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Abstract. This paper presents two novel features of an emergent data 
visualization method coined “cellular ants”: unsupervised data class labeling 
and shape negotiation. This method merges characteristics of ant-based data 
clustering and cellular automata to represent complex datasets in meaningful 
visual clusters. Cellular ants demonstrates how a decentralized multi-agent 
system can autonomously detect data similarity patterns in multi-dimensional 
datasets and then determine the according visual cues, such as position, color 
and shape size, of the visual objects accordingly. Data objects are represented 
as individual ants placed within a fixed grid, which decide their visual attributes 
through a continuous iterative process of pair-wise localized negotiations with 
neighboring ants. The characteristics of this method are demonstrated by 
evaluating its performance for various benchmarking datasets. 

1   Introduction 

This paper proposes a simple approach towards unsupervised data visualization. It 
uses principles of self-organization to determine the visual representation of complex, 
high-dimensional datasets. Self-organizing systems generally consist of a number of 
similar elements that perform numerous internal interactions, which can 
spontaneously generate an inherently complex pattern on a global level. The rules that 
govern this process are informed by local information only, without any reference to 
the global pattern. The proposed method, coined cellular ants, uses self-organization 
to determine the visual attributes of data items, including position, shape, color and 
size. By self-adapting the visual representation to data attributes, this approach goes 
beyond the traditional notion of using fixed and predefined data mapping rules. 

The cellular ant method combines insights from ant-based clustering in the field of 
data mining and cellular automata in the field of artificial life with data mapping 
principles from the data visualization domain. It can be considered as a simple data 
clustering technique that is capable of creating visual representations similar to those 
of multidimensional scaling. As a non-optimized prototype, it demonstrates how 
simple behavior rules are capable of clustering complex, high-dimensional and large 
datasets. This work is built upon the methodology defined in [1], which introduced 
the data scaling in a toroidal grid. In this paper, two novel features are introduced: 
color negotiation (similar to data labeling or data clustering) and shape negotiation.  
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2   Related Work 

Ant-based sorting was introduced by Deneubourg et al. [2] to describe different types 
of emergent phenomena in nature. Ants are represented as simple agents that are 
capable of roaming around in a toroidal grid, on which objects, representing data 
items, are randomly scattered. Ant actions are biased by probabilistic functions, so 
that ants are more likely to pick up objects that are isolated, and more likely to drop 
them in the vicinity of similar ones. A predefined object distance measure variable 
α  determines this degree of similarity between pairs of data objects. Ant-based 
clustering has been used for data mining purposes, and has been combined with 
fuzzy-set theory [3], topographic maps [4], or bio-inspired genetic algorithms [5]. The 
cellular ant method differs from the standard method by mapping data items directly 
onto the ants themselves. Recent examples of this approach exist: Labroche et al. [6] 
associates data objects to ants and simulates meetings between them to dynamically 
build partitions, according to the data labels that best fit their genome.  

Multi-dimensional scaling (MDS) displays the structure of distance-like datasets as 
geometrical pictures [7]. MDS representations are arranged in 2D space, in which the 
distance between pairs of data items denotes the degree of data similarity. Several 
similar data visualization techniques exist, for instance in combination with animation 
[8] or recursive pattern arrangements [9]. Multi-dimensional scaling differs from 
clustering in that clustering partitions data into classes, while MDS computes 
positions, without providing an explicit decomposition into groups. Self Organizing 
Maps (SOM) is an unsupervised clustering technique capable of detecting and 
spatially grouping similar data objects in topologically distinct classes [10]. This 
visualization method orders an initially random distribution of high-dimensional data 
objects as the emergent outcome of an iterative training process. In this paper, we 
describe how the cellular ant method is capable of unsupervised clustering, as it is 
capable of coloring ants in classes depending on an emergent data scaling topography. 

Because the cellular ant methodology governs ants by principles of stigmergy and 
state density principles, it resembles that of cellular automata. Cellular automata is a 
computational method originally proposed by Ulam and Von Neumann [11]. It 
consists of a number of cells that each represents a discrete state (e.g. alive or dead). 
Cells are governed by behavior rules that are iteratively applied, and generally only 
consider the states of the neighboring cells. The cellular ant approach combines ant-
based clustering and cellular automata, as the ants’ reasoning takes into account grid 
cell states, rather than probabilistic functions. While ants can ‘act’ upon the 
environment and even change it to some degree, cellular automata ‘make up’ the 
environment itself. A recent clustering method [12] also maps data objects onto ants, 
that resemble cellular automata elements. It differs from our methodology as it does 
not order clusters, and is based on probability functions and internal ant states. 

Agent-based visualizations have typically been used to display intrinsic relations 
(e.g. messages, shared interests) between agents for monitoring and engineering 
purposes [13], to represent complex fuzzy systems [14], or to support the choice of 
the most effective visualization method [15]. Other systems organize the visualization 
data flow, for instance by determining visualization pipeline parameters [16] or 
regulating rendering variables in distributed environments [17]. To our knowledge, 
agents have not yet been used to generate visualizations based on detected data 
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correlations. A few simple prototype applications of agent-based data visualization 
have been developed that are capable to represent complex data properties through an 
emergent, decentralized process: for instance, the infoticle (information-particle) 
metaphor is capable of representing time-varying data properties as recognizable 
motion typologies of dynamic particle or flocking patterns [18].  

3   Approach 

3.1   Cellular Ant Concept 

Each single normalized data item (e.g. database tuple, row, object) corresponds to a 
single agent, coined cellular ant. Each single ant (and thus data item) is represented as 
a single colored square cell within a toroidal, rectangular grid. Each ant is governed 
by a set of simple behavior rules. These behavior rules are applied simultaneously to 
all ants, in a discrete and iterative way. Each ant can only communicate with ants in 
its immediate vicinity, limited to its eight neighboring cells. The dynamic behavior of 
an ant only depends only on the data values it represents, and the data values of its 
immediate neighbors. A cellular ant is capable of determining its visual cues 
autonomously, as it can move around or stay put, swap its position with a neighbor, 
and adapt a color or shape size, by a process of pair-wise negotiating. Each cellular 
ant is determined by four different negotiation processes: data scaling, position 
swapping, color determination and shape size adaptation. A detailed description of the 
data scaling and the ant swapping methodologies can be found in [1]. This paper will 
instead focus on the recent additions that determine the other visual cues of an agent. 

At initialization, ants are randomly positioned within a grid. Similar to classical 
MDS (CMDS) method, each ant calculates the Euclidian distance between its own 
normalized data item and that of each of its eight neighbors. This data distance 
measure represents an approximation of the similarity between pairs of data items, 
even when they contain multidimensional data values. Next, an ant will only consider 
and summate those ants of which the pair-wise similarity distance is below a specific 
data similarity tolerance threshold value t. Value t is conceptually similar to the 
object distance measure α  in common ant-based clustering approaches. However, t 
originates from a cellular automata approach in that it is a fixed and discrete value, 
which generates a Boolean result (either a pair of data objects is “similar enough” or 
not) instead of a continuous similarity value (e.g. representing a numerical degree of 
similarity between pairs of data objects). Depending on the amount of ants in its 
neighborhood it considers as ‘similar’, an ant will then decide either to stay put, or to 
move. For instance, an ant decides to stay put when it has more than four similar 
neighbors. The value four was chosen from the experience of cellular automata 
simulations, which tend to generate interesting cell constellations for this number. 

As a result, ants with similar data items group together emergently. However, these 
clusters have little visualization value as they only convey the relative amounts of 
data objects. Therefore, a positional swapping rule was introduced that orders clusters 
internally as well as globally in respect to data similarity. As a result, diagrams are 
generated that look conceptually similar to those of basic CMDS approaches.  
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3.2   Color Negotiation 

Conceptually, the color of an ant can be considered as the representation of its 
assumed data class or data label, so that the resulting diagrams resemble that of (ant-
based) data clustering in the domain of data mining, but inherit the additional 
capability of being spatially and visually ordered. At initialization, all ants are 
assigned an unspecific color (white). At each iteration, ants execute the following 
behavior rules. Each ant that has not been swapped (and thus is probably well placed 
within its neighborhood) and is fully surrounded by eight similar neighbors, considers 
the degree of data similarity with all of its neighbors. If this degree is below a 
predefined, discrete color seed similarity threshold c, it will request the system to be 
assigned a unique color. As a result, such ants will act as initial ‘color seeds’. All 
other ants will consider whether their neighborhood contains four or more data 
objects that are smaller than t but larger than c. If so, such ant is ‘satisfied’ with its 
current position and will adopt the color of the most similar ant in its neighborhood. 
In practice, once colors are introduced within the grid, they will spread gradually over 
the ant population. Once the collection of ants is sufficiently ordered, several color 
seeds become introduced. Because of the multitude of pair-wise interactions, any 
surplus of colors (in respect to data clusters) will disappear, while any shortfall of 
colors will reemerge once a potential seed is surrounded by eight neighbors.  

However, data clusters that contain less than nine members in a dataset cannot be 
recognized. In some cases, ants continuously ‘swap’ from one color to another, 
within a single visual cluster. This dynamic phenomenon generally indicates that the 
positional rules could not accurately spatially group two different data types, which 
nonetheless were recognized by the color clustering rule. A future research direction 
could consist of inversely informing the positional clustering of the color label 
values.  

3.3   Size Negotiation 

Instead of mapping a data value to a specific shape size, each ant can map one of its 
data attributes onto its size by negotiating with its neighbors. Conceptually, the size of 
an agent does not necessarily correspond to the ‘exact’ value of that data attribute, but 
rather how a data value locally relates to its neighborhood, and therefore whether 
clusters are homogeneous in respect of a specific data attribute. Because no direct, 
predefined mapping rule between value and visual cue exists, the shape size scale can 
automatically adapt to any data scale, in an autonomous and self-organizing way. 

For each iteration step, the visual shape size of an ant is determined by following 
inducements. First, an ant A chooses a random neighboring ant B with whom it 
compares its one-dimensional data value DA and circular radius size SA, measured 
in screen pixels. Step size P is a predefined amount of pixels. Ant A evaluates 
whether its radius versus data value ratio is similar to that of ant B, and adapts its 
own as well as its neighbor’s shape size accordingly. If, in comparison to ant B, its 
size SA is too large in relation to its data value DA, it will decide to ‘shrink’ by 
decreasing its amount of available pixels with P pixels, and then provides these P 
pixels to ant B.  
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These rules assure that no visual overlapping of ant shapes can occur. An 
additional rule checks whether ants do not grow too large or too small: when an ant 
becomes too large, it will ‘punish’ and shrink its neighbor, so that in the future, this 
‘action’ will not longer be required. This constraint will emergently ‘detect’ the 
upper and lower shape size boundaries according to the data scale, and spreads 
throughout all ants. Because all ants are complying with these rules in random 
directions and over multiple iterations, a stable constellation of shape sizes appears 
in an emergent way. 

3.4   Performance Measurements 

A simple performance graph informs users of the actual visualization state. The 
number of similar ants in each ant neighborhood is squared for each ant, and 
summated over all ants. The visualization efficiency over time corresponds to the 
slope of the according graph: once a plateau value has been reached over a number of 
iterations, the visualization has reached a stable state and can be halted. Figure 1 
captures the clustering performance of the ‘Thyroid’ dataset depending on varying 
variables similarity tolerance threshold value t (vertical) and color seed similarity 
treshold c, for the different amounts of iterations and different initial seeds. These 
‘solution space’ diagrams enable users to pick the most appropriate variable values. 
The diagrams illustrate the ‘hotspots’ of effective clustering values, and the limited 
influence of the amount of iterations and the random initialization seeds on the quality 
of the results. Each initialization seed will result in different constellations and thus 
clustering error rates (see Table 1 for standard deviation). 

 

Fig. 1. A dot plot diagram of the Cellular Ant’s method performance by varying the similarity 
tolerance threshold value t (vertical) and the color seed similarity threshold c (horizontal) for 
the Thyroid dataset (see Table 1). Color denotes the amount of data labels/clusters detected. 
These diagrams.  
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4   Application 

4.1   Case Studies 

The synthetic dataset visualized in Figure 2 consists of 500 data items with two data 
dimensions. Data objects and classes are distributed using a Gaussian distribution 
function to demonstrate the data scaling, color negotiation and size negotiation 
capabilities. The color negotiation successfully resulted in four distinct clusters or 
data class labels. As shown by the highlighted ants, the clusters are internally ordered: 
data items that are similar in data space, are positioned nearby each other in 
visualization space. Also, the clusters are globally ordered: clusters that are dissimilar 
in data space, have no ‘common’ borders in visualization space. For instance, the 
purple and yellow clusters (or blue and green) have no common orthogonally directed 
borders and have empty cells between their borders in visualization space, as they are 
diagonally positioned in data space, and thus have a larger ‘global’ data distance.  

   

Fig. 2. Visualization with color and shape negotiation, size representing the 1st data attribute 
(left), and data scatterplot (right), on which the 1st data attribute is mapped on the X-axis. 
Corresponding ants (left) and data items (right) are highlighted in red, cyan and white. 

The display of different circular shape sizes enables the user to understand how a 
single data attribute is distributed over the clustering representation. For instance, the 
three largest ants (highlighted in red) are positioned within an outlying green sub-
cluster (see Fig. 2). The ants highlighted in cyan and white show that the smallest ants 
in shape size correspond to those ants with the smallest data value for that attribute.  

Figure 3 shows two different clustering techniques of the car dataset, containing 38 
items and 7 data dimensions, as taken from [19]. On the left, the multidimensional 
scaling technique positioned the cars in three apparent clusters (the color coding was 
artificially added by the authors for visual clarification). The cellular ant method, on 
the right, positioned the cars in a single visual cluster, but recognized 3 separate class 
labels that roughly correspond to those apparent clusters.  
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Fig. 3. The car dataset represented by MDS (left, based on [19], color coding artificially added 
by the authors) and the Cellular Ants representation with color negotiation (right) 

Figure 4 illustrates how shape size negotiation is used to clarify data dependencies 
for high-dimensional datasets, without prior knowledge of the data scale and without 
using any predefined data mapping rules. Figure 4 uses the same representation as 
Figure 3, and maps a single data attribute to the decentralized shape size negotiation. 
As a result, one can investigate how the clusters are internally ordered for different 
attributes. Here, it shows the relative dominance of the cylinder count and MPG 
within specific clusters, and some cars visually stand out within the formed clusters. 

   

Fig. 4. A Cellular Ant representation in a toroidal grid using color and shape negotiation. Data 
attribute represented by the shape size: cylinders (left) and Miles per Gallon (MPG) (right). 

The cellular ant method has been evaluated with typical benchmarking data, such as 
the IRIS dataset. The iteration timeline in Figure 5 (left) shows how several colors 
were introduced, but only three remained. In effect, the IRIS dataset is clustered in 
two distinct visual clusters, but the color negotiation recognizes that three different 
data classes exist, of which two are very similar. This interplay between visual and 
spatial clustering contains a high visualization value. The figure shows a momentary 
snapshot only: during the simulation the orange and yellow colors take over ants from 
each other. Using shape negotiation, one can investigate how a data attribute is 
relatively distributed over a cluster. As shown in Figure 5 (right), subclusters of high 
or low data values are made apparent, demonstrating the ordering power of the 
swapping rule. For instance, one can perceive that for attribute 4, the yellow type  
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Fig. 5. Clustered IRIS dataset (150 data items, 4 attributes, 3 clusters, 1821 iterations) in a 
toroidal grid. Left: iteration timeline. Middle: resulting spatial clustering with color negotiation. 
Right: same result, with shape size negotiation for attribute 4. 

(Virginia) has larger data values than the orange one (Versacolor), and that this 
attribute is very volatile for the red type (Setosa) (varying between values 0.1 and 0.3) 
when considering their relative numerical proportion to one another within the cluster.  

Table 1 lists the performance of the color negotiation (or data classification) for 
various standard benchmarking datasets, after executing the cellular ant algorithm 
over 50 runs, each with a different, random initialization seed. The clustering error 
rate is calculated by counting the ants with correct colors over the whole population, 
and dividing this summation by the total amount of ants. In general, these results are 
worse but relatively similar to comparable clustering methods, such as reported in [6]. 

Table 1. Performance measurements of the color negotiation method for different bench- 
marking datasets. Averages are taken over 50 runs, each with a different random seed. 

 #Clusters Clustering Error 

Datasets #Objects #Attributes #Clusters Average [std] Average [std] 

Iris 150 4 3 2.68 [0.65] 0.37 [0.11] 

Pima 768 8 2 1.14 [0.35] 0.36 [0.04] 

Thyroid 215 5 3 3.45 [0.80] 0.41 [0.14] 

5   Discussion 

The performance of the current implementation depends on two variables: the data 
similarity tolerance threshold t and color seed similarity threshold c. The ant density 
(or the grid size determined by dividing the available cells in the grid by the dataset 
size) has been kept constant at about 75%. Similarly to the object distance measure α  
in common ant-based clustering approaches, the optimal value of t and c cannot be 
determined without prior knowledge of the dataset, unless the value is adaptable [20].  

We consider the current implementation as a simple proof-of-concept prototype, 
and kept its implementation as simple as possible. Therefore, the scaling and 
clustering performance of the cellular ant method is not that effective as existing 
MDS methods. Its first aim is not to compete with alternative approaches, but rather 
to be considered as an early prototype towards more powerful cellular automata  
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clustering algorithms, or towards data visualizations that are emergent and self-
adaptive. As shown in the diagrams, the combination of spatial clustering with data 
class clustering can result in visual representations that are meaningful and useful. 
Following aspects can also be considered. 

• Performance. In its current simple form of implementation, the amount of 
required iterations seems to be similar with comparable approaches in the field of 
ant-based data mining. However, the ‘data-to-ant’ model always requires less 
iteration steps because all data objects are able to move to increasingly ideal 
positions simultaneously. Similarly to existing ant-based data mining 
optimizations, the clustering performance could be addressed with increasing the 
data similarity cap value over time, so that clusters grow more rapidly and steadily. 
The method requires a considerable amount of calculations, as each ant is required 
to calculate many pair-wise dependencies for each iteration step. 

• Clustering Quality. Grid density influences the clustering quality in two ways. 
Small grid densities do not assure that ants with equal colors (data labels) will be 
represented in a single spatial cluster, because two or more clusters might emerge 
without ever ‘touching’ and ‘merging’. Too dense grids generate single, large 
groups with diverse labels and thus little visualization value.  

• Simplicity. The current behavior rules have been kept as simple as possible, to 
demonstrate the potential value of the cellular automata-like decentralized 
negotiation for data mining and data visualization purposes. Further calculation 
optimization or solutions towards data size scalability can be accomplished by 
considering a combination of following three approaches: 1) real-time data 
optimization, including data approximation and gradual data streaming, 2) agent 
adaptation, which includes the distribution or balancing of loads between multiple 
agents, and 3) agent cooperation, by generating adaptive coalition formations of 
‘super agents’ that have similar objectives, experience or goals. 

6   Conclusion 

This paper presented two new features of the cellular ant method: color (data 
clustering) and shape size negotiation. It combines ant-based data mining algorithms 
with cellular automata insights, or data scaling with data clustering to derive an 
approach that is capable of representing multidimensional datasets. The resulting 
diagrams are visually similar to those of ant-based data mining clustering approaches. 
However, the clusters are also similar to multi-dimensional scaling images, as they 
are ordered internally as well as globally over multiple data dimensions. As a simple 
prototype towards self-organizing visualization, inter-agent negotiations determine 
typical visual cues, such as position, color and size, depending on multidimensional 
data properties. Color negotiation can recognize data clusters of similar type. Shape 
size negotiation displays the relative distribution of a single data attribute and the 
internal structure of clusters. Conceptually, the self-adaptive, unsupervised data 
mapping process of the cellular ants proposes a conceptual alternative to the common 
fixed data mapping rules that are based on preconceived dataset assumptions.  

Some of the limitations of method are caused by the simplicity of the rule-based 
approach, and its dependency on fixed, discrete cellular automata characteristics, 
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instead of more continuous probability functions. Several optimizations can be 
accomplished, for instance by altering the data similarity tolerance threshold over 
time, or by informing agents of the global effectiveness. As a simple prototype, it 
demonstrates a potential future in which data visualization agents are capable of 
autonomously detecting complex data patterns and proactively acting upon them to 
make underlying data phenomena more visually apparent and the perceptual and 
cognitive understanding by humans more effective. 
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