
A. Sattar and B.H. Kang (Eds.): AI 2006, LNAI 4304, pp. 141 – 150, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Enhanced Temporal Difference Learning Using
Compiled Eligibility Traces

Peter Vamplew1, Robert Ollington2, and Mark Hepburn2

1 School of Information Technology and Mathematical Sciences, University of Ballarat,
PO Box 663, Ballarat, Victoria 3353, Australia

p.vamplew@ballarat.edu.au
2 School of Computing, University of Tasmania, Private Bag 100, Hobart,

Tasmania 7001, Australia
{Robert.Ollington, Mark.Hepburn}@utas.edu.au

Abstract. Eligibility traces have been shown to substantially improve the
convergence speed of temporal difference learning algorithms, by maintaining a
record of recently experienced states. This paper presents an extension of
conventional eligibility traces (compiled traces) which retain additional
information about the agent’s experience within the environment. Empirical
results show that compiled traces outperform conventional traces when applied
to policy evaluation tasks using a tabular representation of the state values.

1 Introduction

Reinforcement learning addresses the problem of an agent interacting with an
environment. At each step the agent observes the current state and selects an action.
The action is executed and the agent receives a scalar reward. The agent has to learn a
mapping from state-to-action to maximise the long-term reward. One way to do this is
to learn the expected return, either per state or per state-action pair. Many algorithms
for learning these values are based on the use of temporal differences (TD) [1] where
the value of the current state at each step is used to update the estimated value of
previous states.

It is well-established that the use of eligibility traces can substantially improve the
performance of TD algorithms [2, 3]. These traces maintain a record of states and
actions experienced earlier in the current episode, allowing the value of those states
and actions to be updated based on the states and rewards encountered later in the
episode. However conventional eligibility traces exhibit a fundamental limitation, in
that they only record information about the current episode – all information about the
previous episode is discarded from the traces whenever a new episode commences.
(Watkins’ Q(λ) algorithm [4] is even more restricted in that it clears all traces
whenever a non-greedy action is performed).

In this paper we propose the use of an extended form of eligibility trace which we
will refer to as a compiled trace. Compiled traces differ from conventional traces in
two important ways: First, they contain information about states experienced in all
previous episodes, not just those from the current episode. Second, compiled traces
identify and support learning for sequences of states which are possible within the
environment but which have yet to actually be observed (Note: for reasons of

142 P. Vamplew, R. Ollington, and M. Hepburn

simplicity we will primarily discuss compiled traces with regards to the task of
learning state values under a fixed policy (policy evaluation). However these methods
can readily be extended to learning action values, as required in policy-iteration
algorithms such as Q-Learning).

2 Motivation for Compiled Traces

Figure 1 illustrates a simple, probabilistic environment designed to illustrate the
difference between conventional eligibility traces and compiled traces. Consider a
situation in which the first two episodes observed by the agent consisted of the
sequences A-C-D-F and B-C-D-G. Assuming that the estimated value of all states
starts at 0, then following the first episode the values for states A, C and D will all
have been trained towards the reward of -1 received on the final transition. After the
second episode, the values for states B, C, and D will have been altered in the
direction of the reward of +10. Notice that using conventional traces states A and B
will have quite different values at this point, although it can be seen from Figure 1
that in the long run they should have identical values. This illustrates a weakness of
conventional eligibility traces — by including only information gathered during a
single episode they are sensitive to any stochasticity in the environment.

0.5

0.5
0.5, +10

0.5, +10

0.5, -1

0.5, -1
A

B

C

D

E

F

G

Fig. 1. An environment consisting of 7 states. A and B are the possible starting states for each
episode, whilst F and G are terminal states. Arcs are labelled with their transition probabilities
and associated rewards; probabilities of 1.0 and rewards of 0 have been omitted for clarity.

This issue can be addressed by extending the eligibility traces to include the values
from multiple prior episodes. One relatively simple approach would be to calculate a
single-episode trace as per normal, but in addition to calculate and store at each state a
mean of the values of the single-episode trace at each time that state was visited.
These mean-traces would then be used within the TD updates. In the previous
example, this would result in state A also being updated during the second episode as
state D would have 0.5 as its mean-trace value for both states A and C.

Whilst this mean-trace approach should offer some benefits compared to
conventional single-episode traces in alleviating the effects of under-sampling within

 Enhanced Temporal Difference Learning Using Compiled Eligibility Traces 143

probabilistic environments, it still fails to fully utilise all information available from
previous episodes. Consider again the environment from Figure 1, and assume that
the following three episodes have been observed: A-C-D-F, B-C-E-F and B-C-E-G.
Under these circumstances the mean-trace algorithm will not update the value of state
A during the third episode because the mean-trace stored for A at E is 0, as no
sequence with A as a predecessor of E has ever been observed.

However from the two earlier episodes it is possible to infer that whilst the
sequence A-C-E has not yet been observed, it must be possible for it to occur as the
sub-sequences A-C and C-E have been observed (assuming the environment to be
Markov, which is a standard assumption for many applications of TD methods).
Therefore it should be possible to include state A amongst the states to be updated as
a result of the third episode. A possible means by which such updates could be
achieved is to use the traces stored at each state to indicate not just the extent to which
other states have previously been observed as predecessors to this state (as is the case
for mean-traces) but more generally the extent to which those other states could occur
as predecessors to this state. We will refer to any trace algorithm which works in this
manner as a compiled trace, as the trace stored at each state is essentially a
compilation of all knowledge about that state’s predecessors.

Construction of compiled traces can be achieved through a relatively simple boot-
strapping process. Whenever a transition is observed from state s to state s′ then the
compiled traces stored at s′ are updated to reflect a combination of their current values
and the values of the compiled traces stored at s.

In the previous example, following the first episode state C will have a non-zero
compiled trace for state A, whilst state D will have non-zero traces for both of its
observed predecessors (states A and C). Following the second episode, state C will
have non-zero traces for both A and B, whilst state E will have non-zero traces for
both these states as well (having ‘learnt’ about state A via state C). Therefore when
the transition from E to G occurs during the third episode, the value for state A will be
updated (in addition to the values for B and C which would have been updated using
conventional or mean traces).

3 Comparison to Other Learning Algorithms

3.1 Conventional Eligibility Traces

The example given in the previous section demonstrates the primary advantages of
compiled traces over conventional eligibility traces. By storing information gleaned
from all previous episodes rather than just the current episode, compiled traces allow
a larger number of states to be updated after each step within the environment which
should enable faster learning. This would be expected to be of particular benefit in
environments containing a stochastic element in either the state transitions or the
rewards, as under-sampling in such environments can skew the estimated values of
states. By sharing updates across all possible predecessor states compiled traces
reduce the effects of such stochastic variations.

144 P. Vamplew, R. Ollington, and M. Hepburn

3.2 Model-Based Methods

The ability to learn about sequences of states which are possible within an
environment but yet to be observed can also be provided by model-based learning
methods such as the Dyna methods [5]. These learning algorithms build a model of
the environment by learning the successors of each state on the basis of observed
transitions. This model can then be used to generate simulated episodes which can be
learnt from in the same manner as episodes experienced in the actual environment.

There are some similarities between model-based methods and compiled trace
methods. Both construct values reflecting the likelihood of particular sequences of
states being observed on the basis of the actual sequences observed. However the
model-based approach is ‘forward-looking’ and limited in scope in that each state
learns the likelihood of every state occurring as an immediate successor, whereas
compiled traces are ‘backward-looking’ and unlimited in scope, as each state learns
about all of its predecessor states, no matter how distant.

3.3 Goal-Independent Reinforcement Learning

Some similarities also exist between compiled traces and goal-independent
reinforcement learning algorithms such as DG-Learning [6] and Concurrent Q-
Learning [7]. These goal-independent algorithms also update the values of states and
actions which were not directly involved in the current episode. This is achieved by
learning an explicit distance from every state to each other state, and using graph
relaxation techniques to dynamically update these values if a shorter path is
experienced.

These goal-independent algorithms have similar storage costs as compiled traces,
but potentially are more computationally expensive. In addition the relaxation
techniques are only applicable in the context of learning distance values, whilst
compiled traces can be applied to arbitrary reward functions.

4 Implementing Compiled Traces

The main issue to be resolved in implementing compiled traces is the manner in
which the current values of the traces at state s′ are combined with the values stored at
s when a transition from s to s′ is observed (as outlined in Section 2). We believe
there are three main approaches which could be utilised.

4.1 All-Visits-Mean (AVM) Traces

This algorithm sets the compiled traces at each state equal to the mean of the traces of
its immediate predecessor states, weighted by the frequency of occurrence of each
predecessor. Each state s in S (the set of all states in the environment) stores a
compiled trace Ts,s′ for all states s′ in S. Each state s also stores Ns which records the
number of times that state has been visited, and Es,s′ which sums the values of the
traces of the state immediately preceding s over all episodes. All of these variables are
initialised to zero. Whenever a transition from state s to s′ is observed Ts,s is

 Enhanced Temporal Difference Learning Using Compiled Eligibility Traces 145

set to 1, and the values stored at s′ are updated as follows (where λ is the trace decay
parameter as used in conventional eligibility traces, and γ is the discounting factor):

Ns′ = Ns′ + 1 (1)

Es′,s″ = Es′,s″ + λγTs,s″ ∀ s″ in S (2)

Ts′,s″ = Es′,s″ /Ns′ ∀ s″ in S (3)

If state s′ is the first state in an episode, then step 2 is omitted (effectively combining
the current compiled trace with an all-zero predecessor trace).

AVM traces reflect the best approximation to the predecessor probabilities
observed so far, and so should promote rapid, accurate learning. However they weight
all episodes equally regardless of their currency, which means the traces will adapt
slowly (and never fully) to dynamic environments in which the transition probabilities
change over time. This is a significant issue for the use of compiled traces for policy
iteration, as in Q-learning [4]. Even if the environment itself is static, the policy
followed will change over time, so retaining information from previous episodes may
result in traces which no longer reflect the current policy. This is an issue with any
compiled trace algorithm, but particularly for the AVM form due to its infinitely long
memory of previous episodes.

4.2 Recent-Visit-Mean (RVM) Traces

To adapt to dynamic environments, the traces must forget about episodes which are
no longer relevant. One means to achieve this is to calculate the mean of the
predecessor traces over a fixed number of recent visits to this state. This can be
implemented using a queue at each state to store the predecessor traces for the most
recent visits. The sensitivity of the agent to environmental changes can be altered by
varying the length of the queue (which we will denote as v). Smaller values for v will
place a greater emphasis on more recent learning episodes.

4.3 Blended Traces

This approach aims to be better suited to dynamic tasks than AVM traces by placing a
larger weighting on more recent experience. In this algorithm the traces at s′ are
updated following a transition from s, as follows (where β is a blending parameter
with 0≤ β≤1):

Ts′,s″ = βTs′,s″ + (1- β)λγTs,s″ ∀ s″ in S (4)

If s′ is an initial state then the update is:

Ts′,s″ = βTs′,s″ ∀ s″ in S (5)

The emphasis which the system places on recent experience is controlled via the β
parameter – larger values of β will place more weight on accumulated past experience
(as stored in Ts′,s″), whilst smaller values will make the system more responsive to
recent experience (Ts,s″).

One possible problem with using a static value for β is that it will take several
visits to a state before the traces grow significantly from their initial zero values,

146 P. Vamplew, R. Ollington, and M. Hepburn

which will slow early learning. A potential solution is suggested by viewing AVM
traces as a specialised form of a blending trace where the value of β is determined
dynamically at each state to be equal to (Ns′ - 1)/Ns′. It may be possible to combine the
early learning speed of this approach with the on-going flexibility of blending by
setting β = ((Ns′)

n-1)/ (Ns′)
n where n is a fixed value just smaller than 1, or

alternatively β = min((Ns′ - 1)/Ns′, βmax) where βmax is an upper-bound on the value of
β. In this paper we have used the latter approach.

4.4 Comparison of Compiled Trace Algorithms and TD(λ)

Both RVM and blended traces can be seen as generalizations of the AVM form of
compiled traces. Behaviour identical to AVM can be produced by setting the
algorithm’s parameter appropriately (using queue length v=∞ for RVM or βmax=1 for
blended traces). Similarly both algorithms are a generalization of conventional TD(λ),
which can be obtained by using v=1 or βmax=0. Therefore previous proofs of the
convergence properties of TD(λ) (such as [8]) apply to these compiled trace
algorithms, at least for these specific choices of parameter. Extension of these proofs
to the more general form of these algorithms is an area for future work.

5 Experimental Method

5.1 The Layered-DAG Test Suite

The experiments reported in this paper are based on a suite of policy evaluation test-
beds (the Layered-DAG tests). These test environments are defined by a directed
acyclic graph, in which each node represents a state. The nodes have been grouped
into layers with arcs from each node in a layer to each node in the next layer. Each arc
is assigned a random probability of occurrence (with the probabilities on the outgoing
arcs from each node normalised so as to sum to 1). Each episode commences at a
randomly selected node in the first layer, and ends when the environment moves to a
terminal state in the final layer. Each terminal node is assigned a unique fixed reward
in the range 0..n-1, where n is the number of nodes in the terminal layer.

This test suite has two advantages for this research. First the true value of each
state in the environment can readily be calculated. Secondly a range of problems of
varying difficulty can be generated by altering the number of layers in the graph or
the number of nodes in each layer. This allows an investigation of the relative ability
of compiled and conventional traces as the problem difficulty is increased.

For each variant of the Layered-DAG problem, various combinations of
parameters were trialed for both the conventional and compiled traces. For each set of
parameters, 20 trials were run using different random number generators to assign the
transition probabilities within the graph. Each trial consisted of a number of episodes
equal to 50 multiplied by the number of nodes per layer, to ensure that on average
each state would experience the same number of visits regardless of the size of the
test problem.

After each learning episode, the root mean squared error of the table values
compared to the actual state values was calculated. This was averaged over all

 Enhanced Temporal Difference Learning Using Compiled Eligibility Traces 147

episodes of each trial, and then over each trial for a given set of parameters. This
measure was chosen as it requires the learning algorithm to converge both rapidly and
to a good approximation of the actual values — both of these properties are important
if the algorithm is to be applied in an on-line context.

5.2 Choice of Compiled Trace Algorithm

Both the RVM and blended forms of the compiled trace algorithm were investigated.
Very little variation was noted between the two algorithms, and hence for space
reasons only the blended trace results will be reported in this paper. Given the similar
performance of these two variants of compiled traces the blended form is to be
preferred due to the much greater space requirements of the RVM form.

6 Results and Discussion

The graphs in Figures 2–4 summarise the performance of the blended trace algorithm
across all variants of the Layered-DAG problem (each variant is identified as NxM
where N is the number of nodes per layer, and M is the number of layers). The results
have been normalized relative to the lowest mean RMSE error obtained on each
variant of the problem, to facilitate comparison across these variants. Note that the
first data-point in each graph (corresponding to βmax=0) indicates the performance of
conventional TD(λ).

It can immediately be seen that non-zero values of βmax significantly improve on
the results achieved using standard TD(λ). The TD(λ) error rate is on the order of 15-
45% higher than that obtained using the optimal value of βmax. Importantly the trend is
that the improvement due to using compiled traces increases as the complexity of the
problem (either the number of states per layer or the number of layers) is increased.
The performance of the compiled trace algorithm is relatively insensitive to the choice
of βmax, with good results obtained across a wide range of values. As the episode
length increases, the optimal choice of βmax gradually decreases.

An examination of the best values found for the α (learning rate) and λ parameters
gives some insight into the reasons for the improved performance achieved using
compiled traces. Whilst the α values were similar for both algorithms, the best results
for compiled traces were achieved using far higher values for λ than were beneficial
for TD(λ). Figure 5 illustrates this for the 8x20 Layered-DAG problem, showing the
mean RMSE curves achieved during learning for both algorithms using their optimal
parameter settings and for TD(λ) using the compiled trace algorithm’s optimal
settings. A higher λ value produces rapid early learning when used in conjunction
with either conventional or compiled traces, by maintaining higher traces for (and
therefore making larger changes to the values of) states encountered early in each
episode. However TD(λ) fails to converge to a suitably low final error when using
this λ value, as these large trace values cause the values of early states to be overly
reactive to the reward received in the most recent episode. In contrast using compiled
traces, the change due to most recent reward are ‘spread’ across many possible
predecessor states, thereby moderating the impact of the stochasticity in the
environment.

148 P. Vamplew, R. Ollington, and M. Hepburn

1.0

1.1

1.2

1.3

1.4

1.5

0 0.2 0.4 0.6 0.8 1

β max

4x10

8x10

16x10

1.0

1.1

1.2

1.3

1.4

1.5

0 0.2 0.4 0.6 0.8 1

β max

4x20

8x20

16x20

1.0

1.1

1.2

1.3

1.4

1.5

0 0.2 0.4 0.6 0.8 1

β max

4x30

8x30

16x30

Figs. 2–5. Graphs of the normalised root-mean-squared-error (averaged over all episodes of all
trials) against the βmax parameter for the 10 layer (top-left), 20 layer (top-right) and 30 layer
(bottom-left) variants of the Layered-DAG task. The bottom-right graph plots RMSE (averaged
over all trials) against learning episodes on the 8x20 task.

7 Conclusion and Future Work

7.1 Comparison of Conventional and Compiled Traces

This paper has demonstrated both by example and through empirical results that the
use of compiled eligibility traces can substantially improve the performance of an
agent using temporal difference learning methods, particularly in highly probabilistic
environments. On the Layered-DAG tasks compiled traces gave a 15-45% reduction
in error compared to conventional traces (implemented by setting the βmax parameter
to 0).

Thus far these benefits have been demonstrated only in the simplest of TD learning
tasks (evaluation of a static policy using a tabular representation of the state values).
Further experiments will be required to determine the effectiveness of compiled traces
on more difficult problems, particularly those involving dynamic environments or
policy iteration tasks. It would also be beneficial to formally analyse the convergence
properties of TD algorithms using compiled traces.

The primary disadvantage of compiled traces compared to conventional traces is
the additional memory and computational overhead — a naïve implementation of

 Enhanced Temporal Difference Learning Using Compiled Eligibility Traces 149

TD(λ) is order O(|S|), whereas a similarly naïve compiled traces implementation is
O(|S|2). It has been shown that the costs of TD(λ) can be reduced by ignoring near-
zero traces — this technique may be less applicable to compiled traces however as the
proportion of near-zero traces is likely to be significantly lower. However it may still
be possible to discover more efficient implementation techniques similar to those used
for TD(λ) by [9].

A further issue which needs to be addressed in order to scale up compiled traces to
larger problems is integrating it into function approximation algorithms, as has
previously been achieved for conventional traces. We intend to explore the use of
compiled traces with localized function approximators such as tile-partitioning [10]
and resource-allocating networks [11].

7.2 Using Compiled Traces for Planning and Exploration

Whilst the primary motivation behind compiled traces is to maximise the amount of
learning possible from each interaction with the environment, it may also prove
possible to utilise the additional information stored in these traces for other purposes.
One possible application would be within an intelligent exploration algorithm. Such
an algorithm might identify a particular state worthy of further exploration (for
example a region of state space which has been under-explored, or not visited
recently) and set it as a sub-goal. With conventional eligibility traces there is no
knowledge within the system of how to move from the current state towards this sub-
goal state, and hence no way to select actions to carry out the desired exploration.

Compiled traces also do not directly encode this information in the way that a goal-
independent learning system does. However the values of the traces at the sub-goal
state may give some guidance as to the correct actions. If the system is currently at
state s and the sub-goal is at state g, we would select the action a which gives the
highest value for Tg,s,a (the trace stored at g for the combination of s and a). If Tg,s,a is
zero for all values of a, then we could either select an action randomly, or select
greedily with respect to the overall goal. This process would be repeated for all states
encountered until state g is reached. Whilst this approach is unlikely to result in the
optimal path from s to g, it is likely to be significantly more efficient than random
exploration in search of g, and incurs a relatively small computational cost.

This may be an area in which compiled traces provide benefits relative to model-
based approaches, as the ‘backward-looking’ nature of compiled traces may allow
more efficient planning of exploration than the ‘forward-looking’ models can achieve.

References

1. Sutton, R.S. (1988). Learning to predict by the methods of temporal differences, Machine
Learning, 3:9-44.

2. Singh, S.P. and Sutton, R.S. (1996), Reinforcement learning with replacing eligibility
traces, Machine Learning, 22:123-158.

3. Rummery, G. and M. Niranjan (1994). On-line Q-Learning Using Connectionist Systems.
Cambridge, Cambridge University Engineering Department.

4. Watkins, C.J.C.H. (1989), Learning from Delayed Rewards, PhD Thesis, Cambridge
University.

150 P. Vamplew, R. Ollington, and M. Hepburn

5. Sutton, R.S, (1991), Dyna, an integrated architecture for learning, planning and reacting.
SIGART Bulletin, 2:160-163.

6. Kaelbling, L. P. (1993). Learning to Achieve Goals, Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, Chambéry, France.

7. Ollington, R. and Vamplew, P. (2003), Concurrent Q-Learning for Autonomous Mapping
and Navigation, The 2nd International Conference on Computational Intelligence,
Robotics and Autonomous Systems, Singapore.

8. Jaakkola, T., Jordan, M.I. and Singh, S.P. (1994), On the convergence of stochastic
iterative dynamic programming algorithms, Neural Computation, 6:1185-1201

9. Cichosz, P. (1995), Truncating temporal differences: On the efficient implementation of
TD(λ) for reinforcement learning, Journal of Artificial Intelligence Research, 2:287-318.

10. 10.Sutton R.S. (1996). Generalisation in reinforcement learning: Successful examples
using sparse coarse coding. In Touretzky D.S., Mozer M.C., & Hasselmo M.E. (Eds.).
Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference
(1038-1044). Cambridge, MA: The MIT Press.

11. Kretchmar, R. M. and Anderson, C.W. (1997). Comparison of CMACs and RBFs for local
function approximators in reinforcement learning, IEEE International Conference on
Neural Networks.

	Introduction
	Motivation for Compiled Traces
	Comparison to Other Learning Algorithms
	Conventional Eligibility Traces
	Model-Based Methods
	Goal-Independent Reinforcement Learning

	Implementing Compiled Traces
	All-Visits-Mean (AVM) Traces
	Recent-Visit-Mean (RVM) Traces
	Blended Traces
	Comparison of Compiled Trace Algorithms and TD(λ)

	Experimental Method
	The Layered-DAG Test Suite
	Choice of Compiled Trace Algorithm

	Results and Discussion
	Conclusion and Future Work
	Comparison of Conventional and Compiled Traces
	Using Compiled Traces for Planning and Exploration

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

