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sokolovm@iro.umontreal.ca

2 SITE, University of Ottawa, Ottawa, Canada
nat@site.uottawa.ca

3 SITE, University of Ottawa, Ottawa, Canada
ICS, Polish Academy of Sciences, Warsaw, Poland

szpak@site.uottawa.ca

Abstract. Different evaluation measures assess different characteristics of ma-
chine learning algorithms. The empirical evaluation of algorithms and classifiers
is a matter of on-going debate among researchers. Most measures in use today
focus on a classifier’s ability to identify classes correctly. We note other use-
ful properties, such as failure avoidance or class discrimination, and we suggest
measures to evaluate such properties. These measures – Youden’s index, likeli-
hood, Discriminant power – are used in medical diagnosis. We show that they
are interrelated, and we apply them to a case study from the field of electronic
negotiations. We also list other learning problems which may benefit from the
application of these measures.

1 Introduction

Supervised Machine Learning (ML) has several ways of evaluating the performance of
learning algorithms and the classifiers they produce. Measures of the quality of clas-
sification are built from a confusion matrix which records correctly and incorrectly
recognized examples for each class. Table 1 presents a confusion matrix for binary
classification, where tp are true positive, fp – false positive, fn – false negative, and
tn – true negative counts.

Table 1. A confusion matrix for binary classification

Class \ Recognized as Positive as Negative
Positive tp fn
Negative fp tn

This paper argues that the measures commonly used now (accuracy, precision, recall,
F-Score and ROC Analysis) do not fully meet the needs of learning problems in which
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the classes are equally important and where several algorithms are compared. Our find-
ings agree with those of [1] who surveys the comparison of algorithms on multiple data
sets. His survey, based on the papers published at the International Conferences on ML
2003–2004, notes that algorithms are mainly compared on accuracy.

2 Commonly-accepted Performance Evaluation Measures

The vast majority of ML research focus on the settings where the examples are assumed
to be identically and independently distributed (IID). This is the case we focus on in this
study. Classification performance without focussing on a class is the most general way
of comparing algorithms. It does not favour any particular application. The introduction
of a new learning problem inevitably concentrates on its domain but omits a detailed
analysis. Thus, the most used empirical measure, accuracy, does not distinguish be-
tween the number of correct labels of different classes:

accuracy =
tp + tn

tp + fp + fn + tn
(1)

Conversely, two measures that separately estimate a classifier’s performance on differ-
ent classes are sensitivity and specificity (often employed in biomedical and medical
applications, and in studies which involve image and visual data):

sensitivity =
tp

tp + fn
; specificity =

tn

fp + tn
(2)

Focus on one class prevails in text classification, information extraction, natural lan-
guage processing and bioinformatics, where the number of examples belonging to one
class is often substantially lower than the overall number of examples. The experimen-
tal setting is as follows: within a set of classes there is a class of special interest (usually
positive). Other classes are either left as is – multi-class classification – or combined into
one – binary classification. The measures of choice calculated on the positive class1 are:

precision =
tp

tp + fp
; recall =

tp

tp + fn
= sensitivity (3)

F − measure =
(β2 + 1) ∗ precision ∗ recall

β2 ∗ precision + recall
(4)

All three measures distinguish the correct classification of labels within different classes.
They concentrate on one class (positive examples). Recall is a function of its correctly
classified examples (true positives) and its misclassified examples (false negatives). Pre-
cision is a function of true positives and examples misclassified as positives (false pos-
itives). The F-score is evenly balanced when β = 1. It favours precision when β > 1,
and recall otherwise.

A comprehensive evaluation of classifier performance can be obtained by the ROC:

ROC =
P (x|positive)
P (x|negative)

(5)

1 The same measures can be calculated for a negative class, but they are not reported.
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P (x|C) denotes the conditional probability that a data entry has the class label C. An
ROC curve plots the classification results from the most positive to the most negative
classification. Due to the wide use in cost/benefit decision analysis, ROC and the Area
under the Curve (AUC) apply to learning with asymmetric cost functions and imbal-
anced data sets [2]. To get the full range of true positives and false negatives, we want
easy access to data with different class balances. That is why ROC is used in experi-
mental sciences, where it is feasible to generate much data. The study of radio signals,
biomedical and medical science are a steady source of learning problems. Another pos-
sibility of building the ROC is to change the decision threshold of an algorithm. The
AUC defined by one run is widely known as balanced accuracy:

AUCb = (sensitivity + specificity)/2. (6)

3 Critique of the Traditional ML Measures

We argue that performance measures other than accuracy, F-score, precision, recall or
ROC do apply and can be beneficial. As a preamble, let us remind the reader that ML
borrowed those measures from the assessment of medical trials [3] and from behav-
ioural research [4], where they are intensively used. Our argument focusses on the fact
that the last four measures are suitable for applications where one data class is of more
interest than others, for example, search engines, information extraction, medical di-
agnoses. They may be not suitable if all classes are of interest and yet must be distin-
guished. For example, consider negotiations (success and failure of a negotiation are
equally important) or opinion identification (markets need to know what exactly trig-
gers positive and negative opinions).

In such applications, complications arise when a researcher must choose between
two or more algorithms [5,6]. It is easy to ask but rather difficult to answer what algo-
rithm we should choose if one performs better on one class and the other – on the other
class. Here we present the empirical evidence of a case where such a choice is neces-
sary. We studied the data gathered during person-to-person electronic negotiations (e-
negotiations); for an overview of machine learning results refer to [6]. E-negotiations
occur in various domains (for example, labour or business) and involve various users
(for example, negotiators or facilitators).

The Inspire data [7] is the largest collection gathered through e-negotiations (held
between people who learn to negotiate and may exchange short free-form messages).
Negotiation between a buyer and a seller is successful if the virtual purchase has oc-
curred within the designated time, and is unsuccessful otherwise. The system registers
the outcome. The overall task was to find methods better suited to automatic learning of
the negotiation outcomes – success and failure. Both classes were equally important for
training and research in negotiations: the results on the positive class can reinforce posi-
tive traits in new negotiations; the results on the negative class can improve (or prevent)
potentially weak negotiations. The amount of data was limited to 2557 entries, each
of them a record of one bilateral e-negotiation. Successful negotiations were labelled
as positive, unsuccessful – as negative. The data are almost balanced, 55% positive
and 45% negative examples. The ML experiments ran Weka’s Support Vector Machine
(SVM) and Naive Bayes (NB) [8] with tenfold cross-validation; see Table 2.
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Table 2. Traditional
classification results

Measure SVM NB
Accuracy 77.4 76.8
F-score 81.2 78.9

Sensitivity 86.8 77.5
Specificity 65.4 75.9

AUC 76.1 76.7

Table 3. Classifier capabilities shown by traditional measures

Classifier Overall Predictive Class
effectiveness power effectiveness

SVM superior superior on superior on
positive examples positive examples

NB inferior superior on superior
negative examples on negative examples

4 Search for Measures

In this study, we concentrate on the choice of comparison measures. In particular, we
suggest evaluating the performance of classifiers using measures other than accuracy,
F-score and ROC. As suggested by Bayes’s theory [9,10], the measures listed in the
survey section have the following effect:

accuracy approximates how effective the algorithm is by showing the probability of the
true value of the class label (assesses the overall effectiveness of the algorithm);
precision estimates the predictive value of a label, either positive or negative, depending
on the class for which it is calculated (assesses the predictive power of the algorithm);
sensitivity/specificity approximates the probability of the positive/negative label being
true (assesses the effectiveness of the algorithm on a single class);
ROC shows a relation between the sensitivity and the specificity of the algorithm;
F-score is a composite measure which favours algorithms with higher sensitivity and
challenges those with higher specificity. See Table 3 for a summary.

Based on these considerations, we can conclude that SVM is preferable to NB. But
will it always be the case? We will now show that the superiority of an algorithm (such
as SVM) with respect to another algorithm largely depends on the applied evaluation
measures. Our main requirement for possible measures is to bring in new characteristics
for the algorithm’s performance. We also want the measures to be easily comparable.
We are interested in two characteristics of an algorithm:

– the confirmation capability with respect to classes, that is, the estimation of the
probability of the correct predictions of positive and negative labels;

– the ability to avoid failure, namely, the estimation of the complement of the proba-
bility of failure.

Three measures that caught our attention have been used in medical diagnosis to ana-
lyze tests [3]. The measures are Youden’s index [11], likelihood [12], and Discriminant
power [13]. They combine sensitivity and specificity and their complements.

Youden’s index. The avoidance of failure complements accuracy, or the ability to cor-
rectly label examples. Youden’s index γ [11] evaluates the algorithm’s ability to avoid
failure – equally weights its performance on positive and negative examples:

γ = sensitivity − (1 − specificity) (7)
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Youden’s index has been traditionally used to compare diagnostic abilities of two tests
[12]. It summarizes sensitivity and specificity and has linear correspondence balanced
accuracy (a higher value of γ means better ability to avoid failure):

γ = 2AUCb − 1. (8)

Likelihoods. If a measure accommodates both sensitivity and specificity, but treats
them separately, then we can evaluate the classifier’s performance to finer degree with
respect to both classes. The following measure combining positive and negative likeli-
hoods allows us to do just that:

ρ+ =
sensitivity

1 − specificity
; ρ− =

1 − sensitivity

specificity
(9)

A higher positive and a lower negative likelihood mean better performance on positive
and negative classes respectively. The relation between the likelihood of two algorithms
A and B establishes which algorithm is preferable and in which situation [12]. Figure
1 lists the relations for algorithms with ρ+ ≥ 1. If an algorithm does not satisfy this
condition, then “positive” and “negative” likelihood values should be swapped.

- ρA
+ > ρB

+ and ρA
− < ρB

− implies A is superior overall;
- ρA

+ < ρB
+ and ρA

− < ρB
− implies A is superior for confirmation of negative examples;

- ρA
+ > ρB

+ and ρA
− > ρB

− implies A is superior for confirmation of positive examples;
- ρA

+ < ρB
+ and ρA

− > ρB
− implies A is inferior overall;

Fig. 1. Likelihoods and algorithm performance

Relations depicted in Figure 1 show that the likelihoods are an easy-to-understand
measure that gives a comprehensive evaluation of the algorithm’s performance.

Discriminant power. Another measure that summarizes sensitivity and specificity is
discriminant power (DP ) [13]:

DP =
√

3
π

(log X + log Y ), (10)

X = sensitivity/(1 − sensitivity), Y = specificity/(1 − specificity). (11)

DP does exactly what its name implies: it evaluates how well an algorithm distin-
guishes between positive and negative examples. To the best of our knowledge, until
now DP has been mostly used in ML for feature selection. The algorithm is a poor
discriminant if DP < 1, limited if DP < 2, fair if DP < 3, good – in other cases.

Experiments. We applied Youden’s index, positive and negative likelihood and DP
to the results of learning from the data of e-negotiations. We calculate the proposed
measures to evaluate the algorithms’ performance – see Table 4.

Youden’s index and likelihood values favour NB’s performance. NB’s γ is always
higher than SVM’s. This differs from the accuracy values (higher for SVM in two
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Table 4. New classification
results

Measure SVM NB
γ 0.522 0.534
ρ+ 2.51 3.22
ρ− 0.20 0.30
DP 1.39 1.31

Table 5. Comparison of the classifiers’ abilities by new
measures

Classifier Avoidance Confirmation Discrimination
of failure of classes of classes

SVM inferior superior for limited
negatives

NB superior superior for limited
positives

experimental settings) and the F-score (higher in all the three settings). The higher
values of γ indicate that NB is better at avoiding failure. Further observation shows
that the positive and negative likelihood favour classifiers with more balanced perfor-
mance over classifiers with high achievement on one class and poor results on the other.
When a classifier performs poorly, the likelihood values support the class labels of the
under-performing classifier. DP ’ values are rather low2. Its results are similar to those
of accuracy, of F-score which prefer SVM to NB. We attribute this correspondence to a)
positive correlation of all the three measures with sensitivity; b) close values of speci-
ficity and sensitivity in our case study. As expected, Youden’s index values correspond
to those of the AUC. Youden’s index is the most complex measure and its results (NB
consistently superior to SVM) do not correlate with the standard measures. This con-
firms that the ability to avoid failure differs from the ability of successful identification
of the classification labels. Based on these results and relations given by the scheme
from Figure 1, we summarize SVM’s and NB’s abilities in Table 5.

NB is marginally superior to SVM: we confirm our hypothesis that the superiority of
an algorithm is related to how evaluation is measured.

The results reported in Tables 2, 3, 4 and 5 show that higher accuracy does not
guarantee overall better performance of an algorithm. The same conclusion applies to
every performance measure if it is considered separately from others. On the other hand,
a combination of measures gives a balanced evaluation of the algorithm’s performance.

5 Conclusion

We have proposed a new approach to the evaluation of learning algorithms. It is based
on measuring the algorithm’s ability to distinguish classes and thus to avoid failure in
classification. We have argued this has not yet been done in ML. The measures which
originate in medical diagnosis are Youden’s index γ, the likelihood values ρ−, ρ+ , and
Discriminant Power DP . Our case study of the classification of electronic negotiations
has shown that there exist ML applications which benefit from the use of these mea-
sures. We also gave a general description of the learning problems which may employ
γ, ρ−, ρ+ and DP . These problems are characterized by a restricted access to data, the
need to compare several classifiers, and equally-weighted classes.

Such learning problems arise when researchers work with data gathered during social
activities of certain group. We have presented some results at conferences with a focus

2 Discriminant power is strong when it is close to 3.
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more general than ML. We note that the particularly apt problems include knowledge-
based non-topic text classification (mood classification [14], classification of the out-
comes of person-to-person e-negotiations [6], opinion and sentiment analysis [15], and
so on) and classification of email conversations [16]. All these studies involve data sets
gathered with specific purposes in a well-defined environment: researchers discussing
the time and venue of a meeting [16], bloggers labelling with their moods blogs posted
on a Web site [14], participants of e-negotiations held by a negotiation support sys-
tem [6]. All cited papers employ commonly used ML measures. For example, [6] and
[15] report accuracy, precision, recall and F-score; other papers, especially on sentiment
analysis, report only accuracy, for example [5].

Our future work will follow several interconnected avenues: find new characteristics
of the algorithms which must be evaluated, consider new measures of algorithm per-
formance, and search for ML applications which require measures other than standard
accuracy, F-score and ROC.

References

1. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7 (2006) 1–30

2. Chawla, N., Japkowicz, N., Kolcz, A., eds.: Special Issue on Learning from Imbalanced Data
Sets. Volume 6(1). ACM SIGKDD Explorations (2004)

3. Isselbacher, K., Braunwald, E.: Harrison’s Principles of Internal Medicine. McGraw-Hill
(1994)

4. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ (1988)

5. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using ma-
chine learning techniques. In: Proc Empirical Methods of Natural Language Processing
EMNLP’02. (2002) 79–86

6. Sokolova, M., Nastase, V., Shah, M., Szpakowicz, S.: Feature selection for electronic nego-
tiation texts. In: Proc Recent Advances in Natural Language Processing RANLP’05. (2005)
518–524

7. Kersten, G., et al.: Electronic negotiations, media and transactions for socio-economic inter-
actions (2006) http://interneg.org/enegotiation/ (2002-2006).

8. Witten, I., Frank, E.: Data Mining. Morgan Kaufmann (2005)
9. Cherkassky, V., Muller, F.: Learning from Data. Wiley (1998)

10. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2000)
11. Youden, W.: Index for rating diagnostic tests. Cancer 3 (1950) 32–35
12. Biggerstaff, B.: Comparing diagnostic tests: a simple graphic using likelihood ratios. Statis-

tics in Medicine 19(5) (2000) 649–663
13. Blakeley, D., Oddone, E.: Noninvasive carotid artery testing. Ann Intern Med 122 (1995)

360–367
14. Mishne, G.: Experiments with mood classification in blog posts. In: Proc 1st

Workshop on Stylistic Analysis of Text for Information Access (Style2005). (2005)
staff.science.uva.nl/gilad/pubs/style2005-blogmoods.pdf.

15. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proc 10th ACM SIGKDD
International Conf on Knowledge Discovery and Data Mining KDD’04. (2004) 168–177

16. Boparai, J., Kay, J.: Supporting user task based conversations via email. In: Proc 7th Aus-
tralasian Document Computing Symposium. (2002)


	Introduction
	Commonly-accepted Performance Evaluation Measures
	Critique of the Traditional ML Measures
	Search for Measures
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




