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Abstract. We discuss the question of how to interpret reduction argu-
ments in cryptography. We give some examples to show the subtlety and
difficulty of this question.

1 Introduction

Suppose that one wants to have confidence in the security of a certain cryp-
tographic protocol. In the “provable security” paradigm, the ideal situation is
that one has a tight reduction (see §4 for a definition and discussion of tight-
ness) from a mathematical problem that is widely believed to be intractable to
a successful attack (of a prescribed type) on the protocol. This means that an
adversary who can attack the system must also be able to solve the (supposedly
intractable) problem in essentially the same amount of time with essentially the
same probability of success. Often, however, the best that researchers have been
able to achieve falls short of this ideal. Sometimes reductionist security argu-
ments have been found for modified versions of the protocol, but not for the
actual protocol that is used in practice; or for a modified version of the type
of attack, but not for the security definition that people really want; or based
on a somewhat contrived and unnatural modified version of the mathematical
problem that is believed to be hard, but not based on the actual problem that
has been extensively studied. In other cases, an asymptotic result is known that
cannot be applied to specific parameters without further analysis. In still other
cases, one has a reduction, but one can show that there cannot be (or is unlikely
to be) a tight reduction.

In this paper we give examples that show the subtle questions that arise when
interpreting reduction arguments in cryptography.

2 Equivalence But No Reductionist Proof

In [13], Boneh and Venkatesan showed that an efficient reduction from factoring
to the RSA problem (the problem of inverting the function y = z¢ mod N) is
unlikely to exist. More precisely, they proved that for small encryption exponent
e the existence of an efficient “algebraic” reduction would imply that factoring
is easy.
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The paper [I3] appeared at a time of intense rivalry between RSA and elliptic
curve cryptography (ECC). As enthusiastic advocates of the latter, we were
personally delighted to see the Boneh—Venkatesan result, and we welcomed their
interpretation of it — that, in the words of their title, “breaking RSA may not
be equivalent to factoring” — as another nail in the coffin of RSA.

However, to be honest, another interpretation is at least as plausible. Both
factoring and the RSA problem have been studied intensively for many years.
In the general case no one has any idea how to solve the RSA problem without
factoring the modulus. Just as our experience leads us to believe that factor-
ing (and certain other problems, such as the elliptic curve discrete logarithm
problem) are hard, so also we have good reason to believe that, in practice, the
RSA problem is equivalent to factoring. Thus, an alternative interpretation of
the Boneh—Venkatesan result is that it shows the limited value of reduction ar-
guments, and an alternative title of the paper [I3] would have been “Absence of
a reduction between two problems may not indicate inequivalence.”

Which interpretation one prefers is a matter of opinion, and that opinion may
be influenced, as in our own case, by one’s biases in favor of or against RSA.

3 Results That Point in Opposite Directions

3.1 Reverse Boneh—Venkatesan

A recent result [I6] by D. Brown can be seen as giving support to the alternative
interpretation of Boneh—Venkaesan that we described at the end of §21 For small
encryption exponents e Brown proves that if there is an efficient program that,
given the RSA modulus N, constructs a straight-line program that efficiently
solves the RSA problemE then the program can also be used to efficiently factor
N. This suggests that for small e the RSA problem may very well be equivalent to
factoring. If one believes this interpretation, then one might conclude that small
e are more secure than large e. In contrast, the result of Boneh—Venkatesan could
be viewed as suggesting that large values of e are more secure than small ones.

As Brown points out in §5 of [16], his result does not actually contradict
Boneh—Venkatesan. His reduction of factoring to a straight-line program for
finding e-th roots does not satisfy the conditions of the reductions treated in
[13]. His use of the e-th root extractor cannot be modeled by an RSA-oracle, as
required in [I3], because he applies the straight-line program to ring extensions
of Z/NZJ

Brown’s choice of title is a helpful one: “Breaking RSA may be as difficult as
factoring.” All one has to do is put it together in a disjunction with the title
of [I3], and one has a statement that cannot lead one astray, and accurately
summarizes what is known on the subject.

! Brown’s result actually applies if e just has a small prime factor.

2 This essentially means that it constructs a polynomial that inverts the encryption
function.

3 For example, when e = 3 the polynomial that inverts cube roots is applied to the
ring Z/NZ[X]/(X? — u), where the Jacobi symbol (%) = —1.
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3.2 Random Padding Before or After Hashing?

When comparing ElGamal-like signature schemes, one finds that some, such as
Schnorr signatures [35], append a random string to the message before evaluating
the hash function; and some, such as the Digital Signature Algorithm (DSA)
and the Elliptic Curve Digital Signature Algorithm (ECDSA), apply the hash
function before the random padding. Is it more secure to do the padding before
or after hashing? What do the available “provable security” results tell us about
this question?

As we discussed in §5.2 of [27], the proof that forgery of Schnorr signatures is
equivalent to solving the discrete log problem (see the sketch in §5.1 of [27] and
§83 below, and the detailed proof in [33/34]) relies in an essential way on the
fact that an attacker must choose the random r before making his hash query.
For this reason, the proof does not carry over to DSA, where only the message
m and not r is hashed. In §5.2 of [27] we commented that

...replacing H(m,r) by H(m) potentially gives more power to a forger,
who has control over the choice of k (which determines ) but no control
over the (essentially random) hash value. If H depends on r as well as
m, the forger’s choice of k must come before the determination of the
hash value, so the forger doesn’t “get the last word.”

That was our attempt to give an intuitive explanation of the circumstance that
in the random oracle model Schnorr signatures, unlike the closely related DSA
signatures, have been tied to the discrete logarithm problem (DLP) through a
reduction argument. One could conclude from our comment that it’s more secure
to do the padding before hashing.

However, we were very much at fault in misleading the reader in this way.
In fact, there is another provable security result, due to D. Brown [T4JT5], that
points in the opposite direction. It says: If the hash function and pseudoran-
dom bit generator satisfy certain reasonable assumptions, then ECDSA is secure
against chosen-message attack by a universal forgeﬂ provided that the “adaptive
semi-logarithm problem” in the elliptic curve group is hard[l Brown comments in
[15] that his security reduction would not work for a modification of ECDSA in
which r as well as the message m is hashed. Brown does not claim that the modi-
fied version is therefore less secure than the original version of ECDSA with only
the message hashed. However, in an informal communication [I7] he explained
how someone might make such a claim: namely, the inclusion of a random r
along with m in the input could be viewed as “giving an attacker extra play

4 A forger is universal (or selective in Brown’s terminology) if it can forge an arbitrary
message that it is given.

5 A semi-logarithm of a point Q with respect to a basepoint P of prime order p is a
pair (t,u) of integers mod p such that t = f(u~'(P + tQ)), where the “conversion
function” f is the map from points to integers mod p that is used in ECDSA. The
adaptive semi-logarithm problem is the problem of finding a semi-logarithm of @ to
the base P given an oracle that can find a semi-logarithm of @ to any base of the
form eP with e # 1.
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with the hash function,” and this could lead to a breach. (But note that both
the results in [33I34] and in [I4UT5] assume that the hash function is strong.)

Once again we have provable security results that suggest opposite answers to
a simple down-to-earth question. Is it better to put in the random padding before
or after evaluating the hash function? As in the case of the question in §3.1] both
answers “before” and “after” can be supported by reduction arguments.

In §8 we shall discuss another question — whether or not forgery of Schnorr-
type signatures is equivalent to the DLP — for which different provable security
results give evidence for opposite answers.

4 Non-tightness in Reductions

We first give an informal definition of tightness of a reduction. Suppose that
we have an algorithm for solving problem A that takes time at most T" and is
successful for a proportion at least ¢ of the instances of A, where T and ¢ are
functions of the input length. A reduction from a problem B to A is an algorithm
that calls upon the algorithm for A a certain number of times and solves B in
time T” for at least a proportion € of the instances of B. This reduction is said
to be tight if T ~ T and € =~ ¢. Roughly speaking, it is non-tight if T' > T or
if € <e.

Suppose that researchers have been able to obtain a highly non-tight reduction
from a hard mathematical problem to breaking a protocol. There are various
common ways to respond to this situation:

1. Even a non-tight reduction is better than nothing at all. One should regard
the cup as half-full rather than half-empty, derive some reassurance from
what one has, and try not to think too much about what one wishes one
had

2. Even though the reduction is not tight, it is reasonable to expect that in the
future a tighter reduction will be found.

3. Perhaps a tight reduction cannot be found for the protocol in question, but
a small modification of the protocol can be made in such a way as to permit
the construction of a tight reduction — and we should regard this reduction
as a type of assurance about the original protocol.

4. A tight reduction perhaps can be obtained by relaxing the underlying hard
problem (for example, replacing the computational Diffie-Hellman problem
by the decision Diffie-Hellman problem).

5. Maybe the notion of security is too strict, and one should relax it a little so
as to make possible a tight reduction.

5 We are reminded of the words of the popular song
If you can’t be with the one you love,
Love the one you're with,
(Stephen Stills, 1970). The version for cryptographers is:
If you can’t prove what you’d love to prove,
Hype whatever you prove.
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6. Perhaps the protocol is secure in practice, even though a tight reduction may
simply not exist.

7. Perhaps the protocol is in fact insecure, but an attack has not yet been
discovered.

These seven points of view are not mutually exclusive. In fact, protocol devel-
opers usually adopt some combination of the first six interpretations — but
generally not the seventh.

4.1 Insecure But Provably Secure: An Example

We now give an example that is admittedly somewhat artificial. Let us step
into a time machine and go back about 25 years to a time when naive index-
calculus was pretty much the best factoring algorithm. Let us also suppose that
224 gperations are feasible, but 2(2V2a gperations are not.

Let N be a c-bit RSA modulus, and let r be an a-bit integer. Let F' =
{p1,...,pr} be a factor base consisting of the first  primes. Let 2° be the
expected time needed before a randomly selected x mod N has the property
that 22 mod N is p,-smooth (this means that it has no prime factors greater
than p,.). The usual estimate is that 2° ~ u*, where u = c/a. (Actually, it’s more
like u = ¢/(a +log(aln2)), where log denotes log,, but let’s ignore second-order
terms.)

If = has the property that 2 mod N is p,-smooth, then by its “exponent-
vector” we mean the vector in F5 whose components €; are the exponents of p;
in the squarefree part of 2 mod N.

The basic (naive) index-calculus algorithm involves generating roughly r such
x values and then solving an r x r-matrix over Fo. The first part takes roughly
r2b a2 201° operations, and the second part takes roughly 22¢ operations. So one
usually chooses b ~ a. However, in our protocol, in order to be able to give a
“proof” of security we’ll optimize slightly differently, taking b ~ 2a.

Note that for fixed ¢, the value of a chosen with b =~ 2a is different from the
optimal value a’ that one would choose to factor N. In the former case one sets
220 ~ % (where u = c¢/a) — that is, 2a ~ ologu — and in the latter case one
sets ' = ¢ logu’ (where u' = c¢/a’). Since u' is of the same order of magnitude
as u, by dividing these two equations we get approximately a’ ~ v/2a. This leads
to the estimate 2(2V2)a for the number of operations needed to factor N.

We now describe the protocol. Alice wants to prove her identity to Bob, i.e.,
prove that she knows the factors of her public modulus N. Bob sends her a chal-
lenge that consists of s linearly independent vectors in 5, where 0 < s <r — 1.
Alice must respond with an z such that 22 mod N is p,-smooth and such that
its exponent-vector is not in the subspace S spanned by Bob’s challenge vec-
tors. (The idea is to prevent an imposter from giving a correct response by
combining earlier responses of Alice; thus, in practice Bob would be sure to
include the exponent-vectors of Alice’s earlier responses among his challenge
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vectors.) Alice can do this quickly, because it is easy to find square roots modulo
N if one knows the factorization of N.

We now reduce factoring to impersonating Alice. Let 10 be the imperson-
ator-oracle. To factor N, we make r calls to IO (where each time our challenge
vectors consist of the exponent-vectors of all the earlier responses of 10) to get
a set of relations whose exponent-vectors span Fj. After that we merely have
to find k& more randomly generated = with p,-smooth z? mod N in order to
have probability 1 — 27% of factoring N. Finding these x’s takes time about
k2b. Since we have to solve a matrix each time, the time is really k(2% + 22¢).
If a call to IO on average takes time 7', then the total time to factor N is
T’ ~ k(2 +22) + T = k2201 + 29T since b = 2a and r ~ 2%. We are assuming
that factoring N requires 2(2V2a operations, and so we obtain the nontrivial
lower bound T > 2(2V2=Da_ Whenever one is able to prove a lower bound for
an adversary’s running time that, although far short of what one ideally would
want, is highly nontrivial and comes close to the limits of practical feasibility,
such a result can be viewed as reassuring (see also Remark 2] below).

However, the protocol is insecure, because it can be broken in time roughly
20 — 92a,

This example is unrealistic not only because we’re supposing that naive index-
calculus is the best factoring algorithm, but also because it should have been
obvious from the beginning that the protocol is insecure. We thus state as an
open problem:

Problem. Find an example of a natural and realistic protocol that has a plausible
(non-tight) reductionist proof of security, and is also insecure when used with
commonly accepted parameter sizes.

Remark 1. Either success or failure in solving this problem would be of interest.
If someone finds a (non-tightly) provably secure but insecure protocol, then the
importance of the tightness question in security reductions will be clearer than
ever. On the other hand, if no such example is found after much effort, then
practitioners might feel justified in doubting the need for tightness in reductions.

Remark 2. Tt should be noted that something like this has already been done
in the context of symmetric—key message authentication codes (MAC’s). In [I§]
Cary and Venkatesan presented a MAC scheme for which they had a security
proof (it was not actually a reductionist proof). Their scheme depended on a
parameter [, and for the practical value [ = 32 their proof showed that a collision
cannot be found without at least 227 MAC queries. Even though this figure falls
far short of what one ideally would want — namely, 64 bits of security — it
could be viewed as providing some assurance that the scheme does in fact have
the desired security level. However, in [8] Blackburn and Paterson found an
attack that could find a collision using 248-®> MAC queries and a forgery using
2%% queries. This example shows that the exact guarantees implied by a proof
have to be taken seriously, or else one might end up with a cryptosystem that is
provably secure and also insecure.
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4.2 Coron’s Result for RSA Signatures

We first recall the basic RSA signature scheme with full-domain hash function.
Suppose that a user Alice with public key (N, e) and secret exponent d wants
to sign a message m. She applies a hash function H(m) which takes values
in the interval 0 < H(m) < N, and then computes her signature s = H(m)?
mod N.

When Bob receives the message m and the signature s, he verifies the signature
by computing H(m) and then s® mod N. If these values are equal, he is satisfied
that Alice truly sent the message (because presumably only Alice knows the
exponent d that inverts the exponentiation s — s¢) and that the message has
not been tampered with (because any other message would presumably have a
different hash value).

We now describe a classic reductionist security argument for this signature
scheme [0]:

Reductionist security claim. If the problem of inverting z — z° mod N is in-
tractable, then the RSA signature with full-domain hash function is secure in
the random oracle model from chosen-message attack by an existential forger.

Argument. Suppose that we are given an arbitrary integer y, 0 < y < N, and
asked to find = such that y = 2¢ mod N. The claim follows if we show how we
could find x (with high probability) if we had a forger that can mount chosen-
message attacks.

So suppose that we have such a forger. We give it Alice’s public key (N, e)
and wait for its queries. In all cases but one, we respond to the hash query for
a message m; by randomly selecting x; € {0,1,..., N — 1} and setting the hash
value h; equal to 2§ mod N. For just one value m;, we respond to the hash
query by setting h;, = y (recall that y is the integer whose inverse under the
map z — x° mod N we are required to find). We choose iy at random and hope
that m = m;, happens to be the message whose signature will be forged by our
existential forger. Any time the forger makes a signature query for a message m;
with @ # ig, we send z; as its signature. Notice that this will satisfy the forger,
since ¢ = h; (mod N). If the forger ends up outputting a valid signature s;,
for m;,, that means that we have a solution z = s;, to our original equation
y = z®mod N with unknown z. If we guessed wrong and m;, was not the
message that the forger ends up signing, then we won’t be able to give a valid
response to a signature query for m;,. The forger either will fail or will give us
useless output, and we have to start over again. Suppose that ¢, is a bound on
the number of queries of the hash function. If we go through the procedure k
times, the probability that every single time we fail to solve y = ¢ mod N for x
is at most (1—1/gp)*. For large k, this approaches zero; so with high probability
we succeed. This completes the argument.

Notice that the forgery program has to be used roughly O(g) times (where
gp, is the number of hash queries) in order to find the desired e-th root modulo
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N. A result of Coron [19] shows that this can be improved to O(gs), where g
denotes a bound on the number of signature queriesﬂ (Thus, gn, = ¢s+¢},, where
g5, is a bound on the number of hash function queries that are not followed later
by a signature query for the same message.)

Moreover, in a later paper [20] Coron essentially proves that his result cannot
be improved to give a tight reduction argument; O(gs) is a lower bound on the
number of calls on the forger needed to solve the RSA problem.

From the standpoint of practice (as emphasized, for example, in [5]) this
non-tightness is important. What it means is the following. Suppose that you
anticipate that a chosen-message attacker can get away with making up to 22°
signature queries. You want your system to have 80 bits of security; that is, you
want a guarantee that such a forger will require time at least 280, The results of
[19/20] mean that you should use a large enough RSA modulus N so that you're
confident that e-th roots modulo N cannot be found in fewer than 2190 = 220.280
operations. Thus, you should use a modulus N of about 1500 bits.

4.3 The Implausible Magic of One Bit

We now look at a construction of Katz and Wang [25], who show that by adding
only a single random bit to a message, one can achieve a tight reductiond To
sign a message m Alice chooses a random bit b and evaluates the hash function
H at m concatenated with b. She then computes s = (H(m,b))? mod N; her sig-
nature is the pair (s,b). To verify the signature, Bob checks that s¢ = H(m,b)
mod N.

Remarkably, Katz and Wang show that the use of a single random bit b
is enough to get a tight reduction from the RSA problem to the problem of
producing a forgery of a Katz—Wang signature. Namely, suppose that we have a
forger in the random oracle model that asks for the signatures of some messages
and then produces a valid signature of some other message. Given an arbitrary
integer y, the simulator must use the forger to produce x such that y = z° mod
N. Without loss of generality we may assume that when the forger asks for the
hash value H(m,b), it also gets H(m,b') (where b’ denotes the complement of
b). Now when the forger makes such a query, the simulator selects a random
bit ¢ and two random integers ¢t; and to. If ¢ = b, then the simulator responds
with H(m,b) = t§y and H(m,b') = t§; if ¢ = ¥, it responds with H(m,b) = t§
and H(m,b') = t§y. If the forger later asks the simulator to sign the message
m, the simulator responds with the corresponding value of ¢5. At the end the
forger outputs a signature that is either an e-th root of t§ or an e-th root of

¢y for some t; or ts that the simulator knows. In the latter case, the simulator
has succeeded in its task. Since this happens with probability 1/2, the simulator
is almost certain — with probability 1 — 27% — to find the desired e-th root

" In the above argument, instead of responding only to the io-th hash query with
hi, = vy, Coron’s idea was to respond to a certain optimal number g, %1, ... with
hi; = yz5 with z; random.

8 We shall describe a slightly simplified version of the Katz-Wang scheme. In partic-
ular, we are assuming that Alice never signs the same message twice.
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after running the forger k times. This gives us a tight reduction from the RSA
problem to the forgery problem.

From the standpoint of “practice-oriented provable security” the Katz—Wang
modification provides a much better guarantee than did the RSA signature with-
out the added bit. Namely, in order to get 80 bits of security one need only choose
N large enough so that finding e-th roots modulo N requires 289 operations —
that is, one needs roughly a 1000-bit N. Thus, the appending of a random bit
to the message allows us to shave 500 bits off our modulus!

This defies common sense. How could such a “magic bit” have any significant
impact on the true security of a cryptosystem, let alone such a dramatic impact?
This example shows that whether or not a cryptographic protocol lends itself to
a tight security reduction argument is not necessarily related to the true security
of the protocol.

Does tightness matter in a reductionist security argument? Perhaps not, if, as
in this case, a protocol with a non-tight reduction can be modified in a trivial
way to get one that has a tight reduction. On the other hand, the example in
g4Il shows that in some circumstances a non-tight reduction might be worthless.
Thus, the question of how to interpret a non-tight reductionist security argument
has no easy answer.

One interpretation of Coron’s lower bound on tightness is that if the RSA
problem has s; bits of security and if we suppose that an attacker could make
2%2 gignature queries, then RSA signatures with full-domain hash have only
51 — S2 bits of security. However, such a conclusion seems unwarranted in light
of the Katz—Wang construction. Rather, it is reasonable to view Coron’s lower
bound on tightness as a result that casts doubt not on the security of the basic
RSA signature scheme, but rather on the usefulness of reduction arguments as a
measure of security of a protocol. This point of view is similar to the alternative
interpretation of Boneh—Venkatesan’s result that we proposed in §2

5 Equivalence But No Tight Reduction

Let P denote a presumably hard problem underlying a cryptographic protocol;
that is, solving an instance of P will recover a user’s private key. For example,
the RSA version of factorization is the problem P whose input is a product N
of two unknown k-bit primes and whose output is the factorization of N.

Let P, denote the problem whose input is an m-tuple of distinct inputs for
P of the same bitlength and whose output is the solution to P for any one of
the inputs. In the cryptographic context, m might be the number of users. In
that case, solving P, means finding the private key of any one of the users,
while solving P means finding the private key of a specified user. We call the
former “existential key recovery” and the latter “universal key recovery.” A
desirable property of a cryptosystem is that these two problems be equivalent
— in other words, that it be no easier to recover the private key of a user of the
attacker’s choice than to recover the private key of a user that is specified to the
attacker.
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To see how this issue might arise in practice, let’s suppose that in a certain
cryptosystem a small proportion — say, 107° — of the randomly assigned pri-
vate keys are vulnerable to a certain attack. From the standpoint of an individual
user, the system is secure: she is 99.999% sure that her secret is safe. However,
from the standpoint of the system administrator, who is answerable to a million
users, the system is insecure because an attacker is almost certain (see below) to
eventually obtain the private key of one or more of the users, who will then sue
the administrator. Thus, a system administrator has to be worried about exis-
tential key recovery, whereas an individual user might care only about universal
key recovery.

5.1 The RSA Factorization Problem

In the case of RSA, is P,, equivalent to P? (For now we are asking about
algorithms that solve all instances of a problem; soon we shall consider algorithms
that solve a non-negligible proportion of all instances.) It is unlikely that there
is an efficient reduction from P to P,,. Such a reduction would imply that
the following cannot be true: for every k there are a small number r, < m of
moduli N that are much harder to factor than any other 2k-bit N. On the other
hand, all of our knowledge and experience with factoring algorithms support the
belief that, in fact, these two problems are in practice equivalent, and that RSA
does enjoy the property that existential and universal private key recovery are
equivalent.

When studying the security of a protocol, one usually wants to consider al-
gorithms that solve only a certain non-negligible proportion of the instances[]
In this case there is an easy reduction from P to P,,: given an input to P, ran-
domly choose m — 1 other inputs to form an input to P,,. One can check that
this transforms an algorithm that solves a non-negligible proportion of instances
of P, to one that solves a non-negligible proportion of instances of P.

However, the proportion of instances solved can be dramatically different. An
algorithm 4 that solves € of the instances of P, where € is small but not negligible,
gives rise to an algorithm A, that solves v =1 — (1 — €)™ of the instances of
P (this is the probability that at least one of the m components of the input
can be solved by A). For small ¢ and large m, v = 1 — e~“™. For example, if
€ =105 and m = 10, then v is greater than 99.99%. Thus, from a theoretical
point of view there seems to be a significant distance between universal private
key recovery P and existential private key recovery P,, for many systems such
as RSA. In other words, we know of no reductionist argument to show that if
RSA is secure from the standpoint of an individual user, then it must also be
secure from the standpoint of the system administrator.

9 In this section probabilities are always taken over the set of problem instances (of
a given size), and not over sets of possible choices (coin tosses) made in the execu-
tion of an algorithm. If for a given problem instance the algorithm succeeds for a
non-negligible proportion of sequences of coin tosses, then we suppose that the al-
gorithm is iterated enough times so that it is almost certain to solve the problem
instance.



158 N. Koblitz and A. Menezes

But once again, all of our experience and intuition suggest that there is no
real distance between the two versions of the RSA factoring problem. This is
because for all of the known subexponential-time factoring algorithms, includ-
ing the number field sieve, the running time is believed not to be substantially
different for (a) a randomly chosen instance, (b) an instance of average diffi-
culty, and (c) a hardest possible instance. No one knows how to prove such a
claim; indeed, no one can even give a rigorous proof of the L;/3 running time
for the number field sieve. And even if the claim could be proved for the cur-
rent fastest factoring algorithm, we would be very far from proving that there
could never be a faster algorithm for which there was a vast difference between
average-case and hardest-case running times. This is why there is no hope of
proving the tight equivalence of universal and existential private key recovery
for RSA.

5.2 A Non-cryptographic Example

Consider the problem P of finding all the prime factors of an arbitrary integer
N. Let us say that N is “k-easy” if it has at most one prime divisor greater
than 2%, If k is small, then P in that case can be solved efficiently by first using
trial division, perhaps in conjunction with the Lenstra elliptic curve factoring
algorithm, to pull out the prime factors < 2¥, and then applying a primality test
to what’s left over if it’s greater than 1.

It is not hard to see that the proportion e of n-bit integers N that are k-easy
is at least k/n. Namely, for 1 < j < 2% consider N that are of the form pj for
primes p. The number of such n-bit integers is asymptotic to

27171 - 2n71 1
(/) ” 2n

Thus, the proportion of n-bit integers that are k-easy is greater than

1 1 2" &k
In 27 Z j T ln2n  n
1<j<2k
As an example, let’s take n = 2000, £k = 20. Then ¢ > 0.01. We saw that
for m = 1000 more than 99.99% of all instances of P,, can be quickly solved.
In contrast, a significant proportion of the instances of P are outside our reach.
Obviously, it is not feasible to factor a 2000-bit RSA modulus. But there is a
much larger set of 2000-bit integers that cannot be completely factored with
current technology. Namely, let S>; denote the set of integers that have at least
one prime factor in the interval [23°0,2500] and at least one prime factor greater
than 2°%. At present a number in S>; cannot feasibly be factored, even using
a combination of the elliptic curve factorization method and the number field
sieve; and a heuristic argument, which we now give, shows that at least 25% of
all 2000-bit integers IV lie in S>1.

To see this, let Sy denote the set of integers that have exactly k prime factors
in [2300,2500] and at least one prime factor greater than 2°°°. Writing a 2000-bit
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N € S in the form N = Im with [ a prime in [2309,2°09]

that the number of such N is equal to

Z # (Som |:1219997 }22000]> )

l prime in [2300 2500]

and m € Sy, we see

The probability that an integer in the latter interval satisfies the two conditions
defining Sy is at least equal to

Prob(not divisible by any prime p € [2309,2590]) — Prob(25%° — smooth)

~ H (1 - ) —u",
pE[2300 2500]
where u = (2000 — log, 1)/500 > 3. The product is equal to exp > In(1 — zl)) ~

exp > (—1/p) =~ exp(—In1In2°% 4 Inln 2390) = 0.6, and so the probability that
an integer in [; 2999, 722900 Jijes in S is greater than 50%. Thus, the proportion
of 2000-bit integers N that lie in S>; D Sy is at least

1 1 1 1
Z ~ _(Inln2°%° —In1n23%9) = In(5/3) ~ 0.25,
2 ! prime in [2300’2500] l 2 2
as claimed.

This problem P does not seem to have any cryptographic significance: it is
hard to imagine a protocol whose security is based on the difficulty of completely
factoring a randomly chosen integer. Rather, its interest lies in the fact that,
despite its apparent resemblance to the RSA factoring problem, it spectacularly
fails to have a certain property — tight equivalence of existential and universal
solvability — that intuitively seems to be a characteristic of RSA factoring. This
example also suggests that it is probably hopeless to try to prove that universal
and existential private key recovery are tightly equivalent for RSA.

5.3 Use Different Elliptic Curves or the Same One?

Let us look at universal versus existential private key recovery in the case of
elliptic curve cryptography (ECC). Suppose that each user chooses an elliptic
curve E over a finite field Fy, a subgroup of E(F,) whose order is a k-bit prime
p, a basepoint P in the subgroup, and a secret key x mod p; the public key is
Q = zP. Let P denote the elliptic curve discrete logarithm problem (ECDLP),
that is, the problem of recovering the secret key = from the public information.
Let P,, denote the problem whose input is an m-tuple of ECDLP inputs with
distinct orders p of the subgroups and whose output is any one of the m dis-
crete logarithms. Once again, it seems intuitively clear that P,, is as hard as
P, although it is very unlikely that a tight reduction from P to P,, could be
found.
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In contrast, suppose that everyone uses the same elliptic curve group, and only
the private/public key pairs (z, Q) differ. In that case ECC provably enjoys the
property of tight equivalence of existential and universal private key recovery.
The reason is that the ECDLP on a fixed group is “self-reducible.” That means
that, given an instance we want to solve, we can easily create an m-tuple of
distinct random instances such that the solution to any one of them gives us
the solution to the problem we wanted to solve. Namely, given an input @, we
randomly choose m distinct integers y; modulo p and set Q; = 1;Q. A P,,-oracle
will solve one of the ECDLP instances with input @);. Once we know its discrete
log x;, we immediately find = = yi_la:i mod p. This shows that for the ECDLP
on a fixed curve the universal private key recovery problem P reduces (tightly)
to the existential private key recovery problem P,,.

Thus, if we want a cryptosystem with the provable security property of tight
equivalence of existential and universal private key recovery, then we should not
only choose ECC in preference to RSA, but also insist that all users work with
the same elliptic curve group.

Needless to say, we are not suggesting that this would be a good reason
to choose one type of cryptography over another. On the contrary, what this
example shows is that it is sometimes foolish to use the existence or absence of
a tight reductionist security argument as a guide to determine which version of
a cryptosystem is preferable.

Remark 3. We should also recall the problematic history of attempts to con-
struct cryptosystems whose security is based on a problem for which the average
cases and the hardest cases are provably equivalent This was finally done by
Ajtai and Dwork [2] in 1997. However, the following year Nguyen and Stern [30]
found an attack that recovers the secret key in the Ajtai-Dwork system unless
parameters are chosen that are too large to be practical (see also [31]).

6 Pseudorandom Bit Generators

A pseudorandom bit generator G is a function — actually, a family of functions
parameterized by n and M > n — that takes as input a random sequence of
n bits (called the “seed”) and outputs a sequence of M bits that appear to
be random. More precisely, G is said to be asymptotically secure in the sense
of indistinguishability if there is no polynomial time statistical test that can
distinguish (by a non-negligible margin) between its output and random output.
An alternative and at first glance weaker notion of security is that of the “next
bit” test: that there is no value of j for which there exists a polynomial time
algorithm that, given the first j — 1 bits, can predict the j-th bit with greater
than é + € chance of success (where ¢ is non-negligible as a function of n). A
theorem of Yao (see [20], pp. 170-171) shows that these two notions of security

10 Discrete-log-based systems do not have this property because the underlying problem
is self-reducible only after the group has been fixed; there is clearly no way to reduce
one instance to another when the groups have different orders.



Another Look at “Provable Security”. II 161

are equivalent. However, that theorem is non-tight in the sense that e-tolerance
for the next bit test corresponds only to (Me)-tolerance for indistinguishability.

If one wants to analyze the security of a pseudorandom bit generator more
concretely, one has to use a more precise definition than the asymptotic one.
Thus, for given values of n and M, G is said to be (T, ¢€)-secure in the sense
of indistinguishability if there is no algorithm (statistical test) with running
time bounded by T such that the probability of a “yes” answer in response to
the output of G and the probability of a “yes” answer in response to a truly
random sequence of M bits differ in absolute value by at least €. The relation
between indistinguishability and the next bit test is that we have to know that
our generator is (T, e/M)-secure in the next bit sense in order to conclude that
it is (T, €)-secure in the sense of indistinguishability.

6.1 The Blum—Blum—Shub Generator

Let N be an n-bit product of two large primes that are each =3 (mod 4) (such
an N is called a “Blum integer”), and choose a (small) integer j. The Blum—
Blum-Shub (BBS) pseudorandom bit generator G takes a random = mod N and
produces M = jk bits as follows. Let xg =z, and fori =1,...k lef™]

z; = min{z? ; mod N, N — (zZ_, mod N)}.

Then the output of G consists of the j least significant bits of xz;, 1 =1,... k.

Obviously, the larger j is, the faster G generates M bits. However, the pos-
sibility of distinguishing the generated sequence from a truly random sequence
becomes greater as j grows. In [41] and [3] it was proved that j = O(loglog N)
bits can be securely extracted in each iteration, under the assumption that fac-
toring is intractable.

This asymptotic result was used to justify recommended values of j. For ex-
ample, in 1994 the Internet Engineering Task Force [2I] made the following
recommendation (in this and the following quote the modulus is denoted by n
rather than N):

Currently the generator which has the strongest public proof of strength
is called the Blum Blum Shub generator... If you use no more than
the logsy(logy(s;)) low order bits, then predicting any additional bits
from a sequence generated in this manner is provable [sic] as hard as
factoring n.

This recommendation has been repeated more recently, for example, in the book
by Young and Yung ([43], p. 68):

The Blum—Blum—Shub PRBG is also regarded as being secure when the
log,(log,(n)) least significant bits...are used (instead of just the least
significant bit). So, when n is a 768-bit composite, the 9 least significant
bits can be used in the pseudorandom bit stream.

1 The original generator described in @] has j =1 and z; = z2_; mod N.
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Let us compare this recommendation with the best security bounds that are
known. In what follows we set

L(n) ~ 2.8-10 % exp (1.9229(n 1n2)!/3(In(n In 2))2/3) :

which is the heuristic expected running time for the number field sieve to factor a
random n-bit Blum integer (here the constant 2.8-1073, which is taken from [40],
was obtained from the reported running time for factoring a 512-bit integer), and
we assume that no algorithm can factor such an integer in expected time less
than L(n).

For the j = 1 version of Blum-Blum—Shub the best concrete security result
(for large n) is due to Fischlin and Schnorr [22], who showed that the BBS
generator is (7', €)-secure in the sense of indistinguishability if

< L(n)(e/M)* _ 2n(e/M)~?log(8n(e/M)™")

1
6nlogn logn ’ (1)

where log denotes log, here and in the sequel.
For j > 1 the Fischlin—Schnorr inequality () was generalized by Sidorenko
and Schoenmakers [40], who showed that the BBS generator is (7', €)-secure if

L(n) 24 _
AR 2
~ 36n(logn)d—2 nes 2)

where § = (27 —1)~!(¢/M). For large n this is an improvement over the inequality

L(n)(e/M)3
7 < HOR Q)

which is what follows from the security proof in [3].

Returning to the parameters recommended in [21] and [43], we take n = 768
and j = 9. Suppose we further take M = 107 and € = 0.01. According to
inequality (2]), the BBS generator is secure against an adversary whose time is
bounded by —2'92. (Yes, that’s a negative sign!) In this case we get a “better”
result from inequality (B, which bounds the adversary’s time by 27264, (Yes,
that’s a negative exponent!) These less-than-reassuring security guarantees are
not improved much by changing M and e. For example, if M = 2! and ¢ = 0.5,
we get T < —2136 and T' < 2713 from (@) and (@), respectively. Thus, depending
on whether we use ([2)) or @), the adversary’s running time is bounded either by
a negative number or by 1074° clock cycles!

Nor does the recommendation in [2I] and [43] fare well for larger values of n.
In Table 1, the first column lists some values of n; the second column gives L(n)
to the nearest power of 2 (this is the bound on the adversary’s running time that
would result from a tight reduction); the third column gives the corresponding
right-hand side of inequality (2)); and the fourth column gives the right-hand side
of [@). Here we are taking j = [logn], M = 107, and € = 0.01.



Another Look at “Provable Security”. II 163

Table 1. The BBS generator: bounds on the adversary’s running time with j = [logn]|

n  L(n) Bound from (2) Bound from (3)

1024 278 _9199 9258
2048 9108 _ 9206 9—235
3072 2130 _ 9206 9—215
7680 2195 _9213 9—158
15360 226! _9220 9-99

Thus, the asymptotic result in [3[41], which seemed to guarantee that we could
securely extract j = |logn] bits in each iteration, does not seem to deliver in
practice what it promises in theory.

Suppose that we retreat from the idea of getting j = |logn] bits from each
iteration, and instead use the BBS generator to give just j = 1 bit per iteration.
Now the security guarantees given by the inequalities (Il) and (B]) are better, but
not by as much as one might hope. Table 2 gives the corresponding right-hand
sides of (1) (in the third column) and (@) (in the fourth column) for j = 1,
M =107, and € = 0.01.

Table 2. The BBS generator: bounds on the adversary’s running time with j =1

n  L(n) Bound from (1) Bound from (3)

1024 278 —27 27222
2048 2108 _280 27194
3072 2130 _280 2= 175
7680 2195 2115 2—114
15360 2261 2181 2—51

The cross-over point at which the Fischlin—Schorr inequality starts to give a
meaningful security guarantee is about n = 5000 (for which the right-hand side
of () is roughly 284). Unfortunately, it is not very efficient to have to perform a
5000-bit modular squaring for each bit of the pseudorandom sequence.

Remark 4. The recommended value j = log(log N) in [2I] and [43] was obtained
by taking the asymptotic result j = O(log(log V)) and setting the implied con-
stant C' in the big-O equal to 1. The choice C =1 is arbitrary. In many asymp-
totic results in number theory the implicit constant is much greater, so with
equal justification one might decide to take C' = 100. It is amusing to note that
if one did that with 1000-bit IV, one would get a completely insecure BBS gen-
erator. Since j = 100log(log N) = 1000, one would be using all the bits of x;.
From the output an attacker could easily determine N (by setting N1 = xo 42,
N; = ged(N;_1, i1 & 22), so that N; = N for i > i for quite small i), after
which the sequence would be deterministic for the attacker.
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6.2 The Gennaro Generator

Let p be an n-bit prime of the form 2¢ + 1 with ¢ prime, and let ¢ be an
integer such that ¢ > logn. Let g be a generating element of IF;. The Gennaro
pseudorandom bit generator G takes a random x mod p — 1 and produces M =
(n—c—1)k bits as follows (see [23]). Let « — Z be the function on n-bit integers
x = Z?;OI 52! given by & = SO+Z;L;73_C 5128 Let ¢ = x, and fori = 1,..., k let
x; = g%~ mod p. Then the output of G consists of the 2nd through (n — c)-th
bits of z;, i = 1,...,k (these are the bits that are ignored in Z;).

In comparison with the BBS generator, each iteration of the exponentiation
x; = ¢%~1 mod p takes longer than modular squaring. However, one gets many
more bits each time. For example, with the parameters n = 1024 and ¢ = 160
that are recommended in [24] each iteration gives 863 bits.

In [24], Howgrave-Graham, Dyer, and Gennaro compare the Gennaro gen-
erator (with n = 1024 and ¢ = 160) with a SHA-1 based pseudorandom bit
generator (namely, the ANSI X9.17 generator) that lacks a proof of security:

...SHA-1 based pseudorandom number generation is still considerably
faster than the one based on discrete logarithms. However, the difference,
a factor of less than 4 on this hardware, may be considered not too high
a price to pay by some who wish to have a “provably secure,” rather
than a “seemingly secure” (i.e., one that has withstood cryptographic
attack thus far) system for pseudorandom number generation.

The proof of security for the Gennaro generator is given in §4 of [23]. In-
terestingly, Gennaro uses the next bit test rather than the indistinguishability
criterion to derive his results. However, it is the latter criterion rather than the
next bit test that is the widely accepted notion of security of a pseudorandom
bit generator. As mentioned above, to pass from the next bit test to indistin-
guishability, one must replace € by €/M in the inequalities. One finds [39] that
Gennaro’s proof then gives the following inequality for the adversary’s time:

oo L=

~ 16¢(lnc)(M/e)?” )

For n = 1024, ¢ = 160, M = 107, and ¢ = 0.01, the right-hand side of (@) is 18.
Thus, the security guarantees that come with the Gennaro generator are not a
whole lot more reassuring than the ones in §6.11

We conclude this section by repeating the comment we made in §5.5 of [27]:

Unfortunately, this type of analysis [incorporating the measure of non-
tightness into recommendations for parameter sizes| is generally missing
from papers that argue for a new protocol on the basis of a “proof”
of its security. Typically, authors of such papers trumpet the advantage
that their protocol has over competing ones that lack a proof of security
(or that have a proof of security only in the random oracle model),
then give a non-tight reductionist argument, and at the end give key-
length recommendations that would make sense if their proof had been
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tight. They fail to inform the potential users of their protocol of the true
security level that is guaranteed by the “proof” if, say, a 1024-bit prime
is used. It seems to us that cryptographers should be consistent. If one
really believes that reductionist security arguments are very important,
then one should give recommendations for parameter sizes based on an
honest analysis of the security argument, even if it means admitting that
efficiency must be sacrificed.

7 Short Signatures

In the early days of provable security work, researchers were content to give
asymptotic results with polynomial-time reductions. In recent years, they have
increasingly recognized the importance of detailed analyses of their reductions
that allow them to state their results in terms of specified bounds, probabilities,
and running times.

But regrettably, they often fail to follow through with interpretations in prac-
tical terms of the formulas and bounds in their lemmas and theorems. As a
result, even the best researchers sometimes publish results that, when analyzed
in a concrete manner, turn out to be meaningless in practice. In this section we
give an example of this.

First we recall that when analyzing the security of a signature scheme against
chosen-message attack in the random oracle model, one always has two different
types of oracle queries — signature queries and hash function queries — each
with a corresponding bound on the number of queries that an attacker can
make[ In practice, since signature queries require a response from the target
of the attack, to some extent they can be limited. So it is reasonable to suppose
that the bound g5 is of the order of a million or a billion. In contrast, a query to
the hash oracle corresponds in practice to simply evaluating a publicly available
function. There is no justification for supposing that an attacker’s hash queries
will be limited in number by anything other than her total running time. Thus,
to be safe one should think of ¢ as being 2%°, or at the very least 2°°.

We now give an overview of three signature schemes proposed by Boneh-Lynn-
Shacham [I2] and Boneh-Boyen [II]. All three use bilinear pairings to obtain
short signatures whose security against chosen-message attack is supported by
reductionist arguments. Let k denote the security parameter; in practice, usually
k ~ 80. For efficient implementation it is generally assumed that the group order
q is approximately 22%, which is large enough to prevent squareroot attacks on
the discrete log problem.

In the Boneh-Lynn-Shacham (BLS) signature scheme the signatures then have
length only about 2k. In [I2] this scheme is shown to be secure against chosen-
message attack in the random oracle model if the Computational Diffie-Hellman
problem is hard.

12 We shall continue to use the notation g and ¢ for these bounds, even though we
are also using ¢ to denote the prime group order. We apologize to the reader for our
over-use of the letter q.
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In [I1] Boneh and Boyen propose two alternatives to the BLS scheme. The
first one (referred to below as the “BB signature scheme”) has roughly twice
the signature length of BLS, namely, 4k, but it can be proven secure against
chosen-message attack without using the random oracle model, assuming that
the so-called Strong Diffie-Hellman problem (SDH) is intractable. The second
signature scheme proposed in the paper (the “BB hash-signature scheme”) is
a variant of the first one in which the message must be hashed. Its proof of
security uses the random oracle assumption. Like the BLS scheme, the BB hash-
signature scheme has signature length roughly 2k rather than 4k; moreover, it
has the advantage over BLS that verification is roughly twice as fast.

The proofs in [T1] are clear and readable, in part because the authors introduce
a simplified version of the BB scheme (the “basic” BB scheme) in order to
formulate an auxiliary lemma (Lemma 1) that is used to prove the security of
both the full BB scheme (without random oracles) and the BB hash-signature
scheme (with random oracles). What concerns us is the second of these results
(Theorem 2).

We now describe our reason for doubting the value of that result. We shall
give Lemma 1 and Theorem 2 of [11] in a slightly simplified form where we omit
mention of the probabilities € and €', which are not relevant to our discussion.
The underlying hard problem SDH for both BB schemes is parameterized by an
integer that we shall denote ¢..

Lemma 1. Suppose that ¢.-SDH cannot be solved in time less than ¢'. Then the
basic signature scheme is secure against a weak chosen-message attack by an
existential forger whose signature queries are bounded by ¢7 and whose running
time is bounded by t”, provided that

¢/ <q, and "<t —0(q’T),
where T is the maximum time for a group exponentiation.

Theorem 2. Suppose that the basic signature scheme referred to in Lemma 1 is
existentially unforgeable under a weak chosen-message attack with bounds g7
and t”. Then the corresponding hash-signature scheme is secure in the random
oracle model against an adaptive chosen-message attack by an existential forger
whose signature queries are bounded by ¢, whose hash queries are bounded by
qn, and whose running time is bounded by ¢, provided that

gs+aqn<q/ and  t<t"—o(t").

Casual readers are likely to view this theorem as a fairly precise and definitive
security guarantee, especially since the authors comment: “Note that the secu-
rity reduction in Theorem 2 is tight... Proofs of signature schemes in the random
oracle model are often far less tight.” Readers are not likely to go to the trouble
of comparing the statement of the theorem with that of Lemma 1, particularly
since in [IT] several pages of text separate the lemma from the theorem. But such
a comparison must be made if we want to avoid ending up in the embarrassing
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situation of the previous section (see Tables 1 and 2), where the adversary’s
running time was bounded by a negative number.

If we put the two statements side by side and compare them, we see that in
order for the bound on the adversary’s running time to be a positive number it
is necessary that

q <t' =~ 2%,
where k is the security parameter. In practice, this means that we need g, <
240 [1§ Thus, there is no security guarantee at all for the hash-signature scheme
in Theorem 2 unless one assumes that the adversary is severely limited in the
number of hash values she can obtain.

The conclusion of all this is not, of course, that the signature scheme in Theo-
rem 2 of [11] is necessarily insecure, but rather that the provable security result
for it has no meaning if parameters are chosen for efficient implementation.

8 The Paillier—Vergnaud Results for Schnorr Signatures

In [32] Paillier and Vergnaud prove that it is unlikely that a reduction — more
precisely, an “algebraic” reduction — can be found from the Discrete Logarithm
Problem (DLP) to forging Schnorr signatures. After describing this result and
its proof, we compare it with various positive results that suggest equivalence
between forgery of Schnorr-type signatures and the DLP.

8.1 Schnorr Signatures

We first recall the Schnorr signature scheme [35].

Schnorr key generation. Let ¢ be a large prime, and let p be a prime such that
p =1 (mod q). Let g be a generator of the cyclic subgroup G of order ¢ in ).
Let H be a hash function that takes values in the interval [1, ¢ — 1]. Each user Alice
constructs her keys by selecting a random integer z in the interval [1,¢q — 1] and
computing y = g* mod p. Alice’s public key is y; her private key is z.

Schnorr signature generation. To sign a message m, Alice must do the
following:

1. Select a random integer k in the interval [1,q — 1.
2. Compute r = g* mod p, and set h = H(m, ).
3. Set s = k 4+ hx mod q.

The signature for the message is the pair of integers (h, s).

Schnorr signature verification. To verify Alice’s signature (h, s) on a mes-
sage m, Bob must do the following:

1. Obtain an authenticated copy of Alice’s public key y.
2. Verify that h and s are integers in the interval [0, ¢ — 1].

13 If we had a 160-bit group order and took gn = 2°°, then Theorem 2 and Lemma 1
would give us the bound t < —2'% for the adversary’s running time.
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3. Compute u = ¢°y~" mod p and v = H(m, u).

4. Accept the signature if and only if v = h.

8.2 Paillier—Vergnaud

Before giving the Paillier—Vergnaud result, we need some preliminaries. First,
suppose that we have a group G generated by g. By the “discrete log” of y € G
we mean a solution x to the equation ¢* = y. In [32] the “one-more DLP”
problem, denoted n-DLP, is defined as follows.

n-DLP. Given rg,71,...,m, € G and a discrete log oracle DL(-) that can be
called upon n times, find the discrete logs of all n + 1 elements r;.

Second, by an “algebraic” reduction R from the DLP to forgery, Paillier and
Vergnaud mean a reduction that is able to perform group operations but is not
able to use special features of the way that group elements are represented. In
addition, they suppose that the choices made while carrying out R are accessible
to whomever is running the reduction algorithm (in the proof below this is the
n-DLP solver). With these definitions, they prove the following result.

Theorem. Suppose that G is a group of order ¢ generated by g. Suppose that
R is an algebraic reduction from the DLP to universal forgery with a key-only
attack that makes n calls to the forger. Then n-DLP is easy.

Proof. Let rg,r1,...,7, € G be an instance of n-DLP. We are required to find all
n+ 1 discrete logs, and we can call upon the oracle DL(-) n times. The reduction
R will find the discrete logarithm of any element if it is given a forger that will
break n different instances (chosen by R) of the Schnorr signature scheme. We
ask R to find the discrete log of rg. Then n times the reduction algorithm
produces a Schnorr public key y; and a message m;. Each time we simulate the
forger by choosing r = r;, computing the hash value h; = H(m;,r;), and then
setting s; equal to the discrete log of riyg”, which we determine from the oracle:

s; = DL(riy").

We send (h;, s;), which is a valid signature for m; with public key y;, to R.
Finally, R outputs the discrete log xy of rg.

In order to compute the public key y;, R must have performed group opera-
tions starting with the only two group elements that it was given, namely, g and
ro. Thus, for some integer values «; and 3; that are accessible to us, we have
Yi = g"‘irgi. Once we learn xg (which is the output of R), we can compute

x; = 8; — hi(oy + xof;) mod g,

which is the discrete logarithm of r;, « = 1,...,n. We now know the discrete
logs of all the n + 1 values g, ..., r,. This completes the proof.

Paillier and Vergnaud proved similar results for other signature schemes based
on the DLP, such as DSA and ECDSA. In the latter cases they had to modify
the n-DLP slightly: the discrete log oracle is able to give the queried discrete
logs to different bases g;.
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Intuitively, the “one-more DLP” problem seems to be equivalent to the DLP,
even though there is an obvious reduction in just one direction. Thus, the
Paillier—Vergnaud results can be paraphrased as follows: A reduction from the
DLP to forgery is unlikely unless the DLP is easy. In this sense the above the-
orem has the same flavor as the result of Boneh and Venkatesan [13] discussed
in § As in that case, one possible interpretation of Paillier—Vergnaud is that
there might be a security weakness in Schnorr-type signatures. Indeed, that in-
terpretation is suggested by the title “Discrete-log-based signatures may not be
equivalent to discrete log” and by the claim in the Introduction that “our work
disproves that Schnorr, ElGamal, DSA, GQ, etc. are maximally secure.”[

On the other hand, as in §2] an alternative explanation is that their work gives
a further illustration of the limitations of reduction arguments. It is instructive
to compare the negative result of Paillier—Vergnaud concerning the existence
of reductions with the following two positive reductionist security results for
Schnorr-type signature schemes.

8.3 Random Oracle Reductions

Reductionist security claim. In the Schnorr signature scheme, if the hash function
is modeled by a random oracle, then the DLP reduces to universal forgery.

Argument. Suppose that the adversary can forge a signature for m. After it gets
h = H(m,r), suppose that it is suddenly given a second hash function H'. Since
a hash function has no special properties that the forger can take advantage of,
whatever method it used will work equally well with H replaced by H’. In other
words, we are using the random oracle model for the hash function. So the forger
uses h' = H'(m,r) as well as h = H(m,r) and produces two valid signatures
(h,s) and (K, ") for m, with the same r but with A’ # h. Note that the value of
k is the same in both cases, since r is the same. By subtracting the two values
s=k+axhand ¢ =k + zh' (mod ¢) and then dividing by A’ — h, one can use
the forger’s output to immediately find the discrete log :E

The above argument is imprecise. Strictly speaking, we should allow for the
possibility that a forger gets H(m,r) for several different values of r and signs
only one of them. In that case we guess which value will be signed, and run the
forger program several times with random guesses until our guess is correct. We
described a rigorous argument (for a stronger version of the above claim) in §5
of [27], and full details can be found in [3334].

Note that the need to run the forger many times leads to a non-tight reduc-
tion. In [34] it is shown that it suffices to call on the forger approximately g
times, where ¢y, is a bound on the number of hash function queries. In [32] Pail-
lier and Vergnaud prove that, roughly speaking, an algebraic reduction in the
random oracle model cannot be tighter than ,/g,. Much as Coron did in the case

4 Paillier and Vergnaud do acknowledge, however, that their work leads to “no actual
attack or weakness of either of these signature schemes.”
15 Note that one does not need to know k.
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of RSA signatures, Paillier and Vergnaud establish a lower bound on tightness
of the reduction.

What do we make of the circumstance that, apparently, no tight reduction
from the DLP to forgery is possible in the random oracle model, and no reduction
at all is likely in a standard model? As usual, several interpretations are possible.
Perhaps this shows that reductions in the random oracle model are dangerous,
because they lead to security results that cannot be achieved in a standard
model. On the other hand, perhaps we can conclude that the random oracle
model should be used, because it can often come closer to achieving what our
intuition suggests should be possible. And what about the non-tightness? Should
we ignore it, or should we adjust our recommendations for key sizes so that we
have, say, 80 bits of security after taking into account the non-tightness factor?

8.4 Brown’s Result for ECDSA

Finally, we discuss another positive result that concerns ECDSA. We shall state
without proof an informal version of a theorem of D. Brown [I4/T5].

Theorem. Suppose that the elliptic curve is modeled by a generic group. Then
the problem of finding a collision for the hash function reduces to forgery of
ECDSA signatures.

Brown’s theorem falls outside the framework of the results in [32]. It is a reduc-
tion not from the DLP to forgery, but rather from collision finding to forgery.
And it is a tight reduction. By making the generic group assumption, one is
essentially assuming that the DLP is hard (see [36]). If the hash function is
collision-resistant, then the assumed hardness of the DLP (more precisely, the
generic group assumption) implies hardness of forgery. However, in [14] there is
no reduction from the DLP to forgery.

Both Brown and Paillier—Vergnaud make similar assumptions about the group.
The latter authors implicitly assume that n-DLP is hard, and they assume that a
reduction uses the group in a “generic way,” that is, computes group operations
without exploiting any special features of the encodings of group elements. Simi-
larly, Brown assumes that the elliptic curve group is for all practical purposes like
a generic group, and, in particular, the DLP is hard.

But their conclusions are opposite one another. Paillier and Vergnaud prove
that no reduction is possible in the standard model, and no tight reduction
is possible in the random oracle model. Brown gives a tight reduction — of a
different sort than the ones considered in [32] — which proves security of ECDSA
subject to his assumptions.

So is forgery of Schnorr-type signatures equivalent to the DLP? The best an-
swer we can give is to quote a famous statement by a recent American president:
it all depends on what the definition of “is” is[19

16 The context was an explanation of his earlier statement that “there is no sexual rela-
tionship with Ms. Lewinsky.” A statement to the effect that “there is no relationship
of equivalence between the DLP and forgery of discrete-log-based signatures” is, in
our judgment, equally implausible.
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9 Conclusions

In his 1998 survey article “Why chosen ciphertext security matters” [37], Shoup
explained the rationale for attaching great importance to reductionist security
arguments:

This is the preferred approach of modern, mathematical cryptography.
Here, one shows with mathematical rigor that any attacker that can
break the cryptosystem can be transformed into an efficient program to
solve the underlying well-studied problem (e.g., factoring large numbers)
that is widely believed to be very hard. Turning this logic around: if
the “hardness assumption” is correct as presumed, the cryptosystem is
secure. This approach is about the best we can do. If we can prove
security in this way, then we essentially rule out all possible shortcuts,
even ones we have not yet even imagined. The only way to attack the
cryptosystem is a full-frontal attack on the underlying hard problem.
Period. (p. 15; emphasis in original)

Later in [37] Shoup concluded: “Practical cryptosystems that are provably
secure are available, and there is very little excuse for not using them.” One of
the two systems whose use he advocated because they had proofs of security was
RSA-OAEP [7].

Unfortunately, history has not been kind to the bold opinion quoted above
about the reliability of provable security results. In 2001, Shoup himself [38]
found a flaw in the purported proof of security of general OAEP by Bellare and
Rogaway. The same year, Manger [29] mounted a successful chosen-ciphertext
attack on RSA-OAEP. Interestingly, it was not the flaw in the Bellare-Rogaway
proof (which was later patched for RSA-OAEP) that made Manger’s attack
possible. Rather, Manger found a shortcut that was “not yet even imagined” in
1998, when Shoup wrote his survey.

It is often difficult to determine what meaning, if any, a reductionist security
argument has for practical cryptography. In recent years, researchers have be-
come more aware of the importance of concrete analysis of their reductions. But
while they often take great pains to prove precise inequalities, they rarely make
any effort to explain what their mathematically precise security results actually
mean in practice.

For example, in [I] the authors construct a certain type of password-based key
exchange system and give proofs of security in the random oracle model based on
hardness of the computational Diffie-Hellman (CDH) problem. Here is the (slightly
edited) text of their basic result (Corollary 1 of Theorem 1, pp. 201-202 of [1]]) that
establishes the relation between the “advantage” of an adversary in breaking their
SPAKE1 protocol and the advantage of an adversary in solving the CDH:

Corollary 1. Let G be a represent group of order p, and let D be a
uniformly distributed dictionary of size |D|. Let SPAKEL be the above
password-based encrypted key exchange protocol associated with these
primitives. Then for any numbers ¢, gstart, qs’inw qfénd, QH s Qoxes
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ake A B
AdVSPAKE,D(tv Gstart; Gsend s Ysends 94H 5 Gexe)

A B 14 15,4
qsend+qsend 6 2 CDH 2 qrr

<2. + AdvSPH() 4
( D) \/ pp e T 1y,

+2 . <(Qexe + C]send)2
2p

where gg represents the number of queries to the H oracle; gexe repre-
sents the number of queries to the Execute oracle; gstart and qs“énd repre-
sent the number of queries to the Send oracle with respect to the initiator
A; B | represents the number of queries to the Send oracle with respect
to the responder B; gsend = ¢lbya+0ana T dstart; ' = 4+0((gstars +¢m)7);
and 7 is the time to compute one exponentiation in G.

+ qHAdVgDH(t + 2@exeT + 37’)) ,

The paper [I] includes a proof of this bewildering and rather intimidating in-
equality. But the paper gives no indication of what meaning, if any, it would
have in practice. The reader who might want to use the protocol and would like
to find parameters that satisfy security guarantees and at the same time allow
a reasonably efficient implementation is left to fend for herself.

In the provable security literature the hapless reader is increasingly likely to
encounter complicated inequalities involving more than half a dozen variables.
(For other examples, see Theorem 5 in [28] and Theorems 2 and 3 in [4].) The
practical significance of these inequalities is almost never explained. Indeed, one
has to wonder what the purpose is of publishing them in such an elaborate,
undigested form, with no interpretation given. Whatever the authors’ intent
might have been, there can be little doubt that the effect is not to enlighten
their readers, but only to mesmerize them.

* ok ok

Embarking on a study of the field of “provable security,” before long one
begins to feel that one has entered a realm that could only have been imagined
by Lewis Carroll, and that the Alice of cryptographic fame has merged with the
heroine of Carroll’s books:

Alice felt dreadfully puzzled. The Hatter’s remark seemed to her to have
no sort of meaning in it, and yet it was certainly English. (Alice’s Ad-
ventures in Wonderland and Through the Looking-Glass, London: Oxford
Univ. Press, 1971, p. 62.)

The Dormouse proclaims that his random bit generator is provably secure against
an adversary whose computational power is bounded by a negative number. The
Mad Hatter responds that he has a generator that is provably secure against an
adversary whose computational resources are bounded by 10~4° clock cycles. The
White Knight is heralded for blazing new trails, but upon further examination
one notices that he’s riding backwards. The Program Committee is made up of
Red Queens screaming “Off with their heads!” whenever authors submit a paper
with no provable security theorem.
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Lewis Carroll’s Alice wakes up at the end of the book and realizes that it has

all been just a dream. For the cryptographic Alice, however, the return to the
real world might not be so easy.
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