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Abstract. The paper concerns the hybrid optimization of fuzzy inference 
systems that is based on Hierarchical Fair Competition-based Parallel Genetic 
Algorithms (HFCGA) and information data granulation. The granulation is 
realized with the aid of the Hard C-means clustering and HFCGA is a kind of 
multi-populations of Parallel Genetic Algorithms (PGA), and it is used for 
structure optimization and parameter identification of fuzzy model. It concerns 
the fuzzy model-related parameters such as the number of input variables, a 
collection of specific subset of input variables, the number of membership 
functions, and the apexes of the membership function. In the hybrid 
optimization process, two general optimization mechanisms are explored. The 
structural optimization is realized via HFCGA and HCM method whereas in 
case of the parametric optimization we proceed with a standard least square 
method as well as HFCGA method as well. A comparative analysis 
demonstrates that the proposed algorithm is superior to the conventional 
methods.   

Keywords: fuzzy relation model, information granulation, genetic algorithms, 
hierarchical fair competition (HFC), HCM, multi-population. 

1   Introduction 

Fuzzy modeling has been a focal point of the technology of fuzzy sets from its very 
inception. Fuzzy modeling has been studied to deal with complex, ill-defined, and 
uncertain systems in many other avenues. In the early 1980s, linguistic modeling [1] 
and fuzzy relation equation-based approach [2] were proposed as primordial 
identification methods for fuzzy models. The general class of Sugeno-Takagi models 
[3] gave rise to more sophisticated rule-based systems where the rules come with 
conclusions forming local regression models. While appealing with respect to the 
basic topology (a modular fuzzy model composed of a series of rules) [4], these 
models still await formal solutions as far as the structure optimization of the model is 
concerned, say a construction of the underlying fuzzy sets—information granules 
being viewed as basic building blocks of any fuzzy model.  

Some enhancements to the model have been proposed by Oh and Pedrycz [5,6]. As 
one of the enhanced fuzzy model, information granulation based fuzzy relation fuzzy 
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model was introduced. Over there, binary-coded genetic algorithm was used to 
optimize structure and premise parameters of fuzzy model, yet the problem of finding 
“good” initial parameters of the fuzzy sets in the rules remains open. 

This study concentrates on optimization of information granulation-oriented fuzzy 
model. Also, we propose to use hierarchical fair competition-based parallel genetic 
algorithm (HFCGA) for optimization of fuzzy model. GAs is well known as an 
optimization algorithm which can be searched global solution. It has been shown to 
be very successful in many applications and in very different domains. However it 
may get trapped in a sub-optimal region of the search space thus becoming unable to 
find better quality solutions, especially for very large search space. The parallel 
genetic algorithm (PGA) is developed with the aid of global search and retard 
premature convergence. In particular, as one of the PGA model, HFCGA has an effect 
on a problem having very large search space [9]. 

In the sequel, the design methodology emerges as two phases of structural 
optimization (based on Hard C-Means (HCM) clustering and HFCGA) and 
parametric identification (based on least square method (LSM), as well as HCM 
clustering and HFCGA). Information granulation with the aid of HCM clustering 
helps determine the initial parameters of fuzzy model such as the initial apexes of the 
membership functions and the initial values of polynomial function being used in the 
premise and consequence part of the fuzzy rules. And the initial parameters are 
adjusted effectively with the aid of the HFCGA and the LSM. 

2   Information Granulation (IG) 

Usually, information granules [7] are viewed as related collections of objects (data 
point, in particular) drawn together by the criteria of proximity, similarity, or 
functionality. Granulation of information is an inherent and omnipresent activity of 
human beings carried out with intent of gaining a better insight into a problem under 
consideration and arriving at its efficient solution. In particular, granulation of 
information is aimed at transforming the problem at hand into several smaller and 
therefore manageable tasks. In this way, we partition this problem into a series of 
well-defined subproblems (modules) of a far lower computational complexity than the 
original one. The form of information granulation (IG) themselves becomes an 
important design feature of the fuzzy model, which are geared toward capturing 
relationships between information granules.  

It is worth emphasizing that the HCM clustering has been used extensively not 
only to organize and categorize data, but it becomes useful in data compression and 
model identification [8]. For the sake of completeness of the entire discussion, let us 
briefly recall the essence of the HCM algorithm. 

We obtain the matrix representation for hard c-partition, defined as follows.  
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[Step 1]. Fix the number of clusters (2 )c c m≤ <  and initialize the partition matrix 

CM∈)0(U  
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[Step 2]. Calculate the center vectors vg of each cluster:  

( )
1 2v { , , , , , }r

g g g gk glv v v v=  (2) 

( ) ( ) ( )

1 1

m m
r r r

gi ik gigk
i i

v u x u
= =

= ⋅∑ ∑  (3) 

Where, [ugi]= U(r), g = 1, 2, …,c, k=1, 2, …,l. 
[Step 3]. Update the partition matrix U(r); these modifications are based on the 
standard Euclidean distance function between the data points and the prototypes, 
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 [Step 4]. Check a termination criterion. If 

|| U(r+1) − U(r)|| level)(toleranceε≤  (6) 

Stop ; otherwise set 1+= rr  and return to [Step 2] 

3   Design of Fuzzy Model with the Aid of IG 

The identification procedure for fuzzy models is usually split into the identification 
activities dealing with the premise and consequence parts of the rules. The 
identification completed at the premise level consists of two main steps. First, we 
select the input variables x1, x2, …, xk of the rules. Second, we form fuzzy partitions of 
the spaces over which these individual variables are defined. The identification of the 
consequence part of the rules embraces two phases, namely 1) a selection of the 
consequence variables of the fuzzy rules, and 2) determination of the parameters of 
the consequence (conclusion part). And the least square error (LSE) method used at 
the parametric optimization of the consequence parts of the successive rules. 

In this study, we use the isolated input space of each input variable and carry out 
the modeling using characteristics of input-output data set. Therefore, it is important 
to understand the nature of data. The HCM clustering addresses this issue. 
Subsequently, we design the fuzzy model by considering the centers of clusters. In 
this manner the clustering help us determining the initial parameters of fuzzy model 
such as the initial apexes of the membership functions and the order of polynomial 
function being used in the premise and consequence part of the fuzzy rules.  

3.1   Premise Identification 

In the premise part of the rules, we confine ourselves to a triangular type of 
membership functions whose parameters are subject to some optimization. The HCM 
clustering helps us organize the data into cluster so in this way we capture the 
characteristics of the experimental data. In the regions where some clusters of data 
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have been identified, we end up with some fuzzy sets that help reflect the specificity 
of the data set  

The identification of the premise part is completed in the following manner. Given 
is a set of data U={x1, x2, …, xl ; y}, where xk =[x1k, …, xmk]

T, y =[y1, …, ym]T, l is the 
number of variables and , m is the number of data. 

[Step 1]. Arrange a set of data U into data set Xk composed of respective input data 
and output data. 

Xk=[xk ; y] (7) 

Xk is data set of k-th input data and output data, where, xk =[x1k, …, xmk]
T, y =[y1, …, 

ym]T, and k=1, 2, …, l. 
[Step 2]. Complete the HCM clustering to determine the centers (prototypes) vkg with 
data set Xk. 

[Step 2-1]. Classify data set Xk into c-clusters, which in essence leads to the 
granulation of information. 
We can find the data pairs included in each cluster based on the partition matrix 

giu  by (5) and use these to identify the structure in conclusion part. 

[Step 2-2]. Calculate the center vectors vkg of each cluster. 

1 2v { , , , }kg k k kcv v v= …  (8) 

Where, k=1, 2, …, l, g = 1, 2, …, c. 
[Step 3]. Partition the corresponding isolated input space using the prototypes of the 
clusters vkg.  Associate each clusters with some meaning (semantics), say Small, Big, etc. 
[Step 4]. Set the initial apexes of the membership functions using the prototypes vkg. 

3.2   Consequence Identification 

We identify the structure considering the initial values of polynomial functions based 
upon the information granulation realized for the consequence and antecedents parts. 

[Step 1]. Find a set of data included in the fuzzy space of the j-th rule. 
[Step 1-1]. Find the input data included in each cluster (information granule) from 
the partition matrix giu  of each input variable by (5). 

[Step 1-2]. Find the input data pairs included in the fuzzy space of the j-th rule 
[Step 1-3]. Determine the corresponding output data from above input data pairs. 

[Step 2]. Compute the prototypes Vj of the data set by taking the arithmetic mean of 
each rule. 

1 2V { , , , ; }j j j kj jV V V M= …  (9) 

Where, k=1, 2, …, l. j=1, 2, …, n. Vkj and Mj are prototypes of input and output data, 
respectively. 
[Step 3]. Set the initial values of polynomial functions with the center vectors Vj. 

The identification of the conclusion parts of the rules deals with a selection of their 
structure that is followed by the determination of the respective parameters of the 
local functions occurring there.  
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In Case of Type 2: Linear Inference (linear conclusion) 
The conclusion is expressed in the form of a linear relationship between inputs and 
output variable. This gives rise to the rules in the form 

1 1 1: ( , , )j
c k kc j j j kR If x is A and and x is A then y M f x x− =  (10) 

The calculations of the numeric output of the model, based on the activation 
(matching) levels of the rules there, rely on the expression 
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Here, as the normalized value of wji, we use an abbreviated notation to describe an 

activation level of rule jR  to be in the form 

1
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where jR is the j-th fuzzy rule, xk represents the input variables, Akc is a membership 
function of fuzzy sets, aj0 is a constant, Mj is a center value of output data, n is the 
number of fuzzy rules, y* is the inferred output value, wji is the premise fitness 

matching jR  (activation level).  
Once the input variables of the premise and parameters have been already 

specified, the optimal consequence parameters that minimize the assumed 
performance index can be determined. In what follows, we define the performance 
index as the mean squared error (MSE).  
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where y* is the output of the fuzzy model, m is the total number of data, and i is the 
data number. The minimal value produced by the least-squares method is governed by 
the following expression: 
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4   Optimization by Means of HFCGA 

The premature convergence of genetic algorithms is a problem to be overcome. The 
convergence is desirable, but must be controlled in order that the population does not 
get trapped in local optima. Even in dynamic-sized populations, the high-fitness 
individuals supplant the low-fitness or are favorites to be selected, dominating the 
evolutionary process. Fuzzy model has many parameters to be optimized, and it has 
very large search space. So HFCGA may find out a solution better than GAs.ï

Intermediary deme
(Subpopulation 2)

Access Deme
(subpopulation 1)

...

Elite deme(subpopulation i)

Level 1

Level 2

Level i-1

Level i

Fitness Minimum

Fitness Maximum

Initialize population 
randomly

Fitness Level 2
(buffer)

Fitness Level i-1
(buffer)

Fitness Level i
(buffer)

.

.

.

Intermediary deme
(Subpopulation i-1)

 

Fig. 1. HFC based migration topology 

In HFCGA, multiple demes (subpopulation) are organized in a hierarchy, in which 
each deme can only accommodate individuals within a specified range of fitness. The 
universe of fitness values must have a deme correspondence. Each deme has an 
admission threshold that determines the profile of the fitness in each deme. 
Individuals are moved from low-fitness to higher-fitness subpopulations if and only if 
they exceed the fitness-based admission threshold of the receiving subpopulations. 
Thus, one can note that HFCGA adopts a unidirectional migration operator, where 
individuals can move to superior levels, but not to inferior ones. The figure 1 
illustrates the migration topology of HFCGA. The arrows indicate the moving 
direction possibilities. The access deme (primary level) can send individuals to all 
other demes and the elite deme only can receive individuals from the others. One can 
note that, with respect to topology, HFCGA is a specific case of island model, where 
only some moves are allowed.  

Fig. 2 depict flowchart of implemented HFCGA, it is real-coded type, we can 
choice the number of demes, size of demes, and operators(selection, crossover, 
mutation algorithms) for each deme. Where, each deme can evolve with different 
operators. In this study, we use five demes (subpopulation), Size of demes is 100, 80, 
80, 80, and 60 respectively, where elite deme is given as the least size. And we use 
same operators as such linear ranking based selection, modified simple crossover, and 
dynamic mutation algorithm for each deme. 
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Initialize structural value
 • Number of deme (subpopulation)
 • Size of each deme
 • Selection/Crossover/Mutation method for each 
deme
 • Migration topology

Selection Method
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 •  Stochastic universal sampling 
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Fig. 2. Flowchart for HFCGA 

Identification procedure of fuzzy model consists of two phase, structural 
identification and parametric identification. HFCGA is used in each phase. At first, in 
structural identification, we find the number of input variables, input variables being 
selected and the number of membership functions standing in the premise and the 
type of polynomial in conclusion. And then, in parametric identification, we adjust 
apexes of the membership functions of premise part of fuzzy rules. Figure 3 shows an 
arrangement of chromosomes to be used in HFCGA. 
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Fig. 3. Arrangement of chromosomes for identification of structure and parameter identification 

5   Experimental Studies 

In this section we consider comprehensive numeric studies illustrating the design of 
the fuzzy model. We demonstrate how IG-based FIS can be utilized to predict future 
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values of a chaotic time series. The performance of the proposed model is also 
contrasted with some other models existing in the literature. The time series is 
generated by the chaotic Mackey–Glass differential delay equation [10] of the form: 

10

0.2 ( )
( ) 0.1 ( )

1 ( )

x t
x t x t

x t

τ
τ

• −= −
+ −

 (15) 

The prediction of future values of this series arises is a benchmark problem that has 
been used and reported by a number of researchers. From the Mackey–Glass time 
series x(t), we extracted 1000 input–output data pairs for the type from the following 
the type of vector format such as: [x(t-30), x(t-24), x(t-18), x(t-12), x(t-6), x(t); x(t +6)] 
where t = 118–1117. The first 500 pairs were used as the training data set while the 
remaining 500 pairs were the testing data set for assessing the predictive performance. 
We consider the RMSE being regarded here as a performance index. We carried out 
the structure and parameters identification on a basis of the experimental data using 
HFCGA and real-coded GA (single population) to design IG-based fuzzy model. 
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Fig. 4. Groups and central values through HCM for each input variable 

Figure 4 depicts groups and central values through HCM for each input variable. 
Where, the number of input variables and number of groups (membership function) to 
be divided are obtained from structural optimization procedure. Clustering results are 
used for information granulation. 

Table 1 summarizes the performance index for real-coded GA and HFCGA. It 
shows that the performance of the HFCGA based fuzzy model is better than real-
coded GA based one for premise identification. However, for structure identification, 
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same structure is selected. To compare real-coded GA with HFCGA, show the 
performance index for the Type 2 (linear inference). Figure 5 show variation of the 
performance index for real-coded GA and HFCGA in premise identification phase.  

Table 1. Performance index of IG-based fuzzy model by means of HFCGA 

 Structure Identification  Parameter Iden. Evolutionary 
algorithm  

Input 
variables 

No. of 
MFs 

Type PI E_PI  PI E_PI 
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0.00008 0.00021
 

0.00006 0.00007 
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2 
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0.00140 0.00136
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Fig. 5. Convergence process of performance index for real-coded GA and HFCGA 

The identification error (performance index) of the proposed model is also 
compared with the performance of some other models; refer to Table 2. Here the non-
dimensional error index (NDEI) is defined as the root mean square errors divided by 
the standard deviation of the target series. 

Table 2. Comparison of identification error with previous models 

Model No. of rules PIt PI E_PI NDEI 
7 0.004    

23 0.013    Wang’s model [10] 
31 0.010    

Cascaded-correlation NN [11]     0.06 
Backpropagation MLP [11]     0.02 
6th-order polynomial [11]     0.04 

ANFIS [12] 16  0.0016 0.0015 0.007 
FNN model [13]   0.014 0.009  

Our model 24  0.00006 0.00007 0.00032 
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6   Conclusions 

In this paper, we have developed a comprehensive hybrid identification framework 
for information granulation-oriented fuzzy model using hierarchical fair competition–
based parallel genetic algorithm. The underlying idea deals with an optimization of 
information granules by exploiting techniques of clustering and genetic algorithms. 
We used the isolated input space for each input variable and defined the fuzzy space 
by information granule. Information granulation with the aid of HCM clustering help 
determine the initial parameters of fuzzy model such as the initial apexes of the 
membership functions and the initial values of polynomial function being used in the 
premise and consequence part of the fuzzy rules. The initial parameters are fine-tuned 
(adjusted) effectively with the aid of HFCGA and the least square method. The 
experimental studies showed that the model is compact (realized through a small 
number of rules), and its performance is better than some other previous models. The 
proposed model is effective for nonlinear complex systems, so we can construct a 
well-organized model. 
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