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Abstract. In this paper, we propose a new hash function based on RC4
and we call it RC4-Hash. This proposed hash function produces variable
length hash output from 16 bytes to 64 bytes. Our RC4-Hash has several
advantages over many popularly known hash functions. Its efficiency is
comparable with widely used known hash function (e.g., SHA-1). Seen
in the light of recent attacks on MD4, MD5, SHA-0, SHA-1 and on
RIPEMD, there is a serious need to consider other hash function design
strategies. We present a concrete hash function design with completely
new internal structure. The security analysis of RC4-Hash can be made in
the view of the security analysis of RC4 (which is well studied) as well as
the attacks on different hash functions. Our hash function is very simple
and rules out all possible generic attacks. To the best of our knowledge,
the design criteria of our hash function is different from all previously
known hash functions. We believe our hash function to be secure and
will appreciate security analysis and any other comments.
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1 Introduction

Hash functions are of fundamental importance in cryptographic protocols. They
compress a string of arbitrary length to a string of fixed length. We know that dig-
ital signatures are very important in information security. The security of digital
signatures depends on the cryptographic strength of the underlying hash func-
tions. Other applications of hash functions in cryptography are data integrity,
time stamping, password verification, digital watermarking, group signature, e-
cash and in many other cryptographic protocols.

Hash functions are usually designed from scratch or made out of a block cipher
in a black box manner. Some of the well studied hash functions constructed from
scratch are SHA-family [31,9], MD4 [26], MD5 [27], RIPEMD [25], Tiger [1],
HAVAL [39] etc. Whereas PGV hash function [24], MDC2 [6] etc. are designed
in a black box manner.

Since among SHA-family SHA-0 [31], SHA-1 [9] were broken by Wang et
al. [35,36], we can not be confident about the security of other algorithms in the
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SHA-family because their design principles are similar. Likewise MD4, MD5,
RIPEMD and HAVAL were also broken [33,34,37,38]. So, we need to design
new, variable length hash algorithms with different internal structures keeping
security and efficiency in mind.

In response to the SHA-1 vulnerability [36] that was announced in Feb. 2005,
NIST held a Cryptographic Hash Workshop on 2005 to solicit public input on
its cryptographic hash function policy and standards. NIST continues to recom-
mend a transition from SHA-1 to the larger approved hash functions (SHA-224,
SHA-256, SHA-384, and SHA-512). In response to the workshop, NIST has also
decided that it would be prudent in the long-term to develop an additional hash
function through a public competition, similar to the development process for
the block cipher in the Advanced Encryption Standard (AES).

It will be useful and interesting to propose some robust hash functions which
are based on some well studied and structurally different from the broken class.
In this direction we propose a hash function (RC4-Hash) whose basic structure is
based on RC4. It also has the desirable advantage of variable length hash output.
In fact our design provides hash output from 16 bytes to 64 bytes with little or no
modification in the actual algorithm. It provides awide range of security depending
on the applications. In this context it may be noted that there are very few hash
families providing variable size hash output. We provide security analysis against
meaningful known attacks. We take care of the weakness of RC4 in a manner such
that it will not affect the security of the Hash function. Many results on RC4 can
be used to show the security of RC4-Hash against known attacks and importantly
resistances against attacks by Wang et al. and Kelsey-Schneier second preimage
attack [16]. Its efficiency is also comparable with SHA-1.

The rest of the paper is organized as follows. In Section 2 we give a simple
description and some of the security analysis of RC4. We also give a short note
on hash functions. RC4 based hash function is analyzed in Section 3 followed
by a security/performance analysis of RC4-Hash in Section 4. We conclude in
Section 5.

2 Preliminaries

We first describe the RC4 algorithm and its known security analysis which are
relevant to this paper. Then we give a short note on hash functions. RC4 was
designed by Ron Rivest in 1987 and kept as a trade secret until it leaked out
in 1994. It consists of a table of all the 256 possible 8-bit words and two 8-bit
pointers. Thus it has a huge internal state of log2(28! × (28)2) ≈ 1700 bits. For
a detailed discussion on RC4 see Master’s thesis of Itsik Mantin [18].

2.1 RC4 Algorithm

Let [N ] := [0, N −1] := {0, 1, · · · , N −1} and Perm(A) be the set of all permuta-
tions on A. In this paper, we will be interested on Perm([N ]) (or we write Perm),
where N = 256 = 28. For S ∈ Perm, we denote S[i] to the value of the permuta-
tion S at the position i ∈ [N ]. In this paper, the addition modulo N is denoted
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by “ + ”, otherwise it will be stated clearly. The function Swap(S[i], S[j]) means
the swapping operation between S[i] and S[j]. The key-scheduling algorithm and
key-generation algorithm are defined in Figure 1.

RC4-KSA(K)

for i = 0 to N – 1
S[i] = i;

j = 0;
for i = 0 to N – 1

j = j + S[i] + K[i mod κ];
Swap(S[i],S[j]);

RC4-PRBG(S)

i = 0, j = 0;
Pseudo-Random Bytes Generation:

i = (i + 1) mod N;
j = (j + S[i]) mod N;
Swap(S[i],S[j]);
out = S[(S[i] + S[j]) mod N];

Fig. 1. The Key Scheduling Algorithm (RC4-KSA) and Pseudo-Random Byte Gen-
eration Algorithm (RC4-PRBG or PRBG) in RC4. Here K = K[0] ‖ · · · ‖ K[κ − 1],
K[i] ∈ [N ]. and κ is the size of the secret key in bytes.

2.2 Some Relevant Security Analysis of RC4

In this section we briefly explain few attacks on RC4 which are important in this
paper while considering the security analysis of RC4-Hash.

The Distribution After Key-Scheduling Algorithm (or RC4-KSA) Is
Close to Uniform

RC4 can be viewed as a close approximation of exchange shuffle. In exchange
shuffle, the value of j in Key-Scheduling Algorithm is chosen randomly (unlike
RC4-KSA where it is updated recursively based on a secret key). Simion and
Schmidt [30] studied the distribution of the permutation after exchange shuffle.
Mironov [21] showed that the statistical distance between the output after t

exchange shuffles and uniform distribution on permutations is close to e
−2t
N .

Thus, when t = N , it has significant statistical distance which is e−2. At the same
time, if the number of random shuffle is large compared to N then the statistical
distance is close to zero which means the two distributions are almost identical.
Even though RC4-KSA is not the same as exchange shuffle, one can hope for
a similar property. More precisely, we assume that if K is chosen randomly
then the distribution of the pair (S, j) after the execution of RC4-KSA is close
to uniform distribution i.e., (S, j) = RC4-KSA(K) is uniformly distributed on
Perm × [N ] provided K is chosen uniformly.

The Distribution of RC4-PRBG Output Is Not Uniform

There are many observations [11,12,20,23] which proves that the distribution
of RC4-PRBG(S) can not be uniform even if we assume that S is uniformly
distributed. For example,
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1. Mantin and Shamir [20] showed that the probability of second byte being
zero is close to 2

N as compared to the probability 1
N in case of random Byte

generation.
2. Paul and Preneel [23] showed that the probability that first two bytes are

equal is close to 1
N (1 − 1

N ).
3. Fluhrer and McGrew [11] computed probabilities for different possible

outputs (e.g., the first two bytes are (0,0) has probability close to 1
N2 +

1
N3 ) and showed that the probability is not the same as that of uniform
distribution.

4. A Finney [7] state at any stage i in RC4-PRBG is a pair (S, j) ∈ Perm× [N ]
where j = i + 1 and S[j] = 1. One can check that if we have a Finney state
in PRBG just before updating i then next state is also Finney. The converse
is also true i.e., the Finney state should arise from a Finney state only. It is
easy to see that if (S, 1) is a Finney state at stage i = 0, then all N output
from PRBG are distinct. Probability that a pair (S, j) chosen randomly for
some i is a Finney state is 1

N2 . One might expect that the output of PRBG
is not uniform (as the output of PRBG with distinct bytes are more likely
due to the Finney states).

5. Golic [12] proved the following result. Let the output n-bit word sequence of
RC4 is Z = (Zt)t=∞

t=1 and z = (zt)t=∞
t=1 denote the least significant bit output

sequence of RC4. Let z̈ = (z̈t = zt + zt+2)t=∞
t=1 denotes the second binary

derivative then z̈ is correlated to 1 with the correlation coefficient close to
15 × 2−3n and output sequence length required to detect a statistical weak-
ness is around 64n/225.

Besides these attacks there are some more attacks on RC4, for example, Fault
analysis [2,15]. But those attacks are not meaningful in the contaxt of hash
function cryptanalysis.

2.3 A Brief Note on Hash Function

A hash function is usually designed as follows : First a compression function
C : {0, 1}c × {0, 1}a → {0, 1}c is designed. We denote C(h, x) = h′ by h

x−→ h′.
Then given a message M such that |M | < 264, a pad is appended at the end
of the message. For example, M := pad(M) = M ‖ 10k ‖ bin64(|M |), where
bin64(x) is the 64-bit binary representation of x and k is the least non-negative
integer such that |M | + k + 65 ≡ 0 mod a. Now write M = M1 ‖ · · · ‖ Mt (for
some t > 0) where |Mi| = a. We choose an initial value IV := h0 ∈ {0, 1}c and
then compute the hash values

h0
M1−→ h1

M2−→ · · · Mt−1−→ ht−1
Mt−→ ht

where ht is the final hash value, i.e., H(M) = ht and |hi| = c. The function C
is known as the compression function and the iteration method is known as the
classical iteration.
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We have three most important notions of security in hash functions which we
describe below. For more detail discussions one can see [32].

1. Collision Attack: Find M1 �= M2, such that H(M1) = H(M2).
2. Preimage Attack: Given a random y ∈ {0, 1}c, find M so that H(M) = y.
3. Second Preimage Attack: Given a message M1, find M2 such that

H(M1) = H(M2).

If it is hard to find any of the above attack (or attacks) then we say the hash
function is resistant to these attacks. For example, if there is no efficient collision
finding algorithm then the hash function is said to be collision resistant. For a
c-bit hash function, exhaustive search requires 2c/2 complexity for collision and
2c complexity for both preimage and second preimage both. In case of collision
attack, birthday attack is popularly used exhaustive search. Recently, Kelsey-
Schneier [16] has shown a generic attack for second preimage for classical hash
function with complexity much less than 2c.

Subsequently, a wide pipe hash design has been suggested [17]. In this de-
sign, there is an underlying function C : {0, 1}w × {0, 1}a → {0, 1}w, called
compression-like function and a post processing function g : {0, 1}w → {0, 1}c.
Given a padded message M = M1 ‖ · · · ‖ Mt, with |Mi| = a, the hash value is
computed as follows :

h0
M1−→ h1

M2−→ · · · Mt−1−→ ht−1
Mt−→ ht, H(M) = g(ht).

If w (the intermediate state size) is very large compare to c (the final hash size),
then the security of H may be assumed to be strong [17] even though there
are some weakness in the compression-like function C. Kelsey-Schneier second
preimage attack also will not work if w > 2c. The post processor g need not be
very fast as it is applied once for each message. Thus, design of a wide pipe hash
function has several advantages over other designs like classical hash functions.
In this context, we would like to mention that, there are several other designs
like prefix-free MD hash function [8], chop-MD [8], EMD [4] etc.

3 RC4-Hash Algorithm: RC4 Based Hash Function

Now we describe our newly proposed hash function based on RC4, RC4-Hash.
This hash function has the following properties;

1. It is, in fact, a hash family denoted as RCH�, 16 ≤ � ≤ 64 where RCH� :
{0, 1}<264 → {0, 1}8�. Here {0, 1}<264

denotes the set of all messages whose
length is at most 264 − 1 which is reasonable in all practical applications.

2. Our hash function is also a wide pipe hash function (see Section 2.3). Like
other hash functions we will use an initial value and a variant of padding
rule which provides a dynamic hash function (i.e., it produces independent
hash outputs of different sizes for one message).
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Algorithm RCH�(M)
Padding Rule: We pad the message as follows : pad(M)=bin8(�) ‖ M ‖ 1 ‖ 0k ‖
bin64(|M |), where bin64(|M |) is the 64-bit binary representation of number of bits
of M and k is the least non-negative integer such that 8 + |M |+ 1 + k + 64 ≡ 0
mod 512. Write pad(M) = M1 ‖ · · · ‖ Mt such that |Mi| = 512.
(2) Classical Iteration: Let M1 ‖ · · · ‖ Mt be the padded message. Let
(S0, j0) := (SIV, 0) be an initial value (SIV is given in Appendix). We invoke the
compression-like function C (given in Figure 2) iteratively similar to the classical
iteration as follows:

(S0, j0)
M1−→ (S1, j1)

M2−→ · · · (St−1, jt−1)
Mt−→ (St, jt) := C+(M).

Recall that, (S, j) X−→ (S∗, j∗) means that C((S, j), X) = (S∗, j∗), where C :
Perm × [N ] × {0, 1}512 → Perm × [N ]
(3) Post-processing: The post processing is divided into following steps. Let
(St, jt) be the internal state after the classical iteration i.e., C+(M) = (St, jt).

1. Compute St+1 = S0 ◦ St and jt+1 = jt.
2. We define the final hash value RCH�(M) by HBG�

(
OWT(St+1, jt+1)

)
(HBG�

and OWT are given in Figure 2).

4 Security Analysis and Performance

In this section, we give security analysis against preimage, second preimage and
collision attacks (see Section 2.3). We also compute the number of basic operations
to compute the hash value such as table lookup and modular addition. We first
explain the role of the eachpart of our hash function in viewof the security analysis.

The role of OWT
First note that OWT is believed to be an one-way transformation since we define
OWT(S, j) = (S∗, j∗), where S∗ = Temp1 ◦ Temp2 ◦ Temp1 (see the algorithm
in Figure 2 for the definition of Temp1 and Temp2). One can easily invert from
Temp2 to Temp1, but Temp1 would not be controlled as there is no choice of
message in this part of the algorithm. Thus, it would be difficult to guess Temp2
such that S∗ = Temp1 ◦ Temp2 ◦ Temp1.

It is also not easy to find fixed point with respect to the permutation (i.e.
OWT(S, j) = (S, j′)). This is why we define OWT(S, j) = Temp1◦Temp2◦Temp1
instead of any other composition. If we define, OWT(S, j) = Temp2◦Temp1 then
one can invert Temp2 = id (the identity permutation) to obtain Temp1. Then, it
is easy to check that Temp1 is a fixed point for this definition of OWT. Similarly
one can find a fixed point when we define OWT(S, j) = Temp2◦Temp1◦Temp2.
In our definition this method does not work.

The Compression-like function C
The compression-like function C has output size about 1692 bits (= 1700− 8 as
8-bit i is not a part of a state) which is much larger than three times of the size
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C((S,j), X)

for i = 0 to 255
j = j + S[i] + X[r(i)];
Swap(S[i],S[j]);

Return (S,j);

OWT((S,j))

Temp1 = S;
for i = 0 to 511

j = j + S[i];
Swap(S[i],S[j]);

Temp2 = S;
S = Temp1 ◦ Temp2 ◦ Temp1;
Return (S,j);

HBG�((S,j))

for i = 1 to �
j = j + S[i];
Swap(S[i],S[j]);
Out = S[S[i] +S[j]];

Fig. 2. The Compression-like function C, OWT and HBG� in RC4-Hash. Here, X =
X[0] ‖ · · · ‖ X[63], |X[i]| = 8 and ◦ means the composition of the permutations. The
function r : [256] → [64] is known as reordering like in MD4 and MD5 (the function
r is given in Appendix), that is the mappings restricted on [0, 63], [64, 127], [128, 191]
and [192, 255] are injective.

of hash output (8�-bits which is at most 512 bits). Thus, generic attacks such as
Kelsey-Schneier [16] second-preimage attack does not work here.

The choice of Initial Value
We have chosen an initial value SIV such that it is not b-conserving. Here we
give a short note on b-conserving state and b-exact key. A b-exact key [10] can
be considered as one of the weak keys of RC4 key scheduling algorithm. Much
research has been devoted to find out several weak keys [29,10].

Definition 1. [10] (1) If S[t] ≡ t mod b for all t, the permutation S is said
to be b-conserving. If S(t) ≡ t mod b for at least N − 2 values of t, then the
permutation S is almost b-conserving.

(2) Let b and κ be two integers, and let K be an κ-byte key. Then K is called a
b-exact key if for any index r, K[r mod κ] ≡ (1−r) mod b. Moreover, if K[0] = 1
and msb(K[1]) = 1 then K is called a special b-exact key where msb(x) means
the most significant bit of x.

The following result says that the permutation generated after key-scheduling
algorithm is b-conserving with high probability if the key is a special b-exact key.
Thus, one can use this to make a distinguishing attack as the distribution of the
permutation is reduced on the set of all b-conserving permutations.

Theorem 1. [10] Let b be a power of 2 such that b|κ and let K be a special
b-exact key of κ bytes. Then the probability that the permutation generated after
key-scheduling algorithm based on the key K is b-conserving, is at least 2

5 .

The reason why we exclude b-conserving SIV for all b is that if the initial value
(permutation) is b-conserving then the space of intermediate permutations can
be reduced using Theorem 1 by choosing b-exact message block (here message
block plays role of key).
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In [14], a related key cryptanalysis has been provided where the the number
of key bytes is very close to N = 256. This cryptanalysis does not work for
smaller number of key bytes, (note that, in our RC4-Hash message blocks are of
64 bytes which is small enough). In [10], a key recovery attack is presented in
RC4 where a known IV is appended with secret key. It is possible to reconstruct
the secret key when different initial values are appended with the same secret
key and few outputs of RC4-PRBG are known. The above cryptanalysis does
not help directly to obtain an attack on our hash function.

The choice of Reordering: Reordering is also playing an important role to
resist collision attack based on some internal collision patterns. We will give
details of these attacks later when we study the collision resistance.

The padding rules makes it a Dynamic Hash Function: Here we use a
slightly different padding rule than what in other known hash functions. We
append the length representation of hash output size at the beginning so that
we can produce different and independent looking hash values for different hash
sizes of same message. If we do not pad the length of the hash size then for any
message M , RCH�′(M) is nothing but the truncation of RCH�(M), where �′ < �.

4.1 Preimage Resistance

Given a hash value of a message randomly chosen from a message space, we want
to show the difficulty of finding its any preimage. Since we have a one-way transfor-
mation OWT, one can use “meet in the middle attack” just after invoking one way
transformation and before invoking hash byte generation. More precisely, given a
hash value h = h0||h1|| · · · ||hl−1 we first invert HBG (this is possible since hash
byte generation algorithm is invertible) and store a set A of pairs (S, j) which out-
puts h after hash byte generation. Then we can choose message M randomly and
compute OWT(C+(M)) and look for collision on the set A. But the complexity of
this “meet in the middle attack” requires approximately 21692/2 = 2846 queries
(birthday attack on Perm[256] which is roughly 1692 bits). One can use a little dif-
ferent approach by using b-predictive a-state as explained below.

Preimage Attack based on Predictive RC4 states

Definition 2. (1) An a-state is a partially specified RC4 state, that includes i,
j, and a elements of S (not necessarily consecutive). More precisely, the tuple
p = (i, j, (i1, · · · , ia), (j1,· · ·, ja)) is said to be an a-state.
(2) An a-state p = (i, j, (i1,· · ·,ia), (j1, · · · , ja)) is compatible with a RC4 state
(i, j, S) if S[ik] = jk for 1 ≤ k ≤ a. We say that p predicts rth output if for all
states compatible with p, produce the same output byte after r rounds. An a-state
p is said to be b-predictive a-state if p predicts r1 < · · · < rb(≤ 2N) outputs.

In [20], Mantin and Shamir have shown a distinguishing attack based on b-
predictive a-state which requires O(N2a−b+3) output bytes. Later, Paul and
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Preneel [22] modified this definition by considering 1 = r1 < · · · < rb ≤ N .
According to this definition, they have shown that b-predictive a-state can exists
only if a ≥ b. In [11] total number of a special b-predictive b-state (known
as fortuitous state where all b predicted states are consecutive) is given (see
Table 1). Note that our hash output bytes are consecutive.

Table 1. The second column is the number of special b-predictive b states known as
fortuitous states. Here, total states means the number of possible different choices of
i, j and values of S in the corresponding b indices. For example, in the case of b = 2,
the total states is 256 × 256 × 255 × 256 ≈ 231.99. Thus, 516/231.99 = 2−22.9 is the
probability that a random state is one of the fortuitous state of length 2.

b Number Total states Prob.

2 516 231.99 2−22.9

3 290 239.98 2−31.8

4 6540 247.97 2−35.2

5 25,419 255.94 2−41.3

6 101,819 263.92 2−47.2

Suppose that we are given a hash value generated from a b-predictive b-state
with a some choice of j. This means that the b-byte hash output is determined
only by b elements of intermediate permutation S and j where OWT(C+(M)) =
(S, j). So any output of OWT(C+(M)) satisfying b + 1 conditions can become
a preimage for a given hash value. Now the probability that a random message
satisfies b+1 conditions is 1

N2(N−1)···(N−b+1) . The remaining has l−b hash bytes
will be same with probability 1

N l−b . Thus, the probability to get a preimage will
be 1

N�−b+2(N−1)···(N−b+1)
. One can check that the probability is less than 1

N�

for b ≤ 64. We give the probability for smaller values of � in Table 1. Thus,
the preimage attack based on fortuitous state does not help and it needs N �

complexity.

4.2 Second Preimage Resistance

In [16], Kelsey and Schneier described a general second preimage attack which
reduces the complexity from 2n (trivial case for n-bit output) to about 2n/2.
We can apply their attack to classical MD-construction which repeats com-
pression function such that the length of intermediate value is same as that
of hash output. Recently, Rivest [28] suggested the dithering method secure
against Kelsey-Schneier second-preimage attack. Lucks [17] also suggested wide
pipe hash, whose length of intermediate value (w-bit) is longer than that of hash
output (n-bit). In case w ≥ 2n, wide pipe hash is secure against Kelsey-Schneier
second-preimage attack. The design principle of RCH� follows wide pipe hash. In
case RCH�, w is about 1692 bits and hash output is less than 512 bits. Therefore,
since the complexity of Kelsey-Schneier second preimage attack is about 2846,
we can say that RCH� is secure against Kelsey-Schneier second-preimage attack.
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4.3 Collision Resistance

(1) Complexity of Birthday attack
We first state the result of Bellare and Kohno [3]. Let X and Y be two in-
dependent and identically distributed random variable taking values on a set
R = {r1, · · · , rL}. Let pi be the probability that X = ri (which is also same for
Y = ri). It is easy to check that Pr[X = Y ] =

∑L
i=1 p2

i . Now consider a function
f : D → R and let x and y be chosen uniformly and independently from D.
Then, Pr[f(x) = f(y)] =

∑L
i=1 p2

i . Thus, we need at least 1/(
∑L

i=1 p2
i )

1/2 many
queries to obtain a collision by using birthday attack on f .

Now we consider D = Perm×[N ], R = {0, 1}8� and f : Perm×[N ] → {0, 1}� be
HBG� function. HBG� is nothing but RC4-PRBG and hence we consider different
distinguishing attack described in Section 2.2 to compute the birthday attack
complexity.
(a) Mantin and Shamir’s 2nd byte distinguishing attack: Let y1, · · · , y�

be the bytes of PRBG output. It was shown that given j = 0 and S is chosen
uniformly the probability that y2 = 0 (zero byte) is close to 2/N (instead of 1/N
for a true uniform distribution) [20]. Now there are 28(�−1) outputs which have
2nd byte 0. Assuming that all other remaining outputs are equally probable, we
see that the birthday attack complexity is close to q = 24� × 2−.001 = 24�−.001.
Thus, the security is .001 bit less compare to the ideal situation. Moreover, here
we assume that j = 0. Bias for the distinguishing attack is much less when we
have a uniform distribution on j, which is more likely in our case.
(b) Paul and Preneel distinguishing attack: Let us study Paul and Pre-
neel’s [23] distinguishing attack in the view of Bellare-Kohno Birthday attack
complexity. In this attack, it is proved that first two bytes are equal with prob-
ability close to 1/N(1− 1/N). One can make similar calculation to see that the
birthday attack complexity is very close to 24�−.00000008.

One can make for similar analysis for other distinguishing attack given in
[11,12]. Now we study the birthday attack in the view of Finney state.
(c) Finney State: Let (S1, j1) and (S2, j2) be chosen uniformly then the prob-
ability that the hash outputs are equal (i.e., HBG�(S1, j1) = HBG�(S2, j2)) is
close to 1

N4×N(N−1)···(N−�+1) +(1− 1
N4 ) 1

N� . This can be computed by condition-
ing on the event that both states are Finney state. Thus, the birthday attack
complexity can be computed and which is approximately N4�−.000001375.

Note that all these calculations are based on some assumptions. Actual birth-
day attack complexity may be different but it is not easy to calculate as the output
distribution of HBG� is not known.

(2) Attack using characteristic for internal collision
In this section we write RCH to denote RCH� when the analysis does not de-
pend on the choice of �. Collision attack focuses on finding a characteristic
with high probability. Recently, Wang et al. suggested new attack strategies to
find collision-finding characteristics with high probability by using both addition
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and XOR difference. Especially, their attack method is deeply related to the
properties of boolean functions used in each hash function. They also found
collisions of MD4, MD5, HAVAL, SHA-0 and showed the complexity of finding
a collision of SHA-1 is 263 operations. Unlike MD4 style hash functions, RCH
uses a nonlinear function, exchange shuffle. Since the exchange shuffle prevents
the addition or XOR difference from being preserved and there is no boolean
function, we can not apply Wang et al. attack method to RCH. Therefore we
need different approach for security analysis of RCH. As the first step of security
analysis, we consider two characteristics with small steps of RCH. Let x and x′

be two message blocks and xi and x′
i denote the message bytes at stage i.

First Example: For any i and S[i] = a, S[i + 1] = b, xi+1 = xi, if i = j
before updating j and xi + a ≡ 0 mod 256 and xi+1 + b ≡ 0 mod 256, then
final intermediate permutation S and j become same for x and x′ such that
x′

i = xi + 1, x′
i+1 = xi+1 and x′

i+2 = xi+2 + 255. Note that here we need three
conditions to control the values of S[i], S[i + 1] and j.

Second Example: For any i and S[i] = a, S[i + 1] = b, xi = xi+1 = xi+2 =
xi+3 − 4, if i = j before updating j and xi + a ≡ 1 mod 256 and a ≡ b − 1
mod 256, then final intermediate permutation S and j become same for x and
x′ such that x′

i = xi − 1, x′
i+1 = xi+1, x′

i+2 = xi+2 − 1, x′
i+3 = xi+3 + 2 and

x′
i+4 = xi+4 − 3. Note that here we need three conditions to control the values

of S[i], S[i + 1] and j.

First example is a 3-step characteristic with 3 conditions such that two mes-
sage bytes are different for x and x′. The length of characteristic is same as the
number of conditions. Second example is a 5-step characteristic with 3 conditions
such that four message bytes are different for x and x′. We need more different
message bytes for x and x′ in order to get a long length of characteristic with
few conditions. Since RCH uses each message byte four times with a reordering
method, in case of using many different message bytes for x and x′, an attacker
has to make a complicated long characteristics for other rounds.

Here, we consider a specific attacker to try to construct characteristics such
that each step has one condition. In this case, we can say security bound of
attack complexity. If two messages differ in k1 and k2 positions and let i1 and
i2 be its inverse with respect to the round function r1 (say). Then we need to
put conditions on S[i1], S[i1 + 1] · · · , S[i2] and j. The reordering we have chosen
have the property that for any k1 and k2,

3∑

k=1

|r−1
k (k1) − r−1

k (k2)| ≥ 24,

and hence the total number of conditions is at least 30. This is because we need
|r−1

k (k1) − r−1
k (k2)| + 2 conditions for each round. Thus, we need 2240 queries

to find the collision. Note that, this is a heuristic argument. Intuitively it is not
possible to get a collision with above method within this complexity. In fact, it
is not clear how to make a collision attack with this complexity.
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(3) Attack using b-conserving property
Next, we consider the case of using b-conserving property. RCH� has a initial
permutation SIV such that there is no b-conserving property. Even though SIV

is not b-conserving, intermediate permutation can be b-conserving by applying
a specific message. If intermediate permutation of each step is random, we can
compute the probability that there exists b-conserving permutation in the inter-
mediate value for each b as follows.

1. For b = 2, (128!)2/256! ≈ 2−252

2. For b = 4, (64!)4/256! ≈ 2−490

3. For b = 8, (32!)8/256! ≈ 2−743

4. For b = 16, (16!)16/256! ≈ 2−976

In order to get a 2-conserving intermediate permutation, we need 2252 queries
of C and then we can choose message blocks such that all intermediate permu-
tations onward are almost 2-conserving with probability 2/5. Therefore, we can
reduce the size of intermediate value from 1684-bit (corresponding to 256!) to at
least 1432-bit (there are 128!×128! 2-conserving permutations) so that we can
find a collision in intermediate value with complexity at least 2716 which is more
than that of trivial collision attack with hash output less than 512-bit. As other
cases have very small probabilities, we ignore them.

Performance

This hash function is based on the RC4 structure which itself is a very fast
algorithm. For each 512 bit messages we need 1024 modulo sum and 1536 lookup
(to compute C+(·)). The post processing is little bit costly but it would not
matter if we hash long message as it is applied once for each message. In post-
processing we have 512 + � addition and 2048 + 3� lookup. We have checked the
performance with SHA-1 and we have noted that SHA-1 is roughly 1.5 times
faster than our algorithm. We hope that this algorithm can be improved in near
future.

5 Conclusion

In this paper we presented a new hash function RC4-Hash, and claim that it is
secure as well as very fast. This hash function is based on the simple structure
of RC4. This proposed hash function generate variable size hash outputs (like
a family of hash functions e.g., SHA family). It’s structure is different from
that of many well known hash functions. Due to its completely new internal
structure and huge size of internal state (approximately 1700 bits) it resists all
generic attacks as well as path breaking attacks by Wang et al. It is very simple
to implement and efficient in software and is compatible with different level of
security. We hope that this new hash function will be found useful. Note, RC4 is
based on 8 bit arithmetic, but there are RC4 like ciphers [5,13] exploiting 32/64
bit architecture of present day machines with enhanced speed. It may be a future
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work to design hash function based on the generalized RC4 with robust security
and increased speed.

Acknowledgements. We wish to thank Dr. Pinakpani Pal for helping us in
software implementation for checking the performance of RC4-Hash. We wish
to thank Professor Rana Barua and the anonymous reviewers for their detailed
comments that improved the technical quality and the editorial presentation of
this paper. The first author was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD) (KRF-2005-213-C00005).

References

1. Ross J. Anderson and E. Biham. TIGER: A Fast New Hash Function. In FSE’1996,
Lecture Notes in Computer Science, pages 89–97, Springer-Verlag, 1996.

2. E. Biham, L. Granboulan and P. Q. Nguyen. Impossible Fault Analysis of RC4 and
Differential Falut Analysis of RC4. In FSE’2005, volume 3557 of Lecture Notes in
Computer Science, pages 359–367, Springer-Verlag, 2005.

3. M. Bellare and T. Kohno. Hash Function Balance and Its Impact on Birthday
Attacks. In Advances in Cryptology-Eurocrypt’2004, volume 3027 of Lecture Notes
in Computer Science, pages 401–418, Springer-Verlag, 2004.

4. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Exten-
sion and the EMD Transform. To appear in Asiacrypt’2006. See at http://www-
cse.ucsd.edu/users/tristenp/.

5. E. Biham, J. Seberry. Py (Roo): A Fast and Secure Stream Cipher using Rolling
Arrays. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/023, 2005.

6. B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, C. H. Meyer, J. Oseas,
S. Pilpel, M. Schilling. Data Authentication Using Modification Detection Codes
Based on a Public One Way Encryption Function. U.S. Patent Number 4,908,861,
March 13, 1990.

7. H. Finney. An RC4 cycle that can’t happen. Post in sci.crypt, September 1994.
8. J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited: How

to Construct a Hash Function. In Advances in Cryptology-Crypto’2005, volume
3621 of Lecture Notes in Computer Science, pages 430–448. Springer-Verlag, 2005.

9. FIPS 180-1. Secure Hash Standard, US Department of Commerce, Washington D.
C, Springer Verlag, 1996.

10. S. Fluhrer, I. Mantin, A. Shamir. Weaknesses in the Key Scheduling Algorithm
of RC4. In SAC’2001, volume 2259 of Lecture Notes in Computer Science, pages
1–24, Springer-Verlag, 2001.

11. S. Fluhrer and D. McGrew. Statistical Analysis of the Alleged RC4 Keystream
Generator. In FSE’2000, volume 1978 of Lecture Notes in Computer Science,
pages 19–30, Springer-Verlag, 2000.

12. J. Golic. Linear Statistical Weakness of Alleged RC4 Keystream Generator. In Ad-
vances in Cryptology-Eurocrypt’1997, volume 1233 of Lecture Notes in Computer
Science, pages 226–238, Springer-Verlag, 1997.

13. G. Gong, K. C. Gupta, M. Hell and Y. Nawaz. Towards a General RC4-Like
Keystream Generator In CISC’2005, volume 3822 of Lecture Notes in Computer
Science, pages 162–174, Springer-Verlag, 2005.

14. A. Grosul and D. Wallach. A Related Key Cryptanalysis of RC4. Department of
Computer Science, Rice University, Technical Report TR-00-358, June 2000.



RC4-Hash: A New Hash Function Based on RC4 93

15. J. J. Hoch, A. Shamir. Fault Analysis of Stream Ciphers. CHES: Cryptographic
Hardware and Embedded Systems, CHES’04, Lecture Notes in Computer Science,
pages 240–253, Springer-Verlag, 2004.

16. J. Kelsey, B. Schneier. Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In Advances in Cryptology-Eurocrypt’2005, volume 3494 of Lecture
Notes in Computer Science, pages 474–490, Springer-Verlag, 2005.

17. S. Lucks. A Failure-Friendly Design Principle for Hash Functions. In Advances in
Cryptology-Asiacrypt’2005, volume 3788 of Lecture Notes in Computer Science,
pages 474–494, Springer-Verlag, 2005.

18. I. Mantin. Analysis of the stream cipher RC4. Master’s thesis, Weizmann Institute,
Israel 2001.

19. I. Mantin. A Practical Attack on the Fixed RC4 in the WEP Mode. In Advances
in Cryptology-Asiacrypt’2005, volume 3788 of Lecture Notes in Computer Science,
pages 395–411, Springer-Verlag, 2005.

20. I.Mantin andA.Shamir. APracticalAttack onBroadcastRC4. InFSE’2001, volume
2355 of Lecture Notes in Computer Science, pages 152–164, Springer-Verlag, 2001.

21. I. Mironov. Not (So) Random Shuffle of RC4. In Advances in Cryptology-
Crypto’2002, volume 2442 of Lecture Notes in Computer Science, pages 304–319,
Springer-Verlag, 2002.

22. S. Paul and B. Preneel. Analysis of Non-fortuitous Predictive States of the RC4
Keystream Generator. In Indocrypt’2003, volume 2904 of Lecture Notes in Com-
puter Science, pages 52–67, Springer-Verlag, 2003.

23. S. Paul and B. Preneel. A New Weakness in the RC4 Keystream Generator and
an Approach to Improve the Security of the Cipher. In FSE’2004, volume 3017 of
Lecture Notes in Computer Science, pages 245–259, Springer-Verlag, 2004.

24. B. Preneel, R. Govaerts and J. Vandewalle. Cryptographically secure hash functions:
an overview. ESAT Internal Report, K. U. Leuven, 1989.

25. RIPE, Integrity Primitives for secure Information systems, Final report of RACE
Integrity Primitive Evaluation (RIPE-RACE 1040) Lecture Notes in Computer
Science, Springer-Verlag, 1995.

26. Ronald L. Rivest. The MD4 message-digest algorithm. In Crypto’1990, volume
537 of Lecture Notes in Computer Science, pages 303–311, Springer-Verlag, 1991.

27. Ronald L. Rivest. The MD5 message-digest algorithm. Request for comments
(RFC 1320), Internet Activities Board, Internet Privacy Task Force, 1992.

28. Ronald L. Rivest. Abelian square-free dithering for iterated hash functions. In
First Hash Workshop by NIST, October 2005.

29. A. Roos. A Class of Weak Keys in the RC4 Stream Cipher. Post in sci.crypt,
September 1995.

30. F. Schmidt and R. Simion, Card shuffling and a transformation on Sn. Acquationes
Mathematicae, vol. 44, pp. 11-34, 1992.

31. SHA-0, A federal standard by NIST, 1993.

32. D. R. Stinson. Cryptography , Theory and Practice, Second Edition. CRC Press,
2002.

33. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In Advances in Cryptology-Eurocrypt’2005, volume 3494 of
Lecture Notes in Computer Science, pages 1–18, Springer-Verlag, 2005.

34. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Advances
in Cryptology-Eurocrypt’2005, volume 3494 of Lecture Notes in Computer Science,
pages 19–35, Springer-Verlag, 2005.



94 D. Chang, K.C. Gupta, and M. Nandi

35. X. Wang, H. Yu and Y. L. Yin. Efficient Collision Search Attacks on SHA-0. In
Advances in Cryptology-Crypto’2005, volume 3621 of Lecture Notes in Computer
Science, pages 1–16, Springer-Verlag, 2005.

36. X. Wang, Y. L. Yin and H. Yu. Finding Collisions in the Full SHA-1. In Advances
in Cryptology-Crypto’2005, volume 3621 of Lecture Notes in Computer Science,
pages 17–36, Springer-Verlag, 2005.

37. H. Yu, X. Wang, A. Yun and S. Park. Cryptanalysis of the Full HAVAL with 4
and 5 Passes. To appear in FSE’2006, Springer-Verlag, 2006.

38. H. Yu, G. Wang, G. Zhang and X. Wang. The Second-Preimage Attack on MD4.
In CANS’2005, volume 3810 of Lecture Notes in Computer Science, pages 1–12,
Springer-Verlag, 2005.

39. Y. Zheng, J. Pieprzyk and J. Seberry HAVAL - A One-Way Hashing Algorithm
with Variable Length of Output In ASIACRYPT 1992, Lecture Notes in Computer
Science, pages 83–104, Springer-Verlag, 1992.

Appendix

• Here we describe the reordering we are using in the hash algorithm. We use
the identity function for r0 and ri’s are defined as in below for 1 ≤ i ≤ 3. Note
that the function r restricted on [64i, 64i + 63] is nothing but ri, 0 ≤ i ≤ 3

r1 : 0, 55, 46, 37, 28, 19, 10, 1, 56, 47, 38, 29, 20, 11, 2, 57, 48, 39, 30, 21, 12,
3, 58, 49, 40, 31, 22, 13, 4, 59, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 61,
52, 43, 34, 25, 16, 7, 62, 53, 44, 35, 26, 17, 8, 63, 54, 45, 36, 27, 18, 9.

r2: 0, 57, 50, 43, 36, 29, 22, 15, 8, 1, 58, 51, 44, 37, 30, 23, 16, 9, 2, 59, 52, 45,
38, 31, 24, 17, 10, 3, 60, 53, 46, 39, 32, 25, 18, 11, 4, 61, 54, 47, 40, 33, 26, 19,
12, 5, 62, 55, 48, 41, 34, 27, 20, 13, 6, 63, 56, 49, 42, 35, 28, 21, 14, 7.

r3 : 0, 47, 30, 13, 60, 43, 26, 9, 56, 39, 22, 5, 52, 35, 18, 1, 48, 31, 14, 61, 44,
27, 10, 57, 40, 23, 6, 53, 36, 19, 2, 49, 32, 15, 62, 45, 28, 11, 58, 41, 24, 7, 54, 37,
20, 3, 50, 33, 16, 63, 46, 29, 12, 59, 42, 25, 8, 55, 38, 21, 4, 51, 34, 17.

• The initial value permutation or SIV is the following:

145, 57, 133, 33, 65, 49, 83, 61, 113, 171, 63, 155, 74, 50, 132, 248, 236, 218, 192,
217, 23, 36, 79, 72, 53, 210, 38, 59, 54, 208, 185, 12, 233, 189, 159, 169, 240, 156,
184, 200, 209, 173, 20, 252, 96, 211, 143, 101, 44, 223, 118, 1, 232, 35, 239, 9,
114, 109, 161, 183, 88, 66, 219, 78, 157, 174, 187, 193, 199, 99, 52, 120, 89, 166,
18, 76, 241, 13, 225, 6, 146, 151, 207, 177, 103, 45, 148, 32, 29, 234, 7, 16, 19,
91, 108, 186, 116, 62, 203, 158, 180, 149, 67, 105, 247, 3, 128, 215, 121, 127, 179,
175, 251, 104, 246, 98, 140, 11, 134, 221, 24, 69, 190, 154, 253, 168, 68, 230, 58,
153, 188, 224, 100, 129, 124, 162, 15, 117, 231, 150, 237, 64, 22, 152, 165, 235,
227, 139, 201, 84, 213, 77, 80, 197, 250, 126, 202, 39, 0, 94, 42, 243, 228, 87, 82,
27, 141, 60, 160, 46, 125, 112, 181, 242, 167, 92, 198, 172, 170, 55, 115, 30, 107,
17, 56, 31, 135, 229, 40, 111, 37, 222, 182, 25, 43, 119, 244, 191, 122, 102, 21, 93,
97, 131, 164, 10, 130, 47, 176, 238, 212, 144, 41, 14, 249, 220, 34, 136, 71, 48,
142, 73, 123, 204, 206, 4, 216, 196, 214, 137, 255, 195, 26, 8, 51, 178, 2, 138, 254,
90, 194, 81, 245, 106, 95, 75, 86, 163, 205, 70, 226, 28, 147, 85, 5, 110.
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