuanbo Guo, Data Generator(UBA): UBA1.7, http://swat.cse.lehigh.edu/projects/lubm/.
20. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin, An Evaluation of Knowledge Base Sys-

tems for Large OWL Datasets, Vol. LNCS 3298, 2004.
21. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin, LUBM: A Benchmark for OWL Knowl-

edge Base Systems, Journal of Web Semantics, 2005.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 550 – 558, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Ontology Matching Approach to Semantic Web
Services Discovery

Beniamino Di Martino

Dipartimento di Ingegneria dell' Informazione
Facoltà di Studi Politici ed Alta Formazione Europea e Mediterranea “Jean Monnet”

Seconda Università di Napoli
beniamino.dimartino@unina.it

Abstract. In this paper we present an approach to semantic based Web Service
discovery, and a prototypical tool, based on syntactic and structural schema
matching, among an input ontology, describing a service request, and web
services descriptions, at the “syntactic level” through WSDL, or at the semantic
level, through service ontologies included in OWL-S, WSMO, SWSF and
WSDL-S. The different input schema, WSDL descriptions, OWL ontologies,
OWL-S, WSMO, SWSF and WSDL-S components, are represented in an
uniform way by means of directed rooted graphs, where nodes represent
schema elements, connected by directed links of different types, e.g. for
containment and referential relationships. On this uniform internal
representation a number of matching algorithms operate, including structural
based algorithms (Children Matcher, Leaves Matcher, Graph and SubGraph
Isomorphism) and syntactical ones (Edit Distance (Levenshtein Distance) and
Synonym Matcher (through WordNet synonyms thesaurus).

1 Introduction

Semantic Web Services (SWS) enrich Web Services technology with formal,
ontology based, description of services functionalities and capabilities at the semantic
level, thus enabling semantic based discovery, composition, dynamic binding,
orchestration. A number of frameworks and standards supporting such functionalities
have been recently developed, including OWL-S [1] (previously DAML-S [2]),
WSMO [3], SWSF [4] and WSDL-S [5] (previously METEOR-S [6]), mainly
integrating Semantic Web languages RDF and OWL with Web services interface
description languages (mainly WSDL [7]). Nevertheless such technologies are still
immature and incomplete, and compete each other; in particular, they still do not
provide viable and integrated solutions to the web Services discovery problem.

In this paper we present an approach to the semantic based Web Service discovery,
and a prototypical tool, based on syntactic and structural schema matching, among an
input ontology, describing a service request, and web services descriptions, at the
“syntactic level” through WSDL, or at the semantic level, through service ontologies
included in OWL-S, WSMO, SWSF and WSDL-S. Matching among OWL-S,
WSMO, SWSF and WSDL-S descriptions is also provided, together with a
functionality for “reverse” ontology syntesis, i.e. production of an OWL ontology
from a WSDL description.

 An Ontology Matching Approach to Semantic Web Services Discovery 551

Our matching procedure takes as input two schemas and determines a mapping
indicating which elements of the input schemas logically correspond to each other,
together with a similarity measure indicating the plausibility of their equivalence. The
different input schema, WSDL descriptions, OWL ontologies, OWL-S, WSMO,
SWSF and WSDL-S components, are represented in an uniform way by means of
directed rooted graphs, where nodes represent schema elements, connected by
directed links of different types, e.g. for containment and referential relationships. On
this uniform internal representation a number of matching algorithms operate,
including structural based algorithms (Children Matcher [8], Leaves Matcher [8],
Graph and SubGraph Isomorphism [9,10,11]) and syntactical ones (Edit Distance [12]
(Levenshtein Distance) and Synonym Matcher (through WordNet [13] synonyms
thesaurus).

The rest of the paper is structured as follows: Section 2 provides with a
classification of ontology mapping approaches. Section 3 describes the procedure we
have devised and the schema mapping algorithms we’ve implemented. Section 4
concludes the paper with description of future work.

2 Ontology Matching Approaches

Our approach to ontology and web services descriptions’ comparison is based on
schema matching models and techniques. In this section we briefly review the
fundamental concepts on schema matching. See [19,20] for extensive review on
generic schema matching, while [21,22] are more focused on ontology matching. A
fundamental operation in the manipulation of ontologies is match, which takes two
ontologies as input and produces a mapping between elements of the two ontologies
that correspond semantically [19]. Match plays a central role in numerous
applications, such as web-oriented data integration, electronic commerce, schema
integration, schema evolution and migration, application evolution, data warehousing,
database design, web site creation and management, and component-based
development. A mapping is defined as a set of mapping elements, each of which
indicates that certain elements of schema S1 are mapped to certain elements in S2.
Furthermore, each mapping element can have a mapping expression which specifies
how the S1 and S2 elements are related. The mapping expression may be directional,
for example, a certain function from the S1 elements referenced by the mapping
element to the S2 elements referenced by the mapping element, or it may be non-
directional, that is, a relation between a combination of elements of S1 and S2.
Currently, schema matching is typically performed manually, perhaps supported by a
graphical user interface. Obviously, manually specifying schema matches is a tedious,
time-consuming, error-prone, and therefore expensive process. Moreover, as systems
become able to handle more complex databases and applications, their schemas
become larger, further increasing the number of matches to be performed. The level
of effort is at least linear in the number of matches to be performed, maybe worse
than linear if one needs to evaluate each match in the context of other possible
matches of the same elements. A faster and less labor-intensive integration approach
is needed. This requires automated support for schema matching. To define the match
operator, Match, we need to choose a representation for its input schemas and output

552 B. Di Martino

mapping. In practice, a particular representation must be chosen, such as an entity-
relationship (ER) model [23], object-oriented (OO) and database models [24,25],
XML, or directed graphs. In each case, there is a natural correspondence between the
building blocks of the representation and the notions of elements and structure:
entities and relationships in ER models; objects and relationships in OO models;
elements, subelements, and IDREFs in XML; and nodes and edges in graphs. Match
is a binary operation that determine pairs of corresponding elements from their input
operands. Match operates on metadata (schema elements) and an element in a match
result can relate multiple elements from both inputs.

In the following we classify the major approaches to schema matching. An
implementation of Match may use multiple match algorithms or matchers. This
allows us to select the matchers depending on the application domain and schema
types. Given that we want to use multiple matchers we distinguish two subproblems.
First, there is the realization of individual matchers, each of which computes a
mapping based on a single matching criterion. Second, there is the combination of
individual matchers, either by using multiple matching criteria (e.g., name and type
equality) within an integrated hybrid matcher or by combining multiple match results
produced by different match algorithms within a composite matcher. For individual
matchers, we consider the following largely-orthogonal classification criteria:

• Instance vs schema: matching approaches can consider instance data (i.e., data
contents) or only schema-level information.

• Element vs structure matching: match can be performed for individual schema
elements [26], such as attributes, or for combinations of elements, such as complex
schema structures.

• Language vs constraint: a matcher can use a linguistic based approach (e.g., based
on names and textual descriptions of schema elements) or a constraint-based
approach (e.g., based on keys and relationships).

• Matching cardinality: the overall match result may relate one or more elements of
one schema to one or more elements of the other, yielding four cases: 1:1, 1:n, n:1,
n:m. In addition, each mapping element may interrelate one or more elements of
the two schemas. Furthermore, there may be different match cardinalities at the
instance level.

• Auxiliary information: most matchers rely not only on the input schemas S1 and S2
but also on auxiliary information, such as dictionaries, global schemas, previous
matching decisions, and user input [27].

Many systems for schema matching have been developed, based on one or, more
frequently, a combination of the methods described before. S-Match [28], Anchor-
Prompt [29], COMA [8], Cupid [30]. QOM [31], are notable examples.

3 Semantic Web Service Discovery Based on Ontology Matching

The procedure we have devised, and the prototipe tool implemented, performs
semantic discovery of Web services, based on structural and element level matching,
among schema imported from OWL, WSDL, WSML and OWL-S web services
descriptions. Such schema are represented by means of directed rooted graphs, where

 An Ontology Matching Approach to Semantic Web Services Discovery 553

nodes represent schema elements, connected by directed links of different types, e.g.
for containment and referential relationships. Our matching procedure takes as input
two schemas and determines a mapping indicating which elements of the input
schemas logically correspond to each other. The match result is a set of mapping
elements specifying the matching schema elements together with a similarity value
between 0 (strong dissimilarity) and 1 (strong similarity) indicating the plausibility of
their correspondence.

Our matching procedure combines and integrates a number of matching algorithms,
adopting two of the above described approaches:

• the structural approach, based on the application of the following algorithms:
Children Matcher [8], Leaves Matcher [8], Graph and SubGraph Isomorphism
[9,10,11].

• the linguistic or syntactic approach, based on application of: Edit Distance [12]
(Levenshtein Distance) and Synonym Matcher (through WordNet [13] synonyms
thesaurus).

In the following, we describe the chosen approaches, and corresponding matching
components (matchers) we’ve implemented, in more detail.

Children Matcher: This structural matcher is used in combination with a linguistic-
level matcher. It determines the similarity between two inner elements based on the
combined similarity between their child elements, which in turn can be both inner and
leaf elements. The similarity between the inner elements needs to be recursively
computed from the similarity between their respective children. The similarity
between the leaf elements is obtained from the linguistic-level matchers, e.g.
Synonym Matcher or Edit Distance .

Leaves Matcher: This structural matcher is also used in combination with a
linguistic-level matchers, e.g. Synonym Matcher or Edit Distance. In contrast to the
Children strategy, this matcher only considers the leaf elements to estimate the
similarity between two inner elements. This strategy aims at more stable similarity in
cases of structural conflicts.

Graph and SubGraph Isomorphism Matcher: This structural matcher is based on
the VF algorithm [3,4,5]. that is a deterministic matching method for verifying both
isomorphism and graph-subgraph isomorphism. The algorithm has general validity,
since no constraints are imposed on the topology of the graphs to be matched, and can
exploit semantic information if available. We illustrate the VF algorithm in the
following. Given two graphs G1 = (N1, B1) and G2 = (N2, B2) , a mapping M ⊂ N1 ×N2
is said to be an isomorphism iff it is a bijective function that preservers the branch
structure of the two graphs, that is, M maps each branch of G1 onto a branch of G2 and
viceversa. M is said to be a graph-subgraph isomorphism iff M is an isomorphism
between G2 and a subgraph of G1. We will assume that the graphs involved are
directed graphs, i. e. a branch (i, j) is to be considered different from (j, i). The
extension of the algorithm to undirected graphs is however trivial. The matching
process can be suitably described by means of a State Space Representation (SSR).
Each state s of the matching process can be associated to a partial mapping solution
M(s), which contains only a subset of the components of the mapping function M.

554 B. Di Martino

A partial mapping solution univocally identifies two subgraphs of G1 and G2, say
G1(s) and G2(s), obtained by selecting from G1 and G2 only the nodes included in the
components of M(s), and the branches connecting them. In the following we will
denote by M1(s) and M2(s) the projection of M(s) onto N1 and N2 respectively, while
the sets of the branches of G1(s) and G2(s) will be denoted by B1(s) and B2(s)
respectively.

Edit Distance or Levenshtein Distance (LD): String similarity is computed from the
number of edit operations (deletions, insertions, or substitutions) necessary to
transform one string (s) to another one (t). The strings are first tokenized (i.e.
converted to lower case and the punctuation is removed) and then stemmed using
Porter Stemmer algorithm before applying the Edit Distance Algorithm. The result of
this algorithm is then normalized to obtain a value between 0 and 1.

Synonym Matcher: this algorithm uses WordNet synonyms thesaurus to find
synonyms, returning 1 if a synonym has found or 0 otherwise.

The above devised procedure defined has been implemented resulting in the
prototype tool SchemaMatcher. It performs syntactic and structural schema matching,
among an input ontology, describing a service request, and web services descriptions,
at the “syntactic level” through WSDL, or at the semantic level, through service
ontologies included in OWL-S, WSMO, SWSF and WSDL-S. Matching among OWL-
S, WSMO, SWSF and WSDL-S description is also provided, together with a
functionality for “reverse” ontology syntesis, i.e. production of an OWL ontology from
a WSDL description. It has been developed entirely in Java, by utilizing DOM parsers

Fig. 1. Schema visualization, showing JTree and Graph representation of source and target
schema

 An Ontology Matching Approach to Semantic Web Services Discovery 555

for XML and Java APIs for Wordnet synonyms thesaurus. The different input schema,
WSDL descriptions, OWL ontologies, OWL-S, WSMO, SWSF and WSDL-S
components, are represented in an uniform way by means of directed rooted graphs,
where nodes represent schema elements, connected by directed links of different types,
e.g. for containment and referential relationships. The set of structural and syntactic
matchers described in the previous section operate on these uniform internal
representations. These graphs are produced by different DOM (Document Object
Model) parsers, which parse the different input schema and produce complete JTree
structures (for for internal representation of all schema information and for graphical
visualization), and the graph structures, representing only the information relevant for
applying the matchers (schema elements and corresponding relations among them).

We present in the following the main working phases of SchemaMatcher.
First of all, the two schema to be matched, source and target, are loaded. It is

possible to choose among OWL, WSDL, WSML and OWL-S descriptions; these can
be loaded from local files, or remotely by providing their URI.

After the loading phase, DOM parsing is performed, and two graphs are produced
and visualized together with their parsing trees, as illustrated in Figure 1.

It is possible to choose the application of a selection of the before described
matching algorithms, (a syntactic similarity threshold for Edit Distance algorithm can
also be selected), by means of the pop-up window illustrated in figure 2:

Fig. 2. Selection of matching algorithms

556 B. Di Martino

Once the matching algorithms’ selection has been performed, the matching process
starts; figure 3 depicts the results of the process. On the left panel, it is possible to
browse the graphs in order to select mathing nodes and matching subgraphs. By
double-clicking on a node of one of the two graphs, the corresponding node on the
other graph is highlighted, and a joining line appears. If the selected node belongs to a
structurally matching subgraph, the two matching subgraphs are highlighted as well.
On the right panel the quantitative results of the matching process are displayed. In
particular are reported: number of nodes of source and target scheme, number of
matched nodes, and their percentages on total nodes, for syntactical and structural
matching; for structural matching only: number of isomorph subgraphs, number
of non-isomorph but similar subgraphs, with their relative distance measure
(number of different nodes and archs). Finally, for each matching node are reported
the results of syntactic matching, with e.g. Edit Distance measure or use of synonyms
(1.0 value means that edit distance is 0, or they’re synonyms).

Fig. 3. Matching results

4 Conclusions

We have studies methods and techniques for description and discovery of Web
Service at semantic level. We focused on the issue of searching a Web Service
through a semantic description, ontology based, of required functionalities and
corresponding application domain; we devised a technique, and developed a
prototype, for uniform graph based representation of ontology and the different web
service descriptions, and on integrated syntactic and structural matching of graph
representations, including isomorphism properties.

 An Ontology Matching Approach to Semantic Web Services Discovery 557

Future work is oriented towards: - integrating NLP techniques for searching
through UDDI natural language descriptions of web services, and mapping those
with the query ontology; - automatic classification of web services, characterized by
their WSDL descriptions, against a set of domain categories characterized by an
ontology, by using matching techniques developed.

I’d like to acknowledge the implementing work done by my undergraduate students
Angelo Martone and Carlo Baia.

References

[1] Martin et al., OWL-S 1.0 Release, http://www.daml.org/services/owl-s/1.0/owl-s.html
[2] Martin et al., DAML-S 0.9 Release, http://www.daml.org/services/daml-s/0.9
[3] Roman et al., Web Service Modeling Ontology – Standard (WSMO – Standard),

http://www.wsmo.org
[4] Steve Battle et al., Semantic Web Services Framework (SWSF) Overview,

http://www.daml.org/services/swsf/1.0
[5] LSDIS and the University of Georgia, Web Service Semantics - WSDL-S,

http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s
[6] LSDIS and the University of Georgia, METEOR-S Semantic Web Services and processes,

http://lsdis.cs.uga.edu/projects/meteor-s
[7] R.Chinnici, M.Gudgin, J.Moreau, S.Weerawarana, “Web Services Description Language

(WSDL) Version 1,2” - http://www.w3.org/TR/2002/WD-wsdl12-20020709
[8] H.H. Do, E. Rahm: COMA: System for Flexible Combination of Schema Matching

Approach. VLDB 2002
[9] L.P. Cordella, P. Foggia, C. Sansone, M. Vento, Subgraph Transformations for the

Inexact Matching of ARG, Computing suppl. 12, pp. 43-52, 1998.
[10] L.P. Cordella, P. Foggia, C. Sansone, M. Vento, Performance evaluation of the VF Graph

Matching Algoritmh, Proc. of the 10th ICIAP, IEEE Computer Society Press, pp. 1172-
1177, 1999.

[11] L.P. Cordella, P. Foggia, C. Sansone, M. Vento, Fast Graph Matching for Detecting CAD
Image Components, Proc. of the 15th Int. Conf. on Pattern Recognition, IEEE Computer
Society Press, vol. 2, pp. 1038-1041, 2000.

[12] Michael Gilleland, Merriam Park Software, Levenshtein Distance Algorithm,
http://www.merriampark.com/ld.htm

[13] Princeton University, “Wordnet a lexical database for the English language” -
http://wordnet.princeton.edu

[14] D.Booth, M.Champion, C.Ferris, F.McCabe, E.Newcomer, D.Orchard, “Web Services
Architecture” - http://www.w3.org/TR/2003/WD-ws-arch-20030514

[15] N.Mitra, “SOAP Version 1.2 Part 0:Primer” - http://www.w3.org/TR/soap12-part0
[16] R.Chinnici, M.Gudgin, J.Moreau, S.Weerawarana, “Web Services Description Language

(WSDL) Version 1,2” - http://www.w3.org/TR/2002/WD-wsdl12-20020709
[17] OASIS, “About UDDI” - http://www.uddi.org/about.html
[18] BPEL4WS Consortium. Business Process Execution Language for Web Services.

http://www.ibm.com/developerworks/lib0rary/ws-bpel
[19] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. The

International Journal on Very Large Data Bases (VLDB), (10(4)):334–350, 2001.
[20] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on

Data Semantics (JoDS), IV, 2005.

558 B. Di Martino

[21] F. Giunchiglia, P.Shvaiko: Semantic matching. The Knowledge Engineering Review
Journal, 18(3):265-280, 2003.

[22] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The
Knowledge Engineering Review Journal (KER), (18(1)):1–31, 2003.

[23] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistructured and
structured data sources. SIGMOD Record, (28(1)):54–59, 1999.

[24] V. Kashyap and A. Sheth. Semantic and schematic similarities between database objects:
a context-based approach. The International Journal on Very Large Data Bases (VLDB),
5(4):276–304, 1996.

[25] L. Palopoli., D. Sacca, D. Ursino. Semi-Automatic, Semantic Discovery of Properties
from Database Schemas, Proc. IDEAS, 1998, 244-253

[26] F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proceedings of
the Meaning Coordination and Negotiation workshop at the International Semantic Web
Conference (ISWC), 2004.

[27] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt,
Contextualizing ontologies. Journal of Web Semantics, (26):1–19, 2004.

[28] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an
implementation of semantic matching. In Proceedings of the European Semantic Web
Symposium (ESWS), pages 61–75, 2004.

[29] N. Noy and M. Musen. The PROMPT Suite: Interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, (59(6)):983–1024, 2003.

[30] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid. In
Proceedings of the Very Large Data Bases Conference (VLDB), pages 49–58, 2001.

[31] M. Ehrig and S. Staab. QOM: Quick ontology mapping. In Proceedings of the
International Semantic Web Conference (ISWC), pages 683–697, 2004.

[32] J. Euzenat and P.Valtchev. Similarity-based ontology alignment in OWL-lite. In
Proceedings of the European Conference on Artificial Intelligence (ECAI), pages
333–337, 2004.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 559 – 568, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ontology-Based Composition of Web Services for
Ubiquitous Computing*

Yang-Seung Jeon1, Eun-Ha Song1, Minyi Guo2, Laurence T. Yang3,
Young-Sik Jeong1, Jin-Tak Choi4, and Sung-Kook Han1,**

1 Department of Computer Engineering, Wonkwang University,
 344-2 Shinyong-Dong, Iksan, 570-749, Korea

{globaljeon, ehsong, ysjeong, skhan}@wku.ac.kr
2 School of Computer Science and Engineering, Aizu University

Aizu-Wakamatsu, Fukushima-ken 965-8580 Japan
minyi@u-aizu.ac.jp

3 Department of Computer Science, St. Francis Xavier University,
Antigonish, NS, B2G 2W5, Canada

lyang@stfx.ca
4 Department of Computer Engineering, University of Incheon,

117 Dohwa-Dong, Nam-Gu, Inchon, Korea
choi@incheon.ac.kr

Abstract. Current Web service environment provide connection to individual
services but is still deficient in semantic processing technology for the
interoperability of Web services. The semantic processing of Web services is a
key technology for the dynamic discovery and composition of Web services.
Thus, the present study established Web service ontology to support ubiquitous
environment and proposed a method of describing Web services in consideration
of their functional and semantic aspects. In addition, it implemented a service
interlocking and composition system by including a mediator function, which
enables the composition of heterogeneous Web services, in the system.

1 Introduction

Current ubiquitous computing environments involve heterogeneous systems as well as
various kinds of applications, protocols and formats[5] and, in order to integrate these
components, we need standardized protocols and semantic description methods.
Semantic description makes it possible to specify Web services using ontology
technology and to deal with Web services semantically through knowledge processing
rather than information processing. As the concept of the Web is growing broad,
various types of new Web services are emerging, which have not been available in
existing information infrastructure.

Today’s standard Web service technologies [6,7,10] provide developers with
connection to and use of individual services. However, they cannot interact with
services and interpret them compositely, and cannot be used by ordinary people. That

* This paper was supported by Wonkwang University in 2006.
** Corresponding author.

560 Y.-S. Jeon et al.

is, the current Web service structure has the limitation that syntactic extension is
possible but semantic components or semantic extension is almost impossible. To
solve these problems, a number of technologies have been proposed including
chorography and orchestration. Without semantic processing, however, Web services
can hardly execute their functions properly. Thus, research on semantic Web service
discovery and dynamic Web service composition is going on actively, and a solution
is to ontology-based descriptions of Web Services. The present study proposes a
method for describing Web services using ontologies, in order to support ubiquitous
computing technology. Inside the system, D-Mediator (data mediator) and C-
Mediator (control mediator) are used for the interoperation and composition of
heterogeneous services.

This paper explains the Web service description methods of OWL-S, WSMO and
WSBPEL[4,7,8], and describes the requirements and construction of ontology for
Web Services. Lastly, we present a Web service composition system based on
ontology for Web Services.

2 Background

This section introduces OWL-S, WSMO (Web Service Modeling Framework) and
BPEL4WS (Business Process Execution Language for Web Services) [4,7,8], which
are base technologies for Web service composition.

OWL-S is a representative semantic Web service language that extended DAML-S
based on OWL[1]. By integrating OWL-based ontology technology with existing
Web service description.

WSMO provides ontological specifications for the core elements of Semantic Web
Services. In fact, Semantic Web Services aim at an integrated technology for the next
generation of the Web by combining Semantic Web technologies and Web Services,
thereby turning the Internet from a information repository for human consumption
into a world-wide system for distributed web computing. Therefore, appropriate
frameworks for Semantic Web Services need to integrate the basic Web design
principles, those defined for the Semantic Web, as well as design principles for
distributed, service-orientated computing of the Web.

BPEL4WS provides a language for specifying business processes and business
interaction protocols. It can create a composite process by integrating different
operations such as Web service call, data manipulation, error report, and process
termination. Business processes are described in two ways – implementing executable
business processes and describing non-executable abstract processes.

3 Ontology for Web Services

3.1 Requirements

WSDL (Web Service Description Language) [6], an existing Web service description
language, describes only the functional information of services such as input
parameters, output parameters, service providers and service locations, and has
limitations in supporting the discovery, execution, composition and interoperation of

 Ontology-Based Composition of Web Services for Ubiquitous Computing 561

Web service. Because WSDL cannot describe semantic information of Web services,
we need ontology-based Web service interface technology that can describe not only
the syntax but also the semantics of services.

Here, services include not only the provision of static information through Web
sites but also actions such as selling products and driving physical equipment. To
utilize Web services, we need to describe services semantically so that software
agents can interpret and process them autonomously.

3.2 Ontology Construction

Web services description ontology is established by extracting semantic information
on the actions and objects of Web services opened and operated in Web service portal
sites and UDDI Business Registry (UBR), which is run by IBM and Microsoft.

Fig. 1 is the relational of established Web service ontology. Web service ontology
is composed of semantic descriptions of Web services such as actions and objects,
which are domains to which actions are applied, functional descriptions of Web
services such as the precondition on input parameters and the post-condition of output
parameters, and other information required for describing Web services.

WebServiceWebService

EvaluationEvaluation

evaluation

XMLSchema:floatXMLSchema:float

cost

performance

serviceType

PragmaticsPragmatics

XMLSchema:stringXMLSchema:string

pragmatics

ProviderProvider provider

serviceDescription

providerBusiness

providerDescription

CapabilityCapability

ActionAction

ObjectObject

XMLSchema:stringXMLSchema:string

capability

action

domainrelatedAction

relatedDomain

actionType

objectType

ServiceIdentifierServiceIdentifier
serviceIdentifier

AtomicProcessAtomicProcess

process

RoleRole

TableTable

TableElementTableElement

LocationLocation
XMLSchema:integerXMLSchema:integer

sequence

serviceLocation

XMLSchema:stringXMLSchema:string

inputRole outputRole

homeAddress

serviceAddress

preCondition

tableElement

postCondition

code

name

ParameterParameter
paramType

roleType

ServiceTypeServiceType

Atomic

Composite

C-Mediator

D-Mediator

SequenceProcessSequenceProcess

atomicProcess

WebServiceWebService

EvaluationEvaluation

evaluation

XMLSchema:floatXMLSchema:float

cost

performance

serviceType

PragmaticsPragmatics

XMLSchema:stringXMLSchema:string

pragmatics

ProviderProvider provider

serviceDescription

providerBusiness

providerDescription

CapabilityCapability

ActionAction

ObjectObject

XMLSchema:stringXMLSchema:string

capability

action

domainrelatedAction

relatedDomain

actionType

objectType

ServiceIdentifierServiceIdentifier
serviceIdentifier

AtomicProcessAtomicProcess

process

RoleRole

TableTable

TableElementTableElement

LocationLocation
XMLSchema:integerXMLSchema:integer

sequence

serviceLocation

XMLSchema:stringXMLSchema:string

inputRole outputRole

homeAddress

serviceAddress

preCondition

tableElement

postCondition

code

name

ParameterParameter
paramType

roleType

ServiceTypeServiceType

Atomic

Composite

C-Mediator

D-Mediator

SequenceProcessSequenceProcess

atomicProcess

Fig. 1. Relational composition of Web services description ontology

As shown in Fig.1, if semantic annotation is provided for an email sending service
using ontology, the action is ‘send’ and the object is ‘email’. The functional
description includes also information on the location of the email transmission service
(location of WSDL), service provider and input/output parameters for the execution
of the service. The modeled Web service description ontology is described using
OWL, and ontology input is described using Protégé-2000.

In Fig. 1, rectangles are classes and arrows are properties. Extracted classes,
properties and instances are entered as inputs. The instance of ServiceType class,
which describes the type of service to be composed, should have Atomic, Composite,

562 Y.-S. Jeon et al.

C-Mediator or D-Mediator as its value. The Atomic type means that the service is not
a composite but a single service, and the Composite type means a composite service
created from the composition of services. In addition, C-Mediator and D-Mediator are
service types used in matching parameters. C-Mediator is a service that extracts what
it needs from service output parameters, and D-Mediator is a service that converts the
type of the output parameter of a specific service to the type of the input parameter of
a service to be matched.

4 Composition of Ontology-Based Web Services

4.1 Web Service Domain

Ontology-based semantic modeling means to define terms used in the concerned
domain, establish relations among the terms, and implement the process. The process
includes the classification of concepts, the establishment of the hierarchical relation of
the classes, the definition of class properties, the diversities and constraints of the
properties, and the creation of instances.

<?xml version="1.0"?>
<rdf:RDF xmlns="urn:sms.wonkwang.ac.kr/swpt#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="urn: sms.wonkwang.ac.kr /swpt">
 <owl:Ontology rdf:about="urn: sms.wonkwang.ac.kr/c-onto"/>
 <owl:Class rdf:ID="CapAmazonMagazinSearch">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="InsMagazine"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="InsSearch"/>
 </rdfs:subClassOf>
</owl:Class>
… … …
<owl:ObjectProperty rdf:ID="serviceLocation">
 <rdfs:comment>Web service address with optional home address</rdfs:comment>
 <rdfs:domain rdf:resource="#AtomicProcess"/>
 <rdfs:range rdf:resource="#Location"/>
 <rdfs:type rdf:resource="urn://www.w3.org/2002/07/owl#UniqueProperty"/>
</owl:ObjectProperty>

Fig. 2. Web service described in ontology

Based on common words and shared understandings obtained from the process, we
can achieve the consistency of communication in interoperation. Fig. 2 is a part of an
OWL document describing Web service ontology input on Protégé-2000. The Web
service ontology described in OWL enables semantic-based selection and
composition of Web services, and information on input and output parameters; input

 Ontology-Based Composition of Web Services for Ubiquitous Computing 563

and output conditions and service location is also extracted from the established
ontology through the function description of Web services. Fig. 3 shows the screen of
Web service ontology input on Protégé-2000.

Fig. 3. Screen of Web service description ontology input

4.2 C-Mediator and D-Mediator for Composition

When two or more heterogeneous services are composed, two things should consider.
One is the type collision in the matching of different data types. For example, type
collision happens when a ‘float’ type output parameter of a service is matched with a
‘string’ type input parameter. The other thing to be considered is how to extract input
parameters when a service has two or more output results. This problem does not need
to be considered if all the results of the service match. However, if only some of
returned output results match, a process to extract them is needed. This study
implemented D-Mediator (Data-Mediator) for conversion between two different types
to solve the type collision problem, and C-Mediator (Control-Mediator) for extracting
necessary output parameters.

Fig. 4 (a) shows the mechanism of converting ‘float’ type output parameter S1O1 of
service S1 to ‘double’ type input parameter S2I1 of service S2 through D-Mediator in
matching parameters between two different services. For example, when composing
exchange service S2 that exchanges currencies by receiving the output parameters
exchange rate (float type), exchange rate (double type) and exchange amount (double
type) of service S1 that calculates exchange rate between two currencies, type
collision happens as in Fig. 4 (a). Here, the problem is solved as D-Mediator converts
S1O1 (float type) of S1 to S2I1 (double type) of S2. Conversion from general string type
(not numeric string type) to int or float type is not allowed, so is processed as an
exception.

Fig. 4. (b) shows a mechanism of extracting only S1O1 and S1O4 out of output
parameters S1O1, S1O2, S1O3 and S1O4 of service S1 and matching them with input
parameter S2I1 and S2I3 of service S2. For example, when composing exchange service
S2 that exchanges currencies by receiving exchange rate (double type) and exchange
amount (double type) and Amazon book search service S1 that receives input
parameters author name (string type) and book title (string type) and returns output

564 Y.-S. Jeon et al.

parameters date of publishing (string type), publisher (string type) and price (float
type). This process has not only type collision but also the parameter extraction
problem. In this case, before the execution of D-Mediator, C-Mediator is executed first
to extract parameters from the outputs of S1 to be matched with the input parameters of
S2. In Fig. 4 (b), only S1O1 and S1O4 of Amazon book search service S1 are matched
with S2I1 and S2I3 of exchange service (S2). Thus, C-Mediator is executed to extract
S1O1 and S1O4 among the four output parameters. Because S1O1 and S2I3 are identical
in type they do not need the execution of D-Mediator, but S1O4 (book price: float type)
and S2I3 (exchange amount: double type) requires the execution of D-Mediator for their
matching. As mentioned above, D-Mediator is executed after C-Mediator.

(a) D-Mediator.

(b) C-Mediator.

Fig. 4. Mediator for interoperability of Web services

D-Mediator and C-Mediator were implemented as Web services for consistency in
composite service processing technology and easy reuse of composite services in the
future. When D-Mediator and C-Mediator are described in Web service composition
process, their values of property ‘serviceType’ are ‘D-Mediator’ and ‘C-Mediator’
respectively.

5 Implementation

5.1 Environment

The present system used Protégé 2000[13] as an ontology editor for our ontology, and
OWL (Web Ontology Language) as a language for describing ontology. In addition,
we used Jena 2.1 Ontology API[14] of HP Research Institute for parsing constructed
ontology. The scope of ontology was defined to include Web service classification,
Web service parameters information in WSDL and service management domain in
UDDI.

Web services based on ontology allows for knowledge processing, service
automatic discovery and composition, thus they can be applied to ubiquitous
environment. In composition, the function of mediator was inserted, which provides
interoperability between heterogeneous services. Communication between a service
requester and the composition system was defined using SOAP[15]. In particular,
SOAP message supports terminal equipment and communication.

 Ontology-Based Composition of Web Services for Ubiquitous Computing 565

5.2 System Architecture

Ontology-based Web service composition system is composed of three modules -
Service Ontology, Service Composer, and System Manager.- and the architecture of
the system is presented in Fig. 5.

Service Ontology provides semantic description for the data and the functionality
of the Web services to be composed. The Repository supplies several types of
meaningful information that Service Annotator needs in order to compose Web
services in Service Composer.

The Service Composer is where Service Annotator performs actual service
composition based on the provided service information of parameter, type and
composition information etc. Service Composer is composed of Execution Controller
that controls service execution, Data Manager that manages service parameters and
converts the types of parameters between services to be composed, Composite
Service Generator for composing actual services based on information on service
execution in Execution Controller, and Parameter Match Maker that matches
parameters between actual services based on the compatibility of the parameters of
the services to be composed in Data Manager.

Service
Invoker

System
Interface

Execution
Controller

Composite
Services Generator

Data
Manager

Parameter
Match Maker

Service ComposerService Manager

Service
Requester

SOAP
Message

SOAP
Message

Web Services
Ontology

Task/Domain
Ontology

Services
Annotator

Service
Provider

Service Composition Simulator

Simulate Simulation
Result

Ontology Processor

Service
Invoker

System
Interface

Execution
Controller

Composite
Services Generator

Data
Manager

Parameter
Match Maker

Service ComposerService Manager

Service
Requester

SOAP
Message

SOAP
Message

Web Services
Ontology

Task/Domain
Ontology

Services
Annotator
Services

Annotator

Service
Provider

Service Composition Simulator

Simulate Simulation
Result

Ontology Processor

Fig. 5. Architecture of Web service composition system

In addition, there is Service Composition Simulator for efficient service
composition before the composition of actual services if they can be composed.

System Manager executes actual services using service location information from
Service Annotator and service match information in Service Composer. This is
composed of Service Invoker to call services, and System Interface to pass service
input parameters to the service to be called.

5.3 Example

Select a Web service to be composed. To add services to be composed, click the
‘Continue’ button. If all services to be composed have been selected, click the
‘Composition’ button to execute service composition of the selected services.

566 Y.-S. Jeon et al.

Fig. 6. Screen to select services to be composed

Fig. 6 shows an example that composes ‘Inform’ action and ‘AirportWeather’
object, ‘Search’ action and ‘Game’ object, and ‘Send’ action and ‘Email’ object. The
combo box on the screen is a list of services extracted from Web service ontology.

Fig. 7 is a screen that matches the input and output parameters of AirportHumidity
service that provides information on airport humidity, AmazonGameSearch service
that finds game products in the Amazon site, and EmailSend service that send emails.
Here, input parameter ‘EmailBody’ of EmailSend service is matched with output
parameter ‘Weather_Message’ of AirportHumidity service. Then, the result of output
parameter ‘Weather_Message’ of AirportHumidity service is automatically entered
into the text box for the input of ‘EmailBody’ on the top of the service input window.
Whether the parameter matching information set above is adequate can be tested by
clicking the ‘Simulate’ button. After parameter matching is completed, click the
‘Run’ button to execute the Web service in a remote site provided by the actual
service provider.

Fig. 7. Parameter matching screen

Fig. 8 shows the actual parameter inputting for executing Web services. If data are
entered, the input data are transmitted in the form of SOAP message to the remote site
where the service is located. The service host executes the requested service and

 Ontology-Based Composition of Web Services for Ubiquitous Computing 567

Fig. 8. Parameter input screen showing parameter matching information

Fig. 9. Final results of service composition

returns the results to the client in the form of SOAP message. Fig. 9 is the final result
from the execution of the service.

6 Conclusions

Current Web services provide developers with connection to and use of individual
services, but interaction with the services and composite interpretation are impossible
and ordinary people can hardly interpret and use the services. Web service description
languages such as WSMF and BPEL4WS express the functional aspects of Web
services, and OWL-S still has limitations in expressing the conceptual and semantic
functions of Web services. Because these description methods cannot do Web service
discovery and dynamic Web service composition, which are the most important
semantics in Web services, they cannot attain the ultimate goals of semantic Web
services. The present study proposed a new method of describing Web services by
designing Web service ontology for the integrated expression of the functional and
semantic aspects of Web services. In addition, by supporting semantic interoperability
among Web services, ontology-based Web service composition serves the natural
integration of heterogeneous applications inside and outside of a company as well as
automatic system integration between business partners. Moreover, it facilitates
automatic software integration and enables efficient interoperation among Web
services.

568 Y.-S. Jeon et al.

References

1. Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P. F. and Stein, L. A.: Web Ontology Language (OWL) Reference
Version 1.0. Recent Trends and Developments. W3C Working Draft 12 November 2002,
http://www.w3.org/TR/2002/WD-owl-ref-20021112/

2. McIlraith, S., Son, T.: Adapting Golog for Composition of Semantic Web Services.
Proceedings of the Eighth International Conference on Knowledge Representation and
Reasoning, Toulouse, France, (2002)

3. Matskin, M., Rao, J.: Value-Added Web Services Composition Using Automatic Program
Synthesis. Web Services, E-Business, and the Semantic Web, CAiSE 2002 International
Workshop, WES 2002, Toronto, Canada, (2002)

4. W3C, OWL-S, http://www.w3.org/Submission/2004/SUBM-OWL-S-related-20041122/
5. Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry Winograd

ICrafter: “A Service Framework for Ubiquitous Computing Environments” Proceedings of
Ubicomp 2001, September 30-October 2, 2001

6. W3C, Web Service Description Language Specification, http://www.w3.org/TR/wsdl
7. F. Curbera et al., Business process execution language for web services (BPEL4WS) 1.0,

July 2002, http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
8. W3C, Web Service Modeling Ontology, http://www.wsmo.org/TR/
9. N. Gibbins, S. Haris and N. Shadbolt. Agent-based Semantic Web Services. In

Proceedings of the 12th Int. WWW Conf., WWW2003, Budapest, Hungary, 2003, ACM
Press, 2003, pp. 710-717

10. L. Ardissono, A. Goy, and G. Petrone. Enabling conversations with web services. Proc. of
the 2nd Int. Conf. on Autonomous Agents and Multiagent Systems, 2003, Melbourne, pp.
819-826

11. J. Rao, P. Kungas and M. Matskin. "Logic-based Web Service Composition: from Service
Description to Process Model". Proc. of the IEEE Int. Conf. on Web Services, ICWS 2004,
San Diego, California, USA, July 6-9, 2004, IEEE Computer Society Press

12. Tim Berners-Lee, James Hendler, Ora Lassila, “The Semantic Web”, Scientific American,
2001.5

13. Standford Univ,. Protege, http://protege.stanford.edu/doc/users.html
14. HP Lab, Jena, http://jena.sourceforge.net/index.html
15. W3C, Simple Object Access Protocol, http://www.w3.org/TR/soap12-part0

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 569 – 578, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Web Service Resource Framework Based
Computing Service Framework

for Computational Grid Applications

Eui Heo1, Kyung-Lang Park1, Oh-Young Kwon2,
Oh-Kyung Kwon3, and Shin-Dug Kim1

1 Supercomputing Lab, Dept. of Computer Science, Yonsei University,
134 Shinchon-Dong, Seodaemun-ku, Seoul, 120-749, Korea

{parousia, lanx, sdkim}@parallel.yonsei.ac.kr
2 Dept. of Computer Engineering, Korea University of Technology and Education,

P.O. BOX 55, Chonan, 330-600, Korea
oykwon@kut.ac.kr

3 Korea Institute of Science and Technology Information,
P.O. BOX 122, Yusong, Daejeon, 305-806, Korea

okkwon@kisti.re.kr

Abstract. Grid and Web service technology can be used as a solution for the re-
source shortage problem. These two technologies are used to be applied to MPI
(message passing interface) applications to design a framework to deploy MPI
applications on OGSA (open Grid service architecture). In particular, we mod-
eled MPI applications as WS-Resources. We call the WS-Resource “MPI
resource” and it is composed of an MPI application and its associated dynami-
cally created running environment. Thus, an MPI resource represents one MPI
task. Through this model, MPI applications can be published to the world of the
Grid. In addition, running environment is dynamically created from resources
chosen among distributed idle resources on the Grid. Deployed MPI re-
sources are utilized by other services. Especially in virtual organizations, MPI
resources can have the roles responsible for computing task as computing re-
sources for compute-intensive works and data resources for data-intensive
works.

1 Introduction

Recently, Grid computing platforms are designed without any dependency to any
specific middleware based on service-oriented architecture (SOA), which is evolved
significantly. Thus, we can virtualize many types of resources widely and use those
virtualized resources on the Grid. In addition, Grid comes to have the solid foundation
from SOA standards [1].

On the other hand, MPI (massage passing interface) has been popular program-
ming tool for high performance computing (HPC) users. Although MPI technology is
old-fashioned, it is still useful for HPC users today. In particular, in accordance with
the rapid performance improvement of CPU (central processing unit) and high-speed
network, supercomputing technology utilizing distributed resources has been devel-
oped practically and MPI has been continually developed for this new computing

570 E. Heo et al.

environment. Eventually, there have been many new trials to apply MPI technology to
Grid environment for utilizing distributed and heterogeneous resources [2].

In service-oriented Grid environment, MPI tends to show new possibility. Many
applications and computing resources can be provided by the Grid computing plat-
form. In scientific area, high performance systems are required to analyze and process
a large collection of data, perform complicated simulation, and verify many theories.
In industrial area, high performance computing systems are required to design and
simulate their products. In economic area, there are many needs of computing for
analyzing hourly produced economic indicators.

In this situation, if MPI applications could be deployed on the Grid, many users can
utilize many MPI applications running on the Grid platform, as a prominent source of
computing and data system. Moreover, if MPI applications could be deployed on the
Grid, and could be accessed publicly, it will accelerate collaboration of research in
each discipline and cross-discipline by sharing produced data and information.

There are some approaches similar to ours. One research is focused on wrapping
general legacy applications as services [3] [4]. They deployed applications, which are
as workflow composed of legacy command line applications, as services. There is
another research more similar to ours at the point of deploying especially MPI appli-
cations as services [5]. Our research is similar to those researches in the point of de-
ploying applications on Grid service environment. However, we are interested in
representing MPI applications as “resources” which come conceptually from WS-
Resource of WSRF [6]. Representing MPI applications as not services but resources
is beyond the difference of two words, service and resource. This transition will make
the “MPI resources” more applicable to the diverse needs of users and applications on
Grid.

We implemented a prototype of our work and got satisfactory results. It becomes
possible to share MPI task using MPI resources. MPI resources allow sharing of com-
putational tasks monitoring and those computational results. The overhead from the
service structure was very small. The service proportion for MPI resource running
time is 1~2% for about one minute time work. It becomes more less if the work time
is longer. And the memory usage is very small. One MPI resource size is several
kilobytes. Even though many MPI resources are created, the proportion of MPI re-
sources becomes very slight.

In the rest sections, we first review more details of related works in section 2 and
introduce the background of this paper, the concept of WSRF in section 3. Then we
present our works about how MPI applications could be deployed and executed as
WS-Resource, how MPI resources could be designed, and how the MPI resources
could be utilized in VOs on OGSA as in section 4. In section 5, we evaluate our re-
search. Finally, we discuss and conclude our research.

2 Related Work

There are various approaches to applying service concept to MPI applications. One
interesting research is to implement MPI functions as services [7]. MPI processes
running on different nodes exchange messages using the MPI function services. This
approach is interesting, but not suitable for HPC that the performance is critical.

 Web Service Resource Framework Based Computing Service Framework 571

Because the messages frequently exchanged between processes are wrapped as SOAP
messages and pass through the service container, so the overhead caused by service
construct is very big and inevitable.

Another approach is exposing whole MPI application as a service, so underlying
mechanism is abstracted [5]. This research focuses on “data-centric virtualization.”
Only input and output interfaces are exposed, and the data produced by MPI service
can be utilized by other services. The form of data produced by legacy MPI applica-
tions is various, so routines using produced data must be implemented according to
each circumstance. This approach is appropriate for MPI which is similar to our ap-
proach. In addition, we will state not only wrapping MPI applications as services but
also running the application on the resources over Grid and MPI applications as re-
sources on OGSA.

There are other methods wrapping applications as services, not limited to MPI ap-
plications [3] [4]. These approaches focus on deploying one legacy application or
workflow composed of legacy applications as a service. MPI applications also can be
deployed by those frameworks. However, in those frameworks the deployed applica-
tions are dependent on specific resources. Our framework is dedicated for computing
functionality. In particular, we pay attention to the points of the Grid environment
sharing idle resources and MPI application codes independent on machines. There-
fore, we make MPI applications select resources from the distributed resources and
run on those resources.

3 MPI Service Framework

In this section, we present a framework for the MPI WS-Resources, where MPI appli-
cations are considered as resources based on WSRF. For this, we first review shortly
about WSRF and the concept of WS-Resource. Then we describe our framework.

3.1 WSRF, WS-Resource and MPI Resource

Grid uses SOA for its foundation, but it is insufficient for representing “stateful ser-
vice” needed by OGSA. First, OGSI (open Grid service infrastructure) has been de-
vised. However, OGSI has some conflicts with Web services. The alternative is
WSRF [8], which is conformed to be applied to Web services. Moreover, it introduces
new concept, WS-Resource. It is an advanced concept in virtualizing resources as
services. Especially services and resources are strictly separated. WS-Resource can
represent any entity. It can be either logical entities or physical resources. Finally,
WS-Resource becomes the infrastructure of OGSA.

We get the concept of the “resource”, the logical entity, from WS-Resource and we
present MPI resource, the unit of one MPI task, which is composed of an MPI appli-
cation and its dynamically created running environment. The MPI resource is the
resource on OGSA, so it can be shared by virtual organizations (VOs). Especially
MPI resources are the special resources responsible for performing computational
tasks.

572 E. Heo et al.

3.2 Overall Framework of MPI Service

Fig. 1 illustrates the overall MPI service framework. This framework is divided to
three physical modules. The first one is the user Web interface accessing to MPI ser-
vices. The second one is MPI service server providing computing services. The last
one is computing resources required for performing the MPI applications.

MPI service server is composed of several components, i.e., application repository
and Resource information service. Application repository contains descriptions about
the MPI applications and parameter information required for running applications.
Resource information service monitors the distributed resources in Grid, and keeps
the information. These two components provide basic information for making MPI
resources.

When user selects an application and submits parameters, the client program first
queries MPI resource index to find already created resources, which have properties
of the same application and parameters. If it exists, client program gets the endpoint
reference (EPR). If it does not exist, client program requests MPI resource factory to
make a new MPI resource.

Fig. 1. MPI Service Framework

MPI service sets and gets the information of the MPI resource, performs operations
of an MPI resource and monitors the MPI resource. When client requests an MPI
service to run the application, the MPI service prepares the environment through run-
ning context factory. Running context factory dynamically creates a temporary run-
ning environment for MPI applications. It requests needed information to the resource
information service and composes running environment. MPI resources have the EPR
of a running context resource and can order running of an application on it.

The process is performed as follows. User accesses the client program through
Web interface. User selects an MPI application registered in the application reposi-
tory. User submits the parameters to the client through the Web interface. The client
requests MPI resource index to query resources that have same application and pa-
rameters. If it is found, the EPR of the MPI resource is returned to the client program.
If it is not found, client program requests making a new MPI resource to MPI re-
source factory. MPI resource factory requests necessary information to the application
repository and makes a new MPI resource. Client program requests MPI service to

 Web Service Resource Framework Based Computing Service Framework 573

use the MPI resource. MPI service requests running context resource factory to make
a running context resource for the MPI resource. MPI service gets the EPR of the
running context resource. The created running context resource generates the JSDL
(Job Submission Description Language) based on the information of the application
and the running environment. MPI resource orders the running context resource to
submit the JSDL to the WS-GRAM at the front node of running environment. MPI
resource gets the messages.

3.3 MPI Resource

When we try to design a framework of scientific applications on OGSA, we face
several considerable points. Most scientific applications are performed in their own
workflows. So we can consider wrapping the whole workflow as one service. In this
case, application users can use the applications very simply and easily. But this design
approach is restricted in some points. Resource utilization can be restricted and appli-
cations are performed on the restricted site. Therefore, we need to consider an ap-
proach separating computational task from the whole workflow for efficient resource
utilization.

Another thing is to consider sharing MPI tasks on the Grid. We can consider shar-
ing of MPI tasks and their results among the VOs. If several collaborating VOs are
sharing some computational tasks from the beginning of running application, immedi-
ate data and information may be shared. These two points are mainly considered to
design MPI resources.

MPI resources are created by the MPI resource factory and registered into MPI re-
source index. It is can be checked for reusing and sharing. Resource creation is oc-
curred when the MPI resources required are not found in MPI resource index. When
the MPI resource is not found, MPI factory creates a new MPI resource. MPI resource
is initialized with the application information provided by application repository.
When an MPI resource is requested to run, the MPI resource dynamically creates a
running context resource, which provides running environment to MPI resources.

Application repository provides descriptions about MPI application when users
contact the Web interface to select application list. In addition, it provides MPI re-
sources with metadata that is necessary for running MPI resources such as required
user parameters. When user wants to deploy his application as MPI resource, in ad-
vance, he must register his application to the application repository through Web
interface by providing the information such as parameter number and description
about the application, and upload his application code.

The properties of the MPI resources are described in WSDL as shown in Fig. 2.
Especially element Application is defined as a complex type containing all in-
formation about the MPI applications. Application repository provides application
description, parameter number, each parameter name, and file name.

MPI resource is almost a persistent resource. Created MPI resources reside in the
service container until any destroy command is issued, and they can be reused and
shared by other WS-Resources or services through MPI resource index. The size of
MPI resource is very small. It is about several kilobytes. This is good in several
points. The one is comparing parameters and the results from accumulated MPI re-
sources. The second one is utilizing already produced data without any further

574 E. Heo et al.

<xsd:element name="MPIResourceProperties">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:ProcessNum" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:FileLocation" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:OutputMsg" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:ErrorMsg" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:Application" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:ResourceList" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:RunningContextEPR" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>

Fig. 2. MPI resource properties

execution. The last one is sharing computing works among VOs. When several VOs
collaborate and especially share computational tasks, they can share MPI resources
and results by sharing the EPR of those MPI resources.

3.4 Running Context Resource

Running context resource is to manage the environment dynamically created from the
distributed resources on Grid. It is the result of our intention separating computational
tasks from applications or workflows. MPI resources can utilize idle computing re-
sources on Grid through the running context resources.

Resource information service monitors distributed computing resources and pro-
vides needed resource information for creating running context resources, such as OS,
CPU, MPI library, compile command, run command, working directory, and WS-
GRAM EPR. When the MPI service requests to create a running context resource,
running context resource factory creates a new resource using the information from
resource information service.

In particular, MPI resource can have running context composed of multiple distrib-
uted resources as shown in Fig. 3. The running context service queries resource in-
formation service to search a collection of resources that meet the conditions for

Fig. 3. MPI Resource and Running Context Resource

 Web Service Resource Framework Based Computing Service Framework 575

creating suitable running environment. For composing one running environment,
resources must have same properties about CPU, OS, and MPI library because those
properties directly influence compiling and file system. If resources are selected, the
running context resource makes the resource list such as machinefile of MPICH-G2
or hostfile of Open MPI needed for running MPI application. Then it generates JSDL
based on the information about the application to run, the parameters submitted, and
the system information of the front node in the running context. In this way, the run-
ning preparation can be performed.

When an MPI resource orders its running context resource to run the application,
then the running context resource submits JSDL to WS-GRAM of the front node. All
the required files such as an MPI application and input files are staged-in through the
file transfer service to working directory of the front node. WS-GRAM starts the
application on the created running environment.

When application execution is finished, the MPI resource gets output messages, er-
ror messages and file location reference from WS-GRAM. Files produced by the
application, are staged-out to the designated place described in MPI resource prop-
erty. If this procedure is done, running context resource is destroyed automatically.
The state of resources on Grid changes hourly, so the running context must be created
dynamically and it can be destroyed when its execution is finished.

3.5 MPI Resource Index

MPI resource index service is the service for utilizing existing MPI resources. When a
user wants to start an MPI resource, first, selects an application registered in the ap-
plication repository, and then submits parameter values following the description of
the application metadata. At this time, the client program requests MPI resource index
service to find any running resources with the same application and submitted pa-
rameters. If matching MPI resources exist, it is not necessary to make a new MPI
resource. The client program gets the EPR of the MPI resource and the user immedi-
ately can get the all information about the MPI resource running already without addi-
tional running time of the application.

3.6 The Roles of MPI Resources in VOs

We modeled the MPI resource as a special resource responsible for performing com-
puting tasks on OGSA. The MPI resource can have two kinds of role in VOs. The one
is as computing resource and another is as data resource.

Fig. 4 describes two scenarios between two VOs. MPI resources as computing re-
sources are for compute-intensive works. Services linked with solid lines represent
direct interaction. In this case, an MPI resource or an application service utilizes
computing power of the linked MPI resource for its computing need. The data ex-
changing mechanism and the interfaces in this scenario must be designed tightly
coupled. Because data exchange occurs directly between two entities. Therefore, this
relationship is inflexible but efficient in compute-intensive and real time works. In
Fig. 4, MPI resource 1 becomes a computing resource to an application service and
MPI resource 2.

576 E. Heo et al.

Fig. 4. MPI Resources in VOs

Another role is as a data resource. This is for data-intensive work. Massive data
produced by MPI resources is staged out to the designated locations and MPI re-
sources have the locations. Therefore, MPI resources can provide the access to the
data indirectly. Indirect data provision is illustrated as dotted lines in Fig. 4. MPI
resource 2 provides data to an application service. Actually, the data produced by MPI
resource 2 is stored in the designated location and the application service gets the data
from the location. This scenario can be implemented as the loosely coupled mecha-
nism. The database can be designed to provide the same data to diverse services or
resources by implementing various data providing interfaces.

Fig 4 also represents an MPI resource shared between two VOs. This is possible by
simply sharing the EPR of the MPI resources. VO1 and VO2, both can monitor the
MPI resource 2 and retrieve properties of MPI resource 2.

One important issue about MPI resources on OGSA is data flowing. There are sev-
eral approaches. One is exchanging data in workflow through XML form and the other
is through existing flat files. The former approach is good ultimately for SOA. Never-
theless, this approach is restricted in many cases as of now. First, all applications must
be implemented as services or existing applications using flat files must be equipped
by the data transforming service, which transforms XML data to flat files and flat files
to XML data. In addition, if the data size is massive such as GBs or TBs, the transfer-
ring overhead caused by SOAP messages and service structure will be tremendous.

We choose the latter approach. At this present time, before the leap progress of
SOA performance and network technology, we think the latter is more efficient ap-
proach. Therefore, we present data flow mechanism through providing reference to
the data location. Yet we think exchanging data through XML form is possible and
useful in limited cases such as the case that produced data is small enough to transfer
as SOAP messages.

4 Evaluation

We implemented the MPI resource based on Globus Toolkit version 4 (GT4) Java WS
Core. GT4 is installed in MPI service server and computing resources. MPI service

 Web Service Resource Framework Based Computing Service Framework 577

server is chosen as a system with the CPU, AMD Athlon(tm) XP 2500+ and 512MB
memory. And each computing resource has CPU, Pentium III 1.0 GHz and 1GB
memory.

Following Table.1 and Fig. 5 depict the time consumption of an MPI resource by
stages from creation to getting result messages. From this, we get the overhead caused
by service structure. The ratio of service to total running time of an MPI resource is
trivial level. The overhead caused by service structure is fixed, so, the total time and
the ratio of service is in inverse proportion. This example is short-term job. Therefore,
for the long-term job, the ratio will be much smaller.

Table 1. MPI resource running time by each stage and node number

Nodes Creation Preparation Run Get message Service Ratio (%)

1 42 702 77308 54 1.02

2 48 685 45279 39 1.68

4 46 685 28567 38 2.62

Fig. 5 shows lazy initialization phenomenon [9]. The phenomenon occurs when
clients or service containers are first started. It adds some more time when the service
is first started, but the influence to whole is limited.

Fig. 5. MPI resource running time by each stage and node number

5 Conclusion

In this paper, we present a service framework of MPI applications for computational
Grid. With this, we try to fulfill the diverse computing needs of application services
on OGSA. Especially we model MPI resource on OGSA. MPI resource is modeled
for being responsible for computational tasks. MPI resources can be members of VOs,
and they become computing resources for compute-intensive application services and
data resources for data-intensive services. Like the measured results above, the

578 E. Heo et al.

overhead caused by service structure is. The MPI resource may meet variety of com-
puting needs to services on OGSA with trivial overhead.

References

1. I. Foster, C. Kesselman, J.M. Nick, S. Tuecke: Grid services for distributed system integra-
tion, IEEE Computer, Vol. 35-6, pp. 37-46 (2002)

2. Nicholas T. Karonis, Brian R. Toonen, Ian T. Foster: MPICH-G2: A Grid-enabled imple-
mentation of the Message Passing Interface. J. Parallel Distrib. Comput. 63(5): 551-563
(2003)

3. Dennis Gannon, Jay Alameda, Octav Chipara, Marcus Christie, Vinayak Dukle, Liang
Fang, Matthew Farellee, Geoffrey Fox, Shawn Hampton, Gopi Kandaswamy, Deepti Kode-
boyina, Charlie Moad, Marlon Pierce, Beth Plale, Albert Rossi, Yogesh Simmhan, Anuraag
Sarangi, Aleksander Slominski, Satoshi Shirasauna, and Thomas Thomas: Building grid
portal applications from a Web-service component architecture. Proceedings of the IEEE
(Special issue on Grid Computing), 93(3):551-563, March (2005)

4. T. Delaitre, A.Goyeneche, P. Kacsuk, T.Kiss, G.Z. Terstyanszky, S.C. Winter: GEMLCA:
Grid Execution Management for Legacy Code Architecture Design, Conf. Proc. of the 30 th
EUROMICRO Conference. (2004)

5. E. Floros, Yannis Cotronis: Exposing MPI Applications as Grid Services. Euro-Par 2004:
436-443

6. Web Service Resource Framework (WSRF) TC, Web Services Resources specification 1.2,
OASIS. (2005)

7. Diego Puppin, Nicola Tonellotto, Domenico Laforenza: How to Run Scientific Applications
over Web Services. ICPP Workshops 2005: 29-33

8. Foster, I., Czajkowski, K., Ferguson, D.E., Frey, J., Graham, S., Maguire, T., Snelling, D.,
Tuecke, S.: Modeling and managing State in distributed systems: the role of OGSI and
WSRF, Proceedings of the IEEE, Volume 93, Issue 3, March 2005 Page(s): 604 - 612

9. Taiani, F.; Hiltunen, M.; Schlichting, R.: The impact of Web service integration on grid per-
formance, High Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th
IEEE International Symposium on 24-27 July 2005 Page(s):14 - 23

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 579 – 588, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Metropolitan-Scale Grid Environment:
The Implementation and Applications of TIGER Grid*

Chao-Tung Yang1,**, Tsu-Fen Han1, Wen-Chung Shih2, Wen-Chung Chiang3,
and Chih-Hung Chang3

1 High-Performance Computing Laboratory
Department of Computer Science and Information Engineering

Tunghai University, Taichung 40704, Taiwan
ctyang@thu.edu.tw, g942814@thu.edu.tw

2 Department of Computer and Information Science
National Chiao Tung University, Hsinchu 30010, Taiwan

gis90805@cis.nctu.edu.tw
3 Department of Information Management

Hsiuping Institute of Technology, Dali, Taichung 412, Taiwan
wcchiang@mail.hit.edu.tw, chchang@mail.hit.edu.tw

Abstract. Internet computing and Grid technologies promise to change the way
we tackle complex problems. Harnessing these new technologies effectively, it
will transform scientific disciplines ranging from high-energy physics to life
sciences. This paper describes a metropolitan-scale Grid computing platform
named TIGER Project (standing for Taichung Integrating Grid Environment
and Resource), which basically interconnects universities and high schools’
Grid computing resources and sharing available resources among them, for
investigations in system technologies and high performance applications. This
novel project shows the viability of implementation of such project in a
metropolitan city.

1 Introduction

Grid computing offers a model for solving massive computational problems using
large numbers of computers arranged as clusters embedded in a distributed
telecommunications infrastructure [1, 3, 4, 5, 7, 9]. Grid computing has the design
goal of solving large problems for any single supercomputer, whilst retaining the
flexibility to work on multiple smaller problems. Grid computing involves sharing
heterogeneous resources (based on different platforms, hardware/software, computer
architecture, computer languages), located in different places belonging to different
administrative domains over a network using open standards [2, 8, 10, 12]. In short, it
involves vitalizing computing resources. Numerous next generations, large scale
advanced applications are being developed on innovative technology infrastructure.
The development of new types of information technology infrastructure continues to

* This work is supported in part by National Science Council, Taiwan R.O.C., under grants

no. NSC95-2213-E-029-004 and NSC95-2218-E-007-025.
** Corresponding author.

580 C.-T. Yang et al.

progress rapidly. It has been noted that one way to view the future is to visit an
advanced technology research lab where innovative developers are creating powerful
new architecture, protocols, and integrated systems. A number of these development
efforts are directed at providing technology infrastructure with attributes that
resemble common utility more than a specialized tool.

The basic idea of Grid computing is to create an infrastructure to harness the power
of remote high-end computers, databases and other computing resources owned by
various people across the globe through the Net. Grid computing involves connecting
computers, processors and storage devices via a network in order to gain better
overall performance by effectively utilizing unused resources. In the Grid computing
world, people submit computing jobs to the grid and the grid system allots the
required computing resources and processes the job. The development and
deployment of computational Grids is focused on creating a more seamless and direct
means of utilizing computationally based resources. The majority of Grid projects
today are directed solving complex problems, which can are bandwidth, data, and
compute cycle intensive, such as the types of problems encountered by large-scale e-
Science.

This paper describes a metropolitan-scale Grid computing platform named TIGER
Project (standing for Taichung Integrating Grid Environment and Resource) [3, 16],
which basically interconnects universities and high schools’ Grid computing
resources and sharing available resources among them, for investigations in system
technologies and high performance applications. This novel project shows the
viability of implementation of such project in a metropolitan city. The successful
implementation of the Grid computing infrastructure will certainly have far-reaching
implications for the business, scientific and individual computing users. Different
computational science research sectors, and for commerce, industrial and social
service applications can benefit of such technology.

The remainder of this research paper is organized as follows. Section 2 introduces
the implementation of TIGER, a metropolitan-scale Grid computing environment and
description of each educational unit infrastructure. Later in section 3, we introduce
ongoing research projects being investigated by our teams. Finally, in section 4,
conclusions and future works are presented.

2 TIGER Grid Testbed

The TIGER Grid computing platform, which stands for Taichung Integrating Grid
Environment and Resources, consists of three universities and two high schools,
either public or private system, all located in Taichung City and County, Taiwan
[3, 16]. The project of constructing such grid infrastructure was to increase each
educational unit’s computational power cluster resources and exchange

The educational unit’s in Taichung, Taiwan participating at this project are
Tunghai University (THU), Providence University (PU), HsiuPing Inst. of Tech
(HIT), National Dali High School (DL) and at last, Li-Zen High School (LZ). They
are interconnected among themselves by TANET (Taiwan Academic Network), of
1Gbps. The TIGER Grid platform was built of 32 computing nodes, 40 processors of

 Metropolitan-Scale Grid Environment 581

different speed and total storage of more than 2TB in 2005. All these institutions are
in Taiwan, and each is at least 10 Km from THU. Our all machines have Globus 4.0.1
or above installed. Figure 2 shows the status of various ports used for grid testbed in
one monitor page. The detail hardware specification of each educational unit is listed
in Table 1.

Internet

THU

Li-Zen High
School (LZ)

HITCeleron 900 MHz
256 MB RAM

60 GB HD

AMD Athlon(tm) XP 2400+
1024 MB RAM

120 GB HD

Pentium 4 2.8 GHz
512 MB RAM

80 GB HD

PU

Da-Li High
School (DL)

Athlon MP 2000 MHz *2
1 GB RAM
60 GB HD

Pentium 4 1.8 GHZ
128 MB RAM

40 GB HD

Pentium 4 2.5 GHZ
512 MB RAM

80 GB HD

Fig. 1. TIGER Grid Platform

Fig. 2. The TIGER monitor page for status of various ports

582 C.-T. Yang et al.

Table 1. TIGER Grid participants and hardware specifications

Site Nodes CPU / Memory Local Network
THU 4 Dual AMD MP 2000+, 1GB 10/100 Mbps
THU 4 Dual-Core Intel P4 2.8GHz, 512MB 1 Gbps
THU 4 Intel P4 2.8GHz, 512MB 1 Gbps
THU 4 Intel P4 3.0GHz, 512MB 1 Gbps
PU 4 AMD Athlon 2400+, 1GB 1 Gbps
HIT 4 Intel P4 2.8GHz, 512MB 10/100 Mbps
LZ 4 Celeron 900MHz, 256MB 10/100 Mbps
TC 4 Intel P4 1.8GHz, 128MB 10/100 Mbps

3 Ongoing Teaching Courses and Research Projects on Grid
Computing

As we known, the Globus Project provides software tools that make it easier to build
computational grids and grid-based applications. These tools are collectively called
The Globus Toolkit (http://www.globus.org/). In our system, we adopted it as
infrastructure for our BioGrid. The toolkit includes software for security, information
infrastructure, resource management, data management, communication, fault
detection, and portability. We use Globus toolkit 4.0.1 as middleware to construct a
grid computing environment and conduct the experimentations for lecture used.
Also, we used the monitoring system development by our laboratory to monitoring
whole gird testbed. Figure 3 shows the snapshot of Ganglia tool on TIGER [3, 16].

Fig. 3. The snapshot of grid testbed

 Metropolitan-Scale Grid Environment 583

3.1 Grid Resource Broker

As Grid Computing becomes a reality, there is a need to manage and monitor
available resources world-wide, as well as a need to convey these resources to
everyday users. This work describes a resource broker as shown in Figure 4 whose
main function is to match available resources to user needs. The resource broker
provides a uniform interface for accessing available and appropriate resources via
user credentials [15, 16]. We also focus on providing approximate measurement
models for network-related information using NWS for future scheduling and
benchmarking.

We first propose a network measurement model for gathering network-related
information (including bandwidth, latency, forecasting, error rates, etc.) without
generating excessive system overhead. Second, we consider inaccuracies in real-
world network values in generating an approximation values for future use. We
constructed a grid platform using Globus Toolkit that integrates the resources of five
schools in Taichung integrated grid environment resources (TIGER). The resource
broker runs on top of TIGER. Therefore, it provides security and current information
about available resources and serves as a link to the diverse systems available in the
Grid.

Fig. 4. The computational grid resource broker

3.2 Network Information Model

Network Weather Service (NWS) can measure point-to-point network bandwidth and
latency that may be important for grid scheduling and load balancing [6]. NWS
detects all network states during time periods selected by the user. Because this kind
of site-to-site measurement results in N(N-1) network measurement processes, the

584 C.-T. Yang et al.

time complexity is O(N2). Our network model focuses on solving the problem of
reducing this time complexity without losing too much precision.

In this work, we focus on providing approximate measurement models for
network-related information as shown in Figure 5 by using NWS for future
scheduling and benchmarking [17, 18]. We first propose a network measurement
model for gathering network-related information including bandwidth, latency,
forecasting, error rates, etc., without generating excessive system overhead. We then
consider inaccuracies in real-world network values in generating approximation
values for future use.

Fig. 5. The network information model

3.3 Data Grid Applications

Data Grids enable the sharing, selection, and connection of a wide variety of
geographically distributed computational and storage resources for addressing large-
scale data-intensive scientific application needs in, for instance, high-energy physics,
bioinformatics, and virtual astrophysical observatories, among others. Data sets are
replicated in Data Grids and distributed among multiple sites. Unfortunately, datasets
of interest are significantly large in size, which may lead to access efficiency
overheads. The co-allocation architecture was developed in order to enable parallel
downloading of datasets from multiple servers.

Several co-allocation strategies have been coupled and used to exploit rate
differences among various client-server links and to address dynamic rate fluctuations
by dividing files into multiple blocks of equal sizes. However, a major obstacle, the
idle time of faster servers having to wait for the slowest server to deliver the final
block, makes it important to reduce differences in finishing time among replica
servers. In this work, we propose a dynamic co-allocation scheme, namely Recursive-
Adjustment Co-Allocation scheme, to improve the performance of data transfer in
Data Grids. Our approach reduces the idle time spent waiting for the slowest server
and decreases data transfer completion time [13, 19]. We also provide an effective
scheme for reducing the cost of reassembling data blocks. Figure 6 shows the client
tool for transferring files in parallel.

 Metropolitan-Scale Grid Environment 585

Fig. 6. The Gridftp client tool

3.4 Bioinformatics Grid Applications

Biology databases are diversified and massive; as a result, researchers must compare
each sequence with a vast number of other sequences efficiently. A number of
programs such as Blast, FASTA, ClustalW, etc., have been written to rapidly search a
database for a query sequence. Comparison, whether of structural features or protein
sequences, lies in the heart of bioinformatics. These activities require high-speed,
high-performance computing power to search through and analyze huge amounts of
data, and industrial-strength databases perform a wide range of data-intensive
computing functions. The emergence of Grid computing and Cluster computing
would meet these requirement. Biological data exists all over the world as various
web services, which help biologists to search and extract useful information. The data
formats produced from various biology tools are heterogeneous. It needs powerful
tools to handle this issue. The process of information integration of heterogeneous
biological data is complex and difficult.

This work also describes an approach to solve this problem by using XML
technologies. We implement an experimental distributed computing application for
bioinformatics [14]. Which consist of basic high-performance computing environment
(Grid and PC Cluster system), multiple interface of user portal to provide a useful
graphical interface as shown in Figure 7 for biologists who are not specialized in IT to
be able to benefit directly from the usage of high-performance technology, and a
translation tool for biology data to convert them into XML format.

3.5 Hybrid Parallel Loop Scheduling

For self-scheduling of parallel loops, we propose a general approach called HPLS
(Hybrid Parallel Loop Scheduling) and conduct the experimental results on the TIGER.
This approach utilizes performance functions to estimate the performance ratio of each

586 C.-T. Yang et al.

Fig. 7. The GUI of BioGrid for parallel bioinformtics

0

50

100

150

200

250

512 * 512 1024 * 1024 1536 * 1536

Matrix Size

T
im

e
(s

) matstat

matgss

mathgss

0

50

100

150

200

250

300

350

64 * 64 128 * 128 192 * 192

Image Size

Ti
m

e
(s

) manstat

mangss

manhgss

Fig. 8. Hybrid Parallel Loop Scheduling for Grids

node. To verify our approach, a testbed grid is built, and two types of application
programs, matrix multiplication and Mandelbrot are implemented to be executed in
this testbed. Empirical results in Figure 8 show that our approach can obtain
performance improvement on previous schemes, for grid environments [11, 20, 21].

 Metropolitan-Scale Grid Environment 587

4 Conclusions

The rise of grid computing and its application discipline brings to computer science
faculty members new opportunities and challenges, both in education and in research.
In this paper, we described a metropolitan-scale Grid computing platform named
TIGER Project (standing for Taichung Integrating Grid Environment and Resource),
which basically interconnects universities and high schools’ Grid computing
resources and sharing available resources among them, for investigations in system
technologies and high performance applications.. In addition, we also describe the on
going related projects and previous results. With interdisciplinary collaboration and
using this platform, researchers, faculties and students from computer science,
chemistry, physics, biology and engineering programs can interact among themselves.

References

1. The Globus Project, http://www.globus.org/
2. MPICH-G2, http://www.hpclab.niu.edu/mpi/
3. TIGER Project, http://gamma2.hpc.csie.thu.edu.tw/ganglia/, 2006.
4. The Globus Alliance, http://www.globus.org/
5. The National Science Foundation Middleware Initiative, http://www.nsf-middleware.org/
6. Network Weather Service, http://nws.cs.ucsb.edu/
7. I. Foster et al., The Physiology of the Grid: An Open Grid Services Architecture for

Distributed Systems Integration, available at http://www.globus.org/research/papers/
ogsa.pdf

8. Ian Foster, Carl Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers Inc., San Francisco, CA, 2003.

9. William Gropp , Ewing Lusk , Anthony Skjellum, Using MPI (2nd ed.): portable parallel
programming with the message-passing interface, MIT Press, Cambridge, MA, 1999.

10. H. Jordan, and G. Alaghband, Fundamentals of Parallel Processing; Prentice Hall, 2003.
11. Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng, “A Hybrid Parallel Loop

Scheduling Scheme on Grid Environments,” Grid and Cooperative Computing - GCC
2005: Fourth International Conference, Lecture Notes in Computer Science, vol. 3795, pp.
374-385, Springer-Verlag, November 2005.

12. B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers, 2nd Edition; Prentice Hall, 2005.

13. Chao-Tung Yang, Chun-Hsiang Chen, Kuan-Ching Li, and Ching-Hsien Hsu,
“Performance Analysis of Applying Replica Selection Technology for Data Grid
Environments,” PaCT 2005, Lecture Notes in Computer Science, vol. 3606, pp. 278-287,
Springer-Verlag, September 2005.

14. Chao-Tung Yang, Yu-Lun Kuo, Kuan-Ching Li, and Jean-Luc Gaudiot, “On Design of
Cluster and Grid Computing Environments for Bioinformatics Applications,” Distributed
Computing - IWDC 2004: 6th International Workshop, Lecture Notes in Computer
Science, Springer-Verlag, Arunabha Sen, Nabanita Das, Sajal K. Das, et al. (Eds.),
Kolkata, India, vol. 3326, pp. 82-87, Dec. 27-30, 2004.

15. Chao-Tung Yang, Chuan-Lin Lai, Po-Chi Shih, and Kuan-Ching Li, “A Resource Broker
for Computing Nodes Selection in Grid Environments,” Grid and Cooperative Computing
- GCC 2004: Third International Conference, Lecture Notes in Computer Science,
Springer-Verlag, Hai Jin, Yi Pan, Nong Xiao (Eds.), vol. 3251, pp. 931-934, Oct. 2004.

588 C.-T. Yang et al.

16. Chao-Tung Yang, Kuan-Ching Li, Wen-Chung Chiang, and Po-Chi Shih, “Design and
Implementation of TIGER Grid: an Integrated Metropolitan-Scale Grid Environment,”
Proceedings of the 6th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2005), IEEE CS Press, December 5-8, 2005.

17. Chao-Tung Yang, Po-Chi Shih, Sung-Yi Chen, and Wen-Chung Shih “An Efficient
Network Information Modeling using NWS for Grid Computing Environments,” Grid and
Cooperative Computing - GCC 2005: Fourth International Conference, Lecture Notes in
Computer Science, vol. 3795, pp. 289-300, Springer-Verlag, November 2005.

18. Chao-Tung Yang, Po-Chi Shih, Cheng-Fang Lin, Ching-Hsien Hsu, and Kuan-Ching Li,
“A Chronological History-Based Execution Time Estimation Model for Embarrassingly
Parallel Applications on Grids,” ISPA 2005, Lecture Notes in Computer Science, vol.
3758, pp. 425-430, Springer-Verlag, November 2005.

19. Chao-Tung Yang, I-Hsien Yang, Kuan-Ching Li, and Ching-Hsien Hsu “A Recursive-
Adjustment Co-Allocation Scheme in Data Grid Environments,” ICA3PP 2005 Algorithm
and Architecture for Parallel Processing, Lecture Notes in Computer Science, vol. 3719,
pp. 40-49, Springer-Verlag, October 2005.

20. Chao-Tung Yang, Wen-Chung Shih, and Shian-Shyong Tseng, “A Dynamic Partitioning
Self-Scheduling Scheme for Parallel Loops on Heterogeneous Clusters,” International
Conference on Computational Science - ICCS 2006, Lecture Notes in Computer Science,
vol. 3991, pp. 810-813, Springer, University of Reading, UK, May 28-31, 2006.

21. Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng, “A Performance-Based
Approach to Dynamic Workload Distribution for Master-Slave Applications on Grid
Environments,” Advances in Grid and Pervasive Computing - First International
Conference, GPC 2006, Lecture Notes in Computer Science, Editors: Yeh-Ching Chung,
José E. Moreira, vol. 3947, pp. 73-82, Springer, Taichung, Taiwan, May 3-5, 2006.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 589 – 597, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Plug-In Tool for Composing Web Services for
Applications Development*

Olivia G. Fragoso D.1, René Santaolaya S.1, Mariana Guzmán R.1,3,
Mario Guillén R.1,2, and Manuel A. Valdés M.3

1 Centro Nacional de Investigación y Desarrollo Tecnológico
Interior Internado Palmira s/n Col. Palmira,

Cuernavaca, Morelos, México CP62490
{ofragoso, rene, marianag}@cenidet.edu.mx

2 Instituto de Investigaciones Eléctricas, IIE-GAR-26-3,
Reforma 113, Col. Palmira

Cuernavaca, Morelos, México CP62490
mguillén@iie.org.mx

3 Universidad del Mar
Ciudad Universitaria s/n

Puerto Escondido, Oaxaca. CP 71980
valdes@zicatela.umar.mx

Abstract. Web services composition is currently the paradigm proposed to re-
duce the cost, time and effort in software development. At the same time, web
services seem to fulfill reuse requirements that other technologies have not de-
livered yet. However, some software development tools do not completely sat-
isfy the need for composing multiple web services. This paper describes tool to
support in a semiautomatic way the composition of multiple web services,
based on a composition process model. The tool can be used as a plug-in in
some software development environments such as Eclipse. In addition, the gen-
eration of a template based on XML tags in a client application in order to fa-
cilitate the communication with the web services is also described.

1 Introduction

Applications development by composing web services is one of the current paradigms
proposed to support organizations in reducing the cost, time and effort in the devel-
opment of their applications. Web services are “software systems identified by a
URL, whose public interfaces and bindings are defined and described using XML”[1].
When complex and large scale applications are developed, their execution logic in-
volves the execution of more than one web service. Web services with different func-
tionalities will have to interact among them in order to fulfill the requirements of the
applications. This is known as web services composition [2].

Service composition can be realized for two reasons. One reason is the composi-
tion of web services that together execute a given functionality and return some data
that a client application will use to continue with its execution. The other reason refers

* This work was partially funded by COSNET through the project 526.04-P.

590 O.G. Fragoso D. et al.

to compose services into a higher-level service that encapsulates some logic of the
client or the business; examples are the flight-hotel booking service [3] and the pur-
chase-delivery service [4].

Some software development tools do not support the generation of stubs of multi-
ple web services at a time. It does not help when software developers want to employ
many web services in their applications since they have to select one web service at a
time and generate its stub. This paper presents a plug-in tool to support in a semiau-
tomatic way the composition of multiple web services based on a process model and
the generation of a template in a client application in order to compose the web ser-
vices. This tool facilitates the generation of the stubs of all selected web services. The
plug-in tool can be used in JAVA based software development environments such as
Eclipse. In addition, this plug-in tool allows the user to select all the web services
necessary for the application and generates all the stubs at a time and stores them in
only one file. None of the composition languages such as BPEL4WS, WSCI,
XLANG, and WSFL were used in this work in order to enable the composition proc-
ess, because the logic of applications depends totally on the designs that the developer
must implement either writing it by hand, or generating the code directly from a de-
sign diagram using a code generator. Instead, tags similar to some constructs of the
composition languages were defined for the automatic generation of a template in a
client application, the messages involved in the composition and statements defining
the sequence of execution.

Related work deals with problems at the integration level, such as in [6] where the
author explains how to use the Microsoft SOAP toolkit to integrate web services with
visual basic VB6 applications, and automatic or semi-automatic support for the
composition and execution of web services using a process model [7], [2]. One com-
mercial system is the BizTalk from Microsoft [8]. It models sequential, parallel and
conditional structures of business processes that communicate web services. Triana
[9] is a problem solving environment that uses a workflow diagram to specify the
composition but its implementation was done using the WServe API. Other work
refers to the definition of new languages to act as reference models to describe the
logic of interactions among web services [10]. Some tools [11], [12] to compose web
services for integrating information from different sources have been developed. A
system for the generation of a high level web service that coordinates the interaction
among component web services is described in [13]. Also, ontologies and semantic
descriptors such as DAML-S are also being used to support the selection and compo-
sition of the web services [14], [15].

2 Motivation

The number of web services accessible to a software developer is growing very fast. It
may seem an advantage for many developers. However, it also carries two huge prob-
lems. One of them is the selection of appropriate web services. The other problem
refers to the composition of the selected web services when a set of them fulfills user
requirements. Particularly, software developers expect that web services provide
software reusability. Because of that, the tendency to employ more web services

 A Plug-In Tool for Composing Web Services for Applications Development 591

within their developments is going upwards at the same reason as new web services
are being deployed. Moreover, some software development tools automatically sup-
port a limited composition of web services like the generation of the stub of one web
service at a time, this is the problem dealt with in this paper.

3 Process Model for Composing Web Services for Applications

Figure 1 shows the process model for composing web services. The model consists
mainly of 6 activities some of which are carried out by the developer and some are
realized in an automatic way. Section 3 presents the interface of the plug-in tool and
explains the activities of the process model as they are supported by the tool.

1. Web Services Selection
(Developer)

2. Access and Analysis
of the WSDL Files

(Automatic)

3. Presentaction Of The Methods
Names, Input and Output

Parameters
(automatic)

6. Generation Of The Templates
In The Client Code (Automatic)

5. Generation Of Code to Enable
The Composition Of The Web

Services
(Automatic)

4. Web Services Methods
Selection

(Developer)

Fig. 1. Process model for composing multiple web services for applications

4 COMPOSITOR: A Plug-In Tool for the Composition of
Multiple Web Services for an Application

Figure 2 shows a high level model of the tool named COMPOSITOR. In order to
have COMPOSITOR working within the Eclipse environment, it must be plugged
into the Workspace directory of Eclipse. Figure 2 shows two modules, WSDL
ANALYZER MODULE and COMPOSITION MODULE. The WSDL (Web Service
Definition Language) files are automatically analyzed to identify and to select the
methods of the web services that an application will use. The COMPOSITION module
generates the stubs to recognize the web services to be composed and also generates a
template in a client application to send messages to the methods of the selected web
services.

In figure 2, the user interface interacts with the module that performs the analysis
of the WSDL files, since it is the developer who selects the web services to be com-
posed. The composition module enables the use of the web services by generating the
stubs to connect the application with the web services. The tool supports the process
presented in figure 1 as described in the subsections below.

592 O.G. Fragoso D. et al.

 WSDL Analyzer
Module U

D
D
I

Stubs
Generation

Client
Generation Web Services

Execution Sequence

Data Web
Services

Composition
Module

Application
Interface

I
N
T
E
R
N
E
T

WSDL File

Fig. 2. Compositor High Level Model

4.1 Web Services Selection

Since the selection process is a problem itself, in this paper a selection approach is not
dealt with. For the purpose of this work, the selection of the web services to be com-
posed is done by hand directly by the developer of an application using a standard
browser.

4.2 Access and Analysis of the WSDL files of the Web Services

The access to the WSDL files is done through the URL (Uniform Resource Locator)
specified in the UDDI (Universal Description Discovery and Integration) directory.
The analysis of the WSDL files of the web services selected is done with the purpose
of obtaining information about the web services to be composed such as the methods
names, and their input and output parameters that will be used by the application. This
activity is supported by the API JDOM v2 [16].

4.3 Presentation of the Methods Names, Input and Output Parameters

The names of the methods and their parameters are presented in the upper white box
of the interface shown in figure 3. The names setMedidasAC(double in0), getAreaC()
and inicializarAreaC() are the names of the methods that correspond to one of the
web services chosen for the composition.

4.4 Web Services Methods Selection

Once the information about a web service is presented to the developer in the upper
white box in figure 3, he/she will select from the list the methods of the web services
that will be executed and will return some data to the application being developed.
The selected methods are shown in the white box placed in the middle of the interface
also shown in figure 3.

 A Plug-In Tool for Composing Web Services for Applications Development 593

Fig. 3. COMPOSITOR user interface

4.5 Generation of the Code to Enable the Web Services Composition

Once the methods that will be used in the composition are selected, it is necessary to
generate the stubs. Stubs will help the application to know about the web services to
be composed. The stubs code is generated and stored by default in a file named
Stubs.java and saved in the Workspace directory of the environment were the soft-
ware developer is working.

4.6 Generation of the Template in the Client Code

After the stubs are generated, the developer must select the sequence of messages
among the application and the web services by clicking on the method name shown in
the white box placed in the middle of the interface in figure 3. The sequence is set as
it appears in the lower white box of the interface shown in the same figure. In the
example introduced in this paper, the first method to execute is inicializarAreaCir(),
then inicializarAreaR(), inicializarAreaC() etc…

An output of this activity is a template that provides the developer with basic code
instructions in JAVA language, which corresponds to the objects, messages and the
sequence of execution of the web services selected by the developer. The template
code is shown below beginning at the line Obj.inicializarAreaCir(); where the user
has to write the name the object that calls the inicializarAreaCir() method and to
specify the parameters if they are required by the method signature. The same applies
for all the lines where the name Obj appears.

594 O.G. Fragoso D. et al.

Example of the template code in the client application generated automatically using
the tags described in table 1.

package pruebaStub;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import javax.xml.rpc.ParameterMode;

public class Cliente {

 public static void main(String[] args) {

 Stubs Obj = new Stubs ();

 Obj.inicializarAreaCir();

 Obj.inicializarAreaR();

 Obj.inicializarAreaC();

 Obj.setMedidasACir();

Obj.setMedidasAR();

 Obj.setMedidasAC();

 Obj.getAreaCir();

 Obj.getAreaC();

Obj.getAreaR(); }

The JAVA code shown above is generated based on tags similar to some constructs
of the composition languages such as BPEL4WS, and XLANG. The tags are de-
scribed in table 1. A slice of the XML file is shown below.

Code example of the XML file for supporting the generation of the template in the
client application.

<?xml version="1.0" encoding="UTF-8" ?>

- <Composition>

- <Services>

 <Operation name="inicializarAreaCir" />

 <ParametroOut name="response" type="int" />

 <Service name="MyService" />

 <Port Location =
 "http://127.0.0.1:8080/axis/services/MyService
 " />

</Services>

- <Services>

 A Plug-In Tool for Composing Web Services for Applications Development 595

 <Operation name="inicializarAreaR" />

 <ParametroOut name="response" type="double" />

 <Service name="Myservice2" />

 <Port Location=
 "http://127.0.0.1:8080/axis/services/MyService
 2" />

</Services>

</Composition>

Table 1. Tags defined to enable the generation of the template in the client application

TAG Description

<Composition> This is the root of the document
<Services> This tag is contained within the root tag.

Each instance of this tag contains the name of
the service, a method name and its data

<Operation name> This tag contains the name of the operation
or method of the selected web service

<ParametrosIn name> This tag describes the input parameters and
their types, for the method to be invoked

<ParametroOut name> This tag describes the output parameter and
its type, of the method to be invoked

<Service name> This tag describes the name of the web ser-
vice where the method is contained

<Port Location> This tag describes the URL address and the
port of the web service to be composed

5 Tests

Initial functional tests on the plug-in tool were carried out, they showed that the tool
performed as expected. It allowed to select several web services and to generate their
stubs all of them at a time. Tests were performed for small applications and with
small web services created specifically for the tests. However, it is necessary to scale
up the tests to large real life applications in order to measure the benefits on saving
software development time, reducing costs and effort. In addition, to evaluate if web
services are the technology that enables large scale software reusability.

6 Conclusions

A plug-in tool like the one presented in this paper may help to overcome some defi-
ciencies of widely used software development environments without having to re-
structure them. This tool has a very simple and small interface compared with the

596 O.G. Fragoso D. et al.

advantages it offers, because with a few steps the user habilitates the composition of
several web services. In addition, all what the user needs to know about the web ser-
vices is their URL addresses. The tests applied to the tool showed that it facilitated the
work of the software developer, since it is very simple to install it in the Eclipse envi-
ronment, the interface is small and a developer could have as many web services in
his application as needed to comply with his requirements.

The composition process can also be used to generate new composite web services
based on component web services. This can be done by encapsulating as a web ser-
vice the template generated. Current research is also underway to determine the tech-
niques that will yield the best results for the automatic selection of the web services to
be composed either for integrating them into applications or for the generation of new
composite web services. Work is also being done to model the logic of interactions
among web services from a data flow model in order to support conditional and paral-
lel structures, and to solve the adaptation of mismatches among the web services. In
addition, the generation of client code in other languages such as C# is being taken
into account.

A positive aspect of this work is that developers will not have to learn composition
oriented languages. The tags defined in this work for the generation of the template in
the client application are in XML format to facilitate its standardization. Future work
will be carried out to substitute the XML tags with standard composition languages.

References

1. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. In: International
Journal on Web and Grid Services. Vol.1, No 1. (2005). pp 1-30

2. Chandrasekaran, S., Miller, J.A., Silver, G.S., Arpinar B., Sheth A.P.: Composition, Per-
formance Analysis and Simulation of Web Services. Masters Thesis, University of Georgia
Athens. 2002

3. Pistore, M., Roberti, P., Traverso, P.: Process-Level Composition of Executable Web Ser-
vices: “on-the-fly” versus once for all” Composition. In: Proceedings of the European Se-
mantic Web Conference ESWC (2005), Heraklion, Grecia, 29 May – 1 June

4. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and Monitoring
Web Service Composition. Workshop on Planning and Scheduling for Web and Grid Ser-
vices,. ICAPS 04, (2004).Whistler, British Columbia, Canada, June 3-7

5. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A H.M.: Analysis of Web
Services Composition Languages: The Case of BPEL4WS. Lecture Notes in Computer
Science, Vol. 2813. Springer-Verlag, Berlin Heidelberg (2003) 200-215

6. Fomitchev, M. I. : Integrating XML web services with VB6 applications. Dr. Dobb´s Jour-
nal (2004), February

7. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into Execu-
table Processes, (2004) International Semantic Web Conference, ISWC

8. http://www.microsoft.com/latam/prensa/2002/feb/lan_vsnet.asp. 05/07/2004
9. Majithia, S., Shields, M., Taylor, I., Wang, I.: Triana: a Graphical Web Service Composi-

tion Toolkit. (2004) IEEE International Conference on Web Services, 514-521
10. Piccinelli G., Williams S.L.: Workflow: a Language for Composing Web Services. In:

Proceedings of the 16th Euroean Conference on Object-Oriented Programming ECOOP.
(2002). Malaga, Spain, Jun 11th

 A Plug-In Tool for Composing Web Services for Applications Development 597

11. Ponnekanti, S. R., Fox, A.: SWORD A Developer Toolkit for Web Service Composition
(2002) The Eleventh International World Wide Web Conference, Honolulu, Hi

12. Ko, I., Neches, R.: Composing Web Services for Large – Scale Tasks. In: IEEE Internet
Computing. (2003) September-October, pp 52-59

13. Trianotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli, P.
Traverso, P.: ASTRO: Supporting Composition and Execution of Web Services. (2005)
Third International Conference on Service-Oriented Computing, Amsterdam, The Nether-
lands, 12-15 December

14. Narayanan, S., McIlraith, S. A.: Simulation, Verification and Automated Composition of
Web Services. In: Proceedings of the 2nd WWW Conference. (2002). May

15. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web Services
Composition Using SHOP2. Lecture Notes in Computer Science, Vol. 2870. Springer-
Verlag, Berlin Heidelberg (2003) 195-210

16. www.jdom.org 20/10/2005.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 598 – 602, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Spatial Data Service Models in Grid Environment

Guoqing Li1, Dingsheng Liu1, Zhenchun Huang2, Yi Zeng1, and Yong Xue3

1 China Remote Sensing Satellite Ground Station, CAS
 {gqli, dsliu, yzeng}@ne.rsgs.ac.cn

2 Department of computer science, Tsinghua University
 huangzc@tsinghua.edu.cn

3 Institute of Remote Sensing Applications, Chinese Academy of Sciences
y.xue@londonmet.ac.uk

Abstract. This paper presents the data service models in data grid and points
out the well-known catalogue based grid data manage model CDM cannot
satisfy the requirement of multi-resource grid data application. Combining with
the need of spatial data application gird, this paper gives out another two
models, broker-based model BDM and direct manage model DDM. Through
experiments with these models, the detailed comparison among them is also
been given here.

1 Introduction

Data operation is the basic grid kernel component not only in data grid but in
computing grid, which includes replica, catalogue, query and discovery. The most
important part of data operation is data manage model (DMM), which focuses on two
facts, user-oriented data accessing mechanism and grid platform-oriented data
providing mechanism. The research about DMM has been taken in almost all grid
basic platform and many DMMs have been built to provide important components.
The Globus Toolkit contains a data management component that provides such
services [1].

Storage resource broker system SRB, developed by SDSC, is the well used data
grid middleware. SRB provides a uniform accessing interface for file system, archive
system and database system, which hides the complex and specialty of storage
system. It supports multi data resource management in WAN with operations of
replica, accessing to replicated dataset, file collection and logical file invoking, and so
on. Up to now, there are many application have used SRB as their basic grid data
manage middleware.

Globus is designed firstly as a computing grid platform. With the developing of
data grid application, new components about DMM has been added into Globus,
which supports most data grid functions, such as fast transmission among grid nodes,
data replica, finding of replicated dataset and metadata management. Globus is
becoming the most important data grid platform, and some outstanding data grid
middleware has been provided now, GRC, GridFtp and joint research on DATAGRID
GDMP. Other research works have been taken by IBM, SUN, and LSF etc.
OPeNDAP [2] also brings the professional data service middleware.

 Spatial Data Service Models in Grid Environment 599

Spatial data is a special one comparing with other science data. Generally, spatial
data includes all data relative to space address, and 80% information we have to deal
with is spatial information [3]. The character of spatial data is not only the complex
and different data structure, heterogeneous data organizing, massive storage, but also
the various data service modes and application modes. So we can not use only one
kind of uniform data model to describe so many kind of spatial data. The research on
spatial grid DMM wants to explain the method how to deal with such complexity and
massive data.

Special data types and different application models need special relative DMMs.
The analysis of Globus and DATAGRID combined with our research on DMM in
Spatial Information Grid (SIG) project, we provide three DMM models, data manage
model based on catalogue (CDM), data manage model based on broker (BDM) and
direct data manage model (DDM). Such models can be used in spatial data grid as
well as other high complex data application grid.

2 Data Manage Model Based on Catalogue (CDM)

The typical CDM can be seen in Globus GRC and DATAGRID GDMP. As Figure 1
shown, in CDM model, grid
provides centralized or
distributed catalogue database
and services. Catalogue service
can work in two modes,
activity query and passivity
query, to update the data list
synchronously. With activity
query, catalogue queries every
registered data services on
schedule and recording the
changing data information. In
passivity query, data provider
has to register new data and
changed data on catalogue
servers by itself. Catalogue

servers record the necessary parameters of such data list and build the uniform code
GUID for these data. A data user firstly needs to send a query to catalogue service,
and waiting for the feedback from catalogue service. The returned result is a resource
URL, which can be organized in the uniform list format. User can select what he
interested from the result list and invoke them in his following grid application. The
following invoking need not the help of catalogue service, it can be finished with Peer
to Peer protocols between data provider and data consumer.

User can get the query result very quickly with catalogue services in CDM, which
is very similar the work mode of web page query mechanism, such as Google
searcher. However, the problem encountered in CDM is creditability of result and the
update cost of catalogue servers. Because the catalogue information of a large range
query is always in very large size to be transferred and organized. The suitable

Fig. 1. CDM work mode

600 G. Li et al.

algorithm should be developed to bring out high performance catalogue
synchronization with multi data resources. Because catalogue updating always can not
be finished in real time, the record storied in catalogue database can only show the
status of data provider in the last catalogue update time.

There are three different times needed to be considered, data resource changing
time, catalogue update time and user query time. If user query time is earlier then the
catalogue update time and later then resource changing time, the query result will
bring misunderstanding information. Creditability is coming from the difference of
these operation times.

3 Data Manage Model Based on Broker (BDM)

It is the most important difference between BDM and CDM that BDM does not build
upon catalogue service. There is a new service DMS (Data Manage Service or Data
Mining Service) in instead of
CDM, which is a broker
service. BDM need not to
maintain the catalogue
database. There is no static
global index database, as
shown in Figure 2.

The key technology has to
be built firstly in BDM is grid
query data model (GQDM),
which is a XML metadata
architecture. GQDM selects
the important components
which are frequently
appeared in user application
and also have been defined
and included in every main
spatial metadata system. With
such data description method,
the grid data resource service interface, include file system and database system, will
naturally contain the exchange interface between local metadata and GQDM grid
metadata. As a result, a data provider needs not to synchronize the remote catalogue
database with automatic or initiative method when he updates his data resource. When
a gird user submit a query, DMS will accept his query and send a GQDM-based
message to all data services which DMS can find from grid registration centre. The
grid interface of data service will translate the GQDM-based message into local query
parameters and start local query process. Reversely, the query result will be translated
to be a GQDM-based message and send back to grid user or the portal directly.

For better performance, a cache service should be designed to save to the frequent
accessed data invoking and data entities. In certain condition, we can storage the high
probability data in cache service; user can operate data time after time. However, we
have to consider the copyright conflict of cached data.

Fig. 2. BDM work mode

 Spatial Data Service Models in Grid Environment 601

Apparently, the great problem of such broker-based DMM is the cost of each
query, especially the time cost. Queries will cause direct operation to data service
every time, so the time cost cannot be saved at all. In the other hand, such cost assures
the reliability of query result. Short lift period is very important character of grid and
grid service, which heavily affects the management of grid. Static offline index of
metadata will cause misunderstanding of grid resource, for both service resource and
data resource.

4 Directly Data Manage Model (DDM)

DDM is a simple data resource manage mode with only the grid basic registration and
resource finding service, named
RFS or RS. Generally, RS is
designed to manage grid
services. However, if the data
complex is not very high and
less massive, RS also can be
used to register dataset, as
shown in Figure 3. When user
asks for data, the query message
will be sent directly to RS. RS
will check its database and
return the result just like the
service query.

It is clear that DDM is
belonging to another type of
CDM. DDM also has a static
database to storage the index
data, and RS has to be act as

such function to record and maintain such database. There is a remarkable
dissymmetry that although user can search or register data independently, he has to
know the exact interface of data service when he wants to use such data in grid
application, however.

The best benefit of DDM is simple. User needs not waste time and money to build
complex data service architecture and he can use the basic grid resource manage
service directly, such as RS, which is provided by the common grid platform. Part of
our research work on GIS has used DDM model, and many GIS vector area data is
storied and serviced with DDM. Our registration service, RFS2.0 supports many
levels registration and searching with P2P technology, such improvement overcomes
the problem of query bottleneck. Some level RFS services have been defined as
special data registration services.

5 Comparison and Analyses

Some experiments have been taken to monitor thus three models. Within the project
of China Forestry Information Grid Testbed, a DDM data service has been used to

Fig. 3. DDM work mode

602 G. Li et al.

manager the demo dataset, include vector data and grid image data. In the project of
China Spatial Information Grid, we designed both CDM and BDM data developer at
the same time. In this case, there are 11 grid datasets distributed around China. With
bi-side authorization and special accepted service interface, CDM agent caches the
metadata of 9 of 11 datasets in every certain time. While another BDM based portal is
built to directly search all datasets which can be found from registration centre.

We compared these three server models in Table 1. Form table we can seen that
these modes can be used in different grid with different scale and complex character.
If to build a large scale grid, which needs strict data policy and cooperation
mechanism, CDM is suitable, the query speed of which is very fast. If to build a small
grid test bed or a scale limited grid with less data amount and without detail data
description mode, DDM is good way, which is easy built and used. BDM is suitable
for the middle scale and complex gird application, which is outstanding in its grid
expansibility and veracity.

Table 1. Comparison of three DMM models

DMM type CDM BDM DDM
Catalogue server Need Not need Need
Query speed Fast Slowly Fast
Reliability of query
result

Low High Low

Update work of provider Complex Easy Complex
Suitable grid scale Large Middle Small
Invoking method Direct Direct Additional

information
needed

Kernel components Catalogue service Broker service Register service
Expansibility General High Low
File type data resource
query

Support Support Support

Database type data
resource query

Not Support Support Not Support

Acknowledgement

The research works about this paper are supported by the Chinese key technology
research projects 2003AA131050, 2002AA104110, in the key laboratory of China
Remote Sensing Satellite Ground Station. Some experiments have been taken in
China Spatial Information Grid and Chinese Forestry Information Grid.

References

[1] Bart Jacob, Grid computing: What are the key components?
[2] http://www.opendap.org/
[3] http://www-900.ibm.com/developerWorks/cn/grid/gr-overview/index_eng.shtml

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 603 – 609, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Solving Spatio-temporal Non-stationarity in Raster
Database with Fuzzy Logic

Rakefet Shafran-Natan and Tal Svoray

Dept. of Geography and Environmental Development, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel

{shafranr, tsvoray}@bgu.ac.il

Abstract. Vegetation dynamic in semi-arid regions is widely affected by
climate and hydrological regimes. These regimes create a patchy landscape
which, therefore, cannot be treated as stationary in space. Overall complexity
significantly increases when the temporal component is added to the analysis.
However, despite the complexity involved with variation in time, most of the
temporal data storage in raster data-models is done using series of snapshot
layers associated with a particular time event. The reason is mainly associated
with resolution problems and limitations in controlling large databases with
computer resources. Recently, the combination between spatial and temporal
databases has become crucial in GIS modeling for solving spatial dynamic
problems. We suggest hereby the use of fuzzy theory to apply stationary rules
to non-stationary environment in raster database. The method is demonstrated
as an analysis of vegetation dynamics in a semi arid environment. The results
display the simplicity of the combination between spatially explicit rules and
raster database which allow our method to analyze ongoing processes in cell ij
at the same time resolution.

Keywords: fuzzy logic, raster, GIS, temporal, non-stationarity.

1 Introduction

Environmental researchers are facing the challenge of developing models for precise
prediction of phenomena that change both in time and space [1]. The developments in
remote sensing technology and in the accuracy of digital elevation models (DEM)
open an opportunity to combine these data sources in raster geographic information
systems (GIS) [2],[3]. Raster GIS are usually merged with time-area (TA) methods
under the assumption of "stationarity" [1] to use high-resolution information for
understanding the heterogeneity of the environment in multi-layer analysis [4].
Regression analysis is widely used in remote sensing and in raster GIS. Among
regression methods, Ordinary Least Squared (OLS) is the most common for the
establishment of spatial relationships between any two variables in the raster
database. However, a relationship between two variables can differ significantly in
space. Therefore, OLS may not always provide a reliable description of the
relationships over different sites but rather some average impression over a region [4],
[5]. Furthermore, the use of DEM for terrain analysis also assumes stationarity,

604 R. Shafran-Natan and T. Svoray

despite the high spatial variability of any given watershed [1]. The existence of sink
and source zones may provide such a problem since topographic calculations of
primary and secondary morphometric attributes assume a continuous flow along the
slope (the contributing area) and from the slope to the channel (the sink). However, it
is well known that in semi-arid regions, for example, the terrain is not continuous and
therefore cannot be treated as stationary [6]. Statistical interpolation methods in many
cases are used for predicting phenomena in space through a calculated surface
including an isotropic spatial autocorrelation and stationary trend. These statistical
assumptions do not hold for patchy, heterogeneous environments and the calculation
methods are time consuming, need pre-processing of the date training and require a
large number of calculation sets [7]. Semi-arid areas are characterized by large
variability of environmental conditions in both space and time [8], [9]. Hydrology is
the major determinant of vegetation dynamics which creates a patchy landscape [12].
Therefore, one can not assume spatial or temporal stationarity in this environment [1].
In addition, several shortages still occur in raster datasets concerning temporal
analysis: 1) The layers are based on spatially static information which is attached to
an attribute table and not updated during time. 2) Multiscale resolution can cause
problems of data overlapping on a pixel basis. 3) Historical information is usually of
low quality [10]. And 4) there are difficulties to control large raster databases with
limited computer resources [11]. Here, we suggest a method for the representation of
vegetation growth in patchy environments through process-based modeling which
uses spatially and temporally explicit fuzzy modeling. The model is based on the
synergy of three environmental sub–models with four climatic variables. The spatial
cell resolution is 25x25m and the model is operated on a daily basis. The model
simulates plant germination and production rate.

2 Methods

The use of spatio-temporal data has become crucial for analysis and development of
dynamic models for better understanding cause and effect scenarios [20]. Fuzzy logic
is a mathematical formulation that suggests solutions where there is lack of
knowledge for absolute answers [13], or for spatial performance of areas with
indeterminate borders [14]. The synergy between raster GIS, fuzzy formulation and
expert knowledge allows to identify environmental features [15],[17],[14]. The GIS
stores landscape complexity and fuzzy logic allows definition of rules in a detailed
manner [16]. Therefore, the more the system is heterogeneous the advantage of the
method is grown. Fuzzy formulation is usually composed of three primary elements:
fuzzy sets, fuzzy membership functions and fuzzy logic joint membership functions
[14]. Fuzzy set (A) could be defined as:

A {x, (x)} A = for x ∈X (1)

where x is the variable and ()XAμ is the membership function of x in A [19]. The

scientific literature provides numerous membership functions, including, for example,
linear, trapezoidal, sigmoid and cosine [16]. The membership functions (MF's) define
the degree of membership for each cell or attribute in the set (A) [14]. The
membership value is subjective and should reflect the way by which the researcher

 Solving Spatio-temporal Non-stationarity in Raster Database with Fuzzy Logic 605

grasps the phenomenon. The degree of membership is limited in the 0-1 range while 1
means complete membership. The set A was defined in our study as the set with
optimal conditions for vegetation production. That is, the more rainfall amount
increases the more water available to the plant and production is expected to be more
intense. Therefore, the membership function we used in this case is linear positive:

αβα −− /x
 (2)

X is the grid cell value or the record in the attribute cell (fuzzy set). Where, is
minimum value in the set, and is the maximum [16]. To integrate the effect of all
membership values (spatial and temporal), we used the joint membership function
(JMF). There is several ways to perform a JMF and we have used the convex
combination operation [14]. Eq 3 shows the operation where every MF for each fuzzy
set A are the membership function (X1….Xn), and the weight (1…7) [18].

() XnnXXXJMF μλμλμλ +++=2211 (3)

The weights determine the extent by which each membership function contributes to
the final set (daily germination or production prediction). Consequently, they
represent a hierarchy of the variable’s contributions to the JMF and, hence, each
variable’s value in the final predictive model [19].

In our model, the membership scores accumulate from the first rainfall event (day
one). Germination conditions (JMFgermination) are calculated on a daily basis, until
conditions for germination are fulfilled based on a threshold value that was set to 1. If
a cell has germinated, it starts to accumulate daily conditions for productions
(JMFproduction) until the end of the season. The model is written in AML and runs
on ARCGIS 9.

3 Results and Discussion

This paper addresses the problem of modeling dynamic and non-stationry phenomena
in raster GIS. Our method is based on fuzzy logic theory and it enables the
generalization of intermediate layers in a temporal database. This approach can be
easily generalized and applied to complex environments that take different stages of
evolution [20]. The evolution, over time, in our case, occurs along the growing season
where each cell accumulates the conditions for germination until they are satisfied.
From this day, the cells, that have germinated, start to accumulate the daily conditions
for production until the end of the season. Every cell on the grid germinates at
different day according to available conditions (temperature) and resources (water).
The germination phase begins from the second day after the first rainfall event (Julian
day 295) and it ends after 12 days (Julian day 306 – fig. 1). Figure 1 clearly shows
that every cell ends the germination phase in a different day and therefore, it also
starts to accumulate daily condition for production in a different day (fig. 2).

The results in fig. 2 illustrate three different processes in the model on a specific
Julian day (297). Each cell in the spatial location ij is the same cell for all three maps.
Map 2.1 shows the germination date for each cell during four days (until day 297) and
after the Meters first storm of the season (cells that did not germinate until that day

606 R. Shafran-Natan and T. Svoray

Fig. 1. The germination date in each cell on a Julian day (winter 1989-1990)

are assigned as zero). Map 2.2 presents a prediction for the production conditions on
the Julian day 297. Cells that did not germinate until the Julian day 297 did not begin
the production phase and assigned as zero. In map 2.3 the cells that did not germinate
continue to accumulate environmental and temporal conditions until they will reach
the threshold value that is satisfactory for germination. In map 2.3, areas with
accumulated JMF production score below 1 did not germinate and cells with a score
higher than 1 have germinated.

GWR calculates regression coefficient for every local point in space, based on a
distance –weighted sub-sample of neighbors, on the basis that they may not remain
fixed over space [21]. However, this modeling framework is highly computationally
intensive and the weights must be re-calculated and the model re-run for each
location. This method cannot calculate for large areas with large number of data
points [4]. Our model enables to handle the spatio-temporal non-stationarity in raster
environment, whereas every grid cell is assigned with a different membership score.
The grid cell scores are not related to the other cells in the neighborhood and do not
need large training sets. In the model every cell is an independent entity which
accumulates daily conditions although the same rules apply for the entire layer. As
was shown previously, this method can inherent a stationary rules (MF's) to a peachy
environment and analyze different ongoing processes in cell ij at the same time. Since
all the variables get a membership value from zero to one, the outcome is a model that
runs within a unified scale. We conclude that the spatial and temporal resolution of

 Solving Spatio-temporal Non-stationarity in Raster Database with Fuzzy Logic 607

Fig. 2. The effect of germination date on production rate. 2.1: germination date in Julian days;
2.2: JMF production score; 2.3: JMF germination in accumulated values.

the prediction layer increases since fuzzy logic provides flexibility to the GIS
database of spatio-temporal analysis. This flexibility is achieved by using the rules
from expert knowledge to determine the membership function and the weight in the
JMF function which contributes to the explanation of variation in the phenomenon.

4 Conclusions

We present here an approach to tackle non stationarity in raster GIS database in a
heterogeneous environment. The results show that the model can describe non-
stationary environment without the use of training sets or rigor statistical assumptions.
The result characterizes in a rather realistic way spatio-temporally dynamic processes.
The use of measured variables over large areas without difficulties and the simplicity
of the techniques presented here can make the model suitable for wide raster
applications.

Meters

2.3

2.1

2.2

608 R. Shafran-Natan and T. Svoray

Acknowledgement

This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No.
692/06) and by the Israeli Ministry of the Environment under contract no: 83217301.
Thanks are extended to Amir Natan who read parts of the manuscript and provided
useful comments.

References

1. Saghfian, B., Julien, P.Y., Rajaie, H.: Runoff hydrograph simulation based on time
variable isochrone technique, Journal of Hydrology 261 (2002) 193-203.

2. McBratney, A.B., Mendonsa Santos, M.L., Minasny, B.: On digital soil mapping.
Geoderma 117 (2003) 3-52.

3. Scull, P., Franklin, J., Chadwick, O.A., McArthur, D.: Predictive soil mapping: a review.
Progress in Physical Geography 27 (2003) 171-197.

4. Osborne, P.E., Suarez-Seoane, S.: should data be partitioned spatially before building large
scale distribution model? Ecological Modelling 157 (2002) 249-259.

5. Foody, G. M.: Geographical weighting as a further refinement to regression modeling: An
example focused on the NDVI-rainfall relationship. Remote Sensing of Environment. 88
(2003) 283-293.

6. Beven, K., Freer, J.: A dynamic TOPMODEL. Hydrological Processes 15 (2001) 1993-
2011.

7. Graniero, P.A., Robinson, V.B.: A Real–time Adaptive Sampling Method for Field
Mapping in Patchy, Heterogeneous Environments. Transactions in GIS 7 (2003) 31-53.

8. Ludwig, J.A., Wilcox, B.P., Breshears, D.D., Tongway, D.J., Imeson, A.C.: Vegetation
patchesand runoff-erosion as interacting ecohydrological processes in semiarid landscape.
Ecology 86 (2005) 288-297.

9. Huenneke, L.F., Clason, D., Muldavin, E.: Spatial heterogeneity in Chihuahuan Desert
vegetation: implication for sampling methods in semi-arid ecosystem. Journal of Arid
Environments 47 (2001) 257-270.

10. Dragicevic, S., Marceau, J.D.: An application of fuzzy logic reasoning for GIS temporal
modeling of dynamic processes. Fuzzy Set and Systems 113 (2000) 69-80.

11. Wu, H., Li, B., Stoker, R., Li, Y.: A semi-arid grazing ecosystem simulation model with
probabilistic and fuzzy parameters. Ecological Modelling 90 (1996) 147-160.

12. Noy-Meir, I.: Desert Ecosystems: Environment and producers. Annual review Ecology and
Systematics 4 (1973) 25-51.

13. Bojorquez-Tapia, L.A., Juarez, L., Cruz-Bello, G.: Integrating fuzzy logic, optimization,
and GIS for ecology impact assessments. Environments Management 30 (2002) 418-433.

14. Burrough, P.A., MaCmillan, R.A., Van Deursen, W.: Fuzzy classification methods for
determining land suitability from soil profile observation and topography. Journal of Soil
Science 43 (1992) 193-210.

15. McBratney, A.B., Odeh, I.O.A.: Application of fuzzy set in soil science: fuzzy logic, fuzzy
measurements and fuzzy decisions. Geoderma 77 (1997) 85-113.

16. Robinson, V.B.: A perspective on the fundamentals of fuzzy sets and their use in
Geographic Information Systems. Transactions in GIS 7 (2003) 3-30.

17. Zhu, A.X., Hudson, B., Burt, J., Lubich, K., Simonson, D.: Soil mapping using GIS, expert
knowledge, and Fuzzy logic. Soil Science Society America Journal 65 (2001) 1463-1472.

 Solving Spatio-temporal Non-stationarity in Raster Database with Fuzzy Logic 609

18. Baja, S., Chaphman, D.M., Dragovich, D.: A conceptual model for defining and assessing
land management units using a fuzzy modeling approach in GIS environment.
Environmental management 29 (2002) 647-661.

19. Svoray, T., Bar-Yamin, S., Henkin, Z., Gutman, M.: Assessment of herbaceous plant
habitats in water-constrained environments: Predicting indirect effects with fuzzy logic.
Ecological Modelling 180 (2004) 537-556.

20. Drgicevic, S. Maeceau, D.J., A fuzzy set approach for modeling time in GIS. International
Journal of Information Science 14 (2000) 225-245.

21. Brunsdon, C., Fotheringham, S., Charlton, M.: Geographically weighted
regression modeling spatial non-s.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 610 – 617, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Study on Grid-Based Special Remotely Sensed Data
Processing Node in Grid GIS

Jianqin Wang1, Yong Xue2,3,*, Jianping Guo2,4, Yincui Hu2, Chaolin Wu2,
Lei Zheng2,4, Ying Luo2,4, Yi Xie1, and YunLing Liu1

1 College of Information and Electric Engineering, China Agricultural University,
P.O. Box 142, Beijing, 10083, China

2 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of
Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University,

Institute of Remote Sensing Applications, Chinese Academy of Sciences, P.O. Box 9718,
Beijing 100101, China

3 Department of Computing, London Metropolitan University, 166-220 Holloway Road,
London N7 8DB, UK

4 Graduate School of the Chinese Academy of Sciences, Beijing, China
Tian1.wang@163.com, y.xue@londonmet.ac.uk

Abstract. Grid Geospatial Information Service (Grid GIS) system aims to study
and develop grid-based uniform spatial information access and analysis system.
Data resources of Grid GIS include not only original and traditional GIS data but
remotely sensed data. Everyday, space missions involve the download, from
space to ground, of huge amount of raw images that are stored in the ground
stations geographically distributed. It is a practical pressing task to process these
data resource in real time or almost real time and to effectively share spatial
information among remote sensing community. Grid technology can provide
access to a global distributed computing environment via authentication,
authorization, negotiation and security tools. This paper discusses the key
technologies of Grid-based special remotely sensed data processing node. First,
the concept of Grid-based special remotely sensed data processing node is
introduced. Following is the architecture and functions of this node. Based on
this architecture, the tasks scheduling algorithm is presented. Finally we
introduce the computing resource meta-module information registry and renewal
mechanism of the Grid-based special remotely sensed data processing node for
Grid GIS.

1 Introduction

Every day, dozens of satellites collect huge amount of images of the Earth, which are
stored in ground stations geographically distributed. Remote Sensing data is
characterized by largeness and instantaneousness. Naturally, it emerges three obvious
problems for remote sensing community: (1) Remotely sensed data is very significant
in some cases, such as fire and flood monitoring. So far real time processing in remote
sensing confronts many difficulties in one single computer, or even impossibility.

* Corresponding author.

 Study on Grid-Based Special Remotely Sensed Data Processing Node in Grid GIS 611

(2) Large amount of remotely sensed data processing module or algorithms, which are
already exit, are the valuable resources in the Internet. They cannot be effectively
used by the entire community but quietly stay in the disks of a few remote sensing
specialists. Iterance of writing common remote sensing algorithms such as pre-
processing algorithms “geometric correction” again and again will waste much time.
(3) Large scale of remotely sensing sensed data geographically distributed need to be
managed effectively.

Grid computing technology enables the virtualization of distributed computing and
data resources such as processing, network bandwidth and storage capacity to create a
single system image, granting users and applications seamless access to vast IT
capabilities (http://cs.nju.edu.cn/people/yangxc/grid-computing.htm).

The Grid, itself, was born at a workshop at Argonne National Laboratory in
September 1997, called “building a computational Grid”, which was followed in 1998
by the publication of "The Grid: Blueprint for a New Computing Infrastructure" by Ian
Foster of Argonne National Laboratory and Carl Kesselman of the University of
Southern California (Foster and Kesselman 1998). “Grid” is used to refer to “a
software system that provides uniform and location independent access to
geographically and organizationally dispersed, heterogeneous resources that are
persistent and supported” (Johnston et al. 2004). It has emerged as an important new
field, distinguished from conventional distributed computing by its focus on large-scale
resource sharing, innovative applications, and, in some cases, high-performance
orientation (Foster et al. 2001). Foster et al. (2001) defined “Grid problem” as flexible,
secure, coordinated resource sharing among dynamic collections of individuals,
institutions, and resources –what they referred to as virtual organizations (VOs).

Today there are several Grid projects in remotely sensed information service.
Aloisio et al. (2001) described how to provide comfortable, intuitive, yet powerful
Web access to supercomputing. A Web-based, Grid-enabled application that
processes, analyses, and delivers remote-sensing images provides an example of the
technology at work. New image processing algorithms, which is distributed
computing approach (Petrie et al. 2003), for remote sensed images are now being
considered by Pacific Northwest National Laboratory. Aloisio et al. (2000) presented
and discussed an architecture that allows transparent access to remote supercomputing
facilities from a web gateway. The implementation exploits the Globus toolkit and
provides users with fast, secure and reliable access to parallel applications. They
showed the usefulness of their approach in the context of Digital Puglia, an active
digital library of remote sensing digital data. Aloisio and Cafaro (2003) presented an
overview of SARA/Digital Puglia (Synthetic Aperture Radar Atlas), a remote sensing
environment that showed how Grid technologies and high performance computing
can be efficiently used to build dynamic earth observation systems for the
management of huge quantities of data coming from space missions and for their on-
demand processing and delivering to final users. SARA/Digital Puglia is a Grid-
enabled, high performance digital library of remote sensing images, developed in a
joint research project with CACR/Caltech, ISI/USC and the Italian Space Agency.
Grid-based Special Remotely Sensed Data Processing Node being built by Institute of
Remote Sensing Applications, Chinese Academy of Science provides uniform super
virtual computing power and share complex data processing module and algorithms in
order to let users conveniently get all the remotely sensed information service as well
as do shopping.

612 J. Wang et al.

In this paper, we will discuss the key technologies of Grid-based special remotely
sensed data processing node. First, the concept of Grid-based special remotely sensed
data processing node is introduced. Following is the architecture and functions of this
node. Based on this architecture, the tasks scheduling algorithm is presented. Finally
we introduce the computing resource meta-data information registry and renewal
mechanism of the Grid-based special remotely sensed data processing node for
Spatial Information Grid (SIG).

2 Architecture of Grid-Based Special Remotely Sensed Data
Processing Node

Remotely sensed data is one of the important spatial information resources. So, the
study on spatial information Grid must involve the content of Grid-based remotely
sensed data processing node.

2.1 Conception of Grid-Based Special Remotely Sensed Data Processing Node

The conception of Grid-based special remotely sensed data processing node has two
meanings from different point of views.

 Physical perspective:
 From the perspective of Grid topological structure, Grid-based special remotely
sensed data processing node is the physical resource entity that constitutes the
spatial information Grid environment. The hardware includes PCs and/or high
performance computers and the network infrastructure. The software is composed
of software resources for remotely sensed data processing and middleware
resources.

 Logical perspective:
The logical meaning of the node is similar to VOs. It can help to search and process
remotely sensed data across locations and organizations. The whole process of the
node involves the management and sharing of virtual resources across different
locations and heterogeneous environments. With integration of the above virtual
resources, the node has the ability of remotely sensed data processing. And what’s
more, it can provide an integrated virtual resource for spatial information Grid.

2.2 Architecture of Grid-Based Special Remotely Sensed Data Processing Node

As one of the nodes of Spatial Information Grid (SIG), the Grid-based remotely
sensed data processing node can not only manage all the resources and tasks of SIG,
but also provide the computing resource for spatial information Grid. To accomplish
above purposes, we present the architecture of the Grid-based special remotely sensed
data processing node. Figure1 shows the architecture of the node.

There are computing resource, resource monitor, global scheduler, job queue
database, remote sensing algorithms and models database, RFT server, meta-modules
registering server and a serial of services in the architecture. The services include
remote algorithm accepting service, resource monitoring service and so on. Meta-
module service let users know about the knowledge of the remote sensing data

 Study on Grid-Based Special Remotely Sensed Data Processing Node in Grid GIS 613

processing algorithms of the node. More detail descriptions will be given in Section 4.
In the Grid-based remotely sensed data processing node, RFT (Reliable File Transfer)
service is responsible for the large amount of data transferring between the data
server, node and users. The service can get data from remotely sensed data servers of
spatial information Grid and provide the results for users. The node can provide
processing algorithm resources. Also user can send their algorithms to the node to be
executed when the algorithms provided by the node cannot accomplish user’s
purpose. Remote algorithm accepting service can help do this work. Resource
monitoring service monitors all the computing resource of the node. The service
collects status information of the computing resources and sends it to global task
scheduler. The status information, which consists of the static and dynamic
information, is useful for task scheduling. The global scheduler is responsible for
manage all the tasks of the node. It is a vital component of the node. The tasks
submitted to the node are immediately sent to job queue database. The tasks are
recognized as records in database. When the task is finished, the record of the task
will be deleted. There are two types of temporary files within the node, namely data
temporary files and algorithm temporary files. The data received from data server of
spatial information Grid is saved as data temporary files, which will be deleted after
being processed. The codes accepted by remote algorithm accepting service is saved
as temporary files, too. When users submit tasks, some other information, such as the
estimated time and the path of data, are submitted at the same time. Tasks accepting
service accepts the service request and the additional information. Figure 2 shows one
example of tasks accepting service. The accepting service accepts the information and
save it as the records of the tasks queue database.

3 Node Management and Tasks Scheduling

The resources of the node and submitted tasks should be managed well to maximize
efficient of the node. Here we emphasize the tasks managing and scheduling.

The submitted tasks and additional information are accepted and saved in the tasks
queue database by the tasks accepting service. There are two kinds of tables in the
tasks queue database. The tasks are stored in the task description table and the
additional information such as path of data is stored in the data description table. Each
record in the data description table has a unique ID number, which is the same as the
ID number of the corresponding tasks record in the task description table. The ID
number is the primary key of the tables in the tasks queue database.

The task scheduler, which schedules the inner tasks of the node, accept the tasks,
process the tasks, accept the data, send the results and manage the computing
resource. Tasks scheduling is important for the node. The submitted tasks are stored
in the tasks queue database. Then one of them will be picked out to execute based on
some rules. The rules adopted by the node are described below. First the submitted
tasks are grouped by the remote sensing algorithm, which it uses. One group is set up
for one algorithm. Then we pick up one task of each group to be executed. For each
group, all the priority ratio of tasks in the group will be calculated. Then the tasks
with the minimal priority ratio will be picked out. All the selected tasks will be
executed in order.

614 J. Wang et al.

Fig. 1. Architecture of Grid-based Special Remotely Sensed Data Processing Node

4 Grid-Based Remote Sensing Meta-module Services

Grid technology is a very effective method for remotely sensed data processing
service. Through it the existing remotely sensed data processing modules and
algorithms resource can be shared seamlessly as a common service in Grid
environment. It much more enhances the resource utility rate. In order to publish,
describe, and manage Grid service data, the paper puts forward a Grid-based remotely
sensed meta-module conception and corresponding structure. Combing the rule of this
conception and OGSI technology, we define the Grid-based remotely sensed meta-
module service data and Service Data Description language schema. Through
remotely sensed Service Data Provider, the remote sensing service can be registered
in the Registry Container of the special remotely sensed data processing Grid node.
Users can also search and choose the proper services by demand line or Grid browser.
After that, users can send a service request to Grid computing node according to the
service data description.

4.1 Concept of Grid-Based Remote Sensing Meta-module

The Service Data Element (SDE) model provides standard mechanisms for
querying, updating and adding and removing data associated with each Grid service
instance.

 Study on Grid-Based Special Remotely Sensed Data Processing Node in Grid GIS 615

Fig. 2. Example of tasks accepting service

We defined the concept of Grid-based remote sensing meta-module as follows: The
metadata that describe serials of remotely sensed data processing modules and
algorithms in order to publish and manage these resources in Grid environment. The
description of Grid-based remote sensing meta-module must include function
representations of algorithms,p input and output descriptions, control parameter
descriptions, etc. As Grid-based remote sensing meta-module, it must match these
conditions:

• They must be described as the form of the Service Data Element (SDE) of Grid
Service.

• Expression schema must match with the rule of the Grid Web Service Description
Language (GWSDL)

• They can clearly describe the name, function, input and output parameter of the
remotely sensed data processing module.

• The provided meta-module can be registered and updated in Grid environment.

Remotely Sensed meta-module SDD XML Schema is made up of six parts: domain
name, version copyright, module information, module algorithm and running time,
input information, output information.

4.2 Grid-Based Remotely Sensed Meta-module Service Registry

Combing Globus Open Grid Service Infrastructure (OGSI) rules and remotely sensed
meta-module above, we provide the remotely sensed Grid service registry method.

616 J. Wang et al.

Serials of remotely sensed data processing module service data, such as NDVI
service, aerosol computing service, image classification service, etc., are registered in
the registry container of the special remotely sensed data processing Grid node. For
users, they can search the proper services from the service data through special portal
made up of remote sensing service sets. There are two ways to find service through
Grid service, one is based on demand line, and the other is Grid browser.

4.3 Grid-Based Remotely Sensed Meta-module Service Update

With the changes of remote sensing algorithms, the related meta-module information
should be updated automatically. The registry container can accept the service update
notifications and take actions including accepting the module update notification,
deleting the old meta-module information and again registering of meta-module
information.

The mechanism of update notification is push notification. Registry container
subscribes to the notification of remote sensing meta-module update. If there is any
information of module updating, the remote sensing SDE will send notification to the
registry container.

Renewal information of meta-module will be registered at Registry Container in
registry. Registry container can delete the old remotely sensed meta-module
information and act as the observer.

Notification service instance of remotely sensed meta-module will be created by
service factory. Registry container can get the notification information through
describe service update information when the module renewing.

Fig. 3. Meta-module update based on Grid platform

5 Conclusions

Grid GIS is an infrastructure for spatial information collection and sharing by
integrated management and processing in order to provide services as needed. SIG
provides a basic technical architecture for integrated spatial data acquisition, data
processing and applications as well as an intelligent spatial data processing platform
and basic environment. Grid GIS aims to quickly process and analyse large amount of
spatial data (from Terabyte to Petabyte) in near real time. Grid-based Special
Remotely Sensed Data Processing Node is the important part of the Grid GIS. The

 Study on Grid-Based Special Remotely Sensed Data Processing Node in Grid GIS 617

node can provide RFT service, tasks accepting service, meta-module registry service
and renewal service. Task schedule mechanism provides effective scheduler
algorithm. Remotely sensed meta-module register by Service Data of OGSA and
update by Notification mechanism.

Acknowledgement

This publication is an output from the research projects "Grid platform based aerosol
fast monitoring modeling using MODIS data and middlewares development"
(40471091) funded by National Natural Science Foundation of China (NSFC), China,
“Dynamic Monitoring of Beijing Olympic Environment Using Remote Sensing”
(2002BA904B07-2) and “863 Program - Remote Sensing Information Processing and
Service Node” (2003AA11135110) funded by the MOST, China, "Digital Earth"
(KZCX2-312) funded by Chinese Academy of Sciences, China, and "Research Fund
for Talent Program" funded by China Agricultural University.

References

Aloisio, G., Cafaro, M., Kesselman, C., and Williams, R., 2001, Web access to
supercomputing. Computing In Science & Engineering, Vol 3, Iss 6, pp 66-72.

Aloisio, G., Cafaro, M., Falabella, P., Kesselman, C., and Williams, R., 2000, Grid computing
on the web using the globus toolkit. Lecture Notes In Computer Science, Vol 1823, pp 32-40.

Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

Foster, I. C. Kesselman, S. Tuecke The Anatomy of the Grid, Intl J. Supercomputer
Applications, 2001.

Johnston, W. E., Gannon, D., Nitzberg, B., Tanner, L. A., Thigpen, B., and Woo, A., 2004,
Computing and Data Grids for Science and Engineering, (URL: http://www.sc2000.org/
techpapr/papers/pap.pap253.pdf).

Petrie, G. M., Dippold, C., Fann, G., Jones, D., Jurrus, E., Moon, B., and Perrine, K., 2003,
Distributed Computing Approach for Remote Sensing Data. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS 2003) held in Nice,
France, on 22-26 April 2003, pp.

Xue Y., Wang. J, et al. Preliminary study of Grid computing for remotely sense information.
International Journal of Remote Sensing, v 26, n 16, Aug 20, 2005, p 3613-3630.

Versioning and Consistency in Replica Systems

Hartmut Kaiser1, Kathrin Kirsch2, and Andre Merzky3

1 Center for Computation & Technology, Louisiana State University
2 Max Planck Institute for Psycholinguistics, Nijmegen

3 Vrije Universiteit, Amsterdam

Abstract. Grid Replica systems are gaining foothold in real end user
systems, and are used in an increasing number of large scale projects. As
such, many of the properties of these systems are well understood.

This paper how to handle some minor shortcomings of todays data
replica systems, in respect to consistency management, and to their abil-
ity to handle derived data sets. We think that both features will allow
replica systems to gain wider acceptance in the GIS community.

1 Introduction

Distributed replica systems add real value to large data centric projects: an
inspection of success stories like GriPhyN [1], LIGO [2,3] and the CERN Data
Grid [4] show the central role replica systems play in their overall architecture. It
is interesting that the number of basic concepts found in these replica system is
small compared to the overall number of concepts provided by modern systems
such as SRB [5,6]. Here, basic concepts are those provided by all replica systems
and minimally required by all data management use cases [7,8].

– hierarchical logical name space with attributes (meta data)
– attribute access and manipulation
– data access and manipulation
– distributed architecture
– latency management
– back end system support

That list is, for example, completely implemented by the Globus Replica Loca-
tion Service RLS [9,10], the CERN Replica Management System Reptor [11,12],
the Storage Resource Broker SRB [5,6], and others. Successful deployment of
these systems dominate todays landscape of data grids [1,2,3,4,13,14].

There exists, however, a set of use cases which, with the above set of proper-
ties, fail to be implementable, at least for large scale projects where scalability
and maintainability are of increasing concern. We present 2 of these use cases in
the next section, review the properties of existing replica systems in respect to
these use cases in Sect. 3, and describe required additional properties in Sect. 4.
We will propose a simple implementation on top of existing replica system in
Sect. 5.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 618–627, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Versioning and Consistency in Replica Systems 619

2 Discussion of Replica System Use Cases

2.1 Linguistic Scenario

The linguistic field of language acquisition is, although not commonly known,
very data intensive and depends heavily on language corpora: for the linguistic
analysis, human speech has to be recorded, transcribed and prepared as input
for analysis tools. These steps are supported by Language Resource Archives
(LRA), which also play a crucial role in development and testing of linguistic
models, but also in language documentation and preservation [15,16].

1st analysis
(explorative)

2nd analysis
(preliminary)

data correction

dependent tier

new format

dependent tier analysis
(research)

3rd analysis
(research)

raw data recordings

digitizing, main tier

1st annotation tier: speaker tier

IMDI

data corrrection

dependent tier

dependent tiers
(5)

(4)

(2)

(1)

(3)

(6)

(8)

(7)
(8)

(4)

(6)

Fig. 1. The life cycle of linguistic data col-
lection (simplified) can span years and is a
large scale collaborative effort

The resource intensity of data col-
lection and preparation, especially
in longitudinal language acquisition
studies, encourages data sharing in
the linguistic community. This how-
ever results in branching of the orig-
inal corpus and a redundancy of
corpus work, as the technical infras-
tructure of existing LRA supports
only one main version (usually the
one of the corpus owner), in a spe-
cific format and layout (determined
by the used LRA). The following use
case (also shown in fig. 1) describes
requirements for data sharing in a lan-
guage acquisition scenario, but translates easily to other fields such as language
documentation and preservation, which have similar needs for collaborative data
management1.

(1)The recording of a longitudinal language corpus takes several months or
years, depending on the design of the linguistic study. Video and audio tapes
are digitized, in accordance with the format requirements of the used LRA,
and form the first version of the main tier of the new corpus in that LRA.

(2)The first annotation, a transcription of the audio tier, is added, again con-
forming to the LRA standards.

(3)A first preliminary and exploratory data analysis is performed, allowing for
planning of promising research topics, and motivating the addition of further,
research-specific annotation tiers.

(4)New dependent tiers are added to the corpus (usually morpho-syntactic tiers),
and allow a first detailed research analysis.

(5)Different research groups obtain limited access to the data. Data are not
prepared for publication at this stage, so data sharing occurs in controlled
conditions: read and write access control is required for all tiers.

1 All steps described in this use case are very time intensive and expensive, as there
are no automatic or semi-automatic ways to transcribe spoken child language.

620 H. Kaiser, K. Kirsch, and A. Merzky

(6)New tiers are added which allow for a final analysis of the data, in respect to
the various research questions motivated by the preliminary analyzes in (3),
(4) and (5). This causes a split of the corpus, as changes and additions on the
main tier or on dependent tiers are caused by different research objectives.

(7)A public version of the corpus is prepared by several groups which obtained
access in (5). That public version allows a variety of research groups to use
the corpus and associated tiers for their work.

(8) Various tiers get subsequently added to the corpus by the public, and existing
tiers continue to be changed by various groups, in various formats, increasing
thereby the diversity, quality and usability of the published corpus.

At the present, LRA’s only publish corpora as described in (7), as a single,
cleaned, final and static version. The requirements vary with the LRA, but re-
quire significant effort, so that (a) only a small percentage of the data is made
publicly available and (b) corpora are usually published years after their collec-
tion. The branches described in (5), (6) and (8) are not available for research
as the LRA’s do not allow for the coexistence of different corpus versions. Con-
sidering the intended corpus life time and usage (the linguistic community still
uses data that were recorded in the 70s) this is an unfortunate situation.

The extension of LRA’s with collaborative features will lower the entry re-
quirements for smaller language collection projects, and would help to open their
widely dispersed data collections to the community. It also would allow them to
use the collaborative features of LRA’s very early in the corpus lifetime.

2.2 Data Management in Geographic Information Systems

GIS draw their input data from a large variety of resources [17,18], which also
implies a large variety of ownerships and copyrights [19]. Further, the trans-
formation of these data, as required by any typical GIS system [20], imply the
creation and maintenance of derived data sets, which, in our opinion, leads to
similar collaborative requirements as the described linguistic use case.

The use case presented here is based on a scenario from the SCOOP hurricane
forecasting project [21] (SCOOP: SURA Coastal Ocean Observing and Predic-
tion). The Scoop-GIS has the goal to provide automated regular forecasts for
gulf area hurricane tracks and storm surges. It models a data driven workflow
using a central data archive as data repository for incoming, intermediate and
resulting data sets. Although it is an realistic use case, it is not planned to im-
plement it anytime soon: the SCOOP community is too small to be concerned
about scalability. In particular, contrary to the scenario below SCOOP does not
perform data replication and does not use collections.

(1)The National Hurricane Center in Miami, Florida (NHC), part of the Na-
tional Oceanic and Atmospheric Administration (NOAA) provides the main
input data for any hurricane forecast process. If a hurricane forms, the NHC
provides track information for its ’center of pressure’ in a 6 hour rhythm.

(2)NHC starts the execution of the workflow by placing the track data into
the archive. That triggers the University of Florida (UF) which derives 4

Versioning and Consistency in Replica Systems 621

additional tracks from the original NHC track by rotating that about ±5 and
±10 degree. The UF also calculates wind fields for all 5 tracks, and adds
the wind fields to the archive. Meta data annotations are used to maintain
dependency information between the various data sets.

(3)The placement of the wind fields triggers large simulation codes for various
aspects of the cyclone system, for each wind field: Wave Watch 3 (WW3)
simulations predict ocean wave amplitudes; ADvanced CIRCulation models
(ADCIRC) predict storm surges in coastal regions, etc.

(4)The long running codes from (3) predict up to 72 hours of the cyclones
development. Simulations snapshots are taken after 6 hours and are used
as more realistic boundary conditions for the next run of the workflow. The
simulation models hence need a couple of iterations to stabilize.

(5)Additional wind fields are sometimes provided by 3rd parties, e.g. by the
Naval Research Laboratory of the US Navy (NRLMRY) or by the National
Center for Environmental Prediction (NCEP). These wind fields start again
predictive WW3 and ADCIRC simulations, but are, due to their singular
inputs, not subject to the iterative boundary adjustment described in (4).

(6)The prediction outputs are stored in the data archive, and are used by SCOOP
members and 3rd parties for automated or interactive visualizations, com-
bining both static data sources (e.g. topological data), the original track data,
and the predicted cyclone behavior over the next 72 hours.

(7)Both the 72 hour forecasts and the intermediate forecast results (such as
the 6-hour snapshots) can be used to spawn off regional forecasts, leading to
downscaled versions of step (3), (4) and (6).

2.3 Basic Operations in the Use Cases

The basic operations required in the presented GIS scenario are similar to those
required by the linguistic scenario: derived data sets play a central role, and
versioning, consistency, and access policies need to be addressed, by maintaining
the scalability of the overall system.

Versioning and Consistency: A change to a data set creates a derived data
set. Similar as in Concurrent Version Systems (as CVS or Subversion), such
changes may get merged into the original data set, or create a branch, leaving
the original data intact. Step (5) of the linguistic use case is a good example of
that process. In the GIS scenario, the original hurricane track received by the
NHC is used to create four derived tracks, which create new data sets (branches).

Ownership and Permissions: The owner of a data set decides who can read
and/or write the data. If data are read-only, a private copy can still be created
and changed. That process, however, must not pollute the original ownership
and permissions. For example, the original hurricane track is owned by NHC.
The UFL copies that track, and re-added four additional versions to the archive:
these should have the same or less access permissions as the initial NHC track.
In the linguistic use case, dependent tiers should share the same permissions as
the tiers they depend upon, and should hence inherit these permissions.

622 H. Kaiser, K. Kirsch, and A. Merzky

3 Consistency and Scalability in Data Grids

The basic functionality of replica systems is simple: a replica catalog maintains
a mapping between logical names (entities) and a set of distributed identical
physical files (replicas). Often, entities are annotated with meta data.

In order to be scalable and performant in distributed environments, replica
systems deploy a variety of latency hiding, data caching and other optimization
techniques, which can make the implementation of a replica system non-trivial.
The basic feature set described above is, however, easy to implement, and is
representative for the majority of replica systems.

3.1 Consistency Considerations

The basic operations listed above have subtle implications for data consistency
of replicas, but also for the consistency of the name space of the replica catalog.
For example, as two remote users change two replicas of the same entry at the
same time, the replicas will cease to be identical. Similarly, operations in the
logical file hierarchy can result in inconsistencies.

The problem is somewhat simplified by the fact that name space and meta
data are often held in a central (though often replicated) data bases [22]. Hence,
consistency can be provided by insuring consistency of that data base, which is
in itself a well understood and solved problem. Also, the replication of these data
bases over a small and rather static set of services is well implementable [23,10].

Operations on the logical namespace are usually small and, in fact, often
atomic. The same does not hold for operations on the replicas: the access pat-
terns to the physical files are difficult to predict, and consist of potentially large
numbers of small operations. The provision of consistency for the replicas there-
fore constitutes a significantly more difficult problem – see [22] for discussion.

3.2 Scalability Properties

Scalability issues of replica systems in respect to replica location management,
selection, provisioning and transport are basically solved [10,9,12]. Data consis-
tency, however, is expensive and impacts the scalability of these systems [22].
Todays grid replica system thus rarely provide consistency guarantees, and are
often targeting on Write-Once-Read-Many use cases [10].

Scalability of ownership and permission enforcement are often provided by ex-
ternal systems, such as GAS [24] and GridShib [25]. These are known to scale well
for large environments, allowing replica systems to profit from their scalability.
It must be noted that the user level management of ownerships and permissions
can be tedious. Domain specific interfaces are often required for that task [26].
We think that the scalability of ownership management breaks the shown use
cases: the creation of derived data sets would require the intervention of the
owner of the original data set, to approve or decline the derivations dependent
on the data access policy intended for the new data set.

Versioning and Consistency in Replica Systems 623

4 Data Versioning in Replica Systems

4.1 Consistency and Versioning

As discussed in the last section, consistency is usually considered to be a property
of an instance of an entity which is under the management of the system: that
entity is consistent if all its replicas are identical; it becomes inconsistent if
one replica gets changed; and can become consistent again as these changes get
propagated to all other replicas [22].

local copy

edit

data

repository checkout

commit

Fig. 2. Proposal: Changing a replicas
results in a new version of its entity

We want the reader to take the perspec-
tive of the end users: consistency then of-
ten means that any operation performed
on any replica of an entry is reflected by
any subsequent operation on any (same or
other) replica of that entry.

For example, data written to a particu-
lar replica should be retrievable by a sub-
sequent read operation on that entry. The
entry would be inconsistent if that read
operation would not return the new data,
because it happened to get performed on
a replica which is not yet in sync with the
changed replica instance.

Now, from that perspective it would
actually be simple to achieve consistency
with the following scheme:

1. A replica systems entry A is tagged to have an initial version id A-1, and has
2 replicas A-1a and A-1b.

2. A end user intends to perform a write operation on A. On open(), the replica
system performs a copy() of any replica to A-2a, which is not yet published
in the replica catalog. The user edits that replica.

3. On completion of the edit, the replica A-2a is published as new entry, which
– is a new version of A, named A-2
– has only one replica (that is A-2a)

4. A-2 gets lazily replicated for availability etc., and slowly spreads in the sys-
tem (A-2b).

5. Any subsequent read operation on A is automatically rerouted to the newest
version A-2.

With the above schema, A never gets into an inconsistent state. The scheme
does introduce, however, the possibility conflicts when multiple users edit A at
the same time. We will discuss that point below, and propose a solution.

The schema involves only operations which are very well supported by todays
replica systems, and are known to perform well, and to be scalable:

– replica selection based on meta data (version)
– replication (local copy, spreading of new entry)

624 H. Kaiser, K. Kirsch, and A. Merzky

– change meta data
– publish new entry

The reader might feel familiar with the described scheme – in fact it is the
very scheme which is used by concurrent versions systems such subversion [27]:
changes are performed on local copies of an entity, which is then synchronized
with the central repository and with other, distributed copies. Changes always
result in a completely new version of the entity – only performance optimizations
lead to the more efficient exchange of differential updates.

The user causing the creation of a new version is the owner of that new version,
as he created the new entity, and registered it to the system. For that, write access
to the collection hosting the original entity is required. That change in ownership
does not imply a change of permissions to other users – by default, the original
access policy should stay in place. The new owner can however change access
permissions. We don’t see any violation of the security contract here, as the
user could have softened these permissions by creating an unprotected private
copy anyway, as he was allowed to create a copy in the first place. Further, the
permissions for the collection does not change, so that the new access permissions
cannot circumvent a more stringent access policy on that collection.

Trade-Offs and Optimizations

local copy

edit

data

repository

checkout

commit

commit

checkout
local copy

edit

Fig. 3. Proposal: race conditions can ef-
fectively be avoided by modeling them
as branching

The approach to treat data edits implic-
itly as version bumps has two signifi-
cant drawbacks. Firstly, the algorithm re-
quires additional storage space as it in-
creases the numbers of entities in the sys-
tem on each edit, and all entity versions
need to get replicated. Secondly, as men-
tioned above, it introduces conflicts when
multiple users are editing replicas of the
same entity.

It is tempting to shrug off the space
trade-off as “insignificant in nowadays
unlimited storage systems”, but that
would negate the communities these sys-
tems are targeting: large distributed VOs with extremely large data sets.

We think, however, that (a) the algorithm as-is fits those use cases which have
only a limited and comparably small number of write operations, and that (b)
very simple space optimizations can be applied. Those space optimizations can,
for example, weed out versions which are superseded by newer versions, have
never been used, and are not explicitly tagged for keeping (e.g. for auditing).

Resolving Conflicts

Conflict could of course be resolved manually. That however seems impractical
for large binary data we are considering here. The conflicts could also be resolved
by treating all new replicas not only as new versions, but as branches.

Versioning and Consistency in Replica Systems 625

In th linguistic use case, branching is effectively what happens in step (5):
two groups change the content of a collection, incompatibly, at the same time:
branching is the natural way to cope with such operations.

5 Implications for Data Grid Implementations

The previous sections motivated the introduction of two basic capabilities, ver-
sioning and branching, on top of conventional replica systems. Both operations
can be build upon a very small set of basic operations:

– attach meta data to entities (version/branch information)
– update meta data consistently
– replica selection based on these meta data
– replication (local copies, spreading of new entries)
– publish new entries

As discussed in Sect. 3, these operations are all available in replica systems
and perform and scale well. The most critical operation is the meta data update,
as it requires consistency management for meta data – as discussed above, that
is well understood and implemented in typical replica systems [10,12,22,23].

Further, the implementation of versioning and branching operations does not
need to be atomic. The initial step is, in both cases, the creation of a replica which
is not registered in the replica catalog – which is an supported operation. After
changing that replica, it needs to be registered as new entry, i.e. with a new set
of meta data – again a supported operation. The implementation of versioning
and branching can hence, in our opinion, be implemented on top of existing and
deployed replica systems, in user space (although an implementation as system
extension would allow for more efficient space and availability optimization, as
described earlier).

6 Conclusion

We propose to extend existing replica systems with scalability enhancing fea-
tures: (a) automatic entity versioning on replica changes, and (b) automated
branching on colliding replica changes. Combined with sticky permission and
ownership policies of entity collections, this would allow for

– performant consistency on concurrent data changes
– scalable permission maintenance
– interactive collaborative usage of data
– community shared data maintenance

The only trade-off we are aware off is an increase in storage space, depending
on the number of writes, which can be relieved by optimizing storage policies.

These features should allow to apply grid replica techniques to large scale GIS
environments, and would allow the GIS community to benefit from the positive
effects replica systems showed in other scientific and commercial environments.

626 H. Kaiser, K. Kirsch, and A. Merzky

We are aware that this paper is rather silent on the specific details of ownership
and permission management, and their application to the described use cases.
We felt that this topic was not adequately to be handled in the limited space
available, and thus will present that in a future publication.

Acknowledgments

The presented ideas base on many discussions with colleagues at the Max-Planck-
Institute for Psycholinguistics Nijmegen, Netherlands, at the Center for Compu-
tation and Technology at the Louisiana State University, USA, and in the Data
Area of the Open Grid Forum [28].

References

1. Paul Avery and Ian Foster. The GriPhyN Project: Towards Petascale Virtual Data
Grids. The 2000 NSF Information and Technology Research Program, 2000.

2. A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gursel, S. Kawamura, F.J.
Raab, D. Shoemaker, L. Sievers, R.E. Spero, and K.S. Thorne. LIGO-The Laser
Interferometer Gravitational-Wave Observatory. Science, 256(5055):325–333, 1992.

3. E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn,
P. Ehrens, A. Lazzarini, R. Williams, and S. Koranda. GriPhyN and LIGO, build-
ing a virtual data Grid for gravitational wave scientists. High Performance Dis-
tributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE International
Symposium on, pages 225–234, 2002.

4. B. Segal, L. Robertson, F. Gagliardi, F. Carminati, and G. CERN. Grid computing:
the European Data Grid Project. Nuclear Science Symposium Conference Record,
2000 IEEE, 1:2, 2000.

5. A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A. Jagatheesan,
C. Cowart, B. Zhu, S.Y. Chen, and R. Olschanowsky. Storage Resource Broker-
Managing Distributed Data in a Grid. Computer Society of India Journal, Special
Issue on SAN, 33(4):42–54, 2003.

6. C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource
Broker. Proceedings of the 1998 Conference of the Centre for Advanced Studies on
Collaborative Research, 1998.

7. Reagan Moore and Andre Merzky. Persistent Archive Concepts. Technical report,
Global Grid Forum, December 2003. GFD.26.

8. Heinz Stockinger, Omer F. Rana, Reagan Moore, and Andre Merzky. Data Man-
agement for Grid Environments. Lecture Notes in Computer Science, 2110:151–160,
2001.

9. A.L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and R. Schwartzkopf.
Performance and Scalability of a Replica Location Service. High Performance
Distributed Computing Conference (HPDC-13), Honolulu, HI, June, 2004.

10. A. Chervenak, B. Schwartzkopf, H. Stockinger, B. Tierney, E. Deelman, I. Foster,
W. Hoschek, A. Iamnitchi, C. Kesselman, and M. Ripeanu. Giggle: a Frame-
work for Constructing Scalable Replica Location Services. Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–17, 2002.

11. P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Advanced Replica Man-
agement with Reptor. 5th International Conference on Parallel Processing and
Applied Mathemetics, Sept, 2003.

Versioning and Consistency in Replica Systems 627

12. L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Replica Manage-
ment in Data Grids. Global Grid Forum, 5, 2002.

13. C. Lagoze, W. Arms, S. Gan, D. Hillmann, C. Ingram, D. Krafft, R. Marisa,
J. Phipps, J. Saylor, C. Terrizzi, et al. Core Services in the Architecture of
the National Digital Library for Science Education (NSDL). Arxiv preprint
cs.DL/0201025, 2002.

14. A. Solomonides, R. McClatchey, M. Odeh, M. Brady, M. Mulet-Parada, D. Schot-
tlander, and S.R. Amendolia. MammoGrid and eDiamond: Grids Applications in
Mammogram Analysis. Proceedings of the IADIS Intl. Conference: e-Society, pages
1032–1033, 2003.

15. Kathrin Kirsch. Working Cross-Platform: a case Study in Coding, Sharing and
Analyzing Corpora. Presentation at the 27th annual meeting of the DGf S 2006
in Bielefeld: Workshop on Language Archives - Standards, Creation and Access
(AG-6), February 2006.

16. D. Broeder, F. Offenga, D. Willems, and P. Wittenburg. The IMDI Metadata Set,
Its Tools and Accessible Linguistic Databases. Proceedings of the IRCS Workshop
on Linguistic Databases, Philadelphia, pages 11–13, 2001.

17. Z.R. Peng and M.H. Tsou. Internet GIS: Distributed Geographic Information Ser-
vices for the Internet and Wireless Networks. Wiley, 2003.

18. Editor: George Percivall. OGC Reference Model (ORM). Technical report, Open
Geospatial Consortium, September 2003.
http://www.opengeospatial.org/specs/?page=orm .

19. A. Matheus. Authorization for digital rights management in the geospatial domain.
Proceedings of the 5th ACM workshop on Digital rights management, pages 55–64,
2005.

20. A. Vckovski and A.J. Vckowski. Interoperable and Distributed Processing in Gis.
CRC Press, 1998.

21. Gabrielle Allen, Philip Bogden, Gerald Creager, Chirag Dekate, Carola Jesch, Hart-
mut Kaiser, Jon MacLaren, Will Perrie, Gregory Stone, and Xiongping Zhang. GIS
and Integrated Coastal Ocean Forecasting. Concurrency and Computation: Prac-
tice and Experience, 00(2), 2006.

22. D. Dullmann, W. Hoschek, J. Jaen-Martinez, B. Segal, A. Samar, H. Stockinger,
and K. Stockinger. Models for Replica Synchronisation and Consistency in a Data
Grid. 10th IEEE Symposium on High Performance and Distributed Computing
(HPDC-10), 2001.

23. T. Anderson, Y. Breitbart, H.F. Korth, and A. Wool. Replication, consistency, and
practicality: are these mutually exclusive? Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, pages 484–495, 1998.

24. S. Cannon, S. Chan, D. Olson, C. Tull, V. Welch, and L. Pearlman. Using CAS
to Manage Role-Based VO Sub-Groups. Proceedings of Computing in High Energy
Physics (CHEP’03), 2003.

25. T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R. Anan-
thakrishnan, B. Baker, M. Goode, and K. Keahey. Identity Federation and
Attribute-based Authorization through the Globus Toolkit, Shibboleth, GridShib,
and MyProxy. 5th Annual PKI R&D Workshop, April, 2006.

26. Open Grid Portals.
http://www.opengridportals.org/space/Portlets/Security .

27. B. Collins-Sussman, B.W. Fitzpatrick, and C.M. Pilato. Version Control with
Subversion. O’Reilly, 2004.

28. Data Area of the Open Grid Forum (OGF).
http://www.ggf.org/ggf areas data.htm.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 628 – 636, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design of GridGIS Architecture

Jianqin Wang1, Yong Xue2,4,*, Yuxin Jiang1, Chenghu Zhou3, Rongguo Chen3,
Jianping Guo2,5, Wei Wan2,5, Lei Zheng2,5, and Yi Xie1

1 College of Information and Electrical Engineering, China Agricultural University,
P.O. Box 142, Beijing, 100083, China

2 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of
Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University,

Institute of Remote Sensing Applications, Chinese Academy of Sciences,
P.O. Box 9718, Beijing 100101, China

3 Institute of Geographical Sciences and Natural Resources Research of Chinese Academy of
Sciences, Beijing 100101, China

4 Department of Computing, London Metropolitan University, 166-220 Holloway Road,
London N7 8DB, UK

5 Graduate School, Chinese Academy of Sciences, Beijing 100049, China
Tian1.wang@163.com, y.xue@londonmet.ac.uk

Abstract. Grid Geospatial Information Service (Grid GIS) system aims to study
and develop grid-based uniform spatial information access and analysis system.
Data resources of Grid GIS include not only original and traditional GIS data
but remotely sensed data. Analysis function is made up of not only single
spatial information access but complex and quick data processing. The Grid
GIS system can provide not only convenient and quick spatial information
access service but a second developing environment to satisfy all kinds of user
requirements. In this paper we mainly discuss Grid GIS system framework and
running-framework design. To clearly demonstration how to develop the Grid
GIS system, we describe service and interface criterion. Series of geospatial
information standards are also discussed to adapt system extend requirement.

1 Introduction

The term "the Grid" was coined in the mid 1990s to denote a proposed distributed
computing infrastructure for advanced science and engineering [1]. There are several
famous grid projects today. Access Grid (www.fp.mcs.anl.gov/fl/access grid) lunched
in 1999 and mainly focused on lecture and meetings-among scientists at facilities
around the world. European Data Grid sponsored by European Union, mainly in data
analysis in high-energy physics, environmental science and bioinformatics. Grid
Physics Network (GriDPhyN) [2] lunched in 2000 and sponsored by NSF mainly in
data analysis for four physics projects: two particle etectors at CERN’s Large Hadron
Collider, the Laser Interferometer Gravitational Wave Observatory, and the Sloan
Digital Sky Survey. Information Power Grid [3] is the NASA’s computational support
for aerospace development, planetary science and other NASA research. International
Virtual DataGrid Laboratory (iVDGL) sponsored by NSF and counterparts in Europe,

* Corresponding author.

 Design of GridGIS Architecture 629

Australia, and Japan in 2002. Network for Earthquake Engineering and Simulation
labs (NEESgrid) (www.neesgrid.org) intended to integrate computing environment
for 20 earthquake engineering labs. TeraGrid (www.teragrid.org) is the general-
purpose infrastructure for U.S. science: will link four sites at 40 gigabits per second
and compute at up to 13.6 teraflops. U.K. National Grid [5] sponsored by U.K Office
of Science and Technology. Unicore (www.unicore.de) is a seamless interface to
high-performance Education and Research computer centers at nine government,
industry and academic labs.

EnvirGrid main goals are generalization of Earth Science application infrastructure
to become GRID-aware, extend GRID access to European Environmental and Earth
Science application to large science communities, to value adding and commercial
communities, …, and demonstrate collaborative environment for Earth Science.

The application type of distributed geographical information system can be
classified into seven types: original data downloading, static map displaying, metadata
search, dynamic map browser, data pre-processor, GIS search and analysis based on
Web, GIS software which can respond to net. The main aims of establishing distributed
GIS are to provide distributed transaction processing, transparent operation between
different system and data, also favorable interface and inter-operation, so, the
geographical information can be shared furthest. Distributed geographical information
system provides users with basic functions that include data operation, geographical
measure and analysis, geographical decision-making support and so on.

“Grid” geographical information system [4] makes use of some geographical
information servers with grid technology to construct the grid environment and
implements grid scheduling, load-balance and quick geographical information service
with the infrastructure provided by grid middleware.

2 Architecture Design

Providing users the framework which can marshal, share and co-process spatial
information resource and GIS service distributed in different information center, we
should work over software structure and running environment of distributed spatial
data service system. Presently, many mature distributed inter-connection and
processing technologies which have been applied into spatial information system to
share the spatial information and service highly cost, be short of scalable and maintain
difficultly that it can not meet the users’ requirements. So, to solve the problems
mentioned above, it is essential to research architecture of grid GIS software platform.

Because of the development situation of spatial information processing technology,
the research of the architecture will focus on how to take advantage of grid technology
and idea to organize and manage the existing spatial information resource effectively
and on how to gather computing resource on the internet to quickly process spatial
information. According to the analysis, a lot of the existing spatial information
resource and high-performance computing resource distribute in wide area. So, the
structure of the platform is important to implement spatial information sharing and co-
processing. Fig.1 shows the architecture of grid GIS software platform.

630 J. Wang et al.

Fig. 1. Architecture of grid GIS software platform

(1) Grid resource layer
Grid GIS is a platform constructed on wide band infrastructure for spatial information
processing and sharing, it involves the existing spatial data and data storage system
and supports data online updating via spatial data collection equipment. It also
supports general operation system, special operation system, embedded operation
system. Computing resource includes existing computer clusters, distributed personal
computers and homebred Shu Guang processor. Data resource includes all the spatial
data which involves multi-scale basic geographical dataset, multi-origin remote
sensor data, population distributing data, disease space distributing data, and
agriculture space distributing data, mine energy space distributing data and so on.
Some of them are structural or not. Data storage includes the existing heterogeneous
and distributed database, also includes the new established information warehouse, all
of which can be shared.
(2) Grid running environment layer
Grid running environment layer uses Vega GOS, GT4 (Globus toolkits 4) and Condor
as rock-bottom running environment, of which Vega GOS and GT4 emphasize
particularly on service developing, deployment and publication environment of
information grid, and Condor would focus on computing environment of computing
grid.

Grid
resource

layer

Grid running
environment

layer

Grid system
service layer

Field
support

layer

Application
layer

Grid security
support

architecture

Overall user
management

Uniform resource
management

Access control and
authorization

Task management

Meta-information
service

File management
service

Log serviceWork flow service

Grid GIS Portal

Grid spatial subject Information processing environment

Spatial subject
Information
processing
secondary

exploitation
environment

Spatial
subject

Information
processing
middleware

HPC Data storage system

Operation System(Red Hat Enterprise Linux SUSE Linux Solaris AIX HPUX
Windows ,Unix)

Algorithm database Data resource

Network Infrastructure

CondorGT4
(Globus)

Tomcat
(Apache)

WebSphere
(IBM)

WebLogic
(BEA)

Spatial data access and Integration middleware

Spatial data
warehouse

Condor-G

Spatial data access entrance

ETL

Spatial Information
computing access

entrance

Spatial
Information
cooperation

Inter-
operation

environment

Spatial
search

Pre-
processing

Overlap
analysis

Vicinity
analysis

Web
analysis

Grid
analysis

Statistic
analysis

Subject
drawing

Grid spatial Information general operation and
analysis middleware

 Design of GridGIS Architecture 631

(3) Grid system service layer
Grid system service layer which locates on the top of grid running environment layer
provides users with the basic grid system services of access control and authorization,
overall user management, uniform resource management, task management, meta
information service, file management service and so on.
(4) Field support layer
Field support layer consists of grid spatial data access and integration middleware
which provides uniform spatial data access, grid spatial information general operation
and analysis middleware and spatial subject information processing environment.
Spatial subject information processing environment includes spatial subject
information processing service and spatial subject information processing secondary
exploitation environment which updates the software processing ability and advances
its sharing degree to meet the different requirements and provide online developing
environment. The spatial subject information processing software which gathers mass
spatial data, information and computing nodes provides convenient spatial
information processing service.
(5) Application layer
Application layer provides users grid GIS interface which includes embedded GIS,
Web GIS (Web Geospatial Information Service), special GIS and desktop GIS.

3 Principle of System Deployment on Grid Computing Platform

GridGIS works under the grid architecture which isn’t the same as traditional center
control information system. This section provides an overview on the most common
P2P topologies [5]. It discusses the general advantages and drawbacks that all P2P
topologies have in common.

The A in Fig.2 denotes centralized topology which relies completely on a central
server or on a set of well-known servers. There are several advantages when using a
centralized topology. The structure is simple and management is easy. There are also
drawbacks to it. The server overworks, and if the server fails to work, the nodes
connected to it will become invalidate.

A: centralized topology B: decentralized topology C: hybrid topology

Fig. 2. Three main topologies

The B in Fig.2 denotes decentralized topology which does not depend on a central
server.The advantages of it are reliable, easy to join and leave and have no single

632 J. Wang et al.

point of failure. Difficulty in management and low resource searching efficiency are
considered as its drawbacks.

The C in Fig.2 denotes the Grid GIS hybrid topology which combines centralized
topology with decentralized topology. It inherits some advantages from both
topologies and better scalable than decentralized topology. In this paper, the hybrid
topology is adopted. So, the structure of grid computing platform is described as
follows:

Fig. 3. Structure of Grid Computing Platform

4 Grid GIS System Management and Schedule Flow Design

Fig.4 displays the running-frame of grid GIS system. Portal gives the users interface
to communicate with the system conveniently. Task scheduling management parses
the tasks presented by users and hands out to corresponding nodes. Model algorithm
library provides algorithm to advance processing efficiency. The whole resource
search engine is to search resource which user needs from register center. The grid
GIS mainly involves computing resource and data resource, user can apply for
resources from the system after login. System searches for usable resources that have
been registered to resource registry center after receiving the tasks presented by user,
then parses the user’s tasks. If the user applies for the data resources, system searches
for specific resource through the resource registry center then return the data
resources to user proxy. If the user applies for the computing resources, on the one
hand, system must search for the data resources which computing nodes deal with, on
the other hand, it should search for the usable computing nodes. Then the task

Portal

Computing Cell

Resource Registry

Task schedule

Computing VO one

Data Cell

Resource
Registry

Task schedule

Data VO
one

...

Search Engine

Other Vo

Resource Searching Resource Searching

Request

Result

Computing
Cell

Resource
Registry

Task
schedule

Computing VO
four

Computing
Cell

Resource
Registry

Task
schedule

Computing VO
three

Computing
Cell

Resource
Registry

Task
schedule

Computing VO
two

...

Other Vo

Data Cell

Resource
Registry

Task
schedule

Data VO
threeData Cell

Resource
Registry

Task
schedule

Data VO
four

Data Cell

Resource
Registry

Task
schedule

Data VO
two

 Design of GridGIS Architecture 633

l
at

r
o

P
r

e
s

U

o
L

g
ni

l
a

l
e

d
o

M
g

m
hti

r
o y

r
a

r
bil

A
e

d
o

N

e
R

g
C

r
e t

si
r

et
n

e

1
l

o
o

p
r

o
d

n
o

C

e
d

o
N

e
d

o
N

e
d

o
N

e
d

o
N

p
m

o
C

u
nit

g

o
s

e
r

u

e
ci

v
r

e
s

e
c

r
y

x
o

r
p

2
l

o
o

p
r

o
d

n
o

C
m

l
o

o
p

r
o

d
n

o
C

o
s

e
r

el
o

h
w

e
h

T
u

e

c
r

ni
h

c
r

a
e

s
g

n
e

g
e

ni

d
e

h
c

s
k

s
a

T
u

n il
g

a

n
a

m
g

t
n

e
m

e

e
d

o
N

e
d

o
N

W
D

2
B

D
el

c
a

r
O

L
Q

S
r

e
v

r
e

s
s

eli
F

e
d

o
N

e
d

o
N

D
a

ta
e

R
s

o
u

e

c
r

s
e

ci
v

e

GT4+DAI

GT4+DAI

GT4+DAI

e
c

n
a

rt
n

E
s

s
e

c
c

A
at

a
D

p
m

o
C

u
nit

g
o

s
e

r
u

d
e

h
c

s
e

c
r

u
nil

g

l
A

g
d

e
h

c
s

m
h ti

r
o

u
n i l

g

GT4+DAI

t
e

R
u

s
e

r
n

r
u

tl

t
e

R
u

s
e

r
n

r
u

tl

s
s

e
c

c
a

at
a

D

C
o

m
p

u
ti

n
g

r
e

s
o

u
r

c
e

r
e

g
is

te
r

N
o

ti
fi

c
a

ti
o

n
m

e
c

h
a

n
is

m

h
c

r
a

e
S

D
a

ta
r

e
s

o
u

r
c

e
r

e
g

is
te

r
N

o
ti

fi
c

a
ti

o
n

m
e

c
h

a
n

is
m

o
s

e
r

at
a

D
u

d
e

h
c

s
e

c
r

u
nil

g

p
m

o
C

u
n it

g
o

s
e

r
u

d
e

h
c

s
e

c
r

u
ni l

g

F
ig

. 4
. R

un
ni

ng
-f

ra
m

e
of

 g
ri

d
G

IS
 s

ys
te

m

634 J. Wang et al.

scheduling management transfers the data resources to computing nodes and merges
and returns the results which computing nodes return to user proxy.

5 Service and Interface Design

Seeing from the logic structure, Grid GIS includes not only grid GIS operation
system, but also field supporting layer. Seeing from the functions, besides unified
access and connection to traditional heterogeneous and distributed GIS data, it also
includes remote sensor images processing and remote information quick processing
service. Different from the traditional software, the computing resource, model
algorithm resource and other resources grid GIS involves can be shared. Seeing from
the data which grid GIS processes, there are vector data and grid data. So, the system
is so complicated that it must strictly define the grid GIS software development’s
interface and service format according to the view of grid.

5.1 Service Interface Description

The service interface definition in grid GIS service shows that what functions the
service provides users with, other services which call the service have no need to
know how to work the service but what functions it provides. The service interface
goes by the name of PortType in Web Service. Based on the J2EE framework, Grid
GIS service will adopt the format of Java class or GWSDL (Grid Web Service
Description language) which adopts XML format to describe all the interfaces.

5.2 Service Deployment and Publication

All the interfaces in grid GIS system must be implemented with java program language.
And the implemented interfaces must be published and deployed in term of grid syntax.
The process of deployment is to take advantage of tool service which grid GIS tool layer
provides to combine all the interfaces grid service needs and service codes, GWSDL
document and Stub file together, then makes use of deployment descriptor to deploy. It
tells the web server how to publish grid GIS service (the deployment descriptor exits in
the format of WSDD (Web Service Deployment Descriptor).

6 Grid GIS System Standard and Criterion�

The tremendous spatial data and information resources which Grid GIS involve are
heterogeneous and distributed. It makes the sharing and access difficult. And also the
computing resources are. So, if you want to manage the resources effectively and
provide the users integrative spatial information access and processing service,
studying an opening standard and criterion is absolutely necessarily.

6.1 Grid Spatial Data Description Criterion

Referring to the standard which OGC (open Grid Consortium) and FGDC (Federal
Grid Data Consortium) established, we could work over metadata criterion which is

 Design of GridGIS Architecture 635

fit for spatial data under Grid environment and establish the GGIS (Grid Geospatial
Information Service) metadata standard.

6.2 Uniform Resource Description Criterion in Grid Environment

Grid GIS assembles and schedules the internet resources which include computing
resource, data resource, model algorithm resource. Some of them are static resource,
others are dynamic resource. So, to present the different resources with unified
resource description, it is essential to establish corresponding resource description
metadata criterion. it is convenient to dynamically and statically describe the
different resources under Grid GIS environment with grid GIS resource description
metadata criterion which is established Referring to the MDS grid resource
description metadata and spatial information operation characteristic, the description
is the basis of internet resources scheduling and tasks dispatching.

6.3 Spatial Information Process Inter-operation Language Criterion

Referring to the GML (Grid Markup Language) criterion to establish spatial information
inter-operation criterion set which will be used in G-SML (Grid-Spatial-ML) cross-
platform grid environment and will be compatible with all other spatial information
processing operation descriptions, and also be fit for cross-platform operation.

6.4 Grid Spatial Data Access Interface Criterion

The data resource involved in grid GIS environment is stored in different places and
the databases are heterogeneous. So it is essential to establish grid spatial data access
interface criterion to access uniformly.

6.5 Grid GIS Middleware Criterion

Grid GIS is a platform which could dynamically extend spatial information sharing
and quick processing and meet the different needs. The middlewares used in the
supporting platform are dynamic, robust and extensible. Working over scientific grid
GIS supporting middleware criterion has great meaning for platform dynamic, robust
and extensible.

7 Conclusion

Grid Geospatial Information Service system aims to study and develop grid-based
uniform spatial information access and analysis system. Grid computing technology
can satisfy this system’s complexity because of its characteristic. Grid GIS system is
different from grid operation system. All kids of computing resource and data resource
are managed and shared by Grid GIS system resource service proxy. Geographical
distributed and heterogeneous Geospatial information data an be conveniently accessed
by Globus Tookitsr4 and data access interface (DAI) [6]. Computing resource
including high performance computer, workstation and personal computer are also be
utilized by condor pool virtual organization to provide supercomputing power.
Remotely sensed data can be processed in near real time by computing power in Grid

636 J. Wang et al.

GIS system. In order to manage and schedule users requirements task schedule and
manager is also needed. Task schedule and manager indexes information through index
engine. Grid GIS system must follow the grid criterion and geospatial information
standard to strength its extendedness characteristic. In this paper, we also describe the
method of grid service interface and service deploy.

Acknowledgement

This publication is an output from the research projects "Aerosol fast monitoring
modeling using MODIS data and middlewares development" (40471091) funded by
NSFC, China, “Monitoring of Beijing Olympic Environment Using Remote Sensing”
(2002BA904B07-2) and “Remote Sensing Information Processing and Service Node”
funded by the MOST, China and "Research Fund for Talent Program" funded by
China Agricultural University.

References

[1] Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

[2] Laura Gilbert, Jeff Tseng and Rhys Newman etc.Implications of virtualization on Grids for
high energy physics applications .Journal of Parallel and Distributed Computing, Volume
66, Issue 7, July 2006, Pages 922-930 .

[3] Rudolf Eigenmann and Michael J. Voss .Towards a compilation paradigm for
computational applications on the information power grid Mathematics and Computers in
Simulation, Volume 54, Issues 4-5, 15 December 2000, Pages 307-320 .

[4] Zhanfeng Shen, Jiancheng Luo et al. Architecture design of grid GIS and its applications
on image processing based on LAN Information Sciences 166 (2004) 1–17.

[5] D. Zeinalipour-Yazti, Vana Kalogeraki and Dimitrios Gunopulos. Exploiting locality for
scalable information retrieval in peer-to-peer networks.Information Systems, Volume 30,
Issue 4, June 2005, Pages 277-298

[6] M. Antonioletti, M. Atkinson, S. Laws, S. Malaika, N. Paton, D. Pearson, G. Riccardi,
Web services data access and integration (WS-DAI), in: 13th Global Grid Forum, 2005.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 637 – 647, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Selection for Feature Gene Subset
in Microarray Expression Profiles Based on

a Hybrid Algorithm Using SVM and GA

Wei Xiong, Chen Zhang, Chunguang Zhou, and Yanchun Liang

College of Computer Science and Technology, Jilin University, Key Laboratory
of Symbol Computation and Knowledge Engineering of Ministry of Education,

Changchun 130012, China
ycliang@jlu.edu.cn

Abstract. It is an important subject to find feature genes from microarray
expression profiles in the study of microarray technology. In this paper, a
hybrid algorithm using SVM and GA is proposed. We first find a feature gene
subset and filter most genes which are unrelated with diseases according to
certain significant level, gene importance and classification efficiency by Least
Square Support Vector Machine. Then we apply an improved genetic algorithm
to carry out feature selection, in which the information entropy is used as a
fitness function. At last, we apply the proposed feature selection algorithm to
the two expression data sets of microarray, evaluate the feature gene subsets
that are obtained in different conditions. Simulated results show that both good
classification efficiency and the important genes which are related with diseases
could be obtained by using the hybrid algorithm.

Keywords: feature selection, Support Vector Machine, genetic algorithm.

1 Introduction

The technology of microarray is a new technology with the development of life
science and information technology. And the microarray is the most widely used
technology in the fields of bioinformatics. The advent of microarray makes it possible
to perform gene diagnosis and gene treatment.

Due to its low cost, high flux and high sensitivity, microarray is one of the
important technologies for the study of functional genome, which is obviously better
than the previous research model of single gene. But several challenging research
tasks are largely overlooked because of the lack of an efficient analysis method.

Aiming at the above-mentioned problems, a feature selection method based on a
SVM and GA hybrid algorithm is proposed to find a feature gene subset in this paper.
At first, a feature gene subset is obtained and most genes which are unrelated with
diseases according to certain significant level, gene importance and classification
efficiency are filtered by Least Square Support Vector Machine. On the basis of it, we
apply an improved genetic algorithm to carry out feature selection according to their
contribution to classifying. In the proposed method, the crossover and mutation

638 W. Xiong et al.

operators in the genetic algorithm are improved such that the feature gene number of
the subset could be controlled during the process of genetic operation, and the
information entropy is used as separate criterion, and then the selected feature subset
is evaluated by Support Vector Machine and the method of leave-one-out. We apply
the proposed feature selection algorithm to the two expression data sets of microarray,
evaluate the feature gene subsets that are obtained in different conditions.
Comparisons of the simulated experimental results using the hybrid algorithm with
those using other algorithms show the effectiveness of the proposed algorithm.

2 Model and Steps of the Hybrid Algorithm

The process of obtaining feature gene subset is made up of five steps:

(1) Perform preprocessing for the data of microarray. Use the Standard Deviation to
do the data filtering and choose the genes with higher Standard Deviation and arrange
the genes in order.

Fig. 1. Model of hybrid algorithm

(2) Use the Least Square Support Vector Machine (LSSVM) to construct a classifier.
Firstly, select some samples to contain the training set and testing set, and then make
selection to build up the certain quantity feature gene subset by the classified
accuracy. This selecting and choosing process changes the gene number and compare
the accuracy continuously.

 Selection for Feature Gene Subset in Microarray Expression Profiles 639

(3) Compose the initial population with some individuals which have the feature
genes selected by the LSSVM. And then make use of the improved genetic algorithm
to perform genetic search. One individual is composed of some feature genes and a
individual is a feature gene subset. Classify the initial training set with k-means
clustering program, and then Classify the processed training set which has been taken
part of genes that are not the feature genes out of the initial training set. The
information entropy is used as the fitness function.
(4) Determine the individual whose fitness value is the largest one in the last
generation. It is the best feature gene subset. The fitness value is the result computed
by the information entropy.
(5) Evaluate the selected feature subset using SVM and the method of leave-one-out.
Choose some of the samples to train and the others to test. Evaluate the result by the
classified accuracy first and then observe the description and the function of the
important feature gene selected. At last, compare the simulated experimental results
using the hybrid algorithm with those using other algorithms, like Neural Network
method.

The model of the feature gene subset selection is shown in Fig. 1.

3 Hybrid Algorithm of SVM and GA

3.1 Least Square Support Vector Machine

Support vector machine (SVM) was proposed by Vapnik and his research team based
on statistical learning theory. The aim of SVM model is to construct the decision
function takes the form [1, 2]:

bxwwxf T +=)(),(ϕ (1)

where the nonlinear mapping)(⋅ϕ maps the input data into a higher dimensional
feature space. In the LSSVM, the classification problem is formulated:

=

+=
N

k
k

T

ebw
ewwebwJ

1

2

,, 2

1

2

1
),,(min γ (2)

subject to the equality constraints

Nkebxwy kk
T

k ,...,1,1])([=−=+ϕ (3)

This corresponds to a form of ridge regression. The Lagrangian is given by

}1])([{),,();,,(
1

kk
T

k

N

k
k ebxwyebwJebwL +−+−=

=
ϕαα (4)

with Lagrange multipliers kα . The conditions for the optimality are

640 W. Xiong et al.

=

=→=
∂
∂ N

k
kkk xyw

W

L

1

)(0 ϕα

=

=→=
∂
∂ N

k
kk y

b

L

1

00 α

Nke
e

L
kk

k

,...,1,0 ==→=
∂
∂ γα

Nkebxwy
L

kk
T

k
k

,...,1,01])([0 ==+−+→=
∂
∂ ϕ
α

(5)

for k=1,…,N. After elimination of ke andω , the solution is given by the following set

of linear equations

=
+

−
− 1

00
1 a

b

IZZY

Y
T

T

γ
 (6)

Where

,])(,...,)([11 N
T

N
T yxyxZ ϕϕ=],...,[,]1,...,1[1,],...,[11 NNyyy ααα ===

and Mercer condition

Nlkxxyyxxyy lklkl
T

klkkl ,...,1,),()()(===Ω ψϕϕ (7)

is applied. Hence, the classifier

))(sgn()(
1

∗

=

∗ +⋅= bxxKyxf kk

N

k
kα

(8)

is found by solving the linear set of Equations (6)-(7) instead of quadratic
programming. Different kernel functions construct different SVM model. In this
paper, we use three kernel functions to construct three different SVM model, Linear
function, Polynomial function and Rbf function.

3.2 Improved Genetic Algorithm

Compose the initial population with some individuals which only have the genes
selected by the LSSVM. The genetic operation is performed on these individuals. The
operators in the improved genetic algorithm are fitness proportional selection
operator, the improved crossover operator, and the improved mutation operator. The
fitness function is based on the information entropy.

(1) Selection operator
The selection operation is based on the fitness, in which the fitness proportional
selection operator is used.
(2) Improved crossover operator
It is demanded that the number of feature genes must keep fixed during the process of
the genetic operation, so an improved crossover operator is developed. In the

 Selection for Feature Gene Subset in Microarray Expression Profiles 641

crossover operation, make sure that the 0 positions and the 1 positions in one
individual that changed by crossover operator are in the same quantity. For either of
two individuals, cross over several 0 positions in one individual and 1 positions in the
other individual when the corresponding positions in the two individuals are not the
same. For example, in Fig. 2:

Fig. 2. The example of the improved crossover operator

(3) Improved mutation operator
For the same reason, an improved mutation operator is developed. When turning over
a 1 position selected randomly in a individual, a 0 position is turned over.
(4) Fitness function
The construction of the fitness function is such an important part of genetic algorithm
that it will affect the speed of convergence and the possibility of finding the best
solution. In this paper, the fitness here corresponds to the separate criterion in feature
extraction. The separate criterion based on the information entropy-gini impurity
index is used in this paper [3].

Calculate the gini index of each category which is classified according to the
current genetic individual. The fitness would be the reciprocal of the index sum. It can
be written as

=

=
K

k

i
k

i

gini

C
Gf

1

)(
)(

ω

(9)

Where C is an adjustment factor used to adjust the value of fitness, Gi represents the

ith genetic individual after encoding, which is a feature gene subset.
=

K

k

i
kgini

1

)(ω is

the sum of the index, in which

[]
=

≠=
01

0)|(),...,|(),|(
2

1
)(21

2

i
k

i
k

i
kn

i
k

i
ki

k

n

nPPPH
gini

ωωωωωωω

(10)

When i
kn , the number of samples which belong to category k according to the

individual Gi, equals to 0, the diversity of categories is supposed to be the maximum,
with the value 1, otherwise, it equals to the gini index, in which :

642 W. Xiong et al.

=

−=
n

i
iin xPxPxPxPxPH

1
21)|(log)|())|(),...,|(),|((ωωωωω

(11)

square it under some condition, then we have

−=
=

n

i
in xPxPxPxPH

1

2
21

2)|(12))|(),...,|(),|((ωωωω (12)

where)|(xP iω represents the conditional probability of the sample belonging to the

category iω under the condition x, it must satisfy that

=

=
n

j
j xP

1

1)|(ω

(13)

It represents the posterior probability that the samples which belong to the category k
after reclassifying according to Gi belonged to the category j at the beginning. It
satisfies apparently that

=

=
K

j

i
kjP

1

1)|(ωω

(14)

So the information entropy-gini impurity index can be suitable for evaluating the
classified result of feature gene subset.

The program is terminated if the difference of the mean fitness values of two
generations is smaller than a threshold value. Furthermore, a maximum number of
generations is set to make sure the algorithm be terminated actually. Using the
improved genetic algorithm we get the best feature gene subset.

4 Experiment

4.1 Data Acquisition and Preprocessing

Microarray data consists of p genes and n DNA samples. The data can be described

using a np× matrix][ijxX = where ijx represents the expression data of the ith

gene ig on the jth sample
jX . A vector can be used to represent a sample:

},...,,{ 21 pjjjj xxxX =

Suppose that there are p genes in the microarray. The length of genetic string would
be p, and a p-featured se is denoted by a binary vector G

},...,,{ 21 pgggG =

 Selection for Feature Gene Subset in Microarray Expression Profiles 643

Every position in the string represents whether the relative gene would be involved in
the subset. For example, a five-featured set could be },,,,{ 54321 gggggG = , a

string {1 1 0 1 0} means that the subset is },,{ 421 gggG = .

Microarray expression profile has a lot of fuzzy data in it, which are no use for the
classification. In order to obtain the right data for the next input used by SVM,
microarray data need to be processed first. In the paper, a Standard Deviation process
method is proposed to filter the expression data. The Standard Deviation is shown
below:

[]22
2

2
1)(...)()(

1
xxxxxx

n
S n −++−+−=

(15)

4.2 Results of Experiments and Analysis

In order to evaluate the proposed hybrid algorithm, we perform experiments on two
data sets, which are published in website. One is Colon data set and another is
leukemia data set.

(1) Colon data set
The colon set is from Affymetrix Company, which is an array with 62 tissue samples
of 65000 oligonucleotide genes (40 tumors and 22 normal tissues). In the experiment,
we use the data with 2000 human genes picked by Alon et al, the expression data
come from the website [4]: http://microarray.princeton.edu/oncology/affydata/.

For obtaining the right data for the next input, the microarray data need to be
preprocessed. The results are shown in Fig. 3:

Fig. 3. Standard Deviation of 2000 genes in colon data set

Colon dataset contains two classes and it has 62 samples, among which 30 samples
are for training and the remaining 32 samples are for testing. We use SVM with three
kernel functions to evaluate the selected feature gene subset. The results are shown in
Table 1.

644 W. Xiong et al.

The best result obtained using the hybrid algorithm is 20 genes. When the gene
number is 20, the generation number is 800. The corresponding parameters in SVM
need to be adjusted with gene subsets in different size. The result in this paper is also
compared with the results obtained using other existing methods in references [5, 6].
The best accuracy obtained using a decision forest method combined with
permutation method is 0.8767 when gene number is 39, and the best accuracy
obtained using SVM method is 0.8390 when gene number is 20. The hybrid algorithm
proposed with the best accuracy is 0.906 when the gene number is only 20.

Table 1. Evaluated results of subsets with different sizes

Gene Num rbf polynomial linear

10 0.844 0.813 0.813
15 0.844 0.844 0.844
20 0.906 0.875 0.875
40 0.844 0.813 0.813
50 0.906 0.844 0.844

Because of the characteristics of gene selection, we not only need to get the good
classification efficiency, but also obtain the important genes which are related with
diseases. The results are shown in Table 2:

Table 2. Description of feature genes

Gene No. Sequence Gene description
U14973 Gene Human ribosomal protein S29 mRNA, complete cds
T58861 3' UTR 60S RIBOSOMAL PROTEIN L30E (Kluyveromyces lactis)
Z22658 Gene H.sapiens thrombin inhibitor mRNA
M26383 Gene Human monocyte-derived neutrophil-activating protein

(MONAP) mRNA, complete cds
T74896 3' UTR SERUM AMYLOID A PROTEIN PRECURSOR

(HUMAN)
R01221 3' UTR Human transcription factor TFIIA small subunit p12

mRNA, complete cds

Search in the bioinformatics database in networks, and compare with the results
obtained using other experiments, it can be confirmed that these selected genes play
an important role as a central hub for the gene network that maps to the underlying
pathological complexity of colon cancer [3].

(2) Leukemia data set
Leukemia data set is from Golub’s paper, which is composed with 72 tissue samples
of 7129 leukemia genes (25 Acute Myeloid leukemia (AML) and 47 Acute
lymphoblastic leukemia (ALL)). In the experiment, we use the mcroarray expression
data from the website [7]: http://www.broad.mit.edu/cancer.

 Selection for Feature Gene Subset in Microarray Expression Profiles 645

In order to obtain the right data for the next input using SVM, the microarray data
need to be processed first, then we can select some feature genes from all of the 7129
genes. The Standard Deviation results are shown in Fig. 4.

The data set has 72 samples, among which 38 samples are for training and the
remaining 34 samples are for testing. We also use the SVM with three kernel functions
to evaluate the selected feature gene subset. The results are shown in Table 3.

Fig. 4. Standard Deviation of 7129 genes in leukemia data set

Table 3. Evaluated results of subsets with different sizes

Gene num rbf polynomial linear
10 0.941 0.941 0.941
15 0.971 0.971 0.971
20 0.971 0.941 0.941
40 0.971 0.971 0.971
50 0.971 0.971 0.971

The best result using the hybrid algorithm got is 15 genes. When the gene number
is 15, the generation number is 1000, and the corresponding parameters in SVM need
to be adjusted with gene subsets in different size.

The result in this paper is also compared with the results obtained using other
methods in references [6-8]. The best accuracy obtained using a Neural Network
method is 0.58, the best accuracy obtained using a SVM method is 0.971 when gene
number is 20, and the best accuracy obtained by Golub et al is 0.853 when gene
number is 50. In this paper, the proposed hybrid algorithm has the best accuracy of
0.971 when the gene number is only 15 compared with other methods.

Like the Colon dataset, we not only expect to get the good classification efficiency,
but also obtain the important genes which are related with leukemia classification.
The simulated experimental results are shown in Table 4.

Multiple lines of evidence from molecular biological studies imply that these genes
are involved in leukemia development and progression, like M27891 [3]. Meanwhile,
we also search in the bioinformatics database in networks, and compare the results with
those obtained from other experiment, these feature genes concern the leukemia disease.

646 W. Xiong et al.

Table 4. Description of feature genes

Gene No. Gene description
M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
L25931 LBR Lamin B receptor
M38690 CD9 CD9 antigen
X95735 Zyxin
M31667 CYTOCHROME P450 IA2

We perform experiments on two data sets above, and the proposed hybrid
algorithm shows the effectiveness compared with other methods.

5 Conclusions

Support Vector Machine has not only simple structure, but also better performances,
especially better generalization ability. Meanwhile, GA has advantages in implicit
parallelism, global optimum searching and simple operability. So the proposed hybrid
algorithm based on SVM and GA is equal to select the feature genes, and numerical
results show that good effectiveness of the proposed hybrid algorithm is obtained.

It can be seen from the two experiment results that the classified accuracy of
selected feature gene subset is high, and the genes play an important role in the
disease. And we know co-expressed genes may work in the same biological process.
So hunting the important feature gene has made it possible and generated enormous
interests to systematically derive biological pathways and networks. It is a
challenging and meaningful task to find feature gene and build gene networks.

Acknowledgments. The authors are grateful to the support of the National Natural
Science Foundation of China (60433020), the science-technology development
project of Jilin Province of China (20050705-2), the doctoral funds of the National
Education Ministry of China (20030183060), and “985” project of Jilin University.

References

1. Suykens JAK and Vandewalle J. Least Squares Support Vector Machines Classifiers.
Neural Processing Letters. 9 (1999) 293-300.

2. Jiang JQ, Wu CG, and Liang YC. Multi-Category Classification by Least Squares Support
Vector Regression. Lecture Notes in Computer Science. 3496 (2005) 863-868.

3. Li X, Rao SQ, Wang YD, et al. Gene mining: a novel and powerful ensemble decision
approach to hunting for disease genes using microarray expression profiling. Nucleic Acids
Research. 9 (2004) 2685-2694.

4. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, and Levine AJ. Broad
Patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA . 96 (1999) 6745-
6750.

5. Lv SL, Wang QH, Li X, GU Z. Two feature gene recognition methods based on decision
forest. China Journal of Bioinformatics. 3 (2004) 19-22.

 Selection for Feature Gene Subset in Microarray Expression Profiles 647

6. Liu Q, Yang XT. Microarray Gene Expression Data Analysis Based on Support Vector
Machine. Mini-Micro Systems. 3 (2005) 363-366.

7. Golub T R et al. Molecular Classification of Cancer: Class Discovery and Class Prediction
by Gene Expression Monitoring .Science. 286 (1999) 531-537.

8. Toure A and Basu M. Application of neural network to gene expression data for cancer
classification [C]. International Joint Conference on Neural Networks (IJCNN).1 (2001)
583-587.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 648 – 657, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Filtering Epitope Alignments to Improve Protein
Surface Prediction

Brendan Mumey1, Nathaniel Ohler1, Thomas Angel2, Algirdas Jesaitis2,
and Edward Dratz3

Department of 1 Computer Science, 2 Microbiology, 3 Biochemistry
Montana State University, Bozeman, MT, 59717, USA

mumey@cs.montana.edu

Abstract. In previous work, we developed a new algorithm to computationally
predict the epitope, the antibody binding surface of a protein, based on aligning
individual mimetic probe sequences derived from an experimental process
called antibody imprinting for the protein of interest. A program called
EPIMAP implements this algorithm and produces a list of the top-scoring
alignment(s) of the probe to protein. Typically 50-100 probes sequences will be
known experimentally and must be individually aligned using EPIMAP. The
goal of the work reported in this paper is to select the most mutually compatible
alignments (one for each probe used) in order to improve the accuracy of epi-
tope prediction. We formalize this problem, show that it is NP-complete and
describe an effective branch-and-bound search algorithm that works well in
practice for inputs of interest. We show in our experimental results section that
filtering alignments improves the accuracy the epitope prediction.

1 Introduction

Structural biology has contributed enormously to understanding of biological mecha-
nisms. Examples abound, from the peptide alpha helix and the DNA structure to
enzyme mechanisms, drug design and large macromolecular complexes, such as
potassium channels or the ribosome. Whenever the structure of biological molecules
has been determined the structures have almost invariably illuminated or even revo-
lutionized the understanding of biological mechanisms. Proteins are the building
blocks of biological structures; to understand their function we must learn their
structure [2, 5]. A large fraction of protein structures of interest (50% or more) can-
not be solved by the traditional approaches techniques such as X-ray crystallography
and NMR. Recently, we developed a new algorithm to computationally predict the
epitope, the antibody binding surface of a protein, based on aligning individual mi-
metic probe sequences derived from an experimental process called antibody im-
printing for the protein of interest [1, 9]. Antibody imprinting requires antibodies
against the target protein of interest, which are often available or can be made using
a variety of standard methods [7]. Antibodies can either recognize continuous or
discontinuous epitopes. Discontinuous epitopes provide the most useful structural
information, because they can reveal distant segments of primary sequence that are

 Filtering Epitope Alignments to Improve Protein Surface Prediction 649

in close spatial proximity on the native, folded protein. Evidence to date indicates
that most antibodies recognize discontinuous epitopes on protein surfaces [10]. The
method works by screening the antibody for the target protein against a random pep-
tide library. Such libraries consist of ~109-10 randomly generated short peptides se-
quences (usually 9-12 amino acid residues in length). Peptides that have a high
affinity to the antibody are selected. We refer to these selected peptides as probe
sequences. Typically 50-100 probes are found. Each probe mimics a portion of the
surface of the epitope of the target protein. The computational problem addressed on
our previous work was to align each probe individually to the target protein. These
alignments are performed with a program called EPIMAP. For each probe, EPIMAP
produces a set of the top-scoring alignments (these may include ties or the user may
choose to generate suboptimal alignments). There are other computational methods
to predict protein epitopes but all currently published methods make predictions
based on the protein sequence alone and are limited to predicting linear epitopes (not
discontinuous). See [11] and [3] for a survey of existing methods.

With the background above, the goal of the work presented here is to choose ex-
actly one alignment for each probe so that the selected alignments are maximally
mutually consistent. The advantage of this approach is that it can find the alignments
that best fit together and filter out more spurious alignments that may have scored
well due to chance. We refer to this as the alignment selection problem and formalize
it below. As we show, solving this problem improves our ability to successfully pre-
dict protein epitopes.

We begin with some background on our existing epitope prediction software.
EPIMAP takes as input a particular probe p and target t. It uses a branch-and-bound
algorithm to determine the best alignment of p and t. Because inversions can occur in
the alignment, finding the optimal alignment is itself a NP-complete problem. Align-
ments are scored with simple two part scoring scheme, score(A) = S(A) – G(A), where
S(A) is the substitution score for A and G(A) is the gap penalty cost for A. Substitu-
tion scores are found by looking up score in a substitution matrix M of each aligned
pair of residues between p and t [4]. Gaps are scored using simple gap penalty func-
tion. This gap penalty function usually increases linearly until some maximum gap
cost threshold is reached. Recently, we have also incorporated secondary-structure
prediction into the gap cost function. If the target protein t is predicted to have secon-
dary structure in a particular region (either alpha helices or beta sheets) then the gap
cost function is modified slightly to account for the periodic nature of the 3d structure
of the target residues in that region. When EPIMAP is run on a particular input p and
t, there may be several top scoring alignments. Or, the user may choose to find a
certain number of suboptimal solutions in addition to the overall top-scoring align-
ment(s). This paper considers the problem of selecting exactly one alignment for
each probe in such a way that the resulting set of selected alignments is the most mu-
tually compatible in the following sense: An individual alignment for a probe se-
quence may consist of several segments that have different orientations with respect
to the primary sequence of the target. If alignments for different probes have over-
lapping segments on the target protein, then we score them based on whether the
alignments agree on the alignment direction of the primary sequence. If a number of
probes agree in the location and alignment direction of a region of the target protein,
this is good evidence that that region is part of the true epitope.

650 B. Mumey et al.

Fig. 1. A sample overlapping alignment of two probes LLSKTKVRS and VVTFFEKLW
against the target protein sequence. Note that both probes agree in the alignment directions of
each segment (this can be seen by renumbering one of the probes in reverse order).

An important feature of the probes is that they are symmetric in the sense that if the
order of the amino acids in a probe is reversed it will have the same affinity to the
antibody. Thus we consider probes to have both a forward and backwards orientation,
e.g. if the forwards orientation of a probe is LLSKTKVRS, then the backwards orien-
tation of the same probe is SRVKTKSLL. As is shown above in Fig. 1, in typical
probe-target alignments it is possible to have reversals of part of the probe in align-
ments. This most likely represents an internal ‘twist’ in the protein. This can happen
when two discontinuous loops in the primary sequence of the protein pinch together
to form the antibody epitope and one loop is twisted with respect to the other. Using
both probe orientations, one can compare alignments with arbitrary directions while
maintaining directional consistency within the individual alignments.

Fig. 2. The probe PRVQIL is aligned above another probe PQVRPI. Solid arrows indicate the
forward orientation of a probe and dashed arrows represent the backward orientation. An ori-
ented alignment of the two probes is shown. It should be noted that reverse oriented alignment
would score as well.

A match is said to occur when alignments for two different probes have runs in
the same direction (increasing or decreasing) at the same position on the target pro-
tein. If alignments for several probes align at the same position, some increasing and
some decreasing, then the larger of the sum of increasing matches and the sum of
decreasing matches is used. For instance, if five probes at position i are increasing,
and three probes at position i are decreasing, then the score for position i is five.
This lets us calculate a match score at each position in the target. The match scores
are then summed over all of the target protein positions to give an overall alignment

 98765 1234
 SRVKT LLSK
 12345 9867
 VVTFF WLKE
..PGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLLLKESLLEDFKGYLGCQALSEM..

 P R V Q I L
 1 2 3 4 5 6

I P R V Q P
6 5 4 3 2 1

P Q V R P I
1 2 3 4 5 6

P R V Q I L
1 2 3 4 5 6

 Filtering Epitope Alignments to Improve Protein Surface Prediction 651

compatibility score for how well the selected set of alignments agree with one an-
other. The computational problem that we address is to select a single oriented
alignment for each probe that maximizes the overall alignment compatibility score.
The selected alignments will be the most mutually consistent and in general will
provide a more accurate prediction of the epitope of the protein of interest. In the
next section we formalize the problem and describe a branch-and-bound algorithm to
solve it. Following this, we show that formal problem is NP-complete (in fact, we
can show that it does not admit a polynomial time approximation scheme unless P =
NP). We then describe some initial experimental results and conclude with some
ideas for future work.

2 Formalizing and Solving the Problem

To begin with, we formally define the alignment selection problem that takes as input
a set of possible alignments as generated by the EPIMAP program and as output,
selects a single alignment for each probe such that the selected alignments are opti-
mally mutually compatible.

We use a branch-and-bound search strategy to solve ASEL in practice. The idea is

to prune search branches that provably cannot contain the globally optimal solution.
The central data structures used is a search tree T. Each internal node of T represents
a partial solution where alignments for a subset of the probes have been selected.
This is accomplished as follows: We view T as a rooted tree; the level of a node in T
is simply the depth it is at from the root. Edges are considered to have the same depth
as their originating parent node. We will use edges at level i to indicate which align-
ment is selected for probe i. So there will be |Ai| edges leaving each node at level i.
Thus leaf nodes (nodes at level |P| in T) represent complete solutions where align-
ments have been selected for each probe in P.

To evaluate a search node in the tree, we simply compute the match score of each
target position so far based on the partial selection of alignments. The search algo-
rithm proceeds by expanding unexplored nodes in the tree until a leaf node is reached.
When a leaf node is reached the overall alignment compatibility score of the solution
represented by the leaf is computed and compared with the current best solution. If
the new solution is better, then it is kept.

Alignment Selection Problem (ASEL).
Input: A set of probes P={p1,..,pn} and a set of possible alignments Ap for each
probe p in P to specified target protein t. We assume Ap contains both the for-
wards and backwards representatives of each alignment.
Output: For each probe p, a single selected alignment sp from Ap such that the
overall alignment compatibility score of the selected alignments {sp} is maxi-
mized.

652 B. Mumey et al.

In order to improve the efficiency of the search, we employ a bounding technique
to prune off internal nodes in the tree that cannot possibly lead to a solution that im-
proves upon the current best. Let n be an internal node at level l in T. For any posi-
tion i in the target, the best match score achievable by any leaf node that goes through
n is bounded by n’s current match score plus the number of unassigned probes that
could be aligned to position i. By summing up the match score bounds, we can bound
the total alignment compatibility score that is achievable by any leaf descendent of n.
If this bound is less than score of the current best solution, then n (and its descen-
dents) can be immediately pruned from T.

The order in which nodes are expanded in T is somewhat arbitrary. We have cho-
sen to explore T in a round-robin fashion where each level is considered in turn and
the best unexplored node at the current level is examined and its children are gener-
ated in T. This process continues until either the entire search tree is explored, and
the provably best solution is found, or a pre-specified number of iterations is reached
and search stops at that point and the current best solution is reported.

The worst-case complexity of this algorithm is O(|A1| |A2| … |An| |t|) as, in princi-
pal, every combination of ways to select an alignment for each probe must be consid-
ered. In practice, we are able to bound a significant fraction of this search space and
determine the optimal solution. For larger inputs, we simply let the algorithm run a
pre-set number of iterations and report the best solution found at that point. In the
next section we prove that underlying problem is NP-complete.

Our current implementation of this algorithm is written in Java and is called
EPIFILTER. The current version of the program is serial but we are investigating a
parallel version in order speed up the computation. Searching the through the tree T
can be fairly easily parallelized as each processor can search a different part of T
independently, although there may be some load balancing issues. The only shared
data required is the current best solution found.

3 Computational Complexity

In this section, we prove that the alignment selection problem is NP-complete using a
reduction from the satisfiability problem 3SAT [6]. Briefly, this problem asks
whether it is possible to find a truth assignment for a set of Boolean variables that will
simultaneously satisfy (make true) every given clause. A clause is the logical OR of
any three literals (a literal is either a variable or its negation).

Theorem 1. ASEL is NP-complete

Proof: Let I be a given instance of 3SAT. We will construct an instance I’ of ASEL
such that I is satisfiable if and only if I’ has solution that achieves a specified align-
ment compatibility score. Let V be the set of variables used in I. For each variable,
we will construct a new probe that has two possible alignments (forwards and back-
wards). The target positions of these alignments are determined by the clauses in I.
For each literal that appears in clause, we add forward or backwards portions to the
alignments for the corresponding variables as illustrated in Fig. 3.

 Filtering Epitope Alignments to Improve Protein Surface Prediction 653

Fig. 3. An example of a 3SAT instance being converted into an ASEL instance. Positions 1 and
2 represent the first clause, while 3 and 4 represent the second clause. Note the inverted vari-
ables have opposing directions to their counterparts. The brackets represent the alignment sets
for each of the four probes.

We also include two additional special probes, each with only one alignment in the
forward direction (right), spanning the full length of the protein. The purpose of this is
to provide a forward direction bias to the optimal alignment selection. The forward
direction will be interpreted as ‘true’ for the purposes of constructing a truth assignment
of the variables later. Each clause has three literals so the match score for any target
position depends on the directions of the selected alignments for three probes involved.
For example, in Fig. 3, suppose that the alignments corresponding to W, X, Y , and Z
were chosen. Then positions 1 and 2 (corresponding to the clause (W v Y v Z)) would
each have a match score of 4 (counting the two special probes not shown in the figure).
Thus, the amount that each clause contributes to the total alignment score depends on
the number of forward segments in the selected alignments of its associated variables.

Fig. 4. This table summarizes the possible scores that a given clause can contribute to the over-
all alignment compatibility score. The amount depends on the number forward segments in the
selected alignments for the probes corresponding to the clause’s variables.

The goal of this construction is to be able to determine if all the clauses in I are sat-
isfiable based on optimal alignment score of the ASEL instance being created. At this
point, the satisfied and unsatisfied clauses are still indistinguishable. By definition,
any given clause is satisfied if at least one of its literals is true. So, we produce a sys-
tem of alterations to the ASEL instance such that satisfied clauses will produce a
greater score than the unsatisfied clauses.

654 B. Mumey et al.

Each pair of positions on the protein corresponding to a single clause from I is re-
placed with nine new pairs. The new pairs are slight perturbations to the original pair.
The first three pairs each contain one run segment reversed from the original. The
second three pairs just repeat the first three pairs, while the last three pairs each con-
tain two reversals from the original.

Fig. 5. The original alignment segments created by the clause, and the six new pairs created
through alterations. (Nine new pairs are generated as the three pairs in the '1 Change' category
are used twice.) The two full length arrows represent the two additional alignments mentioned
above.

The resulting collection of pairs will score 60 for any unsatisfied clause and ex-
actly 66 for any satisfied clause.

Fig. 6. The top columns represent the possible new number of forward facing arrows given the
number of changes to the original combination. The bottom columns represent their respective
match scores. (Note the ‘1 Change’ category is multiplied by two since each ‘1 Change’ pair
occurs twice.) The resulting final ASEL scores return 60 if the original clause was not satisfied
and 66 otherwise.

These alignment sets constitute the ASEL instance I’. We claim that I is satisfiable
if and only if there exists an alignment selection for I’ with an overall alignment com-
patibility score of 66N, where N is the number of clauses in I. This follows from the

 Filtering Epitope Alignments to Improve Protein Surface Prediction 655

observation above that each clause contributes a score of 66 only if it is satisfied and
60 otherwise. This completes the reduction and the proof.

4 Experimental Results

To validate our EPIFILTER software, we selected a model system where the structure
of the antibody epitope was previously known. We chose the interleukin protein IL10
and antibody 9D7. The primary amino acid sequence of recombinant human IL-10 is
160 amino acids long. The structure of the antibody-antigen complex of 9D7-IL10
was determined by x-ray crystallography [7] (PDB: 1lk3.pdb). From the x-ray crystal
structure of the antibody (9D7) bound to its antigen (IL-10), the molecular contacts
were determined using CPP4 [10]. The epitope for antibody 9D7 was then mapped
employing the antibody imprinting method. Peptides that mimic the epitope on IL-10
that the antibody 9D7 binds to were selected from a random peptide phage display
library. The amino acid sequences of the selected peptides (probes) were then aligned
onto the primary sequence of the target IL-10 using EPIMAP. The 9D7 epitope on
IL-10 is discontinuous; it is composed of two regions in the primary sequence that are
close together in the folded protein but are not contiguous in the primary amino acid
sequence of IL-10. Antibody 9D7 binds to two regions of IL10 composed of residues
71-83 and 125-137. The peptides that were selected by phage display primarily
mapped to the 125-137 region of IL10. Amino acid residues from the 125-137 region
on IL10 are bound most tightly by antibody 9D7 and probes selected mapped strongly
to this region. By running EPIMAP, a set of potential alignments was found for each
of 28 probe sequences; we chose to include the top three alignments for each probe,
including ties. Due to ties, some probes had a many as 10 possible alignments. These
alignments were then fed into the alignment selection program, EPIFILTER. As is
shown in Fig. 7, EPIFILTER increases the predictability of the underlying epitope by
increasing the alignment frequency in the true epitope region.

5 Conclusions

Antibody imprinting is a useful new way to derive structural information about pro-
teins. The alignment selection problem improves upon our existing methods for epi-
tope prediction based on antibody imprinting. Typically an individual probe may
have several possible high-scoring alignments. By comparing these against the possi-
ble alignments of all the antibody-mimicking probes found, a consensus for what the
true epitope is can be found. We have used a fairly simple model for scoring how
compatible the selected alignments are, based on just counting up the number of
alignments that agree in their orientation at each position in the target protein se-
quence. Other approaches such as considering the substitutability of the aligned
probe sequences might lead to improved solutions but may add to additional computa-
tional expense. Another direction to explore is solving the alignment problem for all
probes simultaneously. This would potentially greatly increase the size of the search
space but could lead to better epitope predictions.

656 B. Mumey et al.

0

5

10

15

20

25

30

35

V E Q V K N A F N K L Q E K G I Y K A M S E F

target position on IL10

al
ig

n
m

en
t f

re
q

u
en

cy

Unfiltered
Filtered

Fig. 7. Results for the protein IL10 to predict the epitope for the antibody 9D7. Residues
KNAFNKLQEKGIY form the main portion of the actual epitope. Alignment frequency is the
frequency that probes are aligned to particular partitions in the target (normalized if a probe has
more than one alignment). The alignments selected by EPIFILTER strengthen and sharpen the
prediction of the epitope. The position-dependent alignment frequencies of these selected
alignments are given as the ‘Filtered’ line above. The alignment frequencies of the original
alignment data set are shown as the ‘Unfiltered’ line.

References

1. Bailey, B., Mumey, B., Hargrave, P., Arendt, A., Ernst, O., Hofmann, K., Callis, P., Bur-
ritt, J., Jesaitis, A., Dratz, E.: Constraints on the Conformation of the Cytoplasmic Face of
Dark-adapted and Light-excited Rhodopsin Inferred from Anti-rhodopsin Antibody Im-
prints. Protein Science, Vol. 12, No. 11. (2003)

2. Baker, D., Sali, A.: Protein structure prediction and structural genomics. Science
294(5540), (2001) 93–96

3. Blythe, M., Flower, D.: Benchmarking B Cell epitope prediction: Underperformance of
existing methods. Protein Science, Vol. 14. (2005) 246-248

4. Bordo, D., Argos, P.: Suggestions for “safe” residue substitutions in site-directed
mutagenesis. J. Mol. Biol., Vol. 217 (1991) 721–729

5. Branden, C., Tooze, C.: Introduction to Protein Structure, Garland Publishing, New York,
NY. (1999)

6. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co. (1979)

7. Jesaitis, A., Gizachew, D., Dratz, E., Siemsen, D., Stone, K., Burritt, J.: Actin surface
structure revealed by antibody imprints: Evaluation of phage-display analysis of anti-actin
antibodies. Protein Science, Vol. 8 (1999) 760–770

 Filtering Epitope Alignments to Improve Protein Surface Prediction 657

8. Josephson, K., Jones, B., Walter, L., DiGiacomo, R., Indelicato, S., Walter, M.: Noncom-
petitive antibody neutralization of IL-10 revealed by protein engineering and x-ray crystal-
lography. Structure, Vol. 10, No. 7 (2002) 981-987

9. Mumey, B., Bailey, B., Kirkpatrick, B., Jesaitis, A., Dratz, E.: Revealing Protein Structure:
A new method for mapping discontinuous antibody epitopes to reveal structural features of
proteins. J. of Computational Biology, Vol. 10 Issue 3-4 (2003) 555-567

10. Padlan, E.: X-ray crystallography of antibodies. Adv. Protein Chem., Vol. 49 (1996)
57–133

11. Roggen, E.: Recent Developments with B-Cell Epitope Identification for Predictive Stud-
ies, Journal of Immunotoxicology, Vol. 3, (2006) 1-13

A Grid Service Based on Suffix Trees for Pattern
Extraction from Mass Spectrometry Proteomics Data

M. Cannataro and P. Veltri

University Magna Græcia of Catanzaro, Italy
{cannataro, veltri}@unicz.it

Abstract. The paper presents a Grid Service allowing to detect and extract the
longest common sub-spectrum among a set of mass spectrometry spectra data.
The system uses a novel pattern extraction algorithm named LCSS (Longest
Common Spectra SubString) that adapts a very popular string matching tech-
nique based on Suffix Trees to spectra data. The basic LCSS algorithm made
available as a Grid Service is used to implement a pattern extraction workflow on
mass spectrometry dataset. First experimental results are presented.

Keywords: Pattern Extraction, Mass Spectrometry, Suffix Tree, Grid Services.

1 Introduction

Mass Spectrometry (MS) is a technique allowing to identify the masses of macromole-
cules in a compound. The mass spectrometer separates gas phase ions according to
their m/z (mass to charge ratio) values [1]. The output of the spectrometer, said spec-
trum, is a (large) sequence of value pairs. Each pair contains a measured intensity,
which depends on the quantity of the detected biomolecule, and a mass to charge ra-
tio (m/z), which depends on the molecular mass of the detected biomolecule. Spectra
are often analyzed through data mining techniques, such as classification (e.g. diseased
vs healthy patients) or clustering (e.g. subclasses of samples corresponding to differ-
ent types of the same disease). Since spectra may be affected by errors and noise,
they are usually preprocessed before conducting any data mining or pattern extraction
analysis.

Classifiers able to classify spectra in the proper classes usually make the classifica-
tion with respect to few peaks (e.g. decision trees). A complementary approach could
require that entire sub-spectrum are repeated among samples of the same class, thus it
could be important to extract from a set of spectra some common pattern (i.e. a common
sub-spectrum) that could be representative of a class. Pattern extraction is a technique
widely used in bioinformatics and especially in protein sequence analysis. String-based
pattern extraction works on strings representing protein sequences and a lot of algo-
rithms have been developed for detecting and extracting common sub-strings or sub-
sequences, such as those based on Suffix Trees [6]. The main reason to use string-based
algorithms for extracting patterns from spectra is their high efficiency and their suitabil-
ity to solve a lot of pattern extraction problems, such as exact string matching, common
substring, common subsequence, longest common substring, longest common subse-
quence, repetitive structures in biological data, etc. [6].

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 658–667, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Grid Service Based on Suffix Trees for Pattern Extraction 659

The paper describes a pattern extraction algorithm allowing to detect and extract the
longest common sub-spectrum among a set of MALDI-TOF spectra [1]. The proposed
algorithm, named LCSS (Longest Common Spectra SubString), adapts a very popular
string matching technique, the Suffix Tree [6], to spectra data. A Grid Service imple-
mentation of the algorithm and a first performance evaluation is also presented.

The rest of the paper is organized as follows. Section 2 introduces MS data. Section 3
summarizes Suffix Trees. Section 4 presents the proposed pattern extraction algorithm,
while Section 5 shows an application of the basic algorithm to extract common patterns
from a multiple-spectra dataset. Section 6 discusses preliminary results, while Section 7
summarizes the paper and describes future work.

2 Mass Spectrometry Data

Mass Spectrometry (MS) is a technique allowing to identify the masses of macromole-
cules in a compound. The mass spectrometer separates gas phase ions according to their
m/z (mass to charge ratio) values [1]. The sample can be inserted directly into the ioniza-
tion source or can be separated into different components which enter the spectrometer
sequentially. Common ionization techniques are Electrospray Ionization (ESI), Surface
Enhanced Laser Desorption/Ionization (SELDI), and Matrix-Assisted Laser Desorp-
tion/Ionization (MALDI), coupled with different kind of mass analyzers such as Time
Of Flight (TOF) or quadrupole ion traps. Mass Spectrometry output can be represented
as a (large) sequence of value pairs (spectrum). Each pair contains a measured intensity,
which depends on the quantity of the detected biomolecule, and a mass to charge ratio
(m/z), which depends on the molecular mass of the detected biomolecule.

Mass spectrometry is emerging as an important tool for biomarker discovery. Body
fluids as well as tissues can be routinely used to generate protein profiles, containing
potential disease markers whether individual proteins or sets of interacting proteins.
Data Mining is commonly used to discover biomarker patterns in spectra data [5], but
a number of technical challenges need to be faced, among which is the extremely high-
dimensionality of mass spectra. A typical mass spectrum has several thousands of at-
tributes that exhibit a high degree of spatial redundancy. The exact number depends on
the type of mass spectrometry instrument that is used, its resolution, and the mass range
it covers.

Spectra preprocessing aims to correct intensity and m/z values in order to reduce
noise, reduce the amount of data, and make spectra comparable [2]. Binning performs
data dimensionality reduction by aggregating measured data into bins: a set of peaks from
a spectrum is substituted with a unique peak (I, m/z), whose intensity I is an aggregate
function of the original intensities (e.g. their sum), and the mass m/z is usually chosen
among the original mass values (e.g. the median value). Peaks alignment corrects errors
on m/z measurements finding a common set of peak locations in a set of spectra, in such a
way that all aligned spectra will have common m/z values for the same biological entities.
Moreover, a small number of individuals are chosen to be included in clinical study,
so pattern extraction has to deal with the problem of high dimensionality small sample
size. Indeed, spectra can yet exhibit hundreds or thousands of peaks after preprocessing,
thus string-based pattern extraction can complement data mining methods.

660 M. Cannataro and P. Veltri

3 Suffix Trees

The main idea of the paper is to apply a string-based pattern matching algorithm, the
Longest Common Substring algorithm based on Suffix Tree [6], to spectra data. Any
string of length m can be represented by its m suffixes, and these suffixes can be stored
in a data structure said Suffix Tree (ST). Given the string ‘mississippi’, ‘miss’ is a prefix,
‘ippi’ is a suffix, and ‘issi’ is a substring. Note that a substring is a prefix of a suffix.

If T = t1, t2, ..., ti, ..., tm is a string, then Ti = ti, ti+1, ..., tm, is the suffix of T that
starts at position i. All suffixes of ‘mississippi’ are showed in Figure 1.

T1 = mississippi = T
T2 = ississippi
T3 = ssissippi
T4 = sissippi
T5 = issippi
T6 = ssippi
T7 = sippi
T8 = ippi
T9 = ppi
T10 = pi
T11 = i
T12 = (empty)

Fig. 1. All suffixes of ‘mississippi’

Creating the ST requires time O(m) and searching for a pattern P in it requires
time O(n), where n is the length of the pattern. An important aspect is the possibility
to decouple the creation of the ST from the search of the pattern. These properties
make the suffix tree an interesting data structure for implementing many string-based
applications, e.g. multiple genome alignment in bioinformatics. The first linear-time
suffix tree algorithm was developed by Weiner in 1973, after McCreight realized a
more space efficient algorithm in 1976, and Ukkonen produced an "on-line" variant of
it in 1995 [6]. The key to search fast in a suffix tree is that there is a path from the root
for each suffix of the text. This means that at most n comparisons are needed to find a
pattern of length n.

If the non-empty suffixes are sorted it is evident that some of them (may) share
common prefixes. Two or more common prefixes share a common path from the root
of the suffix tree. Now, a search of the (sub)string P must be a prefix of a suffix of T , if
it occurs in T . The suffix tree for ‘mississippi’ is showed in Figure 2.

When there is more than one string to be searched a Generalized Suffix Tree (GST)
can be created [6]. As the GST contains more than one string, each leaf node contains
an identifier indicating the string associated with this suffix, and a second identifier indi-
cating the position of the suffix. The Longest Common Substring (LCS) of two strings,
T1 and T2, can be found by building a generalized suffix tree for T1 and T2: each node
is marked to indicate if it represents a suffix of T1 or T2 or both. The deepest node
marked for both T1 and T2 represents the longest common substring. Equivalently, one

A Grid Service Based on Suffix Trees for Pattern Extraction 661

tree-->|---mississippi
|
|---i-->|---ssi-->|---ssippi
| | |
| | |---ppi
| |
| |---ppi
|
|---s-->|---si-->|---ssippi
| | |
| | |---ppi
| |
| |---i-->|---ssippi
| |
| |---ppi
|
|---p-->|---pi

|
|---i

Fig. 2. The Suffix Tree for ‘mississippi’

can build a (basic) suffix tree for the string T1$T2#, where ‘$’ is a special terminator
for T1 and ‘#’ is a special terminator for T2. The longest common substring is indicated
by the deepest fork node that has both ‘...$...’ and ‘...#...’. Note that the ‘longest com-
mon substring problem’ is different from the ‘longest common subsequence problem’:
an instance of a subsequence can have gaps where it appears in T1 and in T2, but an
instance of a substring cannot have gaps. The algorithm for two strings can easily be
extended to more strings.

4 The Longest Common Spectra Substring Algorithm

Since spectra data are couples of real numbers, (intensity, m/z), a first problem is
to transform spectra in strings so that suffix trees and generalized suffix trees can be
computed. The simple approach proposed here is to sample intensity values mapping
them onto discrete values each one corresponding to a letter of an alphabet. Let be A
an alphabet of N symbols, and maxIntensity and minIntensity the maximum and
minimum intensity values, the intensity domain can be partitioned into N quantization
intervals [minIntensity + (i ∗K), minIntensity + ((i + 1) ∗K)], i = 0, ..., N − 1,
where K = (maxIntensity − minIntensity)/N is the quantization level. Thus, a
peak of intensity I it can be associated to the symbol Aj , if I belongs to the jth quan-
tization interval. The proposed Longest Common Spectra Substring (LCSS) algorithm
finds the longest common sub-spectrum in a set of mass spectra. Its pseudo-code is
showed in Figure 3.

The current version of the algorithm compares two spectra S1 and S2. After the
two spectra are converted into strings T1 and T2, the proposed algorithm builds the

662 M. Cannataro and P. Veltri

LCSS(N: integer; S1, S2: spectrum; l, i, j: integer)
Input: N; //size of the alphabet, e.g. 64, 128, 256

S1, S2; //input spectra
Output: l; //length of the common sub-spectrum

i, //position of the common sub-spectrum in S1
j; //position of the common sub-spectrum in S2

{
T1 = spectrum2string(N,S1); //convert S1 intensities
T2 = spectrum2string(N,S2); //convert S2 intensities
GST = GenSuffixTree(T1, T2); //build the GST
LCS (l, i, j); //find the longest common substring in GST;
}

Fig. 3. The Longest Common Spectra Substring algorithm

Generalized Suffix Tree (GST) and then the Longest Common Substring (LCS) is com-
puted by finding the deepest node marked for both T1 and T2. Since the algorithm
provides the position of the LCS in T1 and T2, namely i and j, it is possible to extract
the corresponding sub-spectrum from each spectrum S1 and S2 simply selecting the
peaks (intensity, m/z) starting respectively at positions i and j. The two sub-spectrum
can be compared to find how the quantization error impacts on the length of discovered
sub-spectrum. Moreover, since the position of the sub-spectrum in both spectra deals
with masses of molecules, the significance of the discovered common pattern can be
evaluated with respect to the positions i and j. Very close positions mean that the com-
mon pattern refers to common masses, whereas very different positions may have few
of significance.

5 Extracting Patterns from Mass Spectrometry Proteomics Data

To effectively compare spectra, they must be aligned, i.e. the same molecular compo-
nent needs to have the same mass on each sample. Moreover, peaks intensities need
to be normalized with respect to all dataset. Thus, before intensities can be quantified,
spectra must be preprocessed. The work [2] surveys some recent spectra preprocessing
algorithms including spectra normalization, binning, and alignment.

To compare multiple spectra the basic LCSS algorithm must be extended to face
multiple strings. This can be obtained by building first the Generalized Suffix Tree of all
the strings (or equivalently by building the basic Suffix Tree of the concatenation of all
strings separated by proper delimiters), and by finding the Longest Common Substring
that is computed by finding the deepest node marked for all the strings. The set of
common sub-spectra found by the following procedure represents a common pattern in
the dataset S that can be used as representative of spectra belonging to different classes,
e.g. healthy and diseased patients.

The steps to extract the first longest common patterns from a spectra dataset S =
S1, ..., SN are the following:

1. Normalize spectra S1, ..., SN ;
2. Reduce spectra dimension by applying a binning algorithm;

A Grid Service Based on Suffix Trees for Pattern Extraction 663

3. Align peaks;
4. Convert spectra S1, ..., SN obtaining strings T1, ..., TN ;
5. Set the Longest Common Spectra Substring as LCSS = ∅;
6. Extract NextLCSS = [L, (start1, end1), ..., (startN , endN)] from T1, ..., TN ;

– L is the sub-spectrum length expressed as number of peaks,
– (start1, end1), ..., (startN , endN) are, respectively, the starting and ending

positions of the common sub-spectrum in S1, ..., SN ,
– minStart and maxStart are the minimum and maximum starting positions of

the common sub-spectrum in S1, ..., SN (note that minEnd = minStart+L
and maxEnd = maxStart + L);

7. IF NextLCSS = ∅ THEN RETURN LCSS;
8. IF (maxStart −minStart < shiftThreshold) AND (L > lengthThreshold)

THEN LCSS = LCSS ∪NextLCSS
ELSE discard NextLCSS;

– shiftThreshold and lengthThreshold allow to reject a common sub-
spectrum that presents a large shift inside spectra or that is very short;

9. Mark peaks belonging to the interval [minStart, maxEnd] so that they are not
considered in the search of the next sub-spectrum;

10. GOTO step 6.

The LCSS algorithm has been implemented as a service of MS-Analyzer [3], a soft-
ware platform for the preprocessing, management and analysis of spectra data. It has
been implemented and deployed on a Grid using the Globus middleware [4].

6 Performance Evaluation

A first performance evaluation considered the behavior of the core algorithm when
finding the longest common sub-spectrum on a real spectra dataset. Notice that only
the first common sub-spectrum is considered. In such study we measured, respectively,
the LCSS execution time, the length and the positions of the discovered LCSS, and the
difference (error) between the sub-spectrum evaluated on the first and the second input
spectra, after recovering real intensity values. Such measurement were taken varying
the quantization parameter N (i.e. the alphabet size).

The second study evaluated the performance of the LCSS Grid Service deployed on
a small Grid composed by three computers. Execution times and spectra transfer times
were measured considering one Grid Service invoked respectively, by 1, 3 and 6 clients
installed on such a Grid.

6.1 The Proteomic Spectra Dataset

The input dataset is obtained by two set of experiments. In the first experiment, a biolog-
ical human serum has been processed by a MALDI-TOF mass spectrometer obtaining
the A1 spectrum. Such processing has been repeated four times obtaining the spectra
A2, A3, A4, and A5. Although they are replicas of the same sample, their values are not
exact replicas of the A1 values, due to noise and instrument perturbation. In the second

664 M. Cannataro and P. Veltri

experiment, the same serum of the first experiment has been mixed with two known pro-
teins and, using the same approach, the spectrum B1 and replicas B2, B3, B4, and B5,
have been obtained. The adding of two proteins to the original serum produces some
perturbation on the spectrum, yet maintaining some common sub-spectrum. Spectra A1

and B1 are showed in Figure 4, where the discovered LCSS is indicated by a circle.
Each spectrum contains 34671 peaks and the masses range between 3999.749927 and
20000.324102 Dalton. In the same set of replicas, intensities for the same peaks can
vary considerably, for instance the minimum and maximum intensities are respectively
(3.63926, 5186.37) and (10.5301, 8024.88) for the spectra A5 and A2.

(a) A1 spectrum (b) B1 spectrum

Fig. 4. Spectra A1 and B1 used in the experiments

6.2 Pattern Extraction Evaluation

Table 1 reports for the spectra A1 and B1, the LCSS length L, its initial position in A1

and B1, namely i and j, the shift |i − j|, and the 2-norm average relative error, when
varying N . The 2-norm average relative (2AR) error is defined as:

2AR =

√√√√ 1
L

∑
i=1,L

(
|yi − y′

i|
yi

)2

where Y = [y1, ..., yL] and Y ′ = [y′
1, ..., y

′
L] are the intensity values of the common

sub-spectrum starting, respectively, at position i and j on A1 and B1.
Similar results are obtained when searching the LCSS on the remaining spectra.
Figures 5(a) and 5(b) show, respectively, the LCSS excution time and the 2-norm

average relative (2AR) error when varying N. Execution time decreases when the quan-
tization level increases. In fact, for lower values of N the alphabet comprises a small set
of characters so the strings obtained by the source spectra contain many similar charac-
ters. This increases the time requested to find the LCSS on the GST. Instead, an higher
value of N , i.e. a richer alphabet, simplifies the search of the LCSS on the GST since
there are less identical characters.

A Grid Service Based on Suffix Trees for Pattern Extraction 665

Table 1. Characteristics of LCSS varying N

N L i j |i − j| 2AR
64 4236 17992 17989 3 11.94096
96 1616 20060 19584 476 11.85594

128 495 22715 21936 779 11.423612
160 121 18762 18008 754 10.11193
192 30 20063 20060 3 0.11746

(a) LCSS execution times (b) -norm average relative (2AR) error

Fig. 5. Performance of the LCSS Grid Service

On the other hand, a low N introduces great approximation and quantization error,
so it happens that for low values of N the length of the LCSS increases (due to a worse
quantization), the positions i and j of the sub-spectrum in the input spectra tend to be
greatly unaligned and finally, the difference (error) between the sub-spectrum computed
on the two spectra increases. On the contrary, large N increases precision (i.e. i and j
alignment), reduces errors, but discover shorten sub-spectra.

Figure 6 shows the details of the LCSS discovered respectively in A1 and B1 for
N = 192. It is possible to see a very high similarity between the sub-spectrum on each
input spectra.

6.3 Grid Service Evaluation

The Grid Service implementing the LCSS algorithm receives a request containing the
two input spectra from one or more clients, then finds and sends back the discovered
LCSS (length and starting positions in input spectra). The client loads two spectra from
the file system (e.g. A1 and B1), sends them to the Grid Service, and receives the dis-
covered LCSS (see Figure 7). We conducted a set of experiments varying the number
of clients that contemporarily send search requests to just one LCSS Grid Service. The
number of clients C was respectively 1, 3, and 6.

Table 2 shows, respectively, the average times needed to send the spectra to the Grid
Service (Ts), to execute the LCSS algorithm (Te), to receive the results (i.e. length
and position of the discovered LCSS) on the client (Tr), and the overall response time
(T). It is possible to note that although the number of clients increases from 1 to 6,
the overall response time per search increases only slightly: this is due to the parallel
multi-threaded implementation of the LCSS Grid Service.

666 M. Cannataro and P. Veltri

(a) Sub-spectrum identified on A1 (b) Sub-spectrum identified on B1

Fig. 6. Details of the identified sub-spectrum on A1 and B1

Fig. 7. LCSS Grid Service and Client

Table 2. Execution time for the LCSS Grid Service

C Ts Te Tr T
1 0.1405 588.745 0.0131 588.8975
3 0.1825 669.627 0.02295 669.837
6 0.2695 803.654 0.025 803.9485

7 Conclusions and Future Work

The paper presented a Grid Service for the detection and extraction of the longest com-
mon sub-spectrum among a set of spectra. The main contribution of the proposed sys-
tem is the combination of a very popular string matching technique based on Suffix
Trees with functions for the preprocessing and management of mass spectrometry data.
The first performance results are encouraging so future work will regard the extension
of the algorithm to face more than two spectra and to allow the contemporary detection

A Grid Service Based on Suffix Trees for Pattern Extraction 667

of more sub-spectra. Since spectra data are huge, another research direction will regard
the parallel implementation of the Grid Service, for instance executing the conversion
of spectra to strings in parallel.

Acknowledgments

Authors are grateful to Walter Morelli and Umberto Mellace for their work on the im-
plementation of the LCSS algorithm and Grid Service. A special thank to Marco Gas-
pari and Giovanni Cuda for providing the spectra dataset.

References

1. R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature, 422:198–207, 13
March 2003.

2. M. Cannataro, P. Guzzi, T. Mazza, G. Tradigo, and P. Veltri. Preprocessing of mass spectrom-
etry proteomics data on the grid. In IEEE Press, editor, CBMS’05, pages 549–554, 2005.

3. M. Cannataro, P. Guzzi, T. Mazza, G. Tradigo, and P. Veltri. Using ontologies for preprocess-
ing and mining spectra data on the grid. Future Generation Comp. Syst., 23(1):55–60, 2007.

4. Alliance Globus. The globus project. - http://www.globus.org/.
5. V. Gopalakrishnan, E. William, S. Ranganathan, R. Bowser, M. E. Cudkowic, M. Novelli,

W. Lattazi, A. Gambotto, and B. W. Day. Proteomic data mining challenges in identification
of disease-specific biomarkers from variable resolution mass spectra. In Proceedings of SIAM
Bioinformatics Workshop 2004, pages 1–10, Lake Buena Vista, FL, April 2004.

6. Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge Univ Press, 1997.

Performance Evaluation of BLAST on SMP
Machines

Hong-Soog Kim1,2, Hae-Jin Kim1, and Dong-Soo Han1,�

1 School of Engineering,
Information and Communications University,

119 Munjiro, Yuseong-Gu, Daejeon 305-600, Korea
{kimkk, hjkim, dshan}@icu.ac.kr

2 Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yusong-Gu, Daejeon 305-350, Korea

kimkk@etri.re.kr

Abstract. BLAST is a tool for finding biologically similar sequences to
given query sequences in annotated sequence database. Since the number
of sequences in the database increases at exponential rate, and the num-
ber of users drastically increases, the performance of BLAST is a primary
concern to service sites like NCBI. NCBI developed a parallel BLAST
for the speedup of BLAST using threads on SMP machines. But the
speedup is still limited due to the architectural limitations of SMP ma-
chines. Distributed memory multiprocessor can be an alternative choice
for cost-effective search in very large scale sequence data. However for an
optimized configuration of Cluster systems and SMP machines, the per-
formance study of BLAST on SMP machines is essential. In this paper,
we analyze BLAST and BLAST algorithms to enhance the performance
of BLAST on parallel machines and report the performance of BLAST on
SMP machines. Some important runtime characteristics of BLAST are
identified through the performance evaluation. According to our perfor-
mance test, PC clusters or clusters of low-way SMP machines outperform
high-way SMP machines in terms of cost-effectiveness. Besides, BLAST
on Linux operating system shows better performance than BLAST on
Solaris operating system in the same configurations.

1 Introduction

Many molecular biologists who are engaged in large scale genetic sequencing
projects produce and announce ever-increasing amount of sequence data. As a
consequence, GenBank, the primary repository for DAN sequence data, contin-
ues to grow at an exponential rate. It is known that GenBank contains roughly
15,849,921,438 nucleotides in 14,976,310 sequences as of 2001 [1]. Historically,
GenBank has doubled its size in about 18 months, but that rate has accelerated
to be doubled in every 15 months due to the enormous growth in data from
expressed sequence tags (ESTs).

� Correspondence author.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 668–676, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Evaluation of BLAST on SMP Machines 669

Keeping pace with the ever increasing data is difficult task for biologists.
The more sequence data biologists gather, the more useful sequence similarity
algorithm is. But the more time it takes to search and compare sequences in
the database. BLAST is one of the most popular sequence similarity algorithms
in use today. Its running time is proportional to the size of the database and
thus sequence similarity analysis using BLAST is becoming a bottleneck [2].
This indicates that huge sequence database can result in more serious problem.
For example, if the size of database exceeds the size of physical memory of the
system, BLAST program invoke frequent page faults while it scans the database.

Since the number of sequences in the database increases at exponential rate,
and the number of users drastically increases, the performance of BLAST is a
primary concern to service sites. Speedup of BLAST program can be achieved
in three aspects: algorithmic enhancement, adoption of fast processor with more
memory, and use of multi-processors.

Since its first release, BLAST has undergone various algorithmic enhance-
ments in terms of speed and biological sensitivity. So, the current version of
BLAST is approximately 10 times faster than the other conventional dynamic
programming based similarity search algorithms. It is a heuristic algorithm that
approximates the dynamic programming algorithm while its loss of sensitivity
is negligible since it has rigid statistical background for determining the signifi-
cance of search result. Therefore, algorithmic enhancement for speedup is out of
our research scope.

In order to speedup BLAST, we can use faster processor. According to Moore’s
law, the processor speed doubles in roughly every 1.5 year. However, the size of
sequence database doubles in every 1.3 year. Since the complexity of BLAST
algorithm is proportional to the size of database and the database size increases
faster than the processor speed, this approach cannot address such an inherent
limitation.

Multiprocessor can give scalable speedup for existing application program if
an appropriate parallelization technique is developed. Albeit the current version
of BLAST is parallelized using thread facility to exploit symmetric multiproces-
sor (SMP) machine, it gives limited speedup on SMP system. Since the speedup
of BLAST on SMP machine is not sufficiently scalable due to architectural limi-
tations of SMP machine, we consider distributed-memory multiprocessor system
like PC clusters or low cost SMP machines as an alternative multiprocessor type.
However for the judicious decision on the combination of Cluster systems and
SMP machines, the performance of BLAST on SMP machines must be analyzed
in a comprehensive way.

In this paper, we analyze BLAST and BLAST algorithms to enhance the
performance of BLAST on parallel machines and report the performance of
BLAST on SMP machines. Some important run time characteristics of BLAST
are identified through the performance evaluation. According to our performance
test, PC clusters or clusters of low-way SMP machines outperformed high-way
SMP machines in terms of cost-effectiveness. In the comparison of Linux and

670 H.-S. Kim, H.-J. Kim, and D.-S. Han

Solaris operating systems, BLAST on Linux operating system showed better
performance than BLAST on Solaris operating system.

Section 2 describes preliminary information on BLAST and Section 3 explains
BLAST algorithm in detail. The BLAST performance results on SMP machines
are in Section 4. We draw conclusion in Section 5.

2 BLAST Programs

BLAST (Basic Local Alignment Search Tool) [3,4,5] is one of the most widely
used similarity search tools available to today’s computational biologist. It rapidly
identifies statistically significant matches between newly sequenced segments of
genetic material or proteins and databases 1 of known nucleotide or amino acid
sequences. Similarity search allows the scientist to make inferences about the
structure and function of their discoveries or to screen new sequences for further
investigation using more sensitive and computationally expensive methods. As
the name implies, the search strategy is based on finding subsequences of query
and subject sequences that have a large number of exact matches.

BLAST has undergone nearly continuous development since its initial release
in 1990. A major effort has been expanded in the creation of multiple user inter-
faces, including a Web site that handles sequences submitted by members of the
worldwide bioinformatics community for BLAST searches against the extensive
set of databases maintained by National Center for Biotechnology Information
(NCBI). The numerical methods implemented in BLAST software have also
been refined and extended since 1990. Algorithmic development now proceeds
at two sites: NCBI and Washington University. They distribute different ver-
sions of BLAST program suit (NCBI BLAST and WU-BLAST). Both sites have
recently produced new versions of BLAST that are able to handle gaped align-
ments. This extension promises to continue important role of BLAST in genomic
research for the time being. In this paper, we consider NCBI BLAST only and
BLAST means NCBI BLAST here and after.

All versions of BLAST from version 1.4 on have provisions for running in
parallel on (distributed) shared-memory multiprocessors. BLAST parallelization
is quite straightforward. The work of comparing a particular query to all entries
in a database falls naturally into subtasks consisting of assessment of a pair of
a query sequence and a subject sequence. BLAST initializes respective subtasks
of subject sequences that are processed by individual threads and then reassigns
a subtask whenever each thread completes its workload. Hence the workload
scheduling is dynamic.

1 It should be clarify that term database refers simply to a usually large set of cata-
loged sequences. It does not imply any extra capabilities of fast access, data sharing,
and so on, commonly found in standard database management systems. Therefore,
database is merely a collection of sequences, although sequence information is co-
piously complemented with additional information such as the origin of the data,
bibliographic references, sequence function (if known), and others.

Performance Evaluation of BLAST on SMP Machines 671

Version 1.4 of BLAST uses a variety of vendor-specific constructs to implement
parallelism. In the IRIX case, the parallel threads are created using sprocs. For
the 2.0 version, NCBI has converted all Unix OS-based ports to the use of
POSIX thread [6]. Regardless of the mechanism used to implement parallelism
in BLAST, the use of multiprocessors is often quite effective in reducing the
response time of BLAST run.

3 BLAST Algorithm

In this section, the overall structure of BLAST and detailed similarity assessment
algorithm used in BLAST are explained. From the overall structure of BLAST
programs, we identify the point where we can extend parallelized BLAST from
SMP system to cluster system. From the detailed similarity assessment algorithm
used in BLAST, we pinpoint the portion that is inevitably sequential and the
portion that is potentially parallelizable in the algorithm.

3.1 Overall Structure of blastall Program

The blastall, the driver program for BLAST programs, behaves single interface
permitting access to all five types of BLAST programs. It allows a user to specify
a query sequence file and a database against which query sequences in the query
sequence file is compared.

For the purpose of running the algorithm and computing overall statistics,
blastall treats multiple databases as if they were aggregated into a single large
virtual database that is mapped to the available virtual memory space on the
machine performing the similarity search. Each query sequence in the query
sequence file is searched against the entire subject sequences in the virtual
database. Once the search is over similarity search is repeated for the next query
sequence in the query sequence file. This is repeated until all the sequences in the
file is processed. The computational cost of applying BLAST algorithm to a pair
of sequences is proportional to the lengths of the sequences. However the rate of
proportionality may vary for different databases and query sequences with re-
spect to their contents. The pairwise comparison process has been made very ef-
ficiently through the use of a binary encoding of the sequences that substantially
reduces memory requirements and an efficient implementation is made on finite
automata. In order to extend the pairwise comparison to a complete search of
one query sequence s against a number of databases D1, D2, D3, . . . , Dn, blastall
uses an iteration as in Figure 1.

From parallel algorithmic paradigms’ point of view, the NCBI-BLAST can be
considered as phase parallel, process farm and work pool model [7]. The query
sequences in a query file are iterated with synchronization. It corresponds to
phase parallel (synchronous iteration paradigm). A master thread executes the
essentially sequential part of the parallel program and creates a number of slave
threads to execute parallel workload. It is corresponds to process farm (master-
slave paradigm). A pool of work (subject sequences in sequence database) is

672 H.-S. Kim, H.-J. Kim, and D.-S. Han

master thread

parse command line options and

set the query file, database files, BLAST program, etc.;

for each query sequence s in query file do {
build neighborhood word list and its DFA for s;
create or activate threads to run on different processors;

synchronize the threads;

initialize task into chunks of 500 subject sequences;

while (chunk remained) do {
allocate a chunk on demand to a thread;

}
join threads;

sort hits in global hit list;

and make data structure for alignments;

report similarity search results for query sequence s
}

slave thread

request for next chunk of database sequences to master thread;

while (chunk allocated) do {
for given query sequence s and each subject sequence

in the subject sequences in the chunk do {
search hits and extend hits;

reap hit list by E value;

get lock for global hit list;

merge thread local hit list into global hit list;

release lock for global hit list;

}
request for next chunk of database sequences to master thread;

}
return;

Fig. 1. Overview of blastall program

realized in a global data structure. Any free thread that fetches a piece of work
(chunk) from the pool does similarity search and saves results into global search
result. This corresponds to work pool model.

4 Performance Evaluation of BLAST on SMP Machines

In this section, we evaluate the performance of BLAST (especially for blastx) in
order to inspect its behavior when the number of processes (threads) is increased
with various size of query sequence.

4.1 Testing Environment

The hardware and software specification of the test platform, BLAST database,
and query sequence are given in Table 1.

Performance Evaluation of BLAST on SMP Machines 673

Table 1. Specification of SMP machine

Processors 8-way Intel Xeon Pentium III 700MHz with 1024KB L2 cache
Memory 2048 KB

O.S Linux (kernel version 2.4.18)
Sun Solaris 8

BLAST Version 2.2.1 blastx
BLAST DB nr (929,420 sequences; 291,584,220 total letters)

Query sequence GI 20544475 Homo sapiens adenylate cyclase 2 (brain)
(ADCY2)
(total length: 6,551 letters)

In order to make variations on the length of query sequence, we generate query
sequences of length from 100bp to 1200bp by truncating original sequence (GI:
20544475). In early state of testing, we experimented BLAST on Linux operating
system. In that evaluation, we found that speedup stopped around four or five
processors. In order to make sure whether this is the case for other operating
systems, we conducted the same evaluation on Solaris 8 operating system.

4.2 Performance Evaluation Results

Figure 2 shows the execution time of blastx on an 8-way SMP machine with Linux
operating system. The Y-axis specifies execution time in log-scale with base 2.
For small size query sequences, the execution time reaches minimal at four or
five processors while the execution time continuously decreases for longer query
sequences. Figure 3 depicts the speedup in normal scale, which is calculated from
Figure 2. From Figure 3, we can figure out the effective number of processors for
a given query sequence size. From the experimental results, we can conclude that
parallelized BLAST, which is distributed by NCBI, is more effective for longer
query sequences. Because the experiment on Linux operating system showed that
execution time for small size query sequences decreased only for certain number of

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Num. of threads

100 bp
200 bp
300 bp
400 bp
500 bp
600 bp
700 bp
800 bp
900 bp

1000 bp
1100 bp
1200 bp

Fig. 2. Execution time on Linux operating system

674 H.-S. Kim, H.-J. Kim, and D.-S. Han

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8

S
pe

ed
up

Num. of threads

100 bp
200 bp
300 bp
400 bp
500 bp
600 bp
700 bp
800 bp
900 bp
100 bp

1100 bp
1200 bp

Fig. 3. Speedup on Linux operating system

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Nnum. of threads

100 bp
200 bp
300 bp
400 bp
500 bp
600 bp
700 bp
800 bp
900 bp

1000 bp
1100 bp
1200 bp

Fig. 4. Execution time on Solaris operating system

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6 7 8

S
pe

ed
up

Num. of threads

100 bp
200 bp
300 bp
400 bp
500 bp
600 bp
700 bp
800 bp
900 bp
100 bp

1100 bp
1200 bp

Fig. 5. Speedup on Solaris operating system

processors, we tested BLAST performance on different operating system, Solaris
8, which is known for its elaborate tuning for thread facility.

Figure 4 and Figure 5 shows the execution time (in log scale with base 2) and
the speedup (in normal scale) on an 8-way SMP system with Solaris 8 operating

Performance Evaluation of BLAST on SMP Machines 675

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8

E
ffi

ci
en

cy

Num. of threads

100 bp
200 bp
300 bp
400 bp
500 bp
600 bp
700 bp
800 bp
900 bp
100 bp

1100 bp
1200 bp

Fig. 6. Efficiency of Linux operating system

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8

E
ffi

ci
en

cy

Num. of threads

100 bp
200 bp
300 bp
400 bp
500 bp
600 bp
700 bp
800 bp
900 bp
100 bp

1100 bp
1200 bp

Fig. 7. Efficiency of Solaris operating system

system. Figure 6 and Figure 7 show the efficiencies of Linux and Solaris operating
systems respectively. As depicted in the Figures, it is revealed that NCBI BLAST
on Solaris operating system is more scalable as the number of processors increases
in contrast to the experimental results on Linux operating system.

In most range of query sequence size and DOP (Degree of Parallelism), The
performance of BLAST on Linux operating system outperforms the performance
of BLAST on Solaris operating system. These results cannot be explained only
by the thread facility of the given operating system because the two operating
systems are different in many aspects such as file management, process manage-
ment, memory management, etc. Since we aim to parallelize BLAST on cluster
of PCs or small-sized SMPs eventually, the results give us a hint on the decision
of operating systems for cluster systems.

5 Discussion and Conclusion

In this paper, the overall structure of BLAST algorithm, and the parallelizable
portion and unparallelizable portion of BLAST algorithm are studied. For the
preliminary experiment, we have evaluated BLAST on SMP machines and found

676 H.-S. Kim, H.-J. Kim, and D.-S. Han

some important run-time characteristics. Experimental results give us a hint on
the choice of operating system and cost-effective type of computation node in
cluster systems.

First, parallel processing is more effective only when the size of query se-
quence is longer than a certain size. For short sequences, it is worse to use more
processors in terms of execution time since the benefits from parallel processing
are less than the overhead of parallel processing. Second, in the same hardware
configuration, it is revealed that the Linux operating system is superior to the
Solaris operating system especially for small-sized SMP machines. The perfor-
mance comparison between two operating systems indicates that the cluster of
PCs or small-size SMPs (2-way or 4-way SMPs) is more cost-effective.

For the parallelization of BLAST on cluster systems, which has fundamentally
different architecture from SMP machines, we need to develop upper level of
parallelization on the existing parallelized BLAST on SMP system. In the future
we are planning to devise a parallelization scheme of NCBI BLAST on cluster
systems.

References

1. NCBI: Growth of GenBank. Technical report, National Center for Biotechnology
Information (March 12, 2002)

2. Chi, E.H., Shoop, E., Carlis, J., Retzel, E., Ried, J.: Efficiency of shared-memory
multiporceossors for a genetic sequence similiarity search algorithm. Technical re-
port, Computer Science Dept., University of Minnesota (1997)

3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local Align-
ment Search Tool. Journal of Molecular Biology 215 (1990) 403–410

4. Altschul, S., Gish, W.: Local alignment statistics. Methods in Enzymology 266
(1996) 460–480

5. Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman,
D.: Gapped BLAST and PSI–BLAST: A new generation of protein katabase search
programs. Nucleic Acids Research 25 (1997) 3389–3402

6. Camp, N., Cofer, H., Gomperts, R.: High-Throughput BLAST. Technical report,
Silicon Graphics, Inc. (1998)

7. Hwang, K., Xu, Z.: Chapter 12 Parallel Paradignms and Programming Model. In:
Scalable Parallel Computing. McGraw-Hill Companies, Inc. (1998)

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 677 – 686, 2006.
© Springer-Verlag Berlin Heidelberg 2006

compPknots: A Framework for Parallel Prediction and
Comparison of RNA Secondary Structures with

Pseudoknots

Trilce Estrada, Abel Licon, and Michela Taufer

Computer Science Department, University of Texas At El Paso,
El Paso, TX 79968

{tpestrada, alicon2, mtaufer}@utep.edu

Abstract. Codes for RNA secondary structure prediction based on energy
minimization are usually time and resource intensive. For this reason several
codes have been simplified: in some cases they do not predict complex struc-
tures like pseudoknots, other times they predict structures with reduced lengths,
or with simple pseudoknots. Each of these codes has its strengths and weak-
nesses. Providing scientists with tools that combine the strengths of the several
codes is a worthwhile objective. To address this need, we present compPknots,
a parallel framework that uses a combination of existing codes like Pknots-RE
and Pknots-RG, to predict RNA secondary structures concurrently and auto-
matically compare them with reference structures from databases or literature.
In this paper compPknots is used to compare the predictions of 217 RNA struc-
tures from the PseudoBase database. Its parallel master-slave architecture pro-
vide scientists with higher prediction accuracies in shorter time.

1 Introduction

Nucleic Acid chains called RiboNucleic Acids (RNA) play critical roles in several
processes in living organisms. In cellular protein synthesis, genetic information is
expressed through RNA chains. In some viruses, RNA chains are carriers of genetic
codes. RNA molecules are composed of 4 types of nucleotides or bases: adenine (A),
cytosine (C), guanine (G) and uracil (U) that fold back on themselves thus pairing
with each other. So for example C-G and A-U form stable base pairs with each other
through the creation of hydrogen bonds between donor and acceptor sites on the
bases. The secondary structure of an RNA molecule is the collection of base pairs.
Since the experimental identification of RNA secondary structures is time demanding,
in the past decades a significant effort has been made to build RNA structure predic-
tions from sequence data using computational methods. A first approach consists of
the computation of common foldings for a family of aligned, homologous RNAs.
Usually, the alignment and secondary structure inference must be performed simulta-
neously, or at least iteratively and therefore methods that employ this approach for
their predictions are not easy to automate and require significant human intervention.
A second approach targets the structure prediction of single sequences based on the
minimization of the free energy of a folding [1]. With the significantly increasing
computing power, today’s methods that employ this approach can be easily automated

678 T. Estrada, A. Licon, and M. Taufer

and therefore are attractive methods to perform these predictions. Several motifs can
be commonly found in RNA secondary structures: stem-loops (i.e., helix, hairpin
loop, interior loop, buldge loop, multi loop) and pseudoknots.

Among the several motifs in an RNA molecule, the prediction of pseudoknots is
particularly demanding in terms of data and computational power required for codes
based on energy minimization methods. Therefore several codes that use the minimi-
zation of the RNA free energy of a folding often do not include pseudoknot predic-
tions [2]. Because pseudoknots have been observed in several RNA molecules [3]
omitting them from predictions can significantly affect the prediction accuracy. To
reduce computation time and data storage, several codes that include pseudoknots
have been implemented with significant simplifications: the Rivas and Eddy code
(Pknots-RE) [4] can predict the secondary structure of very short RNA segments (of
the order of hundreds of nucleotides) while RNA molecules are normally compounds
of thousands of nucleotides; Reeder and Giegerich [5] have significantly reduced the
complexity of the pseudoknots that their code, Pknots-RG, can predict. To solve the
limitations of these codes on their own, a more effective approach would be to use
the combination of both. Providing the user with a tool that combines the strengths
of each of the single codes would be a worthwhile goal. Once predictions are per-
formed, a comparison of the predicted secondary structures against experimentally
observed structures is needed. The comparison of predicted RNA secondary struc-
tures is often performed manually using tools such as PseudoViewer [6]. This man-
ual task is monotonous, highly sensitive to errors, and when the sequences are too
long or too numerous, it is impossible for a human to do this in a feasible amount of
time.

The above listed critical aspects point out the need for tools that (1) predict sec-
ondary structures of RNA segments, included pseudoknots, in parallel using combi-
nations of energy based methods and (2) automatically compare the predictions
against reference structures from databases or literature. We address this need in this
paper by presenting a parallel framework, compPknots, for prediction and compari-
son of RNA secondary structures with pseudoknots. compPknots exploits the advan-
tages of parallel computation using the MPI library MPICH to predict large numbers
of RNA secondary structures using well-known RNA structure prediction codes such
as Pknots-RE [4] and Pknots-RG [5] concurrently. Using compPknots, we evaluate
the prediction accuracy of the single Pknots-RE and Pknots-RG predictions against
their combined accuracy for a set of 217 RNA segments from the PseudoBase data-
base [7]. Running the predictions in parallel on a Beowulf cluster using these two
codes significantly reduced the execution time for the predictions of the 217 RNA
segments.

The rest of the paper is organized as follows: In Section 2, we present an overview
of the main biochemical concepts needed to understand this work and a short review
of works in the field of RNA structure prediction. Section 3 describes the compPknots
framework, its software components for parallel prediction and comparison of RNA
secondary structures, and how to use it. Section 4 presents the evaluation of
compPknots in terms of its prediction accuracy and performance. In Section 5 we
conclude and present current work in progress.

 compPknots: A Framework for Parallel Prediction and Comparison of RNA 679

2 Background and Related Work

A ribonucleic acid (RNA) is one of the two types of nucleic acids (Deoxyribonucleic
acid DNA and Ribonucleic acid RNA) found in living organisms. An RNA molecule
represents a long chain of monomers called nucleotides or bases. RNA contains four
different nucleotides: adenine, guanine, cytosine, and uracil that are represented with
the letters A, G, C, and U respectively. A sequence of these bases is strung together to
form a long, single-stranded RNA molecule. The molecule, whose sequence may be
up to thousands of bases long, tends to fold back on itself, mostly by pairing between
complementary bases: C and G form a complementary base pair, and so do A and U.
The secondary structure of an RNA molecule is the collection of base pairs that occur
in its three dimensional structure. RNA secondary structures can be classified into two
basic categories called stem-loops and pseudoknots (see Fig. 1). Both kinds of secon-
dary structures on overlapping RNA viral genes have been implicated in important
viral gene expression processes [8]. Pseudoknots have been also shown to be relevant
in many RNA mediated processes. Examples are the self-splicing group I introns [9],
ribosomal RNAs, or RNaseP. Recently, pseudoknots were located in prion proteins of
humans, and confirmed for many other species [10].

With the current increased interest in the RNA functions, algorithmic support for

analyzing structures that include pseudoknots is much in demand; determining such
structures, including pseudoknots, has been shown to be an NP-hard problem. Only
for more restricted classes of pseudoknots, polynomial algorithms have been imple-
mented. Rivas and Eddy [4] developed a dynamic programming algorithm, Pkno ts-
RE, for predicting optimal (minimum energy) RNA secondary structures, including
pseudoknots. The algorithm has the worst case time and space complexities of O(n6)
and O(n4) respectively. The implementation of the algorithm uses standard RNA
folding thermodynamic parameters augmented by a few parameters describing the
thermodynamic stability of pseudoknots and by coaxial stacking energies. Reeder
and Giegerich [5] improved the complexity of the algorithm, reaching the O(n4) space
and O(n2) time, by using the Minimal Free Energy (MFE) model. The runtime im-
provement, compared to Pknots-RE, results from an idea of canonization, while the
space improvement results from disallowing chained pseudoknots. Uemura et al. [11]
proposed an algorithm based on tree-adjoining grammar. The time complexities of
their algorithm depends on the types of pseudoknots: it is O(n4) for simple

Pseudoknot:

 Stem-loop

se

Fig. 1. Pseudoknot and stem-loop

680 T. Estrada, A. Licon, and M. Taufer

pseudoknots and O(n5) or more for the other pseudoknots. Although the algorithm
can always find optimal structures, tree-adjoining grammars are complicated and
impractical for longer RNA sequences. Akutsu [12] analyzed Uemura’s method and
found that the tree-adjoining grammar was not crucial but the parsing procedure was.
Since the parsing procedure is intrinsically a dynamic programming procedure,
Akutsu re-formulated this method as a dynamic programming procedure without the
tree-adjoining grammar. This method has not been implemented into a code yet.

compPknots aims to include a variety of codes to capture the strength of each sin-
gle code. The current version of our framework presented in this paper includes
Pknots-RE and Pknots-RG, but it can be easily extended to accommodate other exist-
ing codes for RNA predictions.

3 Components, Parallelization, and Usage of compPknots

compPknots is a framework that can integrate concurrent executions of existing codes
for RNA secondary structure predictions such as Pknots-RE and Pknots-RG, with the
capability of automatically measuring the level of prediction accuracy for these codes
by using a comparison approach based on stacks. The framework is written in C and
employs the MPICH library for concurrent predictions and comparisons. Its modular
structure allows users to easily extend it to accommodate other codes and comparison
techniques.

The current framework integrates predictions using Pknots-RE and Pknots-RG and
their comparisons. For each input segment, the chain of nucleotides, or RNA segment,
is read and its correctness is checked: this checking consists of verifying that only
characters in the following list compose the chain: A, C, G, U, a, c g, and u. If com-
parisons are scheduled, the user provides compPknots with the file with the experi-
mentally observed structures and compPknots schedules the corresponding compari-
sons. The observed secondary structures are traditionally represented in terms of
strings of brackets, i.e., “(“ and “)”,“[“ and “]”, “{“ and “}”, dots “.”, and colons “:”.
Two paired nucleotides are represented with two closed brackets collocated in the
string at the same position as the correspondent nucleotides in the input segment. A
checking is required for the observed secondary structure to control whether it con-
tains only characters in the following list: “[“, “]”, “{“, “}”, “(“, “)”, “.”, and “:”.
Also predicted secondary structures are returned as a string of braces, parenthesis and
dots. After checking the correctness of input segments and observed structures,
compPknots can execute either Pknots-RE or Pknots-RG or both (default configura-
tion). Finally, predicted secondary structures are compared with the observed struc-
tures provided in the input file and the statistics are then printed to the screen or
stored to a file.

The comparison between a predicted structure and an observed structure is based
on stacks: for the predicted structure and the observed structure the code allocates a
pair of stacks for storing general stem-loops (predicted stem-loop stack and observed
stem-loop stack) and a second pair for storing loops associated to pseudoknots (pre-
dicted pseudoknot stack and observed pseudoknot stack). Each pair of stacks is used
twice for each assignment in case a pseudoknot is present. If a pseudoknot is not pre-
sent, only the pair of stacks associated to the stem-loop is used. One bracket

 compPknots: A Framework for Parallel Prediction and Comparison of RNA 681

representing one of two paired nucleotides, e.g., “(“ and “)” or “[“ and “]”, or one dot
or colon, i.e., “.” or “:”, representing an unpaired nucleotide, is read at the time from
both the predicted and observed structures. If an opening character appears, e.g., “(“
or “[“, its position in the RNA segment is stored in the corresponding stack based on
the fact that the character is from the predicted or from the observed structure as well
as on the fact that the code is going through a first set of parenthesis (a stem-loop) or
is going through a second set without having completed a previous one (a pseudok-
not). If the character is a closing one, e.g., “)“ or “]“, then the last element in the cor-
responding stack is removed. If a removal occurs at the same time from the predicted
and observed stacks, the equivalent nucleotide positions are compared. If the positions
are equal, the number of true predicted base pairs is incremented by one; otherwise
the system increments the number of false predicted base pairs.

compPknots uses a master-slave paradigm to run predictions and comparisons,
where the master is in charge of getting new jobs and dispatching them to available
slaves. The master validates the correctness of RNA segments submitted for predic-
tion as well as the correctness of observed RNA secondary structures before submit-
ting them to the slaves. The master also receives the results of the predictions and
comparisons and prints or stores them. Slaves are activated by the master that sends
them the initialization parameters, e.g., what code to use for the prediction and
whether to compare predictions with observed structures. Once the slave is active, it
starts its prediction cycle in which it requests and gets new jobs. The cycle terminates
if there is no job remaining. Fig. 2 shows the flow of tasks executed by the master and
the slaves. The assignment of a single job at a time to the hosts helps prevent load
imbalances: the length of jobs depends on the length of their RNA segment and
whether the resources on the distributed system are dedicated or not.

 Fig. 2. Concurrent prediction and comparison in compPknots

compPknots is flexible in terms of capabilities that scientists can select for a given

run. The user can, for example, choose whether to predict and compare a nucleotide
segment provided to the code from the command line or several segments listed in a

682 T. Estrada, A. Licon, and M. Taufer

file, or whether to select just one of the RNA structure prediction codes and store the
output to a file rather than printing it to the screen. A list of capabilities and possible
input options are reported in [13]. For each RNA segment, the following metrics are
returned to the scientist:

• Length of the RNA segment: Number of nucleotides or bases in the given
segment.

• Total observed base pairs (total pairs): Number of base pairs in the observed
secondary structure.

• Total predicted base pairs: Number of base pairs in the predicted secondary
structure. This is the sum of true pairs and false pairs.

• True predicted base pairs (true pairs): Number of pairs predicted that are
also in the observed secondary structure.

• False predicted base pairs (false pairs): Number of base pairs predicted that
are not in the observed secondary structures. This is the sum of wrong pre-
dicted pairs and true pairs not detected.

• Sensitivity: Number of true pairs over the number of base pairs.

sensitivity = true_ pairs

total_ pairs

• Selectivity. Number of true pairs over the sum of true and false pairs.

selectivity = true_ pairs

true_ pairs + false_ pairs

• Total Energy: Energy of the RNA secondary structure.

The sensitivity and selectivity are two standard metrics that are used by scientists
to quantify the accuracy of a prediction [14]. The sensitivity indicates whether the
prediction has captured the secondary structure partially or completely. The selectiv-
ity indicates whether a prediction has introduced additional base pairs in the predicted
secondary structure that are not present in the observed secondary structure. These
metrics range from 0, i.e., the structure has been completed miss-predicted, to 1, i.e.,
in the case of a successful prediction. More in particular, if the sensitivity is 1, it
means that all the observed base pairs have been correctly predicted. If the selectivity
is 1, then no additional base pair has been predicted.

4 Evaluation

The evaluation of compPknots in this paper consists of two components: first of all,
the framework is used to evaluate the effectiveness on the prediction accuracy of
combining several prediction codes; then the performance analysis of predictions
using each single code sequentially and the combination of both concurrently is
evaluated.

For the evaluation of the accuracy of single codes, Pknots-RE and Pknots-RG, and
their combination, we used 217 RNA segments and their experimentally observed
secondary structures from the PsudoBase database choosing all the complete seg-
ments in this database, i.e., those segments that do not present nucleotides gaps in
their brackets representation [7]. For the predictions with Pknots-RG, we scored the

 compPknots: A Framework for Parallel Prediction and Comparison of RNA 683

predicted structures exclusively on an energy base and we did not force pseudoknot
identifications as possible in this code [5]. For the evaluation of the prediction accu-
racy of the single codes (considered separately), we considered 4 levels of sensitivity
and selectivity, i.e., 0.0, 0.0 − 0.5 in which the values 0.0 and 0.5 are not included

in this range, 0.5 − 1.0 in which the value 1.0 is not included in this range, and the

last level being 1.0. We counted the number of predictions that fell into each level for
the two metrics. Fig. 3 shows the number of predictions for the 4 levels for both
Pknot-RE and Pknot-RG. As we can see in Fig. 3, sensitivity and selectivity in
Pknots-RE and Pknots-RG have similar behaviors. With reference to the sensitivity,
both codes have a significant number of structures that are completely miss-predicted
i.e., the codes are not able to capture any base pairs. More in particular, for Pknots-
RE, 6.4% of the predictions have no true pairs and 33.6% of the predictions capture
all the true pairs. For Pknots-RG, 4.6% of the predictions are completely miss-
predicted (which is less than for Pknots-RE) but fewer predictions capture all the true
pairs (29.9% for Pknots-RG versus 33.6% for Pknots-RE). The remaining structures
are partially predicted correctly, i.e., 59.9% for Pknots-RE and 65.4% for Pknots-RG.
With reference to the selectivity, both the codes show the tendency to predict more
base pairs than those observed experimentally: only for 29 RNA segments predicted
by Pknots-RE (13.3% of the predicted secondary structures) the number of false pairs
is zero. For RNA segments predicted by Pknots-RG only 34 predictions (15.6% of the
predicted secondary structures) have no false pairs. In general with reference to the
overall pool of RNA segments, we found that Pknots-RE has an average sensitivity of
73.3% and an average selectivity of 62.2% while Pknots-RG performs slightly better
with an average sensitivity of 75.6% and an average selectivity of 64.7%.

Fig. 3. Sensitivity and selectivity levels for 217 predicted RNA secondary structures using
either Pknots-RE or Pknots-RG for predictions

If we consider the single predictions separately we can see that in several cases one
of the two codes provides an accurate prediction while the other code performs
poorly. An evaluation of the accuracy using a combination of both codes was per-
formed using compPknots and the results are reported in [13]. In this comparison we
combined different levels of sensitivity and selectivity of secondary structures pre-
dicted using the two codes, Pknots-RE and Pknots-RG concurrently. For each code
we considered the follow levels: (1) both sensitivity and selectivity are zero, i.e.,

684 T. Estrada, A. Licon, and M. Taufer

0{0}; (2) sensitivity and selectivity range within zero and one, i.e., 0.x{0.y}; (3) se-
lectivity is one but selectivity is less than one because, despite the prediction capture
all the true pairs, it also captures additional pairs that have not been observed experi-
mentally (false pairs), i.e., 1{0.y}; and selectivity and sensitivity are both one, i.e.,
1{1}. We observed that the cross prediction using both the codes increased the predic-
tion accuracy significantly: we were able to predict correctly the complete secondary
structure of 92 RNA segments for which the sensitivity was equal to one. This is
equal to 42.3% of the pool of RNA segments considered. Also the selectivity was
significantly improved: 22.2% of the secondary structures have both sensitivity and
selectivity equal to one. The average sensitivity and selectivity were increased to
82.4% and 70.8% respectively proving how the combination of prediction codes can
indeed increase the final accuracy for our 217 RNA segments.

Another important aspect of running the codes concurrently is the execution time.
To address this issue, we ran the predictions using compPknots with each code as well
as their combination on a Beowulf cluster at the University of Texas at El Paso. The
cluster has a head node with 2 AMD Opteron processors, 4 GB memory, 3 TB of disk
space (shared by all the nodes over NFS) and 64 compute nodes with 2 AMD Opteron
processors, and 4 GB of memory each. Each prediction of the 217 RNA segments was
repeated three times and the values reported are average times. The same set of 217
RNA segments were computed using compPknots with 1, 2, 4, 8, 16, and 32 proces-
sors. The segments have a length that ranges from 21 to 137 nucleotides or bases.

In our performance analysis, we observed that between the two codes, Pknots-RE
is the most time and resource intensive. For Pknots-RE, the execution of the sequen-
tial prediction and comparison of the 217 RNA segments using one node of the clus-
ter took an average of 1512 minutes, while the same execution using Pknots-RG took
only 14.29 seconds. We also observed that the combined execution of the two codes
was mainly dictated by two factors: the prediction using Pknots-RE and the execution
times of the 10 longest RNA segments. In particular, the latter factor limited the scal-
ability of compPknots with this set of RNA segments. Running compPknots with
Pknots-RE and Pknots-RG with 2 processors took 837 minutes. This time went down
to 475 and 260 minutes with 4 and 8 processors respectively. For 16 and more proces-
sors the time needed for this set of RNA segments did not scale any further as shown
in Fig. 4.a. We measured the times for the prediction and comparison of the ten long-
est segments with length longer than 100 nucleotides, and compared these times with
the total time to predict and compare all 207 remaining segments from our Pseudo-
Base set. Fig. 4.b shows the times to run a Pknots-RE prediction in minutes (x-axis)
for different RNA segments (y-axes, where the name of each segment is associated to
its length -- number in parentheses). As we can see in the figure, the time for the pre-
diction of segments such as BMV3, CCMV3, and CMV3, whose lengths are 137,
134, and 133 respectively, is comparable with the total time to execute the remaining
207 segments. This suggests that once we have more than 8 processors, those that
receive the longest segments will determine the time of the whole simulation. In gen-
eral, the scalability of compPknots executions depends on both the length and number
of segments. Even a smart distribution of tasks across processors cannot solve load
imbalances due to the executions of predictions in which a few segments dominate
over the others because of their much larger length. These observations suggest two
future improvement strategies for compPknots: the need for the parallelization of the

 compPknots: A Framework for Parallel Prediction and Comparison of RNA 685

Pknots-RE code and the potential for compPknots to run effectively on clusters of
heterogeneous nodes where longer segments are assigned to faster nodes and shorter
segments are assigned to slower nodes.

a. Execution time for 217 RNA segments

b. Segment execution time

Fig. 4. Performance analysis of compPknots for a set of 217 RNA segments

5 Conclusions and Future Work

In this paper we presented compPknots, a parallel software framework that given a set
of RNA molecules, predicts their RNA secondary structures (including their pseudok-
nots) using a combination of existing prediction codes concurrently. It also allows
users to automatically compare these predictions with reference structures from data-
bases or literature, identifying the predictive accuracy of each RNA secondary struc-
ture. compPknots allowed us to run two codes concurrently for predictions, Pknots-
RE and Pknots-RG, benefiting from the combined prediction capability of both. The
combined execution of the codes allowed us to correctly capture a larger number of
RNA secondary structures as oppose to using the single codes separately. The parallel
framework based on a master-slave paradigm and implemented using MPICH al-
lowed us to achieve results in a shorter amount of time. compPknots is a prototype
that is part of a “smart” framework that automatically at run time selects RNA seg-
ments from large RNA molecule, predicts the secondary structures in parallel using a
large variety of existing codes, and based on the comparisons of the collected results
selects new RNA segments from the initial RNA chain to ultimately rebuild larger
parts of this RNA molecule. We are currently extending compPknots to accommodate
these features.

Acknowledgments

This material is based in part upon work supported by the Texas Advanced Research
Program under Grant No. 003661-0008-2006. Financial support through the National
Science Foundation (grant # EIA-0080940, “MII: Graduate Education for Minority

686 T. Estrada, A. Licon, and M. Taufer

Students in Computer Science and Engineering: Extending the Pipeline” and grant #
SCI-0506429, “DAPLDS - a Dynamically Adaptive Protein-Ligand Docking System
based on multi-scale modeling”) is acknowledged. We wish to thank Dr. Ming-Ying
Leung, Prayook Tungjatooronrusamee, and Yash Dahl for their valuable advice dur-
ing the implementation and testing of compPknots.

References

1. Lyngo, R.B. and Pedersen, C.N.S. (2000) RNA Pseudoknot Prediction in Energy-Based
Models. J. of Comp. Biology, 7(3/4), pp. 409–427.

2. Zuker M. (1989) Computer Prediction of RNA Structure. Methods Enzymol. 180, pp. 262-
288.

3. Dinman, J.D., Ruiz-Echevarria, M.J., and Peltz, S.W. (1998) Translating old Drugs into
new Treatments: Ribosomal Frameshifting as a Target for Antiviral Agents. Trends Bio-
technol., 16, pp. 190–196.

4. Rivas, E. and Eddy, S. (1999) A Dynamic Programming Algorithm for RNA Structure
Prediction including Pseudoknots. Journal of Molecular Biology, 285(5), pp. 2053-2068.

5. Reeder J. and Giegerich R. (2004) Design, implementation and evaluation of a practical
pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 5(104).

6. Han, K. and Byun,Y. (2003) PseudoViewer2: Visualization of RNA Pseudoknots of any
Type. Nucleic Acids Res., 31, pp. 3432–3440.

7. Batenburg, F.H.D. van, Gultyaev, A.P., Pleij, C.W.A., Ng, J., and Oliehoek, J. (2000).
Pseudobase: a Database with RNA Pseudoknots. Nucl. Acids Res., 28(1).

8. L. Bidou, G. Stahl, B. Grima, H. Liu, M. Cassan, and J. Rousset: In Vivo HIV-I
Frameshifting Efficiency is Directly Related to the Stability of the Stem-loop Stimulatory
Signal. RNA, 3:1153-1158, 1997

9. Cech, T. (1988) Conserved Sequences and Structures of Group I Introns: Building an Ac-
tive Site for RNA Catalysis a Review. Gene, 73, 259-271.

10. Barette, I., G. Poisson, P. Gendron, and F. Major (2001). Pseudoknots in prion protein
mRNAs con_rmed by comparative sequence analysis and pattern searching. Nucleic Acids
Research 29 (3), 753-758.

11. Uemura Y, Hasegawa A, Kobayashi S, and Yokomori (1995) Grammatically Modeling
and Predicting RNA Secondary Structures. In Proceedings of the Genome Informatics
Workshop, Universal Academy Press, Tokyo, pp. 67-76.

12. Akutsu, T. (2000) Dynamic Programming Algorithms for RNA Secondary Prediction with
Pseudoknots, Discrete Applied Mathematics, 104, 45-62.

13. T. Estrada, A. Licon, and M. Taufer: CompPknots: a Framework for Parallel Prediction
and Comparison of RNA Secondary Structures with Pseudoknots. Technical Report
UTEP-CS-06-42, University of Texas, El Paso, September 2006.

14. Gardner P.P. and Giegerich R. (2004) A Comprehensive Comparison of Comparative
RNA Structure Prediction Approaches. BMC Bioinformatics, 5(140).

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 687 – 696, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On Integration of GUI and Portal of Cluster and Grid
Computing Platforms for Parallel Bioinformatics*

Chao-Tung Yang1,**, Tsu-Fen Han1, Heng-Chuan Kan2, and William C. Chu3

1 High Performance Computing Laboratory
1,3 Department of Computer Science and Information Engineering

Tunghai University, Taichung City 40704, Taiwan
ctyang@thu.edu.tw, g942814@thu.edu.tw, chu@csie.thu.edu.tw

2 Biotechnology Group, Southern Business Unit
National Center for High-performance Computing

Hsinshi, Tainan County 74147, Taiwan
n00hck00@nchc.org.tw

Abstract. In this paper, we implement an experimental distributed computing
application for parallel bioinformatics. The system consists of the basic cluster
and grid computing environment and user portal to provide a useful graphical
interface for biologists who are not specialized in Information Technology (IT)
to be able to easily take advantages of using high-performance computing re-
sources. Finally, we perform several experimentations to demonstrate that
cluster and grid computing platform indeed reduces the execution time of the
biology problem.

1 Introduction

Bioinformatics is the combination of biology and information technology. These
include any computational tools and methods to manage, analyze and manipulate
large sets of biology data. Thus, computing technologies are vital for bioinformatics
applications. Biology problems often need to repeat the same task for millions of
times such as searching sequence similarity over the existed databases or comparing a
group of sequences to determine evolutionary relationship. In such cases, the high
performance computers to process this information are indispensable. Biological
information is stored on many different computers around the world. The easiest way
to assess this information is to connect these computers together through the network.
This approach requires high-performance computing infrastructures with access to
huge databases of information.

Many advances in computing technology and computer science over the past 30
years have dramatically changed much of our society. The computing technologies
today represent promising future possibilities. Currently, it is still very difficult for

* This work is supported in part by National Science Council, Taiwan R.O.C., under grants

no. NSC95-2221-E-029-004 and NSC95-2218-E-007-025.
** Corresponding author.

688 C.-T. Yang et al.

researchers who are not specialized in IT to fully comprehend the power of the high-
performance computing technologies. IT engineers are therefore playing an important
role to improve the research environment. The mission imposed on us is to provide a
user-friendly interface for scientists to benefit directly from using high-performance
computing technologies. To face this problem, we develop three kinds of user inter-
faces. The user portal enables interactions between the application user and the appli-
cation itself. It obtains parametric inputs for the problem and reports the results upon
completion of the application’s execution.

The rest of the paper is organized as follows. In section 2, a brief overview of Bio-
informatics and the features of high-performance computing are described. In section
3, we report the implementation of our system. In section 4, we report the experimen-
tal results and performance comparisons. Finally, conclusions are given in section 5.

2 Background

2.1 Bioinformatics

Computer technology is used at nearly every stage of the drug development processes
which compose of pre-clinical testing, research, and development. Bioinformatics
allows researchers to analyze terabytes of data produced by the Human Genome Pro-
ject [12]. It is the discipline of obtaining information about genomic or protein se-
quence data. This may involve searching sequence similarity of databases, comparing
an unidentified sequence to the sequences in a database, or making predictions about
the sequence based on current knowledge of similar sequences. Various databases of
gene/protein sequence, gene expression, and related analysis tools all help scientists
determine whether and how a particular molecule is directly involved in a disease
process. That, in turn, aids in the discovery of new and better drug targets.

Sequence similarity search to a query can be found in a database by alignment al-
gorithms and returning the highest scoring sequence. Examples of such software tools
are the BLAST [18], FASTA [10], and Smith-Waterman algorithms [9]. BLAST and
FASTA provide very fast searches within a sequence database.

Multiple alignments illustrate relationships between two or more sequences. When
the sequences involved are diverse, the conserved residues are often key residues
associated with maintenance of structural stability or biological function. Multiple
alignments can reveal many clues about protein structure and function. The most
commonly used software for multiple alignments is the ClustalW [5] package.

2.2 Cluster Computing

A Beowulf cluster [8] is a form of parallel computer, which is nothing more than a
computer that uses more than one processor. There are many different kinds of paral-
lel computer, distinguished by the kinds of processors they use and the way in which
those processors exchange data. It takes advantage of two commodity components:
fast CPUs designed primarily for the personal computer market and networks de-
signed to connect personal computers together (in what is called a local area network

 On Integration of GUI and Portal of Cluster and Grid Computing Platforms 689

or LAN). Beowulf clusters provide an effective and low-cost solution for delivering
enormous computational powers to applications and are now used virtually every-
where. More specifically, a Beowulf cluster is a high-performance, high-throughput
and high-availability computing platform [1].

To make use of multiple processes and executing each on a separate processor, we
need to apply parallelism of computing algorithms. There are two common types of
parallelism: MPI [14] and PVM [20]. PVM is a master-worker approach which is the
simplest and easiest to implement. It relies on being able to break the computation
into independent tasks. A master then coordinates the solution of these independent
tasks by worker processes. MPI cannot (or cannot easily) be broken into independent
tasks. In this kind of parallelism, the computation is broken down into communicat-
ing, inter-dependent tasks. Here we used LAM/MPI [15] for our cluster system and
MPICH [16] for our Grid system.

2.3 Grid Computing

Grid computing [2][3] enables virtual organizations to share geographically distrib-
uted resources as they pursue common goals, assuming the absence of central loca-
tion, central control, omniscience, and an existing trust relationship. In our system, we
adopted a Grid middleware called Globus toolkit 4.0 [21] as the infrastructure for our
BioGrid. The toolkit includes software for security, information infrastructure, re-
source management, data management, communication, fault detection, and portabil-
ity. Java CoG [13] (Commodity Grid Kits) combines Java technology with Grid com-
puting is used to develop advanced Grid services and accessibility to basic Globus
resources. It allows for easier and faster application developments. It also encourages
collaborative code reuses and avoids the duplicate efforts among problems involving
environments, science portals, Grid middleware, and collaborative pilots.

3 Implementation

Our implementation can be divided into two parts: the basic high-performance com-
puting environment and the user portals.

3.1 High-Performance Computing Environment

The high-performance computing environment comprises of the BioGrid [4][19] and
BioCluster [6][7]systems. Both of them execute three bioinformatics software: mpiB-
LAST [17], FASTA and ClustalW. The hardware architecture is shown in Figure 1. In
BioGrid portion, we construct a BioGrid testbed which includes four separated nodes.
Each node is installed with Globus toolkit 3.0 for the Grid infrastructure, and
MPICHG2 for message-passing.

The Redhat 9.0 Linux distribution is installed on each node. The idea of the Linux
cluster is to maximize the performance-to-cost ratio of computing by using low-cost
commodity components and free-source Linux and GNU software to assemble a
parallel and distributed computing system. Software support includes the standard

690 C.-T. Yang et al.

Linux/GNU environment, compilers, debuggers, editors, and standard numerical
libraries. Coordination and communication among the processing nodes are the key
requirements of parallel-processing clusters. To accommodate this coordination,
developers create software to carry out the coordination and hardware to send and
receive the coordinating messages. Messaging architectures such as Message Passing
Interface (MPI), and Parallel Virtual Machine (PVM), allow programmers to ensure
that the controls and messages take place during the operation.

Fig. 1. The hardware architecture of our system

3.2 User Portal

The user portal enables interactions between the application user and the application
itself. It obtains parametric inputs for the problem and reports the results upon comple-
tion of the execution. Our portal composes of three interfaces: Java-based Application,
JSP web page and Pocket PC for easy control of the parallel bioinformatics software.
Furthermore, we also develop various basic services for Grid and Cluster systems.

The Java-based application makes use of Java CoG kit to connect with the Grid sys-
tem. There are some key characteristics of this application: (i) GridProxyInit, a JDialog
to summit a pass phrase to Grid for extending expired date of certificate; (ii) GridCon-
figureDialog utilizes UITool of the CoG Kit for users to configure the number of proc-
ess and host name of the Grid server; (iii) GridJob creates a GramJob instance which
represents a simple gram job. It allows for submitting a job to a gatekeeper, canceling
it, sending a signal command, registering and unregistering from callback; (iv) GetRSL
provides a common interchange language to describe resources; (v) GlobusRun is a
factory method for creating a previously exported credential.

The various components of the Globus Resource Management architecture ma-
nipulate RSL strings to perform their management functions in cooperation with

 On Integration of GUI and Portal of Cluster and Grid Computing Platforms 691

other components in the system. For example, GetRSL combines the RSL string.
JobMonitor uses two parameters, Gridjob and RSL to start up the GlobusRun and
monitors the job process. Then, it submits jobs to the Grid server and receives the
responses from the Grid server. GridFTP could upload DNA sequences to the Grid
System. In addition to the functions that Java CoG kit provides, there are several
APIs developed specifically for our system. For instance, ProxyDestroy destroys the
CA Files to protect the Grid system. Note that the machine files can be configured
from the application site for our system as shown in Figure 2.

For cluster, we also develop a series of capability. In server site, a program named
CommandClient was written to receive the commands from the client. Users could
configure the cluster system from the application site which includes information of
how many CPUs being used, lam/mpi, PVM, lamhost file locations. And we can
monitor the CPU and memory information to know which machines in our cluster
system are alive. It also has the capability of lamboot and lamhalt from remote site as
shown in Figure 3.

We implement GUI for Bioinformatics software applications on both of the Grid
and Cluster systems. Only application service interface is visible, however, imple-
mentation details such as distributed processing and parallel processing are invisible
from users.

The JSP web page utilizes a variety of advanced technologies such as JavaServer
Pages, HTML, JavaScript, ActionScript (in Flash) and Tomcat. The portal composes
of three parts: Machine Monitor, Bioinformatics software application and Job submis-
sion. Figure 5 demonstrates that the Machine Monitor (MM) can display critical in-
formation such as remote machine is still working or not and check if the Java CoG
kit was installed on the machine. If the machine halts unexpected the Error Log deliv-
ers the details as seen in Figure 6.

Fig. 2. Configure the machine file for Grid
system

Fig. 3. The capability of lamboot and lamhalt
from remote site

692 C.-T. Yang et al.

Fig. 4. The software architecture of our system

Fig. 5. The Machine Monitor Fig. 6. Example of Error Log

Bioinformatics software application as seem in Figure 7 essentially can be divided
into two parts: BioGrid and BioCluster. The server side exploits the CommandClient
program to receive the job commands submitted to cluster. On the Grid system, we
develop GridJob to submit jobs to Grid system and SimpleCreateProxy to extend the
time of expired date of certificate from the JSP web. And the bioinformatics software
tools integrated into our system are mpiBLAST, FASTA and ClustalW. Job submis-
sion (Figure 8) enables users to submit regular Linux command to our Grid system.
Because Job Submission will not be operated unless using intact Globus RSL, the
interface has offered various kinds of RSL hot keys for users.

For Pocket PC version, The main function of Pocket PC is to provide a user-
friendly graphical interface for biologists and scientists to simplify the complexity of
operating the bioinformatics software on the Grid and Cluster systems. Besides, it can
configure the numbers of CPUs and IP addresses of the sever (Figure 9).

 On Integration of GUI and Portal of Cluster and Grid Computing Platforms 693

Fig. 7. The Bioinformatics software Application Fig. 8. The Job Submission

Fig. 9. System configuration and bioinformatics software application

4 Performance Evaluation

We conduct the experimentation on a 16-processor Linux PC cluster. Figure 10 shows
experimental results of the parallel versions of all bioinformatics software. All parallel
applications are executed by using from 2, 4, 8 to16 processors to compare the execu-
tion times. To obtain more accurate data, we execute five times per experiment and
calculate the average time of execution. From the results, it is clearly found that the
parallel system can reduce significant times from performing the sequence alignments.

694 C.-T. Yang et al.

We assess the performance of the BioGrid with executions of FASTA and mpiB-
LAST by using 2, 4, to 8 processors, respectively. To get more accurate data, we also
execute five times per experiment and calculate the average time of execution.
Figure 11 demonstrates the performance comparisons of FASTA and mpiBLAST
between our system and a generic Grid.

Fig. 10. The average execution times of all parallel versions of bioinformatics applications using
processor numbers from 2 to 16

Fig. 11. The performance comparison of FASTA and mpiBLAST between the Application and
regular Grid

 On Integration of GUI and Portal of Cluster and Grid Computing Platforms 695

5 Conclusions

In the paper, we have built the basic platform for high-performance computing envi-
ronment using the Linux PC cluster and Grid. The experiment results illustrate that
both environments save significant times in mapping and efficacy. It performs much
better than regular computers. The user portals can help biologists and scientists to
easily take control of the bioinformatics software as well as the Grid and Cluster
systems. Multiple interfaces allow users to work with bioinformatics software from
everywhere.

References

1. R. Buyya, High Performance Cluster Computing: System and Architectures, Vol. 1 and
Vol. 2, Prentice Hall PTR, NJ, 1999.

2. Foster, C. K., eds., The Grid 2: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 2nd edition, 2004.

3. Foster, “The Grid: A New Infrastructure for 21st Century Science”, Physics Today, Vol.
55, No. 2, 2002, pp. 42-47.

4. Michael Karo, Christopher Dwan, John Freeman, Jon Weissman, Miron Livny, Ernest
Retzel, Applying Grid Technologies to Bioinformatics, Proceedings of HPDC-10’01,
2001, pp. 0441.

5. Kuo-Bin Li, “ClustalW-MPI: ClustalW Analysis Using Distributed and Parallel Comput-
ing,” Bioinformatics, vol. 19, no. 12, pp. 1585-1586(2), 2003.

6. Trelles O., Andrade M.A., Valencia A., Zapata E.L., and Carazo J.M., Computational
Space Reduction and Parallelization of a new Clustering Approach for Large Groups of
Sequences, Bioinformatics, vol.14, no.5, 1998, pp.439-451.

7. Trelles O., “On the parallelization of bioinformatics applications,” Briefings in Bioinfor-
matics, May 2001, (vol.2) 2.

8. T. L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese, How to Build a Beowulf: A
Guide to the Implementation and Application of PC Clusters, 2nd Printing, MIT Press,
Cambridge, Massachusetts, USA, 1999.

9. Chao-Tung Yang, Yu-Lun Kuo, Kuan-Ching Li, and Jean-Luc Gaudiot, “On Design of
Cluster and Grid Computing Environments for Bioinformatics Applications,” Distributed
Computing - IWDC 2004: 6th International Workshop, Lecture Notes in Computer Sci-
ence, Springer-Verlag, Arunabha Sen, Nabanita Das, Sajal K. Das, et al. (Eds.), Kolkata,
India, vol. 3326, pp. 82-87, Dec. 27-30, 2004.

10. Chao-Tung Yang, Po-Chi Shih, Sung-Yi Chen, and Wen-Chung Shih “An Efficient Net-
work Information Modeling using NWS for Grid Computing Environments,” Grid and
Cooperative Computing - GCC 2005: Fourth International Conference, Lecture Notes in
Computer Science, vol. 3795, pp. 289-300, Springer-Verlag, November 2005.

11. FASTA main page, ftp://ftp.virginia.edu/pub/fasta/
12. Human Genome Project,

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
13. Java Cog kit, http://www-unix.globus.org/cog/
14. MPI Forum main page, http://www.mpi-forum.org/
15. LAM-MPI (Message Passing Interface) main page, http://www.lam-mpi.org/

696 C.-T. Yang et al.

16. MPICH main page, http://www-unix.mcs.anl.gov/mpi/mpich/
17. mpiBLAST main page, http://mpiblast.lanl.gov/index.html
18. NCBI BLAST main page, http://www.ncbi.nlm.nih.gov/BLAST/
19. North Carolina Bioinformatics Grid (BioGrid) web site, http://www.ncbiogrid.org
20. PVM – Parallel Virtual Machine, http://www.epm.ornl.gov/pvm
21. The Globus Project, http://www.globus.org/

Combining Measures for Temporal and Spatial
Locality

Jörg Dümmler1, Thomas Rauber2, and Gudula Rünger1

1 Chemnitz University of Technology, Department of Computer Science, 09107
Chemnitz, Germany

{joerg.duemmler, ruenger}@cs.tu-chemnitz.de
2 Bayreuth University, Angewandte Informatik II, 95440 Bayreuth, Germany

rauber@uni-bayreuth.de

Abstract. Numerical software for sequential or parallel machines with
memory hierarchies can benefit from locality optimizations which are
usually achieved by program restructuring or program transformations.
The choice of the program version that achieves the best performance is
usually complex as many dependencies have to be taken into account.
Thus program-based locality measures have been introduced to give pro-
grammers a guideline if a performance gain can be expected from a pro-
gram restructuring. The novel contribution of this paper is the extension
of these locality measures to support spatial locality. These extended
measures are applied to two applications from scientific computing and
the obtained prediction is compared to benchmark results.

1 Introduction

Modern computer systems use a deep memory hierarchy including multiple lev-
els of cache. Cache misses on these machines usually result in a waiting time of
multiple clock cycles and can slow down applications considerably. Hence, the
exploitation of the memory hierarchy provides the basis for an efficient execution
of a given application. The number of cache misses is influenced by hardware
specific parameters, e.g., the number of levels, the size and associativity of the
cache, and software dependent parameters like the locality of the memory ac-
cesses. A high temporal locality is reached, if accesses to the same memory
address lie closely together. An example is the repeated use of a scalar variable,
e.g., to control the iterations of a loop. A high spatial locality is achieved, if
accesses to neighboring memory locations lie closely together. An example is the
consecutive use of the elements of an array variable.

Extensive research has been made to find program transformations which
preserve the correctness of a program and increase the locality of the memory
accesses. Applications from scientific computing usually spend a large proportion
of the computing time in deeply nested loops. Therefore many transformations
to increase memory locality for loop nests have been proposed. Examples include
loop blocking or loop interchange, see [1] for a good overview. Deciding which
program version achieves the best performance is a complex task and depends
on the program code, the input data and on the target platform. In the general

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 697–706, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

698 J. Dümmler, T. Rauber, and G. Rünger

case not all this information is available, e.g. when parts of the considered pro-
gram are not available in advance. Examples are solvers for ordinary differential
equations (ODEs) which are usually written as black-box code that can operate
on arbitrary ODE systems described by a function f .

Program-based locality measures, which allow the comparison of memory lo-
cality of different program versions, have been introduced in [2]. These measures
only rely on the program source and do not take hardware dependent properties
into account. Hence, an exact prediction of the cache misses is not possible as
a memory access can result in a cache miss on one platform and a cache hit on
another platform with a bigger cache. Nevertheless, the program-based locality
measures can be used in an optimizing compiler tool or by a programmer to
make a platform independent decision which program version to use or which
program tranformations to apply. It has been shown that these measures can
successfully capture the effects of temporal locality. The contribution of this
paper is the extension of these measures with support for spatial locality. We
study the extended cost measures for matrix multiplication and show the impor-
tance of spatial locality. As a more complex example we examine three different
versions of an iterated Runge-Kutta ODE solver.

The rest of the paper is structured as follows. Section 2 introduces the
program-based locality measures and suggests an extension for the support of
spatial locality. Benchmark results for different program versions of a matrix-
matrix-multiplication and a comparison with the predictions by the locality mea-
sures is discussed in section 3. Section 4 discusses related work and Section 5
concludes the paper.

2 Locality Measures Supporting Spatial Locality

The starting point of this work are the program-based locality measures pre-
sented in [2] which try to capture the memory access locality of a scientific
application in a single value. The resulting value only depends on the program
version and the input data size but is independent from platform specific charac-
teristics. These measures observe each storage location in isolation and are there-
fore not able to uncover changes in spatial locality which plays an important role
as we will show in section 3. This section introduces an extended definition of
these cost measures which combines the effects of temporal and spatial locality.

To capture the effects of changes in spatial locality, accesses to physically
neighboring memory locations have to be considered. Since we only take the
program text as an input, it is not always possible to tell which of the variables
are physically neighboring. The placement of the statically declared variables is
subject to the compiler, which usually allocates neighboring storage locations
to variables that are declared in adjacent positions in the program source. But
most memory accesses are usually made to dynamically allocated memory, whose
physical location is determined by the underlying operating system and cannot
be predicted from the program source. As a consequence, we only consider the
spatial locality of memory accesses which are made to the same data structure.

Combining Measures for Temporal and Spatial Locality 699

The locality measure is defined as a function μ : P × N → R+ where P is a
set of equivalent program versions, n ∈ N is the input data size, and μ(A, n) is
the locality value for A ∈ P and input data size n. Lower values of this measure
correspond to a better memory access locality, e.g. if μ(A, n) < μ(B, n) for
program version A and B then A is expected to have a better locality behavior
than B for input data size n.

Let Vs be the set of variables of a program version A, where all variables,
scalar or array, are represented by a single element vs ∈ Vs. The total number
of accesses to a variable vs ∈ Vs is denoted as lvs + 1 ∈ N. The finite sequence
T = t1, t2, ... of consecutive natural numbers starting with t1 = 0 represents
the time indices of all memory accesses of a given program version. The access
sequence of a given vs ∈ Vs is defined as the subsequence

n0(vs), n1(vs), ..., nlvs
(vs) ⊂ T

of the sequence T . Furthermore, for array variables it is important to know,
which element was referenced by a memory access. This information is stored in
the offset sequence of a variable vs ∈ Vs that is defined as the sequence

o0(vs), o1(vs), ..., olvs
(vs) with oi(vs) ∈ N, 0 ≤ i ≤ lvs .

For a scalar variable all elements of its offset sequence will be 0. We define the
spatial access distance dsi(vs) of a variable vs ∈ Vs as

dsi(vs) =
√

(ni(vs) − ni−1(vs))2 + (oi(vs) − oi−1(vs))2

with 1 ≤ i ≤ lvs . In case of an array variable, the spatial access distance between
two consecutive accesses to this variable decreases, if either the temporal distance
is reduced or if the offsets of the elements involved lie closer together, i.e. the
spatial locality is increased.

Figure 1 (left) shows an example for the computation of the access distances
as defined for the temporal locality measures. Each element of the array has its
own access sequence and therefore spatial locality between neighboring elements
cannot be detected. In constrast the spatial access distances as defined in this
paper combine temporal and spatial information as shown in Figure 1 (right).
There is only one access sequence and an additional offset sequence for the array
X in the example. The euclidian distance between two consecutive memory
accesses to an array is used to computate the spatial access distances.

Based on the spatial access distances, the average spatial access distance of a
variable vs ∈ Vs is defined as

Ms(vs) :=

⎛⎝ lvs∑
i=1

dsi(vs)

⎞⎠ /lvs

Following the definition of the temporal locality measures in [2] we define the
following new cost measures which combine temporal and spatial locality:

700 J. Dümmler, T. Rauber, and G. Rünger

d (X[5])
1

d (X[3])
1

d (X[3])
2

n 0 (X[1]) n 1 (X[1])

n 0 (X[3])

d (X[1])
1

n 1 (X[3]) n 2 (X[3])

n 0 (X[5]) n 1 (X[5])

n 0 (X[7])

1

3

4

5

6

2

7

1

Time Index

2 3 4 6 7 8 90 5

0

O
ff

se
t i

n
A

rr
ay

 X

d
(X

)
s 2

d
(X

)
s 3 d

(X
)

s
4

d
(X

)
s 6

d
(X

)
s5

d
(X

)
s

7

n (X)0

n (X)1

n (X)2

n (X)3

n (X)4

n (X)5

n (X)6

n (X)7

d s 1
(X

)

1

3

4

5

6

2

7

1 2 3 4 6 7 8 90 5

0

O
ff

se
t i

n
A

rr
ay

 X

Time Index

Fig. 1. Example for the calculation of the access distances di(v) as defined in [2] (left)
and dsi(v) as defined in section 2 (right)

Arithmetic mean of access distances:
μsAM (A, n) :=

(∑
vs∈Vs

Ms(vs) · lvs

)
/
∑

vs∈Vs
lvs ,

Arithmetic mean of average access distances:
μsAA(A, n) :=

(∑
vs∈Vs

Ms(vs)
)
/#Vs,

Sum of access distances:

μsSA(A, n) :=
∑

vs∈Vs

(∑lvs

i=1 dsi(vs)
)

,

Square of quadratic mean of access distances:

μsSQ(A, n) :=
∑

vs∈Vs

(∑lvs

i=1 dsi(vs)2
)

/
∑

vs∈Vs
lvs ,

Logarithmic geometric mean of access distances:

μsLG(A, n) :=
∑

vs∈Vs

(∑lvs

i=1 log2 dsi(vs)
)

.

Note that these definitions of locality measures do not cover spatial locality
that may be exploited between different variables. This is only a disadvantage if
the application uses many small arrays and scalar variables. Applications from
scientific computing often operate on large data structures that are addressed
using only a few pointer variables. In this case, spatial locality between different
variables only plays a negligible role. Moreover, from the programmer’s point of
view, the placement of variables to memory locations cannot be directly influ-
enced, i.e., the spatial locality within a single data structure is usually the target
for program modifications.

3 Benchmark Results

In this section, we present experimental results for different program versions and
compare the resulting execution times to the predictions obtained by applying
the locality measures. We use the multiplication of two square matrices as this
is part of many applications from scientific computing and because the locality

Combining Measures for Temporal and Spatial Locality 701

properties have been studied extensively. The program transformations used
heavily rely on the exploitation of spatial locality. Therefore it is a good example
to demonstrate the advantage of the extended measures. In the second example
we study different program versions of an iterated RK solver for large ODE
systems. These program versions use different computation schemes to calculate
the argument vectors. The performance is influenced by temporal and spatial
locality.

The program-based locality measures were calculated by utilizing a library in
cooperation with a special simulation program. The simulation program mimics
the memory access pattern of the target program version and calls special library
function which accumulate all memory accesses and compute the cost measures.
Memory accesses to index variables used for loop control were not considered,
because, depending on the platform and the compiler, these variables are often
stored in processor registers. In future versions a fully automated determination
of the measures by a suitable compiler tool is planned.

The hardware characteristics of the platforms used for benchmark tests are
summarized in Table 1.

Table 1. Platforms used for benchmark tests

Processor Intel Xeon Intel Itanium 2 Intel Pentium 3 Sun UltraSparc III

Clock Rate 2.0 GHz 900 MHz 650 MHz 750 MHz

L1 Cache 8K data + 12K
micro-ops

16K data + 16K
instr., 4-way

16K data + 16K
instr., 4-way

64K data + 32K
instr., 4-way

L2 Cache 512K, 8-way 256 KB, 8-way 256 KB, 8-way 8 MB, 2-way

L3 Cache n/a 1.5 MB, 12-way n/a n/a

3.1 Multiplication of Two Square Matrices

As a first example we study different program versions for the multiplication
of two matrices. Figure 2 (left) shows the pseudo code of a straight forward
implementation. Through interchanging the loops in the second loop nest, six
different program versions are derived, which are denoted as mmm xyz(), where
x is the index variable of the outermost loop, y the index variable of the middle
loop and z the index variable of the innermost loop.

Assuming a row-wise data layout for all matrices, program version mmm ikj()
offers the best locality properties[1]. This is due to a stride 1 data access to the
matrices B and C in the innermost loop, which results in an optimal exploitation
of spatial locality. The accesses to matrix A can benefit from temporal locality
in the innermost loop and from spatial locality in the middle loop.

Loop blocking is another popular program transformation, which can increase
temporal locality. In each of the six program versions one, two or all three loops

702 J. Dümmler, T. Rauber, and G. Rünger

function mmm ijk():

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

C[i][j] = 0;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)

C[i][j] += A[i][k] * B[k][j];

function mmm ikj 3(bs):

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
C[i][j] = 0;

for (i = 0; i < N; i+=bs)
for (k = 0; k < N; k+=bs)
for (j = 0; j < N; j+=bs)

for (ii = i; ii < min(i+bs, N); ii++)
for (kk = k; kk < min(k+bs, N); kk++)

for (jj = j; jj < min(j+bs, N); jj++)
C[ii][jj] += A[ii][kk] * B[kk][jj];

Fig. 2. Pseudo code of a matrix-matrix-multiplication with loop ordering (i, j, k) (left)
and with loop ordering (i, k, j) and loop blocking applied to all three loops (right)

0.25

0.5

0.75

1.0

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Relative execution time for selected program versions

m
m

m
_ij

k(
)

m
m

m
_ik

j()

m
m

m
_jk

i()

m
m

m
_ik

j_1
(1

6)

m
m

m
_ik

j_2
(1

6)

m
m

m
_ik

j_3
(1

6)

Intel Xeon

Intel Itanium 2

Intel Pentium 3

Sun UltraSparc III

Fig. 3. Relative execution time of program versions of a matrix-matrix multiplication
using 1024x1024 matrices on different platforms

can be blocked. This results in 18 additional program versions, which have the
block size as a parameter. For simplicity we use the same block size for all loops.
We denote these program versions as mmm xyz n(bs), where x, y and z refer to
the loop ordering, n gives the number of blocked loops and bs is the block size
used. Figure 2 (right) gives the pseudo code of function mmm ikj 3(bs).

Figure 3 shows a selection of benchmark results scaled to a value of 1.0 for
the slowest version, which was mmm jki() in all cases. Considering the program
versions without blocking, mmm ikj() shows the best performance on all plat-
forms. The speedup achieved depends on hardware characteristics, like the cache
latency, and therefore differs from platform to platform. The block size leading
to a minimum runtime is platform depend. We show a block size of 16, because
it achieved competitive runtimes on all platforms.

Figure 4 shows on the left side the program-based locality measures for tempo-
ral locality as introduced in [2] and on the right side the extended cost measures
introduced in this paper, both scaled to a maximum of 1. The temporal locality
measures cannot predict the resulting runtime accurately, since temporal local-
ity plays only a negligible role in the program tranformations. All spatial locality
measures identify program version mmm jki() as the one with the worst local-
ity properties. The program versions with blocking and mmm ikj() achieve the

Combining Measures for Temporal and Spatial Locality 703

0.25

0.5

0.75

1.0

R
el

at
iv

e
lo

ca
lit

y
va

lu
e

Locality measures for selected program versions

m
m

m
_ij

k(
)

m
m

m
_ik

j()

m
m

m
_jk

i()

m
m

m
_ik

j_1
(1

6)

m
m

m
_ik

j_2
(1

6)

m
m

m
_ik

j_3
(1

6)

μ
AM

μ
AA

μ
SA

μ
SQ

μ
LG

0.25

0.5

0.75

1.0

R
el

at
iv

e
lo

ca
lit

y
va

lu
e

Extended locality measures for selected program versions

m
m

m
_ij

k(
)

m
m

m
_ik

j()

m
m

m
_jk

i()

m
m

m
_ik

j_1
(1

6)

m
m

m
_ik

j_2
(1

6)

m
m

m
_ik

j_3
(1

6)

μ
s

AM

μ
s

AA

μ
s

SA

μ
s

SQ

μ
s

LG

Fig. 4. Relative values of the temporal locality measures (left) and the spatial locality
measures (right) for different program versions of a matrix-matrix multiplication

lowest spatial locality value and therefore are considered to have the best mem-
ory access locality. These results match with the runtime tests shown in Figure 3
and with the theoretical considerations in [1].

Altogether it can be stated, that the spatial locality measures are able to cap-
ture the locality properties of the different program versions of a matrix-matrix
multiplication. These effects could not be uncovered using only the temporal
locality measures.

3.2 Iterated Runge-Kutta Methods

As a more complex example from scientific computing we study the spatial local-
ity measures with different program versions of solvers for initial value problems
(IVPs) of ODEs. Large systems of ODEs arise, e.g. when discretizing time de-
pendent partial differential equations (PDEs) in the spatial domain using the
method of lines[3]. Iterated RK solvers are explicit methods which were derived
from classical implicit methods. The advantage of the iterated RK methods is the
data independence of the computation of the stage vectors admitting a parallel
execution [4]. From the implicit system of equations it is possible to construct
an explicit system by computing approximations μ

(i)
l , i = 1, . . . , m, for the stage

vectors vl, l = 1, . . . , s, using a fixed point iteration starting with ηk and using a
fixed number of steps m, which depends on the RK method.

The following computation scheme shows the core of an iterated RK solver,
where h is the step size and aij , bi and ci are parameters of the underlying
implicit RK method:

for (l = 1; l <= s; l++)
μ

(0)
l = f(xk, ηk);

for (i = 1; i <= m; i++)
for (l = 1; l <= s; l++)

μ
(i)
l = f(xk + clh, ηk + hk

∑s
j=1 aljμ

(i−1)
j);

ηk+1 = ηk + hk

∑s
j=1 biμ

(m)
j ;

704 J. Dümmler, T. Rauber, and G. Rünger

0 25000 50000 75000 100000 125000 150000
0

5

10

15

20

25

ODE system size

ru
nt

im
e

in
 s

ec
on

ds

Runtime of Radau IA method on Sun UltraSparcIII

Version A
Version B
Version C

0 25000 50000 75000 100000 125000 150000
0

5

10

15

20

25

30

35

40

45

50

ODE system size

ru
nt

im
e

in
 s

ec
on

ds

Runtime of Radau IA method on Intel Itanium 2

Version A
Version B
Version C

Fig. 5. Runtime in seconds of a Radau IA method applied to the Brusselator ODE on
a Sun UltraSparc III (left) and on an Intel Itanium 2 (right)

0 25000 50000 75000 100000 125000 150000
0

5.0e+03

1.0e+04

1.5e+04

2.0e+04

2.5e+04

3.0e+04

ODE system size

m
ea

n
of

 a
cc

es
s

di
st

an
ce

s

Radau IA for Brusselator

Version A
Version B
Version C

0 25000 50000 75000 100000 125000 150000
0

2.0e+12

4.0e+12

6.0e+12

8.0e+12

1.0e+13

1.2e+13

1.4e+13

1.6e+13

1.8e+13

ODE system size

su
m

 o
f a

cc
es

s
di

st
an

ce
s

Radau IA for Brusselator

Version A
Version B
Version C

Fig. 6. Locality measures μsAM (left) and μsSA (right) for Radau IA applied to the
Brusselator ODE

Version A: Program version A is a straightforward implementation of the
computation scheme for iterated RK methods.

Version B: In this program version the computation of the argument vectors
needed to calculate the approximation μ

(j)
l is modified. Separate argument vec-

tors are introduced for each iteration, which results in a higher memory require-
ment and an additional multiplication per iteration. Some of the dependencies
are resolved, so that further transformations are possible.

Version C: Through interchanging loops program version C is generated.
Each computation is put in a separate loop nest, which results in an optimal
exploitation of spatial locality. The computational and memory requirements are
equal to those of version B.

To compare the performance of the three program versions we executed bench-
mark tests on different platforms. We use the Radau IA method [3] as basic RK
method and solve the Brusselator equation [5] as example ODE system. The
Brusselator equation is used to describe the reaction of two chemical substances
with diffusion in the two dimensional space.

Combining Measures for Temporal and Spatial Locality 705

0 25000 50000 75000 100000 125000 150000
0

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09

3.0e+09

3.5e+09

ODE system size

sq
ua

re
 o

f a
cc

es
s

di
st

an
ce

s
Radau IA for Brusselator

Version A
Version B
Version C

0 25000 50000 75000 100000 125000 150000
0

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09

3.0e+09

3.5e+09

4.0e+09

ODE system size

lo
ga

rit
hm

 o
f a

cc
es

s
di

st
an

ce
s

Radau IA for Brusselator

Version A
Version B
Version C

Fig. 7. Locality measures μsSQ (left) and μsLG (right) for Radau IA applied to the
Brusselator ODE

Figure 5 shows the runtime for different system sizes on a Sun UltraSparc
III processor and on an Intel Itanium 2 system. The performance of program
versions A and B on the UltraSparc III platform are about equal, whereas
program version C achieves an average speedup of 14%. On the Intel Itanium
2 the transformed program version B is 6% on the average slower compared
to the original version A. The final program version C performs better than
version B but cannot reach the performance of version A. This can be explained
by the additional operations performed by versions B and C introduced by the
transformation step.

Figure 6 (right) shows the spatial locality measure μsSA for the program ver-
sions of an iterated RK solver. A similar result is obtained by applying measure
μsAA . These two measures testify an about equal locality of memory accesses
to program versions A and B. Program version C shows smaller locality values
as expressed by the measures, i.e. is assumed to have a better memory access
locality. The results obtained by cost measure μsAM shown in Figure 6 (left)
and by cost measure μsSQ shown in Figure 7 (left) certify program version B a
better memory access locality compared to version A. In contrast measure μsLG

presented in Figure 7 (right) yields a lower locality value and therefore a better
memory access locality for program version A.

All spatial locality measures examined certify program version C the best
memory access locality. The locality values of program versions A and B lie
closely together for all measures. These result correspond with the measured
runtimes on the Sun UltraSparc III processor very well. On the Intel Itanium 2
processor program version A achieves a smaller runtime. This program version
requires fewer operations, which cannot be captured by the locality measures.

4 Related Work

An analytical examination of cache misses can be made by using cache miss
equations, which can be used to calculate the position of cold misses and re-
placement misses in arrays. Direct mapped caches were analysed in [6] and the
results generalized to associative caches in [7]. In [8] a worst case scenario is

706 J. Dümmler, T. Rauber, and G. Rünger

considered, which allows the prediction, whether a memory access is always a
cache hit, always a cache miss or a prediction is not possible. The exact para-
meters of the memory hierarchy must be known to use this approach.

Cache misses for matrix-multiplication were analyzed in [9] for caches with
different associativities and cache line sizes. In contrast, our approach tries to
give an architecture independent measure of locality properties. An architecture-
independent metric that represents the temporal behavior of data-movements of
parallel programs in a distributed shared-memory environment has been pre-
sented in [10].

5 Conclusion and Future Research

In this paper we have introduced an extension to program-based locality mea-
sures which adds support for spatial locality. It has been shown that the spatial
locality measures can be used to compare temporal and spatial locality proper-
ties of different program versions.

In future work we plan to add support for a fully automical determination
of these measures. An extension of the cost measures to include the number of
arithmetical operations is also possible. Another area of future research focuses
on the extension of the cost measures for parallel programs.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Academic
Press, 522 B Street, Suite 1900, San Diego, CA 92101-4495, USA (2002)

2. Rauber, T., Rünger, G.: Program-based locality measures for scientific computing.
International Journal of Foundations of Computer Science 15 (2004) 535–554

3. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations. 2
edn. Volume 1. Springer (2002)

4. Rauber, T., Rünger, G.: Parallel Execution of Embedded and Iterated Runge-
Kutta Methods. Concurrency - Practice and Experience 11 (1999) 367–385

5. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. 2 edn. Volume 2.
Springer (2004)

6. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: An analytical repre-
sentation of cache misses. In: Int. Conf. on Supercomputing. (1997) 317–324

7. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: a compiler framework
for analyzing and tuning memory behavior. ACM Transactions on Programming
Languages and Systems 21 (1999) 703–746

8. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for
real-time systems. Real-Time Syst. 17 (1999) 131–181

9. Lam, M., Rothberg, E., Wolf, M.: The cache performance and optimizations of
blocked algorithms. In: Proc. of the 4th Int. Conf. on Architectural support for
programming languages and operating systems, ACM Press (1991) 63–74

10. Rodriguez, B., Jordan, H., Alaghband, G.: A Metric for the Temporal Character-
ization of Parallel Programs. Journal of Parallel and Distributed Computing 46
(1997) 113–124

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 707 – 716, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Parallel Processing Applied on the Electric Grounding
Systems Design

Marco Aurélio S. Birchal1, Maria Helena M. Vale2, and Silvério Visacro2

1 PUC Minas – Pontifícia Universidade Católica de Minas Gerais
GSDC – Computing and Digital Systems Group

Av. Dom José Gaspar, Belo Horizonte, 30535-910, Brazil
birchal@pucminas.br

http://www.pucminas.br
2 UFMG – Universidade Federal de Minas Gerais, LRC – Lightning Research Center

Av. Antônio Carlos 6627, Belo Horizonte, 31270-910, Brazil
{mhelena, visacro}@cpdee.ufmg.br

http://www.ufmg.br

Abstract. Electrical engineering is a source of problems that can take advan-
tage of the parallel processing on computing. It happens once the kind of nu-
meric solution is often done by the evaluation of linear equations put in matrix
style. Concrete encased grounding systems are a powerful answer to the
grounding design problem. It uses the metal embedded in the concrete structure
of the building as grounding electrodes. Nevertheless, the great demand of
computer processing, necessary to calculate such a grounding system, makes it
difficult to use sequential program implementation. This paper presents the ba-
sis of the engineering problem and a parallel tool, called PENCAPS, that im-
plements the numeric solution developed to solve concrete encased electrode
grounding systems.

1 Introduction

Grounding systems are a fundamental part of the electrical project of buildings. Most
edifications are made with concrete foundations. The natural availability of the metal
grid inside the concrete blocks turns it possible to use them as grounding electrodes.
The electrode formed by the metal-concrete block junction is called concrete encased
electrode [1]. Figure 1 shows this concept.

This kind of use has been made for many years with great effectiveness in lowering
the total resistance of the grounding system. Nevertheless, the use of the concrete
encased grounding has been done almost totally in an empirical way, lacking a
mathematical formulation of its behavior.

The LRC (Lightning Research Center) Grounding Group, at UFMG – Federal Uni-
versity of Minas Gerais - studied the engineering problem as an application of the
electromagnetic theory [2] and presented a mathematical model that can be solved by
numeric method.

708 M.A.S. Birchal, M.H.M. Vale, and S. Visacro

Fig. 1. A concrete encased electrode

A sequential program was developed [3], based on that model, proving the model
to be effective. The program, however, couldn’t handle realistic large size electrical
systems, due to its processing limitations.

A new parallel application, called PENCAPS, was proposed and implemented to
solve systems that demands great computational resources.

The rest of this paper treats the working model and details this application. Sec-
tion 2 brings the mathematical numeric model that treats the concrete encased
electrode problem. Section 3 discusses the design of concrete encased grounding
systems. Section 4 shows the development of the application and details the parallel
programming solution used on it. Section 5 shows a case study used to verify the
application. Section 6 depicts and discusses the benchmark results and Section 7
shows the conclusions of the work.

2 Numeric Model

The solution of a grounding system consists on finding the total equivalent resistance
of a given physical arrange of electrodes [4].

The numeric solution proposed by the authors involves the applying of the elec-
tromagnetic theory to find some relationships among the electrical variables involved
in the problem.

The main differentiation of the solution proposed is to use the equivalence between
the electrical current that passes through a surface section and its corresponding
charge density. Figure 2 shows a concrete encased electrode and the fragmentation of
its length in little surfaces. The faces of the concrete block also were divided into a
mesh of surfaces.

 Parallel Processing Applied on the Electric Grounding Systems Design 709

Fig. 2. Block and electrode surfaces

After applying boundary element method over each one of the surfaces of the elec-
trode [5] and concrete block, one can write the relation given by Equation 1.

=

=
n

i
iih rNr

1

)()(ηη

(1)

In this equation, ηh(r) is the unknown value of the system and represents the set of
charge densities of all the created surfaces. ηi is the charge contribution of each one of
the surfaces over all others. Ni is a function that assumes zero or one, depending on
specific conditions. Details of the proposed solution can be found in earlier works of
the Group [2], [3], [5].

Equation 1 can be rewritten in the matrix form and, doing so, one can evaluate this
by applying a linear equation system solver. Equation 2 shows this new representation
form. In this equation, the values of the Vn vector represent the known electric poten-
tial for a given fault protection event.

The Aij terms that form the main matrix are given by the equations 3 and 4, where
ε0 is the air permissivity, ρs and ρc are the resistivity of the soil and concrete, respec-
tively; ri and ri´ are points over the surfaces.

The ηi vector has to be calculated.

()

⋅

−

=

n
nnnn

n

n

n

AAA

AAA

AAA

V

V

V

η

η
η

...

1......

.........

............

......

......

0

...

0

0

...
2

1

21

22221

11211

2

1

(2)

The process of building matrix A is a time consuming one and can take advantage
of the use of a parallel processing.

710 M.A.S. Birchal, M.H.M. Vale, and S. Visacro

jidS
rr

rrnrN
A

jS jio

jiijj

cs

cs
ij ≠

−

−
+
−

= ,
4

).()(

)(

)(
2

30
περρ

ρρε

(3)

jidS
rr

rrnrN
A

iS iio

iiiii

cs

cs
ii =

−
−

+
−

= ,
´4

´).(´)(

)(

)(
2

30
περρ

ρρε

(4)

3 The Grounding Design

The design of a concrete encased grounding system comprises a set of tasks. Some of
these steps are very time consuming and so, indicated to be parallelized.

Figure 3 shows the data flow of a grounding design and depicts which of those
tasks can be done in parallel. The first step is the Geometry Construction, where the
user specifies the geometry of the physical system and its electrical properties.

The second step is the automatic Mesh Generation. Here, the system collects the
input data and builds a mesh of boundary elements.

The third and the most time consuming is the Matrix Generation, where the system
builds the main matrix of the engineering problem to be solved. This is made by ap-
plying the electrical attributes on the previously generated mesh.

The forth step does the main calculation, where the problem is solved. It resolves
the linear equation system formed by the main matrix and the electrical potential input
vector. The last task is a post-processing one. It calculates the potential over given
physical coordinate points, to plot the potential profile graphic.

Fig. 3. Steps of a grounding design

4 The Parallel Program Application

The matrix A showed in the Equation 2 is a full matrix of large dimension, where
each of its elements is an integral that can be double, in certain conditions. This leads

 Parallel Processing Applied on the Electric Grounding Systems Design 711

the building of this matrix to be a great time consuming process that can forces one to
decrease the complexity of the electrical system.

With the use of parallel processing on computing it is possible to increase the size
of the electrical system to the limits of a real engineering problem and get it solved in
a reasonable processing time.

The computational solution implemented in PENCAPS and showed in this work
creates two different software tools, to handle with the design of a concrete encased
electrode grounding system. Figure 4 shows the interactions between the tools – the
front-end and the back-end – and the environment possibilities.

Fig. 4. The application architecture possibilities

4.1 The Front-End

The first tool is a sequential front-end application that helps the user to enter the engi-
neering problem specifications, as the geometry details and electrical values to be
applied to the physical elements. This tool does all the interactions between the design
staff and the computer system, working as a user interface with graphics resources.

It also can plot the resulting electrical system geometry and the potential profile of
a given fault. The sequential steps of the concrete encased grounding design are all
done by the front-end. It manages the grounding project in a hierarchical way.

This can keep track on the relations among the different pieces of data that com-
pounds the grounding project. The data are collected on input files and the results are
calculated.

The front-end disposes the tasks that comprise the concrete encased grounding de-
sign in a tree, where all data can be reached. This kind of arrangement also brings a
visual understanding of the entire process and the time sequence for the steps to be
done.

712 M.A.S. Birchal, M.H.M. Vale, and S. Visacro

4.2 The Back-End

The back-end is the parallel tool developed to achieve high performance where exists
great processing demand.

It was written in C language with the MPI (Message Passing Interface) API [6].
This results in an application tool with good portability, making it suitable to run in
many hardware platforms.

The parallel implementation. There are two distinct parallel functions implemented
on the back-end. The first and main one is the building of the matrix A. The second is
the parallel calculation of the electrical potential profile.

The matrix building is the more time consuming step of the concrete encased
grounding design. A parallel procedure can increase the performance of such a task,
what significantly contributes to the overall process. To build the matrix, one has to
calculate each one of its cells, whose contents are heavy to solve integral equations.

This process has four separate steps, each one applied to a part of the matrix.
These parts represent the interactions among the different nature physical elements
(electrode-electrode interaction, electrode-concrete interaction, concrete-electrode
interaction and concrete-concrete interaction). Figure 5 details the matrix building
process.

The second parallel procedure implemented in the back-end is the calculation of
the electrical potential profile. This is the last phase of the concrete encased ground-
ing design.

P1

P2

P3

f11

f12

f13

f21

f22

f23

f31

f32

f33

f41

f42

f43

step 1 step 2 step 3 step 4

input data

f11

f12

f13

f21

f22

f23

f31

f32

f33

f41

f42

f43

Matrix builded

Fig. 5. The matrix building process

After obtaining the total equivalent grounding resistance, one can calculate the
fault potential over the soil surrounding the grounding system.

This is very useful since, with the potential profile, one can evaluate the real risk
conditions presented by the grounding system, in the presence of an electric fault.

The calculation process can become very time consuming, depending on the quan-
tity of points to be evaluated. The more the points, the better the resolution of the
resulting potential profile graphic.

The implemented parallel routine uses the master-slave model, where the master
reads points and sends them to be calculated by the slaves. Figure 6 shows the scheme
of this implementation.

 Parallel Processing Applied on the Electric Grounding Systems Design 713

Fig. 6. Master-slave potential calculus

Complexity analysis. As discussed before, the main parallel routine is the matrix
building one. It has four separate subroutines, each one dealing with a different kind
of integral equation. The first equation has a loop of size n, where n is the number of
line elements. This leads to an O(n) complexity in this phase of the computation.

The second has an O(n2) complexity, due to an internal loop for solving a double
integral equation.

The third subroutine solves an O(m.n) equation, where m is the number of the
four-sided polygons created by the mesh structure. The fourth, the heaviest subrou-
tine, is O(m2).

In all cases, the problem is divided by p processors, leading the four subroutines
complexity to O(n/p), O(n2/p), O(m.n/p) and O(m2/p), respectively.

The parallel implementation of the electric potential profile leads to an O(n/(p-1))
complexity, since the n points are distributed to p-1 slaves, once the master in this
procedure doesn’t process calculations but distributes the points to the slaves.

5 Case Study

The application was submitted to a case study [7], [8], in a way of collecting bench-
mark data and performance evaluation.

Fig. 7. Grounding structure of the case study

714 M.A.S. Birchal, M.H.M. Vale, and S. Visacro

The proposed case presents a common grounding arrangement, in which an edifi-
cation is found in the surroundings of an electric power substation. The substation has
a grid electrode grounding system buried in the soil.

The building has its concrete encased electrodes represented by two encapsulated
metal rings inside its foundations. Figure 7 shows the physical structure of the
grounding system.

Both structures are connected by an air cable, through the electrical subdistribution
transformer.

The calculated equivalent resistance of the proposed system was 27.1 Ω, considering
2500 Ω.m and 400 Ω.m the resistivities of the soil and of the concrete, respectively.

6 Results and Discussion

The case study was run over two different testbeds and the speedup [9] was
calculated.

The first testbed is a distributed memory IBM RS/6000 SP supercomputer, with 42
120 Mhz risk processors. The second testbed is a cluster of 10 dual Pentium III 1 Ghz
processors, with a gigabit Ethernet network. Both systems are located in the
CENAPAD MG/CO (High Performance Processing National Center - Minas Gerais
and Midwest Region) in Belo Horizonte, Brazil.

The same engineering problem was run over the two hardware platforms and the
speedup was calculated as a function of the number of processors involved in the
matrix building.

Figure 8 shows the execution time and the corresponding speedup, as a function of
the number of processors used, when running over the IBM machine. As it shows,
there is an initial dysfunction of the speedup when using less than 5 processors. How-
ever, for five processors or more, the speedup goes increasing as expected.

R S / 6 0 0 0

0,900,770,511,00 1,25 1,44 1,50 1,65 1,57 1,81 1,68 1,91 1,92 2,08 2,19 2,24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

processors

tim
e

[s
]

Fig. 8. Speedup over IBM RS/6000 SP

 Parallel Processing Applied on the Electric Grounding Systems Design 715

This initial behavior seems to happen as a result of the latency of the network,
since the speedup increases when the set of values to be sent decrease once there are
more processors running. One can also see that the increasing of processors for a
number greater than 14, makes no great gains in speedup.

The second test, conducted over the cluster platform, had a much more predicted
behavior, once the speedup responded as expected, in function of the number of proc-
essors being used. This is a more powerful platform, with quicker processors and
network, as depicted by the Figure 9.

C l u s t e r

1, 0 0 1, 5 9 2, 4 0 2, 9 0 4, 1 2 4, 7 1 4, 8 2 5, 2 5 5, 0 4 5,8 6

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

processors

 ti
m

e
[s

]

Fig. 9. Speedup over Pentium cluster

In this test, the speedup kept increasing as the number of processors grew. Never-
theless, the speedup stabilized after 8 processors, with not much gain in the speedup
after this limit. In both cases, one can see that there was a considerable increase of
performance, as the speedup got to 2.24 in the first case and to a much better 5.86 in
second case.

7 Conclusion

Concrete encased electrode grounding systems are a complex kind of engineering
problem that had been challenged designers on solving it. This work presented not
only a numerical solution to accomplish this task but an efficient algorithm which
implements that.

In a way of guaranteeing an efficient solution to the problem once it is a great
computational resource consumer, the algorithm was implemented using parallel
processing. The resulting computational application that was developed to perform
such type of design proved to be a powerful tool that is able to efficiently solve
large scale grounding problems. This valuable tool may help engineers on designing

716 M.A.S. Birchal, M.H.M. Vale, and S. Visacro

more reliable electrical protection systems. The case study presented in this work
demonstrated the use of the software in a common situation that represents a typical
engineering problem and the results obtained confirmed the worth of the application
program.

References

1. Ufer, H. G., “Investigation and Testing of Footing-Type Grounding Electrodes for Electrical
Installations”, IEEE Trans. Power Apparatus and Systems, vol 83, 1964, pp. 1042–1048.

2. Visacro, S. F., Ribeiro, H. A., Palmeira, P. F. M., “Evaluation of Potential Distribution at
Vicinities of Grounding Configurations Comprising Both Concrete Encased Electrodes and
Conventional Meshes”, Proceedings of the International Conference on Grounding and
Earthing - GROUND´2000, Belo Horizonte, Brazil, 2000, pp. 123-126.

3. Ribeiro, H. A., Development of a Computational Tool for the Performance Evaluation of
the Concrete Encased Grounding Systems Over Low Frequency Phenomena. M.SC Thesis –
(in Portuguese), UFMG, Belo Horizonte, Brazil, 2000.

4. Visacro, S. F., Aterramentos Elétricos, Alphagraphics, Belo Horizonte, 1998.
5. Visacro, S. F., Ribeiro, H. A., “Some Evaluations Concerning the Performance of Concrete-

Encased Electrodes”, Proceedings of the International Conference on Grounding and
Earthing - GROUND´98, Belo Horizonte, Brazil, 1998, pp. 63-67.

6. Snir, M., Otto, S., Lederman, S. H., Walker, D., Dongarra, J., MPI: The Complete Refer-
ence, The MIT Press, London, 1996.

7. Visacro, S. F., Vale M. H. M., Birchal, M. A. S., “Grounding Safety Analysis: Interconnect-
ing Substation Grid to External Electrodes”, Proceedings of the IX Symposium of Special-
ists in Electric Operational and Expansion Planning, Rio de Janeiro, Brazil, 2004.

8. Birchal, M. A. S., Vale M. H. M., Visacro, S. F., “Analysis of Risk Conditions on Intercon-
nected Grounding Systems: Concrete Encased Electrodes and Grid”, Proceedings of the In-
ternational Conference on Grounding and Earthing – GROUND´2004, Belo Horizonte, Bra-
zil, 2004, pp. 297-301.

9. Hennessy, J. L. D., Patterson, A., Computer Architecture a Quantitative Approach, 3rd ed.
San Francisco: Morgan Kaufmann, 2002.

Implementing Overlapping Domain
Decomposition Methods on a Virtual Parallel

Machine

David Darjany1,�, Burkhard Englert2,��, and Eun Heui Kim1,� � �

1 California State University Long Beach, Dept. of Mathematics and Statistics
Long Beach, CA 90840

ddarjany@yahoo.com, ekim4@csulb.edu
2 California State University Long Beach, Dept. of Comp. Engr. & Comp. Science

Long Beach, CA 90840
benglert@csulb.edu

Abstract. To solve many partial differential equations of different types
domain decomposition techniques were developed. Such algorithms are
generally very well suited for implementation on a virtual parallel ma-
chine, simulated on a distributed system. While such algorithms are read-
ily available and well established in the literature, authors do usually not
concern themselves with questions of the practical implementability of
their algorithms. In particular issues such as finding the optimal size
of overlap in domain decompositions, finding the most effective number
of subdomains or deciding whether to use exact or inexact subdomain
solvers are beyond the scope of these results. In this paper we will ad-
dress these questions. We first develop suitable domain decomposition
algorithms for our virtual parallel machine. Through numerical exper-
iments using our algorithms we then show that smaller linear systems
work well even without any overlap while larger systems require that at
least 10% of the subdomain size overlap to have convergency. The data
also indicates that between 20% to 35% of the subdomain is the optimal
overlap size. We next increase the number of subdomains and analyze its
effect on the parallel solver. Our data shows that for a sufficiently large
linear system computational speed of convergence improves significantly
as the number of subdomains increases. We finally compare the effective-
ness of exact and inexact domain solvers and show that the appropriate
choice of the number of iterations in the worker algorithm, is much more
efficient in the inexact solver than in the exact solver.

1 Introduction

Domain decomposition techniques have been developed in recent years for solv-
ing partial differential equations of various types including elliptic, parabolic and

� Research supported by the Dept. of Energy under grant DE-FG02-03ER25571.
�� Research supported by the Dept. of Transportation under METRANS USC-

111699.
� � � Research supported by the Dept. of Energy under grant DE-FG02-03ER25571.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 717–727, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

718 D. Darjany, B. Englert, and E.H. Kim

mixed type equations. In particular for elliptic problems, various domain decom-
position algorithms are well developed, see for example the survey paper by Chan
and Mathew [6] and the references therein for details. While these algorithms
are readily available they are only little concerned with practical implementabil-
ity on parallel clusters. In particular issues such as finding the optimal size of
overlap in domain decompositions, finding the most effective number of subdo-
mains or deciding whether to use exact or inexact subdomain solvers are not
addressed in these papers. In this manuscript we will study these more practical
aspects of these domain decomposition techniques. Evaluating the impact of the
underlying hardware, however, is beyond the scope of this paper.

1.1 Domain Decomposition

In general, domain decomposition methods can be classified either as overlap-
ping subdomain algorithms or nonoverlapping subdomain algorithms, based on a
decomposition of the domain into a number of overlapping subregions or nonover-
lapping subregions respectively. A comparison of some of the overlapping and
nonoverlapping algorithms can be found in [4]. As it was discussed in [6] the over-
lapping method is generally easier to implement (the nonoverlapping method has
so called interface problems) and it is easier to achieve an optimal convergence
rate and often more robust. However extra work is needed in the overlapping
regions. Furthermore, the overlapping method is not suitable for the discontinu-
ous differential operator because of the discontinuities on the overlapped regions.
The results in [2,5] show that the overlapping and nonoverlapping algorithms are
basically related under a specific interface preconditioner.

In this manuscript we focus on the overlapping method and we briefly discuss
the classical Schwarz alternating algorithms [4,6,7,8,9,10,13] based on overlap-
ping subregions for a Poisson equation with a Dirichlet boundary condition:{

Lu ≡ −Δu = f(x, y), in Ω,
u = g on ∂Ω.

(1)

It also works for a general elliptic equation with a Neumann or mixed boundary
condition. For simplicity we consider Ω is covered by Ωi, i = 1, 2 where Ω1 ∩
Ω2 = ∅. With an initial guess u0, the Schwarz alternating algorithm constructs
a sequence of iterations uk, k = 1, 2, ..., where we first solve⎧⎨⎩

Luk+1
1 = f in Ω1

uk+1
1 = uk |Γ1

uk+1
1 = 0 on ∂Ω1 \ Γ1,

and

⎧⎨⎩
Luk+1

2 = f in Ω2

uk+1
2 = uk+1

1 |Γ2

uk+1
2 = 0 on ∂Ω2 \ Γ2,

where Γ1 = ∂Ω1 ∩ Ω and Γ2 = ∂Ω2 ∩ Ω. Next uk+1 is then defined by

uk+1(x, y) =
{

uk+1
2 (x, y) if (x, y) ∈ Ω2

uk+1
1 (x, y) if (x, y) ∈ Ω \ Ω1.

Depending on the choices of Ωi, i = 1, 2, it can be shown that

‖u− uk‖ ≤ ρk‖u− u0‖, ρ < 1.

Implementing Overlapping Domain Decomposition Methods 719

The constant ρ can be close to one if the overlapping region is thin. See for
example [11]. Depending on the number of subdomains and the geometry of
the domain, there are so called ”coloring methods” in implementing alternating
methods, that is, to determine which subdomains get computed in what order,
see [6] for details.

It is very well known that the Poisson equation arises in the study of stationary
diffusions and waves, electric potential, steady fluid flow, Brownian motion and
so on. We discretize the equation (1) by finite differences (it is also true for finite
elements) to get a large sparse symmetric positive definite linear system:

Au = b. (2)

There are many iterative methods to solve linear systems such as Jacobi,
Gauss-Siedel, SOR and so on. In this manuscript we use the Gauss-Siedel itera-
tive method since it is easy to implement and sufficiently efficient.

We note that for the Poisson equation (even for certain nonlinear equations),
the domain can be scaled to be small. However since our goal is to implement
and test the efficiency of these algorithms for large linear systems (2) when
implemented over a distributed systems, we focus in this paper on solving (2)
for a domain without any scaling.

1.2 Motivation

We now discuss some practical issues in implementing the overlapping subdo-
main method using our new algorithms. One of the issues is how to choose the
size of the overlapping region, that is how to choose γ = dist(Γ1, Γ2)/2 > 0,
where dist is the standard Euclidean distance. Here for simplicity we assume
that subdomains are evenly overlapped. It is pointed out in [3,6] that there are
convergence theories which show that the bigger γ gets the fewer number of iter-
ations is needed. However the convergence theories do not answer the question of
how to choose γ appropriately in practice. The next practical issue is to choose
an optimal number of subdomains. This issue is often governed by the geome-
try of the domain and naturally by the number of clusters available for parallel
computing. Also, in the early stages of the iterations, to save computational
cost, instead of finding exact solutions for subdomain problems, inexact subdo-
main solvers can be used. Inexact subdomain solvers can be formulated in two
ways. One way is that when the differential operator has variable coefficients,
the subdomain problems can be approximated by simpler forms, for example
with constants (average valued) coefficients. The other way is that in solving
the subdomain linear system of (2), it can be used by a few of Gauss-Seidel (or
Jacobi, SOR, etc) iterations or replaced by some other inexact methods (ILU,
ILUT). However in applications, it may result in the loss of convergence in the
iterations.

In this manuscript, we focus on experiments of overlapping subdomain meth-
ods by varying the size of γ and by varying the number of subdomains. Further-
more we compare efficiencies of inexact subdomain solvers and exact solvers by
varying the number of Gauss-Siedel iterations in subdomain solvers. We note

720 D. Darjany, B. Englert, and E.H. Kim

that instead of using alternating methods (alternating subdomains), we run
worker machines simultaneously. That is, with uk, k = 0, 1, ..., in the domain
Ω = {0 < x < a, 0 < y < b}, the master machine sends each corresponding
boundary data for each and every subdomains, worker machines then perform
computations simultaneously and send the new data uk+1 back to the master
machine. We repeat this until uk converges. This simplifies the process of divid-
ing the subdomains to alternate the computations, that is we do not need the
so called coloring method to generate a sequential order of subdomains to work
on them one after the other.

We discuss the algorithms in more detail in Section 2.

1.3 Our Contributions

Our contributions are based on our domain decomposition algorithms for a vir-
tual parallel machine and are threefold:

– Using our algorithms we investigate what happens if we increase the size
of the overlap relative to the size of the domain. We show that the results
depend on the size of the linear system (the domain). Our data shows that
smaller linear systems work well even without any overlapping while the
larger systems require that at least 10% of the subdomain size overlaps
to have convergency. The data indicates that between 20% to 35% of the
subdomain is the optimal overlap size. We provide some numerical results
in Section 3.

– We next increase the number of subdomains and analyze its effect on the
parallel solver. Our data shows that for a sufficiently large linear system its
computational speed improves significantly as the number of subdomains
increases.

– We finally compare the effectiveness of exact and inexact domain solvers and
show that the inexact solver with the appropriate choice of MS, the max-
imum number of iterations in the worker algorithm, is much more efficient
than the exact solver. For a smaller linear system, a relatively small number
of MS is sufficient to improve the efficiency, whereas for a larger system, a
bigger number of MS is needed. Our data shows that as the size of the ma-
trix increases about 250%×250%, the number MS must increase by about
1, 000 %.

2 Algorithms

In this section we describe the algorithms that we designed and used for the
computations. Our virtual parallel machine is implemented over a distributed
system. We designate one machine as master and the others as workers. We
present the algorithm for Master machine in subsection 2.1 and for worker ma-
chines in subsection 2.2. Since implementations of virtual parallel machines are
readily available over the internet, many users will not want to rewrite this

Implementing Overlapping Domain Decomposition Methods 721

code. Hence we also decided to perform our experiments using such available
code packages. We implement Lucio Andrades parmatlab v1.77 Beta - parallel
computing toolbox [1] for distributed computing on connected PCs.

This toolbox using matlab distributes processes to workers available over the
intranet/internet. Each worker must be running a matlab daemon to be accessed.

The toolbox can operate in two possible modes: [MPMD mode] Multiple
program-Multiple Data parallel model; the user has the control to send differ-
ent matlab tasks to remote machines simultaneously and retrieve results later.
[SPMD mode] Single program-Multiple Data parallel model; parallelization and
management of remote workers is done automatically. Input data must be reg-
ularly ordered in matlab hyperblocks.

Our algorithm operates in MPMD mode.
Using this readily available toolbox has several advantages [1]: 1. No com-

mon file system is needed since all communications between tasks are through
TCP/IP connections. 2. The parallel virtual machine does not need to know
which workers are available, it’ll will be listening until workers report ready.
New workers can be added even after the process has been started. 3. Paral-
lelization can be done over different dimensions (up to 5) at the same time
and using contiguous, overlapping or constant hyper-blocks. Indexes can also
vary for different input variables, the only restriction is that the total number
of parallel elements should be the same. 4. The toolbox uses an improved ver-
sion of the TCP/IP TOOLBOX 1.2.3 by Peter Rydesater [12]. In particular,
serialization of data is achieved with a low-level MEX file, reducing the impact
on computational efficiency. Serial data to Matlab variables is also done with a
MEX file.

2.1 Master Algorithm

INPUT: size of main domain (0 ≤ x ≤ a, 0 ≤ y ≤ b), number of sub-domains N , size of overlap
(in # of mesh points), tolerance ε, maximum number of iterations for the master algorithm M ,
maximum number of iterations for the worker algorithm MS, function f(x, y) (the nonhomoge-
neous term in the Poisson equation (1)), boundary function g(x, y). In addition, exact solution
for comparison purposes if known.

OUTPUT: the approximate solution to (1), total number of master iterations, execution time, error
from exact solution (if supplied).
Or, message notifying that max number of iterations has been reached without convergence.

Step 1: Determine sizes of vectors based on domain definition (number of mesh points for interior
domains, boundary domains and the full domain).

Step 2: Initialize g, w, the approximate boundary and function, respectively (we used an initial-
ization function w = 0).

Step 3: Set up position vector, containing the bottom left corner of each domain (this is sent to
the worker machine and then back so we know which domain we are receiving back).

Step 4: Initialize parallel session. Use Lucio Andrades parmatlab v1.77 Beta - parallel computing
toolbox [1].

Step 5: WHILE (the counter < M) do Steps 6–9.

Step 6: Send each domain to a parallel worker machine. This is split up into 3 steps. First
send the leftmost domain, then the middle domains, and lastly, the rightmost domain.
The worker machines run a Poisson algorithm, which is described in Subsection 2.2.

Step 7: Receive each domain from parallel worker machines. They are received in random order,
and reset to its proper location in the w−vector based on the returned start position of
that particular domain.

Step 8: Check one column of a domain with its matching value from another domain. (What
is checked is the left most domain of the overlap of each region).

722 D. Darjany, B. Englert, and E.H. Kim

If the difference between the two columns values is less than ε (we take ε = 10−2), for
every overlap region, then mesh results together, using only one sub-domains data for each
overlap. Graph the result.
Close the parallel session. STOP.

Step 9: Else, replace w by the newly computed solution, increment the counter and go to
Step 6.

Step 10: Close the parallel session. STOP.

2.2 Worker Algorithm (Poisson Algorithm)

We implement the Gauss-Siedel iterative method and test for both an exact
solver which is identical to the Gauss-Siedel iterations and an inexact solver
which must execute the algorithm after MS, relative small, number of iterations
even without convergence. In the algorithm there is no differences between the
exact and the inexact solvers except the obvious one, MS for the exact is large
and MS for inexact is small.

INPUT: the most current approximate solution of (1) W temp, the start position of where this data
sits in the x − y plane (lower left boundary) startPos, the nonhomogeneous function f(x, y),
the most current boundary data g corresponding to W temp, a vector holding (i) the mesh
size Δx = Δy (ii) number of y steps the data encompasses, (iii) number of x steps the data
encompasses (iv) maximum number of iterations for the procedure to be performed, MS.

OUTPUT: the approximate solution W , startPos which is the same as the input value, a Boolean
result of whether or not the algorithm converged within the max number of iterations it was
allowed to perform sol.

Step 1: Set up local variables from passed vectors
Step 2: Set up the vector b, the RHS of Ax = b, from the finite difference methods by using the

boundary data g, the nonhomogeneous function f and Δx = Δy.
Step 3: WHILE ((I) the counter < MS or (II) the error between the most recent and the previous

approximation > ε) do Gauss-Seidel iterations with the initial approximation W temp.

Step 4: Send the approximate solution W , startPos, sol to the master machine. STOP.

3 Numerical Experiments

For implementations, we use f = 2 sin(πy/b) + (π/b)2x(a − x) sin(πy/b) and
g = 0 on the boundary so that the exact solution of the Possion equation (1)
becomes uexact = x(a − x) sin(πy/b) on Ω = {0 < x < a, 0 < y < b}. We
use PCs, Intel Pentium 4, 1.5 GHz, 256MB of RAM, 40GB hard drives. We
are connecting PCs via a local area network. The operation system for PCs is
Windows XP. The programming codes are written in Matlab version 6. In all
of our experimentations, we use the mesh size Δx = Δy = 10−1 and thus the
tolerance ε = 10−2.

3.1 Varying Size of Overlap

By subdomain size we mean the following. For a given domain Ω we evenly
subdivide Ω into N many nonoverlapping subdomains, say Ω′

i, such that Ω =⋃N
i=1 Ω

′
i where Ω means the closure of Ω. We let the size of Ω′

i be the subdomain
size. We then extend Ω′

i to obtain an overlapping decomposition Ωi of Ω for
worker machines to perform computations.
Case 1A: Domain Ω = {0 < x < 3, 0 < y < 1}, number of subdomains is 3.
Exact solver method is used for subdomain solvers. Subdomain size is 1.

Implementing Overlapping Domain Decomposition Methods 723

In this case, we increase the size of the overlap from 0 to 0.5, that is the
number of overlapping mesh points from 1 to 11. The number of iterations in
the Master machine decreases as the size of overlap increases. However when the
overlap size gets bigger than 0.2 (20%), the execution time jumps from 12.7s to
18.3s. In fact this case shows that the fastest execution time is obtained when
the size of the overlap is 0.2, which, however is very close to the case when the
size of overlap is 0, and it gets slower beyond 0.3. We think that it is because
beyond the overlap 0.3 the workers are solving unnecessarily large linear systems
and thus it becomes inefficient. This suggests that the optimal size of the overlap
is within 20% of the subdomain size.

Table 1. Case 1A

of mesh points # Iterations Execution Time max |u − uexact|
(Size of overlap) in Master in seconds

1(0) 6 12.8 6.256 × 10−3

3(0.1) 5 13.8 1.332 × 10−3

5(0.2) 4 12.7 1.512 × 10−3

7(0.3) 4 18.3 1.656 × 10−3

9(0.4) 3 19.1 1.636 × 10−3

11(0.5) 3 19.0 1.668 × 10−3

Table 2. Case 1B

of mesh points # Iterations Execution Time max |u − uexact|
(Size of overlap) in Master in seconds

1(0) 12 73.5 2.412 × 10−1

5(0.2) 8 60.1 1.237 × 10−3

9(0.4) 6 60.9 1.531 × 10−3

11(0.5) 5 59.1 1.532 × 10−3

13(0.6) 5 61.8 1.596 × 10−3

15(0.7) 4 56.1 1.537 × 10−3

17(0.8) 4 63.3 1.588 × 10−3

Case 1B: Domain Ω = {0 < x < 6, 0 < y < 2} and the number of subdo-
mains are 3. Exact solver method is used for subdomain solvers. In this case the
subdomain size is 4.

This case shows that for the overlap sizes which are bigger than 0.7 there is no
improvement on both the number of iterations for the Master machine and the
execution time. Only the first case does not converge and the fastest execution
time is obtained when the overlap size is 0.7 which is 35% of the subdomain size.

3.2 Varying Number of Domains

Case 2A: Domain Ω = {0 < x < 6, 0 < y < 2}, and 15 mesh points overlaps.
Exact Sub-domain Solver is used. Note that Ave. # of worker iterations means
that average number of iterations in worker machines on the first (largest) master
iteration.

724 D. Darjany, B. Englert, and E.H. Kim

Case 2A shows no improvement in the execution time as the number of sub-
domains increases. In fact the data shows that one subdomain, that is no distrib-
uted computing, is the fastest. This happens because the machines are spending
most of their time to communicate with each other and thus we conclude that
the size of the linear system (the domain) is not sufficiently large enough to see
any improvement from distributing the algorithm.

Table 3. Case 2A

of subdomains # Iterations Execution Time max |u − uexact| Ave. # of
in Master in seconds worker iter’s

1 1 43.9 1.618 × 10−3 690

2 4 54.6 1.526 × 10−3 598

3 4 55.9 1.537 × 10−3 530

4 5 47.9 1.559 × 10−3 484

5 5 46.7 1.487 × 10−3 456

Table 4. Case 2B

of subdomains # Iterations Execution Time max |u − uexact| Total
in Master in seconds iterations

1 1 1572.2 1.397 × 10−3 2758

2 11 1007.7 8.719 × 10−4 5500

3 11 866.9 6.990 × 10−4 8250

4 12 413.1 9.750 × 10−4 12000

5 12 359.8 7.622 × 10−4 15000

Case 2B: Domain Ω = {0 < x < 10, 0 < y < 4} and 21 mesh points overlaps.
Inexact Sub-domain Solver (250 iterations/worker machine) is used.

This case shows that the execution time decreases significantly as the number
of sudomains (worker machines) increases. Unfortunately we only had 5 workers
to test so we do not have any more data. It will be interesting to see how the
execution time changes as the number of workers increases further.

3.3 Inexact vs. Exact Subdomain Solver

Case 3A: Domain Ω = {0 < x < 6, 0 < y < 2} and 15 mesh points overlap.
Number of Domains is 3.

Table 5. Case 3A: Inexact subdomain solver

MS: # of iter. # iter. Exec. Time max |u − uex| Total
in worker in Master in sec.s iter.s

3 64 66.3 2.695 × 10−1 576

4 55 61.2 2.062 × 10−1 660

5 48 53.6 1.717 × 10−1 720

10 31 41.7 8.00 × 10−2 930

15 24 42.3 4.11 × 10−2 1080

Implementing Overlapping Domain Decomposition Methods 725

In this case we obtained the results by varying the maximum numbers of
iterations MS in the inexact solvers and the results of the exact solvers. The
fastest execution time shown in the inexact subdomain solver is obtained when
the maximum number of iterations in workers is set to MS = 10. So by compar-
ing the execution time in the exact solver which is 52.4s, we see that the inexact
solver is faster when setting 10 as the number of iterations in workers.

Table 6. Case 3A: Exact subdomain solver

of iter. # iter. # iter. # iter. max |u − uex|
in Master in worker1 in w2 in w3

1 499 593 497 2.5425

2 441 484 428 1.975 × 10−1

3 303 358 290 1.100 × 10−2

4 195 200 183 1.540 × 10−2

Totals: 1438 1635 1398
Total iter. 4471
Exec. time 52.4s

Case 3B: Domain Ω = {0 < x < 10, 0 < y < 4} and 15 mesh points overlap.
Four Domains. Without using the distributed algorithm, using 2552 iterations,
we obtain an execution time of 907s and max |u − uexact| is 8.480× 10−3.

In this case the fastest execution time for the inexact solver is when the num-
ber MS is 100 with 270.3s, while the exact solver takes 686.9s to execute. Notice
that the domain is large enough to see the effect of the distributed algorithm
(see the execution time for the single domain, that is no workers, 907.0s).

Table 7. Case 3B: Inexact subdomain solver

MS: # of iter. # Iterations Execution Time max |u − uexact| Total
in worker in Master in seconds iterations

3 226 1117.2 1.0211 2712

5 170 835.4 6.782 × 10−1 3400

10 110 652.8 3.495 × 10−1 4400

15 84 527.3 2.203 × 10−1 5040

25 58 395.3 1.270×10−1 5800

50 35 342.7 5.300 × 10−2 7000

100 21 270.3 2.100 × 10−2 8400

250 12 376 2.400 × 10−2 12, 000

For both Case 3A and Case 3B, in fact for all of our data, we use the stopping
criteria, max |uk−1 − uk| < ε = 10−2, to execute the algorithm. Thus the result
as it turns out to be much more closer (of order 10−3 in Table 8) to the exact
solution whereas it is still of order 10−2 when it compares with its previous
approximation.

726 D. Darjany, B. Englert, and E.H. Kim

Table 8. Case 3B: Exact subdomain solver

of iter. # iter. # iter. # iter. # iter. max |u − uex|
in Master in w1 in w2 in w3 in w4

1 1153 1532 1531 1151 1.370 × 10
2 1107 1399 1393 1091 4.899
3 944 1243 1240 928 1.7819

4 830 1065 1059 815 6.331 × 10−1

5 682 903 899 667 2.2237 × 10−1

6 560 730 725 545 7.460 × 10−2

7 422 567 563 407 2.130 × 10−2

8 302 405 401 288 2.400 × 10−3

9 189 260 256 179 5.900 × 10−3

Totals: 6189 8104 8067 6071
Total iter. 23064
Exec. time 686.9s

4 Conclusions

Our data shows that the size of the linear system (the domain) is the key factor
to determine the size of overlap, the number of workers, and the number of
iterations, MS, in the inexact solver. In fact, for smaller linear systems, in all
three cases relatively small numbers are sufficient to have efficient convergence,
whereas for larger systems, relatively large numbers are needed. Our experiments
guide how specifically the size of overlap, the number of workers and the number
of iterations, MS, in the inexact solver can be chosen for different sizes of linear
systems for efficient distributed computing.

References

1. Lucio Andrade, Paramatlab, http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectType=file&objectId=217.

2. P.E. Björstad and O.B. Widlund, To overlap or not to overlap: A note on
domain decomposition method for elliptic problems, SIAM J. Numer. Anal. 23(6)
(1989) 1093-1120.

3. X.-C. Cai, A family of overlapping Schwarz algorithms for nonsymmetric and
indefinite elliptic problems. Domain-based parallelism and problem decomposition
methods in computational science and engineering, SIAM, (1995) 1–19.

4. X.-C. Cai, W.D. Gropp and D.E. Keyes, A comparison of some domain de-
composition and ILU preconditioned iterative methods for nonsymmetric elliptic
problems, Lin. Alg. Applics, (1994).

5. T.F. Chan and D. Goovaerts, On the relationship between overlapping and
nonoverlapping domain decomposition methods, SIAM J. Matrix Anal. Appl.
13(2)(1992) 663.

6. T.F. Chan and T.P. Mathew, Domain decomposition algorithms, Acta Numer-
ica, (1994), 61–143.

7. M. Dryja and O. Widlund, An additive variant of the Schwarz alternating
method for the case of many subregions, Tech. Rep. 339, Courant Inst., New York
Univ., 1987.

Implementing Overlapping Domain Decomposition Methods 727

8. W. D. Gropp and D. E. Keyes, Domain Decomposition on parallel computers,
Impact of Computing in Science and Engineering, 1 (1989), pp. 421-439.

9. D. E. Keyes, Domain Decomposition: a bridge between nature and parallel com-
puters, NASA ICASE Technical Report 92-44, NASA Langley Research Center
Hampton, VA 23681-0001, 1992.

10. D. E. Keyes and W. D. Gropp, A comparison of domain decomposition tech-
niques for elliptic partial differential equations and their parallel implementation,
SIAM J. Sci. Statis. Comp. , 8 (1987), pp. 166-202.

11. P. L. Lions, On the Schwarz alternating method II: stochastic interpretation and
order properties, Domain decomposition methods, SIAM (1989),47–70

12. Peter Rydesater, TCP/IP toolbox, http://petrydpc.itm.mh.se/tools.
13. B. F. Smith, P. E. Bjorstad and W. D. Gropp, Domain Decomposition: Par-

allel Multilevel Methods for Elliptic PDEs, Cambridge University Press, 1996.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 728 – 737, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Parallel Image Segmentation in Reconfigurable Chip
Multiprocessors

Raphael Fonte Boa, Alexandre Marques Amaral, Dulcinéia Oliveira da Penha,
Carlos Augusto P. da Silva Martins, and Petr Y. Ekel

Pontifical Catholic University of Minas Gerais (Brazil)
Av. Dom José Gaspar, 500 – CEP 30535610 – MG – Brazil
rfonteboa@ieee.org, alexmarques@ieee.org,

dulcineia.penha@ieee.org, capsm@pucminas.br, ekel@pucminas.br

Abstract. Current image segmentation implementations are not optimized to all
kinds of applications. To attend the different application kinds, the solution
should allow to be reconfigured to fit their different characteristics and resource
needs and to improve performance. Our objective is to present an image
segmentation architecture and its implementation that can be reconfigured to
execute different application workloads with demanded performance. In order
to achieve this objective, our proposal is a parallel image segmentation
implementation, which maps a pipelined parallel segmentation software
architecture to a reconfigurable pipeline structure composed of reconfigurable
chip multiprocessors (RCMPs). In this work, each pipeline stage was composed
of a RCMP. Our results and its analysis show that our segmentation
implementation provides greater flexibility and scalability and still obtains
performance gain when compared to a multiprocessor machine. The main
contribution is speedup, scalability and flexibility of the proposed solution.

1 Introduction

Image segmentation operation is applied to several engineering areas, e.g. quality
control, computational vision, text fragment recognition [1], robot vision [2], pattern
recognition, security systems, Synthetic Aperture Radar [3], etc. These applications
can be processed online or offline, and can be static (pictures) or dynamic (video).

Like most of image-processing operations, image segmentation has a high demand
of computational resources to store and to process great amounts of data. It requires
high performance computers to be applied to four kinds of image applications: static
offline, dynamic offline, static online and dynamic online. Among these, static offline
applications demand less computational resources while dynamic online applications
demand more computational resources. Since these latter are real-time applications,
they have a high amount of images to be processed as faster as possible.

Traditional sequential processing architectures usually do not attend image
segmentation application requirements considering performance and response times.
Hence, the use of parallel processing techniques may reduce the response time of the
segmentation operation [4] [5] in the four kinds of image application mentioned. Due
to their data independencies, the segmentation processes required for these

 Parallel Image Segmentation in Reconfigurable Chip Multiprocessors 729

applications can be parallelized. However, a static parallel solution cannot suit all
kinds of image segmentation applications since these applications may vary in
processing, storage, communication and response time needs. Therefore, the problem
considered is that current image segmentation implementations are not optimized to
different kinds of segmentation applications. A computational system to attend all
these applications should be flexible to support different configurations. These
configurations allow the system to improve its performance and to fit different
segmentation application features and requirements. Hence, our objective is to present
an image segmentation architecture and its implementation (proposed solution) that
executes different segmentation application with demanded performance.

Moreover, parallel computer architectures have a significant overhead to perform
communication among the processing elements. This overhead is reduced when the
parallel architecture is implemented on a single-chip multiprocessor (CMP) [6].
Therefore, the proposed solution is a parallel image segmentation implementation,
which maps a pipelined parallel image segmentation software architecture to a
pipelined structure composed of reconfigurable single-chip multiprocessors (RCMP).

Our main goals are the design and implementation of the parallel image
segmentation filtering phase and the pipelined parallel image segmentation software
architecture mapped to a pipeline structure. The speedup, scalability and flexibility is
some of the main contributions of the proposed solution, presented in this paper.

2 Image Segmentation

Image segmentation is one of the most important operations within image processing.
Currently, several engineering areas demand image analysis in some application that
uses alpha-numeric symbols. The image segmentation operation is usually the first
one to be executed in the analysis phase. It aims at image division into its parts or
objects. Once the image is divided, its parts are able to be separately analyzed.

The image segmentation algorithms can be divided into two classes: discontinuity
and threshold detections. The former is based on the borders detection and hard
variations of the pixel intensities. A 1D convolution kernel can be used to process the
border detections, as represented in (1). After the convolution operation processing,
the pixels that compose the borders are detected and a border linkage is processed to
separate pixels from different borders. In (1), B(x,y) is the result in each kernel
position, N is the kernel size, W is the kernel coefficient and Z is the pixel value.

×=
N

ZiWiyxB
1

),((1)

The threshold heuristic is based on the surface texture pattern recognition, targeting
to find the object lengths. It can be processed by some tests on the function T, as
presented in (2). This function depends on the current position (x,y), the pixel
intensity (f(x,y)) and some local feature of the current pixel (p(x,y)). The tests are also
presented in (2). Afterwards, pixels which the function T assumes value ‘1’ could be
object pixels, while those which T assumes value ‘0’ could be the background.

730 R. Fonte Boa et al.

)],(),,(,,[yxfyxpyxTT = ,
≤
>

=
.),(if 0

,),(if 1
),(

Tyxf

Tyxf
yxg (2)

There are several methods to perform image segmentation operations. All these
methods include two phases: filtering and analysis. Claudino et. al. [1] proposed a
method that performs the filtering by convolving the input image and two one-
dimensional Gaussian masks (a vertical and a horizontal one). The image convolution
operation is characterized by its data independency; hence each convolution operation
is possible to be implemented in parallel. In addition, both convolutions can be
cascaded, enabling a pipeline structure.

3 Related Works

We did not find any work completely related to the presented solution. We selected
some works related either to the research problem or its solution, such as: image
segmentation [1], image-filters implemented in FPGA [7] and CMP [6].

Our proposal is based on the implementation of a segmentation method targeting
text identification in arbitrary scenes, presented in [1]. This method is separated in
two phases: the first one uses some window filters in order to separate the target
characteristics, which are vertical details. In the other phase, the regions of interest are
segmented and classified whether being or not a text fragment.

There are lots of efforts to improve image preprocessing performances. In [7], the
authors presented a parallel image processing architecture and its FPGA-based
implementation. It is composed of several layers and each one is responsible for a
specific task. The paper concentrates on the image preprocessing layer, which is
composed of a parallel array of 16 processing elements and a Direct Memory Access
(DMA) channel. The DMA channel addresses the area of interest and the processing
elements, which are responsible for data processing. A host processor sends the
instructions of control and data manipulation to the processing elements and waits
for their output. This architecture, implemented in FPGA, performed a 3x3
convolution in a 256x256 image with a rate of 88.42 frames per second, running at
50 MHz.

Single-Chip Multiprocessors have been currently used since they perform good
processing power with high communication speeds. Therefore, its high overall
performance makes it possible to decrease the clock frequency enabling low power
consumption. This makes these implementations very useful to reach the performance/
power consumption required for the most of current applications. In [6], authors made
a study around the advantages and disadvantages of these implementations over
traditional superscalar and simultaneous multithreading processors. They concluded
that even the high evolution of the traditional architectures would not be worthy
compared to the novel CMP architectures.

 Parallel Image Segmentation in Reconfigurable Chip Multiprocessors 731

4 Proposed Solution

Traditional sequential solutions, usually do not explore image convolution data
independency. In addition, although traditional parallel solutions explore data
independency, they usually have flexibility and communication limitations.

Some solutions have integrated multiprocessor elements in a single-chip,
developing Chip Multiprocessors (CMPs) [6]. These solutions appeared to enhance
the advantages of multiprocessor architectures, allowing higher processing power and
communication rates. A CMP integrates several Processing Elements (PEs) and
Storage Elements (SEs) connected to each other by high-speed Interconnection
Elements (IEs) [6]. Despite their advantages, CMPs have some limitations, such as:
low flexibility and low scalability of a static architecture and its implementation, thus
not being able to keep high performance for different workloads.

In this paper, a high-performance and high-flexibility image filtering solution is
presented, which corresponds to the first phase of the image segmentation method
presented in [1]. The proposed solution is an implementation of a reconfigurable
architecture organized in two levels: a reconfigurable parallel software architecture
mapped to a reconfigurable parallel hardware architecture. The solution has some
features to reduce the limitations of the other mentioned architectures. The
reconfigurability makes the solution scalable and flexible [8] being able to support
different configurations according to the segmentation application requirements. The
parallelism improves the performance of the segmentation processing. In order to
achieve more performance, flexibility and scalability, the solution was implemented
using Reconfigurable Chip Multiprocessors [9].

4.1 Architecture

As mentioned before, the proposed solution architecture is composed of two main
levels. The higher level is the reconfigurable parallel software architecture, which is
responsible for implementing the convolution operations. This level divides the
filtering phase into pipeline stages. Each pipeline stage of the software executes a
different filter, required for the correct processing in the second segmentation phase
[1]. This enables different stages of the segmentation filtering phase to be executed at
the same time. Therefore, this architecture exploits the time parallelism between each
filter. Fig. 1 presents in more details the reconfigurable pipelined software
architecture composed of n filters, with n being the number of pipeline stages.

The lower level is the reconfigurable parallel hardware architecture organized as a
pipeline structure, which stages are composed of Reconfigurable Chip Multiprocessors
(RCMPs) [9]. The parallel hardware architecture is responsible for implementing and
executing the convolution software. The parallelism and reconfigurability presented in
this architecture enables it to achieve a tradeoff between performance and flexibility,
supporting a correspondent implementation of the pipelined parallel software. Thus,
different numbers of PEs, SEs, IEs and different variations of these elements can be
configured.

As presented in fig. 1, the software pipeline organization is flexible, and the
number of pipeline stages depends on the application. In this work, the software
architecture was divided into three stages, although other applications can divide it
into another number of stages. This is possible exploring the reconfigurability of the
software architecture, achieving high flexibility and scalability.

732 R. Fonte Boa et al.

Fig. 1. Reconfigurable text-fragment segmentation architecture Fig. 2. RCMP architecture

The reconfigurable pipelined software architecture can be mapped to the
reconfigurable pipelined hardware architecture in different ways. Fig. 1 and fig. 2
illustrate a software mapping to the hardware architecture, which each pipeline stage
is composed of a RCMP with a parameterized architecture. However, variations of
mapping can be applied. For instance, if the hardware platform does not have enough
resources to implement a RCMP in each pipeline stage, each stage can be
implemented in a time-multiplexed way. Then, partial results would be buffered to be
used by a following filter in a future time slot. Another possibility is to map each
software stage to a pipelined hardware platform composed of RCMPs with fewer
resources (e.g. number of PEs, storage capacity of SEs and connectivity of IEs).
These variations of the architecture and their implementations are due to the
reconfigurability feature of the proposed software and hardware architectures,
providing flexibility, scalability and high performance for different workloads.

Using pipelined structures and RCMPs, the proposed reconfigurable parallel
architecture presents parallel processing in time and space, simultaneously. The
pipeline parallelizes the execution in time, while the RCMP architecture parallelizes
the application in space. Considering just the time parallelization (pipeline), our
architecture obtains a speedup relative to sequential executions showed in (4), where
n is the number of images to be processed, Ts is the time relative to the stage
execution time and f is the number of filters applied to the images. With the use of
RCMPs the filtering process can provide an even greater speedup, as observed during
analysis of experimental results.

ss

s

TnfT

fTn

×−+×
××

)1()(

(3)

The number of architectural elements may vary in quantity, configuration and type.
The proposed solution can have PEs with different architectures and clock
frequencies. For instance, to implement the image segmentation operations, the PEs
could be vector processors. To suit fine-grained and coarse-grained workloads within
the same application, the PEs can have several configurations and the number of PEs
can be altered. In this case the pipeline would be heterogeneous. In addition, the
topology of the IEs connecting the PEs and SEs can change, providing several forms
of communication, thus providing efficient ways to map the filtering phases to the
pipelined architecture of RCMPs.

4.2 Implementation

With the software architecture, we were able to efficiently map the filtering phase to
the hardware architecture. In order to map the convolution software to the

 Parallel Image Segmentation in Reconfigurable Chip Multiprocessors 733

reconfigurable pipelined RCMP structure, we parameterized the software code to use
different numbers of PEs in each of the implementations. Each filter was assigned to a
RCMP configuration instance. At each hardware stage the software code was divided
into n parts, n being the number of PEs, therefore we have temporal and spatial
parallelism simultaneously.

Fig. 3 presents an implemented filtering stage using single, dual and quad-cores
configurations. This illustrates the flexibility achieved with a reconfigurable
architecture and a reconfigurable implementation platform. On all of the software and
hardware implementations, the pipeline stages were homogeneous. Heterogeneous
pipeline stages, with different RCMPs configurations, could be used if the filters
complexity were different. This approach may be explored in further works.

We implemented three configurations of the RCMP architecture (fig. 3) in order to
verify the performance gains of the proposed solution. The first configuration has
only one PE. This configuration represents the filtering with each pipeline stage
running sequentially. The second implementation has two PEs and the third has four
PEs, in each pipeline stage. We used Xilinx XC2V1500 FPGA as a reconfigurable
platform. All architecture elements are softcores supplied by Xilinx EDK (Embedded
Development Kit). We used Xilinx MicroBlaze softprocessor core as the PE.

Fig. 3. RCMP MicroBlaze-based configuration with single-processor (left). Filter mapping to
single, dual and quad-processor CMPs (right).

All the implemented configurations have each MicroBlaze connected to a 16KB
BRAM through LMB (Local Memory Bus) used as program memory. Each processor
was also connected to an OPB (On-chip Peripheral Bus) to access peripherals and
data outside program address space. We used a 32KB BRAM as an image buffer that
feeds Microblaze with data. The 32KB BRAM was a dual port memory with each
port connected to an OPB. Depending on the CMP configuration the memory was
connected to one or two OPBs.

5 Experimental Results

In this section, we present and analyze the experimental results of the image filters
running in our implementation configurations. These filters are essential to the correct
processing of the segmentation operation [1]. The implemented configurations are
named: single-MicroBlaze, dual-MicroBlaze and quad-MicroBlaze-based CMPs.
Besides running at 100 MHz, the chosen processing cores have a 3-stage pipeline and

734 R. Fonte Boa et al.

they have neither cache memory nor run operating system. The total memory
embedded in the device is 128 KB of BRAMs, and we divide it into 16 KB for each
program memories (local) and 32 KB for the image buffer (shared memory).

Targeting compare our implementation results, we also have run the same
convolution algorithm in a SMP (Symmetric Multiprocessor) machine, using C
programming language and pthreads to implement it. The SMP machine is a 1GHz-
dual-Pentium III with 10-stage pipeline, 32 KB L1-cache, 256 KB L2-cache and 640
MB main memory. Its operating system is a Linux-based distribution with a SMP
kernel. Only the kernel processes were running during tests. Rather than the flexible
pipelined structure of our implementation, the dual-Pentium runs the filtering with
performance limitation, since its structure is fixed. This gives our version an
advantage over the fixed traditional parallel solutions since they cannot always
implement a full system spatial pipeline.

Table 1 presents the response times of the convolution filters using either one or
two PEs, both in the Pentium-III and in the MicroBlaze-based implementations.

Table 1. Response times (seconds) of Dual-Pentium and the proposed MicroBlaze-based

Image Size PEs Pentium-III +
cache

Pentium-III -
cache

MicroBlaze (non-
optimized)

MicroBlaze
(optimized)

1PE 0.237 0.267 1.230 0.481
512 x 512

2PEs 0.159 0.175 0.572 0.224
1PE 0.992 1.018 4.918 1.923

1024 x 1024
2PEs 0.697 0.681 2.289 0.897
1PE 3.871 4.277 19.672 7.692

2048 x 2048
2PEs 2.833 2.955 9.155 3.587

We have also run the experiments with the Pentium-III caches, both L1 and L2,

disabled. We noticed that without caches, the Pentium SMP was about four times
better than our MicroBlaze-based implementation. Thus, our solution had a good
performance compared to the Pentium SMP, considering that Pentium architecture
has lots of improvements e.g. ten times greater clock frequency, presence of cache
memories, superscalar optimizations. These improvements contribute to the
Pentium’s better performances. However, the MicroBlaze was chosen as a easy
implementation of a processor core, since the goal of this paper is to present the
advantages of the whole proposed solution.

Furthermore, in the following results, we present the performance gains (speedups)
achieved with the proposed solution. Fig. 4-a shows the performance speedups of the
dual-processing implementations over single-processor ones, for the Microblaze-
based and Dual-Pentium-III solutions. We can observe that the MicroBlaze speedups
are better than the Pentium ones since it has less overhead during the application
processing. In the MicroBlaze case, this speedup is more than twice since dual-
processor configuration takes less clock cycles than the single-processor does. The
reasons for this are being investigated in the current solution research phase.

Two configurations of the MicroBlaze-based solution were implemented, differing
one from each other in the convolution kernel storage element: main memory (non-
optimized) and an internal MicroBlaze register (optimized). Fig. 4-b presents the
speedups of the dual and quad MicroBlaze-based implementations over the single PE.

 Parallel Image Segmentation in Reconfigurable Chip Multiprocessors 735

We can notice that, for the non-optimized case, the speedups were better than for the
optimized case. This is due to the optimized configuration already has a speedup
about 2.56 for single-MicroBlaze, because the kernel is stored in internal registers.

2.149 2.149 2.149

1.371.421.49

0.00

0.50

1.00

1.50

2.00

2.50

512 x 512 1024 x 1024 2048 x 2048
Image

S
pe

ed
up

Pentium-III (1GHz) Microblaze (100 MHz)

2.15 2.14

3.72

4.60

0.00

1.00

2.00

3.00

4.00

5.00

non-optimized optmized

S
pe

ed
up

Speedup 2 - 1 Speedup 4 - 1

Fig. 4. (a) Speedups of dual-processing versions over the single-processor ones. (b) Speedups
of the dual and quad processing MicroBlaze-based configurations over the single one.

Thus, the optimized speedup does not grow as fast as the non-optimized one when
the number of PEs varies. Besides, as presented in fig. 4-b, the non-optimized quad-
processing has a 15% higher speedup than the number of PEs. This is due to the
performance gains when increasing the number of PEs (fig. 4-a). Generally analyzing
fig. 4-b we can conclude that the performance gains in the non-optimized cases is
greater than in the optimized ones. This occurs since the optimized cases have the
kernel accessing time much lower than the non-optimized ones. Therefore the overall
accessing times are enhanced with the image size increasing.

Besides the improvements obtained from running the filters in a RCMP
architecture, we verified that using a reconfigurable pipeline organization
considerably increases the performance. The implemented pipeline organization made
our architecture achieve a speedup of almost two (fig. 5-a) related to Pentium's
execution time when the number of filters is modified. Such variations are due to the
segmentation process and to the application (dynamic or static, online or offline). We
segmented 3600 images, which is the number of images in one minute of MPEG-2
video with a display rate of 60 frames-per-second. When varying the number of
stages (filters), a 6-stage pipeline was enough to make our implementation achieve the
same time Pentium-III took to run a 2048x2048 image with one PE.

Furthermore our implementation took less time than Pentium-III to run the same
2048x2048 image when both of them use dual-PEs. The speedup achieved by our
implementation on the pipeline dual-processor implementation was greater than three
(fig. 5-a) when compared to the Dual-Pentium-III implementation. That can be
explained by the same reasons for which the speedup of our solution compared to
itself was greater than two. Since each RCMP runs fewer cycles than the single-
processor implementations, the speedup curve, representing the dual-processor
implementation, increases faster than the single-PE curve.

The proposed architecture described in this paper, whenever implemented in newer
and faster FPGA devices such as Xilinx Virtex-5, could run at higher clock
frequencies. Moreover supposing it runs at the above device frequency (1 GHz), and

736 R. Fonte Boa et al.

considering the other features unchanged, its performance would be much better than
the Pentium-III results, as presented in fig. 5-b. Although we did not considered any
Operating System context-switching and pthread creation overheads in our
implementation, we have a simpler architecture with no L1 and L2 caches, and a three
stage pipelined compared to the Pentim-III ten stage pipeline.

0,58
0,76

0,95
1,12

1,30
1,47

1,64
1,81

0,91
1,20

1,49
1,77

2,04
2,31

2,58
2,84

0

0,5

1

1,5

2

2,5

3

3 4 5 6 7 8 9 10
Number of Stages

S
pe

ed
up

 (
P

en
tiu

m
/M

ic
ro

bl
az

e)

1 GHz/100 MHz 1EP 1 GHz/100 MHz 2EP

2,89
3,82

4,73
5,62

6,50
7,36

8,20
9,03

4,55
6,01

7,44
8,84

10,22
11,57

12,89
14,20

1,811,641,471,301,120,950,760,58

2,842,582,041,771,491,200,91

2,31

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

Number of Filters
S

pe
ed

up
 (

P
en

tiu
m

/M
ic

ro
B

la
ze

)

2048 x 2048 1EP 2048 x 2048 2EP

2048 x 2048 (1GHz) 1EP 2048 x 2048 (1GHz) 2EP

Fig. 5. (a) Speedups of the MicroBlaze-based over Pentium-III, with pipeline stages.
(b) Speedups of the MicroBlaze-based over Pentium-III, working at 100MHz and 1GHz.

Analyzing the presented results, we conclude that the proposed image segmentation
implementation can have better performance than the Pentium-III SMP. Therefore,
although table 1 shows that the Pentium-III results are about five times better than the
proposed MicroBlaze-based version, based on the results presented in figs. 4 (a) and
(b) and 5 (a) and (b), the proposed solution achieved good speedup results. In addition,
we verified that if the numbers of stages and images to process are increased (e.g.
frame rate of video), our solution can obtain an equal or better performance compared
to Pentium-III, with the same number of PEs. Moreover, if the clock frequency also
increases, our solution overcomes Pentium’s performances.

Besides performance gains, the proposed solution also has flexibility and
scalability to fit different kinds of application requirements. This has been presented
in the analysis of the variations of the numbers of PEs, on filter stages and on the
number of images. Moreover, performance improvements were presented whenever
the number of PEs was increased while keeping fixed the numbers of stages and
images. Another result is the increasing of speedups when increasing the stages for
static number of PEs and images to be processed. These results confirm the greater
flexibility and scalability of the proposed solution.

6 Conclusions and Future Works

In this paper we presented a parallel image segmentation proposal which maps a
pipelined parallel image segmentation software architecture to reconfigurable chip
multiprocessors. We prototyped three configurations of the RCMP, used as the
pipeline structure, and thus we were able to verify our solution’s performance.

Even when compared to a solution running at a much higher clock frequency our
solution obtained great performance results. Considering our implementation has PEs

 Parallel Image Segmentation in Reconfigurable Chip Multiprocessors 737

with simpler architecture, the performance difference was only 5 times worse than
Pentium-III with enabled cache and 4 times with disabled cache. Besides, our solution
provides greater flexibility and scalability and still presents high performance. Good
performance and flexibility, presented by the proposed solution, could be achieved
since the whole architecture and its implementation is reconfigurable in its software
and hardware levels. Therefore, it is possible to modify the number of PEs in each
stage of the hardware pipeline, as shown in presented configurations, targeting suit
image segmentation application demands with better performances. This makes our
solution flexible while maintaining good performances. In all implementations it
obtained a speedup greater than two. This is due to the number of cycles executed by
the multiprocessors configurations, in which the multiprocessors executed less than a
half of the cycles taken by the single-processor. We are investigating this behavior.

Concerning all the presented results, our main contribution is a parallel image
segmentation filtering phase implemented on reconfigurable chip multiprocessors
(RCMP) pipeline stages, improving application performance. The further works are:
design dynamically RCMPs targeting other applications and an implementation of
cache memories targeting performance improvements; perform some tests of the
current system in other prototyping platforms, using FPGAs with higher clock
frequencies and more resources to implement faster CMPs with more PEs.

References

1. Claudino, L.M.B., Braga, A. de P., Araújo, A. de A. & Oliveira, A.F. Unsupervised
segmentation of text fragments in real scenes, Proceedings of the 13th International
Conference on Image and Analysis Processing, Cagliari, Italy, LNCS, Springer, vol. 3617,
pp 399-406 (2005).

2. DeSouza, G., Kak, A. C.: Vision for Mobile Robot Navigation: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 237-267 (2002).

3. Strollo, A.G.M., Napoli, E., De Caro, D., Saggese, G.P.: A Reconfigurable 2D Convolver
for Real-Time SAR Imaging. Proceedings of the 8th IEEE International Conference on
Electronics, Circuits and Systems , pp. 741-744 (2001).

4. Penha, D. O., Corrêa, J. B. T., Góes, L. F. W., Ramos, L. E. S., Pousa, C. V. P., Martins, C.
A. P. S.: Comparative analysis of multi-threading on different operating systems applied on
digital image processing. In Proceedings of 3rd CSITEA (2003).

5. Hamdi, M., Lee, C.: Efficient Image Processing Applications on a Network of
Workstations. In Proceedings of the 4th IEEE Computer Architectures for Machine
Perception (1995).

6. Hammond, L., Basem, A. N., Olukotun, K.: A Single-Chip Multiprocessor. In Computer
Magazine, IEEE Computer Society, vol. 30, no. 9, pp. 79-85, Sept., 1997.

7. McBader, S., Lee, P.: An FPGA Implementation of a Flexible, Parallel Image Processing
Architecture Suitable for Embedded Vision Systems. In Proceedings of the 17th
International Parallel and Distributed Processing Symposium - IPDPS, pp. 228.1. 2003.

8. Compton, K., Hauck, S.: Reconfigurable Computing: A Survey of Systems and Software.
ACM Computing Survey, Vol. 34, No. 2, pp. 171-210, (2002).

9. Fonte Boa, R., Penha, D. O., Amaral, A. M., Souza, M. O. S., Martins, C. A. P. S., Ekel, P.
Y.: RCMP: A Reconfigurable Chip-Multiprocessor Architecture. In Proceedings of the
Frontier on High Performance Computing and Networking (ISPA 2006). To appear.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 738 – 747, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ensuring Immediate Processing of Real-Time Packets
at Kernel Level

Jeong Seob Kim1, Dae Sung Lee2, Ki Chang Kim3, and Jae Hyun Park3

1 Factory Automation Team, Samsung Electronics Co., Ltd., Korea
jeongseob.kim@samsung.com

2 School of Computer Science & Engineering, Inha Univ., Korea
Xdilemma@naver.com

3 School of Information and Communication Engineering, Inha Univ., Korea
{kchang, jhyun}@inha.ac.kr

Abstract. Real-Time system is one in which jobs are guaranteed to meet the
predefined deadlines. Many researchers have studied real-time systems, and as
results, there are numerous commercial real-time systems developed and ap-
plied to industry. There are also efforts to transform the Linux system to a real-
time system as it becomes very popular and stable. Transforming Linux system
into a real-time system, however, is a very difficult and time-consuming task
because we have to modify the kernel in many places to ensure its correctness
under repeated reentering events. We suggest to limit the effort to a certain spe-
cific interrupt, for example network interrupt, instead of trying to provide real-
time handling for all interrupts. The scope is limited, and we can control the
amount of shared data structures among the reentering kernel threads. We iden-
tify a special packet that requires real-time treatment and process it inside the
Top Half without delaying. This paper explains the algorithm and shows how it
is implemented in Linux.

1 Introduction

Numerous researchers have been working on real-time systems, including real-time
operating systems. Linux is one of the popular and widely-used operating systems.
However, it was not designed as a real-time operating system, and is not adequate to
use as such.

We observe that many real-time systems provide only a few functionalities. Con-
verting a full Linux into a real-time system is an over-kill for such a system. We sug-
gest to tune the Linux code to meet the real-time requirement for the specific function
only. In our case, the function is packet processing. Instead of providing real-time
capability for all interrupts, we concentrate on the network interrupt, and provide an
efficient and painless way tailored to this specific interrupt to handle real-time pack-
ets, those that need immediate treatment.

Network interrupt service in Linux is divided into Top Half and Bottom Half as in
other interrupt services. Top Half consists of two steps: copying packets from network
device to DMA and analyzing their frame types. Bottom Half transfers packets to the
TCP layer. The Bottom Half is where most of the packet handling is processed. Since

 Ensuring Immediate Processing of Real-Time Packets at Kernel Level 739

Bottom Half is not guaranteed to be executed immediately, Linux is not real-time
system. The Bottom Halves are serialized in the order they are activated regardless of
their relative importance or timing requirements. Our strategy is to identify real-time
packets, those that need real-time treatments, and to ensure their handling is done
within Top Half. Identifying real-time packets can be done by marking special field in
the packet and modify the kernel to recognize such mark. Handling real-time packet
inside the Top Half is done by copying and moving kernel code related with this real-
time process from Bottom Half to Top Half. We show how they can be done and what
effect they have on the remaining code in following sections.

Section 2 introduces previous researches on real-time processing. Section 3 ex-
plains network interrupt processing in Linux systems. Section 4 shows the proposed
algorithm for real-time network interrupt processing. Section 5 displays some experi-
mental results, and finally Section 6 gives a conclusion.

2 Related Researches

Existing TCP/IP is a best-effort service and, thus, cannot guarantee differentiated or
real-time service. ARP timer, delay due to caching policy, packet collision caused by
sliding windows, the problem of TIME_WAIT, etc., all contribute to the unpredict-
ability of TCP/IP. Many researches seek to reduce the degree of unpredictability by
changing the behavior of certain layer in TCP/IP. It could be MAC, network, or trans-
port layer. MAC layer modification focuses on removing the unpredictable delay
during packet transmission due to packet collision. BRAM (Broadcast Recognizing
Access Method)[1], MBRAM (Modified BRAM)[2] are such modifications. They
completely remove packet collisions to insure no unpredictable delay. However, they
require all network nodes to participate in this new algorithm.

ST-II[3] and RSVP[4] cope with the unpredictable delay at network layer. ST-II is
developed for multimedia communication in which data transmission rate and delay
should be controlled. It provides a useful mechanism for real-time communication but
has compatibility problem with the existing protocols. RSVP controls delay by allocat-
ing bandwidth at each network node via reservation. It also requires all participating
nodes to follow RSVP algorithm which is in most cases impractical. Transport layer
can be also modified to cope with the unpredictability problem. RTP (Real-time Trans-
port Protocol)[5] is one of the well known algorithms. It works on top of UDP which is
non-connection-oriented algorithm. It provides a mechanism to control the delay time
but is not suitable for industrial network where partial data loss is not tolerable.

Another branch on real-time research is real-time operating system. Processing des-
ignated jobs within predictable dead-line is not easy, especially in multi-process
systems. Operating systems handle multiple jobs in parallel through time-sharing
scheduling. A real-time operating system should be able to stop non-real-time jobs in
favor of time-critical jobs. Linux does not have that capability and, thus, is not a real-
time operating system. RT-linux [6,7] has been suggested as a way of converting Linux
to real-time system. RT-linux inserts RT-kernel between the hardware and the original
Linux kernel and treat the Linux kernel as a simple RT-task. RT-linux minimizes code
modification and is simple in its concept. However, still the involved code is massive,
and requires a full redesign of device drivers if it needs real-time functionality.

740 J.S. Kim et al.

3 Network Interrupt Handling in Linux

3.1 Background1

An interrupt can occur while another was being served. Linux handles this problem
by dividing the interrupt process into Top Half and Bottom Half. The kernel has a
data structure connecting device interrupts to the corresponding driver service rou-
tines. do_IRQ looks at this data structure and calls the correct device service routine.
For the network interrupt, it also performs the copying process of packets from DMA
area to system buffer.

Fig. 1. The inner-working of do_IRQ

Figure 1 shows the inner-works of do_IRQ. The Bottom Half starts some time after
the Top Half is done. When the system is returned from Top Half, there could be a
multiple of Bottom Halves waiting. This is because the Bottom Half is supposed to be
less important than the Top Half and thus can be interrupted anytime, and each Top
Half will leave its Bottom Half in the queue during its process.

Top Half consists of code provided by the corresponding device driver. The driver
already has registered its handler location in the system data structure which is inter-
preted as the Top Half location by the kernel for this device.

3.2 Problems and Suggested Solution

Figure 2(a) shows the delay in interrupt processing time. With this delay, it is very
hard to provide a fast response to a time-critical packet. Figure 2(b) shows the delay

1 To give a concrete explanation, we use Intel x86 processors as the example system.

 Ensuring Immediate Processing of Real-Time Packets at Kernel Level 741

time in our real-time scheme. We restrict the real-time packet to be a packet contain-
ing a simple command. We modify the kernel slightly to process these packets in
real-time. Figure 2(b) removes queue operations, Bottom Half scheduling, and the
execution of Bottom Half from Figure 2(a) to achieve real-time performance. For this
scheme to work, the Top Half now includes code to analyze the ethernet frame to
check if the incoming packet is a real-time one. If it is, the packet is not queued for
further processing in Bottom Half; instead, its command is pulled out and processed
immediately.

Fig. 2. The delay in interrupt processing time and our scheme

4 Real-Time Network Interrupt Processing

4.1 Real-Time Frame

When a frame is received, the kernel examines the "type" field to determine its frame
type. A general ethernet frame has 0x0800 in it. If the type field has a value greater
than or equal to 0x0800, it is RFC894; otherwise it is 802.3 [8, 9]. We propose to use
this type field to designate a real-time frame. We put some special value in there to
identify it as a real-time frame. The actual message for the real-time packet is trans-
ferred in IP header. Again, to preserve the original format of the IP header, we re-use
some of the rarely used fields in the header: identification and flag field. These two
fields are originally for packet fragmentation. When a packet is larger than
MTU(Maximum Transmission Unit), it is fragmented before the transmission. The
fragmented small packets are numbered using the identification field and reassembled
in the order of this number at the final destination. IP_DF(Don't Fragment) flag in the
flag field is set to prevent this fragmentation. When IP_DF is set, the identification
has no meaning. Our technique uses these two fields to transmit a real-time packet. It
sets the IP_DF flag and re-use the identification field as a short real-time message. A
shortfall of this method is that the 16 bit size of the identification limits the number of
different messages we can send. However by the nature of the real-time packets, it has
to be handled at the fastest speed, and thus should be handled in the Top Half of the
network interrupt processing. Messages long enough not to be contained within the IP
header are already hard to process in the time-critical Top Half anyway. Figure 3
shows the proposed real-time frame. For our purpose, we used 0xff00 for the type
field of real-time frames.

742 J.S. Kim et al.

Fig. 3. The format of a real-time frame

4.2 The Processing of Real-Time Frames

In the receiving part, the algorithm to detect and process real-time packets is shown in
Code 1. Basically we analyze the frame header and if the packet type is real-time,
extract the message and process it immediately. This part was previously done in the
Bottom Half. Now we hoisted it to the Top Half, and if the packet needs immediate
attention it will be processed here; otherwise it is enqueued to the system buffer and
stays there until the network Bottom Half is handled.

Code 1. The pseudo algorithm to detect and process real-time packets

while(received frames){
The allocation of a sk_buff structure

 Copy frame from DMA area to sk_buff structure
Analyze the ethernet frame header
if (frame type == real-time frame){

Extract an urgent message from an IP header
Process the urgent message

}
else {

Enqueue the frame in system buffer
BOTTOM HALF scheduling

}
}

For the sending part, general socket libraries won't work because we need to mod-
ify ethernet header frame to insert 0xff00 at the type field so that our real-time frame
can be differentiated with general ethernet frames at the destination. We need to know
how to form our packet frame. We also need to know how to send out packets without
the help of TCP/IP stack. Packet frame generation involves two steps: allocating a
frame buffer and writing our header onto the frame. Linux manages frame buffers
using sk_buff structure. The actual frame buffers are allocated using alloc_skb().
Figure 4 shows the allocated frame buffer attached to sk_buff. The filling of the frame
buffer can be done using skb_reserve() and skb_push(). skb_reserve() is used to move
the "data" pointer to the IP header and fill it as seen in Figure 5. The ethernet header
is also filled in with the skb_push() function. This time the "data" pointer reduced by
14 to point to the ethernet header. figure 6 shows the process.

 Ensuring Immediate Processing of Real-Time Packets at Kernel Level 743

Fig. 4. The allocated frame buffer attached to sk_buff

Fig. 5. skb_reserve() : Moving the “data” pointer to the IP header and fill it

Fig. 6. skb_push() : Moving the “data” pointer to the ethernet header and fill it

To perform a direct I/O for a network device, we need a logical device interface. A
global variable "dev_base" is a list of net_device structures allocated for all registered
logical network devices. Code 2 shows how we can access to a net_device structure
using device name from dev_base. From net_device structure, we can get the target
network device's hardware address, which we set into our ethernet header. All this
should be coded in a kernel module to access the internal functions and data struc-
tures. Figure 7 shows how our kernel module works. The name of our module is
“rtx_thread.o” as shown in the figure. Once attached to the kernel, it accesses kernel
functions such as skb_push(), skb_reserve(), alloc_skb(), and kernel data structure
such as dev_base. Using the kernel functions our module can build a real-time frame,
and this frame is transmitted through “eth0” interface using “speedo_start_xmit”
function pointed to by the “net_device” structure for “eth0” that we extracted from
“dev_base”.

744 J.S. Kim et al.

Code 2. Access to a net_device structure using device name from dev_base

“include/linux/netdevice.h”
struct net_device *d, **dp;

for (dp=&dev_base; (d=*dp) != NULL; dp=&d->next){
 if (strcmp(d->name, “eth0”) == 0)
 break;
/* d is a net_device pointer for ethernet device. */
}

Fig. 7. Overview of the kernel module

5 Experiments

We have implemented the above mentioned kernel modules both for transmission and
reception of real-time packets. The transmission module forms a real-time frame
according to the given parameters. The parameters are the sender IP, receiver IP,
receiver ethernet address, total number of frames to be transmitted, and the rate be-
tween real-time frame and regular frame. Only two types of real-time messages are
defined: VAR_UP for increasing some kernel variable and VAR_DOWN for decreas-
ing it. The generated real-time frame is inserted into a DMA area via a handler pre-
registered by the network device driver. This frame will be transmitted when OUT
command is put into the command register of the device. Figure 8 explains this rela-
tionship. The receiver side issues an interrupt when the packet arrives. The corre-
sponding Top Half will copy the frame from the DMA area into the system buffer.
The frame header is examined. For real-time frame with type being 0xff00, the mes-
sage is pulled out and processed. Other regular frames are queued into a system queue
until Bottom Half handles them as usual.

 Ensuring Immediate Processing of Real-Time Packets at Kernel Level 745

Fig. 8. The data structures for real-time frame transmission

We have measured the packet processing time and successful processing rate with
various percentage of real-time frames in the total frames. For the packet processing
time, the total number of packets is 1000. These packets are sent every 37 micro sec-
onds. The sender generates random numbers to mark some percentage of the packets
to be real-time frames. The percentage varies from 0% to 100% increasing by 10%.
Obviously the more real-time frames we have, the faster should the processing time
be because real-time frames will be processed without delay. Table 1 shows the re-
sults. As expected the processing time decreases as the percentage of real-time frames
goes up. But after 40%, the time stays the same. It is because the interrupt handler
used in the experiment is very simple such that even with 40% real-time frames, the
37 micro seconds delay at each transmission is long enough to handle every packets
sent. With more complex interrupt handler, we expect that the improvement in proc-
essing time will continue after 40%.

Table 1. Times in jiffies to process 1000 frames with various percentage of real-time frames

746 J.S. Kim et al.

To remove the effect of transmission delay in measuring the performance of our
real-time scheme, in the second experiment we removed it. Instead we increased the
number of frames from 1000 to 10000 with increment of 1000 while varying the per-
centage of real-time frames from 0% to 100% with 10% increment as before. This
time we measured the percentage of packets successfully processed. Since we are
sending a large number of packets without any transmission delay, many of them will
be dropped at the receiver side due to the limit in the packet processing capacity in
given time. Our expectation is that as the percentage of real-time packets increases,
the rate of successful processing should improve. The result confirms our expectation
as shown in Table 2. With no real-time frames, the rate of success is as low as 3.1%
with 10000 packets. Even with 1000 packets, it is only 32.1%. Our technique greatly
improves this. For 1000 packets, the processing success rate already reaches 100%
with 70% real-time frames. The success rate goes down as the packet number in-
creases. However, even with 10000 packets, the success rate reaches around 90%
when real-time frames comprise over 90% while the success rate was only 3.1% when
there was no real-time frame.

Table 2. The percentage of successfully processed frames for various combinations of the
number of transmitted frames and the percentage of real-time frames among them

One peculiar thing is that the performance with 100% real-time frames is not as
good as the one with 90% real-time frames. What happens is with real-time frame we
actually spend more time in Top Half where the interrupt is disabled. For non-real-
time frame, we put off major job until the Bottom Half and quickly leaves the Top
Half resulting shorter period of disabled interrupt. With 90% real-time frames, the
10% non-real-time frames are not instantly handled and pushed over to the Bottom
Half, but at least these frames do not block more important real-time frames of enter-
ing the system because they have a shorter interrupt-disable period. With 100% real-
time frames, all frames spend some time in Top Half once they got into the system,
and during this they block other frames entering the system via interrupt disabling.

6 Conclusion

Linux is not well suited for real-time environment. Redesigning it for real-time sys-
tems, however, is a very complex and challenging task. In this paper, we suggest an
approach to convert a large system like Linux into a real-time system with minimal

 Ensuring Immediate Processing of Real-Time Packets at Kernel Level 747

changes. We observe that most of real-time systems demand real-time performance
only for a couple of devices they are targeting for. Our approach focuses on this target
device and modifies the original system only where this device is involved. This ap-
proach is more practical in that it does not unnecessarily change the whole system and
in that it still satisfies the demands of most real-time systems. We picked network
device as an example. We assumed the device sometimes got a real-time packet
which should be processed immediately. We proposed a technique to ensure this real-
time response with a small change in the kernel. The technique is implemented and
experimented. The result shows that with 10000 packets poured in, our technique
could process 90% of the packets successfully while without real-time handling ca-
pacity the inundated system would process successfully only 3.1% of them.

References

1. I. Chlamtac, W. R. Franta, and K. D. Levin: “BRAM: The Broadcasting Recognizing Ac-
cess Method”, IEEE Transactions on Communication vol.27, pp.1183-1189, 1979.

2. R. P. Signorile: “MBRAM – A priority protocol for PC based local area networks”, IEEE
network vol.2, pp.55-59, 1988.

3. C. W. Group: “Experimental internet stream protocol, version 2 (ST-II)”, RFC1190, 1990.
4. R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin: “Resource reservation proto-

col(RSVP)”, RFC2205, 1997.
5. A.V.T.W. Group: “RTP: A transport protocol for real-time applications”, RFC1889, 1996.
6. Victor Yodaiken: “New frontiers for embedded computing”, 17th International Conference

on VLSI Design, Jan. 5th, 2004, India.
7. http://www.linuxdevices.com/links/LK8662675028.html.
8. J. Postel: “A Standard for the Transmission of IP Datagrams over IEEE 802 Networks”,

RFC 1042, 1988.
9. W. Richard Stevens: “TCP/IP Illustrated, Volume1 The Protocols”, Addison-Wesley,

pp.21-37, 1994.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 748 – 757, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Parallel Implementation of the Finite Volume
Method for the Simulation of the Natural Convection in a

Closed Cavity

Elton F.D. Nogueira1, Luiz J.C. Rocha2, Alexei Machado3, Carlos A. Pietrobon4,
Carlos A.P.S. Martins5, Rose M.S. Batalha6, and Petr Y. Ekel7

Pontifical Catholic University of Minas Gerais (Brazil)
Av. Dom José Gaspar, 500 – CEP 30535610 - BH– MG – BR

DECAT – School of Mines - Federal University of Ouro Preto2
Campus Universitário – Morro do Cruzeiro, s/n – CEP 35400000 – OP – MG - BR

elton@pucminas.br1, ljoaquim@em.ufop.br2, alexei@pucminas.br3,
capietro@pucminas.br4, capsm@puminas.br5, batalha@pucminas.br6,

ekel@pucminas.br7

Abstract. In this work, we present a parallel implementation of an algorithm
that simulates the natural convection of fluids in a closed cavity. The method is
based on the Boussinesq approximation; and it is numerically solved using the
finite volume method, based on the Power-Law interpolating scheme. The
pressure-velocity coupling is solved using SIMPLEC algorithm. The software
was implemented in Fortran with message passing on a Pentium III processors
Linux cluster. The solution is validated upon comparison with experimental
results available in the literature. It is shown that the use of parallelism provides
a significant speedup and efficiency, without degradation of the quality of the
results.

1 Introduction

The study of the natural convection in closed cavities is due in part to the recognition
of the importance of this process in some industrial engineering applications, such as
collecting solar plates, design of nuclear plants, purification of metals, crystal growth,
metal solidification and fusing, among others. Extensive reviews on natural
convection in enclosures are available in the literature [1], as well as experiments
using liquid metals [2-4] and other numerical results [5]. Many published works deal
with natural convection in closed cavities, however the majority of them present
relatively coarse computational meshes.

The refinement of those meshes requires the use of high performance computing in
order to avoid increased response time. In that sense, there are three basic types of
high performance computer architectures that can be applied [6]: vector architecture
computers, symmetrical parallel processing computers, and multicomputers.

In view of the growing need for high performance computing, the clusters, a class
of multicomputers, constitute a low cost and high performance alternative to solve
complex computational problems. There are many different ways to create parallel

 A Parallel Implementation of the Finite Volume Method 749

programs, starting from sequential ones, for instance parallel compilers, parallel
languages, etc. However, one of the most used programming models is message
passing. This model is usually implemented in libraries developed for standard
languages, like C, Java and Fortran, each of them widely known. In addition, some of
the libraries were created specifically for the development of parallel programs, like
Message Passing Interface (MPI) [7], and Parallel Virtual Machine PVM [8].

The main goal of this work is to develop a parallel implementation of the finite
volume method using PVM to improve response time. The developed application is
used to solve natural convection problems in a square closed cavity.

2 Mathematical Model

The flow of a Newtonian fluid in a closed two-dimensional cavity under the effect of
the natural convection is considered. The flow is steady state and laminar. The
vertical walls of the cavity are kept under uniform and constant temperatures, but
each one with different magnitude. The horizontal walls are perfectly insulated. The
cavity model is represented in figure 1.

The physical properties are considered constant with the exception of the specific
mass. According to the Boussinesq approximation the specific mass is constant,
except in the body force term where it is defined as a linear function of the
temperature, as shown in (1), where is the specific mass, is the coefficient of
volumetric expansion and T is the temperature. The subscript C refers to the
temperature of the cold wall, Tcold.

Fig. 1. Cavity model, with geometry and boundary conditions

 (1)

The velocity and temperature fields are governed by (2) to (5), subject to the
boundary conditions presented in (6) to (9). The set of equations (2) to (5) need to be
solved simultaneously, and they represent the mass conservation, the linear
momentum in x direction, the linear momentum in y direction, and the energy
conservation, respectively.

750 E.F.D. Nogueira et al.

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

There are also some dimensionless parameters appearing in the problem, they are the
aspect ratio, (AR = H/L), the Rayleigh number (Ra = g TH3/ v), and the Prandtl
number (Pr = v/).

3 Numerical Method and Sequential Implementation

The numerical method chosen for solving the conservation equations is the method of
finite differences with formularization for volumes of control [9], the interpolation
method used is the Power-Law [9], and the mesh is uniform.

The coupling pressure-velocity is solved by SIMPLEC algorithm [10]. The
dependent variable in the momentum equation is the contra-variant velocity
component [11], which is stored staggered of the others variables to prevent the
solution from oscillating.

The Tri-Diagonal Matrix Algorithm (TDMA) is used to solve the resultant system
of equations. All conservation equations are considered converged when the
normalized residue is lesser or equal to 1x10-6.

Following is a FORTRAN 77 fragment code showing the phases of the sequential
implementation.

 A Parallel Implementation of the Finite Volume Method 751

The computation starts with the data input at the INPUT procedure, identified by
label 5. The GRID and GEOMETRY procedures compute the mesh and the geometric
parameters, respectively. The START procedure starts the computation.

The procedures BOUND, DENSE and COEFIC updates the contour conditions, the
density and the coefficients of the equations. TDMA algorithm solves the equation.
The residual value is calculated and compared with 10-6. The computation stops or
continues depending on the value obtained.

4 Parallel Implementation

The parallel implementation is based on the distribution of the discretized mesh
among the processors of the parallel computer. The complete mesh is divided by the
number of available processors. The Master process execute this task.

In figure 2-A, we can find a generic mesh distributed among N processors and the
communication process among them.

After the data has been distributed for each processor, the computation continues
following the same steps of the sequential implementation mentioned above.
However, there are some differences due to the fact that the data are distributed
among N processors of the parallel computer.

Fig. 2. Discretized Mesh – interprocess communications (A); parallel residue calculation (B)

There are two fundamental differences related to the sequential version:

1) In the parallel implementation, the values are propagated through the
computational mesh. Therefore, in the parallel version, communications
among the processes are necessary to allow for updating the mesh in each
processor.

2) Figure 2-B shows how the residue is computed. The residue is calculated in
each processor and the resultant value of each processor must be integrated to
get a unique global value. This global value is used to decide whether to stop
or not the computation process. The computation of the global residue is
executed in the local processor and the resultant parcel is used as an input for
the next processor. When the last processor finishes its activities the value of
the residue is complete and then it is sent back to the Master process.

752 E.F.D. Nogueira et al.

This method was adopted to optimize the bandwidth use in the
communication channel. If each processor would send the residue directly to
the Master process, it could occur a simultaneous transmission of partial
residues from several processors, at the same time. Due to the use of our
sequential solution, the communication was optimized. We don’t overload the
communication channel and avoid that the Master process treats a great
volume of messages coming from the several processors.

When the application finishes, the outcomes will be distributed among the
processors that compose the parallel computer. The results can be reached by Shell
Script tools. Another way to collect the data is to insert in the slave code instructions
to send outcomes back to the Master Process. The first option described above has
the advantage to decrease the size of the Master program. The time spent to collect
the outcomes from each processor is insignificant compared with the response time.
In this work we use the Shell Script Unix to collect the outcomes from each node.

5 Results

Our experimental method was divided into seven phases: (1) Sequential
implementation of the SIMPLEC algorithm; (2) Sequential implementation
validation; (3) Parallel implementation of the SIMPLEC algorithm; (4) Parallel
implementation validation; (5) Choice of the environment to the experiments; (6)
Execution of the experiments; (7) Analysis of the results.

The experimental environment is composed of a computer cluster of 11 IBM-PC
generic workstations. Each one has the following configuration: Pentium III 900
MHz, 128MB of memory, 20 GB of hard disk and an Ethernet 10/100 adapter. They
were interconnected by Fast Ethernet switch 10/100 and run on a Linux operating
system, Mandrake 9.0 distribution. The message passing library is the PVM 3
(version 3.43). The parallel application was coded in Fortran 77 and compiled using
GNU Fortran77 (0.5.2.6).

Cluster management uses RSH (Remote Shell) and Shell Script tools. These
operating system tools are used to initialize the cluster and to catch the data when the
operation ends. A new tool were designed and implemented specially to measure the
response time of the sequential and parallel implementations. It made automatic the
execution and the computation of the mean time and standard deviation of the
response time. After that has been calculated, these values are recorded in a text file.

The tests were designed to show the behavior and performance of the application
with different sizes of meshes and nodes. All tests were executed 5 times to avoid
external interferences. These interferences can be originated from operating system
internal calls and network delays, for example. The final value is the geometric mean
of those five values.

The results are organized in two parts: the validation of the parallel implementation
and the performance results.

 A Parallel Implementation of the Finite Volume Method 753

5.1 Validation of the Parallel Implementation

The validation of the parallel implementation is achieved by comparing the results
obtained by using the parallel implementation with the results of another simulation
program, and also by comparing the simulation results with the data obtained
experimentally. Both comparisons are detailed along this section. In order to validate
the parallel algorithm, the problem is solved and a test of meshes is initially
performed. Figure 3 shows a plot of the variation of the global Nusselt number,
defined based on (10), as a function of the mesh size.

dY
X

Nu
X =∂

∂−=
1

0 0

θ
 (10)

The results show that the solution to the problem stays basically unaltered for
meshes of 82x81 or more nodal points, with a maximum deviation of 0.6 % in the
global Nusselt number.

5.00

5.50

6.00

6.50

7.00

7.50

8.00

0 2 4 6 8 10
Grid

N
u
s
s
e
l
t

Fig. 3. Nusselt number x Mesh size

The solution is compared to the numerical results of [12] based on the global
Nusselt number. In this comparison, the current work uses an uniform mesh with

42x41 nodal points, with a global Nusselt number equals to 804,6Nu = . Viskanta
[12] uses a mesh with 41x41 nodal points, with the global Nusselt number equals to

701,6Nu = . The results present a deviation of 1.54 %.
The numerical results were additionally compared to the experimental data of [4].

Figure 4 shows the temperature distribution along the horizontal axis in three different
positions. It can be seen that the results are consistent and the largest deviations occur
in the center and near the superior wall. Notwithstanding, in these regions, the
numerical results are qualitatively sound.

 Grid

1 22 x 21
2 32 x 31
3 42 x 41
4 62 x 61
5 82 x 81
6 122 x 121
7 132 x 131
8 202 x 201

754 E.F.D. Nogueira et al.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

θ

x/H

Ra = 1.06x106 Pr = 2.08x10-2

y/H = 0.0

y/H = 0.5

y/H = 1.0

TEMP
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

STRF
1
0

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10

Fig. 4. a- Comparison between the numerical results of the current study and the experimental
data obtained by [4]; b - Isotherms and current lines

Figure 4.b shows the distribution of isotherms and current lines. These isotherms
show places in the cavity with same temperatures. It can be seen that both the
increase of temperature at the inferior left corner of the cavity and the decrease of
temperature at the superior right corner are caused by subtle re-circulations at those
regions. This plot is important since it allows the comparison of visual results with
physical photographs of the experiments.

5.2 Performance Results

Figure 5 shows the performance results of this problem. In this plot, the sequential
implementation was applied to meshes of different sizes. The mesh sizes are
numbered. The response time for each mesh is plotted as a point.

Response Time

0

50000

100000

150000

200000

250000

300000

0 1 2 3 4 5 6 7 8 9
Mesh

T
i
m
e

-

s

1 - 22x21
2 - 32x31
3 - 42x41
4 - 62x61
5 - 82x81
6 - 122x121
7 - 162x161
8 - 202x201

Fig. 5. Response time of the sequential implementation as a function of mesh size

The response time grows with the mesh refining. The plot in Figure 5 also shows
that using meshes of size 122x121 or more yields response time in the order of 10
hours or more. This high response time justifies the use of parallel solutions for this
problem.

 A Parallel Implementation of the Finite Volume Method 755

Table 1. Response time in seconds

Mesh/Proc. 1 2 4 5 8 10

22x21 123 263 400 418

32x31 340 470 642

42x41 681 760 883 918

62x61 2396 2052 1925 1887 1910

82x81 7837 4753 3732 3568 3408 3414

122x121 36040 22235 12823 11619 9646 9446

162x161 106124 64949 40039 34210 26451 24389

202x201 238523 141697 90439 79836 61323 55198

Table 1 shows the response time of each configuration of parallel computer and
mesh sizes. The bold cells are the number of processors and mesh size, respectively.
Empty cell means that tests were not executed. The contents of the table are
expressed in seconds.

The speedup of the first three meshes is smaller than one. In this situation the small
mesh size causes overhead influenced by operational system, as well as network
communication system. The speedup is greater than one for the others mesh sizes.
The speedup grows with the mesh size applied. These results are presented in Figure
6. The speedup is plotted for different sizes of the computational meshes.

Fig. 6. Speedup x Mesh size

For the 62x61 mesh, the speedup was greater than 1, but still smaller than 1.5. The
82x81 mesh presented a speedup around 2.2. Larger mesh sizes, e.g. 122x121,
162x161 and 202x201 presented more significant speedup.

The best speedup is obtained when the mesh size is 202x201. At this mesh size the
response time is 55,198s in parallel implementation and 238,523s for serial
implementation. The speedup obtained is 4.32.

756 E.F.D. Nogueira et al.

The efficiency is calculated and presented in table 2. The first line is the node
number in the parallel computer. The first column shows the mesh size applied in the
execution test. The value in each cell is the efficiency of parallel computer running
with n processor at ‘YxZ’ mesh size.

Table 2. Efficiency

Mesh/CPUs 1 2 4 5 8 10

22x21 100% 24% 8% 6%

32x31 100% 36% 11%

42x41 100% 45% 19% 15%

62x61 100% 59% 31% 25% 13%

82x81 100% 83% 53% 44% 29% 23%

122x121 100% 81% 70% 62% 47% 38%

162x161 100% 82% 66% 62% 50% 44%

202x201 100% 84% 66% 60% 49% 43%

The efficiency in the small meshes is poor due to the speedup smaller than one.
Intermediate mesh values 62x61 and 82x81 present small speedup. The best results
are confirmed for bigger mesh sizes. In these tests the processing is enough to
overcome operating system and network overhead. Better results of efficiency occur
when speedup grows. From the results shown in Figure 6, it can be seen that the
speedup between 4 and 5 is not significantly high. However, table 1 shows that the
response times for the 162x161 and 202x201 meshes are about 30 hours and 67 hours,
respectively. Besides this fact, the efficiency for the bigger mesh size is around 43%.
These significant speedup and efficiency values corroborate the advantages of parallel
implementation for this kind of problem.

6 Conclusions

In this work, we have developed a parallel implementation of the finite volume
method to simulate the natural convection in a squared closed cavity. Validation was
achieved by comparing the results with experimental data available in the literature.
The parallel implementation performance was verified based on speedup and
efficiency analysis.

We show that the use of parallelism reduces significantly the response time without
degradation in the results precision, when applied in a classical transport phenomena
problem.

The results show that using a cluster and a programming model of message passing
successfully solves the problem of the closed cavity. The numerical results were
consistent with the ones obtained from a real experiment. The difference between
both methods was estimated in 3%. This error can be considered sufficiently small to
justify the application of the computational method in real problems of engineering.

 A Parallel Implementation of the Finite Volume Method 757

The results showed that the use of parallelism did not degrade the precision of the
solution and additionally reduced the response time.

The parallel implementation enabled a computational solution to the problem since
the time required to achieve a solution without parallelism was 67 hours. The use of
parallelism reduced the response time to 13 hours. The speedup of 4.32 is significant
in this case, as it represents a time reduction of approximately 55 hours. The
performance results with parallelism were not linear; in some cases, using twice as
many processors resulted in a small speedup. Thus, it was necessary to make an initial
evaluation in order to determine the best configuration for the parallel computer and
the size of the problem (size of the simulated mesh).

The solutions obtained with parallel processing were validated and proved to be
robust. In all cases of meshes, no significant deviations could be observed. This was
evaluated by computing the Nusselt number and the results proved to be trustworthy.
All the computational tools used in this work are freely available and can be
downloaded from Internet.

Among future works we can highlight: coding the parallel implementation using
instruction level parallelism, as MMX, SSE, 3Dnow, for example. These instructions
set are available in many modern processors; The Master – Slave model is used in this
work. Other kind of parallel model can be experimented.

References

1. S. Ostrach, “Natural Convection in Enclosures”, Adv. Heat Transfer, vol. 8, 1972, pp. 161-
227.

2. R. Viskanta. A.A. Mohammad, “Transient Natural Convection of Low-Prandtl-Number
Fluids in a Differentially Heated Cavity”, Int. J. Numerical Methods in Fluids, vol. 13,
1991, pp. 61-81.

3. Y. Wang, K. Amiri, K. Vafai, “An Experimental Investigation of the Melting Process in a
Rectangular Enclosure”, Int. J. Heat Mass Transfer, Vol. 42, 1999, pp. 3659-3672.

4. F. Wolff, C. Beckermann, R. Viskanta, “Natural Convection of liquid metals in vertical
cavities”, Exp Thermal Fluid Sci, Vol.1, 1988, pp.83-91.

5. S. Arcidiacono, I. Di Piazza, M. Ciofalo, “Low- Prandtl Number Natural Convection in
Volumetrically heated Rectangular Enclosures II. Square Cavity, AR=1”, Int. J. Heat Mass
Transfer, vol. 44, 2001, pp. 537-550.

6. Hwang, K., Xu, Z., Scalable Parallel Computing: Technology, Architecture, Programming,
McGraw-Hill, 1998.

7. MPI Forum, “The MPI message passing interface standard”, Technical report, University
of Tennessee, Knoxville, 1994.

8. A. Geist et al., “PVM: Parallel Virtual Machine”. MIT Press, Cambridge, 1994.
9. S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere, New York, 1980.

10. J.P van Doormaan, G.D. Raithby, “Enhancements of the Simple Method for Predicting
Incompressible Fluid Flow”, Numerical Heat Transfer, vol.7, 1984, pp.147-163.

11. L. F. G. Pires, A.O. Nieckele, “Numerical Method For The Solution Of Flows Using
Contravariant Components In Non-Orthogonal Coordinates”, Proc. V Brazilian Meeting
on Thermal Sciences, Sao Paulo, 1994, pp. 343-346.

12. R. Viskanta, D.M. Kim, C. Gau, “Three-Dimensional Natural Convection Heat Transfer of
a Liquid metal in a Cavity”, Int. J. Heat Mass Transfer, vol. 29(3), 1986, pp. 475-485.

A Real-Time and Parametric Parallel Video
Compression Architecture Using FPGA

Cássio A. Carneiro1, Francisco M.P. Garcia1, Flávia M. Freitas1,
Zélia M.A. Peixoto1, Amanda R.M. Diniz1, and Abraham Alcaim2

1 Pontifical Catholic University of Minas Gerais, Av. Dom José Gaspar 500,
30535-610, Belo Horizonte, MG, Brazil

cassiomolina@yahoo.com.br, {fgarcia, flaviamagfreitas,

assiszmp}@pucminas.br, dinizamanda@gmail.com
2 Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225,

22453-900, Rio de Janeiro, RJ, Brazil
alcaim@cetuc.puc-rio.br

Abstract. This paper presents a novel parallel architecture which per-
forms a streamed-based processing of the two-dimensional Discrete Co-
sine Transform (2D-DCT) for real time video compression applications.
This proposal consists in using a programmable device, such as FPGA,
to implement kernels of one-dimensional DCT (1D-DCT), referred to as
DCT-kernels, which can be instantiated, so many as necessary, to attend
the required pixel rate for a specific purpose. The implementation of the
architecture proposed for the DCT-kernel also presents some interesting
features that represent an advantage over the classical architectures for
1D-DCT available in the literature, mainly when a parallel architecture is
supposed to use some of them. Two different applications, standard def-
inition television (SDTV) and high definition television (HDTV), have
employed the proposed parallel architecture using different number of
DCT-kernels in order to show the potential of its use and real possibili-
ties of enlarging the set of candidate applications.

1 Introduction

Image and video compression has been an area of fast scientific and technological
development because of its large employment in many fields of Engineering.
Compression techniques offer the possibility to store or to transmit the vast
amount of data necessary to represent still image and video in an efficient and
robust way. Some of the most important applications are Standard Television
(SDTV) [1,2], High Definition Television (HDTV) [3], Interactive Television and
3D-TV [4] and High Definition Digital Video Disc (HD-DVD), among others.

Unfortunately, encoding algorithms with higher performance have come at
the price of extraordinarily huge computational complexity and memory access
requirement. This makes it difficult to design hardwired encoders for real-time
applications. In some cases, the amount of data to be processed may also be
too high and so, the bandwidth requirement increases. A typical example is
the highly interactive and recreation multimedia (HDTV and HD-DVD), which

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 758–768, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Real-Time and Parametric Parallel Video Compression Architecture 759

demands much higher compression ratio and quality for video content. In order to
achieve the necessary throughput, pipelining and parallel processing techniques
have then been employed whenever the required processing is neither sequential
nor data-dependent [3,6].

One of the basic strategies for coding still images and video is the Transform
Domain Coding, which has become a very popular method for lossy still image
and video coding [7]. It consists in quantizing and encoding decorrelated trans-
form coefficients rather than the original pixels of the images. The most pop-
ular and well-established transform technique is the Discrete Cosine Transform
(DCT) used in the lossy JPEG, MPEG family and H.264 coder standards [8].
The DCT is applied strictly as a block-based approach on blocks of size N ×N
pixels (usually, N = 8) and it is employed to reduce spatial redundancy at ei-
ther intraframe or interframe encoding [7]. In this latter case, it is accomplished
by motion estimation and compensation techniques to reduce temporal redun-
dancy [7]. Recently, hardwired solutions to implement the DCT have been the
focus of research effort. Several evolutions of the original algorithm [8] and imple-
mentations have been developed for real-time applications, aiming at reducing
costs, improving performance and increasing the throughput [3].

The main motivation of this paper is to present a parametric parallel archi-
tecture to compute a block-based DCT scheme for real-time applications. The
proposed architecture uses a kernel cell to process the 1D-DCT over a vector
of N components. Depending on the application, the required throughput may
vary and a different number of these kernel structures may be used (the num-
ber of kernels to be used is a parameter of the proposed architecture). The
reduction of the hardware resources needed to implement this kernel cell, if
compared to recently published works [9,10,6], enables lower circuit area. It is
important to note that in block-based DCT scheme there are no data depen-
dencies between neighboring blocks, pointing to the possibility of using parallel
processing.

2 The Discrete Cosine Transform

For the block-based DCT approach, the input image are split into disjoint blocks
U of N ×N pixels. In general, a linear, separable and unitary 2D-transform can
be represented as a matricial operation on each block U in the form C = AUAT ,
in which C is the N ×N transformed coefficients block, A is a N ×N transform
matrix and AT denotes the transpose of A.

A unitary transform is reversible, since the original block U can be recon-
structed using a linear and separable inverse transform, doing U = AT CA.
However, in a practical coding scheme, the coefficients will be quantized and the
original image block will be only approximated, resulting a lossy compression.

Today, block-based DCT schemes are widely used in most image and video
coding due to their high decorrelation performance [7] and the availability of fast
DCT algorithms suitable for hardware implementations in real-time applications.
These algorithms use the separability property of the 2D-transform that allows

760 C.A. Carneiro et al.

its implementation by two 1D-transform operations. This reduces the compu-
tational effort and the necessary area for the hardware implementation. In this
sense, the block of coefficients may be computed doing:

CT = A(AU)T = AUT AT = (AUT)AT = GAT = (AGT)T (1)

That is, first the rows of U are processed to produce the 1D-transformed ma-
trix G = AUT . In the following, the rows of the matrix G are processed to obtain
the 2D-transformed matrix CT = (AGT)T . Finally, CT must be transposed in
order to produce the final transformed image block C.

Using the separability principle described by Equation 1 in the computation of
the 2D-DCT, the 1D-DCT processing over the xth row of U(Ux), x=[0, · · · , N−1]
will produce the xth transformed row of G(Gx), whose components are given
by [7],

Gxy = ky

N−1∑
j=0

Uxj cos
(2j + 1)yπ

2N
, y = [0, · · · , N − 1] (2)

with ky = 1
2
√

2
if y = 0 and ky = 1

2 if y = 0. The expression given by Equation 2
is the basis of the fast algorithms proposed in the recent literature to implement
the 1D-DCT.

3 Related Works Concerning the 1D-DCT

Several fast algorithms concerning the implementation of the 1D-DCT have been
proposed in the literature [11,12,2,6]. The work presented by [5] compares the
required number of additions and multiplications in a few of them. In order to
reduce the number of multiplications, which is the most expensive operation, all
of them use the separability property, while some of them also apply the scaling
principle. It consists in excluding the multiplications by constant factors from
the DCT algorithm and embedding them in the quantization step.

Table 1 compares the number of multiplications and additions used by some
fast 1D-DCT algorithms. It can be observed that the use of the principles of
separability and scaling enables the reduction of the required multiplications
and, in this sense, the one introduced in [2] was the most efficient.

The algorithm proposed by [2] has been later improved by [9], which reduced
from 16 to 12 the number of required two’s complement operations, while keeping

Table 1. Fast 1D-DCT algorithms and the required number of operations [5]

Algorithm Multiplication Addition
Chen [11] ∗ 16 26
Lee [12] ∗ 12 29
Lee [12] ∗∗ 11 28

Chen [11] ∗∗ 8 26
Arai [2] ∗∗ 5 29

∗ use separability
∗∗ use separability and scaling

A Real-Time and Parametric Parallel Video Compression Architecture 761

the same number of additions and multiplications. The algorithm proposed in [9]
has six completely independent stages, which enables the use of parallelism.
However, preliminary simulations of the algorithm [9], performed by [10], have
pointed to a sintax error in one of the variables. The algorithm introduced in [10]
corrected this initial problem and has also proposed simple modifications in the
previous architecture, in order to have its latency reduced. The final six stages
are showed in the following and the diagram of the proposed architecture [10] is
presented in Fig. 1.

Stage A Stage B Stage C Stage D Stage E Stage F
b0 = a0 + a7 c0 = b0 + b5 d0 = c0 + c3 e0 = d0 f0 = e0 S0 = f0
b1 = a1 + a6 c1 = b1 − b4 d1 = c0 − c3 e1 = d1 f1 = e1 S1 = f4 + f7
b2 = a3 − a4 c2 = b2 + b6 d2 = c2 e2 = m3 ∗ d2 f2 = e5 + e6 S2 = f2
b3 = a1 − a6 c3 = b1 + b4 d3 = c1 + c4 e3 = m1 ∗ d7 f3 = e5 − e6 S3 = f5 − f6
b4 = a2 + a5 c4 = b0 − b5 d4 = c2 − c5 e4 = m4 ∗ d6 f4 = e3 + e8 S4 = f1
b5 = a3 + a4 c5 = b3 + b7 d5 = c4 e5 = d5 f5 = e8 − e3 S5 = f5 + f6
b6 = a2 − a5 c6 = b3 + b6 d6 = c5 e6 = m1 ∗ d3 f6 = e2 + e7 S6 = f3
b7 = a0 − a7 c7 = b7 d7 = c6 e7 = m2 ∗ d4 f7 = e4 + e7 S7 = f4 − f7

d8 = c7 e8 = d8

Fig. 1. Diagram of the architecture proposed in [10]

The proposed architecture [10] is basically composed of ping pong buffers and
arithmetic operators. The ping pong buffer holds the data so that the operations
can be performed. It has two columns of registers: the first one accepts serial
data input (ping) and the second one provides parallel data output (pong).
In this way, a new pixel is filled in the first buffer (ping) in each clock cycle.
After a set of eight pixels has been stored, this set is transferred to the second
buffer (pong). In the stages “C” and “D”, nine positions are necessary in the
respective buffers. Additions and subtractions as previously described for each

762 C.A. Carneiro et al.

stage are simultaneously performed in one clock cycle. The five multiplications
required to calculate the 1D-DCT over a segment of N elements are computed
during six clock cycles.

The algorithm proposed by [10] has been chosen as the basis for the imple-
mentation of the 1D-DCT in this paper. It will be modified in order to design
a kernel structure for the parametric parallel architecture to be proposed. This
modified 1D-DCT kernel structure is going to be introduced in the next section
and it will be referred to as DCT-kernel.

4 The DCT-Kernel Architecture

The proposed DCT-kernel aims at using a lower number of flip-flops if compared
to [10]. To achieve this, the ping-pong buffers are replaced by simple ping buffers.
Due to the elimination of the pong buffers, the data in each stage are not placed
in a fixed position, but they move dynamically while the ping buffer is being filled
in. To perform the arithmetic operations, it is necessary to properly modify the
addresses of the multiplexes. Some stages also had the number of buffers reduced
due to the elimination of the unnecessary data storage (i.e. d0 = e0 = f0).

The proposed DCT-kernel also offers a speedup in relation to the architecture
presented in [10]. This was possible by including a pipelining stage in the arith-
metic operators that enabled a maximum simulated operation frequency equal
to 80 MHz. This will make easier the parallel use of this kernel structure at video
compression schemes for HDTV purposes.

The increasing of the number of required flip-flops for the pipelining in the
arithmetic operators has been compensated by the elimination of the pong
buffers. In this way, the DCT-kernel demands only 41.66% of the flip-flops used
in [10]. Moreover, the DCT-kernel introduces a shorter period of latency than
the architecture proposed by [10], since the calculations in the N th stage can
start before the calculations in the (N − 1)th stage have finished (which is not
possible in [10]).

Figure 2 presents the proposed architecture for the DCT-kernel, where it is
possible to observe the reduction of the number of buffers. For example, con-
sidering pixels represented with 8 bits, stage “D” in the implementation of [10]
requires 198 flip-flops (18 buffers of 11 bits) and, in the DCT-kernel, only 26 flip-
flops are necessary (1 buffer of 12 bits plus 14 bits of adder-subtracter pipelining).

Table 2 compares the quantities of flip-flops used by the architecture proposed
in [10] and by the DCT-kernel, in which the reduction of 41.66% can be observed.
The DCT-kernel has also reduced a single multiplex circuit in stage “E”, as
showed by Table 3.

The proposed DCT-kernel consists in a state machine composed of sixteen
different sub-states. In each of them, some shift registers are enabled and the
related operations of the algorithm are performed. It uses a clock with twice
the frequency of the input data in order to multiplex the required addition and
subtraction operations (each of them occurs during one clock cycle).

A Real-Time and Parametric Parallel Video Compression Architecture 763

Fig. 2. Diagram of the proposed DCT-kernel

Table 2. Number of required flip-flops

Stage Arch. [10] DCT-kernel
A 128 73
B 144 90
C 160 88
D 198 26
E 198 78
F 192 70

Total 1020 425

Table 3. Number of required multi-
plexes

Multiplex Arch. [10] DCT-kernel
Mux0-A 4x1 4x1
Mux1-A 4x1 2x1
Mux0-B 4x1 4x1
Mux1-B 4x1 4x1
Mux0-C 3x1 2x1
Mux1-C 3x1 2x1
Mux0-D 4x1 4x1
Mux1-D 5x1 4x1
Mux0-E 5x1 4x1
Mux1-E 4x1 -
Mux0-F 2x1 4x1
Mux1-F 2x1 4x1

5 The Parametric 2D-DCT Architecture

To implement the 2D-DCT using 1D-DCT kernels, one or more DCT-kernels are
reserved to process the rows, while another set with the same number of kernels
is dedicated to process the columns. The first ones operate with 8 bits input
data and the second one, with 12 bits. The amount of bits is a programable
parameter in the kernel structure. A memory is necessary to save the result of
the 1D processing along 8 consecutive rows of pixels in a frame. These data
constitutes the input for the second 1D processing (along the columns). This
memory is commonly referred to as transposing buffer. In many applications, in
which the whole frame to be coded is previously stored, this transposing buffer
can be just sufficient to store the block of 8 × 8 pixels that is being coded in
that moment. However, as the goal of the presented architecture is performing

764 C.A. Carneiro et al.

a streamed-based processing for real time applications, the storage of the whole
frame does not occur.

The parametric architecture offers the possibility of using as many DCT-kernels
as necessary to achieve the required throughput for a given application. In the
following, topologies resulted from the choice of two different parameters are pre-
sented. The first one uses 2 DCT-kernels to attend the standard definition tele-
vision (SDTV) purposes and the second one employs 4 DCT-kernels to compress
video signal in the high definition television (HDTV). In both cases, only the Y
component (luminance) of video signal is going to be processed (there are also the
chrominance components, Cb and Cr). The architecture for the HDTV can be
used in both 720p (progressive scan) and 1080i (interlaced scan). Table 4 shows
the main features of SDTV and HDTV standards.

Table 4. The mains features of SDTV and HDTV standards

frames/ samples of Y/ samples of Cb Cr/Standards
second

sampling
second second

SD 720x480i 30/1.001 4:2:2 13,500,000 6,750,000
HD 1920x1080i 30 4:2:2 74,250,000 37,125,000
HD 1280x720p 60 4:2:2 74,250,000 37,125,000

5.1 An Architecture That Attends SDTV Purposes

The first 8 rows of the frame are consecutively processed (in sets of 8 pixels) by
just one DCT-kernel. Only when this first step had finished, two 1D processing
are simultaneously done, each of them executed by a different DCT-kernel. The
first kernel performs the horizontal processing over the following set of 8 rows
and the second kernel performs the processing over the columns resultant of the
latter horizontal processing. Then, two buffers of size equivalent to 8 complete
rows are necessary. These buffers are internal to the FPGA, which means that
no external memory is used.

The first buffer is needed for the storage of the horizontal coefficients resultant
of the 1D processing of the first set of 8 rows. This buffer will save the horizontal
coefficients that will be read during the second step (when they will be processed
in the vertical direction). The second buffer, by its time, will be filled in (from
this second step on) with the coefficients resulted from the horizontal processing
of the second set of 8 rows. In this manner, the simultaneous use of the 2 buffers
is such that when one of them is being read, the other one is being written. In
each set of 8 incoming rows of pixels, these buffers have their functions inverted.
Figure 3 shows the main parts of this proposal for implementing the 2D-DCT
for SDTV.

The maximum clock frequency achieved by each DCT-kernel has been 80MHz
(12.5ns), as described in Section 4. This limitation is mainly due to the propaga-
tion delays of the multiplexes, adders and subtractors. Since both DCT-kernels
operate in parallel (there is only a difference of 8 rows to start the processing by
the second one), the frequency limit for the parallel architecture using the both
kernels keeps the same as that of a particular kernel. As soon as the incoming

A Real-Time and Parametric Parallel Video Compression Architecture 765

Fig. 3. Parallel 2D-DCT block diagram for SDTV

pixel rate is half this value (as mentioned in the presentation of the DCT-kernel
in Section 4), the limit of operation is 40 megapixels/s. This is more than the
necessary to attend standard definition video signals (SDTV), for which the pixel
rate is 13,5 megapixels/s.

5.2 An Architecture That Attends HDTV Purposes

The rate of 40 megapixels/s is not enough to process high definition video signal,
neither in the 720p nor in the 1080i standard. In this case, the required rate is
74,5 megapixels/s. In order to attend HDTV purposes, the present architecture
may explore its parametric characteristic, that is, 4 DCT-kernels (instead of 2)
may be used in a parallel way. Figure 4 shows the block diagram for HDTV.

Two DCT-kernels are utilized to process, each of them, half the pixels in a par-
ticular row. They operate alternatively in sets of 8 consecutive pixels, as shown
in Fig. 5. In the same manner, the other two DCT-kernels conjunctly perform
the vertical processing in the 8 rows of pixels that have been processed in the
horizontal direction in the previous step. In this case, the transpose buffer used
by each DCT-kernel has been resized to support only half the pixels of 8 consec-
utive rows (or columns). For this reason, regardless of the use of 4 DCT-kernels
(which is twice the quantity used in the previous architecture), the total memory
need for the architecture has been kept unchanged.

Fig. 4. Parallel 2D-DCT block diagram for HDTV

766 C.A. Carneiro et al.

Fig. 5. 2D-DCT parallel processing data stream for HDTV

6 Verification Results

To verify the proposed architecture, the language VHDL (VHSIC - Hardware
Description Language) has been employed in the design and the software Altera
Quartus II has been used for simulation and synthesis. The target device was
the CYCLONE II of Altera. It has been observed a significative reduction in the
number of logic elements in the proposed architecture, if it is compared to other
schemes reported in the literature.

Figure 6 shows the simulation results of the first unity of DCT-kernel used in
the 2D-DCT for the SDTV. The state machine referred to as ‘smp cnt ’ changes
in the rising edge of the 80 MHz clock signal ‘clk ’. However, a new pixel ‘in-
put ’ arrives at each two periods of clock and the first coefficient ‘output ’ is only
available after the thirty-second clock cycle. In this figure, the set of 8 pix-
els [0, 3, 6, 9, 12, 15, 18, 21] has generated the set of 8 1D-DCT coefficients
[84, 0 , 0, 0, -77, 1, -6, -2].

For HDTV purpose, a control system has been created to synchronize the job
division between the 2 DCT-kernels that alternatively process the same set of
8 rows (or columns). Figure 7 shows the control signals ‘in ena 1 ’ and ‘in ena 2 ’
that enable the data input for the first set of two DCT-kernels. The set of 8 pixels
[0, 3, 6, 9, 12, 15, 18, 21] is processed by one of the DCT-kernels and generates
the set of 8 1D-DCT coefficients [84, 0 , 0, 0, -77, 1, -6, -2], as shown in the sig-
nal ‘output 1 ’. The subsequent set of 8 pixels [24, 27, 30, 33, 36, 39, 42, 45] is
processed by another DCT-kernel and generates the coefficients [276, 0 , 0, 0,...]
(only the first set of four coefficients are shown in Figure 7). The signals ‘out-
put 1 ’ and ‘output 2 ’ are the input data for the two transposing buffers shown
in Figure 4. The access to the data to be processed by each of them must
also be controlled. This task is done by a demultiplex that distributes sets of 8

Fig. 6. Simulation results for SDTV

A Real-Time and Parametric Parallel Video Compression Architecture 767

consecutive pixels between the 2 DCT-kernels. Since each DCT-kernel processes
a set of 8 pixels in the same row, there is no additional delay (latency) due to
the parallel architecture. A speedup of 2 has been obtained.

Fig. 7. Simulation results for HDTV

7 Conclusion

The parametric architecture proposed in this paper is expected to be an efficient
alternative to provide the pixel rate required by the most of video compression
applications. To achieve this goal, it uses as many DCT-kernels as necessary, in
a parallel way.

The proposed DCT-kernel is a hardware implementation of the 1D-DCT that
presents some advantages over classical implementations in the literature, which
are a significative reduction of the number of required flip-flops and the use of a
smaller transposing buffer.

The need for a buffer with lower size in the DCT-kernel avoids the use of
extended memory while enables the use of a buffer internal to the FPGA. This
reduces the circuit area and also prevents from some hardware faults. When two
or more DCT-kernels are used to increase the pixel rate, the capacity required
for each individual buffer decreases and the total memory keeps unchanged. It
is an important to consider that the internal memory available in the FPGAs
is restricted and relatively low if compared to the number of equivalent gates
provided by them.

This paper has presented two different uses of the proposed parallel archi-
tecture. They attend for standard definition television (SDTV) and high defini-
tion television (HDTV) purposes, using two and four DCT-kernels, respectively.
However, due to its parametric characteristic, this architecture can also provide
solutions for other applications that demand higher pixel rates, without chang-
ing the hardware device. The number of kernels to operate in parallel is limited
to the number of logic elements provided by the device. Then, this architecture
promises to be especially useful to the transform approach for video compres-
sion in HDTV applications, which are, nowadays, one of the fields with the most
expressive appeal for research and development.

768 C.A. Carneiro et al.

References

1. Recommendation ITU-R BT.656-3: Interfaces For Digital Component Video Sig-
nals in 525-line and 625-line Television Systems Operating at the 4:2:2 Level of
Recommendation ITU-R BT.601 (Part A). (1995).

2. Arai, Y.; Agui, T.; Nakajima, M.: A Fast DCT-SQ Scheme for Images. Transactions
of IEICE. V. E71, N. 11, pp 1095-1097, November 1988.

3. Chen, T.C: Analysis and Architecture Design of an HDTV720p 30 Frames/s
H.264/AVC Encoder. IEEE Transactions on Circuits and Systems for Video Tech-
nology. V. 16, N. 6, pp 673-688, June 2006.

4. Fehn, C.; de La Barré, R.; Pastoor, S.: Interactive 3-DTV - Concepts and Key
Technologies. Proceedings of the IEEE. V. 94, N. 3, pp 524-538, March 2006.

5. Bhaskaran, V.; Konstantinides, K.: Image and Video Compression Standards Al-
gorithms and Architectures. Kluwer Academic Publishers. Massachusetts, 1999.

6. Porto, R.; Agostini, L.: Project Space Exploration on the 2D-DCT Architecture of
a JPEG Compressor Directed to FPGA Implementation. Design, Automation and
Test in Europe Conference and Exhibition, pp 224-229, February 2004.

7. Jain, A.: Fundamentals of Digital Image Processing. Prentice Hall. USA, 1989.
8. Ahmed, N.; Natrajan, T.; Rao, K.R.: Discrete Cosine Transform. IEEE Trans.

Comput. V. C-23, N. 1, pp 90-93, December 1984.
9. Kovac, M.; Ranganathan, N.: JAGUAR: A Fully Pipelined VLSI Architecture

for JPEG Image Compression Standard. Proceedings of the IEEE. V. 32, N. 6,
pp 247-258, February 1995.

10. Agostini, L.: Information Technology Digital Compression and Coding of
Continuous-tone still Images Requirements and Guidelines. M. Sc. Dissertation.
Computer Science Graduate Program - Federal University of Rio Grande do Sul,
2002.

11. Chen, W.; Smith, C.; Fralick, S.: A Fast Computational Algorithm for the Dis-
crete Cosine Transform. IEEE Transactions on Communications. V. 25, N. 9,
pp 1004-1009, September 1977.

12. Lee, B.: A New Algorithm to Compute the Discrete Cossine Transform. IEEE
Transactions on ASSP. V. 32, N. 6, pp 1243-1245, December 1984.

A Resource Selection Method for Cycle Stealing in
the GPU Grid�

Yuki Kotani, Fumihiko Ino, and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{y-kotani, ino, hagihara}@ist.osaka-u.ac.jp

Abstract. Modern programmable graphics processing units (GPUs) provide in-
creasingly higher performance, motivating us to perform general-purpose com-
putation on the GPU (GPGPU) beyond graphics applications. In this paper, we
address the problem of resource selection in the GPU grid. The GPU grid here
consists of desktop computers at home and the office, utilizing idle GPUs and
CPUs as computational engines for compute-intensive applications. Our method
tackles this challenging problem (1) by defining idle resources and (2) by de-
veloping a resource selection method based on a screensaver approach with low-
overhead sensors. The sensors detect idle GPUs by checking video random access
memory (VRAM) usage and CPU usage on each computer. Detected resources
are then selected according to a matchmaking framework and benchmark results
obtained when the screensaver is installed on the machines. The experimental
results show that our method achieves a low overhead of at most 262 ms, mini-
mizing interference to resource owners with at most 10% performance drop.

1 Introduction

Grid technology [1] has emerged as a new paradigm in computational science. It allows
us to share hardware and software resources across multiple organizations, providing
us a virtual supercomputer through the Internet. There are many types of grids such as
server grids, desktop grids, and data grids [2]. In this paper, we use the term grid to refer
to a desktop grid, namely a cycle stealing system that utilizes idle computers at home
and the office.

Another emerging paradigm is GPGPU [3], which stands for general-purpose
computation on the graphics processing unit (GPU) [4,5]. The GPU is a single chip
processor designed for acceleration of compute-intensive graphics tasks, such as three-
dimensional (3-D) rendering applications. Modern GPUs are increasing in computa-
tional performance at greater than Moore’s law [6]. For example, an nVIDIA GeForce
6800 card achieves a peak performance of 120 GFLOPS for single precision data [7].
In addition to their attractive performance, GPUs are becoming more flexible in pro-
grammability with supporting branching. Consequently, many researchers are trying to
apply the GPU to non-graphics problems [8] as well as typical graphics problems.

� This work was partly supported by JSPS Grant-in-Aid for Scientific Research for Scientific
Research (B)(2)(18300009) and on Priority Areas (17032007).

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 769–780, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

770 Y. Kotani, F. Ino, and K. Hagihara

In this paper, we focus on enabling GPGPU applications to execute on desktop grids.
This type of grids, named GPU grids, aims at exploiting idle GPUs as well as idle
CPUs at home and the office. Thus, we think that desktop grids will become a more
attractive computing platform if GPUs are explicitly managed and used as general-
purpose resources as well as graphics accelerators.

Since GPUs have been used as dedicated display cards, many technical problems
arise if these cards are shared between resource owners and grid users. A resource
owner here is the person who contributes resources to the grid while a grid user means
the person who desires to run grid applications on donated resources. One typical prob-
lem is resource conflicts between owners and users. In particular, the following critical
problems must be resolved to achieve our goal of building GPU grids.

P1. The lack of definition of idle resources. GPUs are originally designed to serve
their owners who directly see the display output. Therefore, the definition of idle
resources has not been considered from the grid users point of view. We must define
this to select appropriate resources for grid users. The definition here should be
considered from both the owner side and the user side in order to (1) minimize
interference to owners and (2) maximize application performance provided to users.

P2. The lack of external monitors for the GPU. Most operating systems are capable of
providing CPU performance information such as load average and memory usage.
However, current operating systems do not have information on GPU performance.
Although modern GPUs have performance counters inside their chips, these in-
ternal counters are accessible only from instrumented programs running with an
instrumented device driver [9]. Therefore, we need external monitors to minimize
modifications to resource configurations and application code.

P3. The lack of efficient multitasking on the GPU. Current GPUs do not support con-
text switching in hardware, so that preemptive multitasking of GPU applications is
not available even in Windows XP, namely the most popular system [10]. Instead,
multitasking is cooperatively done by software, which results in lower performance.
Thus, GPUs are still not virtualized enough to allow multiple applications to be run
effectively.

Although problem P3 is critical, it is not easy for non-vendors to give a direct so-
lution to this problem. Therefore, assuming that the GPU grid consists of cooperative
multitasking systems, we tackle the remaining problems P1 and P2 to select idle GPUs
appropriately from grid resources.

To address problem P1, we experimentally define the idle state of the GPU. For prob-
lem P2, on the other hand, we develop a resource selection method based on a screen-
saver approach with low-overhead sensors. The sensors detect idle GPUs according to
video random access memory (VRAM) usage and CPU usage on each computer. Once
idle GPUs are detected, they are selected according to a matchmaking framework [11]
and benchmark results. The benchmark results here are obtained when the screensaver
is installed on each of the resources. Our method is currently implemented on Windows
systems, which support the latest GPUs for entertainment use.

A Resource Selection Method for Cycle Stealing in the GPU Grid 771

Local

application

Grid user

Busy GPU

Idle GPU

Idle CPU

Grid application

Program transfer

WAN

or

LAN

Job

submission

Job request

Allocated

resources

Grid

resources

Resource

manager

DB

Resource

owners Client

Fig. 1. Overview of the GPU Grid

2 GPU Grid

The GPU grid has almost the same structure as existing desktop grids. The only dif-
ference is that the GPU grid explicitly manages the GPU as general-purpose resources.
We think that this little difference allows us to easily integrate our resource selection
method into existing desktop grid systems.

2.1 System Overview

Figure 1 shows an overview of the GPU grid, which consists of three main components
as follows.

– Grid resources. Grid resources are desktop computers at home and the office con-
necting to the Internet. Ordinarily, these resources are used by resource owners.
However, they are donated for job execution if they are in the idle state. Arbitrary
computers are considered as grid resources regardless of having the programmable
GPU or not.

– The resource manager. The resource manager takes the responsibility for moni-
toring and selection of registered resources. It also acts as a job manager, which
receives jobs from grid users. For each job, the manager returns a list of avail-
able resources. This list contains idle resources waiting for job allocation, and thus
matchmaking [11] is done using this list (see Section 3.2). We accept arbitrary jobs
consisting of GPGPU, GPU, and CPU applications.

– Clients. Clients are front-end computers for grid users, who want to submit jobs to
the grid. Clients can also be grid resources. Once the list of available resources is
sent from the resource manager, the user program is sent to the resources for job
execution.

Thus, the GPU grid is a wider concept of the desktop grid. Therefore, a desktop grid
without GPU-equipped computers also can be regarded as the GPU grid.

In the following discussion, we use the term grid application to denote a program
submitted by grid users. We also use the term local application to denote a program
executed by resource owners using their resources.

772 Y. Kotani, F. Ino, and K. Hagihara

Table 1. Classification of owner’s activities

Situation CPU GPU Owner’s activity
S1 Idle Idle Nothing
S2 Busy Idle Web browsing, movie seeing, music listening
S3 Idle Busy (unrealistic)
S4 Busy Busy Video gaming

2.2 Definition of Idle Resources

Since a grid resource have a CPU and possibly a GPU, the resource state can be roughly
classified into four groups depending on the state of each unit. Table 1 presents this
classification with owner’s typical activities. In the following we show the definition of
idle resources using this classification.

As we mentioned before, the definition must satisfy the following requirements.

R1. It minimizes interference to resource owners.
R2. It maximizes application performance provided to grid users.

To satisfy the above requirements, we define an idle resource such that it satisfies all of
the following three conditions.

D1. The resource owner does not interactively operate the resource.
D2. The GPU does not execute any local application.
D3. The CPU is idle enough to provide the full performance of the GPU to grid users.

Firstly, condition D2 is essential to satisfy requirement R1, because the GPU does
not support preemptive multitasking. Otherwise, some uncooperative applications will
significantly drop the frame rate of the display, making resource owners nervous. Con-
sequently, resource owners are interfered by grid applications if condition D2 is not
satisfied. Thus, R1 excludes situations S3 and S4 from the idle state (See Table 1).

Secondly, due to the same reason, R1 also excludes situation S2 if the resource owner
interactively operates their computer through the display output. We also have exper-
imentally confirmed that the grid application suffers from lower performance if the
resource owner gives a window focus to the operating window (see Section 4.1). There-
fore, situation S2 does not satisfy requirement R2. Thus, condition D1 is needed.

Finally, condition D3 is essential to satisfy requirement R2. We have experimentally
confirmed this (see Section 4.1). GPU applications generally make the CPU usage go
to 100%, because they usually require CPU intervention during GPU execution. Note
here that this condition might be eliminated in the future, because Windows Graphics
Foundation (WGF) 2.0 will enable GPU processing without CPU intervention [12].

3 Resource Selection Method

In this section, we describe how idle resources are detected and how resources are
selected from detected resources.

A Resource Selection Method for Cycle Stealing in the GPU Grid 773

Run the screensaver as a background job

C1?

C2?

C3?

Job request, receipt, and execution

with automated resume from

the screensaver

Yes

Yes

Yes

No

No

No

C1: The screensaver is activated

C2: VRAM usage =< frame buffer size

C3: CPU usage < 10%

Install the screensaver

Measure the frame buffer size

Run the benchmarking program

Fig. 2. Resource detection procedure. Steps in the left-hand side are processed only once when
the screensaver is installed on the resource.

3.1 Detection of Idle Resources

Figure 2 shows the procedure of resource detection. To detect an idle resource that
satisfies conditions D1–D3, our method checks the resource in the following steps.

C1. The screensaver is activated.
C2. VRAM usage ≤ frame buffer size.
C3. CPU usage < 10%.

Steps C1, C2, and C3 here aim at checking conditions D1, D2, and D3, respectively.
The first condition D1 is checked by a screensaver approach. The screensaver is

currently activated after five minutes of owner’s inactivity. This screensaver approach
allows us to detect inactivity at a lower overhead. It also allows owners to rapidly re-
sume their activity, as compared with polling-based methods [13].

Due to the lack of preemptive multitasking supports, our screensaver avoids updating
the display output. Instead, the display is drawn only when the screensaver is turned on.
This intends to avoid increasing the workload of the CPU and the GPU during the
screensaver mode, delivering full GPU performance to grid users. The screensaver is
implemented using a library scrnsave.lib, which is distributed as a part of Microsoft
Visual Studio.

The remaining conditions D2 and D3 are checked by a sensor program. This pro-
gram is implemented as a screensaver function ScreenSaverProc(), which is called when
the screensaver is activated. Thus, we minimize the monitoring overhead by minimizing
the invocation of the sensor program.

The key idea to evaluate condition D2 is the VRAM usage check. This idea assumes
that the GPU always consumes VRAM for the frame buffer and further VRAM if it
executes any GPU programs. Under this assumption, we can evaluate condition D2
by comparing the current usage and the default usage, namely the frame buffer size.
The default usage here is measured only once when installing the screensaver on the
resource. Our VRAM-based monitoring method has two advantages as follows.

774 Y. Kotani, F. Ino, and K. Hagihara

– No modification. The VRAM usage can be easily investigated using a Direct Draw
function GetCaps(), which is initially available in Windows computers. Thus, we
do not need any special libraries and hardware at grid resources.

– Lower overhead. The function GetCaps() obtains the VRAM usage from the device
driver. Therefore, this information is obtained without GPU intervention, leading to
a low-overhead sensor.

Note here that GetCaps() does not directly give the VRAM usage. This function returns
the capacity and the amount of free space, so we subtract them to estimate the usage.

The assumption mentioned above is valid in the current GPU, which allocates VRAM
in advance of an execution. Furthermore, the GPU always consumes VRAM for the
frame buffer size to refresh the display. Although the amount of this consumption might
be computed according to the screen resolution and its color depth, we have found that
it varies depending on hardware and software environments, such as the device driver
version. Therefore, we directly measure the default usage at screensaver installation.

Finally, condition D3 can be evaluated by accessing performance information pro-
vided by operating systems. According to preliminary experiments (see Section 4.1),
we currently use the CPU usage with a threshold of 10%. As well as the VRAM
usage, this information does not require GPU intervention. Our implementation calls
PdhCollectQueryData() to access a performance counter in the Windows operating
system.

3.2 Selection of Idle Resources

Once idle resources are detected by the screensaver approach, the next issue is the re-
source selection problem. We resolve this issue by combining two different approaches:
a benchmarking approach [14] and a matchmaking approach [11].

The benchmarking approach [14] takes the responsibility for measuring the actual
performance for GPGPU applications. The reason why we perform benchmarking is
due to the fact that the specification of the GPU does not always represent the ac-
tual performance for GPGPU applications. Actually, we have found that a high-end
card is outperformed by a commodity card and that the device driver version signif-
icantly affects the performance. Therefore, we run a benchmark program at screen-
saver installation to obtain the actual performance under the idle state. These
benchmark results are then collected at the resource manager to give priorities to de-
tected resources.

On the other hand, the matchmaking approach [11] is responsible for providing a
flexible and general framework of resource selection. For example, this framework al-
lows grid users to select only nVIDIA GeForce 7800 cards or select only GPUs with
having a fill rate of at least 3 Gpixels/s, according to the benchmark results. We think
that this flexible framework is essential to run GPGPU applications in grid environ-
ments, because the GPU is still not a matured computing environment. We have expe-
rienced that some applications running on a GPU do not successfully run on different
GPUs, due to architectural differences and driver version differences. Therefore, we
think that the framework should allow users to select appropriate resources.

A Resource Selection Method for Cycle Stealing in the GPU Grid 775

Table 2. Specification of experimental machines

PC1 PC2 PC3

CPU
Pentium 4 Pentium 4 Pentium 4
3.4 GHz 3.0 GHz 2.8 GHz
nVIDIA nVIDIA nVIDIA

GPU GeForce GeForce Quadro FX
7800 GTX 6800 GTO 3400

Core speed (MHz) 430 350 350
Memory speed (MHz) 1200 900 900
Memory bandwidth (GB/s) 38.4 28.8 28.8
Fill rate (Gpixels/s) 6.88 4.2 5.6
Pipeline engines 24 12 16
Graphics bus PCI Express
Driver version 79.70 78.01 66.93

4 Experimental Results

Table 2 shows the specification of experimental machines. We use three machines PC1,
PC2, and PC3, each with different CPUs and GPUs. PC1 and PC3 provide the highest
and the lowest performance, respectively.

For experiments, we use three GPGPU applications: LU decomposition [15], con-
jugate gradients (CG) [16], and 2-D/3-D rigid registration (RR) [17]. Due to the space
limitation, we briefly summarize each characteristic.

– LU decomposition of a 2048×2048 matrix. In this implementation [15], the matrix
data is stored as textures in the VRAM. Textures are then repeatedly rendered by
the hardware components in the GPU, such as SIMD and vector processing units.
The CPU takes the responsibility for computing the working area in textures where
the GPU operates.

– CG for solving linear systems with a coefficient matrix of size 64 × 64. Similar
to LU decomposition, this implementation also repeats rendering against textures.
From the viewpoint of the workload characteristic, it has less CPU workload than
LU decomposition because the GPU is responsible for computing the working area.

– RR for alignment between 2-D images and a 3-D volume. This implementation
[17] has the lowest workload of the CPU among the three applications. In contrast,
computation at the GPU side is the heaviest because it operates a volume data in
addition to 2-D images.

4.1 Evaluating Definition of Idle Resources

To verify the definition of idle resources, we compare the performance of local and grid
applications between idle resources and busy resources. The performance is presented
by application throughput given by the number of executions per second.

According to the definition presented in Section 2.2, we measure the throughput on
busy resources. Busy states here are given by negations of each of conditions D1, D2,
and D3 as follows.

776 Y. Kotani, F. Ino, and K. Hagihara

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100

PC1

PC2

PC3

T
h

ro
u

g
h

p
u

t
(f

p
s)

CPU usage (%)

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

PC1

PC2

PC3

T
h
ro

u
g
h
p
u
t

(f
p
s)

CPU usage (%)

(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100

PC1

PC2

PC3

T
h

ro
u

g
h

p
u

t
(f

p
s)

CPU usage (%)

(c)

Fig. 3. Measured throughput with different CPU usages for three different GPGPU applications:
(a) LU decomposition, (b) conjugate gradients (CG), and (c) rigid registration (RR). These appli-
cations are executed as grid applications. Throughput is presented in frames per second (fps).

D1: The resource owner interactively operates the resource. We measure the through-
put of local and grid applications while executing the PCMark05 benchmark [18].
PCMark05 here renders various web pages, and thus this experiment measures in-
terference to owners assuming that they are browsing web pages during grid job
execution.

D2: The GPU executes local applications. We measure the throughput of local ap-
plications while executing a grid application. We use LU, CG, or RR application
for each side. This experiment also intends to measure the interference to GPU
applications instead of CPU applications (web browsing as mentioned above).

D3: The CPU is not idle enough to provide the full performance of the GPU to grid
users. We measure the throughput of grid applications with different CPU usages,
ranging from 0% to 100%.

To obtain accurate throughputs, both local and grid applications are executed in an
infinite loop during measurement.

Figure 3 gives the results for condition D3. It shows the throughput of grid appli-
cations with different CPU usages. For all applications, we can see that the throughput
decreases as the CPU usage increases. One remarkable point here is that LU linearly
drops the performance while RR slowly decreases the performance. This is due to the
difference of workload characteristics inherent in applications. As compared with CG
and RR, LU frequently switches textures, and thus requires more CPU interventions
during execution. It also requires more data transfer between the CPU and the GPU.
Therefore, LU sharply drops the performance as compared with CG and RR. Accord-
ing to these results, we have determined that idle resources must have a CPU usage of
at most 10%.

Figure 4 shows the results for conditions D1 and D2. It shows the throughput of
grid applications with different activities: web browsing (PCMark05), LU, CG, and RR
execution. LU and CG in Figs 4(a) and 4(b) indicate that grid applications significantly
drop their performance if owners are seeing web pages. In contrast, the performance
drop in RR is not so serious. We think that this is due to CPU interventions required
during GPU execution. As we mentioned earlier, LU and CG require more interventions
than RR. We also think that the window focus is critical in these cases. Since the focus is

A Resource Selection Method for Cycle Stealing in the GPU Grid 777

0

0.1

0.2

0.3

0.4

0.5

Idle Web LU CG RR

PC1

PC2

PC3

T
h
ro

u
g
h
p
u
t

(f
p
s)

Owner's activity

(a)
T

h
ro

u
g
h
p
u
t

(f
p
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Idle Web LU CG RR

PC1

PC2

PC3

Owner's activity

(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Idle Web LU CG RR

PC1

PC2

PC3

Owner's activity

T
h
ro

u
g
h
p
u
t

(f
p
s)

(c)

Fig. 4. Measured throughput with different owner’s activities for three GPGPU applications: (a)
LU decomposition, (b) conjugate gradients (CG), and (c) rigid registration (RR). Applications in
the horizontal axis are local applications.

given to owner’s operating window, PCMark05 in this case, the operating system gives
a lower priority to the background job, namely the grid application. This increases the
overhead of CPU interventions, making the GPU in the idle state. Thus, resources in
condition D1 should not be used for job execution. We also confirmed this from the
owner side. The rendering performance of web pages is decreased from approximately
2 to 0.5 pages/s.

Finally, we investigate condition D2. In Fig. 4, we can see that the throughput of
grid applications also significantly decreases if the owner executes a GPU application.
In particular, RR seems to be an uncooperative application, because it significantly de-
creases the performance of LU and CG, as shown in Figs 4(a) and (b), respectively.
Furthermore, if RR is executed as a grid application, it provides almost the same per-
formance, whether it is executed on an idle resource or a busy resource. Thus, since both
the grid users and resource owners can execute uncooperative applications on resources,
we think that condition D2 is needed to define idle resources.

In summary, we think that the definition is reasonable with minimizing interference
to resource owners while maximizing application performance provided to grid users.

4.2 Evaluating Overhead of Resource Selection

We now evaluate our resource selection method in terms of the monitoring overhead.
We also investigate how local applications are interfered by the method. In experiments,
we use LU, CG, and RR as local applications.

Table 3 shows the execution time of local applications, explaining how local ap-
plications are perturbated by the resource monitoring overhead. We first measured the
original time T1 with disabling resource monitoring, and then time T2 with enabling
monitoring. Therefore, the perturbation time T2 − T1 explains how applications are
perturbated by monitoring.

We observe the highest perturbation time T2 − T1 of 300 ms when executing RR on
computer PC1. The perturbation ratio σ also indicates that this time is short enough as
compared with the original execution time T1. Furthermore, our monitoring program is
implemented as a CPU program, and thus it avoids making GPU programs slow down.

778 Y. Kotani, F. Ino, and K. Hagihara

Table 3. Perturbation effects measured using three local applications. T1 and T2 represent the
execution time without resource monitoring and that with monitoring, respectively. T2 − T1 rep-
resents the perturbation time increased by monitoring. σ denotes the perturbation ratio, where
σ = (T2 − T1)/T1 ∗ 100. Times are presented in seconds.

Local PC1 (s) PC2 (s) PC3 (s)
application T1 T2 T2 − T1 (σ) T1 T2 T2 − T1 (σ) T1 T2 T2 − T1 (σ)
LU 2.4 2.5 0.1 (4%) 5.6 5.7 0.1 (2%) 21.1 21.2 0.1 (1%)
CG 1.7 1.8 0.1 (6%) 1.9 2.1 0.2 (10%) 2.5 2.6 0.1 (4%)
RR 14.2 14.5 0.3 (2%) 18.6 18.8 0.2 (1%) 20.7 21.0 0.3 (1%)

The perturbation time T2 − T1 of 300 ms is due to the monitoring overhead of 262
ms: 190 ms for activating the screensaver; 2 ms for checking the VRAM usage; and
70 ms for the CPU usage. Although the screensaver activation takes 190 ms at the
GPU side, it does not cause critical interference to the resource owner, because the
activation guarantee the owner’s inactivity. One concern is the interference to GPGPU
applications that do not require interaction between owners. However, this is not so
critical because our screensaver avoids refreshing the display. The remaining time for
checking the VRAM and CPU usages is also a low overhead, because it requires only
references to performance information, which is processed at the CPU side. Thus, we
think that our method achieves a low overhead monitoring with minimum interference.

5 Related Work

To the best of our knowledge, there is no work on utilizing the GPU as a general-
purpose resource in the grid. However, some grid projects use the GPU as a graphics
accelerator to achieve large-scale visualization in server grid environments [19,20], in
which resources are dedicated to grid users. Due to this dedication, server grids do not
have resource conflicts between resource owners and grid users. Therefore, resources
can be easily managed by a job management server that receives jobs from grid users.
A similar work is presented by Fan et al. [21] who build a cluster of GPUs for fluid
simulation and visualization.

There are many projects related to desktop grids. Condor [13] is an earlier system
that explores using idle time in networked workstations. This system has a central server
that polls every two minutes for available CPUs and jobs waiting. Each workstation has
a local scheduler that checks every 30 seconds to see if the running job should be pre-
empted because the owner has resumed using the workstation. Thus, owners are inter-
fered for 30 seconds at the worst case. This interfering time is too long for cooperative
multitasking systems, which can significantly drop the frame rate of the display.

BOINC [22] is a middleware system of the SETI@home project [23], which demon-
strates the practical use of desktop grids. This system has a screensaver mode that shows
the graphics of running applications. Although this mode is useful to know that resource
owners currently do not operate their computers, it is not sufficient to decide if the GPU
is not being used. Thus, some additional monitors are needed for the GPU.

A Resource Selection Method for Cycle Stealing in the GPU Grid 779

NVPerfKit [9] is a monitoring tool that allows us to probe performance counters in
the GPU. This tool gives us important performance information such as the ratio of the
idle time to the total measured time. However, it requires modern nVIDIA GPUs with an
instrumented version of the device driver to probe the counters. Therefore, this vendor-
specific tool is not a realistic solution to our problem, where various GPUs should be
monitored without system or code modifications.

Benchmarking tools provide us effective performance information based on direct
execution of some small code. For example, 3DMark06 [18] measures GPU perfor-
mance using a set of 3-D graphics applications. On the other hand, gpubench [14] aims
at capturing GPU performance for GPGPU applications. Thus, benchmarking tools
might be useful to detect idle GPUs. However, they require a couple of time to fin-
ish benchmarking. This high overhead is critical if they are executed every time the
resource is checked for availability.

With respect to multitasking of GPU applications, Windows Vista will support pre-
emptive multitasking [10]. As compared with cooperative multitasking, preemptive
multitasking provides more stable, reliable performance when multiple applications are
executed simultaneously. Therefore, our assumption of cooperative multitasking might
lead to a strict definition of the idle GPU in the future. However, we think that this
assumption is compatible with future systems, because we only have to relax the defin-
ition to gather more resources for such preemptive multitasking systems.

6 Conclusion

We have presented a resource selection method for the GPU grid, which aims at ex-
ecuting GPGPU applications on a desktop grid. We also have shown a definition of
idle resources in the GPU grid. Both the method and definition works on cooperative
(non-preemptive) multitasking systems. The method employs a screensaver-based ap-
proach with low-overhead monitors. The monitors are designed to detect idle GPUs
with minimum program invocations.

The experimental results show that the definition is reasonable with minimizing in-
terference to resource owners while maximizing application performance provided to
grid users. We also find that the method achieves a low overhead of at most 262 ms,
which is short enough as compared to the execution time of local applications.

References

1. Foster, I., Kesselman, C., eds.: The Grid: Blueprint of a New Computing Infrastructure.
Morgan Kaufmann, San Mateo, CA (1998)

2. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: architecture and performance of an
enterprise desktop grid system. J. Parallel and Distributed Computing 63(5) (2003) 597–610

3. GPGPU: General-Purpose Computation Using Graphics Hardware (2005)
http://www.gpgpu.org/.

4. Fernando, R., ed.: GPU Gems: Programming Techniques, Tips and Tricks for Real-Time
Graphics. Addison-Wesley, Reading, MA (2004)

5. Pharr, M., Fernando, R., eds.: GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Addison-Wesley, Reading, MA (2005)

780 Y. Kotani, F. Ino, and K. Hagihara

6. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)
114–117

7. Montrym, J., Moreton, H.: The GeForce 6800. IEEE Micro 25(2) (2005) 41–51
8. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell,

T.J.: A survey of general-purpose computation on graphics hardware. In: EUROGRAPHICS
2005, State of the Art Report. (2005) 21–51

9. nVIDIA Corporation: NVPerfKit 2 User Guide (2006)
http://developer.nvidia.com/NVPerfKit/.

10. Pronovost, S., Moreton, H., Kelley, T.: Windows display driver model (WDDM) v2 and
beyond. In: Windows Hardware Engineering Conf. (WinHEC’06). (2006) http://www.
microsoft.com/whdc/winhec/trackdetail06.mspx?track=11.

11. Raman, R., Livny, M., Solomon, M.: Resource management through multilateral matchmak-
ing. In: Proc. 9th IEEE Int’l Symp. High Performance Distributed Computing (HPDC’00).
(2000) 290–291

12. Blythe, D.: Windows graphics overview. In: Windows Hardware Engineering Conf. (Win-
HEC’05). (2005) http://www.microsoft.com/whdc/winhec/Pres05.mspx.

13. Litzkow, M.J., Livny, M., Mutka, M.W.: Condor - a hunter of idle workstations. In: Proc.
8th Int’l Conf. Distributed Computing Systems (ICDCS’88). (1988) 104–111

14. Buck, I., Fatahalian, K., Hanrahan, P.: GPUBench: Evaluating GPU performance for numer-
ical and scientific application. In: Proc. 1st ACM Workshop General-Purpose Computing on
Graphics Processors (GP2’04). (2004) C-20

15. Ino, F., Matsui, M., Hagihara, K.: Performance study of LU decomposition on the pro-
grammable GPU. In: Proc. 12th IEEE Int’l Conf. High Performance Computing (HiPC’05).
(2005) 83–94

16. Corrigan, A.: Implementation of conjugate gradients (CG) on programmable graphics hard-
ware (GPU) (2005) http://www.cs.stevens.edu/˜quynh/student-work/
acorrigan_gpu.htm.

17. Ino, F., Gomita, J., Kawasaki, Y., Hagihara, K.: A GPGPU approach for accelerating 2-D/3-
D rigid registration of medical images. (In: Proc. 4th Int’l Symp. Parallel and Distributed
Processing and Applications (ISPA’06). (2006)

18. Futuremark Corporation: Products (2006)
http://www.futuremark.com/products/3dmark06/.

19. Jankun-Kelly, T., Kreylos, O., Ma, K.L., Hamann, B., Joy, K.I., Shalf, J., Bethel, E.W.: De-
ploying web-based visual exploration tools on the grid. IEEE Computer Graphics and Ap-
plications 23(2) (2003) 40–50

20. Grimstead, I.J., Avis, N.J., Walker, D.W.: Automatic distribution of rendering workloads in
a grid enabled collaborative visualization environment. In: Proc. SC’04. (2004) 10 pages
(CD-ROM).

21. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance com-
puting. In: Proc. SC’04. (2004) 12 pages (CD-ROM).

22. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In: Proc. 5th
IEEE/ACM Int’l Conf. Grid Computing (GRID’04). (2004) 4–10

23. Sullivan, W.T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, D., Anderson, D.: A new major
SETI project based on project serendip data and 100,000 personal computers. In: Proc. 5th
Int’l Conf. Bioastronomy. (1997) 729

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 781 – 790, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Parallel High-Dimensional Index Structure Using
Cell-Based Filtering for Multimedia Data∗

Jae-Woo Chang, Yong-Ki Kim, and Young-Jin Kim

Dept. of Computer Eng., Chonbuk National Univ., Chonju, Chonbuk 561-756, South Korea
jwchang@chonbuk.ac.kr, {ykkim, yjkim}@dblab.chonbuk.ac.kr

Abstract. A large number of high-dimensional index structures suffer from the
so called 'dimensional curse' problem, i.e., the retrieval performance becomes
increasingly degraded as the dimensionality is increased. To solve this problem,
the cell-based filtering scheme has been proposed, but it shows a linear de-
crease in performance as the dimensionality is increased. In this paper, we pro-
pose a parallel high-dimensional index structure using the cell-based filtering
for multimedia data so as to cope with the linear decrease in retrieval perform-
ance. In addition, we devise data insertion, range query and k-NN query proc-
essing algorithms which are suitable for the cluster-based parallel architecture.
Finally, we show that our parallel index structure achieves good retrieval per-
formance in proportion to the number of servers in the cluster-based architec-
ture and it outperforms a parallel version of the VA-File when the dimensional-
ity is over 10.

1 Introduction

For the content-based retrieval of a large amount of multimedia data, an object in a
multimedia database can be defined as an n-dimensional feature vector. Therefore, it
is necessary to research on high-dimensional index structures for efficiently retrieving
high-dimensional data in multimedia database applications. Thus, high-dimensional
index structures such as K-D-B-tree [1], VAMSplit k-d-tree [2] and TV-tree[3], have
been proposed. However, most of them were found to cause the so called 'dimensional
curse' problem, i.e., the retrieval performance becomes increasingly degraded as the
dimensionality is increased [5][6]. To solve this problem, the cell-based filtering
(CBF) scheme and the VA-file scheme were proposed. The VA-file performs filtering
by using vector approximation information [7]. The CBF scheme performs filtering
by using signatures, and shows good performance by redefining the maximum and
minimum distances for good filtering [8]. However, both of these schemes show a
linear decrease in performance as the dimensionality increases. In order to alleviate
this linear decrease in retrieval performance, it is necessary to make use of a parallel
processing technique. In this paper, we propose a parallel high-dimensional index
structure using the cell-based filtering for multimedia data so as to cope with the

∗ This work is financially supported by the Ministry of Education and Human Resources De-

velopment(MOE), the Ministry of Commerce, Industry and Energy(MOCIE) and the Minis-
try of Labor(MOLAB) though the fostering project of the Lab of Excellency.

782 J.-W. Chang, Y.-K. Kim, and Y.-J. Kim

linear decrease in retrieval performance. For our parallel index structure, we also
devise data insertion, range query and k-NN query processing algorithms which are
suitable for the shared-nothing cluster-based architecture.

2 Cell-Based Filtering (CBF) Scheme

The existing high-dimensional index structures cause the 'dimensional curse' problem,
in that the retrieval performance becomes even worse than that of a sequential scan
when the dimensionality is high. To solve this problem, the VA-file scheme [7] and
CBF scheme [8] were proposed. The VA-file minimizes the 'dimensional curse' prob-
lem by scanning a sequential file in which an approximation of each cell is stored.
However, since the distance between the user's query and the cells is not the real dis-
tance between the query and the object, the VA-file scheme is affected by the error
distance caused by the data distribution within a cell and the size of the cell. Mean-
while, because the CBF scheme minimizes the error distance, it can improve the re-
trieval performance by filtering out cells effectively using the signature of a feature
vector, as well as the distance between the feature vector and the center of the cell
containing it. Figure 1 shows the overall architecture of the existing CBF scheme.

Fig. 1. Overall architecture CBF Scheme

3 Parallel High-Dimensional Index Structure

Though the CBF scheme alleviates the 'dimensional curse' problem, it still exhibits a
linear decrease in retrieval performance as the dimensionality increases. To respond
to a user query, the CBF scheme sequentially scans signatures and feature vectors,
which are stored in a physical disk. However, our parallel high-dimensional index
structure distributes signatures and feature vectors over multiple processors by means

 Parallel High-Dimensional Index Structure Using Cell-Based Filtering 783

of a de-clustering technique, and stores them on separate physical disks. In the exist-
ing de-clustering techniques, either horizontal or vertical partitioning is employed. In
order to design an efficient declustering algorithm for our parallel high-dimensional
index structure, it is necessary to consider the two properties of the CBF scheme.

Property 1. All signatures of the CBF scheme should be scanned sequentially in
order to respond to a given query. When a query is processed, a parallel CBF scheme
scans all of the signatures contained in the signature file. Thus, if the signatures are
distributed evenly over multiple servers by a horizontal partitioning technique, the
number of page accesses required is approximately equal to B/S, where S is the num-
ber of servers and B is the total number of blocks containing all of the signatures. If
they are distributed into multiple servers by a vertical partitioning technique, how-
ever, we need approximately B/S page accesses and an additional time needed for
merging partitioned signatures.

Property 2. The feature vectors corresponding to the candidate signatures in the CBF
scheme should be partially searched in order to respond to a given query. When a
query is processed, a parallel CBF scheme scans only those feature vectors corre-
sponding to the candidate signatures contained in the data file. Thus, if the feature
vectors are distributed evenly by a horizontal partitioning technique, the number of
page accesses required is approximately equal to N/S, where S is the number of serv-
ers and N is the number of feature vectors corresponding to the candidate signatures.
If the feature vectors are distributed by a vertical partitioning technique, however, we
need approximately N/S page accesses and an additional time for merging the parti-
tioned feature vectors.

Based on the above two properties, we propose a high-dimensional index structure,
i.e., parallel CBF scheme, which distributes both signatures and feature vectors over
multiple servers by means of a horizontal partitioning technique. Figure 2 shows the
overall architecture of the parallel CBF scheme under the SN cluster-based architec-
ture with four processors, i.e., servers. A special server serves as the master. The
mas-ter distributes the inserted data over the multiple servers using a horizontal par-
tition-ing technique, and allows the servers to store the data on their own local disks.

Fig. 2. Overall architecture of our parallel CBF

784 J.-W. Chang, Y.-K. Kim, and Y.-J. Kim

Mean-while, the master also performs the parallel processing of a query received
from a client, by first sending the query to multiple servers and allowing them to
process it simultaneously. Then, the master computes the final answer based on the
results ob-tained from the servers and transmits the final answer to the client.

3.1 Data Insertion

There are two files in our parallel CBF scheme, i.e. the signature file and the data file.
To create the signature file, we first generate a signature from a given feature vector
by using a signature generation algorithm. Then, the signature generated is merged
with the distance between the feature vector and the center of the cell containing it.
Finally, the signature, which has been merged with the distance, is stored in the signa-
ture file. To store both the signature and data files in our parallel CBF scheme, it is
necessary to distribute them over multiple servers under a SN cluster-based parallel
architecture. In order to accomplish the uniform distribution of data over multiple
servers, we devise an equation to assign an original n-dimensional vector (Vectori)
and its signature (Signaturei) into a specific processor by using a horizontal partition-
ing technique as follows. Here, Pi means a processor to be assigned, Np means the
number of processors used for parallelism, and Max_SR means the maximum number
of shifting and rotating a signature. The rand-num() function generates a random
num-ber ranging from 0 to 1 and makes use of the radius of an n-dimensional vector
as its seed. In addition, ‘>>’ means a bit operator to shift and rotate a binary code, and
(int)[] means an automatic type conversion from a binary code to an integer.

Pi = (int)[Signaturei >> (rand_num(the radius of Vectori) * Max_SR)] % Np (1)

Eq.(1) allows for the nearly uniform distribution of a set of vectors in the data file and
their signatures over multiple processors (servers) because even some n-dimensional
vectors residing on the same cell can be distributed into different processors using the
equation. In Figure 2, the master uniformly distributes the inserted data over multiple
servers using Eq.(1) and makes the servers to store the data on their own local disks.
The master lets the servers operate in parallel, based on both a thread technique and a
socket network communication. While a process requires a large amount of data to be
stored during context switching, i.e. heavy weighting, a thread requires only light
weighting during context switching. The use of multiple threads allows for perform-
ing multiple operations in a program simultaneously. When a feature vector is in-
serted, the master node creates as many threads as the number of servers. Each thread
stores the assigned data into its own buffer. If the buffer is full, each thread transmits
the buffer to its corresponding server, which stores the associated information into its
signature and data files. Figure 3 shows the algorithm of data insertion. Firstly, we
read a feature vector from the data file, determine on which server this vector is to be
inserted by means of Eq. (1), and then store the vector into the buffer corresponding
to this server situated in the master server. Secondly, if the buffer is full, the buffer is
sent to the CBF instance of the corresponding server. Finally, the generate_signature()
function generates a signature for the feature vector and computes the distance be-
tween the vector and the center of cell containing it. Each write_data() function store
the signature and the distance in the signature file, and stores the feature vector and its
identifier(ID) in the data file.

 Parallel High-Dimensional Index Structure Using Cell-Based Filtering 785

Insertion_MasterNode (Vector data){
 Class server[MAXSERVER];
 Calculate server number Pi to store vector using Eq(1)
 Pi = select_server(MAXSERVER);
 server[Pi].Insertion_ServerNode(data);
}
Insertion_ServerNode (Vector data) {
 signature = generate_signatre(data);
 write_data(signatureFile, signature);
 write_data(vectorFile, data);
}

Fig. 3. Data insertion algorithm

3.2 Range Query Search

A range query is expressed as a boundary which has an arbitrary distance from a
given query point and it is processed as a way of searching for all of the objects that
exist within the boundary. For a range query, a user inputs both a query vector and a
dis-tance value. The range query searches for all of the objects included within a cir-
cle which is centered on the query vector and whose diameter is equal to the distance
value. We first transform the query vector into a query signature, and then search the
cells within the boundary given by the query signature. To respond to a range query, it
is necessary to access multiple servers simultaneously, since both the signature and
data files are distributed over multiple servers under a SN cluster-based parallel archi-
tecture. When a user query is processed, the master node creates as many threads as
there are servers. Each thread sends the query to its own server. Each server searches
its own signature and data files in parallel, thus retrieving the feature vectors that
match the query. By simultaneously searching multiple sets of signature and data
files, our parallel CBF scheme improves the overall retrieval performance. Figure 4
shows the algorithm of range query processing. First, we send the range query to the

Range_MasterNode (query) {
 transfer_query_to_server(query);
 list = Range_ServerNode(MAXSERVER);
 return integrate_result(list); }
Range_ServerNode (qeury) {
 signaturelist = Generate_siglist(signatureFile);
 qsig = generate_signature(query);
 candidatelist = find_sig (signatureFile, qsig);
 for(;candidatelist!=NULL;) {
 getdata(vectorFile, candidatelist.data);
 if(compute_range(candidatelist.data, query)
 <= query.range) add_list(resultlist);
 candidatelist = candidatelist->next; }
 transfer_to_master (resultlist); }

Fig. 4. Range query processing algorithm

786 J.-W. Chang, Y.-K. Kim, and Y.-J. Kim

CBF instance of each server. Secondly, each CBF instance creates a signature list
from its own signature file. Thirdly, we generate a query signature from the query
vector and find candidate signatures by searching the signature list. Fourthly, we
obtain a result set by retrieving candidate vectors from the data file which corresponds
to the candi-date signatures. We also send the result set to the master node. As the last
step, we obtain the final result by merging the result sets transmitted from the servers.

3.3 k-Nearest Neighbor (k-NN) Search

The purpose of the k-NN search query is to find the nearest k objects to a query point
in data space. The k-NN algorithm of our parallel CBF consists of three filtering
phases and an additional phase for integrating the result lists obtained by the three
filtering phases. Figure 5 shows the algorithm of k-NN query processing. In the first
phase, we first create a thread for each server and send the k-NN query to each
thread. Secondly, the CBF instance of each server generates a signature list (sig-
buf_list) by searching all of the signatures in its own signature file. Thirdly, we gen-
erate the first candidate signature list by inserting signatures sequentially into the
candidate list, until the number of signatures to be inserted is k. Once the number of
signatures in the candidate list is k, each thread compares the next signature with the
k-th candidate signature in the candidate list. If the next signature has a shorter dis-
tance from the given query point than the k-th candidate signature, then the k-th
candidate signature is deleted from the candidate list and the next signature is in-
serted into it. Otherwise, we continue to compare the next signature with the k-th

KNN_MasterNode (query) {
 transfer_query_to_server(query); KNN_ServerNode(MAXSERVER);
 list = integrate_result(); return sortlist(list); }
KNN_ServerNode (query) {
 sigbuf_list = find_sig (signatureFile);
 for(i=0; i<query.k ; i++) { // First Phase
 cndlist = add (sigbuf_list); cndlist = cndlist->next;
 sigbuf_list = sigbuf_list->next; }
 for(;sigbuf_list!=null;) {
 if(compare_dist(cndlist, sigbuf_list)>0) {
 delete(cndlist); cndlist = add (sigbuf_list); }
 sigbuf_list=sigbuf_list->next; }
 for(;cndlist!=NULL;) { // Second Phase
 if(compare_dist(cndlist.mindist, k_maxdist)>0) delete(cndlist);
 cndlist=cndlist->next; }
 for(;cndlist!=NULL;) { // Third Phase
 if(compare_dist(cndlist.mindist, k_dist)>0) delete(cndlist); continue;
 getdata(vectorFile, cndlist.data);
 if(compare_dist(cndlist.data, query) <= k_dist) {resultlist = add(cndlist.data);
 delete(cndlist); } }
 transfer_to_master (resultlist); }

Fig. 5. k-NN query processing algorithm

 Parallel High-Dimensional Index Structure Using Cell-Based Filtering 787

candidate signature until there are no more signatures to be compared. In the second
phase, we reduce unnecessary page accesses by deleting cells whose lower bound is
greater than the k-th upper bound (k_maxdist) in the candidate signature list. In the
third phase, we obtain a result list by retrieving those real vectors which correspond
to the candidate signatures of the candidate list. To accomplish this, we first compare
the lower bound of the last candi-date cell with the k-th object distance (k_dist). If
k_dist is less than the lower bound of the last candidate cell, the last candidate cell is
deleted from the candidate list. Other-wise, we calculate the distances between the
query point and the real objects and gen-erate a result list by obtaining the nearest k
objects. Next, we transmit the result list to the master node. In the case where the
number of servers is N, the number of nearest neighbors obtained from the multiple
servers is k*N. Finally, we integrate the result lists obtained from the multiple serv-
ers and find the final k nearest objects in the master node.

4 Performance Analysis

For the performance analysis of our parallel CBF scheme, table 1 describes our ex-
perimental environment. Here, we make use of 10, 20, 50, and 80-dimensional syn-
thetic data sets, each being obtained by randomly generating 2 million points in data
space. At first, we compare our parallel CBF scheme with the conventional CBF
scheme in terms of the data insertion time and the search times for both range and k-
NN queries. Secondly, we compare our parallel CBF scheme with a parallel version
of the VA-File. For this purpose, we implement our parallel CBF scheme under a SN
cluster-based architecture with four servers.

Table 1. Experimental environment

System
Environment

4 servers (each 450 MHz CPU,HDD 30GB,128 MB Memory)
Redhat Linux 7.0 (Kernel 2.4.5), gcc 2.96 (g++)
Synthetic
data

2 million data
(10,20,40,50,60,80,100-dimensional data) Data Set

Real data 2 million data (10,20,50,80-dimensional data)
Range query Retrieval time for searching 0.1% of data Retrieval

time k-NN query Retrieval time for searching 100 nearest objects

4.1 Experimental Performance Analysis

To estimate the insertion time, we measure the time needed to insert two millions
pieces of synthetic data. Table 2 shows the insertion time for both the existing CBF
scheme and our parallel CBF scheme. In the CBF scheme, it takes about 240, 480 and
1860 seconds to insert 10-, 20- and 100-dimensional data, respectively. In our parallel
CBF scheme, the same operations take about 250, 450 and 1930 seconds, respec-
tively. It can be seen that our parallel CBF scheme is nearly the same as the existing
CBF scheme. This is because our parallel CBF can reduce the time required to insert
data by using multiple servers, but it requires additional time due to the communica-
tion overhead.

788 J.-W. Chang, Y.-K. Kim, and Y.-J. Kim

Table 2. Insertion time (unit:sec)

Dimension
Scheme

10 20 40 50 60 80 100

Existing CBF 236.50 478.89 828.49 992.78 1170.40 1505.90 1862.16
Our parallel CBF 256.12 445.42 824.02 1001.93 1188.42 1543.62 1930.10

As a range query, we use a radius value designed to retrieve 0.1% of the data from
the two million synthetic data. Table 3 shows the retrieval time for the range query.
The performance improvement metric of our parallel CBF scheme against the existing
CBF scheme can be calculated by 1/(PT/CT)*100, where PT and CT refer to their
performance measurements (retrieval times) of our parallel CBF scheme and that of
the existing CBF scheme, respectively. In the existing CBF scheme, it takes about 13,
16, 38 and 60 seconds to respond to a range query in the case of 10-, 20-, 50- and 80-
dimensional data, respectively. In our parallel CBF scheme, it takes about 1.6, 2.2, 7.3
and 11.6 seconds for the same operations, respectively. When the number of dimen-
sions is 80, the performance improvement metric of our parallel CBF scheme is about
520%, being greater than the ideal performance improvement metric, i.e. 400%. This
is because our parallel CBF scheme utilizes a large buffer under the SN cluster-based
architecture with four servers.

Table 3. Retrieval time for range query

Dimension
Scheme

10 20 40 50 60 80 100

Existing CBF 13.20 16.42 31.91 37.93 44.96 59.50 74.27
Our parallel CBF 1.59 2.24 5.92 7.27 7.87 11.60 14.04

Improvement 830 733 539 522 571 513 529

For the k-nearest neighbors (k-NN) query, we measure the time needed to respond
to a k-NN query for which k is 100. Table 4 describes the retrieval time for the k-NN
query using two million synthetic data. In the case of 10-dimensional data, it takes
about 3.6 seconds to retrieve the data for the CBF scheme and 1.4 seconds for our
parallel CBF scheme. This is because in our parallel CBF scheme, we retrieve objects
simultaneously from four servers under the SN cluster-based parallel architecture. In
the case of 100-dimensional data, the CBF scheme requires about 76.4 seconds to
respond to a k-NN query, while our parallel CBF scheme requires about 25.6 seconds.
Thus, it is shown that the performance improvement metric of our parallel CBF
scheme is about 300-400%, depending on the dimension of the data. The performance
improvement for a k-NN query is relatively low, compared with that for a range
query. This is because the overall retrieval performance for a k-NN query is very
sensitive to the distribution of the data. That is, it entirely depends on the lowest re-
trieval per-formance among the four servers.

 Parallel High-Dimensional Index Structure Using Cell-Based Filtering 789

Table 4. Retrieval time for k-NN query

Dimension
Scheme

10 20 40 50 60 80 100

Existing CBF 3.59 17.80 31.92 39.28 46.72 61.60 76.39
Our parallel CBF 1.44 2.62 8.28 10.78 11.02 18.97 25.62

Improvement 249 679 386 364 424 325 298

4.2 Comparison with Parallel VA-File

To verify the usefulness of our parallel CBF scheme as a high dimensional indexing
scheme, we compare our parallel CBF with the parallel version of VA-file. Table 5
describes the retrieval time for a range query using two million pieces of real data. In
the case of the parallel VA-file, it takes about 2.3 seconds to respond to a range query
containing 20-dimensional data and about 13 seconds for 80-dimensional data. In the
case of our parallel CBF scheme, it takes about 1.8 seconds for 20-dimensional data
and 10 seconds for 80-dimensional data. As dimensionality is higher, our parallel
CBF scheme achieves better retrieval performance than the parallel VA-file. This is
be-cause our parallel CBF scheme performs good filtering by redefining the maxi-
mum and minimum distances as the dimensionality is increased.

Table 5. Retrieval time for range query using real data

Dimension
Scheme

10 20 50 80

Parallel VA-File 1.71 2.27 4.37 12.96
Our parallel CBF 1.49 1.82 2.75 10.08

Table 6 shows the retrieval time for a k-NN query. In the case of the parallel VA-
file, it takes about 1.8 seconds to respond to a range query containing 20-dimensional
data and about 11 seconds for 80-dimensional data. In the case of our parallel CBF
scheme, it takes about 1.8 seconds for 20-dimensional data and 10.5 seconds for 80-
dimensional data. Thus, the performance of our parallel CBF scheme is slightly better
than that of the parallel VA-file in case dimensionality is high.

Table 6. Retrieval time for k-NN query using real data

Dimension
Scheme

10 20 50 80

Parallel VA-File 1.51 1.82 7.17 11.32
Our parallel CBF 1.60 1.77 6.06 10.44

5 Conclusions and Future Work

Most of the conventional indexing schemes work well at low dimensionality, but per-
form poorly as the dimensionality of feature vectors increases. The CBF scheme was

790 J.-W. Chang, Y.-K. Kim, and Y.-J. Kim

proposed to overcome the inefficiency of the conventional indexing schemes at high
dimensionality. As the dimensionality is increased, the retrieval performance of the
CBF scheme decreases linearly. To cope with this problem, we proposed our parallel
CBF scheme for multimedia data, which could uniformly distribute both signatures
and feature vectors over multiple servers using a horizontal partitioning method under
the SN cluster-based parallel architecture. We showed from the performance analysis
that our parallel CBF scheme provided a near linear improvement in proportion to the
number of servers, for both the range and k-NN queries. We also showed that our
parallel CBF scheme outperformed the parallel VA-file when the number of dimen-
sions is greater than 10. In the future work, our parallel CBF scheme is needed to be
used as a high dimensional indexing scheme in real multimedia databases.

References

1. Robinson, J.T.: The K-D-B-tree : A Search Structure for Large Multidimensional Dynamic
Indexes, Proc. of Int. Conf. on Management of Data (1981) 10-18

2. White, D.A. and Jain, R.: Similarity Indexing : Algorithms and Performance, Proc. of the
SPIE : Storage and Retrieval for Image and Video Databases IV, Vol. 2670 (1996) 62-75

3. Lin, H.I., Jagadish, H. and Faloutsos, C.: The TV-tree : An Index Structure for High Di-
men-sional Data, VLDB Journal, Vol. 3 (1995) 517-542

4. Berchtold, S. , Keim, D. A. and Kriegel, H-P.: The X-tree : An Index Structure for High-
Dimensional Data, Proceedings of the 22nd VLDB Conference (1996) 28-39

5. Arya, S., Mount, D.M. and Narayan, O.: Accounting for Boundary Effects in Nearest
Neighbor Searching, Proc. of 11th Annaual Symp. on Computational Geometry, Vancou-
ver, Canada (1995) 336-344

6. Berchtold S., Bohm C., Keim D. and Kriegel H. -P: A Cost Model for Nearest Neighbor
Search in High-Dimensional Data Space, ACM PODS Symposium on Principles of Data-
bases Systems, Tucson, Arizona (1997)

7. Roger Weber, Hans-Jorg Schek and Stephen Blott: A Quantitative Analysis and Perform-
ance Study for Similarity-Search Methods in High-Dimensional Spaces, Proc. of 24rd In-
ternational Conference on Very Large Data Bases (1998) 24-27

8. Han, S.-G. and Chang, J.-W.: A New High-Dimensional Index Structure Using a Cell-
based Filtering Technique, In Lecture Notes in Computer Science 1884(Current Issues in
Data-bases and Information Systems), Springer (2000) 79-92

9. Faloutsos, C.: Design of a Signature File Method that Accounts for Non-Uniform Occur-
rence and Query Frequencies, ACM SIGMOD (1985) 165-170

10. Kim, J.-K. and Chang, J.-W.: Horizontally-divided Signature File on a Parallel Machine
Architecture, Journal of Systems Architecture, Vol. 44, No. 9-10 (1998) 723-735

11. Kim, J.-K. and Chang, J.-W.: Vertically-partitioned Parallel Signature File Method, Jour-
nal of Systems Architecture, Vol. 46, No. 8 (2000) 655-673

12. Roussopoulos, N., Kelley, S. and F. Vincent: Nearest Neighbor Queries, Proc. of ACM Int.
Conf. on Management of Data(SIGMOD) (1995) 71-79

Throughput Aware Mapping for Network on
Chip Design of H.264 Decoder

Vu-Duc Ngo, Huy-Nam Nguyen1, Younghwan Bae2,
Hanjin Cho2, and Hae-Wook Choi1

1 System VLSI Lab, SITI Research Center, School of Engineering
Information and Communications University (ICU)

Yusong P.O. Box 77, Taejon 305-714, Korea
2 Basic Research Laboratory, ETRI, Daejeon, Korea

{duc75, huynam, hwchoi}@icu.ac.kr, {yhbae, hjcho}@etri.re.kr

Abstract. Network-on-Chip (NoC) has been proposed as a new method-
ology for addressing the design challenges of future massly integrated sys-
tem in nanoscale. In this paper, we present the queuing theory based
model for router to evaluate the performance of NoC in terms of drop
probability, throughput and energy consumption. Then we apply the lin-
ear programming to optimize the allocation of the heterogeneously func-
tional blocks (IPs) onto the given heterogeneous NoC architecture so as
to obtain the maximum throughput as well as to optimize the energy
dissipation of whole system. Finally, the three differently heterogenous
Tree-based network topologies are proposed as the NoC architectures for
the study case of H.264 Decoder. This paper also evaluates the proposed
topologies by comparing them to other conventional topologies such as
2-D Mesh and Fat-Tree with respects to throughput, power consumption
and size. We use the power modelling tool, known as Orion model to cal-
culate the static powers, areas, and dynamic powers of three topologies.
The experiment results show that our Tree-based topologies offer similar
throughputs as Fat-Tree does and much higher throughputs compared
to 2-D Mesh while use less chip areas and energy consumptions.

1 Introduction

According to [1], the Ultra Large Scale Integration (ULSI) will be the future of
chip design. The idea of using NoC as the new design methodology to massly
integrate the IPs such as processors, DSPs, as well as memory array was pro-
posed in [2,3]. The packet switching core and the communication protocols are
used to replace the complex system of wires or the main factors that lead to the
propagation delay exceeding the system’s clock period and non-scalable global
wire. However, the NoC design methodology poses complex design challenges to
meet the requirement of throughput, area, reliability, and power consumption.

The tile-based NoC with various applications and regular topologies such as
2D Mesh, Fat-Tree, and Torus were proposed in [4, 5, 14]. The authors in [6, 7,
8] had different approaches for the NoC design. They proposed the algorithms

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 791–802, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

792 V.-D. Ngo et al.

to automatically map IPs onto the target NoC architecture so as to optimize
the power consumption. To do that, the authors used the same homogeneous bit
energy model for their calculation of power consumption of whole network. The
first thing should be mentioned here is that the authors assumed the bit energy
consumptions are same for all the routers inside the network. According to our
knowledge, the NoC architectures are heterogeneous in terms of router’s struc-
ture and mounted IPs. Hence, the bit energy consumptions on different routers
are obviously different. The second thing is that the accumulated energy on a
certain route was calculated without the consideration of actual drop rate of the
transactional flits. The drop flits which pass through a lot of intermediate router
especially induce a significant amount of energy consumption. This leads to the
optimization results might not be precise.

To estimate the power and side of interconnection network, Wang et al. [9]
proposed a power-model simulator called Orion. This simulator can be used to
estimate the dynamic power of one information bit due to the switched capac-
itances. It also can be used to estimate the router area and static power with
different CMOS technologies.

Recently, the H.264 decoder was designed and evaluated based on 2-D Mesh
and Fat-Tree topologies [10]. Authors reported the system-level performance
evaluations of two architectures. The optimal mappings that maximize the sys-
tem throughput were presented as well. According to the authors, with different
routing and queuing protocols, the Fat-Tree topologies offers better performance.
In fact, because of its irregularity and intensive interconnection wires, the Fat-
Tree topology becomes impractical to be implemented on a chip. Moreover, de-
sign of NoC for particular application copes with several challenges [11], one of
the critical issues is to choose the best suited architecture.

In this paper, we introduce the queuing based calculation for the network
throughput of NoC architecture. We also solve the optimization problem of map-
ping IPs onto the NoC architecture so as to minimize the drop flits at the inter-
mediate router. This minimization of drop flits can not only save the significant
energy consumption of unreachable flits but also reduce the energy that needed
if we implement the fault recovery mechanism which was strongly suggested by
Nurmi [15] for future NoC design. Based on this optimization technique, we
propose three heterogeneously optimal Tree-based architectures for the H.264
decoder design and then compare them to 2-D Mesh and Fat-Tree architecture.
In Fig. 1 the H.264 decoder’s IPs with their pair-to-pair data transactions are
presented in Kbps. We simulate the system throughputs of five architectures.
Then by using these simulated throughputs and Orion model of differently uti-
lized routers, the system dynamic energy consumptions of five architectures can
be exactly calculated. The designs of three architectures also are evaluated and
compared with each others and the two mentioned conventional architectures
in terms of area and dissipated energy. Our results indicate that the proposed
topologies are superior in terms of hardware consumption and energy consump-
tion while offer similar system performance. The rest of this article is orga-
nized as follows: Throughput optimization and Power estimation are discussed in

Throughput Aware Mapping for Network on Chip Design of H.264 Decoder 793

Fig. 1. Data transaction between modules of H.264 decoder

Section 2. Proposed topologies construction is presented in Section 3. Simula-
tion model and analysis are introduced in Section 4. Finally, we conclude our
contribution and mention about our future work in Section 5.

2 Throughput Optimization and Power Estimation

This section, we firstly introduce the queuing based model of wormhole router then
derive the network throughput with respect to the drop rate of data flit. Secondly,
we maximize the network throughput by searching the optimal mapping of IPs
onto the given architecture. Finally, the Orion power models of router are applied
to calculate the network energy consumption and areas of the optimal topology.

2.1 Throughput Optimization

The wormhole router includes p input ports and p output ports. One or some
of them can be used for the interconnections with the neighboring routers, the
remaining ports are used for the interconnection with the IPs. The wormhole
handles the dataflow on a flit level where flit is the smallest flow controlled data
unit. The average processing time of the jth router is defined by xj = 1

μj
. We

define the the arrival rates of the independent data flows that enter the ith input
port of the jth router as λj

i1, λ
j
i2, ..., λ

j
iςi

, where ςi denotes the number of data
flows. The data flows can be generated from the certain IPs or the neighbor
routers. To simplify the problem, we assume that all the buffers of the routers
have the equal size of k flits. Then if we only consider this input port and the
crossbar switch, the probability that m flits exist in the system is

pm = p0

m−1∏
n=0

∑ςi

l=1 λj
il

μj
= p0

(∑ςi

l=1 λj
il

μj

)m

, p0 = 1 −
∑ςi

l=1 λj
il

μj
. (1)

Since the jth router has pj inout ports and size of buffers are k, the blocking
probability is calculated as follows.

P j
block =

(∑ςi

l=1 λj
il

μj

)(k+1) 1
pj

2
. (2)

794 V.-D. Ngo et al.

Therefore, the throughput contributed by the ith input port is presented by

τi =

(
1 −
(∑ςi

l=1 λj
il

μj

)(k+1) 1
pj

2

)
ςi∑

l=1

λj
il. (3)

Finally, the throughput contributed by all pj ports or the throughput that out-
comes the jth router is

T j =
pj∑

i=1

τi =
pj∑

i=1

[(
1 −
(∑ςi

l=1 λj
il

μj

)(k+1) 1
pj

2

)
ςi∑

l=1

λj
il

]
. (4)

Assume that the number of routers in the architecture is N , then the network
throughput consequently calculated as

TN =
N∑

j=1

T j =
N∑

j=1

(pj∑
i=1

[(
1 − ρ

(k+1)
i

1
pj

2

) ςi∑
l=1

λj
il

])
, ρi =

(∑ςi

l=1 λj
il

μj

)
(5)

We can realize that the throughput of network is the function of mapping scheme
of IPs onto a given architecture. With the given architecture we have fixed routers
or have the values of μj unchanged despite of the change of allocation scheme
of the IPs onto the routers. Therefore, the value of network throughput depends
very much on the applied mapping scheme of the IPs onto the architecture. This
leads to the optimization problem of maximizing the network throughput with
given set of IPs and fixed routers. We can solve this problem by a welknown linear
programming algorithm so called Branch and Bound [12]. Simply described, for
certain application, we identify that onto which switch should an IP be mapped
so that the of network throughput is maximized under the assumption of the
shortest routing algorithm is applied. To do so, we have some definitions as
follows:

Definition 1. An IPs Implementation Graph (IIG) G = G(V, λ) is a directed
graph where

– Each vertex vi represents a certain IP.
– Each directed arc λij represents the arrival rate of the data packets generated

from the ith IP toward jth IP.

Definition 2. An Switching Architecture Graph (SAG) G′ = G(U, R) is a di-
rected graph where

– Each vertex ui presents a certain switch core, the corresponding 1/μj denotes
its switch’s mean value of processing time.

– Each directed arc rij represents the route from ui to uj in the routing table.

Now we can state our mapping problem as follows:

Given an IIG and a SAG graphs that satisfy Size(IIG) ≤ Size(SAG) and
after mapping, the arc T j denotes the throughput outcoming from jth router

Throughput Aware Mapping for Network on Chip Design of H.264 Decoder 795

calculated in (4). The Size() function presents the number of vertexes on the
graph.The shortest path routing is applied in this context and the cost function
of found path is the accumulated throughput after every hop.

Find a mapping scheme map() from IIG onto SAG which:

TN Opt = max

(
N∑

j=1

T j

)
= max

(
N∑

j=1

(pj∑
i=1

[(
1 − ρ

(k+1)
i

1
pj

2

) ςi∑
l=1

λj
il

]))
(6)

such that:

map(vi) = uj; ∀vi ∈ V, ∃uj ∈ U, ∀vi = vj ; map(vi) = map(vj). (7)

Without loosing generality, we assume that Size(IIG) = p ≤ Size(SAG) = q.
Since the number of ways of choosing p switches among q switches of the target
NoC architecture for p IPs is Cp

q , and also we can have p! permutational cases
of p given IPs. It follows that if we apply the simple Min-Max algorithm to
find out the minimum network latency accordingly with the optimum mapping
scheme, the complexity can be measured by Complexity = O

(
p! × Cp

q

)
This

order of complexity returns the NP-hard search. Therefore, as mentioned above,
we apply Branch and Bound technique not only to obtain the optimal mapping
but also reduce significantly the complexity of the searching issue.

2.2 Power Estimation

The data packet is divided to a number of flits where the head flit carrying the
destination address and the tail flit are important for traversing whole packet
through the router. For instant, when the source injects the head flit into input
port i and this flit contains the destination address of output port j, firstly the
buffer i writes the flit into the tail of it. Secondly, after the request of destination
port is read and granted by the arbiter, the arbiter sends the signal to the
crossbar switch to emit the data to the output port j by reading flits out of
the buffer i. Hence, the energy dissipation of the flit on this router is given
by

Eflit = Earb + Exbar + Ebufrd + Ebufwrt, (8)

where Earb is the arbitration energy, Exbar is the crossbar switch energy, Ebufrd

and Ebufwrt are the read and write to/from buffer energies, respectively. Since
the dynamic power of CMOS circuit is calculated as

P = E × fclk, (9)

where fclk is the operational frequency of a given router. To calculate this power
dissipation we apply Orion model presented in [9]. In this paper, as we mentioned
above, the considered topologies are heterogenous in terms of configuration and
operational frequency. The operational frequency of each router is decided by

796 V.-D. Ngo et al.

the highest data transaction IPs mounted onto it. Without loosing generality,
the power dissipation of a particular flit is given by

P i
flit =

∑
Ri

f j
clk

(
Ej

arb + Ej
xbar + Ej

bufrd + Ej
bufwrt

)
× δij (10)

where Ri is the known route that the ith flit goes through, and

δij =
{

1, ifjthrouter ∈ Ri,
0, otherwise.

(11)

Finally, based on the simulated network throughput and the routing table, the
power dissipation of the network with respect to routers is presented as

PNet =
∑
∀i

P i
flit. (12)

In this paper, the wire energy dissipation, Ewire = α
2 CwireV

2
dd, is calculated by

using the wire model worked out [13]. The Cwire denotes the wire capacitance
of the interconnection.

3 Proposed Topologies

At first, we briefly discuss about two conventional architectures known as Fat-
Tree and 2D Mesh.

The SPIN architecture has been proposed by Guerrier and Greiner [4]. It uses
Fat-Tree architecture to interconnect IP blocks. In this Fat-Tree, every node has
four nodes as its children nodes and this rule is replicated four times at every
level of the tree. Let assume N is the number of IPs in the architecture, the size
of the network grows as (N logN)/8 and the number of switches is 3N/4. The
switches, except for the root switches, are modelled by 4 × 4 wormhole router.
The number of routers depends on the depth of the tree.

The CLICHE architecture was proposed by Kumar et al. [5]. This architec-
ture consists of an m × n 2-D mesh of switches that interconnects m × n IPs
allocated along with the switches. Each switch connects with its for neighboring
switches and one IP. Hence, a switch can be modelled by 5× 5 wormhole router.
The number of routers is also m× n.

In [10], the authors pointed out that even with the optimal design the 2-D
Mesh still offers lower performance in comparison with the Fat-Tree architec-
ture. In that paper, the H.264 decoder was designed with the 4×4 Mesh and the
Fat-Tree of 16 IPs size. As shown in Fig.1, the number of IPs of H.264 decoder
is 12. Hence, there are several unused switches for both architectures. In other
words, if we design this particular application on the generic architectures such
as 2-D Mesh and Fat-Tree, we have to pay a big penalty on unused hardware.
Due to the redundancy of unused switches in designing the H.264 decoder of
two mentioned architectures, in this paper, we propose three Tree-based archi-
tectures for each application in which the optimal allocation schemes of IPs are
implemented. These topologies probably are the best suited architectures for the
H.264 decoder.

Throughput Aware Mapping for Network on Chip Design of H.264 Decoder 797

7x7
Wormhole

Router
(1st)

7x7
Wormhole

Router
(2rd)

MVMVD

IPRED

REC

DB

MC

DMA

IS

FR_MEM

(a). Nam output of First topology (b). H.264 decoder on First topology

ITIQ VOM

LENT

PROC

Fig. 2. H.264 decoder on the first topology

3.1 Tree-Based Topologies for H.264 Decoder

In this subsection, we propose 3 tree-based topologies then apply the optimiza-
tion technique to finally obtain the optimal designs of the H.264 decoder on each
topology.

First topology: As shown in Fig. 2, the 12 functional blocks (IPs) of the decoder
are mounted on two 7× 7 wormhole routers. Each router is used to interconnect
six IPs. For this architecture as well as the remaining two architectures, we use
optimized technique presented in section 2 to achieve the optimal mapping. This
work is done by knowing the required data transactions between IPs, the routing
table and the calculation of number of drop flits at all routers. In this article, we
also apply the shortest path routing algorithm for the simplicity and practice.
This optimal mapping makes the network satisfy the condition of obtaining the
highest network throughput. As the optimal mapping shown in Fig. 2, the MC,
DMA, ITIQ, DB and FR MEM are interconnected with the same router. These
IPs, as depicted in Fig. 1, are the functional blocks that have the highest data
transactions from one to the others.

Second topology: Fig. 3 shows that 12 IPs of the H.264 decoder are optimally
mounted on three 5×5 and one 3×3 wormhole routers. The highest data trans-
action IPs such as MC, DMA, FR MEM, DB and ITIQ are mounted on two
neighboring routers to obtain highest network throughput as well as smallest
power dissipation.

Third topology: This topology looks most likely Tree topology. As shown in
Fig. 4, there are totally six routers including four 4× 4 and two 3× 3 wormhole
routers. In this topology, the similar technique as applied in above two topologies
is used. Hence, the optimal mapping of IPs onto NoC topology can be seen as
Fig. 5b. We can easily realize that the IPs such as MC, DMA, FR MEM, DB and
ITIQ are mounted on three neighboring routers so as to obtain highest network

798 V.-D. Ngo et al.

(a). Nam output of Second
topology

(b). H.264 decoder on Second
topology

5x5
Wormhole

Router
(1st)

5x5
Wormhole

Router
(2rd)

5x5
Wormhole

Router
(3rd)

3x3
Wormhole

Router

MC

DMA FR_MEMITIQ

VOM DB

MVMVD

IPRED

PROC IS

LENT

REC

Fig. 3. H.264 decoder on the second topology

3x3
Wormhole

Router
(2rd)

VOM

LENT

4x4
Wormhole

Router
(4st) MC

4x4
Wormhole

Router
(3rd)

3x3
Wormhole

Router
(1st)

PROC

4x4
Wormhole

Router
(2rd)

4x4
Wormhole

Router
(1st)IS

REC

(a). Nam output of Third
topology

(b). H.264 decoder on Third
topology

ITIQDMA

FRM
EM

DB

MVMVD IPRED

Fig. 4. H.264 decoder on the third topology

throughput as well as smallest power dissipation.Now we apply the Orion model
for the above three topologies. More particular, we use 0.1μm technology and
supplied voltage of 1.2V for the repeated wire model. To calculate the powers
for our architectures, we use Orion power model for each individual router in
each architecture. We apply 0.1μm technology, supply voltage of 1.2V and flit
size of 128 bits for all routers. The operational frequency of each router depends
on the IP which has the highest data transaction. Additionally, after calculate
the power consumption we can also obtain the router’s area of each architecture.
Table. 1 presents the power consumption, dynamic bit energy and corresponding
used area of two 7×7 wormhole routers of the first topology. Table. 2 presents
the power consumption, dynamic bit energy and corresponding used area of four
wormhole routers of the second topology. The power consumption, dynamic
bit energy and corresponding used area of six wormhole routers of the third
topology are presented in Table. 3.

Throughput Aware Mapping for Network on Chip Design of H.264 Decoder 799

Table 1. H.264: Power, bit energy and area of Routers in First Topology

First 7 × 7 Router Second 7 × 7 Router

Area (μm2) 1.19e6 1.19e6
Flit power (W) 0.108289 0.113341
Bit energy (J) 1.76e-10 4.2e-11

Table 2. H.264: Power, bit energy and area of Routers in Second Topology

1st 5 × 5 Router 2rd 5 × 5 Router 3rd 5 × 5 Router 3 × 3 Router

Area (μm2) 993280 993280 993280 374784
Flit power (W) 0.073398 0.0706848 0.070132 0.038102
Bit energy (J) 2.7e-11 1.15e-10 3.65e-10 1.46e-9

Table 3. H.264: Power, bit energy and area of Routers in Third Topology

1st 4 × 4 Router 2rd 4 × 4 Router 3rd 4 × 4 Router 4th 4 × 4 Router

Area (μm2) 647168 647168 647168 647168
Flit power (W) 0.053456 0.053882 0.0542187 0.0556976
Bit energy (J) 2.78e-10 8.775e-11 5.4e-11 2.06e-11

1st 3 × 3 Router 2rd 3 × 3 Router

Area (μm2) 374784 374784
Flit power (W) 0.0385485 0.0381902
Bit energy (J) 4.43e-11 2.0e-10

4 Simulation and Analysis

In this article, we simulate the designs of H.264 decoder on five architectures
including three proposed Tree-based topologies, 2-D Mesh and Fat-Tree. The
simulations are done based on the data transaction between IPs depicted in
Fig. 1. The transmission protocol is defined as UDP. The exponential traffic
generator model is applied. The routing strategy is shortest path. To tolerate
with the Orion model, we set the packet size of 64 bytes or four flits of 128
bits. The buffer scheme of DropTail is utilized. As the simulation shows in Fig.
5, our three newly Tree-based architectures offer similar system throughputs in
comparison with Fat-Tree and 10Mbps higher than 4×4 Mesh. Among three new
architecture, the first topology is the best one in terms of system throughput.

Based on the area calculation in previous section, the total router sizes of five
architectures are sketched in Fig. 6a. As shown in Fig. 6a, the Fat-Tree topology
utilizes biggest chip area, size of 19.8mm2 with the 0.10μm CMOS technology.
The second biggest one is 4 × 4 Mesh, size of 15.9mm2. While the biggest one

800 V.-D. Ngo et al.

0 5 10 15 20
0

10

20

30

40

50

60

Time (x 0.0005 second)

A
gg

re
ga

tiv
e

T
hr

ou
gh

pu
t (

M
bp

s)

Throughput comparison

Fat−Tree
2D Mesh
First custom Topo (2xbar)
Second custom Topo (4xbar)
Third custom Topo (6xbar)

Fig. 5. Throughput comparison of 5 topologies

1st topology 2rd topology 3rd topology 4x4 Mesh 16 IPs Fat-Tree
0

0.5

1

1.5

2

2.5
x 10

4

T
op

ol
og

y
en

er
gy

 (
pJ

)

Total energy of 5 topologies

Routers energy

Wires energy

First topology Secon topology Third topology 4x4 Mesh 16IPs Fat-Tree
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7 Topology size (in terms of Router size)

T
op

ol
og

y
si

ze
 (

um
2)

a. Topology sizes of 5 topologies b. Consumed energies of 5 topologies

Fig. 6. Sizes and Energies of five Topologies

among our three proposed topologies is the first topology, size of 3.81mm2.
This figure also depicts that the router area of three proposed architectures are
almost similar. Hence, the first topology probably has the smallest chip size
due to it’s most simplicity in wire interconnection. From Fig. 5 and Fig. 6a, we
can conclude that our three proposed topologies offer similar even higher system
throughput than Fat-Tree and 2-D mesh but have significantly smaller sizes.

The simulated energy consumptions of five topologies are obtained basically
on equations (10, 11, 12). Since we have the system throughput simulation re-
sults of five topologies. We also know the in detail about the route of every
individual flit. This means that we can point out which routers and wires the
given flit goes through. Using the bit energy calculated in Table. 1, Table. 2
and Table. 3, finally we can have the simulated energy consumptions of our pro-
posed topologies as depicted in Fig. 6b. As shown in Fig. 6b, it is interesting
that the first topology consumes smallest energy compared to two other pro-
posed ones. Due to the complicated flows of flits and big number of switches
of Fat-Tree and 2-D Mesh, it is obvious that if we use similar parameters for

Throughput Aware Mapping for Network on Chip Design of H.264 Decoder 801

a. Throughputs Comparison

1st topology 2rd topology 3rd topology
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
op

ol
og

y
en

er
gy

 (
pJ

)

Optimal map vs. random map

Optimal map

Random map

a. Energy consumptions Comparison

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60
Throughput Comparison

Time (x 0.0005 second)

A
gg

re
ga

tiv
e

T
hr

ou
gh

pu
t (

M
bp

s)

1st topology optimal map

1st topology random map

2rd topology optimal map

2rd topology random map

3rd topology optimal map

3rd topology random map

Fig. 7. Throughputs and Energy comparison

simulation, the energy dissipations on these two architectures are much bigger
than our three proposed architectures. Finally, we can indicate that the first
topology consumes less power while offers higher system throughput compared
to the remaining two proposed topologies. To show the overperformance of the
optimal mappings of our proposed topologies, we also carry out the experiments
of three cases of random mappings. The random mappings of our 3 topologies
are set up by randomly interchanging IPs in different routers. The throughputs
of these three cases are depicted and compared with three cases of optimal map-
pings in Fig. 7a. The corresponding consumed energies of random and optimal
mappings of three architectures are shown in Fig. 7b. It is interesting that the
random mappings not only offer less throughputs but consume more power. The
main reason for this contradiction is that the random mapping cases create more
complicated routes and dropped flits. The more complicated route is, the more
energy is consumed. Moreover, the total energy dissipation is calculated by ac-
cumulating the flit energy until it reaches the destination or drops out of the
network.

5 Conclusion

In this paper, we designed the H.264 decoder with three differently Tree-based
architectures. These architectures were designed to not only obtain the high-
est system-level performance but also reduce the hardware consumption and
the intensive interconnections. We also evaluated these architectures in terms
of throughput, dynamic and static power consumptions. Then, we compared
our proposed architectures to 2-D Mesh and Fat-Tree architectures. The results
showed that the newly proposed architectures used less hardware and consumed
less power while offered similar throughputs as the Fat-Tree did. The results also
showed that our architectures overperformed the 2-D Mesh in three aspects of
hardware complexity, power consumption and system performance.

802 V.-D. Ngo et al.

References

1. ITRS. International technology roadmap for semiconductors - (2005) edition,
http://public.itrs.net/

2. Benini, L. and DeMicheli, G.: Networks On Chips: A new SoC paradigm. IEEE
computer, Jan, (2002)

3. Horowitz, M. A. et al.: The future of wires. Proceeding of IEEE, Vol. 89, Issue. 4
, Apr (2001) 490-504

4. Guerrier, P. and Grenier, A.: A generic architecture for on-chip packet-switched
interconnectio. Design automation and test in Europe conference, Aug (2000) 250-
256

5. Kumar, S. et al.: A Network on Chip Architecture and Design Methodology. Proc.
Int’l Symp. VLSI (2002) 117-124

6. Hu, J. et al.: Exploiting the Routing Flexibility for Energy Performance Aware
Mapping of Regular NoC Architectures. in Proc. Design, Automation and Test in
Europe Conf, March (2003)

7. Hu, J. et al.: Energy-Aware Communication and Task Scheduling for Network-on-
Chip Architectures under Real-Time Constraints. in Proc. Design Automation and
Test in Europe Conf, Feb. (2004)

8. Murali, S. et al.: Bandwidth-Constrained Mapping of Cores onto NoC Architec-
tures. DATE, International Conference on Design and Test Europe, (2004) 896-901

9. Hwang, H. S. et al.: Orion: A Power Performance Simulator for Interconnection
Networks. IEEE Micro, Nov (2002)

10. Vu-Duc Ngo et al.: Analyzing the Performance of Mesh and Fat-Tree Topologies
for Network on Chip Design. In EUC 2005, Lecture Notes in Computer Science
Vol. 3824. Springer-Verlag (2005) 300310

11. Dally, W. J. and Towles, B.: Route Packets, Not Wires: On Chip Interconnection
Networks. DAC. (2001) 684-689

12. Cormen, T. H. et al.: Introduction to algorithms. Second Edition, The MIT press,
(2001)

13. Ho, R. et al.: The future of wires. Proceedings of the IEEE Vol. 89, Issue 4, April
(2001) 490 - 504

14. Dally, W. J. and Towles, B.: Route Packets, Not Wires: On-Chip Interconnection
Networks. In Proceedings of the 38th DAC, June (2001)

15. Nurmi, J.: Network-on-Chip: A New Paradigm for System-on-Chip Design. Pro-
ceedings of International Symposium on System-on-Chip, Nov. (2005)

A Delivery Method for Compound Video
Playback in Wireless Network

Kazuya Uyama1, Morihiko Tamai1, Yoshihiro Murata1, Naoki Shibata2,
Keiichi Yasumoto1, and Minoru Ito1

1 Graduate School of Information Science, Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara 630-0192, Japan

{kazuya-u, morihi-t, yosihi-m, yasumoto, ito}@is.naist.jp
2 Department of Information Processing and Management, Shiga University

Hikone, Shiga 522-8522, Japan
shibata@biwako.shiga-u.ac.jp

Abstract. In this paper, we propose a method to realize compound
video (multiple videos on a layout)delivery service for mobile terminals.
In the proposed method, we introduce proxies which receive multiple
videos from corresponding servers and produce a composite video from
the received videos in real-time according to the layouts which users
specify. However, if users require sets of videos with slightly different lay-
outs, multiple similar composite videos will be generated and the wireless
bandwidth will be suppressed to transfer them. So, the proposed method
identifies the common part in layouts of user requirements, and transmits
to each user a composite video corresponding to the common part and re-
maining videos. We have developed a greedy algorithm which calculates
the set of videos to be transmitted within the available bandwidth, so
that the sum of satisfaction degrees of all users is maximized. Through
experiments, we confirmed that our method can achieve much higher
user satisfaction degrees compared to the case that each user terminal
receives multiple videos separately and plays them back in parallel.

1 Introduction

In recent years, digital terrestrial broadcasting services have started in many
countries. In Japan, digital video broadcasting service for mobile terminals called
1 segment broadcasting based on ISDB-T [1] has already started since April,
2006. In Europe, US and Korea, similar services based on DVB-H [2], ATSC
[3] and T-DMB [4] are going to be available. At the same time, mobile users
are awaiting more advanced video services which allow them to watch multiple
contents with the specified layout through the same screen like HDTV (we call
a set of videos displayed on a screen a compound video).

For this purpose, several studies have been conducted so far. [5] describes a
method to locate proxies between content server and user terminal so that the
resources required for video delivery meet limitation of network resources and
user terminal resources by reducing video quality at the proxies. [6] is a method
which uses proxies to produce a composite video from multiple video contents

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 803–812, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

804 K. Uyama et al.

and forward it to each user terminal. In [7], layout-based video delivery method
is proposed, where user can specify any layout of multiple videos.

These existing methods target wired environment where the purpose is to
minimize computation resources at proxies and/or network resources of overlay
network. Here, minimization of resources of wireless network and/or computation
resources of mobile terminals are not considered.

In this paper, we propose a new video delivery method which allows mobile
users to watch multiple videos with a specified layout in a typical mobile/wireless
environment consisting of a large number of mobile terminals, multiple wireless
access points (APs) which cover service area, multiple proxies and a wired net-
work which connects APs and proxies.

The simplest method to realize the target multiple video delivery service is
to have each mobile terminal receive multiple video streams from their servers
and play back those videos simultaneously after reducing the size, and so on if
necessary. This method, however, requires extra processing power at mobile ter-
minal, which may cause so-called drop frame. To cope with the problem, many
of the existing methods utilize proxies to resize or transcode videos before trans-
mitting to mobile terminals. Although this method mitigates the computation
power of mobile terminal to some extent, each mobile terminal still suffers from
playing back multiple videos at the same time. This will introduce non-negligible
processing overhead such as buffering and synchronization of multiple videos. A
more advanced method which is adopted in [7] is to have proxies produce a
composite video from multiple videos based on the requested layout and trans-
mits the composite video to each mobile terminal. It minimizes the computation
power and/or quality degradation degree at each mobile terminal, whereas the
number of composite videos to be transmitted through the same wireless network
channel is limited (i.e., when many users request videos with different layouts,
most of them cannot receive videos as they want).

For the above problems, our proposed method identifies common part among
layouts requested by multiple users, produces a composite video for the part,
and transmits it through AP. The remaining videos in each layout are resized
and/or transcoded at a proxy and transmitted to the user terminal. Each user
terminal receives a composite video and a few small videos, and play them back
according to the layout. In general smaller number of videos each user terminal
receives, lower computation power is consumed at the mobile terminal. How-
ever, the problem to find the best set of transmitted videos which maximize
the sum of the user satisfaction degree under limitation of network resources
and mobile terminal resource is the combinatory optimization problem. So, we
propose a heuristic algorithm to calculate semi-optimal set of videos by intro-
ducing a mechanism to predict user satisfaction degrees before transmitting a
set of videos. Through some experimnts, we have confirmed that our proposed
delivery method outperforms other simple methods in terms of the sum of the
user satisfaction degrees.

In the following Sect. 2, we define the problem of multiple video delivery for
mobile users. Sect. 3 describes our method. In Sect. 4, our heuristic algorithm to

A Delivery Method for Compound Video Playback in Wireless Network 805

derive a semi-optimal set of videos for broadcasting is given. Sect. 5 and Sect. 6
describe performance evaluation and conclusion, respectively.

2 Problem Definition

In this section, we first describe the assumptions and the target environment,
and then we give the formal definition of the problem.

Assumptions. In this paper, we assume that the proposed system is used in con-
junction with PDA or mobile phone as user terminal, and IEEE 802.16 WiMAX
or cellular phone infrastructure as a means of wireless communication. Each
access point (AP) communicates with multiple user terminals, and each user
terminal requests a set of videos with a layout (explained later), where the set is
different from each other. Each user terminal is assumed to communicate with
AP at a time, and the sum of bandwidths between an AP and corresponding
user terminals is limited. In this paper, we do not handle handover between APs
in consequence of user terminal movement.

We assume that each user terminal accesses a video server or a proxy via an
AP. Each video is transmitted from one server. Each proxy has the following
three basic services: (1) Transcoding received video stream to stream with the
specified picture size, framerate, and bitrate in real time; (2) Composing mul-
tiple videos into a video with specified layout; and (3) Transmitting processed
video stream towards user terminal. We call the processed video composite video,
and the raw non-processed video atomic video. Each user terminal is capable of
changing size of received videos and display them simultaneously at any position
on the screen, within the limits of its processing power. Thus, user terminals can
receive multiple videos and play them back with any layout within available
bandwidth and processing power. If it does not have sufficient processing power,
framerate will decrease (which we call drop frame). Video stream is sent from AP
to user terminals using broadcast, thus even if there are many terminals which
receive a same stream, bandwidth usage is equal to the case when there is one
receiver. For the sake of simplicity, we assume that bandwidths between video
servers and proxies are unlimited, and proxies have unlimited computational
power to process video streams.

A layout includes the positions, picture sizes and framerates for displaying
multiple atomic videos simultaneously. Fig. 1 is an example of layout. Each user
sends a request including a layout to video servers via a proxy. Video servers
send the corresponding atomic video to proxies without any processing. Prox-
ies receive videos from servers, process and compose these videos so that the
processed videos meet users’ requests, and send them to user terminals. Since
each AP has bandwidth limitation, all users’ requests cannot be always satis-
fied. If there is bandwidth shortage, the proposed method determines the set of
delivered videos to maximize users’ satisfaction.

Definition. The set of all available atomic videos is denoted as C = {c1, ..., cM}.
A layout includes multiple rectangles to display videos as shown in Fig. 1. We

806 K. Uyama et al.

call each rectangle window. To each window, picture size and position in the
layout are specified. A layout is an ordered set of windows. A composite video
generated by using atomic videos e1, ..., en ∈ C and layout layi is denoted as
layi(e1, ..., en). For example, a composite video generated by specifying atomic
videos c1 and c2 to windows A and B of layout lay2 in Fig. 1 is denoted as
lay2(c1, c2).

The set of all users connecting to an AP is denoted as U = {u1, ..., uN}.
User request from ui is denoted as ri. We can assume that the number of APs
is one, without loss of generality. The available bandwidth for the AP is Abw .
Bandwidth required to deliver video g is denoted as bw(g). The compound video
displayed at user terminal ui is called user view and denoted by vi. Satisfaction
degree si for user ui who has requested ri and is viewing vi is given by a function
si(ri, vi). The range of the function is between 0 and 1, and larger value means
higher satisfaction of the corresponding user. There may be various definition of
the function si, and we will give a definition based on drop frame rate in Sect. 4.

The definition of problem is as follows. Given a set of user requests {r1, ..., rL},
determine a set D of videos delivered to the users which maximize the sum of user
satisfactions

∑N
i=1 si within the limitation of bandwidth

∑
d∈D bw(d) ≤ Abw .

3 Delivery Methods

In order to realize compound video delivery to user terminals, the optimal set of
both composite and atomic videos must be determined to satisfy user requests.
As we already addressed in Sect. 1, the following three methods are considered
as delivery mechanisms: (1) Method1 : each user terminal receives atomic videos
directly from content servers without using proxies; (2) Method2 : each user ter-
minal can receive atomic videos with reduced quality through proxies after resiz-
ing or transcoding the videos according to the user’s request; (3) Method3 and
the improved version (proposed method): each user terminal can receive com-
posite videos and/or atomic videos with reduced quality according to the user’s
request by asking proxies to compose multiple videos to one composite video or
to resize/transcode atomic videos. Although Method1 is the simplest approach,
many picture frames of a received video can be dropped when a user terminal
plays the video back due to increased load for receiving multiple atomic con-
tents, resizing some of them and drawing picture frames on the specified layout.
In Method2, in order to overcome the problem of Method1, picture size and/or
framerate are reduced at a proxy server and forwarded to user terminal so that
the terminal does not consume power for receiving surplus packets and resizing
the picture frames and so on. Method3 further reduces computation power re-
quired at user terminals by allowing proxies to compose composite videos and
forward them to user terminals. With this method, overhead caused by parallel
playback of videos could be reduced to a great extent. However, since Method3
may produce many composite videos which cannot be transmitted within the
available bandwidth when users request videos with different layouts. So, we
propose the improved version of Method3.

A Delivery Method for Compound Video Playback in Wireless Network 807

Method1: Delivering Videos Without Proxies

Method1 is the simplest delivery method where each user terminal receives
atomic videos specified in the user’s request from content servers, changes size of
received videos, and displays them on windows of the specified layout (Fig. 2).
For example, in Fig. 2, we suppose there are three user terminals u1, u2 and u3

which sent the following requests r1, r2 and r3, respectively: r1 = lay2(c2, c3),
r2 = lay2(c3, c1) and r3 = lay3(c3, c1, c2). Here, we suppose to use layouts lay2

and lay3 in Fig. 1. With Method1, u1 will receive atomic videos c2 and c3 from
the corresponding content servers directly, and reduce the picture size of c3, and
displays c2 and c3 on windows A and B of layout lay2.

Method2: Delivering Videos with Reduced Quality Using Proxies

In Method2, as shown in Fig. 3, proxies which are capable of reducing picture
size and/or framerate, are available. Each proxy receives atomic videos from
content servers, reduces picture size/framerate of received videos in real time,
and forwards them to user terminals. Then, each user terminal displays the
received videos on windows of the specified layout. For example, in Fig. 3, user
terminal u1 receives atomic video c2 from its content server and video c3 with
reduced picture size via the proxy server, and displays those videos on windows
A and B of layout lay2. In Method2, processing overhead on user terminal will
be lighter than Method1 since the terminal needs to neither resize the picture
size nor process surplus packets of original atomic video. However, similarly to
Method1, user terminal still needs to receive all of atomic videos in the request
separately and play them back in parallel according to the specified layout.

Fig. 1. An example of layout Fig. 2. Video delivery with Method1

Proposed Method: Delivering Composite Videos and Videos with
Reduced Quality Using Proxies

In our proposed method, as shown in Fig. 4, each user terminal sends its request
to a proxy. Smilarly to Method3, in our proposed method, the proxy produces

808 K. Uyama et al.

composite videos which meet user requests as much as possible within the band-
width limitation, and transmits them to user terminals. The proposed method
is different from Method3 in its flexibility that it allows each user terminal to
receive and display one composite content, or to receive and display a set of
composite and atomic videos on specified layout. For example, in Fig. 4, user
terminal u1 receives a composite video which the proxy server produced from
atomic videos c2 and c3 using layout lay2. Similarly, u2 receives a composite
video composed of c3 and c1. On the other hand, user terminal u3 receives an
atomic video c2 with reduced quality and a composite video of c3 and c1, and
plays the two videos back in parallel, to satisfy u3’s request.

Fig. 3. Video delivery with Method2 Fig. 4. Video delivery with our method

4 Algorithm to Derive Optimal Set of Videos for
Broadcasting

In this section, we propose a greedy algorithm to calculate a semi-optimal set
of videos for broadcasting which maximizes the sum of user satisfaction degrees.
Each user’s satisfaction degree depends on the quality of the displayed compound
video at the user terminal. So, we also propose a method to predict the quality
of the video achieved at the terminal for the given set of videos for broadcasting.

Either Method1, Method2 or our proposed method described in Sect. 3 may
have each user terminal play back multiple videos in parallel. To play back mul-
tiple videos concurrently, each user terminal must receive and decode multiple
video streams before drawing video frames. In general, as larger number of videos
each terminal plays back, more computation power is required. As a result, if
the computation power of user terminal is limited, the rate of drop frames called
drop frame rate will increase as the number of videos increases.

In Method1, user terminals receiving videos with larger picture size (and/or
framerates) than in their requests, have to decrease their sizes (and/or fram-
erates) before drawing. In this case, drop frame rate will become larger than
Method2. Dropped frames cause quality degradation in user view. In the pro-
posed method, to prevent drop frames at user terminal, we take drop frame
rate into consideration to define user satisfaction degree (details are given in

A Delivery Method for Compound Video Playback in Wireless Network 809

Sect. 4.1). As explained in Sect. 2, the objective function of our target problem
is defined as the sum of user satisfaction degrees. So, we need a technique to
predict drop frame rates at all user terminals without playing back videos.

In the following subsections, we present a method for predicting drop frame
rate and a greedy algorithm to solve the target problem defined in Sect. 2.

4.1 Prediction of Drop Frame Rate

Let p denote the number of pixels processed per unit of time while each terminal
decodes videos. We assume that drop framerate denoted by z(p) can be approx-
imated by the equation z(p) = αp + β1, where α and β are terminal specific
constants. We can obtain these terminal values by measuring drop framerates
for different values of p with the Least Square Method. For a compound video
qi, let qij denote the video assigned in j-th window of layout used for generating
qi. For video qij , let w1(qij) denote the product of picture size and framerate
of the video received by ui

2. If video qij is not received, w1(qij)is0. Let w2(qij)
denotes the product of the picture size and the framerate specified for the win-
dow corresponding to qij in the request. We define the user satisfaction degree
as follows. Here, ni denotes the number of videos which user ui requests.

si = zi(
ni∑

j=1

w1(qij)) ×
ni∑

j=1

M in(w1(qij), w2(qij))
w2(qij)

/ni (1)

4.2 Greedy Algorithm

The problem to find the optimal set of videos for broadcasting is a combinatory
optimization problem, thereby it can be proved to be a NP-hard problem (due
to page limitation, we omit the proof).

As a heuristic to solve this problem, we use a greedy algorithm since it is
easy to implement and likely to run fast. We show pseudo code of our greedy
algorithm to obtain an optimal set of videos for broadcasting in Fig. 5. This
algorithm can be used for each of Method1, Method2 and our method. In the
algorithm, D denotes the set of videos for broadcasting and si(D−{d}) denotes
the satisfaction degree of user ui when the set of videos for broadcasting is
D − {d}. Here, d ∈ D. As the first step of the algorithm, the initial set of
videos D0 is generated according to user requests. Elements of D0 differ among
Method1, Method2 and our method.
1 In general, several factors such as receiving packets, resizing picture frames, drawing

pictures and so on must be considered as a load at terminal. However, these factors
can be treated in a similar way to decoding.

2 In Method1, each user terminal may receive videos with larger picture size (and/or
framerate) than in the request, since content servers may retain only a file for each
video content. In Method2, each user terminal may receive videos with smaller or
larger picture size/framerate than the request due to bandwidth limitation. In our
proposed method, qij may be part of a composite video. In this case, we use the
window size in the layout and framerate of the composite video for qij .

810 K. Uyama et al.

In Method1, D0 is the set of atomic videos included in user requests. For exam-
ple, in Fig. 2, D0 = {c1, c2, c3} where c1, c2 and c3 are atomic videos. In Method2,
atomic videos with reduced quality are added to D0 generated by Method1 if
some of the users request videos with reduced quality in their layouts. For ex-
ample, in Fig. 3, D0 = {c1, c2, c3, c

s
1, c

s
2, c

s
3} where cs

j denotes the video cj with
reduced quality. Our proposed method adds, to D0 generated by Method2, all
composite videos which can be composed by assigning some of atomic contents
to windows of all possible layouts. For example, if we assume that there are three
possible layouts lay1, lay2 and lay3 in Fig. 1, when user requests are as shown
in Fig. 4, D0 = {c1, c2, c3, c

s
1, c

s
2, c

s
3, lay2(c1, c2), ..., lay2(c3, c2), lay3(c1, c2, c3), ...,

lay3(c3, c2, c1)} where lay2(c2, c3) denotes a composite video generated by as-
signing atomic videos c2 and c3 to 1st and 2nd windows in the layout lay2. The
set D0 calculated above is assigned to D.

Algorithm GetOptimalSet(D0, Abw)
1 D := D0

2 while D
= ∅ and d∈D bw(d) > Abw do
3 // Find d ∈ D which maximizes i si(D − {d})
4 max := −1
5 foreach d ∈ D do
6 sat := i si(D − {d})
7 if max < sat then
8 d̂ := d
9 max := sat
10 endif
11 next
12
13 D := D − {d̂ }
14 next
15 return D
16 end

Fig. 5. Algorithm to derive optimal set of videos

As the second step, the algorithm checks if the current set D satisfies the
bandwidth limitation or not. If not, it tries to remove every element d ∈ D from
D. It calculates the sum of user satisfaction degrees (denoted by sat) of the set
D − {d}, and finds the element d̂ which has the least impact on sat. Then d̂ is
removed from D and the second step is repeated until the bandwidth limitation
is satisfied.

5 Evaluation

In order to evaluate effectiveness of our method, we compared the sum of user
satisfaction degrees among Method1, Method2 and our proposed method, vary-
ing distribution of user requests.

A Delivery Method for Compound Video Playback in Wireless Network 811

Table 1. Distributions of user requests

Distribution patterns A AB(AC) ABC

Distribution Dist1 5 19 6
Distribution Dist2 5 11 5
Distribution Dist3 5 5 2

Prediction accuracy of drop frame rate. First, we obtained typical values
of parameters α and β in function for drop frame rate z(p) = αp + β , and then
we measured drop frame rates using 9 videos with the different picture sizes and
framerates. As a result of calculation, the value of α was 5.1 and the value of β
was -77.9. We obtained the drop frame rates using the Least Square Method. We
used a PDA (SHARP Zaurus SL-C700, CPU: XScale 400MHz, Memory: 32MB,
OS: Linux 2.4.28) in the measurement. Fig. 6 shows actual values of drop frame
rates and the regression line from the measured values.

From Fig. 6, we can see that the average error between the predicted values
from the regression line and the actual measurement values is about 12 %. There
is still a room for improvement, but we believe it is enough for practical use.

Result on User Satisfaction Degree. In the experiment, we used configura-
tion of 20 user terminals and 5 atomic videos. Each user selects one of the three
layouts in Fig. 1 where the larger window’s video quality is 320×240 pixels, 24
fps and 500 kbps, and that of the smaller window is 160×128 pixels, 24 fps and
350kbps. The available bandwidth for wireless network is set to 3000kbps.

The distributions of user requests are shown in Table 1. Labels A(AB) and
ABC in the table represent the windows of layouts in Fig. 1, respectively. The
numbers in the table show how many different patterns exist in all user requests
when we see only the specified window(s) in user requests. The number of each
label is counted independently of the other labels. So, the total sum may exceed
the number of users (i.e., 20). For example, in distribution Dist1, numbers of
different user requests in terms of video(s) to be displayed at the window(s) A,
AB(AC) and ABC are 5, 19 and 6, respectively. The total number of different
user requests on the same layout depends on which video is displayed on each
window of the layout. For example, the total number of user requests using layout
lay2 (which contains two windows A and B) is 5C2×2! = 20, and 19 patterns of
them are involved in the distribution Dist1. We intentionally set that the total
number of different patterns decreases in the order of Dist1, Dist2 and Dist3.
Therefore, the number of users who require the same videos is smaller in the
distribution Dist1, while the number is larger in the distribution Dist3.

Fig. 7 depicts the user satisfaction degrees achieved by Method1, Method2
and our method under the distributions Dist1, Dist2 and Dist3.

From Table 1 and Fig. 7, we can see that our method achieves highest user
satisfaction degrees in all distributions of user requests. In Method2, user satis-
faction degrees are almost constant for all distributions of user requests. This is
because sets of videos for broadcasting become almost similar due to the band-
width constraint. This trend can also be seen in Method1. In our method, we

812 K. Uyama et al.

Fig. 6. Actual values of drop frame rate
and the regression line from the measured
values

Fig. 7. Comparison of user satisfaction
degrees

can see that the user satisfaction degree is high, in the order of Dist3, Dist2
and Dist1. This is because the number of users who require similar layouts is
large, in the order of Dist3, Dist2 and Dist1. From this result, our method is
especially effective when the number of users who require similar layouts is large.

6 Conclusion

In this paper, we proposed a method to realize compound video delivery service
for mobile terminals on a wireless network. The proposed method maximizes the
sum of user satisfaction degrees, considering both network bandwidth limitation
and mobile terminal’s computation power limitation. Through experiments, we
showed that when a certain proportion of users require similar compound videos,
our method which generates a composite video for common part of user require-
ments increases the sum of user satisfaction degree to a great extent.

References

1. ISDB-T(Integrated Services Digital Broadcasting-Terrestrial).
http://www.dibeg.org/techp/isdb/isdbt.htm

2. DVB-H Global Mobile TV. http://www.dvb-h.org/
3. ATSC Home Page. http://www.atsc.org/
4. T-DMB Home Page. http://eng.t-dmb.org/
5. J, Jin., K, Nahrstedt.: Source-based qos service routing in distributed service net-

works. IEEE International Conference on Communications. (2004)
6. J, Liang., K, Nahrstedt.: Service Composition for Advanced Multimedia Applica-

tions. Multimedia Computing and Networking (MMCN’05). (2005)
7. K, Nahrstedt., B, Yu., J, Liang. and Y, Cui.: Hourglass Multimedia Content and

Service Composition Framework for Smart Room Environements. Elsevier Journal
on Pervasive and Mobile Computing. (2005)

A Dynamic Hierarchical Map Partitioning for
MMOG

Beob Kyun Kim1 and Kang Soo You2

1 Dept. of Computer Engineering, Chonbuk National University, South Korea
bkyun.kim@gmail.com

2 School of Liberal Arts, Jeonju University, South Korea
you.kangsoo@gmail.com

Abstract. Massively Multiplayer Online Games (MMOGs) are charac-
terized by the interaction between a virtual world and an ever-changing
worldwide stream of players. Most of them require virtual worlds, signifi-
cant hardware requirements (e.g., servers and bandwidth), and dedicated
support staff. Despite the efforts of developers, users often suffer from
overpopulation, lag, and poor support as problems of games. In this pa-
per, a new dynamic hierarchical map partition method for MMORPG
based on Virtual Map Information is proposed. This method tries to
divide map based on Virtual Map Layer (VML). In order to adapt to
dynamic change of population, managers divide or merge fields with the
hierarchy of VML. By the simple modification to VML, we can easily
manage problems that come from changes of map data (e.g., addition,
deletion, and modification of zone), changes of resources, or changes of
users’ behavior pattern.

1 Introduction

A Massively Multiplayer Online Game (MMOG) is an online game in which
a large number of players can interact with each other in the same world at
the same time [1]. Usually, MMOGs follow a client-server model. An avatar, a
graphically representation of the character that users play, is representing gamers
in the game world. The persistent virtual worlds where these gamers reside are
hosted by service providers. This interaction between a virtual world and an
ever-changing worldwide stream of players characterizes the MMOG genre.

MMOGs are immensely popular with several commercial games reporting
millions of subscribers. Most of them require huge virtual worlds, significant
hardware requirements (e.g., servers and bandwidth), and dedicated support
staffs. So, designers must consider the performance, stability, and scalability of
the game while preserving short development cycle and the maintaining conve-
nience. Despite the efforts of developers, users often suffer from overpopulation,
lag, and poor support as problems of games. Usually, the virtual world of the
game is divided into regions, each of which is assigned to its own respective host.
Multiple regions can be contained in a single host but a single region cannot span
multiple hosts. As soon as an avatar moves from one region to another region

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 813–822, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

814 B.K. Kim and K.S. You

which is maintained by another host, its data are automatically transferred to
the host responsible for the region which it entered and are deleted from the
previous one [2]. While game servers are running, regions which each host main-
tains are not changed. They can do nothing to manage the situation a single
host is over-burdened with too many users.

Designing an efficient distributed virtual environment system is a complex
task, since these system show an inherent heterogeneousness. Such heteroge-
neousness appears in several elements: hardware, connection, communication
rate of avatars, data model, communication model, view consistency, and mes-
sage traffic reduction [3]. Most of those issues are related to the distribution of
the workload (avatars) among different servers in the system [4].

In this paper, a new dynamic hierarchical map partitioning method for
MMORPG system based on virtual map information is proposed. It tries to
divide map based on virtual sub-area hierarchy information, contained in Vir-
tual Map Layer (VML). In order to adapt to dynamic change of population,
managers divide or merge fields based on the surveyed load of each sub-area.
The divide and merge direction follows the hierarchy of VML. By the simple
modification of VML, we can easily manage problems that come from changes
of map data (e.g., addition, deletion, and modification of zone), changes of re-
sources’ status, and changes of users’ behavior pattern.

2 Related Works

Several approaches have been developed for simulating a large set of avatars
sharing the same virtual world. Architectures based on networked servers are
becoming a de facto standard for large scale MMORPG [4]. In these archi-
tectures, the control of the simulation relies on several interconnected servers.
When a client orders an action to his avatar, an updating message is sent to its
server, that in turn this message must be propagated to other servers and clients.
Each field servers must render different 3D models, perform positional updates
of avatars and transfer control information among different clients. Thus, each
new avatar represents an increasing in both the computational requirements of
the application and also in the amount of network traffic. When the number of
connected clients increases, the number of updating messages must be limited in
order to avoid a message outburst. In this sense, concepts like areas of influence
(AOI) [5], locales [6] or auras [7] have been proposed for limiting the number
of neighboring avatars that a given avatar must communicate with. All these
concepts define a neighborhood area for avatars, in such a way that a given
avatar must notify his movements (by sending an updating message) only to
those avatars located in that neighborhood. Depending on their origin and des-
tination avatars, messages in a distributed virtual environment (DVE) system
can be intra-server or inter-server messages.

OptimalGrid [8] represents a style of middleware for computing large con-
nected problems in a distributed computing environment. When the Optimal-
Grid system initializes itself to solve a problem, it automatically retrieves from

A Dynamic Hierarchical Map Partitioning for MMOG 815

the grid a list of available computer nodes. It also obtains the grid’s perfor-
mance characteristics. At run-time, OptimalGrid measures ongoing performance,
including communication time, computation time, and the complexity of the
problem pieces. OptimalGrid uses this information to configure the grid by cal-
culating the optimal number of computer nodes, partitioning the problem, and
distributing its pieces in a way that obtains the best possible performance on
whatever grid is used.

Lui and Chan suggest an efficient partitioning algorithm for multi-server DVE
systems [4]. They exploit a graph partitioning algorithm to answer how to op-
timally assign users to servers. Their scheme would produce well-balanced par-
titioning results at a large cost. As the size of the number of servers increase,
the overhead of the graph partitioning algorithm exponentially increases. So, it
cannot be survive from dynamic change of population. It is not applicable for
real-time interactive applications.

3 Design of MMOG System for Dynamic Hierarchical
Map Partition

3.1 VML-Based MMOG System

As shown in Fig. 1, the proposed system follows traditional architectures based
on networked server. VML Management server is the only new component. It
surveys loads of each field servers, checks if the surveyed load is affordable, and
tries to divide or merge fields.

A big virtual world has several sub-areas which has different properties. Each
sub-area of a big virtual world has different properties to attract gamers. Some
of them have popular properties which will lead to over population and some
of them have unpopular properties which will be lead to under population. For
example, if a sub-area has events or monsters which make gamers easy to get
experience points or game money, gamers will like to play in that area. These
properties will be considered into the design of VML. A sub-area of the virtual
world will be divided or be merged according to the guideline of VML. By the
simple modification of VML, we can easily manage problems that come from
changes of map data (e.g., addition, deletion, and modification of zone), changes
of resources’ status, and changes of users’ behavior pattern.

3.2 VML

VML is an overlaid version of map which has information about hierarchy of
sub-areas. VML consists of Fields, Sector Groups, Sectors, and Cells. Field is an
area which is controlled by one game server. And a field consists of sectors or
sector groups. VML Management Server tries to divide or merge fields based on
the surveyed load of its sectors or sector groups. A sector, which is the smallest
unit for partition and incorporation, is similar to OPC(Original Problem Cell)
of Optimal Grid [8]. A cell, which is the smallest unit of VML hierarchy, is used

816 B.K. Kim and K.S. You

Internet

Firewall
Login DB

Gateway

Communication
Server

Web / Admin / Patch Server

Daemon Server

Field Servers

VML
Management

Server

DB Synchronization Server

Map

Fig. 1. VML-based MMOG system for dynamic hierarchical map partition

Field Sector Cell

Fig. 2. The hierarchical structure of VML

to define sector and is used to survey load of sector. Sector is defined as a set of
related neighbor cells. So, each sector can have different number of cells.

For partitioning and merging fields, MaxLoFf and M inLoFf are used as a
threshold. VML management server tries to check the load of each field. If the
condition where the load of a field exceeds MaxLoFf is continued above Tterm,
VML management server chooses dividing method by surveying loads of sectors
which consist this field. On the contrary, if the condition where the load of a
field is not reached M inLoFf is continued above Tterm, VML management server
tries to merge adjacent fields using dividing history.

Mathematical methods [4] for solving this kind of partitioning problem are
possible. But, they cannot provide solution for restoration of partitioned fields
and they produce too much traffic overhead between field servers during mer-
gence and partitioning. And also, they don’t consider the special relationships
between neighbored fields.

A Dynamic Hierarchical Map Partitioning for MMOG 817

Fig. 3. Map partitioning based on surveyed loads

Fig. 3 shows the map partitioning process based on surveyed loads. Partition
and mergence process follows the hierarchy of VML. If a field A is to be divided,
the subset of sub-areas and the rest will be new fields. Each sub-area of a big
virtual world has different properties to decoy gamers. In VML, this kind of
sub-area can be a sector. And their group will be a sector group to compose
a field and themselves can compose a field. Usually, geographically neighbored
sub-areas have not only geographical relationships, but also other relationships
about game philosophy and scenario. VML is designed based on this kind of
information and has a hierarchical structure. If a field is needed to be partition,
this field will be divided with hierarchical information contained in VML and
the partitioning history will be kept to be used in restoration process.

VML has tree-like hierarchical structure. The coverage of a parent node is
same to that of union of its children {a1, a2, a3, . . . , an}. After partition of a
field, new fields are subsets of this field.

A = {a1, a2, a3, . . . , an}
A ⊃ E

F = A − E (1)

There are several elements which are included in the load of a field server: the
activity of player character (PC), events which tries to access database, weights
of each field, computing power of each field server, etc [9]. The load of a field
is weighted sum of that of its sub-areas. The weight of each sector is assigned
by designer. The bigger value means that this field is important and need high
performance. Computation of the load of each sector needs the activity of PC
(Ai), the number of events (Ej) which tries to access database, the access time
ratio of database to main memory, and other information.

LoFf =
n∑
s

LoSs ×Ws (2)

LoSs =
l∑

i=0

Ai + Wevent ×
m∑

j=0

Ej (3)

Partition process is begun if the load of a field exceeds maximum load
(MaxLoFf) of this field. XLoFf is an excess load of a field. If a field’s load

818 B.K. Kim and K.S. You

doesn’t exceed its MaxLoFf , its XLoFf is zero. So, each XLoFfmeans the sta-
tus of each field server and the total of them means the status of entire game
system. RXLoFf is a normalization of XLoFf .

XLoFf =
{

LoFf −MaxLoFf

0 , if LoFf ≤ MaxLoFf
(4)

RXLoFf =
XLoFf

MaxLoFf
(5)

Fig. 4 shows the expected effect of the proposed approach. After partition
process (Tp1 and Tp2), the load of the field will not exceed . After mergence
process (Tm1 and Tm2), the load of the field will not be smaller than .

maxLoad

minLoad

p1T p2T m1T

Static Field Server

VML-based Dynamic Field Server

0

m2T

Fig. 4. The expected effect of dynamic hierarchical map partition

4 Implementation and Comparison

We define two variables to control the activity of PC (PA) and the grouping
degree of PC (PG).

PCAi is the activity of i’th PC. So, PA is the average activity of PC and
is a factor that affects message traffic. If PA is very high, the system will have
very high message traffic. And also, if PCAi is very high, that PC moves very
quickly and frequently. n is the number of PC in the virtual world.

PGGj is the number of PC which are included into group j. And g is the
number of big groups. If g is 30, only the first 30 big groups will be considered
for the calculation of group. If these groups have bigger number of PC, the value
of PG will be smaller. And also, if the value of PG is smaller, very big number
of PCs will show same action pattern and congested region will occur frequently.

Fig. 5 shows a geographic distribution of PC when PA is fixed at 0.3 and PG
is variable from 0.3 to 0.7. If PG is set to smaller value, the more congestion
and the bigger mean XLoFf is expected.

Fig. 6 shows the comparison of RXLoFf between the static management and
the dynamic hierarchical map partitioning when PA is fixed at 0.3 and PG
is variable from 0.3 to 0.7. The larger number of PC gets more improvements

A Dynamic Hierarchical Map Partitioning for MMOG 819

Table 1. Measures to control the activity and the grouping degree of PC. If PA has
values near 1.0, this PC moves very quickly. If PG has values near 0, very large number
of PC are acting like just one group.

PA PG

Description The activity of PC The grouping degree of PC

Min Usually, don’t move Very large number of PC show same action

Max Moves very quickly Each PC show different action

Definition 1
n

n
i=1 PCAi 1 − 1

n
g
j=1 PGGj

(a) PG=0.3 (b) PG=0.5 (c) PG=0.7

Fig. 5. Geographic distribution of PC (PA=0.3)

(a) Static management (b) Prosed management

Fig. 6. Comparison of RXLoFf (PA=0.3)

against the static management which don’t perform dynamic map partition. If
the smaller PG was used, the bigger mean of RXLoFf was appeared. So, the
more congestion leads to bigger mean of excess loads. When PG is 0.3, the
dynamic hierarchical map partitioning allow for 23-67% improved performance
compared to the static management.

820 B.K. Kim and K.S. You

(a) Static management (b) Prosed management

Fig. 7. Comparison of RXLoFf (PA=0.5)

Fig. 7 shows the comparison of RXLoFf between the static management and
the dynamic hierarchical map partitioning when PA is variable from 0.1 to 0.5
and PG is fixed at 0.5. If the bigger PA which means the activity of PC was
used, the more excess load was appeared.

VML-based Dynamic vs. Static

-0.2

-0.1

0

0.1

0.2

0.3

0.4

15k 20k 25k 30k 35k 40k

number of PCs

D
iff

er
en

ce
 o

f R
XL

oF

Avg

0.6

0.7

0.3

0.4

0.5

VML-based Dynamic vs. Static

-0.2

-0.1

0

0.1

0.2

0.3

0.4

15k 20k 25k 30k 35k 40k

number of PCs

D
iff

er
en

ce
 o

f R
XL

oF Avg

0.5

0.3

0.1

(a) Improvements with (b) Improvements with
fixed PA and variable PG variable PA and fixed PG

Fig. 8. Comparison of improvements between the result in Fig. 6 and Fig. 7

Fig. 8 shows the improvement difference between the result shown in Fig. 6
and Fig. 7. We can see that the improvement difference by change of PG is more
variable than that by change of PA. But rather, we can see that the improvement
at extremely large number of PCs is reduced. It comes from the experimental
limit and the special situation where an overpopulated field is just a single sector,
and thus cannot be further divided.

The proposed approach may lead to overheads which did not appear in the
static management. They may be produced by the monitoring process and the
partitioning process. The concept that each field is controlled by the stand-alone
field server is same with that of the other MMOGs. Usually in MMOGs, the load
of each field server is monitored in realtime and the monitored information is
used in other analysis process. The only difference in the proposed system is VML

A Dynamic Hierarchical Map Partitioning for MMOG 821

management server which intervenes between monitoring process and recording
process. So, the overhead produced by the monitoring process is trivial.

The overhead produced by the partitioning process may include the synchro-
nization of PC information, map data loading for newly divided or merged field,
and rerouting of client and daemon server to new field. Considering the syn-
chronization of PC information, it is basic in MMOGs and the only one more
pass is added in the proposed system. And because the map data is a kind of
static information, each field server can have the entire map data and must have
different active area. So, the overhead from map data loading is trivial. Usually,
the rerouting of client and daemon server to new field is the same process as
the rerouting by PC’s migration to neighbor field. So, the complexity of this
process is that of the migration process. The only difference from the migration
process, the number of PC, can be improved by the improvement of the server
architecture or the migration algorithm.

5 Conclusion and Future Works

In this paper, a new VML-based MMOG system for dynamic hierarchical map
partition is proposed. It tries to divide map based on virtual sub-area informa-
tion, contained in VML. VML has a hierarchy which consists of Fields, Sector
Groups, Sectors, and Cells. In order to adapt to dynamic change of population,
managers divide or merge fields based on the surveyed load of each sub-area.
The smallest units of layer are Cells and the largest units of layer are Fields.

For the simulation, we define new measures to model PC’s activity. In the
experiment result, the proposed approach shows improvement. And it shows
more improved performance at highly congested situation. Overheads produced
by the monitoring process and the partitioning process are trivial or can be
improved by the improvement of the server architecture or the migration algo-
rithm. The proposed approach has advantages in the game management. By the
simple modification of VML, we can easily manage problems that come from
changes of map data (e.g., addition, deletion, and modification of zone), changes
of resources’ status, and changes of users’ behavior pattern.

References

1. MMOG, http://en.wikipedia.org/wiki/MMOG
2. N.J.Lee and H.S.Kwak.: The Distributed Server Model for the Evolutionary Online

RPG. J. Korea Game Society, Vol. 2. No. 1 (2002) 36-41
3. P.Morillo, J.Orduna, M.Fernandez.: A comparison study of evolutive algorithms for

solving partitioning problem in distributed virtual environment systems. Parallel
Computing, Vol. 30, No. 5-6. (2004) 585-610

4. J.C.S. Lui, M.F. Chan.: An efficient partitioning algorithm for distributed virtual
environment systems. IEEE Transactions on Parallel and Distributed Systems, Vol.
13, No. 3. (2002) 193-211

5. S. Singhal, M. Zyda.: Networked Virtual Environments, ACM Press, New York,
(1999)

822 B.K. Kim and K.S. You

6. D.B.Anderson, J.W.Barrus, J.H.Howard.: Building multiuser interactive multimedia
environments at MERL. Multimedia, Vol. 2, No. 2. IEEE. (1995) 77-82

7. C. Greenhalgh.: Awareness-based communication management in the MASSIVE
systems. Distrib. Syst. Engng

8. T. Lehman, J. Kaufman.: Optimal-Grid: middleware for automatic deployment of
distributed FEM problems on an Internet-based computing grid. 2003 IEEE Int.
Conf. on Cluster Com-puting. (2003) 164-171

9. J. Nam.: IT EXPERT, Online Game Server Programming. Hanbit Book, Korea.
(2004)

Generic Framework for Parallel and Distributed
Processing of Video-Data

Dirk Farin1 and Peter H.N. de With1,2

1 University Eindhoven, Signal Processing Systems, LG 0.10,
5600 MB Eindhoven, Netherlands

d.s.farin@tue.nl

http://vca.ele.tue.nl
2 LogicaCMG, PO Box 7089, 5605 JB Eindhoven, Netherlands

Abstract. This paper presents a software framework providing a plat-
form for parallel and distributed processing of video data on a cluster
of SMP computers. Existing video-processing algorithms can be easily
integrated into the framework by considering them as atomic processing
tiles (PTs). PTs can be connected to form processing graphs that model
the data flow. Parallelization of the tasks in this graph is carried out
automatically using a pool-of-tasks scheme. The data format that can
be processed by the framework is not restricted to image data, such that
also intermediate data, like detected feature points, can be transferred
between PTs. Furthermore, the processing can be carried out efficiently
on special-purpose processors with separate memory, since the framework
minimizes the transfer of data. We also describe an example application
for a multi-camera view-interpolation system that we successfully imple-
mented on the proposed framework.

1 Introduction

Video processing and analysis systems pose high demands on the computation
platform in terms of processing speed, memory bandwidth, and storage capac-
ity. Requirements grow even further if real-time processing speed is needed for
analysis and visualization applications. On current commodity hardware, this
processing power is not available. For example, simultaneous capturing of two
640× 480@25fps videos from IEEE-1394 cameras already fills the full bus band-
width. The straightforward solution for this problem is to use computation clus-
ters instead of expensive specialized hardware. However, the design of distributed
systems is a troublesome task, prone to design flaws.

Most previous approaches to parallel computation have concentrated on fine-
granular data-parallelism. In this approach, the algorithms themselves are par-
allelized, which requires a reimplementation of the algorithms. This is difficult,
especially because computer-vision engineers are rarely experts in distributed
processing [6]. Since complex systems are composed of many processing steps,
parallelization can also be carried out by keeping the (sequential) algorithms
as atomic processing steps. This has two advantages: algorithms are easier to

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 823–832, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

824 D. Farin and P.H.N. de With

implement and algorithm development stays independent of the parallelization.
Note that it is still possible to use the distributed-processing framework to also
parallelize the algorithms itself by splitting the task into smaller sub-tasks that
can be computed independently.

In this paper, we propose a generic framework for distributed real-time pro-
cessing, into which existing software components (algorithms) can be integrated
effortlessly. Algorithm parallelization is achieved by splitting the processing into
a set of processing tiles (PT). Each processing tile performs a specific operation
on a set of inputs and generates one or several outputs. The inputs and outputs
of the PTs can be connected to build arbitrary processing graphs, describing the
order and dependencies of processing. The framework software takes care about
the appropriate distribution of the algorithms over the processing resources and
the control of execution.

The proposed framework provides the following features.

1. The processing graph is not limited to a certain topology. (like
processing pipelines). In particular, PT outputs can be efficiently connected
to the inputs of several PTs.

2. Automatic parallelization. While the processing within one PT is consid-
ered an atomic operation, parallelism is obtained by running PTs in parallel.
The framework also allows to process data from different time instances in
parallel, such that not only horizontal parallelism (concurrency of indepen-
dent tasks), but also vertical parallelism (pipelining) is exploited.

3. The framework is network transparent. The processing graph can be
distributed over a cluster of computers and still be accessed in a uniform
way. If data has to be sent across the network, this is done transparently by
the framework.

4. The framework supports operations on arbitrary data-types. Hence,
not only image data can be processed, but also structured data-types like
mesh-based geometry. An important alternative view onto this is that data
can be processed in different representations. For example, low-level process-
ing tasks (lens-distortion correction, image-rectification, depth estimation)
can be implemented more efficiently on the graphics processor (GPU). In this
case, the image data is loaded into the texture memory of the graphics card.
Since the overhead of transferring the image data between main memory and
the graphics card would annihilate the performance gain of processing on the
GPU, it should be avoided whenever possible. This is achieved by passing
only handles to the texture data between PTs and doing the conversion to
image data in main memory only when necessary.

In this paper, we will first describe the main considerations taken into account
when designing the framework software (see Section 2), and we give an overview
of the framework architecture. In Section 3, we describe the implementation in
more detail. An example application and its implementation using the proposed
framework is presented in Section 4.

Generic Framework for Parallel and Distributed Processing of Video-Data 825

2 Design of the Distributed Processing Framework

2.1 Design Considerations

The design of our Distributed Processing Framework (DPF) was driven by the
following requirements.

Fine-Grained Vs. Coarse-Grained Parallelization. Previous work on par-
allel algorithms has mostly considered parallelization using a fine-granular data-
parallelism within a single algorithm. The difficulty with this approach is that
it complicates the implementation of the algorithm, because it requires knowl-
edge of the image-processing algorithms as well as knowledge about parallel and
distributed programming. On the other hand, large applications consist of a mul-
titude of processing steps. This allows to apply parallel processing on a coarser
level, at which every algorithm is (conceptually) implemented in a sequential
program (in practice, this does not have to be followed strictly, as we will de-
scribe in Section 4). Since we are targeting complex video-processing systems
comprising several algorithms, we have chosen the coarse-grained paralleliza-
tion because it simplifies the implementation of each algorithm. Furthermore,
the coarse-grained parallelization has a lower communication overhead, which is
usually one of the most restricting bottlenecks.

SMP and Cluster Parallelization. Currently, multi-core processors begin to
replace single-core processors because they allow to increase the computation
speed more economically than by increasing the processor frequency. While cur-
rent processors have two or four cores, the number of cores is expected to increase
further in the future. But even with multi-core processors, the processing speed
is limited because of the limited memory-bandwidth, limited I/O bandwidth, or
simply because the computation speed of these processors is still not sufficient
for the application. To overcome these limitations, processing in a cluster of
computers is a viable approach [1].

For these reasons, the DPF should enable parallel processing in both ways, by
exploiting multiple processing cores within one shared-memory system (SMP),
and by distributing the work over a cluster of computers.

Automatic Parallelization Vs. Manual Splitting of Tasks. In designing
a system using our DPF, it must be decided which processing tiles should be
processed on which computer. The optimal design of the processing network can
be determined automatically, but we still prefer to specify the assignment of the
processing tiles to the computers by hand for the following reasons. First, the
number of processing tiles is rather limited for most systems, and the placement
of some of these tiles is dictated by the hardware (the camera capturing must
take place at the computer to which the cameras are connected). Second, for
an automatic optimal distribution of the tasks, exact knowledge about the pro-
cessing times, the required bandwidths, or the available computation resources
is required. These are often difficult to specify formally, particularly in a hetero-
geneous architecture with special-purpose processors.

826 D. Farin and P.H.N. de With

Flexibility. Our intention in designing the DPF was to provide a general frame-
work for a wide area of applications. Hence, the design should not impose a
specific processing architecture, like a fixed processing pipeline, which might be
unsuitable for many applications. Furthermore, the framework should strengthen
the reuse of processing tiles for different applications. This is supported by al-
lowing processing tiles to have a flexible number of inputs and outputs, which
do not have to be connected all. Unconnected outputs can indicate to the pro-
cessing tile to disable part of its processing, and optional inputs can be used for
optional hints that may help the algorithm.

Special-Purpose Processor Utilization. Many low-level image-processing
tasks are well suited for parallel processing, but this parallelism cannot be
achieved with standard general-purpose processors. Even though these proces-
sors nowadays have support for SIMD instructions, especially designed for mul-
timedia applications, (like MMX on x86, or Altivec on PowerPC architectures),
the degree of parallelism is limited and restricted to simple processing.

Additional to the CPU, specific media-processors do exist which offer higher
parallelization factors than regular CPUs. When utilizing special-purpose pro-
cessors with independent memory (like the GPU on graphics cards), it should
be considered that the image data to be processed has to be stored in its local
memory. The time to transfer the image between different memories is not neg-
ligible, and can even exceed the actual computation time. For this reason, it is
important to avoid unnecessary memory transfers wherever possible. This has
to be considered in the design of the DPF by providing several options how the
image data is transferred between successive processing tiles.

2.2 Overview of the Distributed Processing Framework

The core of our distributed processing framework (DPF) is a set of user-definable
processing tiles (PT). A processing tile conducts an operation on its input data
and generates new output. The number of inputs and outputs is flexible. In
order to define the data-flow through the PTs, they can be connected to form a
processing graph of an arbitrary topology (without cycles).

A Processing Graph Control (PGC) distributes the tasks to carry out in the
graph of PTs over a set of worker threads, hereby exploiting multi-processor
parallelism in an SMP system. The scheduling is determined by splitting the
processing into a set of “(PT, sequence-number)” pairs. Each of these pairs rep-
resents a processing task that can be issued to a thread. The scheduler maintains
the set of tasks in three queues: the tasks that are currently processed, tasks
that are ready to run (all input dependencies are met), and tasks that cannot be
started yet because of unmet dependencies. These queues are updated whenever
a PT has finished its computation.

For specifying processing graphs that are distributed over several computers in
a cluster, the PGC can be wrapped into a Distributed Processing Graph (DPG).
The DPG provides a uniform access to all PTs even though they might be
distributed over different computers. Whenever data is to be transferred between

Generic Framework for Parallel and Distributed Processing of Video-Data 827

computers, a network connection is established transparently to the user. From
a user point-of-view, a DPG looks like a local processing graph, because most of
the network distribution is hidden from the user.

It should be emphasized here that the DPF is organized in three separate
layers that represent subsets of the features made available by the DPF. The idea
is to provide simpler APIs to the programmer when the full-featured framework
is not required. The typical usage of these three layers is briefly explained below.

– A system building upon the first layer includes only the PT objects, which
are connected to a graph. There is no central scheduler organizing the data
processing. Data can be processed directly by pushing new data into some
PT input. This will trigger the processing of this tile and also the successive
tiles, where additional input is requested as required. On the other hand,
the graph of PTs can also be used in a pull mode, where new output data
is requested at some PT, which again triggers the processing of the tile. If
there is missing input, the PT first acquires the required inputs from the
preceding tiles.

– The second layer adds a scheduler (PGC) to the graph of connected tiles.
This scheduler manages multiple worker threads to carry out the computa-
tions in parallel.

– The third layer adds a network-transparent distribution of the processing
graph (DPG) over a cluster of computers. To this end, a server application
is run on every computer in the network, and the servers are registered at a
central control computer. PTs can be instantiated at any arbitrary computer
through a uniform API at the control computer. Connecting two PTs across
the network is possible and handled transparently to the user.

3 Implementation Details

3.1 Processing Tiles

All algorithms are wrapped into Processing Tile (PT) objects. Each PT can
accept a number of inputs and can also create several outputs. For the DPF,
a PT appears like an atomic operation (however, the algorithm in the PT may
itself be implemented as a parallel algorithm, independent to the parallelization
performed in the DPF). Each PT provides the memory for storing the computed
results, but it does not include buffers for holding its own input data. The input
data is accessed directly from the output buffers of the connected tiles. This
prevents that data is unnecessarily copied between PTs, which could constitute
a considerable part of the computation time. On the other hand, this blocks the
PT that provides the input from already starting the work on the next Data-
Unit. If this is a problem, an additional buffering PT can be inserted in-between
the two PTs to decouple the data-dependency between these two PTs.

Every output can be connected to several inputs, without any extra cost.
Moreover, inputs and outputs can also be left unconnected. While the algorithm
within the PT might simply proceed as usual even when there are unconnected

828 D. Farin and P.H.N. de With

outputs, it can be more efficient by disabling generating the data for this output.
This feature can be used, for example, to create outputs that provide a visualiza-
tion of the algorithm. When the visualization is not required, the output can be
left unconnected. Connecting only some of the inputs can be used, for example,
for operations that work with a varying number of inputs (like composition of
images, depth estimation from multiple cameras), or to support additional hints
for the algorithm (segmentation masks that can help to increase the quality of
the result, but which are not required).

Each PT also saves a sequence-number, indicating which frame was processed
in the last step, now being available at the outputs. Using this sequence-number,
a PT can check if all its inputs are available such that it can start processing.

3.2 Data-Units

Data that should be passed between PTs is encapsulated in Data-Unit objects.
Each Data-Unit provides a uniform interface for communicating with the DPF,
but it can nevertheless hold arbitrary types of data. The Data-Unit must provide
a function to serialize the data and to reconstruct the Data-Unit again from the
serialized data. This is used by the DPF in order to send data across the network,
transparently for the user.

3.3 Using a Graph of PTs Without Processing Graph Control

As noted above, it is possible to use a graph of connected PTs without any
further central control. For simple pipelined processing, this comes close to the
Decorator design-pattern [3] used in software engineering. However, processing
in our graph of PTs is more flexible than a straight processing pipeline. We
do not only allow arbitrary (acyclic) graphs of PTs, but also allow a push-data
semantic as well as a pull-data semantic. Using a graph of PTs without a central
Processing Graph Control (see next section) is simple to use, but note that
parallel processing is not available.

Processing of a new unit of data is triggered at an arbitrary PT in the graph.
If new input is fed into the graph, then triggering happens at the moment when
the new data is passed into one PT. Whenever a PT is triggered, it checks if
the data at its inputs are already available. This is visible from the sequence-
numbers in the predecessor PTs. If some input is missing, this predecessor PT is
triggered. When all input is available, the tile performs its operation and triggers
all output PTs if they are not yet at the same sequence-number (this can happen
if triggering one output PT has propagated to another output).

3.4 Processing Graph Control

The Processing Graph Contol (PGC) comprises a scheduler that distributes the
processing tasks in a graph of PTs over several processors running in parallel.
To this end, a pool-of-tasks scheme is applied. The PGC maintains a set of PTs
that are ready to process the next Data-Unit. A PT is ready if all the input data

Generic Framework for Parallel and Distributed Processing of Video-Data 829

is available at the connected inputs, if the PT is not internally blocked, and if
the outputs of the PT are not required by any other PT anymore. The PGC
maintains three sets of “(PT, sequence-number)” pairs to schedule the tasks to
the threads. The to-be-processed set is initially filled with all tasks for the first
sequence-number. Whenever the first task with the latest sequence-number has
started, all tasks for the next sequence-number are added to this set. After a PT
has finished its processing, the successor and predecessor PTs are examined if
they are now ready to be processed. If they are, the corresponding task is moved
from the to-be-processed set into the ready-to-run set. Whenever a working
thread has finished a task, it gets a new task from the ready-to-run set, moves
this task into the in-progress set and starts processing.

In order to efficiently test if a task can be processed, an active-edges set is
maintained. An active edge is an edge in the PT graph, connecting an already-
processed output of a tile PTo with a not-yet processed tile PTi. This active edge
represents a data-dependency which prevents that PTo can process another unit
before PTi has finished using this output data.

An example of this scheduling algorithm is presented in Fig. 1. In this figure,
PTs that are ready-to-run are indicated with a black bar at the left (input) side.
PTs that are currently being processed are depicted in grey color. When they
have their output data available, this is indicated with a black bar at the right
(output) side. Active edges between PTs are shown with bold lines. The number
in the PT denotes the current sequence-number of the outputs. In this example,
we have assumed that processing takes equal time-periods for every tile. Note
that this is not required by the scheduling algorithm, in which the processing
time is not defined. Also note that the shown schedule is not the only possible
one. In Fig. 1(b), instead of processing the two top tiles in the second column,
any two tiles from the second column would be a valid next step. The step in
Fig. 1(f) is similar to (b), just with the sequence-numbers increased to the next
frame.

3.5 Network Transfer

In order to connect two processing graphs on two different computers, the data
processed on one computer must be sent to the input at the second computer.
This is realized with a network-sender PT and a network-receiver PT. The
network-sender PT uses the Serialize method of the Data-Unit interface to
generate a bit-stream representation of the data. This bit-stream is then stored
in a FIFO buffer from which it is sent over the network. The sending is carried
out in a separate thread which is managed by the PT itself instead of a global
scheduler. This has the twofold advantages that (1) streaming can run with
maximum throughput because the thread is always active, and (2) the network-
connection PTs can also be used without any PGC. Since the sending thread
is almost always blocked in the system-function for network transmission, its
computation time is negligible.

The network-receiver PT at the other side works similarly to the network-
sender. A separate thread is responsible for receiving new data bit-streams from

830 D. Farin and P.H.N. de With

0 1

0

0

0

0

0

0

0 1

(a) Step 1.

0 1

0

0

0

00 1

1

1

(b) Step 2.

0

0

0 11

1

1

0 1

1

(c) Step 3.

0 1

1

1

0 1

1

1

1

0

(d) Step 4.

1 2

1

1

1

1

0 1

1

2

(e) Step 5.

1 2

1

1

1

2

2

11 2

(f) Step 6.

1

1

1 2

2

PT that has finished processing frame 1.

PT that is ready to process next frame.

PT that is currently processing the next frame.

PT that has finished processing frame 2,
where the output is still required by a subsequent PT.

(g) Symbols used in the diagrams.

Fig. 1. Example processing graph running on two CPUs. It is assumed here that pro-
cessing of each tile takes the same time.

the network. Whenever the PT is triggered, one data packet is removed from
the FIFO and used to reconstruct a Data-Unit.

3.6 Distributed Processing Graph

A Distributed Processing Graph (DPG) wraps a PGC into a network interface.
When DPGs are created on different computers, they can be joined together
with a control connection. From that moment onwards, both graphs in the DPGs
appear as a joint graph and can also be controlled in a unified way, even though
the PTs might be on different computers. New tiles can be created on any
computer via the DPG interface by specifying the name of the PT and the system
on which it should be instantiated. Universally Unique Identifiers (UUIDs) are
used to access the PTs in the network.

Generic Framework for Parallel and Distributed Processing of Video-Data 831

In the general case, many computers with DPG daemons running on them can
be connected into a control tree. Each DPG stores which PTs can be reached
via each of its neighboring computers. Control commands for a non-local PT
are forwarded to the closest neighbor DPG, which then further handles the
request.

The DPG interface can also be used to connect pairs of PTs. If both PTs
are on the same computer, a simple direct connection is established like before.
If the PTs are on different computers, special PTs are added that serialize the
data into a network stream on one computer, and then reconstruct the Data-
Unit on the receiving computer (like described in Section 3.5). These network-
transmission PTs are connected to the pair of PTs that originally should be
connected. This process is transparent to the user of the DPF. Note that the
data-transfer connections are independent from the control connections between
DPGs. Hence, while the control connections always have a tree topology, data
is transferred directly between the involved pair of computers.

In order to run our distributed processing framework on a cluster of comput-
ers, a DPG is started as a daemon process on each computer. One computer acts
as the control computer, running the actual application program. Note that the
DPG daemons are independent of the application program as long as all PTs
required by the application are compiled in the DPG daemons. Future work will
provide a method to also transmit the PT code over the network and link it
dynamically to the DPG.

4 Example Application

As an example application, we implemented a multi-camera view-interpolation
system which allows to synthesize images along a set of cameras [2]. For the
view-interpolation system, the following tasks have to be carried out.

– Capturing the video streams from the digital cameras.
– Correction for the radial lens distortion.
– Stereo image rectification.
– Depth estimation.
– View interpolation.

These sub-tasks can be implemented in separate PTs. Note that some of the
tasks (lens undistortion, rectification, and part of the view interpolation) are
implemented on the GPU, while the depth estimation is implemented on the
CPU. At the connection between GPU processing and CPU processing, there
are conversion PTs to transfer the data between graphics-card memory and main
memory.

Because the depth-estimation process is computationally expensive, it is at-
tractive to parallelize this algorithm itself. Even though parallelization within
one PT is not supported directly by our framework, it can be easily achieved by
splitting the PT into separate PTs which compute a partial solution each. The
results are then combined into a final solution in a multiplexer PT.

832 D. Farin and P.H.N. de With

5 Conclusions

This paper has presented a software framework to provide an easy-to-use plat-
form for parallel and distributed processing of video data on a cluster of SMP
computers. Existing algorithms can be easily integrated into the framework with-
out reimplementation of the algorithms. The framework organizes the process-
ing order of the algorithms in a graph of atomic processing tiles with unre-
stricted topology. Parallelization is carried out automatically using a pool-of-
tasks scheme.

A specific feature of our framework is that it can be used at three differ-
ent levels, each comprising comprise a subset of the framework. During the de-
velopment, PTs can be directly connected without parallelization, to simplify
development and debugging. At a second level, a scheduler is added which auto-
matically parallelizes the execution on SMP machines. Finally, in a third level,
the processing graph can be distributed over a cluster of computers. As such,
the framework provides a scalable approach for distributed processing, without
introducing much burden on the programmer.

The framework has been successfully applied on a cluster of multi-processor
computers to implement various video-processing tasks, including the described
view-interpolation system for multiple input cameras. Because of its flexibility,
the framework can be applied to a wide range of applications, probably even in
fields other than video processing.

References

1. D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, and C. V.
Packer. Beowulf: A parallel workstation for scientific computation. In Proceedings
of the International Conference on Parallel Processing, 1995.

2. D. Farin, Y. Morvan, and P. H. N. de With. View interpolation along a chain of
weakly calibrated cameras. In IEEE Workshop on Content Generation and Coding
for 3D-Television, June 2006.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley,
1995.

4. J. Hippold and G. Runger. Task pool teams for implementing irregular algorithms
on clusters of smps. In International Parallel and Distributed Processing Symposium
(IPDPS’03), pages 54–61, 2003.

5. M. Korch and T. Rauber. Evaluation of task pools for the implementation of parallel
irregular algorithms. In International Conference on Parallel Processing Workshops
(ICPPW’02), pages 597–604, 2002.

6. F. Seinstra, D. Koelma, and A. Bagdanov. Towards user transparent data and task
parallel image and video processing: An overview of the parallel-horus project. In
Proceedings of the 10th International Euro-Par Conference (Euro-Par 2004), volume
3149 of Lecture Notes in Computer Science, pages 752–759, Aug. 2004.

PSO vs. ACO, Data Grid Replication Services
Performance Evaluation

Vı́ctor Méndez1 and Felix Garćıa Carballeira2

1 Universidad de Zaragoza, CPS, Edificio Ada Byron,
Universidad de Zaragoza, CPS, Edificio Ada Byron,

C. Maŕıa de Luna, 1. 50018 Zaragoza, Spain
vmendez@unizar.es, eureka@nodo50.org

2 Universidad Carlos III de Madrid, EPS, Edificio Sabatini,
Av. de la Universidad, 30, 28911 Leganés. Madrid. Spain

fgcarbal@inf.uc3m.es

Abstract. Data Grid replication is critical for improving data intensive
applications performance, providing fault tolerance and load balancing.
Most of the techniques for data replication use Giggle as a framework
for Replica Location Services (RLS), combined with other services for
replica selection and optimization. Our previous work have proposed an
enhanced Giggle framework, that simplify the location service using a
flat catalogue structure, that combined with appropriate heuristic, ob-
tain much better performances than traditional approaches. With this
aim, we propose the use of Emergent Artificial Intelligence (EAI) tech-
niques on data replication: Particle Swarm Optimisation(PSO) and Ant
Colony Optimisation(ACO). This paper contribution is an experiment
comparison between PSO, ACO, a canonical replication algorithm and
other state of the art economic model replication algorithm. The exper-
iments are design on two different network topologies. The simulation
results confirm that PSO and ACO using the enhanced Giggle, improve
performance over traditional solutions.

1 Introduction

Many Grid research groups are focusing on scheduling issue, while data Grid
replication systems are still the critical part in final makespan. The assumed
framework for data replication, based on OGSA[1] and Giggle[2] de facto stan-
dards, are giving directions for greedy algorithms with complicated scaling fea-
tures. Next years Grids are expected to grow in complexity and data size in
orders of magnitude, so it is urgent to take up data replication as the criti-
cal Grid issue. Our previous work[3] propose an enhanced Giggle framework,
that simplified the location service in a flat catalog structure, that combined
with suitable heuristic, realize much better performances than traditional ap-
proaches. The resulting flat location service is shown on figure 1 and based on
Globus middleware[4].

The Giggle location service join with a replica optimisation and catalog ser-
vices for real Globus infrastructures, like for example EGEE middleware using

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 833–843, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

834 V. Méndez and F. Garćıa Carballeira

Fig. 1. Flat RLS architecture

ROS and RMC. Our flat Giggle works with simplified versions of those services,
supporting optimisation service with Emergent Artificial Intelligent(EAI) algo-
rithms. Given a logical identifier of a file(LFN), the RLS must to provide the
physical locations of the replicas for the file(PFN). The traditional RLS consists
of two components: Local Replica Catalogs (LRCs) manages consistent infor-
mation about logical to physical mappings on each site or node, and Replica
Location Index(RLIs) provides non-consistent information about the asociated
LRCs or others RLIs file entries. With our scheme is possible avoid RLI entities.
Figure 1 show a generic example where there is no RLI, but an Implicit Catalog
Interface, realice location services based on an emergent algorithm, and without
explicit file entries information.

Next section of this paper briefly describes the economic algorithm[5]. We also
summarise the PSO[3] and ACO[6] Grid algorithms presented on our previous
works.

After background section we show the evaluation methodology, and on fourth
we present experimental results on two network topologies. Finally we summarise
some conclusions and future work.

2 Grid Replication Background

One of the most famous Grid replication approach is the the economic algorithm
proposed by OptorSim group[5], that understand the Grid as a market where
data files represent the goods. They are purchased by Computing Elements for
jobs and by Storage Elements in order to make an investment that will improve
their revenues in the future. The files are sold by Storage Elements to Compute
Elements and to other Storage Elements. Compute Elements try to minimise the
file purchase cost and the Storage Elements have the goal of maximising profits.

When a replication decision is taken, the file transfer cost is the price for
the good. The Replica Optimiser may replicate or not, based on whether the
replication(with associated file transfer and file deletion) will result in to reduce
the expected future access cost for the local Computing Elements. Replica Opti-
miser keeps track of the file requests it receives and uses an evaluation function:
E(f, n, r), defined in [7] that returns the predicted number of times a file f, will

PSO vs. ACO, Data Grid Replication Services Performance Evaluation 835

be request in the next n, based on the past r request history base line. The
prediction function E is calculated for a new file request received on Replica
Optimiser for file f. E is also calculated for every file in the node storage. If there
is no file with less value than E for new file request f, then no replication occurs.
Otherwise least value file is selected for deletion an new replica is created for f.

EAI is an Artificial Intelligence branch that inspired in the natural social
behaviour is used for optimisation. Bees swarm, birds flocks searching food[8],
or ant colony[9] are examples of such social beings.

Traditional PSO algorithm was created by Dr. Eberhart. The PSO-Grid algo-
rithm was proposed on our previous work[3]. On Grid environments we introduce
some tactic modifications, based on the strategy ”follow the closer bird from the
food chunk” as social PSO flavour. A bird flock is in a random search for food
in an area. For each bird there is only one valid kind of food. The bird does
not known where is the food chunk, but its known how long is from the dif-
ferent areas, and it know how many birds are finding they food chunk on this
areas, it is called food chirp. This is the social component of our approach, thus
the distance to the food chunk is calculated for each bird flock, not for individ-
ual birds. The strategy is to follow the closer bird flock with best success food
search.

The PSO-Grid uses a performance metric for a file replication between two
nodes i, j , defined in equation 1.

pi,j = (ej ∗ ci,j) + ((1− eb) ∗ ci,b) (1)

The external hit ration, e, is calculated based on N lasts external success request
ratio on node j. We use b as the identifier of the node with the best performance
metric associated to i, from the evaluated j nodes. Initially b is the producer
node of the replica, and in the pseudo-code below is the get producer function.

Considering network access cost, c, we propose the following equation 2:

c(i, j) = lti,j ∗ c1 + (MAXBW − bwi,j) ∗ c2 (2)

For our case c1 = 1 and c2 = 0.2. On the equation 2 c1 and c2 are coefficients
that balance the relative relevance between latency and bandwidth, they also
should fit with the bandwidth and latency values of the specific Grid infrastruc-
ture, and also fit with their measure relationship (ms. and MB/s.). At the end
of the day latency is more important than bandwidth, because latency is always
constant, and bandwidth has a variable behaviour depending on sockets allo-
cations and number of network request in a specific moment. MAXBW is the
highest bandwidth of all the Grid infrastructure.

The performance function is balancing the probability of find a replica in a
node j with the probability of not finding on j, where we may have to reply from
the node with best metric, b, initially the producer site.

On the PSO-Grid algorithm the file request is a particle, and the particles in
a Site are a swarm. When the file object is found the particle died and the file
reply is done with traditional routing methods. The basic algroithm is exposed
on the next pseudo-code.

836 V. Méndez and F. Garćıa Carballeira

Loop
For each particle not finding file on node i

Initialize best node as requested file producer site,
and best metric as performance from i to producer.

For each node j, not i, from the Grid
If actual performance(i,j) is less than best one.

Get new performance(i,j) as best metric,
and j as best node.

End if
End for each j.
Launch replica request to best node.

End for each particle.
Until End Condition.

The ACO-Grid algorithm was proposed on our previous work[6]. It is based
on ant social behaviour, and for computational purposes is relevant the way
of finding paths between food sources and anthill. While walking, ants places
on the ground some amount of pheromone. Ants smell pheromone and when
choosing their way, they tend in probability to the paths marked with stronger
pheromone concentrations. When the time pass the pheromone concentration
decrease. Repeating same behaviour they compose optimised trails that are dy-
namically defining, and they use to find food sources and nests.

The historic algorithm was enunciate by Dr.Dorigo for salesman traveller[10].
This environment is very similar to the Grid, and can be used in a very direct
way modifying for Grid dynamic and discrete features. Every Grid request is an
ant, when it find its file object, the ant died, and the Grid replies routing is done
with traditional methods.

Loop
For each ant not finding file object on actual Grid site.

Select a neighbour node with state transition rule.
Change the state to neighbour node placing pheromone on
the selected conection for path to new node.

Apply a local updating rule to all conections on
same original node.

End for each ant.
Until End Condition.

Each edge between node (r, s) has a distance or cost associate δ(r, s) and a
pheromone concentration τ(r, s). The equation 3 is the state transition rule, that
is a probabilistic function for each node u, that has not been visited by each ant
on node r.

Pk(r, s) =
[τ(r, s)][η(r, s)]β

Σ[τ(r, u)][η(r, u)]β
(3)

The parameter β determine the relevance of the pheromone concentration com-
pared with the distance. The ACO heuristic function η(r, s), for our ACO-Grid

PSO vs. ACO, Data Grid Replication Services Performance Evaluation 837

algorithm is the reverse of τ . The pheromone concentration on equation 4 is the
local updating rule.

τ(r, s) = (1− α)τ(r, s) + ΣΔτk(r, s) (4)

Where α is the pheromone evaporation factor between 0 and 1. And Δτk(r, s)
is the reverse of the distance or cost, if (r,s) is its path and is 0 if it is not in the
path.

ACO-Grid does not use global updating rule. Every time a request is processed
on a Grid site, tau is update for all the site connections. The Grid distance or
cost is defined on equation 5 as a function of network latency lt and bandwidth
bw.

δ(r, s) = ltr,s ∗ c1 + (MAXBW − bwr,s) ∗ c2 (5)

On the equation 5 is calculated the same as 2, explained on PSO above.

3 Evaluation Methodology

We have implemented a full simulation toolkit, SiCoGrid, a completed Grid sim-
ulation environment as we describe on previous work[3]. SiCoGrid is developed
in Parsec[11] that is a combination of C and a simulator parser for creating event
driven simulators, and also use DiskSim[12] for the storage disks simulation sub-
system.

This paper is a performance evaluation of economic model, ACO-Grid, and
PSO-Grid algorithms for two different stages. The replica policy is pure data Grid
with computing on the client, thus all the active and passive time is consumed
on the Grid client, as show figure 2

(a): The client read the request from the log file. (b): The client launch a
request on the site or node, through the Local Network to the Resource Broker,
that will manage the request in order to return to the client the appropriate
data and/or computing results. (c): If the requested file is not on the site, then
the RB pass the request to the node that depending on the replication and
scheduling algorithms, it route to the appropriate Remote Network instantiation.
(d): Asynchronous data replies from remote sites are received on the node, that
send it to the corresponding SE. (b)ACK: Requested block file is send from SE
to Client data Grid.

This is the case the client has to know the results of the execution with a block
requested, to obtain the next block file object to be requested. The process is
the same for N request of a job, and after the last job request, the Grid client
user will spend a Passive Time.

When the Grid Client receives a block file, from local or remote sites, then
calculate results for this block along Active Time, and after client submit a new
request, if the request was the last one of the job, the Grid Client holds a Passive
Time before a new job starts.

The sites are grouped on three main class as tiers of the grid. Tier of first class
has more storage features an also higher bandwidth connection. This split in site
classes is the typical EGEE requirements for diferent levels of sites participations.

838 V. Méndez and F. Garćıa Carballeira

Fig. 2. Pure Data Grid Protocol

The experiment workload are log files created with specific application of the
SiCoGrid toolkit, and depends on the following. The number of Grid clients N on
each site (traffic density). The number of jobs M that a client do in a simulation
(experiment length). Every job has many block file request. We use Gaussian
random walk file access pattern, that is the best performance for the state of the
art economic OptorSim approach[13].

3.1 Uncyclical Graph Stage

We have configured our SiCoGrid for network topology shown on the Figure 3.
The graph disposes a nomenclature where the nodes have a first number that is
the tier class, and after the point another identification number. Below there is
the storage size of the node in GB. The networks have assigned two numbers,
the first one is the latency in ms and the other is the bandwidth in MB/s. The
storage capacity, file size, and network bandwidth is scaled in the magnitude of
twenty, for time simulation reasons. Therefore the obtained time results will be
on the same magnitude.

We have design an experiment with four levels on N and M factors: 4x4, 4x5,
4x6, 4x7, 5x4, 5x5, ... 7x6, 7x7. We repeat for unconditional, market model,
PSO-Grid and ACO-Grid algorithms. We perform three statistical occurrences
for each experiment instantiation.

PSO vs. ACO, Data Grid Replication Services Performance Evaluation 839

3.1
20GB

Producer
220GB

2.1
100GB

Router

2.2
100GB

2.4
100GB

3.2
20GB

2.3
100GB

40ms / 2048MB/s

20ms / 320MB/s

20ms / 10MB/s

30ms / 320MB/s

20ms / 320MB/s

20ms / 2048MB/s

20ms / 10MB/s

Fig. 3. Simulated Grid Uncyclical Graph Stage

3.2 Cyclical Graph Stage

On the Figure 4 we can see the network topology used on the second experiment.
The graph disposes same nomenclature as before.

2.1
80GB.

Producer
500GB.

1.1
140GB.

1.2
140GB.

3.1
40GB.

3.2
40GB.

2.2
80GB.

40ms/2560Mb/s.30ms/622Mb/s.

20ms/622Mb/s.

30ms/622Mb/s.

20ms/320Mb/s.20ms/320Mb/s.

30ms/622Mb/s.

30ms/622Mb/s.

Fig. 4. Simulated Grid Cyclical Graph Stage

We have design an experiment with three levels on N and M factors: 4x4,
4x5, 4x6, 5x4, 5x5, 5x6, 6x4, 6x5, 6x6. We repeat for unconditional, market
model, PSO and ACO algorithms. We also do three statistical occurrences for
each experiment instantiation.

840 V. Méndez and F. Garćıa Carballeira

4 Simulation Results

We following present Grid simulation results based on the stages described above.
The job response time is scale in the magnitude of 20 to usual jobs duration from
hours to some days.

4.1 Uncyclical Graph Stage

The Figure 5 shows the unconditional algorithm performances on the top of the
chart, with black colour line, for comparison purposes as a canonical algorithm
for location and selection, where all block files are unconditional requested to the
original file producer, with Last Recent Used(LRU) as the deletion algorithm.

Fig. 5. Experiments Results in the Simulated Uncycled Graph Grid Stage

The bottom lines are the market model on dark gray, ACO on light gray, and
PSO on very light gray line. Market model is the OptorSim group optimisation
and deletion algorithm. Our ACO-Grid and PSO-Grid approaches use LRU for
deletion. The results are very similar for economic model and ACO-Grid algo-
rithms. ACO-Grid improve performances on the half of the simulation series, for
4x4, 4x7, 6x5, 6x6, 6x7, 7x5, 7x6, and 7x7, that are the heavy workloads. Thus
ACO-Grid is intuitively expected to performs better on bigger Grid infrastruc-
tures. PSO-Grid is the best performances for all simulation series. PSO-Grid
response rate performances is around 30% faster than canonical and around
15% faster than economic model and ACO-Grid.

Furthermore we compare canonical line with the others, and we can see that
ACO follow the unconditional pattern on lower response time results. Market
model start following this pattern, but with heavy workload experiments, on the
right part of the chart, market model loses the pattern and it is quickly prone

PSO vs. ACO, Data Grid Replication Services Performance Evaluation 841

to join with unconditional algorithm line. PSO-Grid is the algorithms that best
fits with canonical line, on much less response rate results.

4.2 Cyclical Graph Stage

The Figure 6 show results of clients by site and jobs by client for 4x4, 4x5, 4x6,
5x4, 5x5, 5x6, 6x4, 6x5, and 6x6 simulation series.

Fig. 6. Experiments Results in the Simulated Cycled Graph Grid Stage

On the top of the chart worst results are for econmic model on dark gray. The
canonical algorithm, unconditional replication from producer, is draw on black,
the second line from the top. ACO-Grid show better results than unconditional,
on the light gray line, and PSO-Grid has the best performances for all simulation
series, on very light gray line. PSO-Grid performaces are the best results also in
all the repetitions of the experiment. The PSO-Grid improve job response time
over canonical around 11%, 21% over economic and 6% over ACO-Grid.

On economic model is relevant the increasing response time on right part of
the chart, corresponding to the bigger simulation series. This chart show much
better scalability for EAI algorithms, even the unconditional, than the economic
market model.

Both experiments, cycled and uncycled, does not consider fault tolerance is-
sues. On a real infrastructures, Grid failures are important for final job response
time. Considering fault events, ACO-Grid may even show much better results
compared with market model, and other approaches that exploit functionalities
dependencies between Grid sites. The reason for expected better ACO-Grid be-
haviour on fault tolerance, is that our approach does not need any restore time.
After a resource failure, the hold system is still working the same as before the
failure. On ACO-Grid the control services are flat distributed on the Grid, and

842 V. Méndez and F. Garćıa Carballeira

all the sites are functionality independent with each others. PSO-Grid needs
some control information when a sites fails, so performances considering Grid
failures will be between economic model algorithm and the best fault tolerance
ACO-Grid algorithm.

EAI Grid algorithms realize this performances due to its features: no con-
trol traffic(ACO-Grid) or very little control traffic(PSO-Grid); distributed op-
timisation, localisation and selection services; autonomous management of each
node that will fit best on user and geographical affinities; collaborative strategic
against competitive strategic of the economic, that usually performs better on
the long term.

5 Conclusions and Future Work

We have presented the first performance evaluation between popular economic
model algorithm, and two aproaches based on EAI. It has been evaluated using a
full network and disk simulation, SiCoGrid, on two different network topologies,
the first an uncycled one, and the second on a cycled graph topology. EAI has
been proved as the best performance on this two basic stages. PSO-Grid is the
best one over ACO-Grid, for all the experiments and repetitions.

We have seen different behaviours on economic model. Cycled stage results are
worst than the canonical algorithm, but on the uncycled stage econmic performs
better. Thus we can enunciate that data Grid performances are very dependent
from the specific Grid topology.

Nowaday parsecc is crashing with high disk swaping rate, wich is usual on
bigger simulations than the presented on this paper. This parsecc bug can not
be fixed because the application sources are privative. Future work will focus
on a real Grid topology simulation. For this aim we need a SiCoGrid develop
with an opensource parsec technology, that give us the posibility of manage the
memory allocation on a single machine, or on a parallelized environment, and
what it is more important, avoiding the actual parsec memory bugs.

We will present gparsec, a GNU-GPL version of the parsec, that will achieve
our goal of a production release for SiCoGrid, that will be published for the
research community as the best guarantee for collective contribution scheme.
We also plan to introduce parallelisation features to the gparser in order to run
real scale simulations, using a cluster or Grid environment with some of the more
used techniques like OpenMP or MPI. We like to validate our simulation results
on real Grids of big size, such as EGEE.

Another interesting aspect is to introduce real state of the art schedulingpolicies,
and Emergent Artificial Intelligent algorithms following our Data Grid studies.

We also have research targets on fault tolerance issues and depth variable
correlations studies.

Acknowledgements

This work has been supported by the Spanish Ministry of Education and Science
under the TIN2004-02156 contract.

PSO vs. ACO, Data Grid Replication Services Performance Evaluation 843

References

1. Foster, I., Kesselman, C., M.Nick, J., Tuecke, S.: The physiology of the grid an
open grid services architecture for distributed system integration. Technical report,
Globus Proyect Draft Overwiev Paper (2002)

2. Chervenak, A.L., Deelman, E., Foster, I., Iamnitchi, A., Kesselman, C., Hoschek,
W., Kunszt, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K.,
Tierney, B.: Giggle: A framework for constructing scalable replica location services.
In: Proc. of the IEEE Supercomputing Conference (SC 2002), IEEE Computer
Society Press (November 2002)

3. Méndez, V., Garćıa, F.: Pso-lru algorithm for datagrid replication service. In: Pro-
ceedings of 2006 International Workshop on High-Performance Data Management
in Grid Environments, Springer-Verlag (2006)

4. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. IJSA
11 (1997) 115–128

5. Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson, C., Stockinger,
K., Zini, F.: Analysis of scheduling and replica optimisation strategies for data
grids using optorsim. International Journal of Grid Computing 2 (2004) 57–69

6. Méndez, V., Garćıa, F.: Ant colony optimization for datagrid replication ser-
vices. Technical report, RR-06-08. Computer Science Departament, Universidad
de Zaragoza. (2006)

7. Capozza, L., Stockinger, K., , Zini., F.: Preliminary evaluation of revenue prediction
functions for economically-effective file replication. Technical report, DataGrid-02-
TED-020724, Geneva, Switzerland, July 2002 (July 2002)

8. Shi, Y. ;Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of
the IEEE International Conference on Evolutionary Computation, IEEE Press.
Piscataway, NY (1998) 69–73

9. M., D., Maniezzo, V., Colorni, A.: The ant system: An autocatalytic optimizing
process. technical report no. 91-016 revised. Technical report, Politecnico di Milano
(1991)

10. Dorigo, M.: Optimization, learning and natural algorithms. PhD thesis, Politecnico
di Milano, Italy. (1992)

11. Leijen, D.: Parsec, a fast combinator parser. Technical report, Computer Science
Department, University of Utrecht (2002)

12. R.Granger, G., L.Worthington, B., N.Patt, Y., eds.: The DiskSim Simulation En-
vironment. Version 2.0 Reference Manual. University of Michigan (1999)

13. Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger, K., Zini, F.:
Optorsim - a grid simulator for studying dynamic data replication strategies. In-
ternational Journal of High Performance Computing Applications 17 (2003)

A Markovian Performance Model for Resource
Allocation Scheduling on GNU/Linux

Regiane Y. Kawasaki1, Luiz Affonso Guedes2, Diego L. Cardoso1,
Carlos R.L. Francês1, Glaucio H.S. Carvalho1, João C.W.A. Costa1,

and Nandamundi L. Vijaykumar3

1 Department of Electrical and Computing Engineering, Federal University of Pará
(UFPA), 66.075-900,
Belém, PA, Brazil

{kawasaki, diego, rfrances, ghsc}@ufpa.br
2 Department of Computing Engineering and Automation, Federal University of Rio

Grande do Norte (UFRN), 59072-970,
Natal, RN, Brazil

affonso@dca.ufrn.br
3 National Institute for Space Research (INPE), Computing and Applied

Mathematics Laboratory (LAC), P.O. Box 515, 12245-970,
São José dos Campos, SP, Brazil

vijay@lac.inpe.br

Abstract. The current paper addresses the problem of quality of ser-
vice (QoS) provisioning in a general purpose operating system (GPOS),
in this case GNU/Linux. Particularly, we propose to change the CPU
allocation in that OS by reserving a percentage of a CPU capacity in
order to ensure the QoS provisioning according to the QoS demand of
each process. In order to investigate the effectiveness of that approach,
Markovian models are proposed to represent the dynamics of the sys-
tems. Results show that the OS with reservation outperforms the system
without it, but also that there is a performance tradeoff in the OS with
reservation in such a way that an improvement in the QoS perceived by
processes using the reserved capacity is done at a cost of a degradation
in the QoS perceived by the other processes.

1 Introduction

As mentioned in the related literature ([1], [2], [3], [4] and [5]) several studies
were made on the applicability of Markov models to investigate network tech-
nologies and their associated traffic. However, very few discuss the behavior of
the front-end computers when the traffic turns into processes in a given opera-
tion system. For example, [6] presents a generic model for an Operating System
(OS) scheduler for Non-Uniform Memory Access (NUMA) machines using the
Stochastic Automata Networks (SAN) formalism. SAN is used to describe pro-
cesses and processors in the OS and their behavior when processes have to be
migrated.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 844–853, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Markovian Performance Model for Resource Allocation Scheduling 845

Due to the necessity of investigating the feasibility of providing QoS to guar-
antee a minimum of resources to processes that need a differentiated treatment
in a general purpose operating system, in case GNU/Linux, a performance model
has been developed for the traditional GNU/Linux scheduler. It is important to
point out that this model had to be developed as there are no such models avail-
able that deal with this issue. This proposal models the host’s OS, that allows
to verify the direct impact in the performance of distributed applications.

Besides the traditional GNU/Linux model, a different model that reserves a
percentage of the processor time for providing attention to priority tasks has
also been developed. By solving these models, their performance evaluation was
compared to identify the changes in the system behavior due to reserving the
resource. The contributions of this paper are: Markov model for Linux scheduler;
model to reserve a resource (CPU) in this environment; and the analysis of the
performance of these two strategies.

This paper is organized as follows. In Section 2 it describes the current process
scheduler used in the GNU/Linux operating system. In Section 3 it shows the
analytical model of Linux scheduler architecture and another model with CPU
allocation. The performance analysis is based on a detailed mathematical model
followed by numerical results that are presented in Section 4, admitted with or
without resource reservation models. Finally, Section 5 shows the final remarks
of this work.

2 Linux Scheduler

Since version 2.5, the Linux scheduler has been called O(1) scheduler because all
of its routines execute in constant time, no matter how many processors there
are [7]. The current version of the Linux scheduler (kernel version 2.6.11) brought
many advances. Amongst them, the possibility of allowing scheduling processes
in multitasking systems such as Symmetric Multiprocessor (SMP) or NUMA [8].

The basic structure of the Linux scheduler is the process queue (struct run-
queue). This struct is defined inside the archive kernel/sched.c. The current O(1)
scheduler keeps a runqueue per processor, which is responsible for containing all
the executable processes of a given processor. Thus, if a process is inserted in
a runqueue of a specific processor, it will only run on that processor [6]. Each
runqueue contains two priority arrays [7]: active and expired. Priority arrays are
data structures composed of a priority bitmap and an array that contains one
process queue for each priority.

The search for the higher priority is restricted to this bitmap, which uses a
simple and fast algorithm called sched find first bit(), that is, to look for the first
element one (”1”) within the map. When the first bit one is found (”1”), it is
verified that in this row, at least one or more processes are ready for execution
with that priority; then, the first one of this queue is removed and it will gain
access to the processor for a given timeslice. After the execution is finished
or by finalizing the task or finishing its execution time, timeslice and priority
are recalculated, and it reschedules the current processes to a queue (based on

846 R.Y. Kawasaki et al.

the new priority) in the expired array. Each runqueue has two pointers to the
priority arrays. When the active array is empty, the pointers are switched: the
active array passes to the expired array and vice-versa. The main advantages of
this operation are: the avoidance of moving all processes to the active priority
array; the execution in constant time; and keeping the scheduling algorithm with
O(1) complexity.

3 Analytical Model

Linux scheduler and admission control is depicted in Fig. 1. Higher and lower
priority jobs arrive at the system according to two mutually independent Poisson
processes with parameters λ1 and λ2, respectively. For the sake of simplicity, it
is assumed that both services require a negative exponential service time with
rate μ.

A job is removed from the active array if: (a) its processing is finished, with
rate qs1μ (for high priority jobs) and qs2μ (for the other processes); or (b) it
needs to be rescheduled to the high priority queue or low priority queue in the
expired array, with rates pr1μ or pr3μ, respectively. The scheduling of a job in
the low priority queue in the active array is tied to the occupancy of the high
priority queue in the active array in the sense that it will only be scheduled if
the high priority queue in the active array is empty. When the processing queues
are empty in an active array and there is a job to be processed in the expired
array, these arrays are switched. This switching (via pointer) has an associated
time of the 10−6s [7].

P1

P2

B1

B2

b1

p1

p2

b2

qs1

qs2
�

��

��

pr1
pr2

pr3
pr4

Fig. 1. System model

Given the assumptions presented above, it a Continuous-Time Markov Chain
(CTMC) [9] model of the system, whose state is defined as:

s = (b1, b2, p1, p2, ac|0 ≤ b1 ≤ B1; 0 ≤ b2 ≤ B2; 0 ≤ p1 ≤ P1; 0 ≤ p2 ≤
P2; ac = 0 or 1)

Where b1 and p1 are the number of processes in the high priority queues;
and b2 and p2 are the number of processes in the low priority queues; and Bi

A Markovian Performance Model for Resource Allocation Scheduling 847

is the buffer size of the queue i. At time, there is only one high priority queue
in the active array and only one low priority queue in the active array, and the
remainders are on the expired array. In order to indicate which queues are in
these arrays it is used the variable ac, in such a way that if ac = 0, then the
queues b1 and b2 will be in the active array and p1 and p2 in the expired array,
and when ac = 1, vice-versa.

In order to evaluate the performance of the Linux scheduler, some perfor-
mance measurements may be derived from the steady state probability of that
CTMC. Because of the symmetry of the system only the performance measure-
ments associated with the condition ac = 0 will be described, i.e., when b1 and
b2 are in the active array, and p1 and p2 are in the expired array. Thus, let
p(b1, b2, p1, p2, ac) be the steady state probability of that Markov model, then
the job blocking probability (Pbi) of a job in the queue i, it is given by the prob-
ability of its priority queue is full. Eq. (1) shows, for instance, that probability
for the high priority queue in the active array. The job blocking probability for
other arrays may be computed at the same way.

Pb1 =
B2∑

b2=0

P1∑
p1=0

P2∑
p2=0

π(B1, b2, p1, p2, 0) (1)

The mean delay of the high priority queue and the low priority queue in the
active array may be computed as

Wb1 =

∑B1
b1=1

∑B2
b2=0

∑P1
p1=0

∑P2
p2=0 b1π(b1, b2, p1, p2, 0)

λ1(1 − Pb1)
(2)

Wb2 =

∑B1
b1=0

∑B2
b2=1

∑P1
p1=0

∑P2
p2=0 b2π(b1, b2, p1, p2, 0)

λ2(1 − Pb2)
(3)

where, Pb2 is the job blocking probability on the low priority queue. Likewise,
since, at time, only p1 and p2 are in the expire array, the mean delay of the high
priority queue and the low priority queue may be, respectively, computed as

Wp1 =

∑B1
b1=0

∑B2
b2=0

∑P1
p1=1

∑P2
p2=0 p1π(b1, b2, p1, p2, 0)

μ(pr1 + pr2)(1 − Pp1)
(4)

Wp2 =

∑B1
b1=0

∑B2
b2=0

∑P1
p1=0

∑P2
p2=1 p2π(b1, b2, p1, p2, 0)

μ(pr3 + pr4)(1 − Pp2)
(5)

Where, Pp1 and Pp2 are the job blocking probability on the high and low priority
queue in the expired array. The throughput of the jobs of the high priority queue
and low priority queue in the active array are, respectively, given by:

X1 = qs1μ

B1∑
b1>0

B2∑
b2=0

P1∑
p1=0

P2∑
p2=0

π(b1, b2, p1, p2, 0) (6)

848 R.Y. Kawasaki et al.

X2 = qs2μ

B2∑
b2>0

P1∑
p1=0

P2∑
p2=0

π(0, b2, p1, p2, 0) (7)

Here it is considered only jobs that finish their processing and leaving the system.

3.1 Reservation Model

In this section, it is extended the model depicted previously by changing CPU
allocation by means of splitting the CPU capacity into two parts: a percentage
R is allocated for applications with high priority that demands QoS guarantees;
and the remainder capacity (1 − R) is assigned for other process. Fig. 2 shows
that scheme.

P1

P2

B1

B2

b1

p1

p2

b2

qs1

qs2

�

��

��

pr1

pr2

pr3

pr4

Bp

bp

(1-R)

R
�p

prp
qsp

�

Fig. 2. Resource allocation

The state of the CTMC of that system is defined as: s = (b1, b2, p1, p2, bp, ac|0
≤ b1 ≤ B1; 0 ≤ b2 ≤ B2; 0 ≤ p1 ≤ P1; 0 ≤ p2 ≤ P2; 0 ≤ bp ≤ Bp; ac = 0or1).

Where the main difference between that model and previous one consists
in the random variable bp that represents the high priority processes, which
demand QoS guarantees. Besides, the rates of the remainder processes have to
be multiplied by the factor (1 −R). Table 1 shows that CTMC.

Transitions from state s to all possible successor states are reported in Table 1
along with their rates and conditions under which the transitions exist; the last
column indicates the type of event to which a transition refers. When ac = 0, if
a job is generated in the high priority queue in the active array, the occupancy
of that queue, b1, will increase by one unit. A rescheduled job from that queue
will go to the high priority queue in the expired array with rate pr1(1−R) or to
the low priority queue in the expired array with rate pr3(1−R). In the first case
the job keeps the same priority and, in the latter, the priority is decreased. A job
can leave the high priority queue in the active array, after finishing its processing
with rate qs1(1 − R). An arrival in the low priority queue in the active array
takes place with rate and increases b2 by one unit.

Since the system under analysis is finite, when a buffer (active or expired
arrays) is full an incoming or rescheduled job is blocked. After switching, the

A Markovian Performance Model for Resource Allocation Scheduling 849

Table 1. Transitions from state s = (b1, b2, p1, p2, bp) to successor state t for jobs in
priority policy

Successor State Condition Rate Event
(b1 + 1, b2, p1, p2, bp, ac) (b1 < B1) ∧ (ac = 0) λ1 A job arrives in high

priority class
(b1, b2 + 1, p1, p2, bp, ac) (b2 < B2) ∧ (ac = 0) λ2 A job arrives in low

priority class
(b1 − 1, b2, p1, p2, bp, ac) (b1 > 0) ∧ (ac = 0) qs1(1 − R)μ A job from high class

terminates
(b1 − 1, b2, θ, p2, bp, ac) (b1 > 0) ∧ (ac = 0)

θ = p1 + 1, if p1 < P1

θ = P1, if p1 = P1

pr1(1 − R)μ A job is rescheduled
to high priority class

(b1 − 1, b2, p1, θ, bp, ac) (b1 > 0) ∧ (ac = 0)

θ = p2 + 1, if p2 < P2

θ = P2, if p2 = P2

pr3(1 − R)μ A job is rescheduled
to low priority class

(b1, b2 − 1, p1, p2, bp, ac) (b1 = 0) ∧ (b2 > 0) ∧
(ac = 0)

qs2(1 − R)μ A job from low class
terminates

(b1, b2 − 1, θ, p2, bp, ac) (b1 = 0) ∧ (b2 > 0) ∧
(ac = 0)

θ = p1 + 1, if p1 < P1

θ = P1, if p1 = P1

pr2(1 − R)μ A job is rescheduled
to high priority class

(b1, b2 − 1, p1, θ, bp, ac) (b1 = 0) ∧ (b2 > 0) ∧
(ac = 0)

θ = p2 + 1, if p2 < P2

θ = P2, if p2 = P2

pr4(1 − R)μ A job is rescheduled
to low priority class

(b1, b2, p1, p2, bp + 1, ac) bp < Bp λp A job arrives in QoS
priority class

(b1, b2, p1, p2, bp − 1, ac) bp > 0 qspRμ A job from QoS class
terminates

(b1, b2, p1, p2, bp − 1, ac) bp > 0 prpRμ A job is rescheduled,
but before it is decre-
mented

(b1, b2, p1, p2, bp + 1, ac) bp < Bp prpRμ A job is rescheduled,
but after it is incre-
mented

(b1, b2, p1, p2, bp, ac + 1) (ac = 0)∧ ((b1 = 0)∧
(b2 = 0))∧((p1 > 0)∨
(p2 > 0))

mtv Change of arrays, b1

and b2 become ex-
pired

(b1, b2, p1, p2, bp, ac − 1) (ac = 1)∧((p1 = 0)∧
(p2 = 0))∧((b1 > 0)∨
(b2 > 0))

mtv Change of arrays, b1

and b2 become active

850 R.Y. Kawasaki et al.

Table 2. Input data

High Priority Measures Low Priority: Measures
λ1 7 λ2 7,3
pr1 0,1 pr2 0
pr3 0,09 pr4 0,67
Avarage Buffer 5 Avarage Buffer 5

queues that were in the expired array (p1 and p2) become active and vice-versa.
The variable bp represents QoS jobs. We assumed that mtv = 10−6. The system
is symmetric, which makes quite natural the match of the other transitions of
the model.

Due to the lack of space and for simplicity only performance measurements
of the high priority jobs that demand QoS guarantees are presented.

Wpb =

∑B1
b1=0

∑B2
b2=0

∑P1
p1=0

∑P2
p2=0

∑BP

bp=1 bpπ(b1, b2, p1, p2, bp, 0)

(λp + prpRμ)(1 − Pbp)
(8)

Where Pbp is blocking probability of high priority jobs that demand QoS guar-
antees derived as Eq.(1). The throughput is given by:

Xpb = qspRμ

B1∑
b1=0

B2∑
b2=0

P1∑
p1=0

P2∑
p2=0

BP∑
bp>0

π(b1, b2, p1, p2, bp, 0) (9)

4 Performance Study

In this section some numerical results are presented to evaluate how adequate is
the Markov model to scheduling GNU/Linux with and without resource alloca-
tion policy. First, we present the performance of the Linux Markovian model. For
validation purpose, Linux scheduler was simulated by using an academic version
of a powerful tool named ARENA c©[10]. Some measures were obtained through
system calls which collect data for later analysis, minimizing the overhead in
kernel (this can be obtained in www.lprad.ufpa.br/parqos). Table 2 summarizes
the parameters used.

To validate the probability distributions adopted, models use input data ob-
tained from the real system. In these data, Kolmogorov-Smirinov (K-S) goodness
of fit tests were applied, using the trial version of BestFit c©tool [11].

These data were used as parameters of probability distributions in question
(Poisson for inter-arrivals times). The simulation results were collated with the
performance measures obtained from the real system. As the numerical results
of that comparison match (very similar), the values may be considered validated
for the analytical model.

To implement CPU allocation policy it is important to study the CPU behav-
ior. Assuming the table above, it represents a situation where scheduler is very

A Markovian Performance Model for Resource Allocation Scheduling 851

Table 3. Performance measurements

Queue Waiting Time
0% 5% 10% 20% 30% 40%

Active High Priority 0,21246 0,21491 0,21687 0,21943 0,22037 0,21995
Active Low Priority 0,59056 0,60058 0,60970 0,62533 0,63785 0,64774
Expired High Priority 6,05108 6,28370 6,48294 6,79442 7,01313 7,16437
Expired Low Priority 0,85739 0,87383 0,88871 0,91386 0,93334 0,94802

Blocking Probability
0% 5% 10% 20% 30% 40%

Active High Priority 0,09701 0,10763 0,11827 0,13925 0,15940 0,17838
Active Low Priority 0,44159 0,44832 0,45431 0,46434 0,47214 0,47817
Expired High Priority 0,43127 0,44343 0,45346 0,46847 0,47854 0,48530
Expired Low Priority 0,45635 0,46216 0,46734 0,47591 0,48241 0,48723

busy and the inputs are Poisson traffic. A new application is added in λ1, sim-
ulating a situation of great workload. Table 3 ilustrates the Markovian model
output. As expected, higher the traffic load, bigger the throughput (Fig. 3.a)
and, for that reason, longer the mean waiting time, longer is the blocking prob-
ability. In the table, 0% represents the system behavior performance with just
λ1 and λ2. λp is derived from λ1(5%, 10%, 20%, 30%, 40%) and represents the
impact of adding an application to the system.

The main objective of modeling kernel scheduling processes is its evalua-
tion and study for future modifications in order to achieve a better perfor-
mance for QoS applications. The extended model (resource Allocation) is being
studied and tested, but it already presents interesting results like the ones in
Figs 3.b and 4. It is the same test situation previously used, but with a dif-
ferent scheduling process. Using CPU reservation of 40% means that 40% of
process capacity is allocated for QoS applications and 60% for the rest of the
applications.

0 10 20 30 40 50 60 70 80 90
2.45

2.5

2.55

2.6

2.65

2.7

 % added in λl

 T
h

ro
u

g
h

p
u

t

(a)

0 5 10 15 20 25 30 35 40
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

 % of CPU allocation

 T
h

ro
u

g
h

p
u

t

(b)

Fig. 3. (a) Throughput behavior (b)Throughput behavior (QoS allocation policy)

852 R.Y. Kawasaki et al.

Fig. 4 shows the normal system scheduler improvement by limiting the per-
centage of CPU (100%, 95%, 90%, 80%, 70%, 60%), and it can be observed
that, smaller the percentage of CPU used, smaller the system throughput for
both priority applications. For QoS application, however, bigger the percentage
of CPU used (0%, 5%, 10%, 20%, 30%, 40%), bigger the system throughput.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

 % of CPU allocation

 T
h

ro
u

g
h

p
u

t

 High priority
 Low priority
 QoS Application

Fig. 4. Throughput behavior per flow

5 Final Remarks

Provision of QoS guarantees in a GPOS scheduler is an open problem. This pa-
per, presented and proposed a Markovian Linux scheduler model for performance
study and, in addition, an extended model, which uses static CPU allocation
policy. Through the analysis of the results, it has been concluded that the per-
formance of the applications with QoS are greatly improved in its throughput.
However, other applications have suffered some limitations. The contributions
of this paper are: (1) Proposal of performance models for GPOS (GNU/Linux)
scheduler; (2) Proposal of a resource (CPU) allocation scheme in an environment
that needs QoS as well as showing through numerical results, obtained from its
Markovian model, improvement of performance of QoS applications when com-
pared to other applications.

Currently, we are implementing another extended model which uses dynamic
CPU allocation policy. As future work, we performing experiments with Markov
decision process to find optimal admission control and scheduling strategies aim-
ing at improving the resource (CPU and memory) allocation.

This work is supported by CNPq and CAPES. Thanks to Dr. Solon Carvalho
for giving permission to use the Stochastic Modeling Software (MODESTO) [12].

References

1. Leong, C. W., Zhuang, W., Cheng, Y., Wang, L.: Optimal Resource Allocation
and Adaptive Call Admission Control for Voice/Data Integrated Cellular Networks,
IEEE Transactions on Vehicular Technology, Vol. 55, No. 2, March (2006), pp.654-
669.

A Markovian Performance Model for Resource Allocation Scheduling 853

2. Zimmermann, M., Dostert, K.: Analysis and Modeling of Impulsive Noise in Broad-
Band Powerline Communications,IEEE Transactions on Electromagnetic Compat-
ibility, Vol. 44, No. 1, February (2002), pp. 249-258.

3. Yu, J. Y., Chong, P. H. J., So, P. L., Gunawan, E.: Solutions for the Silent Node
Problem in Automatic Meter Reading System Using Powerline Communications,
in Proc. of the 7th International Power Engineering Conference, IPEC 2005, Nov.
(2005).

4. Yuang, M. C., Po-Lung Tien, Shih, J., Chen, A.: QoS Scheduler/Shaper for Opti-
cal Coarse Packet Switching IP-Over-WDM Networks, IEEE Journal on Selected
Areas in Communications, Vol. 22, No. 9, Nov. (2004), pp.1766-1780.

5. Levey, D. B., McLaughlin, S.: Calculating Error-Free Seconds in xDSL Systems
Corrupted by Impulse Noise, IEEE Communications Letters, Vol. 5, No. 7, July
(2001), pp. 319-321.

6. Chanin, R., Corrêa, M., Fernandes, P., Sales, A., Scheer, R., Zorzo, A.F.: Analytical
Modeling for Operating System Schedulers on NUMA Systems, in Proc. of the
2nd International Workshop on Practical Applications of Stochastic Modelling,
PASM05, University of Newcastle upon Tyne, UK, July (2005).

7. Love, R.: Linux Kernel Development, SAMS, 1st edn., (2003).
8. Hwang, K., Xu, Z.: Scalable Parallel Computing - Technology, Architecture and

Programming, WCB/ McGraw-Hill, (1998).
9. Wei, W., Wang, B., Towsley, D.: Continuous-Time Hidden Markov Models for Net-

work Performance Evaluation, Performance Evaluation, Vol.49, (2002), pp. 129-
146.

10. Rockwell Automatation - www.arenasimulation.com, accessed in 02/15/2006.
11. Palisade - www.palisade.com/bestfit, accessed in 02/18/2006.
12. Frances, C.R., Oliveira, E., Costa, J., Santana, M., Santana, R., Bruschi, S., Vi-

jaykumar, N., Carvalho, S.: Performance Evaluation Based on System Modelling
Using Statecharts Extensions, Simulation Practice and Theory, Vol. 13, n. 7,
(2005), pp. 584-618.

Evaluating Tools for Performance Modeling of
Grid Applications

Mariela Curiel�, Gustavo Alvarez, and Leonardo Flores

Universidad Simón Boĺıvar,
Departamento de Computación y Tecnoloǵıa de la Información,

Apartado 89000, Caracas 1080-A, Venezuela
mcuriel@ldc.usb.ve, {gjalvarez, floresm.leonardo}@gmail.com

Abstract. A Grid is a collection of heterogeneous distributed comput-
ing resources for solving large-scale computational and data intensive
problems. It is a dynamic environment where resources attributes -such
as load- change constantly hindering performance evaluation activities.
Performance models could be a solution to this problem because they
provide a way of performing repeatable and controllable experiments.
Several tools have been developed for modeling scheduling algorithms in
Grids. We believe, however, that if these tools are to be used for mod-
eling application performance they should be improved by adding some
particular features. In this paper, we identify such features and evalu-
ate two modeling tools based on those features. These tools are used to
represent the execution of applications in the Grid SUMA.

1 Introduction

A Grid is a collection of heterogeneous and geographically-dispersed computing
resources connected by a network, possibly at different sites and organizations.
The Grid middleware provides transparent access to resources, and in general it
deals with the physical characteristics of the Grid. Grids have dynamic nature,
i.e., some performance characteristics, such as load, may change over time due
to the fact that resources are shared by other applications. This behavior causes
performance degradation and makes it difficult to evaluate performance. Applica-
tion performance analysis is crucial to obtain high performance. Although some
factors such as network load or bad scheduling decisions may cause problems,
one of the main source of poor performance comes from wrong design decisions.
One can repair the problems after finishing the application development (tun-
ing) or during the software development process. In the first case, one modifies
algorithms, data structures, compiler options, etc. and then, observe the results.
Additional runs should be done in similar conditions in order to evaluate the
effects of each change. However, it is impossible to get repeatable results in Grid
experiments. Fortunately, modeling allows us to count on a controllable experi-
mentation environment. Additionally, one can use a model to design applications

� This work is partially supported by FONACIT, project S1-2002000560.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 854–863, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Evaluating Tools for Performance Modeling of Grid Applications 855

whose performance is tailored to the dynamic Grid nature. To construct a rep-
resentative application model may imply modeling the Grid middleware. Some
simulation packages have been developed for modeling Grid scheduling strate-
gies. The objective of this research is to evaluate different tools for modeling Grid
applications. The idea is to show drawbacks and strengths that can be useful to
improve existing tools or to develop new ones. In this work we start by choosing
tools from both Client/Server, distributed applications domain (LQNM analyti-
cal [1] and simulation solvers [2]) and Grid domain (GridSim [3]). The tools will
be used to model sequential and parallel applications of the Grid SUMA ([4]).

2 Desirable Characteristics in a Modeling Tool

In this Section we present a list of desirable features to support application
performance modeling and analysis. This is not an exhaustive list, and it can be
enriched along the research. We claim that Grid modeling tools should:

1. Offer capabilities for constructing a representative Grid model:
It means to provide facilities for modeling basic Grid elements: (a) Network
topology, which includes different graphs, bandwidth and latencies. (b) Compute
resources, memories, storage resources and other kind of resources. (c) Aspects
related to the dynamic nature of the Grid, i.e. load and unavailability of the
resources. (d) Middleware layers. (e) Other particular Grid characteristics such
as reservation of resources or location in any time zone.

2. Offer capabilities for easily constructing a representative appli-
cation model: It includes the possibility of modeling: (a) Simple sequential
applications that only need especial resources or services. (b) Different mod-
els of distributed and parallel applications. (c) Stochastic behavior. In regards
to (b), [5] classifies parallel Grid applications in four groups: loosely coupled
(compute intensive with low memory requirements, small amount of data per
task and little communication between tasks), pipelined (very memory and data
intensive, with coarse-grained inter-task communication), tightly synchronized
(frequent inter-task synchronization, significant computation and memory/data
usage) and widely distributed (update and/or unify distributed data bases, they
have small computational, data and memory requirements)

3. Offer enough metrics for performance analysis: It includes classical
metrics such as response times, waiting times, number of I/O operations, num-
ber of network communications, bytes transferred in I/O or network communi-
cations, residency times, resource utilizations and new Grid metrics. Resultant
data should be provided in text format and by means of graphical tools.

4. Be easy to use: Tools should offer wide and clear documentation, user
support and user-friendly interfaces. Additionally, it could be interesting to pro-
vide high level models closer to the application developers (UML diagrams, MSC,
etc.) as well as the algorithms to transform them into performance models.

5. Be efficient: The dynamics of a Grid is complex. It is possible to find
NP-complete problems in, for example, routing or scheduling strategies that
cannot be treated by analytical techniques. However, diverse kind of programs

856 M. Curiel, G. Alvarez, and L. Flores

run on the Grid. Some of them could be very simple, as for example to request
a cluster for running a parallel rigid application. In these cases an analytical
model could be enough. So, it is recommendable to provide diverse methods to
solve a variety of problems. When simulation is the only option, solutions such
as parallel simulations should be explored.

3 Selected Tools

Our final goal is to discover the presence or absence of the mentioned charac-
teristics in an important number of modeling tools (mainly oriented to Grid
and distributed systems modeling). In order to review each tool exhaustively, it
is necessary its installation and use. Due to a lack of time, we start by evalu-
ating a reduced number of tools. BeoSim, Bricks, SimGrid, GridSim, ChicSim
and OptorSim are popular simulation tools frequently referenced in Grid related
bibliography (see references in [6]). BeoSim, Bricks, ChicSim were discarded be-
cause they are not currently available for users. For the time being, we ruled
OptorSim out because it is designed for data Grid modeling and we want to
model a computational Grid. Although LQNM analytical and simulation solvers
are oriented to Client/Server applications they were chose by the possibility of
doing analytical models. Between GridSim and SimGrid we first took Gridsim
for two main reasons: GridSim is Java based and it apparently has more capac-
ities for Grid modeling. SimGrid, OptorSim and other simulation tools will be
subsequently evaluated. The next paragraphs explain in detail characteristics of
LQNM solvers and GridSim.

Layered Queuing Network Models are QNM extended to reflect interac-
tions between client and server processes. We choose LQNM (lqns version 3) by
the following reasons : 1) The application model can be easily constructed by non
experts in performance evaluation: the tools are embedded in a SPE method-
ology that derives Layered Queuing Network Models (LQNM) from systems
scenarios described by means of Use Case Maps (UCM); free software packages
are available for process automation under this methodology. 2) Models can be
solved by simulation or analytical techniques: The Layered Queuing Network
Solver (LQNS) solves the model analytically, whereas the ParaSol Stochastic
Rendez-Vous Network Simulator (ParaSRVN) use the simulation technique.

An LQNM can be represented by a graph with nodes for Tasks and Devices,
and arrows for service requests. A Task (parallelograms in figure 1) is a soft-
ware object that has its own thread of execution. Tasks are divided into three
categories: Client Tasks (only send requests), Active Server Tasks (can receive
and send requests) and Pure Server Tasks (only receive requests). There are
three types of interactions between Tasks: asynchronous messages, synchronous
interactions and forwarding messages. In a forward call, the sending Client Task
makes a synchronous call and blocks until it receives a reply. The receiving Task
partially processes the call and then forwards it to another server, which be-
comes responsible for sending a reply to the blocked Client Task. Tasks receive
any kind of request message in points called Entries (smaller parallelograms in

Evaluating Tools for Performance Modeling of Grid Applications 857

figure 1). A Task has a different Entry for every kind of service it provides.
Internally, an Entry could be composed by sequences of smaller computational
blocks called Activities (rectangles), which are related in sequence, loop, parallel
configurations, etc.

GridSim [3] is a toolkit for modeling and simulation of heterogeneous re-
sources, users, applications, brokers and schedulers in a Grid computing envi-
ronment. GridSim was chosen because of the following reasons: 1) It is one of
the most popular simulation tool for Grid research. 2) It is based on Java, which
is a popular language. 3) GridSim is an active project. 4) According to the doc-
umentation GridSim has interesting features for modeling Grid environments,
for example: (a) it allows modeling of heterogeneous types of resources operat-
ing under space- or time-shared mode; (b) resources can be located in any time
zone and booked for in advance; (c) different parallel application models can be
simulated.

GridSim adopts the multi-layered design architecture. The first bottom layer
is the Java interface and the JVM. The second layer is SimJava, which provides
an event-driven discrete event simulation package on top of JVM to drive the
simulation for GridSim. The third layer is the GridSim toolkit that provides the
modeling and simulation of Core Grid entities, such as resources and Grid Infor-
mation Services, using the events of the second layer. The simulation of resource
aggregators called Grid brokers or schedulers is provided by the fourth layer.
The top layer focuses on application and resource modeling with different sce-
narios to evaluate scheduling and resource management policies, heuristics and
algorithms. Applications in GridSim are modeled as a number of work packets
that are called Gridlets. A Gridlet is a package that contains all the information
related to the job and its execution management details, such as job length ex-
pressed in MIPS (or SPECs), disk I/O operations, the size of input and output
files, and the job originator. Grid resources, users and brokers are modeled as En-
tities, and they communicate via messaging events using the advanced network
features. Synchronous and asynchronous messages are allowed.

4 SUMA

SUMA (Scientific Ubiquitous Metacomputing Architecture) [4] is a computa-
tional Grid that transparently executes Java bytecode on remote machines, with
additional support for scientific computing development. SUMA provides access
to both single-process (possibly multi-threaded) and parallel execution agents,
according to the JVM and mpiJava execution model. A user invokes the execu-
tion of a program in SUMA through the services suma Execute (on-line execution
mode) or suma Submit (off-line execution). We modeled only scenarios associ-
ated to suma execute. The steps of the suma execute services follow: When a
Client wants to send an execution request to SUMA, it firstly must find a Proxy,
by invoking the findProxy method in Scheduler. The Scheduler finds an appro-
priate Proxy and returns a CORBA reference to the Client. Then the Client
invokes the execute method in its Proxy, passing the name of the main class as

858 M. Curiel, G. Alvarez, and L. Flores

a parameter. This Proxy invokes user authentication methods in User Control
and asks for a suitable Execution Agent in Scheduler, getting a CORBA refer-
ence for the Execution Agent. Execution Agents run on servers, tipically high
performance machines, and execute user applications. Then the Proxy invokes
execute method in the selected Execution Agent, passing all necessary informa-
tion for the Execution Agent to start loading applications classes and files; this
is done by invoking appropriate methods directly in the Client. As a result of
the execute method invocation, the Execution Agent starts a Slave (a new Vir-
tual Machine) and obtains its CORBA reference. This reference is sent back
to the Proxy and subsequently to the Client. The Client uses this reference to
open a connection with the Slave in the Execution Agent. Once the connection
is established, the Client orders the execution of the application. When the ex-
ecution finishes, the Execution Agent sends output files to the Client. Finally,
the Execution Agent executes releaseNode method in the Scheduler, indicating
it is available again. The execution model of parallel applications is similar with
an important difference: In the execution of sequential applications, classes and
data are loaded/sent directly from/to the Client. In parallel applications, only
the Execution Agent loads classes from the Client. Slaves addresses classes re-
quests to the Execution Agent. I/O operations are directly performed between
Clients and Slaves.

5 LQNM of SUMA Applications

Figures 1 and 2 show LQN models of the execution of sequential and parallel
applications. The sequential model has seven layers. There are Tasks in each
layer that represent the main SUMA components (Client, SUMA Core and Ex-
ecution Agent) and the network between each pair of components. Tasks con-
tain Entry points and Activities associated to the main functions of the com-
ponents. The SUMA Core, for example, finds a suitable Proxy (findProxy Ac-
tivity), verifies User identity (VerifyUser Activity), requests an Execution Agent
(RequestEA Activity) and requests the execution of the application (RequestEx-
ecution Activity). In the Execution Agent one can observe the Activities re-
lated to the execution of the application: There is a loop (represented with a
circle between StartExecution Activity and EndExecution Activity), where the
JVM executes pieces of computation (Execution) followed by a network op-
eration for either loading Classes (ClassLoading) or executing I/O operations
(I/O). The four top layers of the parallel model are similar to the sequential
layers. The represented parallel application runs into two nodes: (Tasks PN1
and PN2). The Execution Agent creates Slaves in each parallel node (Activi-
ties: a1 and a2), starts their execution and receives class requests from Slaves
(CV Activity). The code executed by each parallel Slave is modeled as a loop
with the following kind of activities: some instructions (Execution Activity) and
a network operation for loading classes (ClassLoading Activity), communicating
with another parallel node (ComPNi Activity) or executing I/O operations (I/O
Activity).

Evaluating Tools for Performance Modeling of Grid Applications 859

5.1 Model Development, Parameterization and Validation

The main problems during the model development follow. 1) Too many layers:
Both models have at least seven layers. It was necessary to duplicate the Client
in both models because the Client executes a synchronous call (the execute com-
mand) and it cannot respond requests from the Execution Agent. The Client and
its clone run on the same processor. Using asynchronous calls we avoid blocking
the Client, but it is impossible to get the application response time (you can-
not insert instructions to get starting and ending times). Another possibility is
to use forwarding calls. However, these calls are only allowed between Entries,
making the Activities useless. We prefer to use Activities because they allow us
to clearly represent different functions of SUMA components. There are many
copies of the Network Task for similar reasons. On the other hand, some single
calls were not explicitly represented for avoiding new increments in the number
of layers: for example, the callback between the Execution Agent and the SUMA
Core to inform the execution end (released node method) would require a dupli-
cated of the SUMA Core. 2) There is not an explicit network model. 3) It
was difficult to generate the models automatically: Tools could still have
some problems for generating complex systems models. However, the construc-
tion of the model was very easy starting from the UCMs and using the method
proposed by Petriu in [7]. 4) LQNM are not suitable for modeling parallel
applications: Because of its complexity, the parallel model cannot be solved by
analytical methods. On the other hand, the code of each parallel node must be
written explicitly, which can be tedious when there is a large number of nodes.

Model parameters were obtained from Java Grande Forum benchmarks:
JGFCryptBench, JGFHeapSortBench, JGFSeriesBench and JGFSparseMatmult
(Sizes A and B). We conducted experiments by running SUMA modules in three
machines with the following characteristics: Pentium III dual processors, 666
MHz with 504Mb of RAM memory, connected by a LAN (10baseT Ethernet).
We ran each benchmark ten times without having interference from other ap-
plications. The parameterization process was very easy. Model parameters are
expressed in time units, so most of them can be obtained directly from the
SUMA monitoring tool. However, we have to have the application for running
it and obtaining the parameters. SUMA monitoring tools also offer data about
SUMA core components. After parameterizing the model we solved it with the
LQNM Solver and with ParaSRVN. Sequential models produced errors below
11.8%. The prediction error in a parallel application was 18 %. Parallel model
predictions can be improved by enhancing the input parameters.

6 GridSim Model of SUMA Applications

We use GridSim 4.0 to build the first GridSim models for sequential and parallel
applications. In the models, we use elements of the third layer of the GridSim
architecture. SUMA components (Client, Scheduler, Proxy, UserControl and Ex-
ecution Agent) are Entities that extend from the gridsim class. Entities are reg-
istered by the Grid Information Service. Scheduler, Proxy and UserControl use

860 M. Curiel, G. Alvarez, and L. Flores

Fig. 1. Sequential LQNM Fig. 2. Parallel LQNM

Fig. 3. Preliminary steps of the sequential and parallel execution in GridSim

Evaluating Tools for Performance Modeling of Grid Applications 861

a GridResource Entity to simulate their processing tasks (i.e., to find a Proxy,
to validate Users, etc.). The process of creating a GridResource is as follows:
First, Processing elements (PE) objects are created with a suitable MIPS rating.
PE are assembled together to create a Machine. GridSim Machine class repre-
sents an uniprocessor or shared memory multiprocessor machine. One or more
machines form a GridResource. SUMA Core components submit Gridlets to the
GridResource SumaCore (figure 3). In the sequential model, a GridResource with
a single machine and one or more PEs is bound to the Execution Agent. The exe-
cution of one application is modeled by means of a loop where some instructions
(simulated by a Gridlet submitted to a GridResource) are followed by messages
to the Client Entity to either load classes or execute I/O operations. A network
topology was created to allow the Entities to communicate. Each Entity defines
an instance of the Link class. An instance of Router class is created to forward
data from one Entity to another. Figure 3 shows the sequence of messages among
SUMA Core Entities before executing the application. In the parallel model each
Slave has associated its own GridResource. Each GridResource has a Machine
object and a PE.

6.1 Model Development, Parameterization and Validation

The modeling process was a bit difficult despite the programmers experience in
Java. The learning curve of GridSim is slow. Knowledge of object oriented and
Java programming is required. On the other hand, once GridSim architecture and
philosophy is understood, it was very easy to construct the models because there
is a direct correspondence between SUMA components and GridSim Entities.
The use of asynchronous messages allows us to make calls between Entities
in both directions: call and callbacks, without copying components. Since the
model is a Java program, one can insert special instructions in any place to
obtain execution times. Many identical parallel nodes can be added by changing
a single parameter.

We execute the benchmarks used to parameterize the LQNM in five ma-
chines with the following characteristics: AMD Athlon 64 3800 1GB RAM (runs
the Client), Pentium IV 3.4 GHz, 512 RAM (for the Scheduler, the User Con-
trol, the Proxy and the Execution Agent); machines are connected by a LAN
(10baseT Ethernet). The main GridResource static parameters were architec-
ture, operating system, MIPS, number of machines and number of PE. The first
two parameters were obtained from OS commands. The SiSoftware Sandra Lite
2007 (http://www.sisoftware.co.uk) was used to compute the MIPS rating per
machine. The number of machines and PE depend on the particular Grid ar-
chitecture. The main parameters of the Link class are: delay (ping command),
MTU (standard Ethernet) and the bandwidth (obtained from router specifica-
tions). The main drawback was to obtain the gridletLength value for each SUMA
component. The gridletLength is expressed in MI (Millions Instruction) and it is
difficult to know the value of this parameter in a Java Program. The solution was
to measure the program, to obtain the execution times and to convert measured
times into MI. Prediction errors were below 7.9%.

862 M. Curiel, G. Alvarez, and L. Flores

7 Comparison of Tools

After using the selected tools for developing the SUMA models, it is possible to
compare them based on the “desirable characteristics”:

1. Capabilities for constructing a representative Grid model: In this
aspect GridSim is so far one of the most complete tool. Some aspects that could
be included are: (a) New classes that allow to model new software components
(middleware, operating systems, etc.). (b) Improvements to hardware resources
models (more complex network topologies, different network protocols, mem-
ory models, etc.) (c) Background load of processors with probabilistic behavior.
LQNM tools were not designed for modeling Grid systems. They could be useful
for modeling small Grids (for example intra-organizational Grids) or other kind
of distributed systems, such as clusters with simple application models. Some
features could be added to improve distributed systems models, for example:
network models.

2. Capabilities for easily constructing a representative model of the
application: With respect to this characteristic, GridSim also has many ad-
vantages: it allow us to model diverse models of parallel and distributed ap-
plications. [8] describes GridSim extensions for simulating data Grids. GridSim
is based on deterministic simulation where no random events occur. This is a
drawback because it limits the type of application to be modeled. However,
GridSimRandom class and eduni.simjava.distributions package can be used for
incorporating randomness in data. This randomness would require new outputs
processing. LQNM tools seem suitable for modeling sequential and some kind
of distributed applications. Stochastic behavior can be included in analytical and
simulation models by indicating means and variances.

3. Metrics for performance analysis: GridSim provides a small set of met-
rics. Metrics about gridlet processing are: CPU time, wall clock time and waiting
time. There are not explicit metrics about throughput or resource utilization.
There are, however, a variety of metrics in the new network models. GridSim
output should be improved by incorporating new metrics. LQNM tools offer
diverse metrics to evaluate the application performance (response times, waiting
times, devices utilizations, etc) and simulation results (confidence intervals).

4. Ease to use: The learning curve of GridSim is slow. [9] describes a Java-
based Graphical User Interface (GUI) tool for GridSim, which aims to reduce the
learning process and enables fast creation of simulation models. Future research
projects could be oriented to provide higher level models and methodologies to
transform them in GridSim models. Higher level parameters that can be inter-
nally transformed should also be included. These features would help application
designers and application developers without experience in performance evalu-
ation or Java programming. GridSim documentation is good. LQNM could be
easily constructed from Use Case Maps, so application developers/designers not
need to be queuing network experts.

5. Efficiency: GridSim uses serial simulation. Techniques to reduce simu-
lation times should be incorporated to Grid modeling tools: parallel simulations

Evaluating Tools for Performance Modeling of Grid Applications 863

and to combine analytical and simulation approaches. Analytical LQNM mean-
ingfully reduces model execution times. However, approximated analytical tech-
niques only can be used in very simple application models.

8 Conclusions

The aim of our research is to evaluate simulation tools for performance modeling
of Grid applications. We have used two set of tools for modeling applications that
run in the Java-based computational Grid SUMA. One set of tools solve LQNMs.
They were not designed to model Grid environments but offer some advantages
for modeling sequential and distributed applications (especially Client/Server
applications). These advantages are: 1) Possibility of obtaining analytical and
simulation results. 2) LQNM can be derived from Use Case Maps. 3) The tools
provide several metrics for evaluating application performance and quality of
simulation results. On the other hand, tools like GridSim allow us to model
in detail diverse aspects of Grid platforms and a variety of parallel application
models. They have many of the “desirable characteristics”, but three aspects
need to be improved: efficiency, the set of metrics and the ease of use. These
features will help designers and application developers construct right models
and obtain results in very short times. Future research includes the evaluation
of different tools and the modeling of different kinds of Grid applications.

References

1. Franks, G.: Performance Analysis of Distributed Server Systems. PhD thesis, Car-
leton University (2000)

2. Mascarenhas, E.: A System for Multithreaded Parallel Simulation with Migrant
Thread and Objects. PhD thesis, Purdue University (1996)

3. Sulistio, A., Poduval, G., Buyya, R., Tham, C.: Constructing a grid simulation
with differentiated network service using gridsim. In: Proc. of the 6th. International
Conference on Internet Computing (ICOMP’ 05). (2005)

4. Cardinale, Y., Curiel, M., Figueira, C., Garćıa, P., Hernández, E.: Implementation
of a corba-based metacomputing system. In: Proc. of Workshop on Java for High
Performance Computing.LNCS. (2001)

5. Snavely, A., Chun, G., Casanova, H., der Wijngaart, R.V., Frumkin, M.: Benchmarks
for grid computing: A review of ongoing efforts and fututre directions. Sigmetrics
Perfor. Eval. Rev 30(4) (2003) 27–32

6. Quétier, B., Capello, F.: A survey of grid research tools: simulators, emulators and
real life platforms. In: Proc. of 17th IMACS World Congress (IMAC 2005), France.
(2005)

7. Petriu, D.C., Woodside, C.: Software performance models from systems scenarios
in use case maps. Proc. of TOOLS, Springer Verlag, LNCS 794 (2002) 159–177

8. A.Sulistio, Cibej, U., Robic, B., Buyya, R.: A Toolkit for Modeling and Simulation
of Data Grids with Integration of Data Storage, Replication and Analysis. Technical
Report GRIS-TR-2005-13, University of Melbourne (2005)

9. Sulistio, A., Yeo, C.S., Buyya, R.: Visual modeler for grid modeling and simulation
(gridsim) toolkit. In: Proc. of the 3rd. International Conference on Computational
Science (ICCS 2003), Springer Verlag Publications (LCNS Series) (2003)

A Performance Evaluation of Asynchronous Web
Interfaces for Collaborative Web Services

Michele Angelaccio and Berta Buttarazzi

University of Rome Tor Vergata, Rome, Italy
angelaccio@disp.uniroma2.it

http://www.angelaccio.com/

Abstract. AJAX is the latest technology emerged in web development,
allowing rich asynchronous dynamic interfaces deployed within a normal
web browser. Collaborative web services that aim managing more in-
formation throughput among partners, may encapsulate this technology
through light Web Interface for sharing data according good service-level.
In order to validate the effectiveness of the AJAX technology framework
in the design of a Web Interface, we have considered as a case study one of
the paradigmatic collaborative applications: a web-chat application. In
the paper we have compared the QoS between a traditional client-server
web chat model and the asynchronous one implemented using the AJAX-
model driven framework chat model.

1 Introduction

Lately there has been a tremendous improvement in the area of web applications
and services. One of the main consequence is that simple protocol HTTP (Hyper-
text Protocol Transfers) with the markup language HTML does not likely satisfy
dynamic applications that preview a lot of interaction between client and server
([1], [5]). It is emerging the need of new models for web interface developing ([2]).
The aim is that now Web applications are demanding same performances of the
programs desktop. Moreover with the always greater spread of the applications
distributed on the internet it is emerging the need of previewing application
performance for dynamic architectures like P2P systems. For example. the time
for the loading of a page or the interaction with the peer becomes an index
of the quality of the system (QoS). In this paper we want to demonstrate the
performance improvements that can be obtained using technical asynchronous
Web Interfaces for P2P-based applications. For this purpose in this paper at first
we describe the AJAX technology, subsequently we put the attention on a web
Chat case study, relative to putting to comparison an application, that it offers
the same service, to forehead of a on one side traditional implementation, from
other dynamics, with the attempt to estimate in objective way the entity of the
performances. In order to give a level of efficiency we will give some performance
measurements . Our analysis, chooses like representative of the new technologies,
Ajax, acronym for Asynchronous Javascript And XML, term coined in Febru-
ary 2005 from J.J. Garrett of Adaptive Path [3], to denote not only one new
technology, but how much a user uses of the different combination persistent

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 864–872, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Performance Evaluation of Asynchronous Web Interfaces 865

technologies, each effective in just the field ([4]). The paper is organized in the
following way. An outline of Ajax framework and its organization will be given
in Section 2. This description will explain the difference between AJAX frame-
work and the traditional one by exploiting the use of interaction diagram. This
approach is then used in Section3 for describing our test-case, the web-chat ap-
plication for which we analyze in section 4 the performance evaluation compared
with traditional approach. Section 5 will gives some conclusions and future issues.

2 Overview of AJAX Technology

AJAX is an abbreviation for Asynchronous JavaScript and XML used to describe
a framework incorporating several technologies aimed to update web pages with-
out doing a browser refresh. The requests for information update are sent via
Javascript background functions and when the results come in.

Ajax Engine includes:

– standards-based presentation using XHTML and CSS;
– dynamic display and interaction using the DOM (Document Object Model);
– data interchange and manipulation using XML and XSLT;
– asynchronous data retrieval using XMLHttpRequest;
– and JavaScript binding everything together.

The architectural organization is described by comparing the traditional
Client-Server architecture for a web application interface with the architecture
used in the case of one AJAX-based web application interface.

Classical Web-Interface works as shown in Figure 1: a client make an HTTP re-
quest to a web server; the server, after some processing action returns an HTML
page to the client. While this model is useful for static Web application, it is not

Client

User Interface

Web Server

HTTP
Request

HTML Data
and CSS

Fig. 1. Traditional web application model

866 M. Angelaccio and B. Buttarazzi

Data Transmission

User Activity

System
processing

User Activity

System
processing

User Activity

Time

Client

Server

Fig. 2. Interaction Diagram for web application model

Client

User Interface

Web Server

HTTP
Request

HTML Data
and CSS

Ajax Engine

XML
Data

Javascript
calls

Fig. 3. Ajax-Based Application Model

A Performance Evaluation of Asynchronous Web Interfaces 867

Data Transmission

System
processing

User Activity

Time

Client

Server

Ajax Engine

Browser

Client-Side
processing

Data Transmission

System
processing

User Activity

Time

Client

Server

Ajax Engine

Browser

Client-Side
processing

Fig. 4. Ajax-Based Interaction Diagram

suitable for highly dynamic ones. In fact in this case user interaction interrupts
the application every time it needs some data from the server (Figure 2).

Asynchronous Web-Interfaces work as shown in Figure 3, where by adding an
intermediary software layer - the Ajax engine - between the user and the server,
the start-stop nature of interaction on the Web has been modified. In this case
instead of loading a webpage, at the start of the session, the browser loads an
Ajax engine written in JavaScript. This engine is responsible for displaying data
client side and communicating with the server on the user’s behalf. The Ajax en-
gine allows the user’s interaction with the application to happen asynchronously
- independent of communication with the server (Figure 4). So the user is never
waiting around for the server to do something. Every user action that normally
would generate an HTTP request takes the form of a JavaScript call to the Ajax
engine instead. Any response to a user action that doesn’t require a trip back
to the server - such as simple data validation, editing data in memory, and even
some navigation - the engine handles on its own. If the engine needs something
from the server in order to respond - if it’s submitting data for processing, load-
ing additional interface code, or retrieving new data - the engine makes those
requests asynchronously, usually using XML, without stalling a user’s interac-
tion with the application. Web application modeling by using AJAX web differs
drastically from traditional one. In fact instead of submitting forms to actions
and receiving a new page from the server, developers can send small sets of data
to the server as soon as the user interacts with the web application. To easy

868 M. Angelaccio and B. Buttarazzi

implement this model we used Sajax that is an open source programming toolkit
providing an Ajax framework to program web application using PHP as server
side scripting language. Thanks to Sajax after the page is loaded as a normal
application, a JavaScript function makes a (background) call to PHP script on
the server. This JavaScript function sets the name of a second JavaScript func-
tion, which will be called when the server response is finished. In short, AJAX
builds applications that run inside a Web browser but behave like client-based
applications. When a page needs updating, the application uses XML to tell the
Web server what it needs to update and JavaScript to process the response. The
final result is a faster interface. In the following section we provide a description
of our case-study: a web-chat application. The goal is to compare the traditional
with AJAX-based organization and discuss the performance issues.

3 AJAX Web Chat

In order to evaluate the technology efficiency we refer to a Web Chat as a case
study. The example has been created in two separate versions. The first of these
versions, based on a traditional model contains several less-than-desirable us-
ability problems. These problems are tackled in the second example, ”Ajax Web
Chat ” which aims to highlight some of the issues that can be encountered as you
move from a page-based application model towards a more dynamic and inter-
active environment. The two versions of the Web Chat, also having a different
implementation (related with the different model of client-server communica-
tion), they offer the same services and do the same request to the server. In the
development of the chat based on the classic approach, obviously the attention
has been focused on refreshing the page only when necessary, to obtain cor-
rect performance indices. Clearly not all benefits and advantages related with
developing applications using as a template the framework Ajax, are exactly
quantifiable. To give a simple interpretation of application performance indices
we have considered only the number of byte transferred and the number of re-
quest. Figure 5 shows the interaction diagram corresponding to the first version
of the Web Chat, based on the classic synchronous approach of Client-Server
organization. The diagram shows the activities performed by a user during a
chat session composed by a login phase and one message-and-reply phase.

Log-in
Request

Log-in
Processing

Msg
input

Msg
processing

Msg-ack
read

Client (Chat page interface)

Web Server (Chat-service module)

Msg-reply
read

reply
acquisition

Page
refresh

Page
update

Fig. 5. Traditional Web Chat Interaction Diagram

A Performance Evaluation of Asynchronous Web Interfaces 869

Log-in
Request

Log-in
Processing

Msg
input

Msg
processing

Msg-ack
read

Client (Chat page interface)

Web Server (Chat-service module)

Msg-reply
read

reply
acquisition

Ajax Engine

Browser

(HTTP protocol)

(Jscript function call)

Fig. 6. Ajax-Based Web Chat Interaction Diagram

All communications are performed using HTTP protocol and user is forced to
refresh the entire page in order to read information. This is synchronously made
in the case of ack-message but must be activated asynchronously in the case of
the reply message as shown by dotted lines. In the case of AJAX-based interface
as shown in figure 6, the situation is quite different. In this case there are the
following advantages:

– (Communication reduction)This is a reduction in the number of HTTP com-
munications thus increasing the efficiency in the use of the HTTP protocol.

– (Message reduction) Some type of message like the one edited from the user
are displayed by AJAX engine without sending them to the server. This
yields a reduction in the number of bytes transferred from the web server
(e.g. ack-msg). These messages could be considered as a local service provide
at client in place of web services provided at server side.

– (User activity efficiency) The user avoids refresh operations necessary for
reply messages incoming from the server in asynchronous way. Obviously it
not always true that a message reduction implies a communication reduction
because there are other examples of web application for which could be less
expensive to wait for data completion and to update the complete page
before to establish a server

Obviously it not always true that a message reduction implies a communi-
cation reduction because there are other examples of web application for which
could be less expensive to wait for data completion and to update the complete
page before to establish a server communication. However under the hypotheses
of an high number of user interactions, it is interesting to evaluate the amount of
message-size reduction. In the next section we run an experimental chat session
by using two different implementation of the same web-chat application. The
former (web-chat) is defined in accord to the traditional organization. The lat-
ter (ajax-based web chat), instead is implemented by inheriting the traditional
template and by rewriting the interface functions using the AJAX toolkit sajax.

4 Web Chat Evaluation

To compare the different performances of two implemented application we have
considered the results carried out by analyzing a log file of Apache server

870 M. Angelaccio and B. Buttarazzi

Client

Client
AJAX

Web
Server

Chat
messages Log

File

Login
session

Login
session

Fig. 7. Experimental scenario

during a chat conversation between two users on two different nodes. We have
measured 4 different conversations each one approximately of 400 sec. Figure 7
shows the experimental scenario. The logfile reports for each HTTP connection,
a pair (Ti, Mi) that gives the corresponding time instant and transferred mes-
sage size respectively. Each user talks through a web-chat application but the
former makes use of traditional web-chat whereas the latter makes use of Ajax-
based web chat. In order to refer a more reliable possible conversation we have
been attempted to chat in continuously or without interruptions from users. The
average message size is about 80 characters and the frequency is about 0.2 mes-
sage/sec (or equivalently in terms of speed, 20 sec/chat-message) . The Figure
8 plots the performance measured for each client in terms of transferred bytes
as a function of the application time. It must be noted the starting and ending
parts of the chart displayed in 8 have a small difference between the two plots.
This is due to the fact that the corresponding values are obtained when clients
performs login/logout operations. If we restrict instead to the central part of the
chart (from about second 30 to about sec 400) it holds that the AJAX client per-
forms better than traditional client. Besides log file data, we have computed also
the corresponding percentage of message size reduction obtained by the AJAX
client with respect to the traditional client. The resulting values are shown in
the chart displayed in Figure 9. Note that under a reasonable assumption of
users chatting with an high frequency of message it holds that the performance
increase in terms of transmitted bytes obtainable by using AJAX and compared
with traditional model tends to the value of 70. We note also that if we stress
chat message frequency up to an ideal value of 10 chat-message/sec the the tra-
ditional client will soon reach a saturation level in the server communications.
This obviously is not relevant for real cases, but may be interesting to evaluate
some limit working characteristics. We have compared, in a brief experiment,

A Performance Evaluation of Asynchronous Web Interfaces 871

0

50000

100000

150000

200000

250000

0 32 62 13
0

15
8

22
6

27
0

37
9

41
1

Execution Time (sec)

B
y
te

s
 T

ra
n

s
fe

rr
e
d

NotAjax

Ajax

Fig. 8. Web Chat Performance Comparison

Ajax-based Web Chat Performace Increase

0
10
20
30
40
50
60
70
80
90

0 62 13
0

15
8

22
6

27
0

37
9

41
1

Time (sec)

P
e
rf

o
rm

a
n

c
e
 I

n
c
re

a
s
e
 (

%
)

% Ajax.Perf.Increase

Fig. 9. Performance Increase Evaluation

the AJAX client with the traditional one under a small value of chat message
frequency. In particular we have forced values greater than 10 chat-message/sec
in the AJAX client by obtaining as saturation level in correspondence of values
18-20 chat-message/sec.

5 Conclusions

The client-level Ajax engine speeds up web server interaction by reducing the
latency time caused by unnecessary page reloading. This model gives to web
applications a more dynamic behaviour with respect to traditional client-server
architecture. In this paper we have evaluated the time-efficiency obtained by
introducing Ajax framework in a typical web application with a lot of user

872 M. Angelaccio and B. Buttarazzi

interactions, i.e. a web-chat application. The experimental results show a limit
value of about 70.

Acknowledgment

The authors would like to thank the anonymous referees for their helpful com-
ments that have improved paper organization and quality.

References

1. J. Wang.: A survey of web caching schemes for the Internet. ACM SIGCOMM
Computer Communication Review, 29 (5) 36–46, Oct. 1999

2. K. Devaram and D. Andresen.: Soap Optimization Via Parameterized Client-Side
Caching . Proceedings of the IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS 2003), pp. 785–790, Marina Del Rey,
CA, November 3-5, 2003

3. J. J. Garrett: Ajax: A New Approach to Web Applications. http://www.
adaptivepath.com/publications/essays/archives/000385.php

4. A. Stamos, Z. Lackey: Attacking AJAX Web Applications. Black Hat security con-
ference 2006

5. W. Li W. Hsiung O. Po K. Hino K. Selc and D. Agrawal: Challenges and Prac-
tices in Deploying Web Acceleration Solutions for Distributed Enterprise Systems.
WWW2004, May 1722, 2004, New York, New York, USA.ACM

An Adaptive Load Balancing Middleware for
Distributed Simulation

Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, and Lorenzo Donatiello

Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna
Mura Anteo Zamboni 7, 40126, Bologna, Italy

{bononi, bracuto, gdangelo, donat}@cs.unibo.it

Abstract. The simulation is useful to support the design and perfor-
mance evaluation of complex systems, possibly composed by a massive
number of interacting entities. For this reason, the simulation of such
systems may need aggregate computation and memory resources ob-
tained by clusters of parallel and distributed execution units. Shared
computer clusters composed of available Commercial-Off-the-Shelf hard-
ware are preferable to dedicated systems, mainly for cost reasons. The
performance of distributed simulations is influenced by the heterogene-
ity of execution units and by their respective CPU load in background.
Adaptive load balancing mechanisms could improve the resources uti-
lization and the simulation process execution, by dynamically tuning
the simulation load with an eye to the synchronization and communica-
tion overheads reduction. In this work it will be presented the GAIA+
framework: a new load balancing mechanism for distributed simulation.
The framework has been evaluated by performing testbed simulations of
a wireless ad hoc network model. Results confirm the effectiveness of the
proposed solutions.

1 Introduction

The simulation is useful to support the design and performance evaluation of
many complex systems of interest, often composed by a massive number of in-
teracting entities. For a significant performance evaluation, many complex sys-
tems would require the implementation of fine-grained models able to include
many factors and to capture many causal effects, at many layers of abstraction.
Simulation techniques support layered model composition, arbitrarily complex
models and fine-grained details [10]. Limitations are mainly given by the long
time required to complete the simulation processes, and by the resource con-
straints of the execution architectures (like computation-power and memory). In
the classical approach, computer simulation is monolithic, that is, a single pro-
cess execution manages one simulation and mimics the evolution of the model
state variables. Given the limited amount of memory resources to represent the
model data structures, and the limited computation power that can be provided
by a single execution unit, the simulation model scalability may be significantly
constrained under the monolithic approach. In addition, the time required to
complete a simulation analysis over a single Physical Execution Unit (PEU)

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 873–883, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

874 L. Bononi et al.

could be long enough to make less practical the analysis. To deal with these
limitations, an alternative approach is based on the Parallel and Distributed
Simulation (PADS).

In PADS, the model execution is supported by many interacting processes,
possibly executed in concurrent way over multiple PEUs, and usually referred to
as Logical Processes (LPs) [1]. One or more LPs can be executed over different
PEUs. The simulation is obtained as the coordinated, concurrent, distributed
execution of LPs. In general, frequent synchronizations are required between
computation steps of distributed LPs, to ensure a correct simulation execution.
To summarize, with PADS it is possible to use an arbitrary number of PEUs,
by aggregating the available memory and the computation power resources of
shared clusters. This increases the model scalability supported by the simula-
tion architecture. On the other hand, new bottlenecks are originated under the
distributed coordination, synchronization, and communication viewpoints [6]. A
typical cluster-based execution architecture for distributed simulation can be a
dedicated cluster with homogeneous units, or a cluster of heterogeneous PEUs,
connected by a computer network. Heterogeneity is intended here in terms of
PEUs’ performance characteristics, available resources, and background load. In
shared clusters, the effect of load given by unpredictable background-processes
may drastically influence the simulation execution performance. This can be
avoided in High Performance Computing (HPC) clusters, that can be reserved,
resulting more effective than shared clusters in their resource/performance ra-
tio. On the other hand, shared clusters are cost-effective solutions, because they
are made by commercial off-the-shelf (COTS) hardware, possibly deployed for
students labs, personal workstations and other computing facilities. In this case
the execution units can be really heterogeneous, the CPUs can range from entry
level up to bleeding edge models, and the communication network can be a high
speed LAN up to the Internet. Being shared between a community of users, it is
realistic to assume the presence of variable background load, both for the CPUs
and for the interconnection networks.

Typically, in PADS each LP manages a subset of the Simulated Model Entities
(SME). Intuitively, a SME is a single model component (object) of the simulation
model characterized by a state (data structure) and a behavior (methods). The
amount of SMEs managed by a LP has some direct relationship with the compu-
tation time required between two successive synchronizations involving LPs. To
realize load balancing, the number of SMEs allocated over LPs, should depend
on the available resources of the PEUs where LPs are executed. A static allo-
cation of the SMEs realized without considering the dynamic SME interactions,
and the dynamic background computation and communication loads, could re-
sult in dynamic unbalancing of LP executions. The time required to complete
the simulation runs, usually referred to as the Wall-Clock-Time (WCT), is the
metric used for the analysis of the simulation speed. The computation load can
be balanced between PEUs, by migrating SMEs from an overloaded PEU to an
underloaded PEU. The way to dynamically balance the distribution of compu-
tation over the available PEUs, should depend on realtime feedback of current

An Adaptive Load Balancing Middleware for Distributed Simulation 875

load. This paper proposes and analyzes a distributed mechanism for load balanc-
ing based on the realtime adaptive migration of SMEs between LPs in a PADS
framework. The preliminary Generic Adaptive Interaction Architecture (GAIA)
proposed in [3] has been enhanced in this work, originating the new GAIA+
framework. GAIA+ takes simultaneously into account two main problems of
distributed simulation: the computation and communication load balancing is-
sues and the reduction of the communication overheads required to implement
the simulation. The two problems are strictly correlated and should not be ad-
dressed independently, in order to achieve consistent advantages and results. In
addition, GAIA+ introduces heuristics for supporting dynamic load-balancing in
simulations over COTS shared cluster systems, characterized by heterogeneous
PEUs, and unpredictable background computation and communication loads.

The paper structure is the following: in Section 2 some background concepts
and related works about load balancing and the distributed simulation are in-
troduced; in Section 3 we introduce a PADS framework that is adopted as the
basis for designing and implementing the GAIA+ load balancing solution; in
Section 4 we report some results obtained by the GAIA+ framework adopted
for a testbed wireless ad hoc system simulation. Finally Section 5 reports our
conclusions and future work.

2 Background and Related Work

The load balancing of parallel and distributed computations has been widely
investigated and evaluated. In the simulation field, specific solutions have been
proposed to distribute the simulation workload over the processors while re-
ducing the synchronization overhead. In most cases some knowledge is assumed
or inferred at compile time about the system and model workload parameters
[11]. Some works deal with the opposite assumption: in [6] a process migra-
tion mechanism is presented, that reduces the WCT of a parallel simulation.
The simulation approach considered is based on an optimized version of the
conservative Chandy-Misra synchronization scheme. The proposed mechanism
is dynamic and partially distributed. In [7] a stochastic learning automata en-
ables a communication flow control scheme that is used to balance loads in
optimistic simulations based on the Time-Warp synchronization algorithm [1].
All these mechanisms are based on the LP migration concept. In other words,
LPs are considered the smallest component that can be migrated for simulation
load balancing. In general, migrating and re-instantiating LPs between different
PEUs may have a significant overhead. Moreover, the adaptation obtained with
this approach is coarse grained with respect to the approach obtained by mi-
grating SMEs between LPs. GAIA+ mechanism will adopt the latter approach:
we assume the LPs are containers of SMEs, and the load balancing strategy is
based on the migration of SMEs between LPs executed over different PEUs.

To the best of our knowledge, our GAIA+ mechanism has the following dif-
ferences with existing solutions: it improves the computation load balancing
and, at the same time, it reduces the communication overheads between LPs by

876 L. Bononi et al.

migrating SMEs [3]. In addition, the load balancing mechanism is fully dis-
tributed and manages heterogeneous hardware scenarios also in presence of
dynamic background load. The latter point represents the main innovation of
GAIA+ with respect to preliminary GAIA mechanism introduced in previous
works [3,4]. The potential for this innovation is twofold: it enables adoption of
COTS architectures by obtaining high performances and by improving the model
scalability, and it supports dynamically load balanced simulations without any
need for user level configuration.

3 The Adaptive Load Balancing Middleware

The High Level Architecture (HLA) is a general purpose architecture for sim-
ulation reuse and interoperability (IEEE Standard 1516) [2]. A HLA-compliant
simulation is realized by a set of federates, each federate is a software compo-
nent that interacts with other federates to form a simulation (federation). Given
previous definitions, a federate can be thought of as a LP and viceversa. Many
distributed federates can be composed to form simulations, whose interactions
are controlled through a distributed middleware called Runtime (RTI). Some
implementation criticisms and the lack of basic features as the built-in support
for migration-based load-balancing, are the main motivations behind the design
and implementation of a new RTI called ARTÌS (Advanced RTI System) [9].

3.1 ARTÌS

The Advanced RTI System (ARTÌS) is a middleware for Parallel and Distributed
Simulation (PADS) supporting high degree of model scalability [9]. The design
of the middleware is inspired by the IEEE 1516 standard, but new features have
been introduced to improve the scalability and the simulation performance. The
PADS execution speed is highly influenced by the communication performance:
the approach followed by ARTÌS is adaptive and exploits the characteristics
of the physical allocation of LPs [5]. ARTÌS supports both the conservative
(Chandy-Misra-Briant) and the optimistic (Time Warp) synchronization algo-
rithms. The load balancing mechanism that will be introduced in the following
sections is based on a conservative time-stepped synchronization scheme [3]. In
[4] it has been shown that the performances of a distributed simulation can be
increased by introducing the migration of the simulated entities (SME). A migra-
tion based middleware could optimize in adaptive way the simulation execution
by reallocating the SME over the LPs. The dynamic reallocation can reduce the
communication overhead and moreover can be exploited to improve the compu-
tation load balancing. This translates into a reduction of the Wall-Clock Time
(WCT) needed to complete the simulation runs. The Generic Adaptive Interac-
tion Architecture (GAIA) is a migration based framework integrated in ARTÌS.
The basic task of GAIA is to check the communication pattern of each SME dur-
ing the simulation execution. A set of heuristics evaluates the communication
pattern and triggers the SME reallocation to reduce the communication costs

An Adaptive Load Balancing Middleware for Distributed Simulation 877

and to improve the load-balancing of the execution architecture. GAIA migrates
the highly interacting SMEs within the same LP, by reducing costly inter-LP
communication and by increasing the rate of low cost intra-LP communications.
The cost of migrating the simulated entities is a key factor to be evaluated in
the migration heuristics. An analytic evaluation of this cost is impossible due
to the network heterogeneity and the unpredictable behavior of the simulated
system.

3.2 GAIA+

The GAIA+ framework is an evolution of the migration mechanism defined
in [4]. GAIA+ has been designed and implemented to support the distributed
simulation over shared COTS clusters and to enhance the load balancing and
communication overheads’ reduction in presence of massive models of dynami-
cally interacting SMEs, heterogeneous execution architectures and unpredictable
computation and communication (background) loads.

3.3 The Heuristic Migration Policy Definition

The dynamic migration of SME may reduce the message-passing overhead by in-
troducing migration overheads: some analytical or heuristic metrics are required,
to be evaluated at runtime, to define “if” and “where” it would be profitable to
migrate a SME. The state size of a SME and the amount of “time-locality” of the
causal dependencies (LP-local message passing) between correlated SMEs, are
the most relevant parameters influencing the migration policy. Specifically, the
policy depends on the interaction rate between SMEs, and the overall load bal-
ancing policy between the PEUs. By focusing on the network communication-
reduction viewpoint, it would be optimal to allocate every SME on a single
PEU. Obviously, GAIA+ mechanism has to deal with computation load balanc-
ing too, hence the optimal policy would require to dynamically partition in sets
the most frequently interacting SMEs, by allocating each set over the available
PEUs in load-balanced way. The dynamic load balancing problem is even more
complicated by assuming that the CPUs are heterogeneous and subject to un-
predictable background load. GAIA+ implements a combination of two low-cost
heuristic schemes, that adaptively converge to a balanced solution, under the
system assumptions considered in the implementation. The rules for migration
heuristic are quite simple and have been improved with respect to the early
design of previous work in [3].

3.4 The Heuristic Load-Balancing Policy Definition

The steady state behavior of the migration heuristic in isolation would lead to the
asymptotic clustering of all the SMEs over a subset of the available PEUs. This is
because the adaptive effect of migrations is focused on the reduction of “external”
communication overheads. The migration heuristic must be composed with a

878 L. Bononi et al.

computation load balancing heuristic. The load balancing strategy implemented
in the previous version of the GAIA framework and defined in [4] was based on
some common assumptions: i) each CPU executes one single LP, ii) all the PEUs
are homogeneous and every LP manages the same number of SMEs, iii) the
execution architecture is dedicated to the simulation and no external background
load can interfere with simulation load balancing.

The new version of the framework, GAIA+, has been designed to overcome
such limitations. Our previous experience with migration-based distributed sim-
ulations shown that a LP overcrowded by many SMEs may be a synchronization
bottleneck for the whole simulation. The general load balancing rule that gov-
erned the original GAIA migration heuristic allowed only balanced migrations
between LPs, in a three-phases migration procedure: in the first phase every
LP must claim the number of candidate migrations and their proposed destina-
tions; in the second phase the load balancing condition is evaluated, and in the
third phase all the migrations satisfying the load balancing rules are performed.
To remove the simplification assumptions described above, it is necessary to
introduce some special improvements. Every LP, at each simulation timestep,
checks the incoming communication queues to determine which LPs are slow
in reaching the synchronization. Some adjacent timesteps are observed to have
some confidence on the trends and behaviors of the system, by each LP. The col-
lected data represents a local-LP vision of the foreign-LPs simulation execution.
Such information is exchanged by LPs and managed by the distributed GAIA+
middleware components, locally to each LP. GAIA+ middleware infers a global
vision and marks the LPs as “slow” or “fast” with respect to the average simu-
lation speed. If the delay between the slow and the fast LPs is significant then
the load distribution is not adequate and GAIA+ breaks the adopted general
load balancing rule by triggering an unbalancing exception, that is, a part of the
load has to be migrated from the slow to the fast group of LPs. The unbalancing
exception allows the LPs marked as slow to migrate a number of SMEs to LPs
that are marked as fast, even if this would break the local balancing condition
of the involved LPs. However, the implementation of the exception is regulated:
the number of SMEs allowed to migrate (referred as migration set) is propor-
tional to the difference of speed between slow and fast groups. After defining
the size of the migration set, it is necessary to choose the SMEs that will be
migrated, and their destinations, in accordance with communication patterns
and the migration cost. The implementation of this mechanism has to satisfy a
few essential requirements: i) it should quickly adapt to heterogeneous hardware
with very different CPUs and network performances, ii) it should quickly adapt
to variations of the background load (both computation and communication),
iii) it should converge without introducing harmful fluctuations. For the sake of
simplicity, in our analysis we assumed that all the SMEs are equivalent in terms
of computation-cost per timestep. This assumption is quite common in many
simulation models, e.g. in considered wireless ad hoc network models (section
4). If the assumption is not satisfied, the load estimate characterizing each SME
has to be taken into account as additional parameter of the heuristic evaluation.

An Adaptive Load Balancing Middleware for Distributed Simulation 879

4 Testbed Evaluation

Now we illustrate some key concepts of a testbed model of a wireless system. We
assume a high number of Simulated Mobile Hosts (SMHs, that is, the equivalent
of general SMEs considered in previous sections), each one following a Random
Waypoint (RW) mobility model. This mobility model is far from being real, but
this choice was driven by the unpredictable and uncorrelated mobility pattern of
SMHs. This is the worst case analysis for the GAIA+ mechanism, because any
heuristic definition cannot rely on any assumption about the motion correlation
and predictability of SMHs. Space is modeled as a torus-shaped 2-D flat topology,
10.000x10.000 space units, populated by a constant number of SMHs. The torus
space topology, indeed unrealistic, is commonly used by modelers to prevent
non-uniform SMHs’ concentration in any area. The simulated space is without
obstacles. The modeled communication between SMHs is a constant flow of ping
messages (i.e. constant bit rate), transmitted by every SMH to all neighbors
within a wireless communication range of 250 space units.

4.1 Experimental Results

The first set of experiments were executed on a cluster of 3 heterogeneous PEUs:
two Dual Xeon Pentium IV 2800 MHz with 3 and 4 GB RAM, respectively, and
one Quad Xeon Pentium IV 1500 MHz with 1 GB RAM, connected by a Gi-
gabit Ethernet LAN. We performed multiple runs for each experiment, and the
confidence intervals obtained with a 95% confidence level are lower than 5% the
average value of the performance index shown. All the performed experiments
were initialized with a uniform pseudo-random distribution of 9000 SMHs over
a flat topology. The distributed simulation is composed by 3 LPs: each PEU

Fig. 1. Initially each PEU simulates the
same number of SMHs (3000)

Fig. 2. The initial allocation is based on
the CPU MHz of each PEU

manages the execution of one LP. Initially, all the SMHs are randomly and
uniformly allocated over the set of PEUs, that is, the model components’ alloca-
tion is not initialized in a scenario favorable to GAIA+ load-balancing (because
PEUs are not homogeneous) and communication-reduction of GAIA+ migration

880 L. Bononi et al.

scheme (because modeled wireless hosts with time- and space-correlation are
randomly distributed over different PEUs). Testbed evaluation a): initially each
PEUs allocates the same number of SMHs (3000). All the PEUs are equipped
with same generation CPUs (Xeon Pentium IV) but with different clock speed
and memory: PEUs 1 and 2 have a 2800 MHz CPU with 3 and 4 GB RAM,
respectively, and the PEU 3 has a 1500 MHz CPU with 1 GB RAM. Given
the significant difference of speed, we expect that the GAIA+ mechanism will
modify the allocation of SMHs for load balancing, reducing the number of SMHs
allocated on the slow PEU 3 and increasing the population on the fast PEUs 1
and 2. Figure 1 shows that the expected transient behavior quickly converges to
a stable steady state condition, without introducing fluctuations in the number
of allocated SMHs. It appears that “fast” PEUs are not homogeneous in perfor-
mance, as it can be expected due to the difference in the amount of local RAM.
The same behavior is confirmed in the results presented in the following.

In the second approach b), the initial allocation was based on the nominal
performance of the PEUs. In practice, since CPUs are the same generation, it
would be possible to roughly allocate the computation load (homogeneous SMEs)
proportionally to the clock speed (expressed in MHz). Given this assumption, the
9000 SMEs should be allocated on the fast CPUs (2800 MHz) with 3552 SMHs
each, and the slow CPU with 1896 SMHs. In theory, this initial allocation method
should be stable under the load balancing viewpoint. Figure 2 demonstrates that
this assumption is not confirmed: the GAIA+ framework quickly reacts and
reaches a different steady state condition that substantially increases the load
on the “slow” PEU. This confirms that load balancing inferred by nominal CPU
performance index (like the CPU clock speed) is not adequate.

So far we have considered testbeds with no background load (that is, dedicated
cluster). In this case some benchmarks or preliminary simulation tests (like in
Figure 1 and 2) could determine a load balanced partition of the SMHs between
the execution units involved in the distributed simulation. As discussed in the in-
troduction, this assumption is often unrealistic, as an example with shared clus-
ters with unpredictable background load. In the following we perform some tests
of GAIA+ mechanism under the variable background load scenario: the consid-
ered system architecture is composed by three Intel Xeon Pentium IV, 2800 MHz,
with 2 (PEU1), 4 (PEU2) and 3 (PEU3) GB RAM, respectively. In scenario c),
we injected a synthetic load over the PEU 1, only. The background load of PEU
1 is shaped as a sinusoidal wave, that is, it is not unpredictable. On the other
hand, there is no exploitation of any predictability characteristic in GAIA+: we
used this curve because it gradually introduces load variation at different speeds
(that is, the derivative of the background load curve shows a variation of slow
changes followed by sudden changes). Our analysis goal is to verify the reaction
of GAIA+ in presence of slow and fast background load variations. In left-hand
figures 3 we show the background load of three PEUs involved in the distributed
simulation. The effect on the load balancing mechanism of GAIA+ can be seen
on right-hand figures 3: a SMHs re-allocation is realized by GAIA+, by following
the shape of the background load in reactive and dynamic way. The right-hand

An Adaptive Load Balancing Middleware for Distributed Simulation 881

figures report the percentage of allocated SMHs with respect to the initial distri-
bution of 3000 allocated SMH per PEU (100%). SMHs migrated from overloaded
PEU1 are fairly re-allocated over PEU2 and PEU3.

Fig. 3. The effect of the injected background load on the SMHs allocation

These results demonstrate that GAIA+ mechanism can quickly adapt the
load partitioning of the SMEs from any initial distributions (e.g. random), and
by adaptively reacting to the background load variations. The communication
reduction ability obtained by GAIA+ is the same inherited by original GAIA,
as shown in [3]. In [3], we also shown that speedup was obtained by the GAIA
mechanism with respect to distributed and monolithic simulations. Now we show
that GAIA+ mechanism outperforms GAIA under the simulation speedup view-
point, by reducing the Wall-Clock-Time (WCT) required by simulation runs,
under new assumptions that characterize the shared clusters. We analyzed a
portion of the execution (1000 steady state timesteps) of the simulation runs of
the wireless ad hoc network model, for the three scenarios (a, b and c). Table
1 shows the WCT needed to execute the run portion: we refer to “GAIA+” as
a distributed simulation with the new GAIA+ load balancing mechanism en-
abled and “GAIA” when the old GAIA scheme is used. The results confirm our
expectations: the GAIA+ mechanism significantly reduces the WCT in all the
analyzed scenarios. The load allocation is quickly balanced over heterogeneous
execution scenarios, both in presence of sub-optimal initial allocations (a, b) and
in presence of variable background loads (c).

Table 1. WCT (seconds) to complete a simulation run of 1000 timesteps

scenario GAIA GAIA+ diff (%)
a 3600 3442 -4.38%
b 3983 3568 -10.41%
c 5232 4128 -21.10%

882 L. Bononi et al.

5 Conclusions and Future Work

In this work we have described GAIA+, a migration-based framework build on
top of the ARTÌS middleware. GAIA+ exploits the runtime migration of simu-
lated model entities to concurrently address two main problems of distributed
simulation: the reduction of the communication overhead and the load-balancing
in the distributed execution architecture. The new GAIA+ framework introduces
support for shared and heterogeneous execution architectures possibly charac-
terized by background load. A distributed heterogeneous execution architecture
and a wireless ad hoc network model have been used as a testbed for GAIA+
analysis. The performance evaluation has demonstrated that the new heuristics
adopted in the GAIA+ middleware can lead to significant reduction in the WCT
required to execute the simulation runs.

Future works include new heuristics to address the presence of heteroge-
neous model entities with different computational requirements, and extended
testbed models. Most preliminary Grid-based simulations has revealed poor per-
formances mainly due to the high latency experienced by Internet communica-
tions and the lack of control on the nodes. We believe that the ARTÌS and
GAIA+ middleware porting on the Grid architecture could possibly contribute
to increase the performance of Grid-based simulations.

References

1. Fujimoto, R.M. Parallel and Distributed Simulation Systems. Wiley & Sons, 2000
2. IEEE 1516. Standard for modeling and simulation, High Level Architecture (HLA).
3. Bononi, L., D’Angelo, G., Donatiello, L. HLA-based adaptive distributed

simulation of wireless mobile systems. PADS ’03: Proceedings of the 17th
ACM/IEEE/SCS Workshop on Parallel and Distributed Simulation.

4. Bononi, L., Bracuto, M., D’Angelo, G., Donatiello, L. A New Adaptive Middleware
for Parallel and Distributed Simulation of Dynamically Interacting Systems. DS-
RT ’04: Proceedings of the 8-th IEEE International Symposium on Distributed
Simulation and Real Time Applications.

5. Bononi, L., Bracuto, M., D’Angelo, G., Donatiello, L. Analysis of High Performance
Communication and Computation Solutions for Parallel and Distributed Simula-
tion. HPCC ’05: Springer LNCS Proceedings of the 2005 International Conference
on High Performance Computing and Communications.

6. Boukerche, A., Das, S.K. Dynamic Load Balancing Strategies for Conservative Par-
allel Simulations. PADS ’97: Proceedings of the 11th SIGSIM/IEEE/SCS Work-
shop on Parallel and Distributed Simulation.

7. Choe, M., Tropper, C. On Learning Algorithms and Balancing Loads in Time Warp.
PADS ’99: Proc. of the 13th Workshop on Parallel and Distributed Simulation.

8. Theodoropoulus, G., Logan, B. An Approach to Interest Management and Dy-
namic Load Balancing in Distributed Simulation ESIW ’01: Proceedings of the
2001 European Simulation Interoperability Workshop.

An Adaptive Load Balancing Middleware for Distributed Simulation 883

9. PADS homepage, http://pads.cs.unibo.it
10. Short, J., Bagrodia, R., Kleinrock, L. Mobile wireless network system simulation

Wireless Networks 1, 1995
11. Boukerche, A., Tropper, C. A static partitioning and mapping algorithm for con-

servative parallel simulations. PADS ’94: Proc. of the 8th workshop on Parallel and
distributed simulation.

Impact of SOAP Implementations in the
Performance of a Web Service-Based

Application�

Elena Gómez-Mart́ınez and José Merseguer

Dpto. de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza
C/Maŕıa de Luna,1 50018 Zaragoza, Spain

{megomez, jmerse}@unizar.es

Abstract. This article recalls, from the literature, a performance study
of a web service. That study, based on the layered queuing network
(LQN) paradigm, is now addressed following the PUMA approach to
obtain a new performance model, in this case in terms of Petri nets,
for the target web service. Such Petri net model is used to extend the
previous LQN results with respect to some key web service performance
aspects: the SOAP toolkit and the XML parsers. Actually, this paper
aims to explore through a case study some of the main concerns of web
services performance at the middleware layer. The acquired background
is meant to start to develop a methodology, based on the SPE principles,
useful to analyze web services performance.

1 Introduction

A web service is a collection of protocols and standards used for exchanging of
XML messages between applications. Unlike other middleware technologies [2],
they allow to communicate heterogeneous environments deployed on the net-
work, offering flexibility and interoperability.

Performance is one of the key aspects and probably the Achilles’ heel of web
services and in general of services offered over the Internet [28]. However, it has not
been adequately addressed from a formal modeling viewpoint in the literature yet.
In this work, we try to overcome some aspects of this lack by accomplishing an in-
depth study of different key aspects of web services performance at the middleware
layer: the SOAP implementations and the XML parsers.

This work is proposed as a first step to develop a methodology to evaluate
web service performance, and we start addressing some middleware performance
issues. The methodology will use Petri nets (PN) [1] as formal method, and
will follow the Software Performance Engineering (SPE) [19] principles and the
Performance by Unified Model Analysis (PUMA) approach [30]. PUMA aims
translations from different kinds of design models and performance models.

� This work was supported by the projects TIC2003-05226 and DPI2006-15390 of the
Spanish Ministry of Science and IBE2005-TEC-10 of the University of Zaragoza.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 884–896, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Impact of SOAP Implementations 885

Our study is based on an interesting performance study of a web service devel-
oped, also under the SPE principles, in [3]. We rearchitect this case study follow-
ing the PUMA approach to get a Generalized Stochastic Petri Net (GSPN) [1].
The GSPN, properly analyzed with the TimeNET tool [23], allows us to offer
interesting results about performance middleware key aspects and to contrast
them with the results obtained from pragmatic (non-formal) studies.

The rest of the paper is organized as follows. Section 2 revises the state of the
art and places our proposal for study performance of web services in the current
scene. Section 3 addresses key issues concerning performance of web services at
middleware layer. Section 4 recalls the web service under study and we obtain
the PN that models the target system. Such net will be useful, in section 5,
to accomplish the study proposed in this work. Therefore, the impact of SOAP
implementations and XML parsers is studied by means of that formal model.
The article ends in section 6 giving the conclusion.

2 Related Work

Performance is an important aspect of web services. Nevertheless, from the best
of our knowledge, very few papers focuss on performance evaluation of web
service-based applications. And a very few of them follow the techniques pro-
posed by the SPE [19].

Menascé and Almeida [13] developed a methodology from we have learnt the
key issues of performance evaluation of web services. While this methodology
is focussed on capacity planning using queuing networks (QN), we aim at its
performance prediction using PN and the Unified Modeling Language (UML).

Chandrasekaran et al. [4] propose a simulation technique for analyzing per-
formance of composite web services in order to obtain efficient web processes.
Menascé in [12] studies QoS issues of composite web services. In [26], Datla
and Goševa-Popstojanova present a measurement-based study of performance of
e-commerce applications. They study the impact of web services together with
other components on integrated applications using benchmark techniques. Ng et
al. [14] evaluate diverse SOAP implementations by means of benchmarks of a sim-
ple service with three types of message. In contrast to us, they probe that serializa-
tion and deserialization are the primary important bottleneck for this application.

Liu et al. [11] propose an approach to predict performance metrics for a
middleware-hosted application using QN models. Although, this work is focussed
on a J2EE application, their modeling approach is suitable to other middleware
technologies, such as CORBA and COM+/.NET.

Verdickt et al. [27] propose a Model Driven Architecture (MDA) model
transformation for Platform Specific Models (PSM), including middleware
performance details. It is based on SPE and the UML-SPT [15] profile. The
transformation process is made by a tool which generates LQN models.

Gilmore et al. [9] propose an UML-based methodology for analyzing security
and performance aspects using PEPA models. This method is implemented in the
Choreographer design platform.

886 E. Gómez-Mart́ınez and J. Merseguer

3 Performance Issues of the Web Services

Web service technology has not been developed with performance as a goal.
Performance issues affect several aspects: the XML protocols, such as discovering
using UDDI [13], transporting using usually HTTP [7], the latency of SOAP
implementations [5] or the use of an XML parser [10]. Furthermore, web services
can be provided with dynamic composition of web services, affecting performance
in any way [4,12]. The software infrastructure is other significant factor [11].

Although all of these issues are relevant, this paper focusses on those that
being closer to the middleware layer can be parameterized in a UML design.
Among them, SOAP implementation is one of the key factors that have influ-
ence on performance, as previous studies have shown [5,7,10]. Therefore, it is im-
portant to determine which particular SOAP toolkit can meet the performance
requirements of an application. These studies remark the following topics:

Serialization is the process to convert an in-memory object into an XML
stream. This includes to pack the XML message in the SOAP envelope and
to build the message which will be sent by the corresponding transport pro-
tocol, mainly HTTP [10].

Deserialization converts XML streams in wire-format objects in memory. In
this process two phases must be emphasized: (1) unpacking the SOAP enve-
lope and (2) parsing and interpreting the XML document. The most widely
models used for parsing are Document Object Model (DOM) [6], Simple API
for XML (SAX) [18] and XML Pull Parser (XPP) [8]. DOM parsers are
suitable for small documents which must be validated and/or modified. SAX
parsers are better for large documents. XPP is optimized when the XML el-
ements are processed in succession and do not need to be visited again. The
parser process has a great impact in the performance of SOAP implementa-
tion, as previous works have studied [7,10]. Note that XML native parsers
and those embedded in SOAP have to be differentiated, since they exhibit
different features and performance characteristics [21,8].

However, not only these processes affect the performance of a SOAP toolkit,
others such as data structure support, optimizations to handle scientific data or
algorithms implementation and protocols have influence too [5,10]. These topics
will not be addressed in this work, since they are out of scope of the case study
which guides it. Other significant factors that may impact in performance are
the service processing time, i.e. the business logic, and the XML file size [3].

The goal of this paper is to study the impact of the following aspects in web
service performance: (G1) XML parsers and (G2) SOAP toolkits. Furthermore,
other factors that may impact in performance will be studied, such as (G3) the
sensibility of a web service with respect to the document file size exchanged and
(G4) the service processing time. The implementations of XML parsers under
consideration are: Xerces [24], Xerces2 [25], Crimson [22] and XML Pull Parser
(XPP) from [8]. The SOAP toolkits considered are AxisJava and .NET, since
they are widely used. We have also included XSUL for its excellent performance
for large documents [8].

Impact of SOAP Implementations 887

4 SPE for Web Services

In order to study the impact of the previous goals, we recall a performance case
study taken from [3], then section 4.1 summarizes it and its results. In section 4.2
we apply the PUMA approach to obtain a GSPN model from the UML system
description.

4.1 Case Study: CDSS Web Service

Catley et al. propose in [3] “an infrastructure to support artificial intelligence-
based clinical decision systems (CDSSs). The system processes multidomain med-
ical data in high-risk medical environments in order to reduce medical errors
and alert detection systems”. It integrates and accesses CDSSs and distributed
databases from different medical domains in order to predict medical outcomes.
These CDSSs are offered as web-services. The paper models a representative sub-
set of this infrastructure, which invokes a CDSS as a web service and accesses
the patient’s Electronic Patient Record (EPR). Figure 2(a) depicts the sequence
diagram (SD) of such CDSS invocation process, that proposes an initial system
configuration made of one instance per hardware and software resource.

The system parses XML documents using the Xerces parser through a DOM
interface. The required response time for 50 users requesting the system should
not exceed 8 seconds.

Catley et al. applied the SPE techniques developed in [16] to assess the required
metric. Then they modeled the system by means of deployment and sequence di-
agrams annotated according to the UML Profile for Schedulability, Performance
and Time Specification (UML-SPT) and translated them into an LQN model [29].

This model was solved with the initial configuration, determining that the sys-
tem can not meet the performance target, see Figure 1(a1) where the response
time for 50 users is 39.9 seconds. They identified system bottlenecks and proposed
a new configuration that replicates processors and threads (10 WSCoordinator, 10
CDSS, 3 AppCPU and a variable number of EPR). Figure 1(a2) depicts the results of
multithreading the EPR task when the system is executed by 50 users. They de-
termined that the target is achieved in this new configuration with 8 threads of
EPR.

4.2 Applying the PUMA Approach

PUMA [30] was designed as a framework to obtain performance models from de-
sign models. Therefore, we use PUMA to obtain a GSPN model from the SD in
Figure 2(a), which models the CDSS. The GSPN model aims for validating the
CDSS results in [3] and for dealing with the performance goals previously given.

PUMA uses an intermediate model, the Core Scenario Model (CSM) [17], which
is suited to produce a performance model, such as layered and regular QNs, and
stochastic PNs.

The CSM defines a performance Scenario as a sequence of Steps that are
linked by Connectors. A Step is a sequential piece of execution. Connectors can

888 E. Gómez-Mart́ınez and J. Merseguer

include branches, merges, and forks and joins. A scenario has a Start point and
an End point. Start points are associated with Workload. There exist two kind
of Resources : Active, which execute steps, and Passive, which are acquired and
released during scenarios by special ResAcquire and ResRelease steps. Steps are
executed by (software) Components which are passive resources.

PUMA gives a translation process to get a CSM model from a UML SD.
Figure 3(a) depicts the resulting CSM for our target SD. Observe that this
CSM is made of two scenarios, the one corresponding to the CDSS invo-
cation process (left column) and the CDSS processing (right column). The
CDSS processing scenario comprises the messages from processWebService()
to WebServiceDone(). The other messages of the SD correspond to the CDSS
invocation process.

Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

0 10 20 30 40 50

AXIS DOM
XSUL

AXIS SAX

Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

0 10 20 30 40 50

AXIS DOM
XSUL
AXIS SAX

(a) Response times obtained by [3]. (b) Response times obtained from the GSPN model.

(c) Response times for XML parsers. (d) Response time for different SOAP implementations.

Number of Users

R
es

po
ns

e
Ti

m
e(

se
c)

0 20 40 60
0

10

20

50

40

30

(a1) Initial configuration
Number of EPR threads

R
es

po
ns

e
Ti

m
e(

se
c)

0 5 10 15
0

2

4

6

8

(a2) New replicated configuration

0

10

20

30

40

50

0 10 20 30 40 50
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

(b1) Initial configuration

0

2

4

6

8

10

12

14

0 5 10 15
Number of EPR threads

R
es

po
ns

e
Ti

m
e

(s
ec

)

(b2) New replicated configuration

Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

0 10 20 30 40 50

Xerces DOM
Crimson DOM
Xerces2 DOM

XPP2

(c1) Initial configuration
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

2

4

6

8

10

12

0 10 20 30 40 50

Xerces DOM
Crimson DOM
Xerces2 DOM
XPP2

(c2) New replicated configuration
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

0 10 20 30 40 50

AXIS
.NET
XSUL

(d1) Initial configuration
Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

2

4

6

8

10

0 10 20 30 40 50

AXIS
.NET
XSUL

(d2) New replicated configuration

(e) Response time for the CDSS web service when EPR file increases in size.

(e1) EPR file sized
with 100 KBytes.

(e2) EPR file sized
with 1 MBytes.

(f) Response time when CDSS processing time increases.

Time for CDSS process (sec)

R
es

po
ns

e
Ti

m
e

(s
ec

)

0
20
40
60
80

100
120
140

0,0 0,5 1,0 1,5 2,0

Axis DOM
Axis SAX
XSUL

2,5

(f1) EPR file sized with 5 KBytes
Time for CDSS process (ms)

R
es

po
ns

e
Ti

m
e

(s
ec

)

0
20
40
60
80

100
120
140 Axis DOM

Axis SAX
XSUL

0,0 0,5 1,0 1,5 2,0 2,5

(f2) EPR file sized with 100 KBytes
Time for CDSS process (ms)

R
es

po
ns

e
Ti

m
e

(s
ec

)

0
25
50
75

100
125
150
175

0,0 0,5 1,0 1,5 2,0

Axis DOM
Axis SAX
XSUL

2,5

(f3) EPR file sized with 1 MBytes

Fig. 1. Results of the experiments

The CSM in Figure 3(a) is translated into a GSPN, see Figure 3(b), by means
of a extraction process developed in [30]. So, each class of the CSM corresponds

Impact of SOAP Implementations 889

<<PAresource>>
WSRequestor

<<PAresource>>
WSCoordinator

<<PAresource>>
SOAP1

<<PAresource>>
XML1

<<PAresource>>
CDSS

<<PAresource>>
SOAP2

<<PAresource>>
XML2

<<PAresource>>
EPR

User

requestWS()

protocolProcessing()

transmitWSRequest()

parseXMLDoc()

processWebService()
retrieveEPR()

validate()

transformXMLDoc()

CDSS_Processing()

parseXMLDoc()

updateEPR()
native XML DB Write()

native XML DB Read()

WebServiceDone()

determineOutputFormat()

pack()

transmitWSResult()
display()

unpack()

<<PAresource>>
DISK

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(25,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(12.5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(12.5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(500,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.8,’ms’))}
<<PAstep>>

{PAdemand=(’asmd’,
’mean’,(50,’ms’)),

PArep=8}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(18.75,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(12.5,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(60,’ms’)),
PArep=12}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(25,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.7,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(2.1,’ms’))}

<<PAclosedLoad>> {PApopulation=$NUsers}

<<PAstep>>
{PArespTime=((’req’,’percentile’,100,(10,’s’)),

(’pred’,’percentile’,100,$UserR))}

(a) Sequence diagram taken from [3] describing the system.

(c) Changes in the CDSS w.r.t. the original proposal.

<<PAresource>>
WSCoordinator

<<PAresource>>
CDSS

<<PAresource>>
XML2

<<PAresource>>
EPR

<<PAresource>>
DISK

retrieveEPR()

validate()

transformXMLDoc()

parseXMLDoc()

updateEPR()
native XML DB Write()

native XML DB Read()

processWebService()

WebServiceDone()

CDSS_Processing()

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.8,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(50,’ms’)),
PArep=8}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(60,’ms’)),
PArep=12}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(1.2,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,
’mean’,(500,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tv,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tt,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($tp,’ms’))}

D

C

A

(b) SD describing the proposed key
performance scenario with SOAP toolkit.

<<PAresource>>
WSRequestor

<<PAresource>>
WSCoordinator

<<PAresource>>
SOAP Toolkit

<<PAresource>>
CDSS

User

requestWS()

protocolProcessing()

transmitWSRequest()

processWebService()

WebServiceDone()

determineOutputFormat()

serialize()

transmitWSResult()
display()

deserialize()

<<PAclosedLoad>> {PApopulation=$NUsers}

<<PAstep>>
{PArespTime=((’req’,’percentile’,100,(10,’s’)),

(’pred’,’percentile’,100,$UserR))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,($tl,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($td,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(0.7,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,’mean’,(0.03,’ms’)),

PAextOp=(network,$packets)}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,($ts,’ms’))}

<<PAstep>>
{PAdemand=(’asmd’,

’mean’,(2,’ms’))}

E
F

G

Fig. 2. Sequence diagrams

890 E. Gómez-Mart́ınez and J. Merseguer

(a) Core Scenario Models.

CDSS Invocation Scenario CDSS process Scenario

pack

determineOutputFormat

WSInterface

WSCoordinator

WSP

transmitWSResult

CDSS

SOAP

XML

unpack

WSRequestor

transmitWSRequest

WSControlprotocolProcessing

User

validate

retrieveEPR

native_XML_read

XML

EPR

DISK

CDSS_processing

transformXMLDoc
updateEPR

native_XML_write

parseXMLDoc

AppCPU

parse

(b) GSPN representing the SD in Figure 2 (a).

Start

ResAcq

protocolProcessing

transmitWSRequest

ResAcq

WSControl

ResAcq

unpack

ResRel

ResAcq

parseXMLDoc

ResRel

ResRel

ResAcq

ResAcq

WSControl

determineOutputFormat

ResAcq

pack

ResRel

transmitWSResult

ResRel

ResRel

ResRel

UserP
ProcessingResource

Network
ExtOp

WSCoordinator
Component

WSP
ProcessingResource

SOAP
Component

processWebService

ResRel

End

XML
Component

CDSS
Component

App_CPU
ProcessingResource

Network
ExtOp

ResAcq

WSRequestor
Component

CDSS Invocation Scenario

retrieveEPR

ResAcq

ResAcq

native_XML_DB_Read

ResRel

ResRel

ResAcq

validate

ResRel

ResAcq

transformXMLDOC

ResRel

CDSS_processing

ResAcq

parseXMLDOC

ResRel

updateEPR

ResAcq

ResAcq

native_XML_DB_Write

ResRel

ResRel

ResRel

Start

CDSS
Component

App_CPU
ProcessingResource

ResAcq

EPR
Component

Database
Component

DB_CPU
ProcessingResource

XML_2
Component

End

ResAcq

ResRel

DISK
Passive
Resource

ResAcq

ResRel

CDSS process Scenario
processWebService

Fig. 3. Core Scenario Model and LGSPN for the SD in Figure 2(a)

Impact of SOAP Implementations 891

with a GSPN pattern. For instance, a step is translated into a timed transition
with an input place, where its delay is the demand attribute of the step. All
of the GSPN patterns are composed until the GSPN representing the whole
scenario is built.

Performance metrics can be obtained using TimeNET [23] to solve this GSPN
by means of simulation techniques. Figure 1(b1) and Figure 1(b2) present the
same experiments as Figure 1(a1) and Figure 1(a2), respectively, i.e. the re-
sponse times for the initial and the new replicated configuration. In Figures 1(b2)
and 1(a2), the response time for 50 users is stated in 9.23 seconds and 5.4 seconds,
respectively. These response times are greater since PNs introduce synchroniza-
tion in the model. However, both the order of magnitude and the tendency of
the results are kept.

Once it has been verified that the results, obtained by the derived GSPN, are
similar to those obtained in [3] with LQN, the following step is to study, using
this GSPN, the impact of XML parsers and SOAP implementations.

5 Web Services Tunning: CDSS Performance
Improvements

In this section we exploit the CDSS case study to deal with the goals (G1),
(G2), (G3) and (G4) proposed in section 3. The final objective is to extract
conclusions about those key aspects of web service performance from the case
study.

5.1 Impact of XML Parsers

Since XML parsers affect web service performance [7,5,10], we explore different
alternatives of them in order to study their impact in the CDSS web service.

We realized that some of the CDSS parameters in [3] should be changed for
the following considerations:

A Document build time is the time to scan and interpret the XML docu-
ment [20], but in [3] is assigned to the packing operation. In our experiments,
we will assign this value for parsing operations, see Table 1.

B Document modify time is the time required to systematically modify the
constructed document representation [20], but in [3] is assigned to the parsing
operations. We do not assign this value to an operation, since we consider
that EPR file is not updated.

C Document walk time is the time required to walk the constructed document
representation [20]. As [3], we will assign it to validate the XML document,
see Table 1.

D Text generation time is the time required to output document representa-
tions as text XML documents [20]. As [3], we will assign it to transform the
XML document, see Table 1.

892 E. Gómez-Mart́ınez and J. Merseguer

Table 1. Performance parameters for XML operations from [21]

parameter Mean Execution Time (ms)
Operation in SD Xerces Xerces2 Crimson XPP

(A) parseXMLDoc() $tp 6.957 2.898 9.856 1.159
(C) validate() $tv �0 �0 �0 �0
(D) transformXMLDoc() $tt 1.055 1.231 1.231 0.703

Table 1 gives the new values taken from an updated benchmark [21]. Fig-
ure 2(c) depicts the part of the SD that has been changed to consider the new
values in the model.

Figure 1(c1) and Figure 1(c2) depict the response times when the parameters
in Table 1 are applied. These results can be compared with those in Figure 1(a1)
and Figure 1(a2), as well as with those in Figure 1(b1) and Figure 1(b2), being
similar in all cases. Therefore, it does not matter which parser is used.

However, according to [7,21], the response times for Xerces parsers are worse
than the obtained ones for Crimson or XPP parsers. Slightly best results are
obtained by XPP. The reason for our results is the small size of the EPR file,
only 5 KBytes. So, in this case, the XML parser significantly does not affect the
performance of the CDSS web service. But in section 5.3 we try to validate the
conclusions in [7,21] by varying the EPR file size.

5.2 Impact of SOAP Implementations

Currently, several implementations of SOAP are emerging and their performance
differs to a great extent [5,10]. Therefore, it is profitable to determinate what
toolkit meets performance objectives in the CDSS invocation web service.

We guess that in [3] the SOAP parameters are taken from [20], but we consider
more appropriate to use an specific SOAP benchmark, taken from [10]. Table 2
provides the values of SOAP operations, (F) deserialization and (G) serialization
and the overhead that the SOAP toolkit imposes, (E) the latency. Note that
they have been calculated assuming that most of the content of the EPR file are
strings. Figure 2(b) depicts the part of the SD changed to include in the CDSS
these new parameters.

Figure 1(d1) shows that all the SOAP toolkit give similar response time for
the CDSS. Only XSUL performs a little better in the replicated configuration,
see Figure 1(d2). Comparing these results with those in Figure 1(a1), they
are alike. We guess that as the SOAP message, which contains the EPR file, is
small, the time taken by processing SOAP is negligible with respect to the CDSS

Table 2. Performance parameters for SOAP toolkits from [10]

parameter Mean Execution Time (ms)
Operation in SD AxisJava .NET XSUL

(E) Latency → protocolProcessing() $tl 8.35 3.5 2.435
(F) Deserialization → deserialize() $td 10.476 4.797 3.935
(G) Serialization → serialize() $ts 16.151 4.481 3.706

Impact of SOAP Implementations 893

processing time. In section 5.4, we try to verify this affirmation by varying this
service processing time.

5.3 Impact of the EPR File Size

The previous experiments showed that due to the small size of the EPR file,
both the XML parser and the SOAP implementations have no relevant impact
for the performance of the CDSS web service.

Table 3. Performance parameters from [21] and [10]

Mean Execution Time (ms)
Parameter 100 KBytes 1 MBytes

in SD AxisJava DOM AxisJava SAX XSUL AxisJava DOM AxisJava SAX XSUL
(A) $tp 27.68 10.19 40.79 297.8 78.37 501.56
(C) $tv 1.37 �0 0.68 31.34 �0 15.67
(D) $tt 11.36 �0 26.51 282.13 �0 203.76
(E) $tl 8.35 8.35 2.435 8.35 8.35 2.435
(F) $td 44.39 44.39 26.78 917.11 917.11 431.464
(G) $ts 32.00 32.00 35.53 291.82 291.82 265.81

If it would be considered that this file increases in size, the results could be
different. Note that the XML-based EPR file is also enveloped in the SOAP
message, therefore its size affects both XML and SOAP operations. Table 3
provides the new parameters, considering two sizes for the EPR, they are set in
sequence diagrams of Figure 2(b) and Figure 2(c). We have taken into account
that XPP is the native parser for XSUL and for Xerces through DOM or SAX
interface for AxisJava.

Figures 1(e1) and 1(e2) show the response time with the initial configuration
when the EPR file size is 100 KBytes and 1 MBytes, respectively. If we observe
the results when EPR file size is 100 KBytes, these are similar to those when it
is only 5 KBytes, see Figure 1(d1). However, the response time increases mean-
ingfully with 1 MBytes. As expected [7], comparing the SOAP implementations,
AxisJava through SAX interface outperforms AxisJava through DOM. Surpris-
ingly, in spite of the good results of XSUL presented in [10] for large sizes, it
performs poorly in this case. It may be due to the time required by XPP to build
the document in memory, as suggested in [21].

5.4 Impact of the CDSS Processing Time

Once studied the impact of EPR file size, we come back to section 5.2 to verify if
the time required for processing this EPR file (with SOAP and the XML parser)
is irrelevant with respect to the time taken by the CDSS Processing() process.
In order to validate this supposition, the service processing time will be modified.
See the annotation of the CDSS Processing() message self dispatched by the
CDSS in the sequence diagram depicted in Figure 2(a).

In section 5.1 and section 5.2, we guess that XML parser and SOAP toolkits
have not influence in CDSS web service, since XML-based EPR file size is small.

894 E. Gómez-Mart́ınez and J. Merseguer

Therefore, the time required for being processed it by SOAP and XML parser
is irrelevant with respect to the time taken by CDSS Processing() process. In
order to validate this supposition, the service processing time is modified.

Figure 1(f1) depicts the response times for 50 users with the initial configu-
ration when the CDSS Processing() service time varies from 0.1 to 2.5 seconds
and the EPR file is 5 KBytes; in Figure 1(f2) the EPR file is 100 KBytes and
in Figure 1(f3), 1 MBytes. The response time of the different SOAP implemen-
tations and XML parsers follows the same tendency while sizing EPR file to
“small sizes”, 5 KBytes or 100 KBytes. However, when EPR file is 1 MBytes,
“big sizes”, and CDSS Processing() is less than 0.4 seconds, AxisJava through
SAX parser performs poorly compared to AxisJava through DOM and XSUL.
But, when service time increases, AxisJava through SAX parser outperforms
them. We guess that XSUL performs better when the service time is small be-
cause it is oriented to slightly processed scientific data. Similarly, we guess that
DOM and SAX outperform XSUL when the processing time is greater than 0.4
seconds since they are conceived to process generic information which may be
repeatedly accessed.

This experiment shows that the CDSS processing time (CDSS Processing())
and the EPR file size condition the impact of the XML parser and the SOAP
implementation.

6 Conclusion

This paper studies some of the main concerns of web services performance
through a set of goals established on a CDSS web service. We have focussed
on how XML parsers, SOAP implementations, the exchanged file size and the
service time influence the web services.

Our experiments indicate that the XML parser choice slightly affects web ser-
vices performance when the XML-based file size is small, whereas the SOAP im-
plementation influence is even smaller. However, when the EPR file increases in
size, the response times obtained are worst and there exist noticeable differences
among XML parsers and SOAP implementations. These differences intensify
when the service processing time changes.

We can conclude that the impact of the XML parsers and the SOAP
implementations is conditioned by both XML-based file size and service time,
i.e. the serialization and deserialization processes are not bottlenecks for large
data applications and large service times.

Acknowledgments. The authors would like to thank Diego Rodŕıguez for his
help in computing results using the TimeNET tool.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley Series in Parallel Com-
puting - Chichester, 1995.

Impact of SOAP Implementations 895

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Archi-
tectures and Applications. Springer, 2004.

3. C. Catley, D. Petriu, and M. Frize. Software Performance Engineering of a Web
service-based Clinical Decision Support infrastructure. In ACM WOSP, pages
130–138, 2004.

4. S. Chandrasekaran, J. Miller, G. Silver, I. Arpinar, and A. Sheth. Performance
Analysis and Simulation of Composite Web Services. Electronic Markets, 13(2),
2003.

5. D. Davis and M. Parashar. Latency Performance of SOAP Implementations. In
IEEE CCGRID, pages 407–412, 2002.

6. Document Object Model (DOM). http://www.w3.org/DOM/.
7. R. Elfwing, U. Paulsson, and L. Lundberg. Performance of SOAP in Web Service

Environment Compared to CORBA. In IEEE APSEC, pages 84–96, 2002.
8. Extreme! Computing Lab. Indiana University. http://www.extreme.indiana.

edu/xgws/xsoap/xpp/.
9. S. Gilmore, V. Haenel, L. Kloul, and M. Maidl. Choreographing Security and

Performance Analysis for Web Services. In EPEW/WS-FM, pages 200–214, 2005.
10. M. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-Ghazaleh, R. van Engelen,

K. Chiu, and M. Lewis. A Benchmark Suite for SOAP-based Communication in
Grid Web Services. In IEEE SC, page 19, 2005.

11. Y. Liu, A. Fekete, and I. Gorton. Predicting the performance of middleware-based
applications at the design level. In ACM WOSP, pages 166–170, 2004.

12. D. Menascé. Composing Web Services: A QoS View. IEEE Internet Computing,
8(6):88–90, 2004.

13. D. Menascé and V. F. Almeida. Capacity Planning for Web Services: metrics,
models, and methods. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

14. A. Ng, S. Chen, and P. Greenfield. An Evaluation of Contemporary Commercial
SOAP Implementations. In AWSA, pages 64–71, 2004.

15. Object Management Group, http://www.uml.org. UML Profile for Schedulabibity,
Performance and Time Specification., 2005.

16. D. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-
based derivation of LQN models from UML specifications. In TOOLS, volume
2324 of LNCS, pages 159–177. Springer, 2002.

17. D. Petriu and C. Woodside. A Metamodel for Generating Performance Models
from UML Designs. In UML, volume 3273 of LNCS, pages 41–53. Springer, 2004.

18. Simple API for XML (SAX). http://www.saxproject.org/.
19. C. Smith and L. Williams. Performance Solutions. Addison-Wesley, 2001.
20. D. Sosnoski. XML and JAVA technologies: Document models, Part 1: Performance.

http://www-128.ibm.com/developerworks/xml/library/x-injava/.
21. D. Sosnoski. XMLBench Document Model Benchmark. http://www.sosnoski.

com/opensrc/xmlbench/.
22. The Crimson Java Parser. http://xml.apache.org/crimson/.
23. The TimeNET tool. http://pdv.cs.tu-berlin.de/~timenet/.
24. The Xerces Java Parser. http://xerces.apache.org/xerces-j/.
25. The Xerces2 Java Parser. http://xerces.apache.org/xerces2-j/.
26. V. Datla and K. Goševa-Popstojanova. Measurement-based Performance Analysis

of E-commerce Applications with Web Services Components. In IEEE ICEBE,
pages 305–314, 2005.

27. T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester. Automatic Inclusion of Mid-
dleware Performance Attributes into Architectural UML Software Models. IEEE
Trans. Softw. Eng., 31(8):695–711, 2005.

896 E. Gómez-Mart́ınez and J. Merseguer

28. C. Woodside and D. Menascé. Application-Level QoS. IEEE Internet Computing,
10(3):13–15, 2006.

29. C. Woodside, J. Neilson, D. Petriu, and S. Majumdar. The Stochastic Ren-
dezvous Network Model for Performance of Synchronous Client-Server-like Dis-
tributed Software. IEEE Trans. Computers, 44(1):20–34, 1995.

30. C. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr, and J. Merseguer. Perfor-
mance by unified model analysis (PUMA). In ACM WOSP, pages 1–12, 2005.

Server Allocation in Grid Systems with On/Off
Sources

Joris Slegers, Isi Mitrani, and Nigel Thomas

School of Computing Science, Newcastle University, NE1 7RU
{j.a.l.slegers, isi.mitrani, nigel.thomas}@ncl.ac.uk

Abstract. A system consisting of a number of servers, where demands
of different types arrive in bursts (modelled by interrupted Poisson pro-
cesses), is examined in the steady state. The problem is to decide how
many servers to allocate to each job type, so as to minimize a cost func-
tion expressed in terms of average queue sizes. First, an exact analysis is
provided for an isolated IP/M/n queue. The results are used to compute
the optimal static server allocation policy. The latter is then compared
to two heuristic policies which employ dynamic switching of servers from
one queue to another (such switches take time and hence incur costs).

1 Introduction

Recent developments in distributed and grid computing have facilitated the host-
ing of service provisioning systems on clusters of computers. Users do not have
to specify the server on which their requests (or ‘jobs’) are going to be executed.
Rather, jobs of different types are submitted to a central dispatcher, which sends
them for execution to one of the available servers. Typically, the job streams are
bursty, i.e. they consist of alternating ‘on’ and ‘off’ periods during which de-
mands of the corresponding type do and do not arrive.

In such an environment it is important, both to the users and the service
provider, to have an efficient policy for allocating servers to the various job
types. One may consider a static policy whereby a fixed number of servers is
assigned to each job type, regardless of queue sizes or phases of arrival streams.
Alternatively, the policy may be dynamic and allow servers to be reallocated
from one type of service to another when the former becomes under-subscribed
and the latter over-subscribed. However, each server reconfiguration takes time,
and during it the server is not available to run jobs; hence, a dynamic policy
must involve a careful calculation of possible gains and losses.

The purpose of this paper is to (i) provide a computational procedure for de-
termining the optimal static allocation policy and (ii) suggest acceptable heuris-
tic policies for dynamic server reconfiguration. In order to achieve (i), an exact
solution is obtained for an isolated queue with n parallel servers and an on/off
source. The dynamic heuristics are evaluated by simulation.

The problem described here has not, to our knowledge, been addressed before.
Much of the server allocation literature deals with polling systems, where a single

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 897–906, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

898 J. Slegers, I. Mitrani, and N. Thomas

server attends to several queues [2,3,4,5,6]. Even in those cases it has been found
that the presence of non-zero switching times makes the optimal policy very
difficult to characterize and necessitates the consideration of heuristics. The only
general result for multiple servers concerns the case of Poisson arrivals and no
switching times or costs: then the cμ-rule is optimal, i.e. the best policy is to give
absolute preemptive priority to the job type for which the product of holding
cost and service rate is largest (Buyukkoc et al [1]).

A model similar to ours was examined by Palmer and Mitrani [10]; however,
there all arrival processes were assumed to be Poisson; also, the static allocation
was not done in an optimal manner. The novelty of the present study lies in the
inclusion of on/off sources, the computation of the optimal static policy and the
introduction of new dynamic heuristics.

The assumptions of model are stated in section 2. The analysis of the IP/M/n
queue, leading to the optimal static policy, is presented in section 3. Section 4
describes the dynamic heuristics, while section 5 shows the results of experiments
comparing the performance of the different policies.

2 The Model

The system contains N servers, each of which may be allocated to the service of
any of M job types. There is a separate unbounded queue for each type. Jobs
of type i arrive according to an independent interrupted Poisson process with
on-periods distributed exponentially with mean 1/ξi, off-periods distributed ex-
ponentially with mean 1/ηi and arrival rate during on-periods λi (i = 1, 2, ..., M).
The required service times for type i are distributed exponentially with mean
1/μi.

Any of queue i’s servers may at any time be switched to queue j; the re-
configuration period, during which the server cannot serve jobs, is distributed
exponentially with mean 1/ζi,j . If a service is preempted by the switch, it is
eventually resumed from the point of interruption.

The cost of keeping a type i job in the system is ci per unit time (i =
1, 2, ..., M). These ‘holding’ costs reflect the relative importance, or willingness
to wait, of the M job types. The system performance is measured by the total
average cost, C, incurred per unit time:

C =
N∑

i=1

ciLi , (1)

where Li is the steady-state average number of type i jobs present. Those quan-
tities depend, of course, on the server allocation policy.

In principle, it is possible to compute the optimal dynamic switching policy by
treating the model as a Markov decision process and solving the corresponding
dynamic programming equations. However, such a computation is tractable only
for very small systems. What makes the problem difficult is the size of the state
space one has to deal with. The system state at any point in time is described

Server Allocation in Grid Systems with On/Off Sources 899

by a quadruple, S = (j,n,u,m), where j is a vector whose ith element, ji, is the
number of jobs in queue i (including the jobs in service); n is a vector whose ith
element, ni, is the number of servers currently assigned to queue i; u is a vector
whose ith element, ui, is 0 if the ith arrival process is in an off-period, 1 if it is
on; m is a matrix whose element mi,k is the number of servers currently being
switched from queue i to queue k. The possible actions that the policy may take
in each state are to do nothing or to initiate a switch of a server from queue i
to queue k.

A numerical procedure to determine the optimal policy would involve trun-
cating the queue sizes to some reasonable level, discretizing the time parameter
through uniformization and then applying either policy improvement or value
iterations (e.g., see [11,12]). It is readily appreciated that the computational
complexity of that task grows very quickly with the number of queues, M , the
number of servers, N , and the truncation level. For that reason, we have con-
centrated on determining the optimal static allocation policy (which does not
involve switching) and comparing its performance with that of some dynamic
heuristics.

3 The IP/M/n Queue

If the server allocation is fixed, with ni servers assigned to queue i (n1+n2+. . .+
nM = N), then the M queues are independent of each other. Queue i behaves like
an isolated IP/M/ni queue and may be analyzed as such. To simplify notation,
the index i will be omitted in this section.

The state of the queue is described by the pair (j, u), where j is the number of
jobs present and u is 0 if the arrival process is in an off-period, 1 if it is on. Let
pj,u be the equilibrium probability of state (j, u). Also denote by μj the total
service completion rate when there are j jobs present: μj = min(j, n)μ.

The necessary and sufficient condition for stability is that the offered load is
less than the number of servers:

λη

μ(ξ + η)
< n . (2)

When that condition is satisfied, the steady-state probabilities satisfy the fol-
lowing set of balance equations (j = 0, 1, . . . ; u = 0, 1).

[λu + μj + ξu + η(1 − u)]pj,u = λupj−1,u + μj+1pj+1,u

+ [ξ(1 − u) + ηu]pj,1−u , (3)

where p−1,u = 0 by definition.
This model can be solved numerically by treating it as a ‘Markov-modulated

queue’. The Markovian environment that influences the behaviour of the queue is
the phase of its arrival process. Then one can compute performance measures by
applying either the spectral expansion or the matrix-geometric solution method

900 J. Slegers, I. Mitrani, and N. Thomas

(see [7,9]). However, the present model is sufficiently simple to allow both an
explicit exact analysis and an approximate solution in closed-form.

It is convenient to introduce the generating functions of the probabilities cor-
responding to off and on periods, respectively:

g0(z) =
∞∑

j=0

pj,0z
j ; g1(z) =

∞∑
j=0

pj,1z
j . (4)

Then the balance equations (3) can be transformed into a set of two equations
for g0(z) and g1(z).

[ηz − nμ(1 − z)]g0(z) = ξzg1(z)− μ(1 − z)P0(z) , (5)

[λz(1 − z)− nμ(1 − z) + ξz]g1(z)

= ηzg0(z)− μ(1 − z)P1(z) , (6)

where P0(z) and P1(z) are two polynomials involving ‘boundary’ probabilities
(corresponding to states with state-dependent departure rates):

P0(z) =
n−1∑
j=0

(n − j)pj,0z
j ; P1(z) =

n−1∑
j=0

(n − j)pj,1z
j . (7)

From equations (5) and (6), g0(z) and g1(z) can be expressed as rational
functions whose numerators involve P0(z) and P1(z), and a common denomina-
tor, d(z). The latter is quadratic and has two real zeros, z1 and z2, such that
0 < z1 < 1 and 1 < z2 < ∞.

The balance equations (3) for j < n−1 supply 2n−2 equations for the coeffi-
cients of P0(z) and P1(z). An additional equation is provided by the normalizing
condition g0(1)+g1(1) = 1. The final equation is obtained by observing that the
generating functions are finite in the interior of the unit disc and therefore their
numerators must vanish at z = z1.

This determines all unknown probabilities, and hence the full distribution of
the queueing process.

The average number of jobs present, L, is given by

L = g′0(1) + g′1(1) . (8)

Thus, the procedure for determining the optimal static allocation of servers
would use the solution described here to evaluate the cost function (1) for each
feasible allocation and then choose the best one. A server allocation (n1, n2, . . .,
nM), with n1 + n2 + . . . + nM = N , is feasible if the stability condition (2) is
satisfied for every queue.

It can also be shown that the tail of the queue size distribution is geometric
with parameter 1/z2 (see [8]). When the queue is heavily loaded, this leads to a
very simple approximation for the average queue size:

L =
1/z2

1 − 1/z2
=

1
z2 − 1

. (9)

Server Allocation in Grid Systems with On/Off Sources 901

Using that approximation speeds up the search for the optimal static server
allocation considerably.

4 Dynamic Heuristics

It is to be expected that a dynamic allocation policy which reacts to changing
queue sizes and switches servers when large disparities occur, can achieve lower
costs than even the best static policy. However, because of the size of the state
space, a computation of the optimal policy is impractical. Hence, our objective
is to design heuristic dynamic policies and compare their performance with the
optimal static policy.

Two heuristics will be examined. In both cases, switching decisions are made
by taking into account the currently observed system state and estimating the
costs that would be incurred over some subsequent period of time if (a) no action
is taken, and (b) one or more servers are switched from queue j to queue i. The
two policies differ by the way they estimate future costs.

The first policy will be referred to as the Average Flow heuristic. It ignores
the on/off periods and treats queue i as a deterministic fluid which arrives at
rate γi, given by

γi =
λiηi

ξi + ηi
. (10)

That fluid is consumed at rate niμi, where ni is the number of servers currently
allocated to queue i. Suppose that two queues, i and j, have current sizes ki and
kj , and currently allocated numbers of servers ni and nj, respectively. If no further
actions are taken, and both queues are stable (i.e., γi < niμi and γj < njμj), then
those fluid queues would decrement at constant rates and would empty in times
ki/(niμi − γi) and kj/(njμj − γj), respectively. The total holding costs incurred
would be proportional to the areas of the resulting triangles.

Hence, the Average Flow heuristic estimates the cost of taking no action with
queues i and j as

C0 =
cik

2
i

2(niμi − γi)
+

cjk
2
j

2(njμj − γj)
. (11)

On the other hand, if a decision is made to switch a server from queue j to
queue i, and that switch takes time 1/ζ (deterministic), then the service rate at
queue j immediately reduces to (nj − 1)μj , while that at queue i remains the
same for the duration of the switch and then increases to (ni + 1)μi. Assuming
that queue i does not empty during the switch, its size at the point when the
switch is completed would be equal to mi, where

mi = ki − (niμi − γi)/ζ . (12)

The total holding cost incurred in clearing both queues is estimated as

C1 =
ci(ki + mi)

2ζ
+

cim
2
i

2((ni + 1)μi − γi)
+

cjk
2
j

2((nj − 1)μj − γj)
. (13)

902 J. Slegers, I. Mitrani, and N. Thomas

At every arrival or departure event, the Average Flow heuristic evaluates C0 and
C1 for every pair of queues i and j, where i is the queue where the arrival occurred,
or j is the queue where the departure occurred. If C1 < C0, a server is switched
from queue j to queue i. If that inequality holds for more than one queue i, the
switch is made to the queue for which the difference C0 − C1 is largest. If a con-
templated switch would leave queue j potentially unstable (i.e., (nj −1)μj ≤ γj),
then it is not made. If, at a decision instant, a server is in the process of being
switched, it is counted as being already available at the destination queue.

The second policy will be referred to as the On/Off heuristic. When making
allocation decisions, it assumes that that the current phase of each arrival pro-
cesses, whether it is ‘on’ or ‘off’, will last forever. Again queue i is treated as a
fluid, but the arrival rate is taken to be γi = λiui, where ui = 1 if the queue i
arrival process is in an on-period and ui = 0 if it is in an off-period.

Switching decisions are made not only at arrival and departure instants, but
also when an arrival process changes phase from ‘on’ to ‘off’ or vice versa. As
well as evaluating the estimated costs C0 and C1, of doing nothing or switching
one server from queue j to queue i, the On/Off heuristic evaluates the costs
Cs, of switching s servers from queue j to queue i, for s = 2, 3, . . . , nj. This is
necessary because a phase change can make a big difference to the arrival rate
at a queue, requiring or releasing more than one server. When calculating Cs

for s > 1, one could assume that all s servers become available at queue i after
a switching interval of length 1/ζ. Alternatively, the assumption could be that
the s switches complete at different times: the earliest after an interval 1/(sζ),
the next after a subsequent interval 1/((s−1)ζ), etc. The first alternative would
be appropriate if the switching times are nearly constant, the second if they
are exponentially distributed. In both cases, the costs are evaluated by adding
together areas under linear segments.

As before, the switching decision that yields the largest cost reduction is taken.
If no reduction is possible, or if all estimated costs are infinite (that can happen,
for example, if all arrival processes are in an on-period and the corresponding
arrival rates are greater than the available service rates), then no action is taken.

5 Results

To illustrate the behaviour of the dynamic heuristics, and compare their perfor-
mance with that of the optimal static allocation policy, a cluster of servers was
simulated. For completeness, a simpler static policy was also included in some
comparisons. The latter is referred to as the ρ-rule: it allocates the servers to
job types in proportion to costs, ci, and offered loads, ρi = γi/μi (γi is given by
(10)). The ρ-rule is what one would apply without the benefit of the analysis in
section 3. Indeed, that was the static allocation used in [10].

The following parameters were kept fixed throughout.

Number of job types: M = 2.
Number of servers: N = 20.
Average required service times: 1/μ1 = 1/μ2 = 1.

Server Allocation in Grid Systems with On/Off Sources 903

In the first experiment, the average ‘on’ and ‘off’ periods were equal at the
two queues, and so were the average switching times: 1/ξi = 1/ηi = 100, i = 1, 2;
1/ζi,j = 1, i, j = 1, 2. The two arrival rates were also equal, and were increased
simultaneously. Some asymmetry was introduced by making type 2 jobs more
expensive than type 1: the holding costs were c1 = 1, c2 = 1.5. The simulated
time for each run was 10000 time units. Since each arrival process is ‘on’ for
about half of that time, if λ1 = λ2 = 10, a total of about about 100000 jobs
go through the system. (Note that the simulations were required only for the
dynamic policies. The static ones could have been solved numerically, but since
the simulation programs could easily be adapted to different policies, they were
used in all cases.)

Figure 1 shows the average costs achieved by the two static and two dynamic
policies, as the load increases. As expected, at light loads it does not matter very
much which policy is adopted. However, differences start appearing at medium
loads and become ever larger at heavy loads.

0

1000

2000

3000

4000

5000

6000

7000

8000

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

co
st

Arrival rates (λ1 = λ2)

Dynamic, on/off

♦ ♦
♦ ♦

♦ ♦

♦

♦

♦ ♦

♦
Dynamic, average flow

+ +
+ + +

+ +

+
+

+

+
+

+
Optimal Static

� �
�

�

� �

�
�

� �

�
Static, Rho rule

×× × ×× × × ×× × ×× × ×× × ××
× ×

×
×

×

Fig. 1. Policy comparisons: increasing λ1, λ2

The ρ-rule has the worst performance. Its application results in 8 servers being
allocated to type 1 and 12 servers to type 2 throughout. Hence, when λ1 ≥ 16,
the system becomes unstable and in the long run incurs infinite cost. The optimal
static policy allocates 9 servers to type 1 and 11 to type 2 for most of the range,
changing to 10 and 10 when the arrival rates become greater than about 17. That
policy achieves considerably lower costs than the ρ-rule, and remains stable for
λi < 20. The benefits of the dynamic allocation policies become significant for
λi > 13. Their performance is similar, although the Average Flow policy appears

904 J. Slegers, I. Mitrani, and N. Thomas

to be consistently slightly better than On/Off. We point this out as an observed
fact, but cannot explain it. Intuitively, one might have expected that a heuristic
which takes into account the current state of the input stream would make better
allocation decisions.

Figure 2 shows the effect of increasing the average switching time, in a rea-
sonably lightly loaded system (λ1 = λ2 = 10). We observe that the cost of the
Average Flow heuristic increases initially and then stops changing significantly:
it performs slightly better than the optimal static policy (whose allocation does
not change) when 1/ζ < 4 and then becomes slightly worse. On the other hand,
the On/Off policy shows an initial steady improvement before its cost also stops
changing significantly.

The static allocation policy based on the ρ-rule is not included in these and
subsequent comparisons because its performance can only be worse than that of
the optimal static policy.

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

A
ve

ra
ge

co
st

Average switching time: 1/ζ1,2 = 1/ζ2,1

Dynamic, On/Off♦
♦

♦ ♦
♦

♦
♦

♦
♦ ♦ ♦

♦
♦ ♦ ♦

♦
♦

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Dynamic, Average Flow

+
+ +

+ + + + + + + + + + +
+ + + + + + + + + + +

+
Optimal Static

� �

�

Fig. 2. Performance of different policies for increasing switching times

The last experiment involves a system with asymmetric traffic characteristics.
Type 1 jobs arrive in a steam which is ‘on’ most of the time: ξ1 = 1/100000,
η1 = 1, λ1 = 10. That stream would need at least 10 servers in order to remain
stable. Jobs of type 2 arrive in short bursts, with long intervals in between:
ξ2 = 1/25, η2 = 1/500 (i.e., the arrival stream of type 2 is ‘on’ for less than 5%
of the time). The arrival rate of type 2 during ‘on’ periods, λ2, is increased from
20 to 120 in steps of 5. The switching costs are very small.

Figure 3 illustrates very clearly the benefits of using a dynamic allocation pol-
icy. Again, there is not much difference between the performance of the Average

Server Allocation in Grid Systems with On/Off Sources 905

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

20 40 60 80 100 120

A
ve

ra
ge

C
os

t

λ 2

Dynamic, On/Off

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
♦

♦ ♦
♦ ♦ ♦

♦
Dynamic, Average Flow

+ + + + + + + + + + + + + + + + +
+

+
+ +

+
Optimal Static

� � �

� �

� � � �
�

�
� �

�
�

�
�

�

�
�

�

�

Fig. 3. One steady and one bursty source: increasing λ2

Flow and the On/Off heuristics. However, the average cost achieved by either of
them can be an order of magnitude lower that that of the optimal static policy.

6 Conclusions

We have addressed a resource allocation problem that is of considerable impor-
tance in the context of distributed computing and grid systems with hetero-
geneous, bursty demand streams. Under Markovian assumptions, the optimal
static allocation policy can be determined quite simply, using the analytic solu-
tion provided in section 3. An even simpler approximate solution is also available.

Two dynamic heuristic policies were proposed and evaluated by simulation.
When the system is heavily loaded, both achieve large savings in costs, compared
to the best static policy.

Further work is required in several directions. First, it is clearly necessary
to carry out more extensive evaluations and comparisons for different system
configurations (including larger numbers of job types), cost structures and pat-
terns of demand. Next, are there other, better dynamic heuristics that react
more promptly and accurately to changes of state? Also, it would be desirable
to implement the proposed heuristics in a real grid system and measure their
performance. Finally, how would the resource allocation problem change if the
servers, too, can be ‘on’ or ‘off’ (they may be subject to breakdowns and repairs,
or for other reasons become unavailable from time to time)? These and other
extensions will be tackled in the future.

906 J. Slegers, I. Mitrani, and N. Thomas

Acknowledgements

This work was carried out in the framework of the collaborative project DOPCHE
(Dynamic Operative Policies for Commercial Hosting Environments), funded by
the UK Engineering and Physical Sciences Research Council under its E-Science
programme. The support of the Network of Excellence EuroNGI, funded by the
EU, is also acknowledged.

References

1. C. Buyukkoc, P. Varaiya and J. Walrand, “The cμ-rule revisited”, Advances in
Applied Probability, 17, pp 237-238, 1985.

2. I. Duenyas and M.P. Van Oyen, “Heuristic Scheduling of Parallel Heterogeneous
Queues with Set-Ups”, Technical Report 92-60, Department of Industrial and Op-
erations Engineering, University of Michigan, 1992.

3. I. Duenyas and M.P. Van Oyen, “Stochastic Scheduling of Parallel Queues with
Set-Up Costs”, Queueing Systems Theory and Applications, 19, pp 421-444, 1995.

4. G. Koole, “Assigning a Single Server to Inhomogeneous Queues with Switching
Costs”, Theoretical Computer Science, 182, pp 203-216, 1997.

5. G. Koole, “Structural Results for the Control of Queueing Systems using Event-
Based Dynamic Programming”, Queueing Systems Theory and Applications, 30,
pp 323-339, 1998.

6. Z. Liu, P. Nain, and D. Towsley, “On Optimal Polling Policies”, Queueing Systems
Theory and Applications, 11, pp 59-83, 1992.

7. I. Mitrani and D. Mitra, “A spectral expansion method for random walks on semi-
infinite strips”, IMACS Symposium on Iterative Methods in Linear Algebra, Brus-
sels, 1991.

8. I. Mitrani, “Approximate Solutions for Heavily Loaded Markov Modulated
Queues”, Performance Evaluation, 62, pp 117-131, 2005.

9. M.F. Neuts, Matrix Geometric Solutions in Stochastic Models, John Hopkins Press,
1981.

10. J. Palmer and I. Mitrani, “Optimal Server Allocation in Reconfigurable Clusters
with Multiple Job Types”, Journal of Parallel and Distributed Computing, 65/10,
pp 1204-1211, 2005.

11. E. de Souza e Silva and H.R. Gail, “The Uniformization Method in Performability
Analysis”, in Performability Modelling (eds B.R. Haverkort, R. Marie, G. Rubino
and K. Trivedi), Wiley, 2001.

12. H.C. Tijms, Stochastic Models, Wiley, New York, 1994.

Context-Broker Service Architecture for AmI
Systems Through Mobile-Agents and Ontologies

as Middleware

Borja Miñano, Isaac Lera, Pere P. Sancho, Carlos Juiz, and Ramon Puigjaner

Universitat de les Illes Balears
Ctra. Valldemossa, km. 7,5

07122 Palma de Mallorca, Spain
Telephone: +34-971-17-2424

cjuiz@uib.es

Abstract. Semantic web is mainly addressed to distributed web systems
development. The semantic web organizes the information in a way that
it is possible to find it even the amount of data is enormous. The semantic
web provides a way to transform the information into knowledge by stor-
ing the data in concepts related by their meaning. This work-in-progress
paper is going to show that this technology eases the construction of
autonomous systems through agents. Particularly, we have developed an
agent-oriented context-broker architecture that implements a smart con-
ference room. The main contribution of the paper is the emulation of
an ambient intelligent system, where mobile agents are working with
well-defined ontology knowledge. Ontologies represent the main layer in
the semantic web architecture. Thus, we use the ontology engineering
features to represent a middleware infrastructure.

1 Introduction

Nowadays, World Wide Web (WWW) contains a lot of information but in many
cases it is either redundant or simply not correct [1]. Searching for a specific con-
tent over the WWW through a syntactic search engine may result on an enor-
mous amount of data, but very little useful information. Obviously, this unfortu-
nate situation is caused by the search engine and the knowledge-representation,
which is based on word matching and not on word meaning [2]. For example, if
we look for a paper about Garćıa Márquez, we may find dozens (even hundreds)
of articles written by Garćıa Márquez but we will surely have to look up in the
list which exactly are about him. The semantic web tries to fix this kind of prob-
lems by means of semantic concepts management. The semantic web organizes
the information in a way that it is possible to find it even the amount of data
is enormous. The semantic web provides a way to transform the information
into knowledge by storing the data in concepts related by their meaning. The
semantic web development is based on several technologies, e.g. the Resource
Description Framework (RDF) and the Ontology Web Language (OWL).

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 907–916, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

908 B. Miñano et al.

RDF is a metadata specification of models providing a structure to organize
the web information. OWL is based on RDF, but its contribution is the lexicon to
represent semantic information and then to build ontologies. Ontologies manage
the knowledge of the semantic web in the upper layer, RDF structures the web
documents which are the information on the web [3]. Ontologies are used in
semantic systems to interchange knowledge.

An ontology is a specification of a conceptualization [4], i.e. a graph of con-
cepts where nodes are representing concepts and the edges are representing re-
lationships among these concepts. Figure 1 shows the Standard Ontology for
Ubiquitous and Pervasive Applications (SOUPA). SOUPA is a set of ontologies
for supporting pervasive computing applications. OWL is recommended by the
W3C for its use in the conceptual descriptions.

There are different reasons for developing models based on ontologies:

– Knowledge sharing: It permits computational entities, e.g. agents and bro-
kers, using a set of common objects on a specific context whereas they are
interacting.

– Knowledge reuse: It builds an ontology integrating in its definitions other
well-defined web ontologies from different knowledge bases, e.g. spatial, tem-
porary, etc.

– Logical inference: It uses different reasoning mechanisms to check the con-
sistency of the ontology and its knowledge, e.g. to check for unintended rela-
tionships between classes and to automatically classify instances in classes.

On the other hand, a middleware infrastructure for AmI systems must support:

– Extensibility: If new components are detected in the AmI system then they
need to communicate each other and offer their services.

– Independency: The new component may be different to the other components
belonging to the AmI system.

– Avoidance of central components: In our case, we are developing an AmI sys-
tem by using a context-broker infrastructure which is simpler but unsafe. In
future works we are going to distribute our services among different brokers.

We seize the ontology engineering benefits the support to middleware infrastruc-
tures. Thus, it is necessary to include the ontology information in each agent o
software element of the AmI system. The extensibility and independency fea-
tures are obtaining through ontology knowledge sharing, e.g., one ontology may
be importing another ontology. Also, the ontology expressiveness permits the
interaction and independency among AmI agents. In this way, we are extending
the knowledge among system components.

Ambient Intelligent (AmI) systems are based on the ontological description of
their contexts [5]. Some implementations of those systems use brokers for manag-
ing the distributed information of sensors, monitors and users and transforming
this information into knowledge through inference engines (reasoning) [6]. Non-
functional information of AmI systems is crucial to their successful operation.

An Agent is the software/hardware that interact in ubiquitous systems and
AmIs. The representation language has been a historical problem for the agent

Context-Broker Service Architecture for AmI Systems 909

Fig. 1. SOUPA ontology diagram

technology since it is necessary to find out a way to describe common concepts
for agents. This representation must be independent of the implementation of
the agents, themselves.

In this paper we are going to show how a context-broker architecture may
successfully implement an AmI system through mobile agents. Actuality, we are
still building the system. This is the prototype. The server of this centralized
architecture provides several services for a reduced environment (space) and it
is able to communicate with other external agents using ontologies. These onto-
logies represent AmI knowledge and middleware communication data together.
They may help in the task of communicating mobile agents. Our case study is
based on the emulation of a Smart Conference Room (SCR) where the external
agents are the potential attendants and the speakers (i.e. their portable devices),
and the environment (ambient) agents are several sensors and other intermediate
agents. The communication among all these actors in the SCR takes advantage of
the semantic web knowledge representation by means of the ontological language
that agents share.

Therefore, in section 2 we are going to depict the context-broker architecture
by means of a layered model. In the next section, some examples of services
for the context-broker architecture are shown by means of a Smart Conference
Room case study. Finally, we conclude with our present results, open problems
and future work.

2 Context-Broker Architecture

Our context-broker architecture is constituted by a central agent (the broker
itself), which is in charge of reasoning and communicating with the environment
and the external agents. The users will interact with the AmI agents through the
central context-broker infrastructure. The ambient and the external agents send

910 B. Miñano et al.

Fig. 2. Context-broker architecture

the necessary information about the environment, e.g. the time, etc. Figure 2
shows the different elements of the context-broker architecture. Our context-
broker has three modules, namely: the reasoner, the knowledge base and the
services module. The knowledge base stores the information about the ambient
through an ontological description. We have used the Jena library to manage
the ontology and to create the ontological database. The services define the
SCR activity that the context-broker manages. The reasoner infers from the
facts based on axioms, laws, rules, etc. and according to the services defined.

The context-broker stores relevant facts about the ambient into the know-
ledge base by means of concepts which were defined in an ontological way. The
reasoner infers new knowledge by reasoning over the knowledge base and the
predefined laws [7]. The context-broker communicates with mobile agents by
means of ACL messages from the FIPA protocol. As far as we know, mobile
devices do not implement an agent architecture. This is the cause why we had
to use the SOAP protocol. The SOAP protocol provides an independent layer
for the communication among agents.

As we show in figure 2, intermediate agents communicate with the context-
broker through ACL messages in SOAP. In fact, the context-broker is another
agent but its features are completely different to mobile and ambient agents [8].
Its main difference is the mobility; the context-broker is static whereas the users
are potentially mobile. However, the context-broker is managing the ambient
and the intelligence of the system. In the SCR case study, the context-broker
is part of the conference room and the services it provides are related to the
use of this room. The agents are classified in two different groups: those which
are sensoring the conference room, and the intermediate agents which are com-
municating with the context-broker and the devices that are not implementing
an agent architecture. As we can see, intermediate agents are only necessary
for implementation purposes (unfortunately, most of the devices are not mobile
agents).

In order to implement the environment (ambient) agents and the context-
broker we use JADE, a middleware for mobile agents (FIPA). Figure 3 shows

Context-Broker Service Architecture for AmI Systems 911

the different layers of our architecture which is not only suitable for SCR but also
for any ambient intelligence system. JADE is between the agents and the devices
(in this case the emulation of SCR hardware through a Java virtual machine).
In the case of not-JADE agents, intermediate agents are located between JADE
and them.

Fig. 3. Layered model

Each ontological concept about the SCR is stored in a database which is
only accessed by the context-broker. We have implemented the database and
the ontology with Jena, an API written in Java that provides a programmatic
environment for RDF, RDFS and OWL. One Jena functionality is to create or
load a database from an ontological file, it allows us to have a persistent onto-
logical model. But working directly with Jena can be difficult, this is the reason
why we prefer to work also with Jastor on top of the Jena framework. Jastor has
the ability to transform any OWL description file into Java Beans enabling con-
venient, type safe access and eventing of OWL stored in Jena. Jastor generates
Java APIs, implementations, factories, and listeners based on the properties and
class hierarchies in the ontologies.

There are two ways to access the information stored in the ontological know-
ledge base: either using Jena or using Jastor. As we mentioned before, Jastor is
easy to use but its major drawback is the necessary explicit knowledge of the
URIs for conceptualization management.

2.1 Agent Recognition

Another important feature of the AmI systems is agent recognition, especially
in the case of external agents. For example, in the SCR case, the agents are
running in mobile devices entering and exiting the conference room. The sys-
tem must provide services only inside the conference room but not outside.
JADE provides a structure of yellow pages in which the agents are registered
when they enter the room and deleted when they leave it. This seems easy,
but external agents have to discover the remote platform in which the broker
is running. Fortunately each platform has a MTP address named by default
http://[ComputerName]:7778/acc. If we look around the network we can find
the platforms running on it. The yellow pages we mentioned before are named
in the standard FIPA as directory facilitators for agents and services. This di-
rectory structure eases the service execution and the recognition of agents by

912 B. Miñano et al.

the context-broker. Is possible to contact an agent directly if we know its Agent
Identifier (AID), but in intelligent ambients it is difficult to know the AID of
all agents. In the SCR case, some ambient agents are intermediate agents due
to the absence of agents implemented in mobile devices. The context-broker pe-
riodically detects the registered agents in the directory using a special behavior,
the Tickerbehavior. Thus, the context-broker seeks the directory for the agents
and reads the services offered to them. In fig. 4 the context-broker is registering
itself in the directory since it is an agent, too.

Fig. 4. Directory Facilitator

2.2 Behavior and Performance

While no ACL messages are received, the SCR system is idle in order to re-
duce CPU consumption. The resources in mobile devices are limited so the less
instructions running the more power efficiency of the devices. This is possible
thanks to the use of blocking messages. These blocking messages block the be-
havior thread until a message is received which fits in the template established in
the behavior. Another performance improvement is that agents are event-driven:
when an event is received the agent performs its tasks and blocks again. This is
an advantage of using JADE as a platform to implement agents.

3 Context-Broker Ontology

As we stated before, the context-broker uses an ontology to manage the relevant
information to the system. The ontology used for this project is quite simple,
but in future works we will increase the ontology domain and complexity. Our
ontology consists of three differential concepts: person, appointment and file
concepts.

The person concept has three properties, namely: the name of the person,
their Agent Identifier (AID) and the AID of the Directory Facilitator DFname
in which it is registered. This concept is used to identify the external agents
that are presumably managed by a person. All the actions of this person will be
registered in the system with this concept.

The appointment concept is shown in fig. 5. Some properties of this concept
are used to negotiate an appointment between two or more agents. When the
negotiation has finished, these properties are no longer necessary, but we decided

Context-Broker Service Architecture for AmI Systems 913

Fig. 5. Appointment ontology

to keep them to have the possibility to renegotiate an appointment in the fu-
ture. The properties are the fixedDate of the appointment, a description of the
appointment, the invitingPerson, the invitedPerson that can be more than one.
These two last properties are person concepts. The negotiation-related properties
are startingOn, endingWith and possibleDates.

The file concept has two properties, the path where the file can be downloaded
and propertyOf, the person who owns it.

3.1 Using Performance Ontology

We have incorporated in this project performance information to measure the
agents’ behavior. This performance information may be used by the agents
themselves in order to manage their functional behaviour. Therefore, we have
imported a Performance Ontology [9,10,11] in order to use the performance
knowledge previously defined by performance engineers in the AmI system. This
last feature provides some additional behavioural advantages for AmI agents,
for example, the possibility of controlling the waiting service time of agents’
requests to the context-broker and, at the same time, the context-broker may
balance the agents’ workload in order to guarantee a service level agreement. In
the fig. 6 we show the measures concept of the performance ontology model. This
graph shows the next units: time (intervals, durations, etc.); the abstract concept
number, this parameter is refers to variable units description, by example the
throughput concept has not initials units which depends the context ambient;
probability and others description units as typeOfMeasure.

The services provided by the context-broker together with the behaviour of the
functional agents contain performance information related with their execution.
This performance information (service time, priority, response time, utilization,
etc.) may help to the context-broker to manage the AmI system.

4 Context-Broker Services

In the SCR case, the context-broker provides mainly services for the speakers
and the attendants. Of course, other services may be added in the future, at
the cost of increased resource consumption in the AmI system. In our present
implementation of the SCR, there are three services. In the following sections
we will introduce them.

914 B. Miñano et al.

Fig. 6. Measures model in the Performance Ontology

4.1 Intelligent Room Reservation

The context-broker offers a reservation service for external agents. It uses a ca-
lendar of the conference room reservations. The external agents ask for the con-
ference room and the context-broker accepts or declines the petitions depending
on the room availability. The external agents may offer a flexible petition to allow
a better adjustment of the calendar by the context-broker and even negotiate
the reservation. This petition may be a set of some possible dates of reservation.
We use the appointment class of the ontology to negotiate this reservation. In
order for the appointment to be concreted, the agent and the context-broker
have to create a temporal appointment concept in their ontological models to
make the negotiation possible using semantic information. When the negotia-
tion is finished this temporal must be deleted and a new definitive appointment
instance created.

4.2 Upload Presentation

In order to ease the speakers’ presentation, it is possible to upload the docu-
mentation in the projection service (some PC projector) before the meeting.
Once the conference room is reserved, an external agent may send a presenta-
tion, ready to be shown, to the context-broker. We use the file class to make
possible the upload of the file. The path property shows the location of the file
to upload, when the system has it the projector can get the file. In the example
code, the projection service implements the ProposeResponder protocol when
it receives the presentation document. The storage of the file is controlled by the
protocol.

Context-Broker Service Architecture for AmI Systems 915

4.3 Download Presentation

The attendants may download the presentation (with the speakers’ consent) to
their respective mobile devices once the presentation has ended. The presentation
can also be broadcasted to all registered attendants. The broadcast uses the file
class of the ontology, like the above service. Alternatively, this broadcast can be
done before the conference.

In the code in fig. 7 we show a part of the context-broker implementation
where it looks for receivers which have registered agents in the directory facili-
tator. These registered agents are users of the service Appoinment21. The File-
ConversationBeh is a behavior that implements the protocol ProposeResponder
and it sends the documentation file to these registered agents.

List receivers=new ArrayList();

myAgent.searchPerson(null,null,

"Appointment21","personal-agent",

"cb-ontology",receivers,false);

myAgent.addBehaviour(new FileConversationBeh(

myAgent,file,receivers));

Fig. 7. Searching the agents registered in the service

5 Conclusions and Future Work

Semantic Web can not only be used to implement the next generation of WWW
but also to facilitate the creation of new computational environments as AmI
systems. In our paper, we have shown that the development of such systems may
be delayed in some cases due to the lack of convergence of implementation of
several technologies.

An example of that is the SCR case study, where a Smart Conference Room
is emulated. This simple case study shows that middleware and mobile agent
devices seem to be a step back to ontology development to implement AmI sys-
tems. We have provided an architecture circumvallating the problem by using
the JADE API and the FIPA standard. Although the project is at an early stage,
we can foresee some problems that may arise before the final implementation of
SCR. Surely, the main development problems will come from device integration,
resource consumption and context-broker performance. However, we are going
to build a real SCR, in order to illustrate the power of using ontologies joined
to AmI systems and to detect any other potential problems. Another interesting
future task will be the research on a complete methodology for the design of
AmI architectures. Our immediate future work is to experiment with our SCR
implementation in the laboratory in order to measure the different magnitudes
of these potential drawbacks and then to simulate the complete network archi-
tecture before the final construction of the SCR.

916 B. Miñano et al.

Acknowledgement

The authors acknowledge the partial financial support of this research through
the programme Accions especials del Govern de les Illes Balears from Conselleria
d’Economia, Hisenda i Innovació.

References

1. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. The MIT Press (2004)
2. Castells, P.: La web semántica. Sistemas Interactivos y Colaborativos en la Web

(2003) 195–212
3. Sanz, I., Pérez, J., Berlanga, R.: Referencia para la integración semántica de

información (2002)
4. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisi-

tion 5(2) (1993) 199220
5. Behrendt, W., Goyal, S., Westenthaler, R.: Metokis-towards a seamless content

and knowledge exchange infrastructure (2005)
6. Wang, X.: Ontology-based context modeling and reasoning using owl (2004)
7. Lera, I., Juiz, C., Puigjaner, R.: Web operational analysis through performance-

related ontologies in owl for intelligent applications. Lecture Notes in Computer
Science (2005) 612615

8. Jha, R., Iyer, S.: Performance evaluation of mobile agents for e-commerce appli-
cations. In: HiPC. (2001) 331–340

9. Lera, I., Juiz, C., Puigjaner, R., Kurz, C., Haring, G., Zottl, J.: Performance
assessment on ambient intelligent applications through ontologies. In: WOSP ’05:
Proceedings of the 5th international workshop on Software and performance, New
York, NY, USA, ACM Press (2005) 205–216

10. Lera, I., Juiz, C., Puigjaner, R.: Performance-related ontologies for on-line perfor-
mance assessment of intelligent systems. In: Proceedings of the 20th International
Conference on Advanced Information, Networking and Applications, Viena, Aus-
tria (2006)

11. Lera, I., Sancho, P.P., Juiz, C., Puigjaner, R., Zottl, J., Haring, G.: Performance as-
sessment of intelligent distributed systems through software performance ontology
engineering (SPOE). Science of Computer Programming (2006)

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 917 – 926, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Routing Information System and HOIDS for Detection
Method of Vicious Attack in Large Networks

Dong Hwi Lee1, Kyong Ho Choi1, Kuinam J. Kim1,*, and Sang Min Park2

1 Dept. of Information Security Kyonggi University,
71 Chungjung-Ro, Sedaemun-Gu Seoul, Korea

dhclub@naver.com, econckh@kyonggi.ac.kr
2 Dept. of Industrial Engineering Incheon National University,

smpark@incheon.ac.kr

Abstract. The rapid increase of cyber terrorism is threatening the basis of in-
formation society; especially, the paralysis of network by malignant traffic
could result in national loss in a short period of time which demands a urgent
preparatory plans. Related to this, to ensure the urgent preparatory ability
against national cyber safety threat, there are many studies being conducted on
early alert system for national cyber threat, however, because of the technologi-
cal problem and limitation of system efficiency, practical research is not on the
stage of visibility. The most principal plan in correspondence of new cyber
threats is the intensification of awareness of user safety along with establish-
ment of improved detecting system against threat of modification. For this, this
study will analyze the problem of existing uniformed detecting method and
suggest an upgraded detection method through analysis of correlation of RIS
and HOIDS in improved safety system which is the model is currently in opera-
tion with development of proto type.

Keywords: Vicious Attack, Early Warining, Intrusion Detection System,
Routing Information.

1 Introduction

Although the activation of internet based industry in 21c is creating vast economic
values, the rapid increase of cyber terrorism, using the circulation of computer virus
as the reverse function of information era, malicious hacking and etc, is threatening
the basis of information society and in need of urgent preparatory plans. Especially, as
the paralysis of network and interference of electronic transaction, which are now
rising as the main issues currently, to ensure an urgent preparation plan for the factors
of various cyber threat such as malicious worm, virus and hacking, that could result is
enormous national loss, is brought into attention as a very important factor for safety
management tasks.

Malicious attack could be named as virus, worm and a comprehensive term that in-
cludes hacking techniques applied to social engineering technique which is now

* Corresponding author. harap123@daum.net

918 D.H. Lee et al.

getting attention these days and this could result in unintentional information outflow
and social/financial damages for users of information communication device and
information communication system. Although the existing studies have suggested
preparatory plans for these cyber threat factors, this has limitation that each threat
factors are separately analyzed. Also, since recent computer virus or worm is mostly
manipulated by the creator, the trend of recent cyber threat is resulting in large scale
damages in vast areas in short time with automation, dispersion and sophistication.
Furthermore, the lack of manpower and technology of safety control institutions and
operation of individual information safety system is creating a lot troubles in dealing
with safety accidents.

The reality of cyber threat is showing the limitation of existing safety system to
new threats or mutation. To overcome this limitation, the need for new detective de-
vice is increasing and the study of Honey Net, Honey Pot is not in progress. Honey
Systems are decoy servers or systems setup to gather information regarding an at-
tacker or intruder into your system. Therefore, Honey System refers to a system that
provides the information that could be helpful for safety intensification only by col-
lecting the information of the attacker which is the system that proves its value by
being attacked by the hackers. Honey Pot system as it is shown in its name ‘honey
pot’, is used for tempting someone [1, 2]. The studies related to Honey Net and
Honey Pot was used as a method mostly through detecting the action pattern of mali-
cious worm virus. Especially, Honey Net is effective for detecting malicious traffic in
large scale network [3].

In this study, to intensify the preparatory ability of cyber threat in mid to large
scale network, effective detecting technique is planned and operated with the method
of improving the existing detective techniques through analyzing correlation of
HOIDS(Honey Net Intrusion Detection System) using RIS(Routing Information Sys-
tem) through routing information. Based on the information extracted from here, the
preparatory plan such as blocking of the threat, speculation of packet and network
forensics will be executed.

2 Related Work

2.1 Routing Registry System

Routing is providing a route for a packet to reach from the starting point to arrival and
it is conducted through the router.

Router always contains routing information and this actually is the network IP ad-
dress connected to the router or the network IP addresses that is transferred from other
routers. The network IP addresses are used as a basic information for the routing at
the router and this, generally, is called routing information and the saved routing in-
formation and the actual routing information on the Internet is compared as Fig.1. and
grasp and solve the problem[4].

Since the routing information in this routing registry system is saved to one file,
when the routing information is enlarged, it could decrease the performance of this
system.

 Routing Information System and HOIDS for Detection Method of Vicious Attack 919

Fig. 1. Routing registry system

2.2 Network Forensics

The existing studies on network forensics were mostly focused on collecting, studying
and keeping information of forensic in mid to large scale network. As the area of
primary, the collecting of forensic information, analysis and arrangement of linkage
of information, and safe keeping of analyzed information. However, until recently, the
attention was only on collecting the information safely and rather than the network
forensics information, the definition and acquirement of system forensics information
that has more detailed information was grabbing the attention.

Fig. 2. Network Forensics Information

However, recently, with the need for large scale correspondence system getting
enlarged, to judge the current network danger level and rapidly cope with the situa-
tion, the studies on the network device is in progress and Fig. 2 is an important for
reproducing the situation when the digital crime has been conducted and includes the
status and setup information of the router, the time of accident and version informa-
tion. The routing protocol and routing table information is the information that could
detect the attacker’s information safety device circuit possibility. [5].

920 D.H. Lee et al.

Without understanding the linkage between the information and consideration of
applied plan through analyzing the collected network forensic information, the net-
work forensics cannot but to be used in fragment.

2.3 Early Alarm System

For the early alarm system of the traffic, the weekly traffic amount of wired-network
was predicted by applying seasonal ARIMA model. [6] By using the wavelet analysis,
the method to easily classify the abnormalities both in short and long term for the
traffic situation through the each filtered signals by separating the original traffic into
each time frame.[7] Y.Shu suggested an optimal solution to predict the non-linear and
non-rectification high speed network traffic with the Fuzzy-AR model.[8] The main
common technology that Hellerstein, F.Zang and Y.Shu used is that they suggested
the model that the prediction of the situation is possible through analyzing the critical
masses for the situation that large scale traffic is congesting and occurrence of abnor-
mality. However, the characteristic of recent traffic congestion occurrence threat is
not just a simple port attack or successive attack but evolving into a dispersed attack-
ing method according to artificial intelligence technique and irregular attacking speed
[9] which makes hard to predict recent cyber threats with the analysis method reliance
to the method that detect the traffic just by measuring. The prediction and alarming of
cyber threat through the analysis models in above suggested studies has the limitation
considering that it is vulnerable that N-IDS(Network Intrusion Detection System)
cannot be detected and approaching method to mutation is the pattern of cyber threat.

3 Proposed Structure

The most important factor in dealing with the new threat is constitution of early detec-
tion of attack, following analysis technique and each management technique and
mechanism to be organically connected as unified safety system. In this study, by
consisting RIS and HOIDS with improved safety system, the optimum system was
designed to deal with the technique that detect early malicious virus and mutation
virus.

3.1 RIS(Routing Information System)

The study will look at the reporting process of abstracting and analyzing the necessary
proofs by collecting the network traffic flows and transmitted contents. The focus of
this study is the collection and analysis of real time information for the transmitting
data.

Fig. 3. represents the RIS structure. Since the router information is volatile, the
router information is saved to the RIS server on the network and each local server.
Fig.4 is consisted of the part that processed the set of procedures saving and canceling
the information on routing DB and DB to save the routing information and user inter-
face that enables the users to search the routing information that is saved in routing
registry.

 Routing Information System and HOIDS for Detection Method of Vicious Attack 921

Fig. 3. RIS Structure

Fig. 4. Routing Information system

To solve the problem of information quantity in large scale network, the 1/16 and
1/32 sampling technique is used. For the sampling technique, the RIS information is
periodically received from the local server and automatically produced. The interface
part is used for understanding operation situation and performance analysis.

3.2 HOIDS(Honeynet Intrusion Detection System)

The constitution of the HOIDS and operation structure is as Fig. 5. The cyber threat
factor is analyzed and collected for the event of place of each unusable IP from the
place of network. The collected information is compared and analyzed with the event
patterns of each safety device and judged of potential weaknesses. The final analysis
of expansion of malicious event and multiplication in Honey Pot, the detection
method of each safety device would be improved.

Fig. 5. HOIDS Operating Structure

922 D.H. Lee et al.

In HOIDS, the event detection process is conducted as Fig.6. First, by classifying
the unusable IP detection area in the large scale network and collected by the gateway
with each sensor. Second, by classifying matching event and non-matching event for
the malicious event and analyze the danger factors. The reason for detecting non-
matching event is to detect the mutation malicious event at an early stage.

Third, the events and information that is collected on each safety device and net-
work is sent to HOIDS database. Forth, in Fig.6, the rate of fragility of internal net-
work and property, expansion and dispersion of current worm and virus, range of
mutation for each virus and evaluation of internal and external threat information is
evaluated for total evaluation.

Fig. 6. The Evaluation Method by HOIDS Events

Fifth, by evaluating the rate of threat in each step and classify the level of threat
and transfer and block the threatening information to each safety device. Sixth, the
evaluated information is sent to the database and indexed by each time frame. The
indexed information is accumulated to be defined as the evaluation values in total
evaluation to help to make more accurate evaluation.

3.3 The Improved Safety Structure with RIS and HOIDS

The improved safety system structure is consisted as Fig.7. First, through early de-
tected information from HOIDS, it is applied to existing safety system to find the
information.

Fig. 7. RIS & HOIDS Structure

 Routing Information System and HOIDS for Detection Method of Vicious Attack 923

Second, as in Fig.8, it is detected by finding the applied information and the local
IP from RIS or analyzing the expansion pattern of malicious virus event. The early
detected information from HOIDS in detail, that is, specific port, pattern of IP expan-
sion, and packet information is compared to existing safety system and detect the non-
matching pattern. The detected information is analyzed in RIS about the mutation
event through the analysis of correlation and command to block to each safety device.

Fig. 8. Correlation Operating Structure of RIS and HOIDS

4 Performance Analysis

4.1 Analysis Environment

The verification was conducted for real tasks on the K institution network under the
condition of common analysis environment in the 2 large scale networks that uses
more than 1GB speed. Since it is not equipped with the safety structure design on
improved infra structure, it went through the enforcement of measurement objective
and environmental preparatory step for the verification. The cited K institute envi-
ronment is as followings.

The scale of connecting resources into the intra net system is 500 of various kinds
of servers, Client: Workstation level PC 10,000, the size of internal users: 20,000, the
network structure is connected to intra net and external network and consisted of
multiple line network with 500Mbps speed, constructed of attack blocking system at
the entrance, for the following sections, the intra net is consisted and in the inner
structure of intra net, the server and PC is connected and the separate mail search
system is installed in the front of server and the individual virus vaccine is installed
for the PC resouces.

As the safety device, 4 of the Giga Bit Firewall (including backup line), 8 units of
IDS (Sun V880), 4 units of Giga bit IPS, 2 units of VMS and 1 unit of ESM (Sun
ENT3500) is installed.

As in Fig.9, in A network, the improved safety structure was established and using
the analysis data of VMS and traffic of the 6 months, in January to March it was veri-
fied as usual and in April to June the improved safety structure was applied with
HOIDS and RIS and posted the cyber threat information through the company net-
work.

924 D.H. Lee et al.

Fig. 9. A Network’s analysis model structure

In Fig.10, the B network used the existing safety structure to consist identical
safety device.

Fig. 10. B Network’s analysis model structure

In B network, it was verified with the existing safety structure for 6 months. The
following cyber threat information was posted on the company network.

The performance evaluation was done with the verification method through analyz-
ing VMS statistic and traffic. The VMS, F/W, IDS, IPS and etc were constituted iden-
tically with the safety device..

4.2 Analysis Result

As the result of Table 1 and Table 2, the average from January to March shows simi-
lar characteristics and the A network which used improved safety system in April

Table 1. The number of Virus Infection in the A network

Month 1 2 3 4 5 6
Worm 143,221 112,684 126,892 68,583 52,885 38,187
Trojan 21,682 15,703 18,222 10,393 8,299 5,299
Mail 39,458 38,990 32,222 19,292 20,212 12,391
Total 204,361 167,377 177,336 98,268 81,396 55,877

Vs. pre
month 100% 82% 106% 55% 83% 69%

 Routing Information System and HOIDS for Detection Method of Vicious Attack 925

Table 2. The number of Virus Infection in the B network

Month 1 2 3 4 5 6
Worm 138,933 156,129 121,785 100,299 113,329 121,348

Trojan 19,872 12,763 13,165 15,292 13,392 10,392

Mail 51,240 33,150 28,775 31,221 29,942 24,329

Total 210,045 202,042 163,725 146,812 156,663 156,069
Vs. pre

month 100% 96% 81% 90% 107% 100%

Fig. 11. The graph of Virus in A Network

Fig. 12. The graph of Virus in B Network

to June showed the 50% decrease in number of worm virus. In the graphs of Fig.11
and Fig.12, A network was gradually decreased by 50% in April to June compared to
January to March. In B network, it was reduced by 20% but had similar characteris-
tics. Therefore, for the worn that induces malicious traffic with specific patterns and
malicious events that uses the mail as infecting route, it could be an effective device
for blocking.

5 Conclusions and Future Works

In this study, to cope with the cyber mutation attack which the level of threat is in-
creasing, the early detection and detection function was effectively designed by con-
stituting HOIDS and RIS into the existing safety structure. In HOIDS, with this de-
tecting method, the malicious events which were originally impossible to detect could

926 D.H. Lee et al.

be detected in early stage and through the internal inspection function in RIS, the
expansion could have been prevented with rapid blocking. This current trial is to
enhance the ability to cope with the situation and gauge the design possibilities of
comprehensive early cyber threat system to control the occurrence of large scale dam-
age through intensifying cyber threat preparatory ability and to give the ability to
rapidly and actively cope with the occurrence of safety accident with the individual
information safety system of safety management facilities.

References

1. Nicolas Vanderavero, Xavier Brouckaert, Olivier Bonaventure, Baudouin Le Charlier. "The
HoneyTank : a scalable approach to collect malicious Internet traf-fic".IEEE2004 RTSS04 ,
Session 1, 2004.12

2. Dong-il Seo, Yang-seo Choi, Sang-Ho Lee. “Design and Development of Real Time
Honeypot System for Collecting the Information of Hacker Activity”, KIPS 2004, VOL. 10
NO.01 pp.1941~1944, 2003.05

3. http://www.Honeynet.org,"Honeynet Project Overview", 2005.4
4. Hyojung Hwang, Jinhyoun Youn, Youngmin Jin. “KORNET Routing Registry System”,

Journal of Communications And Networks No.01 pp 665~671, 1997.1
5. JongSeong Park, Jong-sub Moon, UnHo Choi. “A Study on Network Forensics Information

in Automated Computer Emergency Response System”, Korea Computer Congress
2004(A) pp. 253 ~ 255, 2004. 4

6. J.L Hellerstein, F.Zhang, P. Shahabuddin. “A statistical approach to predictive detection”,
Computer Networks, vol 35, pp77-95, 2001

7. N.K Groschwitz and G. C. Polyzos. “A Time Series Model of Long-Term NAFNET Back-
bone Traffic”, In proceedings of IEEE International Conference on Communications,
1994. 5

8. Y. Shu, M. Yu, J Liu. “Wireless traffic modeling and prediction using seasonal ARIMA
models”, In proceedings of IEEE International Conference on Communi-cations,v.3,
2003, 5

9. http://info.ahnlab.com/ahnlab/report_view.jsp?num=416

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 927 – 938, 2006.
© Springer-Verlag Berlin Heidelberg 2006

IPBio: Embedding Biometric Data in IP Header for
Per-Packet Authentication

Dae Sung Lee1, Ki Chang Kim2, and Year Back Yoo3

1 School of Computer Science & Engineering, Inha Univ., Korea
Xdilemma@naver.com

2 School of Information and Communication Engineering, Inha Univ., Korea
kchang@inha.ac.kr

3 Computer Science Department, Montana State University, U.S.A.
yoo@cs.montana.edu

Abstract. Per-packet authentication is a powerful way to authenticate the user.
Other authentication mechanisms (e.g. password authentication) verify the user
at login time only while per-packet authentication verifies all packets coming
from that user. Since every packet is authenticated repeatedly, inserting a fake
packet or masquerading as a legitimate user is effectively prevented. Existing
techniques for per-packet authentication such as IPSec or PLA, however, is ei-
ther too expensive or not strong enough. We propose to include biometric data
of the user in all packets for per-packet authentication. By collecting the user's
biometric data periodically and physically from the user during the session and
including it in all packets, we believe that we can provide a cheaper and more
secure way of per-packet authentication. A random portion of the biometric
data is extracted and used to digest the IP datagram. This technique allows us to
control the size of the biometric data and to protect its contents from eaves-
dropper. This paper explains about the technique and provides experimental
results.

1 Introduction

User authentication based on password is vulnerable to MIM(Man-In-the-Middle)
attack. For more secure communications, it is recommended to use SSL(Secure
Socket Layer) protocol. In SSL, a certificate certified by a trusted third party authenti-
cates the user, and succeeding packets are protected by encryption. However there is
no way of telling a stolen certificate. Furthermore, even with a genuine certificate,
Burkholder and others [1,2] reports a possible MIM attack in SSL.

Per-packet authentication continuously authenticates all the packets coming from
the user. Since it keeps authenticating all packets (not just once at login time), by
definition, MIM attack for these packets is impossible. IPSec [3,4] is a one form of
per-packet authentication. It stores authentication information in the packet header,
and communicating nodes examine this security header to verify each packet. Gen-
naro and rohatgi [6] suggests a technique in which the sender appends a keyed hash of
the next packet in the current one. The receiver verifies each packet by hashing the
current packet and comparing the hash value with one sent by the sender last time.

928 D.S. Lee, K.C. Kim, and Y.B. Yoo

Kari et al. [5] suggests to include a certificate of the sender in all packets for authenti-
cation purpose. The sender also includes a signed digest for the packet contents. The
receiver can verify the authenticity of the packet by recovering the digested value
with the public key certified in the certificate and compare it with what the receiver
gets after digesting the received packet contents.

However, all techniques mentioned above rely on the genuineness of the certifi-
cate. If the exchanged certificate is a stolen one, all the processes to check the validity
of packets are useless. Even if with a legal certificate, including it on every packet as
in Kari et al. [5] is too expensive, and exchanging it only once in the beginning of the
communication does not guarantee a complete authentication. The succeeding packets
contain a signature that supposedly can be produced only by the legitimate sender, but
since we don't have a direct proof of the sender's identity on each packet, it is still not
completely reliable.

In this paper, we suggest to use biometric data as a way of authenticating each
packet. The sender's biometric data is included in all outgoing packets, and the re-
ceiver confirms the validity of each packet by comparing the included biometric data
with what it has already. Including the whole biometric data in all packets will cause
too much traffic, and sending it in plain text is dangerous. Our technique adopts a
challenge-response scheme: the receiver indicates the portion of biometric data to be
used, and the sender uses that portion as an encryption key to sign the digested value
of the packet contents. Including sender's biometric data in all packets will provide a
powerful way of authentication. The live biometric data will ensure that the sender is
truly whom he/she claims to be not only in the beginning of the session but through-
out all the session.
 The organization of the remaining paper is as follows: Section 2 surveys related
researches on per-packet authentication; Section 3 explains the details of our tech-
nique; Section 4 shows via experimentation that our technique is manageable in cost in
terms of packet size and packet processing time. Finally Section 5 gives a conclusion.

2 Related Researches

IPSec [3,4] introduces two new security headers: AH(Authentication Header) and
ESP(Encapsulating Security Payload).

Origin IP header AH TCP Data

Authenticated except for mutable fields in the Origin IP header

(a) AH Transport Mode

Origin IP header ESP
header TCP Data ESP

authentication

Encrypted

Authenticated

(b) ESP Transport Mode

Fig. 1. AH and ESP header in IPSec

 IPBio: Embedding Biometric Data in IP Header for Per-Packet Authentication 929

Both or one of them can be included in the IP header. AH attaches a digital signa-
ture (see Figure 1(a)) for the packet while ESP encrypts the payload (see Figure 1(b)).
AH would be more suitable if we care only about the authenticity of the packet. A
certificate, however, has to be exchanged to build a session key for the signature.
Also, since it depends on the security of the same session key for all the packets dur-
ing the same session once the initial authentication phase has passed, there is no guar-
antee that the packet comes from the real user -- an attacker might have cracked the
key and tampered the packet.

PLA [5] has been designed for a military ad-hoc network. The purpose of PLA is
to authenticate all participating nodes as well as packets. For this purpose, the certifi-
cate of the sending node is included for all packets as in Figure 2. It is very secure;
however the cost is also very high.

IP Header Auth_id Pub_key Auth_
Signature

Creation
Time Seq # Validity

Time
Packet

Signature

IP Header

Fig. 2. PLA extension header

The researchers for multicasting techniques also are investigating a suitable
method for per-packet authentication. The need for packet level authentication is
greater here because the packet is transmitted to multiple receivers and MIM attack is
much more easy [7]. Gennaro and Rohatgi [6] proposed an idea that the keyed hash of
the second packet is appended to the first packet sent as shown in Figure 3. The re-
ceiver can verify the packet by comparing its hash value with the signature included
in the previous packet. The danger of this scheme is lost or out-of-order packets
which will break the chaining technique [8,9].

Packet
#1

Packet
#2

Digest
#1

Digest
#2

Digest
#n-2

Packet
#n-2

Digest
#n-1

Packet
#n-1

Packet
#n

Fig. 3. Source authentication by piggybacking next packets on the current one

3 IPBio

We propose to include biometric data in all packets. Since biometric data is poten-
tially large in size, we split it and send some random portion of it. We propose a

930 D.S. Lee, K.C. Kim, and Y.B. Yoo

protocol that dictates the behaviors of the sender and receiver in choosing the location
of partial biometric data. This partial biometric data is used as a key to sign the
packet. To verify the existence of the live sender, our scheme forces a periodic extrac-
tion of biometric data from the physical sender. This updated biometric data is con-
firmed by the receiver and used as the original copy for the next time period until the
system decides to update it again.

3.1 Exchanging a Session Key

Our scheme requires a session key to encrypt the initial biometric data. Once it is
confirmed by the server, this session key is not used; a random portion of the biomet-
ric data will be used as a key to encrypt the digested value of the packet payload. The
session key is randomly generated by the client. Since the session key is sent to the
server for each session, we need a secure way of authenticating the client and sending
the session key. For authentication, we adopt Lamport's technique [10,11].

Bob knows <n, Hashn(pwd)>

After decryption using Hash n(pwd),
Bob compares Hash(X) to Hash n(pwd),

if equals replaces
<n, Hashn(pwd)> with <n-1, X>

 S-Key : Session Key, Hashn(pwd) = Hash(Hash . . . (Hash(pwd)) . . .)

Alice
Alice, pwd

Workstation

Alice

n Bob

X = Hashn-1(pwd),
Encryption(S-Key, X)

by Hash(X)

Fig. 4. Generating one-time passwords using Lamport’s technique

Lamport [10] describes a technique to generate a sequence of one-time passwords
over insecure channel. The client, Alice, pre-generates a sequence of passwords by
applying a hash function repeatedly to the initial password as shown in Figure 4. Be-
fore the first login, the server, Bob, should already have the last hash value

)(pwdHashn , and n , the number of times the hash function was applied to it.

Now for the thx login, Alice sends)(pwdHash xn− , and Bob authenticates her by

applying the hash function to it x times and make sure the result matches

)(pwdHashn .

In our case, we require the user to visit and register his or her biometric data1 at the

server site. At this time, the user should provide)(pwdHashn and receive his or

her user ID. Now for the first login, the user sends <user ID, X()(1 pwdHashn− ,

session key)>, where X is)(pwdHashn , and X(s) is the encryption of s with key

1 This is the original biometric data. The actual biometric data to be used for authenticating

packets will be collected from the user physically during the session. The collected data will
be matched against the original one for verification.

 IPBio: Embedding Biometric Data in IP Header for Per-Packet Authentication 931

X. Note that the client sends a session key and the next encryption key,

)(1 pwdHashn− , encrypted with)(pwdHashn , the current encryption key. The

client has generated n encryption keys by hashing pwd repeatedly and uses them

one by one at each session starting from the last generated one,)(pwdHashn ,

moving backwardly. Each time the client sends a session key, it also sends the next
encryption key in this sequence, both encrypted by the current key. The server knows
this protocol, and once it decrypts the current session key it discards the current de-
cryption key replacing with one sent by the client -- this new one will be used to de-
crypt the client's session key in the next session. The server can authenticate the client
for the purpose of login process by hashing the next encryption key sent by the client,

e.g.)(1 pwdHashn− for the first login, and comparing it with the decryption key it

currently has, e.g.)(pwdHashn for the first login; if they match, the client must be

a legitimate user since only the client can know the sequence of hash values. The
packet sent by the client is shown in Figure 5. We have defined a new IP protocol,
IPPROTO_BIO_KEY for this purpose. The server TCP/IP stack is modified to recog-
nize this protocol: it checks the user_id field, retrieves the decryption key, for this
user, and decrypts the session key.

protocol :
IPPROTO_BIO_KEY type = 0 user_id session_key

IP header

Encrypted by Hashn-x+1(pwd)

struct
packet_type

X = Hashn-x(pwd)

Fig. 5. Login packet format

3.2 Packet Authentication

Once the session key is established by the process in 3.1, the client opens a connec-
tion to the server by sending his or her biometric data (collected at run-time) en-
crypted with the session key. The server verifies the data by comparing it with the
pre-registered one for this client and saves it as the current biometric data for this
session. If the verification was successful, the server acknowledges the connection
request, and the client starts sending packets signed with partial biometric data. The
base protocol for this communication is TCP; however to tunnel through the interme-
diate routers with IPBio header, a new IP header wraps around the packet. The proto-
col indicated in this new IP header is BIO_CRYPTO.

3.2.1 Basic Design of IPBio
The processing of IPBio packets is shown in Figure 6. The first packet from the client
is SYN packet (step 1 in Figure 6). This SYN packet, however, differs from the regu-
lar SYN packet in TCP in that it contains the encrypted biometric data of the user at

932 D.S. Lee, K.C. Kim, and Y.B. Yoo

the client side2. The server decrypts it to retrieve and compare the biometric data with
what it has (step 2 in Figure 6). If the two match perfectly or differ beyond some
threshold, the connection request is refused3. If the biometric data is determined to be
a legitimate one, the client is listed in the client list at the server side (as client C1 in
Figure 6).

Client C1 (User A) Server S1

Kernel Memory

Server List

S0

S1

S2

C0

C1

C2

1. SYN Packet

3. Acking SYN Packet

Kernel Memory

2. Comparison
AA with AB

Biometric
Information Set

Disk

User A ,
Biometric AA

User
A

bio_crypto_info

Biometric
AB

4. Ack Or Data Packet

bio_digest_info

Digest1 Using Sampling
Key A0 from AB

Digest(n) Using Sampling
Key A(n-1) from AB

Client List

Fig. 6. IPBio packet flow

The server now sends an ACK packet to the client (step 3 in Figure 6). This one
also differs from the normal ACK packet: it contains a direction about how the client
should select a random portion of the biometric data4. The packet format for SYN or
ACK is shown in Figure 7: they both use the same format. The client responds with a
final ACK, and 3-way handshake is completed. The client generates a random number
based on the direction given by the server. 256 bits starting from this random number
position is extracted and used as a key to digest the IP datagram (step 4 in Figure 6).
The packet format used by the client is shown in Figure 8. The packet contains IPBio
header between the new IP header and the original IP header. The IPBio header con-
tains a digested value of the entire IP datagram hashed with the designated portion of
the biometric data. Upon receiving this packet, the server knows which portion of the
bio-data should be used to decrypt the signature and, therefore, can authenticate the
packet's content.

IPBio is implemented in Linux for experimentation using Linux Netfilter. The
packets are hooked at IP level, and at the hooking position the sender inserts IPBio
header while the receiver removes it. Figure 9 shows the major data structure used for

2 This inclusion of biometric data in SYN packet will effectively block DOS attacks based on

SYN flooding. The server can drop the connection request if the bio-data doesn't match with
what it has.

3 The two biometric data should not match perfectly because the one sent from the client must
have been taken physically right before the transmission of the SYN packet.

4 In fact, a structure that contains the direction and other useful information is included, and
this whole structure is encrypted with the session key.

 IPBio: Embedding Biometric Data in IP Header for Per-Packet Authentication 933

New
IP header

struct bio_crypto_info

Origin
IP header

TCP
header

Encryption except for user_id

Protocol :
BIO_CRYPTO

Protocol :
TCP

biometric
data

Fig. 7. Packet format for SYN or acknowledging SYN

New
IP header

struct bio_digest_info

Origin
IP header

TCP
header

Protocol :
BIO_HASH

Protocol :
TCP

Digest User Data

Keyed-Hash Digest over the IP datagram except for mutable field

Fig. 8. Packet format for the client side

sturct bio_crypto_info {
 char user_id[20]; /* Not Encrypted. The user_id for searching already exchanged session key */

 struct bio_crypto_header {
 unsigned long c_sequence; // sequence number for anti-replay attack
 char bio_key_func[64]; // the starting-bit selecting function from biometrics-data
 for choosing per-packet symmetric-key
 } c_header;
 struct bio_crypto_data {
 unsigned int real_crypto_len; // the size of biometrics-data
 unsigned char bio_data[BIO_FULL_SIZE]; // total biometrics-data
 } c_data;
};

The Encrypted Area

struct bio_digest_info {
 struct bio_hash_header {
 unsigned long h_sequeunce; // sequence number for anti-replay attack
 unsigned int key_startingbitnum; // the starting bit number from the biometrics-data used as
 per-packet symmetric-key for message authentication code
 } h_header;
 struct bio_hash_data {
 unsigned int real_hash_len; // the size of a digested message
 unsigned char HMAC_SHA1_result[SHA1_DIGEST_SIZE]; // the digest over the IP datagram
 } h_data;
};
struct list_head {struct list_head * next; struct list_head * prev; };

struct host_list {
 struct list_head list; // list chain
 unsigned int isServer : 1; // 1 : server, 0 : client
 unsigned int list_key[2]; // the searching key for host_list (source address, port and destination port bitwise-OR)
 unsigned int origin_pmtu; // original path MTU(Maximum Transmit Unit)
 unsigned char DES_eKey[16][8]; // encryption key
 unsigned char DES_dKey[16][8]; // decryption key
 struct bio_crypto_info host_bio; // the save area for total biometrics-data
} server_list, client_list;

Fig. 9. Major data structures for IPBio

IPBio. "bio_crypto_info" contains information for the IPBio header during the 3-way
handshake; "bio_digest_info" contains the similar information after the 3-way hand-
shake. The major information in "bio_crypto_info" is "bio_data" and "bio_key_func".
"bio_data" contains the biometric data of the client; this field is used when the client
sends SYN packet to the server. "bio_key_func" contains a bit-selection function; it is
used when the server sends ACK packet to the client, and the client applies it to com-
pute the random position in the user's biometric data. The major information in
"bio_digest_info" is "key_startingbitnum" and "HMAC_SHA1_result". They are both
used in the packet sent by the client: the former to indicate the starting bit position of

934 D.S. Lee, K.C. Kim, and Y.B. Yoo

the selected portion of biometric data, and the latter to indicate the digested value of
the packet payload.

3.2.2 IPBio Packet Processing
The client follows the algorithm below to send a packet.

switch (Packet Type){
 case SYN:
 if (destination port requires IPBio){
 - copy biometric data obtained from
 the sensor into bio_crypto_info
 - encrypt it with the session key
 - add a new IP header

 with protocol IPPROTO_BIO_CRYPTO
 - build an IPBio packet and transmit
 }
 else
 - follow normal flow
 break;
 case 3-way Final ACK:
 case normal data:
 if (destination port requires IPBio){
 - select a random portion from

 the biometric data using bio_key_func
 - digest IP diagram using the random portion

 as a key
 - copy the result into HMAC_SHA1_result
 - build an IPBio packet and transmit
 }
 else
 - follow normal flow
 break;
}

TCP

IP

IP

IPBio Module

TCP Header

src
2417

dst
23

src
C

dst
S

Origin IP Header

src
C

dst
S

IP Protocol :
BIO_CRYPTO

New IP Header

Encrypted

struct bio_crypto_info
(including full bio-data)

IP Protocol : TCP

IP Protocol : TCP

TCP Header

src
2417

dst
23

src
C

dst
S

IP Header

TCP Header(TCP SYN : checked)

src
2417

dst
23

TCP SYN : checked

TCP SYN : checked

Ethernet
(a) The SYN packet which TCP generates for telnet protocol :
 If a fragmentation occurs IP layer does fragmentation directly
 at ip_fragment() function C : Client, S : Server

Fig. 10. Telnet session using IPBio

 IPBio: Embedding Biometric Data in IP Header for Per-Packet Authentication 935

Ethernet

DataApplication

TCP

IP

Data

TCP Header

src
2417

dst
23

TCP Header

src
2417

dst
23

src
C

dst
S

IP Header

Data

IP

IPBio Module

TCP Header

src
2417

dst
23

src
C

dst
S

Origin IP Header

Datasrc
C

dst
S

IP Protocol :
BIO_HASH

New IP Header struct bio_digest_info
(including HMAC-SHA1)

IP Protocol : TCP

IP Protocol : TCP

Digest

(b) The normal data packet which client or server sends :
 If a fragmentation occurs IP layer does fragmentation directly
 at ip_fragment() function

HMAC-SHA1 Digest over the IP datagram except for mutable fields

C : Client, S : Server

Fig. 10. (continued)

As mentioned before, SYN packet includes the whole biometric data; otherwise a
portion of it is used to digest the IP datagram. An example telnet session using IPBio
is shown in Figure 10. Figure 10(a) shows the packet building process for SYN packet
while Figure 10(b) the process for data packets. The dashed line in the figure divides
the protocol layers. First at TCP layer, a TCP header is composed: the destination port
is 23 because this is a telnet session. This incomplete packet is handed over to IP layer
where IP header is added and where, through IPBio module, a new IP header and
encrypted biometric data are added. For the data packets, the process is similar except
that we have encrypted digest information instead of full biometric data. The packet
receiving process in the server is shown below.

switch (Packet Type){
 case SYN:
 if (destination port requires IPBio){
 - drop if the protocol is not

 "IPPROTO_BIO_CRYPTO”
 - retrieve user ID from the packet and

 use it to obtain the session key
 - decrypt the biometric data

using the session key and check its validity
 - if successful send ACK;
 if not drop this packet
 }

 case 3-way Final ACK:
 case normal data:

936 D.S. Lee, K.C. Kim, and Y.B. Yoo

 if (destination port requires IPBio){
 - drop if the protocol is not

"IPPROTO_BIO_HASH”
 - verify the digested value in this packet
 - if successful send ACK;

 if not drop this packet
 }

}

When sending an ACK, the server determines "bio_key_func" with which the client

can select a random portion of the biometric data, inserts it into "bio_crypto_info",
and builds an IPBio packet by concaternating a new IP header, encrypted
"bio_crypto_info, and original IP datagram. The packet receiving process in the client
side is similar to that in the server.

4 Experiments

Our scheme increases the packet size by adding IPBio header. Longer packet size will
increase the packet processing time. Also the IP layer has to perform additional tasks
such as inserting/extracting IPBio header, encrypting/decrypting Biometric data, and
digesting IP diagram. We have measured and compared packet transmission time for
IPBio packets and non-IPBio packets. The result is in Table 1.

Table 1. Packet transmission time for IPBio packets and non-IPBio packets

IPBio
rate of IPBio time over

non-IPBio time bytes
transmitted time for

digest
time for
 enc/dec

without
IPBio enc/dec

time included
with digest
time only

64Kbytes 0.07Sec 0.13Sec 0.03Sec 6.67 2.33
64Kbytes X 2 0.15Sec 0.12Sec 0.07Sec 3.86 2.14
64Kbytes X 4 0.46Sec 0.12Sec 0.21Sec 2.76 2.19
64Kbytes X 10 1.42Sec 0.11Sec 0.63Sec 2.43 2.25
64Kbytes X 20 4.57Sec 0.12Sec 1.91Sec 2.46 2.39
64Kbytes X 40 11.35Sec 0.13Sec 4.24Sec 2.71 2.68
64Kbytes X 80 23.78Sec 0.12Sec 7.58Sec 3.15 3.14

The size of biometric data in case of fingerprint is between 500 and 4K bytes. In

the experimentation, we assumed it is 1K byte. For SYN packet, the whole biometric
data is included, but after that each packet contains 20 bytes of digest for the IP data-
gram. In the table, encryption/decryption time is for the SYN packet: the biometric
data is encrypted at the client side and decrypted at the server side. It is one-time cost.
After the SYN packet, most of packet transmission time is spent in digestion. The

 IPBio: Embedding Biometric Data in IP Header for Per-Packet Authentication 937

User Data(64Kbytes)

Th
e

Pr
oc

es
si

ng
 T

im
e

Ra
tio

(I
PB

io
 v

s
no

n-
IP

Bi
o)

Fig. 11. Comparison between IPBio and non-IPBio

ratio of IPBio packets to non-IPBio ones in terms of transmission time is 2.45 in aver-
age.5

Figure 11 shows the ratio of IPBio packet transmission times over non-IPBio ones
in graph. Two things require explanation. First, the graph shows the encryp-
tion/decryption time quickly loses its effect as packet size grows. Second, the ratio is
slightly increasing as packet size gets bigger. We suspect the additional 20 bytes is
causing another overhead such as more frequent fragmentation other than longer
packet size.

5 Conclusion

In this paper, we explained a technique to insert biometric data on every packet start-
ing from the very first one (such as a SYN packet in TCP). A random portion of the
biometric data is extracted and used to digest the IP datagram. The receiver can au-
thenticate every packet based on this biometric information. Since every packet is
verifiable, attacks based on fake packets such as MIM attack or SYN flooding attack
is effectively defeated. The algorithm has been implemented in Linux TCP/IP stack
utilizing the hooking mechanism. The additional packet processing time was meas-
ured to be about 2.45 times higher than regular packets. We believe this is tolerable in
exchange of more secure communication.

References

1. Peter Burkholder: “SSL Man-in-the-Middle Attacks”, SANS institute,
http://www.sans.org/rr/whitepapers/threats/480.php, February 2002.

2. M. Steiner, P. Buhler, T. Eirich and M. Waidner: Secure Password-Based Cipher Suite
for TLS , ACM Transactions on Information and System Security (TISSEC), v.4 n.2,
p.134-157, May 2001

5 It is the figure when we exclude the encryption/decryption time. We believe it is acceptable

to exclude it because as the number of packet increases the proportion of encryp-
tion/decryption time becomes negligible.

938 D.S. Lee, K.C. Kim, and Y.B. Yoo

3. S. Kent: “IP Authentication Header”, IETF Working Group,
http://www.ietf.org/rfc/rfc4302.txt, December 2005.

4. S. Kent: IP Encapsulating Security Payload (ESP) , IETF Working Group,
http://www.ietf.org/rfc/rfc4303.txt, December 2005

5. Hannu Kari Catharina Candolin, Janne Lundberg: Packet level authentication in military
networks , In Proceedings of the 6th Australian Information Warfare & IT Security Con-
ference, Geelong, Australia, November 2005.

6. R. Gennaro and P. Rohatgi: “How to sign digital streams”, In Advances in Cryptology –
CRYPTO ’97, vol.1294 of Lecture Notes in Computer Science, pages 180-197, 1997.

7. Y. Challal, H. Bettahar, and A. Bouabdallah: “A taxonomy of multicast data origin authen-
tication : Issues and solutions”, In IEEE Communications Surveys and Tutorials, volume
6, October 2004

8. Chung Kei Wong, Simon S. Lam: “Digital signatures for flows and multicasts”,
IEEE/ACM Transactions on Networking (TON), v.7 n.4, p.502-513, Aug. 1999.

9. A. Perrig, R. Canetti, J. D. Tygar, and D. Song: “Efficient authentication and signature of
multicast streams over lossy channels”, In Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 56 – 73, May 2000.

10. L. Lamport: Password authentication with insecure communication , Communications
of the ACM, 24(11):770-772, November. 1981

11. N. Haller: “The S/Key one-time password system” In Proceedings of the Symposium on
Network and Distributed Systems Security, pages 151-157, February 1994.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 939 – 948, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Scalable Distributed Scheduling for Quality of Service*

Moohun Lee1, Sungja Choi1, Janguk In2, Changbok Jang1,
Sunghoon Cho1, and Euiin Choi1

1 Dept. of Computer Engineering, Hannam University,
133 Ojeong-Dong, Daedeok-Gu, Daejeon, 306-791, Korea

{mhlee, chbjang, shcho, eichoi}@dblab.hannam.ac.kr,
irecomm@dreamwiz.com

2 Dept. of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL 32611, USA

juin@cise.ufl.edu

Abstract. A grid consists of high-end computational, storage, and network re-
sources that, while known a priori, are dynamic with respect to activity and
availability. Efficient scheduling of requests to use grid resources must adapt to
this dynamic environment while meeting administrative policies. This paper
discusses a framework for distributed resource management. The framework
has the following novel features. First, the resource management system is dis-
tributed using resource content information that is characterized by system
properties. We argue that a distributed system based on resource content is suf-
ficient to satisfy specific scheduling requests for global Quality of Service
(QoS) considering workload balance across a grid. Second, the distributed
system constructs a hierarchical peer-to-peer network. This peered network
provides an efficient message routing mechanism. The simulation results dem-
onstrate that the proposed framework is proficient to satisfy QoS in distributed
environment.

Keywords: Scheduling, Grid Computing, Quality of Service, Content-based
Resource Clustering, Distributed System.

1 Introduction

The Grid has been a promising way in high performance computing for many data
intensive, scientific applications. The challenging computing paradigm allows a
large number of competitive and/or collaborative organizations to share mutual
resources, including documents, software, computers, data and sensors, to seam-
lessly process data and computationally intensive applications [1, 2]. The collabo-
ration requires the management of a large number of heterogeneous resources with
varying, distinct policies and controlled by multiple organizations. A native ap-
proach to distribute scheduling service based on only geographical location cannot
properly cover the sophisticated and resource specific scheduling requirement of

* This work was supported by a grant from Security Engineering Research Center of Ministry

of Commerce, Industry and Energy.

940 M. Lee et al.

scientific computing. Many experiments in science projects such as SDSS, LIGO,
CMS and ATLAS [3, 4, 5, 6] generate and record data at a rate of the tens of peta-
bytes by the near future. We need smart and delicate ways to distribute the resource
management systems in order to allow globally dispersed scientists in collaborative
teams access and analyze the data rapidly and precisely. A uniform definition of
efficient message routing issue is also necessary in a large-scale grid environment.
Scalable and effective resource management and request scheduling is a fundamen-
tal operation in grid computing.

Even though the issue has been researched comprehensively [7, 8, 9, 10, 11], it is
still challenging to fully support the feature in a Peta-scale Virtual Data Grid (PVDG)
[1]. A typical grid consists of a fair amount of heterogeneous resources from geo-
graphically distanced organizations or individuals. Therefore, it is necessary to dis-
tribute the resource management service for the extensibility to the environment. We
develop a framework for the distributed service with the following novel features.
First, the resource management system is distributed in a hierarchical peer-to-peer
network using resource content information that is characterized by system properties.
Second, the peered network provides an efficient message routing mechanism to
process expressive QoS queries for preventing message flooding and performance
bottlenecks.

2 Related Works

2.1 Content Based Network

As a challenging communication framework a content-based network supports the
communication mechanisms for large-scale, loosely coupled distributed applications.
It complements traditional unicast and multicast addressed-based networks by provid-
ing an infrastructure for message flow through the network driven by the content of
the messages rather than by explicit addresses which message senders specify. In a
content-based network, message receivers declare their interests in message types to
the network by means of ‘predicates’ [12], while senders simply send messages into
the network. The network is responsible for delivering messages to receivers declar-
ing the predicate that the messages contain. In traditional address-based networks the
delivery function is performed incrementally by passing messages between intermedi-
ate nodes in the network. Message routing in a content-based network has been a
major issue to prevent message flooding and to provide minimal forward paths for
messages [13, 14, 15]. Unlike in an address-based network where messages travels to
destinations with explicit addresses, routers in a content based network evaluate the
contents of the messages against the predicates in forwarding tables of the routers,
and decide neighbor routers to receive the messages.

2.2 Hash Based Peer-to-Peer Network

In a peer-to-peer distributed system [16] autonomous nodes connect to a small set of
their neighbors. Queries are recursively propagated to other nodes following the
connection over the network to find a corresponding data to the queries. Peer-to-peer

 Scalable Distributed Scheduling for Quality of Service 941

systems explicitly or implicitly provide a lookup mechanism that matches a given key
to one or more network nodes responsible for the value associated with the key. Sim-
ple queries for the lookup by key are assumed in most peer-to-peer systems such as
CAN, Chord, Tapestry [17, 18, 19]. These systems guarantee that data can be found
with a very small number of message or node hopping. However, these techniques
require a specific network structure and total control over the location of the data [20].
Because they are highly centralized content-addressable networks centered on the
theme of distributed hash table lookup they cannot support rich and expressive gen-
eral-purposed queries such as matchmaking [21, 22].

3 A Proposed Framework for Efficient Distributed Scheduling

The proposed framework devises a proficient approach to the demand, which utilizes
several distributed computing features. Hierarchically structured computation, stor-
age or network resources contributing to a Virtual Organization (VO) are character-
ized by system properties such as CPU, memory, storage and bandwidth. A resource
is represented with a set of values for the selected properties, and the value set corre-
sponds to a node in a d dimensional property space. The coordinates in the space can
be clustered based on their closeness in distance. The clustering procedure implies
that resources with similar property values are grouped together. By assigning one or
more resource management system to each of the resource clusters, we achieve a fully
distributed system based on resource content information. The assigned schedulers
autonomously perform the resource allocation to remote or local scheduling requests
within the cluster.

The distributed system across the resource clusters constructs a peered network.
The network guarantees autonomous resource management within a group and mes-
sage routing locality with lookup functionality. Especially, the framework provides
an efficient routing mechanism to forward a resource property specific request. A
scheduling server in the network maintains a request routing table, which contains the
information of the service in the other resource clusters.

In order to decide the destination of request forwarding the server performs a logi-
cal mapping between the request and the property information representing a cluster
in the table. The framework facilitates efficient forwarding of expressive QoS re-
quests on content-based clustering network. Multiple objects of the resource man-
agement system can cause resource status and other information such as users’
resource usage accounts to be inconsistent among the distributed system. In addition,
there may be resource reservation conflicts on a single resource due to the inconsis-
tency. This framework controls the concurrent access to shared resources by using a
locking mechanism. A request submission to an intended resource is organized with
two steps. First, the request competes for obtaining a lock on the resource. Second,
once having the lock, real submission is made to the resource exclusively. The lock-
ing supports autonomous scheduling among the multiple servers with keeping infor-
mation consistency without centralized control.

942 M. Lee et al.

4 Grid Resource Clustering

The grid resources are organized in a hierarchical infrastructure. A distributed sched-
uling network is constructed on the base of the resource grouping. In this section we
discuss a technique to cluster resources in a VO according to their properties.

(a) A hierarchical resource structure example (b) A resource clustering example

Fig. 1. Grid resource hierarchy and resource clustering in property space

4.1 Hierarchical Structure of Grid Resources

Fig. 1-(a) shows an example of the gird resource structure. A grid VO maintains a
hierarchical structure of computing, storage and network resources. A resource con-
tributor defines the resource levels that are globally schedulable in the hierarchy tree.
For the resources below the levels, a local scheduler of the participant makes schedul-
ing decision. The hierarchy structure may present the globally schedulable resources
in the leaf level of the tree. The structure has non-uniform leaf level because globally
schedulable resources are indicated in different levels in the tree.

A resource in an intermediate or leaf level of the structure can be characterized with
a set of system properties. A group of the properties may include physical information
such as CPU, memory and bandwidth, or benchmarking information. A resource iden-
tifies itself with its own values to the properties, while an intermediate resource aggre-
gates property information of the resources in lower levels in the hierarchy.

4.2 Clustering of Grid Resource

Heterogeneous resources in a VO are classified in terms of the types or capacities of
the properties. The classification is a proficient way to characterize the heterogeneous
resources in a dynamically changing grid environment. A set of selected system
properties constructs a d-dimensional space in which grid resources can be repre-
sented according to their values to the properties. In the resource property space we
apply a clustering algorithm to group together the resources with similar properties.
Fig. 1-(b) shows an example of the clustering in three-dimensional space, which is
constructed with CPU, memory and storage.

 Scalable Distributed Scheduling for Quality of Service 943

5 Peer-to-Peer Scheduling Service Network

In this section we discuss distributed scheduling service in a peer-to-peer network.
We talk about scheduling service distribution across a VO, and message routing
mechanism among the schedulers.

5.1 Scheduling Service Distribution

Scheduling service modules that are assigned into multiple resource groups construct
a distributed scheduling service network. Graph (b) in Fig. 1 shows an example of
scheduling service distribution. A set of schedulers for a resource cluster, which is
defined with Sc = {si | a scheduler, 1 ≤ i ≤ l}, where l is the number of schedulers,
makes autonomous scheduling decision based on resource status and usage policies
within the cluster. The scheduling framework constructs a peered network with the
scheduling services that are distributed over all the resource clusters in a VO. Gener-
ally, there are (2d x l) scheduling service modules in a VO, where d is the number of
properties, and l is the number of schedulers within a cluster. It is an overlay network
based on the grid that is a network of schedulable resources. Each server has a sched-
uling service routing table that contains representative resource property information
of the clusters and a corresponding scheduling service address within the clusters.

The number of scheduling servers in a resource cluster can be more than one to pre-
vent scheduling failure and congestion caused by a single server. Because the servers
within a cluster make scheduling decision to the same set of resources by sharing status
and policy information in the region any of the service modules can represent the re-
gion for scheduling remote requests. It limits the size of a routing table on each sched-
uler to 2d, which is equal to the number of clusters. The representative scheduling
module is selected randomly among the available servers in a cluster.

5.2 Message Routing

The scheduler performs resource allocation procedure according to its scheduling
strategy, when a single user submits request to a scheduler. If the scheduler is able to
meet QoS requirement presented by the request then the scheduling work is done, and
job submission procedure may start. However, if the QoS cannot be satisfied with the
resources in the current region then the scheduler needs to forward the request to
schedulers in other resource groups. The framework devises a request routing
mechanism in the service peered network. We define three cases where a scheduling
server cannot make resource allocation decision to a request.

1. The scheduler cannot satisfy QoS requirement of the request using the resources
within its cluster.

2. All the resources in the cluster are overloaded with task execution.
3. The schedulers themselves are overloaded with request scheduling work.

In the cases where resources or schedulers are overloaded the request is simply
forwarded to schedulers in a neighbor cluster. However, the forwarding decision
might not be easy with the first case where the request requires resource specific
QOS. The schedulers should make smart decision to forward the request to the

944 M. Lee et al.

resource group that is able to satisfy the requirement. The decision should prevent
request flooding among resource clusters, and shouldn’t be a bottleneck in the grid
computing performance either.

A user submits her/his scheduling request to the closest server in geographical dis-
tance, while a server forwards a request to another server in other resource groups
according to the results of a forward function. A scheduling server maintains a re-
quest routing table. Each entry in the table represents aggregated property informa-
tion of resources in a cluster and an address of a scheduler within the cluster. Because
resources are clustered according to their property values there is a single value for a
discrete property such as OS or architecture, and there is a range value for a continu-
ous property such as memory or CPU speed. When a scheduler needs to find a desti-
nation to forward a request with a specific QoS requirement the scheduler performs
logical mapping between the QoS and the property information in the table. After
finding resource clusters that can satisfy the QoS requirement the request is forwarded
to the schedulers specified in the routing table. The scheduling server may interact
with the user to negotiate QoS requirement level. [10] discusses the user interaction
to the QoS satisfaction.

6 Experiments

We simulate the distributed scheduling discussed in the paper using Java threads and
sockets. The simulation shows the performance of request scheduling on the three
different network topologies(content-based, geography-based and centralized schedul-
ing networks). We construct the content-based network according to the arguments in
the previous sections, while the geography-based is a traditional distributed network
based on resources’ geographical distance. In the centralized service a single server
takes charge of scheduling requests to all the resources in a grid.

6.1 Background

A user submits a task execution request with QoS requirement represented with the
properties such as CPU capacity and storage amount. The request contains the prop-
erty requirement and job completion due time. The experiment assumes a virtual
organization in which forty resources are available. Each resource is specified with
the property amounts. The experiment uses two properties, CPU and storage for char-
acterizing the resources. We classify the resources into four types according to their
values for the properties.

In the experiment we construct the content-based scheduling network according to
the resource clustering. A scheduling server is assigned into each of the groups. The
server maintains a message routing table that contains IP addresses of the other
schedulers and property information of the corresponding clusters. In the geography-
based network, a server makes scheduling decision to the resources with various
properties in its region. When the server has unsatisfied requests it simply forwards
them to a neighbor cluster. In the centralized scheduling service architecture, a single
server has property information of all the resources. Users submit requests to the
scheduler, which utilizes the resources in the scheduling decision.

 Scalable Distributed Scheduling for Quality of Service 945

(a) Task execution performance (300 requests) (b) QoS request missing rates

Fig. 2. Performance comparison among scheduling network topologies

6.2 Scheduling Performance

In this experiment we evaluate scheduling performance on the three network topolo-
gies in two aspects. First, we measure job completion time of resources on each of
them. Efficient request scheduling reduces workload on a resource, which is repre-
sented by queuing time on the resource. Better execution performance increases the
possibility to satisfy QoS requirement in on-time reservation. Second, we investigate
QoS miss rate with different number of requests on the topologies.

Graph (a) in Fig. 2 shows that completion time of requests is affected by schedul-
ing network topologies. We categorize resource into four different types according to
their properties. The graph presents average task completion and queuing or waiting
time in each resource category. When we construct the scheduling networks the
queuing time makes difference in the performance with the same resources. In graph
(a) resources on the content-based has less queuing time than on the others. It indi-
cates that resources on the network are less overloaded than on the others. The con-
tent-based scheduling network facilitates QoS satisfaction with the resources over an
entire VO, while a scheduler makes the scheduling decision with the resources within
its region and the neighbors in the geography-based. The limited utilization makes
the resources easily overloaded, resulting in the long completion time.

Graph (b) in Fig. 2 shows that a scheduling service has difficulty to satisfy QoS re-
quirement with a large amount of requests. The graph presents the ratio of failed QoS
satisfaction in on-time resource allocation decision for each of the scheduling
networks. As the resources are overloaded with the larger number of requests a
scheduler can’t meet QoS requests with higher possibility. The graph shows that a
scheduler in the content-based network has lower miss rate than in the other networks.
As shown in graph (a), resources in the network are less overloaded than the others
due to the property-based resource clustering that provides a scheduler with all the
feasible resources for a QoS request in a VO.

Various request submission patterns can make difference in the resource workload.
As we can see in Fig. 2, large percentage of QoS requirements can’t be satisfied with
congested grid resources in the scheduling networks. In this experiment we perform

Request Execution Performance

0

20

40

60

80

100

120

1 2 3 4

Resource types

T
im

e
(s

ec
.)

Content-based
Geography-based
Central
Queing on Content
on Geography
on Central

QOS Miss Rates

0

5

10

15

20

25

100 150 300 500 1000

The number of requests

P
er

ce
nt

ag
e

(%
)

Centralized

Geography-based
Content-based

946 M. Lee et al.

only on-time resource reservation. The QoS satisfaction is determined only with the
current condition of the resources. When a series of requests are submitted in a short
period of time, the limited number of resources becomes overloaded easily. However,
when the same number of jobs is submitted in a longer period of time the ratio of QoS
satisfaction becomes higher than in the short period. Graph (a) in Fig. 3 shows the
QoS miss rate drops as the submission time increases.

(a)QoS satisfaction rate and request submission (b)Workload balance and request assignment

Fig. 3. Resource workload and QoS satisfaction

The resource allocation based on on-time scheduling has limitation in overall re-
source usage and QoS satisfaction. Advanced resource reservation concept facilitates
the request scheduling. A scheduler can make the reservation with anticipated re-
source workload in the near-future time frames.

Graph (b) in Fig. 3 shows an example of balanced workload on different kinds of
resources. We submit 2000 requests to four different kinds of resources. We have
described the resource types in Section 8.1. Even though average request completion
time is different among the resource groups, the ratio of queuing time out of the com-
pletion time is similar among the three types, Type-1, Type-2 and Type-3 with the
value, 45%. Resources in Type-4 group have lower queuing time than ones in other
groups because the number of submitted requests is not large enough to make the
resources over all the types busy.

7 Conclusion and Future Works

We present distributed scheduling service framework in this paper. The approach is
challenging because network resources are clustered on the base of their characteris-
tics instead of geographical locations, and the services are distributed according to the
content-based clustering. The distributed services are connected in a peer-to-peer
network. The message forwarding in the peered network is performed using a hash
based routing function in order to satisfy QoS requirement of a scheduling request.
We are incorporating the distributed scheduling service framework with the proposed
policy based scheduling framework and implementing the comprehensive scheduling
middleware on a grid testbed. We plan to include several additional core functional-
ities for grid scheduling. One such important functionality is that of estimating the

Request Submission Pattern and QOS Miss Rate

0

5

10

15

20

25

496(serial) 504(10s/500) 562(10s/125) 685(10s/50) 952(10s/20)

Submision periods (interval (sec.) / # of requests)

P
er

ce
nt

ag
e

(%
)

Content-based

Geography-based

Centralized

Balanced Workload

0

10

20

30

40

50

60

70

80

Type-1 Type-2 Type-3 Typ-4

Resource types

C
om

pl
et

io
n

ti
m

e
(s

ec
.)

0

100

200

300

400

500

600

700

800

900

1000

of

 r
eq

ue
st

s
(t

ot
al

:
20

00
)

Execution
Queuing
Requests

 Scalable Distributed Scheduling for Quality of Service 947

resources required for task execution. In addition, we plan to investigate scheduling
and replication strategies that consider policy constraints and quality of service, and
include them in applications to improve scheduling accuracy and performance.

References

1. P. Avery, I. Foster, The GriPhyN Project:Towards Petascale Virtual-Data Grids, GriPhyN
Technical Report 2000-1.

2. I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual
Organizations, International Journal of Supercomputer Applications, 2001.

3. Sloan Digital Sky Survey, http://www.sdss.org, 2004
4. Laser Interferometer Gravitational Wave Observatory, http://ligo.caltech.edu, 2004
5. The Compact Muon Solenoid, an experiment for the Large Hadron Collider at CERN,

http://cmsinfo.cern.ch/Welcome.html/, 2004
6. The ATLAS Experiment, http://atlasexperiment.org, 2004
7. R. Buyya, Economic-based Distributed Resource Management and Scheduling for Grid

Computing, Ph.D Thesis, Monash University, Melbourne, Australia, April, 2002
8. R. Min, M. Maheswaran, Scheduling Co-Reservations with Priorities in Grid Computing

Systems, Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, 2002

9. D. P. Spooner, J. Cao, J. D. Turner, H. N. Lim Choi Keung, S. A. Jarvis, G. R. Nudd, Lo-
calised Workload Management Using Performance Prediction and QoS Contracts, Eight-
eenth Annual UK Performance Engineering Workshop, 2002

10. J. In, A. Arbree, P. Avery, R. Cavanaugh, S. Katageri, S. Ranka, Sphinx: A Scheduling
Middleware for Data Intensive Applications on a Grid, GriphyN Project Technical Report,
GriPhyN 2003-17, 2003.

11. J. In, P. Avery, R. Cavanaugh, S. Ranka, Policy Based Scheduling for Simple Quality of
Service in Grid Computing, 18th International Parallel & Distributed Processing Sympo-
sium, New Mexico, USA, 2004

12. A. Carzaniga, A.L. Wolf, Content-based Networking: A New Communication infrastruc-
ture, NSF Workshop on an infrastructure for Mobile and Wireless Systems, Scottsdale,
AZ, October, 2001

13. A. Carzaniga, M.J. Rutherford, A.L. Wolf, A Routing Scheme for Content-Based Net-
working, Proceedings of IEEE INFOCOMM 2004, Hong Kong China, March, 2004.

14. R. Chand, P. Felber, A Scalable Protocol for Content-Based Routing in Overlay Networks,
Proceedings of the IEEE International Symposium on Network Computing and Applica-
tions, Cambridge, MA, April, 2003.

15. M. Aron, D. Sanders, P. Druschel, W. Zwaenepoel, Scalable Content-aware Request Dis-
tribution in Cluster-based Network Servers, Proceedings of the 2000 Annual Usenix Tech-
nical Conference, San Diego, CA, June, 2000.

16. D. Doval, D. O’Mahony, Overlay Networks, A Scalable Alternative for P2P, IEEE Internet
Computing, August 2003.

17. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-
addressable network, ACM SIGCOMM, 2001.

18. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishman, Chord: A scalable peer-
to-peer loopup service for internet applications, ACM SIGCOMM, 2001.

19. B. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: An infrastructure for fault-tolerant wide-
area location and routing, Technical report, U. C. Berkeley, 2001

948 M. Lee et al.

20. A. Crespo, H. Garcia-Molina, Semantic Overlay Networks for P2P Systems, Technical re-
port, Stanford University, Jan. 2003.

21. W. Hoschek, A Unified Peer-to-Peer Database Framework for Scalable Service and Re-
source Discovery, Proc. of the International IEEE/ACM Workshop on Grid Computing,
Baltimore, USA, Nov. 2002. Springer Verlag.

22. Dan Bradley, Condor-G Matchmaking in USCMS, Condor technical report, University of
Wisconsin, Nov. 2003

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 949 – 954, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Analysis of Security Vulnerability Diagnosis in Mobile
IP Networks

Dong Chun Lee

Dept. of Computer Science Howon Univ., Korea
ldch@sunny.howon.ac.kr

Abstract. In this paper we design and implement the system that diagnoses se-
curity vulnerability in mobile IP networks. The aim of the paper is to interpret
the communication network related to security vulnerability reporting process,
and focuses on how the information of the vulnerability is received and proc-
essed and how the information is managed after the reception in mobile IP
networks.

1 Introduction

Mobile IP networks security has become a primary concern in order to provide pro-
tected communication between mobile nodes in a hostile environment. Unlike the
wire-line networks, the unique characteristics of mobile IP networks pose a number of
nontrivial challenges to security design, such as open peer-to-peer network architec-
ture, shared wireless medium, stringent resource constraints, and highly dynamic net-
work topology. These challenges clearly make a case for building multi-fence security
solutions that achieve both broad protection and desirable network performance.

The unreliability of wireless links between nodes, constantly changing topology
due to the movement of nodes in and out of the networks, and lack of incorporation of
security features in statically configured wireless routing protocols not meant for
wireless Internet environments all lead to increased vulnerability and exposure to
attacks. Security in mobile IP networks is particularly difficult to achieve, notably
because of the limited physical protection of each node, the sporadic nature of con-
nectivity, the absence of a certification authority, and the lack of a centralized moni-
toring or management unit.

The draft for the IEEE 802.11 security architecture recommends that this authenti-
cation process be completed using Extensible authentication Protocol-Transparent
Layer Security (EAP-TLS), which has been included as the default authentication
method in Window XP. Unfortunately, a complete EAP-TLS handshake, including
RADIUS messages, requires on the order if 1 s -a number far too large to support ant
form of streaming media. To answer this question, the IEEE included "Pre-
authentication" in the draft, which permits a mobile station to "per-authenticate" itself
to the next AP. Unfortunately, pre-authentication has several shortcomings. First, a
station can only pre-authenticate to another Access Point (AP) on the same LAN (i.e.,
the station cannot authenticate beyond the first access router as a single administrative
domain might have multiple access routers). Second, a full EAP-TLS authentication

950 D.C. Lee

to all potential next APs is not a scalable solution in terms of the number of stations
and the APs as most networks use a centralized authentication server (RADIUS) that
can quickly become a bottleneck. This obviously prevents WiFi networks from reach-
ing much of the previously discussed vision.

The above considerations raise the issue of how to better secure mobile IP networks.
This will be as critical as securing fixed-line Internet systems in the emerging markets
as highlighted above. Each of these security breaches and associate risks can be
minimized or negated with the proper use of security policy and practices, network
design, system security applications, and the correct configuration of security con-
trols. In this paper we propose system that diagnoses security vulnerability in mobile IP
networks.

2 Vulnerabilities in Mobile IP Networks

There are various reasons why wireless Internet networks are at risk, from a security
point of view. In traditional wireless networks, mobile devices associate themselves
with an access point, which is in turn connected to other wire-line machinery such as
a gateway or name server that manages the network management functions. Wireless
Internet networks, on the other hand, do not have a centralized piece of machinery
such as a name server, which if present as a single node can be a single point of fail-
ure. The absence of infrastructure and the subsequent absence of authorization facili-
ties impede the usual practice of establishing a line of defense, distinguishing nodes
as trusted and non-trusted. There may be no ground for an a priori classification, since
all nodes are required to cooperate in supporting the network operation, while no prior
Security Association (SA) can be assumed for all the network nodes. Freely roaming
nodes form transient associations with their neighbors, joining and leaving sub-
domains independently with and without notice.

An additional problem related to the compromised nodes is the potential Byzantine
failures encountered within wireless Internet networks routing protocols where in a
set of nodes could be compromised in such a way that incorrect and malicious behav-
ior cannot be directly noted at all. Such malicious nodes can also create new routing
messages and advertise nonexistent links, provide incorrect link state information, and
flood other nodes with routing traffic, thus inflicting Byzantine failures on the system.

The wireless links between nodes are highly susceptible to link attacks, which in-
clude passive eavesdropping, active interfering, leakage of secret information, data
tampering, impersonation, message replay, message distortion, and Denial of Service
(DoS). Eavesdropping might give an adversary access to secret information, violating
confidentiality. Active attacks might allow the adversary to delete messages, inject
erroneous messages, modify messages, and impersonate a node, thus violating avail-
ability, integrity, authentication, and non-repudiation.

The presence of even a small number of adversarial nodes could result in repeat-
edly compromised routes; as a result, the network nodes would have to rely on cycles
of timeout and new route discoveries to communicate. This would incur arbitrary
delays before the establishment of a non-corrupted path, while successive broadcasts
of route requests would impose excessive transmission overhead. In particular, inten-
tionally falsified routing messages would result in DoS experienced by the end nodes.

 Analysis of Security Vulnerability Diagnosis in Mobile IP Networks 951

Moreover, the battery-powered operation of mobile IP networks gives attackers am-
ple opportunity to launch a DoS attack by creating additional transmissions or expen-
sive computations to be carried out by a node in an attempt to exhaust its batteries.

Attacks against wireless Internet network's can be divided into two groups: Passive
attacks typically involve only eavesdropping of data whereas active attacks involve
actions performed by adversaries, for instance the replication, modification and dele-
tion of exchanged data. External attacks are typically active attacks that are targeted to
prevent services from working properly or shut them down completely. Intrusion
prevention measures like encryption and authentication can only prevent external
nodes from disrupting traffic, but can do little when compromised nodes internal to
the network begin to disrupt traffic. Internal attacks are typically more severe attacks,
since malicious insider nodes already belong to the network as an authorized party
and are thus protected with the security mechanisms the network and its services
offer. Thus, such compromised nodes, which may even operate in a group, may use
the standard security means to actually protect their attacks.

The above discussion makes it clear that mobile IP networks are inherently insecure,
more so than their wired counterparts, and need vulnerability diagnosis schemes be-
fore it is too late to counter an attack. If there are attacks on a system, one would like
to detect them as soon as possible (ideally in real time) and take appropriate action.

3 Design of Vulnerability Diagnosis Systems

Vulnerability diagnosis systems extend to previous vulnerability diagnosis tool so that
this system diagnose wireless networks as possible, and to vulnerability between
mobile hosts and APs. After diagnosis to vulnerability, mobile host transmit diagnosis
results to vulnerability diagnosis manager while connecting on online state. This vul-
nerability diagnosis follow as: (1) ESSID broadcasting, (2) Open connection authenti-
cation, (3)Vulnerability diagnosis of useless WEP, (4) WEP Key generation using
RC4 algorithm vulnerability, (5)Vulnerability diagnosis through challenge-response
pair collection, and (6)Possibility of attack between wireless clients in Fig. 2.

(1) ESSID broadcasting:

Mobile host must know ESSID of AP for connecting AP. All most AP open to Ap
name and ESSID doesn't broadcast. But current security production broadcasts
ESSID. AP decides to ESSID broadcasting through the active proving.

(2) Open connection Authentication:

Open connection authentication is method that doesn't use authentication to con-
nect mobile host to AP and obtain mode to use connection authentication through the
active proving. This authentication approve of access authority to mobile host, and
can do easily packet sniffing.

(3) Vulnerability diagnosis of useless WEP:

If mobile host makes useless of WEP encrypted key, vulnerability diagnosis
provides attacker with plain text, user ID, and password through packet collections
without hacking in wireless networks. ESSID that obtain from active proving may
penetrate to network through opened AP profile, and is be collected to attacker all

952 D.C. Lee

Vulnerability pattern DB

Host Agent

Host Agent

Host vulnerability diagnosis

Host integrity diagnosis

Wireless special
vulnerability diagnosis

AP vulnerability diagnosis

Diagnosis report

Vulnerability diagnosis consol

Diagnosis node

Vulnerability diagnosis
manager

Attack node

Network vulnerability diagnosis

Network

Fig. 1. Vulnerability diagnosis configuration

Fig. 2. Procedure of vulnerability diagnosis

messages which transmit on wireless networks. Also, it provides attacker with mobile
host's information that has been made use of wireless Internet networks. We will
know to use of WEP key considering active proving method to make use of obtaining
ESSID broadcasting AP profile and when it approach to AP, it may obtain to WEP
key using RC4 algorithm vulnerability through packet collections.

(4) WEP Key generation using RC4 algorithm vulnerability:

WEP key make use of method that seek to analyze through packet collection using
powerful PC or Notebook PC. WEP key encryption is based on RC4 stream encrypt-
ing algorithm, and test to decryption environment beyond characteristic condition

(5) Vulnerability diagnosis through challenge-response pair collection:

It is security vulnerability to show from authentication method through public key.
Vulnerability diagnosis that approaches through challenge-response pair collection

 Analysis of Security Vulnerability Diagnosis in Mobile IP Networks 953

collect challenge value that request challenge continuously to AP and response value
that encrypted to public key, and when it processes challenge-response using same
random numbers, it makes possible response immediately and generation of WEP key
using generating packets in initial authentication

In implement environment, proposed system develops vulnerability diagnosis of
wireless Internet networks to use easily, and makes use of IPAQ5550 with PDA
package including wireless Internet functions which can easily show in popular envi-
ronment. Also, we use development tool with Microsoft Visual Studio .NET 2003
Professional, Microsoft .NET Compact Framework 1.1 Library, and Microsoft Pock-
etPC 2003 SDK, running HP iPAQ5550 with IEEE 802.11b wireless interface.

 Fig. 3. Screen after scanning network Fig. 4. Screen after making report

In Fig.3, initial execution screen consist of button of making report, upper part of
printing data, and button of process scan instruction, and middle text box output to
current state. After processing network scan, scan test is discovered two APs, and
when it process connection test about each AP, scan test is completed.

Fig. 5. Screen of report file Fig. 6. Generated report file

954 D.C. Lee

Fig. 6 shows report file that processed diagnosis result. In report file, make report
instruction process instruction that outputs diagnosis result as report file, and it write
down test time and current state situation. In diagnosis result, this shows vulnerability
in mobile IP networks.

4 Conclusion

The paper is to interpret the communication network related to security vulnerability
reporting process, and focuses on how the information of the vulnerability is received
and processed and how the information is managed after the reception in wireless
Internet networks. The proposed system can diagnose vulnerability patterns that can
generate through TCP/IP networks and mobile IP networks, and can report diagnosis
result to network manager rapidly.

Acknowledgement

This work was supported by a fund from Howon University, 2006.

References

1. M. Balazinska and P. Castro, "Characterizing Mobility and network usage in a Corporate
Wireless Local Area Network, "Int'l. Conf. Mobile Systems, Apps, and Services, May
2003.

2. A. Mishra, M. Shin, and W. Arbaugh, "An Empirical Analysis of the IEEE 802. 11 Mac
Layer Handoff Process, "ACM SIGCOMM Comp. Commun. Rev., vol. 33, Apr. 2003.

3. R. Koodli and C. Perkins, "Fast Handover and context Relocation in Mobile Networks,
"ACM SIGCOMM Comp. Commun. Rev., vol. 31, Oct. 2001.

4. IEEE Std. P802. 1X, "Standards for Local and Metropolitan Area Networks: Standard for
Port Based Network Access Control," Oct. 2001.

5. J. Edney and W. A. Arbaugh, Real 802.11 Security, Addison Wesley, 2003.
6. IEEE Std. 802.11i, "Draft Amendment to Standard for Telecommunications and Informa-

tion Exchange between Systems-lan/man Specific Requirements, Part11: Wireless Me-
dium Access Control and Physical Layer(phy) Specifications: MAC Security Enhance-
ments.," May 2003.

7. A. Mishra, M. Shin, and W. Arbaugh, "Context Caching Using Neighbor Graphs for Fast
Haridoffs in a Wireless Network," to appear, Proc. IEEE INFOCOM 2004.

8. W. A. Arbaugh and B. Aboba, "Experimental Handoff Extension to RADIUS," Internet
draft, 2003.

9. S. Pack and Y. Choi, "Fast Inter-AP Handoff Using Predictive-Authentication Scheme in a
Public Wireless LAN," IEEE Networks, Aug. 2002.

10. S. Pack and Y. Choi, "Pre-Authenticated Fast Handoff in a public Wireless LAN based on
IEEE 802. 1x Model," IFIP TC6 Pers. Wireless Commun., Oct. 2002.

11. M. Nakhjiri, C. Perkins, and R. Koodli, "Context Transfer Protocol," Internet Draft: draft-
ietf-seamoby-ctp01.txt, Mar. 2003.

12. R. Perlman, "An Algorithm for Distributed Computation of a Spanning Tree in an Ex-
tended LAN," 1985, pp. 44-53.

13. R. Perlman, Interconnections, 2nd Edition: Bridges, Routers, Switches and Internetwork-
ing Protocols, Pearson Education, Sept. 1999.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 955 – 963, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Virtual Telematics Systems for Distributing Nationwide
Real-Time Traffic Information

Bong Gyou Lee

Graduate School of Information, Yonsei University, Seoul, Korea
bglee@yonsei.ac.kr

Abstract. This paper is to present why and how to build a virtual Telematics
systems. Diverse traffic data are collected, managed and distributed mainly by
government agencies. These agencies, however, have their own unique aims,
functions, standards and policies with regard to Intelligent Transportation Sys-
tem (ITS) centers for managing and controlling their own transport systems. It
becomes obstacles and barriers to overcome for distributing nationwide real-
time traffic information. Thanks to the advances of information security and
digital convergence technologies, the virtual systems become stable and secure.
In this paper we have developed the virtual Telematics systems that can serve as
a guideline for other virtual systems.

1 Introduction

The enormous amount of diverse traffic data in Korea is treated and managed mainly
by government agencies. Most of these agencies apply their own unique set of stan-
dards and policies in collecting, managing and supplying traffic data, to increase the
efficiency of the management and control of the transport systems within their ITS
centers. Moreover, the various system architectures, including DB, applications, net-
work, hardware and software for each respective ITS center have been partially inte-
grated on an internal level, but a nationwide integration has not yet been achieved. As
a result, services for providing real-time traffic information cannot expand across the
country, and only a few, limited types of traffic data can be distributed to general
users. From a realistic viewpoint, the physical establishment of a fully integrated ITS
or Telematics center will require huge amounts of capital and time to develop; there
are also other difficulties in building the architecture equipments, such as the hard-
ware, software and network, or employing specialized manpower.

This paper is to present how to build a stable and secure virtual center. The virtual
Telemactics center in this study can distribute value-added information including
Location-based Services (LBS) and the nationwide real-time traffic information col-
lected from the dispersed ITS centers.

2 Limitations of Existing ITS Centers

Major ITS centers in Korea are operated or supported by government agencies includ-
ing the Ministry of Construction and Transportation (MOCT), the Korea National
Police Agency (KNPA), and the Ministry of Information and Communication (MIC).

956 B.G. Lee

The ITS Center of MOCT collects diverse traffic data including accident informa-
tion at constant time intervals through associated agencies. These agencies are the
Korea Institute of Construction Technology (KICT), the Korea Highway Corporation,
Seoul Metropolitan Traffic Broadcasting Service and most local governments. The
center also provides specific traffic information via diverse media including the Inter-
net, broadcasting and Variable Message Signs (VMS). However, the center has been
built mainly for managing the systems of highway and local expressway by connect-
ing its affiliated agencies. As shown in Fig. 1, most of the collected data are used
primarily for management and control purposes, and only a limited portion of traffic
data can be provided to private corporations and public users.

The KNPA has managed and controlled nationwide traffic signals and their sys-
tems. It also has been in charge of CCTV for monitoring traffic conditions. The
KNPA has largely distributed a portion of CCTV traffic information via broadcasting
and the Internet.

The Telematics Information Center (TELIC) established by the MIC has been
gathering traffic information from other ITS centers. Unlike other ITS centers, the
TELIC does not have its own data collection systems including CCTV, roof and infra-
red detection. It only concentrates on distributing traffic information to Telematics
Service Providers (TSP) as well as users of Telmatics services.

Fig. 1. Usages of traffic data in existing ITS centers

Fig. 2. Examples of receiving message sets in TELIC

Gathering and integrating various traffic data from diverse sources with different
standards and formats are extremely complicated and become important issues to
distribute real-time traffic information. Most ITS centers have several restrictions for
providing real-time traffic information in terms of traffic data formats, data exchange
standards and node-link ID structures. That is, like the cases of many other countries,

Virtual Telematics Systems for Distributing Nationwide Real-Time Traffic Information 957

current ITS centers in Korea still have employed different data exchange standards
among others, as shown in Fig. 2. Also, in the case of the node-link system, the Cen-
ter of the MOCT uses the standard of 10-digit node-link ID structure, but other cen-
ters employ their own distinctive standards. In other words, taking the number of
digits in the current node-link ID format, the MOCT's 10-digit node-link system is
used as the standard. Nevertheless, the TELIC uses 8 digits for its node ID and 9
digits for its link ID, while KNPA's Center operates 8 digits for the node ID, and 13
digits for the link.

3 Building the Virtual Telematics Center

3.1 Relationship Between Telematics and ITS

Figure 3 presents the relationship between Telematics and ITS in terms of services,
core technologies and international standards. Thanks to the advances of information
security and digital convergence technologies, most obstacles and barriers to provide
Telematics service can be overcome.

Since the traffic data depended on types of traffic detections include text, audio and
video formats, the existing ITS centers have used divergent application software,
middleware, DBMS and GIS tools. To share and distribute traffic data efficiently, the
Telematics center should have the data standard with regard to data dictionary, data
registry, data type, data structure, data element, and so on.

Fig. 3. The relationship between Telematics and ITS

In order to solve the problems of different node-link systems, a matching table
must be utilized to initialize the node-link data of other agencies so that it can be
compatible with the standard MOCT node-link ID system. An initialized data refers to
a matching table that converts link information provided by the KNPA for the Seoul
metropolitan area into the standard node format of the MOCT, and the standard link
format of the MIC.

958 B.G. Lee

Also, to exchange traffic data effectively, the Telematics center should take the
standards for data dictionary, communication protocol, and message sets for seman-
tics and syntax. There are several national and international ITS standards such as
“Data Dictionaries for ITS,” “Message Set Template for ITS,” “On-board Land Vehi-
cle Mayday Reporting Interfaces,” “Data Dictionaries for Advanced Traveler Infor-
mation Systems (ATIS),” and “Message Sets for ATIS.”

3.2 Conceptual Framework of the Virtual Center

Establishing another comprehensive ITS or Telematics center to integrate the current
ITS centers that are physically apart, obviously incurs huge economic opportunity
costs and carries the risk of a redundant investment. Moreover, even if such a com-
prehensive center is established, expanding the ubiquitous mobile information service
nationally cannot be achieved in a short period.

The virtual Telematics center will be operated through linked servers within the
system of each of the three agencies, the MOCT, MIC, and KNPA. The purpose of
building the virtual center is to make distributed application programs and interoper-
able ITS/Telematics systems. Using a standardized format, the virtual center inte-
grates traffic and road information collected and possessed separately by public and
private sectors. The center manipulates collected traffic data to nationwide real-time
traffic information and stores as useful DB. It also distributes the information to gov-
ernment agencies, private Telematics Service Providers (TSP) and general users.

Figure 4 depicts the conceptual framework of the virtual center as a business
model. The core-value chain in this framework is the process of integrating and proc-
essing the data collected from Contents Providers (CP), then providing the standard-
ized traffic information to TSP. Also, a supportive value chain with regard to the
billing system, system control and management is required as a foundation. Partici-
pants in the scheme of the virtual center include not only the CP and TSP, but also the
relevant public agencies, private enterprises and general users.

Fig. 4. The conceptual framework of the Virtual Center

Virtual Telematics Systems for Distributing Nationwide Real-Time Traffic Information 959

3.3 Architecture Flow

The virtual Telematics center does not need a physical alteration of the existing ITS
centers' architectures and organizations, and only requires the installation of networks
and equipments needed for the integration of traffic information, and the basic operat-
ing manpower. It also involves minimal cooperation among the relevant agencies
concerning issues of billing, standardization, division of profits, and other business-
related issues.

Fig. 5. Architecture flow of the virtual center

Fig. 5 illustrates the architecture flow in the virtual center. The virtual center archi-
tecture is essentially a service-oriented, so it enables a step-wise expansion. Thereby
the provision of real-time traffic information services, which was previously available
to a limited region in the nation, can be extended from the Seoul metropolitan area to
the whole nation, and the general user can be expanded in phases.

3.3.1 Data Flow and Data Exchange Standard
Within the three ITS centers of the virtual Telematics center, some traffic data such as
accident, vehicle speed, volume and occupancy data can be shared. Each center of the
virtual center can make the real-time traffic information using shared data with node-
link digital maps and the node-link matching table. Also, each and every agency can
provide the information to TSP and general users.

The matching table automatically converts traffic data, from other centers that do
not conform to the standard node-link ID system, into the standard node-link traffic
information. The information can be searched within the integrated DB server of each
agency through various types of EAI adaptors, and will be transferred to, and stored
in, other agencies' integrated DB servers. Fig. 6 depicts data flow and the EAI adap-
tors installed in each agency’s systems, the node-link server, the DB server and
TCP/IP as a communication protocol.

In order to integrate and exchange traffic data effectively, the virtual center should
have the formal standards including data exchange standard, the ASN.1 (Abstract
Syntax Notation One) input standard and the standard of node-link ID system.

960 B.G. Lee

The virtual Telematics center adopts 'Technology Standard in Basic Traffic Infor-
mation Exchange' and the ASN.1 input standard. Also, it follows the TELIC node-link
ID system that uses 8 digits for its node ID and 9 digits for its link ID. Because the
TELIC focus on providing real-time traffic information and has more distributed
application programs and interoperable systems compared with other agencies.

The node-link mapping table enables the virtual center to integrate and exchange
traffic data based on the node-link ID system. Typical examples of matching schemes
are selecting one link that can be considered as the most representative of all, and then
matching on a 1:1 basis, or ratio-matching. The latter can be seen as a 1:M matching
scheme, as it gives different weights to all targeted links, shown in Fig. 7. Both
schemes are based on a readily scalable link distance.

Fig. 6. Data flow and communication protocol in the Virtual Center

Fig. 7. Standards for the Virtual Telematics Center

Virtual Telematics Systems for Distributing Nationwide Real-Time Traffic Information 961

Fig. 8. Hardware and network architecture

3.3.2 Hardware/network/application Architecture
Fig. 8 shows the architecture of hardware and network in the virtual center. The net-
works of the virtual center can be built either by connecting to a pre-existing network
(option 1), or by building a new, exclusive line (option 2). For option 1, existing

Fig. 9. Application architecture of the Virtual Center

962 B.G. Lee

networks with equipments can be effectively utilized, but could result in an overload
in security and traffic. On the other hand, option 2 requires extra costs for new net-
works with equipments, but it guarantees easy and convenient operation. In the first
stage of the virtual center, option 2 is applied, adding exclusive networks to connect
the three agencies. This entails additional requirements such as DSU/CSU (leased),
routers, and switches.

The hardware structures are designed by considering the applications included in
the servers of each ITS center, the characteristics of DBMS, and equipments such as
CPU, disk array, system disk, and memory, to calculate the necessary capacity and
appropriate model.

The application architecture of the virtual center consists of three parts in terms of
connecting, integration, and provision component. Each component is composed of its
set of sub-applications. Figure 9 presents the structure of three components of the
virtual center. For example, in the components of connecting and integration, the
traffic information provided by the ITS centers of each agency are integrated into one
set, and the integrated information is uniformly distributed to the end users by the
applications of the provision component, which is a single information distribution
system.

4 Conclusion

This paper addresses the necessity and significant factors of building a virtual
Telematics center based on information security systems. Compared to existing ITS
centers, the interoperable virtual center has the following several advantages. First, it
can effectively provide nationwide real-time traffic information. Second, it can help to
save time and money because it does not need a physical alteration or construction.
Third, it can reduce the risk of a redundant investment and involve minimum man-
power among agencies. Fourth, it can easily extend its contents and services geo-
graphically and technically since it employs service-oriented architectures.

The process and results of this empirical study can be served as useful guidelines
for other virtual systems as well as other countries. In the further research, the study
needs to find out detailed obstacles or problems with solutions for operating the vir-
tual center.

References

1. Ministry of Construction and Transportation, White Paper in Ministry of Construction and
Transportation (MOCT, Seoul, 2004).

2. B. G. Lee, K. Y. Kim, T. H. Lee, and J. Y. Song, u-Business Strategies for Telematics based
on Demand Analysis of Real-time Traffic Information and Devices, Proceedings of the In-
ternational Conference on Korean Management Information System, 367-370 (2005).

3. B. G. Lee, I. G. Hong, S .K. Ryu and H. Y. Moon, A Study on Integrating Wire & Wireless
Communication Networks for Reducing Communication Costs in the National ITS Physical
Architecture, Journal of the Korea open GIS Association, 6(2), 77-84 (2004).

4. Y. K. Kim, GIS/LBS/Traffic Information Technology, TTA Journal 89, 99-104 (2003).

Virtual Telematics Systems for Distributing Nationwide Real-Time Traffic Information 963

5. Korea Research Institute for Human Settlements, ITS Node-link System, Standardization
and Operation Guideline (KRIHS, Seoul, 2005).

6. National Computerization Agency, A Study on Reinforcing ITS Communication Architec-
ture, (NCA, Seoul, 2001).

7. U.S. Department of Transportation, National ITS Architecture: version 5.1 (December 14,
2005); http://www.its.dot.gov/arch.

8. ASN. 1 Information Site (May 3, 2005); http://asn1.elibel.tm.fr.
9. Transport Canada, ITS Architecture for Canada (May 13, 2005); http://www.its-sti.gc.ca.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 964 – 970, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Scope of Forensics in Grid Computing – Vision and
Perspectives∗

Syed Naqvi1, Philippe Massonet1, and Alvaro Arenas2

1 Centre of Excellence in Information and Communication Technologies (CETIC), Belgium
{syed.naqvi, philippe.massonet}@cetic.be
2 CCLRC Rutherford Appleton Laboratory, United Kingdom

a.e.arenas@rl.ac.uk

Abstract. Along with the evolution of Grid technology, the need to protect its
resources from malicious activities is becoming more and more important.
While robust security architecture provides deterrence, there never be a perfect
security mechanism. The Grid security teams must be able to tackle the
postattack situation and should be able to read the black-box of the events that
led to the failure of the security architecture. Moreover, they should be able to
collect the fingerprints of the culprits behind the attack so that necessary legal
and judicial actions could be taken. It is only possible when the specific nature
of the Grid is kept in mind while developing its forensics techniques. Grid is
anewer paradigm and still lacks a number of security features. There is no other
work in our knowledge that addresses forensics issues of the grid. This vacuum
has overwhelmingly motivated us to take some initiative to fill this gap.

Indexterms: Grid security, forensics techniques, return of security investment.

1 Introduction

The term Forensics is defined in the American Heritage Dictionary as the use of sci-
ence and technology to investigate and establish facts in criminal or civil courts of
law. In the computer world forensics implies using evidence remaining after an attack
on a computer to determine how the attack was carried out and what the attacker did
[1]. The vast majority of these threats are possible because of the internet. This con-
nection of computers all over the world has brought with it many remotely exploitable
threats (e.g. denial of service attacks) [2]. In a networked system, once an attack has
succeeded, the attacker generally has complete access to the attacked system. A wily
hacker can then remove evidence of the attack making it very difficult to determine
what has happened.

The complexity of forensics in the networked systems is further exacerbated by its
ever increasing scale with computing resources spread over the diverse administrative
and geopolitical domains. The emerging field of Grid computing [3], which intends to

∗ His research work is supported by the European Network of Excellence CoreGRID (project

reference number 004265). The network aims at strengthening and advancing scientific and
technological excellence in the area of Grid and Peer-to-Peer technologies. The CoreGRID
webpage is located at www.coregrid.net.

 Scope of Forensics in Grid Computing – Vision and Perspectives 965

aggregate all kinds of heterogeneous resources that are geographically distributed, not
only requires in-depth security services to protect its resources and data but also en-
tails suitable forensics techniques that can be employed to assess the responsibility of
the wrongdoers. Security teams still lack the experience of Grid forensics as being a
comparatively newer technology; it has not yet faced any crucial security breach. This
is all about to change. The number of people who know about the grid is growing fast
as are the worthwhile targets for the potential attackers. This situation makes it im-
perative that efforts be exerted to explore the scope of forensics in advancing the state
of Grid security. This article presents the vision of authors about the Grid forensics
and its perspectives.

This article is organized in the following manner: an overview of some forensics
techniques in the networked systems is presented in section 2. A forensics lifecycle
model is described in section 3. Section 4 briefs the role of honeypots in Grid foren-
sics. Grid forensics is explored in the section 5. A discussion of forensics versus re-
turn of security investment is made in section 6. Finally some conclusions are drawn
along with our future directions in the section 7.

2 Related Work

2.1 Routing Registry System

There is no existing work that applies forensics in the Grid environments. However, a
recent work on distributed forensics [4] describes the two related issues: one is about
the attack attribution techniques; the other is about different types of Intruder Detec-
tion Systems.

One important type of attribution techniques has been studied is stepping stone cor-
relation based on timing information. In [5-6] several stepping stone correlation
methods are discussed. [5] presents the correlation of ON/OFF periods of interactive
packets. It is robust to retransmission but not effective to non-interactive traffic and
packets with random delay, reorder and chaff. [6] gives active watermark tracing
method by actively add watermark into the flows by manipulating inter-packet delays.
It can deal with the packets random delay problem. But when the delay is too large
and causes packets reorder, or when chaff added, it becomes ineffective.

Another studied attack attribution techniques are IP trace-back and packet marking.
In [7], a Source Path Isolation Engine (SPIE) was developed to do IP trace-back

and the Bloom Filter was used as the data storage mechanism. In [8], based on the
topology of Internet, a new deterministic packet marking technique was provided and
only total 52 bits would be used for marking the whole path.

At the same time, Intrusion Detection Systems (IDS) have been studied extensively
over the past few years and the mainstream of work can be categorized into two
groups [9], misuse detection and anomaly detection systems. Misuse detection is
signature-based methods relying on a specific signature of an intrusion, which triggers
an alarm after being found. Such systems cannot detect novel attacks because only
known attacks have signature available. On the other hand, anomaly detection sys-
tems [10] rely on characterizing normal operations of a network or a host, and attempt
to detect significant deviations from the norm to trigger an alarm. Although anomaly

966 S. Naqvi, P. Massonet, and A. Arenas

detection systems can detect novel attacks to a certain extent, they are difficult to be
practical due to the so high false alarms. One solution [11] is to combine signature
based systems and anomaly detection systems that can decrease false alarm rates. In
this system, currently we use a lightweight IDS, called snort [12] as part of our inte-
grated system as the data filter to find out the attack related data in the network traffic.
Snort is a versatile, lightweight and very useful intrusion detection system. It can be
used as a straight packet sniffer, a packet logger and a full-blown network intrusion
detection system. The drawback here is that snort is still a misuse detection system
and it cannot find novel attacks. We need enhance this function in the future.

3 Forensics Lifecycle Model

The first step towards the efficient forensics practice is the recognition of a forensics
lifecycle [13]. Digital forensics not only has technical issues but is also a managerial
problem. We follow the generic seven stages forensic lifecycle model presented in
[14]. This model is shown in Figure 1.

Fig. 1. Generic Forensics Lifecycle Model

The first block of this model is the initialization of the forensics process as well as
the re-examination of the previous evidence due to the discovery of new evidences.

This step follows planning of a forensics procedure for producing a legally admis-
sible report. Based on this plan, forensics process in carried out. A general forensics
case can be divided into five stages: evidence identification, analysis, verification,
individualization, and crime scene reconstruction. Then individual facts or objects are
gathered and categorized as one entity where possible. This step eases the analysis of
these facts or objects. The analysis is carried out according to the evidence. The result
of this analysis constitutes forensics results which are compiled as a forensics report.

 Scope of Forensics in Grid Computing – Vision and Perspectives 967

This compilation should follow a legally defined procedure and format that is regu-
lated by a court of law. Give an authoritative evaluation of the evidence. The seven
stage lifecycle model helps not only to arrange forensics processes but to determine
the facilities of a forensics unit of the security team.

The application of this generic model in the Grid environments requires exact de-
termination of the security metrics. Security metrics of the BUGYO project [15] iden-
tified in [16] can be employed in the Grid environments.

4 Role of Honeypots in Grid Forensics

Honeypots are computer systems, setup as a trap, which are used to collect data on
intruders [17]. The concept of a Honeypot is to learn from the intruder's actions. This
knowledge can now be used to prevent attacks on the real, or production systems, as
well as diverting the resources of the attacker to a the trap system. If the Honey Pot
works as intended, how the intruder probes and exploits the system can now be as-
sessed without detection. This trap appears to contain operating system vulnerabilities
that make it an attractive target for hackers. A Honeypot, loaded with fake informa-
tion, appears to the hacker to be a legitimate machine. While it appears vulnerable to
attack, it actually prevents access to valuable data, administrative controls and other
computers. Deception defenses can add an unrecognizable layer of protection. There
exists a distributed honeypot model for grid computing system security [18]; how-
ever, this model is implemented as an intrusion detection system rather than a tool for
carryout forensics. Once catched in a honeypot, a considerable amount of malicious
entity’s information maybe obtained. It includes network information, system activity
information, etc. The role of honeypot in forensics is to identify these fingerprints as
part of the evidence gathering process.

5 Grid Forensics

Grid specific security requirements [19] should be considered while developing its
forensics techniques. Major factors to be considered in the Grid environments are
scalability and diverse administrative domains. Besides, there are some other pecu-
liar security requirements of the Grid-based systems which are generally overlooked
by the designers. An ideal Grid forensics technique should be able to trace the breach
of these Grid-specific security requirements. Their brief description is given in this
section.

5.1 Resilience

Resilience is an important requirement as the grid links and nodes are very dynamic
in nature and may change over the time. The GDMS security architecture should
remain intact and should deliver the promised level of security assurances even if its
composition changes over the time. The resilience provides an abstraction layer to
hide the architectural changes from the overall security architecture.

968 S. Naqvi, P. Massonet, and A. Arenas

5.2 Data Lifecycle Management (DLM)

DLM is the process of managing data throughout its lifecycle from conception until
disposal across different storage media, within the constraints of the entire process.
The lifecycle is the time from the moment data is created until it is deleted or stored
indefinitely. Security assurances require spanning the entire lifecycle of data. GDMS
should ensure that the data contents will be protected from the malevolent entities
throughout its lifecycle.

5.3 Fault Tolerance

Fault tolerance is a desirable feature especially when transfers of large data files oc-
cur. Protocols such as GridFTP [20] allow for resuming transfers from the last byte
acknowledged. Overlay networks provide caching of transfers via store-and-forward
protocols. However, caching reduces performance of the overall data transfer and the
amount of data that can be cached is dependent on the storage policies at the interme-
diate network points.

5.4 Service Level Agreement (SLA)

SLA is any type of management vehicle between a service provider and a customer
that specifies performance requirements, measures, reporting, cost, and recourse. In
the context of GDMS security, SLA defines how data is protected while in transit
over the service.

Fig. 2. Viability of an Information Security Investment

 Scope of Forensics in Grid Computing – Vision and Perspectives 969

5.5 Security Negotiations

Security negotiations are used to establish secure session between the endpoints. A
security infrastructure featuring support for negotiations and establishment of end-
toend and/or hop-to-hop security associations has broader applicability to general
networked environments like grids. Security negotiations require some brokering
agent to mediate between the endpoints.

6 Forensics and Return on Security Investment (ROSI)

OSI is an important factor for the companies and other stakeholders. An organization
should spend substantially less than the expected loss, no more than one third [21].
Figure 2 depicts the model of to find the viability of an information security program.
The methodology strikes a balance between under-spending and overspending [22].

Likewise, the Grid forensics tool should be economically viable yet powerful
enough to handle the Grid-specific security monitoring requirements.

7 Conclusions and Future Directions

The term Forensics is not a new collection in the technical dictionaries; however, its
application in the Grid computing has no precedence. In this paper, we have explored
the utility of forensics in the Grid environments especially to detect the breach of Grid
specific security requirements. Evolution of best practices and tools for the Grid Fo-
rensics is certainly a nontrivial task. Grid’s peculiar nature, such as high scale and
distribution of resources across various domains, makes it difficult to determine the
precise metrics for the security measurements and for the monitoring of security
breaches.

We plan to further investigate the scope of forensics in the Grid based systems and
based on the findings, we shall work on the development of Grid forensics best prac-
tices and their corresponding tools.

References

1. Laurie B., Digital A., Network Forensics, ACM Queue Vol. 2, No. 4 - June 2004
2. Dixon P., An Overview of Computer Forensics, IEEE Potentials Magazine, Volume 24, Is-

sue 5, Dec. 2005 pp 7-10
3. Foster I., Kesselman C., The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann, 1999. ISBN 1558604758
4. Tang Y., Daniels T., A Simple Framework for Distributed Forensics, IEEE International

Conference on Distributed Computing Systems 2005, 6-10 June 2005 pp 163-169
5. Zhang Y., Paxson V., Detecting Stepping Stones, USENIX Security Symposium 2000, 14-

17 August 2000, Denver, Colorado, USA
6. Wang X. and Reeves D., Robust correlation of encrypted attack traffic through stepping

stones by manipulation of interpacket delays, In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS 2003), Washington DC, USA, Oct.
2003

970 S. Naqvi, P. Massonet, and A. Arenas

7. Snoeren A., Single-Packet IP Traceback, In IEEE/ACM Transactions on Networking
(ToN), 2 Volume 10, Number 6, December 2002. Pages 721-734

8. Al-Duwairi B., Daniels T., Topology based packet marking, International Conference on
Computer Communications and Networks (ICCCN 2004), 11-13 Oct. 2004, pp 146- 151

9. Carter E., Intrusion Detection Systems, Cisco Press, 15 February 2002
10. González F., Gómez J., Kaniganti M., Dasgupta D., An Evolutionary Approach to Gener-

ate Fuzzy Anomaly Signatures, IEEE Systems, Man and Cybernetics Society Information
Assurance Workshop, June 18-20, 2003, West Point, New York, USA pp 251-259

11. Kaleton I., Combination of Misuse and Anomaly Network Intrusion Detection Systems,
March 2002

12. The SNORT Project - http://www.snort.org
13. Naughton T., Advancing the Science of Forensic Data Management, Proceedings of SPIE -
14. Investigative Image Processing II, vol 4709, July 2002, pp. 60-67
15. Chen P., Tsai L., Ying-Chieh C., Yee G., Standardizing the Construction of a Digital Fo-

rensics Laboratory, International Workshop on Systematic Approaches to Digital Forensic
Engineering 2005, 7-9 Nov. 2005, pp 40-47

16. The Eureka-Celtic Project BUGYO (Building Security Assurance in Open Infrastructures)
http://projects.celtic-initiative.org/bugyo

17. Naqvi S., Riguidel M., Quantifiable Security Metrics for Large Scale Heterogeneous Sys-
tems, International Carnahan Conference on Security Technology, Lexington, Kentucky,
USA, October 16-19, 2006

18. Martin W., Honey Pots and Honey Nets - Security through Deception. SANS Institute Pa-
per, May 25, 2001

19. Yang G., Rong C., Dai Y., A Distributed Honeypot System for Grid Security, Proceeding
of the Grid and Cooperative Computing 2003 (GCC2003), Shanghai, China, 2003, pp
1083-1086

20. Naqvi S., Massonet P., Arenas A., Security Requirements Model for Grid Data Manage-
ment Systems, International Workshop on Critical Information Infrastructures Security
2006 (CRITIS’06), Samos Island, Greece, August 30 - September 2, 2006

21. W. Allcock et al., GridFTP: Protocol extensions to FTP for the Grid, GGF Document Se-
ries GFD.20, April 2003

22. Gordon L., Economic Aspects of Information Security in a Netcentric World, SecurE-Biz
CxO Security Summit, Washington D.C. USA, 2004

23. Mizzi A., Return on Information Security Investment, January 2005

Modeling Active Cyber Attack for Network
Vulnerability Assessment�

Jung-Ho Eom, Young-Ju Han, and Tai-Myoung Chung

Internet Management Technology Laboratory,
Scool of Information and Communication Engineering,

SungKyunKwan University,
300 Cheoncheon-dong, Jangan-gu,

Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
{jheom, yjhan}@imtl.skku.ac.kr, tmchung@ece.skku.ac.kr

Abstract. In this paper, we considered active cyber attack model to as-
sess vulnerability in network system. As we simulate cyber attack model
in the network system, we can identify vulnerabilities, and provide appro-
priate countermeasures against them. Our model consists of two agents,
two modules, and action controller on on-line system, and attack dam-
age assessment analyzer on off-line system. We can minimize a detection
probability from target system because we applied ’Sensor to Shooter’
concept to our model, and separated information collection agent and
attack agent for reduce attack action time. One module analyzes target
system’s information. Another module develops target system and main
point of impact, and builds attack scenario consisted of attack tree and
attack pattern. Attack action agents execute the set of attack sequence
which consists of attack pattern in attack tree’s each node. Action con-
troller controls all execution process of our model’s elements.

1 Introduction

A cyber attack is an attack on a computer network system. It consists of com-
puter actions such as remote or local connection, computer database access, or
program execution with the intent to compromise the secure operation of the
network system by logical or technical means. A cyber attack has become a
significant threat to organizations with severe consequences. Because we rely
increasingly on network system infrastructures to support critical operations in
defense, banking, telecommunication and many other systems [1,2].

Traditionally, cyber attack used only the single vulnerability exploited in the
attack. In these days, cyber attacks are complex multi-stage attacks that coor-
dinate the effects of various single-point attacks to achieve their goals. And, as
cyber attacks has been various and sophisticated, the level of defense required
by security experts has raised [3].

� This study was supported by a grant of the Korea Health 21 R&D Project, Ministry
of Health & Welfare, Republic of Korea(02-PJ3-PG6-EV08-0001).

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 971–980, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

972 J.-H. Eom, Y.-J. Han, and T.-M. Chung

We periodically need to check our network system for defense cyber attacks.
The best method to check our network system is actually to simulate attack
on them. It is to generate the real synthetic network attack events from cyber
attack model. As simulating cyber attack model, it is to identify vulnerabilities,
and develop defense mechanism. Our research’s goal is to develop cyber attack
model for check network system effectively, as simulating real attack method by
cyber attacker [9,10].

In this paper, we will describe background and related works in section 2
and cyber attack architecture using ’Sensor to Shooter’ concept in section 3. We
present a modeling cyber attack in section 4, and conclude in the last section.

2 Backgrounds and Related Works

A government, the military and commercial organizations have widely used
network and telecommunication, etc for several decades because of their con-
venience, ease of use, and the high speed of business processing. With this in-
creasing reliance on internet, network systems comes an increasing vulnerability
to cyber attacks. Although attacks can range from cyber attack to physical at-
tacks, the most aspect of cyber attack is to disrupt or disable system’s functions
and resources that support an organization’s operations [2,4,6,7].

Traditionally, network system’s defense focuses primarily on prevention;
putting controls and mechanisms in place that protect confidentiality, integrity,
and availability by stopping users from anomaly behaviors. But, as attack tech-
niques have been diverse and sophisticated, prevention is not enough to protect
them. So, defense mechanism has been developing to assure defense goals by
such mechanism as detection, isolation, reaction, monitoring, and vulnerability
analysis.

Defenses are static in the cyber warfare. That is, after the user has config-
ured their defensive plan, the defense mechanisms will not change. But, as the
cyber attacker’s behavior is dynamic based on the specific strategy, we have to
implement active defense mechanisms [7,10].

Most of the research in the cyber attack modeling has focused on classify-
ing and categorizing exploits and vulnerabilities, and proposed a comprehensive
taxonomy of cyber attacks based on effect and intent [10].

We propose active cyber attack model applying ’Sensor to Shooter’ and ’OODA
Loop’ concepts for improve cyber attack model’s function.

3 Cyber Attack Architecture

3.1 Cyber Attack Strategy Process

The proposed cyber attack strategy process was designed with systematic frame-
work, as adapting 21st new conventional warfare concepts ’Effects-Based Oper-
ation(EBO)’ and ’Sensor to Shooter process’. The ’EBO’ concept is to identify

Modeling Active Cyber Attack for Network Vulnerability Assessment 973

the center of gravity in enemy’s combat organization, and attack it to make mas-
sive combat power to unessential factors, and increases the number of enemy’s
combat factors under control as focusing attack power on effect. The center of
gravity is one of the weakest parts of enemy, and it means the part that most
definite effect is happened when inflicted attack. ’Sensor to Shooter’ concept is
a process from target identification to precise strike in real time, which consists
of target acquisition, mission tasking, strike planning, mission planning, weapon
preparation, and fly-out. Namely, it is to attack on target as soon as target is
acquired for reduce total attack time before enemy detects attack. Its process is
as Fig. 1 [12,13]. Cyber attack’s success is depended on the correct identification
of target and the efficient attack strategy development in network system. If at-
tacker identified a center of gravity, he set up attack strategy process to attack
it. So, we will apply Sensor to Shooter process to set up our attack strategy
process. The Figure 2 is cyber attack strategy process.

Fig. 1. Sensor to Shooter Process

Fig. 2. Cyber Attack Strategy Process

974 J.-H. Eom, Y.-J. Han, and T.-M. Chung

3.2 The Mechanism of Cyber Attack Model

Our cyber-attack model is consisted of 2 agents, 2 modules and action controller
in on-line(real-time), and an attack damage assessment analyzer in off-line.This
model is adapted by cyber attack strategy process.

Fig. 3. The Architecture of Cyber Attack Model

Agents

Intelligence, Surveillance and Reconnaissance(ISR) Agents. ISR agents collect
information raw data about the target system. They search network environ-
ment or configuration properties including target system specifications such as
network equipment, security equipment, software and application, IP addresses,
etc. They use automatic tools such as network, system and vulnerability scan-
ner, etc. Our model supports the interactions between ISR agents, which connect
communication channels between them to exchange knowledge, collected infor-
mation for collaborate to achieve their goal. They send data to Target system
Information Analyzer(TIA).

Attack Action(AA) Agents. AA Agents conduct attack on the weakest vulnera-
bility –main point of impact(MPI)– in target system in real time. The AA agents
receive the current target system’s information, attack scenario and the attack’s
ultimate goal from action controller. Once AA agents execute attack scenario,
action controller don’t concern about AA agent’s activities because AA agents
are autonomous agents that are able to take decision without action controller’s
intervention. Action controller only operates when AA agents request. Attack is
the actual action which executes attack scenario consisted of attack tree and pat-
tern. After attack finish, they must remove their activities traces, using backdoor
or root kits that delete log file or replace commonly used system commands. AA
agents send action result to Attack Damage Assessment(ADA) analyzer. When
we build attack agents, we must take into account the following challenges [5].

1. Non-traceability: the ability to dissimulate the origin of the attack. To achieve
non-traceability, many attack agents will insert intermediate agents between
the originating agent and the agents executing the goal or partial goal.

Modeling Active Cyber Attack for Network Vulnerability Assessment 975

2. Noise acceptance: the level of noise that we allow our agents to make. It can
hide main attack agent by other attack agents.

3. Expected attack success: determines the priority which will be given to suc-
cessfully execute the actions over the other characteristics.

4. Attack execution time: each agent will be given a limit of execution per each
action. This is necessary to plan the attack, as it usually consists of a series of
dependent steps.

5. Zero-dayness: allowed to use zero-day attack on critical resource that should
be used only for main missions.

Information Collection Management(ICM) Module. ICM module con-
sists of 2 components; Target Information Analyzer(TIA), Target Information
Profile(TIP) D/B. This module’s main function is to analyze data collected by
ISR agents, and provide information to Target Development Analyzer (TDA)
for exploit vulnerabilities and attack points. TIA compares raw data to profile
in D/B. If it is matched up profile in TIP D/B, it sends all information of tar-
get system to TDA, if not, it requests further data to ISR agents until TDA
satisfy. If ISR agents send data of new network system to TIA, TIA requests to
collect information about new network system to other ISR agents. ISR agents
will collect all data related to new network system in the other network system
infrastructures as well as target system. TIA sends new data to TIP D/B. It
updates and stores the data related to all types of information system.

Cyber-Attack Management(CAM) Module. CAM Module consists of 4
components; TDA, ASA, SV D/B and AM D/B. The main function is to develop
attack points such as the center of gravity and MPI, and build attack scenario.

Target Development Analyzer(TDA) and System Vulnerability(SV) D/B. TDA
acquires a MPI with information from TIA. The MPI is the weakest point that
damages the serious impact to target system. A MPI is a point of final action
accorded with attacker’s goal in a specific attack scenario. Once TDA receives
information about target system from TIA, it exploits vulnerabilities of target
system and finds MPI. It recommends a MPI priority to attack scenario analyzer.
SV D/B stores all network system’s vulnerabilities. Whenever new vulnerability
is identified, it updates vulnerability list.

Attack Scenario Analyzer(ASA) and Attack Method(AM). D/B It is to analyze
the most efficient attack method and technique on MPI. Once it receives MPI
from TDA, it builds new attack scenario based on attack tree and pattern in AM
D/B, or modifies existent attack scenario. And then, it sends MPI and attack
scenario to action controller. AM D/B stores attack scenario with attack trees
and patterns. It updates attack scenario for next attack whenever attack agent’s
action is succeeded or failed.

Action Controller and Attack Damage Assessment(ADA) Analyzer

Action Controller. It controls AA agents and 2 modules. It receives all infor-
mation related to attack action from 2 modules, and sends them to AA agents.

976 J.-H. Eom, Y.-J. Han, and T.-M. Chung

It doesn’t interfere AA agent activities once it sends all attack information to
them. If AA agents report problem or malfunction to action controller, it will
control them. Action controller follows OODA (Observe, Orient, Decide, Act)
Loop to offer promptly necessary information to AA agents for achieve their goal.
This Loop’s concept is to make a decision promptly and accurately in a cycle of
observe-orient-decide-act. Action control observes the condition of all elements,
orients AA agent’s problem and the state of all elements, decides whether it
changes MPI or attack scenario and whether re-attack starts or not, and acts
to order decision to AA agents. As using OODA Loop, we can solve problem
and malfunction without time-delay, and can reduce re-attack time and action
control tasking loads [13].

Attack Damage Assessment(ADA) analyzer. It is to assess attack impact on
target system in off-line. Namely, ADA analyzer assesses whether AA agents
exactly execute attack scenario on MPI, how deep MPI is damaged, and whether
AA agents achieve ultimate goal or not. We excluded ADA in on-line system
because our model’s performance will be depreciated, and attack time will be
extended.

4 Modeling Active Cyber Attack

4.1 Information Analysis and Target Decision

ISR agents collect all information about target system to achieve goal. For ex-
ample, if ultimate goal is denial of service, ISR agents concentrate on collect
network and server equipment such as router, switch, hub, and web server, etc.
The example information is as following Table 1.

Table 1. The example of target system information

Equip Type/Name : Router/Cisco 12416 Equip Type: Server
CPU: 665MHz Equip name: adam.skku.edu
Memory: 2Gb IP address: 240.1.1.1
OS: Cisco 12000 Manager OS: SUN Solaris 10
Protocol: ICMP,SSH,RIPv2,IPv4,IPv6,etc. Service: Sendmail,NTP,BIND 9
Vulnerabilities: TCP Vulnerabilities in Vulnerabilities: Printed
Multiple IOS-Based Cisco Products which arbitrary file deletion
contain a TCP stack Telnet Denial of Printd demon Transmition
Service Vulnerability control protocol

Once information collection was finished, TDA develops MPI that allows ASA
to successfully build a particular attack scenario. If attack goal is a denial of
service against target system, TDA recommends server as the center of gravity
and TCP vulnerability as MPI to ASA.

Modeling Active Cyber Attack for Network Vulnerability Assessment 977

4.2 Attack Scenario Analysis

Attack scenario consists of 2 parts; attack tree and attack pattern. Attack tree
provides a methodical way based on the types of attack. Figure 4 shows an
example attack tree. The root represents an ultimate attack goal. Each node
represents a set of sub-goals that must be achieved for top-level goal. It consists
of an AND decomposition, an OR decomposition and CON decomposition. AND
decomposition means that all the sub-goals of each node must be succeeded. OR
decomposition means that one of all, where at least one of the sub-goals must be
achieved for upper-level’s goal. CON decomposition means that it could be used
or not for upper-level’s goal according to attack condition or target system’s
environment [6,7,8,9,11].

Fig. 4. The relationship between DoS attack tree and pattern

Attack pattern is a generic representation of a deliberate attack that commonly
occurs in specific contexts as showing Table 2. Attack pattern includes the attack
goal, MPI, pre-conditions, attack execution step, and post-conditions. The goal is
the overall goal of the attack specified by the attack pattern. Thepre-conditions are
assumptions that attacker or the state of target system is necessary for an attack
to achieve goal. They include the skills, resources, access, or knowledge that the
attacker must know about target system environment and configuration, etc. The
attack is theprocess for carryingouttheactionon targetsystem.Thepost-condition
is thechangesto thetargetsystemthatresult fromthesuccessfulexecutionofaction.
Attack pattern could be listed to illustrate the referential transparency node of
attack tree.We can connect actionprocess fromroot tobottomnodebecause attack
tree has hierarchy structure. We use the sequence number (1, 2, 3, . . .) to represent
the attack scenario; attack goal 1, followed by step 2, followed by step 3, . . . [6].

We can represent ”DoS” attack pattern as following sequence number using
each leaf label.

(1.1), (1.2), (1.3)
(1.2.1, 1.2.2, 1.2.3, 1.2.4)
(1.2.1.1, 1.2.2, 1.2.3, 1.2.4), (1.2.1.2, 1.2.2, 1.2.3, 1.2.4),

978 J.-H. Eom, Y.-J. Han, and T.-M. Chung

Table 2. The example of attack pattern

1. Denial of Service Attack

*Goal: Take TS(Target Server) out of action for a few hours and disrupt

the services of intermediate routers

*MPI: Server

*Pre-condition: the weak security countermeasures and spoofing TS’s IP

*Attack

OR-Comp. 1. SYN Flooding, 2. UDP Flooding, 3. ICMP Flooding

Post-condition: the service of TS is interrupted for few hours

1.2 SYN Flooding attack

*Goal: Exploit TCP Three-way handshaking vulnerability to perform

overflow Backlog queue

*MPI: TCP vulnerability

*Pre-condition: Attacker can execute certain hacking program on TS

for spoofing TS’s

*Attack

AND-Comp.1.Identify source IP address which is unreachable

OR-Comp. 1. Automated hacking program

AND-Comp. 1. Use "Ping", 2. Use "Port Scan"

2. Social engineering method using insider

CON-Comp.3. Use "trusted insider"

2.Send SYN packet to TS for connection

3.Don’t send ACK packet after received SYN/ACK packet from TS

4.Continue to send a fake connection to TS in the "Half

Open" state until backlog queue is full

* Post-condition: Denial of all connection request in this port

Figure 4 describes the sequence of attack pattern in the attack tree. So, when
AA agents execute attack scenario, they just execute the set of sequence in attack
tree. This can reduce a memory load of AA agents. The same attack scenario
always has not the same result because target system’s structure and security
policies are different.

4.3 Attack Action

The attack action is executed by the set of sequence which refers attack tree and
pattern. Like Fig. 4, attack action follows direction from left to right and from
bottom to top. This allows the action controller to specify ordering of actions
that must be performed in sequence. Action controller set up the specific time-
stamp between sub-tree and upper sub-tree. This allows AA agents to use attack
minimum time to succeed sub-goal without detecting from target system. Let’s
suppose that attack action’s sequence is thick line in the Fig. 5. If attack con-
ditions are not met pre-condition to succeed sub-goal when sub-tree is executed
for SYN flooding attack, action controller has to order attack agents to return to
former step like (a), and requests TIA to collect needed information about target

Modeling Active Cyber Attack for Network Vulnerability Assessment 979

Fig. 5. The example of attack action

system to satisfy pre-condition. If AA agents execute attack scenario without re-
gard for pre-condition, target system is occurred malfunction and may alarm to
system administrator. If TIA can not offer enough information or pre-condition,
action controller has to abandon the sub-tree’s attack action and turn over an-
other sub-tree like (b). When attack is detected like (c), action controller order
AA agent to stop attack and return to specific state before starting attack, and
AA agent has to delete their activities trace if they have enough time.

4.4 Attack Damage Assessment

In case of DoS attack, ultimate goal is to interrupt system’s operation. ADA is to
assess how long target system is interrupted by DoS attack. We add our model
to assess sub-goals such as ’TCP Three-way handshaking vulnerability to perform
overflow backlog queue’ and ’Identify source IP address which is unreachable’.

In our model, ADA is performed in only off-line system after attack was
finished.

5 Conclusions

This paper proposed an active cyber attack model to assess vulnerability in
our network system. Our model presents integrated framework for active cyber
attack adapting ’EBO’, ’Sensor to Shooter’ and ’OODA Loop’ concepts. As using
their concepts, we can structure systematic cyber attack process and mechanism.
Also, as using autonomous agents, ISR and AA agents can solve a problem by
themselves whenever target system environment and attack process are changed.
Action controller is possible to control modules and agents effectively without
time delay and performance depreciation as adapting OODA Loop.

When ASA build attack scenario, it uses attack tree and pattern. ASA can
substitute sub-tree and pattern actively when action controller requests, because
AM D/B has many attack patterns by attack tree.

980 J.-H. Eom, Y.-J. Han, and T.-M. Chung

We added attack damage assessment analyzer to our model. But it doesn’t
operate with other modules in on-line to prevent unnecessary system resources
consumption and analysis time. If ADA is performed when AA agents stand-by
on target system to receive new attack scenario, it is possible to detect by target
system because of attack time delay.

References

1. Nong ye, et. al: ’A process control approach to cyber attack detection’, communi-
cations of the ACM Vol.44, No.8, pp.77-82, Aug., 2001.

2. Sushil Jajodia, et. al: ’Surviving Information Warfare Attacks’, Computer, Vol.32,
Issue 4, pp.57-63, Apr., 1999.

3. Richard E. Overill: ’Information warfare: battles in cyberspace’, Computing &
Control Engineering Journal Vol.12, Issue 3, pp.125-128, Jun., 2001.

4. Gregg Schudel, et. al: ’modeling behavior of the cyber-terrorist’, RAND National
Security Research Division, proceeding of workshop, pp.49-59, Aug., 2000.

5. Ariel Futoransky et. al: ’Building Computer Network Attacks’, http://www.
coresecurity.com/attack/. . . /planning/Futoransky Notarfrancesco
Richarte Sarraute NetworkAttacks 2003.pdf.

6. Andrew P. Moore, et. al: ’Attack Modeling for Information Security and Surviv-
ability’, CMU/SEI-2001-TN-001, Mar., 2001

7. Scott D. Lathrop, et. al: ’Modeling Network Attacks’, BRIMS 2003, May, 2003.
8. Igor Kotenko: ’Agent-based modelingand simulation of cyber-warfare between

malefactors and security agents in internet’, ECMS2005, 2005.
9. Kristopher Daley, et. al: ’A Structural Framework for Modeling Multi-stage Net-

work Attacks’,ICPPW2002, pp.5-10, Aug., 2002.
10. John R. Surdu, et. al: ’Military Academy Attack/Defense Network Simulation’,

ASTC:SMGAS, Apr., 2003.
11. Steven J. Templeton, et. al: ’A Requires/Provides Model for Computer Attacks’,

Proceedings of the New Security Paradigms Workshop, Sept, 2000.
12. ROKAF Combat Development Group: ’Iraq war-Analysis based on Air Operation’,

Jun., 2003.
13. Tim Grant, et. al: ’Comparing OODA & other models as Operational View C2

Architecture Topic: C4ISR/C2 Architecture’, ICCRTS2005, Jun., 2005.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 981 – 989, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Toward Lightweight Intrusion Detection System Through
Simultaneous Intrinsic Model Identification

Dong Seong Kim, Sang Min Lee, and Jong Sou Park

Network Security Lab., Hankuk Aviation University, Seoul Korea
{dskim, minuri33, jspark}@hau.ac.kr

Abstract. Intrusion Detection System (IDS) should guarantee high detection
rates with minimum overheads to figure out intrusion detection model and
process audit data. The previous approaches have mainly focused on feature
selection of audit data and parameters optimization of intrusion detection
models. However, feature selection and parameters optimization have been
performed in separate way. Several hybrid approaches based on soft computing
techniques are able to perform both of them together but they have more
computational overheads. In this paper, we propose a new approach named
Simultaneous Intrinsic Model Identification (SIMI), which enable one to
perform both feature selection and parameters optimization together without
any additional computational overheads. SIMI adopts Random Forest (RF)
which is a promising machine learning algorithm and has been shown similar or
better classification rates compared to Support Vector Machines (SVM). SIMI
is able to model lightweight intrinsic intrusion detection model with optimized
parameters and features. After determination of the intrinsic intrusion detection
model, we visualize normal and attack patterns in 2 dimensional space using
Multidimensional Scaling (MDS). We carry out several experiments on KDD
1999 intrusion detection dataset and validate the feasibility of our approach.

Keywords: Intrusion Detection System, Data mining, Random Forest.

1 Introduction

As the amount of information which is interconnecting within networks has been
increased tremendously, network security is getting more essential. Among many
security methods for protecting network systems such as firewalls and access control,
an Intrusion Detection System (IDS) plays a vital role in network security field. The
main purpose of the IDS is to inspect all inbound and outbound network activity and
identify suspicious patterns that may indicate a network or system attack from
someone attempting to compromise a system [4]. IDS should guarantee high detection
rates with minimum overheads to figure out intrusion detection model and process
audit data. The previous approaches have mainly focused on twofold; parameters
optimization of intrusion detection model and feature selection of audit data. The
purpose of parameters optimization of detection model is to adjust the value of several
parameters and figure out optimal value of them. A lot of researches on parameters
optimization have been studied based on data-mining algorithms and machine

982 D.S. Kim, S.M. Lee, and J.S. Park

learning algorithms such as Artificial Neural Networks, Support Vector Machines
(SVM), and so on. The objective of feature selection of audit data is to remove
irrelevant features and find out intrinsic features of audit data. Several wrapper [9, 13]
and filter methods [2, 3] have been proposed. However, the feature selection and
parameters optimization have been performed in separate way. Several hybrid
approaches [8, 14] based on soft computing techniques are able to perform both of
them together but they have more computational overheads.

Therefore, in this paper, we propose a new approach named Simultaneous Intrinsic
Model Identification (SIMI), which enable one to perform both parameter
optimization and feature selection without any additional overheads. SIMI adopts
Random Forest (RF) which is a promising machine learning algorithm and have been
shown similar or better classification rates compared to SVM. We perform feature
selection and parameters optimization together through SIMI. Then, we are able to get
intrinsic intrusion detection model with only selected important features. We visualize
normal and attacks patterns into 2 dimensional spaces using Multi-dimensional
Scaling (MDS). We carry out several experiments on KDD 1999 intrusion detection
dataset and validate the feasibility of our approach.

The rest of this paper is organized as follows. The related works are introduced in
section 2. Our proposed approach and flow of it is described in section 3. The
experiments and their analysis are presented in section 4. Some concluding remarks
are given in section 5.

2 Related Works

In this section, we introduce several related works to our approach. As mentioned in
section 1, the previous approaches to design and model intrusion detection systems
have mainly been studied in twofold: parameters optimization of intrusion detection
models and feature selection of audit data. In former case, a lot of studies proposed
intrusion detection models using Naïve machine learning algorithms such as Artificial
Neural Networks (ANN), Support Vector Machines (SVM). Their main concern is to
maximize intrusion detection rates while minimizing false positive rates. They
regulated value of parameters of machine learning algorithms, for example, the
weight values and number of hidden layers on neural networks, value of parameters
of kernel function of support vector machines, and so on. This is can be considered as
parameter optimization problems. Moradi et al. [11] adjusted Multi-Layer Perceptron
neural network (MLP). Mukkamala et al. [12] optimized value of parameters of
kernel function in SVM. Kim et al. [7] also regulated kernel function in using
empirical method. In later case, the objective of feature selection is to find out
intrinsic important features. All features are not essential to classify network audit
data because irrelevant features not only increase computational cost, such as time
and overheads, but also decrease the classification rates. Exhaustive analysis requires

N2 experiments if total number of feature is N so that this is effective in terms of
computational overheads. There are two representative methods in machine learning:
wrapper [9] and filter method [2, 3]. Wrapper method adopts classification algorithms
and performs cross-validation to identify important features. Otherwise, filter method
utilizes correlation based approaches independent to classification algorithms. Filter

 Toward Lightweight IDS Through Simultaneous Intrinsic Model Identification 983

method is more lightweight than wrapper methods in terms of computation time and
overheads but has lower classification rates than wrapper method since it is performed
independent of classification algorithms. In IDS, Sung et al. used an empirical method
named performance based feature ranking [17]. But the variance of feature
importance between each feature is very small and it’s infeasible to modeling IDS.
Middlemiss et al. [10] proposed feature selection using Genetic Algorithm (GA).

In above approaches, both parameters optimization and feature selection were
performed in separated way. Several hybrid approaches [9, 15] based on soft
computing techniques are able to perform both of them together. Kim et al. [8]
proposed fusion of GA and SVM for anomaly detection. Park et al. [14] proposed
which combine filter method with wrapper method based on GA. However, these
hybrid approaches sometimes show a little degradation on detection rates with more
computations rather than the naïve filter methods, do not provide the variable
importance of features and are complicated to implement.

In this paper, we proposed a new approach named Simultaneous Intrinsic Model
Identification (SIMI) which performs feature selection and parameter optimization
simultaneously without any additional overheads. We adopt Random Forest (RF)
which is a stage-of-the-art data mining algorithm comparable to SVM [1]. Zhang et al.
also [20] proposed a network intrusion detection using RF. But their approach only cut
off 3 features after identifying important features and optimized only mtry value of RF.
We perform feature selection and parameter optimizations based on RF and then only
select top m numbers of important features and optimize both of mtry and ntree. Our
approach enables one to identify intrinsic model through this procedure. Furthermore,
we use Multidimensional Scaling (MDS) to visualize attack and normal patterns with
only selected important feature. The next section presents our proposed approach.

Fig. 1. Overall flow of proposed approach

3 Proposed Approach

The overall flow of our approach is depicted in Figure 1. The preprocessed network
audit data is divided into two datasets; training and testing set. The training set is

984 D.S. Kim, S.M. Lee, and J.S. Park

further separated into learning set and validation set. Although we do not need to
perform cross-validation to get a balanced estimate of generalization error since RF is
robust against over-fitting [1], we adopt n-fold cross validation to minimize that. The
learning set is used to generate classifiers and aggregate their results based on RF and
find out variable importance of each feature of network audit data and optimal
parameters for RF simultaneously. These classifiers can be considered as detection
models in IDS. The validation set is used to compute detection rates according to
estimating error rates which is Out-Of-Bag (OOB) errors in RF. Feature selection is
performed by eliminating the irrelevant features which are low ranked in the ranking
of variable importance. In next steps, therefore, only important features that have
more effect on classification and optimal parameters are used to build detection
models and evaluate by testing set with respect to detection rates. This demonstrates
our approach named SIMI. If the detection rates fulfill our design requirement, the
overall procedure is finished. To evaluate the feasibility of our approach, we perform
several experiments on KDD 1999 intrusion detection dataset. The following section
presents the results of experiments and their analysis.

4 Evaluation

In this section, we carry out several experiments on KDD 1999 intrusion detection
dataset [5] to verify the feasibility of our approach. We first present the experiments
on parameters optimization for RF. Then, we describe the experiments of using
random forest to eliminate irrelevant features. Finally, we evaluate our approach.
Next section describes experimental dataset and environments and experimental
results.

4.1 Evaluation Dataset and Environments

We have used the KDD 1999 intrusion detection dataset. The dataset contains a total
of 24 attack types that fall into four main categories [6]: DoS (Denial of Service),
R2L (unauthorized access from a remote machine), U2R (unauthorized access to root
privileges) and probing. The data was preprocessed by extracting 41 features from the
tcpdump data in the 1998 DARPA datasets and we have labeled them as f1, f2, f3, f4
and so forth. We have only used DoS type of attacks since the others have very small
number of instances so that they are not suitable for our experiments [16]. According
to overall flow presented in section 2, the dataset is divided into 3 datasets; learning
set, validation set and testing set. The learning set is used to build the initial detection
models based on RF. Then, the Validation set is used to estimate the generalization
errors of detection models. The generalization errors are represented as OOB errors in
RF. In order to minimize the OOB errors, in other words, maximize detection rates,
we have used 10-fold cross validation with 2000 samples. Finally, we have used the
testing set to evaluate the detection models that are built by training set.

All Experiments were performed in a Windows environment having configurations
Intel® Pentium® 4, 1.70GHz (over 1.72GHz), 512 MB RAM. RF version (R 2.2.0)
and MDS algorithm in open source R-project [18] is used to perform several
experiments.

 Toward Lightweight IDS Through Simultaneous Intrinsic Model Identification 985

4.2 Evaluation Results and Analysis

There are only two parameters in RF to be optimized; the number of variables in the
random subset at each node (mtry) and the number of trees in the forest (ntree). To get
the best classification rates, that is, the best detection rates, it is essential to optimize
both two parameters. This is considered as parameters optimization. Fortunately, we
could get the optimal value of mtry using tuneRF() function provided in randomForest
package of R-project [18] and it turned out mtry = 6. In case of ntree, there is no
specific function that figures out the optimal value of it. Thus, we got the optimal
value of ntree by choosing the ntree value that has high and stable detection rates. We
assume that 350 trees are enough to be the maximum value to evaluate our approach
and detection rates are determined by equation “1 – OOB errors”. The experimental
results for determination of the optimal value of ntree are described in Figure 2.

Fig. 2. Average detection rates vs. ntree values

According to Figure 2, average detection rates of RF turned out the highest value
when ntree = 310. As the result of experiments, we set two optimized parameter
values; mtry = 6, ntree = 310. After optimizing two parameters, feature selection of
network audit data was carried out employing the feature selection algorithm
supported by RF. We ranked features thorough the average variable importance of
each feature as the results of 10-fold with 2000 samples. As the results, feature
important of each individual feature were decided. The importance value of each
feature varies and we rank features with respect to their average importance values of
cross validation experiments. We partially show the top 5 important features and their
properties in Table 1. Our approach showed reasonable context information for each
important feature. f23 represents “number of connections to the same host as the
current connection in the past two seconds” property and f6 represents “number of
data bytes from destination to source” and so on.

986 D.S. Kim, S.M. Lee, and J.S. Park

Table. 1. Top 5 important features and their properties

Features Properties Average variable importance

f23
number of connections to the same
host as the current connection in the

past two seconds
0.4023

f6
number of data bytes from destination

to source
0.3318

f24
number of connections to the same

service as the current connection in the
past two seconds

0.3172

f3
network service on the destination,

e.g., http, telnet, etc.
0.3163

f5
number of data bytes from source to

destination
0.2973

Then, we carried out several times of experiments with elimination of irrelevant
features and measure detection rates. The experimental results are depicted in Figure 3.

Fig. 3. Detection Rates vs. number of Features

In Table 2, we present comparison results between our approach and other
approaches. Our approach showed higher detection rates than others. Even though the
detection rates is slightly high than others, our approach only use selected important
features and training and testing time is faster than others. We need to calculate
computational complexity and compare it to other approaches. But this is out of scope
of this paper because both Kim et al. and Park et al.’s approach utilized Genetic
Algorithm [15]. Although Both Kim et al. and Park et al.’s approaches have showed
“optimal feature set”, they didn’t show the numeric value as the variable importance

 Toward Lightweight IDS Through Simultaneous Intrinsic Model Identification 987

Table 2. The comparison results with other approaches

Feature selection Parameters optimization
Approaches

Detection
rates method result method result

Kim et al.
[8]

99.85% GA
Optimal

feature set
GA

Optimal
parameters

value of Kernel
function in SVM

Park et al.
[14]

98.4%
Filter

method
with GA

Optimal
feature set

N/A
Default value

of SVM

Zhang et al.
[20]

99.4% RF

Individual
feature

importance
/38 features

remain

mtry
only

Partially regulated
RF

Our
approach

99.87 % RF

Individual
feature

importance
/m features

remain

mtry
and

ntree
Optimal RF

of each feature. Our approach is able to get individual feature importance so that only
important individual features can be used. Zhang et al. also used RF as classification
algorithm but they only eliminate 3 features and optimized only mtry of RF. We
remove irrelevant features and only used m number of features to detect DoS type of
attacks (see Figure 3). We also optimized ntree value of RF to figure out intrinsic
model (see Figure 2). In summary, these results proved that our approach is superior
to Kim et al. [8], Park et al.’s approaches [14], and Zhang et al.’s approach.

Furthermore, we visualized normal and DoS attacks patterns based on MDS [19]
plots in figure 4. These figure 4 plots can easily make one understand about intrusion
context information.

Fig. 4. Visualization of normal and DoS attacks patterns using MDS

988 D.S. Kim, S.M. Lee, and J.S. Park

5 Conclusions

In this paper, we have presented a new approach named Simultaneous Intrinsic Model
Identification (SIMI) for modeling lightweight intrusion detection model. We utilized
Random Forest (RF) to perform both feature selection of audit data and parameters
optimization of intrusion detection model together without additional overheads. We
have evaluated our approach by carrying out several experiments on KDD 1999
intrusion detection dataset and the results have showed that our approach is able to
guarantee higher detection rates while figuring out optimal features and intrusion
detection model together.

Acknowledgement

This research was supported by the MIC (Ministry of Information and
Communication), Korea, under the ITRC (Information Technology Research Center)
sup-port program supervised by the IITA (Institute of Information Technology
Assessment).

References

1. Breiman, L.: Random forest. Machine Learning 45(1) (2001) 5–32
2. Dash, M.: Feature Selection for Clustering – A Filter Solution. In Proc. of IEEE Int. Conf.

on Data Mining (ICDM) (2002) 115–122
3. Hall, M.A. and Smith, L. A.: Feature subset selection: a correlation based filter approach.

In Proc. of Fourth Int. Conf. on Neural Information Processing and Intelligent Information
Systems (1997) 855–858

4. Intrusion Detection System.:
http://www.webopedia.com/TERM/I/intrusion_detection_system.html

5. KDD Cup 1999 Data.: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
6. KDD-Cup-99 Task Description.: http://kdd.ics.uci.edu/databases/kddcup99/task.html
7. Kim, D., Park, J.: Network-Based Intrusion Detection with Support Vector Machines. In.:

Kang, H. (eds.): Information Networking. Lecture Notes in Computer Science, Vol. 2662.
Springer-Verlag, Berlin Heidelberg New York (2003) 747–756

8. Kim, D., Nguyen, H.-N., Ohn, S.-Y., Park, J.: Fusions of GA and SVM for Anomaly
Detection in Intrusion Detection System. In.: Wang J., Liao, X., Yi, Z. (eds.): Advances in
Neural Networks. Lecture Notes in Computer Science, Vol. 3498. Springer-Verlag, Berlin
Heidelberg New York (2005) 415–420

9. Kohavi, R., John, G. H.: Wrappers for feature subset selection, Artificial Intelligence,
97(1–2). (1997) 273-324

10. Middlemiss, M., Dick, G.: Feature Selection of Intrusion Detection Data using a Hybrid
Genetic Algorithm/KNN Approach. Third Int. Conf. on Hybrid Intelligent Systems,
Melbourne, Australia (2003)

11. Moradi, M., Zulkernine, M.: A Neural Network Based System for Intrusion Detection and
Classification of Attacks, In Proc. of IEEE Int. Conf. on Advances in Intelligent Systems-
Theory and Applications, Luxembourg (2004)

 Toward Lightweight IDS Through Simultaneous Intrinsic Model Identification 989

12. Mukkamala, S., Sung, A. H., Ribeiro, B. M.: Model Selection for Kernel Based Intrusion
Detection Systems, In Proc. of Int. Conf. on Adaptive and Natural Computing Algorithms,
Springer-Verlag (2005) 458–461

13. Noelia S-M. : A New Wrapper Method for Feature Subset Selection
14. Park, J., Shazzad, Sazzad, K. M., Kim, D.: Toward Modeling Lightweight Intrusion

Detection System through Correlation-Based Hybrid Feature Selection. In.: Feng, D., Lin,
D., Yung, M. (eds.): Information Security and Cryptology. Lecture Notes in Computer
Science, Vol. 3822. Springer-Verlag, Berlin Heidelberg New York (2005) 279–289

15. Rylander, B.: Computational Complexity and the Genetic Algorithm. Thesis for Ph.D.,
University of Idaho (2001)

16. Sabhnani, M., Serpen, G.: On Failure of Machine Learning Algorithms for Detecting
Misuse in KDD Intrusion Detection Data Set. Intelligent Analysis (2004)

17. Sung, A. H., Mukkamala, S.: Identifying Important Features for Intrusion Detection Using
Support Vector Machines and Neural Networks. In Proc. of the 2003 Int. Symposium on
Applications and the Internet Technology, IEEE Computer Society Press (2003) 209–216

18. The R Project for Statistical Computing, http://www.r-project.org/
19. Young, F. W., Hamer, R. M.: Theory and Applications of Multidimensional Scaling.

Eribaum Associates, Hillsdale, NJ (1994)
20. Zhang, J., Zulkernine, M.: Network Intrusion Detection using Random Forests. In Proc. of

3rd Annual Conf. on Privacy, Security and Trust (2005)

The Design of Random Number Generator in
an Embedded Crypto Module

Jinkeun Hong1, Kihong Kim2, and Dongcheul Son1

1 Division of Information and Communication, Baekseok University,
115 Anse-dong, Cheonan-si, Chungnam, 330-740, South Korea

{jkhong, dcson}@cheonan.ac.kr
2 Graduate School of Information Security, Korea University,

1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, 136-701, South Korea
hong0612@hanmir.com

Abstract. When using a real random number generator (RNG) with
only a hardware component, as required for statistical randomness, it
is difficult to create an unbiased and stable random bit stream. Al-
though the hardware generating processor generates an output bit stream
quickly, if the software filter algorithm is not efficient, the RNG consumes
a relatively large amount of time. This factor becomes the limiting condi-
tion when the RNG is applied. Accordingly, this paper proposes a model
approach to ensure the model of software filtering in the RNG processor
and the chaos function model in the crypto module. Therefore, in the
embedded crypto processor, the mixed model guarantees randomness of
the output stream, is generated from the combined chaos function with
a tent map transformation and a hardware random number generation
component in sensor crypto communication.

1 Introduction

At present, ubiquitous computing is advocating the construction of massively dis-
tributed computing environments that sensors, global positioning system
receives [1] [2]. As such, this case is significantly different from those contem-
plated by the canonical doctrine of security in distributed computing environ-
ments. There are many security issues in the ubiquitous environment, including
authentication, authorization, accessibility, confidentiality, integrity, and non-
repudiation. Other issues include convenience and speed.

A H/W random number generator (RNG) uses a non-deterministic source
to produce randomness. More demanding random number applications such as
cryptography, crypto module engines, and statistical simulation also benefit from
sequences produced by a RNG, i.e., a cryptographic system based on a hardware
component [1]. As such, a number generator is a source of unpredictable, irre-
producible, and statistically random stream sequences. A popular method for
generating random numbers using a natural phenomenon is the electronic am-
plification and sampling of a thermal or Gaussian noise signal. However, since
all electronic systems are influenced by finite bandwidth, 1/f noise, and other

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 990–999, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Design of RNG in an Embedded Crypto Module 991

non-random influences, perfect randomness cannot be preserved by any practical
system. Thus, when generating random numbers using an electronic circuit, a
low-power white noise signal is amplified and then sampled at a constant sam-
pling frequency. However, when using a RNG with only a hardware component,
as required for statistical randomness, it is difficult to create an unbiased and
stable random bit stream.

Previous studies [3] [4] [5] have shown that the randomness of a random stream
can be enhanced when combining a real RNG, a LFSR number generator, and a
hash function. In earlier studies on RNG schemes in the field of security, Fabrizio
Cortigiani, et al. (2000) examined a very high speed true random noise generator
and S. Rocchi and V. Vignoli (1999) proposed a high speed chaotic CMOS true
random analog/digital white noise generator. Adel et al. (2001) conducted a de-
sign and performance analysis of a high speed AWGN communication channel
emulator. A noise based random bit generator IC for applications in cryptogra-
phy was also studied (Craig S, et al. 1998[4]).

Our previous paper proposes a random number generator that combines chaos
random number and real random number that is not dependent on the security
level of the period. Therefore, in particular, it is important in terms of hardware
that RNG offers an output bit stream that is always unbiased. In this paper,
a combined method of a hardware component and a software chaos function
algorithm is designed. However, although the hardware generating processor
generates the output bit stream rapidly, if the software filter algorithm is not
efficient, the RNG consumes relatively much time and this factor becomes the
limiting condition when the RNG is applied. Accordingly, this paper proposes
an effective approach to ensuring the method of software filtering in the RNG
processor of a crypto module. Thus, to consistently guarantee the randomness of
an output sequence from the RNG, the origin must be stabilized, regardless of
any change of circumstance elements. Therefore, a RNG that integrates a chaos
function and hardware is proposed, and thereby the security characteristics of
randomness are guaranteed. Hereinafter, section 2 reviews the framework of the
RNG in the embedded crypto module. Section 3 examines the random number
generation model and the combined model, that is, the integrated chaos function
and hardware component. Experimental results and conclusions are presented
in sections 4 and 5, respectively.

2 Framework of the RNG in the Embedded Crypto
System

A H/W random number generator includes common components for producing
random bit-streams, classified as follows: characteristics of the noise source, am-
plification of the noise source, and sampling for gathering the comparator [4] [6].
The applied noise source uses Gaussian noise, which typically results from the
flow of electrons through a highly charged field, such as a semiconductor junc-
tion [7] [8] [9] [10]. Ultimately, the electron flow is the movement of discrete
charges, and the mean flow rate is surrounded by a distribution related to the

992 J. Hong, K. Kim, and D. Son

launch time and momentum of the individual charge carriers entering the charged
field. An embedded Linux on chip system using a dragonball CPU, MC68328,
which is an integrated controller for handheld products based on a MC68EC000
microprocessor core, is used to generate the hardware random bit stream.

The Gaussian noise generated in a PN junction has the same mathematical
form as that of a temperature limited vacuum diode. The noise appears to be
generated by the noise current generator in parallel with the dynamic resistance
of the diode. The probability density of the Gaussian noise voltage distribution
function is defined by Eq. (1):

f(x) =
1√

2πσ2
e(− x2

2σ2) (1)

where σ is the root mean square value of the Gaussian noise voltage. However, for
the designed Gaussian noise random number generator, the noise diode is a diode
with a white Gaussian distribution. The power density for noise is constant with
frequency from 0.1Hz to 10MHz and the amplitude has a Gaussian distribution.
Noise originates from agitation of electrons within a resistance, and a lower limit
on the noise present in a circuit is set. When the frequency range is given, the
voltage of the noise is decided by the factor of frequency. The crest factor of
a waveform is defined as the ratio of the peak to the rms value. A crest value
of approximately 4 is used for noise. However, for the proposed real random
number generator, the noise diode has a white Gaussian distribution. The noise
must be amplified to a level where it can be accurately thresholded with no bias
using a clocked comparator. Although the rms value for noise is well defined, the
instantaneous amplitude of noise has a Gaussian, normal distribution.

Vn(rms) =
√

4kTRB (2)

where k is Boltzmann constant (1.38×10E−23J/deg.K), T is absolute temper-
ature (deg. Kelvin), B is noise bandwidth (Hz), R is resistor (Ohms). If 4kT is
1.66× 10E − 20 and R is 1K, B is 1Hz, then Vn(rms) =

√
4kTB = 4nV/

√
Hz.

Noise comes from agitation of electrons within a resistance, and it sets a lower
limit on the noise present in a circuit. When the frequency range is given, the
voltage of noise is decided by a factor of frequency. The crest factor of a waveform
is defined as the ratio of the peak to the rms value. A crest value of approxi-
mately 4 is used for noise. Hence, when the frequency value is 10MHz, the crest
value of a rms value of 0.2mV occasionally occurs.

3 The Random Number Generation Component and
the Proposed Combined Model

3.1 The Filter Algorithm in Random Number Generation
Component

The filter algorithm in the random number generation component is applied
in the next process of the output stream of the sampler so as to reduce the

The Design of RNG in an Embedded Crypto Module 993

biased statistical randomness [10] [11] [12]. Establishing the optimum buffer size
[32bits] and threshold level [γ] are support unbiased and stable randomness. In
the conventional filter model, a static buffer memory of 32bits is used to buffer
the ”pass data” in the decision boundary, and the threshold level for the P value
is between 0.9995 and 1.0005.

P =
τ

T
(3)

where the Total Sum τ is the sum of the number of ”1” bit patterns and the
Total Length T is the half value of the Buffer Length, which is variable from the
bits size of 32bits. When the static buffer (S) is fixed at 32bits, the half-value of
the static length is 16bits. If the value of (Σ (the number of a pattern 1bit) / the
half-value of the static length within the total length) is included in the threshold
level, the decision will be the state of ”pass”. In step 1, if the condition of ”pass”
is decided, this is added as pass data to the buffer memory. In steps 3-4, if ”fail”
is decided through the process of conventional filtering, this is decided into the
decision process. The process is then completed when the size of the desired bit
stream is gathered. The failed bits (32bits) are reduced by a conventional filter
(for example, the duty distribution of the bit stream ”0” and ”1” is normalized).
In a conventional model, the output bit stream is expanded by steps of 32bits,
evaluated threshold level simultaneously. If the value of the duty cycle of the
collected output bit stream, P , satisfies the condition of the threshold level, it
is added to the 32bits[S] stream.

In p u t rea l n u m b er b i t s t r ea m

G et T o ta l_ L en g th (T)= S ta t ic _ B u ffe r [S]/2

G e t_ T o ta l_ S u m � = th e su m o f p a tte rn “1 “ b it

C a lcu la te P = � / T

D ec is io n P < � (th resh o ld v a lu e)

D e fa u l t th e p a sse d b it s tr e am (T = T + S)

Y es

Fig. 1. Process of Filter Algorithm in Random Number Generation Component

If P does not satisfy the condition of the threshold level, it is discarded 32bits
stream. Through this filter process, unbiased characteristics of the output bit
stream are guaranteed.

3.2 Combined Model of Random Number Generation Component
and Chaos Function

The hybrid model combines the output bit stream of the chaos function and
the output bit stream of the random number generation component in the next

994 J. Hong, K. Kim, and D. Son

process of the output stream of the sampler so as to reduce characteristics of a
biased bit stream. This is typically an efficient method to maintain randomness.
In step 1, the real random number is generated from the random number genera-
tion component. In step 2 and step 3, the chaos function and tent transformation
are applied, and in step 4, the output of the random number generation com-
ponent and the output of the tent transformed chaos function are mixed at the
combined random number generator. In step 5, the randomness of the output
stream is evaluated; if the obtained value is distributed within the threshold level
of the test item, it is designated a passed stream and saved.

Fig. 2. Process of Combined Random Number Generator

In Fig. 2, the fixed buffer size (U) is fixed 200,000bits. When deciding the size
of the fixed buffer, it is used by the measure through the evaluation of passed
probability during the setup time interval.

The proposed combined model applies the output of the random number
generation component and chaos function, after the process of the hardware
random number component is done continuously. The input of the chaos function
is driven from the output of the random number generation component through
software filtering.

In step 2, the logistic function, which is the discrete chaos map, is applied for
the randomized process, as follows (in Fig. 3):

Xn+1 = − αXn(1 −Xn) (4)

Fig. 3. Logistic Map Equation

The Design of RNG in an Embedded Crypto Module 995

where the range of α is 0 ≤ α ≤ 4, and the range of the initial value X0

is 0 ≤ X0 ≤ 1. The value of Xn+1 is derived from the previous state value
Xn. Inversely, given Xn+1, X0 has resolved the two values of the solution in
an equation of the second degree. The logistic map has the characteristic of
irreversibility, and α is the sensitivity parameter that determines the dependence
of the next value derived from the initial value. If the value of α is increased,
the resulting value varies greatly from the result with slight variation of the
initial value after the recursive calculation. For the condition α < 1, when the
process of Xn is performed recursively, the value of Xn converges to 0. For the
convergence to the direction of the chaos domain, which continues to infinity,
the value of α must be α > 3.56.

In step 3, however, the distribution of the output bit stream of the chaos
function has an independent and uniform distribution, and is an integral number
between [0, d− 1]. To apply the random number generator, the integral number
between [0, 1] is distributed uniformly by the tent transformation function. By
the tent function x′ = h(x), the non-linear value of the discrete chaos function
becomes a linear value.

x′ = h(x) = sin2(πx/2) (5)

In the tent transformation process, if the initial value is x0, the transformed
value is x′(0) = h(x0).

x(1) = T (x0), x(2) = T 2(x0), ..., x(k) = T k(x0) (6)

Let y0 be x′
0, it is driven the equation y1 = f(y0), y2 = f2(y0), ..., yk =

fk(y0). From the f function and T function, it can be driven as follows:

fk(h(x)) = h(T k(x)) (7)

where k is 0, 1, 2, ...,. The non-linear value of the x′ axis by the tent function is
transformed to a linear value of the x axis, which has a uniform distribution.
Therefore, the output of the chaos function is uniformly generated by the tent
map transportation function on a duty cycle.

In the evaluation of randomness (step5), the bit steam during one period
(U) is set at 200,000 bits. When the unit of the output bit stream is 200,000
bits, in the case of the frequency test, the number of ”1” pattern bits is t bits.
If the value of the duty information within one period is included within the
significance level (p), the decision will be considered as a state of ”pass”.

If the condition of ”pass” is determined, this is added as pass data to the
buffer memory. If ”fail” is determined through the evaluation process, this is
not included in the decision process. When the size of the desired bit stream
is gathered, the process is then completed. If the value of the duty cycle of
the collected output bit stream in the case of frequency test P does not satisfy
the condition of the significance level, then the conversion of the bit pattern is
started, equivalent to the number of bits, which is included in the significance
level.

996 J. Hong, K. Kim, and D. Son

tra ns form ed

IHGFEDCBA

x’

x

H
G

F

E

D

)2/(sin)(2 xxh π=

Fig. 4. Tent Transformation Function

4 Experimental results

To generate the output random stream of the chaos function, the chaos function
is used through the utilization of a logistic map.

A logistic map when the initial value of X0 is 0.315001 and the initial value
of another X0 is 0.315002 after 100 iterations. In the initial state, the logistic
map according to the initial value is slightly varied; however, with additional
iteration rounds, any deviation is magnified by the factor in each iteration. Given
an initial deviation, it will eventually become as large as the actual signal itself.
After a number of itera-tions, the error will be of the same order of magnitude as
the correct values. This section presents the results obtained from the proposed
system. First, the effect of the randomness of the output random bit stream
was investigated. More quantitative tests for randomness can be found in the
literature [9-10]. To guarantee the randomness of the output stream of the chaos
function by a necessary condition, a value of α of more than 4.0 must be utilized.
If the value of α is less than 4.0, then randomness of the output stream will be
beyond the threshold level.

To diagnosis the output bit stream of the hybrid random number generator,
randomness test items [10-13] such as a frequency test for verification of the
frequency, a permutation test for verification of permutations, a gap test for
verification of intervals, and a run test for verification of monotonousness are
assessed. The frequency test, this distribution of random numbers should be
uniform, is evaluated for successive 200,000 bits out of the random bit stream.
If the tested bit stream is included within the threshold level [42.557], the bit
stream is evaluated as a non-biased stream. The permutation test, occurrences
of permutations of groups of 3 consecutive integers (triplets) and groups of 4
consecutive integers (quadruplets) should be random, is included within the
threshold level [35.172]. From Table 1, the stream of the output random number
is evaluated as a non-biased stream.

The gap test, are strings of numbers greater than the median, which separate
strings of numbers smaller than the median, is included within the threshold level
[19.675], and its stream is evaluated as a non-biased stream. For the run test,
occurrences of runs up should be random with probabilities based on Knuth,

The Design of RNG in an Embedded Crypto Module 997

Fig. 5. The Randomness Result According to the Logistic Initial Value of α

is included within the threshold level [12.592], and its stream is evaluated as
a non-biased stream. In experiments concerning the randomness evaluation for
the combined random number generator, 10 test samples consisting of severely
biased and moderately biased streams were statistically evaluated. Therefore, in
the ran-domness evaluation, the combined hardware generator, which integrates
the chaos function with tent transformation and the random number generation
component, always satisfies the randomness test conditions in comparison with
the chaos function with tent transformation only. For the output stream of the
chaos function, which is not applied to the tent transformation, the probability
of the random bit stream being generated successively in a specific pattern is
high, and the condition of the threshold level to the frequency test, permutation
test, and run test is not satisfied.

Table 1. Results of security randomness evaluation (in condition of chaos function)

Test Item Degree of Freedom(ν) Threshold Value(α < 0.05) Results

Frequency Test 29 42.557 31929.709
Permutation Test 23 35.172 25418.946

Gap Test 11 19.675 13.701
Run Test 6 12.591 15593.663

In the run test, for the severely biased bit stream, the length of the run is
dependent on a specific length, and the tested data from the experiments can be
evaluated readily in Table 1 and Table 3. In Table 1, most tests are not satisfied
in terms of the randomness of the output random stream of the chaos function
only; only the run test is satisfied.

998 J. Hong, K. Kim, and D. Son

Table 2. Results of security randomness evaluation (in condition of chaos function
without transform + random generation component)

Test Item Degree of Freedom(ν) Threshold Value(α < 0.05) Results

Frequency Test 29 42.557 31929.709
Permutation Test 23 35.172 17.981

Gap Test 11 19.675 12.961
Run Test 6 12.591 3.953

Table 3. Results of security randomness evaluation (in condition of chaos function
with transformation)

Test Item Degree of Freedom(ν) Threshold Value(α < 0.05) Results

Frequency Test 29 42.557 25.623
Permutation Test 23 35.172 25418.946

Gap Test 11 19.675 13.701
Run Test 6 12.591 15593.663

Table 4. Results of security randomness evaluation (in condition of chaos function
with transform + random generation component)

Test Item Degree of Freedom(ν) Threshold Value(α < 0.05) Results

Frequency Test 29 42.557 25.623
Permutation Test 23 35.172 17.981

Gap Test 11 19.675 12.961
Run Test 6 12.591 3.953

Table 2 presents the evaluation results of randomness tests in condition of the
chaos function without tent transform or a random number generation compo-
nent. The test results indicate that the chaos function should be used with a tent
transformation: i.e. if the chaos function is not used with tent transformation, a
biased bit stream is produced and the randomness of the output stream of chaos
function will not be guaranteed. Further, in most cases, the proposed system
will not pass all trial tests.

For the condition of the chaos function with tent transformation, the results
of most test items, such as frequency test, permutation test, and run test, do
not satisfy the threshold level. It is also difficult to satisfy the requirement of
randomness, although one part of randomness is included within the thresh-old
level. In order to meet the threshold level of randomness, the random number
generation component and the chaos function, to which the tent transformation
is applied, must be employed, as shown in Table 4.

The Design of RNG in an Embedded Crypto Module 999

5 Conclusions

The present work proposes a hardware RNG that combines an RNG and filtering
technique that is not dependent on the security level of the period. Therefore,
it is important that the RNG hardware offers an output bit stream that is
always unbiased. Even though the hardware generating processor generates the
output bit stream quickly, if the software filter algorithm is inefficient, the RNG
consumes much time, thereby restricting the conditions when the RNG can be
applied. Accordingly, this paper proposes a combined model, wherein the random
number generation component and the chaos function for an RNG processor
are integrated in a crypto module. The combined RNG is not depended on
the random number generation component only, and also, the chaos encryption
function always guarantees randomness due to the use of a mixed method.

References

1. Alireza h. and Ingrid V. High-Throughput Programmable Crypto-coprocessor.
IEEE Computer Society, 2004.

2. Jalal A. M, Anand R., Roy C., M. D. M. Cerberus: A Context-Aware Security
Scheme for Smart Spaces. IEEE PerCom’03, 2003.

3. Robert Davies. True random number. http://webnz.com/robert/true rng.html.
4. C. S. Petrie and J. A. Connelly. A Noise-Based Random Bit Generator IC for

Applications in Cryptography. ISCAS’98, 1998.
5. M. Delgado-Restituto, F. Medeiro, and A. Rodriguez-Vasquez. Nonlinear switched-

current CMOS IC for random signal generation. IEE electronic letters, 1993.
6. http://www.io.com/ritter/RES/NOISE.HTM.
7. http://www.clark.net/pub/cme/P1363/ranno.html.
8. http://webnz.com/robert/true rng.html.
9. Boris Ya, Ryabko and Elena Matchikina. Fast and Efficient Construction of an

Unbiased Random Sequence. IEEE Trans. on information theory, 2000.
10. Diehard. http://stat.fsu.edu/geo/diehard.html.
11. Noble, C. and Sugden, S. J. Statistical Tests on Random Numbers I(1 through

80). A consulting report for Jupiters Network Gaming, 1997.
12. Noble, C. and Sugden, S. J. Statistical Tests on Random Numbers II(0 through

127). A consulting report for Jupiters Network Gaming, 1997.
13. Noble, C. and Sugden, S. J. Stochastic Recurrences of Jackpot KENO. Computa-

tional Statistics and Data Analysis, 2002.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1000 – 1005, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Design of Network Traffic Analysis and Monitoring
System for Early Warning System

Geuk Lee, Inkyu Han, and Youngsup Kim

Department of Computer Engineering, Hannam University
133 Ojung-Dong, Daeduk-Gu, Daejeon 306-791, Korea

leegeuk@hannam.ac.kr, haik80@nate.com, youksj@paran.com

Abstract. In this paper, we develop network traffic monitoring tool in order to
analyze and monitor a network environment effectively. The network traffic
analysis and monitoring system is designed based on attack knowledge for
EWS(Early Warning System). It consists of an agent for host, a database server
and administrator’s tool. Each host agent captures and collects network traffic
information using WinPcap library, and send those information to the database
server. The database server classifies and keeps necessary information from all
the information sent, and provides those information when the administrator re-
quests the information. The administrator’s tool combines the information from
the server, applies the analysis of correlation, and confirms the network attack
situation. This system can monitor the network traffics and analyze global traf-
fic stream effectively, and aware various internet attack situations. The system
was designed using C++ and ODBC (Open Database Connectivity).

1 Introduction

As internet users and networks are broadly expanded, technologies of cyber attacks
have rapidly been changed. Those attacks are more organized and extensive, for ex-
ample, Win32/Nimda Worm represented a new form of a network attack and SQL-
Overflow Worm caused the internet disaster at January 2003, and Blaster Worm
showed typical cases which were the most recent internet attack. But capabilities of
network administrators are limited to deal with these situations. [1]

Most systems have tools can detect virus or hacking, but these tools can not protect
the network itself. Therefore, a technique to analyze and monitor a set of network
streams is needed because there is no system to perfectly protect the network itself
from whole kinds of cyber attacks. [2]

In this paper, we developed a system which can analyze and monitor a network
traffic using the knowledge of previous attack situation. This system is also using
Batch and Distributed Correlation technique to reduce overhead.

The outline of this paper is as follows. Section 2, as related works, briefly summa-
rizes analysis technique of network attacks and introduced the analysis of correlation.
Section 3 explains a structure of traffic analysis and monitoring system. Section 4

 A Design of Network Traffic Analysis and Monitoring System for EWS 1001

provides simulation results. Finally, Section 5 presents conclusions and a brief sum-
mary of the study.

2 Related Works

In this section, we describe the analysis of Network attack situation, and explain the
analysis of correlation. The analysis of correlation classifies the characteristics of
security warnings of special situations. Using the classified information, flooding
state can be prevented and global security analysis for networks is possible.

2.1 Analysis of Network Attack Situation

Analysis of network attack situation is to distinguish special characteristics from
network attacks based on the analysis of correlation. This analysis makes it possible
to obtain valuable attack information from the flooding stream of security warning,
which is can not detected in single host.

Two types of network attack situations are shown in Fig.1 and Fig.2. Fig.1 shows
one specific host attacks one target host, and Fig.2 shows more than one host attack
the one target host. In the case of Fig.1, warning signal which has the specific source
host IP address to the specific destination host IP address may be happened repeat-
edly. In the case of Fig.2, several warning signals which have same destination host
IP address and different source address will be found. In both cases, the purpose and
intention of attacks can be clearly detected although real intention is still ambiguous
with single host analysis.

Fig. 1. one-to-one attack Fig. 2. many-to-one attack

2.2 Analysis of Correlation

Debar and Wespi used three factors (source IP address, destination IP address, attack
name) for the analysis of correlation. [3] They defined attack pattern into seven spe-
cial classes using those three factors (Table. 1). When all of three factors are matched,
it is the Situation Class 1. If two of three factors are matched, it can be defined as
Situation class 2-1, 2-2, and 2-3. Finally, only one of three factors is matched, it is
defined as Situation class 3-1, 3-2, 3-3. Applying this to Fig. 1, since both of the

1002 G. Lee, I. Han, and Y. Kim

Table 1. Classification of attack pattern

source IP address and the destination IP address are same, it can be classified into
Situation 1 and 2-1. For the Fig 2, it can be classified into Situation 2-2 and 3-2 be-
cause only one factor of the destination IP address is same.

Two methods are available to implement Analysis of Network attack situation. The
one is to visualize the attack situation using graphics and the other one is to group
security warning signals to distinguish a specific pattern from the collection. In the
visualization method, same patterns of security warnings can be marked as a same
color or symbol such as dot, line, and square. In the grouping method, same patterns
are collected into the related group and counted whenever occurred. If a number of
the pattern collected within a given time duration exceeds threshold number, it can be
considered as the attack situation.

Analysis of Network attack situation has a couple of advantages. First one is that it
can find valuable information by distinguishing specific characteristics from stream of
security warnings. It was not easy to analyze and handle attack situation in real world
because of the flooding of security warning by False Positive. Second one is that it
has high recognition rate about the special attack pattern such as DoS attack or Scan-
ning attack against the judgment of attacks is not easy in single host. [4]

3 Traffic Analysis and Monitoring System

3.1 Overall Structure of Traffic Analysis and Monitoring System

Fig. 3 shows the structure of Network Attack Situation Analyzer suggested in this
paper. The system consists of agent for Hosts, an Administrator’s tool, and a Database
server. Each host agent collects network traffic information using WinPcap Library,
analyzes the attack propensity, and then sends those collected information to the data-
base server. The database server receives information from hosts, keeps them, and
sends them to the administrator’s host. The administrator uses the information kept in
the database server to analyze network attack situation. In this system, the hosts send

 A Design of Network Traffic Analysis and Monitoring System for EWS 1003

Fig. 3. Overall structure of Traffic analysis and monitoring system

the only information, which is necessary for network attack situation analysis, to the
database server. Also hosts will send information when information buffer is full to
reduce an overhead of real-time data transmission.

3.2 Host Program Configuration

A agent program for host is organized with three modules. The first module is a traf-
fic capture module which captures all the traffics passing by the hosts. The second
module is a traffic analysis module which analyzes the traffics captured to get the
attack propensity. The last module is a save and transmission module. This module
saves the information obtained by first and second modules, and transfers it to the
database server using information buffer. [5],[6]

3.3 Database Server Configuration

A database server merges the information transferred from each hosts and transfers
this information to the administrator host. Since the database server has to handle so
much information, the database keeps necessary information needed to Network At-
tacks Situation Analysis (e.g. host-number, time-slot, attack-name, service-pattern)
instead of handling all the information.

3.4 Administrator Program Configuration

The administrator’s tool analyzes the network attack situation using the information
transferred from the database server. It merges both of the information transferred
right now and the information used before. But the administrator’s tool sets Time-
period for information, and discards information timed out because too old informa-
tion is hard to correctly analyze current attack situation. Communications between the
administrator host and the database server are also done in batch mode. Fig. 4 shows a
flowchart of Traffic analysis and monitoring system. [7]

1004 G. Lee, I. Han, and Y. Kim

Fig. 4. Flowchart of traffic analysis and monitoring system

4 Simulation Results

4.1 Simulation Conditions

The Simulation was carried out in order to compare performance changes depending
on execution of Traffic preprocessing and existence of database server. The traffic
preprocessing is that each host keeps some information in advance, such as the attack
propensity, required for the network attack situation analysis to reduce host over-
heads. The database server saves the information from each host, and sends those to
an administrator’s tool at once. In this simulation, we compared effects of existence of
the traffic preprocessing and database server to the overall system performance.

The Simulation was executed with a database server, three host computers, and an
administrator’s host as in Fig. 3. The result value of the simulation is calculated as an
average for consecutive 10 minutes time period.

4.2 Simulation Results

Fig. 5 represents the simulation result. The situation 1 was the simulation with the
traffic preprocessing and the database server, the situation 2 was the simulation with
only the database server, and the situation 3 was the simulation with no traffic pre-
processing and direct communication between hosts and the administrator host with-
out database server.

Fig 5 shows that the CPU time use was reduced when the system executed the traf-
fic preprocessing and included the database server

 A Design of Network Traffic Analysis and Monitoring System for EWS 1005

Fig. 5. Simulation results

5 Conclusions

In this paper, Traffic analysis and monitoring system using attack knowledge were
designed to use in EWS. This system can protect the networks from local or global
internet attacks using efficient analyzing and monitoring network traffics captured
by host programs. Also the analysis of correlation can improve the accuracy of Net-
work Attacks Situation Analysis. And the use of the decentralization of traffic analy-
sis and the database server improve the system performance.

References

1. Kim, H.A. and Karp, B., “Autograph: Toward Automated, Distributed Worm Signature De-
tection“, 13th Usenix Security Symposium (Security 2004), August, 2004

2. Gatner, "IDS a failure. firewalls recommanded", Web Host Industry Review. June 11.
3. H. Debar and A. Wespi, “Aggregation and Correlation of Intrusion-Detection Alerts”,

LNCS 2212, pp. 85-103, 2001.
4. D. Schnackenberg. K. Djahandari, and D. Dterene, "Infrastructure for Intrusion Detection

and Response", Proceedings of DISCEX, Jan. 2000
5. Matthew V. Mahoney and Philip K. Chan. Phad, “Packet header anomaly detection for in-

dentifying hostile network traffic”, Florida Tech, CS-2001-4, 2001
6. Thomas Toth Christopher Krugel and Engin Kirda, “Service specific anomaly detection for

network intrusion detection”, In Proceeding of Symposium on Applied Computing, March
2002.

7. P. A. Porras and P. G. Newmann, “EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances”, Proceedings of the 20th NIS Security Conference, October
1997.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1006 – 1017, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Conceptual Design of Knowledge-Based Real-Time
Cyber-Threat Early Warning System

Sangho Lee, Dong Hwi Lee, and Kuinam J. Kim*

Department of Information Security, Kyunggi University, Korea

Abstract. The exponential increase of malicious and criminal activities in cyber
space is posing serious threat which could destabilize the foundation of modern
information society. In particular, unexpected network paralysis or break-down
created by the spread of malicious traffic could cause confusion in a nationwide
scale, and unless effective countermeasures against such attacks are formulated
in time, this could develop into a catastrophic condition. As a result, there has
been vigorous search to develop a functional state-level cyber-threat early-
warning system: however, the efforts have not yielded satisfying results or
created plausible alternatives to date due to the insufficiency of the existing
system and technical difficulties. The existing cyber-threat forecasting depends
on the individual experience and ability of security manager whose decision is
based on the limited data collected from ESM and TMS. Consequently, this
could result in a disastrous warning failure against a variety of unknown and
unpredictable attacks. It is the aim of this paper to offer a conceptual design for
“Knowledge-based Real-Time Cyber-Threat Early-Warning System, and
promote further researches into the subject.

Keywords: Early-Warning, Cyber-threat, TMS, ESM.

1 Introduction

While the birth of information society and burgeoning information business in the 21st
century have produced numerous opportunities for accumulation of wealth and
national economic growth, such changes also promoted equal growth of criminal and
terrorist activities, such as distribution of virus, malicious hacking and cyber terror. In
particular, the spread of malicious worm, virus and hacking not only threatens the
foundation of modern information society by causing paralysis to the national-wide
network and obstruction to electronic-commerce/trade, which many of us come to
dependent upon, but could also causes catastrophic failure of national information
infrastructure, which most developed nations rely upon in governing and running of a
country. Therefore, it is of the highest priority for the network security management
to counter against such attacks in timely and pre-emptive manner, and in order to
support such activities, it is necessary to adopt and operate credible early-warning

* Corresponding author. harap123@daum.net

 A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat EWS 1007

system (EWS), which will be a major instrument in insuring daily functions of
modern information society.

However, the effort to develop plausible EWS has not yielded significant result yet,
because most of the research could not offer alternatives to replacing human
experience while only able to issue warnings against a particular or small set of
known cyber-attacks. For example, the common feature of the existing EWS depends
on the application of traffic-based analysis techniques. In the case of
Hellerstein’s(2001) study, he attempted the prediction of a weekly traffic volume in
baseline-network utilizing “Seasonal ARIMA Model”[1]. Meanwhile, Zang(2000)
attempted to predict the traffic volume of wireless network using the same model[2].
Alternatively, Groschwitz suggested a classification method for anomaly detection
based on “Wavaelet Analysis.” This approach is possible by the application of filtered
signals to detect abnormality on both long and short-term network traffic, which were
collected by the analysis of original traffic volume using time-cycle division
method[3]. Shu proposed an approach to predict the volume of non-linear, irregular
high-speed network traffic based on the “Fuzzy-AR Model.”[4] The common features
of above approaches are utilization of critical-value based analysis technique in EW
framework, detecting massive overflowing network traffic and emergence of
abnormality. However, the early-detection method based on numeric and quantitative
analysis on traffic has limited value for the current technical trends for traffic
overflow attack exploits artificial intelligence-based variable tempo approaches,
rather than relying on traditional sequential attacks on ports and exploitation of
weaknesses[5].

Meanwhile, Zou researched a possibility of adopting an early-warning and
surveillance technique on internet worm virus using “Kalman Filter Forecasting
Model”, which was based on the monitoring of similar activities of pre-collected
observation data on the samples of epidemic worm model[6]. However, this approach
has limited application since the technique primarily relies on the extraction of sample
data that, if an attack exploits multiple vulnerabilities, or utilizes artificial
intelligence-based variably distributed worm, the approach won’t be able to identify
such threats.

Similar limitations have prevented from other researches into a development of
EWS yielding plausible results. There were indeed many studies, such as Cabrera’s
(2003) investigation on the early detection technique of DDoS attack based on the
application of “MIB-variation of SNMP-based traffic”[7], Zhai’s (2003) study on
method of EWS against network disturbance based on “Dempster-Shafer
Theory”[8], and Li’s (2003) research on the DoS early detection system based on a
statistical analysis of a single MIB variation[9]. Nonetheless, while these techniques
were offered as alternatives to guard against DoS based threats, they had limited
potential.

Moon (2005), in his research on the correlation of network risk and defect through
an analysis on cyber threat and vulnerability,[10] suggested an option for EWS based
on a correlational analysis of N-IDS and VAS. However, there is a limit in his
approach since the suggested system is not able to detect unknown and/or different
types of malware, which is common pattern/feature of the recent cyber-threats.

1008 S. Lee, D.H. Lee, and K.J. Kim

2 Knowledge-Based Real-Time Cyber-Threat Early Warning
System

2.1 An Overview

The major weapon against increasing cyber-threat is the capacity to detect and
counter attacks before they develop into an epidemic, or better yet, formulates and
distribute countermeasures, such as patches and vaccines, before or soon after the
related-news or new exploits are introduced. Therefore, it is necessary to develop an
effective and comprehensive EWS which is capable of early-detection and warning of
attack; analyses of threats and formulation of countermeasures; distribution of
necessary vaccines, patches and countermeasures; and sustained capability to analyze
and investigate against future variations and threats. As an effort, this research will
explore a possibility of developing a new system, tentatively titled as the “EWTMS
(Early-Warning and Threat Management System)” to meet above mentioned
requirements.

[Picture 2-1] displays the full structure of EWTMS. As shown, this system is
comprised of four individual modules. First of all, the events-data collection and
processing is carried out by NFIG (News Find Input Gateway), RCEG (Real Critical
Event Gateway) and FITM (First Input Threat Module) simultaneously. The NFIG
and RCEG modules and FITM are newly developed concept for the designing of
EWTMS. The NFIG module collects cyber-threat related information and news from
various online sources in real-time, and then formats and standardizes the information
into machine recognizable event-data, while RCEG gathers threat events from
available security equipment. FITM collects information and variation of
vulnerabilities which have not been detected by security equipments. Each data
gathering module collects different data and feed them to MN (Data Mining)
Database. Then, the collected data from three modules which have been loaded in MN
Database is analyzed by KMIM (Knowledge Management Integration Module), and
the analyzed data is fed into EWVIM (Early Warning Visual Information Module) for

[Picture 2-1]. The Structure of EWTMS

 A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat EWS 1009

a final review, and results are displayed on easily recognizable graphics and visual
displays to provide situational awareness, comprehensive monitoring of threats and
quick EW decision making capability by the security specialists. More detailed
structure and functions of each module is as follows.

2.2 Structure and Functions

2.2.1 FITM (First Input Threat Module)
[Picture 2-2] describes the structure and functions of FITM. The module collects
vulnerability data from NFIG while gathering cyber-threat elements from Honeynet
which have not been detected by other security equipment. Finally, comparing the
patterns collected from NFIG and Honeynet, and available security equipment, the
module evaluates potential weakness and threats.

[Picture 2-2]. The Structure and Functions of FITM

[Picture 2-3] displays associated equipment and individual functions of each sub-
system in FITM. In short, the module collects the threat and vulnerability data from
NFIG and detects threat patterns from Honeynet and various security equipments by
pattern matching. In addition, FITM analyses the pattern of the proliferation of cyber-
threat elements and then feed the result to the MN Database.

[Picture 2-3]. Associated Equipment and Individual Functions

2.2.2 RCEG (Real Critical Event Gateway)
[Picture 2-4] displays the structure and functions of RCEG. In order to evaluate the
levels of threat on the internal network, the module collects security event-feed from
four major security equipment in real-time. The data-feed from individual equipment
is then given critical-value for determining the level of threat, and are formatted for
further analyses before sent to KMIM.

1010 S. Lee, D.H. Lee, and K.J. Kim

[Picture 2-4]. The Structure and Functions of RCEG

2.2.3 NFIG (News Find Input Gateway)

[Picture 2-5] displays the structure and functions of NFIG. The module’s main
function is an automatic collection of cyber-threat/vulnerability intelligence and
information in real-time. The collected information is fed to a cyber-threat
information database, and such values as the nature, characteristics and potential of
new cyber-threat elements are analyzed and their potential level of threat is assessed.
The result from these analyses is then cross-referenced by the information provided
via RCEG in order to enable early analyses of possible cyber-threats.

[Picture 2-5]. The Structure and Functions of NFIG

2.2.4 KMIM (Knowledge Management Integration Module)

[Picture 2-6] demonstrates the structure and functions of KMIM. This module’s
primary function is to calculate EW index based on all the formatted data and
information fed from three other modules. Firstly, FITM analyzes potential
vulnerability factors based on collected information and data from the internal
network. Secondly, the extracted factor is then matched to NFIG’s vulnerability data
in order to calculate accumulated correlational data in KMIM. Finally, formatted
event-data values from NFIG, and RCEG’s threat data from security equipment, are
standardized to calculated values. The processed information and calculated values
from all three modules are then classified in groups using, first, statistical and event-
data based knowledge-management analysis methods, and then classification
technique by grouping in order to calculate EW index. The fundamental aim of
classification technique is to establish a working model for making a similar logical
conclusion by a human analyst in making EW decisions.

 A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat EWS 1011

[Picture 2-6]. The Structure and Functions of KMIM

2.2.5 EWVIM (Early-Warning Visual Information Module)
[Picture 2-7] shows the structure and functions of EWVIM. As a main display system for
EWTMS, EWVIM provides various graphs and index values for EW decision making.

[Picture 2-7]. Display Options of EWVIM

3 The Validity of Suggested System

3.1 Formatted Event-Data Analysis Flow

3.1.1 Traffic Level Analysis on Data Volume
[Chart 3-1] displays a daily traffic graph while [Chart 3-2] does weekly packet volume of
the “A” institution, which employs a giga-bit level network. And [Chart 3-3] represents

[Chart 3-1]. Daily Traffic Graph

1012 S. Lee, D.H. Lee, and K.J. Kim

weekly data volume. In order to validate the credibility of the suggested system, this
research has utilized various network traffic values of the “A” institution in EWTMS.

[Chart 3-2]. Weekly Packet Volume Graph [Chart 3-3]. Weekly Data Volume Graph

* The values in the graphs are based on the average value of the unit of five-minute
traffic in a backbone network

3.1.2 Information on Other Analysis Tools: VMS, IDS and Honeynet
[Chart 3-4] displays an hourly data of VMS. The data applied to experiment is the
actual VMS data from the “A” institution that it is comprised of the correlational
weight-added attribute extracts of variables from each section.

[Chart 3-4]. VMS Data on Hourly

[Chart 3-5 and 6]. The Daily Attack Distribution Chart and Changes in Volumes of Malicious
Traffic Compared to the Previous Month

[Chart 3-5] represents a daily attack distribution detail, whereas [Chart 3-6]
displays the changes in a monthly malicious traffic volume compared to the data from
the previous month. The event-data collected from security equipments events are
classified by hourly, daily and monthly bases. Each data is used as a “Data-Set” for
statistical analysis of critical-value of model, and it also acts as “Test Data-Set” for

 A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat EWS 1013

the test of critical-value model, while real-time data is used as “Evaluation Data-Set”
to evaluate the validity of applied analysis model.

3.1.3 News Data Input
[Chart 3-7] displays a process through which cyber-threat/vulnerability intelligence and
information from NFIG is automatically loaded to a Database. The primary data sources
of the NFIG module are trusted sites, which provide credible intelligence and
information on various cyber-threat/vulnerability, and these collected data is transferred
and formatted to text-data which could be loaded to NFIG. Then the converted data is
given numerical value through frequency, time-series, and regression analyses, after
which data is reprocessed and sent to KMIM after proper weight is added.

- ** -
 Updated January 2nd 2005 05:22 UTC

This will be a diary of inputs from you, our read
ers, to the rest of the world. please include your

name and valid email address.
however email addresses will be kept private.

 Updated January 4th 2005 19:23 UTC

Those include, but not limited to. I was looking
for the global trend pattern int the port traffic aft
er the 0 day! I knew security was one of my we
akerareas, and so I made the SANS ISC my ahe
ad of the malware coming at my systems from s

o many vectors.
- ** -

[Chart 3-7]. An Example of News Data Input on Database

3.2 Validation of the Efficiency

3.2.1 Conditions of Experiment
The experiment for the validation of the design was conducted over three month
period on a large-scale network with the following conditions: 1) minimum speed is
one giga-bit; 2) separate internal and external network; and 3) internal network using
virtual IP. The security equipment shown on [Chart 3-8] are applied for the
experiment.

Firstly, IPS and TMS are set on the backbone route; and then Honeynet is located on
the backbone area to measure information on both internal and external network. VMS
is installed on each end-user PC as a client within the main system. The system of “A”
network is reconfigured to the EWTMS-based system, and critical-value of each
equipment was set based on the last 90 days of data for the test. The same condition
was applied to other security equipment, such as VMS, F/W, IDS, IPS and TMS.

3.2.2 Application of Event-Data
In order to verify the credibility of a proposed cyber-threat early-warning system, the
existing data from January 2005 to March 2005 was applied to EWTMS and

1014 S. Lee, D.H. Lee, and K.J. Kim

attempted to produce results during the same period. The condition for issuing cyber-
threat early-warning is set at momentary traffic (or firewall) volume of 70% of
internal or external network sustained over one minute period. This tentative
numerical value for EW decision is calculated from the critical-value on which the
“A” network is no longer capable of normal functioning.

[Chart 3-8]. The Design for Experiment

3.3 The Result of Experiment

At the end of experiment, the NFIG produced results depicted on [Table 3-1] and
[Chart 3-9]. NFIG used data values provided from 12 different trusted original event-
data generating sources (sites) during the period from January to March 2005. Then
the data is loaded to MN D/B, and threat data is classified after by pattern-recognition
analysis. This result is again given a set of numerical values after data-mining is taken
on MN Database.

[Table 3-1]. The Distribution of NFIG Threat Data

[Chart 3-9] displays higher numerical values in the X-coordinate 115-119 and 202-
206 compared to the pink line which indicate the level of critical-value. It is clear that
when vulnerability data extracted from NFIG is applied, the numerical values of the
X-coordinate 111-114, 121-202 and 208 are higher. In particular, the vulnerability on
111 of [Chart 3-10] is a data, the exploit of which was already announced, and is
classified as potential vulnerability by FITM.[11] Consequently, it could be assumed
that the value on the X-coordinate 115 was influenced by the event as represented on
[Chart 3-9].

 A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat EWS 1015

[Chart 3-9]. The Output Value of NFIG (January – March)

[Chart 3-12] is the final test result displayed. According to this, it would have been
possible to issue EW against possible threat on three different occasions, the 11th and
15th January, and 3rd February. The credibility of result is based on the fact that NFIG
had identified MS05-001, MS05-002 and MS05-003 vulnerabilities, while the attack
ratio against FITM identified potential vulnerability was high. According to [Chart 3-
11], the increase in potential threat can be identified since the 15th January, and this
fact was cross-referenced by a threat assessment report produced by a security manager
of the ”A” network in that he identified an abnormality of internal network traffic on
the 15th January due to the attack by a bot-variation[12]. Consequently, the attacks
created potential critical numerical culminating points on the traffic about four times.
All in all, it is plausible to assume that, if a proposed cyber-threat early-warning
system was in operation, it may had been possible to avoid traffic overflow and prevent
threat-factors in the internal network at least four day in advance with EW.

[Chart 3-10]. The Output Value of FITM (January – March)

[Chart 3-11]. The Output Value of RCEG (January – March)

1016 S. Lee, D.H. Lee, and K.J. Kim

[Chart 3-12]. The Output of index of Early Warning and Forecasting

4 Conclusion

4.1 Limits of Experiment

The following limitations were identified during the course of experiment. First of all,
despite the fact that the EW indicator appeared on high status on the 15th January, the
AA, BB and CC index shown on [Chart 3-12] were low. As a result, it appears that
the system reacted to an abnormal traffic of the day rather than acted as the indication
of issuing EW. Secondly, although there was a large-scale attack on the MSN
messenger platform on the 15th February, such event was only detected by the FITM
resulting is a low-level EW indicator posted for the day. It was a result from the fact
that the FITM was insufficiently modified to counter the MSN Messenger
vulnerabilities since its primary focus was on the diction of web-based abnormal
traffic. However, once the MSN messenger vulnerability and attack route are factored
in, the system will perform more than sufficiently under such attack scenario.

4.2 Further Required Research

Many nations including Republic of Korea have spared no efforts in search of various
crisis management and early detection measures to counter against increasing risks of
cyber-attacks. As an alternative to fight against present and clear threats from
unknown cyber-criminals and terrorists, this research has proposed a conceptual
design of knowledge-based real-time cyber-threat early-warning system. The core of
this system is the power to fight against multi-faceted, yet illusive cyber-attacks by
early identification and detection of possible threats and early/pre-emptive response to
the imminent and/or long-term cyber attacks. This is possible by real-time analyses of
a variety of event-data, which in turn is validated by knowledge-based intelligent
analytical techniques. Although a few limitations have been identified during the
experiment, the result itself is noteworthy as the system demonstrated the potential
conceptual basis for designing a working cyber-threat early-warning system. If this
system is developed and operated in parallel to the national cyber-security data-
warehouse, the asset of which should be adopted solely for the purpose of
accumulating a variety of cyber-threat event-data, and sufficient amount of
operational experience is accumulated, the proposed system could evolve into a
reliable national-level cyber-threat early-warning system.

 A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat EWS 1017

References

[1] J.L. Hellerstein, F. Zhang, P. Shahabuddin, “A Statistical Approach to Predictive
Detection”, Computer Networks, vol. 35, pp.77-95, 2001.

[2] F. Zang, J.L. Hellerstein, “An Approach to On-line Predictive Detection”, In Proceedings
of 8th International Symposium on Modeling, ASCTS, 2000.8.

[3] N.K. Groschwitz and G. C. Polyzos, “A Time Series Model of Long-Term NAFNET
Backbone Traffic”, In Proceedings of IEEE International Conference on
Communications, 1994. 5.

[4] Y. Shu, M. Yu, J. Liu, ”Wireless Traffic Modeling and Prediction using Seasonal
ARIMA Models”, In Proceedings of IEEE International Conference on Communications,
Vol.3, 2003, 5.

[5] See http://info.ahnlab.com/ahnlab/report_view.jsp?num=416 for related news.
[6] C. Zou, L. Gao, W. Gong, D. Towsley, “Monitoring and Early Warning for Internet

Worms”, In Proceedings of the 10th ACM Conference on Computer and Communication
Security, p.10, 2003,10.

[7] J.B.D. Cabrera, L. Lewis, X. Qin, C.Gutierrez, W. Lee, R.K. Mehra. “Proactive Intrusion
Detection and SNMP based Security Management”, In proceedings of IFIP/IEEE Eighth
International Symposium on Integrated Network Management, pp.225-254, 2003, 5.

[8] J. Zhai, J. Tian, R. Du, J. Huang, “Network Intrusion Early Warning Model Based on D-
S Evidence Theory”, In Proceedings of 2003 International Conference on Machine
Learning and Cybernetics, Vol. 4, pp.1972-1977, 2003, 11.

[9] J. Li, C. Manikopoulos, “Early Statistical Anomaly Intrusion Detection of DOS Attacks
using MIB Traffic Parameters”, Information Assurance Workshop, 2003. IEEE Systems,
Man and Cybernetics Society, pp.53-59, 2003,6.

[10] Ho Kun Moon, Jin Gi Choe, Yu Kang, Myung Soo Rhee , “Correlation of Network Risk
and Defect through an Analysis on Cyber Threat and Vulnerability”, KIISC 2005-1,
2005.2.

[11] See http://isc.sans.org/alldiaries.php?month=3&year=2005 for related topic.
[12] The “A” Government Agency’s Internal Report, “ February 2005 Security Response

Report”, 2005, 3.

Learning-Based Algorithm for Detecting
Abnormal Traffic�

Changwoo Nam1, Seongjin Ahn2,��, and Jinwook Chung1

1 Dept. of Electrical and Computer Engineering, Sungkyunkwan Univ., Suwon,
Kyeonggi-do, Korea

{cwnam, jwchung}@songgang.skku.ac.kr
2 Department of Computer Education, Sungkyunkwan Univ., Seoul, Korea

sjahn@songgnag.skku.ac.kr

Abstract. Modern worm viruses not only tend to promote host attacks,
but generate high volumes of traffic and frequently result in network fail-
ure. This paper proposes a learning-based algorithm for detecting abnor-
mal traffic, ensuring efficient protection against worm viruses, and pro-
moting network level security. The algorithm identifies abnormal traffic,
and learns network level characteristics of this traffic, to prevent in ad-
vance factors that may result in network failure. The algorithm presented
in this paper was applied to the network system, and simulation results
showed that unlike previous network systems, the proposed algorithm
more efficiency detects worm viruses, and overall, results in improved
network security.

1 Introduction

Network failure rate, due to worm attacks exploiting vulnerability in TCP/IP
protocols or operating systems, is increasing. In particular, worm viruses, which
spread rapidly and broadly, are an important consideration in network security
[7][8].

Technology detecting worm viruses using scanning strategy, common in all
worm viruses, is actively being researched, with the goal of preventing damage
from worm viruses in a network. Major characteristics in scanning strategy used
by worm, include the following. In order to find a target to attack, addresses
are randomly generated over a short time period and many connection attempts
are made. In attempts to connect to the many generated addresses, it tries to
connect to addresses that are not in actual use, increasing the connection failure
rate. Due to these two processes, the worm generates considerable network traffic
[1][3].

Worm attacks are becoming more sophisticated and intelligent and tend to
attack an entire network, rather than attacking and destroying a single host

� This work was supported by grant No. R01-2004-000-10618-0 from the Basic Re-
search Program of the Korea Science and Engineering Foundation.

�� Corresponding author.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1018–1024, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning-Based Algorithm for Detecting Abnormal Traffic 1019

[12]. As host-level security measures are sufficiently strong to prepare for such
attacks, host level security management is recommended [2][3].

This paper presents a learning-based method for examining network connec-
tions for each host, analyzing worm viruses and unknown traffic attack patterns
for efficiently preventing worm attacks and securing the network at a network
level. This method uses IP and MAC addresses to examine the connected IP ad-
dress at each time period. If it exceeds the critical connection value, it is judged
as a worm virus. In addition, an increased critical value to promote the efficiency
of the algorithm may be applied so that the algorithm can ”learn” the normal
traffic of the specific network and detect worm viruses during a sudden increase
in the number of connections.

2 Worm Virus Detection Algorithm

This paper proposes an algorithm that uses the characteristics of the scanning
strategy common in worm viruses, to detect various worms [1][9]. This scan-
ning strategy was chosen because the attack methods of worm viruses may vary
widely, and most of the features of the scanning strategy are similar. In order to
find an IP address to attack, IP addresses are generated randomly in the scan-
ning strategy, and this causes frequent attempts to connect to IP addresses that
are not in actual use[3][9]. Another characteristic is that a large number of IP
addresses are searched in a very short time, enabling the worm to quickly spread
[1][9]. Using these two characteristics, worm viruses can be detected based on
the number of IP addresses that a host communicates to within a time unit.

A network traffic learning method to be utilized during normal times was con-
sidered in this paper for more accurate detection of worm viruses. This method
periodically analyzes normal network traffic patterns, creates a database of the
patterns, and continues to analyze and learn normal traffic patterns. Such a
feature makes it possible for the learning-based abnormal traffic detection algo-
rithm to learn flexibly in different network environments. Based on the database
records, if the host attempting connection to the network exceeds a certain crit-
ical value or if the number of hosts trying to connect increases suddenly, it can
be assumed that a worm virus has infected the network.

The selection of items to be analyzed is important in efficiently detecting worm
viruses, as the number of items is inversely proportional to system performance,
and proportional to detection success rate. To promote the efficiency of the
algorithm, this paper uses the worm’s characteristic of attempting to connect
with many hosts in a short time, and sets packet analysis items as destination
port number and IP address of the source and destination [5].

2.1 Packet Capture and Count

The destination port of the packet and IP addresses of the source and destination
are used to efficiently detect worm viruses. Well-known port numbers for worm
attacks such as port 80, 135 and 445 are defined in advance, to enhance the
performance of the algorithm[5][6].

1020 C. Nam, S. Ahn, and J. Chung

The following Figure.1 shows the procedure for packet capture and count.

Fig. 1. Packet Capture and Count Procedure

Fig. 2. Packet Capture and Count Algorithm

The algorithm repeats the above process whenever a new packet is captured.
In the packet capture process, only TCP and UDP packets are captured, and
those otherwise are discarded. Then, the destination port of the captured packet
is analyzed to see if it matches the predefined vulnerable port, and if it does
not match, the packet is discarded. The information of the captured packet is
compared with the database. If there is no IP address information of the source,
IP information is added to the database. Otherwise, the packet count value in
the database is increased. Figure.2 shows the packet capture algorithm based on
Figure.1.

Learning-Based Algorithm for Detecting Abnormal Traffic 1021

2.2 Worm Virus Detection

Worm virus detection is performed by the worm virus detection algorithm based
on the database set up by the packet capture and count algorithm in Figure.2.
This is done by comparison with the database and counting the number of
network connections of the same address as the source IP address, to detect
abnormal traffic such as worm viruses.

The worm virus detection algorithm is performed periodically. It analyzes all
IP information stored in the database and takes account of the same source IP
address. If the number of attempted connections by the source IP address for
a certain period of time exceeds the connection critical value ααα, the algorithm
detects that the specific host of the source IP address is infected by a worm
virus. The following formula (1) can be made for the connection critical value ααα,
by defining each packet from the source IP address as Ci and count value as Ic.

∞∑
i=0

Ci = Ic

Ic > α → WormV irus−Detection(1)

To increase the efficiency of the algorithm, the increased critical value βββ is
applied so that if attempts to connect to the network increase suddenly, it can be
detected that the host of the source IP address is infected by a worm virus. This
detection is based on the count value of the specific source IP in the database.
Even if the number of attempted connections does not exceed the connection
critical value ααα, if the number is detected to have increased by the increased
critical value βββ times, it is detected as a worm virus. When defining the last
count value of the source IP address as j, and the current count value divided
by the increased critical value βββ as d, then the following formula (2) applies.

Ic

β = d

d > j → WormV irus−Detection(2)

As shown in Formula (2), d is derived by dividing the current count value Ic by
the increased critical value βββ, and if d is larger than j, a worm virus is detected.
Figure.3 shows the worm virus detection procedure with applied formulas.

The worm virus detection algorithm operates periodically in the above se-
quence. As shown, the connection critical value ααα and increased critical value βββ
are criteria for detecting worm viruses in the algorithm, and are required to set
appropriate critical values for each network environment.

The following Figure.4 shows the algorithm based on the worm virus detection
procedure in Figure.3.

3 Algorithm Test

3.1 Operation of Host Infected by Worm Virus

In order to detect abnormal operation of a worm-infected host, packets of an in-
fected host attempting connection, and the number of attempts, were

1022 C. Nam, S. Ahn, and J. Chung

Fig. 3. Worm Virus Detection Procedure

analyzed. A host infected by a type of Sasser virus [4] was chosen as the host to
be examined.

Only packets attempting to connect to port 445 were tested. An independent
Linux system connected to a dummy hub captured packets using the pcap li-
brary. The packet connection was examined each second; the results are shown
in Figure.5. In a normally operating network, approximately 2,700 ARP request
packets were counted per minute, but were different for randomly generated

Fig. 4. Worm Virus Detection Algorithm

Learning-Based Algorithm for Detecting Abnormal Traffic 1023

Fig. 5. Number of IP Addresses Attempted for Connection by Worm-Infected Host

addresses, and a host infected by the worm virus attempted connection to over
6,000 hosts per minute[10][11]. Based on these analysis results, it can be seen
that an infected host attempts many more connections than a normal host.

3.2 Worm Virus Detection Test

In this paper, critical values were set by the values shown in Table.1 and ARP
packets were generated to test the detection of worm viruses[10][11]. The test was
repeated five consecutive times, and was performed by attempting connection
over the connection critical value and significantly increasing the number of
connections from the previous connection in a certain time period.

The connection critical value ααα in Test 1 was set at 40, but the actual number
of host connections was 50, and the connection was judged as a worm virus.
Connections in Test 2 to Test 4 did not exceed the critical value, but in Test 5,
connections increased by more than 8 times. The increased critical value βββ, from
that of Test 4, was judged as a worm virus even though it did not exceed the
connection critical value ααα.

Table 1. Worm Virus Detection Test

Number Connection Increased Connected Detection
Critical Value (ααα) Critical Value (βββ) Hosts Results

1 40 8 50 Detected
2 40 8 5 No Change
3 40 8 20 No Change
4 40 8 4 No Change
5 40 8 35 Detected

4 Conclusion

This paper presented a learning-based algorithm for detecting abnormal traffic,
which can protect networks from worm viruses and various attacks. Worm viruses

1024 C. Nam, S. Ahn, and J. Chung

are detected based on traffic monitoring inside the network, and only packets
attempting connection to vulnerable ports were examined, to easily increase
analysis accuracy at the minimum cost. The number of connections at each host
was examined periodically, to detect abnormal operation, and previous data were
utilized for accurate measurement, this made it possible to include a method for
learning normal usage patterns. However, more test and research are required for
setting critical values, and the number of packets to capture and analyze data
increased as the size of the network increased, this may have caused problems
in the performance of the algorithm-applied system.

The algorithm in this paper is based on the common characteristics of a
worm virus, with the advantage of coping with mutated and viruses created
in the future. By adding a network traffic analysis factor, a traffic analyzing
program based on this algorithm can be created. In addition, this algorithm can
develop into a more efficient and secure network management system, through
integration with network management systems. In order to enhance this research,
traffic sampling methods should be applied and a flexible approach to analysis
items is required. Last, establishing an integrated security system using network
devices applied to the proposed algorithm should be considered.

References

1. Guofei Gu, Monirul Sharif, Xinzhou Qin, David Dagon, Wenke Lee and George
Riley, Worm Detection Early Warning and Response Based on Local Victim Infor-
mation, Computer Security Applications Conference, 2004. 20th Annual

2. Jason C. Hung, Kuan-Cheng Lin,Anthony Y. Chang, Nigel H. Lin and Louis H.
Lin, A Behavior-based Anti-Worm System, Preceeding on AINA’03, China, 2003.

3. Vincent Berk, George Bakos and Robert Morris, Designing a Framework for Active
Worm Detection on Global Networks, Preceeding on IWIA’03, 2003.

4. Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm fingerprinting. In Proceedings of the 6th ACM/USENIX Symposium on Op-
erating System Design and Implementation (OSDI), December 2004.

5. Behrouz A.Forouzan, TCP/IP Protocol Suite 3rd Edition, McGrawHill 2006.
6. W.Richard Steavens, TCP/IP Illustrated, Volume 1 The Protocol, Addision-

Wesley, 1999.
7. N. Weaver, V. Paxson, S. Dataniford, and R. Cunningham. A taxonomy of

computer worms. In proceedings of ACM CCS Workshop on Rapid Malcode
(WORM’03), Octobrt 2003.

8. C. C. Zou, D. Towsley, and Gong, On the performance of Internet worm scanning
strategies, J. Performance Evaluation, 2005.

9. Sumeet Singh, Cristian Estan, George Varghese, Stefan Savage. Automated worm
fingerprinting. 6th ACM/USENIX symposium on Operating System Design and
Implementation (OSDI), December 2004.

10. D.C. Plummer, RFC 0826: Ethernet Address Resolution Protocol, 1982.
11. K. Kwon, s. Ahn, and J. Chung, Network Security Management Using ARP Spoof-

ing, Proc. ICCSA 2004, 2004.
12. X. Qin, D. Dagon, G. Gu, W. Lee, M. Qarfield, and P. Allor. Worm detection using

local networks. The recent Advances of Intrusion Detection TAID’04, September
2004.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1025 – 1033, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Energy-Efficient Routing Protocol Depending on
Dynamic Message Communication over Wireless Sensor

Network

KwangKyum Lee1, Yongtae Shin2, and Ara Khil2

1 Dept. of Computing, Graduate School, Soongsil University, Sangdo5-Dong,
Dongjak-Gu, Seoul, Republic of Korea

Goodwin77@cherry.ssu.ac.kr
2 Dept. of Computing, Graduate School, Soongsil University, Sangdo5-Dong,

Dongjak-Gu, Seoul, Republic of Korea
{shin, ara}@cherry.ssu.ac.kr

Abstract. We propose an energy-efficient routing mechanism for maintaining
uniform distribution of each sensor’s energy through shorter paths. We define
two metrics – energy level and vector information. The energy level describes
how much the energy of the sensor remains and the vector information explains
whether the direction towards the sink. Using the two factors, we choose lead-
ers with higher energy level and the vector information when any sensor node
tries to send the sink some messages. Whenever the sensor node delivers each
one message to the sink, the selected leader node may be different dynamically
through our defined two metrics. So we expect that the energy level of every
sensor node can be maintained uniformly over the entire sensor network. There-
fore, sudden sensor failure caused by battery exhaust and network partition
caused by some sensor’s sudden deaths can be prevented. We analyze our
DyMC through evaluating and comparing with existing research such as di-
rected diffusion.

1 Introduction

Wireless Sensor Network (WSN) is composed of many sensors and sinks which col-
lect sensing data. Sensor network is similar to ad-hoc network. However the sensor
network is more important for energy consumption than one over the ad-hoc network.
Energy efficiency should consider less energy consumption as well as uniform con-
sumption of the energy and both of them are considered at the same time to set a path
because much energy consumption threats network survivability and energy con-
sumption of specific nodes incurs network partition. Recently, routing mechanism has
studied for energy efficiency over WSN because data delivery is main job. However,
most of researches [1, 2, 3] have been considered less energy consumption or uniform
consumption, not both.

1026 K. Lee, Y. Shin, and A. Khil

We proposed an energy-efficient routing algorithm for uniformly reducing energy
consumption of each node through finding shorter path from the sink and rotating
nodes as routers. Chapter 2 introduces some energy efficient routing algorithm [1, 2,
3] and chapter 3 describes our energy efficient routing algorithm. Conclusion and
future work is described in chapter 4.

2 Related Works

[1] is efficiently disseminates information among sensors in an energy-constrained
wireless sensor network. Nodes running a SPIN communication protocol name their
data using high-level data descriptor, called meta-data. Each node use meta-data ne-
gotiations to eliminate the transmission of redundant data throughout the network. In
addition, nodes can base their communication decisions both upon application-
specific knowledge of the data and upon knowledge of the resources that are available
to them. This allows the sensors to efficiently distribute data given a limited energy
supply.

[2] is data-centric in that all communication is for named data. All nodes in a di-
rected diffusion based network are application-aware. This enables diffusion to
achieve energy savings by selecting empirically good paths and by caching and proc-
essing data in-network. And data generated by sensor nodes is named by attribute-
value pairs. A node requests data by sending interests for named data. Data matching
the interest is then ‘drawn’ down towards that node. Intermediate nodes can cache, or
transform data, and may direct interests based on previously cached data.
[3] performs restricted flooding. A sensor node sends data to a flooding set in range of
two hops. It floods data not to all neighbor nodes but to some nodes which have abil-
ity to forward data in flooding area. This mechanism reduces a number of forwarding
messages.

3 Energy-Efficient Routing Protocol Depending on Dynamic
Message Communication (DyMC)

In this paper, we propose distributed routing mechanism to communicate dynamic
message for efficient energy consumption of a sensor node over WSN. Our DyMC
can be applied to any topology of WSN and increase energy efficiency of whole sen-
sor network. To increase energy efficiency of sensor network, DyMC controls energy
consumption to keep remained energy of sensor nodes to uniform status and avoids
traffic concentration. Therefore we propose a mechanism that priority paths are set up
based on energy status of neighbor nodes. And when setting up the paths up to the
sink, we establish directive paths towards the sink using vector information together
with the energy status of them. In case of some node failure, using multi direction
vector information up to sink, another path is reset up through comparison of energy
status of them. Fig.1 displays proposed network model.

 Energy-Efficient Routing Protocol Depending on Dynamic Message Communication 1027

Fig. 1. Proposed Network Model

3.1 Comparison to Energy Level of Sensor Node

We define 3 energy levels depending on remaining energy amount of sensor nodes.
Whenever the energy level is changed, the nodes announce their energy level to their
neighbors. Depth of the energy levels can be dynamically determined by requests of
an application. Suppose that based energy level is N which is total energy value di-
vided by N. and then the energy level is N+D when application request collection of
robust and precise time-sensitive information about emergency conditions or battle
situations. On the other hands, the energy level is N-D when application request col-
lection of information which regards of less sensitive-time than pre-defined level for a
long time about ecology environment investigation such as resource of deep-sea, and
changes of the earth’s surface. Therefore additional level D is dynamically changed
by various application requirement.

For establishing routing paths, sensor nodes advertise their energy levels to their
neighbors and determine directions of the neighbors for a sink. So the nodes maintain
an energy table containing the energy level and vector information. DyMC selects
sink-directive nodes with higher energy level. When the energy levels of nodes are
changed, the nodes advertise their energy level. If energy level of the node is lower
than one of neighbors, a role of router is changed to a node with higher energy. So as
a result of the procedure, the path is reset with nodes of higher energy to maintain
shorter path. As each sensor node does not transfer the information periodically but
transfers their state information only when there are changes in an energy level, whole
energy consumption efficiency increases than flooding their own information periodi-
cally. At this time, each sensor node selects a period to maximize efficiency of energy
consumption based on a kind of applications.

3.2 Setting Up Path to Make Good Use of Energy Level and Direction
Information

Please always cancel any superfluous definitions that are not actually used in your
text. If you do not, these may conflict with the definitions of the macro package,

1028 K. Lee, Y. Shin, and A. Khil

causing changes in the structure of the text and leading to numerous mistakes in the
proofs. This paper caches information that middle nodes receive from neighbor node
to set up path. Also this paper use energy level information i and direction vector
up to sink, to set up from sensor sensing data to sink. Information of stored nodes at
cache is formed a pair of (i, i). An energy level is sorted descending series period of
ten days from the highest node of collected information i. i information mapped into

i and is used to composes transfer path of gathered resource. Each sensor node has
maximum energy at the first stage when sensor network is configured. At this stage,
each sensor transfers data up to sink, using flooding to all direction of directional
information that each node had. At this time, direction information is set up to con-
sider direction of sink when initially happening transaction to sink. It is assumed that
each node know that sink and its own location information apply GPS coordinateness
system. We define location coordinateness of the sink is (0, 0) and coordinateness of
source node is (xi, yi), then distance is from source node to sink. If vector distance of
any sensor node from self-node to neighbor-node is shorter than distance, then the
sensor node i information sets 1 that regards of vector direction of sensor towards
sink. On the other hands, vector distance is larger than distance then the sensor node

i information sets 0 that regard of the vector direction of sensor is not towards sink.
If path is set up and data transfer is accomplished, process to calculate node’s en-

ergy amount is stared. In case of energy change, each sensor node advertises their
energy information and location information to neighbor node and update cache in-
formation of neighbor nodes. At this time, information of direction vector i that node

Fig. 2. Setting path algorithm

 Energy-Efficient Routing Protocol Depending on Dynamic Message Communication 1029

has consists main-direction vector and sub-direction vector that transfer up to sink
through node that energy level is high among cache information that node has. Then,
sub-direction vectors stores in cache for making a detour against urgent change of
node. Fig.2 is algorithm to set up path by using remainder energy amount and direc-
tion vector. And table 1 is specification of a variable and a function to be used by
algorithm.

Table 1. Function description

Definition Description
C Count value of cache information
receive Received messages form neighbor nodes
cache init(x, y) Cache initialization
Direct Stored value of location information

Adv(x, y)
Advertising message of energy and location informa-
tion values

Compare-location(x) Comparison Function for location values
sort Sorting cache information
opt path Optimized path
max(x) Maximum cache information
Cache Cache information
Deliver Transfer data
Recent-energy-level Value of recent energy
pre-energy-level Value of past energy
calculate Calculate energy changes
Advertise Advertise neighbor nodes
Listen Stand by received information form neighbor nodes

Fig. 3. Setting path scheme by steps

Fig.3 describes a procedure to create a route hop-by-hop. Each node’s energy is
full in childhood that compose sensor network at Fig.3-(a). Fig.3-(a) shows a case of
not using path establishment. Source node that is passed transaction signal passes
collected data to sink through direction vector i's all paths. For example, each nodes
transfer data through 1, 2, 3 which are direction vector information from source

1030 K. Lee, Y. Shin, and A. Khil

node that collects sensed information to neighbor nodes. And then nodes that received
data from neighbor nodes retransmit data through 1, 2, 3 which are having self
information until it reach sink.

Fig.3–(b) shows when energy level of each node is differentiated because con-
sumption of energy is fitful at communication process.
Each sensor transmits sensed data along path that only energy level is high and vector
information set by 1, among the pair of energy level information and direction vector.
When energy level changed, each node transfer sensed information searching energy
and direction vector information from node to sink. And that time each node route
energy level is 4 and direction vector information is 1. Grade of own energy of infor-
mation of node that is passed data which level is 5 and direction vector information
transmits data to sink for 1 direction.

3.3 Refresh of Path

Each of nodes broadcasts energy and direction vector information of neighbor node
whenever own energy level is changed. This time, each node transmit data using vec-
tor information that have high energy level first of organized energy and direction
information by descending series period of ten days and remainder of information do
cash. If changes occurs and is not used in case schedule node does not operate on
network. When transmit data by secondary route using information that have the en-
ergy of first highest level of remainder cache information. It updates path without
deteriorating efficiency of whole network by data transmission through second path as
ambivalent.

4 Performance Analysis

We used NS-2 simulator for performance analysis of DyMC in chapter 3. And then
we compare performance of our proposed Energy Distribution Routing scheme with
Directed Diffusion.
�

Fig. 4. Network simulation model

 Energy-Efficient Routing Protocol Depending on Dynamic Message Communication 1031

Our simulation environment is that 100 node are arranged for grid structure and
transmit data to 10-6 seconds from number-27 node to number-90 node. Initial energy
was established by 26kJ[5], each bits transmission energy when send and received of
message calculated 0.021mJ/0.014mJ[5], and transmission data 128 byte 100 times.

Fig. 4 is graph that express mean value of a 10 times simulation for 20 seconds.
This simulation result shows that DyMC is better than Directed Diffusion for maxi-
mum 4% energy efficient.
And we know that averagely energy decrement of DyMC about 0.4% and Directed
Diffusion is about 2%. Therefore our DyMC is better than Directed Diffusion aver-
agely about 1.6% energy efficient.

We know that DyMC is decreasing gently remained energy amount average than
Directed Diffusion after 6 seconds in Fig.5. Therefore DyMC is superior to Directed
Diffusion in side of whole energy consumption. Table 2 is simulation result that com-
pares with DyMC and Directed Diffusion.

Fig. 5. Average of remained energy through time sequence

Fig. 6 shows that number of exhausted nodes changes by time sequences. Directed
diffusion is rapidly changed number of nodes after 12secs. But our DyMC is changed
number of nodes after 21secs. So a numerical difference directed diffusion and DyMC
are 9secs. This simulation results are show that our DyMC is more robust energy
consumption than directed diffusion. But, on the other hands a number of exhausted
nodes are similar both of them after 21 sec.

1032 K. Lee, Y. Shin, and A. Khil

Fig. 6. Number of exhausted nodes according to time sequence

Table 2. Comparison of DyMC and Directed Diffusion

Energy consumption ratio energy comsumption speed
DyMC<DD DyMC<DD

Simulation results
Energy consumption average Start time when energy exhausted

DyMC<DD DyMC>DD

5 Conclusion and Further Works

In this paper, we proposed that Energy efficient Distribution Routing scheme consid-
ered energy levels and directions. And we do not perform periodic flooding technique
which exchange of control messages acquired to distribution effect of energy con-
sumption. Each node floods self-data that is information about direction and energy
level when energy level changing.

We used information that set all directions toward sink when data transmitted for
initial data collected. Each node sets routing path that energy utilize is maximum
using energy level and direction information when energy level changed. Also, in
case that some nodes are failed, efficiency of network topology is not affected by
nodes failure because of using multi-paths.

At last, we prove that our DyMC is energy efficient for whole network topology by
simulations. Furthermore we need to analyze energy consumption of each nodes may
have to be achieved subdividing proposal.

 Energy-Efficient Routing Protocol Depending on Dynamic Message Communication 1033

If you have supplementary material, e.g., executable files, video clips, or audio re-
cordings, on your server, simply send the volume editors a short description of the
supplementary material and inform them of the URL at which it can be found. We
will add the description of the supplementary material to the online version of LNCS
and create a link to your server. Alternatively, if this supplementary material is not to
be updated at any stage, then it can be sent directly to the volume editors, together
with all the other files.

References

1. W. R. Heinzelman, J. Kulik, H. Balakrishnan, "Adaptive Protocols for Information Dis-
semination in Wireless Sensor Networks," Proc. Mobicom ’99, pp 174-185.

2. Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin, "Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks," Proceedings of the
Sixth Annual International Conference on Mobile Computing and Networks, August 2000.

3. Taek Jin Kwon; Gerla, M.; Varma, V.K.; Barton, M.; Hsing, T.R., "Efficient flooding with
passive clustering-an overhead-free selective forward mechanism for ad hoc/sensor net-
works," Proceedings of the IEEE , Vol. 91 Issue 8 pp. 1210 - 1220, Aug. 2003.

4. UCB/LBLN/VINT, NS(Network Simulator) Version 2, Online:
http://www.mach.cs.berkeley.edu/ns/

5. David W. Carman, P. Kruus and B. Matt, "Constraints and Approches for Distributed Sen-
sor Network Security," Technical Report, NAI LABS, 2000.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1034 – 1043, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design of Authentication Mechanism Using PANA CTP
in FMIPv6 Environment*

Insu Kim and Keecheon Kim**

Department of Computer Science & Engineering, Konkuk University
Seoul, Korea

{darkguy, kckim}@konkuk.ac.kr

Abstract. MIPv6 working Group in IETF suggests Mobile IPv6 to support host
mobility. In order to make MIPv6 to be more practical, FMIPv6 which is a fast
handover scheme to optimize the packet delivery route is considered. FMIPv6
protocol assumes layer 2 triggers from the link layer. Through the movement
detection and a new CoA configuration using the information in advance, MN
can perform a binding update and receive data destined to the MN as soon as a
new link to a new access router is established. The routing failure until BU is
completed is also addressed by using bi-directional tunnel between the access
routers. CTP is used in a bi-directional tunnel between pAR and nAR. nAR
must authenticate the MN by using PANA architecture. The authentication
process for MN is an associated process of PANA at the wireless link and
AAA in the network. Both processes carry messages for authentication. The at-
tendant can be an AR providing the Mobile IP service, and also acts as a PAA
to communicate PANA messages with the MN. AAH or HA in a home network
can authenticate the mobile node and pAR has authentication information for
MN. However, nAR has no authentication information. Therefore, existing au-
thentication mechanism is not acceptable in FMIPv6. For secure FMIPv6, new
authentication mechanism should be considered. Our research propose an au-
thentication mechanism using PANA-CTP in FMIPv6 environment.

1 Introduction

In order to support IPv6 mobility in the carrier’s network, end-to-end IPv6 mobility
needs to be provided. A mobile host is supposed to move with a permanent IPv6 ad-
dress. Normal IPv6 routing structure based on the longest prefix match algorithm
cannot support the host mobility. In order to solve this problem, MIPv6 (Mobile
IPv6)[1] working Group in IETF (Internet Engineering Task Force) suggests a Mobile
IPv6 for host mobility. Mobile IPv6 structure of IETF is made for IPv6 network
mobility, not necessarily for a cellular network. So, MIPv6 WG updates the mobile
IPv6 structure to be suitable for a wireless cellular network.

For MIPv6 to be more practical, FMIPv6 scheme, which is for fast handover to op-
timize the packet delivery route has been introduced.

* This research was supported by the Brain Korea 21 project.

** Corresponding author.

 Design of Authentication Mechanism Using PANA CTP in FMIPv6 Environment 1035

FMIPv6 (Fast Handover support in Mobile IPv6)[2] was proposed to address the
problem of handover latency during the host movement. Original mobile IPv6 proce-
dure could not be initiated before layer 2 handover is completed and it may induce
unacceptable latency for real-time services. The handover procedure of Mobile IPv6
consists of movement detection, new CoA(Care of Address) configuration, and bind-
ing update. If the information for link layer handover could be provided in advance,
layer 3 handover, that is, Mobile IP procedure, could be started earlier to reduce the
latency related to the handover. FMIPv6 protocol assumes layer 2 triggers from the
link layer. Doing movement detection and new CoA configuration using the informa-
tion in advance, MN can perform a binding update and receive data destined to the
MN as soon as a new link to a new access router (AR) is established. Also, the routing
failure until the binding update is completed can be secured by using bi-directional
tunnel between access routers. CTP(context Transfer Protocol)[3] is used in the bi-
directional tunnel between pAR (previous Access Router) and nAR (new access
Router). nAR must authenticate MN by using PANA (Protocol for carrying Authenti-
cation for Network Access)[4] architecture.

The authentication process for MN is an associated process between PANA at the
wireless link and AAA[5] in the network. Both processes carry messages for authenti-
cation.

When MN attaches to a network, it discovers AAA attendant by sending PANA
discovery message. The detailed messages depend on the selected authentication
method decided by the network. Messages are exchanged in the wireless link using
PANA, and in the network behind access router using the AAA infrastructure. The
attendant can be an AR (Access Router) providing Mobile IP[6] service, and AR also
acts as a PaC (PANA Client) to exchange PANA messages with the MN, meanwhile,
AR functions as an AAA attendant to communicate with the AAAL(local AAA
server) as well. AAAH(Home AAA server) or HA in a home network can authenti-
cate the mobile node and pAR has authentication information for MN. However, nAR
has no authentication information. Without knowing the proper information about
MN, we can not guarantee secure seamless handover for nomadic users. Therefore,
existing authentication mechanism is not acceptable in FMIPv6. In order to achieve a
secure FMIPv6, a new authentication mechanism is required. In this paper, we pro-
pose a new authentication method using PANA CTP in FMIPv6 environment.

2 Related Works

2.1 FMIPv6 (Fast Mobile IPv6)

FMIPv6 is a package with three components: a support protocol for finding a feasible
new access router, a support protocol for IP-address configuration, and a support
protocol for an efficient data forwarding during handover. With FMIPv6, a mobile
node can determine its next access router without having to connect to it. Instead,
FMIPv6 lets the mobile node solicit the relevant information from its current access
router.

FMIPv6 defines a signaling protocol between the current and the new access router
for an IP address configuration. This signaling protocol allows the mobile node to be

1036 I. Kim and K. Kim

configured with a new IP address before it moves to a sub-network where the new IP
address will be used. Moreover, FMIPv6 installs a tunnel between the old and the new
access router so that the packets that are destined to the mobile node's old access
router can be forwarded to the mobile node's new point of network attachment.

Fig. 1. FMIPv6 data flow

2.2 PANA CTP

PANA is a protocol that carries EAP over IP/UDP to authenticate the users. The
PANA Authentication Agent (PAA) is the endpoint of the PANA protocol in the
access network. The PAA itself may not be able to authenticate the user by terminat-
ing the EAP protocol. Instead the PAA might forward the EAP payloads to the
backend AAA infrastructure.

The Enforcement Point (EP) is an entity, which enforces the result of the PANA
protocol exchange. The EP can be co-located with the PAA or it can be separated as a
stand-alone device. In the latter case, the SNMPv3 protocol is used to communicate
between PAA and EP.

A successful EAP authentication exchange results in a PANA security association
(PANA SA) if the EAP method was able to derive session keys. In this case, all fur-
ther PANA messages between PaC(PANA Client) and PAA will be authenticated,
replayed, and the integrity is protected due to the AUTH AVP.

Fig. 2. PANA architecture

 Design of Authentication Mechanism Using PANA CTP in FMIPv6 Environment 1037

After a PaC's IP handover, the PaC changes IP subnet and PAA accordingly. The
new PAA (nPAA) does not share any context with the PaC.

For this reason, we use the Context Transfer Protocol (CTP) to transfer the PANA
context established between the PaC and pPAA to nPAA.

Fig. 3. Handover scheme using PANA-CTP

3 Authentication Mechanism Using PANA CTP

In this paper, we propose a more efficient mobility management mechanism for MN
in a visited network of FMIPv6 environment. The movement of MN, which requires
mobile IP services, is mostly local within the visited domain.

Binding update is one of the most important function of mobile IP. Binding update
enables a mobile node to receive it’s data that was transmitted to MN’s home address,
It requires that binding update needs authentication of mobile node to protect mobile
node’s data. AAAH or HA in a home network can authenticate the mobile node.
However, nAR in FMIPv6 scheme cannot authenticate the MN. Therefore, the exist-
ing authentication mechanism is not acceptable in FMIPv6 environment. For secure
FMIPv6, new authentication mechanism is required.

3.1 A Handover Scheme in FMIPv6

The protocol begins when a MN sends an RtSolPr (Router Solicitation for Proxy
Advertisement) to its access router to resolve one or more Access Point Identifiers to
subnet-specific information. In response, the access router sends a PrRtAdv (Proxy
Router Advertisement) message containing one or more fields. The MN may send a
RtSolPr at any convenient time, for instance, as a response to some link-specific
events or simply after performing router discovery. However, we expect that the MN
will discover the available ARs by link-specific methods prior to sending RtSolPr.
The RtSolPr and PrRtAdv messages do not establish any state at the access router.

With the information provided in the PrRtAdv message, the MN formulates a pro-
spective nCoA and sends an FBU (Fast Binding Update) message when a link-
specific handover event occurs. The purpose of the FBU is to authorize pAR to bind
pCoA with nCoA, so that the arriving packets can be tunneled to the new location of
the MN. Whenever possible, the FBU should be sent from pAR's link. For instance,
an internal link-specific trigger could enable FBU transmission from the previous
link. When it is not possible, FBU is sent from the new link. We should be careful to

1038 I. Kim and K. Kim

ensure that the nCoA used in FBU does not conflict with an address already in use by
some other nodes on the link. For this, FBU encapsulation within FNA (Fast
Neighbor Advertisement) must be implemented and should be used when the FBU is
sent from nAR's link.

MN receives an FBAck on the previous link. This means that packet tunneling is
already in progress by the time the MN handovers to nAR. The MN should send
FNA (Fast Neighbor Advertisement) immediately after attaching to nAR, so that the
arriving and buffered packets can be forwarded to the MN right away.
Before sending an FBAck to an MN, PAR can determine whether the nCoA is accept-
able to the nAR by exchanging HI and HAck messages. When an address assignment
by AR is used, the proposed nCoA in the FBU is carried in HI, and the nAR may
assign the proposed NCoA. Such an assigned nCoA MUST be returned in HAck, and
the pAR must in turn provide the assigned nCoA in the FBAck. If there is an as-
signed nCoA returned in the FBAck, the MN must use the assigned address upon
attaching to nAR.

MN PAR NAR

RtSolPr

PrRtAdv

FBU HI
HAck

FBAck

FNA
deliver packets

disconnect

connect
Forward packets

MN PAR NAR

RtSolPr

PrRtAdv

FBU HI
HAck

FBAck

FNA
deliver packets

disconnect

connect
Forward packets

Fig. 4. FMIPv6 handover

3.2 Local Authentication with PANA-CTP

CTP enables context transfers between access routers. The context transfer can be
either initiated by a request from the mobile node or by the new or the previous access
router. Furthermore it can be performed prior to handover or after the handover.

In a reactive mode, MN sends a CTAR (CT Activate Request) to the nAR. In this
message MN includes an authorization token: this token is calculated based on a
secret shared between the MN and the previous AR (pAR) and it is used in order to
authorize the transfer. This means that the MN and the pAR must share a secret.

As soon as the nAR receives a CTAR message, it generates a CT-Request mes-
sage, which includes the authorization token, and the context to be transferred. This
message is received by the pAR that verifies the authorization token and sends a CTD
(Context Transfer Data) message including the requested context.

 Design of Authentication Mechanism Using PANA CTP in FMIPv6 Environment 1039

The transfer is triggered using the PANA signalling and CTD message is used to
carry the PANA context. In the solution proposed by PANA, the PaC does not use
CTAR message to request and to activate the context. Instead, it replies to PSR mes-
sage with a PSA message containing the unexpired previous PANA session identi-
fier and an AUTH AVP. This AVP is computed using the PANA_AUTH_KEY
shared between the PaC and its pPAA.

For local handover, binding update and authentication must be executed in a local
foreign network. Authentication of mobile nodes is based on MN-AAAH security
association. A new authenticator is required in local handover. In this paper, we pro-
pose a new local authenticator which can be obtained shown below..

Local authenticator:

 H(sskMA-AAAH, HC)

H() : hashing function
sskMN-AAAH : shared secret parameter between a mobile node and home AAA
server
HC : home challenge

Mobile node can detect local movement using link-specific event. Mobile node
must send FBU message to nAR to update its binding. Then FBU message can in-
clude the local authenticator. Local AAA server (AAAL) authenticates the mobile
node with a local authenticator that contains a BU message.

3.3 Local Authentication

nAR that receives mobile node’s FBU message relays the message to a local AAA
server to authenticate the mobile node. Local AAA server decrypts the local authenti-
cator that is included in FBU message and executes the authentication with it’s au-
thenticator that is received from the home AAA server. If the authentication is suc-
cessful, local AAA server sends a FBU message to HA to update the mobile node’s
binding. pAR delivers PANA session identifier and a AUTH AVP to nAR using CTP.

Fig. 5. FBU flow with Local Authentication

1040 I. Kim and K. Kim

The following shows the call flow and its message contents for the local authenti-
cation.

1) MN->nAR
 E(FBU, H(sskMN-AAAH,HC)),PAK
2) AR->AAAL
 FBU, H(sskMN-AAAH,HC)
3) AAAL->nAR
 FBAck

E() : encryption function
H() : hashing function
sskMN-AAAH : shared secret parameter between the mobile node and the home
AAA server
HC : home challenge
PAK : PANA_AUTH_KEY

3.4 Distribute Security Parameters

In order to execute the local authentication, each node is required to have some secu-
rity parameters. The following shows that we need security parameters for AAAL and
MN.

AAAL : H(sskMN_AAAH, HC)
MN : HC, PAK

E() : encryption function
H() : hashing function
sskMN-AAAH : shared secret parameter between the mobile node and the home
AAA server
HC : home challenge
PAK : PANA_AUTH_KEY
Home AAA server generates these security parameters, where these parameters are
distributed to each node. Each security parameter is encrypted. Home AAA server
supports secure delivery mechanism to mobile nodes and local AAA server.

The following shows a call flow and its messages.

1) AAAH->AAAL
 FBAck, (PAK)sskAAAH-AAAL, (PAK,HC)sskAAAH-MN
2) AAAL->nAR
 FBAck, (PAK)sskAAAL-AR, (PAK,HC)sskAAAH-MN
3) nAR->MN
 FBAck, (PAK,HC)sskAAAH-MN

E() : encryption function
H() : hashing function

 Design of Authentication Mechanism Using PANA CTP in FMIPv6 Environment 1041

sskMN-AAAH : shared secret parameter between the mobile node and the home
AAA server
HC : home challenge
PAK : PANA_AUTH_KEY

4 Modeling the Average Delivery Delay

In order to do an accurate performance evaluation for our proposed scheme, when
MN is ready to get service after the successful registration on AR1, I started our
evaluation. We assume that MN moves to AR2 after AR1 registration is completed.
Our simulation ends when the MN finishes its registration to the new location AR2.

It is denoted that the packet delivery delay between HA and MAP, between MAP
and AR, and between ARs are THM, TMA, TAA respectively.

Layer 2 handover happens before BU for the new location is completed. Accord-
ingly, we can compare the effect by analyzing the average packet delay between HA
and AR immediately after handover.

Before the completion of the binding update, the packet destined to MN are sent to
the previous access router and then forwarded to a new access router. After binding
update, the packet data path is now changed to the normal data delivery path. The
average delivery delay can be represented as follows.

If 0 < t < TBU,
Delivery delay = TMA + TAA

Therefore, the delivery delay is 3THA.

Delivery delay = THA

Accordingly, the average delay is given as follows.

MT

MABUMT

MT

MABU

T

TTT

T

TT
delaydeliveryAveradge

)(3
__

−++=

MA
MT

BU
MA T

T

T
T 2+=

If we consider that TBU = 4(THM + TMA) in FMIPv6, then

)(
8

__ MAHM
MT

MA
MA TT

T

T
TdelaydeliveryAveradg ++=

The average delivery delay could be represented following form which is similar to
FMIPv6. That is,

MA

MT

LBU
MA T

T

T
TdelaydeliveryAveradge 2__ +=

1042 I. Kim and K. Kim

5 Performance Evaluation

In this section we analyze the performance of our proposal. We started our perform-
ance evaluation of the proposed method, when MN is ready to get service after the
successful registration on pAR. We assume that MN moves to nAR after pAR regis-
tration is complete. Our simulation ends when MN finishes its registration to the new
location nAR. We assume that the probability for pAR and nAR to be in a same do-
main is 50 percent. We randomly select the values for the parameters T, and each test
is run ten times to properly evaluate the new scheme.

Since our authentication scheme with PANA CTP doesn’t necessarily send packets
to HA, the more network delays, the better the performance is.

Testing the average registration delay time relies on distance between MAP and
CN shown in figure .6. Where, TCM means the measuring time for an average deliv-
ery delay between CN and MAP.

Fig. 6. Comparison of handover latency

6 Conclusion

In this paper, we propose a authentication mechanism using PANA CTP for mobile
hosts in FMIPv6 environment. By using FMIPv6 handover mechanism, we showed
that the handover performance has been greatly improved. Authentication problem of
mobile node in the registration phase is processed in an access router with a local
authenticator and PANA_AUTH_KEY given by the home AAA server. So, the mes-
sage round trip delay and latency are decreased during the registration process. Local
handoff mechanism based on FMIPv6 can decrease the delay of mobility management
and the load on HA's. Context transfer with CTP requires minimum message ex-
change. The proposed mechanism is very useful, when the local handoff occurs fre-
quently and inter-domain handoff is needed when a mobile node tries to connect to
the internet in a mobile internet environment.

Acknowledgement

This research was supported by the MIC(Ministry of Information and Communica-
tion), Korea, under the ITRC(Information Technology Research Center) support pro-
gram supervised by the IITA(Institute of Information Technology Assessment).

 Design of Authentication Mechanism Using PANA CTP in FMIPv6 Environment 1043

References

1. D. Johnson, “Mobility Support in IPv6”, RFC 3775, IETF, June 2004
2. R. Koodli, “Fast Handovers for Mobile IPv6”, RFC 4068, IETF, July 2005
3. J. Bournelle, “Use of Context Transfer Protocol (CXTP) for PANA”, draft-ietf-pana-cxtp-

01, Internet Draft, IETF, March 6, 2006
4. D. Forsberg, “Protocol for Carrying Authentication for Network Access (PANA)”, draft-

ietf-pana-pana-11, Internet Draft, IETF, March 3, 2006
5. F. Dupont, J. Bournelle " AAA for Mobile IPv6", draft-dupont-mipv6-aaa-01, Internet

Draft, IETF, Nov, 2001.
6. Charles E. Perkins, “Mobile IP”, Addison Wesley, 1998.

Bounding Performance of LDPC Codes and
Turbo-Like Codes for IEEE 802.16 Broadband

Wireless Internet

Kyuhyuk Chung1 and Jun Heo2

1 Division of Information and Computer Science,
School of Natural Sciences,

Dankook University,
San 147 Hannam-dong Youngsan-gu,

140-714 Seoul, Korea
khchung@dku.edu

2 College of Information and Telecommunications,
Dept. of Electronics Engineering,

Konkuk University,
143-701 Seoul, Korea
junheo@konkuk.ac.kr

Abstract. We present upper bounds for the maximum-likelihood de-
coding performance of particular LDPC codes and turbo-like codes with
particular interleavers in the application of IEEE 802.16 broadband wire-
less internet. Previous research developed upper bounds for LDPC codes
and turbo-like codes using ensemble codes or the uniformly interleaved
assumption, which bound the performance averaged over all ensemble
codes or all interleavers. Proposed upper bounds are based on the sim-
ple bound and estimated weight distributions including the exact several
smallest distance terms because if either estimated weight distributions
on their own or the exact several smallest distance terms only are used,
an accurate bound can not be obtained.1

1 Introduction

Currently the cellular wireless market of circuit-based networks copes with the
wireless Internet market of packet-based networks using IP (Internet Protocol)
power. One of the most prevailing standards for the broadband wireless Internet
market is IEEE 802.16. For the broadband wireless internet standard, the LDPC
codes and turbo codes are core technologies.

1 This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment)
(IITA-2005-C1090-0501-0018).

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1044–1052, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Bounding Performance of LDPC Codes and Turbo-Like Codes 1045

Iterative detection [1,2] for LDPC codes and concatenated codes with in-
terleavers represents a great advancement in communications theory because
of their excellent performance. Parallel Concatenated Convolutional Codes (PC-
CCs, or turbo codes) or Serial Concatenated Convolutional Codes (SCCCs) with
interleavers, introduced in [2,3], consist of simple binary convolutional codes con-
nected in parallel or in serial through an interleaver. On the other hand, Low
Density Parity Check (LDPC) codes [1] became very popular because of ex-
cellent performance and efficient parallel hardware implementation. Numerous
simulations and bounds have demonstrated their remarkable performance.

In [4], transfer function bounding techniques were applied to obtain upper
bounds on the bit-error rate and the word-error rate for maximum-likelihood de-
coding of turbo codes constructed with pseudo-random interleavers. Since union
bounds are intractable for any particular pseudo-random interleaver, the transfer
function bound is developed as a random coding bound based on the uniformly
interleaved assumption, i.e., performance averaged over all possible interleaver
permutations. Therefore, the transfer function bound can not be used to bound
the performance of the turbo code with a particular interleaver.

Since the union bound cannot predict the performance above the cutoff rate,
there is a great demand to have bounds on performance that are useful for
rates above the cutoff rate. One of those bounds is the simple bound [5]. In [5],
the simple bound is used with the uniformly interleaved assumption for LDPC
codes and turbo codes. Therefore, bounds on the maximum-likelihood decoding
performance of particular LDPC codes and turbo-like codes with a particular
interleaver are still unavailable. Note also that simulation performance of LDPC
codes and turbo-like codes using iterative detection is suboptimal because iter-
ative detection is approximate to the optimal detection, while all the bounding
techniques are for the optimal detection.

In this paper we solve intractability of upper bounds for particular LDPC
codes and turbo codes with particular interleavers by using approximate input-
output weight distributions. The performance of turbo-like codes at high SNR
is well approximated by the expression of the union bound, truncated to the
contribution of the several smallest non-zero distance terms [6]. In [6] branch and
bound algorithms were developed for finding the several smallest distances and
their multiplicities of turbo codes and SCCCs. We include these exact distance
spectrum results for the several smallest non-zero distances into the approximate
weight distributions, because if either estimated weight distributions on their
own or the smallest distance terms only are used, an accurate bound can not
be obtained. A particular LDPC code and a particular interleaver of a turbo
code are taken into account for both the codewords with small distances and
approximate weight distributions.

The paper is organized as follows. Section 2 describes previous bounding tech-
niques and compares transfer function bounds, simple bounds, and simulation
results. In Section 3 upper bounds for particular LDPC codes and turbo codes
with particular interleavers are presented. Section 4 concludes the paper.

1046 K. Chung and J. Heo

2 A Review of Previous Bounds and Comparison

2.1 Transfer Function Bounds

For maximum-likelihood decoder a union bound on the probability of word er-
ror and bit error over an additive white Gaussian noise channel requires the
input-output weight distribution. For the overall (N, K) code C with code rate
r = K/N , Aw,d denote the number of codewords for input sequence weight w
and output codeword weight d. Then the conditional probability of producing a
codeword of weight d given an input sequence of weight w is

p(d|w) =
Aw,d∑
d′ Aw,d′

=
Aw,d

(K
w)

. (1)

The conditional probability distribution p(d|w) for turbo codes is obtained by
using the uniformly interleaved assumption [4]. The divergence properties of the
transfer function bounds for turbo codes is observed above the cutoff rate [4].

-1 0 1 2 3 4 5 6 7 8
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

o
(dB)

P
b
(

)
-

B
it
 E

rr
o
r

R
a
te

simulation (200by5 block interleaver)

simulation (20by50 block interleaver)

simulation (optimized spread interleaver)

simple bound (uniform interleaver)

transfer function bound (uniform interleaver)

for r=1/3

cutoff rate = 2.01 dB

for r=1/3

channel capacity = -0.55 dB

Fig. 1. Upper bounds with uniform interleavers and simulations with various inter-
leavers for turbo codes (r=1/3, K=1000)

2.2 A Simple Tight Bound

The performance of turbo-like codes is close to Shannon’s channel capacity limit
for moderate to large block sizes, so there is a need for bounds on performance
that are useful for rates above the cutoff rate. In [5] such a simple bound on
the probability of decoding error for block codes is derived in closed form. This
bound is simple because it does not require any integration or optimization
in its final version. Consider a linear binary (N, K) block code C with code
rate r = K/N . For a given code d is the Hamming weight of a codeword. The

Bounding Performance of LDPC Codes and Turbo-Like Codes 1047

-2 -1 0 1 2 3 4 5
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

o
(dB)

P
b
(

)
-

B
it
 E

rr
o
r

R
a
te

truncated union bound(true several smallest distance terms)

simple bound (approximate distribution only)

simple bound (approximate distribution with true several smallest distance terms)

Fig. 2. Comparison of upper bounds of the true several smallest distance terms, the
approximate distribution only, and the approximate distribution with the true several
smallest distance terms (turbo code with optimized spread interleaver, r=1/3, K=1000)

upper bound on the error rate with maximum likelihood codeword decoding is
given by

P ≤
N−K+1∑
d=dmin

min
{
e−nE(c,d), eng(δ)Q

(√
2ch
)}

(2)

where

if c0(δ) < c <
e2g(δ) − 1
2δ(2 − δ)

, (3)

E(c, d) =
1
2

ln[1− 2c0(δ)f (c, δ)] +
c f (c, δ)

1 + f (c, δ)
, (4)

otherwise E (c, d) = −g(δ) + δc (5)

δ = d/N, c = Rc(Eb/N0), and

f(c, δ) =
√

c

c0
+ 2c + c2 − c − 1 (6)

and for the bit-error rate

g(δ) =
1
N

ln

{∑
w

w

K
Aw,d

}
(7)

1048 K. Chung and J. Heo

where Aw,d is the input-output weight distribution. Specifically Aw,d is the num-
ber of codewords with the Hamming weight d for input sequences of the Ham-
ming weight w. The simple bound, however, needs Aw,d the input-output weight
distribution.

2.3 Comparison of Transfer Function Bounds, Simple Bounds, and
Simulation Results

Figure 1 compares upper bounds with an uniformly interleaved assumption
(transfer function bounds and simple bounds) with simulation results for vari-
ous interleavers. The turbo code uses constituent convolutional codes with the
generator polynomial (1 + D)/(1 + D + D2). The rate of the turbo code is 1/3.
The three simulation results are obtained from three different interleavers with
length K = 1000. The first is an optimized spread interleaver, which shows
the best performance among the three interleavers. The second is a block inter-
leaver, which reads bits in 20 by 50 rectangular array row-wise and reads out
column-wise. The third is an block interleaver with 200 by 5 rectangular array.
The transfer function bound and the simple bound use the uniform interleaver
assumption, with which only a single bound is obtained. However, simulation
results show that performance depends on the particular interleaver. Note that
the performance of the iterative decoder can be worse than the upper bound
on the maximum-likelihood decoding performance because iterative detection is
suboptimal.

Figure 1 also compares the simple bound with the transfer function bound.
We observe that the simple bound is tighter than the transfer function bound
at the low range of SNR. At a BER of 10−1 the simple bound is about 0.7
dB tighter than the transfer function bound. It is well known that the transfer
function bound diverges above the cutoff rate. The cutoff rate corresponds to
Eb/N0 = 2.01 dB for rate 1/3 codes.

2.4 Truncated Union Bounds

For a linear binary code C(N, K) (N is the codeword length and K the in-
formation frame length) with free distance dfree, we will denote by Nfree its
multiplicity (the number of codewords with weight dfree), and by wfree its in-
formation bit multiplicity (defined as the sum of the Hamming weights of the
Nfree information frames generating the codewords with weight dfree). For very
high values of Eb/N0, where Eb is the energy per information bit and N0 the
one-sided noise spectral density, we can write

BER & wfree

K
Q

(√
2Eb

N0
· K
N

· dfree

)
. (8)

For turbo-like codes, a better approximation can be obtained by including
other terms of the distance spectrum [6].

Bounding Performance of LDPC Codes and Turbo-Like Codes 1049

By the symbol UB(j) we will denote the union bound expression, truncated
to the contribute of the j-th nonzero distance,

UB(j) =
j∑

i=1

w(i)
K

Q

(√
2Eb

N0
· K
N

· d(i)

)
(9)

where d(i) is the i-th nonzero distance and N(i) and w(i) are its multiplicities.
In [6], branch and bound algorithms for finding the several smallest distances
and their multiplicities were developed allowing performance of turbo codes and
SCCCs to be approximated by truncated union bounds at the high SNRs. But
since these algorithms are based on branch-and-bound method, complexity for
finding the whole weight distribution is intractable.

3 Upper Bounds for Particular LDPC Codes and Turbo
Codes with Particular Interleavers

The simple bound is the tightest closed-form upper bound on decoding error rate
[5]. We use the simple bound for particular LDPC codes and turbo-like codes
with particular interleavers. To use the simple bound we need the conditional
probability p(d|w) that is defined in Equation (1). But it is intractable to obtain
p(d|w) because of complexity. So we want to obtain the maximum-likelihood
estimator p̂MLE of p(d|w). This problem is the same as estimating the probability
of white balls when a ball is drawn with replacement from an urn that contains
Aw,d white balls and [(K

w) − Aw,d] black balls. The indicator function I(c) is
defined by

I(c) =
{

1 if c is a codeword with w and d
0 otherwise. (10)

Then I(c) is the Bernoulli random variable with p = p(d|w).If we let k be the
number of codewords with the Hamming weight d for input sequences of the
Hamming weight w among Ns generated sample codewords, k is the sum of the
Bernoulli random variables associated with each of the Ns independent trial.
Then k is the binomial random variable with the following probability mass
function

P (k|p) =
(

Ns

k

)
pk(1 − p)Ns−k (11)

for k = 0, 1, · · ·, Ns. In order to obtain the maximum-likelihood estimator p̂MLE,
we maximize the likelihood function P (k|p),

p̂MLE = max
p

P (k|p) (12)

= max
p

(
Ns

k

)
pk(1 − p)Ns−k. (13)

1050 K. Chung and J. Heo

-2 -1 0 1 2 3 4 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

o
(dB)

P
b
(

)
-

B
it
 E

rr
o
r

R
a
te

for r=1/3

channel capacity = -0.55 dB

- - - - simulation

 simple bound

200by5 block interleaver

20by50 block interleaver

optimized spread interleaver

Fig. 3. Simple bounds using approximate distributions with the true several smallest
distance terms and iterative decoding simulation results for turbo codes with various
interleavers (r=1/3, K=1000)

2 3 4 5 6 7
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

o
(dB)

P
b
(

)
-

B
it
 E

rr
o
r

R
a
te

simulation

simple bound

for r=7/8

channel capacity = 2.98 dB

Fig. 4. Simple bound using an approximate distribution with the true smallest distance
term and iterative decoding simulation result for LDPC code with (r = 7/8, (N, K) =
(800, 700))

Differentiating the argument and setting the result equal to 0 give the solution,

p̂MLE =
k

Ns
. (14)

Bounding Performance of LDPC Codes and Turbo-Like Codes 1051

It is also straightforward to verify that this solution is the global maximum.
We approximate p(d|w) by p̂MLE. Then

p(d|w) & p̂MLE (15)
Aw,d

(K
w)

& k

Ns
(16)

Âw,d

(K
w)

=
k

Ns
(17)

Âw,d =
(

K
w

)
k

Ns
. (18)

where Âw,d is the estimated weight distribution.
We choose Ns = 10000 because the thresholds of simple bounds for Ns =

1000, 10000, and 100000 were found to be similar. In order to obtain Âw,d we
generate Ns = 10000 codewords randomly for each input weight w, calculate
k from the generated codewords, and obtain Âw,d using (18) . The true distri-
bution of several smallest distances {Aw,d}d=dmin+10

d=dmin
is included in Aw,d using

the algorithm in [6] because for very high values of Eb/N0 these several smallest
distance terms are dominant. Note that a particular interleaver of a turbo code
is taken into account for not only the codewords with small distances but also
approximate weight distributions. In Figure 2 we compare three cases, i.e.,

• the true several smallest distance terms only,
• the approximate distributions on their own,
• the approximate distributions with the true several smallest distance terms.

By including the true several smallest distance terms {Aw,d}d=dmin+10
d=dmin

, we ap-
proximate better error floor region at medium to high SNR.

In Fig. 3 simple bounds using approximate distributions with the true several
smallest distance terms are compared with iterative decoding simulation results
for turbo codes with three interleavers. We obtain three different accurate upper
bounds for each interleaver.We also observe that at the low range of SNR the
thresholds of the simple bound are approximately the channel capacity of rate
r = 1/3, i.e., −0.55 dB.

As another application, we consider (N, K) = (800, 700) regular LDPC codes.
The rate for this LDPC code is 7/8. In Fig. 4, the simple bound with both
the exact minimum distance term of dmin = 2 and an approximate weight dis-
tribution is compared with iterative decoding simulation performance at fixed
iterations 50 for rates r = 7/8. Note that a particular LDPC code is taken into
account for both the codewords with the minimum distance and approximate
weight distributions. At the low range of SNR the threshold of the simple bound
is approximately the channel capacity of rate r = 7/8, i.e., 2.98 dB.

1052 K. Chung and J. Heo

4 Conclusion

In this paper, we studied and presented upper bounds for the maximum-
likelihood decoding performance of particular LDPC codes and turbo-like codes
with a particular interleaver for IEEE 802.16 Broadband Wireless Internet. Pro-
posed upper bounds are based on the simple bound and estimated weight dis-
tributions including the exact several smallest distance terms because if either
estimated weight distributions on their own or the exact several smallest distance
terms only are used, an accurate bound can not be obtained. These bounds make
it possible to estimate the performance of optimal detection for particular LDPC
codes and turbo-like codes with a particular interleaver, which is better than that
of suboptimal iterative detection.

References

1. Gallager, R.: Low Density Parity Check Codes. MIT press. (1963)
2. Berrou, C., Glavieux, A.: Near Optimum Error Correcting Coding and Decoding:

Turbo-Codes, IEEE Trans. Commun., Vol. 44. No. 10. (1996) 1261–1271
3. Benedetto, S., Divsalar, D., Montorsi, G. Pollara, F.: Serial Concatenation of Inter-

leaved Codes: Performance Analysis, Design, and Iterative Decoding, IEEE Trans.
Inform. Theory, Vol. 44. No. 3. (1998) 909–926

4. Divsalar, D., Dolinar, S., Pollara, F.: Transfer Function Bounds on the Performance
of Turbo Codes, TDA Progress Reports 42-122., Jet Propulsion Lab, (1995)

5. Divsalar, D.: A Simple Tight Bound on Error Probability of Block Codes with
Application to Turbo Codes, TMO Progress Reports 42-139., Jet Propulsion Lab,
(1999)

6. Garello, R., Pierleoni, P., Benedetto, S.: Computing the Free Distance of Turbo
Codes and Serially Concatenated Codes with Interleavers: Algorithms and Applica-
tions, IEEE J. Select. Areas Commun., Vol. 19. No. 5. (2001) 909–926

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1053 – 1062, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design and Performance Analysis of an Enhanced
MAC Algorithm for the IEEE 802.11 DCF

Whoi Jin Jung, An Kyu Hwang, Byung Chul Kim, and Jae Yong Lee

Department of Information Communications Engineering, Chungnam National University
220, Gung Dong, Yusung Gu, Daejeon 305-764, Korea

wjjung@ngn.cnu.ac.kr,{akhwang, byckim, jyl}@cnu.ac.kr

Abstract. In this paper, a performance improving MAC algorithm for the IEEE
802.11 DCF is proposed. The DCF controls the transmission based on carrier
sense multiple access with collision avoidance (CSMA/CA), which decides a
random backoff time with the range of contention window (CW) for each
station. Normally, each station doubles the CW after collision, and reduces the
CW to the minimum after successful transmission. This paper proposes an
enhanced DCF algorithm that decreases the CW smoothly after successful
transmission in order to reduce the collision probability by utilizing the current
contention status information of WLAN. In addition, the throughput and delay
performance for the unsaturated case is analyzed mathematically. Simulation
results show that the suggested algorithm enhances the saturation throughput of
WLAN. They also coincide well with the analytical results.

1 Introduction

Lots of efforts have been done to provide high-speed wireless Internet service using
Wireless LAN (WLAN) in hot spots with notebook, PDA, and so on. As the
standardization of WLAN protocol, IEEE 802.11 was emerged in 1999, and after that,
various IEEE 802.11 standards in the 2.4 GHz and 5 GHz frequency bands have been
proposed.

The medium access control (MAC) of the IEEE 802.11 WLAN defines two access
methods: the Distributed Coordination Function (DCF) and the Point Coordinated
Function (PCF). The default access method, DCF, is based on the Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA) principle in which a host wishing
to transmit seizes the channel by contention with the same access probability. On the
contrary, the PCF allows the station to use the channel based on polling method with
the coordination of a Point Coordinator, which resides in the Access Point (AP).

The CSMA/CA uses random backoff time to reduce collisions between stations
[2][3][4]. To determine the random backoff time, each station has minimum
contention window (CW), CWmin, and maximum CW, CWmax, respectively. Initially,
each station chooses a random CW value between 0 and CWmin before accessing the
channel, and calculates the random backoff time as a product of the chosen CW value
and one slot time. The station counts down its backoff timer while the channel is idle,
and it uses the channel for transmission when its reaches 0 first. At that time, other
stations stop counting down until the transmission is over. If two or more stations

1054 W.J. Jung et al.

decrement CWs to zero at the same time, a collision will occur. Then, each station
does not receive the ACK frame, and has to select a new backoff time between (0,
2*CW). Each time a station happens to collide, it doubles CW up to CWmax. If the
transmission fails even after the maximum retry count, that frame is discarded. But, if
the transmission is successful, the CW is reset to CWmin.

In this paper, an enhanced IEEE 802.11 DCF algorithm is proposed to increase the
network efficiency by reducing contention window to half, not reducing it to CWmin
after successful transmission. The performance is evaluated by analysis and
simulation in case that traffic load is saturated and unsaturated, respectively.
According to the analysis results, the saturation throughput of the suggested scheme
does not decrease after reaching a maximum value, but is maintained to its maximum
value because collision probabilities are reduced. In addition, the throughput in
unsaturated case is very similar to the original DCF algorithm.

This paper is organized as follows. In Section 2, an 802.11 DCF algorithm is
briefly explained. In Section 3, the throughput and delay performance of an enhanced
DCF algorithm is analyzed in the saturation condition. Also, throughput is analyzed in
the unsaturation condition. The analysis results are verified by simulation in Section
4. A conclusion is given in Section 5.

2 IEEE 802.11 DCF Channel Access Method

The DCF is the basic medium access method of IEEE 802.11 MAC, which follows
the CSMA/CA method. If a station with a frame to transmit initially senses the
channel to be busy, the station waits until the channel becomes idle for a DIFS period,
and then computes a random backoff time. The station decrements its random backoff
time until the medium becomes busy again or the timer reaches zero. If the timer
finally reaches to zero, the station transmits its frame. But, if the timer has not reached
zero and the medium becomes busy, the station freezes its timer. After the medium
becomes idle after a DIFS period, the station continues to decrement the frozen timer
again. In this case, the frozen random backoff time is likely to be small compared to
the newly generated random backoff time, and thus the station has large probability to
access the channel. Upon receipt of a correct frame, the receiving station transmits a
positive acknowledgement frame (ACK) back to the sending station after a SIFS
interval. Upon successful transmission, the CW is reset to the CWmin value. Each time
a station happens to collide, it doubles CW up to CWmax.

Virtual carrier sensing is used to reserve the wireless medium in advance before
transmitting DATA frame by exchanging the Request to Send (RTS) and Clear to
Send (CTS) frame. A station which generates the shortest random backoff time can
access the medium, and send a RTS frame. RTS frames have the duration field. All
stations in the Basic Service Set (BSS), hearing the RTS frame, read the duration field
and set their Network Allocation Vectors (NAVs) accordingly, while the destination
station responds to the RTS frame with a CTS frame. After exchanging RTS/CTS
frames, a source station sends a DATA frame and destination station responds with an
ACK frame.

 Design and Performance Analysis of an Enhanced MAC Algorithm 1055

3 Design and Performance Analysis of an Enhanced MAC
Algorithm

The saturation throughput and access delay of IEEE 802.11 DCF have been
mathematically analyzed when transmission queue of each station is assumed to be
always nonempty [6][7][8][9]. In this Section, an enhanced DCF algorithm is
suggested, and its throughput and access delay are analyzed in both the saturation and
unsaturation conditions.

3.1 DCF+ Algorithm

In the original DCF, a station which sends a DATA frame successfully reduces its
CW to CWmin. But, if we reduce the CW directly to CWmin after successful
transmission, collision probability won’t be reduced in case that the BSS is in a
congested state. In addition, if the arrival rate λ increases from unsaturation condition
to saturation one, throughput is gradually reduced after achieving a maximum value.
This result comes from the high collision probability.

In this paper, a new enhanced DCF algorithm is proposed by modifying CW
control algorithm. In the new scheme, the CW will be reduced to half after the
successful transmission. The suggested algorithm is called 802.11 DCF+ from now
on. The 802.11 DCF+ reduces collision probability by reducing the CW slowly after
the successful transmission since the current traffic load cannot be reduced abruptly.

3.2 Frame Transmission Probability of DCF+

The notations for mathematical analysis are shown in Table 1. The b(t) denotes the
stochastic process representing the backoff time counter for a given station. CWmax =
CWmin*2m, and Wi = 2i*W, where i ∈ (0, m) is called “backoff stage” and m is the
“maximum backoff stage”. The s(t) denotes the stochastic process representing the
backoff stage (0, , , , m) of the station at time t. The p means the collision probability
seen by a frame transmitted on the channel. It is assumed that each frame collides
with constant and independent probability p.

Table 1. Notations used for the mathematical analysis

Notation Meaning
n Total number of stations
σ Slot time size
τ Probability that the station transmits a frame in a slot time
m Maximum backoff stage

The contention process can be represented as a two-dimensional discrete-time

Markov chain {s(t), b(t)} as shown in Fig. 1.

1056 W.J. Jung et al.

Fig. 1. Markov chain model for the backoff window size

The first frame starts with a backoff stage 0, and the initial backoff is uniformly
chosen in the range (0, W0-1). If a backoff counter is greater than 0, it is always
decremented at the beginning of each slot time. If the backoff counter reaches zero, a
frame is transmitted and new backoff stage is chosen depending upon whether a
collision occurs or not. If a frame is successfully transmitted when the backoff stage is
equal to i, a backoff window of next frame is chosen randomly between (0, Wi-1-1).
When an unsuccessful transmission occurs at backoff state i, the backoff stage
increases, and the new backoff window is randomly chosen in the range (0, Wi+1-1).
However, if the backoff stage reaches the value m, it is not increased any more.

The limiting probabilities of the Markov Chain, bi,k, is defined as Eq. (1) where i ∈
(0, m) and k ∈ (0, Wi-1). The limiting probability, bi,k, when the backoff stage is i and
k ∈ (1, Wi-1), can be obtained by solving usual Markov chain balance equations.

, lim { [] , () }i k tb P s t i b t k→∞= = = (1)

1,0

,

0,0

1
0

0
1

i
ii k

i

p
b i

pW k
b

W p
b i m

p

− =
−= ⋅

< ≤
−

(2)

, ,0 (0,), (0, 1)i
i k i i

i

W k
b b i m k W

W

−= ∈ ∈ −
(3)

 Design and Performance Analysis of an Enhanced MAC Algorithm 1057

Then, the probability, τ, that a station transmits a frame in a slot time is equal to the
sum of the probabilities that the backoff counter is zero. Thus, it can be represented as
follows.

()

() ()

1

,0
0

1 1

1 1
1

1 2

2
1 1 1 1

1 1
 2 /

1 3 1 2

m

m

i
i

m m

p
p

p
b

p

p p
p p

p p
W

p p

τ

+

=

+ +

− −
−

= =
−

− − − −
− −

× ⋅ +
− −

(4)

We can see that τ depends on the probability p, but p also can be represented as p =
1-(1-τ)n-1 because it is assumed that each station transmits the frame with probability τ.
By numerical analysis, p and τ can be obtained from τ*(p) = 1-(1-p)1/(n-1) and Eq. (4).

3.3 Throughput Analysis Under the Saturation Condition

To compute the normalized throughput, S, Ptr is assumed to be the probability that
there is at least one transmission in a slot time and Ps is defined as the probability that
the transmission is successful under the condition that at least one station transmits.
The Ptr and Ps can be obtained as a function of τ and n.

1 (1)n
trP τ= − − (5)

1 1(1) (1)

1 (1)

n n

s n
tr

n n
P

P

τ τ τ τ
τ

− −− −= =
− −

(6)

If E[P] denotes the average payload size, the average amount of payload
information successfully transmitted in a slot time can be represented as Ptr * Ps *
E[P]. Let the Ts denotes the average amount of time for transmitting a frame
successfully, and the Tc denotes the average wasting time due to a collision. Then, the
normalized throughput can be obtained from Eq. (7).

[]

(1) (1)
s tr

tr s tr s tr s c

P P E P
S

P P P T P P Tσ
=

− + + −

(7)

If the frame header size, H, is represented as H = PHYhdr + MAChdr, then Ts and Tc
for basic access and RTS/CTS access methods can be represented as Eq. (8) and (9).

1058 W.J. Jung et al.

[]

[]

bas
s

bas
c

T H E P SIFS ACK DIFS

T H E P DIFS

δ δ
δ∗

= + + + + + +

= + + +
 (8)

[]

rts
s

rts
c

T RTS SIFS CTS SIFS H

E P SIFS ACK DIFS

T RTS DIFS

δ δ
δ δ

δ

= + + + + + +
+ + + + + +

= + +

(9)

3.4 Access Delay Under the Saturation Condition

Let E[D] be the average access delay of successfully transmitted frame under the
saturation condition. The access delay means the time interval from the time at which
the frame enters into the head-of-line of the queue to the time at which the frame is
successfully transmitted. If E[X] is defined as the average number of slots until a
frame is successfully transmitted, then E[D] = E[X]* E[Slot]. E[X] can be given by

(1 2) (1) (1 (2))
[]

2 (1 2) (1)

mp W pW p
E X

p p

− ⋅ + + ⋅ −=
⋅ − ⋅ −

(10)

3.5 Throughput Analysis Under the Unsaturation Condition

To analyze the throughput under the unsaturation condition, we assume that the total
input traffic to stations arrives according to Poisson distribution with mean λ. For the
saturation condition, throughput, S, can be obtained as the proportion of time interval
used to transmit a payload successfully. However, under the unsaturation condition, if
p0 is defined as the probability that a station has no frame to transmit, then S can be
modeled as the throughput when there are n*(1- p0) stations in the saturation
condition as shown in Fig. 2.

Fig. 2. Throughput analysis under the unsaturation condition

If the arrival rate is λ, the mean idle period becomes 1/λ. Let T be the sum of one
busy period and one idle period 1/λ, then the throughput S under the unsaturation
condition is the the proportion of time interval used for successful transmission during
T. Thus, the unsaturated throughput S is given by

'
0

(1/)
(1)

S T
S S p

T

λ−= = −
(11)

 Design and Performance Analysis of an Enhanced MAC Algorithm 1059

Fig. 3 shows that S decreases as p0 increases. If p0 is given, the unsaturation
throughput at arrival rate λ can be obtained from the saturation throughput n*(1- p0)
stations.

3.6 Access Delay and Waiting Time Under the Unsaturation Condition

We can obtain the mean access delay []E D by using the same method with one

exception that the effective number of stations becomes n*(1- p0). In addition, if it is
assumed that each station queue is independent, we can also calculate the mean
waiting time of each frame easily by modeling the input buffer of the station as
M/M/1/K queue [10], where K denotes the finite buffer size and the service time is
assumed to be exponentially distributed with rate 1 []E D

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
hr

ou
gh

pu
t

P0

 S(1-P0)

Fig. 3. Throughput with the varying p0

4 Simulation Results and Performance Evaluation

In this section, throughput and access delay for the 802.11 DCF and 802.11 DCF+ are
evaluated and compared by numerical analysis and simulation. A simulator is
implemented by using a discrete-event simulator sim++[11]. The channel capacity is
assumed to be 1 Mbits/s, and both ACK_Timeout and CTS_Timeout are defined as
300μsec. A MAC Header size is assumed to be 272 bits, and PHY Header is 128 bits
long. ACK and RTS size is assumed as 112 bit + PHY Header. A payload size is fixed
to be 8,184bits, and Poisson traffic arrival is assumed. Also, it is assumed that all
stations can hear other station’s transmission and there’s no hidden terminal and no
transmission error on the channel.

Fig. 4 (a) shows the saturation throughput of the both schemes for varying number
of stations. The 802.11 DCF+ shows higher throughput for all the values of CWmin
and m. In addition, the throughput of the 802.11 DCF is decreased drastically as n
increases, but that of the 802.11 DCF+ shows a gradual decrease. Fig. 4 (b) shows the
same results for the RTS/CTS access methods. But, in this case, the difference
between the two saturation throughputs is not large for varying CWmin and m. In case
of RTS/CTS access scheme, waste times due to collisions are not large.

1060 W.J. Jung et al.

(a) Basic access scheme (b) RTS/CTS access scheme

Fig. 4. Saturation throughputs of the DCF and the DCF+

Fig. 5 shows the average access delays of both methods. The frame delay increases
rapidly as the number of stations increases in the 802.11 DCF. But, in the 802.11
DCF+, since the delay due to collisions is rather short, channel efficiency is high even
if the CW is slowly reduced. There is a large access delay gap between the basic
access scheme and the RTS/CTS scheme of the 802.11 DCF, but the gap is small in
case of the 802.11 DCF+.

 (a) Basic access scheme (b) RTS/CTS access scheme

Fig. 5. Frame access delays of of the DCF and the DCF+

Fig. 6 (a) shows the throughputs for varying number of stations when CWmin = 31
and m = 5 by simulation. According to the Fig. 6 (a), the throughput is saturated at
small λ when n is 50, while it is saturated at large λ when n is 5. The 802.11 DCF+
has an extended unsaturation region compared to the 802.11 DCF under the same
number of stations by reducing the collision probability. The throughput is saturated
at λ = 0.65 when n is 50 in the 802.11 DCF, but it is saturated at λ = 0.7 in the 802.11
DCF+. The 802.11 DCF+ shows even higher throughput for large λ and n value.

 Design and Performance Analysis of an Enhanced MAC Algorithm 1061

(a) Basic access scheme (b) RTS/CTS access scheme with n=20

Fig. 6. Throughput of the basic access scheme in the unsaturation condition

Fig. 6 (b) shows the throughput for the RTS/CTS scheme. In the saturation region, the
maximum throughput is enhanced by 0.03, 0.045 and 0.07 when m is 3, 5, and 6,
respectively.

Finally, the simulation results are compared to the analytical results for the 802.11
DCF+ access. It is assumed that CWmin = 16, m = 5 and payload size = 8,184 bits. Fig.
7 shows the throughput for varying λ when n = 20, and n = 50, respectively. These
two graphs show that analytical results coincide well with the simulation results.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
hr

o
ug

hp
ut

λ

 Simulation
 Analysis

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

T
hr

ou
gh

pu
t

λ

 Simulation
 Analysis

 (a) n = 20 (b) n = 50

Fig. 7. Throughput comparison of simulation and analysis results

5 Conclusion

In this paper, an enhanced DCF algorithm, DCF+, is proposed, that reduces the CW
gradually after the successful frame transmission instead of reducing it to the
minimum value. The 802.11 DCF+ can enhance the channel throughput by reducing
the collision probabilities when the number of stations or maximum backoff stage is
large, because the current contention stage reflects the contemporary congestion level
of the system. The proposed scheme not only enhances the saturation throughput, but
also keeps the similar throughput in the unsaturation condition compared to the

1062 W.J. Jung et al.

802.11 DCF. The throughput for the suggested scheme in both the saturation and
unsaturation conditions is also analyzed for all arrival rates λ. It is confirmed that all
the analytical results coincide well with the simulation results.

Acknowledgements. This work was supported by grant No. R01-2006-000-10154-0
from the Basic Research Program of the Korean Science & Engineering Foundation.

References

1. The Editors of IEEE 802.11, IEEE Standard for Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications, Nov. 1997.

2. H. S. Chhaya and S. Gupta, "Performance modeling of asynchronous data transfer
methods of IEEE 802.11 MAC protocol", Wireless Networks, vol. 3 (1997), pp. 217-234,
1997.

3. T. S. Ho and K. C. Chen, "Performance evaluation and enhancement of the CSMA/CA
MAC protocol for 802.11 wireless LAN's," in Proc. IEEE PIMRC, Taipei, Taiwan, pp.
392-296, Oct. 1996.

4. F. Cali, M. Conti, and E. Gregori, "IEEE 802.11 wireless LAN: Capacity analysis and
protocol enhancement", presented at the INFOCOM'98, San Francisco , CA, Mar. 1998.

5. L. Kleinrock and F. Tobagi, "Packet switching in radio channels, Part-II The Hidden
Terminal Problem in Carrier Sense Multiple Access Models and the Busy Tone Solution",
IEEE Trans. Comm, vol. 23, no. 12, pp. 1417-1433, Dec. 1975.

6. G. Bianchi, L. Fratta, and M. Oliveri, "Performance analysis of IEEE 802.11 CSMA/CA
medium access control protocol", IEEE PIMRC, Taipei, Taiwan, pp. 407-411, Oct. 1996.

7. H. Wu, Y. Peng and K. Long, "Performance of reliable transport protocol over IEEE
802.11 wireless LAN: analysis and enhancement", in Proc. INFOCOM 2002, pp. 599-607,
Jun 2002.

8. G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed
Coordination Function", IEEE J. Selected Areas in Comm., vol. 18, no. 3, pp. 535-547,
2000.

9. P. Chatzimisios, A. C. Boucouvalas and V. Vitsas, "Packet Delay Analysis of the
IEEE 802.11 MAC Protocol", IEE Electronics Letters, vol. 39, pp. 1358-1359, Sep. 2003.

10. L. Kleinrock, ‘Queueing systems, volume 1: theory’, John Wiely & Sons, 1974
11. URL: http://www.cise.ufl.edu/~fishwick/simpack/simpack.html

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1063 – 1072, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design of an Adaptive DCF Algorithm for TCP
Performance Enhancement in IEEE 802.11–Based

Mobile Ad Hoc Networks

Gira Lee, Han Jib Kim, Jae Yong Lee, and Byung Chul Kim

Department of Information Communications Engineering, Chungnam National University
220, Gung Dong, Yusung Gu, Daejeon 305-764, Korea

{gil223, jibi97, jyl, byckim}@cnu.ac.kr

Abstract. The TCP, which guarantees reliable data transfer, is the most widely
used transport protocol for Internet applications. However, because the TCP
was designed for wired networks, it degrades the transmission performance in
wireless networks. In particular, the difference between the transmission range
and the interference range in mobile ad hoc networks produces a hidden
terminal problem that seriously deteriorates the TCP performance by
constraining the simultaneous transmissions of several stations at a time. We
therefore propose a new MAC algorithm for mobile ad hoc networks that can
mitigate the effect of the hidden terminal problem by adaptively adjusting the
contention window process. While a node in the IEEE 802.11 DCF increases its
contention window exponentially whenever the node fails to transmit, the
proposed algorithm changes the contention window adaptively according to the
probable cause of failure. This change enhances the TCP performance by
roughly discriminating hidden terminals and real collisions. The simulation
results show that the proposed algorithm enhances the TCP performance by
evenly distributing the transmission opportunity to every node in mobile ad hoc
networks.

1 Introduction

The Transmission Control Protocol (TCP), which guarantees reliable data transfer, is
the most widely used transport protocol for Internet applications. However, because
the TCP was designed for wired networks, its transmission performance is degraded
in wireless networks and is particularly poor in mobile ad hoc networks. There are
several reasons for the performance degradation: the contention for a wireless
medium, hidden terminal problems, exposed terminal problems, packet losses at the
link layer, unfair transmission opportunity, link disconnection, a waste of bandwidth
due to the exponential backoff of a transmission timer, and so on.

In wireless ad hoc networks, the hidden terminal problem severely constrains the
number of nodes that can simultaneously transmit data. This constraint arises because
the difference between the transmission range and the interference range causes frame
collisions. Thus, sufficient distance is necessary between two nodes to transmit their
frames safely without mutual interference, which is called ‘spatial reuse property’.

1064 G. Lee et al.

Fig. 1. Hidden terminal problem in mobile ad hoc networks

Figure 1 shows a hidden terminal problem caused by the discrepancy between the
transmission range (250 m) and the interference range (550 m); this discrepancy is
one of the primary reasons for the degradation of the TCP performance.

All nodes in IEEE 802.11–based mobile ad hoc networks use a Distributed
Coordination Function (DCF) to utilize a channel for transmission through a medium
contention that is only nominally fair [4]. Although all nodes in mobile ad hoc
networks use an RTS/CTS mechanism in a DCF algorithm, the hidden terminal
problem cannot be solved. For example, let’s assume that node 4 sends an RTS frame
to node 5 and receives a CTS frame from node 5, as shown in Fig. 1, and node 4
obtains a transmission opportunity. Because node 1 is located outside the interference
range of node 4, node 1 can send an RTS to node 2 in order to get a transmission
right. However, node 2 cannot respond with a CTS frame because node 2 is located
within the interference range of node 4. Thus, node 1 gets a timeout for an RTS/CTS
exchange. This event is regarded as a collision by node 1 and it increases the
contention window (CW) according to the exponential backoff process. If node 1 does
not receive a CTS frame after it retransmits an RTS frame a maximum number of
times, it regards these consecutive failures as a path disconnection and performs a
path reestablishment. Originally, the reason a node increases the contention window
after transmission failures in the DCF is to avoid the possibility of later collisions
with the RTS sender. If the node regards a failure due to a hidden terminal as a
collision and subsequently increases its CW, the transmission bandwidth may be
wasted due to the long useless waiting time before transmission for a low traffic load.
In addition, the next transmission attempt may fail again as a result of the same
hidden terminal problem, and this failure may severely degrade performance. The
hidden terminal problem becomes more serious when a node moves around as in
mobile ad hoc networks [1][2][3]. These problems degrade the TCP performance in
ad hoc networks. We therefore propose an adaptive DCF (A-DCF) algorithm, which
adaptively evolves the CW in relation to the probable cause of transmission failures in
mobile ad hoc networks with hidden terminals.

Our paper is organized as follows: In Section 2, we explain the inherent problems
of the IEEE 802.11 DCF protocol. In Section 3, we propose the A-DCF algorithm,
which appropriately improves the legacy DCF for mobile ad hoc network
environments. In Section 4, we present a simulated evaluation of performance.
Finally, in Section 5, we summarize our conclusions.

 Design of an Adaptive DCF Algorithm for TCP Performance Enhancement 1065

2 Problems of the IEEE 802.11 DCF in Ad Hoc Networks

The DCF, which is a basic MAC protocol for IEEE 802.11, uses the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) algorithm [4]. This algorithm
uses a random backoff time mechanism to reduce the link level collision probability
between nodes [5][6]. Figure 2 shows the basic access method in the DCF. When the
medium becomes idle longer than the Distributed Inter Frame Space (DIFS) after a
busy medium state, a node selects a random backoff time and counts it down. If the
medium remains idle until the backoff time of a node becomes zero, that node
accesses the medium and transmits its frame. If the medium becomes busy before the
backoff time reaches zero, the node stops counting down the backoff time until the
next idle time. When the backoff time becomes zero, the node sends its frame and
waits for an ACK frame to determine the success or failure of the transmission. When
the frame is transmitted successfully, it reduces the upper value of the CW selection
range to CWmin . If the transmission is unsuccessful, it doubles the CW selection range
up to CWmax .

Fig. 2. The basic access method in a DCF

Figure 3 shows the RTS/CTS access method in the DCF. After the random backoff
time expires, the node sends an RTS frame ahead of a DATA frame. The RTS frame
includes the source address and the duration field used for the setup of a network
allocation vector (NAV). The destination node among recipients of the RTS frame
replies with a CTS frame, and the other nodes set their NAV values according to the
duration field in the RTS frame. The other nodes delay their medium access until the
expiration of their NAVs. After the successful RTS/CTS exchange, the sender
transmits a DATA frame and the receiver replies with an ACK frame. Every frame has
a duration field, and all the nodes that receive a larger duration field than their NAV
values update their NAV accordingly. When the NAV becomes zero, the nodes regard
the medium as idle and they try to access the medium after their CWs become zero.

Because it can rapidly recognize a link collision, the RTS/CTS access method is
more efficient when the packet length is long or the collision probability is high due
to a large number of nodes. However, even the RTS/CTS method cannot solve the
hidden terminal problem that occurs when the interference range is larger than the
transmission range. As explained above, a hidden terminal may prevent nodes from
exchanging the RTS/CTS frame, thereby the nodes increase their contention windows
exponentially up to the maximum, CWmax. In contrast, a successful node selects its

1066 G. Lee et al.

contention window randomly between 0 and CWmin. Therefore, if a successful node
and a node that fails due to a hidden terminal keep contending the medium for their
packet transmission in a mobile ad hoc network, the successful node has a higher
probability of success due to its smaller contention window. Thus, a successful node
is likely to elicit a burst transmission whereas a failed node keeps on failing. In an ad
hoc network, when a node fails in its transmission for the maximum number of
retransmission times, it regards the failures as a path disconnection and causes the
routing process to reestablish another route. If the repeated failure is not due to a path
disconnection but a hidden terminal, the routing process need not be used to find
another route. If a hidden terminal problem elicits a path reestablishment, the network
becomes congested by unnecessary routing packets and the resulting waste in
bandwidth causes further deterioration.

Fig. 3. The RTS/CTS access method in a DCF

3 Design of the A-DCF Algorithm

When a node in a DCF counts down its backoff timer for a frame transmission, the
node can sense other frame transmissions or a busy medium. If the traffic load of the
entire network is heavy, a node is more likely to sense a number of other frame
transmissions while counting down its CW, and the transmission failure may come
from a collision rather than a hidden terminal. On the other hand, if the traffic load is
low, a node is less likely to experience the frame transmissions of other nodes during
the CW countdown, and the transmission failure may come from a hidden terminal.
The A-DCF algorithm adaptively changes the CW of a node in relation to the number
of frame transmissions (Ntr) of other nodes during the CW countdown period of that
particular node. The failed transmission most likely comes from a hidden terminal if
the node does not experience other frame transmissions during its CW countdown; and
this phenomenon occurs because the traffic load is rather low. In the A-DCF, if a
transmission failure is due to a hidden terminal rather than a frame collision, the node
maintains or even decreases its CW rather than increasing it. The purpose of this action
is to ensure that the node catches an early transmission chance because the simple CW
doubling after a failure may cause bandwidth waste in a low traffic load condition.
This can also improve the transmission fairness among nodes and restrict the burst
transmission by one specific node. The A-DCF tries to prevent degradation of the TCP
performance by adaptively changing the CW in relation to the cause of failure as

 Design of an Adaptive DCF Algorithm for TCP Performance Enhancement 1067

determined by Ntr during the CW countdown. The simulation results of the next section
show that the A-DCF can mitigate the effect of the hidden terminal problem.

In the A-DCF, we selected an initial CW value, CWnormal, which was less than the
CW value of a DCF. The smaller CW value enabled the A-DCF to be used
appropriately in highly mobile ad hoc networks that have severe topology changes.
When a node tries to send a new DATA frame or succeeds a frame transmission, the
node selects its contention window in a range from 0 to the initial CW value,
CWnormal. While waiting for a transmission, the node accumulates a number of other
frame transmission attempts to Ntr. When a transmission fails, the A-DCF guesses the
cause of the failure in terms of the following values of Ntr:

 For the case of 0trN =

In this case, since the node does not sense other node transmissions, the
transmission failure is attributed to a hidden terminal. Hence, the CW value is
reduced to half its current value, until it becomes CWmin.

 For the case of 1 2trN≤ ≤

In this case, the cause of failure is ambiguous. The node keeps the CW
unchanged.

 For the case of 2 trN<

In this case, the traffic load is estimated to be heavy and the failure is assumed
to be caused by a collision. Hence, the node doubles the CW as in the DCF,
until it becomes CWmax.

The performance of the A-DCF algorithm depends on the configuration of the
three parameters CWnormal, CWmin, and CWmax. In a legacy DCF, CWmin is set to 32 and
CWmax is set to 1024. However, these values are rather large and inappropriate for
highly mobile ad hoc networks. Accordingly, on the basis of the simulation results,
we propose some suitable values for the three parameters. One thing to be careful
about is that the time taken for the maximum retransmission trials when a failure
occurs should be longer than the hidden terminal’s transmission time for the largest
frame. Otherwise, the node keeps trying to send its frame the maximum number of
retransmission times, though the attempts fail and the node tries to reestablish the path
because the hidden terminal’s frame transmission may be still in progress during the
retransmission attempts. For example, when node 4 is transmitting a frame to node 5
and node 1 starts trying to send its frame to node 2, the period for the maximum
number of trials of node 1 should be longer than the transmission time of node 4. If
the total time for seven retrials of an RTS/CTS exchange is shorter than the frame
transmission time, the node is likely to fail its transmission attempt and the
performance degradation by a hidden terminal would occur in an ad hoc network. In
this case, even the A-DCF cannot enhance the performance. In order to mitigate the
hidden node problem, we take in this paper the minimum value of CWmin in the A-
DCF algorithm to be 32, and an appropriate for CWnormal to be 64.

4 Simulation Results and Performance Evaluation

To evaluate the performance of the proposed A-DCF algorithm, we performed
various simulations by using ns-2 [8] under the chain topology shown in Fig. 1. In the

1068 G. Lee et al.

first simulation, the nodes were assumed to be static and the chain length was set to 8
hops. Under this topology, the hidden terminal problem was not serious because the
nodes didn’t move and the number of neighboring nodes was small.

Figure 4 compares the performance of the proposed scheme with a basic DCF,
under varying parameters of the A-DCF algorithm. The DSR [7] was assumed to be
an ad hoc routing protocol, and the simulation ran for 500 sec. The bandwidth was
fixed at 2 Mbps. In Fig. 4, the parameter M means CWmax and S means CWnormal. The
throughput is enhanced as the number of retries increases because no route
reestablishment is required when transmissions fail due to temporary congestion or
hidden terminal problems. However, the performance difference between the two
schemes is not large with respect to chain topology because the path from the source
to the destination does not change dynamically; in the grid topology, on the other
hand, the effects of route reestablishment are large.

T
hr

ou
gh

pu
t(

K
by

te
)

Nou
m

be
r o

f r
et

ry

Fig. 4. Throughput of the A-DCF in chain topology

The next simulation was done in a 7 x 7 grid topology. The nodes were initially
distributed every 200 m and assumed to move at a predefined speed. We also assumed
that the nodes moved at a speed of 5 m/sec or 10 m/sec for each 5 sec interval in an
arbitrary direction. To prevent packet transmission failures resulting from path
disconnection, we limited the node’s movement to a confined area; that is, to within
50 m to 200 m from the initial position. We also fixed the bandwidth to 2 Mbps and
ran the simulation for 500 sec.

Figure 5 compares the throughput of the basic DCF and the A-DCF for the grid
topology. The throughput of the A-DCF scheme is superior to that of the basic DCF in
terms of node mobility. This result is based on the frequent route changes and hidden
terminal problems due to node mobility. Because the basic DCF tries to reestablish a
new route after attempting retransmissions in relation to the exponential backoff, it
does not adapt to the route change quickly. In contrast, if the CW value of the A-DCF
is fixed as a small value, then the node can prevent the backoff delay from increasing
caused by a hidden terminal problem by quickly adapting the node mobility and,
thereby improving the throughput. If there is no mobility, the throughput values of the
two schemes are similar because the performance degradation due to route changes,
collisions and hidden terminal problems is rather small.

 Design of an Adaptive DCF Algorithm for TCP Performance Enhancement 1069

DCF M127
S63

M255
S127

M255
S63

M511
S127

M511
S63

M1023
S127

M1023
S63

T
hr

ou
gh

pu
t (

K
by

te
)

Speed

Fig. 5. Comparison of throughput for the basic DCF and the A-DCF

Figure 6 compares the performance of a basic DCF, a constant DCF and the A-DCF
for varying node speeds. In the constant DCF and the A-DCF, we selected the optimal
parameters for this simulation based on previous simulation results. When the node
mobility is not considered, the performance enhancement is only 8% better in the
constant DCF and the A-DCF than in the basic DCF. However, if the node mobility
becomes high, the performance is enhanced more. That is, the enhancement is 35%
greater for the A-DCF than for the basic DCF at a speed of 5m/s speed, and 100% greater
at a speed of 10 m/s. The A-DCF also performs better than the constant DCF because the
A-DCF has a small and dynamically chosen CW value; thus, the A-DCF has a greater
capability of reducing the performance degradation that results from hidden terminals.
Moreover, the performance enhancement of the A-DCF is 17% greater than that of the
constant DCF at a speed of 5 m/s and 24% greater at a speed of 10 m/s.

T
hr

ou
gh

pu
t(

K
by

te
)

S
pe

ed

Fig. 6. Comparison of throughput for various node speeds with a retry count of 7

Figure 7 shows changes to the path length for a varying number of retry counts
when CWmax is 127 and CWnormal is 63 in the grid topology. If a packet transmission
fails due to temporary interference not by network congestion when all the nodes are

1070 G. Lee et al.

assumed to be static, the attempts at route reestablishment produce an overhead in the
network. Figure 7 shows that the number of changes in path length was 20 when the
number of retry counts was 7 but only 2 when the number of retry counts was 14. The
total amount of time using the optimal 8-hop path is small when the number of retry is
7. Thus, if the number of retry counts increases, the performance can be enhanced
because of the reduced number of tries at route reestablishment due to temporary
problems other than path disconnection. This phenomenon shows how the number of
retry counts at the link layer affects the performance of multi-hop ad hoc networks.

Table 1 compares the performance improvement of the A-DCF with that of other
schemes when the number of retry counts is 7. These results show that the use of a
small CW value in mobile ad hoc networks with high mobility enables a quick and
efficient means of adapting to route changes. In the basic DCF, the contention
window increases exponentially after the packet transmission fails because it means
network congestion. However, if the transmission fails due to a hidden terminal, a
reduction in the CW is better than an exponential increase.

(a) Retry count = 7 (b) Retry count = 14

Fig. 7. Changes in path length for a varying number of retry counts

Table 1. Throughput improvement of the A-DCF

Throughput
Basic
DCF

Constant
DCF

Adaptive
DCF

Throughput 24.6 26.1 26.4
0 m/s

Throughput improvement ratio 8.6% 1.1% N/A
Throughput 15.5 18.05 21.25

5 m/s
Throughput improvement ratio 37% 17.7% N/A

Throughput 5.2 8.21 10.46
10 m/s

Throughput improvement ratio 101.1% 24.4% N/A
[Unit: Kbyte]

Figures 8 and 9 show the fairness of transmission opportunity by each node in the
chain topology. We assumed a bandwidth of 2 Mbps, a packet size of 1 Kbyte, and a
packet transmission interval of 30 ms. To simulate fairness, we sent UDP traffic from

 Design of an Adaptive DCF Algorithm for TCP Performance Enhancement 1071

node 0 to node 8. We then set the CWmax of the A-DCF to 128 and the CWnormal to 63.
Figure 8 shows the packet transmission instants in time of each node by successfully
accessing the wireless link. In the basic DCF, the hidden terminal problem creates a
bursty transmission pattern. In Fig. 8(a), for example, node 0 cannot transmit for a
while (for example, from 53 sec to 54 sec) when node 3 transmits because node 3 is a
hidden terminal of node 0. In contrast, as shown in Fig. 8(b), the A-DCF halves its
CW value when the packet transmission fails due to a hidden terminal; thus, the
fairness with respect to transmission opportunity of each node is guaranteed, and
utilization of the network becomes highly efficient.

(a) Basic DCF (b) A-DCF

Fig. 8. Fairness of transmission opportunities between nodes

(a) Basic DCF (b) A-DCF (c) Fairness Index

Fig. 9. Comparison of fairness between the original DCF and the A-DCF

Figure 9 compares the throughput of each node for a period of one hour. In the
basic DCF, the throughput difference of each node is very high, as shown in Fig. 9(a),
because of the occurrence of a burst transmission. However, in the A-DCF, as shown
in Fig. 9(b), the throughput values of each node are very similar at every moment
because of the fair distribution of transmission chances. Figure 9(c) shows the fairness
between node 0 and node 3 as measured by Jain’s fairness index, which is expressed

as follows [9]: ()2 2Fairness index = ()i ix n x× .

50 51 52 53 54 55 56 57 58 59 60

0

20

40

60

80

100

120

140

160

180

200

T
hr

ou
hp

ut
 (

K
by

te
)

Time (s)

 Node 0
 Node 1
 Node 3

50 51 52 53 54 55 56 57 58 59 60
0

10

20

30

40

T
hr

ou
gh

pu
t (

K
by

te
)

Time (s)

 Node 0
 Node 1
 Node 3

50 51 52 53 54 55 56 57 58 59 60

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

rn
es

s
in

de
x

Time (s)

 Adaptive DCF
 Original DCF

1072 G. Lee et al.

5 Conclusions

We conducted a detailed investigation of how a hidden terminal problem can hinder
TCP performance in mobile ad hoc networks, and we propose a new backoff scheme
that reduces the extent to which a hidden terminal can degrade performance. The
RTS/CTS access scheme in the 802.11 DCF MAC cannot solve the hidden terminal
problem. Furthermore, the method of increasing the backoff time exponentially when
a transmission fails as a result of a hidden terminal is inefficient in mobile ad hoc
networks and particular nodes may produce a bursty transmission. Our proposed A-
DCF, which is based on a modified backoff control algorithm of the basic DCF, can
enhance performance by applying a proper backoff control based on the cause of
packet transmission failures. The proposed scheme halves its CW value when the
packet transmission fails as a result of a hidden terminal; thus, the fairness with
respect to the transmission opportunities of each node is guaranteed, and utilization of
the network remains high. The proposed scheme also enhances system performance
by keeping the CW value rather small, thereby reducing the backoff time and
enabling quick adaptation to route changes in mobile ad hoc networks with high
mobility. Moreover, there is an increase in throughput because the increased number
of retry counts can reduce the overhead of route reestablishment due to temporary
congestion and hidden terminal problems.

Acknowledgements. This work was supported by grant No. R01-2006-000-10154-0
from the Basic Research Program of the Korean Science & Engineering Foundation.

References

[1] C. E. Perkins, "Ad hoc networking", Addison Wesley, 2001.
[2] E. M. Royer and C. Toh, "A review of current routing protocols for ad-hoc mobile wireless

networks", IEEE Personal Communication, pp. 207-218, April. 1999.
[3] K. Chandran, S. Raghunathan, S. Venkatesan, P. Prakash, "A feedback-based scheme for

improving TCP performance in ad hoc wireless networks," IEEE Personal
Communications, February 2001.

[4] The Editors of IEEE 802.11. IEEE Standard for Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications, Nov. 1997.

[5] H. S. Chhaya and S. Gupta, "Performance modeling of asynchronous data transfer methods
of IEEE 802.11 MAC protocol", Wireless Networks, vol. 3 (1997), pp. 217-234, 1997.

[6] T. S. Ho and K. C. Chen, "Performance evaluation and enhancement of the CSMA/CA
MAC protocol for 802.11 wireless LAN's," in Proc. IEEE PIMRC, Taipei, Taiwan, pp.
392-296, Oct. 1996.

[7] D. B. Johnson, D. A. Maltz, Y. Hu, "Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR)", Internet Draft < draft-ietf-manet-dsr-10.txt >, July 2004.

[8] Network Simulator, ns version 2-29, http://www.isi.edu/nsnam/ns/
[9] R. Jain, D. Chiu, and W. Hawe, "A quantitative measure of fairness and discrimination for

resource allocation in shared computer system," Digital Equipment Corporation, Technical
Report, DEC-TR-301, Sep. 1984.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1073 – 1079, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Icon-URI Structure with ENUM System for Mobile
Device*

Jiwon Choi and Keecheon Kim**

Department of Computer Science & Engineering, Konkuk University,
1 Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Korea
 {jackeroo, kckim}@konkuk.ac.kr

http://mbc.konkuk.ac.kr

Abstract. URI has been used for the contents by recognizing them as a page of
text, sound, video clip, picture, and animation. However, we need a new URI
system and service environment for mobile devices because of the difficulty of
inputting information using the mobile devices. Inconvenient interface using a
keyboard for the mobile device is one of the major obstacles to the wireless
Internet. We can utilize an icon such as bar code or specification image as an al-
ternative plan for the new URI system. We need to work to systemize the Icon-
URI. In this paper, we propose a code for Icon-URI system that can be used
with ENUM service.

1 Introduction

Wireless communication becomes a vital part of our life by providing various conven-
ient functions such as mobility, high-speed, customized service, and intelligence.
According to a recent survey by Korea Investment & Securities, the number of mobile
phone subscribers in the beginning of 2006 surpassed thirty seven millions in Korea.

However, there are various restrictions in using internet in mobile environment al-
though the transmission speed has been increased with many different kinds of mobile
devices. [9]

The high cost of using mobile internet is an obstacle. However, inconvenience
caused by the input function is more serious. It brings about new technologies when
we use the internet in mobile environment. URI has been used for the contents by
recognizing them as a page of text, sound, video clip, picture, and animation. URL
has been used to access and search the information through the character strings that
locate the physical position of information resource. However, using URL with hand
held devices such as cellular phone or PDA, there are restriction generated by mobile
devices. It is not easy to input the characters because of the input capability. In order
to access the information resource much easier, Iconic URI can be a solution to this
problem. [1][2]

This paper proposes an Icon-URI code that can be used with ENUM service when
ENUM service becomes a reality.

* This research was supported by the Brain Korea 21 project.

** Corresponding author.

1074 J. Choi and K. Kim

2 Related Works

2.1 DOI (Digital Object Identifier)

DOI is a system to identify content objects in the digital environment. DOIs are
names assigned to entities for use in the digital networks. They are used to provide
current information, including where they (or information about them) can be found
on the Internet. Information about digital objects may change over time, including
where to find it, however its DOI will not change.

DOI system provides a framework for persistent identification, managing the intel-
lectual content, and managing the metadata, linking the customers with content sup-
pliers, facilitating electronic commerce, and enabling the automated media manage-
ment. DOIs can be used for any form of management for any data, whether they are
commercial or not.

The system is managed by the International DOI Foundation, an open membership
consortium including both commercial and non-commercial partners, and has recently
been accepted as a standardization within ISO. Several million DOIs have been as-
signed by DOI Registration Agencies in the US, Australasia, and Europe.

Using DOIs as identifiers makes managing intellectual property in a networked en-
vironment much easier and more convenient, and allows the construction of auto-
mated services and transactions. [3]

2.2 QRcode

QRcode is a 2D matrix symbol which consists of square cells arranged in a square pat-
tern. It allows three models - Model 1, Model 2, and MicroQR. Model 1 and Model 2
each have a position detection pattern in three corners while the MicroQR has it in only
one corner. The position detection pattern allows code readers to quickly obtain the
symbol size, position and tilt. Model 2 is developed for enhanced specification with
improved position correction and for the large volume of data capacity. MicroQR model
is suitable for small amount of data. A QRcode symbol can encode up to 7,089 charac-
ters (numeric data), 4,296 alphanumeric characters, and 2,953 8-bit bytes. [12], [13]

Fig. 1. QRcode structure

 Icon-URI Structure with ENUM System for Mobile Device 1075

2.3 ENUM

ENUM is the abbreviation of Telephone Number Mapping or E.164 Number Map-
ping, and is a protocol that maps the phone numbers to Internet addresses.

The basis for ENUM is the unification of the existing PSTN (Public Switched
Telephone Network) and the IP (Internet Protocol) Network. The phone number
and the Internet address operate on a single system. As a result, when a phone
number is entered into the computer the number is linked to various communica-
tion services such as the Internet homepage, e-mail, fax, cellular phone, instant
message etc.

ENUM is only applicable for E.164 numbers. ENUM compliant applications must
only query DNS for what it believes to be an E.164 number.

Since there are numerous dialing plans which can be changed over time, it is
probably impossible for a client application to have perfect knowledge about all the
valid and dialable E.164 number.

Therefore a client application, doing everything within its power, can end up with
what it thinks is a syntactically correct E.164 number, even though, in reality it is not
actually valid or dialable.

This implies that applications may send DNS queries when, for example, a user
mistypes a number in a user interface. Because of this, there is the risk that collisions
between E.164 numbers and non-E.164 numbers can occur.

To mitigate this risk, the E2U portion of the service field must not be used for non-
E.164 numbers. [8]

KRNIC (Korea Network Information Center) had executed an ENUM test service,
which showed that we can connect to E-mail, homepage and internet telephone using
one existing telephone number.

3 Icon-URI System Compatible with the ENUM for Mobile Device

3.1 Requirement for Wireless Internet

Present network environment contains various forms of network which includes the
latest Internet, traditional PSTN, satellite network, cable network and wireless/wire
communication network. This phenomenon has been propelled by the recent internet
development and fast deployment of the radio communication technology. The use of
the existent network technology is not limited in the area communication. It has been
used to connect computers, and now we connect many other electronic devices using
network technology. Information-Communication of 21st century may affect all the
business activities of our daily lives. At first, circuit switching technology and packet
switching technology are integrated, and the existing PSTN and Cellular radio
communication network are integrated, and we need to focus on balancing the image
and video traffic. Since the number of subscribers for the wireless communication
technology using mobile devices has been increased dramatically, wireless communi-
cation technology was appeared to be a very important element. Because the current

1076 J. Choi and K. Kim

internet only proved a best-effort service, it is not suitable for new Information-
Communication business. Since the current internet is designed for data traffic, we
need to reinforce other functions to support voice, image, and broadcasting service.
It is also very important to use the network resources effectively when heterogeneous
network coexist within the environment. Even if the next generation network infra-
structure is constructed well, it is very important to test the compatibility and service
quality when it coexists with the legacy networks. We must offer different input
functions for various kinds of terminals because we must consider various networks.
[3], [4], [5], [6]

Two-dimensional codes provide much higher information density than the conven-
tional bar codes. Due to the low information density, conventional bar codes usually
function as the keys to databases. However, because of the increased information
density of 2D bar code, we can encode the explicit information rather than a database
key. A 2D bar code symbol can hold up to about 4,300 alphanumeric characters or
3,000 bytes of binary data in a small area. [12] But 2D bar code is not useful as an
input code for ENUM system even if it can hold lots information.

3.2 Icon-URI Structure Based on ENUM System

Because ENUM utilize the existing system as much as possible, it does not require
major technical changes. ENUM does not apply the telephone number directly to
request a service, it converts the telephone number to a different form such as a do-
main name database described in RFC 2916.

We do the following conversion to search URL that corresponds to a free E.164
number.

Erase all the characters that is not number except " " in the telephone number
(example: + 82 - 2 - 450 - 3518) including country code.

" " means the number is using E.164 numbering system.

Ex) 8224503518

Remove all characters that are not number.

Ex) 8224503518

Dot between numbers

Ex) 8.2.2.4.5.0.3.5.1.8

Overturn the string.

Ex) 8.1.5.3.0.5.4.2.2.8

Add e164.arpa domain in end of string.

Ex) 8.1.5.3.0.5.4.2.2.8.e164.arpa

Changed ENUM number can be processed in domain name server which supports the
ENUM question. [10], [11]

 Icon-URI Structure with ENUM System for Mobile Device 1077

Fig. 2. ENUM layered structure

“arpa” is a root domain that ITU recommends. And in the above example,
“2.8.e164.arpa” is an ENUM domain that corresponds to the country code of South
Korea (country code 82 that is used in telephone) and other numbers form a layered
structure.

If we use the special characteristics of ENUM, we have produced a simpler code
form with numbers.

Using this binary code that uses RGB+None, 16 characters can be marked by a
code character of 2 (4^2=16).

Fig. 3. The structure of Icon-URI

Icon-URI is available for the images like logo. Figure 4 shows an example of an Icon-
URI system.

1078 J. Choi and K. Kim

Fig. 4. Example of an Icon-URI compatible with ENUM

The decoding process works as below.

 Cellular phone recognizes the code with camera. Laptop and PC use webcam for
recognition.

 Translate the recognized code to ENUM number.
 Query the number to ENUM DNS.
 ENUM DNS requests service using URL.
 SP (Service Provider) start service to each terminal.

Fig. 5. Icon-URI scheme using the ENUM system

4 Conclusion

Since the information of URN keeps changing from time to time, it is very hard to
keep up with the current changes in resolving the URL. Using the bar code as a URL

 Icon-URI Structure with ENUM System for Mobile Device 1079

is limited since it requires a private server that needs private management. Since the
bar code is allocated locally in the country, it looks hard for a company to handle the
general information that must be enforced as a standard.

In order to use Icon-URI, we must establish URI system for Icon-URI that follow
the international standard and then design its environment for service.

IETF states that we can register URN without special restriction if some URN fit in
IETF URN standard to register URN system, we can make our proposal of using an
image through Icon as one of the URI for wireless device.

Through this research, it is expected to propel the use of mobile internet using
small devices with limited input capability.

Acknowledgement

This research was supported by the MIC(Ministry of Information and Communica-
tion),

Korea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Assessment).

References

1. T. Berners-Lee.: Uniform Resource Identifier (URI) Generic Syntax draft-fielding-uri-
rfc2396 bis-03. Internet Draft IETF (2003)

2. Changyul Lee.: URI structure and conversion technology. URI IT weekly (2003)
3. Norman Paskin.: The DOI Handbook. IDF (International DOI Foundation) (2003)
4. M. Mealling.: The Network Solutions Personal Internet Name (PIN) A URN Namespace

for People and Organizations. RFC 3043 (2001)
5. M. Mealling.: A URN Namespace of Object Identifiers. RFC 3061 (2001)
6. M. Walsh.: A URN Namespace for Public Identifiers. RFC 3151 (2001)
7. M. Mealling.: An IETF URN Sub-namespace for Registered Protocol Parameters. RFC

3553 (2003)
8. P. Faltstrom.: E.164 number and DNS. IETF Draft (2000)
9. Korea Investment & Securities.: Sector Analysis, Wireless Telecom Service (2006)

10. P. Faltstrom.: The E.164 to URI DDDS Application (ENUM). IETF work in progress
(2003)

11. Richard Shockey.: Privacy and Security Considerations in ENUM, IETF work in progress
(2003)

12. Aichi.: QRmaker User's Manual, Denso Corporation, Japan (1998)
13. Kariya.: A Business Case Study QRcode, Denso Wave Inc., Japan (2001)

Efficient Attribute Authentication in Wireless
Mobile Networks

Jaeil Lee, Inkyoung Jeun, and Seoklae lee

Korea Information Security Agency,
78, Garak-Dong Songpa-Gu, Seoul, 138-803 Korea

{jilee, ikjeun, sllee}@kisa.or.kr

Abstract. Recent e-commerce requires an attribute authentication that
provides users with distinctive and unique internet service, as well as
user identification. Despite widespread awareness of the importance of
attribute authentication, the attribute authentication service is not yet
used widely due to it’s inconvenience and inefficiency. These defects es-
pecially has a bad effect to mobile users in wireless networks. This paper
described the weakness of current attribute authentication mechanisms
and proposed a Public Key Certificate(PKC)-based attribute authentica-
tion model considering an efficiency and convenience. The user who has
a PKC in a mobile device can use the efficient attribute authentication
without additional procedure.

1 Introduction

As the information technology is developed so rapidly, e-commerce(EC) like as
internet banking, online stock, etc., has been growing quite quickly every year.
It is very important to ensure the reliability and security of EC through infor-
mation networks[1]. Identification of users is the most important technology for
EC security. But, some EC requires to combine personal identification technol-
ogy with attribute authentication. The attribute refers to the qualifications and
authority of an individual involved in a business transaction or the like. Based
on the generation of attribute information, which represents user’s vocations,
positions, qualifications, etc., a distinctive and unique access to the internet
applications or to individualized services can be provided.

As the methods of providing such attribute information, there are a method for
adding attribute information into the public key certificate(PKC) and a method
for issuing an attribute certificate (AC). The PKC has been used in EC that
require integrity of user information and user identification[2]. The method of
using the PKC needs to be reissued the PKC if the user’s attribute value changes.
If a user uses a mobile phone in wireless network, this is very inconvenient factor.
Also, it is necessary to achieve standardization of attributes and attribute values
and their corresponding object ID(OID). Attribute Certificate(AC)[3] have been
developed and standardized by ANSI X9 committee as an alternative and better
approach, to X.509 public key certificates, for carrying authorization informa-
tion. AC can be used for controlling access to system resources and employing

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1080–1089, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Attribute Authentication in Wireless Mobile Networks 1081

role-based authorization and access controls policies accordingly[4][5]. But it is
necessary to have both PKC verification and AC verification in the method using
the AC. Accordingly, it takes a relatively long period of time to verify attributes.
On these reasons, despite widespread awareness of the importance of attribute
authentication, the attribute authentication service is not yet used widely in the
world, especially in wireless networks.

Based on the understanding that it is hard to widespread the attribute au-
thentication service, this paper suggests an efficient attribute authentication
mechanism using PKC which is most widely used for user identification in EC.
We shall describe the preliminaries for the attribute authentication in Section 2.
And we shall assess the current status and problems of attribute authentication
mechanisms in Section 3. In Section 4, we shall describe the model of attribute
authentication using PKC and compare our proposed model and the current
method. And this paper will make a conclusion in section 5.

2 Preliminaries

Before presenting the details about the mechanism, it is also useful for us to
define terminologies used in this paper as follows.

Certificate Authority(CA): The party that holds the registration information
of the user on its system, and issues certificates to the user.

Registration Authority(RA): The party that applies for certificate issuance.
This party is in charge of confirming the identity of the user and delivering the
registration information to CA.

Certificates: In general, standard certificates bind a public key and identity.
Certificates are issued by a trusted party, the so-called certificate authority(CA).
Standard certificates consist of a data part and a signature part. The former
contains an identifying string for the entity along with the corresponding public
key. The signature part of the certificate contains a digital signature by the CA.
Before issuing a certificate for a particular party, it is therefore crucial that the
CA ensures proper identification of the requesting party.

Attribute: An attribute represents the position, eligibility, status, etc. of the
subject with regards to commercial transactions, regardless of whether they are
online or offline. In general, the main purpose of using attribute information in
EC or application procedures is to distinguish the services or functions that can
be used by the subject, from those of others, through its attributes.

identification: An identification refers to a clear distinguishing of one individ-
ual from others in a certain population.

authentication: An authentication means associating the individual with the
attribute data of that individual. In an EC, attribute information has been
defined as confirmation by others that an identified and authenticated individual
has certain attributes.

1082 J. Lee, I. Jeun, and S. lee

3 Current Attribute Authentication Mechanisms

For the generating attribute information and providing it, the following methods
have been reviewed and embodied in the application services. One is a method
for adding attribute information into the public key certificate and the other is
a method for issuing an attribute certificate.

3.1 Public Key Certificate(PKC)

This is a method using a public key certificate(PKC) for the system to obtain
the information necessary to make the attributes of a system user certified. The
format of the PKC is defined as ITU-T Recommendation X. 509[2,6]. The appli-
cation service has two methods of obtaining attributes using the PKC as follows.

Limitation on those who issue the PKC:
This method considers a PKC as an attribute. The organizations that guar-
antee attributes issue a PKC only for individuals who have these attributes.
If a person is verified as a user using the PKC, it is used to certify that the
user has the attributes and the attribute values.

Method for specifying a attribute value in the PKC:
This method issues a PKC by writing a users attributes and attribute values
within the PKC. There are some examples of using a subject or extensions
as a field of the PKC, in which attributes and attribute values are written.
That the user has attributes and attribute values is able to be verified by
checking the attributes and attribute values of the PKC. It is necessary to
confirm attribute information when issuing the PKC.

As for the method for specifying a user’s attribute and attribute value in the
PKC, the extension field inside the certificate, referred to as the Subject Alter-
native Name or Subject Directory Attributes extension, can be used to indicate
the attribute.

The hcRole attribute, designated as ISO/TS 17090-2[9], represents the role
of medical staff, and it should be used as Subject Directory Attributes extension
when established as a PKC. When we use Subject Alternative Name field of the
certificate owner instead of using a separate extension field, the attribute value
is entered into value of Other Name field as below.

SubjectAltName ::= GeneralNames,
GeneralNames ::= SEQUENCE SIZE(1..MAX) OF GeneralName
GeneralName ::= CHOICE{

otherName [0] OtherName, ...
}
OtherName ::= SEQUENCE{

type-id OBJECT IDENTIFIER,
value [0] EXPLICIT ANY DEFINED BY type-id}

This method is difficult to deal with a temporary attribute due to reissuing
of PKC is needed if the attribute is changed. And the method for suggesting

Efficient Attribute Authentication in Wireless Mobile Networks 1083

the attributes and attribute values of a user to the PKC is considered by having
them simply verify the PKC. Accordingly, it is highly likely that the PKI-related
software that is currently utilized is able to be used, making the system relatively
easy to establish. Also, It is not easy to prepare in advance the general-purpose
certification software that verifies the attributes of the PKC. Even where a person
uses the certification software currently used, it will be necessary to customize
it for use in the corresponding application.

If it is intended to establish a system with high degrees of interoperability or
a globalized system in the method specifying the attributes and attribute values
of a user in the PKC, it is necessary to achieve standardization in the industry,
and international standardization of attributes and attribute values, and their
corresponding OID. However, this is currently insufficient. And The PKC needs
to be reissued in case the attributes change. In terms of speed performance, the
method of using the PKC is faster than that using the attribute certificate(AC),
because the former needs to verify only the PKC.

3.2 Attribute Certificate(AC)

There are a method used for obtaining information for certifying the attributes
of system users using an attribute certificate(AC)[6]. The form of the attribute
certificate(AC) was defined as ITU-T Recommendation X.509. AC may be user
in a wide range of applications and environments covering a broad spectrum of
interoperability golds[3].

For the system using the AC, the system issues an AC specified with the at-
tributes and attribute values granted in accordance with a user to those users
possessing the PKC. In this case, the trusted party, which we will call the at-
tribute authority, would create AC[10]. These certificates are very like those
created by certificate authorities, but instead of relating to the identity of the
users in question, they would relate to their behavior[8]. The AC is able to handle
multiple attributes and attribute values. In this regard, the system can specify
them on an attribute certificate where necessary, or specify them on the multi-
ple attribute certificates separately. The user is certified by the PKC, and the
attributes and attribute values are verified using the AC on which the attributes
to be verified are specified.

This method has the following characteristics. It is able to explicitly establish
and manage the terms of validity of an attribute. And the function of encod-
ing the attribute requiring encryption is provided by the standard. Also, the
existence of PKC is a prerequisite to that of AC, because the latter refers to
the former. Multiple attributes, as well as unique attributes, are included in the
AC. However, it is not easy to prepare in advance general-purpose verification
software able to certify AC attributes. Even when using general verification soft-
ware, it is necessary to customize the software in compliance with its proposed
application. And, if one intends to establish a system with high interoperability
or a globalized system, it is necessary to achieve the standardization in the in-
dustry, and international standardization of attributes and attribute values, and

1084 J. Lee, I. Jeun, and S. lee

their corresponding OID like PKC method for attribute authentication. However,
current systems are insufficient in this regard.

The AC requires reissue in case that attributes changes like PKC method men-
tions in Section 3.1. In terms of speed performance, it is necessary to have both
PKC verification and AC verification in the method using the AC. Accordingly,
it takes a relatively long period of time to operate.

4 PKC-Based Attribute Authentication

In this paper, we propose the PKC-Based attribute authentication method. For
revitalization of the attribute authentication service, user convenient and effi-
ciency of implementation are most important elements. The user dose not need
any more process to use the attribute authentication service.

We consider X.509 v3 PKC for attribute authentication since it is widely used
in EC for identification. User has only PKC which is used in EC and the it is
used in attribute authentication service for user identity. The attribute informa-
tion of users are collected and managed by trusted authority, the so-called at-
tribute verification authority(AVA). This is a centralized attribute management
scheme and the attribute authentication is executed by an attribute authenti-
cation server utilizing an attribute database of trusted authority. The attribute
authentication server identifies and authenticates the user by PKC.

4.1 Assumptions and Requirements

The attribute authentication is important for a discriminative internet service
in these days. But as we investigated in Section 3, the current attribute au-
thentication mechanisms are not satisfied with user requirements. In this paper,
we propose an efficient attribute authentication using PKC. To achieve this, we
must consider the next requirements.

– Convenience: One of the most important factors when providing an attribute
authentication service is easy to use. User hope to use the internet service
without regard to change of his attribute information. Also, user should use
different certificate by service type, making it difficult for user to use internet
service.

– Security: There is an exposure risk of attribute information expressed in
PKC or AC. If private information like as a position, right, occupation, etc,
are disclosed to public, it can be a big harm to user. Therefore, the attribute
information should be deal with carefully.

– Interoperability: Attribute authentication service should not be limited to
specific company or user. Also, the attribute information should be under-
standable in every service provider.

The main parties of PKC-Based attribute authentication service are;

Attribute Information Provider(AIP): An attribute information provider
is a company that provides the necessary attribute information for users

Efficient Attribute Authentication in Wireless Mobile Networks 1085

when they use EC. It provides users a method for registering attribute in-
formation. Also, it manages user’s attribute information in a safe manner.

Privilege Verifier(PV): An entity verifying user’s attribute to provide an in-
ternet services. It can be an internet content providers who offer digital
content or services to users.

Attribute Verification Authority(AVA): An authority that collect the at-
tribute information from AIP and manage it. It returns the verification re-
sult of attribute to PV. AVA should be operated by trusted authority for
the safety of user’s attribute information. For this, CA that manages user’s
database can operate AVA.

User: A subject who uses applications of PV. He already has a PKC and it is
used in EC for identify and attribute authentication.

Also, we assume some facts for our propose. First assumption is that the
attribute information which is managed by AVA are has a validity period like
PKC or AC. AVA should manage the attribute information periodically by asking
to PV and update its database before the validity period is expired. Second
assumption is a change control of user’s attribute. If user’s attribute is changed
by retirement, promotion, etc., the database of AVA must be updated. To do this,
PV sends the information to AVA at proper time if changes of user’s attribute
information occur.

4.2 Service Model

PKC-based attribute authentication service is constructed 2 steps, one is the reg-
istration process of user’s attribute information, and second one is the attribute
verification process using PKC. The user who register his attribute information
to AVA database can use attribute authentication service using PKC at anytime.

For ease of explanation, we use the notations as follows.

A Alice, the user who use the mobile internet service provided by PV
signsk(Doc) signature value of Doc signed by sk

skA private key of A
pkA public key of A

CertA a certificate corresponding pkA and skA

attributeA attribute information of A
Att Request attribute request message for internet service made by PV

Att Response attribute verification result made by AVA

The procedure of PKC-based attribute authentication is shown in Fig.1 and
the detailed steps for attribute authentication are as follows.

Phase 1: Registration of an attribute information

1. A generates private and public key pair(skA,pkA) and requests the certificate
issuing through CA or RA. CA or RA establishes the identify of A to accept

1086 J. Lee, I. Jeun, and S. lee

���

�

��

���

��������

�.CertA + sign

	
������CertA

������sign �����pkA

������attribute ���A

�
�CertAIP + signskAIP(attributeA + CertA)

�
������CertAIP
����� signskAIP(attributeA + CertA)
�����������attributeA ��CertA)

�
�CertA + signskA(Login Info)

�
�Att_Request

�
���������skA, pkB

������CertA

�������� sign = signskA(Registration form)

�
������CertA

������signskA(request) �����pkA

������attribute ���A

�
�Att_Reponse

!
�������Att_Request

��
�������Att_Reponse

Fig. 1. Attribute Authentication procedure using PKC

the application for the certificate and then issues the certificate. A makes
out the registration form which is for registration of attribute information
and generates sign.

sign = signskA(RegistrationForm)
2. A sends sign and CertA to AIP.
3. AIP verifies sign and CertA. For this, AIP can use OCSP service of CA

as well as CRL[7] . In case sign and CertA are verified, AIP confirms A’s
attribute.

4. AIP makes signature of attributeA and CertA using its private key skAIP ,
and then sends it with CertAIP to AVA.

5. AVA verifies CertAIP and signskAIP (attributeA + CertA). In case it is veri-
fied, AVA registers attributeA and CertA in its database. CertA is then used
for user identification, attributeA is used for the verification of access rights
for A.

Phase 2: Attribute verification by AVA

6. A presents CertA and sign to PV for using PV’s internet service.sign is the
signature value of login information.

sign = signskA(LoginInformation)
7. PV verifies sign by CertA using OCSP service or CRL. In case sign and

CertA are verified, PV makes Att Request. Att Request includes a PV’s
identity information and A’s information as below.

Efficient Attribute Authentication in Wireless Mobile Networks 1087

Att_Request ::= SEQUENCE {
tbsRequest TBSRequest,
optionalSignature Signature OPTIONAL }

TBSRequest ::= SEQUENCE {
requestorName GeneralName OPTIONAL,
requestList SEQUENCE OF UserInfo }

UserInfo ::= CHOICE {
userName GeneralName OPTIONAL,
CertInfo Certificiate OPTIONAL }

requestorName can be a PV’s ID or subject name. PV can add signature
in Att Request for message integrity optionally. UserInfo is the user’s in-
formation for user identity. PV can send the user’s ID or certificate using
UserInfo. User’s ID must be registered also like as user’s certificate.

8. PV sends Att Request to AVA.
9. AVA received Att Request can distinguish which PV has sent it. After verify-

ing the signature of meesage, AVA extracts requestList to know the user’s ID
or certificate for attribute verification. It examines the necessary attributes
on the attribute database and makes Att Response to PV.
Att Response structure is :

Att_Response ::= SEQUENCE {
tbsReqponse TBSResponse,
optionalSignature Signature OPTIONAL }

TBSResponse ::= SEQUENCE of Response
Response ::= SEQUENCE {

userId UserInfo,
result Attribute }

Attribute ::= SEQUENCE {
type AttributeType,
values SET OF AttributeValue }

--at least one value is required
AttributeType ::= OBJECT IDENTIFIER
AttributeValue::= ANY DEFINED BY AttributeType

10. AVA sends Att Response to PV.
11. After PV received Att Response, it can verify signature value for integrity

if Signature is included and extract Att Response from the message which
is contained the user’s attribute. If the attribute is suitable for access right,
A is permitted to access the PV’s service.

By using this approach, the user who has a PKC does not need to issue an AC
additionally. Also, the PKC does not need to include any attribute information
and reissue the PKC in case change of attribute value. This model is easy to
intensively manage the addition of multiple attributes or changes of attribute
values.So it is very efficient in wireless networks. However, there are some defects.
Unless the method used for exchanging and managing attribute or attribute value
is standardize, interoperability will be excluded. Also, AVA should be trusted
authority due to concentration of attribute information.

1088 J. Lee, I. Jeun, and S. lee

4.3 Analysis of the Proposed Model

This chapter will analyze and compare the features and security elements of the
existing attribute authentication with the one suggested here.

Attribute authentication mechanisms are summarized in Table 1.

Table 1. Comparison of Attribute Authentication Mechanisms

Issue PKC Method AC Method Proposed Method

Change of Attribute PKC Reissue AC Reissue Database Update
Infrastructure PKI PKI + PMI PKI

Verification of Attribute PKC verification AC verification AVA Operation
Number of User Certificate 1 2 1

User Convenience Middle Low High
Exposure of Attribute Possible Possible Impossible

Management Difficult Difficult Easy

PKCmethodandACmethodneed tobe reissue of certificate in case the attribute
values change, but our proposed method dose not need it. It only need to update of
attribute database. The infrastructure of PKC and proposed method is PKI. But
AC method should build a Privilege Management Infrastructure(PMI) as well as
PKI. Our proposed method needs CA and AVA which are operated by trusted au-
thority. Also, verification of attribute information is performed by AVA, not PV or
user side, so the management of attribute information is easy than other methods.

In section 4, we mentioned our requirement for efficient attribute authenti-
cation. Our first requirement was a convenience. Our proposed method requires
only user’s PKC which is not included any attribute information. So user can use
his PKC in the attribute authentication as well as in the area of e-commerce.
These factors will increase a convenience and efficiency, especially in wireless
networks. The seconde requirement was security. The certificate is a public in-
formation. So, anyone who acquire the user certificate can read the information
included in certificate. As a result, the attribute information included in certifi-
cate is not any more private information. But proposed model does not include
any attribute information in certificate. The attribute information of user are
only managed by AVA not user or PV. So there is no risk to exposure of at-
tribute information. The last requirement was interoperability. We presented
the detailed process of attribute authentication service and the message format
in each process. Our proposed model can be used in almost EC which has abil-
ity of verifying a certificate and connects to AVA. Of course, it is necessary an
international standardization of attribute type and value like as PKC method
and AC method to achieve interoperability.

5 Conclusion

The various e-business by internet revolution now requires users to attribute
authentication that provides them with distinctive services as well as their

Efficient Attribute Authentication in Wireless Mobile Networks 1089

identity certification. This paper analyzed the weakness and problems that cur-
rent attribute authentication services and proposed the use of an attribute au-
thentication service based on public key certificate for wireless networks.

For attribute authentication services, we can use PKC which is include the
attribute information or issued to limited individual and AC which is issued by
attribute authorities. But these mechanism require an reissuing of certificate of
the attribute value is changes. Also, the AC user also should be issued the PKC
and if the attribute information is changed, he should reissue the AC as well as
PKC. This can be a restrictions to mobile user in wireless networks. To solve
these drawbacks, we propose PKC-based attribute authentication service using
AVA. AVA can manage and update of user’s attribute information, so user has
not something to do with management of attribute information.

We sincerely hope that this paper herald further efforts adopting attribute au-
thentication service and lead to promoting the PKC in attribute authentication
services in wireless mobile networks.

References

1. ECOM(Next Generation Electronic Commerce Promotion Council of Japan), At-
tribute Authentication Handbook, http://www. ecom.jp, 2005

2. R.Housley et al., Internet X.509 Public Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile, RFC3280, IETF, April, 2002

3. S.Farrel et al., An Internet Attribute Certificate Profile for Authorization,
RFC3281, IETF, April, 2002

4. R.Oppliger et al., Using Attribute Certificates to Implement Role Based Authoriza-
tion and Access Control Models, SIS2000, Oct. 2000

5. Georgios Kambourakis et.al, Introducing Attribute Certificates to Secure Distrib-
uted E-learning or M-learning Serivces, WEB2004, Feb.2004

6. ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998, Information tech-
nology - Open Systems Interconnection - The Directory : Authentication Frame-
work, 1998

7. M.Myers el al., Internet X.509 Public Key Infrastructure Online Certificate Status
Protocol-OCSP, RFC2560, IETF, June, 1999

8. Markus Jakobsson, Efficient Attribute Authentication with Applications to AdHoc
Networks., ACM, 2004

9. ISO/TS, Health Informatics-Public Key Infrastructure - Part2 : Certificate Profile,
ISO/TS 17090-2, 2002

10. ECOM(Next Generation Electronic Commerce Promotion Council of Japan),
Handbook of Attribute, http://www. ecom.jp, 2005

Group Key Agreement Protocol Among Mobile
Devices in Different Cells

Jeeyeon Kim1, Seungjoo Kim2, Kilsoo Chun1, Jaeil Lee1, and Dongho Won2,�

1 Korea Information Security Agency,
78, Garak-Dong, Songpa-Gu, Seoul, 138-803, Korea

jykim@kisa.or.kr
2 Information Security Group, Sungkyunkwan University,

300 Cheoncheon-dong, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Korea
www.security.re.kr, dhwon@security.re.kr

Abstract. Mobile communication has become more pervasive and it is
considered as one of main concerns of IP telephony, video conferencing,
multi-user games and etc. in mobile environments. These applications re-
quire secure group communication between a multitude of mobile devices
owned by group members. Most of the published group key agreement
protocols are based on a model which consists of a stationary base station
and a cluster of mobile devices. In this paper, we assume a more realistic
scenario in which secret group key is established between several base
stations and mobile devices in different cells. We present new group key
protocol among mobile devices in different cells and analyze its security.

Keywords: Group communication, Mobile device.

1 Introduction

Mobile communication has become more pervasive and it is considered as one
of main concerns of IP telephony, video conferencing, multi-user games and etc.
in mobile environments. Many of these application needs group-oriented secu-
rity mechanisms. These security mechanisms are achieved through some form of
group key management. Group key agrement protocols are favorable to efficiently
implement secure multicast channels for a group of parties communicating over
a public network by providing them with a shared secret key called a session key.

There are two methods to share a session key according to key generation
party. : key transport and key agreement. While one party determines the re-
sulting shared key in the key transport, communicating parties contributed to
the resulting shared key in the key agreement. Since the key transport is unilat-
eral to the party who received the key, key agreement is generally likely to be
preferred.

Over the years, several group key agreement protocols have been offered
[2], [4], [7], [8], [9], [10]. Most published protocols are based on 2-party Diffie-
Hellman(DH) key exchange protocol.
� Corresponding author.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1090–1097, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Group Key Agreement Protocol Among Mobile Devices in Different Cells 1091

Recently mobile communication has become more pervasive and group key
agreement protocols in a mobile environment have been studied [2], [8], [9].
Borisov et al. pointed out that IEEE 802.11 standard does not specify how
distribution of keys is to be accomplished in Wired Equivalent Privacy(WEP)
protocol [5]. In 2003, Bresson et al. presented an efficient authenticated group
key agreement scheme that can complement the WEP protocol and showed that
their protocol has been proved secure in the random oracle model under the
computational DH assumption [2]. However Nam et al. showed that Bresson-
Chevassut-Essiari-Pointcheval’s group key agreement protocol does not have the
main security properties such as implicit key authentication, forward secrecy, and
known key security. Then they proposed an improved version [8]. In 2005, Nam
et al. proposed an efficient, asymmetric group key agreement protocol. Then
they showed that their protocol achieved perfect forward secrecy and had been
proven secure against an active adversary in the random oracle model under the
Decisional DH assumption [9]. Until now, their protocols are based on a model
which consists of a stationary base station and a cluster of mobile devices.

In a wireless environment, due to the mobility, the communicating mobile
devices are placed in different cells. Therefore the group key agreement protocol
across the boundaries of base stations is required.

In this paper, we have focused on the extended model of which participants
are several base stations and mobile devices in different cells. We present a
new group key protocol among mobile devices in different cells and analyze its
security.

The paper is organized as follows. In Section 2 we begin with a description
of the requirements for group key agreement protocols among mobile devices
in different cells. In Section 3 we present a new group key agreement protocol
among mobile devices in different cells and analyze its security.

InternetInternet

Fig. 1. A comparison between previous model and proposed model

1092 J. Kim et al.

2 Requirements for Group Key Agreement Among
Mobile Devices in Different Cells

Our proposed group key agreement protocols consist of several base stations and
a cluster of mobile devices connected to different base stations. The followings
are the requirements for the protocol.

• Communication via the base station : Mobile devices are connected with
the base station of the cell to which they belong. The mobile devices cannot
establish a direct connection between them, they communicate via the base
station.

• Asymmetry of computational power : The mobile computing architec-
ture we visualize is asymmetric in the sense of computational capabilities
of hosts. That is, the base stations has sufficient computational power and
mobile hosts has limited computational resources.

• Contributory key agreement: Providing a truly (physical) random source
in a slow-computing mobile device may not always be possible or cost effec-
tive. In particular, it may be the case that a cryptographically weak (phys-
ical) random number generation is provided, or that some “random” seed
is pre-loaded in the phone at manufacturing time [6]. Thus we have focused
on contributory key agreement protocols in which the session key is derived
as a function of contributions provided by all parties. In contributory key
agreement protocols, a correctly behaving parties is assured that as long as
his contribution is chosen at random, even a coalition of all other parties will
not be able to have any means of controlling the final value of the session key.

3 Group Key Agreement Protocol Among Mobile
Devices in Different Cells

In this section we present a contributory group key agreement which meets the
main security properties: key authentication, perfect forward secrecy and known
key secrecy.

• Key authentication: A protocols provides implicit key authentication if
each participants is assured that no one other than the intended parties can
learn the value of the session key.

• Perfect forward secrecy : A protocol offers perfect forward secrecy if
compromise of a long-term key(s) cannot result in the compromise of past
session keys.

• Known key secrecy : A protocol is said to provide known key secrecy if
compromising of session key does not allow a passive adversary to compro-
mise keys of other sessions, nor an active adversary to impersonate one of
the protocol parties.

Before we propose a new protocol, we briefly discuss two trivial approaches
using a previous group key agreement in a cell to design a group key agreement
among mobile devices in different cells.

Group Key Agreement Protocol Among Mobile Devices in Different Cells 1093

Approach 1: A base station Bj (1 ≤ j ≤ n) generates a group key Kj with its
mobile devices by a group key agreement protocol. Then Bj encrypts Kj with the
public key of Bk (1 ≤ j = k ≤ n) and sends the ciphertext to all the base station
Bk’s. Upon receiving the ciphertext, the base station Bk decrypts the ciphertext
to get the key Kj and then computes a final group key K = H(K1, · · · , Kn),
where H is a secure hash function. The base station Bk sends EKk

(K) to its
mobile devices, where E is a secure symmetric encryption algorithm. Finally, all
mobile devices obtain K by decrypting the receiving ciphertext.

Approach 1 doesn’t provide perfect forward secrecy and key authentication.
If the public key of the base station is compromised, the attacker can compute
all previous group keys. In case that malicious base station can send EKk

(R)
instead of EKk

(K), the mobile devices have no method to verifying a valid group
key K, where R is a random number.

Approach 2: A base station Bj (1 ≤ j ≤ n) generates a group key Kj with
its mobile devices by a group key agreement protocol. Then Bj shares a group
key BG with Bk (1 ≤ j = k ≤ n) by using a group key agreement protocol.
The base station Bj sends EBG(Kj) to all the base station Bk’s. Upon receiving
the ciphertext, the base station Bk decrypts the ciphertext to get the key Kj

and then computes a final group key K = H(K1, · · · , Kn). The base station
Bk sends EKk

(K) to its mobile devices. Finally, all mobile devices obtain K by
decrypting the receiving ciphertext.

Unlike Approach 1, Approach 2 provides perfect forward secrecy. But like Ap-
proach 1, it doesn’t provide key authentication. Furthermore, Approach 2 is ineffi-
cient since it requires the group key agreement between base stations per session.

Now, we present a contributory group key agreement protocol among mobile
devices in different cells.

3.1 Computational Assumption

– Mobile devices U
(j)
i (1 ≤ i ≤ m) are connected with the base station Bj

(1 ≤ j ≤ n) of the cell to which they belong. The mobile devices can also
communicate with the authentication server(AS) via the base station.

– Mobile devices, AS and base stations have a pair of public key and private
key for digital signature.

– All arithmetic is performed in the cyclic group G of prime order q and
generator g which is subgroup of Z∗

p for a prime p such that p = 2q+1. Note
that p, q and g are public and common to all participants.

– Mobile devices and base stations use secure hash function H , secure symmet-
ric encryption algorithm E and signature algorithm secure adaptive chosen
ciphertext.

3.2 Protocol Description

1. (a) Each client (mobile device) U
(j)
i (1 ≤ i ≤ m) chooses a random number

rUi(j) ∈ Zq, computes zUi(j) and sends mUi(j) with the signature σUi(j)

of mUi(j) to the base station Bj .

1094 J. Kim et al.

zUi(j) = gr
Ui(j) , mUi(j) = (U (j)

i , zUi(j))

(b) Other base stations Bk(= Bj) (1 ≤ k ≤ n) also choose a random number
rBk(j) ∈ Zq and send mBk(j) = (Bk, zBk(j) = gr

Bk(j)) with σBk(j) to the
base station Bj . σBk(j) is the signature on mBk(j) .

2. Upon receiving the messages and the signatures, the base station Bj verifies
the signatures, chooses random rj , rBj(j) ∈ Zq, and computes
zj = grj , Kj = (

∏m
i=1 zUi(j) ×

∏n
k=1 zBk(j))rj = grj(

m
i=1 r

Ui(j)
+ n

k=1 r
Bk(j)).

Then Bj computes X(j) = {x(j)
l |1 ≤ l ≤ m} and Y (j) = {y(j)

l |1 ≤ l ≤ n}
where

x
(j)
l =

(
m
i=1 g

r
Ui(j) × n

k=1 g
r

Bk(j)

g
r

Ul(j)

)rj

, y
(j)
l =

(
m
i=1 g

r
Ui(j) × n

k=1 g
r

Bk(j)

g
r

Bl(j)

)rj

.

Bj broadcasts mBj=(Bj , zj, X(j), Y (j)) and σBj to its connected clients
and the other base stations. σBj is the signature on (Bj , Kj).

3. (a) Upon receiving the broadcast, each client U
(j)
i (1 ≤ i ≤ m) computes

Kj = x
(j)
i × z

r
Ui(j)

j and verifies the signature σBj .

(b) Base stations Bk(= Bj) (1 ≤ k ≤ n) also computes Kj = y
(j)
k × z

r
Bk(j)

j

and verifies the signature σBj . Then Bk broadcasts
EKk

({Kj|1 ≤ j = k ≤ n})
and σBj to its connected clients U

(k)
i (1 ≤ i ≤ m′).

4. The mobile device decrypts the receiving ciphertext to obtain Kj and verifies
the signature σBj . Finally all of the participants compute their session key
as K = H(K1, K2, · · · , Kn).

3.3 Security Analysis

In this section, we show that our proposed protocol provides desired properties
for a practical key agreement protocol. The security of our protocol is based
on the security of the underlying signature algorithm and symmetric encryp-
tion algorithm and on intractability of the CDH(Computational Diffie-Hellman)
problem. Computing gab (mod p) given ga and gb is called CDH problem.

– The proposed protocol is a contributory authenticated key agreement protocol.

From the construction of the resultant group key K and Kj, each Kj is
derived as a function of the ephemeral random values rUi(j) , rBk(j) and rj

contributed by the base stations and the mobile devices.

K = H(K1, K2, · · · , Kn), Kj = g(m
i=1 r

Ui(j)
+ n

k=1 r
Bk(j))rj

Therefore we can see that the proposed protocol is contributory group key
agreement protocol.
Let Eve be an adversary who can modify, delay, or inject messages. Eve’s
goal is to share a key with group members, mobile devices or base stations,
by masquerading as some group members.

Group Key Agreement Protocol Among Mobile Devices in Different Cells 1095

2B

)1()1(11
,

UU
m σ

)1()1(22
,

UU
m σ

)1()1(22
,

BB
m σ

2211),(,,
1 BKBB KEm σσ

)2()2(22
,

UU
m σ

)2()2(11
,

BB
m σ

1122),(,,
2 BKBB KEm σσ

1122),(,,
2 BKBB KEm σσ

11 , BBm σ

22 , BBm σ

)1(
1U

deviceMobile
)1(

2U

deviceMobile
)2(

1U

deviceMobile
)2(

2U

deviceMobile

1B
stationBase stationBase

)2()2(11
,

UU
m σ

2211),(,,
1 BKBB KEm σσ

Fig. 2. An execution of the proposed protocol between two different cells

[Case 1: Eve masquerades as U
(j)
i or B

(j)
k] Assume that Eve wants to

send message purporting to come from the valid U
(j)
i or B

(j)
k . Let GK(Bj)

be the partial group key computed by the base station Bj . It can be ex-
pressed as:

GK(Bj) =
(∏m

i=1 ge
Ui(j) ×

∏n
k=1,k
=j ge

Bk(j) × g
r

Bj(j)
)rj

where eUi(j) and eBk(j) are values possibly known to Eve, i.e., Eve can substi-
tute any gr

Ui(j) and gr
Bk(j) with ge

Ui(j) and ge
Bk(j) respectively in the step 1.

Since Eve knows all eUi(j) and eBk(j) , Eve can easily compute GK(Bj) :

GK(Bj) =
(

m
i=1 g

e
Ui(j) × n

k=1,k �=j g
e

Bk(j) ×g
r

Bj(j)

g
e

Ui(j)

)rj

× z
e

Ui(j)

j

or

GK(Bj) =
(

m
i=1 g

e
Ui(j) × n

k=1,k �=j g
e

Bk(j) ×g
r

Bj(j)

g
e

Bk(j)

)rj

× z
e

Bk(j)

j

However, Eve masquerading as group members can be reduced to the at-
tempt to breaking the signature algorithm secure against adaptive chosen
ciphertext attack.

[Case 2 : Eve masquerades as Bj] Let GK(U (j)
i) and GK(B(j)

k) be the
partial group keys computed by U

(j)
i and B

(j)
k . They can be expressed as :

GK(U (j)
i) =

(
m
i=1 g

r
Ui(j) × n

k=1,k �=j g
r

Bk(j) ×g
e

Bj(j)

g
r

Ui(j)

)ej

× z
r

Ui(j)

j

1096 J. Kim et al.

and

GK(B(j)
k) =

(
m
i=1 g

r
Ui(j) × n

k=1,k �=j g
r

Bk(j) ×g
e

Bj(j)

g
r

Bk(j)

)ej

× z
r

Bk(j)

j

where eBj(j) and ej are quantities possibly known to Eve, i.e., Eve can choose
a random eBj(j) ∈ Zq and substitutes grj with gej in the step 2. Hence Eve
can easily compute GK(U (j)

i) and GK(B(j)
k). However, masquerading as the

base station Bj requires Eve to generate a valid signature.

[Case 3 : Malicious base station alters Kj] Suppose that the malicious
base station Bk wants to alter Kj into a random number Rj and sends
EKk

({Rj|1 ≤ j = k ≤ n}) to its mobile devices. That is also intractable
because the malicious base station cannot generate a valid signature σBj

on Rj .
– The proposed protocol provides perfect forward secrecy.

Suppose that all private signing keys of mobile devices and base stations
are compromised. Then our attacker, Eve can masquerade the base stations
or mobile devices to compute a new group key. However, it is intractable
to compute earlier group key because compromise signing keys are used
for implicit authentication only and not for hiding the group key. In other
words, Eve with private signing keys knows (

∏m
i=1 zUi(j) ×

∏n
k=1 zBk(j)), grj

and EKk
({Kj|1 ≤ j = k ≤ n}). If the CDH problem in prime-order subgroup

is hard, computing Kj from grj and g(m
i=1 r

Ui(j)
+ n

k=1 r
Bk(j)) is intractable.

And decrypting EKk
({Kj|1 ≤ j = k ≤ n}) can be reduced to the attempt

to breaking the underlying symmetric encryption algorithm.
– The proposed protocol provides known key secrecy.

Each group key is derived as a function of the ephemeral random values
rUi(j) , rBk(j) and rj contributed by mobile devices and base stations respec-
tively. Thus, each run of the proposed protocol computes a unique group
key K. Therefore a compromised group key does not help adversary Eve to
compute another group key.
Moreover the group keys do not contain any information for authentication.
So it is intractable for Eve to masquerade as group member.

3.4 Efficiency

While m + 2(n + 1) exponentiations, 1 signature generation and m + 2(n − 1)
verifications per base station are needed by the proposed protocol, 2 exponenti-
ations, 1 signature generation and n verifications per client are needed. That is,
it is designed the protocol so that base stations have more computational load
than mobile devices.

Bresson et al ’s protocol[2] and Nam et al ’s protocol[9] are well suited for a
wireless network environment. As pointed out before, Bresson et al ’s protocol
has critical security flaws.

Both our protocol and a three-round group key agreement protocol by Nam
et al require 2 exponentiations per client. Furthermore, if base station Bk(= Bj)

Group Key Agreement Protocol Among Mobile Devices in Different Cells 1097

of our protocol is honest in sending Kj, only 1 verification is needed per client.
Therefore our protocol is efficient since computation costs per client are the same
as that of Nam et al ’s protocol.

4 Conclusion and Future Work

In this paper, we presented new group key agreement protocol which allows a set
of heterogenous mobile devices in different cells to form a secure group. Then we
show that our protocol offers the desired properties including key authentication,
perfect forward secrecy and known key secrecy for a practical key agreement
protocol. An open question is whether our protocol is provably secure in the
standard definition even in the random oracle model.

References

1. N. Asokan, and P. Ginzboorg, “Key Agreement in Ad-hoc Networks”, Expanded
version of a talk given at the Nordsec’99 workshop, Februry 2000.

2. E.Bresson, O. Chevassut, A. Essiari, and D. Pointcheval, “Mutual Authentication
and Group Key Agreement for Low-Power Mobile Devices”, International Confer-
ence on Mobile and Wireless Communications Networks, Springer-Verlag, LNCS
1514, pp.59-62, 2003.

3. E.Bresson, O. Chevassut, and D. Pointcheval, “Group Diffie-Hellman Key Ex-
change Secure Against Dictionary Attacks”, Advances in Cryptology Asiacrypt’02,
Springer-Verlag, LNCS 2501, pp.497-514, 2002.

4. M. Burmester, and Y. Desmedt, “A secure and efficient conference key distribu-
tion system”, Advances in Cryptology - Eurocrypt’94, Springer-Verlag, pp.275-286,
1995.

5. N. Borisov, I. Goldberg, and D. Wagner, “Intercepting Mobile Communications:
The Insecurity of 802.11”, ACM MobiCom 2001, 2001.

6. C.Carroll, Y.Frankel, and Y.Tsiounis, “Efficient key distribution for slow com-
puting devices: Achieving fast over-the-air activation for wireless systems”, IEEE
Symposium on Security and Privacy (S&P ’98), May 3-6 1998, Oakland, CA.

7. I. Ingemarsson, D. T. Tang, and C.K. Wong, “A conference key distribution sys-
tem”, IEEE Transactions on Information Theory, IT-28(5), pp.714-720, September
1982.

8. J. Nam, S. Kim, and D. Won, “A Weakness in the Bresson-Chevassut-Essiari-
Pointcheval’s Group Key Agreement Scheme for Low-Power Mobile Devices””,
IEEE Communications Letters, Vol.9, No.5, May, 2005, pp.429-431.

9. J. Nam, J. Lee, S. Kim, and D. Won, “DDH-based Group Key Agreement in a Mo-
bile Environment”, Journal of Systems and Software, Volume 78, Issue 1, Elsevier
Science Inc, October, 2005, pp.73-83.

10. M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman Key Distribution Ex-
tended to Group Communication”, Proc. of the 3rd ACM Conference on Computer
and Communication Security(CCS’96), pp.31-37, March 1996.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1098 – 1106, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Novel Approach to Link Utilization Measurement*

Cui Yidong1, Zhang Bin2, and Ma Yan2

1 P.O. Box 95, Telecommunication Engineering School, Beijing University of Posts and
Telecommunications, 100876, Beijing, P.R. China

nathan@x263.net
2 Information Network Center, Beijing University of Posts and Telecommunications, 100876,

Beijing, P.R. China
{zhangbin, mayan}@bupt.edu.cn

Abstract. In this paper a novel approach to link utilization measurement is
proposed. In the network, the source workstation sends IP packets (namely,
probes) that have the time stamp options being set to an arbitrary ICMP-enabled
destination. Each router that the probes traverse across will record a timestamp
in the packets. The timestamps are collected and further processed to gain the
link utilization. By analyzing the model of the single hop delay, it is observed
that the packet processing delay, propagation delay, the clock skew greatly
affect the timestamps. So, the LUS (Link Utilization Statistic) algorithm is
proposed to remove the disturbance. The LUS algorithm computes the queuing
delay of each probe by processing multiple timestamps jointly. Then being
quantized and smoothed with slide window, the queuing delay is transformed
into link utilization. This approach is verified through simulation.

1 Introduction

Network measurement provides powerful tools to monitor the internet for NPs
(Network Provider). This field has attracted more and more attentions. According to
the way of obtaining measurement data, network measurement can be classified into
two categories: active and passive measurement. According to the locations of the
measurement point, it can be classified into three categories: end-to-end measurement
(E2EM), router-based measurement (RBM) and router-cooperated measurement
(RCM). The NPs usually adopt the RBM scheme. However, the network information
obtained with RBM can not be shared due to the incooperativity among the NPs.
Moreover, the measurement data consume much bandwidth while they are transferred
from the routers to the network management center.

Recent years, many active measurement techniques are developed: 1) end-to-end
delay measurement [1], [2], mainly focusing on the clock skew and and clock reset; 2)
available bandwidth measurement and bottleneck locating [3], [4], [5]; 3) packet loss
rate measurement [6]; 4) network performance and topology inference [7].

* This work is partially supported by the research fund of CNGI-04-8-1D, NSFC(NO.

90604019 and NO. 90204003).

 A Novel Approach to Link Utilization Measurement 1099

The general way used by the above techniques is to design a sequence of packets,
which is called a packet train. When the packet train traverses the network, the
intervals among the packets are changed. By studying the characteristics of the
intervals, the network status is obtained. We also follow the above way to develop our
new method. The main idea is, 1) the packet (namely, a probe) records the router’s
clock hop by hop; 2) by collecting and processing the records, the queuing delay of
each hop can be obtained; (3) quantizing the queuing delay and processing with slide
window, the link utilization are finally obtained.

Our method avoids the security issue that brought by SNMP (Simple Network
Management Protocol) in direct access to the devices. Moreover, it takes very low
cost (the bandwidth consumption over a 2Mbps-link is less than 2.7%). This
technique can be used to cooperate with several end-to-end measurement techniques
to evaluate the quality of the network, including the end-to-end measurement of the
bottleneck bandwidth, the delay and jitter measurement, packet loss rate measurement
and the topology measurement.

However, the problem is, how to acquire the time during which the probe traverses
across two routers? Fortunately, RFC 781 defines the time stamp option in the IP
header which is helpful in solving this problem. When a probe traverse the network
along a certain path, the routers that belong to this path will check the time stamp
option in the packet header and record current clock value into the options. The clock
value is the cumulative milliseconds starting from the midnight. Each clock value
occupies 4 bytes. The time stamp options may hold maximum 9 items. Most of the
routers and operating systems have implemented this RFC. Windows XP, Linux 2.4
and the later versions provide “ping” command which supports time stamp options
(FreeBSD 4.7 is an exception). Usually, the time stamp options work together with
ICMP. An ICMP packet of “echo request” with the time stamp options set is sent
from the source to the destination. After receiving the ICMP packet, the destination
generates an ICMP packet of “echo” and sends it back to the source. Then the source
can collect the clock values. The destination must support ICMP protocol which is
easily fulfilled.

Before we discuss the measurement algorithm, the method of link utilization
calculation should be first given. The router computes the link utilization as follows.
During the period of W, the link status (busy or idle) is sampled at frequency f. Thus
the number of samples is n Wf= . We define the sample result as , 1iX i n= . If the

link is busy, 1iX = . Otherwise, 0iX = . Hence, the link utilization is:

1
1

n
ii

u n X−
== Σ (1)

where W is named as “sample window”.
In this paper, a new approach to the link utilization based on time stamp is

proposed. It is router-cooperated active measurement. The probes are sent from the
source workstation and the per-hop delay is recorded. By analyzing the delay data, the
sequence, { }iX , can be obtained. With further processing using “slide window”, we

finally get the link utilization. This approach requires no special functionality for the
destination, and up to 9 links can be monitored with one group of probes. The rest of

1100 Y. Cui, Z. Bin, and M. Yan

this paper is organized as follows. In section 2, the model for IP packets in a single
hop is analyzed. In section 3, based on the analysis in section 2, the link utilization
statistic algorithm is detailed. In section 4, the simulation and the corresponding
analysis are presented. In the last section, section 5, we summarize.

2 Single Hop Delay Model

As detailed in Fig. 1, the delay budget of the IP packet “Probe” that traverses across
Router1 and Router2 is: 1) prcsT , the time during which the router processes the

packet. The router should read the packet header, search the routing table, process the
IP options and put the packet into proper output queue; 2) queueT , the queuing delay

that the packet suffers in the output queue; 3) tranT , the transmission delay, which is

the ratio of packet length to link rate; 4) propT , the propagation delay, which is the

ratio of link length to the velocity of light. Hence, we can get:

prcs queue tran propT T T T T= + + + (2)

By inspecting the packet marked as “Probe” in Fig. 1, we may infer intuitively that,
the busy-idle status of the router is able to be obtained if the queuing delay ()i

queueT at it

can be probed. Apparently:

1, 0

0, 0
queue

i
queue

T
X

T

>
=

=
 (3)

where iX denotes the busy-idle status of the link (i.e. if the queuing delay of Probe is
zero, the link is idle when the probe arrives the output queue. Otherwise, the link is
busy).

Fig. 1. Single hop delay model

Now, we’ll analyze the delay budget of the single hop more completely. The
previous sections have mentioned that according to RFC 781, the i-th probe records
two time stamps ()

1
it and ()

2
it when it traverses Router1 and Router2. Let

() ()()
2 1
i iiT t t= − (4)

 A Novel Approach to Link Utilization Measurement 1101

Then we will question, is ()iT equal to T in Equation (2)? Obviously, the answer is
no. The reason is: a) due to the drifting of the router clock, the time stamp ()

1
it and

()
2
it may be far from the real time. For example, if the clock of Router1 is 2 seconds

faster than that of Router2, then () 0iT < is not impossible. Even when the routers
are synchronized with NTP (Network Time Protocol), there’s still relatively big
error due to the poor precision (about millisecond-level) of NTP over the wide area
network. To achieve the microsecond-level precision, only GPS synchronization
technique can be adopted which adds great cost to the implementation [2][3]. We
will discuss the impact of the clock precision upon the measurement results later in
Section 3. b) Router1 and Router2 may be of different types, even manufactured by
different vendors. What’s more, Ref. [8] has pointed out the packets with the IP
options being set may cost more processing time than other packets in high speed
routers. Thus, when the router processes the time stamp options will greatly affect

()iT . Considering a), we get the relationship between the time stamps and the real
time:

() () ()
1 1 1

() () ()
2 2 2

i i i

i i i

t

t

τ ξ
τ ξ

= −
= −

 (5)

where ()i
kτ represents the real time when the k-th router records the time stamp ()i

kt

into the i-th probe, and, ()i
kξ represents the clock offset of the k-th router at the

moment of ()i
kτ . ()i

kξ will be positive if the clock of the k-th router is ahead of the real

time. Otherwise, it will be negative. Considering b), as well as detailed in Fig. 1, we
can get:

() () () () () () ()
2 2 1 2
i i i i i i i

queue proptranp pT T T T Tτ τ− = + + + + (6)

where ()
1
i

pT (or ()
2
i

pT) represents the processing delay which the i-th probe must suffer

after (or before) its time stamp option is set by Router1 (or Router2).
By Equation (4), (5) and (6) we can get the single hop delay:

() () () () () () () () ()()
2 1 1 2 1 2
i i i i i i i i ii

queue proptranp pT t t T T T T T ξ ξ= − = + + + + − + (7)

3 Link Utilization Statistic Algorithm

In Equation (7), only ()iT is measurable while ()i
queueT can not be obtained directly. So,

we develop LUS (Link Utilization Statistic) algorithm to get ()i
queueT .

To have a convenient depiction, let () () () ()()
1 2
i i i ii

proptranp pT T T Tδ = + + + and
() ()()
2 1

i iiξ ξ ξ= − . Equation (7) is transformed into:

() () ()() () ()
2 1
i i ii i i

queueT t t T δ ξ= − = + + (8)

1102 Y. Cui, Z. Bin, and M. Yan

Let

() ()() () () () () () ()i kik i k i k i k
queue queueT T T T T δ δ ξ ξ= − = − + − + − (9)

Considering two probes iP and kP , where , [1,]i k N∈ , if the packet length satisfies

() ()i klen P len P= , then (i) (k)δ δ= . Next, we define
() ()

2 2 1 1 2 1() ()i k i k i k ik ikψ ξ ξ ξ ξ ξ ξ ξ ξ= − = − − − = − as the clock variance resulted from the

router clock skew. If the interval between the sending time of iP and kP is short

enough (i.e. () ()
0 0

i k Dτ τ− <), ψ is smaller than the resolution of the time stamp (1

ms) and can be neglected. In the above equation, D is defined as AEW (Allowable
Error Window) for clock skew. Then we get:

() ()() i kik
queue queueT T T= − (10)

If the packet kP satisfies () (1) ()min(,...,)k NT T T= , then () (1) ()min(,...,)k N
queue queue queueT T T= .

According to Equation (10) we can conclude that ()i
queueT can be calculated if () 0k

queueT =

because ()ikT has already been known.
Since the final result depends on ()k

queueT , we inspect the condition of () 0k
queueT = next.

Suppose a link that has the average utilization u during the period of D. We get
(1)tP X u= = , where t is an arbitrary time within D and tX is the link status. Then,

the probability of such a case, in N samples there are at least one sample satisfies
0kX = , is:

1 N
idleP u= − (11)

By (3), we can infer that (11) just gives the probability of the case, that at least one
probe out of the N probes does not need to wait in the output queue. In Fig. 2, the
relationship between the sample number N and the average link utilization u is shown.
We can see clearly that when N reaches 100, idleP is not less than 99.9% provided that
the average link utilization is not greater than 90%.

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

N

u

P=95%
P=99%
P=99.9%

Fig. 2. Sample number and average link utilization

 A Novel Approach to Link Utilization Measurement 1103

The LUS algorithm is depicted as follows:

4 Simulation and Analysis

Since the queuing delay of the probes varies inversely as the link rate, multiple link
rates are designed in the simulation environment. The loss of the probes due to the
congestion of the link will not make the LUS algorithm ineffective, so the loss of the
packet is not considered.

Simulation Model
The simulation model is shown in Fig. 3. There are three subnets in the first level
topology and the connections are TJ_Net BJ_CLOUD GZ_Net. The rates of the
links that connect devices include 2M/10M/55M/100M/155M. Five types of
applications run over the network including WWW, FTP, E-Mail, Telnet and custom
application. The source workstation is the node named Ping_Src located in TJ_Net

Fig. 3. Network topology

(a) 1st level
topology

(d) TJ_Net
topology

(b) GZ_Net
topology

(c) BJ_CLOUD
topology

1. Split the timestamp data into M segments by the allowable error window D.

Process the j-th segment.

2. Calculate the delay sequence of the m-th hop () ()()
1{ }, [1,]i ii

mmT t t i n+= − ∈

3. Find the minimum delay of the m-th hop () ()min{ }k iT T=

4. Calculate the queuing delay sequence of the m-th hop () () (){ }i i k
queueT T T= −

5. Transform the queuing delay sequence into link status sequence { }iX

according to Equation (3)

6. Use the slide window method (the window is W) to calculate the link utilization

of the m-hop according to Equation (1).

7. Repeat 2 to 6, until all segments are processed.

1104 Y. Cui, Z. Bin, and M. Yan

and the destination is the node named Ping_Dst located in GZ_Net. The probes
traverse the path: Ping_Src TJ_CS_3640 BJ_AR BJ_CR1 BJ_CR2
GZ_CS_3640 Ping_Dst. The packet length of the probe is 56 bytes and the
frequency is 100f = .

4.1 Analysis of the Simulation Result

The link utilization from TJ_CS_3640 to BJ_AR is shown in Fig. 4. The curve in
Chart 4-(a) shows the data collected from the router. The ordinate of the hemline is
2.69, which is generated by the probes. The curve in Chart 4-(b) shows the result of
the active measurement in which the size of the slide window is 30 ms. Comparing
4-(a) and 4-(b) we notice that: 1) low link utilization (<20%) is not easy to be probed
because the queuing delay of the probe is smaller than the resolution of the time
stamp (1 ms); 2) the utilization burst at Time=106.116 sec is not probed. The reason
may be it occurs in the interspaces between two adjacent probes. 3) The sub-charts in
4-(a) and 4-(b) zoom in the data between 100.35 sec and 100.81 sec. Comparing the
two sub-charts, we can conclude that the result reflects the trends of the link
utilization variation. However, since the size of the slide window (30 ms) is only three
times of the interval between two probes, the curve is of a three-step form.

100.3 100.4 100.5 100.6 100.7 100.8 100.9 101.0
0

20

40

60

80

100

100 101 102 103 104 105 106 107 108 109 110
0

20

40

60

80

100
(a). directly probed results

Li
nk

 U
til

iz
at

io
n

Time (s)
(b). ICMP probed results

100 101 102 103 104 105 106 107 108 109 110
0

20

40

60

80

100

Li
nk

 U
til

iz
at

io
n

Time (s)

lost

100.3 100.4 100.5 100.6 100.7 100.8 100.9 101.0
0

20

40

60

80

100

Fig. 4. Utilization of the link from TJ_CS_3640 to BJ_AR

The utilization of the link from BJ_AR to TJ_CS_3640 is shown in Fig. 5.
Comparing Chart 5-(a) and 5-(b), we can see that under heavy load condition, the
probing results match the real state well.

 A Novel Approach to Link Utilization Measurement 1105

100 101 102 103 104 105 106 107 108 109 110
0

20

40

60

80

100

(a). directly probed results

Li
nk

 U
til

iz
at

io
n

Time(s)

100 101 102 103 104 105 106 107 108 109 110
0

20

40

60

80

100

Time(s)

Li
nk

 U
til

iz
at

io
n

(b). ICMP probed results

Fig. 5. Utilization of the link from BJ_AR to TJ_CS_3640

In Fig. 6 the utilization of the link from BJ_CR1 to BJ_AR is shown. The curves in
Chart 6-(b) and 6-(c) are calculated with slide window W=30 ms and W=50 ms
respectively. By observing the charts we can conclude if the utilization is low over a
high speed link, our method may only show the peak of the utilization roughly. Due to
the sparseness of the probing data, larger sliding windows size may only smooth the
peak-value of the sampling result curve, but can hardly reflect the data variation within
a short period of time (10 f).

100 101 102 103 104 105 106 107 108 109 110
0

20
40
60
80

100 (a). directly probed results

Li
nk

 U
til

iz
at

io
n

Time(s)

100 101 102 103 104 105 106 107 108 109 110
0

20
40
60
80

100

Time(s)

(b). ICMP probed results (slide window = 30ms)

Li
nk

 U
til

iz
at

io
n

100 101 102 103 104 105 106 107 108 109 110
0

20
40
60
80

100 (c). ICMP probed results (slide window = 50ms)

Li
nk

 U
til

iz
at

io
n

Time(s)

Fig. 6. Utilization of the link from BJ_CR1 to BJ_AR

1106 Y. Cui, Z. Bin, and M. Yan

5 Conclusion

In this paper we have proposed a new approach to the link utilization measurement.
Cooperated with the routers, the values of the router clock are recorded in the time
stamp options in the IP header. Being processed with the LUS algorithm, the clock
values are transformed into link utilization. The simulation verifies the approach.

Our future work will focus on the “joined links” (i.e. path).

References

1. S. B. Moon, P. Skelly: Estimation and removal of clock skew from network delay
measurements. IEEE INFOCOM’99, New York, USA (1999) 227-234

2. Li Zhang, Zhen Liu, Cathy Hong and Hui Xia: Clock synchronization algorithms for
network measurements. IEEE INFOCOM’02, New York, USA (2002) 160-169

3. M. Jain and C. Dovrolis: End-to-end available bandwidth: Measurement methodology,
dynamics, and relation with TCP throughput. ACM SIGCOMM’02, USA (2002) 295-308.

4. N. Hu and P. Steenkiste: Evaluation and characterization of available bandwidth probing
techniques. IEEE JSAC Special Issue in Internet and WWW Measurement, Mapping, and
Modeling, Vol. 21(6), USA (2003) 879-894

5. N. Hu, L. Li and Z. M. Mao: Locating Internet Bottlenecks: Algorithms, Measurements,
and Implications. ACM SIGCOMM’04, USA (2004) 41-54

6. N. G. Duffield and F. L. Presti: Inferring link loss using stripped unicast probes. IEEE
INFOCOM’01, Alaska, USA (2001) 22-26

7. Bestavros, J. Byers and K. Harfoush: Inference and labeling of metric-induced network
topologies. IEEE INFOCOM’02. New York, USA (2002) 628-637

8. Konstantina Papagiannaki, Sue Moon, Chuck Fraleigh, Patrick Thiran and Christophe Diot:
Measurement and Analysis of Single-Hop Delay on an IP Backbone Network. IEEE JSAC
Special Issue in Internet and WWW Measurement, Mapping, and Modeling, USA (2003)
908-921

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1107 – 1116, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Joint MAC Discovery-Routing Protocol for
Self-Organizing Hierarchical Ad Hoc Networks*

Hyukjoon Lee, Yong-Hoon Choi, Young-uk Chung, and Seomin Yang**

Kwangwoon University, Seoul, Korea
{hlee, yhchoi, yuchung}@kw.ac.kr

** Samsung Electronics Co., Ltd., Korea
Seomin.yang@samsung.com

Abstract. Self-organizing hierarchical ad hoc network (SOHAN) is a new ad-
hoc network architecture designed to improve the scalability properties of
conventional “flat” ad hoc networks. This network architecture consists of three
tiers of ad-hoc nodes, i.e., access points, forwarding nodes and mobile nodes.
This paper presents a joint topology discovery and routing protocol for the self-
organization of SOHAN. We propose a cross-layer path metric based on link
quality and MAC delay which plays a key role in producing an optimal cluster-
based hierarchical topology with high throughput capacity. The topology
discovery protocol provides the basis for routing which takes place in layer 2.5
using MAC addresses. The routing protocol is based on AODV with
appropriate modifications to take advantage of the hierarchical topology and
interact with the discovery protocol. Simulation results are presented which
show the improved performance as well as scalability properties of SOHAN in
terms of throughput capacity, end-to-end delay, packet delivery ratio and
control overhead.

1 Introduction

There has been a tremendous influx of research interest in wireless multi-hop
networks (mobile ad hoc networks) during the past several years. Many routing
protocols have been proposed for ad hoc networks. These protocols are designed to
operate in traditional flat ad hoc networks and optimized in terms of end-user
performance measures such as delay and packet delivery ratio. More recently,
research issues related to the system capacity of wireless multi-hop networks, such as
power consumption and throughput capacity, are drawing much attention. One of the
fundamental problems of the flat ad hoc networks is that they do not scale well. Gupta
and Kumar described that the throughput of an ad hoc network is bounded above and
decreases as ()nO 1 as n becomes large [1]. This motivates the investigation of a new

ad hoc network architecture based on hierarchical structure.
In [2], Ganu et al. propose a novel hierarchical ad hoc network architecture called

SOHAN (Self-Organizing Hierarchical Ad-Hoc Wireless Network) of three tiers, i.e.,
access points (APs), forwarding nodes (FNs) and mobile nodes (MNs). In this
architecture, the APs are connected together by high-speed wired links and FNs and

* This work was supported by Research Grant of Kwangwoon University in 2006.

1108 H. Lee et al.

MNs self-organize themselves to form a hybrid wired-wireless multi-hop network.
This architecture is designed to increase the system capacity, while retaining the
robustness, coverage and power advantages of ad hoc networks.

It is desired that a topology discovery protocol taking into account the cost in
routing produce a network topology that provides high throughput capacity. The
authors of [2] propose a MAC-layer topology discovery protocol in which they
simply use the received signal strength as a discovery metric to determine the network
topology. They also present a distance vector-based routing protocol which
periodically exchanges the neighbor tables constructed by the topology discovery
protocol. However, this routing protocol has a limited capability in that it only
supports outbound traffic from the MNs to the APs.

In [3], Zhao et al. evaluate the applicability of two popular ad hoc routing
protocols, DSR [4] and AODV [5], to this architecture with some modifications and
present some simulation results that show about four-fold improvement in throughput
capacity compared to the conventional flat architecture. However, they do not specify
a routing protocol that takes into account the efficient use of the hierarchical
architecture.

In this paper, we present a joint topology discovery and routing protocol for
SOHAN which produces an optimal cluster-based hierarchical topology with high
throughput capacity and increased scalability. This paper is organized as follows. In
section 2, we present the architecture of self-organizing hierarchical ad-hoc network.
In section 3 and 4, we describe the joint topology discovery and routing protocols. In
section 5, we give some simulation results that demonstrate the improved scaling
properties of SOHAN. Section 6 summarizes this paper.

2 Hierarchical Ad Hoc Network Architecture

SOHAN is a novel self-organizing hierarchical ad hoc network architecture designed
to improve the scaling properties of conventional flat ad-hoc networks [2]. This
network architecture consists of three-tiers of wireless nodes: low-power end-user
mobile nodes (MNs) at the lowest tier, high-power forwarding nodes (FNs) at the
mid-tier, and wired access points (APs) at the highest tier (Fig. 1(a)). The MN
operates on a single radio such as 802.11 and can attach to a FN and/or AP. As a user
device, it does not forward packets for other nodes. Instead of directly connecting to
each other, the MN connects to an AP or FN of the best link quality. The main
function of the FN is to forward packets for other nodes using multi-hop routing. The
FN can have a direct radio connection with all three types of nodes. It can be
equipped with a single 802.11 interface or two radio interfaces, one for FN-MN traffic
and the other for inter-FN and FN-AP traffic. The FN can be either fixed or mobile.
The AP has both a radio interface and wired interface to the Internet. The AP can be
configured as an access router (AR). Therefore, it is responsible for routing packets
between the wired Internet and SOHAN. Multiple FNs and MNs can be directly
connected to the AP in ad hoc mode. The APs are connected to each other by wired
links, and hence, it provides the transmission speed of orders of magnitude faster than
that of wireless links as well as more natural integration with the Internet.

 A Joint MAC Discovery-Routing Protocol for SOHAN 1109

3 Topology Discovery Protocol

3.1 Discovery Protocol

Topology discovery is a distributed process through which a node associates with its
neighbor nodes to form a logical network topology in a self-organizing manner. Our
discovery protocol organizes the FNs and MNs to form a logical cluster around an AP
in such way that the multi-hop communication cost between each node within a
cluster and the AP is minimized.

The topology discovery protocol is based on beacons. These beacons can be made
as an extension to existing beacons (e.g. 802.11) or as an application layer beacons.
The APs and FNs use these beacons to identify their one-hop neighbors. The beacons
also carry various kinds of information that can be used in determining the network
topology. Upon bootstrapping, the APs and FNs enter a self-organizing phase by
transmitting the beacons on their predetermined channels and repeat this phase
periodically (e.g., 200 ms in our simulation). Based on the beacons received, the FNs
and MNs update their neighbor table and transmit the association messages to the
best one-hop parents. In this way, a tree structure is formed from top to bottom with
the AP at the root and the MNs at the leaf level.

The message format of the beacons is given in Fig. 1(b). Msg Type field is used to
specify the message types used in the topology discovery phase. There are four types,
i.e., beacons, association requests, association acknowledgement and disassociation
requests. Node Type contains the information about the type of node that transmits the
message. Node ID uniquely identifies a node which can have multiple interface IDs.
Channel specifies the radio channel used for transmitting the beacon. Cost to AP
represents the expected routing cost metric to the AP. This value is used in selecting
the best parent node in terms of routing cost to an AP. Beacon No. is a sequence
number for the beacons and is used to detect the duplicate association messages.
BSSID and AP IPv6 Addr are the BSSID and IPv6 Address of the AP to be used in
IPv6 address autoconfiguation [6] of the FNs and MNs.

A neighbor table is constructed for each node based on the information gathered
from the beacons and association request messages. It contains the information about
the parent and child nodes in the tree structure. Thus, the neighbor table can provide
the routing protocol with a basis for building a local routing table. It provides each
node with the minimal next hop routing information for outbound traffic towards the
AP. The routing table entries for the other nodes of the same cluster are built up on-
demand by the modified AODV routing protocol.

The neighbor table is updated when a new neighbor node is found or an association
request is received. The cost to an AP can be calculated by adding the communication
cost to the neighbor node and the neighbor node’s communication cost to an AP
carried in the beacon. The neighbor table is updated also when a node moves out of
the radio range, i.e., the corresponding entry is purged if a beacon is not received in
three successive scans. Periodically, each node selects one of its neighbors as its
candidate parent node. That is, a neighbor node that has the lowest communication
cost to an AP is selected.

1110 H. Lee et al.

APAP APAPAPAPAPAPAPAP

Node
ID

Beacon
No.

Msg
Type

AP
Load

Cost to
AP

BSSID
Node
Type

Channel
AP IPv6

Addr.
Node

ID
Beacon

No.
Msg
Type

AP
Load

Cost to
AP

BSSID
Node
Type

Channel
AP IPv6

Addr.

Cost to
AP

Interface
ID

LifetimeBSSID
Node

ID
Beacon

No.
MAC
Addr.

Cost to
Neighbor

AP IPv6
Addr.

Node
Type

Channel Assoc.
Cost to

AP
Interface

ID
LifetimeBSSID

Node
ID

Beacon
No.

MAC
Addr.

Cost to
Neighbor

AP IPv6
Addr.

Node
Type

Channel Assoc.

(a) Architecture

(b) Message format of SOHAN beacon and association

(c) Neighbor table format

Fig. 1. SOHAN architecture and message format

After determining its candidate parent node, the node transmits an association
request message to it. Upon receiving the association request message, the candidate
parent node creates an entry for a child node in its neighbor table and stores the
information received in the association request message. It also sets the lifetime and
transmits an association acknowledgement message. If the child node receives the
association acknowledgement message, it makes the candidate parent node its parent
node. Otherwise, the child node repeatedly transmits the association request message
up to three times. If the child node fails to receive an acknowledgement, it purges the
neighbor table entry for the candidate node, selects the next candidate node and
repeats the association steps. Association steps are also taken when a child node fails
to receive three successive beacons from its parent node in order to prevent the node
from being disconnected from the rest of the network.

Each entry of the neighbor table includes some information received from a
neighbor node in the beacon message, i.e., Node Type, Node ID, Channel, Cost to AP,
Beacon No., BSSID and AP IPv6 Addr (Fig. 1(c)). MAC addr is the 48-bit MAC
address of a neighbor node. Interface ID is used to distinguish among multiple radio
interfaces attached to the node through which a neighbor node can be communicated.
Cost to Neighbor represents the cost associated with the radio link to a neighbor node.
Assoc. represents the three kinds of association the node has with a neighbor node,
i.e., parent, child and no association.

Discovery Metric

One of the main goals of the topology discovery protocol is to produce a logical
topology that is efficient for inter-cluster communication via APs in order to make the
best use of the high throughput capacity of wired backbone links. Therefore, we use
the communication cost between an AP and a node as the discovery metric. In other
words, a path metric to an AP is used by each node in determining its parent node via
which it can communicate with an AP which would then forward inbound/outbound
data for that node. Based on the assumption that physical link quality between a pair
of nodes is symmetric, the same paths are used for both inbound/outbound traffic.

It has been widely discussed in the literature that the minimum hop-count does not
guarantee to give a route with high throughput, although it has been used mostly by
traditional routing protocols for flat ad-hoc networks such as DSR and AODV [7-9].
Hence, rather than using minimum hop-count as our path metric, we define a new

 A Joint MAC Discovery-Routing Protocol for SOHAN 1111

path metric based on the traffic load and link quality, i.e., expected delivery delay
(EDD). The EDD of a path, EDDpath, is the sum of EDD of a link, EDDlink, between a
pair of nodes, which is defined as:

r

D
cDcEDD c

qlink 21 += ,

where 1c and 2c are scaling coefficients, qD is the average queuing delay of

packets within the radio interface of a sender, cD is the average MAC contention

delay experience by the sender, and r is the delivery ratio of beacons. Since qD is

associated with each node, its value can be computed locally in each node. On the

other hand, cD and r are associated with a link between two nodes. The value

of cD depends on the characteristics of packets generated by an application at either

end of the link, and hence is likely to be asymmetric in practice. However, if the
applications at both ends of the link generate a fairly large number of packets over a

certain period of time, the value of cD would become symmetric. In addition, based

on the assumption that the underlying physical link has a symmetrical channel quality,
we have the same value of r in both directions. Thus, they can be also measured

locally at either end of the link. The values of qD and cD can be computed directly in

the interface driver, while the value of r is computed by dividing the number of
beacons received by the number of beacons expected to be received over a period of
time. EDDlink represents the MAC delay and directly affects throughput. Transmission
and propagation delays are not included since the amount of variation in their relative
values would be small enough to be ignored. The reciprocal of a beacon delivery ratio
implies the expected number of transmissions required to send a packet over a link.
The EDD of a path is the sum of EDDlink over all links in a path, i.e.,

=
pathainlinksall

linkpath EDDEDD .

Conceptually, the summation can be obtained by accumulating EDDlink values as links
are added to the tree structure. The EDD of a path represents the predicted end-to-end
delay experienced in sending a packet from a node to an AP or vice versa, which
directly affects throughput.

4 Routing Protocol

As discussed in the previous section, the topology discovery protocol of SOHAN
performs self-organization which produces an optimal topology in terms of
throughput capacity. The routing protocol operates based on the topology found by
the topology discovery protocol. We make the routing protocol operate in the same
layer as the topology discovery protocol, i..e., layer 2.5. There are several advantages
with this approach:

1112 H. Lee et al.

• The topology information can be shared by routing protocol easily.
• The routing can be performed transparently to the IP routing protocols, hence,

make the ad-hoc network be integrated with IP-based network seamlessly.
• The ad-hoc network can appear as a single LAN segment which makes plug-in-

play type of deployment possible.

Our routing protocol is based on AODV with appropriate modifications such as
addressing scheme and routing table management. It sets up the initial routing table
based on the neighbor table and adds an entry as a new route is found on-demand. A
neighbor table generated by the topology discovery protocol contains information
about the next hop node (i.e., parent node) for each node to reach an AP. This
information is used to initialize and periodically update the routing tables where it is
specified as the default routes. Entries for the other nodes are created on-demand
according to AODV route discovery. The MNs do not participate in routing, i.e., they
do not forward packets for other nodes. They can only be a source or destination of
packets. Therefore, they have only one entry in their routing table, i.e., the default
route entry with their parent node (a FN or AP) as the next hop.

The FNs and MNs use MAC addresses as their identifier for routing, while they
can use IP addresses at the network layer which are locally acquired through an
address allocation mechanism such as IPv6 address autoconfiguration. The IP-to-
MAC address resolution operation requires broadcast on a single-link, which can be
mapped to flooding over the ad-hoc network. The loss of radio resource due to
flooding can be substantial. Therefore, the flooding is confined within the subset of
nodes that are associated with the same AP. This operation is called limited-scope
broadcast (LSBC). The node can determine whether it is associated with the same AP
as the source of flooding by checking the Basic Service Set ID (BSSID).

Provided that each AP is configured as an AR, each tree rooted at an AP can be
mapped to an IP subnet. In this approach, each node in the tree is configured with an
IP address with the same prefix. Packets are routed to an AP if the destination is out
of the subnet of the source. The normal IP delivers the packet to the destination
network. Hence, a packet sent across the boundaries of two subtrees would be routed
via wired links. This approach is based on the suggestions given in [1].

1) Inbound routes: An IP packet originated from outside a subnet and destined to a
FN/MN is received by the AP (i.e., AR) by normal IP routing. As all nodes appear as
they were a single hop away from the AP, the IP layer of the AP hands the packet
over to the MAC routing layer for ad hoc routing. Before the MAC route table is
searched, the destination IP address must be translated into a MAC address, i.e.,
address resolution must be performed by looking up the ARP table, in case of IPv4, or
the neighbor cache, in case of IPv6. If an entry is not found, an address resolution
message is flooded using LSBC. If the destination node exists within the subnet, the
MAC address is returned within address resolution reply message by unicast. Using
this MAC address, the AP searches the route table for the entry of the destination
node. It should be noted that it is guaranteed to find a route table entry if the address
resolution succeeds. This is because a new entry can be added to the MAC routing
table for a destination node by reverse path set up when an address resolution reply
message arrives from the node. A new route table entry is added when an outbound
data packet is received by the AP. If IPv6 is used, a new route entry is also created

 A Joint MAC Discovery-Routing Protocol for SOHAN 1113

when a router solicitation message arrives at the AP. Hence, the AP never floods
RREQ messages for destination nodes within its subnet. Based on the route table
entry found, the AP forwards the packet to the next hop node for further delivery
towards the destination node. If an entry is a stale one, the AP would receive a RRER
message. In this case, the AP should flood a RREQ message to find an alternate path.

2) Outbound routes: Outbound packets are sent to the AP along the path determined
by the topology discovery protocol. A source node uses the default route to send the
packet to its parent node which further will deliver the packet towards the AP. The
first step the source node must take is to determine whether the destination is within
the same subnet. If the source node determines the destination is located outside the
subnet by examining the destination prefix, it uses the default route to send the packet
to the AP and hand it over to the MAC layer ad-hoc routing.

3) Internal routes: A packet originated from a MN and destined to another within the
same subnet of SOHAN is forwarded purely by ad-hoc routing. The network layer
performs normal AODV route discovery operations with the same path metric used in
topology discovery for normal packet delivery between two hosts in the same subnet.
The address resolution and route discovery are performed using LSBC.

5 Simulation Results

5.1 Simulation Model

We used the Monarch extension of ns-2 simulator to evaluate the performance of the
joint topology discovery and routing protocol for SOHAN. Following the result
presented in [10], we maintain the number of APs above the square root of the
number of FNs and MNs combined. In all scenarios, there are twice as many MNs as
FNs. The APs are placed in the center of rectangular sub-areas of the equal size that
covers the entire simulation area. The FNs and MNs are randomly placed within the
sub-areas. The APs are fixed whereas the FNs and SNs are mobile in random way
point model, the max. speed of 20 m/s, the pause time of 30 sec. The MNs are the
source and destination of all traffic flows. The traffic flow from/to an Internet host is
not considered in this simulation. The MNs generate CBR traffic with varying packet
generation rates. The key simulation parameters are summarized in Table 1.

Performance Evaluation

Several scenarios were set up with the different number of APs, FNs and MNs and
packet generation rates. For each scenario, simulations were repeated 10 times with
different node placements and move patterns. In order to assess the simulation results,
we use system throughput, average end-to-end delay, packet delivery ratio and
normalized control overhead. For each scenario, we set up a flat AODV ad-hoc
network which had the same number of nodes and node locations as SOHAN in order
to compare the performance of the two networks with respect to system load and
scalability.

1114 H. Lee et al.

Table 1. Simulation parameters

Simulation area 1500m × 1500m

Number of APs 4 6 8 10 12

Number of FNs 6 12 22 34 48
Number of MNs 10 24 42 66 96
Number of nodes 20 42 72 110 156

Number of pkts/sec generated 5, 10, 20, 30, 40, 50, 60, 70, 80 pkts/sec
Packet size 512 bytes

Number of communication pairs 20
Simulation time 1000 sec

1) System load: In order to evaluate the performance of SOHAN at varying the
system load, we fixed the number of total nodes to 110. In case of SOHAN, the
number of APs, FNs and MNs are 10, 34 and 66, respectively. All of 110 nodes are
ad-hoc nodes in case of the flat network. As illustrated in Fig. 2, the control overhead
of SOHAN is decreased by 69.1%. The improvement is mainly due to the reduced
amount of routing packets flooded in the network. That is, instead of flooding route
discovery packets to find a new route, SOHAN mainly uses topology information
discovered based on beacons and association messages. Furthermore, even in case the
SOHAN floods control packet, the scope of flooding is limited within a cluster. As
will be seen below, the improved control overhead of SOHAN has positive impact on
the other performance metrics.

Fig. 3 shows how throughput changes as the system load increases. In the static
scenario, flat network saturates at about 40 pkts/sec while SOHAN saturates at about
60 pkts/sec, to reach the peak throughput of 150 Kbps and 250 Kbps, respectively.
The average number of hops is 3.50 and 4.12 for flat network and SOHAN,
respectively, which implies SOHAN selects routes with high throughput capacity
instead of one with less number of hops. In Fig. 4 one can observe the packet delivery
ratio of SOHAN is higher than that of the flat network.

2) Scalability: In order to study the scalability properties of SOHAN, we measure the
same performance metrics while increasing then number of nodes with 20 CBR traffic
flows of 30 packets per second. In Fig. 5, one can see the amount of control overhead
of SOHAN increases more slowly than the flat network although they both increase
linearly.

Fig. 6 and Fig. 7 show the behavior of throughput and packet delivery ratio. The
curves in the two graphs clearly indicate that SOHAN has better scalability properties
than the flat network. Notice that both the throughput and packet delivery ratio of
SOHAN is lower than those of flat network when the number of nodes is 20.

In this case, SOHAN has only 10 nodes that are capable of packet forwarding, and
some MNs lose connection with these nodes when they happen to be out of a
coverage area. Since all nodes are capable of forwarding in flat networks, the loss of
connection is less likely to happen. This observation motivates further research in the
minimum number of APs and FNs required to maintain a certain level of throughput
capacity in a given service area.

 A Joint MAC Discovery-Routing Protocol for SOHAN 1115

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 c
on

tr
ol

 o
ve

rh
ea

d

Packet rate (pkts/sec)

of Nodes=110, # of Flows=20, Mobility=20m/s

Flat-AODV
SOHAN

Fig. 2. Routing overhead vs. System load

50000

100000

150000

200000

250000

300000

5 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

(b
ps

)

Packet rate (pkts/sec)

of Nodes=110, # of Flows=20, Mobility=20m/s

Flat-AODV
SOHAN

Fig. 3. Throughput vs. System load

0

0.2

0.4

0.6

0.8

1

5 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 p
ac

ke
ts

 d
el

iv
er

ed

Packet rate (pkts/sec)

of nodes=110, # of Flows=20, Mobility=20m/s

Flat-AODV
SOHAN

Fig. 4. Delivery ratio vs. System load

0

0.1

0.2

0.3

0.4

0.5

0.6

20 42 72 110 156

N
or

m
al

iz
ed

 c
on

tr
ol

 o
ve

rh
ea

d

Number of nodes

Packet rate=30pkts/sec, # of Flows=20, Mobility=20m/s

Flat-AODV
SOHAN

Fig. 5. Routing overhead vs. No. of nodes

100000

150000

200000

250000

300000

20 42 72 110 156

T
hr

ou
gh

pu
t

(b
ps

)

Number of nodes

Packet rate=30pkts/sec, # of Flows=20, Mobility=20m/s

Flat-AODV
SOHAN

Fig. 6. Throughput vs. No. of nodes

0

0.2

0.4

0.6

0.8

1

20 42 72 110 156

F
ra

ct
io

n
of

 p
ac

ke
ts

 d
el

iv
er

ed

Number of nodes

Packet rate=30pkts/sec, # of Flows=20, Mobility=20m/s

Flat-AODV
SOHAN

Fig. 7. Delivery ratio vs. No. of nodes

6 Conclusion

We presented a joint MAC topology discovery and routing protocol for self-
organizing ad-hoc networks. We also proposed a cross-layer path metric based on link
quality and MAC delay which plays a key role in producing an optimal cluster-based
hierarchical topology with high throughput capacity. We also showed that significant
improvement in performance can be achieved by having the routing protocol operate

1116 H. Lee et al.

in a tightly-coupled fashion with the topology discovery protocol. We did not
consider energy consumption as one of the performance metric in this work. Since
energy can be a serious constraint with batter-powered nodes, it is appropriate to
include energy consumption in the cost metric. Problems related to this work that
requires further investigation include integration of other cost metrics such as hop
count and energy consumption with the path metric, flat routing between two nodes of
different clusters and interworking with Mobile IPv4/v6.

References

1. Gupta P. and Kumar P. R.: The Capacity of Wireless Networks, IEEE Transactions on
Information Theory, vol. IT-46, no. 2, pp. 388-404, March 2000.

2. Ganu S., Raju L., Anepu B., Seskar I. and Raychaudhuri D.: Architecture and Prototyping
of an 802.11-based Self-Organizing Hierarhical Ad-Hoc Wireless Network (SOHAN),
Proc. IEEE MobiHoc 2004.

3. Zhao S., Tepe K., Seskar I. and Raychaudhuri D.: Routing Protocols for Self-Organizing
Hierarchical Ad-Hoc Wireless Networks, Proc. IEEE Sarnoff Symposium, NJ, March
2003.

4. Johnson D. and Maltz D.: The Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR), draft-ietf-manet-dsr-09.txt, IETF Internet draft, 15, Apr. 2003.

5. Perkins C., Belding-Royer E. and Das S.: Ad hoc On-Demand Distance Vector (AODV)
Routing, IETF RFC 3561, July, 2003.

6. Thomson S., Bellcore and Narten T.: IPv6 Stateless Address Autoconfiguration, IETF
RFC 2462, Dec. 1998.

7. Yuen W. H., Lee H. N. and Anderson T. D.: A Simple and Effective Cross Layer
Networking System for Mobile Ad Hoc Networks, In 13th IEEE int. symposium on
personal indoor and mobile radio communications (PIMRC 2002), vol. 4, pp. 1952-1956,
Sep. 2002.

8. De Couto D. S. J., Aguayo D., Chambers B. A. and Morris R.: Performance of Multihop
Wireless Networks: Shortest Path is Not Enough, ACM SIGCOMM Computer
Communication Review, vol. 43, pp.43-48, Jan. 2003.

9. De Couto D. S. J., Aguayo D., Bicket J. and Morris R.: A High-Throughput Path Metric
for Multi-hop Wireless Routing, Proceedings of the Ninth Annual International
Conference on Mobile Computing and Networking, MOBICOM 2003, pp. 134-146, Oct.
2003.

10. Liu B., Liu Z. and Towsley D.: On the Capacity of Hybrid Wireless Networks, in
Proceedings of the IEEE Infocom 2003, vol. 2, pp. 1543-1552, Mar. 2003.

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1117 – 1125, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Effective Path Recovery Mechanism for AODV Using
Candidate Node*

Sang-min Lee and Keecheon Kim**

Dept, of Computer Science & engineering, Konkuk University,
Gwang-jin Gu, Seoul, Korea

{leesm, kckim}@konkuk.ac.kr

Abstract. We propose an effective path recovery scheme for AODV in mobile
ad-hoc network environment. Even though the existing path recovery scheme
for AODV routing protocol can recover the disconnected path in some ways,
however, they can not utilize the pre-connected routing nodes when we handle
the nodes in Ad-hoc environment. In order to utilize the pre-connected routing
nodes in recovering the path more effectively, we use a designated candidate
nodes. The candidate nodes are used to recover the disconnected path using the
pre-connected routing information. This scheme produces better results with
less control packets with faster path recovery time.

1 Introduction

The Mobile Ad-hoc Network is a mobile network composed of more than two mobile
terminals without fixed infrastructure. Legacy table driven routing protocol such as
OSPF and RIP can not be applied to MANET because of its lack of mobility supporting
capability. Therefore, several reactive routing approaches have been studied.[3][4]

AODV Routing algorithm is a reactive routing algorithm in Ad-hoc network.
AODV provide a high performance for Ad-hoc network. But, AODV has a problem
of local repair. So, we propose a new local repair algorithm in AODV[1]. The algo-
rithm provides an effective local repair using candidate nodes.

2 AODV (Ad Hoc On-demand Distance Vector) Routing Protocol

The AODV algorithm enables dynamic, self-starting, and multi-hop routing among
the participating mobile nodes wishing to establish and maintain an ad-hoc net-
work. AODV allows mobile nodes to obtain routes quickly for new destinations, and
does not require nodes to maintain routes to destinations that are not in active com-
munication. AODV using RREQ, RREP, RERR massages to establish and maintain
an ad-hoc network. AODV uses a local repair to maintain the established link[1].

* This research was supported by the Brain Korea 21 project.

** Corresponding author.

1118 S.-m. Lee and K. Kim

3 Path Recovery Problem of AODV

AODV provide the path-recovery algorithms. Local repair is a main idea in AODV
path recovery algorithms. But the local repair shows low performance in large net-
works. Local repair can not utilize pre-connected routing nodes, and increase the
number of control packets as networks grows.

3.1 Destination Sequence Number[1]

Every route table entry at every node must include the latest information available
about the sequence number for the IP address of the destination node. This sequence
number is called the "destination sequence number (DSN)”. DSN is updated when-
ever a node receives new information from RREQ, RREP, or RERR messages that are
related to that destination. The AODV depends on each node in the network to own
and maintain its destination sequence number to guarantee the loop-free routes to-
wards that node.

The AODV Using the DSN ensures loop free routes. However, DSN causes the
problem. The local repair using DSN can not utilize pre-connected routing nodes.

Fig. 1. The problem of the Destination Sequence Number

In Fig 1, AODV shows the problem with DSN. The exiting algorithm can not util-
ize the pre-connected routing nodes (c, d, f).��

4 An Effective Path Recovery in AODV

We propose more effective path recovery scheme that uses the Candidate Node. This
scheme provides the solution that utilizes the pre-connected routing nodes.The pro-
posed scheme needs to change the routing table and change the massage formats.

4.1 Routing Table Format

The existing Routing table can not support the candidate node. Therefore, we need to
change the routing table. The candidate node address is added in the routing table to

 An Effective Path Recovery Mechanism for AODV Using Candidate Node 1119

Table 1. Routing Table[1]

Table Name
Destination IP Address

Destination Sequence Number

Valid Destination Sequence Number flag
Other state and routing flags(ex., valid, invalid, repairable, being repaired)
Network Interface

Hop Count (Number of hops needed to reach destination)

Next Hop
List of Precursors

Lifetime (expiration of deletion time of the route)

support the candidate node. And the massage format needs to be changed to be used
as candidate node.

4.2 Changed Massage Formats

The RREQ (Route Request) Massage format is changed. We added The Origin-
destination IP address and flag C. The Origin-destination IP address is the destination
IP address before being disconnected.

Fig. 2. New RREQ Massage Format

Fig. 3. New RREP Massage Format

1120 S.-m. Lee and K. Kim

The RREP (Route Reply) Massage format is changed. We added a candidate node
IP address, Origin-destination IP address, Origin-hop-count and flag C. The
Origin-destination IP address is the destination IP address before being disconnected.
Origin-hop-count is number of hops before the disconnected link.

5 The Scenario for Local Repair Using Candidate Node

In figure 4, it explains the link repair scenario when it detects a broken link for the
next hop of an active route in its routing table.

1. Node d detects a broken link to Node f.
2. Node d chooses to execute the Local repair or reconfiguring the Link by Source

Node.
3. If it selects to do a Local repair, Node d broadcasts RREQ Massage to Node h to

repair the link
4. If Node h receives a RREQ massage, Node h creates RREP massage and sends

the message to Node d.
5. If Node d receives RREP massage, Node d reconfigures the link.

Fig. 4. The RREQ massages broadcast for local repair

6 Performance Evaluation

We compare the existing algorithm with proposed algorithm using the mathematical
expression. We compare the recovery time, the number of packets (RREQ massages)
and the overhead in the routing table.

6.1 Parameters Defined in RFC

The RFC3561 defines the parameters[1]. This paper uses these parameters.

 An Effective Path Recovery Mechanism for AODV Using Candidate Node 1121

Table 2. Parameters in RFC[1]

Parameter Name Value
ACTIVE_ROUTE_TIMEOUT 3,000 Milliseconds
ALLOWED_HELLO_LOSS 2

BLACKLIST_TIMEOUT RREQ_RETRIES * NET_TRAVERSAL_TIME
HELLO_INTERVAL 1,000 Milliseconds
LOCAL_ADD_TTL 2
MAX_REPAIR_TTL 0.3 * NET_DIAMETER
MIN_REPAIR_TTL See note below

MY_ROUTE_TIMEOUT 2 * ACTIVE_ROUTE_TIMEOUT
NET_DIAMETER 35

NET_TRAVERSAL_TIME
2 * NODE_TRAVERSAL_TIME *

NET_DIAMETER
NEXT_HOP_WAIT NODE_TRAVERSAL_TIME + 10

NODE_TRAVERSAL_TIME 40 milliseconds
PATH_DISCOVERY_TIME 2 * NET_TRAVERSAL_TIME

RERR_RATELIMIT 10

RING_TRAVERSAL_TIME
2 * NODE_TRAVERSAL_TIME *

(TTL_VALUE + TIMEOUT_BUFFER)
RREQ_RETRIES 2

RREQ_RATELIMIT 10
TTL_START 1

TTL_INCREMENT 2
TTL_THRESHOLD 7

*The MIN_REPAIR_TTL should be the last known hop count to the destination.

6.2 Delay Time

Delay time of the exiting local repair can be calculated as below. LR-PATH-
DISCOVERY-TIME means the time required to finish the local repair.

LR_PATH_DISCOVERY_TIME =
2 * NODE_TRAVERSAL_TIME * 2 * LR_RREQ_TTL

LR_RREQ_TTL =
MAX (MIN_REPAIR_TTL, 0.5 * #hop) + LOCAL_ADD_TTL

Since the minimum LR_RREQ_TTL is bigger then 4, the maximum LR_RREQ_TTL
is 0.3 * NET_DIAMETER + 2.

Delay time of propose scheme is calculated as below, in which
NEW_PATH_DISCOVERY-TIME is the time required to finish the repair with our
scheme.

1122 S.-m. Lee and K. Kim

NEW_PATH_DISCOVERY_TIME =
2 * NODE_TRAVERSAL_TIME * 2 * 4

New scheme fixes the broadcasting range for RREQ massage by 4 hops. Therefore
we know that the new discovery scheme needs less time than local repair scheme.

NEW_PATH_DISCOVERY_TIME =< LR_PATH_DISCOVERY_TIME

The path discovery time influences the range of a broadcast massage. However, the
proposed scheme doesn’t influence the range of a broadcast massage since the pro-
posed scheme fixes the range of the broadcast massage.

Fig. 5. The Maximum delay Time comparison for local repair

We check the maximum delay time of ad-hoc network. We use the network of size
12-45 hops. As the size of the network increased, maximum delay time increases in
the existing scheme. But, the proposed algorithm never changes the maximum delay
time, because, the scheme fixed the range of the broadcast massage.

The delay time in the Existing scheme = OPDT (Old_Path_Discovery_Time)
The delay time in the Proposed scheme = NPDT (New_Path_Discovery_Time)

OPDT (Old_Path_Discovery_Time) = 2 * NODE_TRAVERSAL_TIME * 2 * h

Average recovery time = 1680

NPDT (New_Path_Discovery_Time) = 2 * NODE_TRAVERSAL_TIME * 2 * 4

 An Effective Path Recovery Mechanism for AODV Using Candidate Node 1123

Average recovery time = 640
As we have proved, the proposed algorithm is more effective than the existing algo-
rithm. The maximum delay time is smaller than the existing algorithm.

6.3 The Number of Flooded RREQ Massages

We evaluate our new scheme using the candidate node in terms of the number of
Flooding RREQ message.

For the existing Scheme,
SCOPE_DELIVERY_LR_RREQ= * (LR_RREQ_TTL)2

For the propose Scheme,
NEW_SCOPE_DELIVERY_LR_RREQ = * (4 hop)2

LR_RREQ_TTL >= 4 hops

So, NEW_SCOPE_DELIVERY_LR_RREQ=<SCOPE_DELIVERY_LR_RREQ

Fig. 6. The Number of flooded RREQ massages

As the size of the network increases, the number of flooded RREQ massages in the
existing algorithm. But, the proposed algorithm never change the number of flooded
RREQ massages, because the algorithm fixes the range of the broadcast massage

1124 S.-m. Lee and K. Kim

The number of flooded RREQ massages in the Existing Scheme =
OSD (OLD_SCOPE_DELIVERY)
The number of flooded RREQ massages in the Existing Scheme =
NSD (NEW_SCOPE_DELIVERY)
 OSD = * (h)2

The average = 383.

NSD = * (4)2

The average= 50.24

Even the proposed scheme causes the routing table overhead using the candidate
node. But the overhead is very small since it is only a couple of bytes, which is a lot
smaller than the normal packet size. By reducing the number of packets, our scheme
shows the better performance.

7 Conclusion

In this paper, we propose an effective local path recovery scheme for AODV. The
existing path recovery scheme can not utilize the pre-connected routing nodes. But we
propose scheme improves performance using the candidate node. The candidate nodes
are used to recover the disconnected path using the pre-connected routing informa-
tion. The proposed scheme provides a good result with less control packets and fast
path recovery time. Ad Hoc Network is organized with mobile nodes. Ad hoc network
needs more effective Algorithm. Our next goal is to make an effective routing proto-
col for ad-hoc sensor network.

Acknowledgement

This research was supported by the MIC(Ministry of Information and Communica-
tion), Korea, under the ITRC(Information Technology Research Center) support pro-
gram supervised by the IITA(Institute of Information Technology Assessment).

References

[1] RFC3561, Ad hoc On-Demand Distance Vector (AODV) Routing. C. Perkins, E. Beld-
ing-Royer, S. Das. July 2003.

[2] RFC 3626, Optimized Link State Routing Protocol (OLSR). T. Clausen, Ed., P. Jacquet,
Ed.. October 2003.

 An Effective Path Recovery Mechanism for AODV Using Candidate Node 1125

[3] RFC 2501, Mobile Ad hoc Networking (MANET): Routing Protocol Performance Is-
sues and Evaluation Considerations. S. Corson, J. Macker. January 1999.

[4] D. B. johnson, D. A. Maltz, Yih-chun Hu and J. G. Jetcheva. "The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks(DSR)", Internet Draft, IETF MANET
Working Group, draft-ietf-manet-dsr-07.txt. February 2002.

[5] Z. J. Haas and M. R. Perlman, "The Zone Routing Protocol(ZRP) for Ad Hoc Net-
works", Internet Draft, IETF MANET Working Group, draft-ietf-manet-zone-3.txt.
March 2000.

[6] http://www.netmeister.org/misc/zrp/zrp.html
[7] Young-Bae Ko and Nitin H. Vaidya, “Location-Aided Routing(LAR) in mobile Ad-hoc

network”, Wireless Networks, Vol.6, No.4, July 2000, pp.307-321.
[8] S. Basagni, I. Chlamtac, V.R. Syrotiuk and B.A. Woodward, “A distance routing affect

algorithm for mobility(DREAM),” Proc. of the ACM/IEEE International Conf. on Mo-
bile computing and Networking, 1998, pp.76-84.

[9] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless net-
works,” Proc. of the international conf. on Mobile computing and networking, Aug.,
2000, pp.243-254.

[10] W. Liao and J. Sheu and Y. Tseng, “GRID: A Fully Location-Aware Routing Protocol
for Mobile Ad Hoc Networks,” Telecom. Systems, Vol.18, 2001, pp.37-60.

Analyzing Correlation Between Flow Data and
AS Paths in BGP Routing

Yoshiaki Harada1, Koji Okamura1, Takashi Chiyonobu1, and Youngseok Lee2

1 Kyushu University, Kyushu, Japan
harada@ale.csce.kyushu-u.ac.jp,

oka@ec.kyushu-u.ac.jp,

chiyonobu@ale.csce.kyushu-u.ac.jp
2 Chungnam National University, Daejon, Korea

lee@cnu.ac.kr

Abstract. The big picture of Internet could be depicted with the AS
map made from BGP routing tables. The traffc distribution statistics
on this AS map will be usefule for understanding of Internet dynamics.
Particularly, it is interesting to find which AS path are used for Internet
traffic exchange between two ASes. The correlation between Internet
traffic and AS path will be also important for future Internet design.
Therefore, in this paper, we aim at analyzing the correlation between
the AS path length and flow data. For the analysis, the BGP routing
tables and flow data collected at QGPOP for more than 1 year have
been used. As a analysis result, there is the relationship between the AS
path length and the traffic usage. In addition, we can find the traffic
distribution monitored at Kyushu Univerisity.

Keywords: BGP, AS, Flow Data.

1 Introduction

Due to the explosive growth of Internet usage and ‘always on’ wireless connectiv-
ity to Internet, a huge amount of computers and equipments are being connected
to the Internet. Typically, the global picture of Internet could be depicted with
the AS map where each AS node will be connected with other ASes with BGP
peering links. On this AS map, the correlation between traffic and AS path will
be interesting. For example, the traffic density will not be uniformly distributed
over ASes, which implies the heavy tail distribution or self similar character-
sitics. Thus, in this paper, we aim at finding traffic distribution over reachable
ASes which is observed at a BGP router of a specific AS.

Though IP prefixes could be a more useful metric for representation of global
Internet, the number of IP prefixes is so large that AS-level analysis has been
employed in this paper. An AS is a collection of IP network systems and routers
under the control of one entity (or sometime more) that runs a common routing
policy. The current total number of unique ASes is estimated to be more than
20,000, and it is continuously increasing. Usually, an AS has a BGP peering with
a neighboring AS through which reachability information will be exchanged. If

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 1126–1135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analyzing Correlation Between Flow Data and AS Paths in BGP Routing 1127

an AS is to communicate with a non-neighboring AS, ASes along the AS path
will provide the transit service that traffic will be forwarded to the appropriate
destination.

One of our objectives concerning BGP routing policies is how to decide the
AS path toward the destination AS. In BGP routing, traffic will be delivered to
the destination AS through the minimum AS hop path. Thus, if an AS path has
a large amount of traffic volume, routing optimization could reduce the AS path
hop for improving Internet performance. The BGP routing protocol will select a
long AS path if the destination AS could not be connected with short AS paths.
However, it will be an inefficient routing choice from the view point of traffic
engineering.

In our work, we assume that the average AS path length will decrease while
the Internet connectivity spans globally. if a new BGP peering is established
between ASes, this BGP peering link will reduce the existing AS path length,
because a new link added to a graph will minimize the average hop per path.
Thus, it will be important for designing future Internet to analyze the trend
of AS-level reachability on the AS map with the BGP routing table for a long
term. Furthermore, the correlation between traffic usage and the AS path will
be investigated. As an example of the result, we found that Kyushu University
has a lot of traffic usage with other Universities in Japan and related institutes
and that traffic usage between Kyushu University and organizations which do
not have close relationships with our university is not much reported.

This paper verifies the relationship between the AS path length and the traffic
usage through analyzing the BGP routing table and NetFlow data collected for
the long observation period. In addition, this paper shows the traffic distribution
monitored at our organization.

The remaining of this paper is organized as follows. The backgrounds on
Internet routing and AS path are explained in Section 2. Next, in Section 3,
we present how to analyze the BGP routing table and flow data. We show the
results of analysis in Section 4. Finally we conclude the paper in Section 5.

2 Backgrounds

2.1 BGP Routing

An Autonomous System (AS) [1] is a collection of IP network systems and routers
under the control of an administration entity that shares a common routing
policy. A unique AS number is assigned to each AS. Since the AS number an 16
bit integer, 65536 ASes could exist in maximum. Information on the AS number
and its IP prefixes could be known by using the WHOIS protocol. The WHOIS
is a TCP-based query/response protocol which is widely used for querying a
database in order to determine the owner of domain names, IP addresses, or AS
numbers.

Routing protocols used within an AS are called Interior Gateway Protocol
(IGP), whereas routing protocols used between ASes are known as Exterior

1128 Y. Harada et al.

Gateway Protocol (EGP). The most commonly used IGPs are RIP, OSPF, and
IS-IS, and BGP4 for EGP.

BGP [3][4][5] is used to exchange routing information between ASes. A BGP
routing table contains information on how to reach all the advertised prefixes
throughput the Internet. A prefix is a part of a 32-bit IP address that is a block
of IP addresses with the masking prefix length. Each routing information in the
routing table contains a prefix and AS path attributes, which is the actual list of
ASes along the path to the destination. BGP prefers the shortest AS path. And
BGP table have associated properties that are used to determine the best route
to a destination when multiple paths exist toward a particular destination. The
length of an AS path is the number of ASes to the destination. Therefore, we
regard the AS path length as a network distance between ASes.

2.2 AS Path

The length of an AS path is one of the important points to the Internet archi-
tecture. Generally, it is believed that the shorter the distance between commu-
nicating parties is, the less it will take to transmit data. Therefore, there have
been many studies on the AS-path length [6][7][8]. We analyze the correlation
between AS path length and flow data to get information which is useful for
designing Internet topology.

The number of packets is considered as traffic volume, and the number of
flows as the frequency or density of communication. We analyze the relationship
between flow data and AS path length. In this analysis, we calculated the average
AS length and deviation per packet, flow.

Regarding the communication pattern of an organization, we analyze the total
number of ASes that our university has sent/received data to/from. By analyzing
the communication pattern, we could improve the performance of the network
by optimizing the AS map or topology. For our analysis, we used the HTTP flow
data as well as all the flow data.

3 Analysis Method of Flow Data

3.1 BGP Table and Flow Data

In this paper, we analyzed the flow data and BGP table data that have been
collected for a long term. We describe the method of collecting flow data and
BGP table.

Our analysis method uses the BGP table exported from a router in AS 2523
(QGPOP), and the flow data exported from routers in AS 2523 and AS 2508
(Kyushu University). QGPOP [9] is a transit AS between KOREN (Korea ad-
vanced Research Network) and SINET (Science Information Network). QGPOP
communicates IIJ (Internet Initiative Japan) and KOREN. We use the collected
flow data exported from QGPOP and Kyushu University. These flow data are
sampled at the rate of 1/10. Flow Data is used to analyze the Internet traffic.
Therefore, There have been many studies on analysis of Flow Data [10][11][12].

Analyzing Correlation Between Flow Data and AS Paths in BGP Routing 1129

Fig. 1. How to calculate the AS path length

A flow is a stream of unidirectional packets that shares the same 5-tuples of
(src IP, dst IP, src port, dst port, proto). A network port is a special number,
ranging from 0 - 65535, recognized by the TCP and UDP protocols. These pro-
tocols use the ports to demultiplext incoming packets to a particular process
running on a host. In this paper, port numbers are used in order to classify
application traffic.

Next, we explain BGP routing table data. A BGP routing table includes pre-
fixes and AS paths of reachable ASes. An AS path is a list of ASes. In the
AS path, sometimes, the same AS number might be included such as “300 100
100 200”. It is called a ‘prepended AS path’, and it is often used for manipu-
lating the AS path according to BGP routing policy of preferring the shorter
path.

3.2 How to Analyze Flow Data

Relationship between Flow Data and AS Path Length. This paper an-
alyze the relationship between the change of AS path length and flow data. If
ASes which have long AS path communicated frequently, it means that wasting
packets flows between the two ASes. In this case, we can reduce the traffic by
shorten AS path between these ASes. Analyzing Flow Data with AS path lead to
reducing data traffic. In this section, we explain how to analyze the relationship
between Flow Data and AS path length. We analyze the flow data observed at
QGPOP on Wednesday in every fourth week from 2004/10/13 to 2006/01/04.
Flow data for a day is collected at 0-5 minutes in every hour.

We explain the method of calculating AS path length. A BGP table has AS
path for destination ASes. Therefore, we should calculate the full AS path by
using the AS path for source AS. An AS path is directional, because a route
might be changed according to the routing policy at each AS. However, most
of routes will be selected as the shortest one. Therefore, we add a source AS to
the outbound AS path, and calculate the full AS path length. Figure 1 shows an
example of calculating the full AS path length. It is assumed that the source AS
path equals to backward AS path. For example, communication from AS 2503
to AS 10036 could be possible as seen at at Fig. 1. We add the contrary source
AS path ”2907 2503” and AS 2523 (QGPOP) to the destination AS path “9270
3608 10036”. In this case, the AS path length is 6.

1130 Y. Harada et al.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

2004/11 2005/01 2005/03 2005/05 2005/07 2005/09 2005/11 2006/01 2006/03

A
S

 p
at

h
le

ng
th

year/month

average AS path length

all flows
port80 flows

all packets
port80 packets

Fig. 2. Temporal changes of AS path lengths per flow, packet, and AS pair

We calculate the average AS path length per one packet, per flow, and per AS
pair to find the correlation. When we examine AS path length, we use the flow
data with the reduced prepend path of AS 2497 (IIJ). IIJ is an AS neighboring to
QGPOP, and IIJ appends a prepended AS path to its own AS path in 2005/08.
IIJ communicate with QGPOP frequently so that the AS path dynamics of IIJ
affects the BGP table of QGPOP. we analyze the flow data with the reduced IIJ
prepended path in this paper.

Flow data might include illegal access such as Internet worm or viruses. If
anomaly traffic is included for analysis, the correlation of actual communication
data could not be correctly found. Therefore, we consider port 80 traffic in flow
data.

Distribution of Destination ASes. We use the collected flow data in Kyushu
University and BGP table in QGPOP. While analyzing the distribution of com-
munication targets, we use the flow data on Wednesday in every week from
2004/10/13 to 2006/02/01. Since we could not collect BGP tables in Kyushu
University, we used BGP tables in QGPOP to find AS numbers of communica-
tion targets.

4 Analysis Results

4.1 Relationship Between Flow Data and AS Path Length

We analyzed the average AS-path length per packet, flow, and AS pair to find
correlation between flow data and AS path length. Figure 2 shows the temporal
changes of the average AS path length on all traffic and port 80 traffic. Port 80
is the typical port for HTTP. The AS path length per packet was shorter than

Analyzing Correlation Between Flow Data and AS Paths in BGP Routing 1131

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

pe
rs

en
ta

ge
 (

%
)

AS-path length

QGPOP : flows

2004/10/13
2005/01/05
2005/03/30
2005/06/22
2005/09/14
2005/12/07

Fig. 3. CDF of port 80 flows per AS path length

the other data through a year. It represents that network routing is effective
from the view point of traffic volume, because routing is to reduce the total
number of packets in Internet. On the other hand, the average AS path length
has increased for a year. Next, we explain the time change of AS path length
on port 80 traffic. On 2005/12, the average AS path length per flow has been
changed when compared with others on port 80 traffic. However, the average AS
path length of packets is extremely short. It is estimated to be the influence of the
communication between AS 2523 (QGPOP) and AS 2970 (SINET) with AS path
length of 2. Since this communication data includes a large amount of packets
per one flow, it affected the average AS path length per packet. The average AS
path length has increased for a year in all flows. Yet, it has decreased in port 80
flows as shown in Fig2. It is considered that the number of flows represents the
frequency of communication. Therefore, communication with shorter AS path
length has increased in port 80 flows. However, we could not find relationship
between AS path length and packets on port 80 traffic, because dynamics of
packet volume changes significantly day to day.

Figure 3 shows the relation between the percentage of flows in port 80 traffic
and AS path length. The graphs are shifted to left in Fig. 3. It shows that the
communication with the short AS path length has increased. The AS path length
of port 80 flows was not short. Yet, overally, the average AS path length was
shorter than that of all flows. Recently in port 80 flows, the AS path length of
3 accounts for about 20% of traffic volume. The AS path length of 4 explains
about 40% of flows. However, there are low percentages about AS path lengths
of 4 and 5. It shows that flows are transmitted evenly between AS path 2 and 6.

As shown at port 80 flows, the average AS path length has decreased, and
flows with the short AS path length has increased through one year. Therefore,
we investigate the ASes with a large number of flows through the year in order
to figure out what are reasons of decreasing the average AS path length. One

1132 Y. Harada et al.

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 8e+006

2004/09 2004/11 2005/01 2005/03 2005/05 2005/07 2005/09 2005/11 2006/01 2006/03

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

nu
m

be
r

of
 fl

ow
s

of
 p

ac
ke

ts

nu
m

be
r

of
 A

S
es

year/month

number of ASes
number of flows

number of packets
number of ASes (port 80)
number of flows (port 80)

number of packets (port 80)

Fig. 4. Temporal changes of flows, packets, and communication target

of reasons is the AS related with Microsoft. Microsoft has ASes from 8068 to
8075, and integrate AS 8072 in AS 8075. Traffic for AS 8072 was transmitted
through AS 8072. Therefore, the AS path of traffic for AS 8072 was shortened.
Microsoft communicated with AS 2508 (Kyushu University) frequently, and AS
2508 connected to AS 2523 (QGPOP) directly. The AS path between AS 6075
and AS 2508 is 4, which is shorter than the average AS path length. Thus, the
average AS path length has decreased. On the other hand, traffic of AS 18088 has
been observed. This AS was included in BGP table in 2004/10, and there are a
few incidents of communication at that time. However, the communication with
this AS has increased gradually, and it became one of the most communicating
ASes since 2005/05. Most of communication traffic of AS 18088 are to AS 2508,
whose AS path length is 3. This AS path length is shorter than the average AS
path length. Hence, the average AS path length of flows has decreased.

4.2 CDF of Destinations

Figure 4 shows the temporal changes for the number of flows, packets, and
target ASes that communicate with Kyushu University on all traffic and port
80 traffic. As shown in Fig. 4, when the number of target ASes was small, both
the number of flows and packets tends to be small. The dates of 2004/11/03,
2005/05/04 and 2005/11/23 were holiday. On these days, the number of target
ASes was specifically small, and both of the number of flows and packets are
small. Similarly, 2004/12/29, 2005/12/28 and 2006/01/04 shows small traffic
volumes. From July to September, the number of target ASes are small. It is
estimated that there are more than 20,000 ASes in Internet. It is seen that
Kyushu University communicated with about a half of whole ASes in the global
Internet. Next, we explain port 80 traffic. On 2006/01/25, the number of target

Analyzing Correlation Between Flow Data and AS Paths in BGP Routing 1133

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 10 100 1000 10000

pa
ck

et
s

(%
)

number of AS

2004/1020
2005-0119
2005-0511
2005-0831
2005-1221

Fig. 5. CDF of communication (log scale)

ASes was especially large, 3,871 ASes. Assuming that the average number of
target ASes was about 2,400, the number of ASes on these days was about 1,400
larger than the average number of ASes. However, the number of flows and the
number of packets are not so much different from the others. We considered that
the data with small packets or flows transmitted from (to) Kyushu University.
Port 80 is generally used as web with a moderate volume of flows or packets.
Thus, it is inferred that anomalay traffic has occurred such as scanning a lot of
ASes with the small traffic. On 2006/02/01, the number of the target ASes is
significantly large, 3,325 ASes because of same reason. In web traffic, Kyushu
University communicated with 2,200 to 2,500 AS on average. There is a bias of
anomaly traffic toward ASes.

As shown in Fig. 4, the number of flows and packets has increased throughout
a year. The HTTP traffic has increased, too.

Figure 5 shows the CDF of packets, and the vertical axis is the percentage of
packets. On 2005/08/31, only one AS accounts for 30% of packets. This AS is
Kyoto University AS, which AS number is 2504. The top 20 ASes communicated
with Kyushu University explain 50% of packets, and the top 80 ASes accounts
for almost 80% packets. 80 ASes is 0.4% of total ASes in Internet. It shows that
communication targets of Kyushu University are strongly biased to a few ASes.

We found a tendency that Kyushu University communicates with 2,200 to
2,500 AS on average in port 80 traffic. Thus, we examine ASes communicated
with Kyushu university through a year. We analyzed the details of ASes by
comparing traffic patterns between 2004/11/10 and 2005/11/09. Figure 6 shows
which ASes have been communicated with our university throughout a year.

Table 1 shows the details of ASes communicated with Kyushu University.
The number of ASes which have communicated with Kyushu University on both
2004/11 and 2005/11 are 1,365. The number of ASes communicated on only

1134 Y. Harada et al.

Fig. 6. Changes of communication targets in port 80 flow data

2004/11 and only 2005/11 are 921 and 1232, respectively. A half of ASes have
been changed for a year.

Table 1. Details of communication AS targets compared between 2004/10 and 2005/10

2004 2005
only duplication only duplication

flow (num) 23,519 548,140 58,776 875,022
flow (%) 4.1 95.9 6.3 93.7

packet (num) 61,509 1,276,678 226,662 2,377,060
packet (%) 4.6 95.4 8.7 91.3

As shown Table 1 and Fig. 6, ASes communicated with our University for
a year have a lot of traffic. In 2005 and 2004, the ASes communicated with
us account for more than 90% of packets. ASes in 2004 explains only 4.6% of
packets. Yet, new ASes which have been contacted to in 2005 take 8.7% of
packets. As a result, ASes communicated with us for a year have a large volume
of traffic, and new ASes and disappeared ASes have a small volume of traffic.

5 Conclusion

In this paper, we investigated the correlation between the traffic patterns and
AS path. Specifically, it is observed that the average AS path length per packet,
flow has been increased during one year from the date of QGPOP in the opposite
our assumption. The average AS-path length per flow for HTTP has not been
decreased, because the number of flows with shorte AS paths have increased, and
AS-path length between ASes that communicates frequently has been reduced.
It is seen that Kyushu University has communicated with about a half of ASes
on the Internet for one year. However, when we consider HTTP flow data, 80%
of flows belong to 0.7% of total ASes. A half of ASes communicated with Kyushu

Analyzing Correlation Between Flow Data and AS Paths in BGP Routing 1135

University were changed for one year. However, ASes that have a large amount
of communication traffic with Kyushu university did not changed throughout
one year. That is, 50% of packets is transmitted by the most frequently accessed
20 ASes. We have found that Kyushu University frequently communicated with
Kyoto University and some particular commercial ISPs.

We could find the relationship between AS path length and flows, but we
could not find the relationship between AS path length and packets in port
80 traffic. We think that we should decrease data collecting interval to analyze
more in detail. Generrally, finding relationship between traffic pattern on the AS
map in the global Internet is versy difficult. However, this will be important for
designing future Internet.

References

1. RFC 1772 - BGP-4 Application, http://www.ietf.org/.
2. IANA (Internet Assigned Numbers Authority), http://www.iana.org/.
3. RFC 1771 - A Border Gateway Protocol 4, http://www.ietf.org/.
4. Stephen A.Thomas, ”IP Switching and Routing Essentials”, WILEY, p181-219,

2001.
5. Sam Halabi, Danny McPherson, ”Internet Routing Architectures, Second Edition”,

Cisco Press, 2000.
6. Huffaker Bradley, Marina Fomenkov, Daniel J.Plummer, David Moore and K claffy,

”Distance Metric in the Internet”, IEEE International Telecommunications Sym-
posium (ITS), 2002.

7. L.Amini and H.Schulzrinne, ”Observations from router-level internet trace”, in
DIMACS Workshop on Internet and WWW Measurement, mapping and Modeling,
2002.

8. Toshiyuki Kawasaki, Koji Okamura, ”Evaluation on Scalability of Conference Sys-
tem using Request-Routing”, 18th International Conference on Advanced Informa-
tion Networking And Applications, p533-534, 2004.

9. QGPOP (Kyushu GigaPOP Project), http://www.qgpop.net/.
10. C.Estan and G.Varghese, ”New Directions in traffic measurement and accounting”,

ACM SIGCOMM ’02, 2002.
11. Y.Zhang et al, ”On the characteristics and origins of Internet flow rates”, ACM

SIGCOMM ’02, 2002.
12. Connie Logg, Les Cottrell, ”Passive Performance Monitoring and Traffic Charac-

teristics on the SLAC Internet Border”, PAM2001 A workshop on Passive and
Active Measurements, 2001.

Author Index

Abderazek, Ben A. 37
Ahn, Seongjin 1018
Ahn, Youngjin 1
Akanda, Md. Musfiquzzaman 37
Al-Raqabani, Ali 145
Alcaim, Abraham 758
Alexander, Michael 499
Alexander, Richard 452
Almeida, Jussara 427
Almeida, Virǵılio 427
Alvarez, Gustavo 854
Aly, Sherif G. 115
Angel, Thomas 648
Angelaccio, Michele 864
Apparao, Padma 464
Arenas, Alvaro 964
Artundo, I. 311

Bae, Younghwan 791
Bahi, Jacques M. 195
Bang, Young-Cheol 358
Barada, Hassan 145
Barr, David 452
Batalha, Rose M.S. 748
Benevenuto, Fabŕıcio 427
Benlamri, Rachid 145
Bin, Zhang 1098
Birchal, Marco Aurélio S. 707
Bononi, Luciano 873
Boto, Daniel 84
Bracuto, Michele 873
Büge, Volker 397
Butikofer, Joshua 440
Buttarazzi, Berta 864

Cai, Shuxiang 205
Cannataro, M. 658
Cantone, Giovanni 241
Cardoso, Diego L. 269, 844
Carlón, Antonio 84
Carneiro, Cássio A. 758
Carretero, J. 251
Carvalho, Glaucio H.S. 269, 844
Carvalho, Solon V. 269

Chang, Chih-Hung 579
Chang, Jae-Woo 781
Chen, Cheng-Kai 231
Chen, Rongguo 628
Chen, Shuming 47
Chiang, Wen-Chung 579
Chichizola, Franco 65
Childs, Stephen 417
Chiyonobu, Takashi 1126
Cho, Hanjin 791
Cho, Sunghoon 939
Choi, Byounguk 31
Choi, Euiin 939
Choi, Hae-Wook 791
Choi, Jin-Tak 559
Choi, Jiwon 1073
Choi, Kyong Ho 917
Choi, Myounghoi 542
Choi, Sungja 939
Choi, Yong-Hoon 332, 1107
Choo, Hyunseung 1, 341
Chu, William C. 687
Chun, Kilsoo 1090
Chung, Jinwook 1018
Chung, Kyuhyuk 1044
Chung, Min Young 341
Chung, Tai-Myoung 971
Chung, Young-uk 1107
Coghlan, Brian 417
Colicchia, Alessandro 241
Costa, João C.W.A. 269, 844
Couturier, Raphaël 195
Cui, Yidong 1098
Curiel, Mariela 854

da Silva Martins, Carlos Augusto P. 94,
728, 748

Dambre, J. 311
D’Angelo, Gabriele 873
Daradoumis, Thanasis 509
Darjany, David 717
De Giusti, Armando E. 65
De Giusti, Laura C. 65
Debaes, C. 311

1138 Author Index

Di Biagio, Christian 241
Di Martino, Beniamino 550
Dı́ez, José Fernando 84
Diniz, Amanda R.M. 758
Donatiello, Lorenzo 873
Dratz, Edward 648
Dümmler, Jörg 697

Ekel, Petr Y. 94, 728, 748
Emeneker, Wesley 440
Englert, Burkhard 717
Eom, Jung-Ho 971
Estrada, Trilce 677

Farin, Dirk 823
Fernandes, César 427
Fiore, Ugo 368
Flores, Leonardo 854
Fonte Boa, Raphael 94, 728
Fragoso D., Olivia G. 589
Francês, Carlos R.L. 269, 844
Freitas, Flávia M. 758

Gao, Guang R. 221
Gao, Nan 205
Garćıa, F. 251
Garćıa Carballeira, Felix 833
Garcia, Francisco M.P. 758
Gómez, Jaime 84
Gómez-Mart́ınez, Elena 884
Gorda, Brent 474
Gu, Jinguang 532
Guedes, Luiz Affonso 269, 844
Guillén R., Mario 589
Guo, Jianping 610, 628
Guo, Minyi 559
Guo, Yang 47
Gutiérrez-Carreón, Gustavo 509
Guzmán R., Mariana 589

Hagihara, Kenichi 769
Han, Dong-Soo 668
Han, Inkyu 1000
Han, Sung-Kook 542, 559
Han, Sunyoung 31
Han, Tsu-Fen 579, 687
Han, Youn-Hee 542
Han, Young-Ju 971
Harada, Yoshiaki 1126
Heirman, W. 311

Heo, Eui 569
Heo, Jun 1044
Hermenier, Fabien 407
Hoefler, Torsten 155
Hong, Jinkeun 990
Hu, Ming-zeng 351
Hu, Xiao 47
Hu, Yincui 610
Huang, Min 205
Huang, Zhenchun 598
Hurfin, Michel 165
Hwang, An Kyu 1053
Hwang, Chong-Sun 11

Ibáñez, M.B. 251
Im, SeokJin 11
In, Janguk 939
Ino, Fumihiko 769
Ito, Minoru 803
Iyer, Ravi 464

Jackson, Dave 440
Jakl, Ondřej 260
Janakiraman, G.(John) 427
Jang, Changbok 939
Jeon, Jun-Cheol 57
Jeon, Yang-Seung 542, 559
Jeong, Dongwon 542
Jeong, Young-Sik 542, 559
Jesaitis, Algirdas 648
Jeun, Inkyoung 1080
Jiang, Yuxin 628
Joo, Seong-Soon 358
Jorba, Josep 509
Juiz, Carlos 907
Jung, HaRim 11
Jung, Whoi Jin 1053

Kaiser, Hartmut 618
Kan, Heng-Chuan 687
Kang, Sang-Won 11
Kant, Krishna 104
Kawasaki, Regiane Y. 269, 844
Kemp, Yves 397
Khil, Ara 1025
Kim, Beob Kyun 813
Kim, Beomjoon 332
Kim, Byung Chul 1053, 1063
Kim, Dong Seong 185, 981
Kim, Eun Heui 717

Author Index 1139

Kim, Hae-Jin 668
Kim, Han Jib 1063
Kim, Hee-Chul 291, 301
Kim, Hong-Soog 668
Kim, Insu 1034
Kim, Jeeyeon 1090
Kim, Jeong Seob 738
Kim, Jongwan 11
Kim, Keecheon 1034, 1073, 1117
Kim, Ki Chang 738, 927
Kim, Kihong 990
Kim, Kuinam J. 917, 1006
Kim, Moonseong 358
Kim, Seungjoo 1090
Kim, Shin-Dug 569
Kim, Sung Won 322
Kim, Yong-Ki 781
Kim, Young-Jin 781
Kim, Youngsup 1000
Kirsch, Kathrin 618
Kohut, Roman 260
Koszalka, Leszek 21
Kotani, Yuki 769
Krintz, Chandra 474
Kubiak, Michal 21
Kunze, Marcel 397
Kwon, Oh-Kyung 569
Kwon, Oh-Young 569

Lawi, Armin 135
Le Narzul, Jean-Pierre 165
Lee, Bong Gyou 955
Lee, Dae Sung 738, 927
Lee, Dong Chun 949
Lee, Dong Hwi 917, 1006
Lee, Geuk 1000
Lee, Gira 1063
Lee, Hyukjoon 1107
Lee, Jae Yong 1053, 1063
Lee, Jaeil 1080, 1090
Lee, KwangKyum 1025
Lee, Moohun 939
Lee, Sang Min 981
Lee, Sang-min 1117
Lee, Sangho 1006
lee, Seoklae 1080
Lee, Sungchang 1
Lee, Tae-Jin 1
Lee, Yoo-Kyoung 358
Lee, Youngseok 1126

Lera, Isaac 907
Li, Bin 351
Li, Guoqing 598
Li, Yiming 231
Liang, Yanchun 637
Licon, Abel 677
Lim, Hyeong-Seok 291, 301
Lin, Chun-Yuan 215
Liu, Dingsheng 598
Liu, YunLing 610
Loriant, Nicolas 407
Lumsdaine, Andrew 155
Luo, Ying 610

Ma, Pengyong 47
Machado, Alexei 748
Madkour, Amgad 115
Mancini, Emilio Pasquale 125
Manjarres, D. 311
Marcarelli, Sonya 125
Marino, Mario Donato 74
Marques Amaral, Alexandre 94, 728
Mart́ınez, Mario 84
Maruyama, Naoya 387
Massonet, Philippe 964
Matsuoka, Satoshi 387
McCandless, Jason 417
Menaud, Jean-Marc 407
Méndez, Vı́ctor 833
Merseguer, José 884
Merzky, Andre 618
Miñano, Borja 907
Mitrani, Isi 897
Monti, Gabriele 377
Moro, Gianluca 377
Mumey, Brendan 648
Murata, Yoshihiro 803

Naiouf, Marcelo R. 65
Nam, Changwoo 1018
Naqvi, Syed 964
Navas, Luis Manuel 84
Newell, Don 464
Ngo, Vu-Duc 791
Nguyen, Huy-Nam 791
Nogueira, Elton F.D. 748

Oberst, Oliver 397
Ochmańska, Ewa 175
Oda, Kentaro 135

1140 Author Index

Oh, Jai-Boo 57
Ohler, Nathaniel 648
Okamura, Koji 1126
Oliveira da Penha, Dulcinéia 94, 728
Oliveira Soares de Souza, Márcio 94

Palmieri, Francesco 368
Park, Jae Hyun 738
Park, Jaesung 332
Park, Jong Sou 185, 981
Park, Jung-Heum 291, 301
Park, Kyung-Lang 569
Park, Sang Min 917
Peixoto, Zélia M.A. 758
Pennella, Guido 241
Pesce, Gianfranco 241
Pietrobon, Carlos A. 748
Pley, Julien 165
Pozniak-Koszalka, Iwona 21
Puigjaner, Ramon 907

Quast, Günter 397

Räıpin Parvédy, Philippe 165
Rauber, Thomas 697
Rehm, Wolfgang 155
Rhee, Choonsung 31
Rocha, Luiz J.C. 748
Rünger, Gudula 697

Sancho, Pere P. 907
Santaolaya S., René 589
Santos, José Renato 427
Santos, Matheus 427
Sarker, Biplab Kumer 279
Sartori, Claudio 377
Scott, Stephen L. 487
Seo, Young-Jun 519
Shafran-Natan, Rakefet 603
Shibata, Naoki 803
Shih, Wen-Chung 579
Shin, Kwonseung 341
Shin, Yongtae 1025
Sider, Abderrahmane 195
Silva, Marcelino S. 269
Slegers, Joris 897
Son, Dongcheul 990
Song, Eun-Ha 559
Song, Jungwook 31
Song, MoonBae 11

Song, Young-Jae 519
Sowa, Masahiro 37
Squyres, Jeffrey M. 155
Stanzione, Dan 440
Starý, Jǐŕı 260
Strazdins, Peter 452
Svoray, Tal 603

Tamai, Morihiko 803
Tang, Chuan Yi 215
Tatezono, Masaki 387
Taufer, Michela 677
Thienpont, H. 311
Thomas, Nigel 897
Thulasiram, Ruppa K. 221
Thulasiraman, Parimala 221
Tripathi, Anil Kumar 279

Uehara, Kuniaki 279
Uyama, Kazuya 803

Valdés M., Manuel A. 589
Vale, Maria Helena M. 707
Vallée, Geoffroy 487
Van Campenhout, J. 311
Veltri, P. 658
Vidyarthi, Deo Prakash 279
Vijaykumar, Nandamundi L. 844
Villano, Umberto 125
Visacro, Silvério 707

Wan, Wei 628
Wang, Jianqin 610, 628
Wang, Xingwei 205
Wang, Yao 351
With, Peter H.N. de 823
Wolski, Rich 474
Won, Dongho 1090
Won, Jongho 341
Wu, Chaolin 610

Xie, Yi 610, 628
Xiong, Wei 637
Xu, Baowen 532
Xue, Yong 598, 610, 628

Yan, Bo-ru 351
Yan, Ma 1098
Yang, Chao-Tung 579, 687
Yang, Laurence Tianruo 279, 559

Author Index 1141

Yang, Seomin 1107
Yasumoto, Keiichi 803
Yoo, Kee-Young 57
Yoo, Year Back 927
Yoshida, Takaichi 135
You, Kang Soo 813
Youseff, Lamia 474
Yu, Kun-Ming 215

Zeng, Yi 598
Zhang, Chen 637
Zheng, Lei 610, 628
Zhou, Chenghu 628
Zhou, Chunguang 637
Zhou, Jiayi 215
Zhu, Weirong 221

	Frontmatter
	FHPCN 2006 Workshop
	Track 1: System Architectures
	DNA: Diameter NEMO Applications Based on Binding Update Integration
	Towards Real-Time Processing of Monitoring Continuous k-Nearest Neighbor Queries
	Comparison of SBA -- Family Task Allocation Algorithms for Mesh Structured Networks
	Scalable Overlay Multicast Architecture
	On the Design of a Dual-Execution Modes Processor: Architecture and Preliminary Evaluation
	Pseudo Share Data Cache in Multiprocessor: PSDMP
	Further Improvement of Manik et al.'s Remote User Authentication Scheme Using Smart Cards
	Dynamic Load Balancing on Non-homogeneous Clusters
	L2-Cache Hierarchical Organizations for Multi-core Architectures
	Automatic Guidance of a Tractor Using Distributed Applications
	RCMP: A Reconfigurable Chip-Multiprocessor Architecture

	Track 2: Middleware and Cooperative Computing
	Virtual Link: An Enabler of Enterprise Utility Computing
	Pervasive Open Spaces: A Transparent and Scalable Dome-Based Pervasive Resource Allocation System
	Computational Experience with Branch, Cut and Price Algorithms in Grid Environments
	Quorum Based Distributed Conflict Resolution Algorithm for Bounded Capacity Resources
	Performance Analysis of Semi-centralized Load Sharing
	A Case for Non-blocking Collective Operations
	Using Agreement Services in Grid Computing
	An Open Environment for Compositional Software Development

	Track 3: Techniques, Algorithms and Applications
	A Survivable Distributed Sensor Networks Through Stochastic Models
	Design and Analysis of the M2LL Policy Distributed Algorithm for Load Balancing in Dynamic Networks
	An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI
	An Efficient Parallel Algorithm for Ultrametric Tree Construction Based on 3PR
	Exploring Financial Applications on Many-Core-on-a-Chip Architecture: A First Experiment
	A Distributed Simulation-Based Computational Intelligence Algorithm for Nanoscale Semiconductor Device Inverse Problem
	Monitoring Distributed Systems for Safety Critical Software: A Goal-Driven Approach and Prototype-Tool
	A Profiling Approach for the Management of Writing in Irregular Applications
	Parallel Thermo-Mechanical Modelling for Nuclear Waste Deposition
	A Markovian Sensibility Analysis for Parallel Processing Scheduling on GNU/Linux
	Multiple Tasks Allocation in Arbitrarily Connected Distributed Computing Systems Using A* Algorithm and Genetic Algorithm

	Track 4: Advanced Networking
	Panconnectivity and Pancyclicity of Hypercube-Like Interconnection Networks with Faulty Elements
	Embedding Starlike Trees into Hypercube-Like Interconnection Networks
	Reconfigurable Interconnects in DSM Systems: A Focus on Context Switch Behavior
	Cross-Layer Scheduling Algorithm for WLAN Throughput Improvement
	Power Saving Mechanisms of IEEE 802.16e: Sleep Mode vs. Idle Mode
	Routing Based on Ad Hoc Link Reliability
	Tracking Anomalous Behaviors of Name Servers by Mining DNS Traffic
	On Recovery Algorithm for Fault-Tolerance in Multicast Trees
	A Low Cost and Effective Link Protection Approach for Enhanced Survivability in Optical Transport Networks
	W<Superscript>{\itshape R}</Superscript>-Grid: A Scalable Cross-Layer Infrastructure for Routing, Multi-dimensional Data Management and Replication in Wireless Sensor Networks

	XHPC 2006 Workshop
	Making Wide-Area, Multi-site MPI Feasible Using Xen VM
	Virtualizing a Batch Queuing System at a University Grid Center
	Power Management in Grid Computing with Xen
	Dynamic Virtual Worker Nodes in a Production Grid
	Performance Models for Virtualized Applications
	Dynamic Virtual Clustering with Xen and Moab
	Performance Enhancement of SMP Clusters with Multiple Network Interfaces Using Virtualization
	Architectural Characterization of VM Scaling on an SMP Machine
	Paravirtualization for HPC Systems
	Xen-OSCAR for Cluster Virtualization
	Job Scheduling for Loosely-Coupled Inhomogeneous Nodes Using Data Envelopment Analysis

	S-GRACE 2006 Workshop
	Semantic Description of Grid Based Learning Services
	A QoS Oriented Broker System for Autonomic Web Services Selection
	XML Based Semantic Query Mechanism on Grid
	A Novel Memory-Oriented OWL Storage System
	An Ontology Matching Approach to Semantic Web Services Discovery
	Ontology-Based Composition of Web Services for Ubiquitous Computing
	Web Service Resource Framework Based Computing Service Framework for Computational Grid Applications
	Metropolitan-Scale Grid Environment: The Implementation and Applications of TIGER Grid
	A Plug-In Tool for Composing Web Services for Applications Development

	GridGIS 2006 Workshop
	Spatial Data Service Models in Grid Environment
	Solving Spatio-temporal Non-stationarity in Raster Database with Fuzzy Logic
	Study on Grid-Based Special Remotely Sensed Data Processing Node in Grid GIS
	Versioning and Consistency in Replica Systems
	Design of GridGIS Architecture

	HPC-GTP 2006 Workshop
	Selection for Feature Gene Subset in Microarray Expression Profiles Based on a Hybrid Algorithm Using SVM and GA
	Filtering Epitope Alignments to Improve Protein Surface Prediction
	A Grid Service Based on Suffix Trees for Pattern Extraction from Mass Spectrometry Proteomics Data
	Performance Evaluation of BLAST on SMP Machines
	compPknots: A Framework for Parallel Prediction and Comparison of RNA Secondary Structures with Pseudoknots
	On Integration of GUI and Portal of Cluster and Grid Computing Platforms for Parallel Bioinformatics

	PDCE 2006 Workshop
	Combining Measures for Temporal and Spatial Locality
	Parallel Processing Applied on the Electric Grounding Systems Design
	Implementing Overlapping Domain Decomposition Methods on a Virtual Parallel Machine
	Parallel Image Segmentation in Reconfigurable Chip Multiprocessors
	Ensuring Immediate Processing of Real-Time Packets at Kernel Level
	A Parallel Implementation of the Finite Volume Method for the Simulation of the Natural Convection in a Closed Cavity
	A Real-Time and Parametric Parallel Video Compression Architecture Using FPGA
	A Resource Selection Method for Cycle Stealing in the GPU Grid

	ParDMCom 2006 Workshop
	Parallel High-Dimensional Index Structure Using Cell-Based Filtering for Multimedia Data
	Throughput Aware Mapping for Network on Chip Design of H.264 Decoder
	A Delivery Method for Compound Video Playback in Wireless Network
	A Dynamic Hierarchical Map Partitioning for MMOG
	Generic Framework for Parallel and Distributed Processing of Video-Data

	WOMP 2006 Workshop
	PSO vs. ACO, Data Grid Replication Services Performance Evaluation
	A Markovian Performance Model for Resource Allocation Scheduling on GNU/Linux
	Evaluating Tools for Performance Modeling of Grid Applications
	A Performance Evaluation of Asynchronous Web Interfaces for Collaborative Web Services
	An Adaptive Load Balancing Middleware for Distributed Simulation
	Impact of SOAP Implementations in the Performance of a Web Service-Based Application
	Server Allocation in Grid Systems with On/Off Sources
	Context-Broker Service Architecture for AmI Systems Through Mobile-Agents and Ontologies as Middleware

	ISDF 2006 Workshop
	Routing Information System and HOIDS for Detection Method of Vicious Attack in Large Networks
	IPBio: Embedding Biometric Data in IP Header for Per-Packet Authentication
	Scalable Distributed Scheduling for Quality of Service
	Analysis of Security Vulnerability Diagnosis in Mobile IP Networks
	Virtual Telematics Systems for Distributing Nationwide Real-Time Traffic Information
	Scope of Forensics in Grid Computing -- Vision and Perspectives
	Modeling Active Cyber Attack for Network Vulnerability Assessment
	Toward Lightweight Intrusion Detection System Through Simultaneous Intrinsic Model Identification
	The Design of Random Number Generator in an Embedded Crypto Module
	A Design of Network Traffic Analysis and Monitoring System for Early Warning System
	A Conceptual Design of Knowledge-Based Real-Time Cyber-Threat Early Warning System
	Learning-Based Algorithm for Detecting Abnormal Traffic

	UPWN 2006 Workshop
	Energy-Efficient Routing Protocol Depending on Dynamic Message Communication over Wireless Sensor Network
	Design of Authentication Mechanism Using PANA CTP in FMIPv6 Environment
	Bounding Performance of LDPC Codes and Turbo-Like Codes for IEEE 802.16 Broadband Wireless Internet
	Design and Performance Analysis of an Enhanced MAC Algorithm for the IEEE 802.11 DCF
	Design of an Adaptive DCF Algorithm for TCP Performance Enhancement in IEEE 802.11--Based Mobile Ad Hoc Networks
	Icon-URI Structure with ENUM System for Mobile Device
	Efficient Attribute Authentication in Wireless Mobile Networks
	Group Key Agreement Protocol Among Mobile Devices in Different Cells
	A Novel Approach to Link Utilization Measurement
	A Joint MAC Discovery-Routing Protocol for Self-Organizing Hierarchical Ad Hoc Networks
	An Effective Path Recovery Mechanism for AODV Using Candidate Node
	Analyzing Correlation Between Flow Data and AS Paths in BGP Routing

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

