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Abstract. Evaluation of knowledge acquisition (KA) is difficult in gen-
eral. In recent times, incremental knowledge acquisition that emphasises
direct communication between human experts and systems has been in-
creasingly widely used. However, evaluating incremental KA techniques,
like KA in general, has been difficult because of the costs of using human
expertise in experimental studies. In this paper, we use a general sim-
ulation framework to evaluate Ripple Down Rules (RDR), a successful
incremental KA method. We focus on two fundamental aspects of incre-
mental KA: the importance of acquiring domain ontological structures
and the usage of cornerstone cases.

1 Introduction

Knowledge acquisition is widely considered as a modelling activity [14,19]. Most
of the KA approaches for building knowledge based systems support a domain
analysis (including problem analysis and/or problem solving analysis) by the do-
main experts and the knowledge engineers. This process possibly involves steps
like developing a conceptual model of the domain knowledge, distinguishing sub-
tasks to be solved, differentiating types of knowledge to be used in the reasoning
process, etc. Eventually, this knowledge engineering approach results in a model
of the domain knowledge that can be turn into an operational system manually
or automatically.

On the other hand, the incremental KA approach aims to skip the time con-
suming process of analysing expertise and domain problem by a knowledge engi-
neer [4,6]. It rather allows the experts themselves to communicate more directly
their expertise to the system. This communication is usually triggered by real
data that the experts encounter in their normal workflow. Over time, a complex
system will be gradually developed. As many knowledge based systems are clas-
sification systems, from this point on, we focus on classification based systems,
even though most of our arguments are easy to adapt to other types of knowl-
edge based systems. We also use the term production systems as a synonym for
classification systems.
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The following algorithm describes a general incremental knowledge acquisition
process.

Algorithm 1. General Incremental KA
1. Start with an empty KB
2. Accept a new data case
3. Evaluate the case against the knowledge base (KB).
4. If the result is not correct, an expert is consulted to refine the KB
5. If the overall performance of the KB is satisfactory, then terminate, otherwise go

to Step 2

It is important to note that this scheme largely corresponds to the mainte-
nance phase of any knowledge based system (KBS). The KB processes cases;
when its performance is judged unsatisfactory or inadequate, changes are made
and the performance of the new KB is validated. RDR is an extreme example
of this maintenance model as it starts the maintenance cycle immediately with
an empty KB. The first industrial demonstration of this was the PEIRS sys-
tem, which provided clinical interpretations for reports of pathology testing and
had almost 2000 rules built by pathologists [5,13]. Since then, RDR has been
applied successfully to a wide range of tasks: control [16], heuristic search [1]
and document management [10]. The level of evaluation in these studies varies,
but overall they clearly demonstrate very simple and highly efficient knowledge
acquisition. There is now significant commercial experience of RDR confirming
the efficiency of the approach.

Following the PEIRS example, one company, Pacific Knowledge Systems, sup-
plies tools for pathologist to build systems to provide interpretative comments
for medical Chemical Pathology reports. One of their customers now processes
up to 14,000 patient reports per day through their 23 RDR knowledge bases with
a total of about 16,000 rules, giving very highly patient-specific comments. They
have a high level of satisfaction from their general practitioner clients and from
the pathologists who keep on building more rules or rather who keep on identi-
fying distinguishing features to provide subtle and clinically valuable comments.
A pathologist generally requires less than one day’s training and rule addition is
a minor addition to their normal duties of checking reports; it takes an average
of 77 seconds per rule [8].

Given the success of the knowledge representation scheme and the knowledge
revision procedure, it is of interest to investigate the properties of RDR to ac-
count for its success and shape its future developments. In this paper, we use a
general simulation framework proposed in [7] and developed in [2] to evaluate
two interesting features of incremental knowledge acquisition: the usage of sup-
porting data (aka cornerstone cases) in interactions with human experts and the
importance of domain ontology acquisition.

The structure of the paper is as follows: in section 2, we sketch a brief descrip-
tion of the simulation framework that is used in the paper. Section 3 describes
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Flat Ripple Down Rules (FRDR), the incremental knowledge acquisition method
being investigated. In section 4, we experiment with the usage of cornerstone
cases in FRDR. The importance of domain ontology acquisition is investigated
in section 5, and we conclude in section 6.

2 Simulation Framework

Evaluation of KA tools and methodologies is difficult [11,15]. The essential prob-
lem is the cost of human expertise to build a KBS. A solution to this is the use of
simulated experts in evaluation studies. A simulated expert is not as creative or
wise as a human expert, but it readily allows for repeated control experiments.
The simulation framework we use in this paper is described in [2]. In this section,
we outline the main features of this framework.

We characterise an expert by two parameters: overspecialisation and overgen-
eralisation. Overspecialisation is the probability that a definition excludes data
which it should cover. Overgeneralisation, on the other hand, is the probability
that a definition includes data which it should not cover. This is depicted in
Figure 1. In this figure, the human expert tries to capture a target concept by
providing the system a rule or rules; however as the expert is not perfect, the
defined concept deviates from target concept. The deviation can be quantified
through two parameters: overspecilisation and overgeneralisation.
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Expert−Defined Concept

Target Concept

overspecialisation

overgeneralisation

Fig. 1. Overspecialisation and overgeneralisation

In classification based systems, errors of overspecialisation and overgenerali-
sation are often called false negative and false positive, respectively. These errors
not only apply to individual classification rules, but to complex classifiers too.
Moreover, they also apply to other aspects of knowledge based system. With a
planning system, the KBS has error components that cause an incorrect plan to
be produced for the data provided. That is, the data was covered inappropri-
ately; there was overgeneralisation. However, the system also failed to cover the
data correctly, and that was overspecialisation. In a similar manner, these errors
also apply to ontology acquisition. The definitions of concepts, or the relations
between them result in objects failing to be covered or being covered inappropri-
ately. If an expert provides too many repeated low level definitions rather than
developing abstractions, there is an overspecialisation error.
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In this study, we simulate obtaining rules from the expert and so apply these
errors at the rule level. A given rule may cover data for which the conclusion is not
appropriate; that is, it is too general. Or the rule is too specific and so excludes
some data that should be covered. The intuitive response to an overgeneralised
rule is to add conditions and for an overspecialised rule to remove conditions.
However, whether one does this or corrects the system in some other way depends
on the KA tool or method being used.

These characterisations can be used to describe different levels of expertise
(for example, experienced experts and trainees). These errors also increase with
the difficulty of the domain. Trainees will be associated with higher overgeneral-
isation and/or overspecialisation errors than experienced experts in the domain.
One major problem with previous work that used simulated experts is how to
model levels of expertise. For example in [6], levels of expertise are represented
by picking various subsets of the full condition. There is no such difficulty in our
approach as we model the effects of different levels of expertise by using different
combinations of overgeneralisation and overspecialisation.

As mentioned above, the simulation here is restricted to classification. Sec-
ondly the domain is assumed to be made up of non-overlapping regions. The
minimum number of rules required is therefore the number of regions in the
domain. This assumption is made for the sake of simplicity and can easily be
relaxed to allow for more complex domains.

Expert effort is often measured by the number of rules created in the knowl-
edge base. We suggest that the number of knowledge acquisition sessions is a
better metric for expert effort. With Ripple Down Rules, it is shown in [8] that,
in practice, a rule often takes around one minute to be actually encoded. So
whether it takes one rule or 5 rules to fix a case is of little importance; the key
issue is how to deal with a case that has been misclassified.

3 Flat Ripple Down Rules

The RDR variant we use in this experiment is the flat rule version. The reason
behind this choice is that Flat Rule is a simplified version of multiple classi-
fication RDR which is used in practical systems, e.g. from Pacific Knowledge
Systems. Flat RDR can be considered as a n-ary tree of depth two. Each node
of the tree is labelled with a primary rule with the following properties:

– The root is a default rule which gives a default dummy conclusion (for ex-
ample unknown).

– The rules in the nodes of depth 1 give a classification to a data case
– The rules in the nodes of depth 2 are called deletion rule and work as refine-

ments to the the classification rules.

Figure 2 shows an example of Flat RDR. Flat RDR works as follow: a data case
is passed to root. As the root always fires, a dummy conclusion is recorded. After
that, the case is passed to all the classification rules (the rules of depth 1). A
conclusion of a rule is recorded (and overrides the dummy conclusion) if and only
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A

deletion deletion deletion deletion

ROOT
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Fig. 2. Flat RDR

if the condition of this rule is satisfied and none of its children (its deletion rules)
fires. The final classification given to the case is all the conclusions recorded from
the classification rules. If there is an undesired conclusion, the human expert will
be asked to provide a deletion rule to remove it. The new deletion rule is added
as a child to the classification rule that misfires the case. On the other hand,
if the expert decides that a classification should be given to this data case, a
classification rule (rule of depth 1) will be added.

FlatRDR is capable of handling the Multiple Classification Problem, i.e, a
data case can be classified with more than one label. In this simulation frame-
work, however, we just apply Flat RDR to the single classification problem.

Although we have described Flat RDR with the RDR tree and refinement
structure, it also corresponds to the general case of simple classification, where
new rules are added or rules are refined when incorrect.

4 Cornerstone Cases

Cornerstone cases are data cases that trigger the creation of new rules. One
of the hallmark features of RDR is the employment of cornerstone cases. They
serve two purposes:

– as a means of maintaining past performance by imposing consistency
– as a guide to help the experts make up the new rules.

The cornerstone cases are used in the following manner: when a data case is
misclassified by the system, an expert is consulted and asked to provide a new
rule (or rules) to deal with this case. The new rule then is evaluated against
all the cornerstone cases stored in the system. If any of the cornerstone cases is
affected by the new rule, the expert is asked to refine it. Only when the system
confirms that the new rule does not affect any of the cornerstone cases then it is
added to the knowledge base, and the current data case becomes the new rule’s
cornerstone. In practice, the expert might decide to allow the rule to apply an
existing cornerstone case, but this evaluation excludes this.

The first question for the evaluation is the importance of cornerstone cases.
Or more generally, what is the importance of validating performance against test
data after modifying a KBS.
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4.1 Experimental Settings

The simulations here are restricted to two artibrary levels of expertise:

– ’Good’ Expert: the human expert is characterised by (0.2, 0.2), i.e a rule
made by this expert will include cases that it should not with probability
0.2 and exclude cases that it should cover also with probability 0.2.

– ’Average’ Expert: the human expert is characterised by (0.3, 0.3).

Our naming of these levels of expertise is arbitrary; our intention is simply to
distinguish higher and lower levels of expertise. With each level of expertise, we
run the simulation with two options: with or without cornerstone cases. The
simulation is run with 100000 data cases from a domain of 20 regions, and the
number of required KA sessions is recorded.

4.2 Result and Discussion

The following figures show the number of KA acquisition sessions as a function
of data cases presented to the system. As a KA is required each time a data case
is misclassified, the slope of this graph can also be considered as the error rate
for the acquired system.
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Fig. 3. Good and Average Expertise Levels

It can be seen from the graphs that when a good level of expertise is available,
there is not much difference in the performance of the acquired knowledge base
whether or not cornerstone cases are employed. However, when the available
expertise is average, the system with cornerstone cases clearly outperforms the
one without, in terms of the number of KA sessions (or error rate). In a KA
session with the system that uses cornerstone cases, the expert is usually asked
to create more primary rules. However, this is perfectly acceptable since the
number of KA sessions is a better measure of human experts’ time than the
number of primary rules.
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5 Domain Ontology Acquisition

In recent years, the use of explicit ontologies in knowledge based systems has
been intensively investigated [18,9,12,17]. Heuristic classification was first intro-
duced by [3] and remains a popular problem solving method (PSM). It can be
understood as a PSM using a very simple ontological structure of intermediate
conclusions. It is comprised of three main phases:

– abstraction from a concrete, particular problem description to a problem
class definition that applies to

– heuristic match of a principal solution to the problem class
– refinement of the principal solution to a concrete solution for the concrete

problem

This process can be seen in the following figure

Concrete Problem

Problem Class Principle Solution

Refinement Solution

match

In practice, it is not always the case that all three phases of heuristic classification
are employed. The example we look at in the next subsection will show how a
simple taxonomy is used with classification systems.

5.1 Example

Domain A. Domain B.

We look at two domain structures as in the picture above. The task here is to
acquire a classifier for this domain from human experts. There are nine elemen-
tary classifications as shown in case A. In case B, however, we assume that there
is a known taxonomy of classifications: the domain is divided into three general
classes and each general class contains three elementary classifications. This tax-
onomy can be considered as a very simple ontology. We now describe how this
explicit taxonomy of classification is used in a classification system and how we
evaluate its usage.
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In case A, the classifier produces one of the nine classifications. Revision of the
knowledge base when a data case is misclassified is done similarly as in Section 3.
On the other hand, in case B, classification is done in a two-step process. First,
the classifier assigns a general class (from three classes in this particular example)
to the input data. After that, the data is passed to a second sub-classifier which
(based on the general class assigned) gives the sub-classification associated with
this case. When there is a misclassification, the classifier (or classifiers) will be
revised. As a consequence, one can argue that, revision in this case is likely to be
more complex than that in case A. However, in our experiments, we still count
each revision to deal with a case as a KA session.

5.2 Experiment Settings

The simulations here are restricted to two arbitrary levels of expertise:

– ’Average’ Expert: the human expert is characterised by (0.3, 0.3),
– ’Bad’ Expert: the human expert is characterised by (0.4, 0.4).

and two domain structures

– (A) the domain is composed of 25 non-overlapping regions
– (B) the domain is composed of 5 non-overlapping regions, and each region,

in turn, is composed of 5 sub-regions.

Again, the naming of the levels of expertise is arbitratry. The simulation is run
with 100000 data cases and the number of required KA sessions is recorded.

5.3 Result and Discussion

The following figure shows the number of KA sessions as a function of number of
data cases presented to the system. The result is surprising because even with a
fixed taxonomy in the experiments, a difference in expertise level can lead to such
a difference in the performance of the acquired knowledge bases. While there is
a reasonable expertise available, the classifier with a domain taxonomy clearly

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20000  40000  60000  80000  100000

Number of KA sessions

With taxonomy
Without taxonomy

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  20000  40000  60000  80000  100000

Number of KA sessions

With taxonomy
Without taxonomy

Fig. 4. Average and Bad Expertise Levels



Evaluation of Incremental Knowledge Acquisition with Simulated Experts 47

outperform the one without. However, when the level of available expertise is
poor, performance is similar so it might be better not to use the domain ontology
because knowledge acquisition is simpler.

6 Conclusion

In this paper, we use the simulation framework developed in [2] to investigate
two interesting aspects of incremental knowledge acquisition, namely, the usage
of supporting data cases and explicit domain ontology. We do not claim that
our model accurately reflects the real life situation, or our results quantitatively
apply to the a real knowledge based system, the simulation still shows interesting
observations.

We observe that the use of cornerstone cases in Ripple Down Rules system
shows a real improvement of the knowledge base performance. While the expert
has work a bit more at each knowledge acquisition session, the number of KA
sessions will be less over time. In particular, when a high level of expertise is
not available, the use of cornerstone cases significantly improves the experts’
performance.

The second observation is that explicit domain ontology brings significant
improvement in the resulting system’s performance if high levels of expertise
are available. However, explicit ontologies do not have as much positive effect
when the domain is dynamic (due to its changing nature, or unestablished tacit
knowledge).

Aspects of these conclusions are entirely obvious and be accepted by all: that
validation and ontologies are both useful. However, the methodology also raises
the question that as we move into less well defined area relating to personal and
business preferences, validation becomes more critical while perhaps ontologies
are less valuable.

In the future, we would like to investigate other aspects of evaluating KA:
more complex domain structure or in multiple experts settings.
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