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Abstract. Recently Bernstein [4] has provided a simpler proof of in-
distinguishability of CBC construction [3] which is giving insight of the
construction. Indistinguishability of any function intuitively means that
the function behaves very closely to a uniform random function. In this
paper we make a unifying and simple approach to prove indistinguisha-
bility of many existing constructions. We first revisit Bernstein’s proof.
Using this idea we can show a simpler proof of indistinguishability of a
class of DAG based construction [8], XCBC [5], TMAC [9], OMAC [7]
and PMAC [6]. We also provide a simpler proof for stronger bound of
CBC [1] and a simpler proof of security of on-line Hash-CBC [2]. We note
that there is a flaw in the security proof of Hash-CBC given in [2]. This
paper will help to understand security analysis of indistinguishability of
many constructions in a simpler way.

1 Introduction

This paper deals how one can obtain a simple proof for a bound of distinguishing
advantage of two classes of object, mainly two classes of functions. We consider
several constructions and show how simply the distinguishing advantage can be
obtained. Here we mainly consider distinguishing attack of existing constructions
with popularly known random function (in this paper, we term it as uniform
random function [4]). Indistinguishability of a construction intuitively means
that there is no efficient distinguisher which distinguishes this from the uniform
random function. Bernstein has provided a simple proof of indistinguishability of
CBC-MAC (Cipher Block Chaining-Message Authentication Code) [4] which is
the main motivation of this paper. We first revisit his proof [4] and show how sim-
ply one can extend the proof idea for a class of DAG (Directed Acyclic Graph)
based general construction due to Jutla [8]. This class contains many construc-
tions including CBC and a variant of PMAC [6]. We give a simpler proof of partial
result of improved security analysis of CBC-MAC [1]. We also study distinguishing
advantage with a different class known as uniform random on-line function intro-
duced in Crypto 2001 [2]. We show that same idea of proof is also applicable in this
scenario and we obtain a simpler proof of Hash-CBC construction [2]. The idea of
all these proofs is based on statistical distribution of the view of the distinguisher.
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Thus, it gives information theoretic security and hence the security bound holds
for computationally unbounded distinguishers also.

This simple idea can help to understand better about the insight of the construc-
tion and can help to come up with very nice constructions and results. For example,
we modify slightly the DAG based class due to Jutla [8], so that it will include all
known constructions like XCBC [5], TMAC [9], OMAC [7], PMAC [6] etc.

Organization of the paper. In this paper, we first build mathematics for the
security bound of the distinguisher in Section 2 which would be used through-
out the paper. Then we rewrite the simple proof of security of CBC given by
D. J. Bernstein in Section 3 and we show a similar result in case of CBC based
on uniform random permutation. In Section 4, we generalize his idea of proof
to have a simple proof for a general class proposed by Jutla. We see that secu-
rity of arbitrary length MAC construction like XCBC, TMAC, OMAC, PMAC
etc. can be derived from it. In Section 5 we provide a simpler proof of security
of Hash-CBC. We note that in the original paper there is a flaw in the proof.
Finally we conclude.

2 Mathematics for Security Proof in Distinguishing
Attack

2.1 Different Notion of Distances and Its Cryptographic
Significance

(1) Statistical Distance: Let X and Y be two random variables taking values
on a finite set S. We define statistical distance between two random variables by

dstat(X, Y ) := maxT⊂S

∣
∣Pr[X ∈ T ] − Pr[Y ∈ T ]

∣
∣.

Note that, Pr[X ∈ T ] − Pr[Y ∈ T ] = Pr[Y �∈ T ] − Pr[X �∈ T ] and hence
dstat(X, Y ) = maxT⊂SPr[X ∈ T ]−Pr[Y ∈ T ]. It measures the distance between
the distribution of the random variables. In fact, it is really a metric or distance
function on the set of all distributions on S. It measures how close their distribu-
tions are. For identically distributed random variables X and Y , dstat(X, Y ) = 0
and if the random variables are disjoint1 then the statistical distance is one. In
all other cases it lies between zero and one. Now we prove an equivalent def-
inition of statistical distance and study some standard examples. Proof of all
lemmas stated in this section are given in Appendix A.

Lemma 1. dstat(X, Y ) = Pr[X ∈ T0] − Pr[Y ∈ T0] = 1
2 × ∑

a∈S

∣
∣Pr[X =

a] − Pr[Y = a]
∣
∣, where T0 = {a ∈ S : Pr[X = a] ≥ Pr[Y = a]}.

1 X and Y are said to be disjoint if X occurs with some positive probability then Y
does occur with probability zero and vice versa. More precisely, there exists a subset
T such that Pr[X ∈ T ] = 1 and Pr[Y ∈ T ] = 0.
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Example 1. Let X and Y be uniformly distributed on S and T ⊂ S respectively.
Then by Lemma 1, dstat(X, Y ) = 1

2 × (

( 1
|T | − 1

|S|) × |T | + |S|−|T |
|S|

)

= 1 − |T |
|S| .

Thus, if size of T is very close to S then statistical distance is also very close
to zero. On the other hand, if size of T is negligible compare to that of S then
statistical distance is close to one.

Example 2. Let S = Func(G, G) where Func(H, G) denotes the set of all func-
tions from H to G. Let T = Funcinj(G, G) be the subset containing all injective
functions (or permutation since domain and range are same). We say u (or v) is
a uniform random function (or uniform random injective function) if it is uni-
formly distributed on S (or T respectively). Thus from Example 1 we know that
dstat(u, v) = 1 − N !

NN which is very close to one for large N , where |G| = N .

Example 3. Given any distinct x1, · · · , xk ∈ G, let the k-sampling output of u be
(u(x1),· · · ,u(xk)) and denoted as u[k](x1, · · · , xk). Let X = (u(x1), · · · , u(xk))
and Y = (v(x1),· · · ,v(xk)). Then we can see that X is uniformly distributed
on S = Gk and Y is uniformly distributed on T = G[k] := {(y1, · · · , yk) ∈
Gk : yi’s are distinct} and hence (again by Example 1) dstat(X, Y ) = 1 −
N(N−1)···(N−k+1)

Nk ≈ 1 − exp−k(k−1)/2N . Here we note that if k <<
√

N then
the statistical distance is very close to zero.

Now, we state two results which will help to give an upper bound of statistical
distance of two distributions. If the probability of the event {X = a} is not small
compare to that of {Y = a} for all choices of a (or on a set with high probability)
then the statistical distance is also small. More precisely, we have the following
two lemmas.

Lemma 2. Let X and Y be two random variable taking values on S and ε > 0.
If Pr[X = a] ≥ (1− ε)×Pr[Y = a], ∀a ∈ S or Pr[X = a] ≤ (1 + ε)×Pr[Y = a],
∀a ∈ S then dstat(X, Y ) ≤ ε.

Lemma 3. Let X and Y be two random variables taking values on S. Let for a
subset T ⊂ S, Pr[X = a] ≥ (1 − ε1) × Pr[Y = a], ∀a ∈ T and Pr[Y /∈ T ] ≤ ε2
then dstat(X, Y ) ≤ 2ε1 + 2ε2.

(2) Computational Distance: The statistical distance is also popularly known
as information theoretic distance. In cryptography, there is another notion of
distance, known as computational distance. Let A(·) be a probabilistic algorithm
which runs with an input a ∈ S and giving output 0 or 1. Define, A-distance
between X and Y as follows;

dA(X, Y ) =
∣
∣Pr[A(X) = 1] − Pr[A(Y ) = 1]

∣
∣.

Here, A(X) means the distribution of output of A(z) where z follows the distri-
bution of X . Similarly for A(Y ). As A is a probabilistic algorithm it can use a
string r chosen from some set R with a distribution which is independent with
X and Y . So we consider that A is having two inputs r ∈ R and z ∈ S. We
state a fact which shows a relationship between statistical and computational
distances. Proof is given in the Appendix A.
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Lemma 4. For any A, dA(X, Y ) ≤ dstat(X, Y ). Conversely, there exists an
algorithm A0 (may not be efficient) such that dA0(X, Y ) = dstat(X, Y ).

In the above proof note that A0 may not be efficient and does not use any random
string. One can consider only deterministic algorithm when it has unbounded
computational power. Intuitively, one can make computation for all random
choices and choose the random string where it has the best performance. Later,
we will show that we can ignore the random string while we distinguish two
classes of functions by using unbounded computation.

2.2 Distinguisher of Families of Functions or Random Functions

In this section we describe how a distinguisher can behave. We also show that how
the advantage of the distinguisher can be obtained by computing the statistical
distance of view of the distinguisher.

By random function we mean some distribution on the set Func(H, G), set
of all functions from H to G. In Example 2, we have already defined two ran-
dom functions, they are uniform random function and uniform random injective
function. In cryptography, they are used as ideal candidates. In this paper we
will also study another ideal function known as uniform random on-line injective
function. We will define this in Section 5. Now we follow the notations used in
Example 2 and 3. Let f be a random function. For each x = (x1, · · · , xk) ∈ H [k],
f [k](x) = (f(x1), · · · , f(xk)) follows the distribution induced by the distribution
of f . More precisely, for any y = (y1, · · · , yk) ∈ Gk,

Pr[f [k](x) = y] =
∑

f0∈I

Pr[f = f0], where I := {f ∈ Func(H, G) : f [k](x) = y}.

Let f and g be two random functions and a distinguisher D has a function oracle
which can be either chosen from f or from g. Distinguisher is behaving as follows.
- First it chooses a random string r from R.
- Based on r it makes query x1 := x1(r) ∈ H and obtains y1 ∈ G.
- Then it makes queries x2 = x2(r, y1) ∈ H and obtains y2 ∈ G and so on.
Even if x2 can depend on x1, it is a function of r and y1 since x1 is a func-
tion of r only. Thus, xi is a function of (r, y1, · · · , yi−1). We say these functions
x1, x2, · · · are query functions (or x = (x1, · · · , xk) is k-query function) and
the tuple (y1, · · · , yk) ∈ Gk is the conditional view of the distinguisher (con-
dition on the random string r) where k is the number of queries. Note that
the output of D is completely determined by the chosen random string r and
the conditional view (y1, · · · , yk). We define the distinguishing advantage of DO

to distinguish between f and g as Advf,g(D) = |Pr[Df = 1] − Pr[Dg = 1]|.
Define df,g(k) = maxDAdvf,g(D), where maximum is taken over all oracle algo-
rithms D which make at most k queries. This denotes the maximum distinguish-
ing advantage for two random functions f and g where the attacker is mak-
ing at most k queries. Note that there is no restriction on the computational
resources of D. We can think D as a tuple of function (x1, · · · , xk,A) where
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xi’s are query functions and A is the final output function which takes input
as (r, y1, · · · , yk). Denote this view without the random string (y1, · · · , yk) by
f [k]r,x1,··· ,xk

or g[k]r,x1,··· ,xk
(in short, f [k]r,x or g[k]r,x) for the random function

f and g respectively. Here, A is distinguishing two families of random variable
{f [k]r,x1,··· ,xk

}r∈R and {g[k]r,x1,··· ,xk
}r∈R. Thus,

Advf,g(D) =
∣
∣
∑

r∈R
Pr[A(r, f [k]r,x) = 1]×Pr[r]−

∑

r∈R
Pr[A(r, g[k]r,x) = 1]×Pr[r]

∣
∣

=
∑

r∈R
Pr[r] × dA(f [k]r,x, g[k]r,x)

≤
∑

r∈R
Pr[r] × dstat(f [k]r,x, g[k]r,x)

So, given any probabilistic distinguisher D = (x1, · · · , xk,A) one can define
a deterministic distinguisher D0 = (x1, · · · , xk,A0) such that Advf,g(D) ≤
Advf,g(D0). Here, D0 chooses a random string r0 with probability one (i.e., a
deterministic algorithm) such that dstat(f [k]r,x, g[k]r,x) = maxr∈R dstat(f [k]r,x,
g[k]r,x) and A0 behaves as in Lemma 4. Now we will make following assumptions
in this paper.

Assumption 1 (Distinguishers are deterministic): We assume that all
distinguishing algorithms are deterministic. Thus, x1 is a constat and xi is a
function of (y1, · · · , yi−1).

Assumption 2 (Query functions are distinct): To avoid complicity of no-
tations we use the same notation xi to denote the function as well as the output
of the function. We will assume that all outputs of xi’s (or xi as a functional
value) are distinct (otherwise one can restrict on the set of distinct values of xi).

Now we use the notation f [k]x1,··· ,xk
instead of f [k]r,x1,··· ,xk

to denote the
view of the distinguisher. We can write that df,g(k) = maxxdstat(f [k]x, g[k]x),
where maximum is taken over all k-query functions x = (x1, · · · , xk). Thus, to
obtain an upper bound of df,g(k), it would be enough to bound dstat(f [k]x, g[k]x)
for each k-query functions x. The following theorem says how one can obtain
this. This theorem has been stated and proved By D. J. Bernstein [4] (a proof
is given in Appendix A).

Theorem 1. If Pr[f [k](a) = y] ≥ (1 − ε) × Pr[g[k](a) = y] for each a ∈ H [k]
and y ∈ Gk, then for any k-query function x = (x1, · · · , xk), dstat(f [k]x, g[k]x)
≤ ε and hence df,g(k) ≤ ε.

3 A Short Proof of the Indistinguishability of CBC Due
to D.J. Bernstein [4]

Here, we rewrite the security proof of CBC based on uniform random function
given by Bernstein [4]. We also show that the similar result can be obtained for
uniform random injective function.
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Let f be a function on a group (G, +) (i.e, from (G, +) to (G, +)) where
|G| = N . For m ≥ 1, define the iterated functions recursively as follow :

f+(g1, · · · , gm) := f+
m(g1, · · · , gm) = f(f+

m−1(g1, · · · , gm−1) + gm),

where gi ∈ G, f+
0 () = f+

0 (λ) = 0 and λ is the empty string. Let x = (x1, · · · , xk) ∈
(Gm)k and (y1, · · · , yk) ∈ Gk where x1, · · · , xk are distinct elements of Gm. We
define P := P(x) ⊂ G∪· · ·∪Gm, by the set of all non-empty prefixes of xi’s. Note
that |P(x)| ≤ mk for any x ∈ (Gm)k. Let P1 := P1(x) = P(x) \ {x1, · · · , xk}.
Example 4. Let G = Z100 and x = ((1, 2, 2), (1, 2, 3), (2, 2, 2)) then P(x) =
{1, 2, (1, 2), (2, 2), (1, 2, 2),(1, 2, 3), (2, 2, 2)} and P1(x) = {1, 2, (1, 2), (2, 2)}.

We fix any x. Given any f , define the intermediate induced output function
(or simply induced output function) opf : P1(x) → G as opf (p) = f+(p). Any
function from P1(x) to G is called as output function. Note that all output
functions may not be an induced output function. We characterize the output
functions which are induced output functions. Given op define a corresponding
input function ip : P → G such that

ip(p) = op(chop(p)) + last(p) if p /∈ G
= p if p ∈ G

}

(1)

where if p = (q, g′) ∈ Gi, chop(p) := q ∈ Gi−1, last(p) := g′ ∈ G, i ≥ 2.

Lemma 5. Let op be an output function and ip be its corresponding input
function. An output function op is an induced output function if and only if
op(p1) = op(p2) whenever ip(p1) = ip(p2). In particular, op is an induced out-
put function if corresponding input function is injective (the above condition is
vacuously true).

Proof. Given any f , opf (p) = f+(p) = f(ip(p)) where ip is the corresponding
input function of opf . Thus, the converse of the statement is also true. Now we
prove the forward implication of the Lemma. Given any op and its corresponding
input function ip, we define

f(x) = op(p) if ip(p) = x
= ∗ otherwise

}

(2)

Here, ∗ means that we can choose any arbitrary element from G. This is well
defined as ip(p1) = ip(p2) = x implies op(p1) = op(p2). Recursively, one can
check that f+(p) = op(p) and hence op = opf .

Example 4. (contd.) Let op(1) = op(1, 2) = 99, op(2) = 1 and op(2, 2) =
0. Note that it satisfies the condition of above Lemma. For example, op(1) =
op(1, 2) where, ip((1, 2)) = ip(1) = 1. Thus for any f such that f(1) = 99, f(2) =
1 and f(3) = 0, opf = op. Here note that ip((1, 2, 2)) = 1, ip((1, 2, 3)) = 2 and
ip((2, 2, 2)) = 2. So, for this output function and for any f such that opf = op,
we have f+((1, 2, 2)) = 99, f+((1, 2, 3)) = 1 and f+((2, 2, 2)) = 1.

Following lemma count the number of functions which induce a given induced
output function.
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Lemma 6. Let op be an induced output function such that |ip(P1)| = q where
ip is the corresponding input function and ip(P1) = {ip(p) : p ∈ P1} is the range
of it. Then there are exactly NN−q many f such that op = opf .

Proof. This is immediate from the construction of f in Equation 2.

Corollary 1. If op is an output function such that corresponding input function
ip is injective then there are NN−|P1| many f ’s such that opf = op and there are
NN−|P1|−k many f ’s such that opf = op and f+[k](x) = y.

Example 4. (contd.) In this example, ip(P1) = {1, 2, 3} and hence we have
10097 many f ’s such that opf = op. More precisely, all functions f such that
f(1) = 99, f(2) = 1 and f(3) = 0 hold.

Now we give a lower bound of the number of output functions such that
corresponding input function is injective. For each p1 �= p2 ∈ P, let Cp1,p2 be
the set of all output functions such that the corresponding input function has
same value on p1 and p2. Let C be the set of all output functions such that the
induced input function is not injective. Thus, C =

⋃

p1 �=p2∈P
Cp1,p2 . Now for

each p1 �= p2 with p1 = (q1, g1) and (q2, g2) where gi ∈ G,

Cp1,p2 = {op ; op(q1) − op(q2) = g2 − g1} if q1 �= q2

= ∅ if q1 = q2

}

(3)

Here, we define op() = 0. So we obtain that |Cp1,p2 | ≤ N |P1|−1 and hence |¬C| ≥
N |P1|(1 − |P|(|P|−1)

2N ) (note that the total number of output functions is N |P1|).
Let E = {f ∈ Func(G, G) ; f+

m[k](x) = y} then by Corollary 1

|E| ≥ |¬C| × NN−|P1|−k ≥ NN−k(1 − |P|(|P| − 1)
2N

).

Thus,

Pr[u+[k](x1, · · · , xk) = (y1, · · · , yk)] ≥ (1 − ε)
Nk

,

where u is a uniform random function and ε = mk(mk−1)
2N since we have |P1| ≤

mk. By Theorem 1 we have the following main Theorem of this section.

Theorem 2. For any x = (x1, · · · , xk) ∈ G[k] and y = (y1, · · · , yk) ∈ Gk we
have Pr[u+[k](x) = y] ≥ (1−ε)

Nk , where ε = mk(mk−1)
2N . We also have, dstat(u+

m[k]x
,u(m)[k]x) ≤ mk(mk−1)

2N and hence du+
m,u(m)(k) ≤ mk(mk−1)

2N where u(m) is the
uniform random function on Func(Gm,G) and x is any k-query function.

3.1 CBC Based on Uniform Random Injective Function

In the original CBC security is provided based on uniform random injective
function or uniform random permutation. Here we prove a similar result for
uniform random injective function v. The proof is exactly same except in the
place of counting the set {v : v+[k](x) = y}, where yi’s are distinct. So we fix
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any y ∈ G[k]. Let for each p1 �= p2 ∈ P, C1
p1,p2

be the set of all output functions
op such that op(p1) = op(p2) and C1 =

⋃

p1 �=p2
C1

p1,p2
. We define C∗ = C ∪ C1.

Thus, op /∈ C∗ means that both input and output functions are injective. It is
easy to check that |C1| ≤ N |P1|−1 × (|P1|)(|P1|−1)

2 and hence we have

– |¬C∗| ≥ N |P1|×(1− (mk−k)(mk−k−1)
2N − mk(mk−1)

2N ) ≥ N |P1|×(1−mk(mk−1)
N ).

We have a similar result like Corollary 1. For each op /∈ C∗, there are ex-
actly N !

(N−|P|)! many injective f ’s which induces op and f+[k](x) = y (see the
constructions of all f in Equation 2 in the proof of Lemma 5). Thus,

|{f ∈ Funcinj(G, G) : f+(x) = y}| ≥ N |P1| × (1 − ε1) × N !
(N − |P1| − k)!

where ε1 = mk(mk−1)
N . Hence, Pr[v+[k](x) = y] ≥ N−k × (1 − ε1) for all y ∈

T := G[k] = {y ∈ Gk : y1, · · · , yk are distinct} and x ∈ Gm[k]. Now we have,
Pr[u(m)[k](x) /∈ T ] ≤ k(k−1)

2N . Thus by Lemma 3 we have,

dstat(v+
m[k]x, u(m)[k]x) ≤ k(k − 1)

N
+

2mk(mk − 1)
N

for any k-query functions x and hence

dv+
m,u(m)(k) ≤ k(k − 1)

N
+

2mk(mk − 1)
N

.

Theorem 3. dstat(v+
m[k]x, u(m)[k]x) ≤ k(k−1)

N + 2mk(mk−1)
N for any k-query func-

tion x = (x1, · · · , xk) and hence dv+
m,u(m)(k) ≤ k(k−1)

N + 2mk(mk−1)
N .

4 DAG (Directed Acyclic Graph) Based PRF [8]

In this section, we state a class of PRF based on DAG proposed by Jutla [8].
We modify the class slightly so that it contains many known constructions like
PMAC, OMAC, TMAC, XCBC etc. The security analysis would be immediate
from that of the general class. We first give some terminologies related to DAG.

Terminologies on DAG: Let D = (V, E) be a directed acyclic graph with
finite vertex set V and edges E. We say that u ≺ v if there is a directed path
from u to v. Note that it is a partial order on V . Let D have exactly one sink
node vf (the maximum element with respect to ≺) and at most two source nodes
(the minimum element with respect to ≺). If there are two such we call them as
vs and viv. In the original paper, Jutla considered only one source node. Here
we extend it to two so that it can contain one more source node for initial value.

– For each node v ∈ V , define Dv by the subgraph induced by the vertex set
Vv = {u : u ≺ v}. We define, N(v) = {u ∈ V : (u, v) ∈ E}, the neighborhood
of v.
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– Any map c : E → M is said to be color map on D where M is a field. A
colored DAG is pair (D, c) where c is a color map on D.

– Two colored DAG (D1, c1) and (D2, c2) are said to be isomorphic if there is a
graph isomorphism between D1 and D2 which preserves the color map. More
precisely, a graph isomorphism ρ : D1 → D2 satisfies c2(ρ(e)) = c1(e) ∀ e ∈
E1. In this case we write (D1, c1) ∼= (D2, c2).

Definition 1. We say a colored graph G = (D, c) is non-singular if for all u, v ∈
V , Gu := (Du, c[u]) ∼= (Dv, c[v]) := Dv implies either u = v or {u, v} = {vs, viv}
with c(vs, w) �= c(viv , w) whenever (vs, w) and (viv , w) ∈ E. Here the color map
c[u] is the restriction of c on Du.

Definition 2. We say a sequence of colored graph S = 〈Gl = (Dl, cl) = ((V l,El)
,cl) 〉l≥1 is PRF-preserving if each Dl is non-singular and Gl �∼= Gl′

u = (Dl′
u , cl′ [u])

for u ∈ V l′ and l′ �= l.

Functional Representation of Message: Given a sequence of colored graph
〈Gl = (Dl, cl)〉l≥1, let U l = V l\{vl

iv}. We fix a sequence of initial values ivl ∈ M,
l ≥ 1. Let X : U l → M be a function, called as a message function. We define
its corresponding message-initial value function X on Gl as follows :

X(v) = X(v) if v ∈ U l

= ivl if v = vl
iv

}

(4)

In the definition of X we include the graph Gl as a domain even if it is defined
only on the set of vertices. Here, we look message in Ml as a message function on
Gl. For any well order < on U l we can correspond Ml with a message function
on U l where |U l| = l. Namely, X(u1) ‖ · · · ‖ X(ul) ∈ Ml where u1 < · · · < ul

and U l = {u1, · · · , ul}. Later we will see that each node of the DAG has the
underlying function f . The input for the invocation of f at any node is the sum
of previous output (outputs of neighborhood nodes) and the value of message-
initial value function X at that node.

PRF (Pseudo Random Function) Domain Extension Algorithm: Let
f : M → M be a function, (M, +, ·) be a field with |M| = N . Let S = 〈Gl〉l≥1 be
a PRF-preserving sequence of DAG. Given any X : U l → M we have message-
initial value function, X : V l → M. We define two functions, af , bf : V l → M
recursively as follows :

af (v) = X(v) +
∑

w∈N(v)

cl((w, v)) · bf (w) and bf (v) = f(af (v)), v ∈ V l.

(5)
The output of fS(X) is bf (vl

f ) where vl
f is the unique sink node. When v is a

source node, N(v) = ∅ and hence af (v) = X(v).
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Security Analysis: Two message-input functions on colored DAG, X1 : G1 →
M and X2 : G2 → M are said to be identical if G1

∼= G2 and X1(u) = X2(v)
where v is the image of u under a graph isomorphism. If not then we say that
they are non-identical. We identify all identical message-functions. Given v ∈ V
and a message-initial value function on G = (D, c) we define X [v] by the function
X restricted on Gv.

Let X1, · · · , Xk be k distinct functions, Xi : U li → M and let Xi be its cor-
responding message-initial value function. Let P := P(X) = {X : X = Xi[v], v ∈
V li} where X = (X1, · · · , Xk). We call this also prefix set for X. This is a gen-
eralized notion for prefixes of messages in CBC case (see Section 3). Here we
similarly have |P| ≤ Q, where Q is the total number of message blocks from M.
Now we make similar analysis like CBC.

We fix any X. Given any f , define the intermediate induced output function
(or simply induced output function) opf : P1(X) → M as opf (p) = bf(v) where
p = Xi[v] and bf is given as in Equation 5 while we compute fS(X) using the
colored graph Gli . Any function from P1(X) to M is called as output function.
Let p = Xi[v] ∈ P, define last(p) = Xi(v) and chop(p) = {Xi[u] : u ∈ N(v)}. It
is an empty set for source node v. Let Xi[u] = q ∈ chop(p), then we denote the
edge (u, v) by eq,p. Given op, define a corresponding input function ip : P → M
as

ip(p) = last(p) +
∑

q∈chop(p)

cli(eq,p) · op(q).

Now we state a analogous statement of Lemma 6 and Corollary 1

Lemma 7. Let op be an induced output function such that |ip(P1)| = q where ip
is the corresponding input function and ip(P1) is the range of it. Then for any
y = (y1, · · · , yk) ∈ Gk there are exactly NN−q many f such that op = opf and
fS [k](x) = y.

Corollary 2. If op is an induced output function such that corresponding input
function ip is injective then there are NN−|P1| many f ’s such that opf = op and
there are NN−|P1|−k many f ’s such that opf = op and f+[k](x) = y.

Now we give a lower bound of the number of output functions such that corre-
sponding input function is injective. For each p1 �= p2 ∈ P, let Cp1,p2 be the set
of all output functions such that the induced input function has same value on
p1 and p2. Let C be the set of all output functions such that the induced input
function is not injective. Thus, C =

⋃

p1 �=p2∈P
Cp1,p2 . Let Xi1 [v1] = p1 �= p2 =

Xi2 [v2], chop(p1) = {qi = Xi1 [ui] : 1 ≤ i ≤ l} and chop(p2) = {q′i = Xi2 [wi] :
1 ≤ i ≤ l′}. Now we have three possible cases as given below :

Case-1: chop(p1) = chop(p2) = {q1, · · · , ql} and c1(eqi,p1) = c2(eqi,p2), ∀ i
where ci is the color function corresponding to pi. Then the underlying
graphs for p1 and p2 are identical. Since p1 �= p2, X(v1) �= X(v2) and hence
Cp1,p2 = ∅.
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Case-2: Let chop(p1) = chop(p2) = Q but there exists q ∈ Q such that
c1(eq,p1) �= c2(eqi,p2). Then ip(p1) = ip(p2) implies Xi1(v1)+

∑

q∈chop(p1) eq,p·
op(q) = Xi2(v2) +

∑

q∈chop(p2) eq,p · op(q). Hence,
∑

q∈Q aq · op(q) = a for
some constants aq and a where all aq’s are not zero (since color functions
are different on Q). Thus, |Cp1,p2 | = N |P1|−1.
Case-3: Let chop(p1) �= chop(p2). In this case ip(p1) = ip(p2) implies
∑

q∈Q aq · op(q) = a where Q is not empty and all aq’s are not zero. Thus,
|Cp1,p2 | = N |P1|−1.

So we obtain that |Cp1,p2 | ≤ N |P1|−1 and hence |¬C| ≥ N |P1|(1 − |P|(|P|−1)
2N ). By

Corollary 1

|E| ≥ |¬C| × NN−|P1|−k ≥ NN−k(1 − |P|(|P| − 1)
2N

),

where E = {f ∈ Func(G, G) ; fS [k](X) = y}. Thus,

Pr[uS [k](X) = y] ≥ (1 − ε)
Nk

,

where ε = Q(Q−1)
2N and u is a uniform random function. By Theorem 1 we have

the following main Theorem of this section.

Theorem 4. For any X = (X1, · · · , Xk) and y = (y1, · · · , yk) ∈ Gk where
Xi’s are distinct message function, we have Pr[uS [k](X) = y] ≥ (1−ε)

Nk , where
ε = Q(Q−1)

2N and Q is the total number of message blocks in queries. We also
have, dstat(uS [k]X, U [k]X) ≤ mk(mk−1)

2N and hence duS ,U (k) ≤ mk(mk−1)
2N where

U is the uniform random function from the set of all message functions to M.

Remark 1. The same security analysis can be made for the PRF based on a
uniform random injective function like CBC case. We leave the details to the
reader as it is very much similar to the CBC case.

Remark 2. Let M = {0, 1}n := GF(2n). To define a pseudo random function on
{0, 1}∗ one can pad 10i (for minimum i ≥ 0) so that the length is the multiple of
n and then can apply the PRF algorithm as above. So for any distinct messages,
the padded messages are also distinct and hence it would be a pseudo random
function on the input set {0, 1}∗. There is another way to pad it. We pad 10i to a
message X if it is not a multiple of n, otherwise we would not pad anything (this
is the case for OMAC,TMAC, XCBC etc.). In this case we have two sequences of
colored graph Gl

1 and Gl
2 (for all messages with size multiple of n and all messages

with size not multiple of n respectively). Here, we require the combined sequence
〈Gl

1, G
l
2〉l≥1 is PRF-preserving (thus, even if after padding the messages are equal

the corresponding message functions are not identical). The similar analysis also
can be made in this scenario.

Remark 3. In Appendix B we show that XCBC, TMAC, OMAC, PMAC are de-
fined based on a PRF-preserving sequence of DAG. Thus, the pseudo-randomness
of these functions are immediate from ourmain theorem.
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5 A Simple Proof for On-line Cipher Hash-CBC [2]

In this section we define what is meant by on-line cipher and what is the ideal
candidate for that. Then we give a simpler security proof of Hash-CBC [2] and
note that in the original proof there is a flaw which could not not be easily taken
care unless we make further assumptions.

An online cipher, Hash-CBC construction is given by Bellare et. al. [2]. In
Crypto 2001 [2], the notion of On-Line cipher has been introduced and a secure
Hash-CBC construction has been proposed. First we define what is meant by
On-Line cipher and the definition of Hash-CBC construction.

1. Let G be a group and G[1,m] = ∪1≤i≤nGi and |G| = N . A function f :
G[1,m] → G[1,m] is called a length preserving injective function if f restricted
to Gi is an injective map from Gi to Gi.

2. Let f be a length-preserving injective function and M = M1 ‖ · · · ‖ Mm,
then we write f(M) = (f (1)(M), · · · , f (m)(M)), where f (i)(M) ∈ G. f is said
to be on-line if there exists a function X : G[1,m] → G such that for every
M = M [1] ‖ · · · ‖ M [m], f (i)(M) = X(M [1] ‖ · · · ‖ M [i]). It says that first i
blocks of cipher only depends on the first i blocks of message. Note that for
each i ≥ 1, and (M [1] ‖ · · · ‖ M [i− 1]) ∈ Gi−1, X(M [1] ‖ · · · ‖ M [i− 1] ‖ x)
is an injective function from G to G as a function of x since f is length-
preserving injective function. We also say that X is an on-line function.

3. XU is said to be uniform random on-line function if X is chosen uniformly
from the set of all on-line functions from G[1,m] to G.

Hash-CBC

Let H be a random function from G to G which satisfies the following property.
Pr[H(x1) − H(x2) = y] ≤ ε for all x1 �= x2 ∈ G and y ∈ G. We say this random
function by ε-almost universal random function. Thus for any (xi, yi), 1 ≤ i ≤ k,
with distinct xi’s we have,

Pr[H(xi) + yi = H(xi) + yj for some i �= j] ≤ k(k − 1)ε
2

. (6)

Given an ε-almost universal random function and a uniform random injective
function v on G we define a random on-line function F , known as HCBC (or
Hash-CBC), as follows: X(M [1] · · ·M [j]) = C[j], where C[i] = v(H(C[i−1])+
M [i]), 1 ≤ i ≤ j and C[0] = 0.

Note that X is a random on-line function. Let x1, · · · , xk ∈ G[1,m] and P be
the set of all non-empty prefixes of these messages. Let yp ∈ G, where yp’s are
distinct and not equal to 0 and |P| = q. Now we want to compute Pr[X(p) =
yp, ∀p ∈ P] where the probability is based on uniform random injective function
v and ε-almost universal random function H . Let D be the event that for all p,
(H(ychop(p)) + last(p))’s are distinct where yλ := 0 and λ is the empty string.
Since yp’s are distinct and not equal to 0, Pr[D] ≥ 1 − q(q−1)ε

2 . Condition on D
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all inputs of v are distinct. Thus, Pr[X(p) = yp, ∀p ∈ P | D] = 1
N(N−1)···(N−q+1)

and hence Pr[X(p) = yp, ∀p ∈ P] ≥ (1− q(q−1)ε
2 )

N(N−1)···(N−q+1) (by Equation 6) ≥ (1 −
q(q−1)ε

2 ) × Pr[XU (p) = yp, ∀p ∈ P] since Pr[XU (p) = yp, ∀p ∈ P] ≤ 1/N(N −
1) · · · (N − q + 1). Given any query functions, let XU [q] and X [q] denote the
joint distribution of XU and X on P respectively. Let T = {(yp)p∈P : ychop(p) �=
0 ∀p, and yp

′s are distinct } It is easy to check that Pr[XU /∈ T ] ≤ q(q−1)
2N . Now

by Lemma 3 we obtain the following main Theorem of this section.

Theorem 5. For any query function, the statistical distance dstat(XU [q], X [q]) ≤
q(q − 1)ε + q(q−1)

N and hence AdvXU ,X(q) ≤ q(q − 1)ε + q(q−1)
N .

Remark 4. In Appendix C, we note that in the original proof of the security of
Hash-CBC has flaws. Thus a correction is must for this construction. Here we
provide not only a correct proof but a simple proof for security.

Remark 5. In [2], authors also consider chosen-cipher text security for a vari-
ant of the above construction. In this scenario, there are two different types of
queries. Let P denotes the set of all prefixes of the queries of on-line function X
and P

∗ denotes the set of all prefixes of queries of corresponding inverse on-line
function Y (say). Now one can similarly prove that

Pr[X(p) = yp, ∀p ∈ P and Y (p) = wp∀p ∈ P
∗]

≤ (1 − ε) × Pr[XU (p) = yp, ∀p ∈ P and Y U (p) = wp∀p ∈ P
∗],

where XU and Y U denote the uniform random on-line function and it’s corre-
sponding inverse function respectively. So we have same security analysis. We
leave reader to verify all the details of the chosen cipher text security.

6 Conclusion and Future Work

In this paper we make a unifying approach to prove the indistinguishability of
many existing constructions. This paper attempts to clean up several results
regarding indistinguishability so that the researchers can feel and understand
the subject in a better and simpler way. As a concluding remark we would like
to say that one can view the security analysis in the way we have observed in
this paper and can have better and simpler proof for it. Some cases people have
wrong proofs due to length and complicity of it. Thus, a more concrete as well
as simple proof is always welcome.

In future, this unifying idea may help us to make good constructions. It seems
that one may find constructions where the security bound is more than the
birth day attack bound. Till now, there is no known construction based on ideal
function (having output n-bit) which has security close to 2n. One may obtain
a better bound for CBC as we have used only those output functions which
induces an injective input functions. One can try to estimate the other output
functions also.
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Appendix A: Proofs of Lemmas in Section 2

Lemma 1. dstat(X, Y ) = Pr[X ∈ T0] − Pr[Y ∈ T0] = 1
2 × ∑

a∈S

∣
∣Pr[X =

a] − Pr[Y = a]
∣
∣, where T0 = {a ∈ S : Pr[X = a] ≥ Pr[Y = a]}.

Proof. For T0 as given in the Lemma 1, it is easy to see that
∑

a∈S

∣
∣Pr[X = a] − Pr[Y = a]

∣
∣ = 2 × (

Pr[X ∈ T0] − Pr[Y ∈ T0]
)

.

For any T ⊂ S, 2 × (Pr[X ∈ T ] − Pr[Y ∈ T ])

=
∑

a∈T

(

Pr[X = a] − Pr[Y = a]
) − ∑

a/∈T

(

Pr[X = a] − Pr[Y = a]
)

≤ ∑

a∈S |Pr[X = a] − Pr[Y = a]|.
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Lemma 2. Let X and Y be two random variable taking values on S and ε > 0.
If Pr[X = a] ≥ (1 − ε) × Pr[Y = a], ∀a ∈ S or Pr[X = a] ≤ (1 + ε) × Pr[Y = a],
∀a ∈ S then dstat(X, Y ) ≤ ε.

Proof. For any subset T ⊂ S, Pr[X ∈ T ] ≥ (1 − ε) × Pr[Y ∈ T ] since Pr[X =
a] ≥ (1 − ε) × Pr[Y = a] ∀ a. So, Pr[Y ∈ T ] − Pr[X ∈ T ] ≤ ε × Pr[Y ∈ T ] ≤ ε.
Thus, dstat(X, Y ) ≤ ε. Similarly one can prove for the other case.

Lemma 3. Let X and Y be two random variables taking values on S. Let for
a subset T ⊂ S, Pr[X = a] ≥ (1 − ε1) × Pr[Y = a], ∀a ∈ T and Pr[Y /∈ T ] ≤ ε2
then dstat(X, Y ) ≤ 2ε1 + 2ε2.

Proof. For any subset T1 ⊂ T , Pr[Y ∈ T1]−Pr[X ∈ T1] ≤ ε1×Pr[Y ∈ T1] ≤ ε1.
From the given relation we also note that Pr[X ∈ T ] ≥ (1 − ε1) × Pr[Y ∈ T ].
Thus, Pr[X /∈ T ] ≤ ε1+ε2−ε1ε2. Thus, dstat(X, Y ) ≤ ε1+Pr[X ∈ ¬ T ]+Pr[Y ∈
¬ T ] ≤ 2(ε1 + ε2).

Lemma 4. For any A, dA(X, Y ) ≤ dstat(X, Y ). Conversely, there exists an
algorithm A0 (may not be efficient) such that dA0(X, Y ) = dstat(X, Y ).

Proof. Output of A is completely determined by a pair (r, z), where r is the
random string chosen from R and z is the input. Let Sr0 = {a ∈ S : A(r0, a) =
1}. Thus, dA(X, Y )

=
∣
∣Pr[A(r, X) = 1] − Pr[A(r, Y ) = 1]

∣
∣

=
∣
∣
∑

r0∈R Pr[r = r0]
(

Pr[A(r0, X) = 1 | r = r0] − Pr[A(r0, Y ) = 1 | r = r0]
)∣
∣

=
∣
∣
∑

r0∈R Pr[r = r0]
(

Pr[A(r0, X) = 1] − Pr[A(r0, Y ) = 1]
)∣
∣

=
∣
∣
∑

r0∈R Pr[r = r0]
(

Pr[X ∈ Sr0 ] − Pr[Y ∈ Sr0 ]
)∣
∣ ≤ dstat(X, Y ).

The equality holds if Sr0 = T0 as in Lemma 1. Thus, on input z, A0 computes
the probability Pr[X = z], Pr[Y = z] and outputs 1 if Pr[X = z] ≥ Pr[Y = z],
otherwise 0. Hence dA0(X, Y ) = dstat(X, Y ).

Theorem 1. If Pr[f [k](a) = y] ≥ (1 − ε) × Pr[g[k](a) = y] for each a ∈ H [k]
and y ∈ Gk, then for any k-query function x = (x1, · · · , xk), dstat(f [k]x, g[k]x)
≤ ε and hence df,g(k) ≤ ε.

Proof. Pr[f [k]x1,··· ,xk
= (y1, · · · , yk)]

= Pr[f [k](a1, · · · , ak) = (y1, · · · , yk)] ((a1, · · · , ak) is uniquely determined
by (y1, · · · , yk))

≥ (1 − ε) × Pr[g[k](a1, · · · , ak) = (y1, · · · , yk)]

= (1−ε)×Pr[g[k]x1,··· ,xk
= (y1, · · · , yk)], ∀ (y1, · · · , yk) ∈ Gk. The Theorem

follows from Lemma 2.



332 M. Nandi

Appendix B: Some Known PRFs for Variable Length
Input

There are three popularly known constructions which deals with variable size
input and uses CBC mode. These are XCBC [5], TMAC [9], OMAC [7] and
PMAC [6]. Let K1 and K2 be two secret constants from {0, 1}n. Given M =
M1 ‖ · · ·Ml−1 ‖ Ml with |M1| = · · · = |Ml−1| = n, |Ml| = n1, 1 ≤ n1 ≤ n and a
random function f on {0, 1}n, define f∗ as follows :

f∗(M) = f+
l (M1 ‖ · · · ‖ Ml−1 ‖ (Ml ⊕ K1)) if n1 = n

= f+
l (M1 ‖ · · · ‖ Ml−1 ‖ (Ml10i ⊕ K2)) if n1 < n, i = n − n1 − 1

}

(7)

XCBC, TMAC and OMAC are defined on the basis of choices of K1 and
K2.

– If K1 and K2 are chosen independently from f then it is known as XCBC.
– If K2 = c · K1 and K1 is chosen independently from f then it is known as

TMAC where c ∈ {0, 1}n is some fixed known constant not equal to 1 and
0, and · is a field multiplication on {0, 1}n = GF(2n).

– If K1 = c · L and K2 = c2 · L where L = f(0) then it is known as OMAC.

Security of OMAC

Here we only consider security for OMAC. For the other constructions, one can
make a similar treatment as in CBC. For OMAC as in the previous Remark 2 we
have two sequences of colored DAGs Gl

1 and Gl
2. Each graph is a sequential graph

with one more edge at the end. More precisely, V l = {vs = 1, · · · , l = vf , viv}
and El = {(1, 2), · · · , (l − 1, l), (viv, l)}. The color function for Gl

1 is as follows
: cl((i, i + 1)) = 1 and cl((viv , l)) = c, where c �= 0, 1. Similarly, the color
function for Gl

2 is as follows : cl((i, i + 1)) = 1 and cl((viv , l)) = c2. We choose
ivl = 0 ∈ {0, 1}n. It is easy to check that each colored DAG is non-singular.
Any colored DAG can not be isomorphic to a colored subgraph as the sink
node has inward degree 2 where as the other nodes have inward degree 1. Thus,
the sequence is admissible. The pseudo randomness property follows from the
Theorem 4.

Security of PMAC

One can similarly observe that PMAC also belong to this class. The underlying
graph Dl = (V l, El), where V l = {viv, 1, · · · , l−1, vf} and El = {(viv, i), (i, vf),
1 ≤ i ≤ l − 1} ∪ {(viv, vf )}. There is two color functions depending on the
message size. When message size is multiple of n, c1(viv , i) = ci and c1(viv , vf ) =
0, otherwise it takes constant 1. The other color function is same except that
c2(viv , vf ) = a. Here, c and a are some constants not equal to 0 and 1, and
ivl = 0 ∈ {0, 1}n.
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Appendix C: A Flaw in the Original Proof [2]

In the original paper due to Bellare et. al. [2], the security proof has some flaw.
The Claim 6.5 of [2] says that if some bad event does not occur then the dis-
tribution of the view is identical for both classes of functions. More precisely,
X(p)’s and XU (p)’s are identically distributed condition on some bad event does
not occur (i.e., the inputs of uniform random injective function v are distinct).
In case of XU , all conditional random variables XU (p)’s are uniformly and iden-
tically distributed on the set T . But, conditional distribution of X(p)’s is not so
as the condition is itself involved with X(p) and an unknown distribution due
to H . For example, when p1 = x1 and p2 = x1 ‖ x2 then X(p1) = v(H(0) ⊕ x1)
and X(p2) = v(H(X(p1)) ⊕ x2). The conditional event E (the complement of
bad event) is H(0) ⊕ x1 �= H(X(p1)) ⊕ x2 and v(H(0) ⊕ x1) �= 0. According to
their claim for any 0 �= y1 �= y2, p = Pr[v(H(0) ⊕ x1) = y1, v(H(X(p1)) ⊕ x2) =
y2 | E] = 1

(N−1)(N−1) (note that y2 can be zero). Let a := x1⊕x2, C = H(0)⊕x1

and εy,z,c = Pr[H(y) ⊕ H(z) = c].
Now, p1 := Pr[v(H(0) ⊕ x1) = y1 ∧ v(H(y1) ⊕ x2) = y2 ∧ E]

=
∑

h1,h2 : h1⊕h2 �=a

Pr[v(h1 ⊕ x1) = y1, v(h2 ⊕ x2)

= y2, H(0) = h1, H(y1) = h2 =
ε0,y1,a

N(N − 1)

and p2 := Pr[E] = Pr[v(C) �= 0, H(v(C) ⊕ x2) �= C]

=
∑

z,h : z �=0

Pr[v(h ⊕ x1) = z, H(0) = h, H(z) �= h ⊕ a]

=
1
N

×
∑

z : z �=0

Pr[H(0) ⊕ H(z) �= a].

Thus, p = ε0,y1,a

(N−1)×�z �=0 ε0,z,a
�= 1

(N−1)(N−1) in general. This can occur if ε0,z,a =
ε0,y1,a for all z �= 0, but there is no such assumption for H in [2]. A similar flaw
can be observed in the Claim 8.6 of [2] where the chosen cipher text security is
considered.

Appendix D: Improved Security Bound of CBC [1]

In this section we will give a simple partial proof of improved security analysis
given by Bellare et. al. [1]. We will follow same notation as in Section 3. We say
an output function op is induced if there exists an u such that opu = op. We
define an event D∗[k] where the corresponding input function of induced output
function ip : P → G satisfies the following property :

∀ p1 ∈ {x1, · · · , xk}, p2 ∈ P and p1 �= p2, ip(p1) �= ip(p2). (8)
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In [1] for k = 2, it has been proved that Pr[¬D∗[2]] ≤ (8m/N + 64m4/N2).
For k ≥ 2 it is easy to check that Pr[¬D∗[k]] ≤ k(k−1)/2×(8m/N +64m4/N2).
Here we will assume this result as we have not found any simple proof of this.
Secondly, one can translate this into a purely combinatorial problem which
was solved rigorously by Bellare et. al. (Lemma 2 of [1]). Now Pr[u+

x1,··· ,xk
=

(y1, · · · , yk) | D∗[k]] = 1/Nk. This is true that for any induced output function
op with above property there exists NN−q1 many u’s which induces op and there
are NN−q1−k many u’s which induces op and u+(xi) = yi ∀ i, where q1 denotes
the size of range of induced input function of op (see Corollary 1). Here, we do
not need that the corresponding input function is injective. We can still have a
similar statement like in Corollary 1 as the input function is taking completely
different values on {x1, · · · , xk} from the values on P1 (see Equation 8). Thus,
Pr[u+

x1,··· ,xk
= (y1, · · · , yk)] ≥ (

1− k(k−1)×(8m/N+64m4/N2)
2

)× 1
Nk . Thus we have,

Theorem 6. Advu+
m,u(m)(k) ≤ k(k − 1)/2 × (8m/N + 64m4/N2).
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