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Abstract. SHACAL-1 is an 80-round block cipher with a 160-bit block
size and a key of up to 512 bits. In this paper, we mount rectangle at-
tacks on the first 51 rounds and a series of inner 52 rounds of SHACAL-1,
and also mount differential attacks on the first 49 rounds and a series
of inner 55 rounds of SHACAL-1. These are the best currently known
cryptanalytic results on SHACAL-1 in an one key attack scenario.
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1 Introduction

The 160-bit block cipher SHACAL-1 was proposed by Handschuh and Nac-
cache [9,10] based on the compression function of the standardized hash function
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SHA-1 [20]. It was selected for the second phase of the NESSIE (New European
Schemes for Signatures, Integrity, and Encryption) project [18], but was not
recommended for the NESSIE portfolio in 2003 because of concerns about its
key schedule. Since SHACAL-1 is the compression function of SHA-1 used in
encryption mode, there is much significance to investigate its security against
different cryptanalytic attacks.

The security of SHACAL-1 against differential cryptanalysis [2] and linear
cryptanalysis [17] was first analyzed by the proposers. Subsequently, Nakahara
Jr. [19] conducted a statistical evaluation of the cipher. In 2002, Kim et al. [15]
presented a differential attack on the first 41 rounds of SHACAL-1 with 512 key
bits and an amplified boomerang attack on the first 47 rounds of SHACAL-1
with 512 key bits, where the former attack is due to a 30-round differential
characteristic with probability 2−138, while the latter attack is based on a 36-
round amplified boomerang distinguisher (see Ref. [15] for the two differentials)
that was conjectured by the authors to be the longest distinguisher (i.e., the
distinguisher with the greatest number of rounds). However, in 2003, Biham et
al. [5] pointed out that the step for judging whether a final candidate subkey is
the right one in the amplified boomerang attacks presented in [15] is incorrect
due to a flaw in the analysis on the number of wrong quartets that satisfy
the conditions of a right quartet. They then corrected it with the fact that all
the subkeys of SHACAL-1 are linearly dependent on the user key. Finally, by
converting the Kim et al.’s 36-round boomerang distinguisher to a 36-round
rectangle distinguisher, Biham et al. presented rectangle attacks on the first
47 rounds and two series of inner 49 rounds of SHACAL-1 with 512 key bits.
These are the best cryptanalytic results on SHACAL-1 in an one key attack
scenario, prior to the work described in this paper. Other cryptanalytic results
on SHACAL-1 include the related-key rectangle attacks [7,11,14]; however, these
related-key attacks [1] are very difficult or even infeasible to be conducted in
most cryptographic applications, though certain current applications may allow
for them, say key-exchange protocols [13].

In this paper, we exploit some better differential characteristics than those
previously known in SHACAL-1. More specifically, we exploit a 24-round differ-
ential characteristic with probability 2−50 for rounds 0 to 23 such that we con-
struct a 38-round rectangle distinguisher with probability 2−302.3. Based on this
distinguisher, we mount rectangle attacks on the first 51 rounds and a series of
inner 52 rounds of SHACAL-1 with 512 key bits. We also exploit a 34-round dif-
ferential characteristic with probability 2−148 for rounds 0 to 33 and a 40-round
differential characteristic with probability 2−154 for rounds 30 to 69, which can
be used to mount differential attacks on the first 49 rounds and a series of inner
55 rounds of SHACAL-1 with 512 key bits, respectively.

The rest of this paper is organised as follows. In the next section, we briefly
describe the SHACAL-1 cipher, the amplified boomerang attack and the rectan-
gle attack. In Sections 3 and 4, we present rectangle and differential attacks on
the aforementioned reduced-round versions of SHACAL-1, respectively. Section
5 concludes this paper.
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2 Preliminaries

2.1 The SHACAL-1 Cipher

The encryption procedure of SHACAL-1 can be described as follows,

1. The 160-bit plaintext P is divided into five 32-bit words A0||B0||C0||D0||E0.
2. For i = 0 to 79:

Ai+1 = Ki � ROT5(Ai) � fi(Bi, Ci, Di) � Ei � Wi,
Bi+1 = Ai,
Ci+1 = ROT30(Bi),
Di+1 = Ci,
Ei+1 = Di.

3. The ciphertext is (A80||B80||C80||D80||E80),

where � denotes addition modulo 232, ROTi(X) represents left rotation of X
by i bits, || denotes string concatenation, Ki is the i-th round key, Wi is the i-th
round constant,1 and the function fi is defined as,

fi(B, C, D) =

⎧
⎨

⎩

fif = (B&C)|(¬B&D) 0 ≤ i ≤ 19
fxor = B ⊕ C ⊕ D 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fmaj = (B&C)|(B&D)|(C&D) 40 ≤ i ≤ 59

where & denotes the bitwise logical AND, ⊕ denotes the bitwise logical exclu-
sive OR (XOR), ¬ denotes the complement, and | represents the bitwise OR
operations.

The key schedule of SHACAL-1 takes as input a variable length key of up
to 512 bits; Shorter keys can be used by padding them with zeros to produce a
512-bit key string, however, the proposers recommend that the key should not be
shorter than 128 bits. The 512-bit user key K is divided into sixteen 32-bit words
K0, K1, · · · , K15, which are the round keys for the first 16 rounds. Each of the
remaining round keys is generated as Ki = ROT1(Ki−3⊕Ki−8⊕Ki−14⊕Ki−16).

2.2 Amplified Boomerang and Rectangle Attacks

Amplified boomerang attack [12] and rectangle attack [3] are both variants of
the boomerang attack [21]. As a result, they share the same basic idea of using
two short differentials with larger probabilities instead of a long differential with
a smaller probability.

Amplified boomerang attack treats a block cipher E : {0, 1}n × {0, 1}k →
{0, 1}n as a cascade of two sub-ciphers E = E1 ◦E0. It assumes that there exist
two differentials: one differential α → β through E0 with probability p (i.e.,
Pr[E0(X) ⊕ E0(X∗) = β|X ⊕ X∗ = α] = p), and the other differential γ → δ
through E1 with probability q (i.e., Pr[E1(X)⊕E1(X∗) = δ|X ⊕X∗ = γ] = q),
with p and q satisfying p · q � 2−n/2. Two pairs of plaintexts (P1, P2 = P1 ⊕ α)
and (P3, P4 = P3 ⊕ α) is called a right quartet if the following three conditions
hold:
1 We note that this is the opposite to Refs. [9,10,20]; however, we decide to stick to

the common notation Ki as a round subkey.
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C1: E0(P1) ⊕ E0(P2) = E0(P3) ⊕ E0(P4) = β;
C2: E0(P1) ⊕ E0(P3) = E0(P2) ⊕ E0(P4) = γ;
C3: E1(E0(P1)) ⊕ E1(E0(P3)) = E1(E0(P2)) ⊕ E1(E0(P4)) = δ.

If we take N pairs of plaintexts with the difference α, then we have ap-
proximately N · p pairs with the output difference β after E0, which generate
about (N ·p)2

2 candidate quartets. Assuming that the intermediate values after
E0 distribute uniformly over all possible values, we get E0(P1) ⊕ E0(P3) = γ
with probability 2−n. Once this occurs, E0(P2) ⊕ E0(P4) = γ holds as well, as
E0(P2)⊕E0(P4) = E0(P1)⊕E0(P2)⊕E0(P3)⊕E0(P4)⊕E0(P1)⊕E0(P3) = γ.
As a result, the expected number of right quartets is about (N ·p)2

2 · 2−n · q2 =
N2 · 2−n−1 · (p · q)2. On the other hand, for a random cipher, the expected num-
ber of right quartets is approximately N2 · 2−2n. Therefore, if p · q > 2−n/2

and N is sufficiently large, the amplified boomerang distinguisher can effectively
distinguish between E and a random cipher with an enough bias.

Rectangle attack achieves advantage over an amplified boomerang attack by
allowing β to take any possible value β′ in E0 and γ to take any possible value γ′

in E1, as long as β′ �= γ′. Starting with N pairs of plaintexts with the difference
α, the expected number of right quartets is about N2 · (p̂ · q̂)2 · 2−n, where
p̂ = (

∑
β′ Pr2(α → β′))

1
2 , q̂ = (

∑
γ′ Pr2(γ′ → δ))

1
2 .

3 Rectangle Attacks on Reduced-Round SHACAL-1

We exploit a 24-round differential characteristic with probability 2−50 for rou-
nds 0–23: (e29, 0, 0, 0, e2,7) → (e14,29, e9,31, e2, e29, 0). Table 1 describes the full
differential.

• By combining the 24-round differential with a differential composed of rounds
24–35 of the second differential of [15] (which has probability 2−20 in these
rounds), a 36-round distinguisher with probability 2−300(= (2−50 · 2−20)2 ·
2−160) is obtained, gaining a factor of 212 over the probability of the most
powerful currently known 36-round one due to Kim et al..

• By combining the 24-round differential with a differential composed of rounds
23–35 of the second differential of [15] (which has probability 2−24 in these
rounds), a 37-round distinguisher with probability 2−308(= (2−50 · 2−24)2 ·
2−160) is obtained.

• By combining the 24-round differential with a differential composed of rounds
21–34 of the second differential of [15] (which has probability 2−27 in these
rounds), a 38-round distinguisher with probability 2−314(= (2−50 · 2−27)2 ·
2−160) is obtained.

These amplified boomerang distinguishers can be used to mount amplified
boomerang attacks on certain reduced-round versions of SHACAL-1 with differ-
ent lengths of user keys. Nevertheless, due to the nature that all the possible β
and γ (as long as they are different) can be used in a rectangle distinguisher,
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Table 1. A 24-round differential with probability 2−50 for Rounds 0 to 23

Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi Prob. Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi Prob.

input e29 0 0 0 e2,7 2−2 13 0 e8 e1 0 0 2−2

1 e7 e29 0 0 0 2−2 14 0 0 e6 e1 0 2−2

2 e12 e7 e27 0 0 2−3 15 0 0 0 e6 e1 2−2

3 e17 e12 e5 e27 0 2−4 16 e1 0 0 0 e6 2−1

4 e22 e17 e10 e5 e27 2−4 17 0 e1 0 0 0 2−1

5 0 e22 e15 e10 e5 2−4 18 0 0 e31 0 0 2−1

6 e5 0 e20 e15 e10 2−3 19 0 0 0 e31 0 2−1

7 0 e5 0 e20 e15 2−3 20 0 0 0 0 e31 1

8 e15 0 e3 0 e20 2−2 21 e31 0 0 0 0 2−1

9 0 e15 0 e3 0 2−2 22 e4 e31 0 0 0 2−1

10 0 0 e13 0 e3 2−2 23 e9,31 e4 e29 0 0 2−3

11 e3 0 0 e13 0 2−2 output e14,29 e9,31 e2 e29 0 /

12 e8 e3 0 0 e13 2−2

these amplified boomerang distinguishers can be converted into rectangle distin-
guishers so that the resultant rectangle attacks can work more efficiently. Here,
we will just present rectangle attacks on SHACAL-1 with 512 key bits based on
the 38-round distinguisher.

3.1 Attacking Rounds 0 to 50

Let Ef ◦E1◦E0 be the 51-round SHACAL-1 with 512 key bits, where E0 denotes
rounds 0 to 23, E1 denotes rounds 24 to 37, and Ef denotes rounds 38 to 50.

To compute p̂ (resp., q̂) (defined in Section 2.2) in such an attack, we need
to summarize all the possible output differences β′ for the input difference α
through E0 (resp., all the possible input differences γ′ having an output differ-
ence δ through E1), which is computationally infeasible. As a countermeasure,
we can count as many such possible differentials as we can.

For simplicity, we compute p̂ by just counting the 24-round differentials that
only have variable output differences (ΔA24, e9,31, e2, e29, 0) compared with the

24-round differential, where ΔA24 is an element from the set {(
2

︷ ︸︸ ︷
0, · · · , 0, 1, · · · , 1

︸ ︷︷ ︸
m

,

1,

14
︷ ︸︸ ︷
0, · · · , 0, 1, · · · , 1

︸ ︷︷ ︸
j

, 1,

9
︷ ︸︸ ︷
0, · · · , 0, 1, · · · , 1

︸ ︷︷ ︸
k

, 0, 0, 0, 0, 0)|0 ≤ m ≤ 2, 0 ≤ j ≤ 14, 0 ≤

k ≤ 9}, for such an output difference with the form is possible for the input
difference (e9,31, e4, e29, 0, 0) to round 23. It was shown in [16] that the following
Theorem 1 holds for the addition difference,

Theorem 1. [16] Given three 32-bit differences ΔX, ΔY and ΔZ. If the prob-

ability Prob[(ΔX, ΔY ) �→ ΔZ] > 0, then

Prob[(ΔX, ΔY ) �→ ΔZ] = 2s,
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where the integer s is given by s = #{i|0 ≤ i ≤ 30, not((ΔX)i = (ΔY )i =
(ΔZ)i)}.

Thus, we can compute a loose lower bound p̂ = 2−49.39 by only counting the
46 differentials with k + j + m ≤ 5; when k + j + m > 5 the contribution is
negligible. We note that the more the counted possible differentials, the better
the resultant p̂, but according to our results the improvement is negligible.

Biham et al. [5] got a lower bound q̂ in their attack as q̂ = 2−30.28 by only
changing the first one or two rounds in the Kim et al.’s second differential.
Since our 38-round distinguisher just uses the first 14 rounds from round 21 to
34 in the Kim et al.’s second differential, throwing round 35 away, therefore,
2−26.28(= 2−30.28 · 24) is the right value for the q̂ in our attack.

Now, we conclude that the distinguisher holds a lower bound probability
2−311.34(≈ (2−49.39 · 2−26.28)2 · 2−160). However, we can adopt the following two
techniques to further reduce the complexity of the attack:

T1) Fix the four fixed bits a9 = a∗
9 = 0, b9 = b∗9 = 0, b31 = b∗31 = 0

and c29 = c∗29 = 0 in any pair of plaintexts P = (A, B, C, D, E) and
P ∗ = (A∗, B∗, C∗, D∗, E∗), where xi is the i-th bit of X . This increases
the probability of the characteristic in the first round by a factor of 4. Thus,
a lower bound probability 2−47.39(= 22 · 2−49.39) is obtained for the above
46 possible 24-round differentials with such four bits fixed in any pair.

T2) Count many possible 14-round differentials γ′ → δ′ for each input difference
γ′ to round 24 in our distinguisher. For expediency, we count those 14-round
differentials that only have variable output differences (ΔA38, e9,31, e2, e29, 0)
compared with the 14-round differential from round 21 to 34 in the Kim et
al.’s second differential. In our observation on this 1-round difference, there
are at least two possible ΔA38 (i.e., e29, e14,29) with probability 2−3, four pos-
sible ΔA38 (i.e., e5,14,29, e14,15,29, e14,29,30, e14,29,30,31) with probability 2−4,
and seven possible ΔA38 (i.e., e5,14,29,30,31, e14,15,29,30,31, e5,6,14,29, e5,14,15,29,
e14,15,16,29, e5,14,29,30, e14,15,29,30) with probability 2−5. We denote the set of
these 13 differences by S. Thus, these 13 possible 14-round differentials hold
a lower bound probability of 2−23.76(≈ 2 · 2−26.28 + 4 · 2−27.28 + 7 · 2−28.28).

Finally, this rectangle distinguisher holds a lower bound probability 2−302.3(≈
(2−47.39 ·2−23.76)2 ·2−160) for the right key, while it now holds with a probability
of 2−312.6(≈ (2−160 · (2 + 4 + 7))2) for a wrong key. The number of available
plaintext pairs decreases to 2155 due to the four fixed bits.

Consequently, we can apply this rectangle distinguisher to break the first 51
rounds of SHACAL-1.

Attack Procedure

1. Choose 2152.65 pairs of plaintexts with difference α = (e29, 0, 0, 0, e2,7) and
four fixed bits as described above: (Pi, P

′
i ), for i = 1, 2, · · · , 2152.65. Ask for

their encryption under 51-round SHACAL-1 to obtain their corresponding
ciphertext pairs (Ci, C

′
i). The 2152.65 pairs generate about 2305.3 candidate

quartets ((Pi1 , P
′
i1), (Pi2 , P

′
i2)), where 1 ≤ i1, i2 ≤ 2152.65.
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2. Guess a 352-bit key Kf for rounds 40 to 50 in Ef , do follows,
2.1 Partially decrypt all the ciphertext pairs (Ci, C

′
i) with Kf to get their

intermediate values just before round 40: (E−1
Kf

(Ci), E−1
Kf

(C′
i)). Then, for

each quartet ((Ci1 , C
′
i1

), (Ci2 , C
′
i2

)), check if both the two 96-bit differences
in words C, D and E positions of E−1

Kf
(Ci1 ) ⊕ E−1

Kf
(Ci2) and E−1

Kf
(C′

i1
) ⊕

E−1
Kf

(C′
i2

) belong to the set {(u, e7,29, e2)|ROT30(u) ∈ S}. If the number of
the quartets passing this test is greater than or equal to 6, then go to Step
2.2; Otherwise, repeat Step 2 with another guess for Kf .

2.2 Guess a 32-bit subkey K39 for round 39, and then decrypt each remain-
ing quartet ((E−1

Kf
(Ci1), E

−1
Kf

(C′
i1 )), (E

−1
Kf

(Ci2 ), E
−1
Kf

(C′
i2))) with K39 to

get their intermediate values just before round 39: ((E−1
K39

(E−1
Kf

(Ci1 )),
E−1

K39
(E−1

Kf
(C′

i1 ))), (E
−1
K39

(E−1
Kf

(Ci2)), E
−1
K39

(E−1
Kf

(C′
i2 )))). We denote them

by ((Xi1 , X
′
i1), (Xi2 , X

′
i2)). Finally, check if both the two 128-bit differ-

ences in words B, C, D and E positions of Xi1 ⊕ Xi2 and X ′
i1
⊕ X ′

i2
belong to the set {(u, e7,29, e2, e29)}. If the number of the quartets pass-
ing this test is greater than or equal to 6, then go to Step 2.3; Otherwise,
repeat this step with another guess for K39 (If all the values of K39 fail,
then go to Step 2).

2.3 Guess a 32-bit subkey K38 for round 38, and then decrypt each remain-
ing quartet ((Xi1 , X

′
i1

), (Xi2 , X
′
i2

)) with K38 to get their intermediate
values just before round 38: ((E−1

K38
(Xi1), E

−1
K38

(X ′
i1)), (E

−1
K38

(Xi2), E
−1
K38

(X ′
i2

))). We denote them by ((X i1 , X
′
i1), (Xi2 , X

′
i2)). Finally, check if

both the two 160-bit differences X i1 ⊕ X i2 and X ′
i1 ⊕ X ′

i2 belong to
the set {(u, e7,29, e2, e29, 0)}. If the number of the quartets passing this
test is greater than or equal to 6, then record (Kf , K38, K39) and go to
Step 3; Otherwise, repeat this step with another guess for K38 (If all the
values of K38 fail, then go to Step 2.2; If all the values of K39 fail, then
go to Step 2).

3. For a suggested (K38, K39, Kf), exhaustively search the remaining 96 key
bits using trial encryption. Three known pairs of plaintexts and ciphertexts
are enough for this trial process. If a 512-bit key is suggested, output it as
the master key of the 51-round SHACAL-1. Otherwise, go to Step 2.

This attack requires 2153.65 chosen plaintexts. The required memory for this
attack is dominated by the ciphertext pairs, which is about 2153.65 · 20 ≈ 2157.97

memory bytes.
The time complexity of Step 1 is 2153.65 51-round SHACAL-1 encryptions;

The time complexity of Step 2.1 is dominated by the partial decryptions, which
is about 2352 ·2153.65 · 1151 ≈ 2503.44. In Step 2.1, since the probability that a quartet
meets the filtering condition in this step is ( 13

296 )2 ≈ 2−184.6, the expected number
of the quartets passing the test for each subkey candidate is 2305.3 · 2−184.6 ≈
2120.7, and it is evident that the probability that the number of quartets passing
the test for a wrong subkey is no less than 6 is about 1. Thus, almost all the
2352 subkeys pass through Step 2.1. In Step 2.2, the time complexity is about
2352 · 232 · 2120.7 · 4 · 1

51 ≈ 2501.03. In this step, since the probability that a
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remaining quartet meets the filtering condition in this step is 2−32 ·2−32 ≈ 2−64,
the expected number of the quartets passing the test for each subkey candidate
is 2120.7 · 2−64 ≈ 256.7. Again, almost all the 2384 subkeys pass through Step
2.2. In Step 2.3, the time complexity is about 2384 · 232 · 256.7 · 4 · 1

51 ≈ 2469.03.
In this step, since the probability that a remaining quartet meets the filtering
condition in this step is also 2−64, the expected number of the quartets passing
the test for each subkey candidate is 256.7 · 2−64 ≈ 2−7.3, and the probability
that the number of quartets passing the test for a wrong subkey is no less than
6 is about

∑256.7

i=6 (
(
256.7

i

) · (2−64)i · (1− 2−64)2
56.7−i) ≈ 2−53.29. Thus, on average,

about 2416 · 2−53.29 = 2362.71 subkeys pass through Step 2.3, which result in
2362.71·296 ≈ 2458.71 51-round encryptions in Step 3. Therefore, this attack totally
requires about 2153.65 + 2503.44 + 2501.03 + 2469.03 + 2458.71 ≈ 2503.7 encryptions.

Since the probability that a wrong 512-bit key is suggested in Step 3 is about
2−480(= 2−160·3), the expected number of suggested wrong 512-bit keys is about
2−480 · 2458.71 ≈ 2−21.29, which is quite low. While the expected number of
quartets passing the difference test in Step 2.5 for the right key is 8 (= 2305.3 ·
2−302.3), and the probability that the number of quartets passing the difference
test in Step 2.5 for the right subkey is no less than 6 is about

∑2305.3

i=6 (
(
2305.3

i

) ·
(2−302.3)i · (1 − 2−302.3)2

305.3−i) ≈ 0.81. Therefore, with a probability of 0.81,
we can break the 51-round SHACAL-1 with 512 key bits by using the amplified
boomerang attack, faster than an exhaustive search.

3.2 Attacking Rounds 28–79

A generic key recovery algorithm based on a rectangle distinguisher was pre-
sented by Biham et al. in [4] and then updated in [6] recently, which treats a
block cipher E : {0, 1}n ×{0, 1}k → {0, 1}n as E = Ef ◦E1 ◦E0 ◦Eb, where E0

and E1 constitute the rectangle distinguisher, while Eb and Ef are some rounds
before and after the rectangle distinguisher, respectively. In this subsection, we
will use their results to break the 52 rounds from round 28 to 79 of SHACAL-1.

To apply the generic attack procedure [4], we need to determine the following
six parameters:

• mb: the number of subkey bits in Eb to be attacked.
• mf : the number of subkey bits in Ef to be attacked.
• rb: the number of bits that are active or can be active before the attacked

round, given that a pair has the difference α at the entrance of the rectangle
distinguisher.

• rf : the number of bits that are active or can be active after the attacked
round, given that a pair has the difference δ at the output of the rectangle
distinguisher.

• 2tb : the number of possible differences before the attacked round, given that
a pair has the difference α at the entrance of the rectangle distinguisher.

• 2tf : the number of possible differences after the attacked round, given that a
pair has the difference δ at the output of the rectangle distinguisher.
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Our attack is applied in the backward direction, that is to say, it is a chosen
ciphertext attack. Anyway, as the data requirement of the attack is the entire
code book, it can be easily used as a known plaintext attack.

Let Eb denote round 79, E0 denote rounds 64 to 78, E1 denote rounds 41
to 63, and Ef denote rounds 38 to 40. We first describe the two differentials
to be used in this rectangle distinguisher. By cyclically rotating the last 23-
round differential in the 24-round differential to the right by 9 bit positions,
we can get a 23-round differential with probability q = 2−49: (e30, e20, 0, 0, 0) →
(e5,20, e0,22, e25, e20, 0). This 23-round differential is used in E1, while the Kim et
al.’s second differential with probability p = 2−31 in [15] is used in E0. Similarly,
we can compute a lower bound probability q̂ = 2−47.77 for the 23-round differ-
entials that only have variable output differences compared with the 23-round
differential described above. As mentioned before, a lower bound p̂ = 2−30.28 has
been got by only changing the first one or two rounds in the Kim et al.’s sec-
ond differential. Therefore, this 38-round rectangle distinguisher holds at least
a probability of 2−316.1(≈ (2−47.77 · 2−30.28)2 · 2−160) for the right key, while it
holds probability 2−320 for a wrong key.

As we attack one round (i.e., round 79) before the distinguisher, we can
compute mb, rb, and tb as follows: There is only one 32-bit subkey K79 in Eb,
therefore, mb = 32. A pair with a difference (e9,19,29,31, e14,29, e7,29, e2, e29) before
round 79 has a difference with the form (R, e9,19,29,31, e12,27, e7,29, e2) after round
79. Obviously, the bit differences in the three least significant bits of R will
definitely be 0, while the bit differences in the other 29 bit positions will be
variable. As a result, rb = 29+4+2+2+1 = 38. In our analysis, R has exactly
15648 possible values. So, tb = log15648

2 ≈ 13.9.
There are three rounds (i.e., rounds 38 to 40) after the distinguisher, thus

mf = 96. A pair that has a difference (e30, e20, 0, 0, 0) before round 41 has a
difference with the form (e20, 0, 0, 0, S) before round 40, where S has the following
12 possible values: e25,30, e25,30,31, e25,26,30, e25,26,30,31, e25,26,27,30, e25,26,27,30,31,
e25,26,27,28,30, e25,26,27,28,30,31, e25,26,27,28,29,30, e25,26,27,28,29,30,31, e25,26,27,28,29,31,
e25,26,27,28,29. These differences can be reached from a difference with the form
(0, 0, 0, S, T ) before round 39, where T has bits 20 to 31 active, of which bits 21 to
24 must take one of the five possible values 1x, 3x, 7x, Fx, and 1Fx according to the
carry, while bits 25 to 31 cannot be predicted as they all depend on the exact value
ofS. This set of differences can be caused by differences with the form (0, 0, S, T, U)
before round 38, where U has bits 20 to 31 active. Thus, rf = 7 + 12 + 12 = 31,
and there are at most 12 · (5 · 27) · 212 = 31457280 possible differences with the
form (0, 0, S, T, U) before round 38, so tf = log2(31457280) ≈ 24.9.

Assigning these parameters to the Biham et al.’s generic attack procedure
leads to a rectangle attack on rounds 38 to 79. Then, with an exhaustive key
search for the remaining 10 rounds, we can attack 52-round SHACAL-1. The
attack procedure is summarized as follows.

Attack Procedure

(a) Based on the above 38-round rectangle distinguisher, apply the Biham et
al.’s generic attack procedure [6] on the 42 rounds from round 38 to 79 of
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SHACAL-1. Output the four 32-bit subkey candidates for rounds 38, 39, 40
and 79 with the maximal counter number.

(b) Find the ten 32-bit subkeys for rounds 28 to 37 using an exhaustive search.

According to [6], the time complexity of Step (a) in our attack is about
2mb+mf+1 + N + N2 · (2rf−n−1 + 2tf−n−1 + 22tf+2rb−2n−3 + 2mb+tb+2tf−2n−2 +
2mf+tf+2tb−2n−2) = 2129 + 2160 + 2320 · (231−161 + 224.9−161 + 22·24.9+2·38−323 +
232+13.9+2·24.9−322 + 296+24.9+2·13.9−322) ≈ 2190.02 memory accesses. In Step (b),
by guessing the subkeys of rounds 28 to 37, it is possible to partially encrypt
all the plaintexts and then apply the previous Step (a). Each subkey guess re-
quires 2160 partial encryptions and 2190.02 memory accesses, therefore, the total
time complexity is 2320 · 2160 · 10

52 ≈ 2477.6 52-round SHACAL-1 encryptions and
2320 · 2190.02 = 2510.02 memory accesses.

Note: There exists another attack on the 52 rounds from round 28 to 79, which is
composed of a similar rectangle attack on rounds 35 to 77, followed by an exhaus-
tive search on the 288-bit subkeys of rounds 28 to 34, 78 and 79. Let Eb denote
round 77, E0 denote rounds 64 to 76, E1 denote rounds 38 to 63, and Ef denote
rounds 35 to 37. For E0 we use the 13-round differential composed of rounds 23
to 35 in the second differential of [15], which holds probability p = 2−24. The
26-round differential (0, 0, e19,24, e14,19,24, e14) → (e14,31, e16,26, e19, e14, 0) with
probability q = 2−55 is used in E1, which is obtained by cyclically rotating the
24-round differential to the left by 17 bit positions and appending two more
rounds before the input. We computed a lower bound on the related probabil-
ities p̂ = 2−23.48 and q̂ = 2−53.77. Therefore, the distinguisher holds at least a
probability of 2−314.5(≈ (2−53.77 ·2−23.48)2 ·2−160) for the right key, while it holds
probability 2−320 for a wrong key. As before we computed that mb = 32, rb = 38,
tb = 13.9, mf = 96, rf = 12+17+18 = 47, and tf = log

(
29·64·12·213 ·218) ≈ 43.8.

Finally, we can break 52-round SHACAL-1. According to [6], the data complexity
is N = 2

n
2 +2/(p̂ · q̂) = 280+53.77+23.48+2 = 2159.25 chosen plaintexts/ciphertexts

with difference (e9,19,29,31, e14,29, e7,29, e2, e29) before round 76, however, this can-
not be guaranteed if we start with chosen ciphertexts. Alternatively, we apply
the attack as a known plaintext attack. With 2159.625 known plaintexts, we can
get 2318.25 pairs, of which about 2158.25(= 2318.25 · 2−160) would have the desired
difference. This attack requires 2288 · 2159.625 · 9

52 ≈ 2445.1 encryptions and the
time complexity is about 2288 · [2mb+mf+1 + N + N2 · (2rf−n−1 + 2tf−n−1 +
22tf+2rb−2n−3 + 2mb+tb+2tf−2n−2 + 2mf+tf+2tb−2n−2)] = 2288 · [2129 + 2159.25 +
2318.5 · (2−114 + 2−117.2 + 2−157.4 + 2−185 + 2−147.4) ≈ 2204.65] = 2492.65 memory
accesses.

4 Differential Attacks on Reduced-Round SHACAL-1

The 24-round differential in Table 1 can be extended to a 30-round differential
(e29,0,0,0,e2,7) → (e0,4,12,17,24,25,27,29, e7,17,19,31, e0,5,15,27,30, e5,17,25,27,29, e2,5,22,27)
with probability 2−93, which has a significantly higher probability than the
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longest currently known (30-round) differential with probability 2−138 due to
Kim et al.. More importantly, it can be extended to as long as a 34-round differen-
tial (e29, 0, 0, 0, e2,7) → (e0,5,7,12,13,15,17,20,28,29, e5,7,9,23,25,29, e3,12,15,18,20,25,27,30,
e5,7,13,15,17,23,25,29, e2,10,15,22,23,25,27,30) with probability 2−148.

These differentials with different rounds can be used to attack different re-
duced round variants of SHACAL-1. Here, we just present the differential attack
on SHACAL-1 with 512 key bits based on the 34-round differential.

4.1 Attacking Rounds 15–69

The 34-round differential can be applied to the 34 rounds from round 40 to 73,
due to the differential distribution of the two functions fif and fmaj. Then, by
appending 10 more rounds before round 40 and removing the last 4 rounds in the
above 34-round differential, we exploit a 40-round differential characteristic with
probability 2−154 for rounds 30 to 69: (e4,8,11,13,16, e3,8,11,13,31, e1,6,11,16,21,29,31,
e1,4,8,11,13,16,21, e3,9,11,13,16,18,21,29,31)→(e0,4,12,17,24,25,27,29, e7,17,19,31, e0,5,15,27,30,
e5,17,25,27,29, e2,5,22,27).

This 40-round differential can be used to mount a chosen ciphertext attack
on the 55 rounds from round 15 to 69. By counting the 30 possible 40-round
differentials that only have variable input differences (e4,8,11,13,16, e3,8,11,13,31,
e1,6,11,16,21,29,31, e1,4,8,11,13,16,21, ΔE30) compared with the 40-round differential
described above (where ΔE30 are shown in Table 2), we can conclude these 40-
round differentials hold a lower bound probability 2−150(= 2 · 2−154 + 28 · 2−155)
for a right key, while they hold a probability of 2−155.09(≈ 30 ·2−160) for a wrong
key. Consequently, we can break the 55-round SHACAL-1 as follows.

Table 2. Possible input differences ΔE30 in Round 30 with their respective probabilities

Prob. ΔE30

2−154 e3,9,11,13,16,18,21,29,31 , e3,4,9,11,13,16,18,21,29,31

e3,4,5,9,11,13,16,18,21,29,31 , e3,5,9,11,13,16,18,21,29,31 , e3,5,6,9,11,13,16,18,21,29,31 ,
e3,4,5,6,9,11,13,16,18,21,29,31 , e3,7,9,11,13,16,18,21,29,31 , e3,4,7,9,11,13,16,18,21,29,31 ,
e3,9,10,11,13,16,18,21,29,31 , e3,4,9,10,11,13,16,18,21,29,31 , e3,9,10,13,16,18,21,29,31 ,
e3,4,9,10,13,16,18,21,29,31 , e3,9,11,12,13,16,18,21,29,31 , e3,4,9,11,12,13,16,18,21,29,31 ,

2−155 e3,9,11,12,16,18,21,29,31 , e3,4,9,11,12,16,18,21,29,31 , e3,9,11,13,14,16,18,21,29,31 ,
e3,4,9,11,13,14,16,18,21,29,31 , e3,9,11,13,16,17,18,21,29,31 , e3,4,9,11,13,16,17,18,21,29,31 ,
e3,9,11,13,16,17,21,29,31 , e3,4,9,11,13,16,17,21,29,31 , e3,9,11,13,16,18,19,21,29,31 ,
e3,4,9,11,13,16,18,19,21,29,31 , e3,9,11,13,16,18,21,22,29,31 , e3,4,9,11,13,16,18,21,22,29,31 ,
e3,9,11,13,16,18,21,29,30,31 , e3,4,9,11,13,16,18,21,29,30,31 , e3,9,11,13,16,18,21,29,30 ,
e3,4,9,11,13,16,18,21,29,30

Attack Procedure

1. Choose 2153 pairs of ciphertexts with difference (e0,4,12,17,24,25,27,29, e7,17,19,31,
e0,5,15,27,30, e5,17,25,27,29, e2,5,22,27): (Ci, C

′
i), for i = 1, · · · , 2153. Decrypt them

to get their corresponding plaintext pairs (Pi, P
′
i ).
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2. Guess a 352-bit key Kf for rounds 15 to 25, do follows,

2.1 Partially encrypt each pair (Pi, P
′
i ) using Kf to get their intermediate

values just after round 25: (EKf
(Pi), EKf

(P ′
i )). Then, check if the 32-bit

differenceΔA26 inEKf
(Pi)⊕EKf

(P ′
i ) belongs to {ROT2(ΔE30)|ΔE30 are

those in Table 2}. If the number of the pairs (Pi, P
′
i ) passing this test is

greater than or equal to 6, then recordKf andall the qualifiedpairs (Pi, P
′
i )

and go to Step 2.2; Otherwise, repeat this step with another Kf .
2.2 Guess a 32-bit subkey K26 for round 26, then partially encrypt each pair

(EKf
(Pi), EKf

(P ′
i )) with K26 to get their intermediate values just after

round 26. We denote these values by (Xi, X
′
i). Finally, check if the 64-bit

difference (ΔA27, ΔB27) in Xi ⊕X ′
i belongs to {(e3,6,10,13,15,18,23, ROT2

(ΔE30))}. If the number of the pairs (EKf
(Pi), EKf

(P ′
i )) passing this

test is greater than or equal to 6, then record (Kf , K26) and all the
qualified pairs (Xi, X

′
i) and go to Step 2.3; Otherwise, repeat this step

with another K26.
2.3 Guess a 32-bit subkey K27 for round 27, then partially encrypt each re-

maining pair (Xi, X
′
i) with K27 to get their intermediate values just after

round 27. We denote them by (Xi, X
′
i). Finally, check if the 96-bit differ-

ence (ΔA28, ΔB28, ΔC28) in X i⊕X
′
i belongs to the set {(e1,3,8,13,18,23,31,

e3,6,10,13,15,18,23, ROT2(ΔE30))}. If the number of the pairs (Xi, X
′
i) pass-

ing this test is greater than or equal to 6, then record (Kf , K26, K27) and
all the qualified pairs (X i, X

′
i) and go to Step 2.4; Otherwise, repeat this

step with another K27.
2.4 Guess a 32-bit subkey K28 for round 28, then partially encrypt each

remaining pair (Xi, X
′
i) with K28 to get their intermediate values just

after round 28. We denote them by (X̂i, X̂
′
i). Finally, check if the 128-bit

difference (ΔA29, ΔB29, ΔC29, ΔD29) in X̂i⊕X̂ ′
i belongs to {(e3,8,11,13,31,

e1,3,8,13,18,23,31, e3,6,10,13,15,18,23, ROT2(ΔE30))}. If the number of the
pairs (X i, X

′
i) passing this test is greater than or equal to 6, then record

(Kf , K26, K27, K28) and all the qualified pairs (X̂i, X̂
′
i) and go to Step

2.5; Otherwise, repeat this step with another K28.
2.5 Guess a 32-bit subkey K29 for round 29, then partially encrypt each re-

maining pair (X̂i, X̂
′
i) with K29, and finally check if the 160-bit difference

EK29(X̂i)⊕EK29(X̂ ′
i) belongs to {(e4,8,11,13,16, e3,8,11,13,31, e1,3,8,13,18,23,31,

e3,6,10,13,15,18,23, ROT2(ΔE30))}. If the number of the pairs (X̂i, X̂
′
i) pass-

ing this test is greater than or equal to 6, then record (Kf , K26, K27, K28,
K29); Otherwise, repeat Step 2 with another 352-bit key.

3. For a suggested (Kf , K26, K27, K28, K29), do an exhaustive search for the
remaining 32 key bits using trial encryption. Four known pairs of plaintexts
and ciphertexts are enough for this trial process. If a 512-bit key is suggested,
output it as the master key of the 55-round SHACAL-1; Otherwise, repeat
Step 2 with another 352-bit key.
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This attack requires 2154 chosen plaintexts. The memory for this attack is
also dominated by the ciphertext pairs, so it requires about 2154 · 20 ≈ 2158.32

memory bytes.
The time complexity of Step 1 is 2154 55-round SHACAL-1 encryptions; The

time complexity of Step 2.1 is dominated by the partial decryptions, which is
about 2352 ·2154 · 11

55 ≈ 2503.68. In Step 2.1, since the probability that a pair meets
the filtering condition in this step is 30

232 ≈ 2−27.09, the expected number of the
pairs passing the test for each subkey candidate is 2153 ·2−27.09 ≈ 2125.91, and the
probability that the number of pairs passing this test for a wrong subkey is no less
than 6 is about

∑2153

i=6 (
(
2153

i

) ·(2−27.09)i ·(1−2−27.09)2
153−i) ≈ 1. Thus, almost all

the 2352 subkeys pass through Step 2.1. In Step 2.2, the time complexity is about
2352·232·2125.91·2· 1

55 ≈ 2505.13. In this step, since the probability that a remaining
pair meets the filtering condition in this step is 2−32, the expected number of the
pairs passing the test for each subkey candidate is 2125.91 ·2−32 ≈ 293.91, and the
probability that the number of pairs passing the test for a wrong subkey is no less
than 6 is about

∑2125.91

i=6 (
(
2125.91

i

) · (2−32)i · (1− 2−32)2
125.91−i) ≈ 1. Thus, almost

all the 2384 subkeys pass through Step 2.2. Similarly, we can get that the time
complexity in either of Step 2.3, 2.4 and 2.5 is also 2505.13; Besides, almost all the
2448 subkeys pass through Step 2.4, and the expected number of the pairs passing
the test in Step 2.4 for each subkey candidate is 293.91 · 2−32×2 ≈ 229.91. In Step
2.5, since the probability that a remaining pair meets the filtering condition
in this step is also 2−32, the expected number of the pairs passing the test
for each subkey candidate is 229.91 · 2−32 ≈ 2−2.09, and the probability that
the number of pairs passing the test for a wrong subkey is no less than 6 is
about

∑229.91

i=6 (
(
229.91

i

) · (2−32)i · (1 − 2−32)2
29.91−i) ≈ 2−22.03. Thus, on average,

about 2448 · 232 · 2−22.03 ≈ 2457.97 subkeys pass through Step 2.5, which result in
2457.97 ·232 ≈ 2489.97 encryptions in Step 3. Therefore, this attack totally requires
about 2154 + 2503.68 + 4 · 2505.13 + 2489.97 ≈ 2507.26 encryptions.

Since the probability that a wrong 512-bit key is suggested in Step 3 is about
2−640(= 2−160·4), the expected number of suggested wrong 512-bit keys is about
2−640 · 2489.97 ≈ 2−150.03, which is extremely low. The expected number of the
pairs passing the test in Step 2.5 for the right key is 8 (= 2153 · 2−150) and the
probability that the number of the pairs passing the test in Step 2.5 for the right
subkey is no less than 6 is about

∑2153

i=6 (
(
2153

i

) · (2−150)i · (1−2−150)2
153−i) ≈ 0.8.

Therefore, with a probability of 0.8, we can break the 55-round SHACAL-1 with
512 key bits by using the differential attack.

4.2 Attacking Rounds 0–48

We can learn that the 64 possible 34-round differentials that have only var-
iable output differences (e0,5,7,12???,17,20,28???, e5,7,9,23,25,29, e3,12,15,18,20,25,27,30,
e5,7,13,15,17,23,25,29, e2,10,15,22,23,25,27,30) compared with the one described earlier
hold a probability of 2−138(= 64 · 22 · 2−148) for the right key, and hold a prob-
ability of 2−154(= 64 · 2−160) for a wrong key, where “i???” (i = 12, 28) means
that the bit in i position takes 1 and each of the three bits in i + 1, i + 2 and
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i+3 positions takes an arbitrary value from {0, 1}. Similarly, using 2141 pairs of
plaintexts with difference (e29, 0, 0, 0, e2,7) and such four fixed bits as described
in Section 3.1, the attack requires about 2146.32(≈ 2142 · 20) memory bytes and
2496.45(≈ 2352 · 2142 · 11

49 + 4 · 2384 · 2141 · 64
232 · 2 · 1

49 ) encryptions.

5 Conclusions

In this paper, we exploit some better rectangle distinguishers and differential
characteristics than those previously known in SHACAL-1. Based on them, we
finally mount rectangle attacks on the first 51 rounds and a series of inner 52
rounds of SHACAL-1, and mount differential attacks on the first 49 rounds and
a series of inner 55 rounds of SHACAL-1. These are the best currently known
cryptanalytic results on SHACAL-1 in an one key attack scenario.
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