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Abstract. We show in this paper how to apply well known methods
from sparse linear algebra to the problem of computing the immunity
of a Boolean function against algebraic or fast algebraic attacks. For
an n-variable Boolean function, this approach gives an algorithm that
works for both attacks in O(n2nD) complexity and O(n2n) memory.
Here D =

�
n
d

�
and d corresponds to the degree of the algebraic system to

be solved in the last step of the attacks. For algebraic attacks, our algo-
rithm needs significantly less memory than the algorithm in [ACG+06]
with roughly the same time complexity (and it is precisely the memory
usage which is the real bottleneck of the last algorithm). For fast alge-
braic attacks, it does not only improve the memory complexity, it is also
the algorithm with the best time complexity known so far for most values
of the degree constraints.

Keywords: algebraic attacks, algebraic immunity, fast algebraic attacks,
Wiedemann’s algorithm.

1 Introduction

Algebraic attacks and fast algebraic attacks have proved to be a powerful class
of attacks against stream ciphers [CM03, Cou03, Arm04]. The idea is to set up
an algebraic system of equations satisfied by the key bits and to try to solve
it. For instance, this kind of approach can be quite effective [CM03] on stream
ciphers which consist of a linear pseudo-random generator hidden with non-linear
combining functions acting on the outputs of the generator to produce the final
output.

For such an attack to work, it is crucial that the combining functions satisfy
low degree relations. The reason for this is that it ensures that the algebraic
system of equations verified by the secret key is also of small degree, which is
in general essential for being able to solve it. This raises the fundamental issue
of determining whether or not a given function admits non-trivial low degree
relations [MPC04, Car04, DGM04, BP05, DMS05].

For algebraic attacks, in order to find relations of degree at most d satisfied by
an n-variable combining Boolean function f , only two algorithmic approaches
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are known for the time being. The first one relies on Gröbner bases [FA03] and
consists of finding minimal degree elements in the polynomial ideal spanned by
the ANF of f and the field equations. The second strategy relies on linear algebra,
more precisely we can associate to f and d a matrix M such that the elements
in the kernel of M give us low degree relations. Building M is in general easy so
the issue here is to find non-trivial elements in the kernel of a given matrix or
to show that the kernel is trivial.

The linear approach has lead to the best algorithm known so far [ACG+06]
that works in O(D2) where D =

(
n
d

)
. There is also the algorithm of [DT06] which

performs well in practice and which is more efficient when d is small. Actually,
when d is fixed and n → ∞, this last algorithm will be able to prove the non-
existence of low degree relation in O(D) for almost all Boolean functions. Note
however that if the ANF of f is simple or has a lot of structure, it is possible
that the Gröbner basis approach outperforms these algorithms, especially if the
number of variables is large (more than 30).

For fast algebraic attacks, only the linear algebra approach has been used.
There are now two degree constraints d < e and the best algorithms are the
one of [ACG+06] working in O(ED2) where E =

(
n
e

)
and the one of [BLP06]

working in O(ED2 + E2).
All these algorithms relying on the linear algebra approach use some refine-

ments of Gaussian elimination in order to find the kernel of a matrix M . Effi-
ciency is achieved using the special structure of M . We will use here a different
approach. The idea is that the peculiar structure of M allows for a fast matrix
vector product that will lead to efficient methods to compute its kernel. This
comes from the following facts:

- There are algorithms for solving linear systems of equations which perform
only matrix vector products. Over the finite fields, there is an adaptation of
the conjugate gradient and Lanczos algorithm [COS86, Odl84] or the Wiede-
mann algorithm [Wie86]. These algorithms were developed at the origin for
solving large sparse systems of linear equations where one can compute a
matrix vector product efficiently. A lot of work has been done on the subject
because of important applications in public key cryptography. Actually, these
algorithms are crucial in the last step of the best factorization or discrete
logarithm algorithms. Notice as well that these algorithms were also used in
the context of algebraic attacks against HFE cryptosystems (see [FJ03]).

- Computing a matrix vector product of the matrix involved in the algebraic
immunity computation can be done using only the binary Moebius trans-
form. It is an involution which transforms the two main representations of
a Boolean function into each other (namely the list of its ANF coefficients
and the list of its images).

- The Moebius transform of an n-variable Boolean function can be computed
efficiently in O(n2n) complexity and O(2n) memory. We will call the cor-
responding algorithm the fast Moebius transform by analogy with the fast
Fourier transform (note that they both rely on the same principle).
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We will focus here on the Wiedemann algorithm and derive an algorithm
for computing algebraic attacks or fast algebraic attacks relations in O(n2nD).
Wiedemann’s algorithm is probabilistic and so is our algorithm, however we can
get a failure probability as small as we want with the same asymptotic complex-
ity. When d or e are close to n/2 the asymptotic complexity is very good for fast
algebraic attacks but is a little bit less efficient for algebraic attacks than the one
presented in [ACG+06]. However this algorithm presents another advantage, its
memory usage is very efficient, O(n2n) to be compared with O(D2). This may
not seem really important, but in fact the memory is actually the bottleneck of
the other algorithms.

The outline of this paper is as follows. We first recall in Section 1 some basic
facts about Boolean functions, algebraic and fast algebraic attacks, and the linear
algebra approach used by almost all the known algorithms. Then, we present in
Section 2 the Wiedemann algorithm and how we can apply it to our problem.
We present in Section 3 some benchmark results of our implementation of this
algorithm. We finally conclude in Section 4.

2 Preliminary

In this section we recall basic facts about Boolean functions, algebraic attacks
and fast algebraic attacks. We also present the linear algebra approach used by
almost all the actual algorithm to compute relations for these attacks.

2.1 Boolean Functions

In all this paper, we consider the binary vector space of n-variable Boolean func-
tions, that is the space of functions from {0, 1}n to {0, 1}. It will be convenient
to view {0, 1} as the field over two elements, what we denote by F2. It is well
known that such a function f can be written in an unique way as an n-variable
polynomial over F2 where the degree in each variable is at most 1 using the
Algebraic Normal Form (ANF) :

f(x1, . . . , xn) =
∑

u∈Fn
2

fu

(
n∏

i=1

xui

i

)

fu ∈ F2, u = (u1, . . . , un) ∈ Fn
2 (1)

By monomial, we mean in what follows, a polynomial of the form
∏n

i=1 xui

i .
We will heavily make use in what follows of the notation fu, which denotes for
a point u in Fn

2 and an n-variable Boolean function f , the coefficient of the
monomial associated to u in the ANF (1) of f . Each monomial associated to a
u in Fn

2 can be seen as a function having only this monomial as its ANF. Such
function is only equal to 1 on points x such that u ⊆ x where

for u, x ∈ Fn
2 u ⊆ x iff {i, ui �= 0} ⊆ {i, xi �= 0} (2)

The degree of f is the maximum weight of the u’s for which fu �= 0. By listing
the images of a Boolean function f over all possible values of the variables, we
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can also view it as a binary word of length 2n. For that, we will order the points
of Fn

2 in lexicographic order

(0, . . . , 0, 0)(0, . . . , 0, 1)(0, . . . , 1, 0) . . . (1, . . . , 1, 1) (3)

The weight of a Boolean function f is denoted by |f | and is equal to
∑

x∈Fn
2

f(x)
(the sum being performed over the integers). We also denote in the same way
the (Hamming) weight of a binary 2n-tuple or the cardinal of a set. A balanced
Boolean function is a function with weight equal to half its length, that is 2n−1.

There is an important involutive (meaning its own inverse) transformation
linking the two representations of a Boolean function f , namely its image list
(f(x))x∈Fn

2
and its ANF coefficient list (fu)u∈Fn

2
. This transformation is known

as the binary Moebius transform and is given by

f(x) =
∑

u⊆x

fu and fu =
∑

x⊆u

f(x) (4)

Here u and x both lie in Fn
2 and we use the notation introduced in (1) for the

ANF coefficients of f .
Dealing with algebraic attacks, we will be interested in the subspace of all

Boolean functions of degree at most d. Note that the set of monomials of degree
at most d forms a basis of this subspace. By counting the number of such mono-
mials we obtain that its dimension is given by D

def=
∑d

i=0

(
n
i

)
. In the following,

a Boolean function g of degree at most d will be represented by its ANF coeffi-
cients (gi)|i|≤d. Notice as well that we will need another degree constraint e and
that we will write E for the dimension of the subspace of Boolean functions with
degree at most e.

2.2 Algebraic and Fast Algebraic Attacks

We will briefly describe here how algebraic and fast algebraic attacks work on
a filtered LFSR. In the following, L is an LFSR on n bits with initial state
(x1, . . . , xn) and a filtering function f . The idea behind algebraic attacks is
just to recover the initial state given the keystream bits (zi)i≥0 by solving the
algebraic system given by the equations f(Li(x1, . . . , xn)) = zi. However the
algebraic degree of f is usually too high, so one has to perform further work.

In the original algebraic attacks [CM03], the first step is to find annihilators
of f . This means functions g of low degree such that fg = 0 where fg stands for
the function defined by

∀x ∈ Fn
2 , fg(x) = f(x)g(x) (5)

in particular fg = 0 if and only if

∀x ∈ Fn
2 , f(x) = 1 =⇒ g(x) = 0 (6)

So we obtain a new system involving equations of the form

g(Li(x1, . . . , xn)) = 0 for i ≥ 0 and zi = 1 (7)
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that can be solved if the degree d of g is low enough. Remark that for the i’s
such that zi = 0, we can use the same technique with the annihilators of 1 + f
instead.

In order to quantify the resistance of a function f to algebraic attacks, the
notion of algebraic immunity was introduced in [MPC04]. By definition, the
algebraic immunity of f is the smallest degree d such that f or 1 + f admits
a non-trivial annihilator of degree d. It has been shown in [CM03] that for an
n-variable Boolean function a non-trivial annihilator of degree at most 
n/2�
always exists.

Sometimes, annihilators of low degree do not exist, but another relation involv-
ing f can be exploited. That is what is done in fast algebraic attacks introduced
in [Cou03] and further confirmed and improved in [Arm04, HR04]. The aim is
to find a function g of low degree d and a function h of larger degree e such that
fg = h. We now get equations of the form

zi g(Li(x1, . . . , xn)) = h(Li(x1, . . . , xn)) for i ≥ 0 (8)

In the second step of fast algebraic attacks, one has to find a linear relation
between successive equations [Cou03] in order to get rid of the terms with degree
greater than d. Remark that these terms come only from h and so such a relation
does not involve the keystream bits zi. More precisely, we are looking for an
integer l and binary coefficients ci such that all the terms of degree greater than
d cancel out in the sum

i<l∑

i=0

ci h(Li(x1, . . . , xn)) (9)

One can search this relation offline and apply it not only from time 0 but also
shifted at every time i ≥ 0. In the end, we get an algebraic system of degree d
that we have to solve in the last step of the attack.

In this paper, we will focus on the first step of these attacks. We are given
a function f and we will discuss algorithms to compute efficiently its immunity
against algebraic and fast algebraic attacks.

2.3 Linear Algebra Approach

We will formulate here the problem of finding low-degree relations for a given
function f in terms of linear algebra. In the following, all the lists of points in
Fn

2 are always ordered using the order defined in Subsection 2.1.
Let us start by the case of the classical algebraic attacks. Recall that a function

g of degree at most d is an annihilator of f if and only if

∀x ∈ Fn
2 , f(x) = 1 =⇒ g(x) = 0 (10)

So, for each x such that f(x) = 1 we get from (4) a linear equation in the D
coefficients (gu)|u|≤d of g, namely

∑

u⊆x

gu = 0 u ∈ Fn
2 , |u| ≤ d (11)
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This gives rise to a linear system that we can write M1((gu)|u|≤d)t = 0 where M1

is an |f | × D binary matrix and the t indicates transposition. Each row of M1

corresponds to an x such that f(x) = 1. Actually, we see that the matrix vector
product of M1 with ((gu)|u|≤d)t is just an evaluation of a function g with ANF
coefficients (gu)|u|≤d on all the points x such that f(x) = 1. We will encounter
again such type of matrices and we will introduce a special notation. Let A and
B be two subsets of Fn

2 , we will write

V A
B = (vi,j)i=1...|B|,j=1...|A| (12)

for the matrix corresponding to an evaluation over all the points in B of a Boolean
function with non-zero ANF coefficients in A. The V stands for evaluation, and
we have vi,j = 1 if and only if the j-th point of B is included (notation ⊆ over
Fn

2 ) in the i-th point of A. With this notation, we get

M1 = V
{u,|u|≤d}
{x,f(x)=1} = V d

{x,f(x)=1} (13)

The exponent d is a shortcut for {u, |u| ≤ d}, in particular an exponent n means
all the points in Fn

2 . It is important to understand this notion of evaluation
because if we look a little ahead, we see that performing a matrix vector product
for such a matrix is nothing but performing a binary Moebius transform.

Now, a function g with ANF (gu)|u|≤d is an annihilator of f if and only if
((gu)|u|≤d)t ∈ ker(M1). A non-trivial annihilator of degree smaller than or equal
to d exists if and only if this matrix is not of full rank.

For the fast algebraic attacks, we obtain the same description with a different
linear system. Functions g of degree at most d and h of degree at most e such
that fg = h exist if and only if

∀x ∈ Fn
2 h(x) + f(x)g(x) = 0 (14)

Here the unknowns are the D coefficients (gu)|u|≤d of g and the E coefficients
(hu)|u|≤e of h. So, for each point x we derive by using (4) the following equation
on these coefficients

∑

u⊆x,|u|≤e

hu + f(x)
∑

u⊆x,|u|≤d

gu = 0 (15)

And we obtain a system that we can write M2((hu)|u|≤e, (gu)|u|≤d)t = 0 where
M2 is an N × (E + D) binary matrix given by

M2 =
(
V e

n | Diag((f(x))x∈Fn
2
)V d

n

)
(16)

The multiplication by f in (15) corresponds here with the product by the diago-
nal matrix. With this new matrix, each kernel element corresponds to functions
g and h such that fg = h.

There is a way to create a smaller linear system for the fast algebraic attacks.
This follows the idea in [BLP06]. Actually, as pointed out in [DM06], the matrix
V e

e is an involutive E × E matrix. The idea is then to start by computing the
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(hu)|u|≤e using the values that h has to take on the points x with |x| ≤ e. That is,
taking for the unknowns the D coefficients (gu)|u|≤d of g, the values (h(x))|x|≤e

of h are given by

((h(x))|x|≤e)t = Diag((f(x))|x|≤e)V d
e ((gu)|u|≤d)t (17)

We can then find the ANF coefficients (hu)|u|≤e of h by applying V e
e on the

left because this matrix is involutive. We can then evaluate h over all Fn
2

by multiplying on the left by V e
n . In the end, we obtain a new linear system

M3((gu)|u|≤d)t = 0 where M3 is the following N × D matrix

M3 = Diag((f(x))x∈Fn
2
)V d

n + V e
n V e

e Diag((f(x))|x|≤e)V d
e (18)

Here Diag((f(x))x∈Fn
2
)V d

n corresponds to the evaluation of fg on all the points
in Fn

2 and the other part to the evaluation of h on the same points. Remark
that the rows corresponding to |x| ≤ e are null by construction, so M3 can be
reduced to an (N − E) × D matrix.

Up to now, all the known algorithms relying on the linear algebra approach
([MPC04, DT06, BLP06, ACG+06]) worked by computing the kernel of these
matrices using some refinements of Gaussian elimination. Efficiency was achieved
using the very special structure involved. We will use here a different approach.
The idea is that the special structure behind these linear systems allows a fast
matrix vector product. We will actually be able to compute M1((gi)|i|≤d)t or
M3((gi)|i|≤d)t in O(n2n). This will lead to an algorithm in O(n2nD) complexity
and O(n2n) memory.

3 Using Wiedemann’s Algorithm

In this section we describe how the Wiedemann algorithm [Wie86] can be used
efficiently on our problem. We focused on this algorithm (instead of Lanczos’
or conjugate gradient algorithm) because it is easier to analyze and it does not
need any assumption on the matrix.

3.1 Fast Evaluation

The first ingredient for Wiedemann’s algorithm to be efficient on a given matrix,
is that we can compute the matrix vector product for this particular matrix
efficiently. This is for example the case for a sparse matrix and will also be
the case for the matrices M1, M2 or M3 involved in the algebraic immunity
computation. In the following we still use the order defined in Subsection 2.1 for
all the lists of points in Fn

2 .
So we want to compute efficiently a matrix vector product of M1, M2 or M3.

For that, looking at the definition of these matrices (see (13), (16) and (18)) it
is enough to be able to compute efficiently a matrix vector product of diago-
nal matrices and of the matrices V A

B (A and B being two subsets of Fn
2 ). Then,
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we will just compute this kind of product for all the matrices appearing in the
previous definitions to get the final product.

Computing a product between a diagonal matrix and a vector is easy, it can
be computed in O(2n) using a binary AND between the vector and the list of
the diagonal elements. Regarding the matrices V A

B , performing the product is
almost the same as doing a Moebius transform as we have seen in Subsection
2.3. The details are explained in the following algorithm.

Algorithm 1 (Matrix vector product of V A
B ). Given n, two subsets (A and B)

of Fn
2 and a vector v = (vi)i=1...|A|, this algorithm computes the matrix vector

product of V A
B and v.

1. [pack] Initialize a vector s = (su)u∈Fn
2

as follows If u is the i-th point in A
then set su = vi. Otherwise (that is u /∈ A) set su = 0.

2. [Moebius] Compute the fast binary Moebius transform of s in place.
3. [Extract] The result is given by the (su) with u ∈ B.

So, the key point in a fast matrix vector product here is that we can compute
the binary Moebius transform efficiently. The following algorithm called the fast
Moebius transform works in O(n2n) and uses the same idea as the fast Fourier
transform algorithm. In the end, we are able to perform a matrix vector product
of M1, M2 or M3 with the same complexity. Remark as well that for all these
algorithms, the memory usage is in O(2n).

Algorithm 2 (Fast binary Moebius transform). Given an n-variable Boolean
function f in the form of a list of ANF coefficients (fu)u∈Fn

2
, this algorithm

computes its image list (f(x))x∈Fn
2

recursively. In both cases the list must be
ordered using the order described in section 2.1. The algorithm can work in place
(meaning the result overwrites the (fu)u∈Fn

2
) without modifications.

1. [stop] If n = 0 then f(0) = f0. Exit the function.
2. [left recursion] Perform the Moebius transform for a n − 1 variable function

f (0) whose coefficients are given by the first half of the coefficient list of f ,
that is the fu’s with u = (u1, . . . , un) and u1 = 0.

3. [right recursion] Perform the Moebius transform for a n− 1 variable function
f (1) whose coefficients are given by the second half of the coefficient list of f ,
that is the fu with u = (u1, . . . , un) and u1 = 1.

4. [combine] We have f(x1, . . . , xn) = f (0)(x2, . . . , xn) + x1f
(1)(x2, . . . , xn).

The complexity in O(n2n) comes from the fact that at each call, we apply the
algorithm over two problems of half the size of the original one. The correctness
is easy to prove provided that the equality at step 4 is correct. But using the
definition of the Moebius transform, we have

f(x) =
∑

u⊆x

fu(x) =
∑

u⊆x,u1=0

fu(x) +
∑

u⊆x,u1=1

fu(x) (19)



244 F. Didier

The second sum is zero if x1 = 0, so we can write

f(x) =
∑

(u2,...,um)⊆(x2,...,xn)

f(0,u2,...,un)(x) + x1

∑

(u2,...,un)⊆(x2,...,xn)

f(1,u2,...,un)(x) (20)

and we retrieve the equality at step 4.

3.2 The Wiedemann Algorithm

We present here the Wiedemann algorithm for an n × n square matrix A. We
will deal with the non-square case in the next subsection.

The approach used by Wiedemann’s algorithm (and more generally blackbox
algorithms) is to start from a vector b and to compute the so called Krylov
sequence

b, Ab, A2b, . . . , Anb, . . . (21)

This sequence is linearly generated and admits a minimal polynomial Pb ∈ F2[X ]
such that Pb(A)b = 0. Moreover, Pb divides the minimal polynomial of the matrix
A and is of maximum degree n.

The idea of Wiedemann’s algorithm is to find Pb using the Berlekamp-Massey
algorithm. For that, we take a random vector ut in Fn

2 and compute the inner
products

u.b, u.Ab, u.A2b, . . . , u.A2nb (22)

The complexity of this step is in 2n evaluations of the matrix A. This sequence
is still linearly generated, and we can find its minimal polynomial Pu,b in O(n2)
using the Berlekamp-Massey Algorithm ([Mas69]). Moreover, Pu,b divides Pb

and they are equal with probability bounded away from 0 by 1/(6 logn) (see
[Wie86]). Notice that if X divides Pu,b, then A is singular since 0 is then one of
its eigenvalues.

Now, let us assume that we have computed Pb and that Pb(x) = c0 + xQ(x)
with Q ∈ F2[X ]. If c0 �= 0 (and therefore c0 = 1) then AQ(A)b = b and Q(A)b
is a solution x of the system Ax = b. If c0 = 0 then AQ(A)b = 0 and Q(A)b
is a non-trivial (by minimality of Pb) element of ker(A). So, we can either find
a solution of Ax = b or a non-trivial element in ker(A) with complexity the
number of steps of computing Q(A) that is n evaluations of A.

Remark that in both cases we can verify the coherence of the result (even
when Pu,b �= Pb) with only one evaluation of A. Moreover, when A is singular,
we are sure to find a non-trivial kernel element if b does not lie in Im(A). This
happens with probability always greater than 1/2 over F2.

If we are only interested in knowing if a matrix is singular then, as already
pointed out, we just need that X divides Pu,b and we have:

Theorem 1. If an n × n square matrix A over F2 is singular, then applying
Wiedemann’s algorithm with a random choice of b and u will prove that the
matrix is singular with probability greater than 1/4 and O(n) evaluations of A.
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Proof. Let us decompose E = Fn
2 into the characteristic subspaces of A. In

particular we have E = E0 ⊕ E1 where E0 is the subspace associated with the
eigenvalue 0 and A restricted to E1 is invertible. Using this decomposition, let
us write b = b0 + b1. Let P0 and P1 be the minimal polynomial associated to
the sequences (u.b0, u.Ab0, . . . ) and (u.b1, u.Ab1, . . . ). We know that P0 is just a
power of X and that the LFSR generating the second sequence is non degenerate.
So the minimal polynomial associated to the sum is equal to P0P1. To conclude,
we see that X/Pu,b if u.b0 �= 0 and over F2 this happens for a random choice of
u and b with a probability greater than 1/4.

In the end, the algorithm consists in trying different values of b and u until we
have a large enough probability that A is singular or not. When b is fixed, we just
described a Monte-Carlo algorithm here but there is also a Las-Vegas version
(Algorithm 1 of [Wie86]) that works better in this case. It gives Pb (so at the
end a kernel element or a solution to Ax = b) in O(n log n) matrix evaluations
on average.

Remark that when X divides Pu,b we are sure that A is singular. So the three
possible outputs of the algorithm are the following :
- either A is singular and we know it for sure,
- or we know that A is non-singular with a very high probability,
- finally when Pu,b is of maximum degree (that is n) then we know the minimal
polynomial of A. So if it is not divisible by X then we are sure that the matrix
is of full rank.

3.3 Non Square Case

The square case could be applied directly when we try to show the maximum
algebraic immunity of a balanced Boolean function with an odd number of vari-
ables (because in this case d = (n−1)/2 and |f | = 2n−1 is equal to D). However,
in the general case we do not have a square matrix.

One method to extend this could be to select randomly a subsquare matrix
until we find an invertible one or until we have done so many choices that we are
pretty sure that the initial matrix is not of full rank. This method is however
quite inefficient when the matrix is far from being a square matrix and in this
case there is a better way to perform this task.

Let us consider an n× k matrix A with k < n, the idea is to generate a k× n
random sparse matrix Q such that with high probability QA will be of rank k
if A is non-singular. From [Wie86] we have the following result.

Theorem 2. If A is a non-singular n × k matrix with k < n, let us construct
a k × n matrix Q as follows. A bit of the row i from 1 to k is set to 1 with
probability wi = min(1/2, 2 logn/(k + 1 − i)). Then with probability at least 1/8
the following statements hold
- The k × k matrix QA is non-singular.
- The total Hamming weight of the rows in Q is at most 2n(2 + log n)2.

Notice that in [Wie86], another generating method is given to generate Q such
that QA is non-singular with a probability bounded away from 0 and such that
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the total Hamming weight of Q is in O(n log n). This is better asymptotically
but less applicable in practice since the probability is smaller than the 1/8 of
Theorem 2.

We are now back to the square case with a little overhead because we have
to compute Q times a vector at each step of the Wiedemann algorithm. This
is why we have generated Q as sparse as possible to minimize this overhead.
In particular, when Q has a total Hamming weight in O(n log n) then we can
perform the matrix vector product in O(n log n). Notice as well that we need
O(n log n) extra memory in order to store the matrix Q.

In order to know if A is singular or not, the algorithm is the following. We
generate a matrix Q and test the non singularity of QA with Wiedemann’s
Algorithm. If this matrix is non-singular, then we know that A is non-singular
as well (with the failure probability of Wiedemann’s algorithm). Otherwise, we
can go on a few times (say i) with different matrices Q and if all the products
are singular then A is singular with probability greater than 1 − (7/8)i.

Remark that with negligible complexity overhead, we can compute a non-
trivial kernel element x of QA when this matrix is singular. And if A is singular,
with a probability greater than 1/8 we will also have Ax = 0. So we can run the
algorithm until we are sure that A is singular (when we get a non-trivial kernel
element) or until we have a very high probability that A is non-singular.

4 Implementation Results

We have implemented all the algorithms described in this article and we give
their performances in this section. All the experiments were done on a Pentium
4 running at 3.2Ghz with 2Gb of memory.

First of all, let us summarize the complexity of our algorithms. Both for alge-
braic and fast algebraic attacks, we will have to perform Wiedemann’s algorithm
on a D × D matrix. This requires O(D) matrix vector products of this matrix
plus O(D2) operations for the Berlekamp-Massey algorithm. We have seen that
we can perform the product in O(n2n) operations, so we get in all cases a final
complexity in O(n2nD). Notice that in order to get a small failure probability,
we will have to perform this task a few times. This is especially true for the non-
square case since we will have to check different matrices Q. However, only a
constant number of times is needed to get a given probability, so the asymptotic
complexity is still the same.

Regarding the memory, the matrix evaluation needs O(2n) memory for the
square case and an extra O(n2n) memory when we have to store a matrix Q for
the non-square case. All the other operations need only an O(D) memory.

The running time of the algorithms is almost independent of the function f
involved except for the Berlekamp-Massey part. However, this part is clearly
not the most time consuming. In particular, it is a good idea in Wiedemann’s
algorithm to perform the computation with more than one random u per vector
b. If we perform 4 Berlekamp-Massey steps per random vector b, then we will be
able to detect a singularity with a probability almost one half and a very small



Using Wiedemann’s Algorithm to Compute the Immunity 247

Table 1. Running time for the square case: n = 2d + 1, D = 2n−1 and f is a ran-
dom balanced n-variable Boolean function. Optimized implementation using the SSE2
instructions set.

d,n 4,9 5,11 6,13 7,15 8,17 9,19 10,21 11,23 12,25

time 0s 0s 0.01s 0.3s 5s 102s 30m 11h 20d

Table 2. Time and memory for computing the immunity against normal algebraic
attacks using Wiedemann’s algorithm

d,n 2,22 2,23 3,19 3,20 3,21 4,19 5,19

D 254 277 1160 1351 1562 5036 16664

time 113s 264s 100s 252s 630s 640s 2706s

memory 656Mb 1397Mb 118Mb 255Mb 547Mb 160Mb 194Mb

overhead. Remark as well that all the experiments where done for random bal-
anced functions but the running time will be roughly the same for real functions
used in stream cipher.

When we compute the immunity against normal algebraic attacks for a square
matrix, we can implement the code in a very efficient way. In particular, using the
transposition of the Moebius transform, we can merge step 1 and 3 of Algorithm
1 between two consecutive evaluations. This is because this transposition will
map back all the positions in the set B into the set A. Moreover, if M1 is square
and invertible, applying (V d

{x,f(x)=1})
t on the left will result in another invertible

matrix. In this way, we obtain a fully parallelizable algorithm because we can
perform a fast Moebius transform (or its transpose) dealing with 32 bits at a
time (even more with SSE2). In the end we get a very efficient implementation
with the running time for a random choice of b and four random choices of u
given in Table 1. Moreover, the memory usage is negligible in this case since
there is no matrix Q to store.

In this case, since n = 2D + 1, the complexity is in O(D2 log D) and the mem-
ory usage in O(D). So the asymptotic complexity is a little worse than the one of
[ACG+06] (in O(D2)) but the memory usage is a lot better (to be compared with
O(D2)). We see that two consecutive sets of parameters differ by a factor of 16 in
the computation time as could be inferred from the asymptotic complexity. This
factor increase a little with the number of variables but we were still able do deal
with as many as 25 variables. Notice that this implementation also breaks the pre-
vious record which was 20 variables in the papers [DT06] and [ACG+06].

For the non-square case however, the results are less impressive. The reason is
that there is no simple way to do the multiplication by Q in a parallel way. Hence
we loose a factor 32 in the process. To overcome this difficulty a block version of
Wiedemann’s algorithm might be use (see [Cop94]), but we did not have time
to implement it. Another issue is that the memory to store the sparse matrix Q
may become two large. Moreover, the code used for the following experiments is
not as optimized as the one for the square case. We might divide the time and
memory by a factor 2 roughly with a careful implementation.
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Table 3. Time and memory for computing the immunity against fast algebraic attacks
using Wiedemann’s algorithm. Here we chose n = 2e + 1.

d/e,n 2/8,17 3/8,17 3/9,19 3/10,21 4/8,17 5/8,17 6/8,17

D 154 834 1160 1562 3214 9402 21778

time 1s 15s 101s 614s 82s 297s 801s

memory 14Mb 25Mb 118Mb 547Mb 33Mb 40Mb 45Mb

Table 4. Dependence of fast algebraic attacks immunity computation in the parameter
e. In all cases D = 1160.

d/e,n 3/7,19 3/8,19 3/9,19 3/10,19 3/11,19

time 154s 130s 101s 70s 43s

memory 192Mb 159Mb 118Mb 77Mb 43Mb

We give in Table 2 the time to compute the immunity against normal algebraic
attacks. Wiedemann’s algorithm is executed for one random matrix Q a random
b and four random u’s. In order to obtain a small enough probability of error,
one will have to execute this a few times (16 gives an error probability of 0.1
and 32 of 0.01).

What is interesting is that the time for computing immunity against fast
algebraic attacks is almost the same as the one for normal algebraic attacks
(see Table 3). There is only little influence of the degree e (see Table 4) on the
performance because the size of Q depends on it. But the time and memory will
always stay within a factor two compared to the case where e is equal to n/2.

5 Conclusion

In this paper, we devised a new algorithm to compute the immunity of a Boolean
function against both algebraic and fast algebraic attacks. This algorithm presents
a few advantages:

- It is easy to understand since it is based on a well known sparse linear algebra
algorithm.

- Its complexity is quite good, especially for the fast algebraic attacks.
- It uses little memory compared to the other known algorithms which make

it able to deal with more variables.
- And it is quite general since it can work for both attacks with little modifica-

tion. In particular, if in the future one is interested in other kind of relations
defined point by point, then the same approach can be used.
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