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Abstract. Eligibility traces have been shown to substantially improve the 
convergence speed of temporal difference learning algorithms, by maintaining a 
record of recently experienced states. This paper presents an extension of 
conventional eligibility traces (compiled traces) which retain additional 
information about the agent’s experience within the environment. Empirical 
results show that compiled traces outperform conventional traces when applied 
to policy evaluation tasks using a tabular representation of the state values. 

1   Introduction 

Reinforcement learning addresses the problem of an agent interacting with an 
environment. At each step the agent observes the current state and selects an action. 
The action is executed and the agent receives a scalar reward. The agent has to learn a 
mapping from state-to-action to maximise the long-term reward. One way to do this is 
to learn the expected return, either per state or per state-action pair. Many algorithms 
for learning these values are based on the use of temporal differences (TD) [1] where 
the value of the current state at each step is used to update the estimated value of 
previous states. 

It is well-established that the use of eligibility traces can substantially improve the 
performance of TD algorithms [2, 3]. These traces maintain a record of states and 
actions experienced earlier in the current episode, allowing the value of those states 
and actions to be updated based on the states and rewards encountered later in the 
episode. However conventional eligibility traces exhibit a fundamental limitation, in 
that they only record information about the current episode – all information about the 
previous episode is discarded from the traces whenever a new episode commences. 
(Watkins’ Q(λ) algorithm [4] is even more restricted in that it clears all traces 
whenever a non-greedy action is performed). 

In this paper we propose the use of an extended form of eligibility trace which we 
will refer to as a compiled trace. Compiled traces differ from conventional traces in 
two important ways: First, they contain information about states experienced in all 
previous episodes, not just those from the current episode. Second, compiled traces 
identify and support learning for sequences of states which are possible within the 
environment but which have yet to actually be observed (Note: for reasons of 
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simplicity we will primarily discuss compiled traces with regards to the task of 
learning state values under a fixed policy (policy evaluation). However these methods 
can readily be extended to learning action values, as required in policy-iteration 
algorithms such as Q-Learning). 

2   Motivation for Compiled Traces 

Figure 1 illustrates a simple, probabilistic environment designed to illustrate the 
difference between conventional eligibility traces and compiled traces. Consider a 
situation in which the first two episodes observed by the agent consisted of the 
sequences A-C-D-F and B-C-D-G. Assuming that the estimated value of all states 
starts at 0, then following the first episode the values for states A, C and D will all 
have been trained towards the reward of -1 received on the final transition. After the 
second episode, the values for states B, C, and D will have been altered in the 
direction of the reward of +10. Notice that using conventional traces states A and B 
will have quite different values at this point, although it can be seen from Figure 1 
that in the long run they should have identical values. This illustrates a weakness of 
conventional eligibility traces — by including only information gathered during a 
single episode they are sensitive to any stochasticity in the environment. 
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Fig. 1. An environment consisting of 7 states. A and B are the possible starting states for each 
episode, whilst F and G are terminal states. Arcs are labelled with their transition probabilities 
and associated rewards; probabilities of 1.0 and rewards of 0 have been omitted for clarity.  

This issue can be addressed by extending the eligibility traces to include the values 
from multiple prior episodes. One relatively simple approach would be to calculate a 
single-episode trace as per normal, but in addition to calculate and store at each state a 
mean of the values of the single-episode trace at each time that state was visited. 
These mean-traces would then be used within the TD updates. In the previous 
example, this would result in state A also being updated during the second episode as 
state D would have 0.5 as its mean-trace value for both states A and C.  

Whilst this mean-trace approach should offer some benefits compared to 
conventional single-episode traces in alleviating the effects of under-sampling within 
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probabilistic environments, it still fails to fully utilise all information available from 
previous episodes. Consider again the environment from Figure 1, and assume that 
the following three episodes have been observed: A-C-D-F, B-C-E-F and B-C-E-G. 
Under these circumstances the mean-trace algorithm will not update the value of state 
A during the third episode because the mean-trace stored for A at E is 0, as no 
sequence with A as a predecessor of E has ever been observed. 

However from the two earlier episodes it is possible to infer that whilst the 
sequence A-C-E has not yet been observed, it must be possible for it to occur as the 
sub-sequences A-C and C-E have been observed (assuming the environment to be 
Markov, which is a standard assumption for many applications of TD methods). 
Therefore it should be possible to include state A amongst the states to be updated as 
a result of the third episode. A possible means by which such updates could be 
achieved is to use the traces stored at each state to indicate not just the extent to which 
other states have previously been observed as predecessors to this state (as is the case 
for mean-traces) but more generally the extent to which those other states could occur 
as predecessors to this state. We will refer to any trace algorithm which works in this 
manner as a compiled trace, as the trace stored at each state is essentially a 
compilation of all knowledge about that state’s predecessors.  

Construction of compiled traces can be achieved through a relatively simple boot-
strapping process. Whenever a transition is observed from state s to state s′ then the 
compiled traces stored at s′ are updated to reflect a combination of their current values 
and the values of the compiled traces stored at s. 

In the previous example, following the first episode state C will have a non-zero 
compiled trace for state A, whilst state D will have non-zero traces for both of its 
observed predecessors (states A and C). Following the second episode, state C will 
have non-zero traces for both A and B, whilst state E will have non-zero traces for 
both these states as well (having ‘learnt’ about state A via state C). Therefore when 
the transition from E to G occurs during the third episode, the value for state A will be 
updated (in addition to the values for B and C which would have been updated using 
conventional or mean traces). 

3   Comparison to Other Learning Algorithms 

3.1   Conventional Eligibility Traces 

The example given in the previous section demonstrates the primary advantages of 
compiled traces over conventional eligibility traces. By storing information gleaned 
from all previous episodes rather than just the current episode, compiled traces allow 
a larger number of states to be updated after each step within the environment which 
should enable faster learning. This would be expected to be of particular benefit in 
environments containing a stochastic element in either the state transitions or the 
rewards, as under-sampling in such environments can skew the estimated values of 
states. By sharing updates across all possible predecessor states compiled traces 
reduce the effects of such stochastic variations. 
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3.2   Model-Based Methods 

The ability to learn about sequences of states which are possible within an 
environment but yet to be observed can also be provided by model-based learning 
methods such as the Dyna methods [5]. These learning algorithms build a model of 
the environment by learning the successors of each state on the basis of observed 
transitions. This model can then be used to generate simulated episodes which can be 
learnt from in the same manner as episodes experienced in the actual environment. 

There are some similarities between model-based methods and compiled trace 
methods. Both construct values reflecting the likelihood of particular sequences of 
states being observed on the basis of the actual sequences observed. However the 
model-based approach is ‘forward-looking’ and limited in scope in that each state 
learns the likelihood of every state occurring as an immediate successor, whereas 
compiled traces are ‘backward-looking’ and unlimited in scope, as each state learns 
about all of its predecessor states, no matter how distant. 

3.3   Goal-Independent Reinforcement Learning 

Some similarities also exist between compiled traces and goal-independent 
reinforcement learning algorithms such as DG-Learning [6] and Concurrent Q-
Learning [7]. These goal-independent algorithms also update the values of states and 
actions which were not directly involved in the current episode. This is achieved by 
learning an explicit distance from every state to each other state, and using graph 
relaxation techniques to dynamically update these values if a shorter path is 
experienced. 

These goal-independent algorithms have similar storage costs as compiled traces, 
but potentially are more computationally expensive. In addition the relaxation 
techniques are only applicable in the context of learning distance values, whilst 
compiled traces can be applied to arbitrary reward functions. 

4   Implementing Compiled Traces 

The main issue to be resolved in implementing compiled traces is the manner in 
which the current values of the traces at state s′ are combined with the values stored at 
s when a transition from s to s′ is observed (as outlined in Section 2). We believe 
there are three main approaches which could be utilised. 

4.1   All-Visits-Mean (AVM) Traces 

This algorithm sets the compiled traces at each state equal to the mean of the traces of 
its immediate predecessor states, weighted by the frequency of occurrence of each 
predecessor. Each state s in S (the set of all states in the environment) stores a 
compiled trace Ts,s′ for all states s′ in S. Each state s also stores Ns which records the 
number of times that state has been visited, and Es,s′ which sums the values of the 
traces of the state immediately preceding s over all episodes. All of these variables are 
initialised to zero. Whenever a transition from state s to s′ is observed Ts,s is  
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set to 1, and the values stored at s′ are updated as follows (where λ is the trace decay 
parameter as used in conventional eligibility traces, and γ is the discounting factor): 

Ns′ = Ns′ + 1                                                                       (1) 

Es′,s″ = Es′,s″ + λγTs,s″ ∀ s″ in S                                              (2) 

Ts′,s″ = Es′,s″ /Ns′ ∀ s″ in S                                                     (3) 

If state s′ is the first state in an episode, then step 2 is omitted (effectively combining 
the current compiled trace with an all-zero predecessor trace). 

AVM traces reflect the best approximation to the predecessor probabilities 
observed so far, and so should promote rapid, accurate learning. However they weight 
all episodes equally regardless of their currency, which means the traces will adapt 
slowly (and never fully) to dynamic environments in which the transition probabilities 
change over time. This is a significant issue for the use of compiled traces for policy 
iteration, as in Q-learning [4]. Even if the environment itself is static, the policy 
followed will change over time, so retaining information from previous episodes may 
result in traces which no longer reflect the current policy. This is an issue with any 
compiled trace algorithm, but particularly for the AVM form due to its infinitely long 
memory of previous episodes. 

4.2   Recent-Visit-Mean (RVM) Traces 

To adapt to dynamic environments, the traces must forget about episodes which are 
no longer relevant. One means to achieve this is to calculate the mean of the 
predecessor traces over a fixed number of recent visits to this state. This can be 
implemented using a queue at each state to store the predecessor traces for the most 
recent visits. The sensitivity of the agent to environmental changes can be altered by 
varying the length of the queue (which we will denote as v). Smaller values for v will 
place a greater emphasis on more recent learning episodes. 

4.3   Blended Traces 

This approach aims to be better suited to dynamic tasks than AVM traces by placing a 
larger weighting on more recent experience. In this algorithm the traces at s′ are 
updated following a transition from s, as follows (where β is a blending parameter 
with 0≤ β≤1): 

Ts′,s″ = βTs′,s″ + (1- β)λγTs,s″ ∀ s″ in S                                                      (4) 

If s′  is an initial state then the update is: 

Ts′,s″ = βTs′,s″ ∀ s″ in S                                                         (5) 

The emphasis which the system places on recent experience is controlled via the β 
parameter – larger values of β will place more weight on accumulated past experience 
(as stored in Ts′,s″), whilst smaller values will make the system more responsive to 
recent experience (Ts,s″).  

One possible problem with using a static value for β is that it will take several 
visits to a state before the traces grow significantly from their initial zero values, 
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which will slow early learning. A potential solution is suggested by viewing AVM 
traces as a specialised form of a blending trace where the value of β is determined 
dynamically at each state to be equal to (Ns′ - 1)/Ns′. It may be possible to combine the 
early learning speed of this approach with the on-going flexibility of blending by 
setting β = ((Ns′)

n-1)/ (Ns′)
n where n is a fixed value just smaller than 1, or 

alternatively β = min((Ns′ - 1)/Ns′, βmax) where βmax is an upper-bound on the value of 
β. In this paper we have used the latter approach. 

4.4   Comparison of Compiled Trace Algorithms and TD(λ) 

Both RVM and blended traces can be seen as generalizations of the AVM form of 
compiled traces. Behaviour identical to AVM can be produced by setting the 
algorithm’s parameter appropriately (using queue length v=∞ for RVM or βmax=1 for 
blended traces). Similarly both algorithms are a generalization of conventional TD(λ), 
which can be obtained by using v=1 or βmax=0. Therefore previous proofs of the 
convergence properties of TD(λ) (such as [8]) apply to these compiled trace 
algorithms, at least for these specific choices of parameter. Extension of these proofs 
to the more general form of these algorithms is an area for future work. 

5   Experimental Method 

5.1   The Layered-DAG Test Suite 

The experiments reported in this paper are based on a suite of policy evaluation test-
beds (the Layered-DAG tests). These test environments are defined by a directed 
acyclic graph, in which each node represents a state. The nodes have been grouped 
into layers with arcs from each node in a layer to each node in the next layer. Each arc 
is assigned a random probability of occurrence (with the probabilities on the outgoing 
arcs from each node normalised so as to sum to 1). Each episode commences at a 
randomly selected node in the first layer, and ends when the environment moves to a 
terminal state in the final layer. Each terminal node is assigned a unique fixed reward 
in the range 0..n-1, where n is the number of nodes in the terminal layer.  

This test suite has two advantages for this research. First the true value of each 
state in the environment can readily be calculated. Secondly a range of problems of 
varying difficulty can be generated by altering the number of layers in the graph or 
the number of nodes in each layer. This allows an investigation of the relative ability 
of compiled and conventional traces as the problem difficulty is increased. 

For each variant of the Layered-DAG problem, various combinations of 
parameters were trialed for both the conventional and compiled traces. For each set of 
parameters, 20 trials were run using different random number generators to assign the 
transition probabilities within the graph. Each trial consisted of a number of episodes 
equal to 50 multiplied by the number of nodes per layer, to ensure that on average 
each state would experience the same number of visits regardless of the size of the 
test problem. 

After each learning episode, the root mean squared error of the table values 
compared to the actual state values was calculated. This was averaged over all 
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episodes of each trial, and then over each trial for a given set of parameters. This 
measure was chosen as it requires the learning algorithm to converge both rapidly and 
to a good approximation of the actual values — both of these properties are important 
if the algorithm is to be applied in an on-line context. 

5.2   Choice of Compiled Trace Algorithm 

Both the RVM and blended forms of the compiled trace algorithm were investigated. 
Very little variation was noted between the two algorithms, and hence for space 
reasons only the blended trace results will be reported in this paper. Given the similar 
performance of these two variants of compiled traces the blended form is to be 
preferred due to the much greater space requirements of the RVM form. 

6   Results and Discussion 

The graphs in Figures 2–4 summarise the performance of the blended trace algorithm 
across all variants of the Layered-DAG problem (each variant is identified as NxM 
where N is the number of nodes per layer, and M is the number of layers). The results 
have been normalized relative to the lowest mean RMSE error obtained on each 
variant of the problem, to facilitate comparison across these variants. Note that the 
first data-point in each graph (corresponding to βmax=0) indicates the performance of 
conventional TD(λ). 

It can immediately be seen that non-zero values of βmax significantly improve on 
the results achieved using standard TD(λ). The TD(λ) error rate is on the order of 15-
45% higher than that obtained using the optimal value of βmax. Importantly the trend is 
that the improvement due to using compiled traces increases as the complexity of the 
problem (either the number of states per layer or the number of layers) is increased.  
The performance of the compiled trace algorithm is relatively insensitive to the choice 
of βmax, with good results obtained across a wide range of values. As the episode 
length increases, the optimal choice of βmax gradually decreases. 

An examination of the best values found for the α (learning rate) and λ parameters 
gives some insight into the reasons for the improved performance achieved using 
compiled traces. Whilst the α values were similar for both algorithms, the best results 
for compiled traces were achieved using far higher values for λ than were beneficial 
for TD(λ). Figure 5 illustrates this for the 8x20 Layered-DAG problem, showing the 
mean RMSE curves achieved during learning for both algorithms using their optimal 
parameter settings and for TD(λ) using the compiled trace algorithm’s optimal 
settings. A higher λ value produces rapid early learning when used in conjunction 
with either conventional or compiled traces, by maintaining higher traces for (and 
therefore making larger changes to the values of) states encountered early in each 
episode. However TD(λ) fails to converge to a suitably low final error when using 
this λ value, as these large trace values cause the values of early states to be overly 
reactive to the reward received in the most recent episode. In contrast using compiled 
traces, the change due to most recent reward are ‘spread’ across many possible 
predecessor states, thereby moderating the impact of the stochasticity in the 
environment. 
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Figs. 2–5. Graphs of the normalised root-mean-squared-error (averaged over all episodes of all 
trials) against the βmax parameter for the 10 layer (top-left), 20 layer (top-right) and 30 layer 
(bottom-left) variants of the Layered-DAG task. The bottom-right graph plots RMSE (averaged 
over all trials) against learning episodes on the 8x20 task. 

7   Conclusion and Future Work 

7.1   Comparison of Conventional and Compiled Traces 

This paper has demonstrated both by example and through empirical results that the 
use of compiled eligibility traces can substantially improve the performance of an 
agent using temporal difference learning methods, particularly in highly probabilistic 
environments. On the Layered-DAG tasks compiled traces gave a 15-45% reduction 
in error compared to conventional traces (implemented by setting the βmax parameter 
to 0). 

Thus far these benefits have been demonstrated only in the simplest of TD learning 
tasks (evaluation of a static policy using a tabular representation of the state values). 
Further experiments will be required to determine the effectiveness of compiled traces 
on more difficult problems, particularly those involving dynamic environments or 
policy iteration tasks. It would also be beneficial to formally analyse the convergence 
properties of TD algorithms using compiled traces. 

The primary disadvantage of compiled traces compared to conventional traces is 
the additional memory and computational overhead — a naïve implementation of 
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TD(λ) is order O(|S|), whereas a similarly naïve compiled traces implementation is 
O(|S|2). It has been shown that the costs of TD(λ) can be reduced by ignoring near-
zero traces — this technique may be less applicable to compiled traces however as the 
proportion of near-zero traces is likely to be significantly lower. However it may still 
be possible to discover more efficient implementation techniques similar to those used 
for TD(λ) by [9]. 

A further issue which needs to be addressed in order to scale up compiled traces to 
larger problems is integrating it into function approximation algorithms, as has 
previously been achieved for conventional traces. We intend to explore the use of 
compiled traces with localized function approximators such as tile-partitioning [10] 
and resource-allocating networks [11]. 

7.2   Using Compiled Traces for Planning and Exploration 

Whilst the primary motivation behind compiled traces is to maximise the amount of 
learning possible from each interaction with the environment, it may also prove 
possible to utilise the additional information stored in these traces for other purposes. 
One possible application would be within an intelligent exploration algorithm. Such 
an algorithm might identify a particular state worthy of further exploration (for 
example a region of state space which has been under-explored, or not visited 
recently) and set it as a sub-goal. With conventional eligibility traces there is no 
knowledge within the system of how to move from the current state towards this sub-
goal state, and hence no way to select actions to carry out the desired exploration. 

Compiled traces also do not directly encode this information in the way that a goal-
independent learning system does. However the values of the traces at the sub-goal 
state may give some guidance as to the correct actions. If the system is currently at 
state s and the sub-goal is at state g, we would select the action a which gives the 
highest value for Tg,s,a (the trace stored at g for the combination of s and a). If Tg,s,a is 
zero for all values of a, then we could either select an action randomly, or select 
greedily with respect to the overall goal. This process would be repeated for all states 
encountered until state g is reached. Whilst this approach is unlikely to result in the 
optimal path from s to g, it is likely to be significantly more efficient than random 
exploration in search of g, and incurs a relatively small computational cost. 

This may be an area in which compiled traces provide benefits relative to model-
based approaches, as the ‘backward-looking’ nature of compiled traces may allow 
more efficient planning of exploration than the ‘forward-looking’ models can achieve. 
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