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Preface

Indocrypt 2006, the 7th International Conference on Cryptology in India, took
place December 11-13, 2006 in Kolkata, India. As in previous years, it was orga-
nized by the Cryptology Research Society of India, and the General Chair Bimal
Roy did an excellent job in keeping all strands together by ensuring an excel-
lent collaboration between the local organizers and the Program Committee and
making the conference memorable for the talks and the social program.

Two invited lectures were presented at Indocrypt 2006: James L. Massey
spoke about Whither Cryptography? and Alfred J. Menezes presented Another
Look at “Provable Security”. II, which is a joint work with Neal Koblitz.

The submission deadline for Indocrypt was on August 18 and we received 186
submissions. To give the authors maximal time to modify their papers and at the
same time guarantee the maximal review time for the Program Committee, we
had separate submission and revision deadlines. After the submission deadline
it was no longer possible to submit a new paper and so the PC members could
enter the selection phase during which they only got to see the abstracts of the
papers. Out of the 186 papers originally submitted, 20 were withdrawn before the
revision deadline on August 21 and 81 were revised at least once. Our experience
with this approach of separating the deadlines was entirely positive. We would
also like to take this opportunity to thank the developers of iChair, Thomas
Baignéres and Matthieu Finiasz at EPFL, for making iChair available and for
answering several questions which allowed us to extend the functionality of iChair
to handle separate deadlines. The software was very useful for the submission
process, the collection of reviews, and the discussion.

The Program Committee did a remarkable job of finishing refereeing almost
all papers by September 8, even though 166 papers marked a new record in
submissions. In the following discussion phase many more reports were added and
the Program Committee worked intensively to gain confidence in its decisions.
The 39 Program Committee members produced 422 comments during the 2
weeks of discussion. It is our pleasure to thank all Program Committee members
for their very timely and concentrated effort that allowed us to notify the authors
on time on September 22 and even send out the comments the same day.

Finally, we would like to thank all authors for submitting interesting new
research papers to Indocrypt, providing us with an embarrassment of riches out
of which we could only accept 29 contributed papers, even though many more
would have been worth publishing. It is a pleasure to see Indocrypt being a
well-accepted cryptography conference where fresh results are submitted.

December 2006 Rana Barua and Tanja Lange
Program Chairs, Indocrypt 2006
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Whither Cryptography?

James L. Massey

Prof.-em. ETH-Zurich,
Adj. Prof.: Lund Univ., Sweden, and

Tech. Univ. of Denmark
jamesmassey@compuserve.com

Abstract. Diffie and Hellman’s famous 1976 paper, ”New Directions
in Cryptography,” lived up to its title in providing the directions that
cryptography has followed in the past thirty years. Where will, or should,
cryptography go next? This talk will examine this question and consider
many possible answers including: more of the same, number-theoretic
algorithms, computational-complexity approaches, quantum cryptogra-
phy, circuit-complexity methods, and new computational models. Opin-
ions will be offered on what is most likely to happen and what could be
most fruitful. These opinions rest not on any special competence by the
speaker but rather on his experience as a dabbler in, and spectator of,
cryptography for more than forty years.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Non-randomness in eSTREAM Candidates

Salsa20 and TSC-4

Simon Fischer1, Willi Meier1, Côme Berbain2, Jean-François Biasse2,
and M.J.B. Robshaw2

1 FHNW, 5210 Windisch, Switzerland
{simon.fischer, willi.meier}@fhnw.ch

2 FTRD, 38–40 rue du Général Leclerc, 92794 Issy les Moulineaux, France
{come.berbain, jeanfrancois.biasse, matt.robshaw}@orange-ft.com

Abstract. Stream cipher initialisation should ensure that the initial
state or keystream is not detectably related to the key and initialisa-
tion vector. In this paper we analyse the key/IV setup of the eSTREAM
Phase 2 candidates Salsa20 and TSC-4. In the case of Salsa20 we demon-
strate a key recovery attack on six rounds and observe non-randomness
after seven. For TSC-4, non-randomness over the full eight-round initial-
isation phase is detected, but would also persist for more rounds.

Keywords: Stream Cipher, eSTREAM, Salsa20, TSC-4, Chosen IV
Attack.

1 Introduction

Many synchronous stream ciphers use two inputs for keystream generation; a
secret key K and a non-secret initialisation vector IV . The IV allows different
keystreams to be derived from a single secret key and facilitates resynchroniza-
tion. In the general model of a synchronous stream cipher there are three func-
tions. During initialisation a function F maps the input pair (K, IV ) to a secret
initial state X . The state of the cipher then evolves at time t under the action
of a function f that updates the state X according to Xt+1 = f(Xt). Keystream
is generated using an output function g to give a block of keystream zt = g(Xt).
While TSC-4 follows this model, Salsa20 has no state update function f and g
involves reading out the state X . Instead, we view the IV to Salsa20 as being the
combination of a 64-bit nonce and a 64-bit counter and keystream is generated
by repeatedly computing F(K, IV ) for an incremented counter.

In the analysis of keystream generators (i.e. in the analysis of f and g) it is
typical to assume that the initial state X is random. Hence for a stream cipher
we require that F has suitable randomness properties, and in particular, that it
has good diffusion with regards to both IV and K. (Clearly this applies equally
to the case when the output of F is the keystream.) Indeed, if diffusion of the IV
is not complete then there may well be statistical or algebraic dependences in the
keystreams for different IV’s, as chosen-IV attacks on numerous stream ciphers
demonstrate (e.g., [6, 9, 8]). Good mixing of the secret key is similarly required
and there should not be any identifiable subsets of keys that have a traceable

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 2–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Non-randomness in eSTREAM Candidates Salsa20 and TSC-4 3

influence on the initial state (or on the generated keystream), see [7]. Since,
in many cases, F is constructed from the repeated application of a relatively
simple function over r rounds, determining the required number of rounds r can
be difficult. For a well-designed scheme, we would expect the security of the
mechanism to increase with r, though there is a clear cost in reduced efficiency.

In this paper we investigate the initialisation of Salsa20 and TSC-4. We con-
sider a set of well-chosen inputs (K, IV ) and compute the outputs F(K, IV ).
Under an appropriate measure we aim to detect non-random behaviour in the
output. Throughout we assume that the IV’s can be chosen and that most, or
all, of the key bits are unknown. The paper is organized as follows. The specifi-
cation of Salsa20 is recalled in Section 2 with an analysis up to seven rounds in
Section 3. TSC-4 is described in Section 4 with analysis in Section 5. We draw
our conclusions in Section 6. For notation we use + for addition modulo 232, ⊕
for bitwise XOR, ∧ for bitwise AND, ≪ for bitwise left-rotation, and� for bitwise
left-shift. The most (least) significant bit will be denoted msb (lsb).

2 Description of Salsa20

A full description of Salsa20 can be found in [1]. As mentioned in the intro-
duction, we view the initialisation vector as IV = (v0, v1, i0, i1) where (v0, v1)
denotes the nonce and (i0, i1) the counter. Throughout we consider the 256-bit
key version of Salsa20 and we denote the key by K = (k0, . . . , k7) and four con-
stants by c0, . . ., c3 (see [1]). We denote the cipher state by X = (x0, . . . , x15)
where each xi is a 32-bit word.

X =

⎛⎜⎜⎝
x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

⎞⎟⎟⎠ where X0 =

⎛⎜⎜⎝
c0 k0 k1 k2

k3 c1 v0 v1

i0 i1 c2 k4

k5 k6 k7 c3

⎞⎟⎟⎠ .

At each application of the initialisation process F(K, IV ) 512 bits of keystream
are generated by using the entirety of the final state as the keystream. The
computation F is built around the quarterround function illustrated in Fig. 1
with quarterround(y0, y1, y2, y3) = (z0, z1, z2, z3).

The operation columnround function updates all 16 words of the state X and
can be described as follows. Each column i, 0 ≤ i ≤ 3, is rotated upwards
by i array positions. Each column is then used independently as input to the
quarterround function. The resulting set of four columns, 0 ≤ i ≤ 3, are then
rotated down by i array positions. The operation rowround can be viewed as being
identical to the columnround operation except that the state array is transposed
both before and after using the columnround operation. Salsa20 updates the
internal state by using columnround and rowround one after the other. After r
rounds, the state is denoted Xr and the keystream given by z = X0 + Xr using
wordwise addition modulo 232. The original version of Salsa20 has r = 20, i.e. 10
rounds of columnround interleaved with 10 rounds of rowround, though shorter
versions with r = 8 and r = 12 have been proposed [2].
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Fig. 1. The quarterround function of Salsa20

3 Analysis of Salsa20

In this section wewill demonstrate two related instances of non-randombehaviour.
These are detectable over six and seven rounds of Salsa20 respectively. Depend-
ing on the attack model this also permits key recovery. To start, we illustrate our
approach by building on the earlier work of Crowley [5] and we describe a frame-
work that allows a more sophisticated analysis to take place. This is achieved in
two steps. First, we identify interesting differential effects in a simplified version
of Salsa20. Second, we identify key and IV choices that allow us to ensure that the
behaviour of the genuineSalsa20 is reasonablywell-approximatedby the simplified
version. This technique allows us to make a systematic research of possible input
differences ID’s and consequently to find ID’s with optimal properties.

As mentioned, our observations are differential in nature. We will work with
two copies of the state where X0 is filled with the input (K, IV ) and a second
state Y 0 is initialized according to Y 0 = X0 ⊕ Δ0 where Δ0 = (Δ0

0, . . . , Δ
0
15)

is the ID. Note that the specifications of Salsa20 require that any ID must be
zero in the diagonal words Δ0

0, Δ0
5, Δ0

10, and Δ0
15. After r rounds of Salsa20 the

output difference OD is given1 by Δr = Xr ⊕ Y r.

3.1 A Linearised Version of Salsa20

In previous work, Crowley [5] identified a truncated differential over three rounds
of Salsa20. Consider setting Δ0

i = 0 for i �= 9 and Δ0
9 = 0x80000000. Then the

following truncated differential for the first three rounds holds with a theoretical
probability 2−12. In practice a variety of effects conspire to give an average
probability of 2−9.⎛⎜⎜⎝

0 0 0 0
0 0 0 0
0 0x80000000 0 0
0 0 0 0

⎞⎟⎟⎠
col
row
col−→

⎛⎜⎜⎝
? ? ? 0x02002802
? ? ? ?
? ? ? ?
? ? ? ?

⎞⎟⎟⎠
1 Note that due to the feedforward in Salsa20 that uses addition modulo 232 this is

not necessarily the same as the difference in the corresponding keystream.
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Given the behaviour exhibited in x3
3 ⊕ y3

3 it is tempting to look for some impact
in the next round. Yet, it is not clear how to proceed in a methodical manner.

To establish an appropriate framework for analysis, we introduce an alter-
native algorithm LinSalsa20. This is identical to Salsa20 except that all integer
additions have been replaced by exclusive-or. The corresponding round functions
are denoted LinColumnround and LinRowround. Assume that two initial states X0

and Y 0 = X0⊕Δ0 are iterated by LinSalsa20. Then since LinSalsa20 is completely
linear in GF(2), the difference Δr = Xr ⊕ Y r coincides exactly with computing
r iterations of Δ0 with LinSalsa20. This computation does not require knowledge
of the key and we refer to a differential path generated by LinSalsa20 as a linear
differential. It is straightforward to see that there are many (admissible) input
differences for which the output of LinSalsa20 is trivially non-random.

Proposition 1. Consider an input Δ0
i ∈ {0xFFFFFFFF, 0x00000000} for all

words i = 0, . . ., 15. Then, for any number of updates with LinSalsa20, one has
Δr

i ∈ {0xFFFFFFFF, 0x00000000}.

However we need to be more careful. While LinSalsa20 allows some straightfor-
ward analysis, the further the behaviour of LinSalsa20 is from the true Salsa20,
the less useful it will be. Since a differential of large Hamming weight is likely
to induce carries and hence non-linear behaviour to the genuine Salsa20, we will
need a linear differential of low Hamming weight. Such a differential is intended
to offer a reasonably good approximation to the same differential in genuine
Salsa20. We will consider a linear differential to be of low weight if any compu-
tation involving active words in the difference only uses words of low Hamming
weight (� 16). Let us consider Crowley’s differential within this linear model.

Example 1. Consider an input difference with Δ0
9 = 0x80000000 as the one

non-zero word. The weight of differences for the first four rounds is as follows.⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ col−→

⎛⎜⎜⎝
0 2 0 0
0 3 0 0
0 1 0 0
0 1 0 0

⎞⎟⎟⎠ row−→

⎛⎜⎜⎝
4 2 2 2
7 10 3 6
1 3 4 1
0 1 1 2

⎞⎟⎟⎠ col−→

⎛⎜⎜⎝
9 19 6 5
3 13 5 5
4 11 11 7
1 16 2 10

⎞⎟⎟⎠
row−→

⎛⎜⎜⎝
13 13 14 10
13 13 13 19
16 18 19 11
11 17 20 15

⎞⎟⎟⎠
The top line of this differential is as far as Crowley goes, but when using
LinSalsa20 it appears we can go one round further. Indeed, one can identify
a low-weight linear differential for word x4

12, among others. Note that x12 is a
right-to-diagonal word (with wrap) and is updated first in round four; the 16 in
x3

13 has no effect on x4
12. 	


The linear model can also be used to find longer differentials. A well-chosen
multi-bit input may cause smaller diffusion than a single-bit input; non-zero bits



6 S. Fischer et al.

can be placed in positions where they are annihilated in the update process.
To illustrate, we focus again on a single column where the weight of the input
(starting with the diagonal element) is (0, 2, 1, 1). With a fixed relative position
of the non-zero bits in this input, one can obtain an output after the first round
of the form (0, 1, 0, 0). The absolute position of the non-zero bits and the choice
of column are free parameters and naturally leads to an identified sub-class of
inputs. These all have the same properties in LinSalsa20.

Example 2. Consider an input difference with non-zero words Δ0
2 = 0x00000100,

Δ0
6 = 0x00001000, and Δ0

14 = 0x80080000.⎛⎜⎜⎝
0 0 1 0
0 0 1 0
0 0 0 0
0 0 2 0

⎞⎟⎟⎠ col−→

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎠ row−→

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
1 1 3 4

⎞⎟⎟⎠ col−→

⎛⎜⎜⎝
4 1 3 4
1 2 4 8
1 0 7 10
3 1 3 14

⎞⎟⎟⎠
row−→

⎛⎜⎜⎝
13 1 6 7
11 14 5 7
7 4 14 5
14 21 18 17

⎞⎟⎟⎠ col−→

⎛⎜⎜⎝
13 16 17 17
6 16 19 23

14 13 18 15
18 16 15 15

⎞⎟⎟⎠
One can identify a truncated low-weight linear differential for x5

9 which is an
out-of-diagonal word. Note that some words in the final array may have a lower
Hamming weight, but their generation required computations using average-
weighted words and so they are unlikely to be relevant to genuine Salsa20. 	


3.2 Differentials in True Salsa20

In Section 3.1 we identified classes of inputs (with a required ID) which gave
low-weight truncated linear differentials after four and five rounds of LinSalsa20.
For genuine (nonlinear) Salsa20, the same differentials might not behave in the
same way and a differential trail will depend on the input. Therefore to find
optimal ID’s and inputs we will need to consider which conditions allow the
non-linear differential trail to be closely approximated by the linear differential.

The only non-linear operation in Salsa20 is integer addition in the quarterround
function, denoted xa +xb. Given an ID (Δa, Δb), the nonlinear OD corresponds
to the XOR of xa + xb and (xa ⊕ Δa) + (xb ⊕ Δb). Thus, the nonlinear OD is
identical to the linear OD, if

(xa + xb)⊕ ((xa ⊕Δa) + (xb ⊕Δb)) = Δa ⊕Δb . (1)

Each non-zero bit in Δa and Δb may cause integer addition to create or annihilate
a sequence of carry bits. Hence we focus on low-weight trails to keep more control
of such events. Note that a difference in the most significant bit is always linear.

In the following sections, we will be indirectly considering Eq. 1 when placing
conditions on the inputs so that a differential in Salsa20 follows a linear differ-
ential in LinSalsa20 for some steps before diverging. Such conditions might be
on the nonce, on the counter (conditions which can be satisfied by sampling a
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keystream in the appropriate way), or on the key (thereby establishing classes
of weak keys). While many of these issues are complex, for instance, conditions
aimed at linearising the ID must not conflict with the way the counter is likely
to be incremented, some results are given in the subsequent sections.

3.3 Non-randomness in Four and Five Rounds of Salsa20

Consider the linear differential of Ex. 1 and set ID to be identical to that of [5].
By using LinSalsa20 we suspect a statistical imbalance in x4

12 ⊕ y4
12. Given a set

of N different pairs of (K, IV ), where each pair takes the same fixed ID, the
distribution of the output difference for the N pairs can be analysed. However,
we might consider a subset of the bits or even a single bit, and by examining
each bit in x4

12⊕y4
12 one finds that bit 26 is heavily unbalanced2. This imbalance

can be detected using a χ2 test (see Appendix A) where a χ2 score greater than
some threshold is good evidence of non-randomness.

The behaviour of the differential is heavily key-dependent. The presence or
absence of carries, on which Salsa20 relies, depends on the actual values of the
operands. Thus some keys will dampen, and others amplify, the evolution of a
differential. The imbalance in bit 26 is greater the closer Salsa20 is to LinSalsa20.
A close inspection of the first round of the differential reveals that the first two
additions, differentially speaking, act as XOR while the third does not. However,
depending on how i1 is incremented, we can establish conditions on the key
to ensure that it does. Thus there are keys for which the imbalance in bit 26 is
boosted. We refer to this as partially linearising the first round of the differential3

and key conditions that achieve this are presented in Appendix B.

Example 3. Take N inputs (K, IV ) where IV = (v0, v1, i0, i1). The key K and
nonce (v0, v1) are chosen at random though in the second experiment some bits
of k0 and k6 are adapted. The counter (i0, i1) starts at zero and we sample the
keystream so that the counter i0 increments from 0 to N −1. For each input, we
use values of i1 to generate an associate input with ID Δ0

9 = 0x80000000 (and
zero otherwise). Compute the OD after four rounds of Salsa20 and evaluate the
χ2 statistic on bit 26 of Δ4

12. In a χ2 test on a single bit with threshold T = 40,
the probability a uniform random source gives χ2 > 40 is around 2−32, thus the
probability of false alarm is 2−32. For 100 experiments using random keys and
nonces, the results are listed in Tab. 1. 	


Next we consider five rounds of Salsa20 and we use the differential of Ex. 2.
The non-zero bits are located in column two. Word x14 is updated first by
x1

14 = x0
14 ⊕ (x0

10 + x0
6)≪7. A second state y0

i = x0
i ⊕Δ0

i is updated in the same
way and, according to Eq. 1, the difference of this first update will follow the
linear differential if

(x0
10 + x0

6)⊕
(
(x0

10 ⊕Δ0
10) + (x0

6 ⊕Δ0
6)
)

= Δ0
10 ⊕Δ0

6 . (2)

2 In fact there are many unbalanced bits in the state of Salsa20 after four rounds.
3 A more sophisticated set of conditions can be derived to linearise the entirety of the

first round. However for clarity we restrict ourselves to the simpler case.
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Table 1. Non-randomness in four rounds of Salsa20

All Keys and Nonces Weak Key Class

N average χ2 value % values > 40 average χ2 value % values > 40

212 33 20 51 34
214 123 41 192 46
216 315 46 656 68

Notice that Δ0
10 is zero and that Δ0

6 has a single non-zero bit in position 12.
Further, x0

10 = c2 and x0
6 = v0. Bits 12 . . .9 of c2 are defined as (. . . 0110 . . .)2.

Consequently, if bits 11 . . . 9 of v0 are chosen as (. . . 000 . . .)2, then no carry is
produced from the right, and Eq. 1 is satisfied. Subsequently x2 is updated and
so provided the previous update followed the linear differential, the only non-
zero bit in the difference will be in bit 31 and the linear trial will be followed.
Updating x6 is similar while updating x11 only involves zero differences.

Thus we have identified conditions on three bits of v0, part of the nonce, so
that the first round of genuine Salsa20 with the ID of Ex. 2 follows the linear
trail. In fact, the ID of Ex. 2 turns out to be optimal, i.e. it seems to have
minimum weight after two rounds of Salsa20; bitwise rotations of ID reduce
the number of msb’s while shifting the difference to another column shifts the
input-condition to a key word instead of v0. Without input conditions on v0, the
first round would follow the linear trail with a probability of about Pr = 0.175.

Example 4. Take N inputs (K, IV ) where IV = (v0, v1, i0, i1). The key K and
nonce (v0, v1) are chosen at random though in the second experiment bits 9–11
of v0 are zero. The counter (i0, i1) starts at zero and we sample the keystream
so that the counter i0 increments from 0 to N − 1. For each input, we use
values of k1, v0, k7 to generate an associate input with ID Δ0

2 = 0x00000100,
Δ0

6 = 0x00001000, Δ0
14 = 0x80080000 (and zero otherwise). Compute the OD

after five rounds of Salsa20 and evaluate the χ2 statistic on bit 1 of Δ5
9. In a χ2

test on a single bit with threshold T = 40, the probability a uniform random
source gives χ2 > 40 is around 2−32. For 100 experiments using random keys
and nonces, the results are listed in Tab. 2. 	


Table 2. Non-randomness in five rounds of Salsa20

All Keys and Nonces Weak Nonce Class

N average χ2 value % values > 40 average χ2 value % values > 40

220 5 4 27 26
222 16 11 105 73
224 78 17 383 89

3.4 Non-randomness in Six and Seven Rounds of Salsa20

The results presented in Section 3.3 give statistical weaknesses, as measured by
the χ2 test on a single bit, over four rounds and five rounds of Salsa20. To create
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these biased distributions, we used ID’s of slightly different types. For the four
round imbalance we use a non-zero difference in the counter values while for the
five round imbalance we use non-zero differences in part of the key k1 and k7. We
will comment on this later since it has an impact on the attacks we can mount.

Both statistical anomalies can be detected two rounds later. In both cases we
intercept the required keystream and we guess the necessary key words to unwind
the last two rounds of state update. Thus, for a single guess of the relevant words
of key, the backwards computation is carried out over two rounds for N pairs of
output, where each output was generated using the chosen input difference. The
χ2 statistic of the target bit of the targetword is evaluated, and a χ2 test with some
thresholdT applied. Our analysis tells us that a correct key guess will yield a signif-
icant χ2 score. We assume that an incorrect key guess results in essentially random
candidate values for the bit we test. Thus, a significantly large χ2 value suggests
that the key guess may be correct. The remaining key words can be searched ex-
haustively and the entire key guess verified against the keystream. If the χ2 value
for a key guess is not significant we move on to a new guess. The target word and
bit as well as the key words to guess are given in Tab. 3.

Table 3. Key words to guess to partially unwind the last two rounds

Differential Word Bit # Rounds Key Words to Guess

Example 3 Δ4
12 26 Salsa20/6 k3 k4 k5 k6 k7

Example 4 Δ5
9 1 Salsa20/7 k0 k2 k3 k4 k5 k6

Clearly, the scale of the imbalance in the target bit is important to the success
of this method. The closer Salsa20 behaves to LinSalsa20 then the greater the
imbalance in the target bit, and the greater the χ2 score we expect to observe.
This helps an attacker in two ways:

1. If certain keys and IV’s give a high χ2 score, then a greater proportion of
the keys from an identified set should be susceptible to attack.

2. Higher χ2 scores permit less keystream or greater precision in an attack.

To begin to get a picture of how things might behave in practice, we have
implemented a restricted version of this style of attack. In principle we could use
the four round differential of Ex. 3 to attack six rounds of Salsa20. To keep the
experiments tractable, however, we use the same differential to attack a restricted
five-round version as a demonstration (i.e. we unwind one round only).

Example 5. We recover nine bits (bits 4 to 12) of k3 under the assumption that
k5 has been correctly guessed. Over 100 random keys and nonces and N pairs,
we give the success rate when assuming the correct key lies among the candi-
date values giving the three highest χ2 values. We repeat the experiment for the
weak key class identified in Ex. 3. For the weak key class we observe that the
same proportion of keys can be recovered when using one quarter of the text, see
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Table 4. Demonstration of a key recovery attack on five rounds of Salsa20

All Keys and Nonces Weak Key Class

N % success rate % success rate

212 20 28
214 29 41
216 44 54

Tab. 4. We recall that the weak keys only improve the differential propagation
and that our attack is also working for other keys. 	


As demonstrated in Ex. 5, at least in principle, our observations can be used in
the way we intend. In the case of Salsa20/6 we estimate the work effort for a key-
recovery attack to be around 2177 operations using 216 pairs of keystream blocks
sampled appropriately from the same keystream4. This is a crude estimate. Since
such an attack requires guessing more key bits, more text may well be required.
However, since the entirety of the target word can be recovered for any single key
guess, using a single bit to test a key will miss much of the information available.
Thus, it seems prudent to anticipate a final complexity close to these initial
estimates. Under a related-key attack Salsa20/7 might be broken in around 2217

operations using 224 pairs of keystream blocks taken from two sets of keystream.
However, the practical validity of such an attack is debatable [3], so we merely
observe that over seven of the 20 rounds in Salsa20, statistical imbalances can
be detected.

4 Description of TSC-4

The stream cipher TSC-4 is specified in [12]. It consists of two states X and
Y of 4 × 32 bits each, denoted X = (x0, x1, x2, x3)T and Y = (y0, y1, y2, y3)T .
Let [x]i denote bit i of a single 32 bit word x, then a bit-slice i of state X is
defined as ([x3]i, [x2]i, [x1]i, [x0]i). We first describe the regular update function f,
which updates the two states X and Y independently by single-cycle T-functions.
In the case of state X , a 32-bit parameter αX is computed as a function of
X . It is defined by αX = p ⊕ (p + cX) ⊕ s with p = x0 ∧ x1 ∧ x2 ∧ x3 and
s = (x0 +x1 +x2 +x3)� 1 and constant cX = 0x51291089. If [αX ]i = 1, then a
fixed S-box S is applied to bit-slice i of X , and if [αX ]i = 0, then a fixed S-box
S6 is applied to bit-slice i of x (for all i = 0, . . . , 31). The state Y is similarly
updated where parameter αY has constant cY = 0x12910895. Notice that the
least significant bit-slice is always mapped by S. The S-boxes are defined as

S = {9, 2, 11, 15, 3, 0, 14, 4, 10, 13, 12, 5, 6, 8, 7, 1}
S6 = {6, 13, 8, 0, 5, 12, 1, 11, 4, 14, 3, 10, 15, 7, 2, 9} .

4 We note in passing that we can recover the key for the 128-bit version of Salsa20/5
in 281 operations using 216 pairs of keystream blocks.
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The output function g produces a keystream byte z by combining some bytes
of both states (using integer addition, XOR, shift and rotation), see [12] for more
details.

Consider the initialisation function F of TSC-4. To start, the internal state of
256 bits is loaded with K = (k0, . . . , k9) and IV = (i0, . . . , i9) each of 10×8 bits
(a single 32-bit word is denoted as a concatenation of four 8-bit words).

X =

⎛⎜⎜⎝
x0

x1

x2

x3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
k3 k2 k1 k0

k7 k6 k5 k4

i3 i2 i1 i0
i7 i6 i5 i4

⎞⎟⎟⎠ , Y =

⎛⎜⎜⎝
y0

y1

y2

y3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
i1 i0 i9 i8
i5 i4 i3 i2
k1 k0 k9 k8

k5 k4 k3 k2

⎞⎟⎟⎠
A single round of the initialisation function (denoted as a warm-up update)
consists of a regular update and some additional operations: A byte z = g(X) is
produced, x1 and y0 are rotated to the left by eight positions, and then byte z
is XOR-ed to the 8 least significant bits of x1 and y0. The specifications of TSC-4
propose r = 8 rounds.

5 Analysis of TSC-4

In [10,11], predecessors of TSC-4 have been attacked by exploiting a bit-flip bias
for multiple applications of the state update function f. This bias still exists
for regular updates of TSC-4, but the strong filter function g prevents from an
attack. In this section, we disregard the details of the filter function and investi-
gate the statistical properties of multiple warm-up updates of TSC-4: While the
regular updates have some guaranteed properties, the warm-up updates use ad-
ditional ad hoc operations that are designed to accelerate diffusion. Notice that
our analysis is embedded in a more general context: we actually consider the
initialisation function F of TSC-4 and try to detect some non-random behaviour
in a set of outputs (i.e. in the TSC-4 initial states) that are produced by a set
of well-chosen inputs (i.e. in the IV’s).

5.1 Statistical Model of Initialisation

We investigate the statistical properties of the initialisation process. In our simple
statistical model, we assume that α (with exception of the lsb) and the feedback
z are uniformly randomly. Consider a single bit-slice i (not the least significant
one) in the state X , then our assumptions imply for each round:

1. Bit-slice i is mapped uniformly randomly by S or by S6.
2. After application of the S-box, bit 1 of bit-slice i is chosen uniformly

randomly.

With a fixed input w ∈ {0, . . . , 15}, these two steps are repeated for r rounds, so
we can analyse the distribution of the output v ∈ {0, . . . , 15}. Within this model,
the distribution can be computed exactly in 22r steps. The other cases (i.e. the
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Table 5. Average bias ε2 in the statistical model for r = 6, . . . , 12 rounds, and for
different bit-slices

lsb in X lsb in Y non-lsb in X non-lsb in Y

r = 6 7.1 × 10−3 4.2 × 10−3 7.7 × 10−5 1.8 × 10−5

r = 8 9.7 × 10−4 2.1 × 10−4 4.5 × 10−6 4.6 × 10−7

r = 10 1.3 × 10−4 7.6 × 10−6 2.1 × 10−7 9.8 × 10−9

r = 12 2.3 × 10−5 1.0 × 10−6 5.5 × 10−9 2.1 × 10−10

least-significant bit-slice and the state Y ) are treated similarly. The bias of the
distribution is measured with the Euclidean Squared Distance ε2 :=

∑
ε2

v with
εv := Pr(v)−1/16, where Pr(v) denotes the probability for output v (given some
fixed parameters). In Tab. 5, the bias ε2 is shown for different parameters. To
simplify the presentation we compute ε2 for all inputs w and show the average
values only.

As expected, the average bias is decreasing with the number of rounds r. In
the case of the least-significant bit-slice in the state X , it is reduced by a factor of
about 2.6 with each additional round. Interestingly, the position of the random
bit (step 2) has a notable influence on the distribution and diffusion is better for
state Y . And, as expected, diffusion is better for bit-slices which are not on the
least-significant position (intuitively a combination of S and S6 results in larger
diffusion than using S only).

5.2 Experimental Results

Now we attempt to detect the bias of the previous subsection in the genuine
initialisation function F(K, IV ) of TSC-4. We need N different inputs (K, IV )
where the value of a fixed bit-slice i is the same for all inputs. Each bit-slice
consists of two key bits and two IV bits. Consequently, bit-slice i is the same for
all inputs, if the key is fixed (and unknown), and if the IV bits of bit-slice i are
fixed (though the other IV bits can be varied). The N outputs can then be used
to evaluate a χ2 statistic on bit-slice i. Provided that the assumptions on the
model of the previous section are valid, bit-slice i = 0 of the state X is expected
to have maximum bias. Here is an example for r = 8 rounds.

Example 6. Take N different inputs (K, IV ) where IV = (i0, . . . , i9). The key
is fixed, IV bytes i0, i1 . . . , i7 are zero, and i8, i9 increments from 0 to N − 1.
Compute all N outputs after r = 8 rounds of F(K, IV ) and evaluate the χ2

statistic on the least-significant bit-slice in the state X of the output. In a χ2

test on 4 bits with threshold T = 80, the probability a uniform random source
gives χ2 > 80 is around 2−34. For 100 experiments using random keys, the results
are listed in Tab. 6. 	


For all three choices of N , the assigned bias ε2 = (χ2 − 15)/16N becomes about
2−9.2 (see Appendix A). This is in good agreement with the model of Section 5.1,
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Table 6. Average χ2 statistic in the experiment for r = 8 rounds and a varying number
of samples

All Keys

N average χ2 value % values > 80

210 40 3
212 119 67
214 421 100

which predicts an average bias of ε2 = 2−9.8 in this setup5. Of course, the initial
state cannot be accessed by an attacker, so the χ2 test has perhaps a certificational
character. However, the setup of Ex. 6 does not require any key bit to be known,
and the number of samples N is very small. Consequently, this non-randomness
may be a basis for future attacks that includes analysis of the filter function g.

The non-randomness is not limited to the least significant bit-slice. A notable
example is i = 8 (and with other parameters as in Ex. 6), which results in an
average value of χ2 = 45 for N = 210. This is a consequence of the specific setup
in Ex. 6 where bit-slices i = 8, 9 . . . of X after the first round are the same for
all N states and so the effective number of rounds is only r− 1 (in addition, the
biased bit 1 of bit-slice 0 is rotated into bit-slice 8).

The above experiment with i = 8 was carried out for a varying number of
rounds, see Fig. 2. In order to measure χ2 values for a larger number of rounds,
we increased the number of samples to N = 218. This was done by choosing zero
IV bytes i0, i1, . . ., i5 and counting up i6, i7, i8, i9 from 0 to N−1. Supplementary

r χ2 ε2

6 47593 1.1 × 10−2

8 6067 1.4 × 10−3

10 1437 3.4 × 10−4

12 260 5.8 × 10−5

14 44 6.8 × 10−6

Fig. 2. Average χ2 and the assigned bias ε2 for r = 6, . . . , 14 rounds (where the bias
ε2 is plotted on the right)

experiments revealed that ε2 is approximately constant for different values of N ,
hence ε2 is a good measure for the diffusion of F. The bias ε2 in terms of r can
be approximated by an exponential decay and in one round ε2 is reduced by
a factor of about 2.5. By extrapolation, we expect that about r = 32 rounds
would be necessary to obtain a bias of ε2 = 2−40. In an extended experiment
one could also measure the effectiveness of the combined initialisation function
F and update function ft. For example, with r = 8, t = 50 and N = 218, we

5 Notice that two input bits of bit-slice i = 0 are always zero in the setup of Ex. 6. This
has a small influence on the modeled bias in Tab. 5.
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observed an average value of χ2 = 32 when using the same setup as previously.
However we did not observe a bias in the keystream.

6 Conclusions

In this paper we considered the way the key and the initialisation information is
used in two Phase 2 candidates in eSTREAM. In the case of TSC-4, the initial
cipher state is derived using eight applications of a warm-up function. Non-
randomness over all eight iterations can be detected in the initial state with
about 1000 inputs. Each additional round increases the data requirements by a
factor of about 2.5 and this non-randomness requires the attacker to choose IV
bits only. However no bias in the keystream of TSC-4 resulting from this non-
randomness has yet been detected, so it remains to be seen if our observations
can form the basis for an attack in the future. As the rating of Focus candidate
in eSTREAM Phase 2 testifies, Salsa20 is widely viewed as a very promising
proposal. Nothing in this paper affects the security of the full version of the
cipher. However we expect that the key can be recovered from five rounds of 128-
bit Salsa20 with around 281 operations and six rounds of 256-bit Salsa20 with
around 2177 operations. Both attacks would require very moderate amounts of
text. If we allow related-key attacks then the security of seven rounds of 256-bit
Salsa20 might be in question with around 2217 operations. However, given divided
opinions on such an attack model, we prefer to observe that a statistical weakness
has been observed over seven rounds. While we anticipate some progress, we are
doubtful that many more rounds can be attacked using the methods of this
paper. Thus Salsa20 still appears to be a conservative design. Given our results,
however, we are doubtful that Salsa20/8 will offer adequate security in the future,
though Salsa20/12 could turn out to be a well-balanced proposal.

Acknowledgments

The first and second author are supported in part by grant 5005-67322 of NCCR-
MICS (a center of the Swiss National Science Foundation). The second author
also receives partial funding through GEBERT RÜF STIFTUNG. Other authors
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A The χ2 Test

Let X := X1, X2, . . . , XN denote N i.i.d. random variables where each Xi ∈
{x0, . . . , xm} and with unknown distribution. A χ2 test is applied on the obser-
vation X , in order to decide if the observation is consistent with the hypothesis
that Xi have distribution DU . Let Ni be the number of observations xi in X ,
and Ei the expectation for xi under distribution DU . Then, the χ2 statistic is a
random variable defined by

χ2 :=
m∑

i=1

(Ni − Ei)2

Ei
. (3)

In the case of a uniform distribution DU , one has Ei = N/m. The χ2 statistic
(for large N) is then compared with the threshold of the χ2

α,m−1 distribution
having m−1 degrees of freedom and significance level α. Consequently, a χ2 test
can be defined by a threshold T , where the hypothesis is accepted if χ2(X) < T .

If X has uniform distribution DU , the expectation of χ2 becomes EU (χ2) =
m− 1. If X has another distribution DX (which is assumed to be close to DU ),
then the expectation of χ2 becomes about EX(χ2) = (c + 1)m − 1 , where
c := Nε2 and ε2 :=

∑
ε2

i with probability bias εi := PrX(xi)− PrU (xi). Notice
that EX(χ2) differs from EU (χ2) significantly, if c = O(1). Consequently, about
N = O(1/ε2) samples are required to distinguish a source with distribution DX

from a source with distribution DU .
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B Weak Key Conditions for Example 3

The key conditions for the weak key class of Ex. 3 are on k0 and k6. First set
the following bits of k0 to the values shown:

bit number: 0 1 20 21 22 23
value: 0 1 0 0 1 1

Next set bit 7 of k6 equal to bit 7 of T where c1 = 0x3320646E and

T = (((k0 + c1) ≪ 7) + c1) ≪ 9.

Note that all these conditions are randomly satisfied with a probability of 2−7.
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SHA-1 [20]. It was selected for the second phase of the NESSIE (New European
Schemes for Signatures, Integrity, and Encryption) project [18], but was not
recommended for the NESSIE portfolio in 2003 because of concerns about its
key schedule. Since SHACAL-1 is the compression function of SHA-1 used in
encryption mode, there is much significance to investigate its security against
different cryptanalytic attacks.

The security of SHACAL-1 against differential cryptanalysis [2] and linear
cryptanalysis [17] was first analyzed by the proposers. Subsequently, Nakahara
Jr. [19] conducted a statistical evaluation of the cipher. In 2002, Kim et al. [15]
presented a differential attack on the first 41 rounds of SHACAL-1 with 512 key
bits and an amplified boomerang attack on the first 47 rounds of SHACAL-1
with 512 key bits, where the former attack is due to a 30-round differential
characteristic with probability 2−138, while the latter attack is based on a 36-
round amplified boomerang distinguisher (see Ref. [15] for the two differentials)
that was conjectured by the authors to be the longest distinguisher (i.e., the
distinguisher with the greatest number of rounds). However, in 2003, Biham et
al. [5] pointed out that the step for judging whether a final candidate subkey is
the right one in the amplified boomerang attacks presented in [15] is incorrect
due to a flaw in the analysis on the number of wrong quartets that satisfy
the conditions of a right quartet. They then corrected it with the fact that all
the subkeys of SHACAL-1 are linearly dependent on the user key. Finally, by
converting the Kim et al.’s 36-round boomerang distinguisher to a 36-round
rectangle distinguisher, Biham et al. presented rectangle attacks on the first
47 rounds and two series of inner 49 rounds of SHACAL-1 with 512 key bits.
These are the best cryptanalytic results on SHACAL-1 in an one key attack
scenario, prior to the work described in this paper. Other cryptanalytic results
on SHACAL-1 include the related-key rectangle attacks [7,11,14]; however, these
related-key attacks [1] are very difficult or even infeasible to be conducted in
most cryptographic applications, though certain current applications may allow
for them, say key-exchange protocols [13].

In this paper, we exploit some better differential characteristics than those
previously known in SHACAL-1. More specifically, we exploit a 24-round differ-
ential characteristic with probability 2−50 for rounds 0 to 23 such that we con-
struct a 38-round rectangle distinguisher with probability 2−302.3. Based on this
distinguisher, we mount rectangle attacks on the first 51 rounds and a series of
inner 52 rounds of SHACAL-1 with 512 key bits. We also exploit a 34-round dif-
ferential characteristic with probability 2−148 for rounds 0 to 33 and a 40-round
differential characteristic with probability 2−154 for rounds 30 to 69, which can
be used to mount differential attacks on the first 49 rounds and a series of inner
55 rounds of SHACAL-1 with 512 key bits, respectively.

The rest of this paper is organised as follows. In the next section, we briefly
describe the SHACAL-1 cipher, the amplified boomerang attack and the rectan-
gle attack. In Sections 3 and 4, we present rectangle and differential attacks on
the aforementioned reduced-round versions of SHACAL-1, respectively. Section
5 concludes this paper.
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2 Preliminaries

2.1 The SHACAL-1 Cipher

The encryption procedure of SHACAL-1 can be described as follows,

1. The 160-bit plaintext P is divided into five 32-bit words A0||B0||C0||D0||E0.
2. For i = 0 to 79:

Ai+1 = Ki � ROT5(Ai) � fi(Bi, Ci, Di) � Ei � Wi,
Bi+1 = Ai,
Ci+1 = ROT30(Bi),
Di+1 = Ci,
Ei+1 = Di.

3. The ciphertext is (A80||B80||C80||D80||E80),

where � denotes addition modulo 232, ROTi(X) represents left rotation of X
by i bits, || denotes string concatenation, Ki is the i-th round key, Wi is the i-th
round constant,1 and the function fi is defined as,

fi(B, C, D) =

⎧⎨⎩
fif = (B&C)|(¬B&D) 0 ≤ i ≤ 19
fxor = B ⊕ C ⊕D 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fmaj = (B&C)|(B&D)|(C&D) 40 ≤ i ≤ 59

where & denotes the bitwise logical AND, ⊕ denotes the bitwise logical exclu-
sive OR (XOR), ¬ denotes the complement, and | represents the bitwise OR
operations.

The key schedule of SHACAL-1 takes as input a variable length key of up
to 512 bits; Shorter keys can be used by padding them with zeros to produce a
512-bit key string, however, the proposers recommend that the key should not be
shorter than 128 bits. The 512-bit user key K is divided into sixteen 32-bit words
K0, K1, · · · , K15, which are the round keys for the first 16 rounds. Each of the
remaining round keys is generated as Ki = ROT1(Ki−3⊕Ki−8⊕Ki−14⊕Ki−16).

2.2 Amplified Boomerang and Rectangle Attacks

Amplified boomerang attack [12] and rectangle attack [3] are both variants of
the boomerang attack [21]. As a result, they share the same basic idea of using
two short differentials with larger probabilities instead of a long differential with
a smaller probability.

Amplified boomerang attack treats a block cipher E : {0, 1}n × {0, 1}k →
{0, 1}n as a cascade of two sub-ciphers E = E1 ◦E0. It assumes that there exist
two differentials: one differential α → β through E0 with probability p (i.e.,
Pr[E0(X) ⊕ E0(X∗) = β|X ⊕X∗ = α] = p), and the other differential γ → δ
through E1 with probability q (i.e., Pr[E1(X)⊕E1(X∗) = δ|X⊕X∗ = γ] = q),
with p and q satisfying p · q � 2−n/2. Two pairs of plaintexts (P1, P2 = P1 ⊕ α)
and (P3, P4 = P3 ⊕ α) is called a right quartet if the following three conditions
hold:
1 We note that this is the opposite to Refs. [9,10,20]; however, we decide to stick to

the common notation Ki as a round subkey.
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C1: E0(P1)⊕ E0(P2) = E0(P3)⊕ E0(P4) = β;
C2: E0(P1)⊕ E0(P3) = E0(P2)⊕ E0(P4) = γ;
C3: E1(E0(P1))⊕ E1(E0(P3)) = E1(E0(P2))⊕ E1(E0(P4)) = δ.

If we take N pairs of plaintexts with the difference α, then we have ap-
proximately N · p pairs with the output difference β after E0, which generate
about (N ·p)2

2 candidate quartets. Assuming that the intermediate values after
E0 distribute uniformly over all possible values, we get E0(P1) ⊕ E0(P3) = γ
with probability 2−n. Once this occurs, E0(P2) ⊕ E0(P4) = γ holds as well, as
E0(P2)⊕E0(P4) = E0(P1)⊕E0(P2)⊕E0(P3)⊕E0(P4)⊕E0(P1)⊕E0(P3) = γ.
As a result, the expected number of right quartets is about (N ·p)2

2 · 2−n · q2 =
N2 · 2−n−1 · (p · q)2. On the other hand, for a random cipher, the expected num-
ber of right quartets is approximately N2 · 2−2n. Therefore, if p · q > 2−n/2

and N is sufficiently large, the amplified boomerang distinguisher can effectively
distinguish between E and a random cipher with an enough bias.

Rectangle attack achieves advantage over an amplified boomerang attack by
allowing β to take any possible value β′ in E0 and γ to take any possible value γ′

in E1, as long as β′ �= γ′. Starting with N pairs of plaintexts with the difference
α, the expected number of right quartets is about N2 · (p̂ · q̂)2 · 2−n, where
p̂ = (

∑
β′ Pr2(α → β′))

1
2 , q̂ = (

∑
γ′ Pr2(γ′ → δ))

1
2 .

3 Rectangle Attacks on Reduced-Round SHACAL-1

We exploit a 24-round differential characteristic with probability 2−50 for rou-
nds 0–23: (e29, 0, 0, 0, e2,7) → (e14,29, e9,31, e2, e29, 0). Table 1 describes the full
differential.

• By combining the 24-round differential with a differential composed of rounds
24–35 of the second differential of [15] (which has probability 2−20 in these
rounds), a 36-round distinguisher with probability 2−300(= (2−50 · 2−20)2 ·
2−160) is obtained, gaining a factor of 212 over the probability of the most
powerful currently known 36-round one due to Kim et al..

• By combining the 24-round differential with a differential composed of rounds
23–35 of the second differential of [15] (which has probability 2−24 in these
rounds), a 37-round distinguisher with probability 2−308(= (2−50 · 2−24)2 ·
2−160) is obtained.

• By combining the 24-round differential with a differential composed of rounds
21–34 of the second differential of [15] (which has probability 2−27 in these
rounds), a 38-round distinguisher with probability 2−314(= (2−50 · 2−27)2 ·
2−160) is obtained.

These amplified boomerang distinguishers can be used to mount amplified
boomerang attacks on certain reduced-round versions of SHACAL-1 with differ-
ent lengths of user keys. Nevertheless, due to the nature that all the possible β
and γ (as long as they are different) can be used in a rectangle distinguisher,
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Table 1. A 24-round differential with probability 2−50 for Rounds 0 to 23

Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi Prob. Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi Prob.

input e29 0 0 0 e2,7 2−2 13 0 e8 e1 0 0 2−2

1 e7 e29 0 0 0 2−2 14 0 0 e6 e1 0 2−2

2 e12 e7 e27 0 0 2−3 15 0 0 0 e6 e1 2−2

3 e17 e12 e5 e27 0 2−4 16 e1 0 0 0 e6 2−1

4 e22 e17 e10 e5 e27 2−4 17 0 e1 0 0 0 2−1

5 0 e22 e15 e10 e5 2−4 18 0 0 e31 0 0 2−1

6 e5 0 e20 e15 e10 2−3 19 0 0 0 e31 0 2−1

7 0 e5 0 e20 e15 2−3 20 0 0 0 0 e31 1

8 e15 0 e3 0 e20 2−2 21 e31 0 0 0 0 2−1

9 0 e15 0 e3 0 2−2 22 e4 e31 0 0 0 2−1

10 0 0 e13 0 e3 2−2 23 e9,31 e4 e29 0 0 2−3

11 e3 0 0 e13 0 2−2 output e14,29 e9,31 e2 e29 0 /

12 e8 e3 0 0 e13 2−2

these amplified boomerang distinguishers can be converted into rectangle distin-
guishers so that the resultant rectangle attacks can work more efficiently. Here,
we will just present rectangle attacks on SHACAL-1 with 512 key bits based on
the 38-round distinguisher.

3.1 Attacking Rounds 0 to 50

Let Ef ◦E1◦E0 be the 51-round SHACAL-1 with 512 key bits, where E0 denotes
rounds 0 to 23, E1 denotes rounds 24 to 37, and Ef denotes rounds 38 to 50.

To compute p̂ (resp., q̂) (defined in Section 2.2) in such an attack, we need
to summarize all the possible output differences β′ for the input difference α
through E0 (resp., all the possible input differences γ′ having an output differ-
ence δ through E1), which is computationally infeasible. As a countermeasure,
we can count as many such possible differentials as we can.

For simplicity, we compute p̂ by just counting the 24-round differentials that
only have variable output differences (ΔA24, e9,31, e2, e29, 0) compared with the

24-round differential, where ΔA24 is an element from the set {(
2︷ ︸︸ ︷

0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
m

,

1,

14︷ ︸︸ ︷
0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸

j

, 1,

9︷ ︸︸ ︷
0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸

k

, 0, 0, 0, 0, 0)|0 ≤ m ≤ 2, 0 ≤ j ≤ 14, 0 ≤

k ≤ 9}, for such an output difference with the form is possible for the input
difference (e9,31, e4, e29, 0, 0) to round 23. It was shown in [16] that the following
Theorem 1 holds for the addition difference,

Theorem 1. [16] Given three 32-bit differences ΔX, ΔY and ΔZ. If the prob-

ability Prob[(ΔX, ΔY ) �→ ΔZ] > 0, then

Prob[(ΔX, ΔY ) �→ ΔZ] = 2s,
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where the integer s is given by s = #{i|0 ≤ i ≤ 30, not((ΔX)i = (ΔY )i =
(ΔZ)i)}.

Thus, we can compute a loose lower bound p̂ = 2−49.39 by only counting the
46 differentials with k + j + m ≤ 5; when k + j + m > 5 the contribution is
negligible. We note that the more the counted possible differentials, the better
the resultant p̂, but according to our results the improvement is negligible.

Biham et al. [5] got a lower bound q̂ in their attack as q̂ = 2−30.28 by only
changing the first one or two rounds in the Kim et al.’s second differential.
Since our 38-round distinguisher just uses the first 14 rounds from round 21 to
34 in the Kim et al.’s second differential, throwing round 35 away, therefore,
2−26.28(= 2−30.28 · 24) is the right value for the q̂ in our attack.

Now, we conclude that the distinguisher holds a lower bound probability
2−311.34(≈ (2−49.39 · 2−26.28)2 · 2−160). However, we can adopt the following two
techniques to further reduce the complexity of the attack:

T1) Fix the four fixed bits a9 = a∗
9 = 0, b9 = b∗9 = 0, b31 = b∗31 = 0

and c29 = c∗29 = 0 in any pair of plaintexts P = (A, B, C, D, E) and
P ∗ = (A∗, B∗, C∗, D∗, E∗), where xi is the i-th bit of X . This increases
the probability of the characteristic in the first round by a factor of 4. Thus,
a lower bound probability 2−47.39(= 22 · 2−49.39) is obtained for the above
46 possible 24-round differentials with such four bits fixed in any pair.

T2) Count many possible 14-round differentials γ′ → δ′ for each input difference
γ′ to round 24 in our distinguisher. For expediency, we count those 14-round
differentials that only have variable output differences (ΔA38, e9,31, e2, e29, 0)
compared with the 14-round differential from round 21 to 34 in the Kim et
al.’s second differential. In our observation on this 1-round difference, there
are at least two possible ΔA38 (i.e., e29, e14,29) with probability 2−3, four pos-
sible ΔA38 (i.e., e5,14,29, e14,15,29, e14,29,30, e14,29,30,31) with probability 2−4,
and seven possible ΔA38 (i.e., e5,14,29,30,31, e14,15,29,30,31, e5,6,14,29, e5,14,15,29,
e14,15,16,29, e5,14,29,30, e14,15,29,30) with probability 2−5. We denote the set of
these 13 differences by S. Thus, these 13 possible 14-round differentials hold
a lower bound probability of 2−23.76(≈ 2 · 2−26.28 + 4 · 2−27.28 + 7 · 2−28.28).

Finally, this rectangle distinguisher holds a lower bound probability 2−302.3(≈
(2−47.39 ·2−23.76)2 ·2−160) for the right key, while it now holds with a probability
of 2−312.6(≈ (2−160 · (2 + 4 + 7))2) for a wrong key. The number of available
plaintext pairs decreases to 2155 due to the four fixed bits.

Consequently, we can apply this rectangle distinguisher to break the first 51
rounds of SHACAL-1.

Attack Procedure

1. Choose 2152.65 pairs of plaintexts with difference α = (e29, 0, 0, 0, e2,7) and
four fixed bits as described above: (Pi, P

′
i ), for i = 1, 2, · · · , 2152.65. Ask for

their encryption under 51-round SHACAL-1 to obtain their corresponding
ciphertext pairs (Ci, C

′
i). The 2152.65 pairs generate about 2305.3 candidate

quartets ((Pi1 , P
′
i1), (Pi2 , P

′
i2)), where 1 ≤ i1, i2 ≤ 2152.65.
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2. Guess a 352-bit key Kf for rounds 40 to 50 in Ef , do follows,
2.1 Partially decrypt all the ciphertext pairs (Ci, C

′
i) with Kf to get their

intermediate values just before round 40: (E−1
Kf

(Ci), E−1
Kf

(C′
i)). Then, for

each quartet ((Ci1 , C
′
i1

), (Ci2 , C
′
i2

)), check if both the two 96-bit differences
in words C, D and E positions of E−1

Kf
(Ci1 ) ⊕ E−1

Kf
(Ci2) and E−1

Kf
(C′

i1
) ⊕

E−1
Kf

(C′
i2

) belong to the set {(u, e7,29, e2)|ROT30(u) ∈ S}. If the number of
the quartets passing this test is greater than or equal to 6, then go to Step
2.2; Otherwise, repeat Step 2 with another guess for Kf .

2.2 Guess a 32-bit subkey K39 for round 39, and then decrypt each remain-
ing quartet ((E−1

Kf
(Ci1), E

−1
Kf

(C′
i1 )), (E

−1
Kf

(Ci2 ), E
−1
Kf

(C′
i2))) with K39 to

get their intermediate values just before round 39: ((E−1
K39

(E−1
Kf

(Ci1 )),
E−1

K39
(E−1

Kf
(C′

i1 ))), (E
−1
K39

(E−1
Kf

(Ci2)), E
−1
K39

(E−1
Kf

(C′
i2 )))). We denote them

by ((Xi1 , X
′
i1), (Xi2 , X

′
i2)). Finally, check if both the two 128-bit differ-

ences in words B, C, D and E positions of Xi1 ⊕ Xi2 and X ′
i1
⊕ X ′

i2
belong to the set {(u, e7,29, e2, e29)}. If the number of the quartets pass-
ing this test is greater than or equal to 6, then go to Step 2.3; Otherwise,
repeat this step with another guess for K39 (If all the values of K39 fail,
then go to Step 2).

2.3 Guess a 32-bit subkey K38 for round 38, and then decrypt each remain-
ing quartet ((Xi1 , X

′
i1

), (Xi2 , X
′
i2

)) with K38 to get their intermediate
values just before round 38: ((E−1

K38
(Xi1), E

−1
K38

(X ′
i1)), (E

−1
K38

(Xi2), E
−1
K38

(X ′
i2

))). We denote them by ((X i1 , X
′
i1), (Xi2 , X

′
i2)). Finally, check if

both the two 160-bit differences X i1 ⊕ X i2 and X ′
i1 ⊕ X ′

i2 belong to
the set {(u, e7,29, e2, e29, 0)}. If the number of the quartets passing this
test is greater than or equal to 6, then record (Kf , K38, K39) and go to
Step 3; Otherwise, repeat this step with another guess for K38 (If all the
values of K38 fail, then go to Step 2.2; If all the values of K39 fail, then
go to Step 2).

3. For a suggested (K38, K39, Kf), exhaustively search the remaining 96 key
bits using trial encryption. Three known pairs of plaintexts and ciphertexts
are enough for this trial process. If a 512-bit key is suggested, output it as
the master key of the 51-round SHACAL-1. Otherwise, go to Step 2.

This attack requires 2153.65 chosen plaintexts. The required memory for this
attack is dominated by the ciphertext pairs, which is about 2153.65 · 20 ≈ 2157.97

memory bytes.
The time complexity of Step 1 is 2153.65 51-round SHACAL-1 encryptions;

The time complexity of Step 2.1 is dominated by the partial decryptions, which
is about 2352 ·2153.65 · 1151 ≈ 2503.44. In Step 2.1, since the probability that a quartet
meets the filtering condition in this step is ( 13

296 )2 ≈ 2−184.6, the expected number
of the quartets passing the test for each subkey candidate is 2305.3 · 2−184.6 ≈
2120.7, and it is evident that the probability that the number of quartets passing
the test for a wrong subkey is no less than 6 is about 1. Thus, almost all the
2352 subkeys pass through Step 2.1. In Step 2.2, the time complexity is about
2352 · 232 · 2120.7 · 4 · 1

51 ≈ 2501.03. In this step, since the probability that a
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remaining quartet meets the filtering condition in this step is 2−32 ·2−32 ≈ 2−64,
the expected number of the quartets passing the test for each subkey candidate
is 2120.7 · 2−64 ≈ 256.7. Again, almost all the 2384 subkeys pass through Step
2.2. In Step 2.3, the time complexity is about 2384 · 232 · 256.7 · 4 · 1

51 ≈ 2469.03.
In this step, since the probability that a remaining quartet meets the filtering
condition in this step is also 2−64, the expected number of the quartets passing
the test for each subkey candidate is 256.7 · 2−64 ≈ 2−7.3, and the probability
that the number of quartets passing the test for a wrong subkey is no less than
6 is about

∑256.7

i=6 (
(
256.7

i

)
· (2−64)i · (1− 2−64)2

56.7−i) ≈ 2−53.29. Thus, on average,
about 2416 · 2−53.29 = 2362.71 subkeys pass through Step 2.3, which result in
2362.71·296 ≈ 2458.71 51-round encryptions in Step 3. Therefore, this attack totally
requires about 2153.65 + 2503.44 + 2501.03 + 2469.03 + 2458.71 ≈ 2503.7 encryptions.

Since the probability that a wrong 512-bit key is suggested in Step 3 is about
2−480(= 2−160·3), the expected number of suggested wrong 512-bit keys is about
2−480 · 2458.71 ≈ 2−21.29, which is quite low. While the expected number of
quartets passing the difference test in Step 2.5 for the right key is 8 (= 2305.3 ·
2−302.3), and the probability that the number of quartets passing the difference
test in Step 2.5 for the right subkey is no less than 6 is about

∑2305.3

i=6 (
(
2305.3

i

)
·

(2−302.3)i · (1 − 2−302.3)2
305.3−i) ≈ 0.81. Therefore, with a probability of 0.81,

we can break the 51-round SHACAL-1 with 512 key bits by using the amplified
boomerang attack, faster than an exhaustive search.

3.2 Attacking Rounds 28–79

A generic key recovery algorithm based on a rectangle distinguisher was pre-
sented by Biham et al. in [4] and then updated in [6] recently, which treats a
block cipher E : {0, 1}n×{0, 1}k → {0, 1}n as E = Ef ◦E1 ◦E0 ◦Eb, where E0

and E1 constitute the rectangle distinguisher, while Eb and Ef are some rounds
before and after the rectangle distinguisher, respectively. In this subsection, we
will use their results to break the 52 rounds from round 28 to 79 of SHACAL-1.

To apply the generic attack procedure [4], we need to determine the following
six parameters:

• mb: the number of subkey bits in Eb to be attacked.
• mf : the number of subkey bits in Ef to be attacked.
• rb: the number of bits that are active or can be active before the attacked

round, given that a pair has the difference α at the entrance of the rectangle
distinguisher.

• rf : the number of bits that are active or can be active after the attacked
round, given that a pair has the difference δ at the output of the rectangle
distinguisher.

• 2tb : the number of possible differences before the attacked round, given that
a pair has the difference α at the entrance of the rectangle distinguisher.

• 2tf : the number of possible differences after the attacked round, given that a
pair has the difference δ at the output of the rectangle distinguisher.
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Our attack is applied in the backward direction, that is to say, it is a chosen
ciphertext attack. Anyway, as the data requirement of the attack is the entire
code book, it can be easily used as a known plaintext attack.

Let Eb denote round 79, E0 denote rounds 64 to 78, E1 denote rounds 41
to 63, and Ef denote rounds 38 to 40. We first describe the two differentials
to be used in this rectangle distinguisher. By cyclically rotating the last 23-
round differential in the 24-round differential to the right by 9 bit positions,
we can get a 23-round differential with probability q = 2−49: (e30, e20, 0, 0, 0)→
(e5,20, e0,22, e25, e20, 0). This 23-round differential is used in E1, while the Kim et
al.’s second differential with probability p = 2−31 in [15] is used in E0. Similarly,
we can compute a lower bound probability q̂ = 2−47.77 for the 23-round differ-
entials that only have variable output differences compared with the 23-round
differential described above. As mentioned before, a lower bound p̂ = 2−30.28 has
been got by only changing the first one or two rounds in the Kim et al.’s sec-
ond differential. Therefore, this 38-round rectangle distinguisher holds at least
a probability of 2−316.1(≈ (2−47.77 · 2−30.28)2 · 2−160) for the right key, while it
holds probability 2−320 for a wrong key.

As we attack one round (i.e., round 79) before the distinguisher, we can
compute mb, rb, and tb as follows: There is only one 32-bit subkey K79 in Eb,
therefore, mb = 32. A pair with a difference (e9,19,29,31, e14,29, e7,29, e2, e29) before
round 79 has a difference with the form (R, e9,19,29,31, e12,27, e7,29, e2) after round
79. Obviously, the bit differences in the three least significant bits of R will
definitely be 0, while the bit differences in the other 29 bit positions will be
variable. As a result, rb = 29+4+2+2+1 = 38. In our analysis, R has exactly
15648 possible values. So, tb = log15648

2 ≈ 13.9.
There are three rounds (i.e., rounds 38 to 40) after the distinguisher, thus

mf = 96. A pair that has a difference (e30, e20, 0, 0, 0) before round 41 has a
difference with the form (e20, 0, 0, 0, S) before round 40, where S has the following
12 possible values: e25,30, e25,30,31, e25,26,30, e25,26,30,31, e25,26,27,30, e25,26,27,30,31,
e25,26,27,28,30, e25,26,27,28,30,31, e25,26,27,28,29,30, e25,26,27,28,29,30,31, e25,26,27,28,29,31,
e25,26,27,28,29. These differences can be reached from a difference with the form
(0, 0, 0, S, T ) before round 39, where T has bits 20 to 31 active, of which bits 21 to
24 must take one of the five possible values 1x, 3x, 7x, Fx, and 1Fx according to the
carry, while bits 25 to 31 cannot be predicted as they all depend on the exact value
ofS. This set of differences can be caused by differences with the form (0, 0, S, T, U)
before round 38, where U has bits 20 to 31 active. Thus, rf = 7 + 12 + 12 = 31,
and there are at most 12 · (5 · 27) · 212 = 31457280 possible differences with the
form (0, 0, S, T, U) before round 38, so tf = log2(31457280) ≈ 24.9.

Assigning these parameters to the Biham et al.’s generic attack procedure
leads to a rectangle attack on rounds 38 to 79. Then, with an exhaustive key
search for the remaining 10 rounds, we can attack 52-round SHACAL-1. The
attack procedure is summarized as follows.

Attack Procedure

(a) Based on the above 38-round rectangle distinguisher, apply the Biham et
al.’s generic attack procedure [6] on the 42 rounds from round 38 to 79 of
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SHACAL-1. Output the four 32-bit subkey candidates for rounds 38, 39, 40
and 79 with the maximal counter number.

(b) Find the ten 32-bit subkeys for rounds 28 to 37 using an exhaustive search.

According to [6], the time complexity of Step (a) in our attack is about
2mb+mf+1 + N + N2 · (2rf−n−1 + 2tf−n−1 + 22tf+2rb−2n−3 + 2mb+tb+2tf−2n−2 +
2mf+tf+2tb−2n−2) = 2129 + 2160 + 2320 · (231−161 + 224.9−161 + 22·24.9+2·38−323 +
232+13.9+2·24.9−322 + 296+24.9+2·13.9−322) ≈ 2190.02 memory accesses. In Step (b),
by guessing the subkeys of rounds 28 to 37, it is possible to partially encrypt
all the plaintexts and then apply the previous Step (a). Each subkey guess re-
quires 2160 partial encryptions and 2190.02 memory accesses, therefore, the total
time complexity is 2320 · 2160 · 10

52 ≈ 2477.6 52-round SHACAL-1 encryptions and
2320 · 2190.02 = 2510.02 memory accesses.

Note: There exists another attack on the 52 rounds from round 28 to 79, which is
composed of a similar rectangle attack on rounds 35 to 77, followed by an exhaus-
tive search on the 288-bit subkeys of rounds 28 to 34, 78 and 79. Let Eb denote
round 77, E0 denote rounds 64 to 76, E1 denote rounds 38 to 63, and Ef denote
rounds 35 to 37. For E0 we use the 13-round differential composed of rounds 23
to 35 in the second differential of [15], which holds probability p = 2−24. The
26-round differential (0, 0, e19,24, e14,19,24, e14) → (e14,31, e16,26, e19, e14, 0) with
probability q = 2−55 is used in E1, which is obtained by cyclically rotating the
24-round differential to the left by 17 bit positions and appending two more
rounds before the input. We computed a lower bound on the related probabil-
ities p̂ = 2−23.48 and q̂ = 2−53.77. Therefore, the distinguisher holds at least a
probability of 2−314.5(≈ (2−53.77 ·2−23.48)2 ·2−160) for the right key, while it holds
probability 2−320 for a wrong key. As before we computed that mb = 32, rb = 38,
tb = 13.9, mf = 96, rf = 12+17+18 = 47, and tf = log

(
29·64·12·213 ·218) ≈ 43.8.

Finally, we can break 52-round SHACAL-1. According to [6], the data complexity
is N = 2

n
2 +2/(p̂ · q̂) = 280+53.77+23.48+2 = 2159.25 chosen plaintexts/ciphertexts

with difference (e9,19,29,31, e14,29, e7,29, e2, e29) before round 76, however, this can-
not be guaranteed if we start with chosen ciphertexts. Alternatively, we apply
the attack as a known plaintext attack. With 2159.625 known plaintexts, we can
get 2318.25 pairs, of which about 2158.25(= 2318.25 · 2−160) would have the desired
difference. This attack requires 2288 · 2159.625 · 9

52 ≈ 2445.1 encryptions and the
time complexity is about 2288 · [2mb+mf+1 + N + N2 · (2rf−n−1 + 2tf−n−1 +
22tf+2rb−2n−3 + 2mb+tb+2tf−2n−2 + 2mf+tf+2tb−2n−2)] = 2288 · [2129 + 2159.25 +
2318.5 · (2−114 + 2−117.2 + 2−157.4 + 2−185 + 2−147.4) ≈ 2204.65] = 2492.65 memory
accesses.

4 Differential Attacks on Reduced-Round SHACAL-1

The 24-round differential in Table 1 can be extended to a 30-round differential
(e29,0,0,0,e2,7)→ (e0,4,12,17,24,25,27,29, e7,17,19,31, e0,5,15,27,30, e5,17,25,27,29, e2,5,22,27)
with probability 2−93, which has a significantly higher probability than the
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longest currently known (30-round) differential with probability 2−138 due to
Kim et al.. More importantly, it can be extended to as long as a 34-round differen-
tial (e29, 0, 0, 0, e2,7) → (e0,5,7,12,13,15,17,20,28,29, e5,7,9,23,25,29, e3,12,15,18,20,25,27,30,
e5,7,13,15,17,23,25,29, e2,10,15,22,23,25,27,30) with probability 2−148.

These differentials with different rounds can be used to attack different re-
duced round variants of SHACAL-1. Here, we just present the differential attack
on SHACAL-1 with 512 key bits based on the 34-round differential.

4.1 Attacking Rounds 15–69

The 34-round differential can be applied to the 34 rounds from round 40 to 73,
due to the differential distribution of the two functions fif and fmaj. Then, by
appending 10 more rounds before round 40 and removing the last 4 rounds in the
above 34-round differential, we exploit a 40-round differential characteristic with
probability 2−154 for rounds 30 to 69: (e4,8,11,13,16, e3,8,11,13,31, e1,6,11,16,21,29,31,
e1,4,8,11,13,16,21, e3,9,11,13,16,18,21,29,31)→(e0,4,12,17,24,25,27,29, e7,17,19,31, e0,5,15,27,30,
e5,17,25,27,29, e2,5,22,27).

This 40-round differential can be used to mount a chosen ciphertext attack
on the 55 rounds from round 15 to 69. By counting the 30 possible 40-round
differentials that only have variable input differences (e4,8,11,13,16, e3,8,11,13,31,
e1,6,11,16,21,29,31, e1,4,8,11,13,16,21, ΔE30) compared with the 40-round differential
described above (where ΔE30 are shown in Table 2), we can conclude these 40-
round differentials hold a lower bound probability 2−150(= 2 · 2−154 + 28 · 2−155)
for a right key, while they hold a probability of 2−155.09(≈ 30 ·2−160) for a wrong
key. Consequently, we can break the 55-round SHACAL-1 as follows.

Table 2. Possible input differences ΔE30 in Round 30 with their respective probabilities

Prob. ΔE30

2−154 e3,9,11,13,16,18,21,29,31 , e3,4,9,11,13,16,18,21,29,31

e3,4,5,9,11,13,16,18,21,29,31 , e3,5,9,11,13,16,18,21,29,31 , e3,5,6,9,11,13,16,18,21,29,31 ,
e3,4,5,6,9,11,13,16,18,21,29,31 , e3,7,9,11,13,16,18,21,29,31 , e3,4,7,9,11,13,16,18,21,29,31 ,
e3,9,10,11,13,16,18,21,29,31 , e3,4,9,10,11,13,16,18,21,29,31 , e3,9,10,13,16,18,21,29,31 ,
e3,4,9,10,13,16,18,21,29,31 , e3,9,11,12,13,16,18,21,29,31 , e3,4,9,11,12,13,16,18,21,29,31 ,

2−155 e3,9,11,12,16,18,21,29,31 , e3,4,9,11,12,16,18,21,29,31 , e3,9,11,13,14,16,18,21,29,31 ,
e3,4,9,11,13,14,16,18,21,29,31 , e3,9,11,13,16,17,18,21,29,31 , e3,4,9,11,13,16,17,18,21,29,31 ,
e3,9,11,13,16,17,21,29,31 , e3,4,9,11,13,16,17,21,29,31 , e3,9,11,13,16,18,19,21,29,31 ,
e3,4,9,11,13,16,18,19,21,29,31 , e3,9,11,13,16,18,21,22,29,31 , e3,4,9,11,13,16,18,21,22,29,31 ,
e3,9,11,13,16,18,21,29,30,31 , e3,4,9,11,13,16,18,21,29,30,31 , e3,9,11,13,16,18,21,29,30 ,
e3,4,9,11,13,16,18,21,29,30

Attack Procedure

1. Choose 2153 pairs of ciphertexts with difference (e0,4,12,17,24,25,27,29, e7,17,19,31,
e0,5,15,27,30, e5,17,25,27,29, e2,5,22,27): (Ci, C

′
i), for i = 1, · · · , 2153. Decrypt them

to get their corresponding plaintext pairs (Pi, P
′
i ).
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2. Guess a 352-bit key Kf for rounds 15 to 25, do follows,

2.1 Partially encrypt each pair (Pi, P
′
i ) using Kf to get their intermediate

values just after round 25: (EKf
(Pi), EKf

(P ′
i )). Then, check if the 32-bit

differenceΔA26 inEKf
(Pi)⊕EKf

(P ′
i ) belongs to {ROT2(ΔE30)|ΔE30 are

those in Table 2}. If the number of the pairs (Pi, P
′
i ) passing this test is

greater than or equal to 6, then recordKf andall the qualifiedpairs (Pi, P
′
i )

and go to Step 2.2; Otherwise, repeat this step with another Kf .
2.2 Guess a 32-bit subkey K26 for round 26, then partially encrypt each pair

(EKf
(Pi), EKf

(P ′
i )) with K26 to get their intermediate values just after

round 26. We denote these values by (Xi, X
′
i). Finally, check if the 64-bit

difference (ΔA27, ΔB27) in Xi ⊕X ′
i belongs to {(e3,6,10,13,15,18,23, ROT2

(ΔE30))}. If the number of the pairs (EKf
(Pi), EKf

(P ′
i )) passing this

test is greater than or equal to 6, then record (Kf , K26) and all the
qualified pairs (Xi, X

′
i) and go to Step 2.3; Otherwise, repeat this step

with another K26.
2.3 Guess a 32-bit subkey K27 for round 27, then partially encrypt each re-

maining pair (Xi, X
′
i) with K27 to get their intermediate values just after

round 27. We denote them by (Xi, X
′
i). Finally, check if the 96-bit differ-

ence (ΔA28, ΔB28, ΔC28) in X i⊕X
′
i belongs to the set {(e1,3,8,13,18,23,31,

e3,6,10,13,15,18,23, ROT2(ΔE30))}. If the number of the pairs (Xi, X
′
i) pass-

ing this test is greater than or equal to 6, then record (Kf , K26, K27) and
all the qualified pairs (X i, X

′
i) and go to Step 2.4; Otherwise, repeat this

step with another K27.
2.4 Guess a 32-bit subkey K28 for round 28, then partially encrypt each

remaining pair (Xi, X
′
i) with K28 to get their intermediate values just

after round 28. We denote them by (X̂i, X̂
′
i). Finally, check if the 128-bit

difference (ΔA29, ΔB29, ΔC29, ΔD29) in X̂i⊕X̂ ′
i belongs to {(e3,8,11,13,31,

e1,3,8,13,18,23,31, e3,6,10,13,15,18,23, ROT2(ΔE30))}. If the number of the
pairs (X i, X

′
i) passing this test is greater than or equal to 6, then record

(Kf , K26, K27, K28) and all the qualified pairs (X̂i, X̂
′
i) and go to Step

2.5; Otherwise, repeat this step with another K28.
2.5 Guess a 32-bit subkey K29 for round 29, then partially encrypt each re-

maining pair (X̂i, X̂
′
i) with K29, and finally check if the 160-bit difference

EK29(X̂i)⊕EK29(X̂ ′
i) belongs to {(e4,8,11,13,16, e3,8,11,13,31, e1,3,8,13,18,23,31,

e3,6,10,13,15,18,23, ROT2(ΔE30))}. If the number of the pairs (X̂i, X̂
′
i) pass-

ing this test is greater than or equal to 6, then record (Kf , K26, K27, K28,
K29); Otherwise, repeat Step 2 with another 352-bit key.

3. For a suggested (Kf , K26, K27, K28, K29), do an exhaustive search for the
remaining 32 key bits using trial encryption. Four known pairs of plaintexts
and ciphertexts are enough for this trial process. If a 512-bit key is suggested,
output it as the master key of the 55-round SHACAL-1; Otherwise, repeat
Step 2 with another 352-bit key.
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This attack requires 2154 chosen plaintexts. The memory for this attack is
also dominated by the ciphertext pairs, so it requires about 2154 · 20 ≈ 2158.32

memory bytes.
The time complexity of Step 1 is 2154 55-round SHACAL-1 encryptions; The

time complexity of Step 2.1 is dominated by the partial decryptions, which is
about 2352 ·2154 · 1155 ≈ 2503.68. In Step 2.1, since the probability that a pair meets
the filtering condition in this step is 30

232 ≈ 2−27.09, the expected number of the
pairs passing the test for each subkey candidate is 2153 ·2−27.09 ≈ 2125.91, and the
probability that the number of pairs passing this test for a wrong subkey is no less
than 6 is about

∑2153

i=6 (
(
2153

i

)
·(2−27.09)i ·(1−2−27.09)2

153−i) ≈ 1. Thus, almost all
the 2352 subkeys pass through Step 2.1. In Step 2.2, the time complexity is about
2352·232·2125.91·2· 1

55 ≈ 2505.13. In this step, since the probability that a remaining
pair meets the filtering condition in this step is 2−32, the expected number of the
pairs passing the test for each subkey candidate is 2125.91 ·2−32 ≈ 293.91, and the
probability that the number of pairs passing the test for a wrong subkey is no less
than 6 is about

∑2125.91

i=6 (
(
2125.91

i

)
· (2−32)i · (1− 2−32)2

125.91−i) ≈ 1. Thus, almost
all the 2384 subkeys pass through Step 2.2. Similarly, we can get that the time
complexity in either of Step 2.3, 2.4 and 2.5 is also 2505.13; Besides, almost all the
2448 subkeys pass through Step 2.4, and the expected number of the pairs passing
the test in Step 2.4 for each subkey candidate is 293.91 · 2−32×2 ≈ 229.91. In Step
2.5, since the probability that a remaining pair meets the filtering condition
in this step is also 2−32, the expected number of the pairs passing the test
for each subkey candidate is 229.91 · 2−32 ≈ 2−2.09, and the probability that
the number of pairs passing the test for a wrong subkey is no less than 6 is
about

∑229.91

i=6 (
(
229.91

i

)
· (2−32)i · (1 − 2−32)2

29.91−i) ≈ 2−22.03. Thus, on average,
about 2448 · 232 · 2−22.03 ≈ 2457.97 subkeys pass through Step 2.5, which result in
2457.97 ·232 ≈ 2489.97 encryptions in Step 3. Therefore, this attack totally requires
about 2154 + 2503.68 + 4 · 2505.13 + 2489.97 ≈ 2507.26 encryptions.

Since the probability that a wrong 512-bit key is suggested in Step 3 is about
2−640(= 2−160·4), the expected number of suggested wrong 512-bit keys is about
2−640 · 2489.97 ≈ 2−150.03, which is extremely low. The expected number of the
pairs passing the test in Step 2.5 for the right key is 8 (= 2153 · 2−150) and the
probability that the number of the pairs passing the test in Step 2.5 for the right
subkey is no less than 6 is about

∑2153

i=6 (
(
2153

i

)
· (2−150)i · (1−2−150)2

153−i) ≈ 0.8.
Therefore, with a probability of 0.8, we can break the 55-round SHACAL-1 with
512 key bits by using the differential attack.

4.2 Attacking Rounds 0–48

We can learn that the 64 possible 34-round differentials that have only var-
iable output differences (e0,5,7,12???,17,20,28???, e5,7,9,23,25,29, e3,12,15,18,20,25,27,30,
e5,7,13,15,17,23,25,29, e2,10,15,22,23,25,27,30) compared with the one described earlier
hold a probability of 2−138(= 64 · 22 · 2−148) for the right key, and hold a prob-
ability of 2−154(= 64 · 2−160) for a wrong key, where “i???” (i = 12, 28) means
that the bit in i position takes 1 and each of the three bits in i + 1, i + 2 and
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i+3 positions takes an arbitrary value from {0, 1}. Similarly, using 2141 pairs of
plaintexts with difference (e29, 0, 0, 0, e2,7) and such four fixed bits as described
in Section 3.1, the attack requires about 2146.32(≈ 2142 · 20) memory bytes and
2496.45(≈ 2352 · 2142 · 11

49 + 4 · 2384 · 2141 · 64
232 · 2 · 1

49 ) encryptions.

5 Conclusions

In this paper, we exploit some better rectangle distinguishers and differential
characteristics than those previously known in SHACAL-1. Based on them, we
finally mount rectangle attacks on the first 51 rounds and a series of inner 52
rounds of SHACAL-1, and mount differential attacks on the first 49 rounds and
a series of inner 55 rounds of SHACAL-1. These are the best currently known
cryptanalytic results on SHACAL-1 in an one key attack scenario.
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Abstract. In this paper, we mount the first algebraic attacks against
clock controlled cascade stream ciphers. We first show how to obtain
relations between the internal state bits and the output bits of the Goll-
mann clock controlled cascade stream ciphers. We demonstrate that the
initial states of the last two shift registers can be determined by the
initial states of the others. An alternative attack on the Gollmann cas-
cade is also described, which requires solving quadratic equations. We
then present an algebraic analysis of Pomaranch, one of the phase two
proposals to eSTREAM. A system of equations of maximum degree four
that describes the full cipher is derived. We also present weaknesses in
the filter functions of Pomaranch by successfully computing annihilators
and low degree multiples of the functions.

1 Introduction

Algebraic attacks, in which the initial states are solved for as a system of multi-
variate polynomial equations derived from the target cipher, were introduced by
Courtois and Meier in [10,12] as a new method of analyzing cipher output. This
method of attack was first applied to block ciphers and public key cryptosystems
by Courtois and Pieprzyk [9,15]. Many regularly clocked linear feedback shift reg-
ister (LFSR) based stream ciphers have since then fallen under algebraic attacks,
as demonstrated in [3,4,7,15,11], whereas irregularly clocked stream ciphers have
been more resistant. There are, to our knowledge, only two papers in the liter-
ature dealing with algebraic attacks on irregularly clocked stream ciphers, first
in [12] and then in [1], dealing with separate classes of clock controlled stream
ciphers. Our interest in this paper is in extending algebraic attacks to a third
class of clock controlled stream ciphers that has not yet been examined under
algebraic attacks — the clock controlled LFSR-based cascade stream ciphers.

In an LFSR based clock control cascade cipher, the output of the first LFSR
controls the clocking of a second LFSR, both outputs together control the clock-
ing of a third LFSR, and so on. In this paper, we present algebraic analyses
of two such ciphers, the Gollmann cascade generator [17] and Pomaranch, an
eSTREAM project candidate [19,21].

The idea of cascading a set of LFSRs was due to Gollmann [17] and was fur-
ther studied by Chambers and Gollmann in 1988 [18]. In the latter study, they
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conclude that better security is achieved with a large number of short LFSRs
instead of a small number of long ones. Park, Lee and Goh [24], having extended
the attack of Menicocci on a 2-register cascade using statistical techniques [23],
successfully broke 9-register cascades where each register has fixed length 100.
They suggested also that 10-register cascades might be insecure. In 1994, Cham-
bers [6] proposed a clock-controlled cascade cipher in which each 32-bit portion
of the output sequence of each LFSR passes through an invertible s-box with
the result being used to clock the next register. Several years later, the idea
of cascade ciphers resurfaced in a proposal by Jansen, Helleseth and Kholosha
[19] to the 2005 SKEW workshop, which became the eSTREAM candidate Po-
maranch. Pomaranch can be viewed as a variant of the Gollmann cascade in
which a number of bits from each register are filtered using a nonlinear function,
and the result is used to control the clocking of the next register.

In the case of the Gollmann cascade, the key is the combined initial states of
the registers, and the keystream output is the output of the final register. Po-
maranch uses an initialization vector for key loading and its keystream output is
the sum of certain bits taken from each of the registers. In subsequent sections
of this paper, we present our algebraic attacks on the Gollmann cascade gener-
ator. This leads us into our algebraic analysis of Pomaranch, where the cipher
construction is more complicated than the Gollmann cascade. Unless otherwise
specified, additions and multiplications presented in this paper are defined over
GF(2).

2 Clock-Controlled Gollmann Cascade Generator

The Gollmann cascade generator, introduced in [17], employs k LFSRs arranged
serially such that each register except for the first one is clock-controlled by an
input bit, which is the sum of the output bits of its predecessors. This structure
is shown in Figure 1. Initially, all registers are filled independently with key bits.
Let the input bit to the i-th register at time t be at

i, for i ≥ 2. The i-th register
is clocked if and only if at

i = 1. The output bit of the i-th register is then added
to at

i, and the result becomes at
i+1. The keystream output of the generator is the

output of the k-th LFSR.

Fig. 1. The Gollmann Cascade Generator

Gollmann first proposed cascading k cyclic registers of the same prime length
p with feedback polynomial f(x) = xp + 1. This is known as the p-cycle. A
variation of the Gollmann cascade, called an m-sequence cascade, has the cyclic
registers replaced by maximum length LFSRs of the same length l. We will
algebraically analyse this type of Gollmann cascade generator with registers of
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variable length, and present an attack showing how we can recover the initial
states of the registers.

2.1 Algebraic Attack on the Gollmann Cascade Generator

In this section, we present a basic algebraic analysis of the clock-controlled Goll-
mann cascade generator. We first consider a cascade generator of k = 4 LFSRs
of any lengths. However, the analysis presented here can be adapted to a cascade
with any number of registers. For this particular case, we have LFSRs A, B, C, D
of lengths l, m, n, r respectively. Let, for example, At

i be the i-th bit of register
A at time t. At

l , B
t
m, Ct

n, Dt
r are then the outputs of the respective registers. A is

clocked regularly as a traditional LFSR. The states of the other LFSRs at time
t can be expressed as follows.

Bt
i = Bt−1

i (At−1
l + 1) + Bt−1

i−1At−1
l (1)

Ct
i = Ct−1

i (At−1
l + Bt−1

m + 1) + Ct−1
i−1 (At−1

l + Bt−1
m ) (2)

Dt
i = Dt−1

i (At−1
l + Bt−1

m + Ct−1
n + 1) + Dt−1

i−1(At−1
l + Bt−1

m + Ct−1
n ), (3)

where Bt
0, C

t
0, D

t
0 are the feedback sum of the corresponding registers. Since the

keystream of the generator is given by the output of the final register, we have

zt = Dt
r. (4)

Using (3) with i = r and (4) with t + 1 instead of t we get

zt+1 = zt(At
l + Bt

m + Ct
n + 1) + Dt

r−1(A
t
l + Bt

m + Ct
n). (5)

which can be expressed as

zt + zt+1 = (zt + Dt
r−1)(A

t
l + Bt

m + Ct
n) (6)

From (6), we see that if zt + zt+1 = 1, then

1 = At
l + Bt

m + Ct
n. (7)

We will make use of this observation to recover the initial state bits in our attack
presented in the next section.

2.2 Recovering the Initial State

Based on the observations in the previous section, we propose recovering the
internal state of all registers as follows. Consider again the case where k = 4. We
know that whenever zt + zt+1 = 1, then At

l + Bt
m + Ct

n = 1. Therefore, we can
start by guessing the initial states of A, B, which will enable us generate linear
equations (2) for C with the substitution Ct

n = At
l +Bt

m +1 when zt + zt+1 = 1.
Once we have enough linearly independent equations we can then solve for the
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initial states of C. Using these values of C, we can then recover the internal
state of register D by solving the linear equations (3) by substituting the values
for A, B, C and the keystream. If we obtain a solution for both C and D, then
we have found the initial states of all registers. The complexity of this approach
is given by the complexity of guessing A and B multiplied by the complexity
of solving linear equations in the other registers. Gaussian elimination can be
in general performed in O(nω) operations, with 2 ≤ ω ≤ 3. For simplicity,
throughout this paper we assume the worst case with ω = 3. The time complexity
of this attack is then 2l+m(n3 + r3). The minimum keystream requirement for
recovering C is 2n on average, since we only get an equation if zt + zt+1 = 1,
and that for recovering D is r. The same keystream can be used to construct
equations for C and D, so the attack needs max(2n, r) bits of keystream. In
practice we might need a small percentage more than this requirement due to
linear dependencies among the linear equations generated. For a cascade cipher
with k LFSRs, the complexity of the presented approach will be 2u(l31 + l32),
where l1, l2 are the length of the last two registers and u is the total length of
the remaining registers. Clearly, the proposed attack is better than exhaustive
key search, which has complexity 2u+l1+l2 .

2.3 Comparison of Attacks on the Gollmann Cascade

As far as we are aware, there are four published attacks on the Gollmann cascade
generator. These are the lock-in effect attack by Gollmann and Chambers [5],
the attack by Menococci [23], the clock control guessing attack by Zenner [26],
and the attack by Park et. al. [24]. The complexities of the lock-in effect attack
and the Menicocci attack are far higher than ours, so here we will only make
comparison of our attack with the ones that are more effective. The clock control
guessing attack has a relatively closer complexity and has a similar approach to
ours. Zenner applies linear consistency tests to the Gollmann cascade using a
technique of guessing the clock control bits resulting in a search tree. This attack
is similar to ours in that it forms a set of equations after guessing a number of
bits. It then solves the equations discarding those that are inconsistent. The
complexity of the attack is of order 2(l+m+n+r)/2(l + m + n + r)3.

The only attack that outperforms ours is the attack by Park et. al. [24]. This
attack is based on guessing the initial states of each register successively in the
cascade with some desired probability. Their analysis starts by building a matrix
of conditional probabilities between the inputs and outputs of a register. This
matrix is used to determine the probabilities of particular outputs of the cipher
given particular inputs to the registers. These probabilities are biased when a
run of zeros or ones occurs, yielding an efficient algorithm for finding the initial
states of the registers by scanning the given keystream for runs of at least u
consecutive zeros or ones, where u is determined by the desired error rate of the
algorithm.

The algorithm builds linear equations in the unknowns of the initial state
bits of the first register of the cascade. Random equations from these are solved
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until a solution with high probability is found. The algorithm then uses this
solution to build equations for the next register. This process is repeated until
the initial states of every register are recovered except for the last. Finally,
the intial states of the last register are recovered by using previously known
techniques. The theoretical complexity of this attack is not given in the paper,
so we have estimated it from the algorithm and the experimental data. Gaussian
elimination is present, so O(l3) is used for the asymptotic time complexity. From
the experimental data we deduce that O(l2) bits of keystream are required to
find the desired run of zeros or ones.

Although Park’s attack is very efficient, it does have some limitations. Park’s
attack requires consecutive keystream bits with runs of zeros or ones, but our at-
tack does not even require consecutive keystream bits. We can use any subset of
the keystream as long as the equations describing them are dependent on the val-
ues of all of the initial state bits. Our keystream requirement is also much less than
that of Park’s attack. Hence, our attack would be the only one that is feasible for
implementationswhere rekeying occurs frequently such as the framebased commu-
nication systems for mobile telephones and wireless networks. Table 1 summarizes
the abovementioned attacks on the Gollmann cascade generator for k = 4.

Table 1. Best known attacks on Gollmann cascade generator

Attack
Minimum MK TC
keystream Time complexity (TC) l = m = n l = m = n

required (MK) = r = 64 = r = 64

Park
6l2 36l3 215 224

[24]

Lock-in-effect
4l2 16

l2
(2l − 2)4 214 2248

[5]

Clock control
l + m + n + r 2(l+m+n+r)/2(l + m + n + r)3 28 2152

guessing [26]

Ours max(2n, r) 2l+m(n3 + r3) 27 2147

2.4 An Alternative Algebraic Attack

In this section we describe another algebraic attack on the Gollmann cascade.
The resistance of clock-controlled stream ciphers to traditional algebraic attacks
is due to the fact that clock controls cause increases in the degrees of the equa-
tions generated. In the case of the Gollmann cascade, we obtain (1), (2), (3).
The clock control bits are multiplied with the bit states of the registers caus-
ing an increase in the degree of the equations. Since the clock control of the
Gollmann cascade is linear in the register states, the degrees of the equations
increase by one at every clock. For example, let the initial states bits of A, B be
ai, bi respectively. The outputs of A at the first two clocks are then
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A0
l = al

A1
l = al−1,

and the states of B at the first three clocks are expressed as

B0
i = bi

B1
i = bi(al + 1) + bi−1al

B2
i = bi(al + 1)(al−1 + 1) + bi−1{(al + 1)al−1 + al(al−1 + 1)}+ bi−2alal−1.

The equations formed in the variables ai, bi will increase in degree as the cipher
is clocked. However, if we instead use new variables for the register states at
every clock, this degree accumulation can be prevented and we obtain quadratic
equations in terms of the register states at each time t, as shown in (1), (2),
(3). Initially, we have l + m + n + r variables representing the initial states of
the registers. Since A is regularly clocked, we do not need to introduce new
variables for A. Also, since Dt

r = zt, we can just replace that state with the
keystream output. This means that a total of m + n + r − 1 new variables
are introduced at each time t. Then m + n + r equations are introduced as
relations between old and new variables. Since the key size is l + m + n + r, we
would need at least l + m + n + r clocks to form a system of equations with a
unique solution. From the analysis above, we obtain (m + n + r)(l + m + n + r)
quadratic equations in (m + n + r)(l + m + n + r) unknowns for the Gollmann
cascade. These equations can be solved by techniques such as Gröbner basis
methods, but not by linearisation. This is because as we use more keystream,
the number of variables and therefore monomials in the system increases at
a much higher rate, and it is not possible to obtain enough equations in the
linearised variables.

Not so much is known about the practical complexities of solving polynomial
equations by Gröbner basis methods, such as Faugère’s F5 and the XL and re-
lated algorithms. It is known that the worst case complexity of these algorithms
on random systems of equations in GF(2) are O(22v), where v is the number of
equations. However, for specific systems and as the number of equations exceeds
the number of variables, the complexity of XL and its variants can drop signif-
icantly, to even polynomial time. See, for example, [2,13,14,25] for descriptions
and analyses of these algorithms. In our case, since the variables are in GF(2),
we do not need to consider solutions in the algebraic closure of GF(2) and can
solve the equations subject to the field equations x2 + x = 0 for each variable x
in the system. Therefore, we obtain another (m+n+r)(l+m+n+r) equations,
giving us twice as many equations as variables. Furthermore, the equations are
very sparse, since each variable is used only for two clocks. These properties
might prove useful at reducing the complexity of finding the solution to the sys-
tem. The actual efficiency of this attack is yet to be gauged and is the subject of
further research in this area. We will use this concept of attack in a later section
on Pomaranch.
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3 An Algebraic Analysis of Pomaranch

In this section, we provide an algebraic analysis of version 3 of Pomaranch [19,21],
an eSTREAM stream cipher candidate. We begin by describing the cipher. Here
we mainly discuss in the context of the 128-bit version of Pomaranch, but the
analysis also holds for the 80-bit version. Although only the 80-bit version of
Pomaranch is officially in phase 2 of the eSTREAM project, the 128-bit version
will also be important since there are doubts about the security of 80-bit ciphers,
as discussed in the eSTREAM project. Earlier versions of Pomaranch have been
cryptanalysed in [8,20,22], but as of the beginning of phase 2 of the project,
version 3 of Pomaranch has been published to address weaknesses found in the
above papers. As far as we are aware, this paper is the first to analyse version 3
of the cipher.

3.1 Pomaranch Description

The overall structure of Pomaranch is shown in Figure 2. Pomaranch is a clock-
controlled cascade generator consisting of 9 jump registers R1, R2, . . . , R9. The
jump registers are implemented as autonomous Linear Finite State Machines
(LFSM), each containing 18 memory cells, and each cell contains a bit value. Each
cell in a jump register behaves as a shift cell or a feedback cell. At each clock, a shift
cell simply shifts its state to the next cell, whereas a feedback cell feeds its state back
to itself and adds it to the state from the previous cell, as well as performing a nor-
mal shift like a shift cell. The behaviour of each cell depends on the value of a Jump
Control (JC) signal to the jump register where the cell belongs. Algebraically, a
transition matrix A governs the behaviour of an LFSM. The transition matrices of
the jump registers in Pomaranch take the form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d18 0 0 . . . 0 1
1 d17 0 . . . 0 t17

0 1 d16
. . .

...
...

0 0
. . . . . . 0

...
...

...
. . . 1 d2 t2

0 0 . . . 0 1 d1 + t1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ti determines the positions of the feedback taps, and di determines whether
the cells are shift cells or feedback cells. At any moment, half of the cells in the
registers behave as shift cells, and the other half as feedback cells, so half the di

are 0 and the other half are 1. If JC = 0 for a certain register, the register is
clocked according to its transition matrix A. If JC = 1, all cells are switched to
the opposite behaviour. This is equivalent to switching the transition matrix to
A+I, where I is the identity matrix. Two different transition matrices A1, A2 are
used for odd (type 1) and even (type 2) numbered registers respectively, with
different values of ti, di. Each jump register is then connected to a key map,
which consists of an s-box and a nonlinear filter. Key bits are diffused into the
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key map and a one bit output is drawn. The jump control of a register is then
taken as the sum of all outputs from the key maps from all previous registers.
The keystream output is given by the sum of the contents of the 17th cells of all
registers. The 128-bit key k of Pomaranch is divided into eight 16-bit subkeys

Fig. 2. Pomaranch Version 3

K1 to K8, where Ki represents the key bits ki,1, ki,2, . . . , ki,16. Each section of
Pomaranch except the last contains a jump register of length 18 and a nonlinear
function composed of an s-box and a degree 4 boolean filter function f . The
last section of Pomaranch only has a jump register. The key map at section i
first takes a 9-bit vector v from cells numbered 1, 2, 4, 5, 6, 7, 9, 10, 11 from jump
registers of type 1 or 1, 2, 3, 4, 5, 7, 9, 10, 11 from jump registers of type 2. Then
the 9 least significant bits of Ki are added to v. The sum is passed through
a 9-to-7-bit inversion s-box over GF(29) defined by the primitive polynomial
x9 + x + 1. The resulting 7 bits are then added to the 7 most significant bits of
Ki. This is fed into the boolean function f of degree 4, and the output of f is
called the jump control out bit of the section and is denoted as ci. The ci from
each section is used to produce the jump control bits JC2 to JC9 controlling the
registers R2 to R9 at time t respectively, as follows.

JCt
i =

i−1∑
j=2

ct
j , 2 ≤ i ≤ 9.

The jump control bit JC1 of register R1 is permanently set to zero.

3.2 Algebraic Analysis of Pomaranch

In this section we provide an algebraic analysis of Pomaranch. Fromthe description
of the way that the cipher is clocked, each register can be represented as
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Rt = (A + JCt · I)Rt−1, (8)

where Rt is the state of a register at time t, A is its transition matrix, JCt is
its jump control, and I is the identity matrix. The keystream is given by

zt =
9∑

i=1

rt
i,17, (9)

where rt
i,17 is the 17-th cell of the register i at time t. In the 80-bit version

employing only 6 sections, the keystream is given by

zt = g(rt
1,17, r

t
2,17, . . . , r

t
5,17) + rt

6,17, (10)

where g is a nonlinear filter of degree 3. In order to understand how the key is
related to the output and what the relations among different subkey bits are,
we analyse what happens in the first section containing R1 as the key bits are
mixed in a nonlinear manner, and how the key bits are carried across into the
second section. Similar analysis follows for the remaining sections.

Let the i-th bit of R1 at time t be ri for 1 ≤ i ≤ 18. Nine selected bits rj

are added to k1, k2, . . . , k9 respectively, according to the register type. These are
then fed into the key map that consists of an s-box and a boolean function f of
degree 4. Firstly, the bits pass through an inversion s-box over GF(29). Let the
input to the s-box be a1, a2, . . . , a9, then we have ai = rj + ki for 1 ≤ i ≤ 9.
Let the output from the s-box be b1, b2, . . . , b9. Each bi can be represented with
equations in ai. An explicit function of each bi in terms of ai will be of high
degree, in our case it is of degree 9, i.e.

bi =
∑

e∈GF(2)9

(
se

9∏
i=1

aei

i

)
, 1 ≤ i ≤ 7,

where se are coefficients in GF(2). We can also form implicit relations between
the inputs and outputs of the s-boxes of degree 2, as was shown in [16]. The
relations for this s-box are presented in Appendix A. From the truth table of the
s-box shown in [21], we can see that the seven output bits b2, b3, . . . , b8 are used
for the next component, discarding b1, b9. Those output bits from the s-box are
then added to the next 7 key bits and the result bi +k8+i for 2 ≤ i ≤ 8 is filtered
through f , a degree 4 function. We have computed the algebraic normal form
(ANF) of f as shown in Appendix A. Assuming we take the explicit functions
for the s-box and the ANF of the filter, the output c1 from the filter function
will be an expression of degree 13 in 16 key bits. This expression is then fed into
the next register R2 as JC2, and also added to the output c2 from R2 to be fed
into R3 as JC3, and so forth.

From the analysis above, a degree 13 equation in 16 key bits is generated from
the first section, which becomes an input in the second section. As JC2 is fed
forward into R2, the high degree expression and variables from the first section
are carried across as well. The key map of the second section will mix the next
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16-bit subkey K2 into the expression, raising the degree by 13 to 26 and the
number of variables by 16 to 32. This accumulation continues to carry across to
R3 and beyond. The number of possible monomials each JCi possesses at the
first clock is then

MJCi = max

⎧⎨⎩
13i∑
j=0

(
16i

j

)
, 2128

⎫⎬⎭ , 1 ≤ i ≤ 9. (11)

By the end of the first clock, we will have equations of degree 104 in 128 variables.
This degree accumulation does not carry over to the next clock, since JC1 is set
to be constantly zero. Therefore, in order to perform an algebraic attack in this
manner, we need at least 128 bits of keystream, giving us 128 equations of degree
104. Although the keystream requirement is low, generating such equations is
time and memory consuming and the effort needed in solving them is likely to
be much more than that of exhaustive key search.

3.3 Overcoming the Problem of the Degree Accumulation

There are three main components in each section of Pomaranch, namely a jump
register, an s-box, and a nonlinear filter. The outputs of each component are
nonlinear in its inputs, and the expressions describing the outputs will have a
higher degree than those of the inputs. Since each output is fed into the next
component, the degree of the expressions accumulates. To prevent this degree
accumulation, we introduce new variables so that the nonlinearities are not car-
ried across the components. Let rt

i,m be the m-th bit of register Ri at time t,
bt
i,m be the output bits of the s-box at the i-th section at time t, JCt

i be the
jump control input to Ri at time t, and ki,m be the key bits used in the i-th
section. We sucessively introduce the above variables as we step through the
keystream generation. At the start, we have 128 variables ki,m whose values are
to be determined. We go through each component and try to discover equations
that relate to ki,m. At time t, we proceed as follows. The relations between the
jump controls and the registers are

Rt
i =

⎧⎪⎨⎪⎩
A1R

t
i−1 i = 1

(A2 + JCt
i−1I)Rt

i−1 i ∈ {2, 4, 6, 8}
(A1 + JCt

i−1I)Rt
i−1 i ∈ {3, 5, 7, 9}

.

The first register will always contain known bits, since it is not under the effect
of jump controls. Hence, we have 8 registers with 18 variables each to introduce
in each clock. Each new Rt

i is a function of Rt
i−1. This yields 144 quadratic

equations in 144 variables. The s-box is defined by inversion over GF(29), which
means that the relations between its input and output bits can be expressed as
a system of 9 quadratic equations. The inputs are linear sums of certain register
bits and key bits, so we have the equations

s0(rt
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t
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t
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t
i,1, . . . , b

t
i,9) = 0, 1 ≤ j ≤ 8.
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In each clock we have 8 s-boxes, which yield 72 quadratic equations and 72 new
variables bt

i,m. Let ct
i be the jump control output from the nonlinear filter f of

the i-th section at time t. Then

ct
i = f(bt

i,2 + ki,10, b
t
i,2 + ki,11, . . . , b

t
i,8 + ki,16) (12)

giving a degree 4 equation. The jump control input to the next register is then

JCt
i+1 = JCt

i + ct
i.

We do not assign new variables to ct
i. Therefore, we obtain a degree 4 equation

with the new variable JCt
i+1. Since there are 8 filters in one clock, we get 8

equations and 8 variables. Finally, at the end of each clock we get the keystream
bit

zt =
9∑

i=0

rt
i,17.

We can use the above equation and rewrite it as, for example,

rt
9,17 = zt +

8∑
i=0

rt
i,17,

and we can replace r9,17 with the above expression, thereby eliminating a variable
at each clock. As a whole, we obtain 224 equations and 223 new variables at each
clock, plus the original 128 variables which represent the key bits. In order to
obtain a unique solution, we would require at least 128 bits of keystream, giving
28672 equations in 28672 variables. Of these equations, 1024 are of degree four
and 27648 are quadratic. In the case of the 80-bit version, we have

zt = g(rt
1,17, r

t
2,17, . . . , r

t
5,17) + rt

6,17,

and we can rewrite it as

rt
6,17 = zt + g(rt

1,17, r
t
2,17, . . . , r

t
5,17),

where g is the cubic nonlinear filter. This contributes a cubic equation to the
system. We then obtain 140 equations and 139 new variables at each clock, plus
the original 80 variables which represent the key bits. In order to obtain a unique
solution, we would require at least 80 bits of keystream, giving 11200 equations
in 11200 variables. Of these equations, 400 are of degree four, 80 are cubic and
10800 are quadratic.

In order to solve the set of equations, we would require techniques such as
Gröbner basis methods, since we cannot get enough equations for linearisation.
With the addition of field equations into the system, we obtain twice as many
equations as variables. The sparse structure of the equations may also give rise
to complexity reductions in solving the system by the XL and related algo-
rithms. This would reduce the complexity of finding the solution significantly
from O(22v) for random systems, where v is the number of equations. See, for
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example, [2,13,14,25] for analyses and details of implementing these algorithms.
All key bits can be recovered when the solution to this set of equations is found.
While there is yet no evidence for or against whether this type of attack would
be better than exhaustive key search, the size and the form of the equations
generated can be used intuitively to judge the cipher’s strength. Algebraic at-
tacks are still a widely discussed and controversial topic in the cryptographic
community, so its consequences should not be overlooked.

We note here that the designers of Pomaranch have increased the size of the
registers from 14 to 18. This increase has no effect on the size or the degree
of the final equations. In fact, the degrees of the equations are independent of
the size of the registers. They are affected by the clock control mechanism and
nonlinear components.

3.4 Algebraic Analysis of the Filter Function

We have found a cubic annihilator yf of the degree four filter f such that fyf = 0
and cubic polynomials ef,1, ef,2, ef,3 such that hf,i = fef,i are cubic for all ei.
These are shown in Appendix A. This shows a potential weakness in the filter
function f . However, in terms of our algebraic attack these multipliers are not
useful, because of the newly introduced variables. If we apply a cubic mutiplier
e to (12), we obtain

ct
ie = fe,

which is still of degree 4, due to the presence of ct
i. To successfully reduce the

degree of our equations, we need to find annihilators or low degree multiples of
f + ct

i, which we have not been able to do. For the 80-bit version of Pomaranch,
we have also found a quadratic annihilator yg of the cubic filter g such that
gyg = 0 and quadratic polynomials eg,1, eg,2 such that hg,i = geg,i are cubic for
all eg,i. These are shown in Appendix A. Again, there could be weaknesses in
the filter function g. However, our algebraic attack cannot make use of this since
we need annihilators or low degree multiples of g + rt

6,17 in order to reduce the
equations describing the cipher.

We leave as an open question other possible uses of these results. However,
we believe that the filter function f, g should be changed so that no annihilators
or low degree multiples exist for f, g. This would resist possible future attacks
based on algebraic techniques.

4 Conclusion

In this paper, we have described the first algebraic attacks against clock con-
trolled cascade stream ciphers, in particular the Gollmann cascade and the
eSTREAM candidate Pomaranch. We have established relations between the
initial state bits and the output bits of the Gollmann clock controlled cascade
stream ciphers, and demonstrated that the initial state bits of the last two reg-
isters can be determined from those of the previous registers, which yields an
attack better than exhaustive key search.
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For the Gollmann cascade we also showed that the effect of a clock control
on algebraic attacks is that the degree of the equations generated increases with
each clock. An alternative attack on the cascade was developed to eliminate
the effect of this degree accumulation, resulting in a large sparse low degree
polynomial system, which can be generated and solved more efficiently using
algorithms such as Faugère’s F5 and XL and its variants.

Our algebraic analysis on Pomaranch further showed that a cipher with non-
linear components can be expressed as a system of equations with maximum
degree no higher than the maximum degree of the components. In the analy-
sis, we showed how to generate degree four equations in the key bits and other
component bits of the system. The bottleneck to reducing this degree further is
due to the filter function of degree four. The input and output sizes of the com-
ponents determine the number of new variables to be introduced and therefore
the size of the system of equations needed to describe the cipher. We also make
the observation that increasing the size of the jump registers has no effect on
increasing the degree of the equations.

Finally, we have found annihilators and low degree multiples of both the filter
function in the keymap and the filter function for the keystream contributions
in the 80-bit version of Pomaranch, which indicates a possible weakness in the
cipher.
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A Algebraic Relations in Pomaranch

The algebraic normal form (ANF) of the Pomaranch filter function is as follows.

f(x1,x2,x3,x4,x5,x6,x7)

= x1x2x3x4+x1x2x3x5+x1x2x3x6+x1x2x3x7+x1x2x4x5+x1x2x4x7

+x1x2x6x7+x1x3x4x6+x1x3x4x7+x1x3x5x6+x1x3x5x7+x1x3x6x7

+x1x4x5x7+x2x3x4x5+x2x3x4x6+x2x3x4x7+x2x3x5x6+x2x3x5x7

+x2x3x6x7+x2x4x5x6+x2x4x6x7+x3x4x5x6+x3x4x5x7+x3x4x6x7+x4x5x6x7

+x1x2x3+x1x2x4+x1x2x6+x1x2x7+x1x3x5+x1x3x6

+x1x3x7+x1x4x6+x1x4x7+x1x6x7+x2x3x5+x2x3x6

+x2x3x7+x2x4x7+x2x5x7+x2x6x7+x3x4x6+x3x5x7+x5x6x7

+x1x2+x1x6+x2x7+x3x7+x4x5+x4x7

+x1+x2+x3+x5+x6+x7

The relations between the inputs ai and the outputs bi of the Pomaranch s-box
is as follows.

a1b1+a2b9+a3b8+a4b7+a5b6+a6b5+a7b4+a8b3+a9b2 = 1

a1b2+a2b1+a2b9+a3b8+a3b9+a4b7+a4b8+a5b6+a5b7

+a6b5+a6b6+a7b4+a7b5+a8b3+a8b4+a9b2+a9b3 = 0

a1b3+a2b2+a3b1+a3b9+a4b8+a4b9+a5b7+a5b8+a6b6

+a6b7+a7b5+a7b6+a8b4+a8b5+a9b3+a9b4 = 0

a1b4+a2b3+a3b2+a4b1+a4b9+a5b8+a5b9+a6b7+a6b8

+a7b6+a7b7+a8b5+a8b6+a9b4+a9b5 = 0

a1b5+a2b4+a3b3+a4b2+a5b1+a5b9+a6b8+a6b9+a7b7

+a7b8+a8b6+a8b7+a9b5+a9b6 = 0

a1b6+a2b5+a3b4+a4b3+a5b2+a6b1+a6b9+a7b8+a7b9+a8b7+a8b8+a9b6+a9b7 = 0

a1b7+a2b6+a3b5+a4b4+a5b3+a6b2+a7b1+a7b9+a8b8+a8b9+a9b7+a9b8 = 0

a1b8+a2b7+a3b6+a4b5+a5b4+a6b3+a7b2+a8b1+a8b9+a9b8+a9b9 = 0

a1b9+a2b8+a3b7+a4b6+a5b5+a6b4+a7b3+a8b2+a9b1+a9b9 = 0
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The annihilator yf and low degree multiples ef,i of the filter function f in Po-
maranch are as follows.

yf (x1,x2,x3,x4,x5,x6,x7)

= x1x3x5+x2x4x5+x3x4x5+x2x3x6+x1x4x6+x1x5x6+x3x5x6+x4x5x6

+x1x3x7+x1x4x7+x2x5x7+x3x5x7+x1x6x7+x2x6x7+x4x6x7+x5x6x7

+x1x3+x2x3+x1x4+x2x4+x3x4+x1x5+x4x5+x3x6

+x4x6+x5x7+x6x7+x4

ef,1(x1,x2,x3,x4,x5,x6,x7)

= x1x2x4+x1x3x5+x2x4x5+x3x4x5+x2x3x6+x2x4x6+x3x4x6+x4x5x6

+x1x2x7+x1x3x7+x3x4x7+x4x5x7+x1x6x7+x1x3+x1x4+x2x4

+x3x4+x2x5+x3x5+x5x6+x1x7+x3x7+x4x7+x5x7

+x2+x3+x6+x7

ef,2(x1,x2,x3,x4,x5,x6,x7)

= x1x2x4+x1x4x6+x2x4x6+x3x4x6+x1x5x6+x3x5x6+x1x2x7+x1x4x7

+x3x4x7+x2x5x7+x3x5x7+x4x5x7+x2x6x7+x4x6x7+x5x6x7+x2x3

+x1x5+x2x5+x3x5+x4x5+x3x6+x4x6+x5x6+x1x7

+x3x7+x4x7+x6x7+x2+x3+x4+x6+x7

ef,3(x1,x2,x3,x4,x5,x6,x7)

= x1x2x3+x1x4x5+x1x2x6+x1x3x6+x2x3x6+x1x5x6+x4x5x6+x2x3x7

+x1x4x7+x1x5x7+x4x5x7+x1x6x7+x2x6x7+x3x6x7+x4x6x7+x1x6

+x2x6+x3x6+x5x6+x1x7+x4x7+x5x7+x6+x7

In particular we have yf = g1 + g2, (f + 1)g1 = 0, (f + 1)g3 = 0. The annihilator
yg and low degree multiples eg,i of the filter function f in Pomaranch are as
follows.

yg(x1,x2,x3,x4,x5) = x1x2+x1x3+x2x3+x3x4+x2x5+x2+x3

eg,1(x1,x2,x3,x4,x5) = x1x2+x1x3+x3x4+x2x5

eg,2(x1,x2,x3,x4,x5) = x2x3+x2+x3

In particular we have y = e1 + e2, (f + 1)g1 = 0
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Abstract. An algorithm for solving the “learning parity with noise”
(LPN) problem is proposed and analyzed. The algorithm originates from
the recently proposed advanced fast correlation attacks, and it employs
the concepts of decimation, linear combining, hypothesizing and mini-
mum distance decoding. However, as opposed to fast correlation attacks,
no preprocessing phase is allowed for the LPN problem. The proposed al-
gorithm appears as more powerful than the best one previously reported
known as the BKW algorithm proposed by Blum, Kalai and Wasser-
man. In fact the BKW algorithm is shown to be a special instance of the
proposed algorithm, but without optimized parameters. An improved se-
curity evaluation, assuming the passive attacks, of Hopper and Blum HB
and HB+ protocols for radio-frequency identification (RFID) authentica-
tion is then developed. Employing the proposed algorithm, the security
of the HB protocols is reevaluated, implying that the previously reported
security margins appear as overestimated.

Keywords: cryptanalysis, LPN problem, fast correlation attacks, HB
protocols, RFID authentication.

1 Introduction

In [12] (following the prior work of Hopper and Blum [10]), two shared-key
authentication protocols have been proposed and analyzed. Their extremely low
computational cost makes them attractive for low-cost devices such as radio-
frequency identification (RFID) tags. The first protocol (called the HB protocol)
is proven secure against a passive (eavesdropping) adversary, while the second
(called HB+) is proven secure against the stronger class of active adversaries.
Security of these protocols is based on the conjectured hardness of the “learning
parity with noise” (LPN) problem (see [3], for example). In [13], the security
of the HB and HB+ protocols under parallel/concurrent executions has been
proven.
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The underlying paradigm of the HB protocol is the following. Suppose Alice
and a computing device C share an k-bit secret x, and Alice would like to au-
thenticate herself to C. Then C selects a random challenge a ∈ {0, 1}k and sends
it to Alice. Alice computes the binary inner-product a · x, then sends the result
back to C. Finally, C computes a·x, and accepts the single round authentication
if Alice’s parity bit is correct. In a single round, someone imitating Alice who
does not know the secret x will guess the correct value a · x half the time. By
repeating for r rounds, Alice can lower the probability of naively guessing the
correct parity bits for all r rounds to 2−r. However, an eavesdropper capturing
O(k) valid challenge-response pairs between Alice and C can quickly calculate
the value of x through Gaussian elimination. To prevent revealing x to passive
eavesdroppers, Alice can inject noise into her response. Alice intentionally sends
the wrong response with constant probability p ∈ (0, 1/2). Then C authenticates
Alice’s identity if fewer than pr of her responses are incorrect.

Suppose that an eavesdropper, i.e., a passive adversary, captures q rounds of the
HB protocol over several authentications and wishes to make the impersonation.
The goal of the adversary in this case is equivalent to the core problem investigated
in this paper. This problem is known as the learning parity in the presence of noise,
or LPN problem. It is shown in [12] that the security of the both HB and HB+

protocols against the passive attack depends on the hardness of LPN problem.
On the other hand, the results reported in [9] have recently shown a man-in-

the-middle attack on the HB+ protocol. However, the arguments given in [12]
and [13] limit the impact of such attack.

Accordingly, this paper is focused only to the LPN problem and the passive
attacking of HB and HB+ protocols.

Motivation for the Work. Despite certain differences, both the LPN problem and
the underlying problem of fast correlation attack can be viewed as the problem
of solving an overdefined system of noisy linear equations. However, it appears
that the currently reported approaches for solving the LPN problem do not take
into account the approaches developed for fast correlation attacks. Accordingly, a
goal of this work is to consider employment of fast correlation attack approaches
for solving the LPN problem. Another motivation of this work is the security
re-evaluation of the HB protocol for RFID authentication as its security level
appears as a direct consequence of the LPN problem hardness.

Summary of the Contributions. This paper proposes a generic algorithm for solving
the LPN problem. The proposed algorithm originates from the recently proposed
advanced fast correlation attacks and it employs the following concepts: decima-
tion, linear combining, hypothesizing and decoding. However, as opposed to fast
correlation attacks, no preprocessing can be performed, which introduces an ad-
ditional constraint. The following main characteristics of the proposed algorithm
have been analytically established: (i) average time complexity; and (ii) average
space complexity. The proposed algorithm has been compared with the best pre-
viously reported one, namely the BKW algorithm, and its advantages for solving
the LPN problem have been pointed out. The proposed algorithm has been applied
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for security reevaluation of the HB protocol for RFID authentication implying that
the previously reported security margins obtained based on the BKW algorithm
are overestimated, and more realistic security margins have been derived.

Organization of thePaper.Section 2 provides a brief reviewof theLPNproblemand
specifies it in a form relevant for further analysis. The BKW algorithm is presented
in Section 3. An algorithm for solving the LPNproblem is proposed and analyzed in
Section 4. Comparisons between this algorithmand the BKW algorithms are made
in Section 5. Security reevaluation of the HB protocol for RFID authentication via
employment of the proposed algorithm is given in Section 6.

2 The LPN Problem

Let k be a security parameter. If x,g1, ...,gn are binary vectors of length k, let
yi =< x · gi > denote the dot product of x and gi (modulo 2). Given the values
g1, y1; g2, y2; ..., gn, yn, for randomly-chosen {gi}n

i and n = O(k), it is possible
to efficiently solve for x using standard linear-algebraic techniques. However, in
the presence of noise where each yi is flipped (independently) with probability
p, finding x becomes much more difficult. We refer to the problem of learning x
in this latter case as the LPN problem.

Note that p is usually taken to be a fixed constant independent of k, as will
be the case in this work. The value of p to use depends on a number of tradeoffs
and design decisions. Indeed the LPN problem becomes harder as p increases.
However in certain authentication protocols where the security appears as a
consequence of the LPN problem hardness, the larger the value of p is, the more
often the honest prover becomes rejected. The hardness of the LPNp problem
(for constant p ∈ (0, 1

2 )) has been studied in many previous works. Particularly
note that the LPN problem can be formulated also as the problem of decoding
a random linear block code [1,18] and has been shown to be NP-complete [1].
Beside the worst-case hardness results, there are numerous studies about the
average-case hardness of the problem (see for example [2,3,4,10,18]).

In this work, we further investigate the formulation of the LPNp problem as
that of decoding a random linear block code by noticing that the rate k/n of this
code is quite low and that the noise level p of the underlying binary symmetric
channel is quite high. Both observations also hold for the fast correlation attack
for which a similar parallelism with decoding a random linear code has been ex-
ploited [19,15]. For this work, we reformulate the LPN problem after introducing
the following notations:

- x = [xi]ki=1 is a k-dimensional binary vector;
- G = [gi]ni=1 is a k×n binary matrix and each gi = [gi(j)]kj=1 is a k-dimensional
binary column vector;
- y = [yi]ni=1 and z = [zi]ni=1 are n-dimensional binary vectors;
- For each i = 1, 2, ..., n, ei is a realization of a binary random variable Ei such
that Pr(Ei = 1) = p and Pr(Ei = 0) = 1 − p, and all the random variables Ei

are mutually independent.
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For given G and x, the vectors y and z are specified as follows: y = x ·G ,
zi = yi ⊕ ei , i = 1, 2, ..., n . Accordingly we have the following formulation of
the LPN problem relevant for this paper.

LPN Problem. For given G, z and p, recover x.

3 The BKW Algorithm

3.1 Preliminaries

In [3], the BKW algorithm has been reported for solving the LPN problem. It is
based on the following paradigm:

a) draw s strings (columns of the matrix G);
b) partition the s strings into groups based on their last b bits;
c) choose a string from each partition, add it to every other string within that
partition, and then discard it;
d) repeat on the procedure to the second-to-last b bits, third-to-last ... until all
that remain are partitions in which only the first b bits are non-zero.

In every step of the algorithm poly(k, 2b, s) operations are performed, since
for each of the partitions (at most 2b partitions), at most s k-bit strings are
added together.

Based on the explanations given in [3], the BKW algorithm is re-written in
an explicit algorithmic form in the next section. The core underlying idea of the
BKW algorithm can be considered as an instance of the generalized birthday
paradox approach [20].

3.2 Algorithm

– Input
- matrix G, vector z and the probability of error p.

– Initialization
• Set the algorithm parameters: integers a and b such that1 ab ≥ k.
• Select the parameter q according to q = f((1− 2p)−2a

, b), where f(·) is
a polynomial function.

• Consider each gi from G as consisting of a concatenated segments, la-
beled as 1, 2, ..., a, each composed of b bits.

• Set the algorithm parameter α = 1.
– Processing

1. Repeat the following steps (a) - (g) q times :
(a) Randomly select a subset Ω of a2b previously not considered columns

of G.
1 The method for selecting the values a and b is not relevant for the algorithm

description itself.
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(b) Classify the elements of Ω into at most 2b categories Ωj such that
all the vectors gi ∈ Ωj have the identical segment of b bits labeled
as a.

(c) In each category Ωj , randomly select a vector and do the following:
- modify the vectors within the category by performing bit-by-bit
XOR-ing of the selected vector with all other vectors in the category,
yielding that all the modified vectors have all zeros in the last, a-th
segment;
- remove the selected vector from Ωj ;
- form the updated / modified Ω as the union of all Ωi; the expected
number of elements in the updated Ω is (a− 1)2b.

(d) Classify the elements of the current set Ω into at most 2b categories
Ωj such that all the vectors gi ∈ Ωj have the identical segment
labeled as a − 1, recalling that all the vectors contain the all zero
b-tuple in the segment labeled as a.

(e) In each category Ωj , randomly select a vector and do the following:
- modify the vectors within the category by performing bit-by-bit
XOR-ing of the selected vector with all other vectors in the category,
yielding that all the modified vectors have all zeros in the segment
a− 1 (as well as in the segment with label a) ;
- remove the selected vector from Ωj ;
- form the updated / modified Ω as the union of all Ωi; the expected
number of elements in the updated Ω is (a− 2)2b.

(f) Repeat a−3 times the procedure performed in the previous two steps,
so that the last modification of Ω contains on average 2b vectors with
only zeros in all the segments with labels from 2 to a.

(g) For each � = 1, 2, ..., b, do the following:
i. Based on the vector, if it exists, from the current Ω with all

zeros at the positions 1, 2, ..., �− 1 and �+1, �+2, ..., k, generate
an estimate about x� which is correct with probability equal to
0.5 + 0.5(1− 2p)2

a−1
;

ii. If the targeting vector does not exist in the currently considered
collection repeat the steps (a) - (f).

2. For each � = 1, 2, ..., b, do the following:
Employing majority logic based decoding on q individual estimates of
x�, generate the final estimate on x� which is assumed correct with a
probability close to 1 for q large enough.

3. Set α → α + 1 and do the following:
• if α > a go to Output step;
• if α ≤ a perform the following re-labeling and go to Processing Step

1:
- 1→ a;
- for each i = 2, 3, ..., a, re-label i → i− 1.

– Output
Estimation of x.
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3.3 Complexity Analysis

According to the structure of the BKW algorithm, and the results reported
in [3,12] we have the following statements.

Proposition 1 [3]. The required sample size and the time complexity of the
BKW algorithm can be estimated as f((1−2p)−2a

, 2b) where f(·) is a polynomial
function.

Proposition 2 [12]. The BKW algorithm requires a sample of dimension pro-
portional to a3m2b where m = max{(1− 2p)−2a

, b}.

Proposition 3 [12]. The time complexity of the BKW algorithm is proportional
to Ca3m2b where m = max{(1− 2p)−2a

, b}, and C is a constant.

These estimates can be further refined. In particular, Proposition 3 can be put
into a more precise form, and the space complexity of the BKW algorithm can
be estimated via analysis of the re-written BKW algorithm as follows.

Required Sample
The required sample, i.e. the dimension n of the matrix G for the BKW algorithm
execution depends on the following:
• Each execution of Step 1.(a) requires random drawing of a2b previously not
considered columns of the matrix G;
• The structure of the BKW algorithm implies that the expected number of
executions of Step 1.(a) executions is proportional to a2q = a2(1− 2p)−2a

.
These considerations imply that the required sample of the BKW algorithm

is proportional to a3(1− 2p)−2a

2b which is in accordance with Proposition 2.

Time Complexity
The time complexity of the BKW algorithm depends on the following:
• Each repetition of Steps 1.(a) to 1.(f) has time complexity proportional to a2b;
• The expected number of repetitions of Steps 1.(a) to 1.(f) implied by Step
1.(g).(ii) is a (according to [3,12]);
• Steps 1.(a) to 1.(g) should be repeated q times, with q = (1− 2p)−2a

;
• Step 3 requires that Steps 1 and 2 should be repeated a times;
• Each bit-by-bit mod2 addition of two k-dimensional vectors with all zeros in
the last αb positions has cost proportional to k − αb;
• The decoding of a bit of the vector x involves (1 − 2p)−2a

parity-checks,
implying a complexity proportional to (1− 2p)−2a

with a direct approach.
Based on these remarks, Proposition 2 can be reformulated in the following

more precise form.

Proposition 4. The average time complexity of the BKW algorithm is propor-
tional to a3(k/2)(1− 2p)−2a

2b + k(1− 2p)−2a

.

According to Proposition 4, the decoding time complexity per bit of the BKW
algorithm is proportional to a3(1− 2p)−2a

2b−1 + (1− 2p)−2a

.
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Space Complexity
The space complexity of the BKW algorithm is dominated by the dimension of
the matrix G noting that its parameter n should be greater than the required
sample.

Proposition 5. The space complexity of the BKW algorithm is proportional to
ka3(1− 2p)−2a

2b.

4 An Algorithm for Solving the LPN Problem

The proposed algorithm for solving the LPN problem originates from the algo-
rithms developed for the fast correlation attack against certain stream ciphers.
However, there are also a few differences. The most substantial difference is
that the developed algorithm does not contain any pre-processing phase. As a
result, the pre-processing phase employed in fast correlation attacks has to be
performed so that its computational cost becomes close to that of the processing
phase itself.

4.1 Advanced Fast Correlation Attack Approach for the LPN
Problem

The LPN problem is equivalent to the model of the underlying problem regarding
cryptanalysis of certain stream ciphers. For this model of cryptanalysis, a number
of powerful fast correlation attacks have been developed including those reported
in [17,5,8,16].

Both, the LPN problem and the fast correlation attack require solving a heav-
ily overdefined but consistent system of linear equations whose variables are
corrupted by noise.

In its general presentation, the advanced fast correlation attack (see [16]) is
a certain decoding technique based on a pre-processing phase and a process-
ing phase which employs: (i) sample decimation; (ii) mapping based on linear
combining; (iii) hypothesis testing; (iv) final decoding.

The pre-processing phase of a fast correlation attack is done only once, and
during that phase suitable linear equations (parity-checks) are determined. The
pre-processing phase is independent of the sample which is the input for the
processing phase. In general, the complexity of preprocessing can be much higher
than that of processing as done only once.
The processing phase can be considered as the minimum distance decoding based
on the parity checks determined during the pre-processing.

In solving LPN problem no preprocessing is allowed as the parity-checks
are sample dependent. This constitutes the main difference between the two
approaches.

In the following section, an algorithm for solving the LPN problem is presented
based on these steps [17,5,8,16].



An Algorithm for Solving the LPN Problem 55

4.2 Algorithm

The following algorithm uses three parameters bH , b0 and w which need to
be optimized. The optimization of these values follows the presentation of the
algorithm.

– Input
- the matrix G, the vector z and the probability of error p .

– Initialization
• Select the algorithm parameters: bH , b0 and w.
• Select the integer parameter q such that [8]:

q ≥ (1 − 2p)−2w .

• Form the (k + 1)× n matrix Ge obtained by adding the vector z to the
top row of G (zi becomes the 0-th element of the i-th column of Ge).

– Processing
1. Phase I: Decimation of the matrix Ge

(a) Search over the columns of the matrix Ge and select all the columns
gi such that gi(j) = 0 for j = k − b0 + 2, k − b0 + 3, ..., k + 1.

(b) Form the decimated version G∗ of the matrix Ge based on the
columns selected in the previous step; G∗ is a (k + 1) × n∗ matrix
with on average, n∗ = 2−b0n.

2. Phase II: Linear Combining of the Decimated Columns
(a) Search for mod2 sums of up to w columns of G∗ such that the resul-

tant vector has any weight in positions j = 0 to j = bH and weight
1 in positions j = bH + 1 to k − b0.

(b) For each j = bH +1 to k− b0, record at least q such columns to form
the matrix Ωj .

3. Phase III: Hypothesizing and Partial Decoding
Consider all 2bH possible hypotheses for bits x0, · · · , xbH−1 of x which
correspond to rows j = 1 to j = bH in G∗ and perform the following:
(a) Select a previously not considered hypothesis on the first bH bits

of the vector x; if no one new hypothesis is possible go to the Ph-
ase IV.

(b) For the given hypothesis on the first bH bits of the vector x, employ-
ing the matrix Ωj , estimate xj based on

(1 x) ·Ωj = 0 (1)

for each j = bH +1, · · ·k− b0. To this end, a majority rule on all the
decisions xj needed to satisfy (1), is used.

(c) Compute the Hamming weight of (1 x) ·G∗ to check the validity of
the given hypothesis (see [19,17] for details).

(d) - Memorize the first k − b0 positions of the L most likely vectors x
found so far (list decoding of size L, with L << 2bH );
- Go to the step (a) of Phase III.
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4. Phase IV: Final Decoding
(a) For the L vectors x recorded in Phase-III, repeat Phase-II based

on Ge (or a punctured version Gp) and Phase-III to estimate the
decimated bits xk−b0 , · · · , xk−1.

(b) Select the most likely vector x based on the Hamming weight of
(1 x) ·Gp.

– Output
Estimation of x.

4.3 Complexity Analysis of the Proposed Algorithm

For given parameters b0, bH and w, we obtain the following results.

Theorem 1. The average time complexity C of the proposed algorithm is dom-
inated by:

C ∼ (k − b0)
((

n∗/2
�w/2�

)
+ 2bH w log2(1 − 2p)−2

)
(2)

Proof. Denote by CI , CII , CIII and CIV the average time complexities of the
algorithm phases I to IV, respectively. According to the algorithm structure, the
overall time complexity C is given as: C = CI + CII + CIII + CIV .

The identification of the columns of the matrix G to construct G∗ can be done
during the sample collection phase and therefore has high level of parallelism.
It follows that CI = O(n) but this complexity (which may become dominant
compared to C) is discarded as it can be assumed that G∗ is given along with
G at the beginning of the algorithm. Note that neglecting this scanning task
is a common practices employed and reported in the literature: see e.g. [11,
Table I], [6, p. 354], [7, Table 2], [14, Remark 5]). (An additional justification
for neglecting the screening complexity originates from the fact that in certain
scenarios where the same secret key is assigned to a group of entities, the sample
collection-screening can be performed in parallel.)

Phase-IV can be viewed as repeating the LPN problem to retrieve b0 bits
instead of k − b0. As a result, for b0 < k/2, CIV can also be discarded as
corresponding to solving the same problem, but for a smaller size. It follows
C ∼ CII + CIII .

Phase-II can be viewed as constructing parity check equations of weight2 w+1.
Using the square-root algorithm proposed in [5] in conjunction with the hashing
approach described in [20], the time complexity of this part is O

(( n∗/2
�w/2�

))
for

each position j = bH + 1, · · · , k − b0.
Phase-III can be viewed as evaluating the parity check equations found in

Phase-II for each position j = bH + 1, · · · , k − b0. Again using the results of [5]
based on Walsh transform, the resulting complexity for q parity check equations
is O
(
2bH log2 q

)
, where it is implicitly assumed bH ≥ log2 q (which corresponds

2 Recall that columns of G summing to zero form codewords of the dual code, or
equivalently parity check equations.
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to most cases of interest). Based on [8], we need q ≥ (1 − 2p)−2w, so that for
each j, the complexity of Phase-III becomes O

(
2bH w log2(1 − 2p)−2

)
.

Joining together the established partial dominating complexities, we obtain
the theorem statement.

Theorem 2. The average space complexity M of the proposed algorithm is
dominated by:

M ∼ (k − b0)
(

n∗ +
(

n∗/2
�w/2�

))
(3)

Proof. The space complexity to store the matrix G∗ is simply (k − b0)n2−b0 .
The memory requirement needed to construct each matrix Ωj based on the

method of [5] is O
(( n∗/2

�w/2	
))

. Finally assuming again that b0 < k/2, the memory
requirement for Phase-IV can be discarded as in the worst case, it is of the same
order as that considered in Phases I to III. The previous discussion directly imply
the theorem statement.

Based on [8], we readily verify that the size of the sample given by Proposi-
tion 2 is larger than that required for the proposed algorithm with w ≤ 2a−1.

4.4 Optimization of the Parameters b0 and bH

Based on Theorem 1, we have C ∼ CII + CIII . With respect to the fast correla-
tion attack, it can be observed that CII corresponds to the pre-processing cost
(searching for a sufficiently large number of parity check equations of a given
form) and CIII corresponds to the processing cost (solving the system of parity
check equations for a given sample). As a result, for the LPN problem, we have
the additional constraint CII ∼ CIII .

For given values w and b0, the value bH which minimizes CIII is given by [8]

bH,opt = 2w log2(1− 2p)−1 + k − b0 − log2

(
n∗

w

)
. (4)

For this value, we have
log2 CIII,opt ∼

2w log2(1−2p)−1+k−b0− log2

(
n∗

w

)
+log2(k−b0)+log2 w+log2 log2(1−2p)−2.

(5)
Equating CIII,opt with CII given by

log2 CII ∼ log2(k − b0) + log2

(
n∗/2
�w/2�

)
(6)

and solving for b0, we obtain

b0,opt ≈
(

3w

2
− 1
)−1(3w

2
(log2 n∗ − log2 w) − 2w log2(1− 2p)−1

−k +
w

2
− log2 w − log2 log2(1 − 2p)−2

)
(7)
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Table 1. Time complexities CII and CIII for the LPN problem with p = 0.25

n k w b0,opt bH,opt log2 CII log2 CIII

224 32 2 16 5 (> log2 q = 4) 11 11
4 18 3 (< log2 q = 8)

280 224 4 47 58 70.5 67.9
6 58 56 67.8 66.6
8 63 57 66.7 67.7

Based on (4) and (7), Table 1 summarizes the complexities CII and CIII for
p = 0.25 and values of n and k relevant to the LPN approach to attack the
HB protocol [12]. For the (224, 32) code, we observe that while for w = 2, CII

and CIII are efficiently balanced, the optimum value bH,opt for w = 4 no longer
verifies bH,opt > w log2(1 − 2p)−2 so that the approach of [5] has reached its
minimum cost. For the (280, 224) code, we observe that different selections of
w provide complexities CII and CIII very close after proper optimization of
both b0 and bH . In that case, selecting the smallest value w minimizes memory
requirements.

5 Comparison of the Proposed Algorithm and the BKW
Algorithm

It can be observed that the (a − 1) repetitions of the procedure to obtain vec-
tors of weight 1 in the BKW algorithm is equivalent to constructing parity-check
equations (or codewords in the dual codes) of weight w = 2a−1 +1. Interestingly,
both approaches require exactly the same number (1− 2p)2w of check sums per
bit. The results of Table 1 indicate that the choice of w is not critical in mini-
mizing the time complexity of the proposed algorithm. However the techniques
used to generate these check sums are very different as well as that to estimate
the bits. Table 2 compares the time and space complexities per information bit
obtained from the results of Sections 3 and 4.

In order to establish a clearer comparison, we consider the special case w =
2a−1 so that the same number of check sums is required by both approaches
and b = bH = b0 (again this case corresponds to a meaningful comparison when
applying these algorithms to the HB protocol). The corresponding complexities
are given in Table 3. We observe that even in this non optimized case, the
proposed algorithm is more efficient in most cases. In particular for a = 4,
(k−2b)/2 = b so that a factor (log2 w+1)3(1−2p)−w is gained both in time and
space complexity. The gain (1 − 2p)−w is mostly due to the application of the
square-root algorithm to determine the check sums based on [5,20]. However,
gains even larger than (log2 w + 1)3(1− 2p)−w are available by proper selection
of the parameters b0 and bH due to both decimation and hypothesis testing.

Note that in a particular case considered previously when both algorithms
employ the same number of parity checks of the same weight, the same prob-
ability of success is expected, although the complexities of the algorithms are
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Table 2. Time and space complexities per information bit of the BKW algorithm and
the proposed algorithm

time complexity space complexity

BKW algorithm ∼ (k/b)3(1 − 2p)−2k/b

2b ∼ (k/b)3(1 − 2p)−2k/b

2b

Proposed algorithm ∼ n∗/2
�w/2� + 2bH log2(1 − 2p)−2w ∼ n∗ + n∗/2

�w/2�

Table 3. Time and space complexities per information bit of the BKW algorithm and
the proposed algorithm with w = 2a−1 and b = bH = b0

time complexity space complexity

BKW
algorithm ∼ (log2 w + 1)3(1 − 2p)−2w2b ∼ (log2 w + 1)3(1 − 2p)−2w2b

Proposed

algorithm ∼ (1 − 2p)−w2(k−2b)/2 + 2b log2(1 − 2p)−2w ∼ (1 − 2p)−w2(k−2b)/2

different. A general discussion of the success probability is out of the scope due
to the paper length limitation.

6 Security Re-evaluation of the HB Protocol for RFID
Authentication

6.1 Security of the HB Protocol and LPN Problem

It is well known that the security of the HB protocol, as well as HB+ protocol,
depends on the complexity of solving the LPN problem (see for example [12,13]).
The two main issues regarding the security evaluation of the HB protocol can
be summarized as follows:

• Collecting the sample for cryptanalysis via recording the challenges and re-
sponses exchanged during the protocol executions and forming the matrix G
and the vector z which define the underlying LPN problem; each challenge is
recorded as a certain column gi of the matrix G, and its corresponding response
is recorded as the element zi of the vector z;
• Solving the obtained LPN problem.

Regarding the sample collection for cryptanalysis note the following issues:
(i) Each authentication session involves the same secret key, and consequently
all the available challenge-response pairs can be jointly employed for recovering
the secret key; (ii) Each authentication session involves r mutually indepen-
dent challenges and responses, providing r columns of the matrix G and the
corresponding r elements of the vector z, so that via collecting the pairs from
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Table 4. Security margins of the HB protocol against a passive attack, when the
employed key consists of k bits and the employed noise corresponds to p = 0.25, based
on the BKW and proposed algorithms

number of secret security margin for the security margin for the
key bits: k BKW algorithm [12] proposed algorithm

k = 32 ∼ 223 ∼ 28

k = 224 ∼ 280 ∼ 261

s authentication sessions, we obtain the matrix G and the vector z of dimensions
k × n and n, respectively, where n = s · r.

Importantly, note that for this particular application, the decimation can be
realized directly by recording only the challenges with zeros in their last b0

positions if n is known a-priori. This further justifies that CI can be discarded
in Theorem 1 as well as the corresponding memory requirement in Theorem 2.

6.2 Security Evaluation of the HB Protocol Based on the BKW
and Proposed Algorithms

The security evaluation considered in this section assumes the passive attacking
scenario only. Following the approach for security evaluation employed in [12], we
consider the security margin which measures the complexity of recovering a bit
of the secret key. As a simple illustrative example, we first consider the security
evaluation of the HB protocol with k = 32, p = 0.25, assuming we can collect
a sample of size n = 224. Accordingly, we consider the security margin of the
protocol employing the BKW algorithm with parameters a = 2 and b = 16, as
suggested in [12]. Based on Propositions 3 and 4, the expected time complexity
of of the BKW algorithm is proportional to ka3(1− 2p)−2a

2b = 32 · 23 · 24 · 216,
so that the security margin (expected complexity per recovered secret key bit) is
223. For the proposed algorithm, we select w = 2, b0 = 16 and bH = 5 based on
Table 1, so that the expected complexity per recovered secret key bit becomes
2 · 211/16 = 28. As a result, the proposed algorithm reduces the time complexity
of the BKW algorithm almost to its cubic root for this simple example.

For security evaluation of the HB protocol with k = 224, n = 280 and p = 0.25,
we have considered the BKW algorithm with a = 4 and b = 56, (see [12]) , while
based on Table 1, we selected w = 6, b0 = 58 and bH = 56 for the proposed
algorithm. The corresponding security margins are 280 and 261, respectively.
Again a significant gain has been achieved by the proposed algorithm. These
results of security evaluation are summarized in Table 4

With respect to the special case considered Table 3, we observe that by proper
optimization of all parameters, gains beyond the factor (log2 w + 1)3(1− 2p)−w

have been achieved by the proposed algorithm over the BKW algorithm as this
factor takes values 25 and 214 for k = 32 and k = 224, respectively, while the
corresponding gains are 215 and 219.
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7 Concluding Discussion

In this paper an advanced algorithm for solving the LPN problem has been
proposed. This algorithm originates from the fast correlation attacks. However,
as opposed to fast correlation attacks, no preprocessing phase is allowed for
solving the LPN problem. As a result, step equivalent to the pre-processing
phase has been included as initialization step of the proposed algorithm. The
complexity of this step has to be balanced with that of the step corresponding
to processing in the fast correlation attack.

Assuming the same sample as input for the BKW algorithm and the algo-
rithm proposed in this paper, the origins for the gains obtained by the proposed
algorithm appear from its more sophisticated structure with additional param-
eters to be optimized. Particularly, the origins of the gain could be summarized
as follows: (i) Employed selection (decimation) of the parity checks during the
sample collection so that only suitable parity-checks are involved in process-
ing, yielding a reduction in the complexity; (ii) Appropriate balancing of the
dedicated hypotheses testing and the complexity of decoding under these given
hypotheses.

The proposed algorithm for solving the LPN problem can be reduced to the
BKW algorithm, i.e. the BKW algorithm becomes a special case of the proposed
algorithm. Consequently, the proposed algorithm always works at least as well as
the BKW algorithm, and in many scenarios it yields an additional computational
savings (as a consequence of possibility for optimization its flexible structure
according to the given inputs).

The developed algorithm has been employed for security evaluation of the HB
protocols because the security of both HB protocols, HB and HB+, depends on
the hardness of the underlying LPN problem. It has been shown that, assum-
ing the same scenario for cryptanalysis, the developed algorithm for the LPN
problem implies lower complexity of recovering the secret key than the BKW
algorithm. As result the security margins of the HB protocols reported in [12,
Appendix D] become overestimated.
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8. M.P.C. Fossorier, M.J. Mihaljević and H. Imai, “A Unified Analysis for the Fast
Correlation Attack”, 2005 IEEE Int. Symp. Inform. Theory - ISIT’2005, Adelaide,
Australia, Sept. 2005, Proceedings, pp. 2012-2015 (ISBN 0-7803-9151-9).

9. H. Gilbert, M. Robshaw and H. Sibert, “An Active Attack against HB+ a Provably
Secure Lightweight Authentication Protocol”, IACR, Cryptology ePrint Archive,
Report 2005/237, July 2005. Available at http://eprint.iacr.org/2005/237 .

10. N. Hopper and M. Blum, “Secure Human Identification Protocols”, ASIACRYPT
2001, Lecture Notes in Computer Science, vol. 2248, pp. 52-66, 2001.

11. P. Hawkes and G. Rose, “Rewriting variables: the complexity of fast algebraic
attacks on stream ciphers”, CRYPTO 2004, Lecture Notes in Computer Science,
vol. 3159, pp. 390-406, Aug. 2004.

12. A. Juels and S. Weis, “Authenticating Pervasive Devices with Human Proto-
cols”, CRYPTO2005, Lecture Notes in Computer Science, vol. 3621, pp. 293-308,
2005. Updated version available at: http://www.rsasecurity.com/rsalabs/staff/
bios/ajuels/publications/pdfs/lpn.pdf

13. J. Katz and J.S. Shin, “Parallel and Concurrent Security of the HB and HB+
Protocols”, EUROCRYPT2006, Lecture Notes in Computer Science, vol. 4004, pp.
73-87, 2006.

14. K. Khoo, G. Gong and H.-K. Lee, “The Rainbow Attack on Stream Ciphers Based
on Maiorana-McFarland Functions”, Applied Cryptography and Network Security
- ACNS 2006, Lecture Notes in Computer Science, vol. 3989, pp. 194-209, 2006.

15. W. Meier and O. Staffelbach, “Fast Correlation Attacks on Certain Stream Ci-
phers,” Journal of Cryptology, vol. 1, pp. 159-176, 1989.

16. M.J. Mihaljević, M.P.C. Fossorier and H. Imai, “A General Formulation of Al-
gebraic and Fast Correlation Attacks Based on Dedicated Sample Decimation”,
AAECC2006, Lecture Notes in Computer Science, vol. 3857, pp. 203-214, 2006.
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Abstract. Tiger is a cryptographic hash function with a 192-bit hash
value which was proposed by Anderson and Biham in 1996. At FSE 2006,
Kelsey and Lucks presented a collision attack on Tiger reduced to 16 (out
of 24) rounds with complexity of about 244. Furthermore, they showed
that a pseudo-near-collision can be found for a variant of Tiger with 20
rounds with complexity of about 248.

In this article, we show how their attack method can be extended to
construct a collision in the Tiger hash function reduced to 19 rounds.
We present two different attack strategies for constructing collisions in
Tiger-19 with complexity of about 262 and 269. Furthermore, we present
a pseudo-near-collision for a variant of Tiger with 22 rounds with com-
plexity of about 244.
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1 Introduction

Recent results in cryptanalysis of hash function show weaknesses in many com-
monly used hash functions, such as SHA-1 and MD5 [4,5]. Therefore, the crypt-
analysis of alternative hash functions, such as Tiger, is of great interest.

In [2], Kelsey and Lucks presented a collision attack on Tiger-16, a round
reduced variant of Tiger (only 16 out of 24 rounds), with complexity of about
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for Tiger to force a differential pattern in the chaining variables after round 7,
which can then be canceled by the differences in the expanded message words in
the following rounds. This led to a collision in the Tiger hash function after 16
rounds. Furthermore, they showed that a pseudo-near-collision can be found in
a variant of Tiger with 20 rounds in about 248 applications of the compression
function.

In this article, we extend the attack to construct a collision in Tiger-19. We
present two different collision attacks on Tiger-19 with complexity of 262 and
269. Furthermore, we present a pseudo-near-collision attack for a variant of Tiger
with 22 rounds with complexity of about 244 and a pseudo-collision attack for
Tiger-23/128, a version of Tiger reduced to 23 rounds with truncated output,
with complexity 244. A summary of our results is given in Table 1.

Table 1. Overview of attacks on the Tiger hash function

number of rounds type complexity

Tiger-16 collision 244 in [2]
Tiger-19 collision 262 and 269 in this article

Tiger-19 pseudo-collision 244 in this article
Tiger-21 pseudo-collision 266 in this article
Tiger-23/128 pseudo-collision 244 in this article

Tiger-20 1 pseudo-near-collision 248 in [2]
Tiger-21 pseudo-near-collision 244 in this article
Tiger-22 pseudo-near-collision 244 in this article

The remainder of this article is structured as follows. A description of the Tiger
hash function is given in Section 2. The attack of Kelsey and Lucks on Tiger-16 is
described in Section 3. In Section 4, we describe a method to construct collisions
in Tiger-19. Another method for construction collisions in Tiger-19 is described
in Section 5. Furthermore, we present a pseudo-near-collision for Tiger-22 in
Section 6 and a pseudo-collision for Tiger-23/128 in Section 7. Finally, we present
conclusions in Section 8.

2 Description of the Hash Function Tiger

Tiger is a cryptographic hash function that was designed by Ross Anderson and
Eli Biham in 1996 [1]. It is an iterative hash function that processes 512-bit input
message blocks and produces a 192-bit hash value. In the following, we briefly
describe the hash function. It basically consists of two parts: the key-schedule
and the state update transformation. A detailed description of the hash function
is given in [1]. For the remainder of this article we use the same notation as is
used in [2]. The notation is given in Table 2.

1 Kelsey and Lucks show a pseudo-near-collision for the last 20 rounds of Tiger.
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Table 2. Notation

Notation Meaning

A + B addition of A and B modulo 264

A − B subtraction of A and B modulo 264

A ∗ B multiplication of A and B modulo 264

A ⊕ B bit-wise XOR-operation of A and B
¬A bit-wise NOT-operation of A

A � n bit-shift of A by n positions to the left
A � n bit-shift of A by n positions to the right

Xi message word i (64-bits)
Xi[even] the even bytes of message word Xi (32-bits)
Xi[odd] the odd bytes of message word Xi (32-bits)

2.1 State Update Transformation

The state update transformation starts from a (fixed) initial value IV of three
64-bit registers and updates them in three passes of eight rounds each. In each
round one 64-bit word X is used to update the three chaining variables A, B
and C as follows.

C = C ⊕X

A = A− even(C)
B = B + odd(C)
B = B × mult

The results are then shifted such that A, B, C become B, C, A. Fig. 1 shows one
round of the state update transformation of Tiger.
The non-linear functions even and odd used in each round are defined as follows.

even(C) = T1[c0]⊕ T2[c2]⊕ T3[c4]⊕ T4[c6]
odd(C) = T4[c1]⊕ T3[c3]⊕ T2[c5]⊕ T1[c7]

even

odd

Xi

Ai−1 Bi−1 Ci−1

Ai Bi Ci

Fig. 1. The round function of Tiger
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where C is split into eight bytes c0, . . . , c7 where c0 is the most significant byte.
The four S-boxes T1, . . . , T4 : {0, 1}8 → {0, 1}64 are used to compute the output
of the non-linear functions even and odd. For the definition of the four S-boxes
we refer to [1]. Note that chaining variable B is multiplied with the constant
mult ∈ {5, 7, 9} at the end of each round. The value of the constant is different
in each pass of the Tiger hash function.

After the last round of the state update transformation, the chaining variables
A−1, B−1, C−1 and the output values of the last pass A23, B23, C23 are combined,
resulting in the final value of one iteration (feed forward). The result is the final
hash value or the initial value for the next message block.

A′
23 = A−1 ⊕A23

B′
23 = B−1 −B23

C′
23 = C−1 + C23

2.2 Key Schedule

Between two passes of Tiger, there is one key schedule. The key schedule is
an invertible function which ensures that changing a small number of bits in
the message will affect a lot of bits in the next pass. While the message words
X0, . . . , X7 are used in the first pass to update the chaining variables, the re-
maining 16 message words, 8 for the second pass and 8 for the third pass, are
generated by applying the key schedule as shown below.

(X8, . . . , X15) = KeySchedule(X0, . . . , X7)
(X16, . . . , X23) = KeySchedule(X8, . . . , X15)

The key schedule modifies the inputs (Y0, . . . , Y7) in two steps, as shown below.

first step second step

Y0 = Y0 − (Y7 ⊕ A5A5A5A5A5A5A5A5) Y0 = Y0 + Y7

Y1 = Y1 ⊕ Y0 Y1 = Y1 − (Y0 ⊕ ((¬Y7) � 19))
Y2 = Y2 + Y1 Y2 = Y2 ⊕ Y1

Y3 = Y3 − (Y2 ⊕ ((¬Y1)� 19)) Y3 = Y3 + Y2

Y4 = Y4 ⊕ Y3 Y4 = Y4 − (Y3 ⊕ ((¬Y2) � 23))
Y5 = Y5 + Y4 Y5 = Y5 ⊕ Y4

Y6 = Y6 − (Y5 ⊕ ((¬Y4)� 23)) Y6 = Y6 + Y5

Y7 = Y7 ⊕ Y6 Y7 = Y7 − (Y6 ⊕ 0123456789ABCDEF)

The final values (Y0, . . . , Y7) are the output of the key schedule and the message
words for the next pass.

3 Previous Attack on Tiger

In this section, we will briefly describe the attack of Kelsey and Lucks on
Tiger-16. A detailed description of the attack is given in [2]. For a good un-
derstanding of our results, it is recommended to study it very carefully. Space
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restrictions do not permit us to copy all the important details of the original
attack. The attack on Tiger-16 can be summarized as follows.

1. Choose a characteristic for the key schedule of Tiger that holds with high
probability (ideally with probability 1).

2. Use a kind of message modification technique [5] developed for Tiger to
construct certain differences in the chaining variables for round 7, which can
then be canceled by the differences in the message words in the following
rounds. This leads to a collision in the Tiger hash function after 16 rounds.

In the following we will describe both parts of the attack in detail.

3.1 High Probability Characteristic for the Key Schedule of Tiger

For the attack Kelsey and Lucks used the key schedule difference given in (1). It
has probability 1 to hold in the key schedule of Tiger. This facilitates the attack.

(I, I, I, I, 0, 0, 0, 0)→ (I, I, 0, 0, 0, 0, 0, 0) (1)

Note that I denotes a difference in the MSB of the message word. Hence, the
XOR difference (denoted by Δ⊕) and the additive difference (denoted by Δ+)
is the same in this particular case.

To have a collision after 16 rounds, there has to be a collision after round 9
as well. Hence, the following differences are needed in the chaining variables for
round 7 of Tiger.

Δ⊕(A6) = I, Δ⊕(B6) = I, Δ⊕(C6) = 0 (2)

Constructing these differences in the chaining variables after round 6 is the most
difficult part of the attack. Therefore, Kelsey and Lucks adapted the idea of
message modification from the MD-family to Tiger. The main idea of message
modification is to use the degrees of freedom we have in the choice of the message
words to control the differences in the chaining variables. In the case of Tiger,
the differential pattern given in (2) has to be met in order to have a collision
after 16 rounds of Tiger.

3.2 Message Modification by Meeting in the Middle

In this section, we explain the idea of message modification in Tiger according to
Fig. 2. Assume that the values of (Ai−1, Bi−1, Ci−1) and the additive differences
Δ+(Ai−1), Δ+(Bi−1), Δ+(Ci−1) are known as well as the additive differences
in the message words Xi and Xi+1. Then the additive difference Δ+(Ci+1) can
be forced to be any difference δ∗ with probability 1/2 by applying the birthday
attack. As depicted in Fig. 2, the additive difference Δ+(Ci+1) depends on the
additive differences Δ+(Bi−1), Δ+(odd(Bi)), and Δ+(even(Bi+1)).

For any nonzero XOR difference Δ⊕(Bi+1[even]), one expect about 232 dif-
ferent corresponding additive output differences Δ+(even(Bi+1)). Similarly, for
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even

even

odd

odd

Xi

Δ+(Ci+1) = δ∗

Xi+1

Ai−1 Bi−1 Ci−1

Ai Bi Ci

Ai+1 Bi+1 Ci+1

Fig. 2. Outline of the message modification step in Tiger

any nonzero XOR difference Δ⊕(odd(Bi)), one expect close to 232 corresponding
different additive output differences Δ+(odd(Bi)).

Thus, if the XOR differences Δ⊕(Bi+1[even]) and Δ⊕(Bi[odd]) both are
nonzero, a meet-in-the-middle (MITM) approach can be applied to solve the
following equation:

mult× (Δ+(Bi−1) + Δ+(odd(Bi)))−Δ+(even(Bi+1)) = δ∗ .

This is done by performing the following two steps:

1. Store the 232 candidates for Δ+(odd(Bi)) in a table.
2. For all 232 candidates for Δ+(even(Bi+1)), test if some Δ+(odd(Bi)) exists

with Δ+(odd(Bi)) = (Δ+(even(Bi+1)) + δ∗)/(mult)−Δ+(Bi−1) .

This technique takes 233 evaluations of each of the functions odd and even,
which is equivalent to about 229 evaluations of the compression function of Tiger
reduced to 16 rounds and some 233 64-bit word units of storage space.

Note that if the choice of the values of the message words Xi and Xi+1 is
constrained by k-bits then the success probability of the message modification
step is reduced by a factor of 2k. This is referred to as a constrained message
modification step.

3.3 The Collision Attack on Tiger-16

With the key schedule difference given in Section 3.1 and the new developed
message modification technique for Tiger described in Section 3.2, Kelsey and
Lucks show a collision attack on Tiger reduced to 16 rounds. The method can
be summarized as follows (see [2]).
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0. Precomputation: Find an additive difference L+ with a low Hamming weight
XOR difference L⊕ which can be canceled out by a suitable choice for
X6[even]. In the analysis Kelsey and Lucks assume, that an additive dif-
ference L can be found which is consistent to an 8-bit XOR difference Lxor.
This step of the attack has a complexity of about 227.

1. Choose suitable values for X0, X1, X2[even] such that Δ⊕(A2), Δ⊕(B2),
Δ⊕(C2) are useful. A difference is called useful if there are differences in the
even and odd bytes of the word. This step adds negligible cost to the attack
complexity.

2. Do a message modification step to get a suitable XOR-difference Lxor in
C3 which is consistent with the additive difference L of the precomputation
step. This step has complexity of about 236 and determines the message
words X2[odd] and X3[even].

3. Do a constrained message modification step to get Δ⊕(C4) = I. This deter-
mines X3[odd] and X4[even]. Completing this step has complexity of about
240. This is due to the fact that 8 bits of X4 (4 bits in X4[even] and 4 bits
in X4[odd]) are constrained by the transition of the XOR difference Lxor in
C3 to the additive difference L in B4.

4. Do a constrained message modification step to get Δ⊕(C5) = I. This deter-
mines X4[odd] and X5[even]. Completing this step has complexity of about
244.

5. Determine X6[even] by using C5 and the results of the precomputation step.
This adds no additional cost to the attack complexity.

Hence, a collision in Tiger-16 can be found with a complexity of about 244

applications of the compression function. In the attack a characteristic for the
key schedule differences is used which has probability 1 as well as a message
modification technique developed for Tiger to force certain differences in the
chaining variables after round 6 which can then be canceled by the differences
in the expanded message words X8 and X9. For a detailed description of the
attack we refer to [2].

4 A Collision Attack on Tiger-19 – Method 1

In this section we present a collision attack on Tiger-19 with complexity of about
262 hash computations. First, we show how the attack of Kelsey and Lucks can
be extended to construct a pseudo-collision in Tiger-19 with complexity of about
244 hash computations. Second, we show how this pseudo-collision can be turned
into a collision for Tiger-19 by using a kind of neutral bit technique. The collision
attack on Tiger-19 has a complexity of 262 hash computations.

4.1 A Pseudo-collision for Tiger-19

In this section we will show how to construct a pseudo-collision for Tiger-19 with
a complexity of about 244. The attack is an extension of the attack of Kelsey
and Lucks on Tiger-16.
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To construct a pseudo-collision in Tiger-19 we use the key schedule difference
given in (3). It has probability 1 to hold in the key schedule of Tiger which
facilitates the attack.

(0, 0, 0, I, I, I, I, 0)→ (0, 0, 0, I, I, 0, 0, 0)→ (0, 0, 0, I, I, I, I, I) (3)

Note that the key schedule difference from round 3 to 18 is the 16-round differ-
ence used by Kelsey and Lucks in the attack on Tiger-16. Hence, we can use the
same attack strategy which was used to break Tiger-16 in the attack on Tiger-19
as well. The attack work as follows:

1. Choose arbitrary values for the chaining variables A2, B2, C2 for round 3.
2. Employ the attack on 16 rounds, to find message words X3, . . . , X7 and

X8[even], X9[even] such that the output after round 18 collides.
3. To compute the real message words X0, . . . , X7, we have to choose suitable

values for X8[odd], X9[odd] and X10, . . . , X15 such that X4, X5, X6 and X7

are correct after computing the key schedule backward. Note that X3 can be
chosen freely, because we can modify C2 such that C2 ⊕X3 stay constant.
In detail, we choose arbitrary values for X8[odd], X9[odd], X10, X11 and
calculate X12, . . . , X15 as follows.

X12 = (X4 ⊕ (X11 −X10))− (X11 ⊕ (¬X10 � 23))
X13 = (X5 + (X12 + (X11 ⊕ (¬X10 � 23))))⊕X12

X14 = (X6 − (X13 ⊕X12 ⊕ (¬(X12 + (X11 ⊕ (¬X10 � 23)))� 23))) + X13

X15 = (X7 ⊕ (X14 −X13))− (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and guarantees that
X4, X5, X6 and X7 are always correct after computing the key schedule
backward.

4. To compute the initial chaining values A−1, B−1 and C−1 run the rounds 2,
1 and 0 backwards.

Hence, we can construct a pseudo-collision for Tiger-19 with a complexity of
about 244 applications of the compression function. We can turn this pseudo-
collision into a collision for Tiger-19. This is described in detail in the next
section.

4.2 From a Pseudo-collision to a Collision in Tiger-19

Constructing a collision in Tiger-19 works quite similar as constructing the
pseudo-collision. Again we use the key schedule difference given in (3) and em-
ploy the attack on 16 rounds of Tiger. The attack can be summarized as follows.

1. Choose arbitrary values for X0,X1 and X2 and compute the chaining vari-
ables A2, B2, C2 for round 3.

2. Employ the attack on 16 rounds, to find the message words X3, . . . , X7 and
X8[even], X9[even] such that the output after round 18 collides.
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3. To guarantee the X8[even], X9[even] are correct after applying the key
schedule, we use the degrees of freedom we have in the choice of X0, X1, X2,
X3. Note that for any difference we introduce into X0, you can introduce
canceling differences into X1, X2, X3 such that A2, B2 and B3 = C2 ⊕ X3

stay constant. This is a kind of local collision for the first 4 rounds of Tiger.

Xnew
0 = arbitrary

Xnew
1 = Cnew

0 ⊕ C0 ⊕X1

Xnew
2 = Cnew

1 ⊕ C1 ⊕X2

Xnew
3 = Cnew

2 ⊕ C2 ⊕X3

After testing all 264 possible choices for X0 and changing X1, X2, and X3

accordingly such that A2, B2 and B3 stay constant, we expect to get the
correct values for X8[even], X9[even] after applying the key schedule of
Tiger.

Hence, this step of the attack has a complexity of at about 264 key
schedule computations and 3 × 264 round computations. This is equivalent
to about 262 applications of the compression function of Tiger-19.

Thus, we can construct a collision in Tiger-19 with complexity of about 262 +
244 ≈ 262 applications of the compression function. We are not aware of any
other collision attack on Tiger which works for so many rounds. The best collision
attack on Tiger so far was for 16 rounds by Kelsey and Lucks described in [2].

5 Collision Attack on Tiger-19 – Method 2

We now present another method to find collisions for the 19-round Tiger. The
attack complexity of this attack method is slightly higher than the one in the
previous attack method. One difference from the previous method is that the
first method uses larger space of message than the second one. This can been
seen where X0 is used in each attack. The first method uses whole 64 bits of X0

and the second one uses less bits of X0.
The attack described here is also an extension of the attack by Kelsey and

Lucks. However, our attack is in a different situation from their attack. Their
attack precomputes the additive difference L and then use X6 to cancel it out
in the main phase. Similarly, our attack precomputes the additive difference α
and then use X9 to cancel it out in the main phase. The key difference is that
their attack controls X6 in a deterministic way but our attack has to do in a
probabilistic way due to the key schedule. This causes the main difficulty we
have to solve here.

The outline of the attack is as follows:

1. Search for a good differential characteristic of the message words for 19
rounds.

2. Construct a good differential characteristic for 19 rounds by considering the
message word differences expected from the characteristic in Step 1.
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Table 3. A collision-producing differential characteristic

i Δ(Ai) Δ(Bi) Δ(Ci) Δ(Xi)

3 0 I * I

4 * * * I

5 * * * I

6 * * γ I

7 * γ I 0

8 α * I 0

9 I I 0 0

10 I 0 I 0

11 0 0 I I

12 0 0 0 I

3. Divide this characteristic for round 3-9 into two consecutive characteristics
(characteristic for round 3-7 and characteristic for round 8-9) so that we
work on them independently.

4. Do the MITM step for the characteristic for round 3-7. Determine the chain-
ing values A3, B3, B3 and the message words X4, X5, X6, X7[even].

5. Do the MITM step for the characteristic for round 8-9 by varying the mes-
sage words X0, X1, X2, X3, X7[odd] while keeping the previously determined
values unchanged. Determine all of the values.

In the attack, we use the same characteristic for the key schedule as in Sec-
tion 4 and then construct a differential characteristic as shown in Table 3, where
α and γ are some useful values in our attack. We will explain how these value
are chosen in the next section.

5.1 The Precomputation Phase of the Attack

Before performing our attack, we need an algorithm to find a good differential
characteristic starting with Δ+(C6) and ending with Δ+(C9) as shown in Ta-
ble 3. We need the additive difference Δ+(even(B9)) to be equal to Δ+(A8).
The question we have here is what difference we want in C6 for obtaining a
high probability. A solution to this is to compute the differences backward start-
ing from the additive difference Δ+(B9) = I. By performing experiments, we
searched for α and γ such that the corresponding differential probabilities p1,
p2 are high2. As a result, we found a high probability differential characteristic
which is shown in the following:

Δ+(B9) = I
even→ Δ+(even(B9)) = Δ+(A8) = α with probability p2 ,

Δ+(A8) = α
÷,+→ Δ(B7)+ = γ with probability 1 ,

Δ+(B7) = γ
⊕→ Δ(C6)+ = Δ+(B7 ⊕X7) = γ with probability p1 .

2 We have searched some sub space for the values α and γ so far. Searching the whole
space could give us the better values for both of two.
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Here the additive differences are

α = 0x80c02103d43214d6 ,

γ = α/7 mod 264 = 0xedd24ddbf9be02fa ,

and probabilities are p1 = 2−26 and p2 = 2−28. We here study the above char-
acteristic with probability p1 in detail.

In general, for a pair of data (J , J ′) and some constant value Q, if we assume
the Hamming weight of Δ⊕(J, J ′) to be k, then the probability that Δ+(J, J ′) =
Δ+(J ⊕Q, J ′ ⊕Q) is 2−k. This means that k bits of Q are constrained3 to hold
the above equation. Therefore, in the case of the characteristic with probability
p1 = 2−26, we expect α to have 26 active bits as a XOR difference, which imposes
a 26-bit condition on X7.

Because of the large number of active bits, it seems plausible to assume that
there is a 13-bit condition on X7[even] and a 13-bit condition on X7[odd]. We
denote the probabilities that these two conditions hold by p1,even = p1,odd = 2−13

respectively.

5.2 The Main Phase of the Attack

We here describe how the main attack phase is performed. For a preparation we
present the following lemma explaining the generic birthday attack which will
be used for the MITM technique to work.

Lemma 1. Consider two functions f and g having the same output space of n
bit length. If we assume that f and g are random and we have r1 inputs for f
and r2 inputs for g, the probability of having a pair of inputs (x, y) producing a
collision f(x) = g(y) is given by p = 1 − exp(−r1r2/2n) [3].

This tells us that the MITM step works with some probability even if the number
of output differences of the odd or even is less than 232. The main attack phase
is performed as follows.

1. Arbitrarily choose the chaining values A3, B3, C3 for round 4.
2. Choose X4[even] and ensure that the difference Δ⊕C4 is useful. By useful we

mean that the corresponding XOR difference has at least 1 active bit in each
odd byte for having the 232 values for the additive difference Δ+odd(B5).
The work here is negligible.

3. Choose X4[odd] and X5[even] to ensure that the difference is Δ⊕C5 useful.
4. Perform a MITM step by choosing X5[odd] and X6[even] to get an addi-

tive difference γ in C6. The expected work here is approximately 233 evalua-
tions of both of the odd function and the even function, and we determine
X5[odd] and X6[even]. Each failure requires that we go back to Step 3.

3 For example, an XOR difference of 1 is consistent with an additive difference of
either −1 or +1. If the low bit in J is 0, the low bit in J ′ will be 1, and reaching an
additive difference of −1 will require fixing the low bit of Q to 1.
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Fig. 3. The information flow from C6 to C9

5. Set 13 bits of X7[even] to hold the 13-bit condition on X7[even] derived in
the precomputation phase in Sect. 5.1 and then perform a MITM step using
the generic birthday attack of Lemma 1. This is performed by choosing
X6[odd] and the rest bits of X7[even] to get additive difference I in C7.

Each failure requires that we go back to Step 3. The expected work here
is about 213 computations, each of which consists of two kinds of evaluations:
233 evaluations of the odd function and 219 evaluations of the even function.
We determine X6[odd] and X7[even] at the end of this step.



Update on Tiger 75

6. Set 13 bits of X7[odd] to hold the 13-bit condition on X7[odd] derived in
the precomputation phase in Sect. 5.1 and then perform a MITM step to get
the additive difference I in C8. This is done by randomly choosing the rest
bits of X7[odd] and randomly generating X8[even].

The message word X8[even] is generated in the following way: Randomly
choose the message word X0 and determine X1, X2, and X3 so that the re-
sulting A3, B3, C3 are consistent with A3, B3, C3 chosen in Step 1. We then
determine X8[even] from the key schedule.

The above MITM step is performed with 219 values for Δ+(A7) and 228

values for Δ+(even(B8)) 4. According to Lemma 1, the success probability
of this attack is 2−17. Therefore the expected work here is about 218 com-
putations, each of which consists of two kinds of evaluations: 219 evaluations
of the odd function and 228 evaluations of the even function.

7. ComputeX9[even] byprocessing thekey schedule andcheck ifΔ+even(B9) =
Δ+(A8), which means Δ+(C9) = 0. Each failure requires that we go back to
Step 6.

5.3 Complexity Analysis

We discuss the attack complexity in the attack in Sect. 5.2. The important thing
to consider when we estimate the complexity is that the task of Steps 1-5 can be
performed independently of the task of Steps 6-7. We first perform Steps 1-5 and
then perform Steps 6-7 without changing the values which have been determined
in Steps 1-5.

In order to determine X4, X5, X6, X7[even] by performing from Step 1 to Step
5, the required time complexity is equivalent to p−1

1,even · 233 evaluations of the
odd function. In order to determine X0, X1, X2, X3, X7[odd] by performing from
Step 6 to Step 7, the required time complexity is equivalent to p−1

2 · 218 · 228 =
228 · 246 = 274 evaluations of the odd function.

The time complexity required by this attack is dominated by the latter part,
which is equivalent to 269 computations of the compression function of Tiger
reduced to 19 rounds.

6 A Pseudo-Near-Collision for Tiger-22

In this section we present a pseudo-near-collision for Tiger-22 with complexity
of about 244. Similar as we construct a pseudo-collision in Tiger-19, we can con-
struct a pseudo-near-collision in Tiger-22. Again we use a key schedule difference
that holds with probability 1 in the key schedule of Tiger and employ the attack
on 16 rounds of Tiger. The key-schedule difference used in the attack is given
in (4).

(0, 0, I, 0, 0, 0, I, I)→ (I, 0, 0, 0, 0, 0, I, I)→ (0, 0, 0, 0, 0, 0, I, I) (4)
4 Because of the XOR difference Δ⊕(B8) = I , there is only one active S-box at the

input of the even(B8). This makes the number of the additive difference smaller
than 232.
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The attack work as follows:

1. Choose arbitrary values for the chaining variables A5, B5, C5 for round 6.
2. Employ the attack on 16 rounds, to find message words X6, . . . , X10 and

X11[even], X12[even] such that the output after round 21 collides.
3. To compute the real message words X0, . . . , X7, we have to choose suitable val-

ues for X11[odd], X12[odd] and X13, . . . , X15 to guarantee that X7 is correct
after computing the key schedule backward. Therefore, we choose arbitrary
values for X11[odd], X12[odd], X13, X14 and calculate X15 as follows:

X15 = (X7 ⊕ (X14 −X13))− (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and guarantees that X7

is correct after computing the key schedule backward. Note that X6 can be
chosen freely, because we can modify C5 such that C5 ⊕X6 stays constant.

4. Run the rounds 5, 4, 3, 2, 1 and 0 backwards to compute the initial values
A−1, B−1 and C−1. Since there is a difference in the message word X2 in the
MSB, we have to introduce the same difference in the initial value to cancel
it out, namely

Δ⊕(B−1) = I .

Since the difference is in the MSB this happens with probability 1.
5. Of course, the feed forward destroys the pseudo-collision. After the feed

forward we get the same output differences as in the initial values. Since the
difference is in the MSB this has probability 1.

Δ⊕(B′
21) = Δ⊕(B−1 −B21) = I

Hence, we can construct a pseudo-near-collision for Tiger-22 with complexity of
about 244. For an ideal hash function with a hash value of 192-bit we would
expect a complexity of about 290 to construct a pseudo-near-collision with a
one bit difference. Note that a pseudo-near-collision for Tiger-21 with a one bit
difference can be found with the same complexity. A detailed description of the
attack is given in the appendix.

7 A Pseudo-collision for Tiger-23/128

Tiger/128 is a variant of Tiger, where the final hash value is truncated to 128
bit. This variant was specified in [1] to make Tiger compatible to MD5. In
this section, we present a pseudo-collision for 23 rounds of Tiger/128. In detail,
we can turn the pseudo-near-collision for Tiger-22 into a pseudo-collision for
Tiger-23/128 by adding one additional round. If we add one round then the
output after 23 rounds has the following differences in the chaining variables:

Δ⊕(A22) = 0, Δ⊕(B22) = I, Δ⊕(C22) �= 0 (arbitrary) .

Due to the feed-forward the difference in B22 cancels out with probability 1.
Hence, we have a pseudo-collision in Tiger-23/128, since only register A and B
are used for the final hash value of Tiger-128. The attack has a complexity of
about 244 applications of the compression function.



Update on Tiger 77

8 Conclusion

In [2], Kelsey and Lucks discussed the possibility of extending their attack to
more rounds of Tiger and the applicability of their attack techniques to the full
hash function.

In this article, we presented two strategies for constructing collision in the
Tiger-19 hash function. The first has a complexity of about 262 hash computations
and the second has a slightly higher complexity of about 269 hash computations.

The best attack on a reduced variant of Tiger so far was proposed by Kelsey
and Lucks in [2]. They showed a collision attack on Tiger-16 with a complexity of
about 244 and a pseudo-near-collision for a variant of Tiger with 20 rounds with
a complexity of about 248. We have extended their approach to show collision
attacks on Tiger-19 and presented a pseudo-near-collision for Tiger-22 and a
pseudo-collision for Tiger-23/128. Based on this we conclude that the security
margin of Tiger is not as large as one could hope for. It remains a topic of further
research to determine whether the attacks can be extended to Tiger variants with
more than 23 rounds.
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A A Pseudo-Near-Collision for Tiger-21

In a similar way as we construct a pseudo-near-collision in Tiger-22, we can
construct a pseudo-near-collision for Tiger-21. For the attack we use the key-
schedule difference given in (5). It has probability 1 to hold in the key-schedule
of Tiger.

(0, I, 0, 0, 0, I, I, I)→ (0, 0, 0, 0, 0, I, I, 0)→ (0, 0, 0, 0, 0, I, I, I) (5)

Again we use the attack on 16 rounds of Tiger (described in Section 3) to con-
struct a pseudo-near-collision in Tiger-21. The attack work as follows:

1. Choose arbitrary values for the chaining variables A4, B4, C4 for round 5.
2. Employ the attack on 16 rounds, to find message words X5, . . . , X9 and

X10[even], X11[even] such that the output after round 20 collides.
3. To compute the real message words X0, . . . , X7, we have to choose suitable

values for X10[odd], X11[odd] and X12, . . . , X15 such that X6 and X7 is
correct after computing the key schedule backward. Therefore, we choose
arbitrary values for X10[odd], X11[odd] and X12, X13 and calculate X14, X15

as follows:

X14 = (X6 − (X13 ⊕X12 ⊕ (¬(X12 + (X11 ⊕ (¬X10 � 23)))� 23))) + X13

X15 = (X7 ⊕ (X14 −X13))− (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and X6, X7 are always
correct after computing the key schedule backward. Note that X5 can be
chosen freely, because we can modify C4 such that C4 ⊕X5 stay constant.

4. Run the rounds 4, 3, 2, 1 and 0 backwards to compute the initial values
A−1, B−1 and C−1. Since there is a difference in the message word X1 in
the MSB, we introduce the same difference in the initial value to cancel it
out. Since the difference is in the MSB, this happens with probability 1.

Δ⊕(A−1) = I

5. Of course, the feed forward destroys the pseudo-collision. After the feed
forward we get the same output differences as in the initial values:

Δ⊕(A′
20) = Δ⊕(A−1 ⊕A20) = I .

Hence, we can construct a pseudo-near-collision for Tiger-21 with complexity
of about 244 applications of the compression function. For an ideal hash func-
tion with a hash value of 192-bit we would expect a complexity of about 290

applications of the compression function instead of 244.

B A Pseudo-collision for Tiger-21

In a similar way as we construct a pseudo-near-collision in Tiger-21, we can
construct a pseudo-collision in Tiger-21. For the attack we use again the key-
schedule difference given in (5). The attack can be summarized as follows:
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1. Choose arbitrary values for the chaining variables A0, B0, C0 for round 1.
2. Choose random values for X1, X2, X3, X4 and calculate A4, B4, C4.
3. Employ the attack on 16 rounds of Tiger, to find message words X5, . . . , X9

and X10[even], X11[even] such that the output after round 20 collides.
4. To compute the real message words X0, . . . , X7, we have to choose suitable

values for X0, X1 and X2 such that X8, X9 and X10[even], X11[even] are
correct after computing the key schedule. Note that X0 and X1 can be cho-
sen freely, because we can modify C0 and C1 such that C−1⊕X0 and C0⊕X1

stay constant. Since a difference is introduced by X1, we have after round 1
that Δ⊕(C1) �= 0. Hence, X2 can not be chosen freely.

However, since we can choose the value of C0 ⊕X1 in the beginning of
the attack, we can guarantee that the Hamming weight of Δ⊕(C1) is small.
Computer experiments show that the smallest weight we can get is 22. Con-
sequential there are 264−22 = 242 possible choices for C1 and X2 such that
Δ⊕(C1⊕X2) and C1⊕X2 stay constant. Hence, we have 264+64+42 = 2170 de-
grees of freedom in the key schedule of Tiger. Therefore, we have to repeat the
attack at most 222 times to guarantee that X8, X9 and X10[even], X11[even]
are correct after applying the key schedule.

Hence, we can find a pseudo-collision in Tiger-21 with a complexity of about
244+22 = 266 applications of the compression function. Note that we assume in
the analysis that it is computational easy to find suitable values for X0, X1, X2.
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Abstract. In this paper, we propose a new hash function based on RC4
and we call it RC4-Hash. This proposed hash function produces variable
length hash output from 16 bytes to 64 bytes. Our RC4-Hash has several
advantages over many popularly known hash functions. Its efficiency is
comparable with widely used known hash function (e.g., SHA-1). Seen
in the light of recent attacks on MD4, MD5, SHA-0, SHA-1 and on
RIPEMD, there is a serious need to consider other hash function design
strategies. We present a concrete hash function design with completely
new internal structure. The security analysis of RC4-Hash can be made in
the view of the security analysis of RC4 (which is well studied) as well as
the attacks on different hash functions. Our hash function is very simple
and rules out all possible generic attacks. To the best of our knowledge,
the design criteria of our hash function is different from all previously
known hash functions. We believe our hash function to be secure and
will appreciate security analysis and any other comments.

Keywords: Hash Function, RC4, Collision Attack, Preimage Attack.

1 Introduction

Hash functions are of fundamental importance in cryptographic protocols. They
compress a string of arbitrary length to a string of fixed length. We know that dig-
ital signatures are very important in information security. The security of digital
signatures depends on the cryptographic strength of the underlying hash func-
tions. Other applications of hash functions in cryptography are data integrity,
time stamping, password verification, digital watermarking, group signature, e-
cash and in many other cryptographic protocols.

Hash functions are usually designed from scratch or made out of a block cipher
in a black box manner. Some of the well studied hash functions constructed from
scratch are SHA-family [31,9], MD4 [26], MD5 [27], RIPEMD [25], Tiger [1],
HAVAL [39] etc. Whereas PGV hash function [24], MDC2 [6] etc. are designed
in a black box manner.

Since among SHA-family SHA-0 [31], SHA-1 [9] were broken by Wang et
al. [35,36], we can not be confident about the security of other algorithms in the
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SHA-family because their design principles are similar. Likewise MD4, MD5,
RIPEMD and HAVAL were also broken [33,34,37,38]. So, we need to design
new, variable length hash algorithms with different internal structures keeping
security and efficiency in mind.

In response to the SHA-1 vulnerability [36] that was announced in Feb. 2005,
NIST held a Cryptographic Hash Workshop on 2005 to solicit public input on
its cryptographic hash function policy and standards. NIST continues to recom-
mend a transition from SHA-1 to the larger approved hash functions (SHA-224,
SHA-256, SHA-384, and SHA-512). In response to the workshop, NIST has also
decided that it would be prudent in the long-term to develop an additional hash
function through a public competition, similar to the development process for
the block cipher in the Advanced Encryption Standard (AES).

It will be useful and interesting to propose some robust hash functions which
are based on some well studied and structurally different from the broken class.
In this direction we propose a hash function (RC4-Hash) whose basic structure is
based on RC4. It also has the desirable advantage of variable length hash output.
In fact our design provides hash output from 16 bytes to 64 bytes with little or no
modification in the actual algorithm. It provides awide range of security depending
on the applications. In this context it may be noted that there are very few hash
families providing variable size hash output. We provide security analysis against
meaningful known attacks. We take care of the weakness of RC4 in a manner such
that it will not affect the security of the Hash function. Many results on RC4 can
be used to show the security of RC4-Hash against known attacks and importantly
resistances against attacks by Wang et al. and Kelsey-Schneier second preimage
attack [16]. Its efficiency is also comparable with SHA-1.

The rest of the paper is organized as follows. In Section 2 we give a simple
description and some of the security analysis of RC4. We also give a short note
on hash functions. RC4 based hash function is analyzed in Section 3 followed
by a security/performance analysis of RC4-Hash in Section 4. We conclude in
Section 5.

2 Preliminaries

We first describe the RC4 algorithm and its known security analysis which are
relevant to this paper. Then we give a short note on hash functions. RC4 was
designed by Ron Rivest in 1987 and kept as a trade secret until it leaked out
in 1994. It consists of a table of all the 256 possible 8-bit words and two 8-bit
pointers. Thus it has a huge internal state of log2(28!× (28)2) ≈ 1700 bits. For
a detailed discussion on RC4 see Master’s thesis of Itsik Mantin [18].

2.1 RC4 Algorithm

Let [N ] := [0, N−1] := {0, 1, · · · , N−1} and Perm(A) be the set of all permuta-
tions on A. In this paper, we will be interested on Perm([N ]) (or we write Perm),
where N = 256 = 28. For S ∈ Perm, we denote S[i] to the value of the permuta-
tion S at the position i ∈ [N ]. In this paper, the addition modulo N is denoted
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by “ + ”, otherwise it will be stated clearly. The function Swap(S[i], S[j]) means
the swapping operation between S[i] and S[j]. The key-scheduling algorithm and
key-generation algorithm are defined in Figure 1.

RC4-KSA(K)

for i = 0 to N – 1
S[i] = i;

j = 0;
for i = 0 to N – 1

j = j + S[i] + K[i mod κ];
Swap(S[i],S[j]);

RC4-PRBG(S)

i = 0, j = 0;
Pseudo-Random Bytes Generation:

i = (i + 1) mod N;
j = (j + S[i]) mod N;
Swap(S[i],S[j]);
out = S[(S[i] + S[j]) mod N];

Fig. 1. The Key Scheduling Algorithm (RC4-KSA) and Pseudo-Random Byte Gen-
eration Algorithm (RC4-PRBG or PRBG) in RC4. Here K = K[0] ‖ · · · ‖ K[κ − 1],
K[i] ∈ [N ]. and κ is the size of the secret key in bytes.

2.2 Some Relevant Security Analysis of RC4

In this section we briefly explain few attacks on RC4 which are important in this
paper while considering the security analysis of RC4-Hash.

The Distribution After Key-Scheduling Algorithm (or RC4-KSA) Is
Close to Uniform

RC4 can be viewed as a close approximation of exchange shuffle. In exchange
shuffle, the value of j in Key-Scheduling Algorithm is chosen randomly (unlike
RC4-KSA where it is updated recursively based on a secret key). Simion and
Schmidt [30] studied the distribution of the permutation after exchange shuffle.
Mironov [21] showed that the statistical distance between the output after t

exchange shuffles and uniform distribution on permutations is close to e
−2t
N .

Thus, when t = N , it has significant statistical distance which is e−2. At the same
time, if the number of random shuffle is large compared to N then the statistical
distance is close to zero which means the two distributions are almost identical.
Even though RC4-KSA is not the same as exchange shuffle, one can hope for
a similar property. More precisely, we assume that if K is chosen randomly
then the distribution of the pair (S, j) after the execution of RC4-KSA is close
to uniform distribution i.e., (S, j) = RC4-KSA(K) is uniformly distributed on
Perm× [N ] provided K is chosen uniformly.

The Distribution of RC4-PRBG Output Is Not Uniform

There are many observations [11,12,20,23] which proves that the distribution
of RC4-PRBG(S) can not be uniform even if we assume that S is uniformly
distributed. For example,
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1. Mantin and Shamir [20] showed that the probability of second byte being
zero is close to 2

N as compared to the probability 1
N in case of random Byte

generation.
2. Paul and Preneel [23] showed that the probability that first two bytes are

equal is close to 1
N (1− 1

N ).
3. Fluhrer and McGrew [11] computed probabilities for different possible

outputs (e.g., the first two bytes are (0,0) has probability close to 1
N2 +

1
N3 ) and showed that the probability is not the same as that of uniform
distribution.

4. A Finney [7] state at any stage i in RC4-PRBG is a pair (S, j) ∈ Perm× [N ]
where j = i + 1 and S[j] = 1. One can check that if we have a Finney state
in PRBG just before updating i then next state is also Finney. The converse
is also true i.e., the Finney state should arise from a Finney state only. It is
easy to see that if (S, 1) is a Finney state at stage i = 0, then all N output
from PRBG are distinct. Probability that a pair (S, j) chosen randomly for
some i is a Finney state is 1

N2 . One might expect that the output of PRBG
is not uniform (as the output of PRBG with distinct bytes are more likely
due to the Finney states).

5. Golic [12] proved the following result. Let the output n-bit word sequence of
RC4 is Z = (Zt)t=∞

t=1 and z = (zt)t=∞
t=1 denote the least significant bit output

sequence of RC4. Let z̈ = (z̈t = zt + zt+2)t=∞
t=1 denotes the second binary

derivative then z̈ is correlated to 1 with the correlation coefficient close to
15× 2−3n and output sequence length required to detect a statistical weak-
ness is around 64n/225.

Besides these attacks there are some more attacks on RC4, for example, Fault
analysis [2,15]. But those attacks are not meaningful in the contaxt of hash
function cryptanalysis.

2.3 A Brief Note on Hash Function

A hash function is usually designed as follows : First a compression function
C : {0, 1}c × {0, 1}a → {0, 1}c is designed. We denote C(h, x) = h′ by h

x−→ h′.
Then given a message M such that |M | < 264, a pad is appended at the end
of the message. For example, M := pad(M) = M ‖ 10k ‖ bin64(|M |), where
bin64(x) is the 64-bit binary representation of x and k is the least non-negative
integer such that |M | + k + 65 ≡ 0 mod a. Now write M = M1 ‖ · · · ‖ Mt (for
some t > 0) where |Mi| = a. We choose an initial value IV := h0 ∈ {0, 1}c and
then compute the hash values

h0
M1−→ h1

M2−→ · · · Mt−1−→ ht−1
Mt−→ ht

where ht is the final hash value, i.e., H(M) = ht and |hi| = c. The function C
is known as the compression function and the iteration method is known as the
classical iteration.
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We have three most important notions of security in hash functions which we
describe below. For more detail discussions one can see [32].

1. Collision Attack: Find M1 �= M2, such that H(M1) = H(M2).
2. Preimage Attack: Given a random y ∈ {0, 1}c, find M so that H(M) = y.
3. Second Preimage Attack: Given a message M1, find M2 such that

H(M1) = H(M2).

If it is hard to find any of the above attack (or attacks) then we say the hash
function is resistant to these attacks. For example, if there is no efficient collision
finding algorithm then the hash function is said to be collision resistant. For a
c-bit hash function, exhaustive search requires 2c/2 complexity for collision and
2c complexity for both preimage and second preimage both. In case of collision
attack, birthday attack is popularly used exhaustive search. Recently, Kelsey-
Schneier [16] has shown a generic attack for second preimage for classical hash
function with complexity much less than 2c.

Subsequently, a wide pipe hash design has been suggested [17]. In this de-
sign, there is an underlying function C : {0, 1}w × {0, 1}a → {0, 1}w, called
compression-like function and a post processing function g : {0, 1}w → {0, 1}c.
Given a padded message M = M1 ‖ · · · ‖ Mt, with |Mi| = a, the hash value is
computed as follows :

h0
M1−→ h1

M2−→ · · · Mt−1−→ ht−1
Mt−→ ht, H(M) = g(ht).

If w (the intermediate state size) is very large compare to c (the final hash size),
then the security of H may be assumed to be strong [17] even though there
are some weakness in the compression-like function C. Kelsey-Schneier second
preimage attack also will not work if w > 2c. The post processor g need not be
very fast as it is applied once for each message. Thus, design of a wide pipe hash
function has several advantages over other designs like classical hash functions.
In this context, we would like to mention that, there are several other designs
like prefix-free MD hash function [8], chop-MD [8], EMD [4] etc.

3 RC4-Hash Algorithm: RC4 Based Hash Function

Now we describe our newly proposed hash function based on RC4, RC4-Hash.
This hash function has the following properties;

1. It is, in fact, a hash family denoted as RCH�, 16 ≤ � ≤ 64 where RCH� :
{0, 1}<264 → {0, 1}8�. Here {0, 1}<264

denotes the set of all messages whose
length is at most 264 − 1 which is reasonable in all practical applications.

2. Our hash function is also a wide pipe hash function (see Section 2.3). Like
other hash functions we will use an initial value and a variant of padding
rule which provides a dynamic hash function (i.e., it produces independent
hash outputs of different sizes for one message).
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Algorithm RCH�(M)
Padding Rule: We pad the message as follows : pad(M)=bin8(�) ‖M ‖ 1 ‖ 0k ‖
bin64(|M |), where bin64(|M |) is the 64-bit binary representation of number of bits
of M and k is the least non-negative integer such that 8 + |M |+ 1 + k + 64 ≡ 0
mod 512. Write pad(M) = M1 ‖ · · · ‖Mt such that |Mi| = 512.
(2) Classical Iteration: Let M1 ‖ · · · ‖ Mt be the padded message. Let
(S0, j0) := (SIV, 0) be an initial value (SIV is given in Appendix). We invoke the
compression-like function C (given in Figure 2) iteratively similar to the classical
iteration as follows:

(S0, j0)
M1−→ (S1, j1)

M2−→ · · · (St−1, jt−1)
Mt−→ (St, jt) := C+(M).

Recall that, (S, j) X−→ (S∗, j∗) means that C((S, j), X) = (S∗, j∗), where C :
Perm× [N ]× {0, 1}512 → Perm× [N ]
(3) Post-processing: The post processing is divided into following steps. Let
(St, jt) be the internal state after the classical iteration i.e., C+(M) = (St, jt).

1. Compute St+1 = S0 ◦ St and jt+1 = jt.
2. We define the final hash value RCH�(M) by HBG�

(
OWT(St+1, jt+1)

)
(HBG�

and OWT are given in Figure 2).

4 Security Analysis and Performance

In this section, we give security analysis against preimage, second preimage and
collision attacks (see Section 2.3). We also compute the number of basic operations
to compute the hash value such as table lookup and modular addition. We first
explain the role of the eachpart of our hash function in viewof the security analysis.

The role of OWT
First note that OWT is believed to be an one-way transformation since we define
OWT(S, j) = (S∗, j∗), where S∗ = Temp1 ◦ Temp2 ◦ Temp1 (see the algorithm
in Figure 2 for the definition of Temp1 and Temp2). One can easily invert from
Temp2 to Temp1, but Temp1 would not be controlled as there is no choice of
message in this part of the algorithm. Thus, it would be difficult to guess Temp2
such that S∗ = Temp1 ◦ Temp2 ◦ Temp1.

It is also not easy to find fixed point with respect to the permutation (i.e.
OWT(S, j) = (S, j′)). This is why we define OWT(S, j) = Temp1◦Temp2◦Temp1
instead of any other composition. If we define, OWT(S, j) = Temp2◦Temp1 then
one can invert Temp2 = id (the identity permutation) to obtain Temp1. Then, it
is easy to check that Temp1 is a fixed point for this definition of OWT. Similarly
one can find a fixed point when we define OWT(S, j) = Temp2◦Temp1◦Temp2.
In our definition this method does not work.

The Compression-like function C
The compression-like function C has output size about 1692 bits (= 1700− 8 as
8-bit i is not a part of a state) which is much larger than three times of the size
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C((S,j), X)

for i = 0 to 255
j = j + S[i] + X[r(i)];
Swap(S[i],S[j]);

Return (S,j);

OWT((S,j))

Temp1 = S;
for i = 0 to 511

j = j + S[i];
Swap(S[i],S[j]);

Temp2 = S;
S = Temp1 ◦ Temp2 ◦ Temp1;
Return (S,j);

HBG�((S,j))

for i = 1 to 	
j = j + S[i];
Swap(S[i],S[j]);
Out = S[S[i] +S[j]];

Fig. 2. The Compression-like function C, OWT and HBG� in RC4-Hash. Here, X =
X[0] ‖ · · · ‖ X[63], |X[i]| = 8 and ◦ means the composition of the permutations. The
function r : [256] → [64] is known as reordering like in MD4 and MD5 (the function
r is given in Appendix), that is the mappings restricted on [0, 63], [64, 127], [128, 191]
and [192, 255] are injective.

of hash output (8�-bits which is at most 512 bits). Thus, generic attacks such as
Kelsey-Schneier [16] second-preimage attack does not work here.

The choice of Initial Value
We have chosen an initial value SIV such that it is not b-conserving. Here we
give a short note on b-conserving state and b-exact key. A b-exact key [10] can
be considered as one of the weak keys of RC4 key scheduling algorithm. Much
research has been devoted to find out several weak keys [29,10].

Definition 1. [10] (1) If S[t] ≡ t mod b for all t, the permutation S is said
to be b-conserving. If S(t) ≡ t mod b for at least N − 2 values of t, then the
permutation S is almost b-conserving.

(2) Let b and κ be two integers, and let K be an κ-byte key. Then K is called a
b-exact key if for any index r, K[r mod κ] ≡ (1−r) mod b. Moreover, if K[0] = 1
and msb(K[1]) = 1 then K is called a special b-exact key where msb(x) means
the most significant bit of x.

The following result says that the permutation generated after key-scheduling
algorithm is b-conserving with high probability if the key is a special b-exact key.
Thus, one can use this to make a distinguishing attack as the distribution of the
permutation is reduced on the set of all b-conserving permutations.

Theorem 1. [10] Let b be a power of 2 such that b|κ and let K be a special
b-exact key of κ bytes. Then the probability that the permutation generated after
key-scheduling algorithm based on the key K is b-conserving, is at least 2

5 .

The reason why we exclude b-conserving SIV for all b is that if the initial value
(permutation) is b-conserving then the space of intermediate permutations can
be reduced using Theorem 1 by choosing b-exact message block (here message
block plays role of key).
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In [14], a related key cryptanalysis has been provided where the the number
of key bytes is very close to N = 256. This cryptanalysis does not work for
smaller number of key bytes, (note that, in our RC4-Hash message blocks are of
64 bytes which is small enough). In [10], a key recovery attack is presented in
RC4 where a known IV is appended with secret key. It is possible to reconstruct
the secret key when different initial values are appended with the same secret
key and few outputs of RC4-PRBG are known. The above cryptanalysis does
not help directly to obtain an attack on our hash function.

The choice of Reordering: Reordering is also playing an important role to
resist collision attack based on some internal collision patterns. We will give
details of these attacks later when we study the collision resistance.

The padding rules makes it a Dynamic Hash Function: Here we use a
slightly different padding rule than what in other known hash functions. We
append the length representation of hash output size at the beginning so that
we can produce different and independent looking hash values for different hash
sizes of same message. If we do not pad the length of the hash size then for any
message M , RCH�′(M) is nothing but the truncation of RCH�(M), where �′ < �.

4.1 Preimage Resistance

Given a hash value of a message randomly chosen from a message space, we want
to show the difficulty of finding its any preimage. Since we have a one-way transfor-
mation OWT, one can use “meet in the middle attack” just after invoking one way
transformation and before invoking hash byte generation. More precisely, given a
hash value h = h0||h1|| · · · ||hl−1 we first invert HBG (this is possible since hash
byte generation algorithm is invertible) and store a set A of pairs (S, j) which out-
puts h after hash byte generation. Then we can choose message M randomly and
compute OWT(C+(M)) and look for collision on the set A. But the complexity of
this “meet in the middle attack” requires approximately 21692/2 = 2846 queries
(birthday attack on Perm[256] which is roughly 1692 bits). One can use a little dif-
ferent approach by using b-predictive a-state as explained below.

Preimage Attack based on Predictive RC4 states

Definition 2. (1) An a-state is a partially specified RC4 state, that includes i,
j, and a elements of S (not necessarily consecutive). More precisely, the tuple
p = (i, j, (i1, · · · , ia), (j1,· · ·, ja)) is said to be an a-state.
(2) An a-state p = (i, j, (i1,· · ·,ia), (j1, · · · , ja)) is compatible with a RC4 state
(i, j, S) if S[ik] = jk for 1 ≤ k ≤ a. We say that p predicts rth output if for all
states compatible with p, produce the same output byte after r rounds. An a-state
p is said to be b-predictive a-state if p predicts r1 < · · · < rb(≤ 2N) outputs.

In [20], Mantin and Shamir have shown a distinguishing attack based on b-
predictive a-state which requires O(N2a−b+3) output bytes. Later, Paul and



88 D. Chang, K.C. Gupta, and M. Nandi

Preneel [22] modified this definition by considering 1 = r1 < · · · < rb ≤ N .
According to this definition, they have shown that b-predictive a-state can exists
only if a ≥ b. In [11] total number of a special b-predictive b-state (known
as fortuitous state where all b predicted states are consecutive) is given (see
Table 1). Note that our hash output bytes are consecutive.

Table 1. The second column is the number of special b-predictive b states known as
fortuitous states. Here, total states means the number of possible different choices of
i, j and values of S in the corresponding b indices. For example, in the case of b = 2,
the total states is 256 × 256 × 255 × 256 ≈ 231.99. Thus, 516/231.99 = 2−22.9 is the
probability that a random state is one of the fortuitous state of length 2.

b Number Total states Prob.

2 516 231.99 2−22.9

3 290 239.98 2−31.8

4 6540 247.97 2−35.2

5 25,419 255.94 2−41.3

6 101,819 263.92 2−47.2

Suppose that we are given a hash value generated from a b-predictive b-state
with a some choice of j. This means that the b-byte hash output is determined
only by b elements of intermediate permutation S and j where OWT(C+(M)) =
(S, j). So any output of OWT(C+(M)) satisfying b + 1 conditions can become
a preimage for a given hash value. Now the probability that a random message
satisfies b+1 conditions is 1

N2(N−1)···(N−b+1) . The remaining has l−b hash bytes
will be same with probability 1

N l−b . Thus, the probability to get a preimage will
be 1

N�−b+2(N−1)···(N−b+1)
. One can check that the probability is less than 1

N�

for b ≤ 64. We give the probability for smaller values of � in Table 1. Thus,
the preimage attack based on fortuitous state does not help and it needs N �

complexity.

4.2 Second Preimage Resistance

In [16], Kelsey and Schneier described a general second preimage attack which
reduces the complexity from 2n (trivial case for n-bit output) to about 2n/2.
We can apply their attack to classical MD-construction which repeats com-
pression function such that the length of intermediate value is same as that
of hash output. Recently, Rivest [28] suggested the dithering method secure
against Kelsey-Schneier second-preimage attack. Lucks [17] also suggested wide
pipe hash, whose length of intermediate value (w-bit) is longer than that of hash
output (n-bit). In case w ≥ 2n, wide pipe hash is secure against Kelsey-Schneier
second-preimage attack. The design principle of RCH� follows wide pipe hash. In
case RCH�, w is about 1692 bits and hash output is less than 512 bits. Therefore,
since the complexity of Kelsey-Schneier second preimage attack is about 2846,
we can say that RCH� is secure against Kelsey-Schneier second-preimage attack.
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4.3 Collision Resistance

(1) Complexity of Birthday attack
We first state the result of Bellare and Kohno [3]. Let X and Y be two in-
dependent and identically distributed random variable taking values on a set
R = {r1, · · · , rL}. Let pi be the probability that X = ri (which is also same for
Y = ri). It is easy to check that Pr[X = Y ] =

∑L
i=1 p2

i . Now consider a function
f : D → R and let x and y be chosen uniformly and independently from D.
Then, Pr[f(x) = f(y)] =

∑L
i=1 p2

i . Thus, we need at least 1/(
∑L

i=1 p2
i )

1/2 many
queries to obtain a collision by using birthday attack on f .

Now we consider D = Perm×[N ], R = {0, 1}8� and f : Perm×[N ]→ {0, 1}� be
HBG� function. HBG� is nothing but RC4-PRBG and hence we consider different
distinguishing attack described in Section 2.2 to compute the birthday attack
complexity.
(a) Mantin and Shamir’s 2nd byte distinguishing attack: Let y1, · · · , y�

be the bytes of PRBG output. It was shown that given j = 0 and S is chosen
uniformly the probability that y2 = 0 (zero byte) is close to 2/N (instead of 1/N
for a true uniform distribution) [20]. Now there are 28(�−1) outputs which have
2nd byte 0. Assuming that all other remaining outputs are equally probable, we
see that the birthday attack complexity is close to q = 24� × 2−.001 = 24�−.001.
Thus, the security is .001 bit less compare to the ideal situation. Moreover, here
we assume that j = 0. Bias for the distinguishing attack is much less when we
have a uniform distribution on j, which is more likely in our case.
(b) Paul and Preneel distinguishing attack: Let us study Paul and Pre-
neel’s [23] distinguishing attack in the view of Bellare-Kohno Birthday attack
complexity. In this attack, it is proved that first two bytes are equal with prob-
ability close to 1/N(1− 1/N). One can make similar calculation to see that the
birthday attack complexity is very close to 24�−.00000008.

One can make for similar analysis for other distinguishing attack given in
[11,12]. Now we study the birthday attack in the view of Finney state.
(c) Finney State: Let (S1, j1) and (S2, j2) be chosen uniformly then the prob-
ability that the hash outputs are equal (i.e., HBG�(S1, j1) = HBG�(S2, j2)) is
close to 1

N4×N(N−1)···(N−�+1) +(1− 1
N4 ) 1

N� . This can be computed by condition-
ing on the event that both states are Finney state. Thus, the birthday attack
complexity can be computed and which is approximately N4�−.000001375.

Note that all these calculations are based on some assumptions. Actual birth-
day attack complexity may be different but it is not easy to calculate as the output
distribution of HBG� is not known.

(2) Attack using characteristic for internal collision
In this section we write RCH to denote RCH� when the analysis does not de-
pend on the choice of �. Collision attack focuses on finding a characteristic
with high probability. Recently, Wang et al. suggested new attack strategies to
find collision-finding characteristics with high probability by using both addition
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and XOR difference. Especially, their attack method is deeply related to the
properties of boolean functions used in each hash function. They also found
collisions of MD4, MD5, HAVAL, SHA-0 and showed the complexity of finding
a collision of SHA-1 is 263 operations. Unlike MD4 style hash functions, RCH
uses a nonlinear function, exchange shuffle. Since the exchange shuffle prevents
the addition or XOR difference from being preserved and there is no boolean
function, we can not apply Wang et al. attack method to RCH. Therefore we
need different approach for security analysis of RCH. As the first step of security
analysis, we consider two characteristics with small steps of RCH. Let x and x′

be two message blocks and xi and x′
i denote the message bytes at stage i.

First Example: For any i and S[i] = a, S[i + 1] = b, xi+1 = xi, if i = j
before updating j and xi + a ≡ 0 mod 256 and xi+1 + b ≡ 0 mod 256, then
final intermediate permutation S and j become same for x and x′ such that
x′

i = xi + 1, x′
i+1 = xi+1 and x′

i+2 = xi+2 + 255. Note that here we need three
conditions to control the values of S[i], S[i + 1] and j.

Second Example: For any i and S[i] = a, S[i + 1] = b, xi = xi+1 = xi+2 =
xi+3 − 4, if i = j before updating j and xi + a ≡ 1 mod 256 and a ≡ b − 1
mod 256, then final intermediate permutation S and j become same for x and
x′ such that x′

i = xi − 1, x′
i+1 = xi+1, x′

i+2 = xi+2 − 1, x′
i+3 = xi+3 + 2 and

x′
i+4 = xi+4 − 3. Note that here we need three conditions to control the values

of S[i], S[i + 1] and j.

First example is a 3-step characteristic with 3 conditions such that two mes-
sage bytes are different for x and x′. The length of characteristic is same as the
number of conditions. Second example is a 5-step characteristic with 3 conditions
such that four message bytes are different for x and x′. We need more different
message bytes for x and x′ in order to get a long length of characteristic with
few conditions. Since RCH uses each message byte four times with a reordering
method, in case of using many different message bytes for x and x′, an attacker
has to make a complicated long characteristics for other rounds.

Here, we consider a specific attacker to try to construct characteristics such
that each step has one condition. In this case, we can say security bound of
attack complexity. If two messages differ in k1 and k2 positions and let i1 and
i2 be its inverse with respect to the round function r1 (say). Then we need to
put conditions on S[i1], S[i1 + 1] · · · , S[i2] and j. The reordering we have chosen
have the property that for any k1 and k2,

3∑
k=1

|r−1
k (k1)− r−1

k (k2)| ≥ 24,

and hence the total number of conditions is at least 30. This is because we need
|r−1

k (k1) − r−1
k (k2)| + 2 conditions for each round. Thus, we need 2240 queries

to find the collision. Note that, this is a heuristic argument. Intuitively it is not
possible to get a collision with above method within this complexity. In fact, it
is not clear how to make a collision attack with this complexity.
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(3) Attack using b-conserving property
Next, we consider the case of using b-conserving property. RCH� has a initial
permutation SIV such that there is no b-conserving property. Even though SIV

is not b-conserving, intermediate permutation can be b-conserving by applying
a specific message. If intermediate permutation of each step is random, we can
compute the probability that there exists b-conserving permutation in the inter-
mediate value for each b as follows.

1. For b = 2, (128!)2/256! ≈ 2−252

2. For b = 4, (64!)4/256! ≈ 2−490

3. For b = 8, (32!)8/256! ≈ 2−743

4. For b = 16, (16!)16/256! ≈ 2−976

In order to get a 2-conserving intermediate permutation, we need 2252 queries
of C and then we can choose message blocks such that all intermediate permu-
tations onward are almost 2-conserving with probability 2/5. Therefore, we can
reduce the size of intermediate value from 1684-bit (corresponding to 256!) to at
least 1432-bit (there are 128!×128! 2-conserving permutations) so that we can
find a collision in intermediate value with complexity at least 2716 which is more
than that of trivial collision attack with hash output less than 512-bit. As other
cases have very small probabilities, we ignore them.

Performance

This hash function is based on the RC4 structure which itself is a very fast
algorithm. For each 512 bit messages we need 1024 modulo sum and 1536 lookup
(to compute C+(·)). The post processing is little bit costly but it would not
matter if we hash long message as it is applied once for each message. In post-
processing we have 512 + � addition and 2048 + 3� lookup. We have checked the
performance with SHA-1 and we have noted that SHA-1 is roughly 1.5 times
faster than our algorithm. We hope that this algorithm can be improved in near
future.

5 Conclusion

In this paper we presented a new hash function RC4-Hash, and claim that it is
secure as well as very fast. This hash function is based on the simple structure
of RC4. This proposed hash function generate variable size hash outputs (like
a family of hash functions e.g., SHA family). It’s structure is different from
that of many well known hash functions. Due to its completely new internal
structure and huge size of internal state (approximately 1700 bits) it resists all
generic attacks as well as path breaking attacks by Wang et al. It is very simple
to implement and efficient in software and is compatible with different level of
security. We hope that this new hash function will be found useful. Note, RC4 is
based on 8 bit arithmetic, but there are RC4 like ciphers [5,13] exploiting 32/64
bit architecture of present day machines with enhanced speed. It may be a future
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work to design hash function based on the generalized RC4 with robust security
and increased speed.
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Appendix

• Here we describe the reordering we are using in the hash algorithm. We use
the identity function for r0 and ri’s are defined as in below for 1 ≤ i ≤ 3. Note
that the function r restricted on [64i, 64i + 63] is nothing but ri, 0 ≤ i ≤ 3

r1 : 0, 55, 46, 37, 28, 19, 10, 1, 56, 47, 38, 29, 20, 11, 2, 57, 48, 39, 30, 21, 12,
3, 58, 49, 40, 31, 22, 13, 4, 59, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 61,
52, 43, 34, 25, 16, 7, 62, 53, 44, 35, 26, 17, 8, 63, 54, 45, 36, 27, 18, 9.

r2: 0, 57, 50, 43, 36, 29, 22, 15, 8, 1, 58, 51, 44, 37, 30, 23, 16, 9, 2, 59, 52, 45,
38, 31, 24, 17, 10, 3, 60, 53, 46, 39, 32, 25, 18, 11, 4, 61, 54, 47, 40, 33, 26, 19,
12, 5, 62, 55, 48, 41, 34, 27, 20, 13, 6, 63, 56, 49, 42, 35, 28, 21, 14, 7.

r3 : 0, 47, 30, 13, 60, 43, 26, 9, 56, 39, 22, 5, 52, 35, 18, 1, 48, 31, 14, 61, 44,
27, 10, 57, 40, 23, 6, 53, 36, 19, 2, 49, 32, 15, 62, 45, 28, 11, 58, 41, 24, 7, 54, 37,
20, 3, 50, 33, 16, 63, 46, 29, 12, 59, 42, 25, 8, 55, 38, 21, 4, 51, 34, 17.

• The initial value permutation or SIV is the following:

145, 57, 133, 33, 65, 49, 83, 61, 113, 171, 63, 155, 74, 50, 132, 248, 236, 218, 192,
217, 23, 36, 79, 72, 53, 210, 38, 59, 54, 208, 185, 12, 233, 189, 159, 169, 240, 156,
184, 200, 209, 173, 20, 252, 96, 211, 143, 101, 44, 223, 118, 1, 232, 35, 239, 9,
114, 109, 161, 183, 88, 66, 219, 78, 157, 174, 187, 193, 199, 99, 52, 120, 89, 166,
18, 76, 241, 13, 225, 6, 146, 151, 207, 177, 103, 45, 148, 32, 29, 234, 7, 16, 19,
91, 108, 186, 116, 62, 203, 158, 180, 149, 67, 105, 247, 3, 128, 215, 121, 127, 179,
175, 251, 104, 246, 98, 140, 11, 134, 221, 24, 69, 190, 154, 253, 168, 68, 230, 58,
153, 188, 224, 100, 129, 124, 162, 15, 117, 231, 150, 237, 64, 22, 152, 165, 235,
227, 139, 201, 84, 213, 77, 80, 197, 250, 126, 202, 39, 0, 94, 42, 243, 228, 87, 82,
27, 141, 60, 160, 46, 125, 112, 181, 242, 167, 92, 198, 172, 170, 55, 115, 30, 107,
17, 56, 31, 135, 229, 40, 111, 37, 222, 182, 25, 43, 119, 244, 191, 122, 102, 21, 93,
97, 131, 164, 10, 130, 47, 176, 238, 212, 144, 41, 14, 249, 220, 34, 136, 71, 48,
142, 73, 123, 204, 206, 4, 216, 196, 214, 137, 255, 195, 26, 8, 51, 178, 2, 138, 254,
90, 194, 81, 245, 106, 95, 75, 86, 163, 205, 70, 226, 28, 147, 85, 5, 110.
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Abstract. In Eurocrypt 2006, Contini, Lenstra, and Steinfeld proposed a new
hash function primitive, VSH, very smooth hash. In this brief paper we offer com-
mentary on the resistance of VSH against some standard cryptanalytic attacks, in-
cluding preimage attacks and collision search for a truncated VSH. Although the
authors of VSH claim only collision resistance, we show why one must be very
careful when using VSH in cryptographic engineering, where additional security
properties are often required.

1 Introduction

Many existing cryptographic hash functions were originally designed to be message di-
gests for use in digital signature schemes. However, they are also often used as building
blocks for other cryptographic primitives, such as pseudorandom number generators
(PRNGs), message authentication codes, password security schemes, and for deriving
keying material in cryptographic protocols such as SSL, TLS, and IPSec.

These applications may use truncated versions of the hashes with an implicit as-
sumption that the security of such a variant against attacks is directly proportional to the
amount of entropy (bits) used from the hash result. An example of this is the HMAC−n
construction in IPSec [1]. Some signature schemes also use truncated hashes. Hence we
are driven to the following slightly nonstandard definition of security goals for a hash
function usable in practice:

1. Preimage resistance. For essentially all pre-specified outputs X , it is difficult to
find a message Y such that H(Y ) = X . The difficulty should be ≈ 2l when there
are l pre-specified bits in X .

2. 2nd-preimage resistance. Given a pre-specified message X , it is difficult to find
another message Y so that H(X) = H(Y ). The difficulty should be ≈ 2l when
there are l pre-specified bits that match in the hashes.

3. Collision resistance. It should require ≈ 2l/2 effort to find any two messages X
and Y that produce a collision H(X) = H(Y ) in l pre-specified bits in the hashes.

In addition to the above three usual goals, we state a fourth, more informal goal –
pseudorandomness. In essence, we would like a PRNG, stream cipher, or other derived
design that relies on a hash function to have at least ≈ 2l/2 security, as if it was secured
with a “real” pseudorandom function.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 95–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Pseudorandomness implies that a hash has good statistical properties and resistance
against a wide array of distinguishing attacks.

All of the mentioned desirable properties are difficult if not impossible to prove
without nonstandard assumptions. We note that proofs based on assumptions are them-
selves assumptions, whether their origins are in the traditions of symmetric or asym-
metric cryptanalysis. An assumption based on the sieving phase of the NFS factoring
algorithm may seem like a “hard problem” to a researcher who has spent a lot of time
tweaking the sieving phase of the NFS factoring algorithm. On the other hand, a re-
searcher who has dedicated years of effort into symmetric cryptanalysis may feel that
symmetric cryptography possesses equally well studied “hard problems”, while also
allowing more efficient overall implementation.

A “political” standardisation consideration is that (by definition) VSH has a back-
door in the secret factorisation of n. In the past it has been difficult to popularise cryp-
tographic technologies that rely on trusted third parties.

In our opinion VSH is a simple, elegant design that is based on a plausible complexity-
theoretic assumption (VSSR: Very Smooth number nontrivial modular Square Root).
However, it should not be considered a general-purpose hash function as usually under-
stood in security engineering.

On VSH Security Claims

“VSH is not a Hash Function.”
– Arjen K. Lenstra, Eurocrypt 2006 1

Collision resistance is the only property proven for VSH. In Section 3 of the VSH
paper [2], short message inversion (equivalent to preimage resistance) is considered
and one possible “solution” is provided. As will be shown in Section 2.1 of this paper,
the solution is not adequate.

The authors therefore clearly expected VSH to exhibit some level of preimage and
2nd preimage resistance. These are standard requirements in the very definition of a
“cryptographic hash function”. The authors of VSH are very clear in that “VSH should
not be used to model random oracles”. Random oracle behaviour is not a standard hash
function security requirement.

Some researchers tend to concentrate their efforts on showing that their hash func-
tions provide collision resistance, while ignoring other security properties. However,
it is well known that collision resistance does not imply preimage-resistance or other
important hash function properties.

To illustrate this point, we present a classical counter-example. Consider an l + 1-bit
hash H ′(x) that has been constructed from an l - bit hash H as follows:

If |x| < l − 1 then H ′(x) = x || 1 || 0 0 · · · 0.

If |x| ≥ l − 1 then H ′(x) = H(x) || 1.

1 Quoted with permission. During the conference A.K. Lenstra used some of the results from this
note in his presentation, with appropriate credit. This has led some people to mistakenly think
that the results in this note were already contained in [2]. All cryptanalytic results presented in
this paper are by the author; a draft was circulated with the authors of VSH before Eurocrypt
2006.
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That is, if the message x is less than l − 1 bits long, H ′(x) consists of the message
itself, a single 1 bit and a padding of zero bits. If the message is l− 1 bits or longer, the
resulting hash consists of a (secure) hash of x, followed by a single 1 bit.

It is easy to show that H ′ is collision resistant if H is. It is also easy to see that
H ′ is not preimage resistant for a large proportion of hash outputs, and that a slightly
truncated version is not collision resistant.

2 The VSH Algorithm

We describe the VSH algorithm in its most basic form, essentially as it appears in the
beginning section 3 of [2]. We note that the attacks can be extended to most of the
variants given in the VSH paper, especially the Fast VSH variant in section 3.1 of [2]. 2

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes. Let n be a large RSA
composite. Let k, the block length, be the largest integer such that

∏k
i=1 pi < n. Let m

be a be an l-bit message to be hashed, consisting of bits m1, m2, . . . , ml, and assume
that l < 2k. To compute the hash of m:

1. Let x0 = 1.
2. Let L = �l/k� the number of blocks. Let mi = 0 for l < i ≤ Lk (padding).
3. Let l =

∑k
i=1 li2i−1 with li ∈ {0, 1} be the binary representation of the message

length l and define mLk+i = li for 1 ≤ i ≤ k.
4. For j = 0, 1, . . . , L in succession compute

xj+1 = x2
j

k∏
i=1

p
m(jk+i)
i mod n.

5. Return xL+1.

Selecting a 1024-bit modulus n has been suggested in the original paper, indicating
131-bit block size k.

2.1 Preimage Resistance

VSH is multiplicative: Let x, y, and z be three bit strings of equal length, where z
consists only of zero bits and the strings satisfy x ∧ y = z. It is easy to see that

H(z)H(x ∨ y) ≡ H(x)H(y) (mod n).

This multiplicative property is similar, although simpler, than the one used by Cop-
persmith to attack (then) Annex D of X.509 [3].

2 There were many changes to VSH before its final publication, most recently in early March
2006 when message length padding was changed to be performed after the message been
hashed, rather than at the beginning. Such small changes have significant implications on the
development of practical attacks. Remarkably, the “security proof” required no modification.
The attacks discussed in this paper apply only to the published Eurocrypt version of VSH;
other attacks may be devised on other variants.
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As a result VSH succumbs to a classical time-memory trade-off attack that applies
to multiplicative and additive hashes. The attack is similar in many aspects to Shanks’
baby-step giant-step algorithm for discrete logarithms [5].

We set the secret message m as (x ∨ y) and rewrite the equation as

H(y) = H(x)−1H(z)H(m) (mod n).

To solve the l-bit preimage m of H(m):

1. Tabulate H(x || 00 · · · 0)−1H(z)H(m) (mod n) for 0 ≤ x < 2l/2.
2. Do table lookups for H(00 · · ·0 || y) for y = 0, 1, 2, . . ., looking for a match.

The algorithm terminates when m = x || y, in other words before y < 2l/2. A
preimage attack on VSH therefore has ≈ 2l/2 complexity rather than ≈ 2l as expected.

Final squarings proposed in section 3 of [2] under subtitle “short message inversion”
do not protect against this attack.

This type of attack is extremely serious if VSH is used to secure passwords, a typical
application for hash functions. Note that the complexity of attack does not depend on
the modulus size n, but on the entropy of the password strings.

Example 1. VSH is being used to secure a 4 character lower case alphabetic password
M , stored with ASCII encoding. For demonstration purposes we choose k = 32 and a
169-bit modulus n:

n = (284 + 3)(285 − 19)
= 748288838313422294120286382894166426220969123119047.

The hash of the secret is

H(m) = 16844120625154617337159062413466716693049866864325.

In this case H(z) = 13; the first iteration yields 1, and the second round 13, the sixth
prime, as the length of the message is 25 = 32 bits. We tabulate H(x)−1H(z)H(m)
(mod n) for 262 = 676 values T [0 . . .675]:

x: aa.. Binary: 01100001 01100001 00000000 00000000
T[0] = 91345572106882035279752100576530653

x: ab.. Binary: 01100001 01100010 00000000 00000000
T[1] = 116156501606261492576199026944080853

. . .
x: zz.. Binary: 01111010 01111010 00000000 00000000
T[675] = 384284712674090018973838770853950813384926485216514

In the second phase we run through the values of H(y):

H(..aa) = 3904844677556216209933
H(..ab) = 3396095819174949308197
...
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A match is found after 83 steps at H(..df) = 30205660456999582781162559493,
which matches with T [18] = H(as..)−1H(z)H(m) (mod n). Hence the secret
password M is “asdf”.

Note that it is not necessary to store the entire value to the table T [i]; appropriate
number of least significant bits usually suffices. When the table is indexed by, say,
T [i] mod 232, search becomes an O(1) operation.

This example illustrates that password cracking time is effectively “square-rooted” by
this attack; l-character passwords offer a level of security expected from l/2-character
passwords.

2.2 One-Wayness (of the “Cubing” Variant)

In section 3.4 of the VSH specification, a variant that uses cubing instead of squaring
in its compression function is proposed. Using the Jacobi symbol, the compression
function

xj+1 = x3
j

k∏
i=1

pmi

i mod n,

becomes (xj+1

n

)
=
(xj

n

) k∏
i=1

(pi

n

)mi

.

We define a “binary” version of the Jacobi symbol:

j(c, n) =
1
2

(
1−
( c

n

))
.

We now have a linear equation giving the parity of some message bits:

j(xj+1, n) = j(xj , n) +
k∑

i=1

j(pi, n)mi (mod 2).

Note that the Jacobi symbol can be very efficiently computed and that j(pi, n) is
essentially randomly 0 or 1 for each randomly generated composite n. If the same
message has been hashed with k different moduli n, a system of k linear equations
can be obtained, leading to disclosure of bits by solving the system of equations.

The same attack applies to the standard squaring version as well, but it only leaks
information about the message length. This was not the case for VSH versions 3.57
and before (ePrint revisions of VSH published before March 2006), where information
about the contents of the last message block could be obtained.

One-wayness is implied by the standard hash security requirement of preimage re-
sistance. If one obtains some information about some of the preimage bits easily, one
can find the rest faster in an exhaustive search, as the search space is smaller.

Example 2. Assume that a 64-bit password has been hashed with VSH. For demon-
stration purposes we define the modulus n to be equivalent to the RSA-1024 factoring
challenge number n = 1350..(300 digits)..7563 [4].
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The Jacobi symbols for the first small primes modulo n are:( 2
n

)
= −1

( 3
n

)
= −1

( 5
n

)
= −1

( 7
n

)
= 1

(11
n

)
= 1

(13
n

)
= −1 · · ·

Since the length padding (last round) will simply consist of cubing the product of primes
and multiplying that with length indicator p6 = 13, we may write(H(m)

n

)
=
(13

n

) 64∏
i=1

(pi

n

)mi

.

Using the binary j(c, n) function and knowledge of n, this can be further simplified
into the following parity equation:

j(H(m), n) ≡ 1 + m1 + m2 + m3 + m6 + m7 + m10 + m13 + m14 + m15 +
m16 + m17 + m22 + m24 + m25 + m26 + m27 + m28 + m29 +
m31 + m33 + m36 + m39 + m40 + m43 + m44 + m46 + m49 +
m51 + m52 + m57 + m59 + m61 + m64 (mod 2).

We can therefore speed up dictionary search against the password by a factor close
to two as half of the password candidates can be rejected with simple bit shift, AND
and XOR operations, rather than with computationally expensive modular arithmetic
required to compute the full hash.

Note that if the same secret has been hashed with multiple different moduli n, the
speedup grows almost exponentially; two distinct moduli yield a speedup factor close
to 4 etc.

2.3 Collision Search for Truncated VSH Variants

VSH produces a very long hash (typically 1024 bits). There are no indications that
a truncated VSH hash offers security that is commensurate to the hash length. This
appears to rule out the applicability of VSH in digital signature schemes which produce
signatures shorter than the VSH hash result, such as Elliptic Curve signature schemes.

To illustrate this point, we will describe give an attack on one truncated variant of
VSH.

Partial Collision Attacks. We will first discuss a generic technique for turning a partial
collision attack into a full collision attack.

Assume that there is a fast O(1) mapping f that causes the hash result of an l-
bit hash H to be in some smaller subset of possible outputs: H(f(x)) ∈ S, where
|S| < 2l. Typically f would be chosen in such a way that certain hash result bits are
forced to have the same constant value. In other words, f forces partial collisions. Note
that f itself should not produce too many collisions, i.e. x1 �= x2 usually means that
f(x1) �= f(x2).

If such an f can be found, and it is fast, the complexity of finding full collisions
becomes ≈

√
|S|. Note that f does not need to be able to force the hash to S on each

iteration, it is sufficient that it works with reasonable probability. The iteration in low-
memory parallel collision search algorithm becomes si+1 = H(f(si)), and generic
parallel collision search algorithms such as those described in [6] can be used.
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Attack on VSH Truncated to Least Significant 128 Bits. We will instantiate this
attack on a VSH variant that only uses the least-significant 128 bits of the hash func-
tion result. For basic VSH (1024-bit n, k=131) the result of hashing a 128-bit message
m1|m2| · · · |m128 can be simplified to:

x =
(
19
( 128∏

i=1

pmi

i

)2 mod n
)

mod 2128.

The constant 19 = p8 is caused by the length padding in the second (and final) round.
It is easy to see that modular reduction by n occurs in this case with less than 50%

probability if m is random (or randomised) and its Hamming weight behaves accord-
ingly. This is due to the fact that if only half of the bits in the message are ones, the
product of corresponding small primes will be roughly the same bit size as

√
n. The

square of this will still be less than n with a significant probability and hence there is
no modular reduction by n. Hamming weight of a random bit string is binomially dis-
tributed. In practice the modular reduction happens in this case with roughly P ≈ 0.35
probability. We get the following approximation that is valid with significant probability:

x = 19
( 128∏

i=1

pmi

i

)2 mod 2128.

Note that the iteration is independent of the RSA modulus n if there is no reduction.
Precomputation phase: For each of the 241 bit strings r of length 41 we compute and

store r into a lookup table, indexed by the product

( 42∏
i=2

p
ri−1
i

)−1 mod 242.

We will choose the f mapping as follows: Select message bits m43, m44, . . . , m128

from corresponding bits of si. Compute the partial product
∏128

j=43 p
mj

j mod 242 and
use that to select message bits m2, m3, . . . , m42 using the lookup table (m1 is always
set to zero).

This will often (P ≈ 0.5) force the least significant 42 bits to a certain constant value,
19, on each iteration. Note that if the table lookup fails, we may select m2, m3, . . . , m42

to be some arbitrary deterministic value; one that satisfies si ≡ 19 (mod 2l) for some
l < 42 would be a good choice.

Hence we have can cause the iteration to run in a significantly smaller subset with
essentially O(1) effort (constant-factor increase), and collisions can be found signifi-
cantly faster.

Example 3. We will start with s1 = 242 + 19, and try to produce a sequence satisfying
si ≡ 19 (mod 242) for a significant portion of i.

The partial product
∏128

i=43 pmi

i mod 242 yields p43 = 191 for s1. We will then
perform a lookup in the precomputed table; it turns out that selecting message bits m1

through m42 as

01110010 01010101 00000000 11100001 11110111 00
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will force the product the desired subset, as the product of primes corresponding to
those message bits is

3 · 5 · 7 · 17 · 29 · 37 · 43 · 53 · 97 · 101 · 103 · 131 · 137 · 139 · 149 · 151 · 163 · 167 · 173

= 1164213571911795168635778009100095,

and this multiplied by the partial product satisfies

191 · 1164213571911795168635778009100095≡ 1 (mod 242).

Clearly squaring a number that is congruent to 1 mod 242 maintains that property. The
final multiplication by 19 results in that that the second element of the sequence satisfies
the desired property s2 ≡ 19 (mod 242). We have

s2 = 19 (191 · 1164213571911795168635778009100095)2 mod 2128

= 79424F79408D6B27F52A50000000001316

With this sequence we only need to rely on a birthday collision in the upper 128−42 =
86 bits of the sequence. Roughly 243 iterations are required with algorithms of [6] to
achieve this.

Note that with some probability this algorithm will yield false collisions due to the
fact that the inverse of the partial product is not always found in the lookup table.
Modular reduction by n may also cause false collisions. This only results in a constant
factor increase to the complexity of the algorithm, however; we only need to restart with
different starting points until a proper collision is found.

Overall complexity. In essence, the complexity of this attack against VSH truncated
to l bits is:

– Pre-computing the table offline:≈ 2
l
3 time and space.

– Finding collisions: ≈ 2
l
3 iterations.

– Total cost: roughly ≈ 2
l
3 , rather than ≈ 2

l
2 as expected from a hash function with

good pseudorandomness properties.

We acknowledge that this represents just one way of truncating VSH – using, say, the
most significant bits of the result would be an even worse option. Many other truncated
variants can be attacked using a different f function.

2.4 Other Features of VSH

The authors of VSH do not explicitly note this, but the hash function result can be
updated after small changes without computing the entire hash again. A “bit flip” in
a message will always cause a predictable change in the message result (it becoming
multiplied mod n by certain power of a small prime or its inverse). This is due to the
highly algebraic nature of the hash.

We note such a property may be useful in some applications where rapid update
of the hash is required, but it is undesirable in many more as it can facilitate adap-
tive attacks against some cryptographic protocols. Similar multiplicative property was
sufficient for the X.509 Annex D hash function to be considered broken [3].
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Abstract. Password-Authenticated Key Exchange (PAKE) protocols
allow parties to share secret keys in an authentic manner based on an
easily memorizable password. Byun et al. first proposed a cross realm
client-to-client (C2C) PAKE for clients of different realms (with differ-
ent trusted servers) to establish a key. Subsequent work includes some
attacks and a few other variants either to resist existing attacks or to
improve the efficiency. However, all these variants were designed with
heuristic security analysis despite that well founded provable security
models already exist for PAKEs, e.g. the Bellare-Pointcheval-Rogaway
model. Recently, the first provably secure cross-realm C2C-PAKE pro-
tocols were independently proposed by Byun et al. and Yin-Bao, re-
spectively; i.e. security is proven rigorously within a formally defined
security model and based on the hardness of some computationally in-
tractable assumptions. In this paper, we show that both protocols fall
to undetectable online dictionary attacks by any adversary. Further we
show that malicious servers can launch successful man-in-the-middle at-
tacks on the variant by Byun et al., while the Yin-Bao variant inherits a
weakness against unknown key-share attacks. Designing provably secure
protocols is indeed the right approach, but our results show that such
proofs should be interpreted with care.

Keywords: Password-authenticated key exchange, cross realm, client-
to-client, cryptanalysis, provable security, security model.

1 Introduction

A 2-party password-based authenticated key exchange (PAKE) protocol estab-
lishes a shared secret key between two parties. Authentication of parties is based
on knowledge of a shared low-entropy password. The first known PAKE is due
to Bellovin and Merritt [9]. This concept has also been extended to 3 parties,
e.g. two clients and a trusted server or key distribution center (KDC).
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Formal security models. The formal security model for 2-party PAKE proto-
cols was proposed by Bellare et al. [8] so called the Bellare-Pointcheval-Rogaway
(BPR2000) model, building on work by Bellare and Rogaway in [6,7]. Later,
Abdalla et al. [2] extended this model to the 3-party case.

One informal approach to designing security protocols is to list all known
attacks and argue why a protocol resists them. This list is clearly not exhaustive,
and sometimes fails to catch specific types of attacks. The main problem is that
this heuristic approach assumes the particular behaviour of the adversary, i.e. he
is assumed to attack in some way. History [8,21] has shown that this is not the
right approach, because intuitively an adversary behaves in any way he prefers
as long as he can break the system. Thus it is often that such a protocol is broken
and a minor fix proposed, etc. This cycle continues resulting in many slightly
different protocol variants because breaks and subsequent fixes are heuristically
done. There are many such instances but to be concise we only cite here a few
recent ones: [10,22,23,29].

In contrast the approach based on formal security models does not assume
on any specific attack method an adversary may use. Instead a communication
model is defined that describes how parties within the protocol, as well as an
adversary, communicate with each other, and what sort of information formal-
ized via the notion of oracle queries, is available to or may be under the control
of the adversary. Then, security properties of a protocol are defined as one or
more games each intended to capture a security property, played by the ad-
versary within the pre-defined communication model. A protocol is secure with
respect to the defined security properties if the adversary’s advantage in win-
ning the game(s) is negligible, and further that the task of an adversary winning
is reduced to computationally intractable assumption(s). This approach is also
known as provable security [26]. Once proven secure, a protocol is guaranteed to
resist attacks by any adversary who works within the communication model re-
gardless of what specific attacks are mounted, as long as the assumptions remain
intractable.

However, defining an appropriate model is not a trivial task, because not
including some types of queries e.g. the Corrupt query [14,15], or improperly
defining the adversarial game [8] may result in a security proof that fails to
capture valid attacks (see [8,14,15] for more details).

PAKEs for cross realms. It is sometimes desirable that client parties from
different environments (realms) be able to establish shared secret keys. Byun et
al. [10] proposed a PAKE protocol that allows to achieve this, by using the KDCs
in the different realms as the go-between, i.e. to perform translation of encrypted
or blinded secrets in one realm to the other under passwords shared between the
KDCs. Such protocols are more popularly known as cross-realm C2C-PAKE
protocols. For ease of notation, we will simply call these C2C-PAKEs for the
rest of this paper.

Considering this cross realm setting, several additional security issues arise
that would otherwise not be relevant in a single realm setting, e.g. protecting
secrets of the client in one realm from a malicious server [13] or a malicious
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client [22] in the other realm. For more details of the variants and analyses, see
[10,13,27,22,24,12,28].

The original C2C-PAKE protocol [10] was shown to be secure by arguing that
it resists specific attacks although the argument for one security property was
related to a computationally intractable assumption. Nevertheless, the analysis is
still adhoc and not done in a formal security model. Byun-Lee-Lim [12] and Yin-
Bao [28] independently proposed the first provably secure C2C-PAKE protocols.
The Byun-Lee-Lim variant is called EC2C-PAKE. We call the Yin-Bao variant
as C2C-PAKE-YB.

Our contributions. The main aim of this paper is to advocate that prov-
able security is the right approach to analysis and design of C2C-PAKEs, and
AKEs in general, but we caution that proving such formal security is not an
easy task. Already, some provably secure protocols have been shown [14,15] to
exhibit flaws because of subtle points missed out in the security model used to
conduct the proofs. To demonstrate our point, we first show how any adversary
can mount undetectable online dictionary attacks [18] on both provably secure
EC2C-PAKE and C2C-PAKE-YB protocols to recover the password. A discus-
sion of the relevance and significance of this sort of attack is given in Section
3.1. We then show how malicious servers can launch man-in-the-middle attacks
on EC2C-PAKE and cause client parties to share different keys with the server.
Even adding an extra mutual authenticator step [8] does not help. A further
variant of the latter attack even causes a party to think it is sharing a key with
a party different from the party it is supposed to share with: unknown key-share
attack [17,20]. The existence of malicious servers acting as active adversaries is
indeed considered by the security proof of EC2C-PAKE [12] but still it was not
able to catch our attacks. Fortunately, the C2C-PAKE-YB model captures these
later attacks because it disregards as impossible to obtain key privacy when
active server adversaries exist. Nevertheless, C2C-PAKE-YB exhibits another
weakness inherited from its predecessor [3,14] that allows an unknown key-share
attack to be mounted by a malicious client insider. To draw lessons from these
results, we discuss why the provable security proofs failed to capture flaws in the
protocols that allowed our attacks to work.

2 Two Provably Secure C2C-PAKE Protocols

We now describe each of provably secure protocols [12,28] in turn. We will use the
notations given in Table 1. Unless otherwise mentioned, all described operations
are done modulo p, except operations in the exponents, and all protocols are
based on Diffie-Hellman (DH) type assumptions.

2.1 Description of EC2C-PAKE

We give in Figure 1 a concise view of the EC2C-PAKE protocol proposed by
Byun-Lee-Lim (henceforth simply Byun et al.) [12].
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Table 1. Notations

A,B The clients
IDi The identity of party i

KDCi The key distribution center which stores the identity (IDi) and pass-
word (pwi) of client i in its realm

pwi Client i’s human-memorizable password shared with KDCi

K The symmetric secret key shared between different KDCs
EK(·) Symmetric encryption using the secret key, K
Epwi(·) Ideal cipher, which is a random 1-to-1 function, using the password

(pwi)
p Sufficiently large prime
g The generator of GF(p)

H, H1, H2, H3 Cryptographic hash functions
lr A security parameter

T icketi Ticket for receiving party i, equal to EK(k, IDj , IDi, L) where k is a
random element of Z∗

p , L is the lifetime of T icketi and IDj the identity
of the sender party

MACK(·) A message authentication code using the secret key, K
‖ Message concatenation

x ∈$ Z∗
p Randomly choosing an element x of Z∗

p

1. Client A wishing to initiate a secret communication session by generating a
secret session key sk with B in a different realm, randomly chooses a value
x ∈ Z∗

p and computes Ex = EpwA(gx). Then, A sends 〈Ex, IDA, IDB〉 to
KDCA.

2. Based on the received IDA, KDCA retrieves pwA from its database and
uses this to decrypt Ex to recover gx. KDCA randomly chooses y ∈ Z∗

p

and computes Ey = EpwA(gy) and R = H(gxy). It also randomly chooses
k ∈ Z∗

p and computes ER = ER(k, IDA, IDB). It then computes T icketB =
EK(k, IDA, IDB, L) where L is T icketB’s lifetime. Then, KDCA replies
〈Ey, ER, T icketB〉 to A.

3. Upon receiving the message, A computes the ephemeral R and decrypts
ER to obtain k,IDA and IDB. It checks that IDA and IDB are valid. A
randomly chooses a ∈ Z∗

p and computes Ea = ga‖MACk(ga), and forwards
〈IDA, Ea, T icketB〉 to B.

4. B randomly chooses x′ ∈ Z∗
p and computes Ex′ = EpwB (gx′

). Then, B sends
〈Ex′ , T icketB〉 to KDCB.

5. KDCB decrypts T icketB using K to obtain k, L and IDA. It verifies that
the lifetime L and IDA are valid. KDCB then randomly chooses y′ ∈ Z∗

p

and computes Ey′ = EpwB (gy′
) and ER′ = ER′ (k, IDA, IDB), where R′ =

H(gx′y′
). It then sends 〈Ey′ , ER′〉 to B.

6. B decrypts Ey′ , computes R′, then uses this to decrypt ER′ to obtain k. Us-
ing this, B checks the integrity of ga by verifying the previously received Ea.
It then randomly chooses b ∈ Z∗

p and computes sk=H(IDA‖IDB‖ga‖gb‖gab)
and Eb = gb‖MACk(gb) and sends Eb to A.

7. On receiving Eb, A checks the integrity of gb and also computes sk.
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KDCA A B KDCB

x ∈$ Z∗
p

Ex = EpwA
(gx)

Ex,IDA,IDB←−−−−−−−−−
k, y ∈$ Z∗

p

Ey = EpwA
(gy)

R = H(gxy)

ER = ER(k, IDA, IDB )

T icketB = EK(k, IDA, IDB , L)

Ey,ER,T icketB−−−−−−−−−−→
a ∈$ Z∗

p

Ea = ga‖MACk(ga)

IDA,Ea,T icketB−−−−−−−−−−−−−−−→
x′ ∈$ Z∗

p

Ex′ = EpwB
(gx′

)

Ex′ ,T icketB−−−−−−−−−−−−→
y′ ∈$ Z∗

p

Ey′ = EpwB
(gy′

)

R′ = H(gx′y′
)

E
R′ = E

R′ (k, IDA, IDB )

Ey′ ,ER′
←−−−−−−−−−−−−−

b ∈$ Z∗
p

sk = H(IDA‖IDB‖ga‖gb‖gab)

Eb = gb‖MACk(gb)

Eb←−−−−−−−−−−−−
sk = H(IDA‖IDB‖ga‖gb‖gab)

Fig. 1. The Provably Secure EC2C-PAKE Protocol

The authors further claim that mutual authentication can be provided by using
an additional authenticator [8]. Let sk = H(IDA‖IDB ‖ga‖gb‖gab). Then at
the end of the protocol, B sends H(sk‖1) to A, who verifies this by using his
own computed sk, and then sends H(sk‖2) to B to be verified in turn. The final
session key is computed by both parties as sk′ = H(sk‖0).

2.2 Description of C2C-PAKE-YB

The C2C-PAKE-YB protocol proposed by Yin and Bao [28], as shown in Figure
2, is basically derived from the PAKE by Abdalla and Pointcheval in [3]1 by
splitting the single server into two KDCs. The model used to prove the security
of C2C-PAKE-YB is also based on [2,3]. Basically, the C2C-PAKE-YB protocol
involves the following three steps:

1 Note that a revised version of [3] appears in [4] but the C2C-PAKE-YB is based on
the earlier version in [3].
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1. Assume that clients A and B from different realms desire to establish a
shared secret session key. In this step, A (resp. B) randomly chooses values
x (resp. y) ∈ Z∗

p . Then, they respectively compute X = gx and Y = gy, and
then further compute blinded values as X∗ = X · H1(pwA) and Y ∗ = Y ·
H1(pwB). Finally, they send the blinded values together with their identities
to their corresponding KDCs. Note that both clients can perform this step
simultaneously and independently.

A KDCA KDCB B
x ∈$ Z∗

p y ∈$ Z∗
p

X = gx Y = gy

X∗ = X · H1(pwA) Y ∗ = Y · H1(pwB)

IDA,X∗
−−−−−−−−−−−→ IDB ,Y ∗

←−−−−−−−−−−−
r ∈$ Z∗

p r′ ∈$ Z∗
p

R ∈$ {0, 1}lr R′ ∈$ {0, 1}lr

X̄ = X∗
H1(pwA) Ȳ = Y ∗

H1(pwB )

X1 = X̄r Y1 = Ȳ r′

IDKDCA
,X1

−−−−−−−−−−−−−−−→
IDKDCB

,Y1
←−−−−−−−−−−−−−−−

Y2 = Y r
1 X2 = Xr′

1
Y ∗
2 = Y2 · H2(R, pwA, X∗) X∗

2 = X2 · H2(R′, pwB, Y ∗)

R,Y ∗
2←−−−−−−−−−−−−

R′,X∗
2−−−−−−−−−−−−−→

Ȳ2 =
Y ∗
2

H2(R,pwA,X∗) X̄2 =
X∗

2
H2(R′,pwB,Y ∗)

α = Ȳ x
2 β = X̄

y
2

P = (A, B, KDCA, KDCB ) P = (A, B, KDCA, KDCB )
T = (R, R′, X∗, Y ∗, X∗

2 , Y ∗
2 ) T = (R, R′, X∗, Y ∗, X∗

2 , Y ∗
2 )

sk = H3(P, T, α) sk = H3(P, T, β)

Fig. 2. The Provably Secure C2C-PAKE-YB Protocol

2. Upon receiving the messages from the clients, KDCA (resp. KDCB) ran-
domly chooses r ∈ Z∗

p and R ∈ {0, 1}lr (resp. r′ and R′), where lr is a
security parameter, then by using pwA (resp. pwB) in its database, it com-
putes X̄ = X∗

H1(pwA) (resp. Ȳ = Y ∗
H1(pwB) ) and reblinds it as X1 = X̄r (resp.

Y1 = Ȳ r′
). KDCA and KDCB exchange 〈IDKDCA , X1〉 and 〈IDKDCB , Y1〉

secretly2. Then, KDCA (resp. KDCB) computes Y2 = Y r
1 and Y ∗

2 = Y2 ·
H2(R, pwA, X∗) (resp. X2 = Xr′

1 and X∗
2 = X2 ·H2(R′, pwB, Y ∗)). Finally,

KDCA returns 〈R, Y ∗
2 〉 to A (resp. KDCB returns 〈R′, X∗

2 〉 to B).
3. Both clients compute their shared session key sk, i.e. A (resp. B) computes

Ȳ2 = Y ∗
2

H2(R,pwA,X∗) and α = Ȳ x
2 (resp. X̄2 = X∗

2
H2(R′,pwB ,Y ∗) and β = X̄y

2 ) and
the secret key sk = H3(P, T, α) (resp. sk = H3(P, T, β)) where the transcript
T = (R, R′, X∗, Y ∗, X∗

2 , Y ∗
2 ) and party list P = (A, B, KDCA, KDCB).

2 This authenticated private communication channel can be established by the pre-
agreed key shared between them or their public keys in PKI [28].
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3 Cryptanalysis of the Provably Secure EC2C-PAKE

The EC2C-PAKE is interesting because it is claimed to be the first provably
secure C2C-PAKE protocol and based on computationally intractable assump-
tions, when previous variants were based on heuristic design principles and un-
derwent adhoc security analyses. EC2C-PAKE [12] is claimed to securely protect
the established session key sk, to provide forward secrecy and to be secure against
malicious servers.

Provable security alone intrigued us to study it in detail. Unfortunately, we
found attacks that disprove the security claims in [12]. We categorize our attacks
based on the type of adversaries.

3.1 Undetectable Online Dictionary by Any Outsider

We first describe an undetectable online dictionary attack [18]. Recall a dictio-
nary attack is only interesting for password-based AKEs, since it exhaustively
guesses all possible values of the secret and verifies if the guess is correct. Thus
dictionary attacks are only feasible in the case of PAKEs since passwords have
low entropy. An offline dictionary attack is where the adversary can do all his ver-
ifications without needing to interact with legitimate protocol parties. An online
dictionary attack requires to interact with the parties in protocol sessions to verify
the password guesses. One way to prevent online dictionary attacks is to trigger
an alarm if the number of detected unsuccessful password login attempts exceeds
a certain threshold [19,2,3,4,16]; but firstly this is typically outside the scope of a
protocol design and more of an implementation detail. Secondly, assumptions in
[19,2,3,4,16] for guarding against online dictionary attacks is only possible if the
unsuccessful attempts are detectable [18,16]. But existing security models do not
properly handle detecting this (see [16] for some discussion of this).

Ding and Horster [18] showed some undetectable online dictionary attacks.
Basically, this means the adversary is interacting with legitimate parties in pro-
tocol sessions (thus it is online), but the parties are unaware that the adversary
is present but instead think they are interacting with legitimate honest counter-
parts (thus undetectable). Therefore such attacks are hard to trace and legiti-
mate parties become oracles to the adversary without noticing anything wrong.
Indeed a party could keep a counter of how many different sessions that another
party is interacting with it and refuse to further communicate if the counter
exceeds a certain threshold, but there is a possibility [18] that it came from an
honest party hence a denial of service occurs, which is clearly not desirable. The
main point is the inability to differentiate between interactions with another le-
gitimate honest party and interactions with the malicious adversary that makes
undetectable online dictionary attacks so subtle.

Our attack exploits the fact that a key distribution center KDCA for party A
simply acts as an oracle in Step (2) to perform encryptions under the password
pwA shared with A. Recall that encryptions under the low-entropy password need
to be used carefully to avoid being exploited for dictionary attack verifications
[13,22,27]. The attack proceeds as follows:
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An adversary A′ chooses any x� ∈ Z∗
p and computes gx�

. Then for every guess
pw�

A of pwA:

1. Computes Ex� = Epw�
A
(gx�

) and sends 〈Ex� , IDA, IDB〉 to KDCA.
2. KDCA decrypts Ex� with pwA and obtains z1 =E−1

pwA
(Ex�)= E−1

pwA
(Epw�

A
(gx�

).
Then, it randomly chooses y ∈ Z∗

p and computes Ey = EpwA(gy) and R� =
H(zy

1 ). It also randomly chooses k ∈ Z∗
p and computes ER� = ER�(k, IDA,

IDB), and then computes T icketB = EK(k, IDA, IDB, L). Then, KDCA

replies 〈Ey, ER� , T icketB〉 to A.
3. This is received by A′ who decrypts Ey by computing z2 = E−1

pw�
A
(Ey) =

E−1
pw�

A
(EpwA(gy)). It then computes R�� = H(zx�

2 ) and decrypts ER� by com-
puting E−1

R��(ER�) = E−1
R��(ER�(k, IDA, IDB)). It checks if IDA and IDB

are valid. If so, the guess of pw�
A is correct. Else, it guesses a new one and

repeats.

Our attack on EC2C-PAKE does not require knowledge of any secrets and can
be mounted by any outsider, in contrast to some attacks on previous C2C-
PAKE variants [13,27,22]3. It similarly applies to the original C2C-PAKE in [10].
What is more, there is no distinction between offline and undetectable online
dictionary attacks in the security models for protocols because the adversary
when mounting an undetectable online dictionary attack appears as a legitimate
party so other parties are unable to distinguish between the adversary and any
other honest party.

3.2 Two Attacks by a Malicious Server Insider

Our second type of attack exploits the fact that a participating KDCI (for
I ∈ {A, B}) knows the MAC key k to be used between both parties A and
B. KDCI can then successfully launch a man-in-the-middle attack and end up
sharing different keys with A and B respectively, while they would think they
are sharing the same key with each other, as follows:

1. The protocol steps proceed as normal, but in Step (3) KDCI replaces Ea

sent by A to B with Ea′ = ga′‖MACk(ga′
), for any a′ ∈ Z∗

p chosen by
KDCI .

2. The rest of the steps proceed as normal, until Step (6) where KDCI replaces
Eb sent by B to A with Eb′ = gb′‖MACk(gb′), for any b′ ∈ Z∗

p chosen by
KDCI .

3. A computes sk=H(IDA‖IDB‖ga‖gb′‖ga′
) while B computes sk∗ = H(IDA‖

IDB‖ga′‖gb‖ga′b). Even if the extra mutual authenticator as described in
Section 3.1 of [12] is added, KDCI still succeeds in sharing sk with A and
sharing sk∗ with B because KDCI knows both keys sk and sk∗ and can
take part in the mutual authenticator steps.

3 We remark that the Denning-Sacco attack on [10] by Kim et al. in [22] is flawed
because they wrongly assume the insider adversary A knows the ephemeral Diffie-
Hellman key R′ shared by client B and KDCB . This contradicts the DH assumption.
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A further variant of the above attack can be launched by KDCB to cause B
to think that it is I �= A who wishes to establish a key with it. This unknown
key-share attack [17,20] is as follows:

1. The steps are as normal until Step (3) where KDCB replaces the 〈IDA, Ea〉
sent from A to B with 〈IDI , Ea′〉, where Ea′ = ga′‖MACk(ga′

), for any
a′ ∈ Z∗

p chosen by KDCB.
2. Then in Step (5) instead of computing ER′(k, IDA, IDB), KDCB computes

ER′(k, IDI , IDB) and sends this back to B.
3. In Step (6), KDCB replaces Eb sent by B to A with Eb′ = gb′‖MACk(gb′),

for any b′ ∈ Z∗
p chosen by KDCB.

4. A computes sk=H(IDA‖IDB‖ga‖gb′‖gab′) while B computes sk∗ = H(IDI‖
IDB‖ga′‖gb‖ga′b). Even if the extra mutual authenticator as described in
Section 3.1 of [12] is added, KDCB will still succeed in sharing sk with A
while A thinks it is sharing with B; and KDCB will also share sk∗ with B
while B thinks it is sharing with I, because KDCB knows both keys sk and
sk∗ and can easily take part in the mutual authenticator.

Indeed, our results confirm the fact [2,16] that it is difficult to guard against
malicious servers since they know the password of clients in the same realm and
thus also know the MAC key k used by parties A and B. This fact however was
overlooked by the EC2C-PAKE designers [12]. As a side note, this attack also
applies to the variant in [22].

On the other hand, it is fortunate that attacks by malicious servers described
in this subsection do not apply to C2C-PAKE-YB because its security model
reasonably assumes that key privacy cannot be achieved against malicious servers
acting as active adversaries.

4 Cryptanalysis of the Provably Secure C2C-PAKE-YB

C2C-PAKE-YB is equally interesting. In fact, with the right tools of which the
provable security approach is one, properly designed protocols with expected
security properties can be obtained. However, provably secure protocols should
be scrutinized to ensure they are properly designed and their security models do
not miss catching known security flaws.

4.1 Undetectable Online Dictionary Attack by Any Outsider

We show an undetectable online dictionary attack on C2C-PAKE-YB by any
adversary, making use of only the SendServer() query defined in the C2C-PAKE-
YB security model.

1. Choose x′, y′ ∈ Z∗
p and compute X ′ = gx′

, Y ′ = gy′
.

2. For all guesses of pw′
A and pw′

B:
(a) Compute X∗′

= X ′ ·H1(pw′
A) and Y ∗′

= Y ′ ·H1(pw′
B).
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(b) Send 〈IDA, X∗′〉 to KDCA and 〈IDB, Y ∗′〉 to KDCB; i.e. obtain Send-
Server(KDCA, 〈IDA, X∗′〉) and SendServer(KDCB , 〈IDB , Y ∗′〉) queries.

(c) KDCA computes X̄ ′ = X∗′

H1(pwA) = X′·H1(pw′
A)

H1(pwA) and KDCB computes

Ȳ ′ = Y ∗′

H1(pwB) = Y ′·H1(pw′
B)

H1(pwB) .
(d) KDCA computes X ′

1 = X̄ ′r and KDCB computes Y ′
1 = Ȳ ′r.

(e) KDCA sends 〈IDKDCA , X ′
1〉 to KDCB and KDCB sends 〈IDKDCB , Y ′

1〉
to KDCA.

(f) KDCB computes X ′
2 = X ′r′

1 = gx′·r·r′
and KDCA computes Y ′

2 =
Y ′r′

1 = gy′·r·r′
.

(g) KDCB computes X∗′
2 = X ′

2 · H2(R′, pwB , Y ∗) and KDCA computes
Y ∗′

2 = Y ′
2 ·H2(R, pwA, X∗).

(h) KDCA outputs 〈R, Y ∗′
2 〉 and KDCB outputs 〈R′, X∗′

2 〉.
(i) Compute Ȳ2 = Y ∗′

2
H2(R,pw′

A,X∗) and X̄2 = X∗′
2

H2(R′,pw′
B ,Y ∗) .

(j) Compute z = Ȳ
(y′−1)
2 and z′ = X̄

(x′−1)
2 .

(k) Check if z = z′.

The intuition behind this attack is that the servers KDCA (resp. KDCB) act
as oracles that perform unmasking by dividing with a function of the password
pwA (resp. pwB) and then remasking by multiplying with another function of
the password pwA (resp. pwB) on whatever X∗ (resp. Y ∗) values that are sup-
plied by A (resp. B). KDCA (resp. KDCB) then outputs Y ∗

2 (resp. X∗
2 ) that

the adversary attempts to unmask by dividing with a function of the guessed
password pw′

A (resp. pw′
B). If the guess is correct, then the adversary obtains

the correct Ȳ2 and X̄2 values that can each be used to compute gr·r′
. Checking

that they match will allow the password guess to be verified.

Discussion. It is worthwhile to discuss why C2C-PAKE-YB falls to dictio-
nary attacks even though this appears to be treated in their Theorem 2 [28].
Firstly, they considered curbing detectable online dictionary attacks by limiting
the number qs of guessing attempts made via queries to SendServer() and Send-
Client(). However, as remarked in [18,16] and in Section 3.1, this cannot prevent
undetectable online dictionary attacks since the server cannot differentiate be-
tween successful or failed login attempts. Thus, since a SendServer() oracle is
used to model active attacks by an adversary, the inability to detect the ad-
versary’s attack attempts means the undetectable attempts may not even be
recorded in the counter for qs. Secondly, recall that our attack only makes use
of the SendServer() query defined in the C2C-PAKE-YB security model. In their
proof, Yin-Bao considered security against dictionary attacks by a malicious
client and by a malicious server, respectively, as independent cases. Although
a provable security model allows to capture all possible attacks as long as the
polynomial time adversary is constrained to the defined oracle queries, however,
when arguing within a security proof, one needs to be careful not to limit the
consideration to specific adversarial behaviours or to specific approaches that an
adversary may use to attack. The flaw in the proof argument of Yin-Bao lies in
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that they considered a malicious client mounting attacks as one legitimate client
party, whereas our attacks does not require the adversary to be a legitimate
party and instead mounts attacks on both sides of the client parties, i.e. A and
B. Therefore, although the goal that our attack achieves is indeed considered by
Theorem 2, the argument for Theorem 2 was too specific to catch our attack.

Another point is that since undetectable online dictionary attacks are caused
by parties in general not being able to distinguish between interactions with
other honest parties or with the adversary; therefore it may be interesting to
consider incorporating security against undetectable online dictionary attacks
directly into the security model of a PAKE protocol.

4.2 Unknown Key-Share Attack by a Malicious Client Insider

Finally, we observe that the C2C-PAKE-YB model in [28] does not include
Corrupt queries. It is now known that exclusion of this gives rise to attacks that
cannot be captured by a proof in the security model, as demonstrated by Choo
et al. [14] on the 3PAKE protocol by Abdalla and Pointcheval [3] whose security
is proven in the BPR2000 model [8,2]. Abdalla and Pointcheval later [4] revised
their protocol to prevent this.

Since C2C-PAKE-YB is based on 3PAKE [3], we remark that it directly in-
herits the weakness of 3PAKE that allowed the Choo et al. attack. To elaborate,
Choo et al. showed that by corrupting another legitimate client C, then an ad-
versaryA can end up sharing a session key with client A but with A thinking it is
sharing with client B who is not sharing any key with A or C. Furthermore, note
that corruption of a client C is essentially equivalent to having a malicious client
insider C as the adversary. But while C2C-PAKE-YB claims security against
the latter, the former is surprisingly not considered. In more detail, the attack
follows:

1. The protocol steps proceed as normal with A sending to KDCA the value
X∗ and the identities IDA, IDB notifying KDCA that it wishes to initiate
a session with B. Similarly B sends to KDCB the value Y ∗ and identities
IDB, IDA notifying KDCB that it wishes to initiate a session with A.

2. C randomly chooses e ∈ Z∗
p and computes E∗ = ge·H1(pwC). C then replaces

〈IDA, IDB, X∗〉 with 〈IDA, IDC , X∗〉 causing KDCA to believe the recipi-
ent client is C and not B; and replaces 〈IDB , IDA, Y ∗〉 with 〈IDC , IDA, E∗〉
causing KDCC to believe C wishes to initiate a session with A.

3. The rest of the steps proceed normally, but where KDCC is involved instead
of KDCB; and E∗ and pwC are used instead of Y ∗ and pwB.

4. KDCA outputs 〈R, E∗
2 〉 to A and KDCC outputs 〈R′, X∗

2 〉 to C.
5. A will compute Ȳ2 = gerr′

, α = gxerr′
and the secret key sk = H3(P, T, α).

C will compute X̄2 = gxrr′
, β = gxerr′

= α and the same secret key sk =
H3(P, T, β), where P = 〈A, B, KDCA, KDCB〉.

A ends up thinking it is sharing a key with B when it is actually sharing with C
and C knows what this key sk is. To fix this, Choo et al. [14] informally suggest
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to include the identities of both clients A and B into the computation of the
password-based blinding factors, and Abdalla-Pointcheval’s full version [4] and
appendix proofs do now take this into consideration. The flaw by Yin-Bao was
to base their C2C-PAKE-YB and corresponding security model on the earlier
variant in [3], and to not consider Corrupt queries.

5 Concluding Remarks

Byun et al. [12] and Yin-Bao [28] respectively proposed first known provably se-
cure C2C-PAKE protocols, with security based on computationally intractable
assumptions and further the Yin-Bao variant has security properties proven in a
formal security model. These are nice results. But, provable security proofs for
PAKE protocols should be done carefully to avoid miscatching known attacks. A
recent example is the first provably secure n-party PAKE protocol in the DPWA
setting [11] that was shown in [25] to fall to attacks that it was designed to resist.
Other examples are in [14,15]. Though the responsibility rests on protocol de-
signers to carefully define adequate security models and check the correctness of
their security proofs, the community in particular protocol implementers should
exercise caution when interpreting provable security proofs. Experience in the
analysis and design of security protocols [1,5,8,14,15] has shown that even seem-
ingly sound designs may exhibit problems, and though provable security is the
right approach, years of public scrutiny should still complement the process be-
fore a protocol is deemed secure. Instead, adhoc protocol designs with heuristic
security proofs should be discouraged.
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Abstract. Three-party password-based authenticated key exchange (3-
party PAKE) protocols make two communication parties establish a
shared session key with the help of a trusted server, with which each of
the two parties shares a predetermined password. Recently, with the first
formal treatment for 3-party PAKE protocols addressed by Abdalla et
al., the security of such protocols has received much attention from cryp-
tographic protocol researchers. In this paper, we consider the security of
3-party PAKE protocols against undetectable on-line dictionary attacks
which are serious and covert threats for the protocals. We examine two
3-party PAKE schemes proposed recently by Abdalla et al. and reveal
their common weakness in resisting undetectable on-line dictionary at-
tacks. With reviewing the formal model for 3-party PAKE protocols of
Abdalla et al. and enhancing it by adding the authentication security
notion for the treatment of undetectable attacks, we then present an
efficient generic construction for 3-party PAKE protocols, and prove it
enjoys both the semantic security and the authentication security.

Keywords: password, authenticated key exchange, key distribution,
multi-party protocol.

1 Introduction

Three-party password-based authenticated key exchange protocols (3-party
PAKE or 3PAKE) enable communicating parties within a large network, who
only share a weak (low entropy) password with a trusted server respectively,
to authenticate each other with the help of the trusted server and establish
a strong session key for protecting their subsequent communications over the
public channel. In this solution, a communicating party who wants to build se-
cure communications with other parties does not need to remember so many
passwords whose number would be large linearly in the number of all possible
partners, instead it only holds a password shared with a trusted server. Due to
this advantage, these protocols are particularly appealing for those real-world ap-
plications in which communication parties are human beings who are equipped
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with lightweight or mobile client machines that can not afford a heavyweight
infrastructure such as public key infrastructure (PKI) and common secrets with
every party.

Unlike public-key based key exchange protocols which rely on the existence
of PKI, password-based authenticated key exchange protocols, in which secret
keys shared among communication parties are not distributed over a large space,
but are rather drawn from a small set of values, have a challenge from so-called
exhaustive dictionary attacks. Generally, we can divide such attacks into the
following three classes [13]:

1. Off-line dictionary attacks: Only by using the eavesdropped information, an
attacker guesses a password and verifies its guess off-linely. No participation
of the honest client or the server is required, so these attacks can not be
noticed.

2. Undetectable on-line dictionary attacks: An attacker tries to verify a pass-
word guess in an on-line transaction. However, a failed guess can not be
detected by the honest client or the server, since one of them is not able to
distinguish a malicious request from an honest one.

3. Detectable on-line dictionary attacks: Similar to above, an attacker attempts
to use a guessed password in an on-line transaction. Using the response from
the honest client or the server, it verifies the correctness of its guess. But a
failed guess can be detected by the honest client or the server.

Among these attacks, detectable on-line dictionary attacks are unavoidable
and should be handled by taking additional precautions such as logging failed
protocol attempts and invalidating the use of the password after a certain number
of failures. However, both off-line and undetectable on-line dictionary attacks are
serious attacks against password-based settings so that a secure password-based
protocol should ideally resist the two types of attacks. Nevertheless, undetectable
on-line dictionary attacks are always more difficult to be found than off-line
ones in the design of password-based protocols, especially in that of 3-party
PAKE cases so that some 3-party PAKE protocols are still susceptible to the
undetectable attacks even if they are claimed to be provably secure [1, 2].

Our contribution. In this paper, we study the design of 3-party PAKE proto-
cols resisting dictionary attacks, especially against both off-line and undetectable
on-line dictionary attacks. Two formal treatments for 3-party PAKE protocols
are proposed recently by Abdalla et al. [1, 2]. Unfortunately, these two schemes
still suffer from undetectable on-line dictionary attacks due to the attacks being
out of the scope of the security model [1] considered. In section 2, we will briefly
describe such attacks against the above two schemes. Then, we review the formal
model for 3-party PAKE protocols provided by Abdalla et al. [1] and enhance it
by adding the authentication security notion for the treatment of undetectable
attacks. Finally, we present a new generic construction scheme for the 3-party
PAKE protocols. Compared with the resolution proposed by Abdalla et al. [1],
our scheme is not only more efficient, but also resistant to both off-line and
undetectable on-line dictionary attacks.
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Relatedwork. Password-basedauthenticated key exchange protocols are attrac-
tive due to their simplicity and convenience, and have received much interest in
the research community. Many password-based protocols and their various formal
treatments were presented in the last few years [4, 5, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17]. Most of them considered different aspects of password-based protocols in
the 2-party setting (2-party PAKE or 2PAKE), while only a few of them [13,16,17]
dealt with 3-party password-based authenticated key exchange protocols.

However, more recently, the importance of 3-party PAKE protocols has been
realized by protocol researchers, especially followed by an increasing recognition
that precise definitions and formalization were needed. The first formal treat-
ment for 3-party PAKE protocols was provided recently by Abdalla et al. [1].
In their paper, they presented the first formal security model for 3-party PAKE
protocols, based on that of Bellare and Rogaway [5] for key distribution schemes
and that of Bellare, Pointcheval, and Rogaway [3] for password-based authenti-
cated key exchange. At the same time, they also gave a generic construction of
3-party PAKE protocols, and proved its security under their security model. Sub-
sequently, based on the two-party encrypted key exchange protocol of Bellovin
and Merritt [6], Abdalla et al. [2] designed an efficient 3-party PAKE protocol
and put forth its security proof by using their security model. To the best of our
knowledge, only the two schemes mentioned above are 3-party PAKE schemes
with provable security.

2 Undetectable On-line Dictionary Attacks

2.1 Attacks on the General Construction of Abdalla et al.

As shown in Figure 1, the generic construction (referred as GPAKE) of Abdalla
et al. [1] for 3-party PAKE protocols is essentially a compiler, which consists of
a secure 2-party PAKE protocol, a secure key distribution (KD), and a secure
message authentication code (MAC) scheme.

Client A Server S Client B

2PAKE(skA) 2PAKE(skB)

KD(skA, km) KD(skB , km)

gx, MAC(km, gx, B, A)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

gy, MAC(km, gy, A, B)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 1. GPAKE: a general construction of 3PAKE protocols provided by Abdalla
et al. [1]

In this construction, since only the semantic security of the 2-party PAKE
protocol used in it is required, which means an adversary can not obtain any
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information about a free session key, but no unilateral authentication security
from clients to the sever is considered, an inside attacker can still impersonate
the other legitimate party and mount undetectable on-line dictionary attacks
against the sever in the 3-party PAKE protocol, when the latter is implemented
by using a 2PAKE scheme without the authentication security from clients to
the server such as OMDHKE protocol [9].

More specifically, assume user B is an inside attacker and it masquerades as
user A by guessing password pw′

A to initiate the protocol designed as above.
After finishing the first step of the protocol, B can build a session key skB

with the server S by using its own legal password pwB, and also obtain a test
session key sk′

A by the guessing password pw′
A. Upon receiving the messages

KD(skB, km) and KD(skA, km), the adversary can compute km and k′
m by

using the real session key skB and the test one sk′
A, respectively. Finally, by

checking k′
m = km, the malicious adversary B can verify its guessing password.

If the above equation holds, it shows the guessing password is correct and the
inside adversary B succeeds. Otherwise the adversary B continues to initiate a
new instance of the protocol with the server S who can not detect such attacks
since there is no unilateral authentication from the client to the server. As the
distribution space of the password pwA of the user A is small, it is easy for the
adversary to guess and obtain the correct password after a certain number of
on-line attacks.

2.2 Attacks on Another 3PAKE Protocol of Abdalla et al.

After proposing GPAKE, Abdalla et al. [2] also present a new efficient 3-party
PAKE protocol, which is based on the encrypted key exchange protocols of
Bellovin and Merrit [6]. Moreover, under the so-called Chosen-basis Decisional
Diffie-Hellman assumptions (CDDH), which is stronger than the standard Deci-
sional Diffie-Hellman (DDH) assumption, they proved the security of this 3-party
PAKE protocol in their formal model for 3-party schemes [1]. Unfortunately, sim-
ilar as their GPAKE construction, the protocol still suffers from undetectable
on-line password guessing attacks.

We depict the protocol in Figure 2, where G is a group of a prime order p and
g is a generator of G; lr is a security parameter; and H1, H2 and H3 are Hash
functions that are regarded as random oracles.

Similarly to the analysis of section 2.1, we assume that the user B is the
malicious inside attacker and masquerades as user A by guessing password pw′

A

to initiate the protocol. The inside attacker firstly chooses random numbers x
and y, and then sends to the server S X∗′ and Y ∗, which are computed by using
the guessing password pw′

A and its own legal password pwB , respectively. Upon
receiving the two pieces of message, the server generates and responds to the
inside attacker B with (R, Y

∗
) and (R, X

∗′
) according to the protocol, using

the passwords of users A and B. After getting the above message, the malicious
user B can verify whether its guessing password is correct or not by comparing
the two session keys obtained finally from normal computation. If the two keys
are equal, it shows the guessing password is correct and the inside attacker B
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Client A Server S Client B

x ←R Zp;X ← gx r ←R Zp;R ←R {0, 1}lr y ←R Zp;Y ← gy

pwA,1 ← H1(pwA) pwB,1 ← H1(pwB)
X∗ ← X · pwA,1 Y ∗ ← Y · pwB,1

X∗
−→ Y ∗

←−
pwA,1 ← H1(pwA)
pwB,1 ← H1(pwB)

X ← X∗/pwA,1
Y ← Y ∗/pwB,1

X ← Xr

Y ← Y r

pwA,2 ← H2(R, pwA, X∗)
pwB,2 ← H2(R, pwB , Y ∗)

Y
∗ ← Y · pwA,2

X
∗ ← X · pwB,2

R, Y
∗

←−−−
R, X

∗
−−−→

pwA,2 ← H2(R, pwA, X∗) pwB,2 ← H2(R, pwB , Y ∗)

Y ← Y
∗
/pwA,2;K ← Y

x
X ← X

∗
/pwB,2;K ← X

y

T ← R, X∗, Y ∗, X
∗
, Y

∗
T ← R, X∗, Y ∗, X

∗
, Y

∗

SK ← H3(A, B, S, T, K) SK ← H3(A, B, S, T, K)

Fig. 2. An efficient 3-party PAKE protocol provided by Abdalla et al. [2]

succeeds. Otherwise the adversary continues a new round of undetectable attacks
on the server S until it finds the correct password pwA.

Remark 1. In 2-party PAKE protocols, to resist undetectable on-line dictionary
attacks, we can modify and extend those protocols only having semantic security
by using generic transformations similar to those of Bellare et al. [3] for mutual
authentication between two communicating parties. However, for 3-party PAKE
protocols, only adding mutual authentication between two communicating par-
ties in the end can not enhance those protocols to be resistant to undetectable
on-line dictionary attacks. The difference is that there are inside attackers in the
3-party scenario, who themselves can play the legal role of one of the involved
client users and impersonate the other client party by guessing the value of its
password. After finishing the protocol with the trusted server, insider attackers
can verify whether or not a password guess is correct by comparing the ses-
sion keys obtained from legal and impersonating identifications respectively. So
if only communicating parties authenticate each other, inside attackers can still
guess the correct password by keeping on-line interacting with the trusted server
which cannot detect such attacks.

3 Security Model of 3-Party PAKE Protocols

In this section, we review the main points of the formal security model of 3-party
password authenticated key exchange protocols [1], which is a generalization of
that for 2-party authenticated key exchange protocols, and in which a new oracle
is introduced to represent the trusted server.
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The reader is assumed to be familiar with the security model of 2-party PAKE
protocols [3]. Hence, we do not present its definition here, and refer the reader
to [3, 1] for more details. However, it should be noted that for simplicity of
the proof of GPAKE, Abdalla et al. provide a new model [1] for the 2-party
PAKE protocols by modifying the previous one [3] slightly and call it Real-
Or-Random (ROR) model for the 2-party case, in which Reveal queries are no
longer allowed and the adversary is allowed to ask as many Test queries as it
wants. This property is inherited by the ROR model of the 3-party case, which
will be presented in the description below.

Additionally, to consider the security against undetectable on-line dictionary
attacks, we add the authentication security notion as an extension for the ROR
model of 3PAKE protocols provided by Abdalla et al. [1].

3.1 Communication Model

Protocol participants. The participants in a 3-party PAKE setting consist of
two sets: U , the set of all client users and S, the set of trusted servers. The set S
is assumed to involve only a single trusted server for the simplicity of the proof,
which can be easily extended to the case considering multiple servers. Here we
further divide the set U into two disjoint subsets: C, the set of honest clients and
E , the set of malicious clients. That is, the set of all users U is the union C

⋃
E .

The malicious set E corresponds to the set of inside attackers, who exist only in
the 3-party setting.

Long-lived keys. Each client user U ∈ U holds a password pwU . The single
server S ∈ S holds a vector pwS = 〈pwS [U ]〉U∈U with an entry for each client in
which pwS [U ] may be equal to pwU in symmetric model or a transformation of
pwU as defined in [3]. The set of passwords pwE , where E ∈ E , is assumed to be
held by the inside attackers.

Protocol execution. In the model, it is assumed that an adversary A has
full control over the communication channels and can create several concurrent
instances of the protocol. During the execution of the protocol, the interac-
tion between an adversary and the protocol participants occurs only via oracle
queries, which model the adversary capabilities in a real attack. These queries
are as follows, where U i (Sj , respectively) denotes the i-th (j-th, respectively)
instance of a participant U (S, respectively):

1. Execute(U i1
1 , Sj , U i2

2 ): This query models passive attacks, where the attacker
gets access to honest executions among the client instances U i1

1 and U i2
2

and trusted server instance Sj by eavesdropping. The output of this query
consists of the message that was exchanged during the honest execution of
the protocol.

2. SendClient(U i, m): This query models an active attack against clients, in
which the adversary sends a message to the client instance U i. The output
of this query is the message that client instance U i would generate upon
receipt of message m.
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3. SendServer(Sj , m): This query models an active attack against the server,
in which the adversary sends a message to server instance Sj. It outputs the
message which server instance Sj would generate upon receipt of message m.

4. Reveal(U i): This query models the misuse of session keys by clients. Only
if the session key of the client instance U i is defined, the query is available
and returns to the adversary the session key.

5. Test(U i): This query is used to measure the semantic security of the session
key of the client instance U i. If the session key is not defined, it returns ⊥.
Otherwise, it returns either the session key held by the client instance U i if
b = 0 or a random number of the same size if b = 1, where b is the hidden
bit selected at random prior to the first call.

3.2 Security Definitions

Notation. As in [1], which in turn build on [5, 3], an instance U i is said to be
opened if the query Reveal(U i) has been made by the adversary. We say an
instance U i is unopened if it is not opened. An instance U i is said to be accepted
if it goes into an accept state after receiving the last expected protocol message.

Partnering. Our definitional approach of partnering is from [3], which uses the
notion of session identifications (sid). More specifically, we say two instances U i

1

and U j
2 are partners if the following conditions are met: (1) Both U i

1 and U j
2

accept; (2) Both U i
1 and U j

2 share the same sid; (3) The partner identification
for U i

1 is U j
2 and vice-versa; and (4) No instance other than U i

1 and U j
2 accepts

with a partner identification equal to U i
1 or U j

2 .

Freshness. If an instance U i has been accepted, both the instance and its part-
ner are unopened and they are both instances of honest clients, we say the
instance U i is fresh.

Semantic security in the ROR model. The security notion is defined in the
context of executing a 3-party PAKE protocol P in the presence of an adversary
A. During executing the protocol, the adversary A is allowed to send multiple
queries to the Execute, SendClient, SendServer, and Test oracles and asks at
most one Test query to each fresh instance of each honest client, while it is no
longer allowed to ask Reveal queries. Finally A outputs its guess b′ for the bit b
hidden in the Test oracle. An adversary A is said to be successful if b′ = b. We
denote this event by Succ. Provided that passwords are drawn from dictionary
D, we define the advantage of A in violating the semantic security of the protocol
P and the advantage function of the protocol P , respectively, as follows:

Advror−ake
P,D (A) = 2 · Pr[Succ]− 1,

Advror−ake
P,D (t, R) = max

A
{Advror−ake

P,D (A)},

where the maximum is taken over all A with time-complexity at most t and
using resources at most R (such as the number of oracle queries).
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We say a 3-party PAKE protocol P is semantically secure if the advantage
Advror−ake

P,D (t, R) is only negligibly larger than kn/|D|, where n is number of
active sessions and k is a constant. Certainly, one can hope for the best scenario
in which k = 1 and an adversary has an advantage of n/|D| since it simply
guesses a password in each of the active sessions.

Authentication security. To measure the security of a 3PAKE protocol re-
sisting the above focused undetectable on-line dictionary attacks, in this pa-
per we consider the unilateral authentication from the client to the trusted
server, wherein the adversary may be an inside attacker and impersonates an-
other client user. We denote by Succ

auth(C→S)
P (A) the probability that an adver-

sary A successfully impersonates a client instance during executing the protocol
P while the trusted server does not detect it. Further, Succ

auth(C→S)
P (t, R) =

max
A
{Succ

auth(C→S)
P (A)} is defined as the maximum over all A running in time

at most t and using resources at most R. We say a 3-party PAKE protocol P is
client-to-server authentication secure if Succ

auth(C→S)
P (t, R) is negligible in the

security parameter.

4 General Construction of 3-Party PAKE Protocols

In this section, we present a new generic construction (referred as NGPAKE) of
3-party password-based key exchange protocol, by which we can create a series
of provably secure 3-party PAKE protocols. Similarly to the construction of Ab-
dalla et al. [1], our construction is essentially a form of compiler transforming
any secure 2-party PAKE protocol into a secure 3-party PAKE protocol. It con-
sists of two components: a 2-party password-based key exchange and a 2-party
MAC-based key exchange protocol. Compared with the construction provided
by Abdalla et al. [1], our construction not only avoids the use of a secure com-
ponent (i.e. Key Distribution) and adds no additional burden of communication
and computation, but also implements stronger security—both the semantic se-
curity and the client-to-server authentication security.

4.1 Scheme Description

Assume that two client users A and B want to establish a secure session key with
the help of the trusted server S, based on their passwords pwA and pwB stored
in the server. Firstly, the users A and B build two secure high-entropy session
key skA and skB with the trusted server S, respectively, by using any semantic
secure 2-party PAKE protocol. Secondly, using the session keys generated in the
first step as the MAC key, A and B can concurrently authenticate and send their
respective temporary Diffie-Hellman public keys to the server S. Thirdly, upon
receiving and confirming the temporary public keys from the clients A and B,
the server S authenticates and transfers temporary public keys of A and B to B
and A, respectively, similarly by using the same MAC scheme with the session
keys skA and skB . In this manner, A and B finally finish establishing a session
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Client A Server S Client B

2PAKE(skA) 2PAKE(skB)

gr, MAC(gr, skA, A, B)
−−−−−−−−−−−−−−−−−−−−→

gr, MAC(gr, skB , A,B)
−−−−−−−−−−−−−−−−−−−−→

gt, MAC(gt, skA, B, A)
←−−−−−−−−−−−−−−−−−−−

gt, MAC(gt, skB , B, A)
←−−−−−−−−−−−−−−−−−−−

Fig. 3. NGPAKE: our new generic construction of 3PAKE protocol

key in an authenticated way, with the cooperation of the trusted server S. See
Figure 3 for more details.

4.2 Building Blocks

We briefly describe the two cryptographic primitives used as building blocks in
our scheme. Refer to [1] for more details.

Decisional Diffie-Hellman assumption. Let us consider two experiments:
Expddh−real

G
and Expddh−rand

G
. In the former, gx, gy and gxy are given to A, and

in the latter gx, gy and gz are provided, where x, y and z are drawn at random
from {1, ..., |G|}. Set

Advddh
G

(t) = max
A
{|Pr[Expddh−real

G
(A) = 1]− Pr[Expddh−rand

G
(A) = 1]|},

where the maximum is over all adversaries A running in time at most t. The
DDH assumption in G holds if Advddh

G
(t) is a negligible function of t.

Message authentication codes. A Message authentication code scheme can be
written as MAC = (Tag; Ver), where Tag is a MAC generation algorithm and Ver
is a MAC verification one. It is existential unforgeability under chosen-message
attacks (EUF-CMA) if adversaries can not create a new valid message-tag pair,
even after obtaining many valid message-tag pairs. Namely, the maximal value,
Adveuf−cma

MAC (t, qg, qv), of advantages of allA in violating EUF-CMA with at most
t time complexity and at most qg and qv queries to its MAC generation and veri-
fication oracles, respectively, is a negligible function of the parameters above.

4.3 Security of Our Construction

We prove our new construction of 3-party PAKE protocols satisfies the semantic
security and the client-to-server authentication security provided the Decisional
Diffie-Hellman assumption holds in G and the underlying primitives it uses are
secure.

Theorem 1. Let 2PAKE be a semantic secure 2-party PAKE protocol and MAC
be a secure MAC algorithm. Let qexe and qtest denote the numbers of queries to
Execute and Test oracles, and qA

send, qB
send, and qake be the numbers of queries to

the SendClient and SendServer oracles with respect to each of the two 2PAKE
protocols and the final two authenticated key exchange protocols. Then,
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Advror−ake
NGPAKE,D(t, qexe, qtest, q

A
send, qB

send, qake) ≤
2 · Advror−ake

2PAKE,D(t, qexe, qexe + qA
send, qA

send)

+ 2 ·Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send)

+ 2 · qake · Adveuf−cma
MAC (t, 2, 0)

+ 2 ·Advddh
G (t + 8(qexe + qake)τG)

and

Succ
auth(C→S)
NGPAKE (t, qexe, qtest, q

A
send, qB

send, qake) ≤
Advror−ake

2PAKE,D(t, qexe, qexe + qA
send, qA

send)

+ Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, qB
send)

+ qake · Adveuf−cma
MAC (t, 2, 0),

where τG denotes the exponentiation computational time in G.

Proof. We follow the original proof of Abdalla et al. [1]. For simplicity, the set of
honest users is assumed to involve only users A and B. It can be easily extended
to the multiple-party case. Let A be an adversary attacking NGPAKE in the
Real-Or-Random model with time-complexity at most t, and asking at most
qexe queries to its Execute oracle, qtest queries to its Test oracle, qA

send queries
to SendClient and SendServer oracles corresponding to the 2PAKE protocol
between A and the trusted server S, qB

send queries to the oracles corresponding to
the protocol between B and S, qAS

ake queries to SendClient and SendSever oracles
corresponding to the authenticated key exchange (AKE) protocol between A
and S, and qBS

ake queries to the oracles corresponding to the protocol between B
and S. We incrementally define a sequence of games starting at the real game
G0 and ending up at the game G6 in which the advantage of the adversary is
zero. We define Succi as the event that A guess b hidden in the Test oracles
correctly in game Gi.

Furthermore, we assume that when the game below aborts or stops with no
answer for b hidden in the Test oracles from A, we guess a random bit for b, in
which the success probability of the adversary is straightforwardly 1/2.

Game G0: This game represents the real attack game, where all the instances
of clients A and B and the trusted server S modeled as oracles are available to
the adversary. By definition, we have

Advror−ake
NGPAKE,D(A) = 2 · Pr[Succ0]− 1. (1)

Game G1: In this game, we modify the simulation of the oracles by using a
random session key sk′

A, instead of the session key skA, as the MAC key in all
of the sessions between A and S. As the following lemma shows, the difference
between the success probabilities of the adversary between the current and pre-
vious game is at most the probability of breaking the security of the underlying
2PAKE protocol between A and S.
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Lemma 1. |Pr[Succ1]− Pr[Succ0]| < Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, qA
send).

Proof. Given an adversary A1 and a distinguisher for G0 and G1, we can con-
struct an active adversaryA2PAKE against the indistinguishability of the 2PAKE
protocol between A and S as follows. In the initialization, A2PAKE chooses a
bit b randomly, selects passwords uniformly from D for all clients in the system
except A and provides A1 with those for all the malicious users. Next, it runs
A1 and simulates oracles as follows.

Consider a query SendSever or SendClient fromA1. If the query corresponds
to an instance of 2PAKE protocol between B and S, A2PAKE can make reply
by using the password of B. If the query corresponds to an instance of 2PAKE
protocol between A and S, A2PAKE can make reply by asking its own Send
oracles. Once this query triggers the acceptance of the given instance of client A
or S, which is also fresh,A2PAKE asks a Test query to that instance and treats its
output as the session key shared between A and S. For all remaining SendClient
and SendServer queries fromA1,A2PAKE can easily simulate the corresponding
oracles by either raising its Send query to the given 2PAKE protocol or using the
secrets held preliminarily. Additionally, since Execute queries essentially consist
of Send ones, A2PAKE can simulate the corresponding oracles as above. With
regard to Test queries by A1, A2PAKE answers it according to the value of b,
namely the real session key if 1 or a random key, otherwise. Finally, A1 outputs
its guess b′, and then A2PAKE outputs 1 if b′ = b or 0, otherwise.

It is clear that the probability that A1 succeeds in G0 is exactly the proba-
bility that A2PAKE outputs 1 when its Test query returns the real session key.
Similarly, the probability that A1 succeeds in G1 is exactly that of the A2PAKE

outputs 1 when its Test query returns a random key. As a result, the lemma
follows easily with A2PAKE running at most time-complexity t and asking at
most qexe + qA

send queries to its Test oracle, at most qexe queries to its Execute
oracle, and at most qA

send queries to its Send oracle. 	


Game G2: In this game, we employ a random session key sk′
B, instead of the

session key skB agreed by B and S, as the MAC key in all of the sessions between
B and S, similar as the change from G0 to G1. With the similar arguments, one
can prove the following lemma.

Lemma 2. |Pr[Succ2]− Pr[Succ1]| < Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send).

	

Game G3: This game is modified as follows. If the adversary asks a SendClient
or SendServer query for AKE between A and S involving a new pair message-
tage not previously generated by an oracle, then we consider the MAC tag invalid
and abort the game. According to the following lemma, the difference of the
success probabilities of the adversary between in the current game and in the
previous one should be negligible in use of a secure MAC scheme.

Lemma 3. |Pr[Succ3]− Pr[Succ2]| ≤ qAS
ake · Adveuf−cma

MAC (t, 2, 0).

Proof. We use the so-called ”hybrid arguments” method, in which qAS
ake hybrids are

defined as follows. In hybrid Ei, where 0 ≤ i ≤ qAS
ake, SendClient or SendServer
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queries for AKE between A and S in the first i sessions are treated as in game G3

and the remaining qAS
ake − i ones are treated as in game G2.

Given Ai
3 be a distinguisher for hybrids Ei and Ei−1, by which we can build

an adversary Ai
mac against the security of MAC scheme. Let F be the event in

which a message-tag pair generated by Ai
3 is considered invalid in hybrid Ei but

valid in hybrid Ei−1. Since Pr[F ] is at most the probability that a new message-
tag pair is forged by Ai

mac under a chosen-message attack, with time-complexity
t and making at most two queries to its MAC generation oracle (to answer the
SendClient and SendServer queries from Ai

3) and no queries to its verification
oracle, we have that Pr[F ] ≤ Adveuf−cma

MAC (t, 2, 0). Unless F occurs, hybrids Ei

and Ei−1 are identical, hence we have Pr[SuccEi ∧ ¬F ] = Pr[SuccEi−1 ∧ ¬F ]
and then obtain |Pr[SuccEi ]−Pr[SuccEi−1 ]| ≤ Adveuf−cma

MAC (t, 2, 0). The lemma
follows from the fact that there are at most qAS

ake hybrids. 	


Game G4: The treatments for SendClient or SendServer queries for AKE
between B and S are modified similarly as in the previous game. By the similar
arguments, one can prove the following lemma.

Lemma 4. |Pr[Succ4]− Pr[Succ3]| ≤ qBS
ake · Adveuf−cma

MAC (t, 2, 0). 	


Notice that the proof on the authentication security in Theorem 1 is finished by
combining the previous lemmas.

Game G5: In this game, it is assumed that our simulator is initially given a
random DDH triple (X ; Y ; Z), where X = gx, Y = gy, and Z = gxy. When
processing the query SendClient(Ai, start), the simulator selects two random
values x0 and a0 in Zp, computes X0 = Xa0gx0, and stores (a0, x0, X0) in a
list ΛA. For SendClient(Bj, start) in the same session, the simulator selects b0

and y0, computers Y0 and stores them in a list ΛB in the same measure. Upon
receipt of both SendSever(Ai, (X0, mA)) and SendServer(Bj , (Y0, mB)) of the
same session, the simulator checks the existence of X0 and Y0 by using ΛA and
ΛB, respectively. If their existence is exact, it computes Z0 = Za0b0 × Y x0b0

0 ×
Xa0y0 × gx0y0 in preparation for answering the Test query. For other case or
query, the simulator processes them as the previous game.

Since the case of MAC forgeries is excluded from the previous game and
one set of random variables is in fact replaced by another set of identically
distributed random variable, this game is equivalent to the previous one. So, we
have Pr[Succ4] = Pr[Succ5].

Game G6: In this game, we take a random triple (gx; gy; gz), intead of a DDH
triple, as the given triple for the simulator. As the following lemma shows, the
current and previous games are indistinguishable since DDH is hard in G.

Lemma 5. |Pr[Succ6]− pr[Succ5] ≤ Advddh
G

(t + 8(qexe + qake)τG).

Proof. Assume A is a distinguisher for the current and previous games, by which
we build an adversary Addh against the DDH problem in G as follows. Ini-
tially, with a triple (X ; Y ; Z) as input, Addh selects a bit b at random and
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then starts running A. By using the input triple, Addh can easily deal with
SendClient, SendServer, Execute, or Test query from A as in the previous
game. Finally, A output a bit b′. If b′ = b, then Addh returns 1 or 0, other-
wise. As a result, one can easily see that Addh runs A exactly as in game G5

if the triple (X ; Y ; Z) is a true DDH triple, and as in game G6 if it is a ran-
dom triple. Hence, the probabilities that Addh outputs 1 in the former and in
the latter are exactly Pr[Succ5] and Pr[Succ6], respectively. The lemma follows
from the fact that Addh has time-complexity at most t+8(qexe + qake)τG, where
qake = qAS

ake+qBS
ake, due to the additional time for the computations of the random

self-reducibility. 	


Thus far, since no information on the bit b in the Test oracle is leaked to the
adversary, we have Pr[Succ6] = 1/2. Combining with the previous lemmas, one
gets the result on the semantic security in Theorem 1. 	


Remark 2. As a matter of fact, most of the existing provably secure 2-party
PAKE protocols, especially those based on Diffie-Hellman key exchange, can be
represented as the following generic form, which is shown in figure 4. Firstly,
the client C sends its temporary public key pkC to the server S under the mask
of the shared password pw. Upon receiving the message from C, S gets pkC by
using pw, computes the session key sk with pkC and generates its authenticator
AuthS . Then it sends AuthS and its masked temporary public key pkS to C.
After obtaining this message, C checks AuthS. If it is invalid, C aborts. Otherwise
C computes the session key sk and its own authenticator AuthC and then return
AuthC to S. Finally, S confirms sk by authenticating AuthC .

Client C Server S
(1) M(pw, (pkC))

−−−−−−−−−−−−−−−−−−−−−−−−→
(2) M(pw, (pkS)), AuthS←−−−−−−−−−−−−−−−−−−−−−−−−
(3) AuthC−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 4. The generic form of the present provably secure 2PAKE protocols

However, due to considering the efficiency, the last message, namely the authen-
tication from clients to the server, is omitted in some 2-party PAKE protocols such
as PPK protocol [14] and OMDHKE protocol [9], which still keep semantic secu-
rity. If these protocols are used as a secure block in building a 3-party PAKE pro-
tocol under the generic construction of Abdalla et al. [1], the resulting protocol
will suffer from the undetectable on-line dictionary attacks as mentioned above.
On the contrary, if these protocols are used in our construction, both the efficiency
and the authentication security for clients will still be held in the resulting scheme.
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Hence, as a generic construction scheme of 3-party PAKE protocols, NGPAKE has
both better adaptability and higher efficiency than GPAKE [1] does. Furthermore,
when a 2-party PAKE protocol with the mutual authentication is employed in the
instantiation of our scheme, the authenticators from clients to the server in the
2PAKE component can be removed without any effect on the security of the whole
protocol, if one is eager to capture a higher efficiency. On the other hand, it seems
that GPAKE are more easily scaled up to an N -party version than NGPAKE, but
its forementioned security problem still exits in an N -party case. Therefore, how
to construct a secure and efficient general construction for N -party protocol is an-
other interesting challenge.

Remark 3. With no requirement for Random Oracle (RO) model, our generic
construction can be instantiated by using any present 2-party PAKE protocol en-
joying the semantic security in the standard model such as KOY protocol [12] so
as to generate a secure 3-party PAKE protocol in the standard model. Certainly,
one can also use any 2-party scheme with the semantic security in RO model such
as the PAK suite protocols [14] and OMDHKE protocol [9] in the instantiation of
our scheme, and then gets a secure 3PAKE protocol in RO model.

Remark 4. Though we do not consider a security of key privacy as in [1],
the sub-protocol executed by both clients in the last stage of our scheme is
substantially an authenticated Diffie-Hellman key exchange as in GPAKE, so it
is apparent that NGPAKE also holds key privacy.

5 Conclusion

Absence of the authentication from clients to the trusted server is the common
cause that the two 3-party PAKE schemes provided by Abdalla et al. [1] [2] are
subject to undetectable on-line dictionary attacks. For this, by fully considering
the generic construction of most present provably secure 2PAKE protocols, we
propose a new generic construction (NGPAKE) for 3-party PAKE protocols,
which is to a certain degree superior in adaptability, security and efficiency to
GPAKE provided by Abdalla et al. [1].
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Abstract. HMQV is a hashed variant of the MQV key agreement pro-
tocol proposed by Krawczyk at CRYPTO 2005. In this paper, we present
some attacks on HMQV and MQV that are successful if public keys are
not properly validated. In particular, we present an attack on the two-
pass HMQV protocol that does not require knowledge of the victim’s
ephemeral private keys. The attacks illustrate the importance of perform-
ing some form of public-key validation in Diffie-Hellman key agreement
protocols, and furthermore highlight the dangers of relying on security
proofs for discrete-logarithm protocols where a concrete representation
for the underlying group is not specified.

1 Introduction

Public-key validation is a process whose purpose is to verify that a public key
possesses certain arithmetic properties. Public-key validation is especially im-
portant in Diffie-Hellman protocols where a party B̂ derives a secret session key
K by combining his private key with a public key received from a second party
Â and subsequently uses K in some symmetric-key protocol (e.g., encryption
or message authentication) with Â. A dishonest party Â might select an invalid
public key in such a way that the use of K reveals information about B̂’s pri-
vate key. Lim and Lee [18] demonstrated the importance of public-key validation
by presenting small-subgroup attacks on some discrete logarithm key agreement
protocols that are effective if the receiver of a group element does not verify
that the element belongs to the desired group of high order (e.g., a prime-order
DSA-type subgroup of F∗

p). In [5,3], invalid-curve attacks were designed that are
effective on elliptic curve protocols if the receiver of a point does not verify that
the point indeed lies on the chosen elliptic curve. Kunz-Jacques et al. [15] showed
that the zero-knowledge proof proposed in [4] for proving possession of discrete
logarithms in groups of unknown order can be broken if a dishonest verifier se-
lects invalid parameters during its interaction with the prover. More recently,
Chen, Cheng and Smart [7] illustrated the importance of public-key validation
in identity-based key agreement protocols that use bilinear pairings.

The MQV protocols [16] are a family of authenticated Diffie-Hellman proto-
cols that have been widely standardized [1,2,9,27]. In the two-pass and three-pass
versions of the protocol, the communicating parties Â and B̂ exchange static
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(long-term) and ephemeral (short-term) public keys, and thereafter derive a se-
cret key from these values. In the one-pass version, only one party contributes
an ephemeral public key. In 2005, Krawczyk [12,13] presented the HMQV proto-
cols, which are hashed variants of the MQV protocols. The primary advantages
of HMQV over MQV are better performance and a rigorous security proof. The
improved performance of HMQV is a direct consequence of not requiring the val-
idation of ephemeral and static public keys — unlike with MQV where these op-
erations are mandated. Despite the omission of public-key validation, Krawczyk
was able to devise proofs that the HMQV protocols are secure in the random
oracle model assuming the intractability of the computational Diffie-Hellman
problem (and some variants thereof) in the underlying group.

Menezes [19] identified some flaws in the HMQV security proofs and presented
small-subgroup attacks on the protocols. The attacks exploit the omission of
validation for both ephemeral and static public keys, and allow an adversary to
recover the victim’s static private key. The attacks on the one-pass protocol are
the most realistic, while the attacks on the two-pass and three-pass protocols
are harder to mount in practice because the adversary needs to learn some of
the victim’s ephemeral private keys.

In this paper, we further investigate the effects of omitting public-key valida-
tion in HMQV and MQV. For the most part, we will only consider the two-pass
HMQV protocol (which we call the HMQV protocol), which is the core member
of the HMQV family. We identify a subtle flaw in the HMQV security proof
which leads to an attack that does not require knowledge of ephemeral private
keys, thereby contradicting the claim made in [13] that the HMQV protocol
(without public-key validation) is provably secure if the adversary never learns
any ephemeral private keys. We also consider the vulnerability of HMQV and
MQV if only static public keys are validated, or if only ephemeral public keys
are validated. These hypothetical scenarios are worth investigating because the
reasons for omitting public-key validation can be different for ephemeral and
static keys — validation of ephemeral public keys may be omitted for perfor-
mance reasons, while validation of static public keys may be omitted because
the certification authority may not be configured to perform such tests [13].

We emphasize that many of the attacks described in this paper cannot be
mounted in realistic settings. For example, the aforementioned attack on HMQV
that does not require knowledge of ephemeral private keys is described in certain
underlying groups that have never been proposed for practical use. Moreover,
this attack fails if the underlying group is a DSA-like group or a prime-order
subgroup of an elliptic curve group as proposed for standardization in [14]. We
also caution against inferring from our work that one must necessarily (fully)
validate public keys in all Diffie-Hellman key agreement protocols. For example,
the version of HMQV proposed in [14] only requires that a few simple and
efficient checks be performed on static and ephemeral public keys. Moreover,
even in the situation where one is concerned that ephemeral private keys might
be leaked, [14] only requires that ephemeral and static public keys be jointly
validated, thus saving a potentially expensive validation step (cf. §6).
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The remainder of this paper is organized as follows. The MQV and HMQV
protocols are reviewed in §2. The new attack on HMQV that does not require
knowledge of ephemeral private keys is presented in §3, and the associated flaw
in the HMQV security proof is identified. In §4 we present attacks on HMQV
in the case where only ephemeral public keys are validated. In §5 it is shown
that MQV is insecure if validation of ephemeral public keys is omitted. In §6
we describe the approach taken in [14] to guard against the kinds of attacks
discussed in this paper. An example is presented in §7 to illustrate the potential
pitfalls if public keys are not completely validated. The paper concludes with
some remarks in §8.

2 The HMQV Key Agreement Protocol

Let G = 〈g〉 be a multiplicatively-written cyclic group of prime order q, and let
1 denote the identity element in G. Let H be a hash function, and let H be an
l-bit hash function where l = (�log2 q�+ 1)/2. Party Â’s static private key is an
integer a ∈R [0, q − 1], while her static public key is the group element A = ga.
Similarly, party B̂ has a static key pair (B, b) where b ∈R [0, q − 1] and B = gb.

2.1 Description of HMQV

In the (two-pass) HMQV protocol as presented in [12,13], parties Â and B̂
establish a secret session key as follows:

1. Â selects an ephemeral private key x ∈R [0, q−1] and computes her ephemeral
public key X = gx. Â then sends (Â, B̂, X) to B̂.

2. Upon receiving (Â, B̂, X), B̂ checks that X �= 0,1 selects an ephemeral key
pair (Y, y), and sends (B̂, Â, Y ) to Â. B̂ proceeds to compute sB = y +
eb mod q and σ = (XAd)sB where d = H(X, B̂) and e = H(Y, Â).2

3. Upon receiving (B̂, Â, Y ), Â checks that Y �= 0, and computes sA = x +
da mod q and σ = (Y Be)sA where again d = H(X, B̂) and e = H(Y, Â).

4. The secret session key is K = H(σ) = H(gsAsB ).

The messages transmitted in steps (1) and (2) may include certificates for the
static public keys A and B, respectively. Note that HMQV does not mandate
that static and ephemeral public keys be validated, i.e., verified as being non-
identity elements of G.

1 Note that 0 ∈ G. The check X = 0 (and Y = 0) makes sense in some settings, e.g.,
when G is a multiplicative subgroup of a finite field; in this case 0 is the additive
identity of the field.

2 The HMQV papers [12,13] do not explicitly state that sA (and sB) should be com-
puted modulo q. The attacks in this paper can still be launched if sA (and sB) are
not reduced modulo q.



136 A. Menezes and B. Ustaoglu

2.2 Description of MQV

The three essential differences between the MQV protocol (as standardized in
[27]) and the HMQV protocol are the following:

1. Static and ephemeral public keys must be validated in MQV.3
2. In MQV, the integers d and e are derived from the group elements X and

Y , respectively. For example, if G is a group of elliptic curve points, then d
and e are derived from the l least significant bits of the x-coordinates of X
and Y respectively.

3. The secret session key is K = H(σ, Â, B̂).4

2.3 Security Proofs

Krawczyk [12,13] provided a very extensive analysis of HMQV. He proved that
the protocol satisfies the Canetti-Krawczyk definition [6] for secure key agree-
ment, under the assumptions that H and H are random oracles and that the
computational Diffie-Hellman (CDH) problem5 in G is intractable. The Canetti-
Krawczyk security definition is a very strong one in that the adversary controls
all communications between parties and its goal is very modest — distinguishing
a target session key from a purely random key. The protocol remains secure even
if the adversary is allowed to learn session keys different from the target session
key. Krawczyk also proved that the protocol is resistant to attacks when the
adversary is permitted to learn the ephemeral private keys of sessions; for this
property the ‘Gap Diffie-Hellman’ and ‘KEA1’ assumptions about G are needed.

2.4 An Attack

We describe the attack on HMQV that was presented in [19]. The attack exploits
the omission of public-key validation for ephemeral and static public keys, and
also the ability of the adversary to learn the victim’s ephemeral private keys.

We suppose that there is an algebraic structure R (e.g., a field, ring, or group)
such that:

1. The elements of R are represented in the same format as elements of G (e.g.,
bitstrings of the same length).

2. The group operation for G is defined on elements of R.

For the attack in this section, we further assume that there is a subset G′ of R
such that:

3. G′ is a cyclic group with respect to the operation defined on G.
4. G′ has order t where t = 2r for some small r (e.g., r = 4).

3 Actually ‘embedded’ validation may be performed on ephemeral public keys. The
details are not relevant to the attacks presented in this paper.

4 The identities Â, B̂ are included in the derivation of K from σ in order to thwart
Kaliski’s unknown-key share attack [10].

5 The CDH problem in G = 〈g〉 (with respect to g) is that of computing CDH(X, Y ) =
Xy = Y x given g, X = gx and Y = gy.
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For example, if G is amultiplicative subgroup of order q of F∗
p (the integers

modulo p) and t | (p−1)/q, then we can take R = Fp and G′ to be the unique sub-
group of F∗

p of order t. Note that elements of G and R have the same representa-
tion (integers modulo p), and the common operation is multiplication modulo p.
As a second example, suppose that G = E(Fp) where E : V 2 = U3+αU +β is an
(additively-written) elliptic curve defined over Fp, and let E′ : V 2 = U3+αU +β′

be another elliptic curve defined over Fp such that t | #E′(Fp). Then we can take
R = E′(Fp) and G′ to be a subgroup of E′(Fp) of order t. Again, the elements
of G and R have the same representation (pairs of integers modulo p), and the
group law for E and E′ are the same since the usual chord-and-tangent laws for
E and E′ do not (explicitly) use the coefficients β and β′ (see §4).

The attack proceeds as follows. The adversary Â chooses an element γ ∈ G′

of order t = 2r, selects a, x ∈ [1, t − 1], computes A = γa and X = γx, and
sends (Â, B̂, X) to B̂. While B̂ is computing the session key K = H((XAd)sB ),
the adversary learns B̂’s ephemeral private key y. Let β = XAd = γx+da, so K =
H(βsB ). Â then learns the session key K.6 Now Â computes K ′ = H(βc) for c =
0, 1, 2, . . . , t − 1 until K ′ = K, in which case Â has determined sB mod t. After
repeating this procedure a few times, Â can use the Leadbitter-Smart lattice attack
[17] to find the l most significant bits of b. The remaining l bits of b can thereafter
be determined in O(q1/4) time using Pollard’s lambda method [24].

3 No Ephemeral Private Key Leakage

The adversary in the attack of §2.4 requires knowledge of the victim’s ephemeral
private keys. While resistance to ephemeral private key leakage is a desirable
attribute of a key establishment protocol7, it is arguably not a fundamental
security requirement. In [13] it is claimed that the HMQV protocol is provably
secure if the adversary does not learn any ephemeral private keys. In this section
we demonstrate that this claim is false.

3.1 A New Attack

Suppose that G = 〈g〉 is a multiplicatively-written group of prime order q, and
suppose that the CDH problem in G is intractable. We further assume that R
is a ring such that:

1. The elements of R are represented in the same format as elements of G (e.g.,
bitstrings of the same length).

2. The multiplication operation for R is defined in the same way as the oper-
ation for G. In particular, G is a subgroup of the group of units U(R) of
R.

6 Suppose, for example, that B̂ sends Â an authenticated message (m,τ = MACK(m)).
Then Â can learn K by computing τ ′ = MACK′(m) where K′ = H(βc) for c =
0, 1, 2, . . . , t − 1 until τ ′ = τ .

7 In [12,13], resistance of Diffie-Hellman protocols to damage from the disclosure of
ephemeral private keys is described as a ‘prime security concern’.
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3. There exists an element T ∈ R, T �= 0, such that T 2 = 0 (where “0” denotes
the additive identity element in R).

The new attack on HMQV assumes that parties do not validate ephemeral
public keys. The adversary Ĉ intercepts the message (Â, B̂, X) sent by Â and re-
places it with (Â, B̂, T ). Similarly, Ĉ intercepts B̂’s response (B̂, Â, Y )
and forwards (B̂, Â, T ) to Â. If R is commutative then, assuming that sA ≥ 2 and
sB ≥ 2, it is easy to see that both Â and B̂ compute the session key K = H(0).
Of course, Ĉ can also compute this key.

If R is not commutative, then the value of the session key depends on the par-
ticular exponentiation method used by the parties. Suppose that Â determines
the session key by first calculating tA = esA mod q and then using simultane-
ous multiple exponentiation [20, Algorithm 14.88] to compute σ = T sABtA and
K = H(σ). This algorithm first computes TB and initializes an accumulator to
1. It then repeatedly examines the bits of sA and tA from left to right. During
each iteration, either 1, T , B or TB is multiplied into the accumulator which is
then squared. Now, if the most significant bits of sA and tA are 1 and 0, respec-
tively, then the accumulator takes on the values 1, T , T 2, . . .. Hence Â computes
σ = 0. Similarly, B̂ may compute σ = 0, in which case Ĉ also learns the session
key K = H(0).

3.2 Examples of Groups

We give two examples of groups that satisfy the conditions of §3.1. These ex-
amples do not have any immediate practical relevance since such groups are not
being deployed in practice. Nonetheless, they serve to refute the claim made in
[12,13] that HMQV is provably secure regardless of the representation used for
the elements of the G (subject to the constraint that the CDH problem in G be
intractable).

A Commutative Example. Let p be a 1024-bit prime such that p− 1 has a
160-bit prime divisor q. Consider the commutative ring R = Zp2 . Then U(R) is
cyclic and #U(R) = p(p − 1). Let G be the order-q cyclic subgroup of U(R).
The CDH problem in G is believed to be intractable. The element T = p ∈ Zp2

satisfies T �= 0 and T 2 = 0.

A Non-commutative Example. Again, let p be a 1024-bit prime such that
p − 1 has a 160-bit prime divisor q. Consider the non-commutative ring R of
2 × 2 matrices over Fp. Then #U(R) = (p2 − 1)(p2 − p). Let g ∈ U(R) be an
element of order q, and let G = 〈g〉. The CDH problem in G is equivalent to the
CDH problem in the order-q subgroup of F∗

p (see [21]) and is therefore believed
to be intractable. The element

T =
[
0 0
1 0

]
satisfies T �= 0 and T 2 = 0.
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3.3 Flaw in the HMQV Proof

The HMQV security proof in [13] has two main steps. First, an ‘exponential
challenge-response’ signature scheme XCR is defined and proven secure in the
random oracle model under the assumption that the CDH problem in G is in-
tractable. Second, the security of XCR (actually a ‘dual’ version of XCR) is
proven to imply the security of HMQV.

In the XCR signature scheme, a verifier Â selects x ∈R [0, q − 1] and sends
the challenge X = gx and a message m to the signer B̂. B̂ responds by selecting
y ∈R [0, q − 1] and sending the signature (Y = gy, σ = XsB ) to Â where
sB = y + eb mod q, e = H(Y, m), and (B, b) is B̂’s static key pair. The signature
is accepted by Â provided that Y �= 0 and σ = (Y Be)x. XCR signatures are
different from ordinary digital signatures — Â cannot convince a third party
that B̂ generated a signature (Y, σ) for message m and challenge X because Â
could have generated this signature herself.

The XCR security proof in [12,13] uses the forking lemma of Pointcheval
and Stern [23]. The proof hypothesizes the existence of a forger who, on input
B, X0 ∈R G and a signing oracle for B̂, produces a message m0 and a valid
signature (Y0, σ) for m0;8 that is Y0 �= 0 and σ = (Y0B

e)x0 where e = H(Y0, m0)
and X0 = gx0.9 Now, in order to compute CDH(B, X0), the forger is run twice
with input B, X0. The forger’s hash function and signature queries are suitably
answered so that the two invocations of the forger eventually produce valid
forgeries (m0, Y0, σ) and (m0, Y0, σ

′) where e = H(Y0, m0), e′ = H
′
(Y0, m0), and

e �≡ e′ (mod q). To conclude the argument, one notes that

σ

σ′ =
(Y0B

e)x0

(Y0Be′)x0
= (Bx0)e−e′

(1)

whence CDH(B, X0) = (σ/σ′)(e−e′)−1
can be efficiently computed.

The flaw in this argument is the assumption that the Y0 terms in (1) can be
cancelled under the sole condition that Y0 �= 0. While the cancellation in (1)
is valid if Y0 ∈ G (which is the case if Y0 has been validated), in general one
needs to make additional assumptions including that Y0 is invertible. Thus, since
the description of XCR does not mandate that the verifier validate Y , the XCR
security proof in [12,13] is incorrect.

This flaw in the XCR security proof accounts for the following attack on XCR.
Let R and T be as defined in §3.1, and suppose for the sake of concreteness that R
is commutative. A forger can respond to Â’s challenge (X, m) with the signature
(Y = T, σ = 0). The signature is accepted by Â since T �= 0 and (TBe)x = 0.
This attack on XCR in turn explains why the attack described in §3.1 can be
launched on HMQV.
8 There is also the requirement that (m0, Y0) did not appear in any of B̂’s responses

to the forger’s signature queries.
9 The XCR security definition in [12,13] incorrectly states that the forger’s output

(m0, Y0, σ) should satisfy Y0 = 0 and σ = Xy0+eb
0 where Y = gy0 . The latter

condition is not equivalent to the condition σ = (Y0B
e)x0 in the case where Y0 ∈ G

— indeed y0 is not even defined when Y0 ∈ G.
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4 No Static Public-Key Validation

We describe an attack on HMQV in the hypothetical situation where ephemeral
public keys are validated but static public keys aren’t. As mentioned in the Intro-
duction, this situation is worth investigating because validation for static public
keys may be omitted if a certification authority is not configured to perform such
tests. We describe attacks that can be mounted in the realistic setting where G
is a DSA-type group or an elliptic curve group.

4.1 DSA-Type Groups

We suppose that G is the order-q subgroup of F∗
p, and that t = 2r is a divisor of

(p− 1)/q. Let γ ∈ F∗
p be an element of order t. Using the notation introduced in

§2.4, we have R = Fp and G′ = 〈γ〉.
The adversary Â selects a valid X ∈ G and computes d = (H(X, B̂))−1 mod q

and A = γX−d−1 mod q. She certifies A as her (invalid) static public key and
sends X to B̂ who computes β = XAd = γd and K = H(βsB ). As in the attack
described in §2.4, Â learns y, K, and sB mod t; repeating this procedure yields
half the bits of b.

4.2 Elliptic Curves Groups

We suppose that G = E(Fp) where E : V 2 = U3 + αU + β is an elliptic curve of
prime order defined over the prime field Fp. Let P1 = (u1, v1) and P2 = (u2, v2)
be two finite points in E(Fp) with P1 �= −P2, and let P3 = (u3, v3) = P1 + P2.
The usual formulae for computing P3 are:

u3 = λ2 − u1 − u2, (2)
v3 = λ(u1 − u3)− v1, (3)

where

λ =
v2 − v1

u2 − u1
or λ =

3u2
1 + α

2v1
,

depending on whether P1 �= P2 or P1 = P2. Note that the formulae do not
(explicitly) depend on the coefficient β.

The adversary Â’s goal is to select two points A, X ∈ Fp×Fp such that (i) X is
valid, i.e., X ∈ E(Fp), X �=∞; and (ii) T = X+dA is a point of order 16 on some
curve E′ : V 2 = U3+αU +β′ defined over Fp, where d = H(X, B̂) and X +dA is
computed using the formulas for E(Fp). Using the notation introduced in §2.4,
we have R = E′(Fp), G′ = 〈T 〉, and t = 16. The adversary then certifies A as
her (invalid) static public key and sends X to B̂, who computes K = H(sBT ).
As in the attack described in §2.4, Â learns y, K, and sB mod t; repeating this
procedure yields half the bits of b.

The adversary can proceed to determine A and X as follows. She first selects
an arbitrary finite point X = (u2, v2) ∈ E(Fp) such that d = H(X, B̂) is odd.
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Now let A = (z, 0), where z ∈ Fp is an indeterminate whose value will be
specified later. Since d is odd, application of the group law for E yields dA = A.
The coordinates (u3, v3) of T = X + dA are then derived using (2) and (3):

u3 =
(

v2

u2 − z

)2

− z − u2 and v3 =
v2

u2 − z
(z − u3). (4)

Define
β′ = v2

3 − u3
3 − αu3, (5)

so that T = (u3, v3) is an Fp-point on the elliptic curve

E′ : V 2 = U3 + αU + β′. (6)

We next show how division polynomials can be used to select z ∈ Fp so that T
has order 16. The following result is well known (e.g., see [25]).

Theorem 1. Consider the division polynomials Ψk(U, V ) ∈ Fp[U, V ] associated
with an elliptic curve E/Fp : V 2 = U3 + αU + β and defined recursively as
follows:

Ψ1(U, V ) = 1
Ψ2(U, V ) = 2V

Ψ3(U, V ) = 3U4 + 6αU2 + 12βU − α2

Ψ4(U, V ) = 4V (U6 + 5αU4 + 20βU3 − 5α2U2 − 4αβU − 8β2 − α3)

Ψ2k+1(U, V ) = Ψk+2Ψ
3
k − Ψ3

k+1Ψk−1 for k ≥ 2

Ψ2k(U, V ) = Ψk(Ψk+2Ψ
2
k−1 − Ψk−2Ψ

2
k+1)/2V for k ≥ 3.

Let Ψ ′
k be the polynomial obtained by repeatedly replacing occurrences of V 2 in

Ψk by U3 + αU + β, and define

fk =
{

Ψ ′
k(U, V ), if k is odd,

Ψ ′
k(U, V )/V, if k is even.

Then in fact fk ∈ Fp[U ]. Moreover, if P = (u, v) ∈ E(Fp) such that 2P �= ∞,
then kP =∞ if and only if fk(u) = 0.

It follows from Theorem 1 that the roots of the polynomial

g(U) =
f16(U)
f8(U)

are precisely the U -coordinates of points of order 16 in E(Fp), and hence deg(g) =
96.

Now to determine T , the adversary computes h(z) = g(u3), where g(U) is
associated with E′ : V 2 = U3 + αU + β′, and where u3 and β′ are defined in
(4) and (5). It can be seen that h(z) = h1(z)/h2(z), where h1, h2 ∈ Fp[z] and
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deg(h1) = 288.10 If the polynomial h1 has a root z in Fp, then the associated
point T is guaranteed to have order 16 in E′(Fp). Since X can be chosen uni-
formly at random from E(Fp), it is reasonable to make the heuristic assumption
that h1 is a “random” degree-288 polynomial over Fp. The following result en-
sures that there is a very good chance that h1 will indeed have a root in Fp.
The result is well known (e.g., see Exercise 1 in §4.6.2 of [11]), but we include
its proof for the sake of completeness.

Lemma 1. For p � n ≥ 10, the proportion of degree-n polynomials over Fp

that have at least one root in Fp is approximately (1− 1
e ) ≈ 0.632.

Proof. It suffices to consider monic polynomials over Fp.
The generating function for the number of monic polynomials over Fp with

respect to degree is

Φ(x) =
∑
i≥0

pixi =
1

1− px
. (7)

Let L(n, p) denote the number of degree-n monic irreducible polynomials over Fp.
Since every monic polynomial can be written as a product of monic irreducible
polynomials, the generating function Φ(x) can be written as

Φ(x) =
∏
i≥1

(
1

1− xi

)L(i,p)

. (8)

Now, the generating function for monic polynomials with no linear factors (i.e.,
no roots in Fp) is

Φ̃(x) =
∏
i≥2

(
1

1− xi

)L(i,p)

. (9)

Multiplying (8) by (1− x)L(1,p) = (1 − x)p yields

Φ̃(x) =
(1− x)p

1− px
. (10)

Letting [·] denote the coefficient operator, it follows from (10) that the number
R(n, p) of monic polynomials of degree n over Fp that have at least one root in
Fp is

R(n, p) = pn − [xn]Φ̃(x) = pn −
n∑

i=0

(
p

i

)
(−1)ipn−i.

For p � n ≥ 10, we have

R(n, p) ≈ pn
n∑

i=1

(−1)i−1

i!
≈ pn

∑
i≥1

(−1)i−1

i!
= pn

(
1− 1

e

)
.

10 More generally, if t = 2r then deg(g) = 3 · 22r−3 and deg(h1) = 9 · 22r−3.
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Example 1. (determination of A, X , T and E′) Consider the NIST-recommended
elliptic curve [8] defined by the equation E : V 2 = U3 − 3U + β over Fp, where
p = 2192 − 264 − 1 and

β = 2455155546008943817740293915197451784769108058161191238065.

Suppose that we select

X = (602046282375688656758213480587526111916698976636884684818,

174050332293622031404857552280219410364023488927386650641)

in E(Fp), and

A = (2664590514587922359853612565516270937783866981812798250851, 0).

Then the point T = X + A computed using the group law for E(Fp) is

T = (5350077178842604929587851454217201721791103389533004256989,
4170329249603673452251890924513609385018269372344921771517).

T is a point of order 16 on E′ : y2 = x3 − 3x + β′, where

β′ = 2271835836669632292423953498680460143165540922751246538627.

5 No Ephemeral Public-Key Validation

In this section we consider attacks in the hypothetical situation where static
public keys are validated but ephemeral public keys aren’t. We don’t know of
any attacks on HMQV in the case where the underlying group G is a DSA-type
group or an elliptic curve group (cf. §4.1 and §4.2). In particular, we don’t know
how to extend the attacks described in §4.1 and §4.2 to this setting. The difficulty
is in part because of the complicated relationship between X and d = H(X, Â)
whereby d is not determined until X has been fixed.

However, we observe that attacks can be launched on MQV if ephemeral public
keys are not validated. Suppose that G = E(Fp) where E/Fp : V 2 = U3+αU +β
is an elliptic curve of prime order. The adversary Ĉ, who wishes to impersonate
Â to B̂, selects u1 ∈R Fp and sets X = (u1, z) where z is an indeterminate. Since
in MQV d depends only on u1, Ĉ can then compute Ã = dA, where A is Â’s
(valid) static public key. Using the method of §4.2, Ĉ can use the t-th division
polynomial (for some small t) to determine z, β′ ∈ Fp so that T = X + Ã has
order t on E′ : V 2 = U3 + αU + β′. The adversary sends X to B̂ who computes
the session key K = H(T sB , Â, B̂). Now Ĉ can guess the session key with non-
negligible success probability 1

t . Alternatively, if Ĉ can learn B̂ ephemeral’s
private keys y, then Ĉ can determine B̂’s static private key b as in §2.4.
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6 Partial Validation

It may be possible to circumvent the attacks described in the preceding sections
without performing (full) public-key validation on static and ephemeral public
keys. For example, consider the version of HMQV that has recently been pro-
posed for standardization by the IEEE 1363 standards group [14]. This proposal
specifies HMQV in the concrete setting of a DSA-type group G, i.e., G is the
order-q subgroup of the multiplicative group F∗

p of a prime field. The only checks
required on ephemeral and static public keys is that they be integers in the in-
terval [2, p−1]. In [14] it is claimed that this instantiation of HMQV is provably
secure (under the assumptions that CDH in G is intractable, and that the em-
ployed hash functions are random functions) as long as ephemeral private keys
are never leaked. Moreover, in order to resist attacks that may be mounted in the
face of ephemeral private key leakage, the recipient of an ephemeral key X and
static key A only needs to verify that Zq = 1 and Z �= 1 where Z = XAd. Such a
check is more efficient that separately verifying that Aq = 1 and Xq = 1. Again,
[14] claims that this version of HMQV is provably secure even if the adversary
is able to learn some ephemeral private keys.

7 Almost Validation

A public key X is said to have been almost validated if it has been verified
that X ∈ G but not necessarily that X �= 1. Protocol descriptions sometimes
inadvertently omit the condition X �= 1; see for example the ‘G-tests’ in [13].
Performing almost validation instead of full validation of public keys may lead
to new vulnerabilities. This section gives an example of this likelihood.

In the one-pass HMQV protocol [13], only the initiator contributes an ephe-
meral public key. The initiator Â sends (Â, B̂, X) to B̂ and computes the session
key K = H(BsA) where sA = x + da mod q and d = H(X, Â, B̂). The receiver
B̂ verifies that X �= 0 and computes K = H((XAd)b).

In [19] it was shown that the one-pass HMQV protocol succumbs to a Kaliski-
style unknown-key share attack [10] even if public keys are (fully) validated. The
attack is ‘on-line’ in the sense that the adversary needs to have her static public
key certified during the attack. We next present an ‘off-line’ Kaliski-style attack
on the one-pass HMQV protocol which succeeds if ephemeral public are (fully)
validated but static public keys are only almost validated.

The adversary Ĉ registers in advance the static public key C = 1 with the
certification authority. Now, when Â sends (Â, B̂, X), Ĉ replaces this message
with (Â, Ĉ, T ) where T = XAd and d = H(X, Â, B̂). Note that T is valid,
whereas C is only partially valid. The recipient B̂ computes d′ = H(T, Ĉ, B̂)
and

K = H((TCd′
)b) = H(T b) = H((XAd)b).

Thus Â and B̂ have computed the same session key, but B̂ mistakenly believes
that the key is shared with Ĉ.
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8 Concluding Remarks

The attacks on HMQV presented in §2.4, §3.1 and §4 are also effective on MQV
if validation of static or ephemeral public keys is omitted. The attacks are sum-
marized in Table 1. While these attacks are not necessarily practical and may

Table 1. Attacks on HMQV (and MQV without validation) described in this paper.
† The attack of §5 applies to MQV only.

Static Ephemeral Ephemeral
public keys public keys private keys Attacks
validated? validated? secure?√ √ √

No attack known√ √ × No attack known
× √ √

No attack known√ × √ §3.1, §5†
√ × × §3.1, §5†

× × √ §3.1, §5†

× √ × §4.1, §4.2
× × × §2.4, §3.1, §4.1, §4.2, §5†

not be a threat in real-world settings, they nonetheless illustrate the importance
of performing some form of validation for static and ephemeral public keys in
Diffie-Hellman key agreement protocols. Furthermore, the attacks highlight the
danger of relying on security proofs for discrete-logarithm protocols where a con-
crete representation for the underlying group is not specified. In particular, since
public keys in HMQV are not necessarily valid, the security of HMQV depends
on several aspects of the representation for the underlying group G including
the manner in which the group operation is performed, and the particular algo-
rithm chosen for computing (XAd)sB and (Y Be)sA . For other examples of the
pitfalls when relying on security proofs where a concrete representation of the
underlying group is not specified, see [22] and [26].
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Abstract. We discuss the question of how to interpret reduction argu-
ments in cryptography. We give some examples to show the subtlety and
difficulty of this question.

1 Introduction

Suppose that one wants to have confidence in the security of a certain cryp-
tographic protocol. In the “provable security” paradigm, the ideal situation is
that one has a tight reduction (see §4 for a definition and discussion of tight-
ness) from a mathematical problem that is widely believed to be intractable to
a successful attack (of a prescribed type) on the protocol. This means that an
adversary who can attack the system must also be able to solve the (supposedly
intractable) problem in essentially the same amount of time with essentially the
same probability of success. Often, however, the best that researchers have been
able to achieve falls short of this ideal. Sometimes reductionist security argu-
ments have been found for modified versions of the protocol, but not for the
actual protocol that is used in practice; or for a modified version of the type
of attack, but not for the security definition that people really want; or based
on a somewhat contrived and unnatural modified version of the mathematical
problem that is believed to be hard, but not based on the actual problem that
has been extensively studied. In other cases, an asymptotic result is known that
cannot be applied to specific parameters without further analysis. In still other
cases, one has a reduction, but one can show that there cannot be (or is unlikely
to be) a tight reduction.

In this paper we give examples that show the subtle questions that arise when
interpreting reduction arguments in cryptography.

2 Equivalence But No Reductionist Proof

In [13], Boneh and Venkatesan showed that an efficient reduction from factoring
to the RSA problem (the problem of inverting the function y = xe mod N) is
unlikely to exist. More precisely, they proved that for small encryption exponent
e the existence of an efficient “algebraic” reduction would imply that factoring
is easy.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 148–175, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Another Look at “Provable Security”. II 149

The paper [13] appeared at a time of intense rivalry between RSA and elliptic
curve cryptography (ECC). As enthusiastic advocates of the latter, we were
personally delighted to see the Boneh–Venkatesan result, and we welcomed their
interpretation of it — that, in the words of their title, “breaking RSA may not
be equivalent to factoring” — as another nail in the coffin of RSA.

However, to be honest, another interpretation is at least as plausible. Both
factoring and the RSA problem have been studied intensively for many years.
In the general case no one has any idea how to solve the RSA problem without
factoring the modulus. Just as our experience leads us to believe that factor-
ing (and certain other problems, such as the elliptic curve discrete logarithm
problem) are hard, so also we have good reason to believe that, in practice, the
RSA problem is equivalent to factoring. Thus, an alternative interpretation of
the Boneh–Venkatesan result is that it shows the limited value of reduction ar-
guments, and an alternative title of the paper [13] would have been “Absence of
a reduction between two problems may not indicate inequivalence.”

Which interpretation one prefers is a matter of opinion, and that opinion may
be influenced, as in our own case, by one’s biases in favor of or against RSA.

3 Results That Point in Opposite Directions

3.1 Reverse Boneh–Venkatesan

A recent result [16] by D. Brown can be seen as giving support to the alternative
interpretation of Boneh–Venkaesan that we described at the end of §2. For small
encryption exponents e,1 Brown proves that if there is an efficient program that,
given the RSA modulus N , constructs a straight-line program that efficiently
solves the RSA problem,2 then the program can also be used to efficiently factor
N . This suggests that for small e the RSA problem may very well be equivalent to
factoring. If one believes this interpretation, then one might conclude that small
e are more secure than large e. In contrast, the result of Boneh–Venkatesan could
be viewed as suggesting that large values of e are more secure than small ones.

As Brown points out in §5 of [16], his result does not actually contradict
Boneh–Venkatesan. His reduction of factoring to a straight-line program for
finding e-th roots does not satisfy the conditions of the reductions treated in
[13]. His use of the e-th root extractor cannot be modeled by an RSA-oracle, as
required in [13], because he applies the straight-line program to ring extensions
of Z/NZ.3

Brown’s choice of title is a helpful one: “Breaking RSA may be as difficult as
factoring.” All one has to do is put it together in a disjunction with the title
of [13], and one has a statement that cannot lead one astray, and accurately
summarizes what is known on the subject.
1 Brown’s result actually applies if e just has a small prime factor.
2 This essentially means that it constructs a polynomial that inverts the encryption

function.
3 For example, when e = 3 the polynomial that inverts cube roots is applied to the

ring Z/NZ[X]/(X2 − u), where the Jacobi symbol u
N

= −1.
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3.2 Random Padding Before or After Hashing?

When comparing ElGamal-like signature schemes, one finds that some, such as
Schnorr signatures [35], append a random string to the message before evaluating
the hash function; and some, such as the Digital Signature Algorithm (DSA)
and the Elliptic Curve Digital Signature Algorithm (ECDSA), apply the hash
function before the random padding. Is it more secure to do the padding before
or after hashing? What do the available “provable security” results tell us about
this question?

As we discussed in §5.2 of [27], the proof that forgery of Schnorr signatures is
equivalent to solving the discrete log problem (see the sketch in §5.1 of [27] and
§8.3 below, and the detailed proof in [33,34]) relies in an essential way on the
fact that an attacker must choose the random r before making his hash query.
For this reason, the proof does not carry over to DSA, where only the message
m and not r is hashed. In §5.2 of [27] we commented that

...replacing H(m, r) by H(m) potentially gives more power to a forger,
who has control over the choice of k (which determines r) but no control
over the (essentially random) hash value. If H depends on r as well as
m, the forger’s choice of k must come before the determination of the
hash value, so the forger doesn’t “get the last word.”

That was our attempt to give an intuitive explanation of the circumstance that
in the random oracle model Schnorr signatures, unlike the closely related DSA
signatures, have been tied to the discrete logarithm problem (DLP) through a
reduction argument. One could conclude from our comment that it’s more secure
to do the padding before hashing.

However, we were very much at fault in misleading the reader in this way.
In fact, there is another provable security result, due to D. Brown [14,15], that
points in the opposite direction. It says: If the hash function and pseudoran-
dom bit generator satisfy certain reasonable assumptions, then ECDSA is secure
against chosen-message attack by a universal forger4 provided that the “adaptive
semi-logarithm problem” in the elliptic curve group is hard.5 Brown comments in
[15] that his security reduction would not work for a modification of ECDSA in
which r as well as the message m is hashed. Brown does not claim that the modi-
fied version is therefore less secure than the original version of ECDSA with only
the message hashed. However, in an informal communication [17] he explained
how someone might make such a claim: namely, the inclusion of a random r
along with m in the input could be viewed as “giving an attacker extra play
4 A forger is universal (or selective in Brown’s terminology) if it can forge an arbitrary

message that it is given.
5 A semi-logarithm of a point Q with respect to a basepoint P of prime order p is a

pair (t, u) of integers mod p such that t = f(u−1(P + tQ)), where the “conversion
function” f is the map from points to integers mod p that is used in ECDSA. The
adaptive semi-logarithm problem is the problem of finding a semi-logarithm of Q to
the base P given an oracle that can find a semi-logarithm of Q to any base of the
form eP with e = 1.
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with the hash function,” and this could lead to a breach. (But note that both
the results in [33,34] and in [14,15] assume that the hash function is strong.)

Once again we have provable security results that suggest opposite answers to
a simple down-to-earth question. Is it better to put in the random padding before
or after evaluating the hash function? As in the case of the question in §3.1, both
answers “before” and “after” can be supported by reduction arguments.

In §8 we shall discuss another question — whether or not forgery of Schnorr-
type signatures is equivalent to the DLP — for which different provable security
results give evidence for opposite answers.

4 Non-tightness in Reductions

We first give an informal definition of tightness of a reduction. Suppose that
we have an algorithm for solving problem A that takes time at most T and is
successful for a proportion at least ε of the instances of A, where T and ε are
functions of the input length. A reduction from a problem B to A is an algorithm
that calls upon the algorithm for A a certain number of times and solves B in
time T ′ for at least a proportion ε′ of the instances of B. This reduction is said
to be tight if T ′ ≈ T and ε′ ≈ ε. Roughly speaking, it is non-tight if T ′ � T or
if ε′ � ε.

Suppose that researchers have been able to obtain a highly non-tight reduction
from a hard mathematical problem to breaking a protocol. There are various
common ways to respond to this situation:

1. Even a non-tight reduction is better than nothing at all. One should regard
the cup as half-full rather than half-empty, derive some reassurance from
what one has, and try not to think too much about what one wishes one
had.6

2. Even though the reduction is not tight, it is reasonable to expect that in the
future a tighter reduction will be found.

3. Perhaps a tight reduction cannot be found for the protocol in question, but
a small modification of the protocol can be made in such a way as to permit
the construction of a tight reduction — and we should regard this reduction
as a type of assurance about the original protocol.

4. A tight reduction perhaps can be obtained by relaxing the underlying hard
problem (for example, replacing the computational Diffie–Hellman problem
by the decision Diffie–Hellman problem).

5. Maybe the notion of security is too strict, and one should relax it a little so
as to make possible a tight reduction.

6 We are reminded of the words of the popular song
If you can’t be with the one you love,
Love the one you’re with,
(Stephen Stills, 1970). The version for cryptographers is:
If you can’t prove what you’d love to prove,
Hype whatever you prove.
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6. Perhaps the protocol is secure in practice, even though a tight reduction may
simply not exist.

7. Perhaps the protocol is in fact insecure, but an attack has not yet been
discovered.

These seven points of view are not mutually exclusive. In fact, protocol devel-
opers usually adopt some combination of the first six interpretations — but
generally not the seventh.

4.1 Insecure But Provably Secure: An Example

We now give an example that is admittedly somewhat artificial. Let us step
into a time machine and go back about 25 years to a time when naive index-
calculus was pretty much the best factoring algorithm. Let us also suppose that
22a operations are feasible, but 2(2

√
2)a operations are not.

Let N be a c-bit RSA modulus, and let r be an a-bit integer. Let F =
{p1, . . . , pr} be a factor base consisting of the first r primes. Let 2b be the
expected time needed before a randomly selected x mod N has the property
that x2 mod N is pr-smooth (this means that it has no prime factors greater
than pr). The usual estimate is that 2b ≈ uu, where u = c/a. (Actually, it’s more
like u = c/(a + log(a ln 2)), where log denotes log2, but let’s ignore second-order
terms.)

If x has the property that x2 mod N is pr-smooth, then by its “exponent-
vector” we mean the vector in Fr

2 whose components εi are the exponents of pi

in the squarefree part of x2 mod N .
The basic (naive) index-calculus algorithm involves generating roughly r such

x values and then solving an r × r-matrix over F2. The first part takes roughly
r2b ≈ 2a+b operations, and the second part takes roughly 22a operations. So one
usually chooses b ≈ a. However, in our protocol, in order to be able to give a
“proof” of security we’ll optimize slightly differently, taking b ≈ 2a.

Note that for fixed c, the value of a chosen with b ≈ 2a is different from the
optimal value a′ that one would choose to factor N . In the former case one sets
22a ≈ uu (where u = c/a) — that is, 2a ≈ c

a log u — and in the latter case one
sets a′ ≈ c

a′ log u′ (where u′ = c/a′). Since u′ is of the same order of magnitude
as u, by dividing these two equations we get approximately a′ ≈

√
2a. This leads

to the estimate 2(2
√

2)a for the number of operations needed to factor N .
We now describe the protocol. Alice wants to prove her identity to Bob, i.e.,

prove that she knows the factors of her public modulus N . Bob sends her a chal-
lenge that consists of s linearly independent vectors in Fr

2, where 0 ≤ s ≤ r − 1.
Alice must respond with an x such that x2 mod N is pr-smooth and such that
its exponent-vector is not in the subspace S spanned by Bob’s challenge vec-
tors. (The idea is to prevent an imposter from giving a correct response by
combining earlier responses of Alice; thus, in practice Bob would be sure to
include the exponent-vectors of Alice’s earlier responses among his challenge
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vectors.) Alice can do this quickly, because it is easy to find square roots modulo
N if one knows the factorization of N .

We now reduce factoring to impersonating Alice. Let IO be the imperson-
ator-oracle. To factor N , we make r calls to IO (where each time our challenge
vectors consist of the exponent-vectors of all the earlier responses of IO) to get
a set of relations whose exponent-vectors span Fr

2. After that we merely have
to find k more randomly generated x with pr-smooth x2 mod N in order to
have probability 1 − 2−k of factoring N . Finding these x’s takes time about
k2b. Since we have to solve a matrix each time, the time is really k(2b + 22a).
If a call to IO on average takes time T , then the total time to factor N is
T ′ ≈ k(2b +22a)+ rT ≈ k22a+1 +2aT since b = 2a and r ≈ 2a. We are assuming
that factoring N requires 2(2

√
2)a operations, and so we obtain the nontrivial

lower bound T ≥ 2(2
√

2−1)a. Whenever one is able to prove a lower bound for
an adversary’s running time that, although far short of what one ideally would
want, is highly nontrivial and comes close to the limits of practical feasibility,
such a result can be viewed as reassuring (see also Remark 2 below).

However, the protocol is insecure, because it can be broken in time roughly
2b = 22a.

This example is unrealistic not only because we’re supposing that naive index-
calculus is the best factoring algorithm, but also because it should have been
obvious from the beginning that the protocol is insecure. We thus state as an
open problem:

Problem. Find an example of a natural and realistic protocol that has a plausible
(non-tight) reductionist proof of security, and is also insecure when used with
commonly accepted parameter sizes.

Remark 1. Either success or failure in solving this problem would be of interest.
If someone finds a (non-tightly) provably secure but insecure protocol, then the
importance of the tightness question in security reductions will be clearer than
ever. On the other hand, if no such example is found after much effort, then
practitioners might feel justified in doubting the need for tightness in reductions.

Remark 2. It should be noted that something like this has already been done
in the context of symmetric–key message authentication codes (MAC’s). In [18]
Cary and Venkatesan presented a MAC scheme for which they had a security
proof (it was not actually a reductionist proof). Their scheme depended on a
parameter l, and for the practical value l = 32 their proof showed that a collision
cannot be found without at least 227 MAC queries. Even though this figure falls
far short of what one ideally would want — namely, 64 bits of security — it
could be viewed as providing some assurance that the scheme does in fact have
the desired security level. However, in [8] Blackburn and Paterson found an
attack that could find a collision using 248.5 MAC queries and a forgery using
255 queries. This example shows that the exact guarantees implied by a proof
have to be taken seriously, or else one might end up with a cryptosystem that is
provably secure and also insecure.
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4.2 Coron’s Result for RSA Signatures

We first recall the basic RSA signature scheme with full-domain hash function.
Suppose that a user Alice with public key (N, e) and secret exponent d wants
to sign a message m. She applies a hash function H(m) which takes values
in the interval 0 ≤ H(m) < N , and then computes her signature s = H(m)d

mod N .
When Bob receives the message m and the signature s, he verifies the signature

by computing H(m) and then se mod N . If these values are equal, he is satisfied
that Alice truly sent the message (because presumably only Alice knows the
exponent d that inverts the exponentiation s �→ se) and that the message has
not been tampered with (because any other message would presumably have a
different hash value).

We now describe a classic reductionist security argument for this signature
scheme [6]:

Reductionist security claim. If the problem of inverting x �→ xe mod N is in-
tractable, then the RSA signature with full-domain hash function is secure in
the random oracle model from chosen-message attack by an existential forger.

Argument. Suppose that we are given an arbitrary integer y, 0 ≤ y < N , and
asked to find x such that y = xe mod N . The claim follows if we show how we
could find x (with high probability) if we had a forger that can mount chosen-
message attacks.

So suppose that we have such a forger. We give it Alice’s public key (N, e)
and wait for its queries. In all cases but one, we respond to the hash query for
a message mi by randomly selecting xi ∈ {0, 1, . . . , N − 1} and setting the hash
value hi equal to xe

i mod N . For just one value mi0 we respond to the hash
query by setting hi0 = y (recall that y is the integer whose inverse under the
map x �→ xe mod N we are required to find). We choose i0 at random and hope
that m = mi0 happens to be the message whose signature will be forged by our
existential forger. Any time the forger makes a signature query for a message mi

with i �= i0, we send xi as its signature. Notice that this will satisfy the forger,
since xe

i ≡ hi (mod N). If the forger ends up outputting a valid signature si0

for mi0 , that means that we have a solution x = si0 to our original equation
y = xe mod N with unknown x. If we guessed wrong and mi0 was not the
message that the forger ends up signing, then we won’t be able to give a valid
response to a signature query for mi0 . The forger either will fail or will give us
useless output, and we have to start over again. Suppose that qh is a bound on
the number of queries of the hash function. If we go through the procedure k
times, the probability that every single time we fail to solve y = xe mod N for x
is at most (1−1/qh)k. For large k, this approaches zero; so with high probability
we succeed. This completes the argument.

Notice that the forgery program has to be used roughly O(qh) times (where
qh is the number of hash queries) in order to find the desired e-th root modulo
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N . A result of Coron [19] shows that this can be improved to O(qs), where qs

denotes a bound on the number of signature queries.7 (Thus, qh = qs +q′h, where
q′h is a bound on the number of hash function queries that are not followed later
by a signature query for the same message.)

Moreover, in a later paper [20] Coron essentially proves that his result cannot
be improved to give a tight reduction argument; O(qs) is a lower bound on the
number of calls on the forger needed to solve the RSA problem.

From the standpoint of practice (as emphasized, for example, in [5]) this
non-tightness is important. What it means is the following. Suppose that you
anticipate that a chosen-message attacker can get away with making up to 220

signature queries. You want your system to have 80 bits of security; that is, you
want a guarantee that such a forger will require time at least 280. The results of
[19,20] mean that you should use a large enough RSA modulus N so that you’re
confident that e-th roots modulo N cannot be found in fewer than 2100 = 220 ·280

operations. Thus, you should use a modulus N of about 1500 bits.

4.3 The Implausible Magic of One Bit

We now look at a construction of Katz and Wang [25], who show that by adding
only a single random bit to a message, one can achieve a tight reduction.8 To
sign a message m Alice chooses a random bit b and evaluates the hash function
H at m concatenated with b. She then computes s = (H(m, b))d mod N ; her sig-
nature is the pair (s, b). To verify the signature, Bob checks that se = H(m, b)
mod N .

Remarkably, Katz and Wang show that the use of a single random bit b
is enough to get a tight reduction from the RSA problem to the problem of
producing a forgery of a Katz–Wang signature. Namely, suppose that we have a
forger in the random oracle model that asks for the signatures of some messages
and then produces a valid signature of some other message. Given an arbitrary
integer y, the simulator must use the forger to produce x such that y = xe mod
N . Without loss of generality we may assume that when the forger asks for the
hash value H(m, b), it also gets H(m, b′) (where b′ denotes the complement of
b). Now when the forger makes such a query, the simulator selects a random
bit c and two random integers t1 and t2. If c = b, then the simulator responds
with H(m, b) = te1y and H(m, b′) = te2; if c = b′, it responds with H(m, b) = te2
and H(m, b′) = te1y. If the forger later asks the simulator to sign the message
m, the simulator responds with the corresponding value of t2. At the end the
forger outputs a signature that is either an e-th root of te2 or an e-th root of
te1y for some t1 or t2 that the simulator knows. In the latter case, the simulator
has succeeded in its task. Since this happens with probability 1/2, the simulator
is almost certain — with probability 1 − 2−k — to find the desired e-th root
7 In the above argument, instead of responding only to the i0-th hash query with

hi0 = y, Coron’s idea was to respond to a certain optimal number i0, i1, . . . with
hij = yze

j with zj random.
8 We shall describe a slightly simplified version of the Katz–Wang scheme. In partic-

ular, we are assuming that Alice never signs the same message twice.
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after running the forger k times. This gives us a tight reduction from the RSA
problem to the forgery problem.

From the standpoint of “practice-oriented provable security” the Katz–Wang
modification provides a much better guarantee than did the RSA signature with-
out the added bit. Namely, in order to get 80 bits of security one need only choose
N large enough so that finding e-th roots modulo N requires 280 operations —
that is, one needs roughly a 1000-bit N . Thus, the appending of a random bit
to the message allows us to shave 500 bits off our modulus!

This defies common sense. How could such a “magic bit” have any significant
impact on the true security of a cryptosystem, let alone such a dramatic impact?
This example shows that whether or not a cryptographic protocol lends itself to
a tight security reduction argument is not necessarily related to the true security
of the protocol.

Does tightness matter in a reductionist security argument? Perhaps not, if, as
in this case, a protocol with a non-tight reduction can be modified in a trivial
way to get one that has a tight reduction. On the other hand, the example in
§4.1 shows that in some circumstances a non-tight reduction might be worthless.
Thus, the question of how to interpret a non-tight reductionist security argument
has no easy answer.

One interpretation of Coron’s lower bound on tightness is that if the RSA
problem has s1 bits of security and if we suppose that an attacker could make
2s2 signature queries, then RSA signatures with full-domain hash have only
s1 − s2 bits of security. However, such a conclusion seems unwarranted in light
of the Katz–Wang construction. Rather, it is reasonable to view Coron’s lower
bound on tightness as a result that casts doubt not on the security of the basic
RSA signature scheme, but rather on the usefulness of reduction arguments as a
measure of security of a protocol. This point of view is similar to the alternative
interpretation of Boneh–Venkatesan’s result that we proposed in §2.

5 Equivalence But No Tight Reduction

Let P denote a presumably hard problem underlying a cryptographic protocol;
that is, solving an instance of P will recover a user’s private key. For example,
the RSA version of factorization is the problem P whose input is a product N
of two unknown k-bit primes and whose output is the factorization of N .

Let Pm denote the problem whose input is an m-tuple of distinct inputs for
P of the same bitlength and whose output is the solution to P for any one of
the inputs. In the cryptographic context, m might be the number of users. In
that case, solving Pm means finding the private key of any one of the users,
while solving P means finding the private key of a specified user. We call the
former “existential key recovery” and the latter “universal key recovery.” A
desirable property of a cryptosystem is that these two problems be equivalent
— in other words, that it be no easier to recover the private key of a user of the
attacker’s choice than to recover the private key of a user that is specified to the
attacker.
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To see how this issue might arise in practice, let’s suppose that in a certain
cryptosystem a small proportion — say, 10−5 — of the randomly assigned pri-
vate keys are vulnerable to a certain attack. From the standpoint of an individual
user, the system is secure: she is 99.999% sure that her secret is safe. However,
from the standpoint of the system administrator, who is answerable to a million
users, the system is insecure because an attacker is almost certain (see below) to
eventually obtain the private key of one or more of the users, who will then sue
the administrator. Thus, a system administrator has to be worried about exis-
tential key recovery, whereas an individual user might care only about universal
key recovery.

5.1 The RSA Factorization Problem

In the case of RSA, is Pm equivalent to P? (For now we are asking about
algorithms that solve all instances of a problem; soon we shall consider algorithms
that solve a non-negligible proportion of all instances.) It is unlikely that there
is an efficient reduction from P to Pm. Such a reduction would imply that
the following cannot be true: for every k there are a small number rk < m of
moduli N that are much harder to factor than any other 2k-bit N . On the other
hand, all of our knowledge and experience with factoring algorithms support the
belief that, in fact, these two problems are in practice equivalent, and that RSA
does enjoy the property that existential and universal private key recovery are
equivalent.

When studying the security of a protocol, one usually wants to consider al-
gorithms that solve only a certain non-negligible proportion of the instances.9

In this case there is an easy reduction from P to Pm: given an input to P , ran-
domly choose m − 1 other inputs to form an input to Pm. One can check that
this transforms an algorithm that solves a non-negligible proportion of instances
of Pm to one that solves a non-negligible proportion of instances of P .

However, the proportion of instances solved can be dramatically different. An
algorithmA that solves ε of the instances of P , where ε is small but not negligible,
gives rise to an algorithm Am that solves ν = 1 − (1 − ε)m of the instances of
Pm (this is the probability that at least one of the m components of the input
can be solved by A). For small ε and large m, ν ≈ 1 − e−εm. For example, if
ε = 10−5 and m = 106, then ν is greater than 99.99%. Thus, from a theoretical
point of view there seems to be a significant distance between universal private
key recovery P and existential private key recovery Pm for many systems such
as RSA. In other words, we know of no reductionist argument to show that if
RSA is secure from the standpoint of an individual user, then it must also be
secure from the standpoint of the system administrator.
9 In this section probabilities are always taken over the set of problem instances (of

a given size), and not over sets of possible choices (coin tosses) made in the execu-
tion of an algorithm. If for a given problem instance the algorithm succeeds for a
non-negligible proportion of sequences of coin tosses, then we suppose that the al-
gorithm is iterated enough times so that it is almost certain to solve the problem
instance.
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But once again, all of our experience and intuition suggest that there is no
real distance between the two versions of the RSA factoring problem. This is
because for all of the known subexponential-time factoring algorithms, includ-
ing the number field sieve, the running time is believed not to be substantially
different for (a) a randomly chosen instance, (b) an instance of average diffi-
culty, and (c) a hardest possible instance. No one knows how to prove such a
claim; indeed, no one can even give a rigorous proof of the L1/3 running time
for the number field sieve. And even if the claim could be proved for the cur-
rent fastest factoring algorithm, we would be very far from proving that there
could never be a faster algorithm for which there was a vast difference between
average-case and hardest-case running times. This is why there is no hope of
proving the tight equivalence of universal and existential private key recovery
for RSA.

5.2 A Non-cryptographic Example

Consider the problem P of finding all the prime factors of an arbitrary integer
N . Let us say that N is “k-easy” if it has at most one prime divisor greater
than 2k. If k is small, then P in that case can be solved efficiently by first using
trial division, perhaps in conjunction with the Lenstra elliptic curve factoring
algorithm, to pull out the prime factors < 2k, and then applying a primality test
to what’s left over if it’s greater than 1.

It is not hard to see that the proportion ε of n-bit integers N that are k-easy
is at least k/n. Namely, for 1 ≤ j < 2k consider N that are of the form pj for
primes p. The number of such n-bit integers is asymptotic to

2n−1

j ln(2n/j)
>

2n−1

ln 2n

1
j
.

Thus, the proportion of n-bit integers that are k-easy is greater than

1
ln 2n

∑
1≤j<2k

1
j
≈ ln 2k

ln 2n
=

k

n
.

As an example, let’s take n = 2000, k = 20. Then ε ≥ 0.01. We saw that
for m = 1000 more than 99.99% of all instances of Pm can be quickly solved.
In contrast, a significant proportion of the instances of P are outside our reach.
Obviously, it is not feasible to factor a 2000-bit RSA modulus. But there is a
much larger set of 2000-bit integers that cannot be completely factored with
current technology. Namely, let S≥1 denote the set of integers that have at least
one prime factor in the interval [2300, 2500] and at least one prime factor greater
than 2500. At present a number in S≥1 cannot feasibly be factored, even using
a combination of the elliptic curve factorization method and the number field
sieve; and a heuristic argument, which we now give, shows that at least 25% of
all 2000-bit integers N lie in S≥1.

To see this, let Sk denote the set of integers that have exactly k prime factors
in [2300, 2500] and at least one prime factor greater than 2500. Writing a 2000-bit
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N ∈ S1 in the form N = lm with l a prime in [2300, 2500] and m ∈ S0, we see
that the number of such N is equal to∑

l prime in [2300,2500]

#
(

S0

⋂[1
l
21999,

1
l
22000

])
.

The probability that an integer in the latter interval satisfies the two conditions
defining S0 is at least equal to

Prob(not divisible by any prime p ∈ [2300, 2500])− Prob(2500 − smooth)

≈
∏

p∈[2300,2500]

(1 − 1
p
)− u−u,

where u = (2000 − log2 l)/500 ≥ 3. The product is equal to exp
∑

ln(1 − 1
p ) ≈

exp
∑

(−1/p) ≈ exp(− ln ln 2500 + ln ln 2300) = 0.6, and so the probability that
an integer in [1l 2

1999, 1
l 2

2000] lies in S0 is greater than 50%. Thus, the proportion
of 2000-bit integers N that lie in S≥1 ⊃ S1 is at least

1
2

∑
l prime in [2300,2500]

1
l
≈ 1

2
(ln ln 2500 − ln ln 2300) =

1
2

ln(5/3) ≈ 0.25,

as claimed.
This problem P does not seem to have any cryptographic significance: it is

hard to imagine a protocol whose security is based on the difficulty of completely
factoring a randomly chosen integer. Rather, its interest lies in the fact that,
despite its apparent resemblance to the RSA factoring problem, it spectacularly
fails to have a certain property — tight equivalence of existential and universal
solvability — that intuitively seems to be a characteristic of RSA factoring. This
example also suggests that it is probably hopeless to try to prove that universal
and existential private key recovery are tightly equivalent for RSA.

5.3 Use Different Elliptic Curves or the Same One?

Let us look at universal versus existential private key recovery in the case of
elliptic curve cryptography (ECC). Suppose that each user chooses an elliptic
curve E over a finite field Fq, a subgroup of E(Fq) whose order is a k-bit prime
p, a basepoint P in the subgroup, and a secret key x mod p; the public key is
Q = xP . Let P denote the elliptic curve discrete logarithm problem (ECDLP),
that is, the problem of recovering the secret key x from the public information.
Let Pm denote the problem whose input is an m-tuple of ECDLP inputs with
distinct orders p of the subgroups and whose output is any one of the m dis-
crete logarithms. Once again, it seems intuitively clear that Pm is as hard as
P , although it is very unlikely that a tight reduction from P to Pm could be
found.
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In contrast, suppose that everyone uses the same elliptic curve group, and only
the private/public key pairs (x, Q) differ. In that case ECC provably enjoys the
property of tight equivalence of existential and universal private key recovery.
The reason is that the ECDLP on a fixed group is “self-reducible.” That means
that, given an instance we want to solve, we can easily create an m-tuple of
distinct random instances such that the solution to any one of them gives us
the solution to the problem we wanted to solve. Namely, given an input Q, we
randomly choose m distinct integers yi modulo p and set Qi = yiQ. A Pm-oracle
will solve one of the ECDLP instances with input Qi. Once we know its discrete
log xi, we immediately find x = y−1

i xi mod p. This shows that for the ECDLP
on a fixed curve the universal private key recovery problem P reduces (tightly)
to the existential private key recovery problem Pm.

Thus, if we want a cryptosystem with the provable security property of tight
equivalence of existential and universal private key recovery, then we should not
only choose ECC in preference to RSA, but also insist that all users work with
the same elliptic curve group.

Needless to say, we are not suggesting that this would be a good reason
to choose one type of cryptography over another. On the contrary, what this
example shows is that it is sometimes foolish to use the existence or absence of
a tight reductionist security argument as a guide to determine which version of
a cryptosystem is preferable.

Remark 3. We should also recall the problematic history of attempts to con-
struct cryptosystems whose security is based on a problem for which the average
cases and the hardest cases are provably equivalent.10 This was finally done by
Ajtai and Dwork [2] in 1997. However, the following year Nguyen and Stern [30]
found an attack that recovers the secret key in the Ajtai–Dwork system unless
parameters are chosen that are too large to be practical (see also [31]).

6 Pseudorandom Bit Generators

A pseudorandom bit generator G is a function — actually, a family of functions
parameterized by n and M � n — that takes as input a random sequence of
n bits (called the “seed”) and outputs a sequence of M bits that appear to
be random. More precisely, G is said to be asymptotically secure in the sense
of indistinguishability if there is no polynomial time statistical test that can
distinguish (by a non-negligible margin) between its output and random output.
An alternative and at first glance weaker notion of security is that of the “next
bit” test: that there is no value of j for which there exists a polynomial time
algorithm that, given the first j − 1 bits, can predict the j-th bit with greater
than 1

2 + ε chance of success (where ε is non-negligible as a function of n). A
theorem of Yao (see [26], pp. 170-171) shows that these two notions of security

10 Discrete-log-based systems do not have this property because the underlying problem
is self-reducible only after the group has been fixed; there is clearly no way to reduce
one instance to another when the groups have different orders.
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are equivalent. However, that theorem is non-tight in the sense that ε-tolerance
for the next bit test corresponds only to (Mε)-tolerance for indistinguishability.

If one wants to analyze the security of a pseudorandom bit generator more
concretely, one has to use a more precise definition than the asymptotic one.
Thus, for given values of n and M , G is said to be (T, ε)-secure in the sense
of indistinguishability if there is no algorithm (statistical test) with running
time bounded by T such that the probability of a “yes” answer in response to
the output of G and the probability of a “yes” answer in response to a truly
random sequence of M bits differ in absolute value by at least ε. The relation
between indistinguishability and the next bit test is that we have to know that
our generator is (T, ε/M)-secure in the next bit sense in order to conclude that
it is (T, ε)-secure in the sense of indistinguishability.

6.1 The Blum–Blum–Shub Generator

Let N be an n-bit product of two large primes that are each ≡ 3 (mod 4) (such
an N is called a “Blum integer”), and choose a (small) integer j. The Blum–
Blum–Shub (BBS) pseudorandom bit generator G takes a random x mod N and
produces M = jk bits as follows. Let x0 = x, and for i = 1, . . . , k let11

xi = min{x2
i−1 mod N, N − (x2

i−1 mod N)}.

Then the output of G consists of the j least significant bits of xi, i = 1, . . . , k.
Obviously, the larger j is, the faster G generates M bits. However, the pos-

sibility of distinguishing the generated sequence from a truly random sequence
becomes greater as j grows. In [41] and [3] it was proved that j = O(log log N)
bits can be securely extracted in each iteration, under the assumption that fac-
toring is intractable.

This asymptotic result was used to justify recommended values of j. For ex-
ample, in 1994 the Internet Engineering Task Force [21] made the following
recommendation (in this and the following quote the modulus is denoted by n
rather than N):

Currently the generator which has the strongest public proof of strength
is called the Blum Blum Shub generator... If you use no more than
the log2(log2(si)) low order bits, then predicting any additional bits
from a sequence generated in this manner is provable [sic] as hard as
factoring n.

This recommendation has been repeated more recently, for example, in the book
by Young and Yung ([43], p. 68):

The Blum–Blum–Shub PRBG is also regarded as being secure when the
log2(log2(n)) least significant bits...are used (instead of just the least
significant bit). So, when n is a 768-bit composite, the 9 least significant
bits can be used in the pseudorandom bit stream.

11 The original generator described in [9] has j = 1 and xi = x2
i−1 mod N .
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Let us compare this recommendation with the best security bounds that are
known. In what follows we set

L(n) ≈ 2.8 · 10−3 exp
(
1.9229(n ln 2)1/3(ln(n ln 2))2/3

)
,

which is the heuristic expected running time for the number field sieve to factor a
random n-bit Blum integer (here the constant 2.8·10−3, which is taken from [40],
was obtained from the reported running time for factoring a 512-bit integer), and
we assume that no algorithm can factor such an integer in expected time less
than L(n).

For the j = 1 version of Blum–Blum–Shub the best concrete security result
(for large n) is due to Fischlin and Schnorr [22], who showed that the BBS
generator is (T, ε)-secure in the sense of indistinguishability if

T ≤ L(n)(ε/M)2

6n log n
− 27n(ε/M)−2 log(8n(ε/M)−1)

log n
, (1)

where log denotes log2 here and in the sequel.
For j > 1 the Fischlin–Schnorr inequality (1) was generalized by Sidorenko

and Schoenmakers [40], who showed that the BBS generator is (T, ε)-secure if

T ≤ L(n)
36n(logn)δ−2

− 22j+9nδ−4, (2)

where δ = (2j−1)−1(ε/M). For large n this is an improvement over the inequality

T ≤ L(n)(ε/M)8

24j+27n3
, (3)

which is what follows from the security proof in [3].
Returning to the parameters recommended in [21] and [43], we take n = 768

and j = 9. Suppose we further take M = 107 and ε = 0.01. According to
inequality (2), the BBS generator is secure against an adversary whose time is
bounded by −2192. (Yes, that’s a negative sign!) In this case we get a “better”
result from inequality (3), which bounds the adversary’s time by 2−264. (Yes,
that’s a negative exponent!) These less-than-reassuring security guarantees are
not improved much by changing M and ε. For example, if M = 215 and ε = 0.5,
we get T ≤ −2136 and T ≤ 2−134 from (2) and (3), respectively. Thus, depending
on whether we use (2) or (3), the adversary’s running time is bounded either by
a negative number or by 10−40 clock cycles!

Nor does the recommendation in [21] and [43] fare well for larger values of n.
In Table 1, the first column lists some values of n; the second column gives L(n)
to the nearest power of 2 (this is the bound on the adversary’s running time that
would result from a tight reduction); the third column gives the corresponding
right-hand side of inequality (2); and the fourth column gives the right-hand side
of (3). Here we are taking j = �log n�, M = 107, and ε = 0.01.
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Table 1. The BBS generator: bounds on the adversary’s running time with j = �log n�

n L(n) Bound from (2) Bound from (3)

1024 278 −2199 2−258

2048 2108 −2206 2−235

3072 2130 −2206 2−215

7680 2195 −2213 2−158

15360 2261 −2220 2−99

Thus, the asymptotic result in [3,41], which seemed to guarantee that we could
securely extract j = �log n� bits in each iteration, does not seem to deliver in
practice what it promises in theory.

Suppose that we retreat from the idea of getting j = �log n� bits from each
iteration, and instead use the BBS generator to give just j = 1 bit per iteration.
Now the security guarantees given by the inequalities (1) and (3) are better, but
not by as much as one might hope. Table 2 gives the corresponding right-hand
sides of (1) (in the third column) and (3) (in the fourth column) for j = 1,
M = 107, and ε = 0.01.

Table 2. The BBS generator: bounds on the adversary’s running time with j = 1

n L(n) Bound from (1) Bound from (3)

1024 278 −279 2−222

2048 2108 −280 2−194

3072 2130 −280 2−175

7680 2195 2115 2−114

15360 2261 2181 2−51

The cross-over point at which the Fischlin–Schorr inequality starts to give a
meaningful security guarantee is about n = 5000 (for which the right-hand side
of (1) is roughly 284). Unfortunately, it is not very efficient to have to perform a
5000-bit modular squaring for each bit of the pseudorandom sequence.

Remark 4. The recommended value j = log(log N) in [21] and [43] was obtained
by taking the asymptotic result j = O(log(log N)) and setting the implied con-
stant C in the big-O equal to 1. The choice C = 1 is arbitrary. In many asymp-
totic results in number theory the implicit constant is much greater, so with
equal justification one might decide to take C = 100. It is amusing to note that
if one did that with 1000-bit N , one would get a completely insecure BBS gen-
erator. Since j = 100 log(log N) = 1000, one would be using all the bits of xi.
From the output an attacker could easily determine N (by setting N1 = x2±x2

1,
Ni = gcd(Ni−1, xi+1 ± x2

i ), so that Ni = N for i ≥ i0 for quite small i0), after
which the sequence would be deterministic for the attacker.
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6.2 The Gennaro Generator

Let p be an n-bit prime of the form 2q + 1 with q prime, and let c be an
integer such that c � log n. Let g be a generating element of F∗

p. The Gennaro
pseudorandom bit generator G takes a random x mod p− 1 and produces M =
(n−c−1)k bits as follows (see [23]). Let x �→ x̃ be the function on n-bit integers
x =
∑n−1

l=0 sl2l given by x̃ = s0+
∑n−1

l=n−c sl2l. Let x0 = x, and for i = 1, . . . , k let
xi = gx̃i−1 mod p. Then the output of G consists of the 2nd through (n − c)-th
bits of xi, i = 1, . . . , k (these are the bits that are ignored in x̃i).

In comparison with the BBS generator, each iteration of the exponentiation
xi = gx̃i−1 mod p takes longer than modular squaring. However, one gets many
more bits each time. For example, with the parameters n = 1024 and c = 160
that are recommended in [24] each iteration gives 863 bits.

In [24], Howgrave-Graham, Dyer, and Gennaro compare the Gennaro gen-
erator (with n = 1024 and c = 160) with a SHA-1 based pseudorandom bit
generator (namely, the ANSI X9.17 generator) that lacks a proof of security:

...SHA-1 based pseudorandom number generation is still considerably
faster than the one based on discrete logarithms. However, the difference,
a factor of less than 4 on this hardware, may be considered not too high
a price to pay by some who wish to have a “provably secure,” rather
than a “seemingly secure” (i.e., one that has withstood cryptographic
attack thus far) system for pseudorandom number generation.

The proof of security for the Gennaro generator is given in §4 of [23]. In-
terestingly, Gennaro uses the next bit test rather than the indistinguishability
criterion to derive his results. However, it is the latter criterion rather than the
next bit test that is the widely accepted notion of security of a pseudorandom
bit generator. As mentioned above, to pass from the next bit test to indistin-
guishability, one must replace ε by ε/M in the inequalities. One finds [39] that
Gennaro’s proof then gives the following inequality for the adversary’s time:

T ≤ L(n)(n− c)3

16c(ln c)(M/ε)3
. (4)

For n = 1024, c = 160, M = 107, and ε = 0.01, the right-hand side of (4) is 18.
Thus, the security guarantees that come with the Gennaro generator are not a
whole lot more reassuring than the ones in §6.1.

We conclude this section by repeating the comment we made in §5.5 of [27]:

Unfortunately, this type of analysis [incorporating the measure of non-
tightness into recommendations for parameter sizes] is generally missing
from papers that argue for a new protocol on the basis of a “proof”
of its security. Typically, authors of such papers trumpet the advantage
that their protocol has over competing ones that lack a proof of security
(or that have a proof of security only in the random oracle model),
then give a non-tight reductionist argument, and at the end give key-
length recommendations that would make sense if their proof had been



Another Look at “Provable Security”. II 165

tight. They fail to inform the potential users of their protocol of the true
security level that is guaranteed by the “proof” if, say, a 1024-bit prime
is used. It seems to us that cryptographers should be consistent. If one
really believes that reductionist security arguments are very important,
then one should give recommendations for parameter sizes based on an
honest analysis of the security argument, even if it means admitting that
efficiency must be sacrificed.

7 Short Signatures

In the early days of provable security work, researchers were content to give
asymptotic results with polynomial-time reductions. In recent years, they have
increasingly recognized the importance of detailed analyses of their reductions
that allow them to state their results in terms of specified bounds, probabilities,
and running times.

But regrettably, they often fail to follow through with interpretations in prac-
tical terms of the formulas and bounds in their lemmas and theorems. As a
result, even the best researchers sometimes publish results that, when analyzed
in a concrete manner, turn out to be meaningless in practice. In this section we
give an example of this.

First we recall that when analyzing the security of a signature scheme against
chosen-message attack in the random oracle model, one always has two different
types of oracle queries — signature queries and hash function queries — each
with a corresponding bound on the number of queries that an attacker can
make.12 In practice, since signature queries require a response from the target
of the attack, to some extent they can be limited. So it is reasonable to suppose
that the bound qs is of the order of a million or a billion. In contrast, a query to
the hash oracle corresponds in practice to simply evaluating a publicly available
function. There is no justification for supposing that an attacker’s hash queries
will be limited in number by anything other than her total running time. Thus,
to be safe one should think of qh as being 280, or at the very least 250.

We now give an overview of three signature schemes proposed by Boneh-Lynn-
Shacham [12] and Boneh-Boyen [11]. All three use bilinear pairings to obtain
short signatures whose security against chosen-message attack is supported by
reductionist arguments. Let k denote the security parameter; in practice, usually
k ≈ 80. For efficient implementation it is generally assumed that the group order
q is approximately 22k, which is large enough to prevent squareroot attacks on
the discrete log problem.

In the Boneh-Lynn-Shacham (BLS) signature scheme the signatures then have
length only about 2k. In [12] this scheme is shown to be secure against chosen-
message attack in the random oracle model if the Computational Diffie-Hellman
problem is hard.
12 We shall continue to use the notation qs and qh for these bounds, even though we

are also using q to denote the prime group order. We apologize to the reader for our
over-use of the letter q.
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In [11] Boneh and Boyen propose two alternatives to the BLS scheme. The
first one (referred to below as the “BB signature scheme”) has roughly twice
the signature length of BLS, namely, 4k, but it can be proven secure against
chosen-message attack without using the random oracle model, assuming that
the so-called Strong Diffie-Hellman problem (SDH) is intractable. The second
signature scheme proposed in the paper (the “BB hash-signature scheme”) is
a variant of the first one in which the message must be hashed. Its proof of
security uses the random oracle assumption. Like the BLS scheme, the BB hash-
signature scheme has signature length roughly 2k rather than 4k; moreover, it
has the advantage over BLS that verification is roughly twice as fast.

The proofs in [11] are clear and readable, in part because the authors introduce
a simplified version of the BB scheme (the “basic” BB scheme) in order to
formulate an auxiliary lemma (Lemma 1) that is used to prove the security of
both the full BB scheme (without random oracles) and the BB hash-signature
scheme (with random oracles). What concerns us is the second of these results
(Theorem 2).

We now describe our reason for doubting the value of that result. We shall
give Lemma 1 and Theorem 2 of [11] in a slightly simplified form where we omit
mention of the probabilities ε and ε′, which are not relevant to our discussion.
The underlying hard problem SDH for both BB schemes is parameterized by an
integer that we shall denote q′s.

Lemma 1. Suppose that q′s-SDH cannot be solved in time less than t′. Then the
basic signature scheme is secure against a weak chosen-message attack by an
existential forger whose signature queries are bounded by q′′s and whose running
time is bounded by t′′, provided that

q′′s < q′s and t′′ ≤ t′ −Θ(q′s
2
T ),

where T is the maximum time for a group exponentiation.

Theorem 2. Suppose that the basic signature scheme referred to in Lemma 1 is
existentially unforgeable under a weak chosen-message attack with bounds q′′s
and t′′. Then the corresponding hash-signature scheme is secure in the random
oracle model against an adaptive chosen-message attack by an existential forger
whose signature queries are bounded by qs, whose hash queries are bounded by
qh, and whose running time is bounded by t, provided that

qs + qh < q′′s and t ≤ t′′ − o(t′′).

Casual readers are likely to view this theorem as a fairly precise and definitive
security guarantee, especially since the authors comment: “Note that the secu-
rity reduction in Theorem 2 is tight... Proofs of signature schemes in the random
oracle model are often far less tight.” Readers are not likely to go to the trouble
of comparing the statement of the theorem with that of Lemma 1, particularly
since in [11] several pages of text separate the lemma from the theorem. But such
a comparison must be made if we want to avoid ending up in the embarrassing
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situation of the previous section (see Tables 1 and 2), where the adversary’s
running time was bounded by a negative number.

If we put the two statements side by side and compare them, we see that in
order for the bound on the adversary’s running time to be a positive number it
is necessary that

q2
h < t′ ≈ 2k,

where k is the security parameter. In practice, this means that we need qh �
240.13 Thus, there is no security guarantee at all for the hash-signature scheme
in Theorem 2 unless one assumes that the adversary is severely limited in the
number of hash values she can obtain.

The conclusion of all this is not, of course, that the signature scheme in Theo-
rem 2 of [11] is necessarily insecure, but rather that the provable security result
for it has no meaning if parameters are chosen for efficient implementation.

8 The Paillier–Vergnaud Results for Schnorr Signatures

In [32] Paillier and Vergnaud prove that it is unlikely that a reduction — more
precisely, an “algebraic” reduction — can be found from the Discrete Logarithm
Problem (DLP) to forging Schnorr signatures. After describing this result and
its proof, we compare it with various positive results that suggest equivalence
between forgery of Schnorr-type signatures and the DLP.

8.1 Schnorr Signatures

We first recall the Schnorr signature scheme [35].

Schnorr key generation. Let q be a large prime, and let p be a prime such that
p ≡ 1 (mod q). Let g be a generator of the cyclic subgroup G of order q in F∗

p.
Let H be a hash function that takes values in the interval [1, q−1]. Each user Alice
constructs her keys by selecting a random integer x in the interval [1, q − 1] and
computing y = gx mod p. Alice’s public key is y; her private key is x.

Schnorr signature generation. To sign a message m, Alice must do the
following:

1. Select a random integer k in the interval [1, q − 1].
2. Compute r = gk mod p, and set h = H(m, r).
3. Set s = k + hx mod q.

The signature for the message is the pair of integers (h, s).

Schnorr signature verification. To verify Alice’s signature (h, s) on a mes-
sage m, Bob must do the following:

1. Obtain an authenticated copy of Alice’s public key y.
2. Verify that h and s are integers in the interval [0, q − 1].

13 If we had a 160-bit group order and took qh = 250, then Theorem 2 and Lemma 1
would give us the bound t ≤ −2100 for the adversary’s running time.
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3. Compute u = gsy−h mod p and v = H(m, u).
4. Accept the signature if and only if v = h.

8.2 Paillier–Vergnaud

Before giving the Paillier–Vergnaud result, we need some preliminaries. First,
suppose that we have a group G generated by g. By the “discrete log” of y ∈ G
we mean a solution x to the equation gx = y. In [32] the “one-more DLP”
problem, denoted n-DLP, is defined as follows.

n-DLP. Given r0, r1, . . . , rn ∈ G and a discrete log oracle DL(·) that can be
called upon n times, find the discrete logs of all n + 1 elements ri.

Second, by an “algebraic” reduction R from the DLP to forgery, Paillier and
Vergnaud mean a reduction that is able to perform group operations but is not
able to use special features of the way that group elements are represented. In
addition, they suppose that the choices made while carrying out R are accessible
to whomever is running the reduction algorithm (in the proof below this is the
n-DLP solver). With these definitions, they prove the following result.

Theorem. Suppose that G is a group of order q generated by g. Suppose that
R is an algebraic reduction from the DLP to universal forgery with a key-only
attack that makes n calls to the forger. Then n-DLP is easy.

Proof. Let r0, r1, . . . , rn ∈ G be an instance of n-DLP. We are required to find all
n+1 discrete logs, and we can call upon the oracle DL(·) n times. The reduction
R will find the discrete logarithm of any element if it is given a forger that will
break n different instances (chosen by R) of the Schnorr signature scheme. We
ask R to find the discrete log of r0. Then n times the reduction algorithm
produces a Schnorr public key yi and a message mi. Each time we simulate the
forger by choosing r = ri, computing the hash value hi = H(mi, ri), and then
setting si equal to the discrete log of riy

hi

i , which we determine from the oracle:

si = DL(riy
hi

i ).

We send (hi, si), which is a valid signature for mi with public key yi, to R.
Finally, R outputs the discrete log x0 of r0.

In order to compute the public key yi, R must have performed group opera-
tions starting with the only two group elements that it was given, namely, g and
r0. Thus, for some integer values αi and βi that are accessible to us, we have
yi = gαirβi

0 . Once we learn x0 (which is the output of R), we can compute

xi = si − hi(αi + x0βi) mod q,

which is the discrete logarithm of ri, i = 1, . . . , n. We now know the discrete
logs of all the n + 1 values r0, . . . , rn. This completes the proof.

Paillier and Vergnaud proved similar results for other signature schemes based
on the DLP, such as DSA and ECDSA. In the latter cases they had to modify
the n-DLP slightly: the discrete log oracle is able to give the queried discrete
logs to different bases gi.
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Intuitively, the “one-more DLP” problem seems to be equivalent to the DLP,
even though there is an obvious reduction in just one direction. Thus, the
Paillier–Vergnaud results can be paraphrased as follows: A reduction from the
DLP to forgery is unlikely unless the DLP is easy. In this sense the above the-
orem has the same flavor as the result of Boneh and Venkatesan [13] discussed
in §2. As in that case, one possible interpretation of Paillier–Vergnaud is that
there might be a security weakness in Schnorr-type signatures. Indeed, that in-
terpretation is suggested by the title “Discrete-log-based signatures may not be
equivalent to discrete log” and by the claim in the Introduction that “our work
disproves that Schnorr, ElGamal, DSA, GQ, etc. are maximally secure.”14

On the other hand, as in §2, an alternative explanation is that their work gives
a further illustration of the limitations of reduction arguments. It is instructive
to compare the negative result of Paillier–Vergnaud concerning the existence
of reductions with the following two positive reductionist security results for
Schnorr-type signature schemes.

8.3 Random Oracle Reductions

Reductionist security claim. In the Schnorr signature scheme, if the hash function
is modeled by a random oracle, then the DLP reduces to universal forgery.

Argument. Suppose that the adversary can forge a signature for m. After it gets
h = H(m, r), suppose that it is suddenly given a second hash function H ′. Since
a hash function has no special properties that the forger can take advantage of,
whatever method it used will work equally well with H replaced by H ′. In other
words, we are using the random oracle model for the hash function. So the forger
uses h′ = H ′(m, r) as well as h = H(m, r) and produces two valid signatures
(h, s) and (h′, s′) for m, with the same r but with h′ �= h. Note that the value of
k is the same in both cases, since r is the same. By subtracting the two values
s ≡ k + xh and s′ ≡ k + xh′ (mod q) and then dividing by h′ − h, one can use
the forger’s output to immediately find the discrete log x.15

The above argument is imprecise. Strictly speaking, we should allow for the
possibility that a forger gets H(m, r) for several different values of r and signs
only one of them. In that case we guess which value will be signed, and run the
forger program several times with random guesses until our guess is correct. We
described a rigorous argument (for a stronger version of the above claim) in §5
of [27], and full details can be found in [33,34].

Note that the need to run the forger many times leads to a non-tight reduc-
tion. In [34] it is shown that it suffices to call on the forger approximately qh

times, where qh is a bound on the number of hash function queries. In [32] Pail-
lier and Vergnaud prove that, roughly speaking, an algebraic reduction in the
random oracle model cannot be tighter than

√
qh. Much as Coron did in the case

14 Paillier and Vergnaud do acknowledge, however, that their work leads to “no actual
attack or weakness of either of these signature schemes.”

15 Note that one does not need to know k.
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of RSA signatures, Paillier and Vergnaud establish a lower bound on tightness
of the reduction.

What do we make of the circumstance that, apparently, no tight reduction
from the DLP to forgery is possible in the random oracle model, and no reduction
at all is likely in a standard model? As usual, several interpretations are possible.
Perhaps this shows that reductions in the random oracle model are dangerous,
because they lead to security results that cannot be achieved in a standard
model. On the other hand, perhaps we can conclude that the random oracle
model should be used, because it can often come closer to achieving what our
intuition suggests should be possible. And what about the non-tightness? Should
we ignore it, or should we adjust our recommendations for key sizes so that we
have, say, 80 bits of security after taking into account the non-tightness factor?

8.4 Brown’s Result for ECDSA

Finally, we discuss another positive result that concerns ECDSA. We shall state
without proof an informal version of a theorem of D. Brown [14,15].

Theorem. Suppose that the elliptic curve is modeled by a generic group. Then
the problem of finding a collision for the hash function reduces to forgery of
ECDSA signatures.

Brown’s theorem falls outside the framework of the results in [32]. It is a reduc-
tion not from the DLP to forgery, but rather from collision finding to forgery.
And it is a tight reduction. By making the generic group assumption, one is
essentially assuming that the DLP is hard (see [36]). If the hash function is
collision-resistant, then the assumed hardness of the DLP (more precisely, the
generic group assumption) implies hardness of forgery. However, in [14] there is
no reduction from the DLP to forgery.

Both Brown and Paillier–Vergnaud make similar assumptions about the group.
The latter authors implicitly assume that n-DLP is hard, and they assume that a
reduction uses the group in a “generic way,” that is, computes group operations
without exploiting any special features of the encodings of group elements. Simi-
larly, Brown assumes that the elliptic curve group is for all practical purposes like
a generic group, and, in particular, the DLP is hard.

But their conclusions are opposite one another. Paillier and Vergnaud prove
that no reduction is possible in the standard model, and no tight reduction
is possible in the random oracle model. Brown gives a tight reduction — of a
different sort than the ones considered in [32] — which proves security of ECDSA
subject to his assumptions.

So is forgery of Schnorr-type signatures equivalent to the DLP? The best an-
swer we can give is to quote a famous statement by a recent American president:
it all depends on what the definition of “is” is.16

16 The context was an explanation of his earlier statement that “there is no sexual rela-
tionship with Ms. Lewinsky.” A statement to the effect that “there is no relationship
of equivalence between the DLP and forgery of discrete-log-based signatures” is, in
our judgment, equally implausible.



Another Look at “Provable Security”. II 171

9 Conclusions

In his 1998 survey article “Why chosen ciphertext security matters” [37], Shoup
explained the rationale for attaching great importance to reductionist security
arguments:

This is the preferred approach of modern, mathematical cryptography.
Here, one shows with mathematical rigor that any attacker that can
break the cryptosystem can be transformed into an efficient program to
solve the underlying well-studied problem (e.g., factoring large numbers)
that is widely believed to be very hard. Turning this logic around: if
the “hardness assumption” is correct as presumed, the cryptosystem is
secure. This approach is about the best we can do. If we can prove
security in this way, then we essentially rule out all possible shortcuts,
even ones we have not yet even imagined. The only way to attack the
cryptosystem is a full-frontal attack on the underlying hard problem.
Period. (p. 15; emphasis in original)

Later in [37] Shoup concluded: “Practical cryptosystems that are provably
secure are available, and there is very little excuse for not using them.” One of
the two systems whose use he advocated because they had proofs of security was
RSA-OAEP [7].

Unfortunately, history has not been kind to the bold opinion quoted above
about the reliability of provable security results. In 2001, Shoup himself [38]
found a flaw in the purported proof of security of general OAEP by Bellare and
Rogaway. The same year, Manger [29] mounted a successful chosen-ciphertext
attack on RSA-OAEP. Interestingly, it was not the flaw in the Bellare–Rogaway
proof (which was later patched for RSA-OAEP) that made Manger’s attack
possible. Rather, Manger found a shortcut that was “not yet even imagined” in
1998, when Shoup wrote his survey.

It is often difficult to determine what meaning, if any, a reductionist security
argument has for practical cryptography. In recent years, researchers have be-
come more aware of the importance of concrete analysis of their reductions. But
while they often take great pains to prove precise inequalities, they rarely make
any effort to explain what their mathematically precise security results actually
mean in practice.

For example, in [1] the authors construct a certain type of password-based key
exchange system and give proofs of security in the random oracle model based on
hardness of the computationalDiffie–Hellman (CDH)problem.Here is the (slightly
edited) text of their basic result (Corollary 1 of Theorem 1, pp. 201-202 of [1]) that
establishes the relation between the “advantage” of an adversary in breaking their
SPAKE1 protocol and the advantage of an adversary in solving the CDH:

Corollary 1. Let G be a represent group of order p, and let D be a
uniformly distributed dictionary of size |D|. Let SPAKE1 be the above
password-based encrypted key exchange protocol associated with these
primitives. Then for any numbers t, qstart, qA

send, qB
send, qH , qexe,
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Advake
SPAKE,D(t, qstart, q

A
send, qB

send, qH , qexe)

≤ 2 ·
(

qA
send + qB

send

|D| + 6

√
214

|D|2 AdvCDH
G (t′) +

215q4
H

|D|2p

)

+2 ·
(

(qexe + qsend)2

2p
+ qHAdvCDH

G (t + 2qexeτ + 3τ)
)

,

where qH represents the number of queries to the H oracle; qexe repre-
sents the number of queries to the Execute oracle; qstart and qA

send repre-
sent the number of queries to the Send oracle with respect to the initiator
A; qB

send represents the number of queries to the Send oracle with respect
to the responder B; qsend = qA

send+qB
send+qstart; t′ = 4t+O((qstart+qH)τ);

and τ is the time to compute one exponentiation in G.

The paper [1] includes a proof of this bewildering and rather intimidating in-
equality. But the paper gives no indication of what meaning, if any, it would
have in practice. The reader who might want to use the protocol and would like
to find parameters that satisfy security guarantees and at the same time allow
a reasonably efficient implementation is left to fend for herself.

In the provable security literature the hapless reader is increasingly likely to
encounter complicated inequalities involving more than half a dozen variables.
(For other examples, see Theorem 5 in [28] and Theorems 2 and 3 in [4].) The
practical significance of these inequalities is almost never explained. Indeed, one
has to wonder what the purpose is of publishing them in such an elaborate,
undigested form, with no interpretation given. Whatever the authors’ intent
might have been, there can be little doubt that the effect is not to enlighten
their readers, but only to mesmerize them.

* * *

Embarking on a study of the field of “provable security,” before long one
begins to feel that one has entered a realm that could only have been imagined
by Lewis Carroll, and that the Alice of cryptographic fame has merged with the
heroine of Carroll’s books:

Alice felt dreadfully puzzled. The Hatter’s remark seemed to her to have
no sort of meaning in it, and yet it was certainly English. (Alice’s Ad-
ventures in Wonderland and Through the Looking-Glass, London: Oxford
Univ. Press, 1971, p. 62.)

The Dormouse proclaims that his random bit generator is provably secure against
an adversary whose computational power is bounded by a negative number. The
Mad Hatter responds that he has a generator that is provably secure against an
adversary whose computational resources are bounded by 10−40 clock cycles. The
White Knight is heralded for blazing new trails, but upon further examination
one notices that he’s riding backwards. The Program Committee is made up of
Red Queens screaming “Off with their heads!” whenever authors submit a paper
with no provable security theorem.
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Lewis Carroll’s Alice wakes up at the end of the book and realizes that it has
all been just a dream. For the cryptographic Alice, however, the return to the
real world might not be so easy.
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Abstract. We build new RSA-based encryption schemes secure against
adaptive chosen-ciphertext attack (CCA-secure) without random ora-
cles. To do this, we first define a new general RSA-related assumption,
the Oracle RSA-type assumption, and give two specific instances of this
assumption. Secondly, we express RSA-based encryption schemes as tag-
based encryption schemes (TBE), where the public exponent is the tag.
We define selective-tag weak chosen-ciphertext security for the special
RSA-based case and call it selective-exponent weak chosen-ciphertext se-
curity. RSA-based schemes secure in this sense can be used as a building
block for the construction of chosen-ciphertext secure encryption schemes
using a previous technique. We build two concrete CCA-secure encryp-
tion schemes whose security is based on the two concrete Oracle RSA-
type assumptions respectively, and whose efficiency is comparable to the
most efficient CCA-secure schemes known.

Keywords: chosen-ciphertext security, public key encryption, RSA
assumptions.

1 Introduction

Indistinguishability against adaptive chosen ciphertext attack (IND-CCA), where
an adversary is given the capability to decrypt ciphertexts of his choice, with the
exception of a target ciphertext, is considered to be the correct notion of security
for general-purpose public key encryption schemes. We refer to such schemes as
CCA-secure schemes. In the literature, there are a number of approaches for ob-
taining encryption schemes that are CCA-secure. Much of this work, however, has
been only achieved with proofs in the random oracle model, the most famous be-
ing OAEP [3]. When, in practice, these random oracles are replaced by hash func-
tions, the security argument becomes heuristic only and does not guarantee secu-
rity against all attacks under the standard assumptions.

In the standard model three main techniques have been proposed for con-
structing CCA-secure encryption schemes. The first approach, from Naor and
Yung [21] and subsequently Dolev, Dwork and Naor [14], builds CCA-secure
schemes from any chosen-plaintext secure scheme (CPA-secure) and any non-
interactive zero knowledge (NIZK) proof system. The resulting schemes, how-
ever, are too inefficient for practical use, since they use expensive NIZK proofs.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 176–190, 2006.
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Cramer and Shoup [11] proposed the first encryption scheme that was simulta-
neously practical and CCA-secure in the standard model. Cramer and Shoup [12]
later generalised their encryption scheme by defining hash proof systems (HPS)
and giving a framework for constructing CCA-secure encryption schemes using
a HPS constructed from a general subset membership problem. Kurosawa and
Desmedt [18] later showed how to obtain CCA-secure hybrid encryption schemes
using a HPS as a building block, and in particular described an efficient hybrid
encryption scheme based on the Cramer-Shoup cryptosystem.

More recently, Canetti, Halevi and Katz [8] proposed a framework (CHK)
for constructing chosen-ciphertext secure encryption schemes from ID-based en-
cryption (IBE) schemes secure against selective-identity chosen-plaintext attack.
Boneh and Katz [7] improved the efficiency of the CHK construction, and the
two related works were combined in a later paper [6]. The resulting schemes
are both simple and efficient, with proofs of security in the standard model. In-
terestingly, the authors note that the resulting schemes seem to achieve chosen-
ciphertext security using a different approach to the two previous techniques that
use NIZK proofs and HPS. More precisely, the schemes do not use a proof of
well-formedness as in the two previous approaches and hence do not fall within
the general paradigm for chosen-ciphertext encryption described by Elkind and
Sahai [15]. Kiltz [17] showed that tag-based encryption (TBE) is a more general
case of IBE and can in fact be used as the building block for the CHK framework
in place of the IBE. Kiltz defined selective-tag security for TBE and showed that
a TBE secure in this sense is a sufficient building block for the CHK transforma-
tion and then proposed a new TBE that can be used to construct a reasonably
efficient CCA-secure scheme from the Decisional Linear Assumption [5].

It is worth noting that despite these three approaches to building provably
CCA-secure encryption schemes, there has yet to emerge an efficient CCA-secure
encryption scheme based on RSA or related assumptions in the standard model.

1.1 Our Contributions

New RSA-related assumption. We define a new general RSA-related as-
sumption, namely the Oracle RSA-type assumption, which will be used to prove
the security of the new schemes we introduce later in the paper. The Oracle
RSA-type assumption is a variant of the general Decisional RSA-type assump-
tion which is a decisional RSA-based assumption of a specific form. The Or-
acle RSA-type assumption can be viewed as the analog of the Oracle Diffie-
Hellman assumption [2] for an RSA context. We give concrete examples of Oracle
RSA-type assumptions derived from previously studied decisional RSA-based
assumptions.

Selective-exponent security for RSA-based encryption. We observe
that an RSA-based encryption scheme can be considered as a TBE where the
exponent e is the tag. We redefine the notion of selective-tag weak CCA secu-
rity [17] for this special case of RSA-based TBEs, and call it selective-exponent
weak chosen-ciphertext security, or more simply selective-exponent security. In
a selective-exponent attack, an adversary is given access to a decryption oracle
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from which he can obtain any decryptions of ciphertexts with respect to any
(public) exponent except the target (public key) exponent. We show how we can
build schemes that are secure against this attack based on our newly defined Or-
acle RSA-type assumption. Moreover, we describe two concrete schemes based
on the two concrete examples given.

New efficient CCA-secure RSA-based schemes. Using the Kiltz gener-
alised transformation of the CHK transformation we show how to obtain RSA-
based encryption schemes secure against chosen-ciphertext attack. More pre-
cisely, using the efficiency improvement of Boneh and Katz [7], a CCA-secure
RSA-based scheme can be constructed from a selective-exponent secure RSA-
based scheme, a message authentication code and a secure encapsulation scheme.
The efficiency of the resulting scheme is essentially the same as the selective-
exponent secure RSA-based scheme. We give two concrete instantiations of the
construction to yield two new chosen-ciphertext secure encryption schemes based
on RSA-related assumptions, whose efficiencies are comparable to the most effi-
cient known chosen-ciphertext secure schemes.

2 Preliminaries

2.1 Notation

For a set S, the notation |S| is used to denote the cardinality of S. For a string
or number n, the notation |n| is used to denote the bit length of n. For a set S,
x ∈R S denotes selecting an element x uniformly at random from S.

The term PPT is used to describe an algorithm that is probabilistic and runs
in polynomial time.

Algorithms which operate on some group G will be given string representa-
tions of elements of G, so a map from G to {0, 1}len is implicitly assumed. Also,
we implicitly assume that numbers are encoded in binary. The notation a ◦ b is
denotes the concatenation of strings a, b, or if a, b are numbers, the concatenation
of their bit-string representations.

3 RSA-Related Oracle Assumptions

We propose a variant of a general RSA-based assumption. The following discus-
sion is for general RSA-based problems, but specific instances are discussed later
in the section. Let fe : Z∗

N → Z∗
N be the RSA trapdoor one-way function for the

public exponent e, that is, fe(s) = se mod N . Also let g : Z∗
N → S be a one-way

function such that the distribution of (fe(s), g(s)) for a randomly generated s
is difficult to distinguish from (fe(s), g(t)) for random s, t. (The function g may
also be determined by the exponent e, but we will leave our notation as g for
the general case.) The trapdoor information for inverting any fe is the factorisa-
tion of the RSA modulus N = pq. Moreover, this trapdoor information enables
one to decide whether a given (A, B) is from the distribution (fe(s), g(s)) or from
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a random distribution. We call the assumption that (fe(s), g(s)) is difficult to
distinguish from random the Decisional RSA-type assumption. This assumption
is described more precisely in the following definition.

Definition 1. [D-RSA-type] For a security parameter k, let N be an RSA
modulus, e a public exponent. The Decisional RSA-type assumption is that, for
all PPT adversaries A, the advantage of A in distinguishing an RSA-type tuple
from random is negligible in k. More precisely,

Advdrsa−type
k,N,e (A) = |Pr[s ∈R Z∗

N : A(k, fe(s), g(s)) = 1]
− Pr[s, t ∈R Z∗

N : A(k, fe(s), g(t)) = 1]|

is negligible in k.

Now consider the distribution of (fe(s), H(g(s)) where H is a hash function, and
fe, g are as before. The following Hash RSA-type assumption roughly states that
H(g(s)) looks like a random string, even if fe(s) is also known.

Definition 2. [H-RSA-type] For a security parameter k, let N be an RSA
modulus and e a public exponent. Also let len be a number, and H : {0, 1}∗ →
{0, 1}len be a hash function. The Hash RSA-type assumption is that for all PPT
adversaries A, the advantage of A in distinguishing a Hash RSA-type tuple from
random is negligible in k. More precisely,

Advhrsa−type
k,N,e,H (A) = |Pr[s ∈R Z∗

N : A(k, fe(s), H(g(s))) = 1]

− Pr[s ∈R Z∗
N ; r ∈R {0, 1}len : A(k, fe(s), r) = 1]|

is negligible in k.

Now consider giving the adversaryA access to an oracleO(ē, X) which computes
O(ē, X) = H(g(f−1

ē (X))) for any given ē �= e. The Oracle RSA-type (O-RSA-
type) assumption states that such an oracle does not help A to break the H-
RSA-type assumption.

Definition 3. [O-RSA-type] For a security parameter k, let N be an RSA
modulus and let e be a public exponent. Also let len be a number, and H :
{0, 1}∗ → {0, 1}len be a hash function. Also define oracle O which computes
O(ē, X) = H(g(f−1

ē (X))). The Oracle RSA-type assumption is that, for all PPT
adversaries A, the advantage of A in distinguishing a Hash RSA-type tuple from
random is negligible in k, even when A has access to O. More precisely,

Advorsa−type
N,e,H (A) = |Pr[s ∈R Z∗

N : AO(.,.)(fe(s), H(g(s))) = 1]

− Pr[s ∈R Z∗
N ; r ∈R {0, 1}len : AO(.,.)(fe(s), r) = 1]|

is negligible in k, when A is restricted to oracle queries O(ē, .) for ē �= e.
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These RSA-type assumptions are general for fe, g functions described. The
strength of the actual assumptions will depend on the hash function H , and
the particular fe, g. Section 3.2 discusses the choices for H , and section 3.3
discusses some particular choices of fe, g. For the general case, we propose that
if the underlying Decisional RSA-type assumption is valid, and an appropriate
hash function H is chosen, then the Oracle RSA-type assumption derived from
it will also be valid, albeit a stronger assumption.

3.1 Analogy with Oracle Diffie-Hellman Assumptions

We now demonstrate that the Oracle variant of an RSA-based assumption
is analogous to the Oracle Diffie-Hellman [1,2] (ODH) assumption, a variant
of the Decisional Diffie-Hellman assumption. Essentially, the ODH assumption
states that, for a hash function H : {0, 1}∗ → {0, 1}� it is hard to distinguish
(gu, gv, H(guv) from (gu, gv, r) for r ∈R {0, 1}� when given access to an ora-
cle Ov(.) that computes Ov(X) = H(Xv) for any X �= gu. We point out that
the steps in constructing an Oracle RSA-type assumption from a Decisional
RSA-type assumption are the same as those used in constructing the ODH as-
sumption from the Decisional Diffie-Hellman assumption. Table 1 attempts to
illustrate the parallel between the various assumption variants for the two general
problems.

Table 1. Comparing the RSA-type assumption variants to Diffie-Hellman assumption
variants

RSA-type in Z∗
N Diffie-Hellman in G

(given e, fe(s)) (given gu, gv)

Decisional Distinguish g(s) from Distinguish guv from
Problem random Z∗

N element random G element

Hash Distinguish H(g(s)) from Distinguish H(guv) from
Variant random string random string

Oracle Distinguish H(g(s)) from Distinguish H(guv) from
Variant random string random string

given O(ē, X) = H(g(f−1
ē (X))) given Ov(X) = H(Xv)

3.2 Choice of Hash Function

It is very important that the hash function used in our Hash and Oracle RSA-
type assumption are appropriately chosen so as to maximise our confidence in
the assumptions. The requirements of the hash functions for our new RSA-type
assumptions are very similar to those required by the Hash and Oracle variants
of Diffie-Hellman. For the Oracle Diffie-Hellman problem, it was suggested in [1]
that H be derived from some cryptographic hash function like SHA-1, in some
suitable but unspecified way. The problem with this recommendation is that it
is unclear exactly how to derive this H , and it is unclear what assumptions need
to be made in order for the requirements of H to be satisfied. Moreover, SHA-1
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was not constructed with this application in mind and so it would seem a leap
of faith to assume that it is sufficient without giving fair justification.

We recommend H to be a function suitable for key derivation. Typically, this is
achieved by choosing Hk at random from a family of universal hash functions [9],
or almost-universal hash functions [26]1. The function has a known key k which
defines the function, and which should be chosen at random. The Leftover Hash
Lemma [16] (adapted to almost-universal hash functions in [13]) roughly states
that if the input distribution has min-entropy that is (sufficiently) larger than
the length of the range of Hk, then the output distribution of Hk will be close to
uniform on the range. More precisely, if x is from an input distribution with min-
entropy γ and k is chosen uniformly at random from the set of keys, then Hk(x)
will be 2−e-close to uniform for e ≤ γ−m

2 , where m is the bitlength of the range
of H . For our Hash RSA-type assumption, the input to Hk is g(s) for s ∈R Z∗

N ,
so if g(s) has high output entropy, which by the D-RSA-type assumption we are
assuming, and the output length is sufficiently less than the input, the output
will be a random looking string. If more random output bits than Hk offers are
required, we can use Hk(g(s)) to key a pseudorandom generator (PRG), which
will output a value computationally indistinguishable from a random string.
Thus, we have H(x) = PRG(Hk(x)).

Note that besides a random looking output, we also require that H be chosen
such that given an output H(x) for a specific x, an adversary cannot recover
x. If this is not satisfied, then the adversary may be able to distinguish Hash
RSA-type tuples from random. By choosing a universal hash function that sat-
isfies the Leftover Hash Lemma for sufficiently large e, we also ensure that the
set of preimages for H(x) is large. Thus, even if an adversary could find the
set of preimages for H(x), the probability of guessing the particular x is very
small.

3.3 Instances of Oracle RSA-Type Assumptions

We describe two examples of Oracle RSA-type assumptions derived from Deci-
sional RSA-type assumptions which have been studied previously in the literature.

Instance 1. The Decisional Dependent-RSA (DDRSA) assumption, described
by Pointcheval [23], considers fe(s) = se mod N and g(s) = (s + 1)e mod N ,
and states that (fe(s), g(s)) is difficult to distinguish from randomly distributed
(fe(s), r). The oracle variant of this Decisional RSA-type assumption, namely
Oracle Dependent-RSA assumption, is defined as follows:

Definition 4. [ODRSA] Let N be an RSA modulus, let e be a public exponent
and let A be an adversary. Also let len be a number, and H : {0, 1}∗ → {0, 1}len

be a hash function. Also define oracle O(ē, X) = H((X ē−1
+1)ē) to which A can

query for any ē �= e. The advantage of A in violating the ODRSA assumption is

1 There are a number of constructions of universal hash functions featured in the
literature (see [25] section 6.7 for simple constructions, and [22] for a performance
comparison of several constructions).
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Advodrsa
N,e,H(A) = |Pr[s ∈R Z∗

N : AO(.,.)(se, H((s + 1)e)) = 1]

− Pr[s ∈R Z∗
N ; r ∈R {0, 1}len : AO(.,.)(se, r) = 1]|

It has been stated in section 3.2 that given H(x), it must be hard to find the
exact value of x. To see this, suppose that for fixed e, A is given as input (α, β)
and it is able to recover the correct x such that H(x) = β. A can then check
whether β is from the ODRSA distribution by checking if H(xe′

) is equal to
O(ee′, αe′

) = H((αd + 1)ee′
).

Instance 2. Catalano et al. [10] proposed the Decisional Small e-Residues
(DSeR) assumption which roughly states that se mod N2 for s ∈R ZN can-
not be distinguished from random elements of Z∗

N2 . They also showed that
an equivalent assumption is that it is difficult to distinguish (sa, sb), where
sa + sbN = se mod N2 for some s ∈ ZN , from a randomly distributed pair
in ZN × ZN . In terms of our RSA-type assumptions, fe(s) = se mod N and
g(s) = (se mod N2)−(se mod N)

N . We call this assumption the Decision Small e-
Residues-Related (DSeRR) assumption. The oracle variant of this assumption,
namely the Oracle Small e-Residues-Related (OSeRR) assumption is defined as
follows:

Definition 5. [OSeRR] Let N be an RSA modulus, let e be a public exponent
and let A be an adversary. Also let len be a number, and H : {0, 1}∗ → {0, 1}len

be a hash function. Also define oracle O(ē, X) = H( (X ē−1
mod N)ē mod N2−X

N ) to
which A can query for any ē �= e. The advantage of A in violating the OSeRR
assumption is

Advoserr
N,e,H(A) = |Pr[s ∈R Z∗

N : AO(.,.)(se mod N, H( (se mod N2)−(se mod N)
N )) = 1]

− Pr[s ∈R Z∗
N ; r ∈R {0, 1}len : AO(.,.)(se mod N, r) = 1]|

4 RSA-Based Encryption is Tag-Based Encryption

A tag-based encryption scheme [19] (TBE) differs from a general public key
encryption scheme in that the encryption and decryption algorithms take as
input an additional public string argument called a tag.

Let S = (G, E ,D) be an RSA-based public-key encryption scheme where the
public key PK is the RSA modulus N = pq, and the secret key SK its factori-
sation p, q. Usually, the exponents e, d such that ed ≡ 1 mod φ(N) are included
in the public and private key, respectively. However, if we instead include the
exponent e as input to both the encryption and decryption algorithms, such an
RSA-based scheme fits in with the definition of a tag-based encryption scheme,
where the exponent e is the tag. The main difference will be that the decryption
algorithm must first derive the private exponent d from the exponent/tag e, and
then the decryption can proceed as before.
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4.1 Selective-Exponent Security for RSA-Based Encryption

We now restate Kiltz’s definition of selective-tag weak chosen-ciphertext secu-
rity [17] for the case of general RSA-based schemes where the exponent is the
tag, which we refer to as selective-exponent weak chosen-ciphertext security, or
more simply selective-exponent security2. As usual, the adversary has a find
stage and a guess stage. The selective-exponent attack allows the adversary to
obtain decryptions of its choice of ciphertexts for any other public exponent than
the target exponent e. In other words, an adversary can decrypt any ciphertext
with respect to d̄ = ē−1 mod φ(N) for any ē �= e. The definition is as follows:

Definition 6. [Sel-Exp weak-CCA] An RSA-based public key encryption sch-
eme S = (G, E ,D) is secure against selective-exponent weak chosen-ciphertext
attack (or equivalently selective-exponent secure) if the advantage of all PPT
adversaries A is negligible in the security parameter k in the following game:

1. A outputs target exponent e
2. (PK, SK) = G(1k). Adversary A’s find stage is given 1k and PK.
3. A may make polynomially-many queries to a decryption oracle DSK(ē, .) as

long as ē �= e.
4. A’s find stage outputs two messages m0, m1 and internal state information

IS . A bit b ∈R {0, 1} is selected and ciphertext C ← EPK(e, mb) and IS is
input to A’s guess stage.

5. A can continue making queries to a decryption oracle DSK(ē, .) as long as
ē �= e.

6. A outputs guess bit b′.

We say that A succeeds if b′ = b. We denote the probability of this as PrA,S [Succ].
The adversary’s advantage is defined as |PrA,S [Succ]− 1/2|.

If we take away the adversary’s capability to perform decryption queries, then
we have a chosen-plaintext attack. Thus, an encryption scheme secure against
selective-exponent weak CCA is also secure against chosen-plaintext attacks.

Selective-exponent weak CCA security differs from (full) chosen-ciphertext
security in the type of decryptions the oracle allows. In a CCA attack, the
exponent e is fixed, and decryptions are allowed for any ciphertext different
from the target ciphertext. In a selective-exponent attack, any ciphertext can be
decrypted but only using an exponent different from the target exponent.

Note that in the above definition, the target exponent is output prior to the
generation of the keys, which may seem counter-intuitive for our RSA-based case.
This is to be consistent with the more general selective-tag definition, where the
tag is output at the beginning of the game. However, it would also make sense
to allow the adversary to output the target exponent after being given PK, but
before asking any decryption queries.
2 We use a different term to describe selective-tag security for this special case of

RSA-based TBE where the exponent is the tag so as to distinguish it from a RSA-
based TBE where the exponent is fixed and part of the public key, and the tag is an
additional parameter.
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4.2 Constructing Selective-Exponent Secure Schemes

Catalano et al. [10] noted that given a trapdoor one-way function f , and func-
tion g such that (f(s), g(s)) cannot be distinguished from a randomly distributed
pair (f(s), r), the encryption scheme E(m) = (f(s), mg(s)) will be semantically
secure. Using our terminology from section 3 for the RSA trapdoor function,
the encryption scheme E(m) = (fe(s), mg(s)) is semantically secure under the
Decisional RSA-type assumption. We have observed that such an encryption
scheme is a tag-based encryption scheme where the tag is the exponent e. More-
over, we now show that the encryption scheme E(m, e) = (fe(s), m⊕H(g(s))) is
selective-exponent weak CCA-secure based on the Oracle RSA-type assumption.
We define the scheme S = (G, E ,D) as follows

Key Generation G(1k): Generate an RSA modulus N = pq and output the
public key PK = N and the secret key SK = (p, q).

Encryption EPK(e, m): Choose s uniformly at random from Z∗
N and compute

(A, B) = (fe(s), m⊕H(g(s))). The ciphertext is C = (A, B)

Decryption DSK(e, C): Compute s = f−1
e (A) and then m = B ⊕H(g(s))

Theorem 1. The above encryption scheme S is secure against selective-exponent
weak chosen ciphertext attack under the Oracle RSA-type assumption.

Proof (Proof sketch.). If there exists a selective-exponent adversary A that has
non-negligible advantage in attacking S, then we can build an adversary B which
uses A to gain non-negligible advantage against the Oracle RSA-type assump-
tion. The input to B is the RSA modulus N , the target exponent e (which we
assume has already been output), and the pair (α,β). We suppose that B has
access to an oracle O(., .) that computes O(ē, X) = H(g(f−1

ē (X))) for ē �= e.
The goal is to output 1 if (α, β) is from the distribution of (fe(s), H(g(s))) and
0 otherwise. We define B(N, e, α, β) as follows

1. Run A(1k, N)
2. WhenAmakes a decryption oracle queryD(ē, Ā, B̄), answer queries as follows:

(a) If ē = e output ⊥
(b) Else query oracle Y = O(ē, Ā)
(c) m = B̄ ⊕ Y
(d) return m

3. At some point, A outputs m0, m1. Select b ∈R {0, 1}
4. A = α, B = mb ⊕ β. Send c = (A, B) to A
5. A continues to make decryption queries and they are answered as above.
6. A outputs guess bit b′. Return 1 if b = b′ or else 0.

Firstly, it can be seen that B is a legal adversary against the Oracle RSA-type
assumption. In particular the oracle O is never queried for target exponent e. It
is also evident that B provides a perfect simulation for the decryption queries
made by A.
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Now, when (α, β) is from the Oracle RSA-type distribution, (A, B) will be
a valid encryption of mb. When A guesses correctly, which A does with non-
negligible advantage, B will output 1 (correctly). On the other hand, when (α, β)
comes from the random distribution, the ciphertext (A, B) will neither be a valid
encryption of m0 nor m1, but rather the encryption of a random message. More
precisely, m0⊕β will be indistinguishable from m1⊕β and the adversary cannot
do better than guessing b with probability 1/2. Therefore, B is a distinguisher
for the Oracle RSA-type assumption.

4.3 Concrete RSA-Based Schemes Secure Against
Selective-Exponent Attack

In section 3.3 we defined Oracle RSA-type assumptions derived from previously
studied Decisional RSA-type assumptions. We can obtain concrete selective-
exponent secure encryption schemes based on these assumptions by applying
them to the simple construction above.

Scheme 1. The encryption scheme E(e, m) = (se, m ⊕ H((s + 1)e)) is secure
against selective-exponent CCA under the Oracle Dependent-RSA assumption.

Scheme 2. The encryption scheme E(e, m) = (se mod N,

m⊕H( (semod N2)−(se mod N)
N )) is secure against selective-exponent CCA under

the Oracle Small e-Residues-Related (OSeRR) assumption.

5 Chosen-Ciphertext Security from RSA-Based
Assumptions

The following construction is the Kiltz TBE generalisation of the Boneh and
Katz [7] efficiency improvement on the CHK transformation, instantiated for
the special case of an RSA-based encryption scheme. The construction builds
a chosen-ciphertext secure encryption scheme from a selective-exponent secure
RSA-based scheme, a message authentication code and a secure encapsulation
scheme3.

Let S′ = (G′, E ′,D′) be a selective-exponent weakly chosen-ciphertext secure
RSA-based encryption scheme. Let Ω = (Init, C,R) be a secure encapsulation
scheme and let Δ = (Mac,Vrfy) be a message authentication code. We define the
following encryption scheme S = (G, E ,D):

Key Generation G(1k): Input security parameter k

1. Run G′(1k) to get (PK ′, SK ′)
2. Run Init(1k) to get pub.
3. Output the public key PK = (PK ′, pub) and the secret key SK = SK ′.

3 We refer the reader to the Boneh and Katz [7] paper for the definition of secure
encapsulation schemes.



186 J. Brown, J.M. González Nieto, and C. Boyd

Encryption E(PK, m): Input message m ∈ Z∗
N , public key PK

1. Run C(1k, pub) to get (r, com,dec).
2. Encrypt m ◦ dec under public key com; c = E ′PK′(com, m ◦ dec).
3. Compute tag = Macr(c).
4. Ciphertext C = (com, c, tag)

Decryption D(SK, C): Input ciphertext C = (com, c, tag), secret key SK

1. Decrypt c by computing m ◦ dec = D′
SK(com, c)

2. Run R(pub,com,dec) to obtain r. If r �=⊥ and Vrfyr(c, tag) = 1, output m.
Otherwise output ⊥.

Theorem 2. If S′ is an RSA-based encryption scheme secure against selective-
exponent weak chosen-ciphertext attacks, Ω is a secure encapsulations scheme
and Δ is a strong, one-time message authentication code, then S is a public key
encryption scheme secure against chosen-ciphertext attack.

The proof of this theorem follows from the proof of the more general construction
from selective-tag weakly CCA-secure TBE to CCA-secure PKE of Kiltz [17] and
will be given in the full version.

5.1 Efficient Instantiations

To instantiate the construction in the previous section, we must specify instan-
tiations of a message authentication code, an encapsulation scheme and a RSA-
based encryption scheme.

Message authentication code. Several efficient message authentication codes are
known. For example, we could use a CBC-MAC with 128-bit AES as underlying
block cipher.

Encapsulation scheme. The Encapsulation Scheme was discussed Boneh and
Katz [7], and their scheme is also sufficient for our purposes.

Let H : {0, 1}448 → {0, 1}128 be a second preimage-resistant hash function.
For example, H might be constructed by modifying the output length of SHA-1.
Alternatively, H may be chosen from a family of universal one-way hash functions
(UOWHFs)4 and the key included in pub below.

– Init chooses a hash function h from a family of pairwise-independent hash
functions mapping 448-bit string to 128-bit strings. Output pub = h.

– C(pub) chooses x uniformly at random in {0, 1}448 and outputs (r = h(x),
com = H(x), dec = x).

– R(pub,com,dec) outputs h(dec) if H(dec) = com and ⊥ otherwise.

Informally, binding is satisfied as long as H is second-preimage resistant. The
proof of statistical hiding of the scheme follows from [7].
4 Not to be confused with universal hash functions as discussed in section 3.2.

UOWHFs were proposed by Naor and Yung [20].
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RSA-Based Encryption Scheme. We apply, in turn, the selective-exponent secure
encryption schemes described in section 4.3. For the scheme based on the ODRSA
assumption, the following concrete CCA-secure scheme is obtained:

ODRSA-based Encryption Scheme. Let H : {0, 1}448 → {0, 1}128 be a
second preimage-resistant hash function. Let PRG be a pseudorandom generator.

Key Generation G(1k): An RSA modulus N = pq is generated, a hash function
h is chosen from a family of pairwise-independent hash functions, and a function
H̃ is chosen from a family of (almost) universal hash functions. The public key
is PK = (N, h, H̃). The secret key is SK = (p, q).

Encryption E(PK, m): To encrypt a message m ∈ Z∗
N , choose x ∈R {0, 1}448,

and set r = h(x) and e = H(x). Next choose s ∈R Z∗
N and set A = se, B =

(m ◦ x)⊕PRG(H̃((s + 1)e)). Then compute the MAC tag = Macr((A, B)). The
ciphertext is C = (e, A, B, tag).

Decryption E(SK, C): To decrypt C = (e, A, B, tag), first compute d = e−1

mod φ(N) and then compute s = Ad. The encrypted data m◦x can be obtained
by computing B ⊕ PRG(H̃((s + 1)e)). Now set r = h(x) and check that both
Vrfyr((A, B), tag) = 1 and e = H(x). If so output m otherwise output ⊥.

OSeRR-based Encryption Scheme. Let H : {0, 1}448 → {0, 1}128 be a
second preimage-resistant hash function. Let PRG be a pseudorandom generator.

Key Generation G(1k): An RSA modulus N = pq is generated, a hash function
h is chosen from a family of pairwise-independent hash functions, and a function
H̃ is chosen from a family of (almost) universal hash functions. The public key
is PK = (N, h, H̃). The secret key is SK = (p, q).

Encryption E(PK, m): To encrypt a message m ∈ Z∗
N , a choose x ∈R {0, 1}448

is selected, and set r = h(x) and e = H(x). Next choose s ∈R Z∗
N and set x = se

mod N2. Now set A = x mod N, B = (m◦x)⊕PRG(H̃( (x−A)
N )). Then compute

the MAC tag = Macr((A, B)). The ciphertext is C = (e, A, B, tag).

Decryption E(SK, C): To decrypt C = (e, A, B, tag), first compute d = e−1

mod φ(N) and then compute s = Ad. The encrypted data m◦x can be obtained
by computing B⊕PRG(H̃( semod N2−A

N )). Now set r = h(x) and check that both
Vrfyr((A, B), tag) = 1 and e = H(x). If so output m otherwise output ⊥.

5.2 Comparing Efficiency with Previous Schemes

We now compare the new schemes with a number of other previous efficient,
CCA-secure schemes: the instantiations of the BK construction with the two
IBE schemes from Boneh and Boyen [4] (BK1, BK2), the recent CCA-schemes
from Kiltz [17] (a BK construction and a hybrid scheme), and the Kurosawa-
Desmedt [18] (KD) hybrid scheme. In table 2 we compare the schemes in terms
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Table 2. Comparison of CCA-secure schemes. We denote |p| as the bit-length of
group elements, and |N | as the bitlength of RSA modulus N . For a typical exam-
ple, |N | = |p| = 1024 bits. Also, f-exps denotes exponentiations with a fixed base,
where precomputations can improve efficiency, S-exp denotes an exponentiation with
a short exponent (eg 128 bits), L-exp denotes an exponentiation with a long exponent
(≈ |N | bits). Note that Chinese Remainder Theorem optimisation can be applied here.
A multi-exponentiation is counted as 1.5 exponentiations.

Encryption Decryption Ciphertext
overhead

ODRSA-based scheme 2 S-exp 1 S-exp |N | + 704
+ 1 L-exp

OSeRR-based scheme 1 S-exp mod N2 1 L-exp mod N |N | + 704
+ 1 S-exp mod N2

Kiltz 6 f-exps 1.5 exp 4|p| + 256

Kiltz hybrid 6 f-exps 1.5 exp 4|p| + 128

BK1 3.5 f-exps 1.5 exps+ 1 pairing 2|p| + 704

BK2 3.5 f-exps 1 f-exp + 1 pairing 2|p| + 704

KD 3.5 f-exps 1.5 exps 2|p| + 128

of exponentiations, as they dominate the computation in all these schemes for
encryption and decryption, and ciphertext overhead, which is the ciphertext
length minus the message size.

In encryption, all of the previous schemes use several fixed-base exponentia-
tions. The online computation may be sped up by precomputing powers of the
bases offline such that the online cost per exponentiation is approximately 0.2
of an exponentiation. Such precomputation is not possible for our new schemes.
However, in particular applications that do not permit the storage of precom-
puted values, our schemes would seem to have advantage. Between our two new
schemes, the ODRSA-based scheme is more efficient in encryption.

In decryption, the two Kiltz schemes and the KD scheme are the fastest, re-
quiring only one multi-exponentiation. The BK schemes are slowed down by the
pairing operation, which is approximately equivalent to 5 exponentiations [24].
Between our two new schemes, the ODRSA-based scheme is again the more
efficient in terms of decryption.

For equal group element lengths, which is reasonable in typical examples, our
new schemes give the shortest ciphertexts of all the schemes examined.

6 Conclusion and Future Work

We have shown how to build CCA-secure public key encryption schemes from
RSA-related assumptions. We have given two concrete schemes which are quite
efficient in terms of computation and ciphertext size. Although these schemes
are based on new RSA-related assumptions, we believe that this work provides a
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useful and interesting approach to developing RSA-based schemes secure against
adaptive chosen-ciphertext attacks without random oracles.

An obvious direction of future work would be to investigate in more detail the
validity of the Oracle RSA-type assumptions for specific choices of H . Indeed, the
assumptions presented in this paper are quite strong, but we should not dismiss
the possibility that specific instantiations could be of comparable validity to
standard assumptions.
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Abstract. We say that a signature scheme is strongly existentially un-
forgeable if no adversary, given message/signature pairs adaptively, can
generate a new signature on either a signature on a new message or
a new signature on a previously signed message. Strongly existentially
unforgeable signature schemes are used to construct many applications,
such as an IND-CCA2 secure public-key encryption scheme and a group
signature scheme.

We propose two general and efficient conversions, both of which trans-
form a secure signature scheme to a strongly existentially unforgeable
signature scheme. There is a tradeoff between the two conversions. The
first conversion requires the random oracle, but the signature scheme
transformed by the first conversion has shorter signature length than
the scheme transformed by the second conversion. The second conversion
does not require the random oracle. Therefore, if the original signature
scheme is of the standard model, the strongly existentially unforgeable
property of the converted signature scheme is proved also in the standard
model.

Both conversions ensure tight security reduction to the underlying
security assumptions. Moreover, the transformed schemes by the first
or second conversion satisfy the on-line/off-line property. That is, sign-
ers can precompute almost all operations on the signing before they are
given a message.

Keywords: signature scheme, strong unforgeability, standard model.

1 Introduction

Strong existential unforgeability (SEU) is a stronger variant of the usual security
notion, existential unforgeability, of a signature scheme. Ordinary existential
unforgeability prohibits an adversary from forging a valid signature on a message
which a signer has not signed. However, it does not prohibit an adversary from
forging a new valid signature on a message which a signer has already signed.
That is, the adversary, by giving a message/signature pair (M, σ), may be able to
forge a new valid signature σ′ �= σ on M . SEU is a security notion which ensures
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not only existential unforgeability but also that no adversary can execute the
type of forgery mentioned above.

SEU is useful in constructing many applications, such as IND-CCA2 secure
public-key encryption schemes [DDN00, CHK04] and a group signature scheme
[BBS04]. We review how SEU signatures are used in such applications. In the
encryption schemes [DDN00, CHK04], an SEU signature σ is used as one part
of a ciphertext. It is a signature on the other part C of the ciphertext. The SEU
property ensures the IND-CCA2 security of these schemes. Indeed, if the signa-
ture scheme is not SEU, an adversary may be able to obtain a new ciphertext
(C, σ′) by modifying the signature of another ciphertext (C, σ). This means that
the encryption is malleable [DDN00], and hence is not IND-CCA2 secure.

In group signature schemes [BBS04], an authority issues a signature σ on a
user’s secret key x in advance. The signature will be used as an ID of the user.
Hence, if the user succeeds in forging a signature, he also succeeds in forging
his ID. Therefore, no signature should be able to be forged, especially, a new
signature σ′ �= σ on the user’s secret key x. Therefore, we require not only the
usual existential unforgeability but SEU property.

1.1 Our Contributions

We propose two general and efficient conversions, both of which transform a
secure signature scheme to a SEU signature scheme. There is tradeoff between
the two conversions. The first conversion requires the random oracle [BR93], but
the signature scheme transformed by the first conversion has shorter signature
length than the scheme transformed by the second conversion.

The second conversion does not require the random oracle. Therefore, if the
original signature scheme is of the standard model, the SEU property of the
converted signature scheme is proved also in the standard model. The scheme
transformed by the first conversion has SEU property, if the original scheme is
existentially unforgeable, and the discrete logarithm problem is hard to solve.
The scheme transformed by the second conversion has SEU property, if the above
two assumptions hold and the collision resistance of a hash function holds.

Both conversions ensure the tight security reduction to the underlying security
assumptions. That is, if there exists an adversary who succeeds in breaking the
SEU property of the converted scheme with probability ε′ within t′ steps, there
exists an adversary who can break at least one of assumptions mentioned above
with probability ε � ε′ within t � t′ steps.

Moreover, the schemes transformed by the first or second conversion satisfy
the on-line/off-line property. That is, signers can precompute almost all opera-
tions on the signing before they are given a message. Therefore, the signer can
generate signatures quite efficiently.

1.2 Previous Work

In PKC 2006, Boneh, Shen, and Waters [BSW06] proposed a SEU signature
scheme by modifying the Waters signature scheme [W05]. They also showed
that their modification is applicable to not only the Waters scheme but also any



General Conversion for Obtaining SEU Signatures 193

existentially unforgeable signature schemes satisfying the partitioned property
[BSW06]. However, there are a lot of non partitioned signature schemes, such as
DSS. Moreover, the modified scheme does not satisfy the on-line/off-line prop-
erty. Our conversions are the first one that can convert any signature scheme,
and are also the first one that ensures the on-line/off-line property.

1.3 Idea Behind Construction

The idea behind two conversions is the same as that of the previous conver-
sion [BSW06]. Therefore, we first review the naive idea of [BSW06]. A sig-
nature on the converted schemes is a pair (σ, r) satisfying the tricky prop-
erty σ = Sigsk(C(σ||M ; r)), where σ is a signature on the original scheme and
C(σ||M ; r) is the commitment of σ generated by using the random r. Since
σ = Sigsk(C(σ||M ; r)) holds, we can recognize σ as “the signature on (the com-
mitment of) the signature itself”. Therefore, in order to forge a new signature
(σ′, r′) of the converted scheme on a message M , an adversary has to forge a
signature (that is, σ′ = Sigsk(C(σ′||M ; r′))) of the original scheme on a new
message C(σ′||M ; r′). However, it is impossible because the original scheme is
existentially unforgeable. Therefore, the converted scheme is SEU secure.

Of course, the singer cannot compute (σ, r) satisfying such property, if we use
an ordinally commitment scheme. Therefore, we use the chameleon commitment
[KR97, KR00] as a function C. Here the chameleon commitment is the commit-
ment such that the committer can change the committed value if he knows the
secret key. If we use the chameleon commitment as C, the signer can compute
such σ as follows: compute σ = Sigsk(C(m′; r′)) on the random C(m′; r′) and
then change the committed value to σ||M by using the secret key.

However, the idea mentioned above does not work generally. Recall that, when
we prove the security of the converted scheme, the simulator cannot use the
secret key of the signer. Moreover, recall that one can change the committed
value of only if he knows the secret key. Hence the simulator cannot change the
committed value and therefore cannot simulate the signing oracle. (Therefore,
the the original scheme has to be partitioned in the previous paper [BSW06] in
order to simulate the signing oracle).

In order to enable simulator to simulate the signing oracle, we introduce new
ideas. In the first conversion, we introduce the random oracle and use not σ =
Sigsk(C(σ||M ; r))butσ = Sigsk(C(H(σ)||M ; r)).The simulator simulates the sign-
ing oracle by setting the hash table ofH appropriately. In the second conversion,we
introduce a chameleon commitment with two trapdoors. The new chameleon com-
mitment satisfies the property that one can change the committed value if he knows
one of two trapdoors. Therefore, even if the simulator does not know the secret key,
it can change the committed value by using the other trapdoor.

1.4 Related Work

Independently and concurrently, Steinfeld, Pieprzyk, and Wang [S97] propose
a similar conversion to our second conversion. The key idea behind the con-
structions of theirs and ours are the same, but the details of the constructions
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are different, and there are tradeoff between two conversions. The difference is
how “chameleon commitment with two trapdoors” are realized. We realize it
based on the discrete logarithm, that is, we realize it by modifying the discrete
logarithm based chameleon commitment gH(x)hr [KR97, KR00] to gH(x)h1

rh2
s,

where H is the hash function, x is committed value and r and s are random
numbers. In contrast, Steinfeld et.al. realize it based on two general chameleon
commitments C1 and C2, that is, they sets C(x) to C2(C1(x; r); s). Therefore,
if one sets C1 and C2 to the discrete logarithm based chameleon commitment,
C(x) = g2

H(g1
H(x)h1

r)h2
s holds.

In the efficiency point of view, our conversion is better than the conversion of
[S97], (if C1 and C2 are the discrete logarithm based chameleon commitment).
First, one can compute gH(x)h1

rh2
s by computing only one exponentiation by us-

ing simultaneous exponentiation technique [MOV96], although g2
H(g1

H(x)h1
r)h2

s

requires two exponentiation even if one uses the technique. Second, the public key
length of our converted scheme is shorter than their converted scheme, because
gH(x)h1

rh2
s only requires three public group elements g, h1, and h2 although

g2
H(g1

H(x)h1
r)h2

s requires four public group elements.
In contrast, their conversion has advantage that one can use any kind of

chameleon commitment. This means that one can make a conversion, the security
of which is based on something other than the discrete logarithm problem. This
fact has not only theoretical interest but has the practical interest also. For
instance, if one set C1 and C2 to the factoring base chameleon commitment
[ST01, CLS06], the verification cost of the converted scheme becomes smaller,
(although the signature length becomes larger).

2 Preliminary

Definition 1. (Existential Unforgeability [GMR88], Strong Existential
Unforgeability (SEU) [ADR02]) Let κ be a security parameter, Σ=(Gen, Sig,

Ver) be a signature scheme, and A be an adversary. Let Osig
sk be an oracle named

signing oracle which, on inputting a message M , outputs a signature σ on M .
We consider the following game:

(pk, sk) ← Gen(1κ),
(M0, σ0)← AOsig

sk (pk)
If Verpk(M0, σ0) = reject, return 0
Return 1.

We set (Mi, σi) to the pair of i-th signing query of A and the corresponding
answer. We say that A wins if the output of the above game is 1 and A has not
made the query M0 to the signing oracle. We also say that A wins strongly if
the output of the above game is 1 and (M0, σ0) �= (Mi, σi) holds for any i.

Let t = t(κ), qS = qS(κ), and ε = ε(κ) be non negative valued functions. We
say that Σ = (Gen, Sig, Ver) is (t, qS , ε)-existentially unforgeable (resp. (t, qS , ε)-
strongly existentially unforgeable (SEU)) if for any adversary A such that it
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terminates within t steps and has made at most qS queries to the signing oracle,
the probability that A will win (resp. strongly win) is less than ε.

If Σ = (Gen, Sig, Ver) is a signature scheme in the random oracle model
[BR93], we say that Σ is (t, qS , qH , ε)-existentially unforgeable (resp. (t, qS , qH , ε)-
strongly existentially unforgeable (SEU)) if for any adversary A such that it
terminates within t steps and has made at most qS queries to the signing oracle
and at most qH queries to the random oracle, the probability that A will win
(resp. strongly win) the above game is less than ε.

Definition 2 (Collision Resistant Hash Function). Let κ be a security pa-
rameter and Let {Hκ} be a family of functions H = Hκ : {0, 1}∗ → {0, 1}κ

named hash functions. Let t = t(κ) and ε = ε(κ) be non negative valued func-
tions. We say that {Hκ} is (t, ε)-collision resistant if any adversary A, who ter-
minates within t steps, satisfies Pr((m0, m1) ← A(1κ) : H(m0) = H(m1)) < ε.

Definition 3 (Discrete Logarithm Assumption). Let κ be a security pa-
rameter, and {Gκ} be a family of cyclic groups G = Gκ with the prime order
q = qκ. We say that (t, ε)-discrete logarithm assumption holds in {Gκ} if any
adversary A, who terminates within t steps, satisfies Pr(h ← G, z ← Zq, g ←
hz, u← A(g, h) : z = u) < ε.

3 Proposed Conversion in the Random Oracle Model

We construct a general and efficient conversion in the random oracle model, such
that the conversion transforms a secure signature scheme to an SEU signature
scheme. Let κ be a security parameter, G be a cyclic group with order q. Let
H : {0, 1}∗ → Zq be a hash function, which we will replace with the random
oracle model when we prove the security of the converted scheme. Let Σ =
(Gen, Sig, Ver) be a signature scheme. Our conversion transforms the scheme Σ
to the signature scheme Σ′ = (Gen′, Sig′, Ver′) described in Fig. 1. We note that
we here use the chameleon commitment C = gxhr [KR97, KR00].

The converted scheme satisfies the on-line/off-line property. More precisely,
a signer can precompute x−1, C and σ before it is given the message M . By
precomputing C and σ, a signer can generate a signature only by computing one
hash value H(M ||σ) and one multiplication r = (t−m)x−1 mod q.

Theorem 1. Let S′ be the signing cost of Σ′ and E be the exponentiation
cost on G. Suppose that there exists an adversary that can break (t′, qS , qH , ε′)-
SEU property of the signature scheme Σ′ = (Gen′, Sig′, Ver′) in the random or-
acle model. Then there exists an adversary that can break either the (t, qS , ε)-
existential unforgeability of the underlying signature scheme Σ = (Gen, Sig, Ver),
or the (t, ε)-discrete logarithm problem in G. Here{

t = t′ + qS(S′ + E) + (lower terms),
ε = ε′

9 −
(qH+qS)qS

3q − (lower terms).
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—Gen′(1κ)—
(pk, sk) ← Gen(1κ), g ← G, x ← Zq, h ← gx.
pk′ ← (pk, g, h), sk′ ← (sk, x).
Output (pk′, sk′).
—Sig′

sk′(M)—
t ← Zq, C ← gt. σ ← Sigsk(C), m ← H(M ||σ).
Select r ∈ Zq satisfying m + rx = t mod q.
σ′ ← (σ, r). Output σ′.
—Ver′pk′(M, σ′)—
Parse σ′ as (σ, r). m ← H(M ||σ), C ← gmhr.
If Verpk(C, σ) = accept then return accept.
Otherwise return reject.

Fig. 1. Proposed Conversion in the Random Oracle Model

Proof. Let A be an adversary against the (t′, qS , qH , ε′)-SEU property of Σ′.
The adversary A is first given a public key pk′ = (pk, g, h). A makes queries
M1, . . . , MqS to the signing oracle OSig′

sk′ adaptively, and receives the signatures
σ′

1 = (σ1, r1), . . ., σ′
qS

= (σqS , rqS ) on these messages as the answers from OSig′

sk′ .
A finally outputs a message M and a signature σ′ = (σ, r). We let mi, m, Ci,
and C be H(Mi||σi), H(M ||σ), gmihri , and gmhr.

Let ε1, ε2, and ε3 be the probability that A will break the SEU property and
the following (1), (2), and (3) will hold:

(1) C �= Ci holds for any i.
(2) C = Ci holds for some i. Moreover, there is k such that, when the signing

oracle computes σk = Sigsk(Ck), Mk||σk has already been queried to the
random oracle by the signing oracle or the adversary.

(3) C = Ci holds for some i. Moreover, there exists no such k as described
in (2).

Note that the latter condition of (2) means that the equality Mk||σk = Mj||σj

holds for some j < k, or A succeeds in predicting σk and making query Mk||σk

to the random oracle before the signing oracle computes σk.
Clearly, at least one of ε1, ε2, or ε3 is not less than ε′/3. By using A as a

subroutine, we will construct three machines B1, B2, and B3 and will show the
following facts:

1. If εi ≥ ε′/3 holds for at least one of i = 1, 2, then Bi succeeds in breaking
the (t, qS , 3ε)-exisitential unforgeablilty of Σ.

2. If ε3 ≥ ε′/3 holds, then B3 succeeds in breaking (t, 3ε)-discrete logarithm
assumption in G respectively.

A simulator flips a coin at the beginning of the simulation and executes one
of the algorithms B1, B2, or B3. Clearly, the simulator will succeed in guessing
the type of A with probability 1/3. This means that the theorem holds.
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The Case where ε1 ≥ ε′/3 holds: Let pk∗ be a randomly selected public
key of the signature scheme Σ = (Gen, Sig, Ver). By using A as a subroutine, we
construct a machine B1 that can break the (t, qS , ε)-existensial unforgeability of
Σ. B1 runs A as follows:

Setup: B1 executes the same procedure as Gen′, except that B1 sets pk to pk∗.
More precisely, B1 selects g ∈ G and x ∈ Zq randomly and sets h = gx and
pk′ = (pk∗, g, h). Then B1 provides pk′ to A.

Random Oracle Simulation: Let X be a query of A. If H(X) has already been
determined, B1 sends H(X) back to A. Otherwise, B1 selects m ∈ Zq randomly,
sets H(X) to m, and sends m = H(X) back to A.

Signing Oracle Simulation: Let Mi be the i-th queried message of A. B1 selects
ti ∈ Zq randomly, and sets Ci = gti . Then B1 makes the query Ci to its signing
oracle, and receives a signature σi on Ci as the answer.
B1 determines mi = H(Mi||σi) as in the case of the random oracle simulation.

That is, ifH(Mi||σi) has not been determined yet, B1 takes mi randomly and sets
mi = H(Mi||σi). Otherwise, B1 obtains the hash value mi from the hash table.

Then B1 selects ri ∈ Zq satisfying mi + rix = ti mod q, and sets σ′
i = (σi, ri).

(Note that there is no such ri in the case where x = 0 holds. However, it occurs
only with negligible probability 1/q). One can easily show that σ′

i is a valid
signature on Mi. B1 finally sends σ′

i to A.

Extraction: Suppose thatA succeeds in forging a message/signature pair (M, σ′).
That is, suppose thatA outputs a message M and a valid signature σ′ = (σ, r) on
M , such that (M, σ′) �= (Mi, σ

′
i) holds for any i.

B1 determines m = H(M ||σ) as in the case of the random oracle simulation.
That is, if H(M ||σ) has not been determined yet, B1 takes mi randomly and sets
m = H(M ||σ). Otherwise, B1 obtains the hash value m from the hash table.

Then B1 computes C = gmhr. Since σ′ = (σ, r) is a valid signature on M , σ
is a valid signature on C.

Let C1, . . . , CqS be the signing queries by A. Recall that B1 is not allowed to
output a message/signature pair such that B1 has sent the message as a query
to the signing oracle. Recall also that B1 makes no signing query other than
C1, . . . , CqS . Therefore, if C �= Ci holds for any i, B1 outputs (C, σ). Otherwise,
the simulation fails.

The number of steps until B1 terminates is clearly not more than t′+qSE+2E
≤ t′ + (S′ + E)qS + (lower terms). We estimate the success probability of B1.
Recall that B1 succeeds in forging a signature if C �= Ci holds for any i. From
the definition of ε1, A succeeds in forging (M, σ′) and C �= Ci holds for any i
with probability ε1. Since we supposed that ε1 ≥ ε′/3 holds, the probability that
B1 will succeed in forging a signature is at least ε1 ≥ (ε′/3)− ((qH + qS)qS/q).

The Case where ε2 ≥ ε′/3 holds: By using A as a subroutine, we construct
a machine B2 that can break the (t, qS , ε)-existensial unforgeability of Σ.
B2 executes the same procedure as Gen′, except that B2 sets pk to pk∗. That

is, B2 selects g ∈ G and x ∈ Zq randomly, sets h = gx, and pk′ = (pk∗, g, h).
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Then B2 provides pk′ to A and runs A. B2 simulates the random oracle similarly
to B1, maintaining a hash table.

For each k, when A makes k-th signing query Mk, B2 simulates the first step
of the singing oracle. That is, B2 selects ti ∈ Zq randomly and sets Ck = gtk .
(We stress that B2 simulates only the first step of the signing oracle. Therefore,
B2 does not make query Ck to the signing oracle).

Then B2 finds M ||σ satisfying Verpk′(Ck, σ) = accept from the hash table. If
there is such σ, (in this case, we call the current k an expected k), B2 checks that
Ck = Ci holds for some i = 1, . . . , k − 1, where Ci is the i-th signing query B2

made. If Ck = Ci holds for some i, the simulation fails and B2 outputs a symbol
fail1 and terminates. Otherwise, B2 outputs (Ck, σ) as a forged pair.

In the case that k is not an expected one, that is, there is no σ in the hash
table satisfying the above condition, B2 determines (σk, rk) similarly to B1, and
continues the simulation. (Remember that B2 makes a signing query Ck.)

If A outputs a forged pair before B2 found expected k, B2 outputs a symbol
fail2 and terminates.

The number of steps until B2 terminates is clearly not more than t′+qSE+2E
≤ t′+(S′+E)qS +(lower terms). We estimate the probability that B2 suceeds in
forging a signature. From the definition of ε2, the probaility that B2 outputs fail2
is at most 1− ε2. Moreover, the equality Ck = Ci holds for the expected k and
for some i with probability at most (k− 1)/q ≤ qS/q, since Ck = gtk distributes
unigormly on G. Therefore, B2 succeeds in forging a new message/signature pair
(Ck, σ) with probabilily ε2 − (qS/q) ≥ (ε′/3)− ((qH + qS)qS/q).

The Case where ε3 ≥ ε′/3 holds: By using A as a subroutine, we construct
a machine B3 that can break the (t, ε)-discrete logarithm problem in G. Let
(h∗, g∗) ∈ G2 be an instance of the discrete logarithm problem in G. The aim of
B3 is to obtain z∗ ∈ Zq satisfying g∗ = h∗

z∗ . B3 runs A as follows:

Setup: B3 executes the sameprocedureasGen′, except thatB3 sets (g, h) to (g∗, h∗).
More precisely,B3 executes Gen(1κ), obtains (pk, sk) as the output of Gen(1κ), and
sets (g, h) = (g∗, h∗) and pk′ = (pk, g, h). Then B3 provides pk′ toA.

Random Oracle Simulation: Let X be a query of A. If H(X) is already deter-
mined, B3 sends H(X) back to A. Otherwise, B3 selects m ∈ Zq randomly, sets
H(X) to m, and sends m = H(X) back to A.

Signing Oracle Simulation: Let Mi be the i-th queried message of A. B3 selects
mi, ri ∈ Zq randomly, and sets Ci = gmihri . By using the secret key sk, B3

computes σi = Sigsk(Ci). If the hash value corresponding to Mi||σi has already
been determined, then the simulation fails and B3 outputs a symbol fail1 and
terminates. Otherwise, B3 sets the hash value H(Mi||σi) to mi. One can easily
show that σ′

i = (σi, ri) is a valid signature on Mi. B3 finally sends σ′
i to A.

Extraction: Suppose that A outputs a message M and a valid signature σ′ =
(σ, r) on M , such that (M, σ′) �= (Mi, σ

′
i) holds for any i. If there is no i satisfying

C = Ci , the simulation fails and B3 outputs a symbol fail2 and terminates.
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We consider the case where C = Ci holds for some i. Let m and mi be
H(M ||σ) and H(Mi||σi). Since the data C = gmhr = g∗

mh∗
r is equal to Ci =

gmihri = g∗
mih∗

ri , the equation h∗
r−ri = g∗

mi−m holds. If r − ri �= 0 holds, B3

succeeds in computing the discrete logarithm z∗ = (mi −m)/(r − ri) mod q of
g∗ based on h∗. Otherwise, the simulation fails and B3 outputs a symbol fail3
and terminates.

The number of steps until B3 terminates is clearly not more than t′ + 2E +
(S + 2E)qS = t′ + (S′ + E)qS + (lower terms), where S is the signing cost of Σ.

We next estimate the probability that B3 will succeed in obtaining z∗. We sup-
pose the following three events occur: A succeeds in forging a signature, C = Ci

holds for some i, and there is no k such that, when the signing oracle computes
σk = Sigsk(Ck), Mk||σk has already been written in the hash table. From the defi-
nition of ε3, these three events occur with probability at least ε3 ≥ ε′/3. Therefore,
from the above assumption, B3 does not output fail1 or fail2.

We next estimate the probability that B3 will output fail3. Recall that A and
the signing oracleOSig′

sk′ makes at most qH and qS hash queries respectively. Recall
also that hash values are randomly taken from Zq. Therefore, the probability that

∃�, ∃X ∈ (hash table) : X �= M�||σ� ∧H(X) = H(M�||σ�)

will hold is at most (qH + qS)qS/q.
We consider the case where there exists no such (�, X). We show that B3

does not output fail3 in this case. Let us make a contradictory supposition that
B3 outputs fail3. Then the equality r = ri mod q holds for some i. Recall that
C = Ci holds. Hence, it follows that gmhr = C = Ci = gmihri = gmihr.
Therefore, gm = gmi holds. This means that m = mi mod q holds. Therefore, the
equality H(M ||σ) = m = mi = H(Mi||σi) holds. Since there is no X satisfying
X �= Mi||σi and H(X) = H(Mi||σi), the equality (M, σ) = (Mi, σi) has to hold.
From the definition of SEU, (M, σ′) = (M, (σ, r)) is not equal to (Mi, σ

′
i) =

(Mi, (σi, ri)). Therefore, r �= ri mod q has to hold, and this contradicts the
assumption that r = ri mod q holds. This means that B3 does not output fail3
in this case.

From the above discussion, the probability that B3 will succeed in obtaining
the discrete logarithm is at least (ε′/3)− (qH + qS)qS/q. �

We finally estimate the security of our scheme more intuitively. In order to do
it, we introduce the notions, which we call difficulty. For an adversary X against
(t, ε)-discrete logarithm problem in G, we let X ∗ be an adversary which executes
X until X succeeds in solving the problem. Then X ∗ solves the discrete logarithm
problem with t/ε steps on average and with probability 1. This means that we
can use the value t/ε in order to estimate how difficult one solves the discrete
logarithm problem. Therefore, we say that the discrete logarithm problem has
difficulty T if there is no (t, ε)-adversary X satisfying t/ε < T . We also define
the difficulties of the existential unforgeability and the SEU property similarly.

We will estimate the difficulty of the SEU property of the our proposed
scheme.
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Corollary 2. Let S′ be the signing cost of Σ′, and E be the exponentiation cost
on G, Suppose that the existential unforgeability of Σ and the discrete logarithm
problem in G have difficulty T1 and T2 respectively. We let C0 denote 20(1+E/S).
Then the SEU property of the proposed scheme Σ′ has difficulty T ′. Here

T ′ ≥ min{T1, T2}/C0 + (lower terms).

Proof. We will show that there exists an adversaryA0 which can break the SEU
property of Σ′ within 2E2κ/2 + (lower terms) step and with the probability 1.
Therefore, by substituting A to A0 (if we need), we can assume that t′/ε′ ≤
2κ/2 + (lower terms) holds.

From the definition of qS and qH , the inequalities SqS ≤ t′ and qH ≤ t′ hold.
Since S′ = S + E + (lower terms) holds, it follows

t ≤ t′ + qS(S′ + E) ≤ (1 + (S′ + E)/S)t′ = (1 + (S + 2E)/S)t′ = (2 + 2E/S)t′,

(qH + qS)qS/(3qε′) ≤ (t′ + t′/S)(t′/S)/(3qε′) � t′2/(3qSε′) ≤ (t′/ε′)2/(3qS)
≤ (2κ/2)2/(32κ−1S) = 2/3S,

ε=ε′/9−(qH+qS)qS/(3q)=ε′·(1/9−(qH+qS)qS/(3qε′))≥ε′·(1/9−2/3S)≥ε′/10

holds, (because S >> 0 holds if κ >> 0). Hence, it follows that

min{T1, T2} ≤ t/ε ≤ (2 + 2E/S)t′/(ε′/10) = 20(1 + E/S) · (t′/ε′) = C0 · (t′/ε′).

Hence min{T1, T2} ≤ C0 · T ′ holds. Therefore, T ′ ≤ min{T1, T2}/C0 holds.
We finally construct A0. A0(pk′) computes the discrete logarithm x of (g, h)

by using the Baby Step and Giant Step (BSGS) algorithm [BSS99], sends an
arbitrarily message M to the signing oracle as a query, receives the answer
σ′ = (σ, r), and computes m = H(M ||σ) and C = gmhr. Then Verpk(C, σ) =
accept holds. A0 then selects an arbitrarily message M0 �= M , computes m0 =
H(M0||σ), selects r0 ∈ Zq satisfying m0 + r0x = m+ rx mod q, sets σ0 = (σ, r0),
and outputs (M0, σ0). One can easily show that σ0 is a valid signature on M0 �=
M . Since BSGS algorithm requires 2κ/2 + (lower terms) steps, the number of
steps of A0 is also 2κ/2 + (lower terms). �

4 Proposed Conversion in the Standard Model

By modifying the conversion of the last section, we construct a conversion in the
standard model. That is, we construct a conversion such that the SEU property
of the converted scheme can be proved without exploiting the random oracle.
Fig. 2 describes the signature scheme transformed by our conversion. Here κ is a
security parameter, G is a cyclic group with the prime order q, Σ = (Gen, Sig, Ver)
is a signature scheme, and {Hκ} is a family of collision resistant hash functions
H = Hκ : {0, 1}∗ → Zq.

As in the case of the other conversion, the converted scheme satisfies the
on-line/off-line property. More precisely, a signer can precompute x−1, C and σ
before it is given the message M . By precomputing C and σ, a signer can generate
a signature only by computing one hash value H(M ||σ) and one multiplication
r = (t−m− sy)x−1 mod q.
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—Gen′(1κ)—
(pk, sk) ← Gen(1κ),
g ← G,x, y ← Zq , (h1, h2) ← (gx, gy).
pk′ ← (pk, g, h1, h2), sk′ ← (sk, x, y).
Output (pk′, sk′).
—Sig′

sk′(M)—
t ← Zq, C ← gt. σ ← Sigsk(C), m ← H(M ||σ).
Randomly selects r, s ∈ Zq satisfying m + rx + sy = t mod q.
σ′ ← (σ, r, s). Output σ′.
—Ver′pk′(M, σ′)—
Parse σ′ as (σ, r, s).
m ← H(M ||σ), C ← gmh1

rh2
s.

If Verpk(C, σ) = accept then return accept.
Otherwise return reject.

Fig. 2. Proposed Conversion in the Standard Model

Theorem 3. Let S′ be the signing cost of Σ′. Suppose that there exists
a (t′, qS , qH , ε′)-adversary against the SEU property of the signature scheme
Σ′ = (Gen′, Sig′, Ver′). Then there exists an adversary that can break ei-
ther the (t, qS , ε)-existential unforgeability of the underlying signature scheme
Σ = (Gen, Sig, Ver), the (t, ε)-discrete logarithm problem in G, or (t, ε)-collision
resistant of H. Here

t = t′ + qSS′ + (lower terms),
ε = ε′

4 − (lower terms).

Proof. Let A be an adversary that breaks the (t′, qS , ε′)-SEU property of Σ′.
The adversary A is first given a public key pk′ = (pk, g, h1, h2). A makes queries
M1, . . . , MqS to the signing oracle OSig′

sk′ adaptively, and receives the signatures
σ′

1 = (σ1, r1, s1), . . ., σ′
qS

= (σqS , rqS , sqS ) on these messages as the answers from

OSig′

sk′ . A finally outputs a message M and a signature σ′ = (σ, r, s). We let mi,
m, Ci, and C be H(Mi||σi), H(M ||σ), gmih1

rih2
si , and gmh1

rh2
s.

We distinguish among four types of forgeries:

Type 1: A forgery where C �= Ci for any i.
Type 2: A forgery where (C, r, s) = (Ci, ri, si) for some i.
Type 3A: A forgery where C = Ci and r �= ri for some i.
Type 3B: A forgery where C = Ci and s �= si for some i.

By using A as a subroutine, we will construct four machines B1, B2, and B3A,
B3B. We will show the following facts:

– If A is a Type 1 adversary, B1 succeeds in breaking the (t, qS , ε′)-existential
unforgeability of Σ.

– If A is a Type 2 adversary, B2 succeeds in breaking (t, ε′)-collision resistance
of H .
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– If A is a Type 3A or Type 3B adversary, B3A or B3B respectively succeeds
in breaking the (t, ε′)-discrete logarithm assumption in G.

A simulator flips a coin at the beginning of the simulation to guess which
type of forgery A will produce. Then the simulator executes an algorithm B1,
B2, B3A, or B3B. Clearly, the simulator will succeed in guessing the type of A
with probability 1/4. This means that the theorem holds.

Type 1 adversary: Suppose that A is a Type 1 adversary that breaks the
(t′, qS , ε′)-SEU property of Σ′. Let pk∗ be a randomly selected public key of the
signature scheme Σ = (Gen, Sig, Ver). By using A as a subroutine, we construct
a machine B1 that can break the (t, qS , ε′)-existential unforgeability of Σ. B1

runs A as follows:

Setup: B1 firstly executes the same procedure as Gen′, except that B1 sets pk
to pk∗. More precisely, B1 selects g ∈ G and x, y ∈ Zq randomly, sets (h1, h2) =
(gx, gy), and pk = pk∗ and pk′ = (pk, g, h1, h2). Then B1 provides pk′ to A.

Signing Oracle Simulation: Let Mi be the i-th queried message ofA. B1 executes
the same algorithm as Sig′sk′(Mi) except that B1 does not execute Sigsk but
makes a query to the signing oracle. More precisely, B1 executes the following
procedures. B1 selects ti ∈ Zq randomly, and sets Ci = gti . Then B1 makes the
query Ci to its signing oracle, and receives a signature σi on Ci as the answer. B1

computes mi = H(Mi||σi), selects ri, si ∈ Zq satisfying mi+rix+siy = ti mod q,
and sets σ′

i = (σi, ri, si). One can easily show that σ′
i is a valid signature on Mi.

B1 finally sends σ′
i to A.

Extraction: Suppose that A outputs a message M and a valid signature σ′ =
(σ, r, s) on M , such that (M, σ′) �= (Mi, σ

′
i) for any i. Recall that A is a Type

1 adversary. Therefore, C �= Ci holds for any i. Since σ′ = (σ, r, s) is a valid
signature on M , σ is a valid signature on C. Recall that the queries that B1

has made to the signing oracle are C1, . . . , CqS . This means that B1 succeeds in
forging the signature σ on the message C, which B1 has not sent as a query to
the signing oracle.

One can easily show that B1 succeeds in breaking the (t, qS , ε′)-existentially
unforgeability of Σ. Here we used the fact that (2qS + 2)E � 2qSE +
(lower terms) ≤ qSS′ + (lower terms).

Type 2 adversary: Suppose that A is a Type 2 adversary that breaks the
(t, q, ε)-SEU property of Σ′. By using A as a subroutine, we construct a machine
B2 that can break the (t, ε)-collision resistance of H . B2 runs A as follows:

Setup: B2 firstly executes Gen′(1κ) and obtains pk′ = (pk, g, h1, h2), and sk′ =
(sk, x, y) as the output of Gen′. Then B2 provides pk′ to A.

Signing Oracle Simulation: By using the secret key sk′, B2 computes a signature
on a queried message that A makes, and sends the signature to A.

Extraction: Suppose that A outputs a message M and a valid signature
σ′ = (σ, r, s) on M , such that (M, σ′) �= (Mi, σ

′
i) for any i. Recall that A is
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a Type 2 adversary. Therefore, we can suppose that (C, r, s) = (Ci, ri, si) for
some i. Since the data C = gH(M||σ)h1

rh2
s equals to Ci = gH(Mi||σi)h1

rih2
si =

gH(Mi||σi)h1
rh2

s, the hash value H(M ||σ) equals H(Mi||σi). Recall that
(M, σ′) �= (Mi, σ

′
i) holds. This means that (M ||σ, Mi||σi) is a collision pair of H .

Therefore, B2 outputs (M ||σ, Mi||σi) and stops.
One can easily show that B2 succeeds in breaking (t, ε′)-collision resistance

of {H}.

Type 3A adversary: Suppose that A is a Type 3A adversary that breaks the
(t, q, ε)-SEU property of Σ′. By using A as a subroutine, we construct a machine
B3A that can break the (t, ε)-discrete logarithm problem in G. Let (h∗, g∗) ∈ G2

be an instance of the discrete logarithm problem in G. The aim of B3 is to obtain
z∗ ∈ Zq satisfying g∗ = h∗

z∗ . B3A runs A as follows:

Setup: B3A firstly executes the same procedure as Gen′, except that B3A sets
(g, h1) to (g∗, h∗). More precisely, B3A executes Gen(1κ), to obtain (pk, sk), selects
y ∈ Zq randomly, sets (g, h1) = (g∗, h∗), h2 = gy, pk′ = (pk, g, h1, h2). Then B3A

provides pk′ to A.

Signing Oracle Simulation: Let Mi be the i-th queried message of A. B3A selects
t′i, ri ∈ Zq randomly, and sets Ci = gt′ih1

ri . By using the secret key sk, B3A

computes σi = Sigsk(Ci). Then B3A computes mi = H(Mi||σi), selects si ∈ Zq

satisfying mi + siy = t′i mod q, and sets σ′
i = (σi, ri, si). One can easily show

that σ′
i is a valid signature on Mi. B3A finally sends σ′

i to A.

Extraction: Suppose that A outputs a message M and a valid signature σ′ =
(σ, r, s) on M , such that (M, σ′) �= (Mi, σ

′
i) for any i. Recall that A is a Type

3A adversary. Therefore, C = Ci and r �= ri hold for some i. Let m and mi be
H(M ||σ) and H(Mi||σi). Since the data C = gmh1

rh2
s = g∗

m+syh∗
r is equal to

Ci = gmh1
rih2

si = g∗
mi+siyh∗

ri , the equation h∗
r−ri = g∗

mi+siy−m−sy holds.
Recall that r �= ri holds. Therefore, z∗ = (mi + siy −m− sy)/(r − ri) mod q is
the discrete logarithm of g∗ based on h∗. Therefore, B3A outputs z∗ and stops.

One can easily show that B3A succeeds in breaking the (t, ε′)-discrete loga-
rithm assumption in G.

Type 3B adversary: The proof for this type adversary is quite similar to the
proof for the Type 3A adversary, although B3B embeds (g∗, h∗) not to (g, h1)
but to (g, h2). Therefore, we omit the details. �

One can easily show the following corollary:

Corollary 4. Suppose that the existential unforgeability of Σ, the discrete loga-
rithm problem in G and the collision resistance problem of H have difficulty T1,
T2, and T3 respectively. Then the SEU property of the proposed scheme Σ′ has
difficulty T ′. Here

T ′ ≥ (2 + 2(E/S))min{T1, T2, T3}+ (lower terms).
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[BSW06] Conv. of Sec. 3 Conv. of Sec. 4

Condition on Σ Partitioned Nothing Nothing
Model Standard Random Oracle Standard
Reduction Tight Tight Tight

Precomputation before Signing 0 S + E S + E
Signing using Precomp. data S + E 0 0
Total Signing Cost S + E S + E S + E

Verification Cost V + E V + E V + E
Signature Length |σ| + |q| |σ| + |q| |σ| + 2|q|

Fig. 3. Comparison

5 Comparison

Fig. 3 compares the schemes transformed by the conversion of [BSW06], of Sec-
tion 3, and of Section 4. In this figure, S and V represents the computational
cost of the signing and verifying algorithms of the original signature scheme Σ
respectively. The value E represents the exponentiation cost on G, |σ| represents
the bit length of a signature of Σ, and |q| represents the bit length of q.

We assume that one computes gmhr by using the simultaneous exponenti-
ation technique [MOV96]. That is, we assume that the computational cost to
compute gmhr is equal to E. We also assume that the computational cost of a
multiplication on G and a hashing are very small.

The conversion of [BSW06] is applicable for a signature scheme that satisfies
the partitioned property [BSW06]. However, the authors do not give any example
of the partitioned signature scheme other than the Waters scheme. In contrast,
our two conversions are applicable to any signature scheme.

The signing costs of all of three schemes are equal. However, in the case
of schemes transformed by our conversions, signers can precompute almost all
operations on the signing before they are given messages.

The signature length of the scheme transformed by our second conversion is
longer than that of the scheme transformed by our first conversion. But the secu-
rity of the former scheme is proved without assuming the random oracle, although
that of the latter scheme is proved only when one assumes the random oracle.

6 Conclusion

For the first time, we proposed two conversions, which are the first that can
transform any secure signature scheme to a SEU signature scheme, and we also
introduce the notion difficulty, and estimate the difficulties of our converted
schemes. There is trade off between the two conversions. The first conversion
requires the random oracle, but the signature scheme transformed by the first
conversion has a shorter signature length than the scheme transformed by the
second conversion. The second conversion does not require the random oracle.
Therefore, if the original signature scheme is of the standard model, the SEU
property of the converted signature scheme is proved also in the standard model.
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The proposed two conversions ensure the tight security reduction to the un-
derlying security assumptions. Moreover, signers of the converted schemes can
precompute almost all operations on the signing before they are given a message.
Therefore, the signer can generate signatures quite efficiently.
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Abstract. We introduce a new digital signature model, called conditionally veri-
fiable signature (CVS), which allows a signer to specify and convince a recipient
under what conditions his signature would become valid and verifiable; the re-
sulting signature is not publicly verifiable immediately but can be converted back
into an ordinary one (verifiable by anyone) after the recipient has obtained proofs,
in the form of signatures/endorsements from a number of third party witnesses,
that all the specified conditions have been fulfilled. A fairly wide set of condi-
tions could be specified in CVS. The only job of the witnesses is to certify the
fulfillment of a condition and none of them need to be actively involved in the
actual signature conversion, thus protecting user privacy. It is guaranteed that the
recipient cannot cheat as long as at least one of the specified witnesses does not
collude. We formalize the concept of CVS and give a generic CVS construction
based on any CPA-secure identity based encryption (IBE) scheme. Theoretically,
we show that the existence of IBE with indistinguishability under a chosen plain-
text attack (a weaker notion than the standard one) is necessary and sufficient for
the construction of a secure CVS.1

1 Introduction

Balancing between the accountability and privacy of a signer is an important but largely
unanswered issue of digital signatures. A digital signature scheme usually consists of
two parties, a signer and a recipient, with the former giving his signature on a mes-
sage/document to the latter as his commitment or endorsement on the message. To
ensure that the signer is held accountable for his commitment, his signature needs to
be publicly verifiable. However, public verifiability of a digital signature would put
the signer’s privacy at risk as a digital signature could be replicated and spread so
easily, compared to its handwritten counterpart. More importantly, if the message pres-
ents valuable information about the signer, then the signed message itself is a certified
piece of that information. Hence, the interests of the signer and the recipient are in
conflict.

Of course, ensuring signer privacy and accountability simultaneously seems to be
impossible. However, we observe that, in most of the real world scenarios, this conflict
could be solved if the signer can ensure non-verifiability of his signature before certain

1 Due to page limit, some proofs are omitted here but could be found in the full version [7].

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 206–220, 2006.
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conditions are fulfilled but still be able to convince the recipient that he will be obligated
to exercise his commitment; in other words, he needs to give the recipient some guar-
antee that his commitment or his signature will become effective or publicly verifiable
once all the conditions are fulfilled.

To provide a flexible solution to this problem of controllably passing signatures from
one party to another without actively involving a trusted third party (i.e. the third party
does not have to see or know the signer’s message), we introduce a new signature con-
cept called conditionally verifiable signature (CVS). In the CVS model, a signer is
allowed to embed a set of verifiability conditions C into his ordinary signature σ to
create a partial signature δ that is solely verifiable by the recipient, who cannot imme-
diately convince others of the validity of δ (as δ is no more convincing than any random
number and hence nobody can link it to its alleged signer) but can convert it back to
the universally verifiable one σ (i.e. verifiable by everyone) after obtaining from a num-
ber of witnesses (appointed by the signer) the proofs that all the specified verifiability
conditions have been fulfilled.2 These proofs are in the form of signatures on condition
statements, signed by the witnesses, about how the specified conditions are considered
as fulfilled. In order to convince the recipient to accept a given partial signature δ on a
message M (whose validity could not be verified), the signer runs a proof/confirmation
protocol, which could be interactive or non-interactive, with the recipient to convince
the latter that δ is indeed his partial signature on M , from which the corresponding
ordinary signature could be recovered using the specified witnesses’ signatures on the
specified verifiability condition statements in C.

Given thatW is the set of all possible witnesses, an instance set of verifiability con-
ditions C is of the form {(ci, Wi) : ci ∈ {0, 1}∗, Wi ∈ W} where each condition
statement ci is a string of arbitrary length describing a condition to be fulfilled. Ex-
amples of ci include “A reservation has been made for Alice on flight CX829, 5 Sept
2006.”, “A parcel of XXX has been received for delivery to Bob.” and so on. The re-
cipient needs to request each one of the specified witnesses, say Wi, to verify whether
the condition stated in ci is fulfilled and in case it is, to sign on ci to give him a wit-
ness signature σi. These witness signatures σi’s would allow the recipient to recover
the publicly verifiable, ordinary signature σ from the partial signature δ. It is not nec-
essary for a recipient to present δ or the message M to the witnesses in order to get
these σi’s. The only trust we place on the witnesses is that they only give out their sig-
natures on a condition statement when the specified conditions are indeed fulfilled. In
fact, it is not difficult to imagine that the existence of such witnesses is abundant in any
business transaction. In addition, we could achieve a fairly high level of privacy in that
the witnesses are unaware of the message or the partial signature when verifying the
fulfillment of a given condition, namely, he does not learn the deal between the signer
and the recipient.

We could view the partial signature as a blinded version of the ordinary signature,
that is, nobody could verify its validity. We formulate this non-verifiability property by
the notion of simulatability in this paper, that is, anyone could use just public informa-
tion of the signer to simulate a given partial signature while others cannot judge whether

2 Throughout the rest of this paper, we will denote the ordinary (universally verifiable) signature
and the CVS partial signature by σ and δ respectively, unless otherwise specified.
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it is genuine. In other words, nobody could distinguish between a genuine partial sig-
nature and a simulated one.

1.1 Related Work

Related work on controlling the verifiability of a digital signature includes designated
verifier signatures [23,30], undeniable signatures [5,8,11,16,14,24,25], designated con-
firmer signatures [9,6,13,21,28], fair exchanges [1], and timed release of signatures
[15]. Despite the considerable amount of work in limiting the verifiability of a digi-
tal signature, the conditions that could be incorporated into a digital signature scheme
are still very restrictive; the existing protocols merely ensure that only a designated re-
cipient can verify but cannot convince anybody else of the validity of a signature (in
designated verifier signatures) and/or collaboration of the signer (in undeniable signa-
tures) or a third party designated by the signer (in designated confirmer signatures, fair
exchange) is needed in verifying the signature. More importantly, in these schemes, if
a third party is involved to enforce certain verifiability conditions, he needs to know
the signer’s message, thus violating the privacy of the signer and perhaps the recip-
ient as well. Roughly speaking, CVS can be considered as a generalization of these
schemes.

1.2 Our Contributions

The main contribution of this paper is two-fold: First, a new signature model with con-
trollable verifiability, particularly useful in electronic commerce, is introduced. Second,
the equivalence between CVS and CPA-secure IBE in terms of existence is shown.

Through the new model of CVS, a signer can incorporate a wide range of verifiabil-
ity conditions into an ordinary signature scheme to control its verifiability and validity
while minimizing the requirement or trust on third-parties. We could possibly view CVS
as a more general, unified concept incorporating the ideas of existing work (including
undeniable signatures, designated confirmer signature, fair exchange and timed release
of signatures), but provides more effective and flexible solutions to the scenarios these
existing schemes could not solve satisfactorily, particularly those in electronic com-
merce. A typical example of these would be the deadlock scenario that may happen in
an online purchase between mistrusting parties; using the post office as a witness, CVS
would reasonably solve this problem.

We demonstrate the feasibility of CVS by giving a theoretical construction based on
any existential-unforgeable signature scheme and any semantic-secure identity based
encryption (IBE) scheme [3]. We also show that a secure CVS scheme is equiva-
lent to an IBE scheme which is indistinguishable under a chosen plaintext attack
(IND-ID-CPA), a weaker notion than the commonly accepted security notion against
an adaptive chosen ciphertext attack (IND-ID-CCA) in IBE. Hence, we believe that
CVS could be constructed based on a weaker assumption than IBE.

The rest of this paper is organized as follows. We give the definition of a condition-
ally verifiable signature scheme and its notions of security in the next section. In Section
3, we give a generic CVS construction and show the equivalent between CVS and IBE.
Finally, our conclusions are given in Section 4.
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2 Definitions and Security Notions

The players in a CVS scheme include a signer S, a recipient or verifier V , and a number
of witnesses {Wi} ⊆ W (let |{Wi}| = L). Given a security parameter λ, a CVS scheme
consists of the following algorithms and a confirmation protocol.

Key Generation (CVKGS, CVKGW). Let CVKGS(1λ)→(PKS , skS) and CVKGW
(1λ) → (PKW , skW ) be two probabilistic algorithms. Then, (PKS , skS) is the
public/private key pair for a signer S and (PKW , skW ) is the public/private key
pair for a witness W .

Signing and Verification (Ordinary Signatures) (SigS, VerS)/(SigW, VerW).
SigS(m, skS)→ σS is an algorithm generating an ordinary (universally verifiable)
signature σS of the signer S for a message m ∈ M. VerS(m, σS , PKS) → {0, 1}
is the corresponding signature verification algorithm, which outputs 1 if σS

is a true signature of S on the message m and outputs 0 otherwise. Similarly,
SigW(m, skW ) → σW and VerW(m, σW , PKW ) → {0, 1} are the signature
generation and verification algorithms of the witness W .3

Partial Signature Generation (CVSig). Given a set of verifiability conditions C ⊆
C × W and the corresponding set of witness public keys PKC , the probabilistic
algorithm CVSig(m, C, skS , PKS, PKC) → δ generates the partial signature δ
on message m ∈ M under the set of verifiability conditions C. Note that δ is not
universally verifiable.

Ordinary Signature Extraction (CVExtract). CVExtract(m, C, δ, PKS, σC) →
σ/ ⊥ is an algorithm which extracts the corresponding ordinary signature σ from
a partial signature δ for a message m under the verifiability condition specified by
C and a signing public key PKS when given the set of witness signatures or en-
dorsements σC . The extracted signature σ is a universally verifiable one. In case the
extraction fails, it outputs⊥. Note that σC = {SigW(skWi , ci) : (ci, Wi) ∈ C}.

CVS Confirmation/Verification. CVCon(S,V ) = 〈CVConS, CVConV〉 is the signa-
ture confirmation protocol between the signer and recipient, which could be inter-
active or non-interactive:

CVCon(S,V )(m, C, δ)=〈CVConS(σ, skS , r), CVConV()〉(m, C, δ, PKS , PKC)

The common input consists of the message m, the set of verifiability conditions
C, the partial signature δ, and the public keys of the signer PKS and the involved
witnesses public keys PKC . The private input of the signer S is σ, skS , and r where
σ is the corresponding ordinary signature on m embedded in δ, and r represents all
the random coins used. The output is either 1 (“true”) or 0 (“false”). In essence,
this protocol allows S to prove to V that δ is his partial signature on m, which can
be converted back into a publicly verifiable signature σ (i.e. VerS(m, σ, PKS) =
1), once V has obtained all the witness signatures/endorsements on the condition
statements as specified in C. Ideally, this protocol should be zero-knowledge, and
the interactive version is considered in this paper.

In general, a CVS scheme should satisfy both completeness and perfect convertibility
property. Completeness ensures that a valid ordinary signature can be retrieved from a

3 We may write SigW as CVEndW to reflect the fact that it is actually an endorsement of W .
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valid partial signature. A CVS scheme is perfectly convertible if nobody can distinguish
whether a given ordinary signature is extracted from a partial signature or generated
directly. A secure CVS scheme should also satisfy unforgeability, simulatability, cheat-
immunity, and have a zero knowledge confirmation protocol.

Oracle Queries — Allowed Adversary Interaction. In our security model, two types
of adversary interaction are allowed:

1. Signing Oracle OS(m, C). For fixed keys PKS, skS , {PKWl
}, {skWl

}, on input
a signing query 〈m, C〉 (where m ∈ M and C = {(ci, Wi) : ci ∈ C, Wi ∈ W}
is a set of verifiability conditions), OS responds by running CVSig to generate the
corresponding partial signature δ. After sending δ to the querying party, OS runs the
confirmation protocol CVCon(S,V ) with the querying party to confirm the validity
of δ. Note that a malicious verifier is allowed to put in any random number in place
of δ when running the confirmation protocol.

2. Endorsement Oracle OE(c, W ). For fixed keys {PKWl
}, {skWl

}, on input an
endorsement query 〈c, W 〉, QE responds by retrieving the needed witness private
key skW and then running the witness endorsement/signing algorithm SigW (or
CVEndW) to create a witness signature σW (c) on the condition statement c.

These oracle queries may be asked adaptively, that is, each query may depend on the
replies of the previous queries.

2.1 Unforgeability

Unforgeability ensures that there is a negligible probability to forge an ordinary signa-
ture even though all the witnesses collude and are given access to other ordinary and
partial signatures of their choice.

Definition 1. A CVS scheme is unforgeable if the probability of winning the game be-
low, pUF

A , is negligible in the security parameter λ for all PPT (Probabilistic Polynomial
Time) adversariesA.

In the setup, the challenger takes a security parameter λ, runs the key generation al-
gorithms for the signer and all witnesses, that is, (PKS , skS) ← {CVKGS(1λ)} and
(PKWl

, skWl
) ← {CVKGW(1λ)}. The challenger gives the adversary all the pub-

lic keys, PKS and {PKWl
} and all the witness private keys {skWl

}. The challenger
keeps the signer’s private key skS . Then, the adversary is allowed to make queries to
OS to request a partial signature δj for 〈mj , Cj〉. Note that the adversary has the wit-
ness private keys so no OE query is necessary. Finally, the adversary has to output a
message-signature pair (m, σ) where m �= mj for all j. The adversaryA is said to win
this game if VerSS(m, σ) = 1.

2.2 Simulatability

In order to ensure the protection of signer privacy, the partial signature should be
(computationally) indistinguishable from the output of a certain public PPT simula-
tor: Fake(m, C, PKS , PKC) → δ′. As can be seen, the simulator only uses public
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information of the signer; hence, a partial signature is not linkable to its alleged signer,
thus protecting his privacy. The notion about the indistinguishability between a gen-
uine partial signature and a simulator output is best described by the following game
between a challenger and an adversary:

In the setup, the challenger takes a security parameter λ, runs the key generation
algorithms for the signer and all witnesses, that is, (PKS, skS) ← {CVKGS(1λ)}
and (PKWl

, skWl
) ← {CVKGW(1λ)}. The challenger gives the adversary all the

public keys, PKS and {PKWl
}. The challenger keeps the private keys {skWl

}. We
consider the strongest security model in this paper — the signer’s private key skS is
also given to the adversary.4 Then, the adversary is allowed to make queries to obtain
the signer’s partial signatures and witness signatures of messages of his choice until it is
ready to receive a challenged partial signature. It can make two types of oracle queries:
(1) Signing Query 〈mj , Cj〉 to OS ; (2) Endorsement Query 〈cj , Wj〉 to OE . As the
simulator Fake is publicly known, the adversary could also freely get a simulator output
for any message and condition of his choice. Once the adversary decides it is ready for
a challenge, it outputs a message m ∈M and a set of conditions C ⊂ C×W on which
it wishes to be challenged. Let C1

E denote the set of all endorsement queries sent to OE

previously. The only constraint is that C\C1
E �= φ (the empty set). The challenger flips

a coin b ∈ {0, 1} and outputs the following challenge to the adversary:

δb =
{

CVSig(m, C, skS , PKS, PKC), b = 0
Fake(m, C, PKS , PKC), b = 1

The adversary is allowed to run until it outputs a guess. Let C2
E be the set of queries

that have been made to OE so far after the challenge is issued. The adversary can
issue more (but polynomially many) queries, both signing and endorsement, but for any
endorsement query (cj , Wj), the following must hold: C\(C1

E∪C2
E∪{(cj, Wj)}) �= φ.

Finally, the adversary halts and outputs a guess b′ for the hidden coin b. The adversary
is said to win this game if b′ = b. The advantage of the adversary A is defined as:
AdvSim

A (λ) =
∣∣Pr[b′ = b]− 1

2

∣∣.
Definition 2. If there exists a PPT simulator Fake such that the advantage of winning
the above game is negligible in the security parameter λ for all PPT adversaries, then
the given CVS scheme is simulatable (with respect to Fake).

2.3 Zero Knowledge Confirmation Protocol and Non-transferability

We use the notion of simulatability of the communication transcript as a formulation for
the zero knowledge property of the confirmation protocol. In details, any communica-
tion transcript recorded in carrying out the confirmation protocol could be simulated by
a PPT simulator SimT (using only public information) whose output is indistinguish-
able from a genuine transcript.

The definition of simulatability of CVS ensures that nobody could associate a partial
signature to its signer or tell its validity given just the partial signature. If given also the

4 In addition to OS queries, the adversary can generate partial signatures of arbitrary messages
and conditions on its own. But even on identical input, these signatures may not be the same
as those from the challenger since the random coins used are likely to be different.
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communication transcript of the confirmation protocol for the partial signature, nobody
could still tell its validity, then the CVS scheme is said to be non-transferable. The
formulation of non-transferability is very similar to that of simulatability described
previously except that it includes an additional simulator for the transcript of the con-
firmation protocol, and in the challenge phase, the adversary receives either a genuine
partial signature and its confirmation protocol transcript or a fake (simulated) partial
signature and its simulated transcript. Note that while the confirmation protocol is car-
ried out in all oracle queries, no confirmation protocol would be carried out in the chal-
lenge phase. It can be shown that a CVS scheme is non-transferable if it is simulatable
and its confirmation protocol is zero knowledge, which is summarized by the following
theorem (We leave out the proof in the full version of the paper.).

Theorem 1. Given that a CVS scheme is simulatable with respect to a PPT partial
signature simulator Fake, if its confirmation protocol CVCon(S,V ) is zero knowledge
with respect to a PPT transcript simulator SimT, then it is non-transferable in the same
attack model with adaptive queries as in the simulatability definition and SimT can be
used as the transcript simulator FakeT for the output of Fake. The following two dis-
tributions are indistinguishable for all S, m, C with adaptive endorsement queries:

{CVSigS(m, C), πCVCon
S,V (m, C, CVSigS(m, C))},

{FakeS(m, C), πFakeT(m, C, FakeS(m, C))}

where πCVCon
S,V (·) and πFakeT(·) are transcript outputs of a real confirmation protocol

run and FakeT respectively.

2.4 Cheat-Immunity

Cheat-immunity guarantees that the recipient of a partial signature cannot recover the
ordinary signature without collecting all the needed witness signatures. Details are de-
scribed by the following game:

In the setup, the challenger takes a security parameter λ, runs the key generation
algorithms for the signer and all witnesses, that is, (PKS, skS)← {CVKGS(1λ)} and
(PKWl

, skWl
) ← {CVKGW(1λ)}. The challenger gives the adversary all the public

keys, PKS and {PKWl
}. The challenger keeps all the private keys skS and {skWl

}.
The adversary makes queries to obtain the signer’s partial signatures and witness signa-
tures of messages of his choice until it is ready to receive a challenge partial signature.
It can make two types of queries: (1) Signing Query 〈mj , Cj〉 to OS ; (2) Endorsement
Query 〈cj , Wj〉 to OE . With these two types of queries, the adversary can obtain the or-
dinary signature of the signer on any message of his choice. Once the adversary decides
it is ready for a challenge, it outputs a message m ∈ M not queried before and a set of
verifiability conditions C = {(ci, Wi)} ⊂ C ×W on which it wishes to be challenged.
Let C1

E denote the set of all the endorsement queries made to OE before the challenge.
The only constraint is that C\C1

E �= φ. The challenger uses CVSig to generate a partial
signature δ on a message m under the conditions in C. It sends δ as the challenge to
the adversary and runs the confirmation protocol CVCon(S,V ) with it. Let C2

E denote
the set of all the endorsement queries made to OE so far after the challenge is issued.
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The adversary can issue more queries, both signing and endorsement, but for any en-
dorsement query (cj , Wj), the following must hold: C\(C1

E ∪ C2
E ∪ {(cj, Wj)}) �= φ,

and for any signing query, the queried message is not the challenged message. Finally,
the adversary halts and outputs an ordinary signature σ for message m. The adversary
A is said to win this game if VerSS(m, σ) = 1.5

Definition 3. A CVS scheme is cheat-immune if the probability of winning the above
game is negligible in the security parameter λ for all PPT adversaries.

It can be shown that unforgeability and simulatability imply cheat immunity if the con-
firmation protocol is zero knowledge as summarized by the following theorem.

Theorem 2. An unforgeable and simulatable CVS scheme is also cheat-immune given
its confirmation protocol is zero knowledge. (Proof in the full version.)

Hence, proving that a CVS scheme is secure reduces to showing that it is unforgeable
and simulatable and its confirmation protocol is zero knowledge. Theorem 2 allows one
to ignore the cheat-immunity requirement when designing a CVS scheme.

3 The Existence of a Secure CVS Scheme

In this section, we give a generic CVS construction from IBE and show the equivalence
between CVS and IBE.

3.1 A Generic Construction of CVS from IBE

We show how to construct a secure CVS scheme based on the following components
(Please refer to the cited references for details and security definitions of these primi-
tives): (1) A secure signature scheme SIG = 〈SKG(1λ) → (PKS, skS), Sig(m, skS)
→ σ, V er(m, σ, PKS) → {0, 1}〉 (where m and σ are the message and signature re-
spectively) which is existentially unforgeable against an adaptive chosen message attack
[20]; (2) An IBE scheme IBE = 〈Setup(1λ)→ (PKG, skG), Extract(ID, skG) →
dID, Enc(PKG, ID, M) → C, Dec(PKG, C, dID) →M〉 (where M , ID and C are
the plaintext, identity and ciphertext respectively, and PKG and skG are the public and
private keys of the private key generator) with semantic security, that is, IND-ID-CPA
[2]; (3) A computationally hiding commitment scheme COM = 〈Com(s, m) → c〉
[26,12] where m and c are the secret and commitment respectively; (4) A pseudoran-
dom generator (PRG) [17,22]. Let the plaintext and ciphertext spaces of IBE be PIBE

and CIBE respectively.
Let the message and signature spaces of SIG be M (same as the message space

of CVS) and Sσ (same as the ordinary signature space of CVS) respectively. Let h :
{0, 1}lp → {0, 1}ls be a PRG where lp and ls are the length of an IBE plaintext and a
SIG signature respectively. Let CCOM be the output space of the commitment scheme

5 This model is reasonable as the only restriction in practice is the signer should not give to
the same party multiple partial signatures on the same message but with different verifiability
conditions. First, the event in question is rare; otherwise, the restriction can be easily achieved
by adding a serial number if the same message is signed multiple times.
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COM and Com : PIBE × Sσ → CCOM be its committing function. Depending on
the number of witnesses, the IBE scheme is used multiple times with each witness Wi

being a private key generator (PKG) for its IBE scheme. Assume there are N witnesses
and the partial signature is: δ ∈ Sσ × CN

IBE × CCOM . The generic CVS construction is
as follows.

Key Generation. CVKGS def= SKG for generating (PKS , skS) for the signer S.

CVKGW def= Setup for generating (PKWi , skWi) for the witnesses Wi.
Partial Signature Generation. Given an input message m ∈ M, a condition set C =

{(ci, Wi) : 1 ≤ i ≤ N}, a signing key skS , a signer’s public key PKS and the set
of witness public keys PKC = {PKWi : 1 ≤ i ≤ N},
1. Generate an ordinary signature using the signing algorithm of SIG: σ =

Sig(m, skS)
2. For each (ci, Wi) ∈ C, pick a random ai ∈ PIBE , 1 ≤ i ≤ N and the CVS

partial signature is:

δ= σ ⊕ h

N

i

ai ,{Enc(PKWi ,ci, ai) : 1 ≤ i≤N},Com σ, h

N

i

ai

where Enc(PKWi , ci, ai) is the IBE ciphertext on message ai using Wi (wit-
ness) as the PKG and ci (condition statement) as the identity.6

Witness Signature Generation. SigW(c, skW ) def= Extract(c, skW ). Taking the con-
dition statement c as an identity, the witness W could extract the private key dW

c

corresponding to c. dW
c could be considered as a kind of signature on c as in [4].

Signature Extraction. Given a partial signature δ = 〈α, {βi : 1 ≤ i ≤ N}, γ〉 and
σi = dWi

ci
, 1 ≤ i ≤ N ,

1. For 1 ≤ i ≤ N , get a′
i = Dec(PKWi , βi, σi).

2. Recover σ′ = α ⊕ h(
⊕N

i a′
i). Check if Com(σ′, h(

⊕N
i a′

i))
?= γ. If not,

output “fail”, otherwise, σ′ is the ordinary signature.

Signature Verification. VerS def= V er (the signature verification algorithm of SIG).
Confirmation Protocol. Using general interactive zero-knowledge proofs [18] or con-

current zero-knowledge proofs [10], the signer with private input a1,. . . ,ai,. . . ,aN

and σ and all the random coins used to generate βi could convince the verifier
that there exists (σ, a1, . . . , ai, . . . , aN ) satisfying the following equations: δ =
〈α, {β1, β2, . . . , βi, . . . , βN}, γ〉 ; α = σ⊕h

(⊕N
i ai

)
; βi = Enc(PKWi , ci, ai),

1 ≤ i ≤ N ; γ = Com
(
σ, h
(⊕N

i ai

))
; V er(m, σ, PKS) = 1. The common in-

put to the confirmation protocol is PKS, PKWi (1 ≤ i ≤ N), m, C = {(ci, Wi) :
1 ≤ i ≤ N} and δ. Since verifying whether a given tuple (σ, a1, a2, . . . , ai, . . . aN)
satisfies the above equations is a poly-time predicate, a general zero-knowledge
proof for it should exist.

Fake Signature Simulator — Fake(C) : C = {(ci, Wi) : 1 ≤ i ≤ N}

1. Randomly (uniformly) pick σf ∈ Sσ.

6 For short, we may denote Enc(PKWi , ci, ai) as EncWi(ci, ai) in the following discussion.
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2. Randomly pick bi ∈ PIBE , for 1 ≤ i ≤ N and output the fake partial signature:

δf =〈
σf ⊕ h

(⊕N
i bi

)
, {Enc(PKWi ,ci, bi) : 1 ≤ i ≤ N} ,Com

(
σf ,h

(⊕N
i bi

))〉
Obviously, this simulator is PPT. The generic CVS construction from IBE is slight

over-designed: The commitment scheme is generally not needed; it is mainly used to
allow detection of failure in ordinary signature extraction which may occur when invalid
witness signatures are used in ordinary signature extraction .

Security of the Generic CVS Construction. The completeness of the above CVS
construction is guaranteed by the correctness of the underlying IBE scheme. Besides, it
is also perfectly convertible. The security of this CVS construction is best summarized
with the following lemmas which lead to Theorem 3.

Lemma 1. If SIG is existentially unforgeable under an adaptive chosen message at-
tack, then the generic CVS construction is unforgeable. (Proof Sketch in Appendix.)

Lemma 2. If IBE is IND-ID-CPA secure, COM is a computationally hiding commit-
ment scheme, and h is a PRG, then the generic CVS construction is simulatable with
respect to the simulator Fake. (Proof Sketch in Appendix.)

Theorem 3. Given any semantically secure IBE scheme (under a chosen plaintext at-
tack) and any existentially unforgeable signature scheme, together with a PRG and a
computationally hiding commitment scheme, a secure CVS scheme can be constructed.

3.2 A Generic Construction of IBE from CVS

We show how to construct a 1-bit IBE scheme with semantic security (i.e. IND-ID-CPA)
using a CVS scheme. We assume the CVS scheme is simulatable with respect to a
fake partial signature simulator Fake. Our construction is similar to that in the seminal
work of probabilistic encryption by Goldwasser and Micali [19]. While they used the
indistinguishability between the quadratic residues and non-residues in Z∗

n for some
composite n (Quadratic Residuosity Problem) to encrypt a single bit, we leverage the
indistinguishability between a true and a simulated (fake) partial signature of CVS to
create a ciphertext. By repeating the operation of the 1-bit scheme k times as in [19],
we could construct an IBE scheme for k-bit long messages. We consider a CVS scheme
with a single witness G ∈ W which is used as the PKG for the IBE scheme. Suppose
Fake is a PPT simulator for the CVS scheme. The IBE scheme works as follows.

Key Setup. The public and private keys of the witness G in the CVS scheme are used as

the public and private keys of the PRG in the IBE scheme. We setSetup
def= CVKGW

to generate the public private keys of the PRG: CVKGW(1λ)→(PKG, skG).
Private Key Extraction. The identity IDi of any user in IBE could be treated as a

condition statement in CVS as they are both a bit string of arbitrary length. We set

Extract
def= SigW/CVEndW, then extracting the private key di for IDi is the

same as requesting a signature on the statement IDi: SigW(IDi, skG)→ di.
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Encryption. The identity of a user i is IDi (treated as a condition statement in the un-
derlying CVS scheme) and its private key is the witness signature di obtained from
G. We consider a 1-bit plaintext b ∈ {0, 1}. To encrypt, randomly pick a message
m ∈ M, run CVKGS(1λ) to generate the public/private key pair (PKS , skS) of
the signer, the encryption function is: Enc(PKG, IDi, b)→ (m, δb, PKS), where

δb =
{

CVSig(m, IDi, skS , PKS, PKG), b = 0
Fake(m, IDi, PKS, PKG), b = 1

i.e. When b = 0, δb is a valid partial signature on m; when b = 1, δb is a fake one.
Decryption. Given an identity IDi, a PKG public key PKG and the user private

key di, to decrypt a given ciphertext C = (m′, δ′, PK ′
S), the decryption function

Dec(PKG, C, di) → b is implemented as follows: extract the ordinary signature
from δ′ using CVExtract(m′, IDi, δ

′, PK ′
S, di)→ σ′, and the plaintext b′ is given

by the following: b′ = 0 if VerS(m′, σ′, PK ′
S) = 1 and 1 otherwise.

Correctness of the CVS-based IBE. The completeness of the CVS scheme guaran-
tees the correctness of decryption in the above IBE scheme. The completeness property
of the CVS scheme ensures that, if δ = CVSig(m, IDi, skS , PKS , PKG) and di =
CVEndW(IDi, skG), then the verification must return 1. The CVS scheme also guar-
antees that with negligible probability a valid ordinary signature on message m could
be extracted form Fake(m, IDi, PKS, PKG), otherwise, the CVS scheme would be
forgeable. These together ensure that Dec(PKG, Enc(PKG, IDi, b), di) = b with
probability almost 1. The security of above IBE is contained in the following theorem.

Theorem 4. (Security of the CVS-based IBE) The above IBE construction from CVS
is semantically secure against a chosen plaintext attack (IND-ID-CPA). (Proof Sketch
in Appendix.)

3.3 The Equivalence Between CVS and IBE

A secure CVS scheme is equivalent to a secure IBE scheme in terms of existence.

Theorem 5. A secure CVS scheme (unforgeable, simulatable, with zero knowledge con-
firmation protocol) exists if and only if an IND-ID-CPA-secure IBE scheme exists.

Proof. The only if part follows directly from the CVS-based IBE construction given
above. For the if part, we assume the existence of a IND-ID-CPA secure IBE. Then a
one-way function exists (We could use Setup of the IBE scheme to construct a one-
way function.), which implies the existence of an ordinary signature scheme existen-
tially unforgeable under an adaptive chosen message attack[29,27]. Besides, this also
implies that a PRG exists [22], which in turn implies the existence of a computationally
hiding multi-bit commitment function[26]. Finally, the existence of a one-way function
also implies the existence of zero-knowledge proofs. By Theorem 3, we could use the
generic construction to build a secure CVS scheme. Hence, the existence of a secure
IBE scheme implies the existence of a secure CVS scheme.

As can be seen from Theorem 5 above, a weaker notion of IBE, namely, one with
IND-ID-CPA security, is necessary and sufficient for the construction of a secure CVS
scheme. It is thus fair to say CVS could be constructed based on a weaker assumption
than IBE with the standard IND-ID-CCA security [2].
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4 Conclusions

In this paper, we introduce a new signature concept called CVS which could provide
effective solutions in many digital business scenarios, in particular, those involving mu-
tually distrusting parties. We demonstrate its feasibility by giving a generic construc-
tion using IBE and show that it is equivalent to CPA-secure IBE. The equivalence result
could imply that CVS can be constructed based on weaker computational assumptions
compared with IBE which should usually be CCA-secure. One open problem is whether
CVS can be constructed from primitives other than IBE.
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5. J. Boyar, D. Chaum, I. Damgård, and T. Pedersen. Convertible undeniable signatures. In
Advances in Cryptology — CRYPTO 1990, Springer-Verlag LNCS vol. 537, pages 189–205,
1991.

6. J. Camenisch and M. Michels. Confirmer signature schemes secure against adaptive adver-
saries. In Advances in Cryptology — EUROCRYPT 2000, Springer-Verlag LNCS vol. 1870,
pages 243–258, 2000.

7. Aldar C-F. Chan and Ian F. Blake. Conditionally verifiable signatures. Cryptology ePrint
Archive, Report 2005/149, 2005. http://eprint.iacr.org/.

8. D. Chaum. Zero-knowledge undeniable signatures. In Advances in Cryptology — EURO-
CRYPT 90, Springer-Verlag LNCS vol. 473, pages 458–464, 1990.

9. D. Chaum. Designated confirmer signatures. In Advances in Cryptology — EUROCRYPT
1994, Springer-Verlag LNCS vol. 950, pages 86–91, 1995.
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Appendix

Proof Sketch of Lemma 1
We prove the unforgeability property by contradiction. Assume SIG is existentially
unforgeable under chosen message attacks. Suppose there is a PPT forging algorithm
F which can forge a CVS partial signature with probability of success pCV S

F . We show
how to construct another forging algorithm F ′ from F to forge a signature of SIG. F ′

runs as follows.

Algorithm F ′

In the Setup phase: ask its challenger for the signer public key PKS ; run Setup to get
all the witness public/private key pairs (PKWi , skWi), 1 ≤ i ≤ N ; run F on PKS

and (PKWi , skWi).
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In the Query phase: when F issues a OS query for 〈mj , Cj〉 where Cj = {(cji, Wji) :
1 ≤ i ≤ N}, ask its signing orale for an ordinary signature σj = Sig(sks, mj);
randomly choose aji (1 ≤ i ≤ N ) to create a partial signature:

δj =
〈
σj ⊕ h

(⊕N
i aji

)
,
{
Enc(PKWji , cji, aji)

}
, Com

(
σj , h

(⊕N
i aji

))〉
;

with aji’s, σj , and all random coins used, run the confirmation protocol with F .
Finally, when F outputs a guess (m, σ), output (m, σ) as the guess of F ′.
END.

Obviously, if F is PPT, then F ′ is also PPT. Note that F should output m �= mj , ∀j
The probability of success of F ′ is: pSIG

F ′ = Pr[V er(m, σ, PKS) = 1] = pCV S
F . If

the CVS scheme is forgeable, that is, pCV S
F is non-negligible, then pSIG

F ′ is also non-
negligible (a contradiction).

Proof Sketch of Lemma 2
It can be shown that if a given CVS scheme is secure for one witness, then the version
with finitely many witnesses is also secure. Hence, we consider a single witness case
and leave the multiple-witness case in the full version.

Assume IBE is IND-ID-CPA secure, h is a pseudorandom generator, and COM
is computationally hiding. Suppose D is a PPT distinguisher which has non-negligible
advantage AdvSim

D in winning the simulatability game in Definition 2. We can base on
D to construct another distinguisher D′ to break the semantic security of IBE as fol-
lows. To avoid confusion, we should clarify that in the following discussion, we denote
the challenge ciphertext of the IBE game by Cb, b ∈ {0, 1} and the queried verifiability
condition set by Cj .

Algorithm D′(Cb), b ∈ {0, 1}
In the Setup phase: ask its challenger for the public key PKG of the PKG; use it as the
witness public key for W ; run CVKGS to generate the signer public/private key pair
(PKS , skS); run D on PKG and (PKS, skS).
To answer Signing Query (OS) on 〈mj , Cj〉 where Cj = (cj , W ): generate σj =
Sig(mj, skS); randomly pick aj and encrypts itself to generate the partial signature:
δj = 〈σj ⊕ h(aj), Enc(PKG, cj , aj), Com(σj , h(aj))〉; based on all the random
coins used, run the confirmation protocol with D.
To answer Endorsement Query (OE) on (cj , W ): pass all endorsement queries
(cj , W ) from D as extraction queries on cj to its oracle to get dj ; dj is equivalent
to σW (cj).
In the Challenge phase: D outputs m and (c, W ) to ask for a challenge; create a
signature σt on a message m using Sig; randomly pick σf ∈ Sσ; randomly pick
at, af ∈ PIBE ; output at and af to ask for a challenge Cb where

Cb =
{

Enc(PKG, c, at), b = 0
Enc(PKG, c, af ), b = 1;

flip a coin e ∈ {0, 1} and send the following challenge to D:

δe =
{
〈σt ⊕ h(at), Cb, Com(σt, h(at))〉, e = 0
〈σf ⊕ h(af ), Cb, Com(σf , h(af ))〉, e = 1.

Finally, when D outputs a guess b′, D′ outputs b′ as a guess for b.
END.
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Note: 〈σt⊕h(at), Enc(PKG,c,at), Com(σt, h(at))〉 is equivalent to CVSigS(m, C)
and 〈σf ⊕ h(af ), Enc(PKG, c, af ), Com(σf , h(af ))〉 is equivalent to Fake(C).

Obviously, if D is PPT, so is D′. Let εh and εCOM be the indistinguishability co-
efficients of the pseudorandom generator and the commitment scheme. Recall that εh

denotes the advantage of the best PPT distinguisher in distinguishing between the out-
put distribution of a pseudorandom generator h : {0, 1}lp → {0, 1}ls and a uniform
distribution over the output space of h. Whereas, εCOM denotes the advantage of the
best PPT distinguisher in distinguishing between the output distributions of the com-
mitments of two different input values, say σf and σt, that is, between {r ← {0, 1}∗ :
Com(σf , r)} and {r ← {0, 1}∗ : Com(σt, r)}. Using hybrid arguments, it can be
shown that the advantages of D and D′ are related as follows:

AdvSim
D < 2AdvIBE

D′ + εh + 1
2εCOM .

If we assume COM is computationally hiding and h is a pseudorandom genera-
tor, then both εh and εCOM should be negligible. Consequently, if AdvSim

D is non-
negligible, the only possibility is either AdvIBE

D′ is non-negligible, meaning D′ could
break the semantic security of the IBE scheme (a contradiction). In other words, the
semantic security of the IBE scheme implies the simulatability of the CVS construction
with respect to the given construction of Fake. Since Fake is PPT, we could conclude
that the given generic CVS construction is simulatable.

Proof Sketch of Theorem 4
Assume the CVS scheme is simulatable with respect to Fake. Suppose the constructed
IBE scheme is not IND-ID-CPA secure, that is, there exists an adversary D which can
win the IND-ID-CPA game with a non-negligible advantage AdvIBE

D . In other words,
given a ciphertext (m, δb, PKS) where δb is a valid/fake partial signature when b =
0/1, D could tell whether the plaintext bit b = 0 or b = 1 with a non-negligible
advantage. We can construct D′ from D to tell whether a given partial signature δb

originates from CVSig or Fake as follows.

Algorithm D′(δb)
In the Setup phase: get the public key PKG of the witness from its challenger; run D
on PKG; get the signer’s public/private key pair (PKS , skS).
To answer Extraction Query 〈IDj〉: pass all extraction queries from D to its endorse-
ment oracle.
In the Challenge phase: whenD outputs ID to be challenged (Note the plaintext could
only be 0 or 1), randomly select a message m ∈ M; pass m, ID to its challenger and
receive the challenge δb; pass Cb = (m, δb, PKS) as a challenged ciphertext to D.
Finally, when D outputs a guess b′, D′ outputs b′ as a guess for b.
END.

It obvious that the advantage ofD′ with respect to CVS simulatability is the same as
the advantage of D on breaking the semantic security of the IBE scheme. Hence, if the
latter is non-negligible, so is the former, a contradiction as we assume the given CVS
scheme is simulatable with respect to Fake. In conclusion, the constructed IBE scheme
is semantically secure as long as the CVS scheme is simulatable.
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the network is modeled by an adversary who controls the actions of nodes in the
network in a variety of ways. There are various network settings, fault models
and computational models in which PRMT and PSMT problem has been stud-
ied extensively [3,2,4,13,12,5,7,11]. The PRMT and PSMT problems are very
important primitives in various reliable and secure distributed protocols.

In this paper, we focus on undirected synchronous networks, where the ad-
versary is an adaptive threshold Byzantine adversary having infinite computing
power. In the past, PRMT and PSMT had been studied extensively in this set-
ting [3,13,15,10,1]. The problem of PRMT and PSMT in this setting was first
posed in [3]. In [3], it is proved that for t Byzantine faults, a two phase or three
phase protocol exists iff there exists atleast 2t + 1 vertex disjoint paths between
S and R. However, the protocols of [3] involve lot of communication overhead.
These protocols were improved significantly in [13]. However, the protocols of
both [3] and [13] consider the problem of sending only one field element re-
liably and securely. So, in order to send a message consisting more than one
field elements, we have to parallely execute these protocols for individual field
elements, which will result in a huge communication overhead. This problem
was first addressed in [15], where the authors attempted to give optimal PRMT
and PSMT protocols to send messages containing more than one field element.
In [15], the authors proved a lower bound of Ω( nl

n−2t ) field elements to be com-
municated to send a message containing l field elements reliably(securely) by
using any two phase PRMT(PSMT) protocol. In view of this lower bound, any
two phase PRMT(PSMT)protocol, which achieves this bound to send a message
containing l field elements, reliably(securely) is called bit optimal two phase
PRMT(PSMT) protocol. In [15], the authors claimed a two phase secure and
reliable protocol to achieve this bound. However, in [1], the protocol of [15] has
been proved to be unreliable. In [1], a two phase optimal PSMT(also PRMT)
protocol has been proposed to send a message of size O(t) securely and reliably
by communicating overall O(t2) field elements. However, the protocol performs
local computation(computation by S and R) which is not polynomial in n. Thus
there doesnot exist any two phase polynomial time bit optimal PRMT protocol.
In this paper, we propose a two phase bit optimal PRMT protocol, which per-
forms local computation which is polynomial in n. We also show how to extend
this protocol to incorporate additional faults of type omission and failstop.

In [10], a log(t) phase protocol has been proposed to reliably send a message
m of sufficiently large length l (l = Ω(nlog2n), by communicating overall O(l)
field elements. In this paper, we significantly improve the above result by propos-
ing a three phase protocol that reliably sends a message of size l(l = Ω(t2)) by
communicating O(l) field elements. Thus we can achieve reliability for free! We
also propose a three phase PSMT protocol, that securely sends a message of
size O(t) by communicating overall O(t2) field elements. Though, the same task
can be done by using the two phase protocol of [1], as mentioned earlier, their
protocol involve huge amount of local computation, which is not polynomial in
n. However, the three phase protocol proposed in this paper involves only poly-
nomial time computation.
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The rest of the paper is organised as follows: In the next section, we mention
the network settings. We also recall some of the techniques used in [15], which we
have used as blackbox in our protocols. In section 3, we give our two phase bit
optimal PRMT protocol, considering only Byzantine adversary. We also show,
how to extend this protocol to incorporate fail-stop and omission faults. This is
followed by our interesting three phase PRMT protocol for sending a message
of l field elements by communicating overall O(l) field elements in section 4.
In section 5, we propose a three phase PSMT protocol which securely sends a
message of size O(t) field elements by communicating O(t2) field elements. The
paper ends with a brief conclusion and directions for further research.

2 Preliminaries

Here we recall the network settings and some of the algorithms which we have
used as blackbox in our protocols from [15]. The underlying network is a syn-
chronous network represented by an undirected graph N (P , E), where P =
{P1, P2, . . . , PN} ∪ {S,R} denotes the set of players (nodes) in the network
that are connected by 2-way communication links as defined by E ⊂ P × P .
Also, N is atleast (2t + 1)-(S, R) connected 1. Following the approach of [3],
we abstract away the network entirely and concentrate on solving PRMT and
PSMT problem for a single pair of synchronized processors, the sender S and
the receiver R, connected by n wires w1, w2, . . . , wn, where n ≥ 2t + 1. We may
think of these wires as a collection of vertex-disjoint paths between S and R in
the underlying network 2 . The adversary is a static 3 adversary that can corrupt
upto t of the wires connecting S and R and has unbounded computing power.
Throughout this paper, we use m to denote the message that S wishes to send to
R reliably. The message is assumed to be a sequence of � elements from the finite
field F. The only constraint on F is that its size must be no less than the number
of wires n. Since we measure the size of the message in terms of the number of
field elements, we must also measure the communication complexity in units of
field elements. We say that a wire is faulty if it is controlled by the adversary;
all other wires are called honest. A faulty wire is corrupted in a specific phase if
the value sent along that wire is changed.

2.1 Efficient Single Phase Reliable Communication

In [15], the authors have shown how to convert a t-error correcting code into a
protocol REL-SEND for single phase reliable communication. In their protocol,

1 We say that a network N is n − (Pi, Pj)-connected if the deletion of no (n − 1) or
less nodes from N disconnects Pi and Pj .

2 The approach of abstracting the network as a collection of n wires is justifying using
Menger’s theorem [9] which states that a graph is c − (S,R)-connected iff S and R
are connected by atleast c vertex disjoint paths.

3 By static adversary, we mean an adversary that decides on the set of players to
corrupt before the start of the protocol.
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the authors have used Reed-Solomon codes as t-error correcting code. The Reed-
Solomon codes are defined as follows:

Definition 1. Let F be a finite field and α1, α2, . . . αn be a collection of distinct
elements of F. Given k ≤ n ≤ |F|, and a block B = [m0 m1 . . . mk−1] the encod-
ing function for the Reed-Solomon code RS(n, k) is defined as [pB(α1) pB(α2) . . .

pB(αn)] where pB(x) is the polynomial
∑k−1

i=0 mix
i.

The efficiency (maximum amount of information that can be sent reliably even
in the presence of faults) of an error correcting code is subject to Singleton
bound [8], which states that k ≤ n−d+1, where k is the length of the message
block, n is the length of the codeword and d is distance of the code. It is well
known in coding theory that for a t-error correcting code, the distance d is at
least 2t+1. Thus, for any t-error correcting block code, we have k ≤ n−2t. Since
Reed-Solomon codes are also error correcting codes, whose efficiency is bounded
by Singleton bound [8], for a t-error correcting RS code, we have k ≤ n− 2t. We
now recall the REL-SEND(m, k) protocol [15], which is a single phase protocol
which reliably sends a message m by dividing m into blocks of length of k field
elements where k ≤ n− 2t.

Protocol REL-SEND(m, k): optimal single phase reliable message trans-
mission of m. Without loss of generality, we assume that length l of the
message m is a multiple of k.

– S breaks up m into blocks of length k field elements.
– For each block B = [m0 m1 . . . mk−1]:

• S computes RS(n, k) to obtain [pB(α1) pB(α2) . . . pB(αn)].
• S sends pB(αi) along the wire wi.
• R receives the (possibly corrupted) pB(αi)’s and applies the Reed-

Solomon decoding algorithm and constructs B.
– R concatenates the B’s to recover the message m.

Lemma 1 ([15]). Suppose that the receiver R knows f faults among the n
wires, and t′ be the number of faulty wires apart from these f wires. Then
REL-SEND(m, k) works correctly even for slightly larger k. Specifically, REL-
SEND(m, k) works correctly for all k, k ≤ n− 2t′ − f .

2.2 Extracting Randomness

In [15], the authors have proposed an algorithm for the following problem:
Suppose S and R by some means agree on a sequence of n numbers x =
[x1x2 . . . xn] ∈ Fn such that the adversary knows n − f components of x, but
the adversary has no information about the other f components of x, however,
S and R do not necessarily know which values are known to the adversary. The
goal is for S and R to agree on a sequence of f numbers y1y2 . . . yf ∈ F such
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that the adversary has no information about y1y2 . . . yf . This is achieved by the
following algorithm [15]:

Algorithm EXTRANDn,f (x). Let V be a n × f Vandermonde ma-
trix with members in F. This matrix is published as a part of the
protocol specification. S and R both locally compute the product
[y1 y2 . . . yf ] = [x1 x2 . . . xn]V.

Lemma 2 ([15]). The adversary has no information about [y1 y2 . . . yf ] com-
puted in algorithm EXTRAND.

2.3 Communicating Conflict Graph

In the two phase and three phase PSMT protocols proposed in [3,13], we come
across the following situation: In the first phase, player A (which is S for three
phase protocol and R for two phase protocol) selects at random n = 2t + 1
polynomials pi, 1 ≤ i ≤ n over F, each of degree t. Next through each wire wi, A
sends to the other player B (which is R for three phase protocol and S for two
phase protocol), the following: the polynomials pi.4 and for each j, 1 ≤ j ≤ n,
the value of pj(αi) (which we denote by rij) where αi’s are arbitrary distinct
publicly specified members of F. Assume that B receives the polynomials p′i and
the values r′ij along the wire wi. In the next phase, B tries to find as many
faults as he can find that occurred in the previous phase and communicate all
his findings reliably back to A. Towards this, B first constructs what is known
as conflict graph H = (W , E), where W = {w1, w2, . . . , wn} and (wi, wj) ∈ E
if r′ij �= p′j(αi) or r′ji �= p′i(αj) . A naive and straightforward way of reliably
sending the conflict graph to A is to broadcast the entire graph over all the
n wires. This approach of broadcasting the set of contradictions is used in the
PSMT protocols of [3,13]. Since in the worst case there can be Θ(n2) edges
in the conflict graph, broadcasting them requires communicating Θ(n3) field
elements.

In [15], the authors have given a method to communicate the set of Θ(n2)
edges by communicating Θ(n2) field elements. We call this method as Matching
technique, which we use as a black box in this paper. We briefly describe the
method: Suppose B receives the polynomials p′i and the values r′ij along the wire
wi, 1 ≤ i ≤ n.

B’s computation and communication

– B initializes his fault-list, denoted by Lfault, to ∅. B then constructs an
undirected graph H = (W , E) where the edge (wi, wj) ∈ E if r′ij �= p′j(αi)
or r′ji �= p′i(αj).

– For each i, 1 ≤ i ≤ n, such that the degree of node wi in the graph H
constructed above is greater than t (i.e., degree(wi) ≥ t + 1), B adds wi to
Lfault.

4 We assume that a polynomial is sent by sending a (t + 1)-tuple of field elements.
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– Let H ′ = (W ′, E′) be the induced subgraph of H on the vertex set W ′ =
(W \Lfault). Next, B finds a maximum matching5 M ⊆ E′ of the graph H ′.

– For each edge (wi, wj) in H that does not belong to M , B associates the
six-tuple {αi, αj , r

′
ij , r′ji, p

′
j(αi), p′i(αj)}. Let {a1, a2, . . . , aN} be the edges in

H that are not in M . Replacing each edge with its associated 6-tuple, R
gets a set of 6N field elements, X = {X1, X2, . . . , X6N}.

– B then sends the following to A through all the wires: the set Lfault and for
each edge (wi, wj) ∈ M , the following six field elements: {αi, αj , r

′
ij , r

′
ji, p

′
i(αj)

and p′j(αi)}. B also sends the set X as REL-SEND(X, |M | + |Lfault| + 1)
to A.

The following lemma and theorems taken from [15] shows that the above method
reliably sends the list of Θ(n2) contradictions by overall communicating O(n2)
field elements.

Lemma 3 ([15]). A is guaranteed to receive the set X correctly.

Theorem 1 ([15]). Given an undirected graph H = (V, E), with a maximum
degree of t, and a maximum matching M , the number of edges |E| is less than
or equal to (2|M |2 + |M |t).

Theorem 2 ([15]). The overall communication complexity involved in the pro-
tocol REL-SEND(X, M + |Lfault|+ 1) is O(t2).

Thus, the entire conflict graph is send in two parts; first a matching M is broad-
casted in O(t2) communication complexity and then the rest of the edges of the
conflict graph are send by communicating O(t2) field elements by using REL-
SEND protocol. We are now ready to describe our protocols.

3 Two Phase Bit Optimal Perfectly Reliable Message
Transmission Protocols

Here we propose a two phase bit optimal perfectly reliable message transmission
protocol, which reliably sends a message consisting of O(t) field elements by
communicating O(t2) field elements. As mentioned earlier, our protocol performs
polynomial time computation in comparison to the two phase PRMT protocol
of [1] which performs huge amount of local computation which is not polynomial
in n. We also show how our protocol can incorporate omission and fail-stop errors
in addition to Byzantine errors.

3.1 Two Phase PRMT Protocol Considering Only Byzantine Errors

Let n = 2t + 1 and m = [m0m1 . . . mt] be the message block of size t + 1, where
each mi ∈ F. In our protocol, the first phase is from R to S and the second
phase is from S to R.
5 A subset M of the edges of H , is called a matching in H if no two of the edges in

M are adjacent. A matching M is called maximum if H has no matching M ′ with a
greater number of edges than M has.
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Phase I (R to S)
The receiver R selects at random n polynomials pi, 1 ≤ i ≤ n over F, each of
degree t. Next, through each wire wi, R sends the following to S: the polynomi-
als pi and for each j, 1 ≤ j ≤ n, the value of pj(αi) (which we denote by rij)
where αi’s are arbitrary distinct publicly specified members of F.

Phase II (S to R)
Let S receive the polynomials p′i and the values r′ij along the wire wi.

S’s computation and communication

– S initializes his fault-list, denoted by Lfault, to ∅. S then constructs an undi-
rected graph H = (W , E) where W = {w1, w2, . . . , wn} and edge (wi, wj) ∈
E if r′ij �= p′j(αi) or r′ji �= p′i(αj). Here H is called the conflict graph.

– For each i, 1 ≤ i ≤ n, such that the degree of node wi in the graph H
constructed above is greater than t (i.e., degree(wi) ≥ t + 1), S adds wi to
Lfault.

– S constructs a 3t+1 degree, message carrying polynomial s(x) =
∑3t+1

i=0 kix
i

over F as follows:

Assign ki =

⎧⎨⎩
mi if 0 ≤ i ≤ t.
0 if wi−t ∈ Lfault.
p′i−t(0) otherwise.

– S constructs the set Z = {s(α1), s(α2), . . . , s(α2t+1)}.
– S sends the conflict graph H to R by using the matching technique as

mentioned in section 2.3.
– S sends the set Z and the list Lfault along each of the n wires.

Message recovery by R

1. R reliably receives Lfault and knows that the wires in this set are faulty. He
initializes LR

fault = Lfault.
2. For each edge (wi, wj) ∈M , R reliably receives the six tuple {αi, αj , r

′
ij , r

′
ji,

p′i(αj) and p′j(αi)}. R locally verifies: r′ij
?= rij and p′j(αi)

?= pj(αi).
(a) If the first test fails, it implies that the value of the polynomial pj(x) at

αi had been change by the adversary and hence R adds wire i to LR
fault.

(b) If the second test fails, R concludes that the polynomial pj(x) had been
changed by the adversary and hence adds wire j to LR

fault.
(c) If both the test fails, then R knows that both the polynomial pj(x) as

well its value at αi had been changed and hence adds wire i and j to
LR

fault.
3. After step 2, at least |M | new faults are caught by R.
4. From the correctness of the matching technique, it is clear that R receives

the conflict graph H reliably. Again R locally verifies for each edge’s (say
(wi, wj)) 6-tuple: r′ij

?= rij and p′j(αi)
?= pj(αi).
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(a) If the former check fails (that is the values are unequal), it implies
that the value of the polynomial pj(x) at αi had been changed by the
adversary and hence R adds wi to LR

fault.
(b) If the latter check fails, then R concludes that the polynomial pj(x)

had been changed by the adversary and hence adds wire j to LR
fault.

(c) If both the check fails, then R knows that both the polynomial pj(x) as
well its value at αi had been changed by the adversary and adds both
wire i and j to LR

fault.
5. At the end of this step, all the faults that occurred during transmission in

Phase I are guaranteed to have been identified (see Theorem 3 below).
6. R will try to reconstruct s(x) as follows:

– The first t + 1 coefficients correspond to the the t + 1 elements of m and
hence are unknown to R. So he puts t + 1 unknown variables at these
positions.

– If wire wi ∈ Lfault, then R puts 0 at position t + 1 + i; i.e., if wire wi

was detected as faulty by S after phase 1, then R knows that S had put
zero as the coefficient at position t + 1 + i in s(x).

– If wire wi �∈ Lfault, but present in the set LR
fault, then R puts an un-

known variable at position t+1+i; i.e., if wire wi is detected as faulty by
R after receiving the conflict graph, then R knows that S has used p′i(0)
as the coefficient at position t+1+i in s(x), such that p′i(0) �= pi(0). Since
R does not know what p′i(0) has been used by S, R puts an unknown
variable corresponding to the position t + 1 + i in s(x).

– For all other positions k, R puts pk(0)
7. There will be maximum 2t + 1 unknowns for R corresponding to s(x) (t + 1

corresponding to m and atmost t corresponding to the faulty polynomials
that S had received after phase 1), but he is receiving the value of s(x) at
2t+1 points. So he forms 2t+1 equations in atmost 2t+1 unknown variables,
solves these equation, gets the values of the unknown variables and correctly
reconstruct s(x) and hence correctly retrieve the message m.

Theorem 3. The above protocol reliably communicates t+1 field elements from
S to R by overall communicating O(n2) = O(t2) field elements.

Proof (sketch). Suppose wire wi was corrupted in Phase I; i.e., either pi(x) �=
p′i(x) or p′j(αi) �= r′ij . Consider the first case; i.e., pi(x) �= p′i(x). Then the two
polynomials can intersect in at most t points, since both are of degree t. Since
there are atleast t+1 honest wires, pi = p′i in atmost t of the αi’s corresponding
to these honest wires, so there is atleast one honest wires wj which will contradict
wi and so the edge (wi, wj) will be present in the conflict graph. Corresponding
to the edge (wi, wj), R reliably receives the values p′i(αj) and r′ji. In step 2(b) or
4(b) of the protocol, R will come to know that pi(αj) �= p′i(αj) and will add wire
i to LR

fault. Suppose, on the other hand that the adversary had changed the value
of a correct polynomial pj(x) at αi. Then p′j(αi) �= r′ij . So the edge (wi, wj) will
be present in the conflict graph. Corresponding to the edge (wi, wj), R reliably
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receives the values r′ij and p′j(αi). In step 2(a) or 4(a) of the protocol, R will
come to know that rij �= r′ij and adds wire i to LR

fault. Since the correct values
corresponding to every contradiction have been received, R eventually knows
all the corruptions; i.e., R will know all the wires wi over which the either the
polynomial pi had been changed or the value of a correct polynomial pj(x) at
αi had been changed after Phase I. The reliability of the protocol follows from
the working of the protocol. In Phase I O(n2) field elements are communicated.
In Phase II, to send the conflict graph, O(n2) communication complexity is
involved. Broadcasting the set Z also involves O(n2) communication complexity.
Hence the overall communication complexity is O(n2). 	

From [15], the lower bound on communication complexity for reliably sending t
field elements, where n ≥ 2t + 1, using any two phase PRMT protocol is O(t2).
Since our protocol achieves this bound, our protocol has optimal communication
complexity.

3.2 Two Phase PRMT Protocol Considering Mixed Adversary

Here, we show how the PRMT protocol of previous section can be extended
to incorporate omission and failstop errors in addition to Byzantine errors. For
the definition of failstop and omission errors see [6]. Note that unlike Byzantine
adversary, which can force P to behave maliciously, omission or fail-stop adver-
sary cannot do so. In the mixed adversary model, the threshold adversary is
represented by the 3-tuple (tb, to, tf ), where tb, to and tf are the number of wires
that are under the control of the adversary in Byzantine, omission and fail-stop
fashion. The following theorem is taken from [14].

Theorem 4 ([14]). Perfectly reliable message transmission between S and R in
a network N is possible under the presence of a threshold adversary characterized
by the 3-tuple (tb, to, tf ) iff there exists atleast (2tb + to + tf + 1) wires between
S and R in N .

The following theorem taken from [14] gives the lower bound on the communi-
cation complexity of any two phase PRMT protocol to reliably send a message
consisting l field elements under the presence of threshold adaptive adversary
(tb, to, tf ).

Theorem 5 ([14]). Any two phase PRMT protocol, which reliably communi-
cates l field elements from S to R, which are connected by n ≥ 2tb + to + tf + 1
wires, where tb, to and tf are the number of wires under the control of a threshold
adaptive adversary in Byzantine, omission and fail-stop fashion, requires com-
municating atleast Ω

(
nl

n−(2tb+to+tf )

)
field elements.

Putting l = (tb + to + tf + 1) = O(n) and n = 2tb + to + tf + 1, we get a lower
bound of Ω(n2) field elements to be communicated to reliably send a message
of size O(n) from S to R. We informally describe, how our two phase PRMT
protocol of the previous section, can be extended in the mixed adversary model
to achieve two phase bit optimal PRMT protocol.
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Informal Description of the Protocol

In the first phase, R will select n = 2tb + to + tf + 1 polynomials pi over F
of degree tb and send over wire wi, the polynomial pi and the values rij =
pj(αi). In the second phase, S will receive the polynomial p′i and the values r′ij
over wi. S will form the conflict graph H and construct a list Lfault, where
wi ∈ Lfault iff degree(wi) ≥ tb + 1. Also, S will create another list Lomitted,
where wi ∈ Lomitted if S does not receive anything over wi. It is clear that
|Lomitted| ≤ to + tf . S will broadcast the list Lomitted and Lfault to R and
sends H to R using matching technique. S will also form a secret carrying
polynomial s(x) =

∑i=n+tb+to+tf

i=0 kix
i as follows: let m = [m0m1 . . .mtb+to+tf

]
be the message block.

Assign ki =

⎧⎨⎩
mi if 0 ≤ i ≤ tb + to + tf .
0 if wi−(tb+to+tf +1) ∈ Lfault ∪ Lomitted.
p′i−(tb+to+tf +1)(0) otherwise.

S will initialize a list Y = (s(α1), s(α2), . . . , s(αn)) and broadcast Y to R. After
receiving the conflict graph and the list Lomitted, R will find out all the corrup-
tions that had taken place after Phase I and constructs the list of faulty wires
LR

fault. The message recovery by R is done in the same way as in the previous
protocol, except that here the degree of s(x) is 3tb +2to +2tf +1. It is clear that
for R, there will be atmost 2tb + to + tf + 1 unknown variables corresponding to
s(x), but he is receiving the value of s(x) at n = 2tb + to + tf + 1 points. Hence,
he can easily form a system of equations and reconstruct s(x) and retrieve m. It
is easy to see that the overall communication complexity in each phase is O(n2),
which is matching the lower bound for bit optimal two phase PRMT protocol
involving mixed adversary. Hence, our protocol is bit optimal.

4 A Three Phase PRMT Protocol Considering Byzantine
Adversary

Here we propose a three phase PRMT protocol to reliably send a message con-
sisting n2 field elements by communicating overall O(n2) field elements, where
n = 2t+1. Thus we get reliability for “free”. In [10], a log(t) phase protocol has
been proposed to do the same. Thus our protocol is a significant improvement
over the protocol of [10]. In [14], it is shown that any r-phase PRMT protocol
for r ≥ 1, which reliably sends a message of size l from S to R needs to commu-
nicate atleast Ω(l) field elements. Since, our protocol achieves this bound, our
protocol is bit optimal.

In our protocol, the first phase is a send from S to R, the second phase
is from R to S and the third and final phase is again from S to R. Let the
sequence of (n2) field elements that S wishes to transmit be denoted by mij ,
0 ≤ i, j ≤ (n− 1).
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Phase I (S to R)
Using the mij values, S defines a bivariate polynomial q(x, y) of degree (n− 1)
in each variable:

q(x, y) =

i=n−1
j=n−1∑

i=0,j=0

mijx
iyj

The sender S then defines n polynomials pi(x), 1 ≤ i ≤ n over F, each of
degree (n− 1) as follows:

pi(x) = q(x, αi)

where αi’s are arbitrary distinct publicly specified members of F. S then writes
each polynomial pi(x) which is of degree n− 1 = 2t, in the following form

pi(x) = (θi(x) ∗ βi(x)) + γi(x)

where θi(x) and βi(x) are polynomials of degree t and γi(x) is a polynomial of
degree atmost t−1. Next, through each wire wi, S sends the following to R: the
polynomial θi, βi and γi and for each j, 1 ≤ j ≤ n, the value of θj(αi), βj(αi)
and γj(αi), which we denote by θij , βij and γij respectively.

Phase II (R to S)
Phase II is similar to Phase II of the PRMT protocol of section 3, except that
here R performs the computation instead of S. Also, here R will receive three
polynomials and 3n values over each wire. R will construct three conflict graphs,
H1, H2 and H3 corresponding to the polynomials θi, βi and γi respectively. R
also constructs the list Lfault, where wi ∈ Lfault if degree(wi) ≥ t + 1 in any
of the conflict graphs H1, H2 or H3. R then sends the list Lfault to S by broad-
casting it over all the n wires. R also sends the conflict graphs H1, H2 and H3

to S by using matching technique.

Phase III (S to R)
In Phase III, S will reliably receive the conflict graphs H1, H2 and H3 and the
list Lfault. As in two phase PRMT protocol of section 3, S will locally check each
contradiction present in the conflict graphs H1, H2 and H3 and find out all addi-
tional faulty wires wi, overwhich atleast one of the polynomials θi, βi or γi has been
changed after Phase I. S will now have the list of all faulty wires LS

fault. Note that
|LS

fault| ≤ t. S knows that for all other wires wi �∈ LS
fault, R has received the poly-

nomials θi, βi and γi correctly. S will now send the correct polynomials θi, βi and
γi corresponding to each faulty wire wi ∈ LS

fault to R as follows: S sends the set
LS

fault to R through all the wires. Let Z be the list of coefficients of all the polyno-
mials θi(x), βi(x) and γi(x) for all wi ∈ LS

fault. Thus |Z| ≤ 3(t + 1) ∗ |Ls
fault|. S

will send Z reliably using protocol REL-SEND as REL-SEND(Z, |Ls
fault|).

Message Recovery by R
R reliably receives the list LS

fault and list Z. From the list LS
fault, R will come to

know all the wires wi, over which he had received atleast one faulty polynomial
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θi, βi or γi after Phase I. From the list Z, R will receive the correct θi, βi and
γi corresponding to each wire wi ∈ LS

fault. R will now have correct θi, βi and γi

for all the wires wi, 1 ≤ i ≤ n. Thus he reconstruct all the pi(x) = q(x, αi) as

pi(x) = (θi(x) ∗ βi(x)) + γi(x)

R reconstructs the polynomial q(x, y) using n correct q(x, αi) and hence retrieve
all mij , 0 ≤ i, j,≤ (n− 1).

Theorem 6. The above protocol reliably sends a message consisting of n2 field
elements by communicating O(n2) field elements.

Proof (Sketch). To reconstruct the message, R should be able to reconstruct the
polynomial Q(x, y). If R knows n correct Q(x, i)’s, then he can easily reconstruct
Q(x, y), because Q(x, i) is a polynomial in x of degree n − 1. In Phase III, S
will find out all the wires over which atleast one of the three polynomials has
been changed. S will reliably send all the three polynomials for all such iden-
tified faulty wires by REL-SEND(Z, |LS

fault|) to R. From lemma 1, the REL-
SEND(·, k) protocol succeeds provided that n− f ≥ k + 2(t− f), where f is the
number of faults that R already knows; here, k = |LS

faults| and n = 2t+1. There-
fore, REL-SEND succeeds if (2t+1)−f−(|LS

faults|) ≥ 2t−2f, or if, f ≥ |LS
faults|.

Since, in Phase III, S broadcasts the list LS
fault, R is guaranteed to have

identified at least |LS
faults| faulty wires. Thus R will receive the list Z cor-

rectly. The reliability of the protocol follows from the working of the protocol.
The overall communication complexity in Phase I is O(n2). In Phase II, R
needs to send three conflict graphs using matching technique, which involve
an overall communication complexity of O(n2). The communication complexity
involved in sending Z through REL-SEND is O

(
|Z|∗n

|LS
fault|

)
= O(n2) because

|Z| = O(t ∗ |LS
fault|) = O(n ∗ |LS

fault|) as t = O(n). Thus the overall communi-
cation of the protocol is O(n2). Hence the theorem. 	


5 A Three Phase PSMT Protocol

Here we propose a three phase PSMT protocol which securely sends a message m
consisting of t + 1 field elements by communicating O(n2) field elements, where
n = 2t + 1. In [1], a two phase PSMT protocol to do the same task is proposed.
However, the protocol in [1] performs a huge amount of local computation by R,
which is not polynomial in n. However, our protocol performs polynomial time
local computation.

Phase I (S to R)

– S selects n polynomial p1(x), p2(x), . . . , pn(x) over F, each of degree t. Over
each wire wi, S sends the polynomial pi and the values pj(αi), denoted by
rij , for 1 ≤ j ≤ n, where αi are elements in F.
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Phase II (R to S)

– R receives over each wire the polynomial p′i and the values r′ij and constructs
the conflict graph H based on the values p′i and r′ij . R also prepares a list
Lfault, where wi ∈ Lfault if degree(wi) ≥ t + 1 in H . R sends the conflict
graph H using matching technique and broadcasts the list Lfault over 2t+1
wires.

Phase III (S to R)

– S reliably receives the list Lfault and the conflict graph H . S will perform
local checking for each contradiction (wi, wj) present in the conflict graph
H . After this S will have the list LS

fault which contains all the wires wi

over which the polynomial pi has been changed after Phase I. Note that
|LS

fault| ≤ t.
– S will form a n − |LS

fault| tuple x = [xi1xi2 . . . xi
n−|LS

fault|
], where xij =

pij (0), for 1 ≤ j ≤ n − |LS
fault|; i.e., the vector x is the collection of the

constant terms of all the polynomials pi, such that wi �∈ LS
fault. S will execute

EXTRANDn−|LS
fault|,t+1(x) algorithm of section 2.2 to get a sequence of

t + 1 field elements y = [y1y2 . . . yt+1]
– S computes c = [c1c2 . . . ct+1] = y⊕m, where ci = mi⊕ yi, for 1 ≤ i ≤ t+1.

Here m = [m1m2 . . . mt+1] denotes the message block. S then broadcasts the
list c and LS

fault over all the n wires.

The overall communication complexity of the protocol is O(n2). The message
recovery by R is done as follows: R will reliably receive the list LS

fault and
c. From LS

fault, R will know the identity of all the faulty wires wi, R will
ignore all the polynomials p′i and consider the constant term of the remain-
ing n − |LS

fault| polynomials and reconstruct the vector x. R will then execute
EXTRANDn−|LS

fault|,t+1(x) algorithm of section 2.2 to recover y. R will then
recover the message m as m = c⊕ y, where mi = ci ⊕ yi.

Theorem 7. The above protocol securely transmits a message m of size t + 1
field elements by communicating O(n2) field elements.

Proof (sketch). Since in each of the three phases, the overall communication
complexity is O(n2), the overall communication complexity of the above proto-
col is O(n2). The security of the above protocol is argued as follows: there can
be maximum t wires under the control of the adversary. So even if the adversary
passively listen to the contents of these wires, he will come to know only about
the constant terms of these t polynomials. However, he will have no idea about
the constant terms of the remaining t + 1 polynomials corresponding to t + 1
honest wires, because each of these polynomials if of degree t and to interpolate
a polynomial of degree t, we require t + 1 points on that polynomial. However,
the adversary is getting only t points corresponding to an honest polynomial
and hence the constant term of such an honest polynomial is information theo-
retically secure. Since there are atleast t+1 honest wires and hence t+1 honest
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polynomials, the adversary has no information at all about the constant terms
of these t+1 honest polynomials. In Phase III, S knows that for all i ∈ LS

fault,
the polynomial pi(x) had been changed by the adversary and the rest of the
n − LS

fault polynomials had reached correctly to R after Phase I. However,
among these n − LS

fault polynomials, the adversary knows atmost t − LS
fault

polynomials by passively listening the contents of the corresponding wires. Since
S doesnot knows which t−LS

fault wires are under the control of the adversary, S
executes EXTRANDn−|LS

fault|,t+1(x) to obtain the vector y. By the correctness
of the EXTRANDn−|LS

fault|,t+1(x), the adversary will have no idea about the
vector y and hence the message m. Since R will also be able to reconstruct y,
he will be able to reconstruct the message. Hence the theorem. 	


In [15], it is shown that any three phase PSMT protocol which sends l field ele-
ments securely and reliably from S to R, needs to communicate atleast Ω

(
nl

n−2t

)
field elements. Thus our three phase PSMT protocol is bit optimal.

6 Conclusion

In this paper, we have proposed bit optimal two phase PRMT protocol for thresh-
old adversary. Our protocol performs polynomial time computation in compar-
ison to two phase bit optimal PRMT protocol of [1], which performs almost
exponential amount of local computation. We have also shown how this protocol
can be extended in the mixed adversary model. We have also given a three phase
PRMT protocol for reliably sending l field elements by communicating O(l) field
elements. Comparing this protocol with the log(t) phase PRMT protocol of [10],
we find that our protocol has significantly reduced the number of phases. We
have also proposed a three phase PSMT protocol to securely send a message
containing t field elements by overall communicating O(t2) field elements. Again
comparing this protocol with the two phase PSMT protocol of [1] which per-
forms almost exponential amount of computation, we find that by increasing
the number of phases by 1 (but keeping the connectivity of the network same),
we can bring down the amount of computation to be polynomial in the number
of wires. However as stated in [1], to do the same task in two phases, involving
polynomial computation still remains an open problem. Extending the protocol
of section 4 and section 5 to mixed adversary model is another interesting and
challenging problem.
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Abstract. We show in this paper how to apply well known methods
from sparse linear algebra to the problem of computing the immunity
of a Boolean function against algebraic or fast algebraic attacks. For
an n-variable Boolean function, this approach gives an algorithm that
works for both attacks in O(n2nD) complexity and O(n2n) memory.
Here D = n

d
and d corresponds to the degree of the algebraic system to

be solved in the last step of the attacks. For algebraic attacks, our algo-
rithm needs significantly less memory than the algorithm in [ACG+06]
with roughly the same time complexity (and it is precisely the memory
usage which is the real bottleneck of the last algorithm). For fast alge-
braic attacks, it does not only improve the memory complexity, it is also
the algorithm with the best time complexity known so far for most values
of the degree constraints.

Keywords: algebraic attacks, algebraic immunity, fast algebraic attacks,
Wiedemann’s algorithm.

1 Introduction

Algebraic attacks and fast algebraic attacks have proved to be a powerful class
of attacks against stream ciphers [CM03, Cou03, Arm04]. The idea is to set up
an algebraic system of equations satisfied by the key bits and to try to solve
it. For instance, this kind of approach can be quite effective [CM03] on stream
ciphers which consist of a linear pseudo-random generator hidden with non-linear
combining functions acting on the outputs of the generator to produce the final
output.

For such an attack to work, it is crucial that the combining functions satisfy
low degree relations. The reason for this is that it ensures that the algebraic
system of equations verified by the secret key is also of small degree, which is
in general essential for being able to solve it. This raises the fundamental issue
of determining whether or not a given function admits non-trivial low degree
relations [MPC04, Car04, DGM04, BP05, DMS05].

For algebraic attacks, in order to find relations of degree at most d satisfied by
an n-variable combining Boolean function f , only two algorithmic approaches

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 236–250, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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are known for the time being. The first one relies on Gröbner bases [FA03] and
consists of finding minimal degree elements in the polynomial ideal spanned by
the ANF of f and the field equations. The second strategy relies on linear algebra,
more precisely we can associate to f and d a matrix M such that the elements
in the kernel of M give us low degree relations. Building M is in general easy so
the issue here is to find non-trivial elements in the kernel of a given matrix or
to show that the kernel is trivial.

The linear approach has lead to the best algorithm known so far [ACG+06]
that works in O(D2) where D =

(
n
d

)
. There is also the algorithm of [DT06] which

performs well in practice and which is more efficient when d is small. Actually,
when d is fixed and n → ∞, this last algorithm will be able to prove the non-
existence of low degree relation in O(D) for almost all Boolean functions. Note
however that if the ANF of f is simple or has a lot of structure, it is possible
that the Gröbner basis approach outperforms these algorithms, especially if the
number of variables is large (more than 30).

For fast algebraic attacks, only the linear algebra approach has been used.
There are now two degree constraints d < e and the best algorithms are the
one of [ACG+06] working in O(ED2) where E =

(
n
e

)
and the one of [BLP06]

working in O(ED2 + E2).
All these algorithms relying on the linear algebra approach use some refine-

ments of Gaussian elimination in order to find the kernel of a matrix M . Effi-
ciency is achieved using the special structure of M . We will use here a different
approach. The idea is that the peculiar structure of M allows for a fast matrix
vector product that will lead to efficient methods to compute its kernel. This
comes from the following facts:

- There are algorithms for solving linear systems of equations which perform
only matrix vector products. Over the finite fields, there is an adaptation of
the conjugate gradient and Lanczos algorithm [COS86, Odl84] or the Wiede-
mann algorithm [Wie86]. These algorithms were developed at the origin for
solving large sparse systems of linear equations where one can compute a
matrix vector product efficiently. A lot of work has been done on the subject
because of important applications in public key cryptography. Actually, these
algorithms are crucial in the last step of the best factorization or discrete
logarithm algorithms. Notice as well that these algorithms were also used in
the context of algebraic attacks against HFE cryptosystems (see [FJ03]).

- Computing a matrix vector product of the matrix involved in the algebraic
immunity computation can be done using only the binary Moebius trans-
form. It is an involution which transforms the two main representations of
a Boolean function into each other (namely the list of its ANF coefficients
and the list of its images).

- The Moebius transform of an n-variable Boolean function can be computed
efficiently in O(n2n) complexity and O(2n) memory. We will call the cor-
responding algorithm the fast Moebius transform by analogy with the fast
Fourier transform (note that they both rely on the same principle).
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We will focus here on the Wiedemann algorithm and derive an algorithm
for computing algebraic attacks or fast algebraic attacks relations in O(n2nD).
Wiedemann’s algorithm is probabilistic and so is our algorithm, however we can
get a failure probability as small as we want with the same asymptotic complex-
ity. When d or e are close to n/2 the asymptotic complexity is very good for fast
algebraic attacks but is a little bit less efficient for algebraic attacks than the one
presented in [ACG+06]. However this algorithm presents another advantage, its
memory usage is very efficient, O(n2n) to be compared with O(D2). This may
not seem really important, but in fact the memory is actually the bottleneck of
the other algorithms.

The outline of this paper is as follows. We first recall in Section 1 some basic
facts about Boolean functions, algebraic and fast algebraic attacks, and the linear
algebra approach used by almost all the known algorithms. Then, we present in
Section 2 the Wiedemann algorithm and how we can apply it to our problem.
We present in Section 3 some benchmark results of our implementation of this
algorithm. We finally conclude in Section 4.

2 Preliminary

In this section we recall basic facts about Boolean functions, algebraic attacks
and fast algebraic attacks. We also present the linear algebra approach used by
almost all the actual algorithm to compute relations for these attacks.

2.1 Boolean Functions

In all this paper, we consider the binary vector space of n-variable Boolean func-
tions, that is the space of functions from {0, 1}n to {0, 1}. It will be convenient
to view {0, 1} as the field over two elements, what we denote by F2. It is well
known that such a function f can be written in an unique way as an n-variable
polynomial over F2 where the degree in each variable is at most 1 using the
Algebraic Normal Form (ANF) :

f(x1, . . . , xn) =
∑

u∈Fn
2

fu

(
n∏

i=1

xui

i

)
fu ∈ F2, u = (u1, . . . , un) ∈ Fn

2 (1)

By monomial, we mean in what follows, a polynomial of the form
∏n

i=1 xui

i .
We will heavily make use in what follows of the notation fu, which denotes for
a point u in Fn

2 and an n-variable Boolean function f , the coefficient of the
monomial associated to u in the ANF (1) of f . Each monomial associated to a
u in Fn

2 can be seen as a function having only this monomial as its ANF. Such
function is only equal to 1 on points x such that u ⊆ x where

for u, x ∈ Fn
2 u ⊆ x iff {i, ui �= 0} ⊆ {i, xi �= 0} (2)

The degree of f is the maximum weight of the u’s for which fu �= 0. By listing
the images of a Boolean function f over all possible values of the variables, we



Using Wiedemann’s Algorithm to Compute the Immunity 239

can also view it as a binary word of length 2n. For that, we will order the points
of Fn

2 in lexicographic order

(0, . . . , 0, 0)(0, . . . , 0, 1)(0, . . . , 1, 0) . . . (1, . . . , 1, 1) (3)

The weight of a Boolean function f is denoted by |f | and is equal to
∑

x∈Fn
2

f(x)
(the sum being performed over the integers). We also denote in the same way
the (Hamming) weight of a binary 2n-tuple or the cardinal of a set. A balanced
Boolean function is a function with weight equal to half its length, that is 2n−1.

There is an important involutive (meaning its own inverse) transformation
linking the two representations of a Boolean function f , namely its image list
(f(x))x∈Fn

2
and its ANF coefficient list (fu)u∈Fn

2
. This transformation is known

as the binary Moebius transform and is given by

f(x) =
∑
u⊆x

fu and fu =
∑
x⊆u

f(x) (4)

Here u and x both lie in Fn
2 and we use the notation introduced in (1) for the

ANF coefficients of f .
Dealing with algebraic attacks, we will be interested in the subspace of all

Boolean functions of degree at most d. Note that the set of monomials of degree
at most d forms a basis of this subspace. By counting the number of such mono-
mials we obtain that its dimension is given by D

def=
∑d

i=0

(
n
i

)
. In the following,

a Boolean function g of degree at most d will be represented by its ANF coeffi-
cients (gi)|i|≤d. Notice as well that we will need another degree constraint e and
that we will write E for the dimension of the subspace of Boolean functions with
degree at most e.

2.2 Algebraic and Fast Algebraic Attacks

We will briefly describe here how algebraic and fast algebraic attacks work on
a filtered LFSR. In the following, L is an LFSR on n bits with initial state
(x1, . . . , xn) and a filtering function f . The idea behind algebraic attacks is
just to recover the initial state given the keystream bits (zi)i≥0 by solving the
algebraic system given by the equations f(Li(x1, . . . , xn)) = zi. However the
algebraic degree of f is usually too high, so one has to perform further work.

In the original algebraic attacks [CM03], the first step is to find annihilators
of f . This means functions g of low degree such that fg = 0 where fg stands for
the function defined by

∀x ∈ Fn
2 , fg(x) = f(x)g(x) (5)

in particular fg = 0 if and only if

∀x ∈ Fn
2 , f(x) = 1 =⇒ g(x) = 0 (6)

So we obtain a new system involving equations of the form

g(Li(x1, . . . , xn)) = 0 for i ≥ 0 and zi = 1 (7)
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that can be solved if the degree d of g is low enough. Remark that for the i’s
such that zi = 0, we can use the same technique with the annihilators of 1 + f
instead.

In order to quantify the resistance of a function f to algebraic attacks, the
notion of algebraic immunity was introduced in [MPC04]. By definition, the
algebraic immunity of f is the smallest degree d such that f or 1 + f admits
a non-trivial annihilator of degree d. It has been shown in [CM03] that for an
n-variable Boolean function a non-trivial annihilator of degree at most �n/2�
always exists.

Sometimes, annihilators of low degree do not exist, but another relation involv-
ing f can be exploited. That is what is done in fast algebraic attacks introduced
in [Cou03] and further confirmed and improved in [Arm04, HR04]. The aim is
to find a function g of low degree d and a function h of larger degree e such that
fg = h. We now get equations of the form

zi g(Li(x1, . . . , xn)) = h(Li(x1, . . . , xn)) for i ≥ 0 (8)

In the second step of fast algebraic attacks, one has to find a linear relation
between successive equations [Cou03] in order to get rid of the terms with degree
greater than d. Remark that these terms come only from h and so such a relation
does not involve the keystream bits zi. More precisely, we are looking for an
integer l and binary coefficients ci such that all the terms of degree greater than
d cancel out in the sum

i<l∑
i=0

ci h(Li(x1, . . . , xn)) (9)

One can search this relation offline and apply it not only from time 0 but also
shifted at every time i ≥ 0. In the end, we get an algebraic system of degree d
that we have to solve in the last step of the attack.

In this paper, we will focus on the first step of these attacks. We are given
a function f and we will discuss algorithms to compute efficiently its immunity
against algebraic and fast algebraic attacks.

2.3 Linear Algebra Approach

We will formulate here the problem of finding low-degree relations for a given
function f in terms of linear algebra. In the following, all the lists of points in
Fn

2 are always ordered using the order defined in Subsection 2.1.
Let us start by the case of the classical algebraic attacks. Recall that a function

g of degree at most d is an annihilator of f if and only if

∀x ∈ Fn
2 , f(x) = 1 =⇒ g(x) = 0 (10)

So, for each x such that f(x) = 1 we get from (4) a linear equation in the D
coefficients (gu)|u|≤d of g, namely∑

u⊆x

gu = 0 u ∈ Fn
2 , |u| ≤ d (11)
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This gives rise to a linear system that we can write M1((gu)|u|≤d)t = 0 where M1

is an |f | ×D binary matrix and the t indicates transposition. Each row of M1

corresponds to an x such that f(x) = 1. Actually, we see that the matrix vector
product of M1 with ((gu)|u|≤d)t is just an evaluation of a function g with ANF
coefficients (gu)|u|≤d on all the points x such that f(x) = 1. We will encounter
again such type of matrices and we will introduce a special notation. Let A and
B be two subsets of Fn

2 , we will write

V A
B = (vi,j)i=1...|B|,j=1...|A| (12)

for the matrix corresponding to an evaluation over all the points in B of a Boolean
function with non-zero ANF coefficients in A. The V stands for evaluation, and
we have vi,j = 1 if and only if the j-th point of B is included (notation ⊆ over
Fn

2 ) in the i-th point of A. With this notation, we get

M1 = V
{u,|u|≤d}
{x,f(x)=1} = V d

{x,f(x)=1} (13)

The exponent d is a shortcut for {u, |u| ≤ d}, in particular an exponent n means
all the points in Fn

2 . It is important to understand this notion of evaluation
because if we look a little ahead, we see that performing a matrix vector product
for such a matrix is nothing but performing a binary Moebius transform.

Now, a function g with ANF (gu)|u|≤d is an annihilator of f if and only if
((gu)|u|≤d)t ∈ ker(M1). A non-trivial annihilator of degree smaller than or equal
to d exists if and only if this matrix is not of full rank.

For the fast algebraic attacks, we obtain the same description with a different
linear system. Functions g of degree at most d and h of degree at most e such
that fg = h exist if and only if

∀x ∈ Fn
2 h(x) + f(x)g(x) = 0 (14)

Here the unknowns are the D coefficients (gu)|u|≤d of g and the E coefficients
(hu)|u|≤e of h. So, for each point x we derive by using (4) the following equation
on these coefficients ∑

u⊆x,|u|≤e

hu + f(x)
∑

u⊆x,|u|≤d

gu = 0 (15)

And we obtain a system that we can write M2((hu)|u|≤e, (gu)|u|≤d)t = 0 where
M2 is an N × (E + D) binary matrix given by

M2 =
(
V e

n | Diag((f(x))x∈Fn
2
)V d

n

)
(16)

The multiplication by f in (15) corresponds here with the product by the diago-
nal matrix. With this new matrix, each kernel element corresponds to functions
g and h such that fg = h.

There is a way to create a smaller linear system for the fast algebraic attacks.
This follows the idea in [BLP06]. Actually, as pointed out in [DM06], the matrix
V e

e is an involutive E × E matrix. The idea is then to start by computing the
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(hu)|u|≤e using the values that h has to take on the points x with |x| ≤ e. That is,
taking for the unknowns the D coefficients (gu)|u|≤d of g, the values (h(x))|x|≤e

of h are given by

((h(x))|x|≤e)t = Diag((f(x))|x|≤e)V d
e ((gu)|u|≤d)t (17)

We can then find the ANF coefficients (hu)|u|≤e of h by applying V e
e on the

left because this matrix is involutive. We can then evaluate h over all Fn
2

by multiplying on the left by V e
n . In the end, we obtain a new linear system

M3((gu)|u|≤d)t = 0 where M3 is the following N ×D matrix

M3 = Diag((f(x))x∈Fn
2
)V d

n + V e
n V e

e Diag((f(x))|x|≤e)V d
e (18)

Here Diag((f(x))x∈Fn
2
)V d

n corresponds to the evaluation of fg on all the points
in Fn

2 and the other part to the evaluation of h on the same points. Remark
that the rows corresponding to |x| ≤ e are null by construction, so M3 can be
reduced to an (N − E)×D matrix.

Up to now, all the known algorithms relying on the linear algebra approach
([MPC04, DT06, BLP06, ACG+06]) worked by computing the kernel of these
matrices using some refinements of Gaussian elimination. Efficiency was achieved
using the very special structure involved. We will use here a different approach.
The idea is that the special structure behind these linear systems allows a fast
matrix vector product. We will actually be able to compute M1((gi)|i|≤d)t or
M3((gi)|i|≤d)t in O(n2n). This will lead to an algorithm in O(n2nD) complexity
and O(n2n) memory.

3 Using Wiedemann’s Algorithm

In this section we describe how the Wiedemann algorithm [Wie86] can be used
efficiently on our problem. We focused on this algorithm (instead of Lanczos’
or conjugate gradient algorithm) because it is easier to analyze and it does not
need any assumption on the matrix.

3.1 Fast Evaluation

The first ingredient for Wiedemann’s algorithm to be efficient on a given matrix,
is that we can compute the matrix vector product for this particular matrix
efficiently. This is for example the case for a sparse matrix and will also be
the case for the matrices M1, M2 or M3 involved in the algebraic immunity
computation. In the following we still use the order defined in Subsection 2.1 for
all the lists of points in Fn

2 .
So we want to compute efficiently a matrix vector product of M1, M2 or M3.

For that, looking at the definition of these matrices (see (13), (16) and (18)) it
is enough to be able to compute efficiently a matrix vector product of diago-
nal matrices and of the matrices V A

B (A and B being two subsets of Fn
2 ). Then,
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we will just compute this kind of product for all the matrices appearing in the
previous definitions to get the final product.

Computing a product between a diagonal matrix and a vector is easy, it can
be computed in O(2n) using a binary AND between the vector and the list of
the diagonal elements. Regarding the matrices V A

B , performing the product is
almost the same as doing a Moebius transform as we have seen in Subsection
2.3. The details are explained in the following algorithm.

Algorithm 1 (Matrix vector product of V A
B ). Given n, two subsets (A and B)

of Fn
2 and a vector v = (vi)i=1...|A|, this algorithm computes the matrix vector

product of V A
B and v.

1. [pack] Initialize a vector s = (su)u∈Fn
2

as follows If u is the i-th point in A
then set su = vi. Otherwise (that is u /∈ A) set su = 0.

2. [Moebius] Compute the fast binary Moebius transform of s in place.
3. [Extract] The result is given by the (su) with u ∈ B.

So, the key point in a fast matrix vector product here is that we can compute
the binary Moebius transform efficiently. The following algorithm called the fast
Moebius transform works in O(n2n) and uses the same idea as the fast Fourier
transform algorithm. In the end, we are able to perform a matrix vector product
of M1, M2 or M3 with the same complexity. Remark as well that for all these
algorithms, the memory usage is in O(2n).

Algorithm 2 (Fast binary Moebius transform). Given an n-variable Boolean
function f in the form of a list of ANF coefficients (fu)u∈Fn

2
, this algorithm

computes its image list (f(x))x∈Fn
2

recursively. In both cases the list must be
ordered using the order described in section 2.1. The algorithm can work in place
(meaning the result overwrites the (fu)u∈Fn

2
) without modifications.

1. [stop] If n = 0 then f(0) = f0. Exit the function.
2. [left recursion] Perform the Moebius transform for a n− 1 variable function

f (0) whose coefficients are given by the first half of the coefficient list of f ,
that is the fu’s with u = (u1, . . . , un) and u1 = 0.

3. [right recursion] Perform the Moebius transform for a n− 1 variable function
f (1) whose coefficients are given by the second half of the coefficient list of f ,
that is the fu with u = (u1, . . . , un) and u1 = 1.

4. [combine] We have f(x1, . . . , xn) = f (0)(x2, . . . , xn) + x1f
(1)(x2, . . . , xn).

The complexity in O(n2n) comes from the fact that at each call, we apply the
algorithm over two problems of half the size of the original one. The correctness
is easy to prove provided that the equality at step 4 is correct. But using the
definition of the Moebius transform, we have

f(x) =
∑
u⊆x

fu(x) =
∑

u⊆x,u1=0

fu(x) +
∑

u⊆x,u1=1

fu(x) (19)
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The second sum is zero if x1 = 0, so we can write

f(x) =
∑

(u2,...,um)⊆(x2,...,xn)

f(0,u2,...,un)(x) + x1

∑
(u2,...,un)⊆(x2,...,xn)

f(1,u2,...,un)(x) (20)

and we retrieve the equality at step 4.

3.2 The Wiedemann Algorithm

We present here the Wiedemann algorithm for an n × n square matrix A. We
will deal with the non-square case in the next subsection.

The approach used by Wiedemann’s algorithm (and more generally blackbox
algorithms) is to start from a vector b and to compute the so called Krylov
sequence

b, Ab, A2b, . . . , Anb, . . . (21)

This sequence is linearly generated and admits a minimal polynomial Pb ∈ F2[X ]
such that Pb(A)b = 0. Moreover, Pb divides the minimal polynomial of the matrix
A and is of maximum degree n.

The idea of Wiedemann’s algorithm is to find Pb using the Berlekamp-Massey
algorithm. For that, we take a random vector ut in Fn

2 and compute the inner
products

u.b, u.Ab, u.A2b, . . . , u.A2nb (22)

The complexity of this step is in 2n evaluations of the matrix A. This sequence
is still linearly generated, and we can find its minimal polynomial Pu,b in O(n2)
using the Berlekamp-Massey Algorithm ([Mas69]). Moreover, Pu,b divides Pb

and they are equal with probability bounded away from 0 by 1/(6 logn) (see
[Wie86]). Notice that if X divides Pu,b, then A is singular since 0 is then one of
its eigenvalues.

Now, let us assume that we have computed Pb and that Pb(x) = c0 + xQ(x)
with Q ∈ F2[X ]. If c0 �= 0 (and therefore c0 = 1) then AQ(A)b = b and Q(A)b
is a solution x of the system Ax = b. If c0 = 0 then AQ(A)b = 0 and Q(A)b
is a non-trivial (by minimality of Pb) element of ker(A). So, we can either find
a solution of Ax = b or a non-trivial element in ker(A) with complexity the
number of steps of computing Q(A) that is n evaluations of A.

Remark that in both cases we can verify the coherence of the result (even
when Pu,b �= Pb) with only one evaluation of A. Moreover, when A is singular,
we are sure to find a non-trivial kernel element if b does not lie in Im(A). This
happens with probability always greater than 1/2 over F2.

If we are only interested in knowing if a matrix is singular then, as already
pointed out, we just need that X divides Pu,b and we have:

Theorem 1. If an n × n square matrix A over F2 is singular, then applying
Wiedemann’s algorithm with a random choice of b and u will prove that the
matrix is singular with probability greater than 1/4 and O(n) evaluations of A.
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Proof. Let us decompose E = Fn
2 into the characteristic subspaces of A. In

particular we have E = E0 ⊕ E1 where E0 is the subspace associated with the
eigenvalue 0 and A restricted to E1 is invertible. Using this decomposition, let
us write b = b0 + b1. Let P0 and P1 be the minimal polynomial associated to
the sequences (u.b0, u.Ab0, . . . ) and (u.b1, u.Ab1, . . . ). We know that P0 is just a
power of X and that the LFSR generating the second sequence is non degenerate.
So the minimal polynomial associated to the sum is equal to P0P1. To conclude,
we see that X/Pu,b if u.b0 �= 0 and over F2 this happens for a random choice of
u and b with a probability greater than 1/4.

In the end, the algorithm consists in trying different values of b and u until we
have a large enough probability that A is singular or not. When b is fixed, we just
described a Monte-Carlo algorithm here but there is also a Las-Vegas version
(Algorithm 1 of [Wie86]) that works better in this case. It gives Pb (so at the
end a kernel element or a solution to Ax = b) in O(n log n) matrix evaluations
on average.

Remark that when X divides Pu,b we are sure that A is singular. So the three
possible outputs of the algorithm are the following :
- either A is singular and we know it for sure,
- or we know that A is non-singular with a very high probability,
- finally when Pu,b is of maximum degree (that is n) then we know the minimal
polynomial of A. So if it is not divisible by X then we are sure that the matrix
is of full rank.

3.3 Non Square Case

The square case could be applied directly when we try to show the maximum
algebraic immunity of a balanced Boolean function with an odd number of vari-
ables (because in this case d = (n−1)/2 and |f | = 2n−1 is equal to D). However,
in the general case we do not have a square matrix.

One method to extend this could be to select randomly a subsquare matrix
until we find an invertible one or until we have done so many choices that we are
pretty sure that the initial matrix is not of full rank. This method is however
quite inefficient when the matrix is far from being a square matrix and in this
case there is a better way to perform this task.

Let us consider an n× k matrix A with k < n, the idea is to generate a k× n
random sparse matrix Q such that with high probability QA will be of rank k
if A is non-singular. From [Wie86] we have the following result.

Theorem 2. If A is a non-singular n × k matrix with k < n, let us construct
a k × n matrix Q as follows. A bit of the row i from 1 to k is set to 1 with
probability wi = min(1/2, 2 logn/(k + 1− i)). Then with probability at least 1/8
the following statements hold
- The k × k matrix QA is non-singular.
- The total Hamming weight of the rows in Q is at most 2n(2 + log n)2.

Notice that in [Wie86], another generating method is given to generate Q such
that QA is non-singular with a probability bounded away from 0 and such that
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the total Hamming weight of Q is in O(n log n). This is better asymptotically
but less applicable in practice since the probability is smaller than the 1/8 of
Theorem 2.

We are now back to the square case with a little overhead because we have
to compute Q times a vector at each step of the Wiedemann algorithm. This
is why we have generated Q as sparse as possible to minimize this overhead.
In particular, when Q has a total Hamming weight in O(n log n) then we can
perform the matrix vector product in O(n log n). Notice as well that we need
O(n log n) extra memory in order to store the matrix Q.

In order to know if A is singular or not, the algorithm is the following. We
generate a matrix Q and test the non singularity of QA with Wiedemann’s
Algorithm. If this matrix is non-singular, then we know that A is non-singular
as well (with the failure probability of Wiedemann’s algorithm). Otherwise, we
can go on a few times (say i) with different matrices Q and if all the products
are singular then A is singular with probability greater than 1− (7/8)i.

Remark that with negligible complexity overhead, we can compute a non-
trivial kernel element x of QA when this matrix is singular. And if A is singular,
with a probability greater than 1/8 we will also have Ax = 0. So we can run the
algorithm until we are sure that A is singular (when we get a non-trivial kernel
element) or until we have a very high probability that A is non-singular.

4 Implementation Results

We have implemented all the algorithms described in this article and we give
their performances in this section. All the experiments were done on a Pentium
4 running at 3.2Ghz with 2Gb of memory.

First of all, let us summarize the complexity of our algorithms. Both for alge-
braic and fast algebraic attacks, we will have to perform Wiedemann’s algorithm
on a D ×D matrix. This requires O(D) matrix vector products of this matrix
plus O(D2) operations for the Berlekamp-Massey algorithm. We have seen that
we can perform the product in O(n2n) operations, so we get in all cases a final
complexity in O(n2nD). Notice that in order to get a small failure probability,
we will have to perform this task a few times. This is especially true for the non-
square case since we will have to check different matrices Q. However, only a
constant number of times is needed to get a given probability, so the asymptotic
complexity is still the same.

Regarding the memory, the matrix evaluation needs O(2n) memory for the
square case and an extra O(n2n) memory when we have to store a matrix Q for
the non-square case. All the other operations need only an O(D) memory.

The running time of the algorithms is almost independent of the function f
involved except for the Berlekamp-Massey part. However, this part is clearly
not the most time consuming. In particular, it is a good idea in Wiedemann’s
algorithm to perform the computation with more than one random u per vector
b. If we perform 4 Berlekamp-Massey steps per random vector b, then we will be
able to detect a singularity with a probability almost one half and a very small
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Table 1. Running time for the square case: n = 2d + 1, D = 2n−1 and f is a ran-
dom balanced n-variable Boolean function. Optimized implementation using the SSE2
instructions set.

d,n 4,9 5,11 6,13 7,15 8,17 9,19 10,21 11,23 12,25

time 0s 0s 0.01s 0.3s 5s 102s 30m 11h 20d

Table 2. Time and memory for computing the immunity against normal algebraic
attacks using Wiedemann’s algorithm

d,n 2,22 2,23 3,19 3,20 3,21 4,19 5,19

D 254 277 1160 1351 1562 5036 16664

time 113s 264s 100s 252s 630s 640s 2706s

memory 656Mb 1397Mb 118Mb 255Mb 547Mb 160Mb 194Mb

overhead. Remark as well that all the experiments where done for random bal-
anced functions but the running time will be roughly the same for real functions
used in stream cipher.

When we compute the immunity against normal algebraic attacks for a square
matrix, we can implement the code in a very efficient way. In particular, using the
transposition of the Moebius transform, we can merge step 1 and 3 of Algorithm
1 between two consecutive evaluations. This is because this transposition will
map back all the positions in the set B into the set A. Moreover, if M1 is square
and invertible, applying (V d

{x,f(x)=1})
t on the left will result in another invertible

matrix. In this way, we obtain a fully parallelizable algorithm because we can
perform a fast Moebius transform (or its transpose) dealing with 32 bits at a
time (even more with SSE2). In the end we get a very efficient implementation
with the running time for a random choice of b and four random choices of u
given in Table 1. Moreover, the memory usage is negligible in this case since
there is no matrix Q to store.

In this case, since n = 2D + 1, the complexity is in O(D2 log D) and the mem-
ory usage in O(D). So the asymptotic complexity is a little worse than the one of
[ACG+06] (in O(D2)) but the memory usage is a lot better (to be compared with
O(D2)). We see that two consecutive sets of parameters differ by a factor of 16 in
the computation time as could be inferred from the asymptotic complexity. This
factor increase a little with the number of variables but we were still able do deal
with as many as 25 variables. Notice that this implementation also breaks the pre-
vious record which was 20 variables in the papers [DT06] and [ACG+06].

For the non-square case however, the results are less impressive. The reason is
that there is no simple way to do the multiplication by Q in a parallel way. Hence
we loose a factor 32 in the process. To overcome this difficulty a block version of
Wiedemann’s algorithm might be use (see [Cop94]), but we did not have time
to implement it. Another issue is that the memory to store the sparse matrix Q
may become two large. Moreover, the code used for the following experiments is
not as optimized as the one for the square case. We might divide the time and
memory by a factor 2 roughly with a careful implementation.
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Table 3. Time and memory for computing the immunity against fast algebraic attacks
using Wiedemann’s algorithm. Here we chose n = 2e + 1.

d/e,n 2/8,17 3/8,17 3/9,19 3/10,21 4/8,17 5/8,17 6/8,17

D 154 834 1160 1562 3214 9402 21778

time 1s 15s 101s 614s 82s 297s 801s

memory 14Mb 25Mb 118Mb 547Mb 33Mb 40Mb 45Mb

Table 4. Dependence of fast algebraic attacks immunity computation in the parameter
e. In all cases D = 1160.

d/e,n 3/7,19 3/8,19 3/9,19 3/10,19 3/11,19

time 154s 130s 101s 70s 43s

memory 192Mb 159Mb 118Mb 77Mb 43Mb

We give in Table 2 the time to compute the immunity against normal algebraic
attacks. Wiedemann’s algorithm is executed for one random matrix Q a random
b and four random u’s. In order to obtain a small enough probability of error,
one will have to execute this a few times (16 gives an error probability of 0.1
and 32 of 0.01).

What is interesting is that the time for computing immunity against fast
algebraic attacks is almost the same as the one for normal algebraic attacks
(see Table 3). There is only little influence of the degree e (see Table 4) on the
performance because the size of Q depends on it. But the time and memory will
always stay within a factor two compared to the case where e is equal to n/2.

5 Conclusion

In this paper, we devised a new algorithm to compute the immunity of a Boolean
function against both algebraic and fast algebraic attacks. This algorithm presents
a few advantages:

- It is easy to understand since it is based on a well known sparse linear algebra
algorithm.

- Its complexity is quite good, especially for the fast algebraic attacks.
- It uses little memory compared to the other known algorithms which make

it able to deal with more variables.
- And it is quite general since it can work for both attacks with little modifica-

tion. In particular, if in the future one is interested in other kind of relations
defined point by point, then the same approach can be used.
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Abstract. In this paper we present a new block cipher over a small fi-
nite domain T where |T | = k is either 216 or 232 . After that we suggest
a use of this cipher for enciphering members of arbitrary small finite do-
mains M where M ⊆ T . With cost of an extra mapping, this method
could be further extended for enciphering in arbitrary domain M′ where
|M′| = k′ ≤ k. At last, in a discussion section we suggest a few inter-
esting usage scenarios for such a cipher as an argument that enciphering
with arbitrary small finite domains is a very useful primitive on its own
rights, as well as for designing of a higher level protocols.

Keywords: Block Ciphers, Symmetric Encryption, Pseudorandom Per-
mutations, Modes of Operations.

1 Introduction

Our motivation for this research was ignited by an obvious dissonance. Pseudo-
random permutations are a very useful tool for many tasks, starting from the
shuffling of a card deck to generation of bankcard numbers, pin codes and one
time passwords, collecting samples from real-time data and many more. There is
a tool that conveniently defines families of pseudo-random permutations - block
ciphers. The modern block ciphers have very strong pseudo-random properties,
compactly index selected permutation by an encryption key, and operate with
block size that is very well suited for secure encryption of large amount of data.
However, the large domains of the modern block ciphers make the size of their
pseudo-random permutation too big for being practical for the tasks outlined
above. The task of enciphering in arbitrary finite domain was previously consid-
ered by creators of Hasty Pudding Cipher, Schroeppel and Orman [13]1. Later a
rigorous treatment of the iterative encryption method, together with two other
methods of encryption messages in arbitrary finite domains, were presented in
a paper of Black and Rogaway [1]. Another method of construction of variable
input length ciphers was also presented earlier in [2].

However, in cases when the size of required permutation is small, the pre-
viously suggested techniques either don’t work [2] or become quite inefficient
[13, 1], especially when considering small 8-bits microcontrollers.
1 Schroeppel believes that the idea of iterative application of the encryption until

proper domain point is reached, dates back to the rotor machines used in the early
twentieth century.
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To solve this task we have designed a cipher with a small block size of either
16 or 32 bits that we named TinyPRP. The TinyPRP cipher is key-alternating
block cipher [5] that uses wide trail design strategy [3, 5] – the methodology of
AES [4, 5] cipher. Additionally, TinyPRP cipher reuses some of the elements
of the AES cipher, such as AES’s S-box with optimal linear and differential
resistance properties. In order to fit the small block size, we have designed the
linear step of the round transformation function of our cipher in a different way
than AES, however it is also based on Maximum Distance Separable codes and
provide the maximal branch number that we could have achieved with such
a small block size. Analogously to AES, TinyPRP cipher could be efficiently
implemented in software and hardware, including but not limited to small 8-bits
microcontrollers.

Due to a small block size, the security goals of the design of TinyPRP cipher
follows definitions from [1] and could be outlined as: even when an adversary
having access to the encryption oracle, has collected encryption of all but the
two last points of the domain, the adversary should not be able to distinguish
encryptions of the remaining two points significantly better than a random guess.

TinyPRP is very well suited for the tasks such as non-expanding encryption
of small fields of database, for example numeric fields, that are usually smaller
than the block size of standard symmetric encryption algorithms such as AES.
Note, that we are not encouraging the use of TinyPRP for encryption of large
messages – where the standard ciphers such as AES is a superior choice.

When used together with iterative encryption until the proper domain point
is reached of [13, 1], TinyPRP cipher provides efficient method of encrypting
messages in arbitrary small domain, that could be used for tasks such as shuffling
a card deck, generation and verification of pin codes and onetime passwords,
generation and verification of onetime credit card numbers, and many others.

In this paper we present design of the TinyPRP cipher. Reference implementa-
tion of the key elements of the algorithm is presented in appendixes. A complete
reference implementation of the cipher could be downloaded from the authors
website [14].

2 TinyPRP Specification

TinyPRP is an iterated block cipher with a variable block length and a variable
key length. The cipher supports the block length of 16 or 32 bits and the key
length of 96 or 128 bits that could be independently specified2 . The cipher
iteratively transforms the intermediate state that has the size of block. The state
is initialized with a block of plain text before application of the algorithm. The
cipher starts and ends with addition of round key3 which we denote as function
2 The algorithm allows selecting key size as any multiple of 32 bits, however the key

sizes below 96 bits are considered as insecure and should be used for experimenting
purposes only.

3 Any transformation of the state before the first addition of the round key or after
the last addition of the round key is known and therefore could be easily factored
out by cryptanalyst.
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σ(kr) . The cipher applies variable number of rounds to the intermediate state.
Number of rounds depends on the block size and the size of encryption key.
Round transformation consists of:

– γ – A local non-linear transformation that consists of parallel application of
S-boxes to each byte of the state. For TinyPRP cipher we used AES S-boxes.

– λ – A linear mixing transformation that guarantees high diffusion over mul-
tiple rounds.

– σ – A round key addition, that is a simple XOR of the round key to the
intermediate state.

Figures 1- 2 show schematic graphical representation of the TinyPRP encryption
and decryption with the block-sizes 32 and 16 bits. Since γ and σ are essentially
the same as in AES4, following description of the cipher will concentrate on λ
linear mixing transformation step.

Fig. 1. Encryption

2.1 Linear Mixing Transformation λ

λ transformation of all rounds but the last consists of the two operations Shift-
Cells, and MixCells. For the symmetry of the decryption operation, MixCells is
missing from the λ transformation of the last round5.

Due to limitations imposed by a small block size, ShiftCells and MixCells
treats structure of the state in a different ways:
4 We use AES S-boxes for γ and σ is XOR of the round key with the intermediate

state.
5 Difference in the last round transformation is customary for many ciphers including

AES and it could be easily shown that the absence of the last MixCells doesn’t
improve or reduce the security of the cipher.
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Fig. 2. Decryption

– ShiftCells treats the state as a table consisting of 4 columns and either 2
or 4 rows depending on the block size. Rows correspond to bytes of the
intermediate state with byte0 → row0, byte1 → row1 ... . Columns corre-
spond to bits of corresponding byte of the state with bits{0,1} → column0,
bits{2,3} → column1, bits{4,5} → column2 and bits{6,7} → column3 . Map-
ping of a byte to the table row used by ShiftCells is shown on Figure 3.

– MixCells treats the state as either one polynomial or a combination of two
polynomials with coefficients in GF(24) which we call state-polynomials.
Coefficients of polynomial are obtained following way:
• (32 bits block) two polynomials b0,3x

3 + b0,2x
2 + b0,1x+ b0,0 and b1,3x

3 +
b1,2x

2 + b1,1x + b1,0 with coefficients b{0,x} = bits{0,1,2,3} of bytex where
x ∈ {0, 1, 2, 3}, b{1,x} = bits{4,5,6,7} of bytex where x ∈ {0, 1, 2, 3} .

• (16 bits block) one polynomial b3x
3 + b2x

2 + b1x + b0 where b0 =
bits{0,1,2,3} of byte0; b1 = bits{0,1,2,3} of byte1; b2 = bits{4,5,6,7} of byte0;
b3 = bits{4,5,6,7} of byte1 .

ShiftCells uses cyclic bit rotation operation for two types of transformation
of the state matrix:

– cyclic rotation of the rows of the intermediate state with different offsets,
where offsets were chosen to ensure that nearby bits spreads over the state
providing protection against truncated differentials (see left part of Figure
4). Rotation offsets are given in Table 1;

– cyclic rotation of the state (2 or 4 bytes depending on the block size) for
two cells (4 bits) to ensure good diffusion when combined with MixCells
transformation (see right part of Figure 4);

MixCells is multiplication of the state polynomials with constant polynomial
e(x) mod x4 + 1 and coefficients in GF(24). Multiplication in GF(24) is done
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Fig. 3. Mapping of a byte to the table row used by ShiftCells operation

Fig. 4. ShiftCells Operation

Table 1. Rotation offsets (in cells) of ShiftCells operation

row index; 32 bits; 16 bits;

0 0 1
1 1 3
2 2 n/a
3 3 n/a

mod primitive polynomial x4 +x+1. For TinyPRP we chose the same constant
polynomial e(x) as in AES: 03x3+01x2+01x+02, which is relatively prime with
x4 + 1 and coefficients in GF(24) and ensures the maximal branch number for
the MixCells. Figure 5 shows how the state polynomials are constructed from
the intermediate state.

Polynomial d(x) used by InvMixCells is also the same as in AES: 0Bx3 +
0Dx2+09x+0E, which is inverse polynomial to e(x) mod x4 + 1 and coefficients
in GF(24).

2.2 Key Schedule

Key schedule was designed to satisfy following criteria:

– to ensure that generated round keys depend on all bits of the key;
– to introduce a sufficient amount non-linearity for increased resistance to key

related attacks or partially known key attacks;
– to eliminate symmetry by using round constants;
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Fig. 5. Mapping of Coefficients of State Polynomials for MixCells Operation

– to minimize memory requirements - it should be possible to execute key
schedule using a small amount of working memory and we only need to keep
a number of sequential round keys with total size equal to the size of the key
to be able to recalculate missing round keys;

– to compensate for small entropy of the round key - sequential round keys
with the total size equal to the size of the key are required for restoring the
key or the other round keys;

The key schedule generates NR +1 round keys. The number of rounds NR for
different key sizes and block sizes of TinyPRP cipher is given in Table 2. 6

Table 2. Number of Rounds

32 bits 16 bits

96 bits key 8 15
128 bits key 9 17

We have defined ten 16 bits round constants where the first round constant
is 0000 and all following round constants are {xr−1 mod x8 + x4 + x3 + x + 1,
xr−1 mod x8 + x4 + x3 + x + 1} for 1 ≤ r ≤ 12. There are six 32 bits round
constants that are defined by concatenation of two sequential 16 bits round
constants and treating result as little endian 32 bits integers.

– For 16 bits block size we defined rcon16 = {0000, 0101, 0202, 0404, 0808,
1010, 2020, 4040, 8080, 1B1B} .

– For 32 bits block size we defined rcon32 = {01010000, 04040202, 10100808,
40402020, 1B1B8080, 6c6c3636} .

The algorithm of the key schedule is shown on Figure 6.
6 Twofold increase of rounds for 16 bits block size is explained by necessity to com-

pensate for small entropy of the round keys.
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NR0 ← sizeof(key)

sizeof(block)
;

NR ← countof
(
rconsizeof(block)

)
+ NR0 ;

for (0 ≤ k < NR0)
Rk ← getBlock(k) (key) ;

for (NR0 ≤ k < NR)

Rk ← rcon
(k)

sizeof(block)
;

for (0 ≤ i < NR)
Rk ← Rk ⊕ Rk−i−1 ;
Rk ← SubBytes (Rk) ;
Rk ← ShiftCells (Rk) ;
Rk ← MixCells (Rk) ;

Fig. 6. Key Schedule Algorithm

2.3 TinyPRP Algorithm

Description of TinyPRP algorithm is presented on Figure 7.
Appendix A contains reference implementation of the key elements of the

TinyPRP algorithm. A complete reference implementation of the cipher could
be downloaded from the authors website [14]. Source code of reference imple-
mentation of the TinyPRP algorithm uses straightforward implementation of
polynomial multiplication (mod x4 + 1) with coefficients in GF(24). Perfor-
mance measures of non-optimized reference implementation could be found in
section 2.5. However we would like to note that table-lookup implementation of
the linear mixing step would provide much better performance. Also note that
most of other optimizations of Rijndael cipher could be applied to TinyPRP
cipher as well.

Encryption

RKey ← ExpandKey (key) ;
NR ← countof (RKey) ;
State ← State ⊕ RKey(0) ;
for (1 ≤ k < NR − 1)

State ← SubBytes (State) ;
State ← ShiftCells (State) ;
State ← MixCells (State) ;
State ← State ⊕ RKey(k) ;

State ← SubBytes (State) ;
State ← ShiftCells (State) ;
State ← State ⊕ RKey(NR−1) ;

Decryption

RKey ← ExpandKey (key) ;
NR ← countof (RKey) ;
State ← State ⊕ RKey(NR−1) ;
for (1 ≤ k < NR − 1)

State ← ShiftCells−1 (State) ;
State ← SubBytes−1 (State) ;
State ← State ⊕ RKey(NR−1−k) ;
State ← MixCells−1 (State) ;

State ← ShiftCells−1 (State) ;
State ← SubBytes−1 (State) ;
State ← State ⊕ RKey(0) ;

Fig. 7. TinyPRP Algorithm
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2.4 Security Goals and Considered Attacks

It is clear that the small block size of TinyPRP cipher makes it easy to collect
all correspondent pairs of plain–cipher texts. Therefore, the security goals of the
cipher’ design follows definitions from [1] and could be outlined as:

Even when an adversary having access to the encryption oracle, has
collected encryption of all but the last two points of the domain,
the adversary should not be able to distinguish encryptions of the
remaining points significantly better than a random guess.

A new challenge of designing a cipher with a small block size appears to be
an interesting shift of the attack vector. Traditional attacks, such as linear [11]
and differential [7] cryptanalysis and truncated differentials [12] appears to be
far less dangerous for such a cipher, because of a small block size, which signifi-
cantly reduces amount of possible patterns available to adversary. For example,
16 bits block size even allows to enumerate all possible difference patterns as
well as check correlation contributions of all possible linear trails (that could
make such a cipher an interesting tools for studying these classical attacks). The
same concerns to saturation attack [10, 9] (also known as Square attack [9])
which is also applicable, but far less dangerous for TinyPRP than for any other
Square/Rijndael based ciphers, again because of extremely small block size of
TinyPRP cipher.

What appears to be far more dangerous for such a cipher is a small entropy of
round keys as well as a small total size of the round keys. For example, 17 rounds
of 16 bits cipher gives only 288 bits of round-key material, from these – 128 bits
are the key and only 160 bits are derived round keys. Therefore, a special care
should be taken of the key schedule to eliminate weak keys and rounds symmetry
(by using round constants) and to protect against slide attack [8] and related
keys attack [6]. Key schedule must ensure that the recovery of the round key(s)
should not contribute to the recovery of the encryption key more than the size
of recovered round key(s). For example, with 16 bits blocks, the recovery of two
round keys must not help adversary to recover 128 bits encryption key faster
than 295. In order to provide better suitability of TinyPRP cipher for small 8-
bits processors, additional goal of our key schedule was a requirement that the
knowledge of sequential round keys of the same size as the size of the key must
be sufficient to restore the rest of round keys and the key itself.

Wide trail design strategy [3, 5], combination of optimal linear and differential
resistance properties of AES S-boxes with high diffusion properties of linear mix-
ing transformation designed for TinyPRP cipher ensures that after two rounds
of TinyPRP, all output bits of second round depends on every input bit of the
first round. The key schedule, that uses the same round transformation, gener-
ates round keys with total size that is equal to the size of the key plus two round
keys (to ensure that the last round key depends on all previous round keys).
That also gives raise to amount of rounds that ensures that TinyPRP cipher is
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immune to linear and differential analysis, truncated differentials and saturation
attacks. An extended security analysis of TinyPRP cipher will be provided in
extended paper available from the authors website shortly after publication of
this article.

2.5 Performance

Tables 3 and 4 show performance of TinyPRP cipher on Intel Pentium M pro-
cessor with Intel Centrino technology in cycles per block. Note that performance
is given for non-optimized reference implementation of the cipher that could be
downloaded from the authors website [14].

Table 3. Performance of non-optimized TinyPRP cipher with 128-bit key on Intel
Pentium M Centrino processor (cycles/per-block)

key-setup; encryption; decryption;

16-bits blocks 10280 2400 4320
32-bits blocks 6100 1780 3420

Table 4. Performance of non-optimized TinyPRP cipher with 96-bit key on Intel
Pentium M Centrino processor (cycles/per-block)

key-setup; encryption; decryption;

16-bits blocks 7900 2140 3800
32-bits blocks 4940 1690 2990

3 Enciphering with Arbitrary Small Finite Domains

The method of enciphering in smaller domain by using iterative encryption un-
til proper point of domain is reached was first suggested by creators of Hasty
Pudding Cipher, Schroeppel and Orman [13]. Schroeppel believes that the idea
dates back to the rotor machines used in the early twentieth century. A rigor-
ous treatment of the iterative encryption method was given in a paper of Black
and Rogaway [1], who called this method Cycle-Walking Cipher (see Figure 8).
However, we believe that would be more correct to name it as cycle-walking
mode of operation or the cycle-walking cipher mode.

The idea is based on the fact that any permutation is uniquely identified by
product of permutation cycles (also called orbits). Block cipher encryption with a
fixed key defines a permutation of the domain points and encryption of a domain
point is a closed operation which guarantees that after enough encryptions we
will eventually get back to the original point. Or in other words: when we start
our encryption from the point of a smaller domainM, then we have a guarantee
that after enough encryptions we will find at least one point belonging to the
domainM, even so it might be the original point. In this context, the encryption
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Encryption

if (p /∈ M)
stop ;

do
p ← EK(p) ;

while (p /∈ M) ;
return(p) ;

Decryption

if (p /∈ M)
stop ;

do
p ← E−1

K (p) ;
while (p /∈ M) ;
return(p) ;

Fig. 8. Cycle-Walking Cipher Mode

operation could be thought as walking forward the orbit, while as decryption is
walking backward the same orbit. Since neighboring elements of a fixed orbit are
always the same, means that iterative application of encryption until the first
proper point of the domain is reached also forms a permutation.

A natural question arises: ”how much security do we lose in deriving such
permutation?”. One of the results of the [1] was a proof that there is no loss of
security when the cipher is used with cycle-walking mode of operations. Here we
added the statement of the theorem asserting security of cycle-walking cipher
mode from [1]:

Theorem 1 (Security of Cycle-Walking Cipher Mode). Fix k ≥ 1 and let
M = [0, k − 1]. Let EK(·) be an ideal block cipher on the set T where M ⊆ T .
Choose a key K uniformly at random and then construct CYK (·) using EK(·).
Then CYK (·) is a uniform random permutation on M.

We refer to [1] for the proof of this theorem.
The main problem of using cycle-walking cipher mode for enciphering mem-

bers of small domains with conventional ciphers is that it may require unaccept-
ably high number of iterations for reaching the proper point of the domain. For
example in case of 128 bits cipher such as AES, it might be computationally
unfeasible to reach the required point of the domain which might require up to
the order of 2128 encryptions. Even 64 bits block ciphers, such as DES, have
unacceptably high computational cost for using them with cycle-walking cipher
mode when the density of the points of sub-domain M inside the domain T is
relatively low. In other words – the density of the points of the sub-domain M
inside the domain T must be high enough for the cycle-walking cipher mode
being practical. In case if we don’t want to limit lower bound for the size of sub-
domain M, then the only viable solution is reducing the size of the domain T .
The TinyPRP cipher, which compared to other existing block ciphers operates
on unusually small domain, is very practical for use with cycle-walking cipher
mode over sub-domains of very small size. For example, if used for generation
(and validation) of 4 digits one time passwords, expected amount of encryptions
with 16 bits TinyPRP is just about half a dozen, and even the worst case sce-
nario, which could only occurs with negligible probability, is upperbounded by
216 − 104 encryptions. In other words, amount of TinyPRP 16-bits encryptions
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required for enciphering with cycle-walking cipher mode in sub-domain of 4 dec-
imal digits numbers is acceptable even for small 8-bits processors, even for the
worst case scenarios.

4 Discussion

This naturally leads to a question about applicability and usage scenarios where
TinyPRP cipher is suited better than existing tools such as pseudorandom bits
generators and stream ciphers. We envision several interesting usage scenarios,
starting from generation of non-colliding pseudorandom numbers in domains
different than (0...2N −1 ) (for example, credit card number generation [1], non-
colliding indexes for distributed sampling, or even simple mixing of a card deck);
to non-expanding type-aware encryption of strongly typed data fields and gen-
eration of one-time passwords on embedded devices and 8 bits microcontrollers.

Probably, the one of the most typical usage scenarios for TinyPRP cipher
would be non-expanding type-aware encryption of strongly typed data fields.
Software industry is now experiencing change of security attitude with many
existing applications being upgraded to support a better level of privacy protec-
tion. Usual measures include encryption of privacy-sensitive information, such
as social security numbers, addresses, birthdays and others. And the most usual
challenge is often related to necessity of protecting strongly typed fields of en-
terprise databases. Changes of the datatype or the storage size often introduces
nontrivial challenges related to tracking down and correcting the code that may
rely on implicit assumptions. With enterprise class systems, that often means
error-prone, highly expensive process that may lead to severe disruption of nor-
mal business operation and other consequences.

TinyPRP together with cycle-walking mode of operations provides means to
relax some of these problems by providing non-expanding datatype aware en-
cryption. For example, for protection of the birthday field with TinyPRP cipher
in cycle-walking mode of operation, the birthday could be encrypted to a valid
date that additionally may be restricted to a specific age interval (as for example
between 20 and 67 years old). The encryption and decryption is a straightfor-
ward modification of cycle-walking algorithm with priory mapping of date to an
integer less than 108 and domain check that tries to map result of encryption
back to date datatype and in case of success, checks for required age interval.

When it concerns to existing tools: Using pseudorandom bits generators with
domain that is different than exact multiple of bits may easily produce undesir-
able results. For example, naive using of a modulo N operator may introduce
bias because numbers in interval

{
N, ..., 2�log(N)�} will contribute to the interval{

0, ..., 2�log(N)� −N
}
. Additionally, the possibility of collisions dictated by the

birthday paradox significantly reduces amount of non-colliding messages that
could be randomly generated, and that could be highly undesirable for an al-
ready small message domain. Using pseudorandom bits generator for one-time
passwords generation devices encumbered by patents that covers any reasonable
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way of accounting the clock drift and synchronization of the clock. Necessity of
frequent reseeding of pseudorandom generator on such devices depletes batteries.

Stream ciphers are effective tool for encrypting messages of arbitrary length{
0, ..., 2L − 1

}
, but their predictable behavior to a simple bit-flipping may be un-

acceptable when source message has strongly defined type or a structure, such as
for example a counter or a birth date. That makes stream cipher unusable for ap-
plications such as bankcard number generation [1] or non-expanding encryption
of fields in database. Problems also arise using stream cipher for encrypting mes-
sages in arbitrary domain that isn’t exact multiple of bits. Cycle-walking mode
of operations or its modifications aren’t compatible with the stream ciphers.
Any two sequential encryption with the same stream state negates each other.
Attempts of reusing keystream between encryptions result in expected collisions
in ≈

√
2�log(N)� because blocks of the keystream of the size �log(N)� are better

modeled as pseudo random function rather than pseudo random permutation.
As result of collisions – the decryption will not work.

We believe that TinyPRP combined with cycle-walking cipher mode provides
a sound solution for problems mentioned above and provides high security com-
bined with low processing cost and suitability for embedded devices and 8 bits
microcontrollers.
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A Appendix - Elements of TinyPRP Algorithm

inline void MixCells(unsigned char c[4]) {

unsigned char tm, ta = c[0],

t = c[0] ^ c[1] ^ c[2] ^ c[3];

tm = c[0] ^ c[1]; tm = xtime(tm); c[0] ^= tm ^ t;

tm = c[1] ^ c[2]; tm = xtime(tm); c[1] ^= tm ^ t;

tm = c[2] ^ c[3]; tm = xtime(tm); c[2] ^= tm ^ t;

tm = c[3] ^ ta ; tm = xtime(tm); c[3] ^= tm ^ t;

}

inline void InvMixCells(unsigned char c[4]) {

unsigned char t[4][3], ta[4];

t[0][0] = xtime(c[0]); t[0][1]=xtime(t[0][0]); t[0][2] = xtime(t[0][1]);

t[1][0] = xtime(c[1]); t[1][1]=xtime(t[1][0]); t[1][2] = xtime(t[1][1]);

t[2][0] = xtime(c[2]); t[2][1]=xtime(t[2][0]); t[2][2] = xtime(t[2][1]);

t[3][0] = xtime(c[3]); t[3][1]=xtime(t[3][0]); t[3][2] = xtime(t[3][1]);

ta[0] = t[0][2] ^ t[0][1] ^ t[0][0] ^ t[1][2] ^ t[1][0] ^ c[1] ^

t[2][2] ^ t[2][1] ^ c[2] ^ t[3][2] ^ c[3];

ta[1] = t[1][2] ^ t[1][1] ^ t[1][0] ^ t[2][2] ^ t[2][0] ^ c[2] ^

t[3][2] ^ t[3][1] ^ c[3] ^ t[0][2] ^ c[0];

ta[2] = t[2][2] ^ t[2][1] ^ t[2][0] ^ t[3][2] ^ t[3][0] ^ c[3] ^

t[0][2] ^ t[0][1] ^ c[0] ^ t[1][2] ^ c[1];

ta[3] = t[3][2] ^ t[3][1] ^ t[3][0] ^ t[0][2] ^ t[0][0] ^ c[0] ^

t[1][2] ^ t[1][1] ^ c[1] ^ t[2][2] ^ c[2];

*((unsigned int *)c) = *((unsigned int*)ta);

}

inline void MixCells_i(unsigned char a[4]) {

unsigned char c[2][4] = {

{(unsigned char) (a[0] >> 4 ), (unsigned char) (a[1] >> 4 ),

(unsigned char) (a[2] >> 4 ), (unsigned char) (a[3] >> 4 )},

{(unsigned char) (a[0] & 0xF), (unsigned char) (a[1] & 0xF),

(unsigned char) (a[2] & 0xF), (unsigned char) (a[3] & 0xF)}};

MixCells(c[0]);

MixCells(c[1]);
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a[0] = (c[0][0] << 4) | (c[1][0] & 0xF);

a[1] = (c[0][1] << 4) | (c[1][1] & 0xF);

a[2] = (c[0][2] << 4) | (c[1][2] & 0xF);

a[3] = (c[0][3] << 4) | (c[1][3] & 0xF);

}

inline void ShiftCells_i(unsigned char r[4]) {

r[1] = r[1] << 2 | r[1] >> 6;

r[2] = r[2] << 4 | r[2] >> 4;

r[3] = r[3] << 6 | r[3] >> 2;

unsigned int &ri = *((unsigned int*)r);

ri = ri << 4 | ri >> 28;

}

inline void InvMixCells_i(unsigned char a[4]) {

unsigned char c[2][4] = {

{(unsigned char) (a[0] >> 4 ), (unsigned char) (a[1] >> 4 ),

(unsigned char) (a[2] >> 4 ), (unsigned char) (a[3] >> 4 )},

{(unsigned char) (a[0] & 0xF), (unsigned char) (a[1] & 0xF),

(unsigned char) (a[2] & 0xF), (unsigned char) (a[3] & 0xF)}};

InvMixCells(c[0]);

InvMixCells(c[1]);

a[0] = (c[0][0] << 4) | (c[1][0] & 0xF);

a[1] = (c[0][1] << 4) | (c[1][1] & 0xF);

a[2] = (c[0][2] << 4) | (c[1][2] & 0xF);

a[3] = (c[0][3] << 4) | (c[1][3] & 0xF);

}

inline void ExpandKey(unsigned int key[],

ExpandedKey_i::KeySize size, ExpandedKey_i *expandedKey) {

expandedKey->keySize = size;

int nSize = size+1, nTotalSize=ExpandedKey_i::round0+nSize;

for (int i = 0; i < nTotalSize; i++) {

if (i < nSize)

expandedKey->rkeys[i] = key[i];

else {

expandedKey->rkeys[i] = rcon_i[i-size-1];

for (int k = 0; k < nSize; k++) {

expandedKey->rkeys[i] ^= expandedKey->rkeys[i-k-1];

SubBytes_i((unsigned char*)(expandedKey->rkeys+i));

ShiftCells_i((unsigned char*)(expandedKey->rkeys+i));

MixCells_i((unsigned char*)(expandedKey->rkeys+i));

}}}}

void encrypt(ExpandedKey_i *expandedKey, unsigned char a[4]) {

*((unsigned int*)a) ^= expandedKey->rkeys[0];

int i = 1;

for (; i < expandedKey->keySize + ExpandedKey_i::round0 - 1; i++) {

SubBytes_i(a);

ShiftCells_i(a);

MixCells_i(a);

*((unsigned int*)a) ^= expandedKey->rkeys[i];

}
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SubBytes_i(a);

ShiftCells_i(a);

*((unsigned int*)a) ^= expandedKey->rkeys[i];

}

void decrypt(ExpandedKey_i *expandedKey, unsigned char a[4]) {

*((unsigned int*)a) ^= expandedKey->rkeys[expandedKey->keySize +

ExpandedKey_i::round0 - 1];

int i = expandedKey->keySize + ExpandedKey_i::round0 - 2;

for (; i > 0; i--) {

InvShiftCells_i(a);

InvSubBytes_i(a);

*((unsigned int*)a) ^= expandedKey->rkeys[i];

InvMixCells_i(a);

}

InvShiftCells_i(a);

InvSubBytes_i(a);

*((unsigned int*)a) ^= expandedKey->rkeys[0];

}
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Abstract. The existence of 9-variable Boolean functions having nonlin-
earity strictly greater than 240 has been shown very recently (May 2006)
by Kavut, Maitra and Yücel; a few functions with nonlinearity 241 have
been identified by a heuristic search in the class of Rotation Symmetric
Boolean Functions (RSBFs). In this paper, using combinatorial results
related to the Walsh spectra of RSBFs, we efficiently perform the ex-
haustive search to enumerate the 9-variable RSBFs having nonlinearity
> 240 and found that there are 8×189 many functions with nonlinearity
241 and there is no RSBF having nonlinearity > 241. We further prove
that among these functions, there are only two which are different up to
the affine equivalence. This is found by utilizing the binary nonsingular
circulant matrices and their variants. Finally we explain the coding theo-
retic significance of these functions. This is the first time orphan cosets of
R(1, n) having minimum weight 241 are demonstrated for n = 9. Further
they provide odd weight orphans for n = 9; earlier these were known for
certain n ≥ 11.

Keywords: Boolean Functions, Covering Radius, Reed-Muller Code,
Idempotents, Nonlinearity, Rotational Symmetry, Walsh Transform.

1 Introduction

Nonlinearity is one of the most important cryptographic properties of a Boolean
function to be used as a primitive in any crypto system. High nonlinearity re-
sists Best Affine Approximation (BAA) attacks [8] in case of stream ciphers
and Linear cryptanalysis [18] in case of block ciphers. One may like to access
the references in this paper and the references there in to study the extremely
rich literature on Boolean functions having high nonlinearity with other crypto-
graphic properties. Nonlinearity is important in coding theoretic aspects too.

The class of Rotation Symmetric Boolean functions has received a lot of at-
tention in terms of their cryptographic and combinatorial properties [4, 5, 9, 10,
11, 19, 20, 23, 26, 27, 6, 14, 7]. The nonlinearity and correlation immunity of such
functions have been studied in detail in [4,11,19,20,26,27,14]. It is now clear that
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the RSBF class is extremely rich in terms of these properties. As an important
support of that, very recently 9-variable Boolean functions having nonlinearity
241 have been discovered [15] in the RSBF class, which had been open for almost
three decades. One should note that the space of the RSBF class is much smaller
(≈ 2

2n

n ) than the total space of Boolean functions (22n

) on n variables.
The Boolean functions attaining maximum nonlinearity are called bent [25]

which occurs only for even number of input variables n and the nonlinearity is
2n−1− 2

n
2 −1. For odd number of variables n, the maximum nonlinearity (upper

bound) can be at most 2�2n−2 − 2
n
2 −2� [13]. Before [15], the following results

related to maximum nonlinearity (actually attained) of Boolean functions have
been known. In 1972 [1], it was shown that the maximum nonlinearity of 5-
variable Boolean functions is 12 and in 1980 [21] it was proved that the max-
imum nonlinearity of 7-variable Boolean functions is 56. Thus for odd n ≤ 7,
the maximum nonlinearity of n-variable functions is 2n−1 − 2

n−1
2 . In 1983 [22],

Boolean functions on 15 variables having nonlinearity 16276 were demonstrated
and using this result one can show that for odd n ≥ 15, it is possible to get
Boolean functions having nonlinearity 2n−1 − 2

n−1
2 + 20 · 2 n−15

2 . There was a
gap for n = 9, 11, 13 and the maximum nonlinearity known for these cases prior
to [15] was 2n−1 − 2

n−1
2 . Very recently [15] 9-variable Boolean functions hav-

ing nonlinearity 241 have been discovered which belong to the class of Rotation
Symmetric Boolean functions. The technique used to find such functions is a
suitably modified steepest-descent based iterative heuristic [14, 15].

As the functions could be found by heuristic search only [15], there is a the-
oretical need to study the complete RSBF class of 9-variables for nonlinearity
> 240. Given the nice combinatorial structure of the Walsh spectra for RSBFs
on odd number of variables [19], such a search becomes feasible with considerable
computational effort. The complete details of the exhaustive search strategy is
explained in Section 2 of this paper. The search shows that the maximum non-
linearity of 9-variable RSBFs is 241. We exploit certain results related to binary
nonsingular circulant matrices and their variants to show that there are actually
two different 9-variable nonlinearity 241 functions in the 9-variable RSBF class
up to the affine equivalence. This is described in Section 3. As the maximum
nonlinearity issue of Boolean functions is related to the covering radius of first
order Reed-Muller code, we briefly outline the coding theoretic implications of
our results in Section 4.

Let us consider any Boolean function as a mapping from GF (2n) → GF (2).
Then the functions for which f(α2) = f(α), for any α ∈ GF (2n) are referred as
idempotents [9, 10] as it follows from f2 = f in multiplicative algebra. In [9, 10]
the idempotents were studied for n = 9 with the motivation that the Patterson-
Wiedemann functions [22] for n = 15 were idempotents. However, in [9, 10] the
search was not exhaustive and that is why the functions with nonlinearity 241
could not be discovered. In fact, the idempotents can be seen as RSBFs [9,
10]. Interestingly if one looks at an RSBF, the nice structure [19] in the Walsh
spectrum can be exploited to execute an efficient search which is not immediate
if one looks at the functions as idempotents.
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1.1 Preliminaries

A Boolean function on n variables may be viewed as a mapping from Vn = {0, 1}n

into {0, 1}. The truth table of a Boolean function f(x1, . . . , xn) is a binary string
of length 2n, f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)].
The Hamming weight of a binary string S is the number of 1’s in S denoted by
wt(S). An n-variable function f is said to be balanced if its truth table contains
an equal number of 0’s and 1’s, i.e., wt(f) = 2n−1. Also, the Hamming distance
between equidimensional binary strings S1 and S2 is defined by d(S1, S2) =
wt(S1 ⊕ S2), where ⊕ denotes the addition over GF (2), i.e., XOR.

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a mul-
tivariate polynomial over GF (2). This polynomial can be expressed as a sum of
products representation of all distinct k-th order products (0 ≤ k ≤ n) of the
variables. More precisely, f(x1, . . . , xn) can be written as a0 ⊕

⊕
1≤i≤n aixi ⊕⊕

1≤i<j≤n aijxixj⊕. . .⊕a12...nx1x2 . . . xn, where a0, aij , . . . , a12...n ∈ {0, 1}. This
representation of f is called the algebraic normal form (ANF) of f . The number
of variables in the highest order product term with nonzero coefficient is called
the algebraic degree, or simply the degree of f and denoted by deg(f). Func-
tions of degree at most one are called affine functions. An affine function with
constant term equal to zero is called a linear function. The set of all n-variable
affine (respectively linear) functions is denoted by A(n) (respectively L(n)). The
nonlinearity of an n-variable function f is nl(f) = ming∈A(n)(d(f, g)), i.e., the
minimum distance from the set of all n-variable affine functions.

Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and
x · ω = x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) be a Boolean function on n variables.
Then the Walsh transform of f(x) is a real valued function over {0, 1}n which
is defined as Wf (ω) =

∑
x∈{0,1}n(−1)f(x)⊕x·ω. In terms of Walsh spectrum, the

nonlinearity of f is given by nl(f) = 2n−1 − 1
2 maxω∈{0,1}n |Wf (ω)|.

Towards cryptographic applications, one needs to consider the autocorrelation
spectrum [24,28] of a Boolean function. Let α ∈ {0, 1}n and f be an n-variable
Boolean function. The autocorrelation value of the Boolean function f with
respect to the vector α is Δf (α) =

∑
x∈{0,1}n(−1)f(x)⊕f(x⊕α). Further Δf =

maxα∈{0,1}n,α�=(0,...,0) |Δf (α)| is called the absolute indicator. A function is said
to satisfy PC(k), if Δf (α) = 0 for 1 ≤ wt(α) ≤ k.

1.2 Rotation Symmetric Boolean Functions

The study of rotation symmetric functions for good cryptographic properties
was initiated in [9] and they were called idempotents in that paper. Let xi ∈
{0, 1} for 1 ≤ i ≤ n. For some integer k ≥ 0 we define ρk

n(xi) as ρk
n(xi) =

xi+k mod n, with the exception that when i + k ≡ 0 mod n, then we will assign
i + k mod n by n instead of 0. This is to cope up with the input variable in-
dices 1, . . . , n for x1, . . . , xn. Let (x1, x2, . . . , xn−1, xn) ∈ Vn. Then we extend the
definition as ρk

n(x1, x2, . . . , xn−1, xn) = (ρk
n(x1), ρk

n(x2), . . . , ρk
n(xn−1), ρk

n(xn)).
Hence, ρk

n acts as k-cyclic rotation on an n-bit vector. A Boolean function f
is called rotation symmetric (RSBF) if for each input (x1, . . . , xn) ∈ {0, 1}n,
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f(ρk
n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n − 1. That is, the rotation

symmetric Boolean functions are invariant under cyclic rotation of inputs. The
inputs of a rotation symmetric Boolean function can be divided into orbits so
that each orbit consists of all cyclic shifts of one input. An orbit is generated
by Gn(x1, x2, . . . , xn) = {ρk

n(x1, x2, . . . , xn)|1 ≤ k ≤ n} and the number of such
orbits is denoted by gn. Thus the number of n-variable RSBFs is 2gn . Let φ
be Euler’s phi-function, then it can be shown by Burnside’s lemma that (see
also [26]) gn = 1

n

∑
k|n φ(k) 2

n
k .

An orbit is completely determined by its representative element Λn,i, which
is the lexicographically first element belonging to the orbit [27]. These represen-
tative elements are again arranged lexicographically as Λn,0, . . . , Λn,gn−1. In [27]
it was shown that the Walsh transform takes the same value for all elements
belonging to the same orbit, i.e., Wf (u) = Wf (v) if u ∈ Gn(v). In analyzing
the Walsh spectrum of an RSBF, the nA matrix has been introduced [27]. The
matrix nA = (nAi,j)gn×gn is defined as nAi,j =

∑
x∈Gn(Λn,i)

(−1)x·Λn,j , for an
n-variable RSBF. Using this gn × gn matrix, the Walsh spectrum for an RSBF
can be calculated as Wf (Λn,j) =

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j .

2 Search Algorithm

In this section we present the search algorithm that exhausts the 9-variable
RSBFs having nonlinearity > 240. To understand the search method, we first
need to study the structure of nA under some permutation of the orbit leaders
as explained in [19].

2.1 Structure of nA for n Odd

The structure of nA has been studied in detail for odd n in [19]. Instead of
ordering the representative elements in lexicographical manner, the ordering was
considered in a different way to get better combinatorial structures. Define Λ̂n,i

as the representative element of Gn(x1, x2, . . . , xn) that contains complement
of Λn,i. For odd n, there is a one-to-one correspondence between the classes of
even weight Λn,i’s and the classes of odd weight Λn,i’s by Λn,i → Λ̂n,i. Hence,
the set of orbits can be divided into two parts (of same cardinality) containing
representative elements of even weights and odd weights respectively.

Let us consider the ordering of the representative elements in the following
way. First the representative elements of even weights are arranged in lexico-
graphical order and they are termed as Λn,i, for i = 0 to gn

2 − 1. Then the next
gn

2 representative elements correspond to the complements of the even weight
ones, i.e., these are of odd weights. These are recognized as Λn,i = Λ̂n,i− gn

2
for

i = gn

2 to gn − 1. Thus following [19], the matrix nA needs to be reorganized.
The resulting matrix is denoted by nAπ , which has the form [19]

nAπ =
(

nH nH
nH −nH

)
,
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where nH is a sub matrix (of order gn

2 ×
gn

2 ) of nAπ. Using this matrix nAπ ,
the authors of [19] showed that Walsh spectrum calculation could be reduced by
almost half of the amount compared to [27].

Given the new ordering of Λn,i’s, we represent two strings μf = ((−1)f(Λn,0),

. . . , (−1)
f(Λn,

gn
2 −1)) and νf = ((−1)

f(Λn,
gn
2

)
, . . . , (−1)f(Λn,gn−1)) corresponding

to an n-variable RSBF f . Note that μf , νf are vectors of dimension gn

2 .
Let us now consider the vectors uf = μf nH, vf = νf nH. Then the Walsh

spectrum values of f will be (uf [i] + vf [i]) for the first gn

2 many representative
elements (which are of even weights) and (uf [i] − vf [i]) for the next gn

2 many
representative elements (which are of odd weights).

2.2 Walsh Spectra of 9-Variable RSBFs Having Nonlinearity > 240

Let us start with a technical result which is easy to prove.

Proposition 1. Let a, b and M be three integers with M > 0. Then |a+b| ≤ M ,
|a− b| ≤ M iff |a|+ |b| ≤ M .

The matrix 9Aπ for 9-variable RSBFs is a 60 × 60 matrix, as the number of
distinct orbits is 60. The matrix 9H is a 30× 30 matrix.

For an RSBF f on 9 variables, which has nonlinearity strictly greater than
240, the values in the Walsh spectrum are in the range [−30, 30]. Thus for a
pattern μf ||νf , one must get |uf [i] + vf [i]| ≤ 30 and |uf [i] − vf [i]| ≤ 30; using
Proposition 1, these two conditions are equivalent to |uf [i]| + |vf [i]| ≤ 30 for
0 ≤ i ≤ g9

2 − 1 = 29.
Thus one needs to find a 9-variable RSBF f (represented by a 60-bit vector

μf ||νf ) such that |uf [i]| + |vf [i]| ≤ 30 for 0 ≤ i ≤ 29. By a naive method
this requires to exhaust the search space of 260, i.e., generating all the μf ||νf

patterns and then checking whether the condition |uf [i]|+ |vf [i]| ≤ 30 is satisfied
for 0 ≤ i ≤ 29 for each of such patterns.

Next we present an efficient method for this. Note that the conditions |uf [i]+
vf [i]| ≤ 30 and |uf [i] − vf [i]| ≤ 30 lead to |uf [i]| ≤ 30 and |vf [i]| ≤ 30; i.e.,
each of the μf ||νf patterns must satisfy the necessary conditions |uf [i]| ≤ 30
and |vf [i]| ≤ 30 respectively for 0 ≤ i ≤ 29. Thus we first search for all the
patterns μf ’s such that |uf [i]| ≤ 30 for 0 ≤ i ≤ 29. Let us denote the set of
such patterns by S. This search requires checking for 229 such patterns by fixing
μf [0] = (−1)0 = 1. The reason why we fix uf [0] is presented in Proposition 2 and
the discussion after it. In a computer with the specification 3.6 Ghz Intel Xeon
and 4 GB RAM, it took little less than half an hour to generate the file containing
all these patterns and it contains 24037027 many records, i.e., |S| = 24037027.
Note that 224 < 24037027 < 225.

Clearly the search for all the patterns νf ’s such that |vf [i]| ≤ 30 for 0 ≤ i ≤ 29
will produce the same set S. Hence the search for μf ||νf with the property
|uf [i]| + |vf [i]| ≤ 30 for 0 ≤ i ≤ 29 requires choosing any two patterns μf , νf

from S and checking them. To explain how we select two patterns, we first need
to present the following technical result.
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Proposition 2. Consider a 9-variable RSBF f which is represented as μf ||νf

such that |uf [i]|+ |vf [i]| ≤ 30 for 0 ≤ i ≤ 29. Consider the functions g such that
any of the following holds:

1. μg = μf , νg = νc
f , i.e., g(x1 . . . x9) = f(x1, . . . , x9)⊕ l9,

2. μg = μc
f , νg = νf , i.e., g(x1 . . . x9) = f(x1, . . . , x9)⊕ l9 ⊕ 1,

3. μg = μc
f , νg = νc

f , i.e., g(x1 . . . x9) = f(x1, . . . , x9)⊕ 1,
4. μg = νf , νg = μf , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9),
5. μg = νf , νg = μc

f , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9)⊕ l9,
6. μg = νc

f , νg = μf , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9)⊕ l9 ⊕ 1,
7. μg = νc

f , νg = μc
f , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9)⊕ 1,

where l9 = x1⊕x2 . . .⊕x8⊕x9, the rotation symmetric linear function containing
all the variables. Then |ug[i]|+ |vg[i]| ≤ 30 for 0 ≤ i ≤ 29.

Thus from a single 9-variable RSBF f one can get 8 many (including f) RSBFs
having the same nonlinearity. This is the reason we fix μf [0] = 1. We initially
check that repeating a pattern from S twice (i.e., μf ||νf , when νf = μf ) one
can not satisfy the condition |uf [i]| + |vf [i]| ≤ 30 for 0 ≤ i ≤ 29. Thus one
requires

(
24037027

2

)
= 288889321480851 many pairs to check. Note that 248 <

288889321480851 < 249.
We first apply a sieving method to reduce the size of S. The idea is to fix

some t, 0 ≤ t ≤ 29 and list all the μf patterns from S such that |uf [t]| = 30
and store them in the set S30,t. Similarly, we form the set S0,t consisting of νf

patterns from the same set S such that |vf [t]| = 0. Then we choose each of the
μf patterns from S30,t and each of the νf patterns from S0,t. If for some μf

and νf , the condition |uf [i]| + |vf [i]| ≤ 30 for all i such that 0 ≤ i ≤ 29 holds,
then μf ||νf is a 9-variable RSBF having nonlinearity 241. We store these RSBFs
with nonlinearity 241 and update S by S \ S30,t as the elements of S30,t when
considered as μf , can not be attached with any νf of S except the elements of
S0,t to generate an RSBF having nonlinearity > 240.

We do this by fixing t taking all integers in [0, 29]. The result found is presented
in the following table. Before running the algorithm we like to note the following
two observations.

1. For t = 28, in the set S, there is no μf such that |uf [28]| ≤ 2. Thus we
initially remove all the μf patterns such that 28 ≤ |uf [28]| ≤ 30. This
reduces the number of patterns in S from 24037027 to 18999780.

2. For t = 0, in the set S, there is no μf such that |uf [0]| = 30. Thus we do
not consider this.

In Table 1, we try to fix t such that more number of rows can be removed by
lesser search, however this is done only by observation and no specific strategy is
involved here. That is the reason the indices in the table are not in order. We find
7 × 27 = 189 many RSBFs by this method and hence following Proposition 2,
we get 8× 189 many 9-variable RSBFs having nonlinearity 241. Thus after this
experiment the set S is reduced to 9540580 elements which is less than half of
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Table 1. Initial search result for 9-variable RSBFs having nonlinearity> 241

t |S30,t| |S0,t| # of μf ||νf such that nl(f) = 241

29 747073 37584 0

15 552651 77328 27

1 687215 37584 0

27 613686 37584 0

26 542078 37584 0

24 597941 37584 0

16 531456 37584 0

4 545152 37584 0

2 514474 37584 0

19 495350 37584 0

12 464475 37584 0

5 408014 37584 0

14 385125 37584 0

13 364029 37584 0

8 338321 37584 0

23 320685 37584 0

20 272767 37584 0

6 255915 37584 0

10 237525 37584 0

17 222237 37584 0

9 206952 37584 0

21 192113 37584 0

3 132406 77328 27

7 126821 77328 27

11 121290 77328 27

18 115705 77328 27

25 110174 77328 27

22 104643 77328 27

its initial size 24037027. The experiment requires little more than a day in a PC
having 3.6 Ghz Intel Xeon and 4 GB RAM.

Then we go for exhaustive search by taking any two patterns in
(
9540580

2

)
ways. Note that 245 <

(
9540580

2

)
< 246. We use 20 computers in parallel that

work for 30 hours to check this and we do not find any other function having
nonlinearity > 240. The specification of computers are 2.8 GHz Pentium IV with
256 MB RAM.

Thus we have the following result.

Theorem 1. There are 8×189 many 9-variable RSBFs having nonlinearity 241
and this is the highest nonlinearity for the 9-variable RSBF class.

Now let us present the distribution of Walsh spectra of the 189 functions available
from Table 1 and interestingly all of them are same.
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Table 2. Distribution of Walsh spectra of the functions found in Table 1

Wf (ω) -30 -22 -14 -6 2 10 18 26

# of ω’s 127 27 36 18 55 39 54 156

We found two classes of functions out of them (63 functions in one class and
rest in another class) having different distribution of autocorrelation spectra as
follows.

Table 3. Distribution of autocorrelation spectra of the functions found in Table 1

Δf (ω) -52 -44 -36 -20 -12 -4 4 12 28

# of nonzero ω’s 9 9 9 18 81 85 198 81 21

Δf (ω) -76 -36 -28 -20 -12 -4 4 12 20 28

# of nonzero ω’s 1 9 18 36 81 135 108 54 48 21

Thus it is expected that the 189 functions found in Table 1 are linear trans-
formations of two different functions up to affine equivalence and we justify this
in the next section.

3 Affine Equivalence of RSBFs Having Nonlinearity 241

Given two Boolean functions f, g on n variables, we call them affinely equivalent
if there exist a binary nonsingular n× n matrix A, two n-bit binary vectors b, d
and a binary constant c such that g(x) = f(xA⊕b)⊕d·x⊕c. Thus it is clear that
given the function f in Proposition 2, all the other seven functions are affinely
equivalent to f . In this section we will try to find out affine equivalence among
the 189 functions available from Table 1.

For (a1, . . . , an) ∈ {0, 1}n, the n×n circulant matrix generated by (a1, . . . , an)
is given by

C(a1, a2, . . . , an) =

⎡⎢⎢⎢⎢⎢⎣
a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2

...
...

a2 a3 a4 . . . a1

⎤⎥⎥⎥⎥⎥⎦ .

The determinant of the matrix C(a1, a2, . . . , an) is

det[C(a1, a2, . . . , an)] =
n−1∏
i=0

(a1 + a2ωi + a3ω
2
i + . . . + anωn−1

i ),

where ωi’s (0 ≤ i ≤ n − 1) are the n-th roots of unity. In particular we denote
ω0 = 1. We are interested in the binary circulant matrices which are nonsingular.
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Proposition 3. Let α, β ∈ {0, 1}n such that α ∈ Gn(β) and A be an n × n
nonsingular binary circulant matrix. Then αA ∈ Gn(βA).

Proof. As α ∈ G(β), we have α = ρk(β), for some k such that 0 ≤ k < n. It is
also clear that the columns A1, A2, . . . , An of the matrix A = C(a1, a2, . . . , an)
are cyclic shift of each other, precisely, Aj = ρj−1(A1). Now,

βA = (βA1, βA2, βA3, . . . , βAn)
= (βA1, βρ1(A1), βρ2(A1), . . . , βρn−1(A1))
= (βA1, ρn−1(β)A1, ρn−2(β)A1, . . . , ρ1(β)A1)

Again,

αA = (αA1, αA2, αA3, . . . , αAk, αAk+1, αAk+2, . . . , αAn)
= (αA1, ρ

n−1(α)A1, ρ
n−2(α)A1, . . . , ρ

n−k+1(α)A1, ρ
n−k(α)A1,

ρn−k−1(α)A1, . . . , ρ
1(α)A1)

= (ρk(β)A1, ρ
n−1(ρk(β))A1, ρ

n−2(ρk(β))A1, . . . , ρ
n−k+1(ρk(β))A1,

ρn−k(ρk(β))A1, ρ
n−k−1(ρk(β))A1, . . . , ρ

1(ρk(β))A1)
= (ρk(β)A1, ρ

n−1+k(β)A1, ρ
n−2+k(β)A1, . . . , ρ

n−k+1+k(β)A1,
ρn−k+k(β)A1, ρ

n−k−1+k(β)A1, . . . , ρ
1+k(β)A1)

= (ρk(β)A1, ρ
k−1(β)A1, ρ

k−2(β)A1, . . . , ρ
1(β)A1, βA1, ρ

n−1(β)A1,
. . . , ρk+1(β)A1)

This shows αA ∈ Gn(βA).

Proposition 4. Let f(x) be an n-variable RSBF and A be an n×n nonsingular
binary circulant matrix. Then f(xA) is also an RSBF.

Proof. Let g(x) = f(xA). Consider x1, x2 ∈ Gn(Λ). Now g(x1) = f(x1A) and
g(x2) = f(x2A). As x1A, x2A ∈ Gn(ΛA) (from Proposition 3) and f is an RSBF,
g(x1) = f(x1A) = f(x2A) = g(x2). Thus g is also an RSBF.

We have enumerated all the 21 distinct nonsingular binary circulant 9×9 matri-
ces up to equivalence corresponding to the row permutations. Based on Proposi-
tion 4 we first try to identify whether one of the 189 functions found in Table 1
are affinely equivalent to another function using any of these 21 matrices. We
find that this is indeed true and the 189 functions can be divided into 9 classes
each containing 21 functions. One example matrix used for this purpose is

A = C(0, 0, 0, 1, 0, 1, 1, 1, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1 1 1 1
1 0 0 0 1 0 1 1 1
1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1
1 1 1 1 0 0 0 1 0
0 1 1 1 1 0 0 0 1
1 0 1 1 1 1 0 0 0
0 1 0 1 1 1 1 0 0
0 0 1 0 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Given one function f(x), the other functions are generated as f(xA), f(xA2), . . .,
f(xA20) (in each class containing 21 functions). There are 9 such classes contain-
ing 21 functions each and the functions in each class are affinely equivalent. Now
let us take one function from each of the 9 classes. Out of these nine functions,
three functions follow the distribution of autocorrelation spectrum presented in
the top sub-table of Table 3 and six functions follow the distribution of the au-
tocorrelation spectrum presented in the bottom one of Table 3. However, using
these 21 matrices no further affine equivalence could be achieved.

Thus we need to concentrate on some larger class of nonsingular matrices than
the binary circulant matrices. We study the matrices whose rows are certain
kinds of permutation of the rows of binary circulant matrices. Note that if a
circulant matrix is nonsingular, then by making the permutation of rows the
nonsingularity will not be disturbed. In a circulant matrix we start with a row
and then rotate the row one place (we use the right rotation in this paper) to
generate the next row. Instead, given the first row, we may go for i-rotation
where i, n are coprime.

Define Ci(a1, a2, . . . , an) as the matrix obtained by taking (a1, a2, . . . , an) as
the first row and each of the other rows of the matrix is the i-rotations of its
previous row, i.e., Ci(a1, a2, . . . , an) =⎡⎢⎢⎢⎢⎢⎣

a1 a2 a3 . . . an

an+1−i an+2−i an+3−i . . . an+n−i

a2n+1−2i a2n+2−2i a2n+3−2i . . . a2n+n−2i

...
...

a(n−1)n+1−(n−1)i a(n−1)n+2−(n−1)i a(n−1)n+1−(n−1)i . . . a(n−1)n+1−(n−1)i

⎤⎥⎥⎥⎥⎥⎦.

Proposition 5. Let α, β ∈ {0, 1}n such that α ∈ Gn(β). Let B be a nonsingular
matrix, B = Ci(a1, a2, . . . , an), where n and i are coprime and (a1, a2, . . . , an) ∈
{0, 1}n. Then αB ∈ Gn(βB).

Proof. As α ∈ G(β), then α = ρk(β), for some k such that 1 ≤ k < n. It is also
clear that each of the B1, B2, . . . , Bn columns of the matrix B = Ci(a1, a2, . . . , an)
is i-cyclic shift of the previous column, i.e., Bj = ρ(j−1)iB1. Now,

βB = (βB1, βB2, βB3, . . . , βBn)
= (βB1, βρi(B1), βρ2i(B1), . . . , βρ(n−1)i(B1))
= (βB1, ρn−i(β)B1, ρn−2i(β)B1, . . . , ρi(β)B1)

Again, αB = (αB1, αB2, αB3, . . . , αBn)

= (αB1, ρ
n−i(α)B1, ρ

n−2i(α)B1, . . . , ρ
i(α)B1)

= (ρk(β)B1, ρ
n−i(ρk(β))B1, ρ

n−2i(ρk(β))B1, . . . , ρ
i(ρk(β))B1)

= (ρk(β)B1, ρ
n−i+k(β)B1, ρ

n−2i+k(β)B1, . . . , ρ
i+k(β)B1).

Since i and n are coprime, for some integer γ we have, γi ≡ 1 mod n, i.e., γki ≡
k mod n, i.e., ri ≡ k mod n, as γk ≡ r mod n, for some r, 0 ≤ r < n. Therefore,
in the expression of αB, we have, ρ(n−ri+k)(β)B1 = βB1, ρ(n−(r+1)i+k)(β)B1 =
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ρ(n−i)(β)B1 and in this way all the elements of {βB1, ρn−i(β)B1, ρ
n−2i(β)B1, . . . ,

ρi(β)B1} will appear in αB in the same sequence in which they occur in βB. If
τ be the term of βB, which occurs as the n-th term of αB, then all the remain-
ing terms of βB after τ will appear in the same sequence starting from the 1st
position up to the (r − 2)-th position in αB. Therefore αB ∈ Gn(βB). Hence
the proof.

Similar to the Proposition 4, using Proposition 5 we get the following.

Proposition 6. Let f(x) be an n-variable RSBF and B be an n×n nonsingular
binary matrix as explained in Proposition 5. Then f(xB) is also an RSBF.

In our case, n = 9 and we choose i = 2. As for example, one may consider the
matrix

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using this matrix we find that the nine RSBFs can be represented by two distinct
functions up to affine equivalence. Note that these two functions are not affinely
equivalent as their autocorrelation spectra are different as given in Table 3. Below
we present these two functions, the first one with maximum absolute value in
the autocorrelation spectrum 52 and the second one with 76. The two functions
are as follows.

05777A7A6ED82E887CFCE3C549E994947AE4FBA5B91FE46674C3AC8386609671
3FCCAC20EE9B9966CAD357AAE921286D7A20A55A8DF0910BC03C3C51866D2B16

04757A727ED96F087EFCE2C768EB04947AECFBA5B91DE42E7CC1AC8B1060D671
2FCCEDB0EE8B8926CAD357A2E92148ED3AB4A1128DF0918B46143C51A66D2B16

4 Coding Theoretic Implications

As the question of maximum nonlinearity for Boolean functions is related to the
covering radius of First order Reed-Muller code R(1, n), we explain the coding
theoretic implications of the 9-variable functions having nonlinearity 241. We like
to refer to the papers [2,3,10,12,13,16] for relevant coding theoretic discussions.

We present the basic definitions following [16] Let us consider a binary code
C of length N . Here we consider R(1, n), i.e., C consists of the 2n+1 many truth
tables (of length N = 2n) of the affine functions on n variables. Now consider
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any coset D of the code C, i.e., the elements of the coset D are f ⊕ l, where
l ∈ R(1, n) and f is a nonlinear Boolean function. The weight of the minimum
weight vector in D is considered as the weight of D. Let the minimum weight be
w. Then all the vectors having weight w constitute the set of the leaders in D,
denoted as L(D). One can define a partial ordering on FN

2 by S ≤ T between
two binary vectors S, T of length N if Si ≤ Ti for 0 ≤ i ≤ N − 1. A partial
ordering on the space of cosets of C can be defined as follows. Given two cosets
D, D′ of C, D ≤ D′ means there exist S ∈ L(D) and S′ ∈ L(D′) such that
S ≤ S′. We define a coset D as an orphan or urcoset of C if D is a maximal
coset in this partial ordering. This concept was first presented in [12] as urcoset
and then in [2,3] as orphan coset. One can check [16] that a coset D is an orphan
or urcoset when ∪g∈L(D)supp(g) = {0, 1}N .

We have checked by running computer program that given any of the two
functions described in the previous function (say f, g), each of the cosets f ⊕
R(1, n) and g ⊕ R(1, n) is an orphan or urcoset. It is clear from Table 2 that
the weight of each of the leaders is 241 and there are 127 leaders in each coset.
Since each coset is an odd weight orphan, according to [16, Proposition 7], one
coordinate position (out of the 512 positions numbered as 0 to 511) must be
covered by all the 127 leaders (i.e., the leaders will have the value 1 at that
position). In both of the cosets, the 0th position, the output of the 9-variable
function corresponding to input (0, 0, . . . , 0, 0), is covered by all the leaders.

In [10], orphan cosets having minimum weight of 240 have been reported. This is
the first time orphan cosets having minimum weight 241 are demonstrated. Further
it is reported in [2, Page 401] that X.-d. Hou has constructed odd weight orphans
of R(1, n) for certain n ≥ 11. Our result shows that this is true for n = 9 also.

Let ρ(C) be the covering radius [17, 22] of C, the weight of the coset of C
having largest weight. We like to point out a conjecture in this direction presented
in [3]. The conjecture says that the covering radius of R(1, n) is even. For n = 9
we found that the covering radius is at least 241, and searching the space of
9-variable RSBFs we could not get higher nonlinearity. In fact some heuristic
attempts to increase the nonlinearity did not work yet. It will be an interesting
open question to settle the covering radius of R(1, 9). The bound presented in [13]
for R(1, 9) gives the value 244.

5 Conclusion

In this paper we present an efficient exhaustive search strategy to enumerate the
9-variable RSBFs having nonlinearity > 240. We find 8 × 189 many functions
with nonlinearity 241 and it is found that there is no function having more
nonlinearity in the 9-variable RSBF class. Using binary nonsingular circulant
matrices and some variants of them, we could show that there are only two
different 9-variable functions having nonlinearity 241 in the RSBF class up to
affine equivalence. Towards the end we present the coding theoretic implications
of these functions. The most important open question is to study outside the
RSBF class to see if there is any function having nonlinearity > 241.
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27. P. Stănică, S. Maitra and J. Clark. Results on Rotation Symmetric Bent and
Correlation Immune Boolean Functions. Fast Software Encryption Workshop (FSE
2004), New Delhi, INDIA, LNCS 3017, Springer Verlag, 161–177, 2004.

28. X. M. Zhang and Y. Zheng. GAC - the criterion for global avalanche characteristics
of cryptographic functions. Journal of Universal Computer Science, 1(5):316–333,
1995.



Symmetric Nonce Respecting Security Model

and the MEM Mode of Operation

Peng Wang1, Dengguo Feng1,2, and Wenling Wu2

1 State Key Laboratory of Information Security
Graduate School of Chinese Academy of Sciences, Beijing 100049, China

wp@is.ac.cn
2 State Key Laboratory of Information Security

Institution of Software of Chinese Academy of Sciences, Beijing 100080, China
{feng, wwl}@is.iscas.ac.cn

Abstract. The MEM mode is a nonce-based encryption mode of op-
eration proposed by Chakraborty and Sarkar, which was claimed to be
secure against symmetric nonce respecting adversaries. We first compare
this security model with two similar models and then show that MEM
is not secure under symmetric respecting attacks. One attack needs one
decryption and one encryption queries, and the other only needs one
encryption query.

Keywords: Blockcipher, tweakable blockcipher, modes of operation,
nonce-based encryption, security model.

1 Introduction

A mode of operation, or mode, for short, is a scheme that specifies how to use a
blockcipher to provide some cryptographic services, such as privacy, authenticity
or both. Recently, Chakraborty and Sarkar [2] proposed a new security model in
which the adversary is symmetric nonce respecting and the MEM (Mask Encrypt
Mask) mode, a nonce-based encryption mode of operation, which was claimed to
be secure in this model.

Suppose the underlying blockcipher is

E : K × {0, 1}n → {0, 1}n

where K is a key space, then the MEM mode is

MEM[E] : K×N × ({0, 1}n)+ → ({0, 1}n)+

where N = {0, 1}n is a nonce space and the key space K is same as that of
the underlying blockcipher E. Let EK(·, ·) and DK(·, ·) be the encryption and
decryption algorithms in an encryption scheme respectively, which is just MEM
in section 3. Let DK be the inverse of EK .
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1.1 Symmetric Nonce Respecting Adversaries

The nonce-based symmetric encryption [10] is a syntax for an encryption scheme
where the encryption process is a deterministic algorithm, which surfaces an
initial vector. The initial vector which is supplied by the user and not by the en-
cryption algorithm is usually a nonce — a value, like a counter, used at most once
within a session. This syntax was advocated by Rogaway, Bellare, et al. [12,11],
and first used in the OCB mode [12,10]. In a nonce-based encryption scheme,
the encryption algorithm is E : K × N ×M → M, where K is a key space,
N is a nonce space and M is a message space. We often write E(K, N, M) as
EK(N, M) or EN

K(M).

IND$-SNR. The security model of MEM assumes that the adversary be sym-
metric nonce respecting, i.e., the adversary can not repeat nonce in either en-
cryption or decryption query. Note that an adversary is allowed to choose the
same nonce for both the encryption and the decryption queries. Without loss of
generality, we also assume that the adversary does not make pointless query, such
as as a decryption query of (N, C) after getting it as an answer to an encryption
query, etc. IND$-SNR is a reasonable model in certain scenarios [2].

If any symmetric nonce respecting adversary cannot distinguish EK(·, ·) and
DK(·, ·) from that of a random tweakable permutation and its inverse, we say
that E is secure against symmetric nonce respecting attacks. Note that all the
adversaries in this paper can only use reasonable resources, such as polynomial
time and queries. Indistinguishability means that the advantage of the adver-
sary is negligible. Or equivalently [2], this kind of adversary cannot distinguish
EK(·, ·) and DK(·, ·) from $(·, ·) and $(·, ·), where $(N, P ) returns a random
string of length |P |. If ≈ denotes indistinguishability, we can write it as

EK(·, ·),DK(·, ·) ≈ $(·, ·), $(·, ·).

We denote this security model as IND$-SNR.

IND$-SSTB. Without the symmetric nonce respecting restriction, the IND$-
SNR security model is exactly that of strong secure tweakable blockcipher [7].
More specifically [3,4], E is an strong security tweakable blockcipher, if for any
adversary making no pointless queries

EK(·, ·),DK(·, ·) ≈ $(·, ·), $(·, ·).

Dedicated strong secure tweakable blockcipher constructions, such as CMC [3],
EME [4], HCTR [13] etc. are of course secure against symmetric nonce respecting
adversaries. We denote this security model as IND$-SSTB.

IND$-CCA. The other similar security model is IND$-CCA [11], i.e. the chosen
ciphertext security model for nonce based encryption scheme. In this model, the
adversary is nonce respecting when makes an encryption query and

EK(·, ·),DK(·, ·) ≈ $(·, ·),DK(·, ·)
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where $ returns a |EK(N, P )| bits random string to each query (N, P ). This
model is adopted by the OCB mode [12,10], the GCM mode [8], the CWC
mode [6], the EAX mode [1], etc.

1.2 Security Claimed by [2]

Chakraborty, et al. claimed that MEM was secure under the IND$-SNR model.
They “proved” that:

EK(·, ·),DK(·, ·) ≈ $(·, ·), $(·, ·).

Unfortunately, it was wrong. We will give two very simple attacks in section 3.
The security proof is always a subtle thing, especial a long one. For example,

the EMD mode [9] proposed by Rogaway also had a detailed proof, but was soon
broken by Joux [5].

1.3 Our Contributions

We first analyze the relations among IND$-SNR IND$-SSTB and IND$-CCA.
The results show that IND$-SSTB is the strongest model and IND$-SNR and
IND$-CCA are incomparable, i.e. there exists an encryption scheme which is
IND$-SNR secure but not IND$-CCA secure and there exists an encryption
scheme which is IND$-CCA secure but not IND$-SNR secure.

We then show that EME is not secure against symmetric nonce respecting
adversaries at all. The first attack makes one decryption and one encryption
queries. The second attack makes only one encryption query.

2 Relations Among Three Security Models

We sum up the query restrictions of adversaries in IND$-SNR, IND$-SSTB and
IND$-CCA, respectively, in following table.

Table 1. The restrictions of adversaries in three models

When query and get then these queries are disallowed:

EK(N, P ) C EK(N, ·), DK(N, C)
IND$-SNR

DK(N, C) P DK(N, ·), EK(N, P )

EK(N, P ) C EK(N, P ), DK(N, C)
IND$-SSTB

DK(N, C) P DK(N, C), EK(N, P )

EK(N, P ) C EK(N, ·), DK(N, C)
IND$-CCA

DK(N, C) P EK(N, P )

We write MA−→MB to denote that for any scheme secure under model MA
is also secure under model MB; and write MA−→/ MB to denote that there exists
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an scheme which is secure under model MA but is not secure under model MB.
The relations among IND$-SNR, IND$-SSTB and IND$-CCA are represented
in Figure 1.

IND$-CCA IND$-SNR

IND$-SSTB

Fig. 1. Relations among IND$-SNR, IND$-SSTB and IND$-CCA

According to the ability of the adversary, it is obviously that IND$-SSTB−→
IND$-SNR, IND$-SSTB−→IND$-CCA, IND$-SNR −→/ IND$-SSTB and IND$-
CCA−→/ IND$-SSTB. For the sake of simplicity, in the following encryption
schemes we only describe the encryption algorithms.

IND$-SNR−→/ IND$-CCA. First notice that the encryption scheme whose
encryption algorithm is E′

K1,K2
(M) = K1 ·M ⊕K2 is IND$-SNR secure if the

adversary only makes one encryption query and one decryption query. We con-
struct EN

K(M) = EK(N ||0) ·M ⊕ EK(N ||1), where E is an secure blockcipher
and N is a nonce. In the IND$-SNR model, each nonce can only appear in one
encryption query and one decryption query. When N is new, EK(N ||0) and
EK(N ||1) generate two independent pseudorandom strings. So this scheme is
IND$-SNR secure. Obviously it is not IND$-CCA secure.

IND$-CCA−→/ IND$-SNR. For example, most of IND$-CCA secure modes,
such as OCB etc., return ⊥ denoting the invalidity of the ciphertext in a decryp-
tion query most of time. These modes are all not IND$-SNR secure.

3 Cryptanalysis of MEM

3.1 Specifications of MEM

An n-bit string is viewed as an element in the finite field GF (2)[x]/τ(x), where
τ(x) is a fixed irreducible polynomial of degree n.

MEM makes use of the polynomials pi(x) which are defined as following.
For 0 < i < m and (n + 1) � i, define pi(x) = xj−1 + xj , where j = (i − 1)
mod (n + 1) + 1; for 0 < i < m and (n + 1) | i, define pi(x) = xn + 1; for i = m,
define pi(x) = xj−1 + 1, where j = (i− 1) mod (n + 1) + 1.
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⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

P1 P2 P3 P4

C1 C2 C3 C4

PP1 PP2 PP3 PP4

CC1 CC2 CC3 CC4

p1(x)M1 p2(x)M1 p3(x)M1 p4(x)M1

p1(x)M2 p2(x)M2 p3(x)M2 p4(x)M2

EK EK EK EK

Fig. 2. Encryption of a four-block message P1P2P3P4 under MEM. Set M1 = EK(P1⊕
P2 ⊕ P3 ⊕ P4 ⊕ EK(N)) and M2 = EK(CC1 ⊕ CC2 ⊕ CC3 ⊕ CC4 ⊕ EK(xEK(N))).

The encryption and decryption algorithms of EME are listed in the figure 3,
which consists of three cases: m = 1, m = 2 and m > 2. In our attacks we
only make use of the case m > 2. Figure 2 shows the encryption of a four-block
message.

3.2 Distinguishers Against MEM

We can distinguish EK(·, ·),DK(·, ·) from $(·, ·), $(·, ·) with overwhelming advan-
tage of 1−1/2n. The first distinguisher makes one decryption and one encryption
queries. The second distinguisher makes only one encryption.

Two-Query Distinguisher. This distinguisher is similar to the one used in [2]
to show that MEM is not secure against nonce repeating adversary. The differ-
ence is that the one in [2] made two encryption queries with the same nonce and
we make one decryption and one encryption queries with the same nonce.

The distinguisher is as following:

1. Make a decryption query (Ns, Cs
1 , Cs

2 , Cs
3 , Cs

4) and get (P s
1 , P s

2 , P s
3 , P s

4 );
2. Make an encryption query (N t, P t

1 , P t
2 , P t

3 , P t
4) and get (Ct

1, C
t
2, C

t
3, C

t
4),

where Ns = N t, P s
1 = P t

1 , P s
2 = P t

2 , P s
3 �= P t

3 , and P s
3 ⊕ P s

4 = P t
3 ⊕ P t

4 .
3. Calculate X1 = p1(x)−1(Cs

1 ⊕ Ct
1) and X2 = p2(x)−1(Cs

2 ⊕ Ct
2).

4. If X1 = X2, then return 1, else return 0.

When the distinguisher queries EK(·, ·),DK(·, ·),

M s
2 = p1(x)−1(CCs

1 ⊕ Cs
1) = p2(x)−1(CCs

2 ⊕ Cs
2)

and
M t

2 = p1(x)−1(CCt
1 ⊕ Ct

1) = p2(x)−1(CCt
2 ⊕ Ct

2).
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Algorithm EN
K(P1, P2, · · · , Pm)

EN ← EK(N); EEN ← EK(xEN);
MP ← P1 ⊕ P2 · · · ⊕ Pm;
if m = 1 then

M1 ← EK(MP ⊕ EN);
C1 ← M1 ⊕ xEEN;
return C1

if m = 2 then
M1 ← EK(MP ⊕ EN);
PP1 ← M1 ⊕ P1; PP2 ← M1 ⊕ EEN ⊕ P2;
CC1 ← EK(PP1); CC2 ← EK(PP2);
M2 ← EK(CC1 ⊕ CC2 ⊕ EEN);
C1 ← M2 ⊕ CC1; C2 ← EN ⊕ CC2;
return C1, C2

if m > 2 then
M1 ← EK(MP ⊕ EN); MC ← 0n;
for i = 1 to m
if (i − 1 > 0 ∧ i − 1 mod (n + 1) = 0)

M1 ← EK(M1);
PPi ← Pi ⊕ pi(x)M1;
CCi ← EK(PPi); MC ← MC ⊕ CCi;

for i = 1 to m
if (i − 1 > 0 ∧ i − 1 mod (n + 1) = 0)

M2 ← EK(M2);
Ci ← CCi ⊕ pi(x)M2;

return C1, C2, · · · , Cm

Algorithm DN
K(C1, C2, · · · , Cm)

EN ← EK(N); EEN ← EK(xEN);
MC ← C1 ⊕ C2 · · · ⊕ Cm;
if m = 1 then

M2 ← DK(MC ⊕ xEEN);
P1 ← M2 ⊕ EEN ;
return P1

if m = 2 then
M2 ← EK(MC ⊕ EN ⊕ EEN);
CC1 ← M2 ⊕ C1; CC2 ← M2 ⊕ EN ⊕ C2;
PP1 ← DK(CC1); PP2 ← DK(CC2);
M1 ← EK(PP1 ⊕ PP2 ⊕ EEN ⊕ EN);
P1 ← M1 ⊕ PP1; P2 ← M1 ⊕ EEN ⊕ PP2;
return P1, P2

if m > 2 then
M2 ← EK(MC ⊕ EEN); MP ← 0n;
for i = 1 to m
if (i − 1 > 0 ∧ i − 1 mod (n + 1) = 0)

M2 ← EK(M2);
CCi ← Ci ⊕ pi(x)M2;
PPi ← DK(CCi); MP ← MP ⊕ PPi;

for i = 1 to m
if (i − 1 > 0 ∧ i − 1 mod (n + 1) = 0)

M1 ← EK(M1);
Pi ← PPi ⊕ pi(x)M1;

return P1, P2, · · · , Pm

Fig. 3. The MEM mode

Notice that CCs
1 = CCt

1 and CCs
2 = CCt

2, we get that

M s
2 ⊕M t

2 = p1(x)−1(Cs
1 ⊕ Ct

1) = p2(x)−1(Cs
2 ⊕ Ct

2).

So the probability of X1 = X2 is 1.
When the distinguisher queries $(·, ·), $(·, ·), then Ct

1 and Ct
2 are two indepen-

dently random strings. So the probability of X1 = X2 is 1/2n.
From the above analysis, the advantage of the distinguisher is 1− 1/2n.

One-Query Distinguisher. This distinguisher only makes one encryption
query. Notice that when the message length is m = n + 3 blocks, pn+2(x) =
pn+3(x) = 1 + x. We make an encryption query of (N, P1, P2, · · · , Pm+3), where
P1 = P2 = ... = Pn+3 = 0n, and get (C1, C2, · · · , Cn+3). If Cn+2 = Cn+3 then
return 1, else return 0.

When the distinguisher queries E(·, ·), we always have Cn+2 = Cn+3. When
the distinguisher queries $(·, ·), the probability of Cn+2 = Cn+3 is 1/2n.

From the above analysis, the advantage of the distinguisher is also 1− 1/2n.
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Abstract. The notion and the first construction of a tweakable en-
ciphering scheme, called CMC, was presented by Halevi-Rogaway at
Crypto 2003. In this paper, we present HCH, which is a new construction
of such a scheme. The construction uses the hash-encrypt-hash approach
introduced by Naor-Reingold. This approach has recently been used in
the constructions of tweakable enciphering schemes HCTR and PEP.
HCH has several advantages over the previous schemes CMC, EME,
EME*, HCTR, and PEP. CMC, EME, and EME* use two block-cipher
invocations per message block, while HCTR, PEP, and HCH use only
one. PEP uses four multiplications per block, while HCTR and HCH use
only two. In HCTR, the security bound is cubic, while in HCH security
bound is quadratic.1

Keywords: modes of operations, tweakable encryption, strong pseudo-
random permutation.

1 Introduction

A block cipher is one of the basic primitives used in cryptography. Depending
upon the application goals, there are many uses of a block cipher. A particular
method of using a block cipher is called a mode of operation. The literature
describes different modes of operations of a block cipher achieving goals such as
confidentiality, authentication, authenticated encryption, etcetera. For several
years, NIST of USA [1] has been running an open domain process to standardize
modes of operations for achieving various functionalities. Currently, there are
around twenty different modes of operations proposals for different tasks.

One particular interesting functionality is a tweakable enciphering scheme [4].
(We note that this functionality is currently not covered by NIST’s standardiza-
tion efforts.) This is based on the notion of tweakable block ciphers introduced
1 The last three sentences of the abstract are due to a reviewer who suggested that

these accurately capture the contribution of the paper.
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in [6]. A tweakable enciphering scheme is a length preserving encryption proto-
col which can encrypt messages of varying lengths. The security goal is to sat-
isfy the notion of the tweakable strong pseudo-random permutation (SPRP). As
pointed out in [4], one of the most important applications of a tweakable enci-
phering scheme is disk encryption. Currently, there are several proposals CMC [4],
EME [5], EME∗ [3], HCTR [9] and PEP [2] for tweakable enciphering schemes.

Our Contribution: In this paper, we present HCH, which is a construction of a
new tweakable enciphering scheme. HCH uses a single key, can encrypt arbitrary
length messages and has a quadratic security bound. Our construction is based
on HCTR. It uses a counter mode of encryption sandwiched between two poly-
nomial hashes. HCTR uses two keys and has a cubic security bound. To avoid
these problems, we use certain ideas (and analysis) from PEP. In particular, the
idea of appropriately encrypting the tweak and the message length is adopted
from PEP. In addition, we initialize the counter mode by the output of a block
cipher encryption; a feature not present in HCTR. The combination of all these
features leads us to the desired goal.

HCH is based on the hash-encrypt-hash approach to the construction of strong
pseudo-random permutation. The hash is a Wegman-Carter [10] type of poly-
nomial hash. This approach was originally suggested by Naor-Reingold [8,7],
though they did not consider tweaks, a notion which appeared later in the litera-
ture. The constructions HCTR and PEP are also based on the hash-encrypt-hash
approach. On the other hand, CMC [4] introduced the encrypt-mask-encrypt ap-
proach, i.e., to have two layers of encryption with a masking layer in-between.
CMC used CBC for the encryption layer, while the later works EME and EME∗

used ECB for the encryption layers.
In terms of efficiency, HCH and HCTR have roughly the same efficiency; HCH

performs a few extra block cipher invocations, while HCTR performs a few extra
GF (2n) multiplications. In a sequential mode, HCH is faster than PEP; though
in a parallel mode all three of HCTR, PEP and HCH have roughly the same ef-
ficiency. The comparison to CMC (and EME∗) depends on the relative efficiency
of a block cipher invocation and a GF (2n) multiplication. It is currently believed,
that a single AES-128 invocation is faster than a GF (2n) multiplication. Hence,
used with AES-128, CMC will be faster than HCH (or HCTR, PEP). On the other
hand, if one invocation of the underlying block cipher is slower than one GF (2n)
multiplication, then HCH (and HCTR, PEP) will be faster than CMC. Thus, the
comparison is really between the two approaches rather than individual construc-
tions. We believe both approaches are interesting and can be pursued further.

2 Specification of HCH

We construct the tweakable enciphering scheme HCH from a block cipher E :
K× {0, 1}n → {0, 1}n and call it HCH[E]. The key space of HCH[E] is same as
that of the underlying block cipher E and the tweak space is T = {0, 1}n. The
message space consists of all binary strings of length greater than n.
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An n-bit string can be viewed as an element of GF (2n). We will consider each
n-bit string in the specification of HCH as a polynomial over GF (2) of degree less
than n, and multiplication will be done modulo a fixed irreducible polynomial
τ(x) of degree n. Thus, if A and B are n-bit strings, then by AB we will mean the
n-bit string representing the product A(x)B(x) mod τ(x). Also, the notation xQ
denotes the n-bit string representing xQ(x) mod τ(x). The operation ⊕ denotes
addition over GF (2n).

For an n-bit string X , by padt(X) we denote the string X ||0t and by dropt(X)
we denote the prefix of X obtained by dropping the last t bits of X . For 0 ≤ i ≤
2t − 1, by bint(i) we denote the t-bit binary representation of the integer i.

Let R, A1, . . . , Am be n-bit strings. We define

GR(A1, . . . , Am) = A1R⊕ · · · ⊕AmRm.
HR,Q(A1, . . . , Am) = Q⊕A1 ⊕GR(A2, . . . , Am)

= Q⊕A1 ⊕A2R⊕ · · · ⊕AmRm−1.

⎫⎬⎭ (1)

The above operations are over GF (2n), i.e., ⊕ denotes addition over GF (2n)
and terms of the form AiR

i−1 denote the product Ai(x)Ri−1(x) mod τ(x). The
final value of HR,Q(A1, . . . , Am) is an element of GF (2n) given by its n-bit string
representation with respect to τ(x). From the definition of HR,Q(), we have the
following simple property which is required for proper decryption.

If B1 = HR,Q(A1, A2, . . . , Am), then A1 = HR,Q(B1, A2, . . . , Am). (2)

HCH requires a counter mode of operation. We define the counter mode
based on [9] but in a more general form. Let f1, . . . , fm be a sequence of bi-
jective functions fi : {0, 1}n → {0, 1}n such that for each n-bit string S, and
for i �= j, we have fi(S) �= fj(S). In other words, for each S, the sequence
f1(S), f2(S), . . . , fm(S) is a sequence of distinct n-bit strings. One simple way
of defining fi is to set fi(S) = S ⊕ binn(i) as has been done in [9]. On the other
hand for nonzero S, we can also have fi(S) = Li, where Li is the ith state of a
maximal length LFSR initialized by S. Given an n-bit string S and a key K, we
define the counter mode in the following manner.

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(f1(S)), . . . , Am ⊕ EK(fm(S))). (3)

Details about message parsing are the following.

1. The message length is l bits, where n < l < 2n − 1.
We write l = n(m− 1) + r,with 1 ≤ r ≤ n.

2. The message consists of blocks P1, . . . , Pm,
with |P1| = · · · = |Pm−1| = n and 1 ≤ |Pm| = r ≤ n.

3. The ciphertext is of the same length as the message, i.e.,
the ciphertext blocks are C1, . . . , Cm, with |Ci| = |Pi| for 1 ≤ i ≤ m.

The maximum length l of a message can be 2n−1. Since, for secure block ciphers,
we have n ≥ 128, the maximum value of l is sufficient for all practical purposes.

The complete encryption and decryption algorithm of HCH is given in Fig-
ure 1. A schematic diagram of encryption is given in Figure 2.
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Algorithm ET
K(P1, . . . , Pm)

1. R = EK(T ); Q = EK(R ⊕ binn(l));
2. Mm = padn−r(Pm);
3. M1 = HR,Q(P1, . . . , Pm−1, Mm);
4. U1 = EK(M1); I = M1 ⊕ U1;
5. S = EK(I);
6. (C2, . . . , Cm−1, Dm)

= CtrK,S(P2, . . . , Pm−1, Mm);
7. Cm = dropn−r(Dm);
8. Um = padn−r(Cm);
9. C1 = HR,xQ(U1, C2, . . . , Cm−1, Um);
10. return (C1, . . . , Cm).

Algorithm DT
K(C1, . . . , Cm)

1. R = EK(T ); Q = EK(R ⊕ binn(l));
2. Um = padn−r(Cm);
3. U1 = HR,xQ(C1, . . . , Cm−1, Um);
4. M1 = E−1

K (U1); I = M1 ⊕ U1;
5. S = EK(I);
6. (P2, . . . , Pm−1, Vm)

= CtrK,S(C2, . . . , Cm−1, Um);
7. Pm = dropn−r(Vm);
8. Mm = padn−r(Pm);
9. P1 = HR,Q(M1, P2, . . . , Pm−1, Mm);
10. return (C1, . . . , Cm).

Fig. 1. Encryption and Decryption using HCH
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Fig. 2. Encryption using HCH. Here R = EK(T ) and Q = EK(R ⊕ binn(l)).

2.1 HCH+

HCH can handle strings of length l greater than n. We have excluded the case
of l = n from the specification. This is because if l = n, then there is only a
single block message and the counter part becomes vacuous. As a result, the
block cipher call to produce S is no longer required. (The quantity Q is still
required.) Thus, this case needs to be tackled separately. We define HCH+ to
be the mode of operation defined in the following manner. If l > n, then use
HCH to encrypt, and if l = n, then there is a single message block P1 whose
corresponding ciphertext block C1 is defined to be C1 = xQ⊕EK(P1⊕Q). This
requires a total of 3 block cipher calls (2 to produce Q and one extra).

The security of HCH+ cannot be generically derived from that of HCH. We
need to have a separate proof for HCH+. On the other hand, this proof will
be very similar to that of HCH, with the only difference that we will have to
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take care of the possibilities of domain and range collisions due to single block
adversarial queries. We do not actually present the proof for HCH+. Instead, we
present the complete proof for HCH, from which the reader should be able to
easily obtain a proof for HCH+.

The case l < n is not tackled by any modes of operations and hence also
not by HCH. Tackling such values of l is a difficult problem as discussed by
Halevi [3].

3 Discussion and Comparison

The structure of HCH is based on HCTR, though there are several important
differences. We mention the similarities and differences below.

– The basic structure of the two polynomial hashes, separate treatment for the
first message block and the counter mode are taken from HCTR.

– The actual definition of the polynomial hashes are different from that of
HCTR. In HCTR, the tweak is provided as input to the polynomial hash,
whereas in HCH the tweak is encrypted to obtain R, which is XORed with
binn(l), which is again encrypted to obtain Q. This increases the number
of block cipher invocations in HCH, whereas HCTR requires more GF (2n)
multiplications. Additionally, for computing the polynomial hashes, HCTR
requires an extra key different from the block cipher key.

– In HCH, the counter mode is initialized by S, which is the output of a block
cipher encryption. On the other hand, in HCTR, the counter is initialized
directly by the XOR of the input and output of the first block cipher invoca-
tion. Using the additional invocation to produce S is important in obtaining
a quadratic security bound for HCH compared to the cubic security bound
for HCTR.

– The definition of counter mode used in HCH is somewhat more general than
the counter mode used in HCTR.

In Table 1, we present a comparison of HCH with the previous algorithms. (The
construction given in [7] is not tweakable and hence we do not include it in our
comparison.) EME tackles only strings of very specific lengths and hence we do
not consider it any further here. From the table, we see that EME∗, HCTR and
HCH are the only algorithms which can tackle arbitrary length strings (HCH
can be easily modified to also tackle strings of length n, see Section 2.1.) Among
these, EME∗ uses three keys and has a quadratic security bound while HCTR
uses two keys and has a cubic security bound. On the other hand, HCH uses a
single key and has a quadratic security bound. Thus, HCH is the only algorithm
to-date which tackles arbitrary length messages, uses a single key and has a
quadratic security bound.

The algorithms CMC and EME∗ are based on the encrypt-mask-encrypt ap-
proach, while HCTR, PEP and HCH are based on the hash-encrypt-hash ap-
proach. The first approach requires more block cipher calls while the second
approach requires more finite field multiplications. Let us first compare HCTR,
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Table 1. Comparison of SPRPs using an n-bit block cipher, an n-bit tweak and for m
message blocks. Note that HCH can be modified to also tackle strings of length n (see
Section 2.1). For PEP we assume m ≥ 3 and for HCH we have m ≥ 2. [BC]: one block
cipher invocation; [M]: one GF (2n) multiplication.

Mode sec. bnd. computation keys msg. len. passes enc. parallel?
cost layers

CMC σ2
n/2n (2m + 1)[BC] 1 mn, m ≥ 1 2 2 No

EME σ2
n/2n (2m + 2)[BC] 1 mn, 1 ≤ m ≤ n 2 2 Yes

EME∗ σ2
n/2n (2m + m

n
+ 1)[BC] 3 ≥ n 2 2 Yes

HCTR σ3
n/2n m[BC] 2 ≥ n 3 1 partial

+2(m + 1)[M]

PEP σ2
n/2n (m + 5)[BC] 1 mn, m ≥ 1 3 1 Yes

+(4m − 6)[M]

HCH σ2
n/2n (m + 3)[BC] 1 > n 3 1 partial

+2(m − 1)[M]

PEP and HCH. In a sequential mode, HCH is clearly better than PEP. Com-
pared to HCTR, it requires three extra block cipher calls but four less finite
field multiplications. The net effect is that both HCTR and HCH have roughly
the same computation cost. The comparison to CMC and EME∗ is based on
the relative cost of a block cipher call versus a finite field multiplication. A good
AES-128 implementation can be faster than a good GF (2128) multiplication and
hence used with AES-128, a sequential version of CMC and EME∗ will be faster
than HCH. (Of course, as mentioned above, HCH has other features which CMC
and EME∗ do not have.) On the other hand, a mode of operation is not intended
to be used with only one block cipher. It is conceivable that there are (possibly
proprietary) block ciphers for which a single invocation is costlier than a finite
field multiplication. Used with such block ciphers, HCH will be faster than CMC
and EME∗.

For hardware implementation, it is of interest to have parallel implementation
of the different algorithms. CMC is a strictly sequential algorithm. EME∗ is
parallel, though it requires a re-keying after every n blocks. HCTR and HCH
are partially parallel in the sense that the counter part is fully parallel but the
hash function computations are not. The hash function computations can be
made parallel, but this roughly doubles the total number of multiplications of
both HCTR and HCH and make them comparable to PEP. Of course, in a
parallel implementation, the total number of multiplications is not important;
what is important is the total number of multiplication rounds. This issue is
discussed in more details in [2].

The number of passes in the hash-encrypt-hash modes is three while this
value is two for encrypt-mask-encrypt modes. In both cases, it is more than
one, which implies that the encryption cannot be on-line, i.e., the ciphertext
cannot be produced without reading (or processing) the entire message. This
property is natural to expect from a strong pseudorandom permutation, since
such a primitive tries to make each bit of the ciphertext depend on the entire
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message. Since the encryption cannot be on-line, storage space is required for
the entire message. Then it does not matter too much whether the number of
passes is two or three. The important thing is to make the encryption efficient.
We have already discussed the issue of efficiency.

4 Security of HCH

4.1 Definitions and Notation

An n-bit block cipher is a function E : K×{0, 1}n → {0, 1}n, where K �= ∅ is the
key space and for any K ∈ K, E(K, .) is a permutation. We write EK( ) instead
of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles
and which outputs either 0 or 1. Oracles are written as superscripts. The notation
AO1,O2 ⇒ 1 denotes the event that the adversary A, interacts with the oracles
O1,O2, and finally outputs the bit 1. In what follows, by the notation X

$← S,
we will denote the event of choosing X uniformly at random from the set S.

Let Perm(n) denote the set of all permutations on {0, 1}n. We require E(, ) to be
a strong pseudorandom permutation. The advantage of an adversary in breaking
the strong pseudorandomness of E(, ) is defined in the following manner.

Adv±prp
E (A) =

∣∣∣Pr
[
K

$← K : AEK( ),E−1
K ( ) ⇒ 1

]
−

Pr
[
π

$← Perm(n) : Aπ( ),π−1( ) ⇒ 1
]∣∣∣ .

Formally, a tweakable enciphering scheme is a function E : K×T ×M→M,
where K �= ∅ and T �= ∅ are the key space and the tweak space respectively. The
message and the cipher spaces are M. For HCH we have M = ∪i>n{0, 1}i. We
shall write ET

K(.) instead of E(K, T, .). The inverse of an enciphering scheme is
D = E−1 where X = DT

K(Y ) if and only if ET
K(X) = Y .

Let PermT (M) denote the set of all functions πππ : T ×M→M where πππ(T , .) is
a length preserving permutation. Such a πππ ∈ PermT (M) is called a tweak indexed
permutation. For a tweakable enciphering scheme E : K × T × M → M, we
define the advantage an adversary A has in distinguishing E and its inverse from
a random tweak indexed permutation and its inverse in the following manner.

Adv±p̃rp
E (A) =

∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−

Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣ .

Pointless queries: We assume that an adversary never repeats a query, i.e., it
does not ask the encryption oracle with a particular value of (T, P ) more than
once and neither does it ask the decryption oracle with a particular value of
(T, C) more than once. Furthermore, an adversary never queries its deciphering
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oracle with (T, C) if it got C in response to an encipher query (T, P ) for some P .
Similarly, the adversary never queries its enciphering oracle with (T, P ) if it got
P as a response to a decipher query of (T, C) for some C. These queries are called
pointless as the adversary knows what it would get as responses for such queries.

Following [4], we define the query complexity σn of an adversary as follows. A
string X contributes max(|X |/n, 1) to the query complexity. A tuple of strings
(X1, X2, . . .) contributes the sum of the contributions from all oracle queries
plus the contribution from the adversary’s output. Suppose an adversary makes
q queries where the number of n-bit blocks in the ith query is �i. Then, σn =
1 +

∑q
i=1(1 + �i) ≥ 2q. Let ρ be a list of resources used by the adversary A

and suppose Adv±xxx
E (A) has been defined where E is either a block cipher

or a tweakable enciphering scheme. Adv±xxx
E (ρ) denotes the maximal value of

Adv±xxx
E (A) over all adversaries A using resources at most ρ. Usual resources

of interest are the running time t of the adversary, the number of oracle queries
q made by the adversary and the query complexity σn (n ≥ 1).

The notation HCH[E] denotes a tweakable enciphering scheme, where the
n-bit block cipher E is used in the manner specified by HCH. Our purpose
is to show that HCH[E] is secure if E is secure. The notation HCH[Perm(n)]
denotes a tweakable enciphering scheme obtained by plugging in a random per-
mutation from Perm(n) into the structure of HCH. For an adversary attacking
HCH[Perm(n)], we do not put any bound on the running time of the adversary,
though we still put a bound on the query complexity σn. We show the infor-
mation theoretic security of HCH[Perm(n)] by obtaining an upper bound on

Adv±p̃rp
HCH[Perm(n)]

(σn). The upper bound is obtained in terms of n and σn. For

a fixed block cipher E, we bound Adv±p̃rp
HCH[E]

(σn, t) in terms of Adv±prp
E (σn, t′),

where t′ = t+O(σn). We use the notation Eπ as a shorthand for HCH[Perm(n)]
and Dπ will denote the inverse of Eπ. Thus, the notation AEπ ,Dπ will denote an
adversary interacting with the oracles Eπ and Dπ.

4.2 Statement of Result

The following theorem specifies the security of HCH.

Theorem 1. Fix n, q and σn ≥ 2q to be positive integers and an n-bit block
cipher E : K× {0, 1}n → {0, 1}n. Then

Adv±p̃rp
HCH[Perm(n)]

(σn) ≤ 7σ2
n

2n
. (4)

Adv±p̃rp
HCH[E]

(σn, t) ≤ 7σ2
n

2n
+ Adv±prp

E (σn, t′) (5)

where t′ = t + O(σn).

The above result and its proof is similar to previous work (see for example [4,5,2]).
As mentioned in [4], Equation (5) embodies a standard way to pass from the
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information theoretic setting to the complexity theoretic setting. (A brief de-
scription of how (4) can be obtained from (5) is given in [2].)

For proving (4), we need to consider an adversary’s advantage in distinguishing
a tweakable enciphering scheme E from an oracle which simply returns random
bit strings. This advantage is defined in the following manner.

Adv±rnd
HCH[Perm(n)]

(A) =
∣∣∣Pr

[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]
−

Pr
[
A$(.,.),$(.,.) ⇒ 1

]∣∣∣
where $(., .) returns random bits of length |M |. It can be shown that

Adv±p̃rp
HCH[Perm(n)]

(A) ≤ Adv±rnd
HCH[Perm(n)]

(A) +
(

q

2

)
1
2n

(6)

where q is the number of queries made by the adversary. For more details
see [4,2]. The main task of the proof now reduces to obtaining an upper bound
on Adv±rnd

HCH[Perm(n)]
(σn). This proof is provided in Section 5, where we show

(see (17)) that for any adversary having query complexity σn, we have

Adv±rnd
HCH[Perm(n)]

(σn) ≤ 6σ2
n

2n
. (7)

Using this and (6), we obtain

Adv±p̃rp
HCH[Perm(n)]

(σn) ≤ 7σ2
n

2n
.

5 Proof of Theorem 1

Here we prove the upper bound on Adv±rnd
HCH[Perm(n)]

(q, σn). We model the
adversary’s interaction with the oracles Eπ and Dπ as a game. In the usual
game, which we call HCH1, the adversary submits queries to Eπ and Dπ and gets
appropriate answers. Starting from this game, we modify it in successive steps to
obtain games where the adversary is provided random bit strings of appropriate
lengths. This results in a sequence of games: HCH1, RAND1, RAND2, RAND3
and NON. For lack of space we do not give the complete description of these
games. They can be found in an extended version of this paper at the eprint
server maintained by IACR.

By an abuse of notation, we will use AHCH1 to denote an adversary A’s inter-
action with the oracles while playing game HCH1. We will use similar notations
for the other games.

Game HCH1: We describe the attack scenario of the adversary A through a
probabilistic game which we call HCH1. In HCH1, the adversary interacts with
Eπ and Dπ where π is a randomly chosen permutation from Perm(n). Instead
of initially choosing π, we build up π in the following manner.



296 D. Chakraborty and P. Sarkar

Initially π is assumed to be undefined everywhere. When π(X) is needed, but
the value of π is not yet defined at X , then a random value is chosen among the
available range values. Similarly when π−1(Y ) is required and there is no X yet
defined for which π(X) = Y , we choose a random value for π−1(Y ) from the
available domain values. Thus, in this game the calls to π and π−1 are answered
randomly, but maintaining the fact that π and π−1 are permutations.

The game HCH1 accurately represents the attack scenario, and by our choice
of notation, we can write

Pr[AEπ,Dπ ⇒ 1] = Pr[AHCH1 ⇒ 1]. (8)

Game RAND1: We modify HCH1 to RAND1. In RAND1 the permutation is
not maintained. But if there is any collision in the domain or range set of π then
a bad flag is set. Thus, the games HCH1 and RAND1 are identical apart from
what happens when the bad flag is set. So,

|Pr[AHCH1 ⇒ 1]− Pr[ARAND1 ⇒ 1]| ≤ Pr[ARAND1 sets bad] (9)

Game RAND2: We make certain changes to the game RAND1 which are in-
visible to the adversary. In this game, for an encryption query, we choose the
ciphertext blocks to be random n-bit strings and return to the adversary. Then
we adjust the internal variables so as to ensure that the particular choice of
ciphertext blocks is consistent as per the protocol. Similarly, for a decryption
query, we choose the plaintext blocks to be random n-bit strings and return to
the adversary and then adjust the internal variables. This does not alter the
adversary’s view of the game since for each such change the adversary obtains a
random n-bit string both before and after the change. Thus,

Pr[ARAND1 ⇒ 1] = Pr[ARAND2 ⇒ 1] (10)

also,
Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad] (11)

In RAND2 the adversary is supplied with random bits as response to queries
to both the encrypt and the decrypt oracles. Hence,

Pr[ARAND2 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1] (12)

Now, from Equation (8), (9), (10), (11) and (12) we get

Adv±rnd
HCH[Perm(n)]

(A) = |Pr[AEπ ,Dπ ⇒ 1]− Pr[A$(.,.),$(.,.) ⇒ 1]| (13)

≤ Pr[ARAND2 sets bad] (14)

Our task is thus to bound Pr[ARAND2 sets bad].
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Game RAND3: Here we make two subtle changes to the game RAND2. Here
instead of the Domain and Range sets we use multisets D and R respectively.
In the game RAND3 on either an encryption or a decryption query by the
adversary a random string is given as output. Next, the internal variables are
adjusted in the first phase of the finalization step. The bad flag is set at the second
phase of the finalization step by checking whether a value occurs in either R or
D more than once. The game RAND3 is shown in Figure 3.

RAND3 sets bad in exactly the same conditions in which RAND2 sets bad,
hence

Pr[ARAND2 sets bad] = Pr[ARAND3 sets bad]. (15)

Respond to the sth adversary query as follows:
Encipher query Enc(T s; P s

1 , P s
2 , . . . , P s

ms )

tys = Enc; Cs
1 ||C

s
2 || . . . ||Cs

ms−1||D
s
ms

$← {0, 1}nms
;

Cs
ms ← dropn−r(Dms ) return Cs

1 ||C
s
2 || . . . ||Cs

ms ;
Decipher query Dec(T s; Cs

1 , Cs
2 , . . . , Cs

ms )

tys = Dec; P s
1 ||P s

2 || . . . ||P s
ms−1||V s

ms
$← {0, 1}nms

;
P s

ms ← dropn−r(Vms ) return P s
1 ||P

s
2 || . . . ||P s

ms ;

Finalization:
First phase
if T s = T t for some t < s then

Rs ← Rt;
if ls = lt then

Qs ← Qt;
else

Qs $← {0, 1}n;
D ← D ∪ {Rs ⊕ bin(ls)}; R ← R ∪ {Qs};

endif
else

Rs $← {0, 1}n;
D ← D ∪ {T s}; R ← R ∪ {Rs};
Qs $← {0, 1}n;
D ← D ∪ {Rs ⊕ bin(ls)}; R ← R ∪ {Qs};

endif

Case tys = Enc:
Ms

ms ← padn−r(P s
ms );

Ms
1 ← HRs,Qs (P s

1 , P s
2 , . . . , P s

ms−1, Ms
m);

Ss $← {0, 1}n;
for i = 2 to ms − 1,

Y s
i ← Cs

i ⊕ P s
i ;

D ← D ∪ {fi−1(Ss)}; R ← R ∪ {Y s
i };

end for
Y s

ms ← Ds
ms ⊕ Ms

ms

D ← D ∪ {fms−1(S
s)}; R ← R ∪ {Y s

ms};
Us

ms ← padn−r(Cs
ms );

Us
1 ← HRs,xQs (Cs

1 , Cs
2 , . . . , Cs

m−1, Us
ms );

D ← D ∪ {Ms
1}; R ← R ∪ {Us

1 };
D ← D ∪ {Ms

1 ⊕ Us
1 }; R ← R ∪ {Ss};

Case tys = Dec:
Us

ms ← padn−r(Cs
ms );

Us
1 ← HRs,xQs (Cs

1 , Cs
2 , . . . , Cs

ms−1, Us
ms );

Ss $← {0, 1}n;
for i = 2 to ms − 1,

Y s
i ← Cs

i ⊕ P s
i ;

D ← D ∪ {fi−1(Ss)}; R ← R ∪ {Y s
i };

end for
Y s

ms ← V s
ms ⊕ Us

ms

D ← D ∪ {fms−1(Ss)}; R ← R ∪ {Y s
ms};

Ms
ms ← padn−r(P s

ms );
Ms

1 ← HRs,Qs (P s
1 , P s

2 , . . . , P s
ms−1, Ms

m);
D ← D ∪ {Ms

1 }; R ← R ∪ {Us
1};

D ← D ∪ {Ms
1 ⊕ Us

1}; R ← R ∪ {Ss};

Second phase
if (some value occurs more than once in D) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

Fig. 3. Game RAND3
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Game NON: In Game RAND3 consider the variable Y s
i which is defined as

Y s
i = Cs

i ⊕ P s
i , when 2 ≤ i ≤ ms − 1

= Ds
ms ⊕M s

ms , when i = ms and ty = Enc

= Us
ms ⊕ V s

ms , when i = ms and ty = Dec

For 2 ≤ i ≤ ms, the variable Y s
i enters the range set and it is always an n-

bit random quantity. As, when 2 ≤ i ≤ ms − 1, then for a encryption (resp.
decryption) query Cs

i (resp. P s
i ) is a randomly chosen n-bit string. When i = ms,

then for an encryption (resp. decryption) query Ds
ms (resp. V s

ms) is a randomly
chosen n-bit string. Thus, for (s, i) �= (t, j), Pr[Y s

i = Y t
j ] = 1

2n . The condition
Y s

i = Y t
j for some (s, i) �= (t, j) leads to a collision in the range and results in bad

being set to true. The total probability of bad being set to true due to collisions
of this kind is at most

(|R|
2

)
/2n ≤ σ2

n/2n. (Note that |R| ≤ σn, where σn is the
query complexity.) Let X be the event that bad is set to true in Game RAND3
due to collisions of this kind. Then we have

Pr[ARAND3 sets bad] = Pr[(ARAND3 sets bad) ∧ (X ∨X)]
= Pr[(ARAND3 sets bad) ∧X] +

Pr[(ARAND3 sets bad) ∧X]
= Pr[(ARAND3 sets bad)|X] Pr[X] +

Pr[(ARAND3 sets bad)|X] Pr[X]
≤ Pr[X] + Pr[(ARAND3 sets bad)|X]

≤ σ2
n

2n
+ Pr[(ARAND3 sets bad)|X].

Our next task is to upper bound Pr[(ARAND3 sets bad)|X]. The condition X
translates into the fact that we can assume all the Y s

i ’s to be distinct. We
consider the adversarial behaviour under this condition.

In the previous games, for an encipher query, the adversary specified the
tweak and the plaintext; and for a decipher query, he specified the tweak and
the ciphertext. We now consider the stronger condition, whereby the adversary
specifies the tweak, the plaintext and the ciphertext in both the encryption and
the decryption queries subject to the condition that the Y s

i ’s are all distinct. For
2 ≤ i ≤ ms−1, Y s

i = P s
i ⊕Cs

i and hence is determined entirely by the transcript.
On the other hand, the last block can be partial and hence in this case Y s

ms is not
entirely determined by P s

ms ⊕Cs
ms

. There are two ways to tackle this situation.
In the first way, we allow the adversary to specify an additional (n − rs)-bit
string, which when appended to (P s

ms ⊕Cs
ms

) forms Y s
ms . In the second way, we

can generate this (n − rs)-bit string within the game itself. We prefer the first
way, since this is notationally simpler. The effect of both the methods are same
since we require that Y s

i ’s are distinct for all s and i = 2, . . . , ms.
We do this by modifying the game RAND3 into a new game NON (non-

interactive). NON depends on a fixed transcript tr = (ty,T,P,C,E) with ty =
(ty1, ty2, . . . , tyq), T = (T1, T2, . . . Tq), P = (P1, P2, . . .Pq), C = (C1, C2, . . . Cq),



HCH: A New Tweakable Enciphering Scheme 299

E = (E1, E2, . . . ,Eq) where tys = {Enc, Dec}, Ts ∈ {0, 1}n, Ps = Ps
1, . . . ,P

s
ms

,
Cs = Cs

1, C
s
2, . . . ,C

s
ms

and each Es is a string of length (n− rs) such that Ys
ms =

(Ps
ms
⊕ Cs

ms
)||Es. If this fixed transcript does not contain pointless queries and

satisfies the condition that the Ys
i ’s are all distinct, then the transcript is called

allowed.
Now fix an allowed transcript tr which maximizes the probability of bad being

set. This transcript tr is hardwired into the game NON. The syntax of NON is
the same as the syntax of RAND3, except that the part before the finalization
step is not present in NON. The main difference between NON and RAND3
is in the interpretation of the variables. The tweaks, plaintext and ciphertext
blocks in RAND3 are given by the adversary while in NON they are part of
the transcript tr which is hardwired into the game. We denote this difference by
using the symbols Ts, Ps

i , Cs
i and Ys

i to denote the tweaks, plaintext, ciphertext
and the XOR blocks respectively in game NON. We have

Pr[ARAND3 sets bad] ≤ Pr[ANON sets bad] +
σ2

n

2n
. (16)

5.1 Analysis of NON

In the analysis we consider the sets D and R to consist of the formal variables
instead of their values. For example, whenever we set D ← D ∪ {X} for some
variable X we think of it as setting D ← D ∪ {“X”} where “X” is the name of
that formal variable. This is the same technique as used in [4]. Our goal is to
bound the probability that two formal variables in the sets D and R take the
same value. The formal variables which enter D and R are the following:

Elements in D: Ts, Rs ⊕ bin(ls),
M s

1 = Qs ⊕ Ps
1 ⊕RPs

2 ⊕ · · · ⊕Rms−2Ps
ms−1 ⊕Rms−1Ms

ms ,
Is = M s

1 ⊕ Us
1 = (x + 1)Qs ⊕ Y s

1 ⊕RYs
2 ⊕ · · · ⊕Rms−1Ys

ms ,
f1(Ss), f2(Ss), . . . , fms−1(Ss).

Elements in R: Rs, Qs,
Us

1 = xQs ⊕ Cs
1 ⊕RCs

2 ⊕ · · · ⊕Rms−2Cs
ms−1 ⊕Rms−1Us

ms ,
Ss,
(Ps

2 ⊕ Cs
2), . . . , (Ps

ms−1 ⊕ Cs
ms−1), (Ms

ms ⊕ Us
ms).

The analysis will require a result, which we state and prove in Section A. Now
let us consider the probability of bad being set under the particular (allowed)
transcript hardwired into NON. The variable bad can be set either as a result
of a collision in the domain or as a result of a collision in the range. We consider
these two separately. The number of blocks in a particular adversarial query is
the length of the query. Suppose the distinct lengths of the queries made by the
adversary are l1, . . . , lp and the adversary makes tk queries of length lk. Then∑p

k=1 lktk =
∑q

s=1 ms.
There are

(|D|
2

)
(unordered) pairs of distinct variables in D. We have to con-

sider the probability that such a pair collides, i.e., both the variables of the pair
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get the same value. We identify the following two types of pairs of variables and
call them special pairs.

1. (M s
1 , M t

1), such that s �= t and (T s, ls) = (T t, lt).
2. (Is, It), such that s �= t and (T s, ls) = (T t, lt).

The number of pairs of each kind is at most
∑p

k=1

(
lk
2

)
. The total number of

special pairs is at most 2
∑p

k=1

(
lk
2

)
.

First let us consider the collision probability of the special pairs. The total
(over all s and t) probability of the pairs of either the first or the second kind giv-
ing rise to a collision is given by Proposition 1 in Section A to be at most σ2

n/2n.
Note that since queries are not pointless, we will have (Ps

1, P
s
2, . . . ,P

s
ms−1, P

s
ms) �=

(Pt
1, P

t
2, . . . ,P

t
mt−1, P

t
mt) when (T s, ls) = (T t, lt). Also, in an allowed transcript,

all the Y s
i ’s (for 1 ≤ i ≤ ms − 1) are distinct. These ensure that we can apply

Proposition 1 to the above two cases.
For any non-special pair, the probability of collision is either 0 or equal to 1/2n.

The actual proof is a tedious case analysis, but is based on a few observations.
Which we do not present here due to lack of space.

The total probability of a domain collision is the sum of the probabilities of
collision between special pairs and non-special pairs. The total number of non-
special pairs is at most

(|D|
2

)
|. Thus, the total probability of a domain collision

is at most (
|D|
2

)
1
2n

+
2σ2

n

2n
≤ |D|2

2n
+

2σ2
n

2n
≤ 3σ2

n

2n
.

Now consider pairs of elements from R. First, leave out the pairs (Us
1 , U t

1), such
that s �= t and (T s, ls) = (T t, lt). These are now the special pairs and there
are a total of

∑p
k=1

(
lk
2

)
of such pairs. The total (over all s and t) probabil-

ity of such pairs giving rise to a collision is given by Proposition 1 to be at
most σ2

n/2n. Here we use the fact that queries are not pointless to note that
(Cs

1, C
s
2, . . . ,C

s
ms−1, C

s
ms) �= (Ct

1, C
t
2, . . . ,C

t
mt−1, C

t
mt). This ensures that we can

apply Proposition 1.
The probability of any non-special pair of elements from R colliding is either

0 or is equal to 1/2n. This analysis is again similar to that for the domain.
The additional thing to note is that since the transcript is allowed, we have
(Ps

i ⊕ Cs
i ) �= (Pt

j ⊕ Ct
j) for (s, i) �= (j, t). In other words, the elements (Ps

i ⊕ Cs
i )

are all distinct and so the probability of any two such elements colliding is zero.
There are at most

(|R|
2

)
non-special pairs for R. As in the case of domain

elements, we can now show that the probability of a pair of elements in R
colliding is at most 2σ2

n/2n. (Note that the corresponding value for D has 3σ2.
We get 2 here because there is only one type of special pairs from R.)

Combining the domain and range collision probabilities, we obtain the proba-
bility of bad being set to true in NON to be at most 5σ2

n/2n. Combining (16), (15)
and (14), we have

Adv±rnd
HCH[Perm(n)]

(A) ≤ 6σ2
n

2n
. (17)

This completes the proof of Theorem 1. 	
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6 Conclusion

In this paper, we have presented HCH, which is a new tweakable enciphering
scheme. Our approach to the construction is based on the hash-encrypt-hash
approach. The important features of HCH are the use of a single key, ability to
encrypt arbitrary length messages and a quadratic security bound. To the best
of our knowledge, HCH is the first construction to simultaneously achieve all
the above three properties. Compared to currently known schemes, HCH is an
attractive alternative to a designer of a practical disk encryption algorithm.
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A A Useful Result

Let L = (L1, . . . ,Lq) be a list of vectors, with Li1 �= Li2 for i1 �= i2 and where
Li = (Li

1, . . . , L
i
mi) with each Li

j is an n-bit string considered to be an element
of GF (2n). Let S be the set of all i, j such that mi = mj . In other words, if
i, j ∈ S, then Li and Lj have the same number of components. For {i, j} ∈ S,
define a polynomial Pi,j(X) ∈ GF (2n)[X ] as

Pi,j(X) = (Li
1 ⊕ Lj

1)⊕ (Li
2 ⊕ Lj

2)X ⊕ · · · ⊕ (Li
mj ⊕ Lj

mi)Xmi−1. (18)
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We do not distinguish between Pi,j(X) and Pj,i(X). The coefficients of this
polynomial are elements of GF (2n). Let ei,j be the following event. Choose a
random element R from GF (2n) and evaluate Pi,j(R): ei,j is the event Pi,j(R) =
0. Define

e =
∨

{i,j}∈S
ei,j. (19)

The probability of e is given by the following proposition whose proof can be
found in the extended version of the paper at the eprint server maintained by
IACR.

Proposition 1. Pr[e] ≤ 1
2n

(∑q
j=1 mj

)2

.
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Abstract. One of the most widely used shared-key authentication
schemes today is a challenge-response scheme. In this scheme, a func-
tion such as a message authentication code or a symmetric encryption
scheme plays an important role. To ensure the security, we need to as-
sume that these functions are included in a certain kind of functions
family, e.g., a pseudorandom functions family. For example, functions
such as SHA1-HMAC, DES and AES often assumed as the pseudoran-
dom functions. But unfortunately, nobody knows that these functions
are really pseudorandom functions and if not, then the security of the
challenge-response scheme is not ensured any more. The common way
to reduce this kind of fear is to construct the shared-key authentica-
tion scheme which can be proven secure with a weaker assumption on
these functions. In this paper, we show that a blind-challenge-response
shared-key authentication scheme which is a simple modified version of
the original challenge-response authentication scheme can be constructed
from a weaker cryptographic assumption known as weak pseudorandom
functions.

1 Introduction

The challenge-response scheme is one of the most widely used shared-key au-
thentication schemes among our lives. In this scheme, two parties, say Alice and
Bob, share a secret key (shared-key) beforehand, and, when Alice wants to au-
thenticate to Bob, Alice proves that she has a key without disclosing it entirely.
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The reason why this scheme deploys widely is that it can be implemented easily
with small devices such as RFID tags, mobile phones, or even humans [7,8,9].

Intuitively, we say that a shared-key authentication scheme is secure if the
adversary, say Eve, who attempts to impersonate Alice, cannot be identified as
Alice by Bob. We can classify the security levels more precisely concerning the
ability of Eve. The weakest one is that Eve has ability of eavesdropping the
interactions between Alice and Bob before impersonation attempt. We say a
shared-key authentication scheme is secure against passive attacks if it is secure
against this type of an adversary. The stronger one is secure against active attacks
where Eve can actively play the role of Bob, i.e., Eve can interact with Alice
numerous times before the impersonation attempt. Security against active attack
has been the goal of the shared-key authentication schemes [7]. In this paper,
we concentrate on the shared-key authentication scheme which is secure against
active attacks.

The challenge-response scheme is secure against active attacks if the func-
tion used inside has a certain property which is similar to the pseudorandom
functions (PRFs). Good candidacies for the PRFs are DES, AES, or SHA1-
HMAC [3]. But unfortunately, nobody knows that these functions are really
PRFs and also design criteria of these functions are different from it. In fact, if
these functions are not pseudorandom functions then there is a possibility that
these functions embedded challenge-response scheme is not secure anymore. The
common choice of reducing this kind of fear in the cryptography is to construct
the shared-key authentication scheme which can be proven secure with a weaker
assumption on them. For instance, consider the following recent situation. SHA1
has conjectured to be a collision-resistant hash function but it seems not [15].
As a result, security of SHA1-HMAC [3] which security was proven under this
conjecture becomes danger.1 Therefore, constructing the cryptographic schemes
with a weaker assumption is important not only from the theoretical viewpoint
but also from the practical viewpoint.

In this paper, we show an efficient shared-key authentication scheme which
can be proven secure with a weak assumption. The scheme is a simple modi-
fied version of the challenge-response scheme, named a blind-challenge-response
authentication scheme. The good property of this scheme is that we can con-
struct and prove the security from any weak PRF (WPRF for short). The WPRF
was first defined explicitly in [14] and there are many applications [1,6,10,12,13].
Highly efficient candidacies for WPRFs are described in [5]. The WPRFs are not
studied extensively as PRFs, but the notion of a WPRF is substantially weaker
than the notion of a PRF. Thus, potentially, there must be a lot of WPRFs
compared to the PRFs.

Related works: As authors know, the blind-challenge-response authentication
scheme was first appeared in [7] with a specific function. This scheme has been
proposed to be suitable for small devices, such as RFID tags. The function
they employ is based on the Learning Parity with Noise (LPN) problem and

1 Later this was repaired [2].
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they prove that the scheme is secure against active attacks. Later in [9], Katz
et. al. proved that the protocol is secure even if the adversary concurrently
accesses to Alice. But they did not say anything about what kind of functions
we can employ in the blind-challenge-response scheme. On the other hand, we
are interested in a more generic result, that is “what is the sufficient condition for
functions to obtain the secure blind-challenge-response scheme?” Thus we can
regard our work as a generic framework for constructing the blind-challenge-
response scheme.

Organization: In Section 2, we define notations and a functions family we
employ in this paper. In Section 3, we first describe a blind-challenge-response
scheme, and we show the main theorem which states that the blind-challenge-
response scheme which employs a WPRF is secure against active attacks. In
this section, we will also introduce one of the candidacies of WPRF which was
proposed in [14]. We conclude this paper in Section 5.

2 Preliminaries

Let s
$← S denote the operation of selecting s uniformly at random from the set

S. If D is a probability distribution over S then s ← D denotes the operation of
selecting s at random according to D. Let Un denote the uniform distribution
over {0, 1}n. Let RL,l be the the random functions with a range {0, 1}l and a
domain {0, 1}L. Of denotes an oracle which, if invoked, returns (r, f(r)), where
f is a function and r a uniformly at random input of f . Let H : {0, 1}κ ×
{0, 1}n → {0, 1}l be a functions family. We regard κ as a security parameter. A
functions family we consider in this paper has two algorithms GenH and EvalH .
Gen(1κ) is a probabilistic polynomial time (for short ppt) algorithm. It takes
(unary) security parameter 1κ as input and outputs a key k ∈ {0, 1}κ. EvalH is
a deterministic polynomial-time algorithm which takes k ∈ {0, 1}κ, x ∈ {0, 1}n

as input and outputs Hk(x) ∈ {0, 1}l. For simplicity we assume that a key k
is chosen uniformly at random from {0, 1}κ, i.e., k ← Uκ. We only consider a
function family H which has ppt algorithms GenH and EvalH .

Intuitively, a WPRF is a function that cannot be efficiently distinguished
from a uniform random function when given a sequence of random inputs and
the corresponding outputs. More formally, we can define as follows:

Definition 1. Let H : {0, 1}κ × {0, 1}n → {0, 1}l be a functions family. The
advantage of an algorithm (distinguisher) D is defined as

AdvWPRF
H,D

def= Pr
[
k←Uκ, d ← DOHk | d = 1

]
− Pr

[
R← Rn,l, d← DOR | d = 1

]
.

And the corresponding maximal advantage as

AdvWPRF
H (t, q) def= maxD{AdvWPRF

H,D },
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where the maximum is taken over all D restricted to q invocations of its oracle
and the standard time-complexity t.

Informally, a PRF is a function with a secret key that cannot be distinguished
from a uniform random function even when a distinguisher can query arbitrary
input and can obtain corresponding output. It is easy to see that the every
PRF is also a WPRF, but not every WPRF is a PRF. This comes from a
simple argument. Let H : {0, 1}κ × {0, 1}n → {0, 1}κ be a WPRF. From H
we can construct a function H ′ which is a WPRF but not a PRF. Let define
the function H ′

k as follows: if an input is the form 0n, that is n one’s, then a
corresponding output is a key k, and otherwise an output is H(k, x), where x is
an input. Explicitly, this is a WPRF since the distinguisher cannot chose 0κ by
him/herself, but this is not a PRF since the distinguisher can chose 0κ and can
obtain the key k. The notion of a PRF is very strong and it is not clear whether
functions such as block ciphers or message authentication codes proposed in the
literature have this very strong security property. On the other hand, the notion
of the WPRF is promising compared to the PRF’s since, potentially, there must
be a lot of WPRFs compared to PRFs.

3 The Blind-Challenge-Response Scheme from WPRFs

From any PRF, we can construct a challenge-response (CR) scheme which is se-
cure against active attacks (in the sense of the definition similar to the definition
in this paper), but we show that a WPRF is sufficient to construct an efficient
shared-key authentication scheme which we named a blind-challenge-response
(for short BCR) scheme. We show its construction in this section. Differences
between the CR scheme and the BCR scheme are that the BCR scheme is three
moves protocol instead of two, the number of keys Alice and Bob must share
beforehand becomes two instead of one, and also the assumption on the function
becomes weaker.

3.1 Construction

In this scheme, we consider two kinds of functions for a WPRF. We named them
a one-bit WPRF and a multiple-bit WPRF, respectively. We call a WPRF H
is one-bit WPRF if the length of its range is one-bit, that is l = 1. Also we call
a WPRF H is a multiple-bit WPRF if the length of its range is multiple-bit.
More precisely, for the multiple-bit WPRF H , we consider p1(κ) ≤ l ≤ p2(κ),
where p1 and p2 are some positive polynomials. The reason why we consider
these two is that the proofs are completely different. Proving the BCR scheme
with a multiple-bit WPRF is simpler than that of a one-bit WPRF case.

Let H be a one-bit or a multiple-bit WPRF. In this scheme, Alice and Bob
share two shared-keys beforehand. We denote these two keys kb and kc. Two
entities proceed the authentication phase as follows:
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Alice(kb, kc) Bob(kb, kc)

�
b

b
$← {0, 1}n

� c
$← {0, 1}n

c

�r
def
= Hkb

(b) ⊕ Hkc(c)
r′

Verify r′ ?
= Hkb

(b) ⊕ Hkc(c)

Fig. 1. The BCR Scheme

– Alice selects a blind b ∈ {0, 1}n randomly and sends it to Bob.
– Bob selects a challenge c ∈ {0, 1}n randomly and sends it to Alice.
– Receiving c, Alice computes a response r = Hkb

(b)⊕Hkc(c) and sends r to
Bob.

– Receiving r′, Bob verifies whether r′ = Hkb
(b)⊕Hkc(c) satisfies or not. If it

satisfies then Bob accepts and rejects otherwise.

If H is the one-bit weak pseudorandom function then Alice and Bob proceed
the above several times, say m times. As a result the probability of an adversary
succeeding impersonation attack will bounded by 1

2m + ε, where ε is a negligible
function with respect to n and κ.

We define the security of the BCR scheme. Let A(kb,kc) denote the Alice’s
algorithm when A holds shared-keys kb, kc ∈ {0, 1}n, and let B(kb,kc) denote the
algorithm run by Bob. If Bob accepts with the interaction with Alice then we
denote it by 〈A(kb,kc), B(kb,kc)〉 = 1 and otherwise 〈A(kb,kc), B(kb,kc)〉 = 0.

We consider a two-stage attacker (impersonator) I. Intuitively the first stage
of I plays a role of B and tries to obtain the information of kb and kc. In the
second stage, I tries to impersonate A(kb,kc). More formally, we define the success
probability of I, denoting SuccBCR

H,I , as follows:

SuccBCR
H,I

def= Pr
[
kb, kc ← Uκ, state ← IA(kb,kc) | 〈I(state), B(kb,kc)〉 = 1

]
.

And corresponding maximal probability as

SuccBCR
H (t, q) def= maxI{SuccBCR

H,I },

where the maximum is taken over all I restricted to q invocation of its oracle
and the standard time-complexity t.

We define the advantage of an adversary in both of a one-bit WPRF case
and a multiple-bit WPRF case. If H is a multiple-bit WPRF then we define the
advantage as

AdvBCR
H (t, q) def= SuccBCR

H (t, q).

If H is a one-bit WPRF then we define the advantage as

AdvBCR
H (t, q) def= SuccBCR

H (t, q)− 1
2
.
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Note that the essence of these definitions is identical with the definition (for
active attacks) in [7].

We can prove that the BCR scheme is secure against active attacks in both
cases.

Theorem 1. If H is a family of one-bit WPRFs then the advantage of the BCR
scheme is

AdvBCR
H (t, q) ≤

√
3
2
AdvWPRF

H (t′, q + 2) +
3(q + 2)(q + 1)

2n+2
+

1
2n+1

for any q and t, where t′
def= 2t + 2tH + O(lmax(q + 1)).

Theorem 2. If H is a family of multiple-bit WPRFs then the advantage of the
BCR scheme is

AdvBCR
H (t, q)≤

√
3AdvWPRF

H (t′, q + 2)+
3(q + 2)(q + 1)

2n+1
+

1
22(n+1)

+
1
2l

+
1

2n+1

for any t and q, where t′ = 2t + 2tH + O(lmax(q + 1)).

Note that, in Theorem 2, if l = 1, then the advantage does not become negligible
even when n, κ→∞. This means that the proof does not work if l = 1. However,
this security proof works when l and n are large. The proofs of Theorem 1 and
2 are appeared in Section 4 and Appendix, respectively.

3.2 Note on WPRFs

Candidacies for one-bit WPRFs are proposed in [5], which states that some
“hard to learn” problems, such as learning a DNF formula, can be functions
for a WPRF. Also in [14], Naor and Reingold showed an efficient conversion
method which transforms from a weak message authentication code (WMAC)
into a one-bit WPRF.

Here we give the informal definition of a WMAC. Let H : {0, 1}κ×{0, 1}n →
{0, 1}l be a functions family, and let AdvWMAC

A be the advantage of an algorithm
A defined as

AdvWMAC
A

def= Pr
[
k←Uκ, x←Un, state ← AOHk | A(state, x) = Hk(x)

]
.

Definition 2. We say that H is a WMAC if AdvWMAC
A is negligible for every

ppt adversary A.

Note that this definition is a weaker security notion than that of the MAC which
satisfies unforgeability against chosen-message attacks (UF-CMA). Generally,
UF-CMA is a common goal of security for the MAC, and thus almost all the
MAC proposed in literatures are also WMACs.

Intuitively next theorem states that the existence of a WMAC implies the
existence of a one-bit WPRF.
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Theorem 3 (Theorem 5.1 of [14]). Let x, y ∈ {0, 1}l be two bit strings, and
x · y denotes their inner product.

Let H be a WMAC and r ∈ {0, 1}l be a random string. Then H ′
r(k, x) def=

Hk(x) · r is a one-bit WPRF, where r is a public information.

Another known result related to the WPRFs is a generic conversion method
which transforms a one-bit WPRF to a multiple-bit WPRF [6,11]. Therefore, if
we have a one-bit WPRF then we can obtain a multi-bit WPRF as well. But
note that using a multiple-bit WPRF which is made from this transformation in
the BCR scheme is not recommended since the number of keys each user must
hold becomes large.

4 Evaluation of the Security

4.1 Reset and Negative Reset Lemma

The reset lemma was proposed by Bellare and Palacio in [4]. This lemma upper
bounds the probability that a cheating impersonator can convince Bob to accept
with the probability of a certain experiment. Intuitively, this experiment relates
to the behavior of an impersonator who can produce two accepting conversation
transcripts. (This lemma was applied only to the public-key identification scheme
in [4] but is also applicable to the secret-key setting.)

We modify the original reset lemma of [4] but its essence is completely the
same.

Lemma 1 (Reset and Negative Reset Lemma). Let state refer to some
state information. Let A be an algorithm who wants to authenticate to B in the
BCR scheme, and let α, β the input for A and B, respectively. Let accd(α, β)
be the probability that the B outputs d in its interaction with A, namely the
probability that the following experiment returns d:

Choose random tape R for A; state
def= (α, R); (b, state)← A(state)

c ← Un; (r, state)← A(c, state); d′ ← B(b, c, r)
Return d′

Let resd(α, β) be the probability that the following reset experiment returns d:

Choose random tape R for A; state
def= (α, R); (b, state)← A(state)

c1 ← Un; (r1, state1)← A(c1, state); d1 ← B(b, c1, r1)
c2 ← Un; (r2, state2)← A(c2, state); d1 ← B(b, c2, r2)
If (d1 = d ∧ d2 = d ∧ c1 �= c2) then return d else return 1⊕ d

Then

resd(α, β) ≥ accd(α, β)2 − accd(α, β)
2n

.
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Proof Sketch: Let us first consider the case d = 0. Let X and Y be random
variables. Let X denote the probability, taken over the challenge set {0, 1}n,
that Bob rejects. Let Y denote the probability, taken over the two challenge
sets {0, 1}n × {0, 1}n, that Alice is reset and runs twice, a different challenge is
generated each time and Bob rejects each time.

It is obvious that Y ≥ X(X − 1
2n ). From Jensen’s inequality,

E[Y ] ≥ E

[
X2 − X

2n

]
≥ E [X ]2 − E [X ]

2n
,

where E[Z] is an expectation of a random variable Z. Since E[X ] = acc0(α, β)
and E[Y ] = res0(α, β),

res0(α, β) ≥ acc0(α, β)2 − acc0(α, β)
2n

.

The proof for the case d = 1 can be done in the similar way. 	


From the reset and negative reset lemma, we can easily derive the following
corollary. This corollary becomes a useful tool to prove Theorem 1.

Corollary 1. Let n, α, β, accd, and resd be described in the above lemma. Then

res0(α, β) + res1(α, β) ≥ 2
(

acc1(α, β)− 1
2

)2

+
1
2
− 1

2n
.

4.2 Other Lemmas

To prove the theorems, we need to show two intermediate lemmas, Lemma 2 and
Lemma 3. Lemma 2 was proven in [11] and this lemma states that a sequence
b1, Hkb

(b1), b2, Hkb
(b2), · · · , bq, Hkb

(bq) is pseudorandom as long as bi’s and kb

are randomly chosen from an appropriate set, respectively.
More formally, let D be an algorithm and let Π1 denote the following game:

b1, b2, · · · bq ← Un; kb ← Uκ;
d← D(b1, Hkb

(b1), b2, Hkb
(b2) · · · , bq, Hkb

(bq)).

Also let Π0 be the game z ← Uq(n+l); d ← D(z). Let Si denote the event that
d = 1 in the game Πi. The advantage of the distinguisher D is defined as

AdvPR
H,D

def= Pr [S1]− Pr [S0] .

And the corresponding maximal advantage as

AdvPR
H (t, q) def= maxD{AdvPR

H,D},

where q is the number of a pair of (bi, Hkb
(bi)) and the maximum is taken over

all D which time-complexity is up to t.
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Lemma 2 (Lemma 1 in [11]). Let H : {0, 1}κ×{0, 1}n → {0, 1}l be a WPRF.
Then for any t, q,

AdvPR
H (t, q) ≤ AdvWPRF

H (t, q) +
q(q − 1)

2n+1
.

Intuitively, Lemma 3 states that due to the pseudorandomness of Hkb
, distin-

guishing between Hkc and a random function is still hard for the impersonator I
even after I interacts with Alice. More formally, let D be a two-stage algorithm
and let consider the following game Λ:

kb, kc ← Uκ; c̃1, c̃2 ← Un; z0
1 , z

0
2 ← Ul; state← DA(kb,kc) ;

z1
1

def= Hkc(c̃1); z1
2

def= Hkc(c̃2); d← U1; d′ ← D(state, c̃1, c̃2, z
d
1 , zd

2)

The advantage of the distinguisher D is defined as

AdvΛ
H,D

def= Pr [d = d′]− 1
2
.

And the corresponding maximal advantage as

AdvΛ
H(t, q) def= maxD{AdvΛ

H,D},

where the maximum is taken over all D restricted to q invocations of its oracle
A(kb,kc) and the standard time-complexity t.

Lemma 3. Let H : {0, 1}κ × {0, 1}n → {0, 1}l be a WPRF, let tH the worst
case time-complexity of computing H, and lmax = max(κ, l, n).

Then for any t, q,

AdvΛ
H(t, q) ≤ 3

2

(
AdvWPRF

H (t′, q + 2) +
(q + 2)(q + 1)

2n+1

)
,

where t′ = t + 2tH + O(lmax + qlmax).

Proof: Let assume that an adversary D distinguishes between (c̃1, z
1
1), (c̃2, z

1
2)

and ((c̃1, z
0
1), (c̃2, z

0
2)) with the time-complexity being t and the number of queries

being q.
We say that D succeeds if and only if d = d′. We denote this event by T , and we

are ultimately interested in the amount of Pr [T ]. We construct a distinguisher D′

which distinguishes a random sequence from a sequence of a pair of (bi, Hkb
(bi))

in the sense of Lemma 2. Let such sequence be (b1, s1, b2, s2, · · · , bq, sq), where
each bi is n-bit and si is l-bit. The distinguisher D′ works as follows:

1. Generate kc ← Uκ.
2. On i-th D’s oracle invocation, where 1 ≤ i ≤ q:

Blind Phase: Send bi to D
Response Phase: On receiving ci ∈ {0, 1}n, return si ⊕Hkc(ci)

3. Receive the state information state from D, and generate d
$← {0, 1}
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4. Generate c̃1, c̃2 ← Un, and z0
1 , z0

2 ← Ul. Also let z1
1

def= Hkc(c̃1), z1
2

def= Hkc(c̃2)
5. Input (state, c̃1, c̃2, z

d
1 , zd

2) into D, and obtain d′

6. Output 1 if and only if d = d′

Remind that S0 is the event that the input b1, s1, b2, s2, · · · , bq, sq is the
random sequence, and S1 is the event that the input is the sequence b1, Hkb

(b1),
b2, Hkb

(b2), · · · , bq, Hkb
(bq). From Lemma 2 and the algorithm D′, we know

that
Pr [D′ = 1 | S1]− Pr [D′ = 1 | S0] ≤ AdvPR

H (t′, q),

where t′
def= t + 2tH + O(lmax(1 + q)).

First, we claim that Pr [D′ = 1 | S1] = Pr [T ]. This is because, when S1 occurs,
kb is used just as this would be in the game Π1 and D′ outputs 1 if and only if
d = d′. Thus this follows the claim.

To complete the proof, we need to estimate the amount of Pr[D′ = 1 | S0].
Since if the event S0 occurs then what the distinguisher can obtain from its
oracle is only a random sequence, D does not obtain any information about the
key kc. Thus, for any t,

Pr[D′ = 1 | S0]−
1
2
≤ 1

2
AdvPR

H (t′, 2).

Combining these, for any t and q, we have

Pr [T ]− 1
2

= AdvΛ
H(t, q) ≤ AdvPR

H (t′, q) +
1
2
AdvPR

H (t′, 2),

where t′ = t + 2tH + O(lmax(1 + q)). Combining with Lemma 2 concludes the
proof as follows:

AdvΛ
H(t, q) ≤ AdvPR

H (t′, q) +
1
2
AdvPR

H (t′, 2)

≤ 3
2
AdvPR

H (t′, q + 2)

≤ 3
2

(
AdvWPRF

H (t′, q + 2) +
(q + 2)(q + 1)

2n+1

)
for any t and q. 	


4.3 Proof of Theorem 1

Using Lemma 3 with l = 1, we can prove Theorem 1.
Assuming an impersonator I attacking the BCR scheme actively. Let assume

I accesses to the oracle q times and runs in time t. We denote the event of I
succeeding the attack by U . We are interested in the amount of Pr [U ].

We construct a distinguisher D which distinguishes (c̃1, Hkc(c̃1)), (c̃2, Hkc(c̃2))
and (c̃1, z

0
1), (c̃2, z

0
2) in the sense of Lemma 3. Note that since the distinguisher

D can access to the oracle A(kb,kc), there is no difficulty in answering I’s oracle
queries. We construct the distinguisher D as follows:
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1. Invoke the first stage of the impersonator I.
2. Whatever a query received from I, send it to A(kb,kc). Also send back its

response to I. Repeat this q times
3. Output I’s output, i.e., state

// Second stage of D is invoked with state, (c̃1, z
d
1), and (c̃2, z

d
2).

// D needs to decide whether d = 1 or d = 0.
4. Invoke the second stage of the impersonator I with state

5. On receiving a blind b from I, return a challenge c̃1, and then receive the
corresponding response r1

6. Rewind I to the step 4
7. On receiving the same blind b from I, return a challenge c̃2, and then receive

its response r2

8. Output 1 if and only if r1 ⊕ zd
1 ⊕ r2 ⊕ zd

2 = 0

Let V0 be the event that d = 0 and let V1 be the event that d = 1. We know
from Lemma 3 and the algorithm D that

Pr [D = 1 | V1]− Pr [D = 1 | V0] ≤ 2AdvΛ
H(O(lmax(q + 1)) + 2t, q). (1)

First, we consider the case that V0 occurs. We claim that, due to the random-
ness of z0

1 and z0
2 , Pr [D = 1 | V0] = 1

2 . Since z0
1 and z0

2 distribute uniformly
at random from the viewpoint of I, whatever I outputs, the probability of
r1 ⊕ z0

1 ⊕ r2 ⊕ z0
2 = 0 is 1

2 . By this, the claim follows.
Next we concentrate on the case that the event V1 occurs. That is, we estimate

the amount of Pr [D = 1 | V1]. Consider the following two events. The one, say
R1, is that r1 and r2 satisfy r1 = Hkb

(b) ⊕Hkc(c̃1) and r2 = Hkb
(b) ⊕Hkc(c̃2).

The other, say R0, is that r1 and r2 satisfy r1 = Hkb
(b) ⊕ Hkc(c̃1) ⊕ 1 and

r2 = Hkb
(b)⊕Hkc(c̃2)⊕1. Note that, D outputs 1 if and only if R0 or R1 occurs.

Thus Pr[D = 1 | V1] = Pr[R0] + Pr[R1].
We estimate Pr [D = 1 | V1]. Remind Lemma 1 and let α = state and β =

(kb, kc). Then from Corollary 1, and also from Jensen’s inequality,

Pr[D = 1 | V1] = Pr[R0] + Pr[R1]
= E [res0(state, (kb, kc))] + E [res1(state, (kb, kc))]

≥ 2E

[(
acc1(state, (kb, kc))−

1
2

)2
]

+
1
2
− 1

2n

≥ 2
(

E [acc1(state, (kb, kc))]−
1
2

)2

+
1
2
− 1

2n

= 2
(

SuccBCR
H (t, q)− 1

2

)2

+
1
2
− 1

2n

= 2AdvBCR
H (t, q)2 +

1
2
− 1

2n
,



314 R. Nojima, K. Kobara, and H. Imai

where expectation is taken over the choice of (kb, kc) and state. Combining the
inequality (1), Pr [D = 1 | V0] = 1

2 and this, we obtain

AdvBCR
H (t, q) ≤

√
AdvΛ

H(O(lmax(q + 1)) + 2t, q) +
1

2n+1
,

for any t and q. With the result of Lemma 3,

AdvBCR
H (t, q) ≤

√
AdvΛ

H(O(lmax(q + 1)) + 2t, q) +
1

2n+1

≤
√

3
2
AdvWPRF

H (t′, q + 2) +
3(q + 2)(q + 1)

2n+2
+

1
2n+1

for any t and q, where t′ = 2t + 2tH + O(lmax(q + 1)). This concludes the proof.
	


5 Open Problems and Concluding Remarks

In this paper, we showed a shared-key authentication scheme, named the blind-
challenge-response scheme, that is secure against active attacks. The good prop-
erty of our scheme is that the scheme can construct from any WPRF. Thus, we
can regard our work as a generic framework for constructing the blind-challenge-
response scheme.

As is in [9], we could not treat the man in the middle attack in this paper, but the
discussion in [9] states that, for some applications such as RFID-tags, mounting
the man-in-the middle attack is not easy for attackers. However, construction of
an efficient shared-key authentication scheme secure against man in the middle
attack is a still important work for protecting the future communication channel.
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Appendix

Proof of Theorem 2

Main difference with Theorem 1 is p1(κ) ≤ l ≤ p2(κ), i.e., l is not constant,
where p1 and p2 are some positive polynomials. Proving the theorem can be
done directly from Lemma 3 without using Corollary 1.

Let I be the impersonator which attacks the BCR scheme in time t and
in q queries. We construct the distinguisher D in the sense of Lemma 3. The
algorithm D is the completely the same with the algorithm described in the
proof of Theorem 1.

Let V0 be the event that d = 0 and let V1 the event that d = 1. We know from
Lemma 3 and the description of D that

Pr [D = 1 | V1]− Pr [D = 1 | V0] ≤ 2AdvΛ
H(O(lmax(q + 1)) + 2t, q). (2)

We claim that, due to the randomness of z0
1 and z0

2 , Pr [D = 1 | V0] = 1
2l . Since

z0
1 and z0

2 distributes uniformly at random from the viewpoint of I, whatever I
outputs, the probability of being r1 ⊕ z0

1 ⊕ r2 ⊕ z0
2 = 0 is 1

2l . By this, the claim
follows.

To complete the proof, we need to estimate the amount of Pr [D = 1 | V1].
Let W be the event that r1 and r2 satisfies r1 = Hkb

(b) ⊕ Hkc(c̃1) and r2 =
Hkb

(b) ⊕ Hkc(c̃2), respectively. Note that, D outputs 1 if the event W occurs
since r1⊕zd

1⊕r2⊕zd
2 = 0 satisfies with this event. Thus Pr[D = 1 | V1] ≥ Pr[W ].
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We estimate the probability. Remind Lemma 1 and let α = state and β =
(kb, kc). Then

Pr[D = 1 | V1] ≥ Pr[W ]
= E [res1(state, (kb, kc))]

≥ E

[
acc1(state, (kb, kc))2 −

acc1(state, (kb, kc))
2n

]
≥ E [acc1(state, (kb, kc))]

2 − E [acc1(state, (kb, kc))]
2n

= AdvBCR
H (t, q)2 − AdvBCR

H (t, q)
2n

=
(

AdvBCR
H (t, q)− 1

2n+1

)2

− 1
22(n+1)

,

where expectation is taken over the choice of state and (kb, kc). Combining with
inequality (2), Pr [D = 1 | V0] = 1

2l and Lemma 3, we obtain

AdvBCR
H (t, q) ≤

√
2AdvΛ

H(O(lmax(q + 1)) + 2t, q) +
1

22(n+1)
+

1
2l

+
1

2n+1

≤
√

3AdvWPRF
H (t′, q + 2)+

3(q + 2)(q + 1)
2n+1

+
1

22(n+1)
+

1
2l

+
1

2n+1
,

where t′ = 2t + 2tH + O(lmax + qlmax). This concludes the proof. 	
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Abstract. Recently Bernstein [4] has provided a simpler proof of in-
distinguishability of CBC construction [3] which is giving insight of the
construction. Indistinguishability of any function intuitively means that
the function behaves very closely to a uniform random function. In this
paper we make a unifying and simple approach to prove indistinguisha-
bility of many existing constructions. We first revisit Bernstein’s proof.
Using this idea we can show a simpler proof of indistinguishability of a
class of DAG based construction [8], XCBC [5], TMAC [9], OMAC [7]
and PMAC [6]. We also provide a simpler proof for stronger bound of
CBC [1] and a simpler proof of security of on-line Hash-CBC [2]. We note
that there is a flaw in the security proof of Hash-CBC given in [2]. This
paper will help to understand security analysis of indistinguishability of
many constructions in a simpler way.

1 Introduction

This paper deals how one can obtain a simple proof for a bound of distinguishing
advantage of two classes of object, mainly two classes of functions. We consider
several constructions and show how simply the distinguishing advantage can be
obtained. Here we mainly consider distinguishing attack of existing constructions
with popularly known random function (in this paper, we term it as uniform
random function [4]). Indistinguishability of a construction intuitively means
that there is no efficient distinguisher which distinguishes this from the uniform
random function. Bernstein has provided a simple proof of indistinguishability of
CBC-MAC (Cipher Block Chaining-Message Authentication Code) [4] which is
the main motivation of this paper. We first revisit his proof [4] and show how sim-
ply one can extend the proof idea for a class of DAG (Directed Acyclic Graph)
based general construction due to Jutla [8]. This class contains many construc-
tions including CBC and a variant of PMAC [6]. We give a simpler proof of partial
result of improved security analysis of CBC-MAC [1]. We also study distinguishing
advantage with a different class known as uniform random on-line function intro-
duced in Crypto 2001 [2]. We show that same idea of proof is also applicable in this
scenario and we obtain a simpler proof of Hash-CBC construction [2]. The idea of
all these proofs is based on statistical distribution of the view of the distinguisher.
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Thus, it gives information theoretic security and hence the security bound holds
for computationally unbounded distinguishers also.

This simple idea can help to understand better about the insight of the construc-
tion and can help to come up with very nice constructions and results. For example,
we modify slightly the DAG based class due to Jutla [8], so that it will include all
known constructions like XCBC [5], TMAC [9], OMAC [7], PMAC [6] etc.

Organization of the paper. In this paper, we first build mathematics for the
security bound of the distinguisher in Section 2 which would be used through-
out the paper. Then we rewrite the simple proof of security of CBC given by
D. J. Bernstein in Section 3 and we show a similar result in case of CBC based
on uniform random permutation. In Section 4, we generalize his idea of proof
to have a simple proof for a general class proposed by Jutla. We see that secu-
rity of arbitrary length MAC construction like XCBC, TMAC, OMAC, PMAC
etc. can be derived from it. In Section 5 we provide a simpler proof of security
of Hash-CBC. We note that in the original paper there is a flaw in the proof.
Finally we conclude.

2 Mathematics for Security Proof in Distinguishing
Attack

2.1 Different Notion of Distances and Its Cryptographic
Significance

(1) Statistical Distance: Let X and Y be two random variables taking values
on a finite set S. We define statistical distance between two random variables by

dstat(X, Y ) := maxT⊂S

∣∣Pr[X ∈ T ]− Pr[Y ∈ T ]
∣∣.

Note that, Pr[X ∈ T ] − Pr[Y ∈ T ] = Pr[Y �∈ T ] − Pr[X �∈ T ] and hence
dstat(X, Y ) = maxT⊂SPr[X ∈ T ]−Pr[Y ∈ T ]. It measures the distance between
the distribution of the random variables. In fact, it is really a metric or distance
function on the set of all distributions on S. It measures how close their distribu-
tions are. For identically distributed random variables X and Y , dstat(X, Y ) = 0
and if the random variables are disjoint1 then the statistical distance is one. In
all other cases it lies between zero and one. Now we prove an equivalent def-
inition of statistical distance and study some standard examples. Proof of all
lemmas stated in this section are given in Appendix A.

Lemma 1. dstat(X, Y ) = Pr[X ∈ T0] − Pr[Y ∈ T0] = 1
2 ×

∑
a∈S

∣∣Pr[X =
a]− Pr[Y = a]

∣∣, where T0 = {a ∈ S : Pr[X = a] ≥ Pr[Y = a]}.

1 X and Y are said to be disjoint if X occurs with some positive probability then Y
does occur with probability zero and vice versa. More precisely, there exists a subset
T such that Pr[X ∈ T ] = 1 and Pr[Y ∈ T ] = 0.
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Example 1. Let X and Y be uniformly distributed on S and T ⊂ S respectively.
Then by Lemma 1, dstat(X, Y ) = 1

2 ×
(
( 1
|T | −

1
|S|) × |T | +

|S|−|T |
|S|

)
= 1 − |T |

|S| .
Thus, if size of T is very close to S then statistical distance is also very close
to zero. On the other hand, if size of T is negligible compare to that of S then
statistical distance is close to one.

Example 2. Let S = Func(G, G) where Func(H, G) denotes the set of all func-
tions from H to G. Let T = Funcinj(G, G) be the subset containing all injective
functions (or permutation since domain and range are same). We say u (or v) is
a uniform random function (or uniform random injective function) if it is uni-
formly distributed on S (or T respectively). Thus from Example 1 we know that
dstat(u, v) = 1− N !

NN which is very close to one for large N , where |G| = N .

Example 3. Given any distinct x1, · · · , xk ∈ G, let the k-sampling output of u be
(u(x1),· · · ,u(xk)) and denoted as u[k](x1, · · · , xk). Let X = (u(x1), · · · , u(xk))
and Y = (v(x1),· · · ,v(xk)). Then we can see that X is uniformly distributed
on S = Gk and Y is uniformly distributed on T = G[k] := {(y1, · · · , yk) ∈
Gk : yi’s are distinct} and hence (again by Example 1) dstat(X, Y ) = 1 −
N(N−1)···(N−k+1)

Nk ≈ 1 − exp−k(k−1)/2N . Here we note that if k <<
√

N then
the statistical distance is very close to zero.

Now, we state two results which will help to give an upper bound of statistical
distance of two distributions. If the probability of the event {X = a} is not small
compare to that of {Y = a} for all choices of a (or on a set with high probability)
then the statistical distance is also small. More precisely, we have the following
two lemmas.

Lemma 2. Let X and Y be two random variable taking values on S and ε > 0.
If Pr[X = a] ≥ (1− ε)×Pr[Y = a], ∀a ∈ S or Pr[X = a] ≤ (1 + ε)×Pr[Y = a],
∀a ∈ S then dstat(X, Y ) ≤ ε.

Lemma 3. Let X and Y be two random variables taking values on S. Let for a
subset T ⊂ S, Pr[X = a] ≥ (1 − ε1) × Pr[Y = a], ∀a ∈ T and Pr[Y /∈ T ] ≤ ε2
then dstat(X, Y ) ≤ 2ε1 + 2ε2.

(2) Computational Distance: The statistical distance is also popularly known
as information theoretic distance. In cryptography, there is another notion of
distance, known as computational distance. Let A(·) be a probabilistic algorithm
which runs with an input a ∈ S and giving output 0 or 1. Define, A-distance
between X and Y as follows;

dA(X, Y ) =
∣∣Pr[A(X) = 1]− Pr[A(Y ) = 1]

∣∣.
Here, A(X) means the distribution of output of A(z) where z follows the distri-
bution of X . Similarly for A(Y ). As A is a probabilistic algorithm it can use a
string r chosen from some set R with a distribution which is independent with
X and Y . So we consider that A is having two inputs r ∈ R and z ∈ S. We
state a fact which shows a relationship between statistical and computational
distances. Proof is given in the Appendix A.
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Lemma 4. For any A, dA(X, Y ) ≤ dstat(X, Y ). Conversely, there exists an
algorithm A0 (may not be efficient) such that dA0(X, Y ) = dstat(X, Y ).

In the above proof note thatA0 may not be efficient and does not use any random
string. One can consider only deterministic algorithm when it has unbounded
computational power. Intuitively, one can make computation for all random
choices and choose the random string where it has the best performance. Later,
we will show that we can ignore the random string while we distinguish two
classes of functions by using unbounded computation.

2.2 Distinguisher of Families of Functions or Random Functions

In this section we describe how a distinguisher can behave. We also show that how
the advantage of the distinguisher can be obtained by computing the statistical
distance of view of the distinguisher.

By random function we mean some distribution on the set Func(H, G), set
of all functions from H to G. In Example 2, we have already defined two ran-
dom functions, they are uniform random function and uniform random injective
function. In cryptography, they are used as ideal candidates. In this paper we
will also study another ideal function known as uniform random on-line injective
function. We will define this in Section 5. Now we follow the notations used in
Example 2 and 3. Let f be a random function. For each x = (x1, · · · , xk) ∈ H [k],
f [k](x) = (f(x1), · · · , f(xk)) follows the distribution induced by the distribution
of f . More precisely, for any y = (y1, · · · , yk) ∈ Gk,

Pr[f [k](x) = y] =
∑
f0∈I

Pr[f = f0], where I := {f ∈ Func(H, G) : f [k](x) = y}.

Let f and g be two random functions and a distinguisher D has a function oracle
which can be either chosen from f or from g. Distinguisher is behaving as follows.
- First it chooses a random string r from R.
- Based on r it makes query x1 := x1(r) ∈ H and obtains y1 ∈ G.
- Then it makes queries x2 = x2(r, y1) ∈ H and obtains y2 ∈ G and so on.
Even if x2 can depend on x1, it is a function of r and y1 since x1 is a func-
tion of r only. Thus, xi is a function of (r, y1, · · · , yi−1). We say these functions
x1, x2, · · · are query functions (or x = (x1, · · · , xk) is k-query function) and
the tuple (y1, · · · , yk) ∈ Gk is the conditional view of the distinguisher (con-
dition on the random string r) where k is the number of queries. Note that
the output of D is completely determined by the chosen random string r and
the conditional view (y1, · · · , yk). We define the distinguishing advantage of DO

to distinguish between f and g as Advf,g(D) = |Pr[Df = 1] − Pr[Dg = 1]|.
Define df,g(k) = maxDAdvf,g(D), where maximum is taken over all oracle algo-
rithms D which make at most k queries. This denotes the maximum distinguish-
ing advantage for two random functions f and g where the attacker is mak-
ing at most k queries. Note that there is no restriction on the computational
resources of D. We can think D as a tuple of function (x1, · · · , xk,A) where
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xi’s are query functions and A is the final output function which takes input
as (r, y1, · · · , yk). Denote this view without the random string (y1, · · · , yk) by
f [k]r,x1,··· ,xk

or g[k]r,x1,··· ,xk
(in short, f [k]r,x or g[k]r,x) for the random function

f and g respectively. Here, A is distinguishing two families of random variable
{f [k]r,x1,··· ,xk

}r∈R and {g[k]r,x1,··· ,xk
}r∈R. Thus,

Advf,g(D) =
∣∣∑

r∈R
Pr[A(r, f [k]r,x) = 1]×Pr[r]−

∑
r∈R

Pr[A(r, g[k]r,x) = 1]×Pr[r]
∣∣

=
∑
r∈R

Pr[r] × dA(f [k]r,x, g[k]r,x)

≤
∑
r∈R

Pr[r] × dstat(f [k]r,x, g[k]r,x)

So, given any probabilistic distinguisher D = (x1, · · · , xk,A) one can define
a deterministic distinguisher D0 = (x1, · · · , xk,A0) such that Advf,g(D) ≤
Advf,g(D0). Here, D0 chooses a random string r0 with probability one (i.e., a
deterministic algorithm) such that dstat(f [k]r,x, g[k]r,x) = maxr∈R dstat(f [k]r,x,
g[k]r,x) and A0 behaves as in Lemma 4. Now we will make following assumptions
in this paper.

Assumption 1 (Distinguishers are deterministic): We assume that all
distinguishing algorithms are deterministic. Thus, x1 is a constat and xi is a
function of (y1, · · · , yi−1).

Assumption 2 (Query functions are distinct): To avoid complicity of no-
tations we use the same notation xi to denote the function as well as the output
of the function. We will assume that all outputs of xi’s (or xi as a functional
value) are distinct (otherwise one can restrict on the set of distinct values of xi).

Now we use the notation f [k]x1,··· ,xk
instead of f [k]r,x1,··· ,xk

to denote the
view of the distinguisher. We can write that df,g(k) = maxxdstat(f [k]x, g[k]x),
where maximum is taken over all k-query functions x = (x1, · · · , xk). Thus, to
obtain an upper bound of df,g(k), it would be enough to bound dstat(f [k]x, g[k]x)
for each k-query functions x. The following theorem says how one can obtain
this. This theorem has been stated and proved By D. J. Bernstein [4] (a proof
is given in Appendix A).

Theorem 1. If Pr[f [k](a) = y] ≥ (1 − ε) × Pr[g[k](a) = y] for each a ∈ H [k]
and y ∈ Gk, then for any k-query function x = (x1, · · · , xk), dstat(f [k]x, g[k]x)
≤ ε and hence df,g(k) ≤ ε.

3 A Short Proof of the Indistinguishability of CBC Due
to D.J. Bernstein [4]

Here, we rewrite the security proof of CBC based on uniform random function
given by Bernstein [4]. We also show that the similar result can be obtained for
uniform random injective function.
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Let f be a function on a group (G, +) (i.e, from (G, +) to (G, +)) where
|G| = N . For m ≥ 1, define the iterated functions recursively as follow :

f+(g1, · · · , gm) := f+
m(g1, · · · , gm) = f(f+

m−1(g1, · · · , gm−1) + gm),

where gi ∈ G, f+
0 () = f+

0 (λ) = 0 and λ is the empty string. Let x = (x1, · · · , xk) ∈
(Gm)k and (y1, · · · , yk) ∈ Gk where x1, · · · , xk are distinct elements of Gm. We
define P := P(x) ⊂ G∪· · ·∪Gm, by the set of all non-empty prefixes of xi’s. Note
that |P(x)| ≤ mk for any x ∈ (Gm)k. Let P1 := P1(x) = P(x) \ {x1, · · · , xk}.
Example 4. Let G = Z100 and x = ((1, 2, 2), (1, 2, 3), (2, 2, 2)) then P(x) =
{1, 2, (1, 2), (2, 2), (1, 2, 2),(1, 2, 3), (2, 2, 2)} and P1(x) = {1, 2, (1, 2), (2, 2)}.

We fix any x. Given any f , define the intermediate induced output function
(or simply induced output function) opf : P1(x) → G as opf (p) = f+(p). Any
function from P1(x) to G is called as output function. Note that all output
functions may not be an induced output function. We characterize the output
functions which are induced output functions. Given op define a corresponding
input function ip : P→ G such that

ip(p) = op(chop(p)) + last(p) if p /∈ G
= p if p ∈ G

}
(1)

where if p = (q, g′) ∈ Gi, chop(p) := q ∈ Gi−1, last(p) := g′ ∈ G, i ≥ 2.

Lemma 5. Let op be an output function and ip be its corresponding input
function. An output function op is an induced output function if and only if
op(p1) = op(p2) whenever ip(p1) = ip(p2). In particular, op is an induced out-
put function if corresponding input function is injective (the above condition is
vacuously true).

Proof. Given any f , opf (p) = f+(p) = f(ip(p)) where ip is the corresponding
input function of opf . Thus, the converse of the statement is also true. Now we
prove the forward implication of the Lemma. Given any op and its corresponding
input function ip, we define

f(x) = op(p) if ip(p) = x
= ∗ otherwise

}
(2)

Here, ∗ means that we can choose any arbitrary element from G. This is well
defined as ip(p1) = ip(p2) = x implies op(p1) = op(p2). Recursively, one can
check that f+(p) = op(p) and hence op = opf .

Example 4. (contd.) Let op(1) = op(1, 2) = 99, op(2) = 1 and op(2, 2) =
0. Note that it satisfies the condition of above Lemma. For example, op(1) =
op(1, 2) where, ip((1, 2)) = ip(1) = 1. Thus for any f such that f(1) = 99, f(2) =
1 and f(3) = 0, opf = op. Here note that ip((1, 2, 2)) = 1, ip((1, 2, 3)) = 2 and
ip((2, 2, 2)) = 2. So, for this output function and for any f such that opf = op,
we have f+((1, 2, 2)) = 99, f+((1, 2, 3)) = 1 and f+((2, 2, 2)) = 1.

Following lemma count the number of functions which induce a given induced
output function.
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Lemma 6. Let op be an induced output function such that |ip(P1)| = q where
ip is the corresponding input function and ip(P1) = {ip(p) : p ∈ P1} is the range
of it. Then there are exactly NN−q many f such that op = opf .

Proof. This is immediate from the construction of f in Equation 2.

Corollary 1. If op is an output function such that corresponding input function
ip is injective then there are NN−|P1| many f ’s such that opf = op and there are
NN−|P1|−k many f ’s such that opf = op and f+[k](x) = y.

Example 4. (contd.) In this example, ip(P1) = {1, 2, 3} and hence we have
10097 many f ’s such that opf = op. More precisely, all functions f such that
f(1) = 99, f(2) = 1 and f(3) = 0 hold.

Now we give a lower bound of the number of output functions such that
corresponding input function is injective. For each p1 �= p2 ∈ P, let Cp1,p2 be
the set of all output functions such that the corresponding input function has
same value on p1 and p2. Let C be the set of all output functions such that the
induced input function is not injective. Thus, C =

⋃
p1 �=p2∈P

Cp1,p2 . Now for
each p1 �= p2 with p1 = (q1, g1) and (q2, g2) where gi ∈ G,

Cp1,p2 = {op ; op(q1)− op(q2) = g2 − g1} if q1 �= q2

= ∅ if q1 = q2

}
(3)

Here, we define op() = 0. So we obtain that |Cp1,p2 | ≤ N |P1|−1 and hence |¬C| ≥
N |P1|(1 − |P|(|P|−1)

2N ) (note that the total number of output functions is N |P1|).
Let E = {f ∈ Func(G, G) ; f+

m[k](x) = y} then by Corollary 1

|E| ≥ |¬C| ×NN−|P1|−k ≥ NN−k(1− |P|(|P| − 1)
2N

).

Thus,

Pr[u+[k](x1, · · · , xk) = (y1, · · · , yk)] ≥ (1 − ε)
Nk

,

where u is a uniform random function and ε = mk(mk−1)
2N since we have |P1| ≤

mk. By Theorem 1 we have the following main Theorem of this section.

Theorem 2. For any x = (x1, · · · , xk) ∈ G[k] and y = (y1, · · · , yk) ∈ Gk we
have Pr[u+[k](x) = y] ≥ (1−ε)

Nk , where ε = mk(mk−1)
2N . We also have, dstat(u+

m[k]x
,u(m)[k]x) ≤ mk(mk−1)

2N and hence du+
m,u(m)(k) ≤ mk(mk−1)

2N where u(m) is the
uniform random function on Func(Gm,G) and x is any k-query function.

3.1 CBC Based on Uniform Random Injective Function

In the original CBC security is provided based on uniform random injective
function or uniform random permutation. Here we prove a similar result for
uniform random injective function v. The proof is exactly same except in the
place of counting the set {v : v+[k](x) = y}, where yi’s are distinct. So we fix
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any y ∈ G[k]. Let for each p1 �= p2 ∈ P, C1
p1,p2

be the set of all output functions
op such that op(p1) = op(p2) and C1 =

⋃
p1 �=p2

C1
p1,p2

. We define C∗ = C ∪ C1.
Thus, op /∈ C∗ means that both input and output functions are injective. It is
easy to check that |C1| ≤ N |P1|−1 × (|P1|)(|P1|−1)

2 and hence we have

– |¬C∗| ≥ N |P1|×(1− (mk−k)(mk−k−1)
2N −mk(mk−1)

2N ) ≥ N |P1|×(1−mk(mk−1)
N ).

We have a similar result like Corollary 1. For each op /∈ C∗, there are ex-
actly N !

(N−|P|)! many injective f ’s which induces op and f+[k](x) = y (see the
constructions of all f in Equation 2 in the proof of Lemma 5). Thus,

|{f ∈ Funcinj(G, G) : f+(x) = y}| ≥ N |P1| × (1− ε1)×
N !

(N − |P1| − k)!

where ε1 = mk(mk−1)
N . Hence, Pr[v+[k](x) = y] ≥ N−k × (1 − ε1) for all y ∈

T := G[k] = {y ∈ Gk : y1, · · · , yk are distinct} and x ∈ Gm[k]. Now we have,
Pr[u(m)[k](x) /∈ T ] ≤ k(k−1)

2N . Thus by Lemma 3 we have,

dstat(v+
m[k]x, u(m)[k]x) ≤ k(k − 1)

N
+

2mk(mk − 1)
N

for any k-query functions x and hence

dv+
m,u(m)(k) ≤ k(k − 1)

N
+

2mk(mk − 1)
N

.

Theorem 3. dstat(v+
m[k]x, u(m)[k]x) ≤ k(k−1)

N + 2mk(mk−1)
N for any k-query func-

tion x = (x1, · · · , xk) and hence dv+
m,u(m)(k) ≤ k(k−1)

N + 2mk(mk−1)
N .

4 DAG (Directed Acyclic Graph) Based PRF [8]

In this section, we state a class of PRF based on DAG proposed by Jutla [8].
We modify the class slightly so that it contains many known constructions like
PMAC, OMAC, TMAC, XCBC etc. The security analysis would be immediate
from that of the general class. We first give some terminologies related to DAG.

Terminologies on DAG: Let D = (V, E) be a directed acyclic graph with
finite vertex set V and edges E. We say that u ≺ v if there is a directed path
from u to v. Note that it is a partial order on V . Let D have exactly one sink
node vf (the maximum element with respect to ≺) and at most two source nodes
(the minimum element with respect to ≺). If there are two such we call them as
vs and viv. In the original paper, Jutla considered only one source node. Here
we extend it to two so that it can contain one more source node for initial value.

– For each node v ∈ V , define Dv by the subgraph induced by the vertex set
Vv = {u : u ≺ v}. We define, N(v) = {u ∈ V : (u, v) ∈ E}, the neighborhood
of v.
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– Any map c : E → M is said to be color map on D where M is a field. A
colored DAG is pair (D, c) where c is a color map on D.

– Two colored DAG (D1, c1) and (D2, c2) are said to be isomorphic if there is a
graph isomorphism between D1 and D2 which preserves the color map. More
precisely, a graph isomorphism ρ : D1 → D2 satisfies c2(ρ(e)) = c1(e) ∀ e ∈
E1. In this case we write (D1, c1) ∼= (D2, c2).

Definition 1. We say a colored graph G = (D, c) is non-singular if for all u, v ∈
V , Gu := (Du, c[u]) ∼= (Dv, c[v]) := Dv implies either u = v or {u, v} = {vs, viv}
with c(vs, w) �= c(viv , w) whenever (vs, w) and (viv , w) ∈ E. Here the color map
c[u] is the restriction of c on Du.

Definition 2. We say a sequence of colored graph S = 〈Gl = (Dl, cl) = ((V l,El)
,cl) 〉l≥1 is PRF-preserving if each Dl is non-singular and Gl �∼= Gl′

u = (Dl′
u , cl′ [u])

for u ∈ V l′ and l′ �= l.

Functional Representation of Message: Given a sequence of colored graph
〈Gl = (Dl, cl)〉l≥1, let U l = V l\{vl

iv}. We fix a sequence of initial values ivl ∈M,
l ≥ 1. Let X : U l →M be a function, called as a message function. We define
its corresponding message-initial value function X on Gl as follows :

X(v) = X(v) if v ∈ U l

= ivl if v = vl
iv

}
(4)

In the definition of X we include the graph Gl as a domain even if it is defined
only on the set of vertices. Here, we look message inMl as a message function on
Gl. For any well order < on U l we can correspond Ml with a message function
on U l where |U l| = l. Namely, X(u1) ‖ · · · ‖ X(ul) ∈ Ml where u1 < · · · < ul

and U l = {u1, · · · , ul}. Later we will see that each node of the DAG has the
underlying function f . The input for the invocation of f at any node is the sum
of previous output (outputs of neighborhood nodes) and the value of message-
initial value function X at that node.

PRF (Pseudo Random Function) Domain Extension Algorithm: Let
f :M→M be a function, (M, +, ·) be a field with |M| = N . Let S = 〈Gl〉l≥1 be
a PRF-preserving sequence of DAG. Given any X : U l →M we have message-
initial value function, X : V l →M. We define two functions, af , bf : V l →M
recursively as follows :

af (v) = X(v) +
∑

w∈N(v)

cl((w, v)) · bf (w) and bf (v) = f(af (v)), v ∈ V l.

(5)
The output of fS(X) is bf (vl

f ) where vl
f is the unique sink node. When v is a

source node, N(v) = ∅ and hence af (v) = X(v).
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Security Analysis: Two message-input functions on colored DAG, X1 : G1 →
M and X2 : G2 → M are said to be identical if G1

∼= G2 and X1(u) = X2(v)
where v is the image of u under a graph isomorphism. If not then we say that
they are non-identical. We identify all identical message-functions. Given v ∈ V
and a message-initial value function on G = (D, c) we define X [v] by the function
X restricted on Gv.

Let X1, · · · , Xk be k distinct functions, Xi : U li →M and let Xi be its cor-
responding message-initial value function. Let P := P(X) = {X : X = Xi[v], v ∈
V li} where X = (X1, · · · , Xk). We call this also prefix set for X. This is a gen-
eralized notion for prefixes of messages in CBC case (see Section 3). Here we
similarly have |P| ≤ Q, where Q is the total number of message blocks from M.
Now we make similar analysis like CBC.

We fix any X. Given any f , define the intermediate induced output function
(or simply induced output function) opf : P1(X) →M as opf (p) = bf(v) where
p = Xi[v] and bf is given as in Equation 5 while we compute fS(X) using the
colored graph Gli . Any function from P1(X) to M is called as output function.
Let p = Xi[v] ∈ P, define last(p) = Xi(v) and chop(p) = {Xi[u] : u ∈ N(v)}. It
is an empty set for source node v. Let Xi[u] = q ∈ chop(p), then we denote the
edge (u, v) by eq,p. Given op, define a corresponding input function ip : P →M
as

ip(p) = last(p) +
∑

q∈chop(p)

cli(eq,p) · op(q).

Now we state a analogous statement of Lemma 6 and Corollary 1

Lemma 7. Let op be an induced output function such that |ip(P1)| = q where ip
is the corresponding input function and ip(P1) is the range of it. Then for any
y = (y1, · · · , yk) ∈ Gk there are exactly NN−q many f such that op = opf and
fS [k](x) = y.

Corollary 2. If op is an induced output function such that corresponding input
function ip is injective then there are NN−|P1| many f ’s such that opf = op and
there are NN−|P1|−k many f ’s such that opf = op and f+[k](x) = y.

Now we give a lower bound of the number of output functions such that corre-
sponding input function is injective. For each p1 �= p2 ∈ P, let Cp1,p2 be the set
of all output functions such that the induced input function has same value on
p1 and p2. Let C be the set of all output functions such that the induced input
function is not injective. Thus, C =

⋃
p1 �=p2∈P

Cp1,p2 . Let Xi1 [v1] = p1 �= p2 =
Xi2 [v2], chop(p1) = {qi = Xi1 [ui] : 1 ≤ i ≤ l} and chop(p2) = {q′i = Xi2 [wi] :
1 ≤ i ≤ l′}. Now we have three possible cases as given below :

Case-1: chop(p1) = chop(p2) = {q1, · · · , ql} and c1(eqi,p1) = c2(eqi,p2), ∀ i
where ci is the color function corresponding to pi. Then the underlying
graphs for p1 and p2 are identical. Since p1 �= p2, X(v1) �= X(v2) and hence
Cp1,p2 = ∅.
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Case-2: Let chop(p1) = chop(p2) = Q but there exists q ∈ Q such that
c1(eq,p1) �= c2(eqi,p2). Then ip(p1) = ip(p2) implies Xi1(v1)+

∑
q∈chop(p1) eq,p·

op(q) = Xi2(v2) +
∑

q∈chop(p2) eq,p · op(q). Hence,
∑

q∈Q aq · op(q) = a for
some constants aq and a where all aq’s are not zero (since color functions
are different on Q). Thus, |Cp1,p2 | = N |P1|−1.
Case-3: Let chop(p1) �= chop(p2). In this case ip(p1) = ip(p2) implies∑

q∈Q aq · op(q) = a where Q is not empty and all aq’s are not zero. Thus,
|Cp1,p2 | = N |P1|−1.

So we obtain that |Cp1,p2 | ≤ N |P1|−1 and hence |¬C| ≥ N |P1|(1− |P|(|P|−1)
2N ). By

Corollary 1

|E| ≥ |¬C| ×NN−|P1|−k ≥ NN−k(1− |P|(|P| − 1)
2N

),

where E = {f ∈ Func(G, G) ; fS [k](X) = y}. Thus,

Pr[uS [k](X) = y] ≥ (1 − ε)
Nk

,

where ε = Q(Q−1)
2N and u is a uniform random function. By Theorem 1 we have

the following main Theorem of this section.

Theorem 4. For any X = (X1, · · · , Xk) and y = (y1, · · · , yk) ∈ Gk where
Xi’s are distinct message function, we have Pr[uS [k](X) = y] ≥ (1−ε)

Nk , where
ε = Q(Q−1)

2N and Q is the total number of message blocks in queries. We also
have, dstat(uS [k]X, U [k]X) ≤ mk(mk−1)

2N and hence duS ,U (k) ≤ mk(mk−1)
2N where

U is the uniform random function from the set of all message functions to M.

Remark 1. The same security analysis can be made for the PRF based on a
uniform random injective function like CBC case. We leave the details to the
reader as it is very much similar to the CBC case.

Remark 2. Let M = {0, 1}n := GF(2n). To define a pseudo random function on
{0, 1}∗ one can pad 10i (for minimum i ≥ 0) so that the length is the multiple of
n and then can apply the PRF algorithm as above. So for any distinct messages,
the padded messages are also distinct and hence it would be a pseudo random
function on the input set {0, 1}∗. There is another way to pad it. We pad 10i to a
message X if it is not a multiple of n, otherwise we would not pad anything (this
is the case for OMAC,TMAC, XCBC etc.). In this case we have two sequences of
colored graph Gl

1 and Gl
2 (for all messages with size multiple of n and all messages

with size not multiple of n respectively). Here, we require the combined sequence
〈Gl

1, G
l
2〉l≥1 is PRF-preserving (thus, even if after padding the messages are equal

the corresponding message functions are not identical). The similar analysis also
can be made in this scenario.

Remark 3. In Appendix B we show that XCBC, TMAC, OMAC, PMAC are de-
fined based on a PRF-preserving sequence of DAG. Thus, the pseudo-randomness
of these functions are immediate from ourmain theorem.
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5 A Simple Proof for On-line Cipher Hash-CBC [2]

In this section we define what is meant by on-line cipher and what is the ideal
candidate for that. Then we give a simpler security proof of Hash-CBC [2] and
note that in the original proof there is a flaw which could not not be easily taken
care unless we make further assumptions.

An online cipher, Hash-CBC construction is given by Bellare et. al. [2]. In
Crypto 2001 [2], the notion of On-Line cipher has been introduced and a secure
Hash-CBC construction has been proposed. First we define what is meant by
On-Line cipher and the definition of Hash-CBC construction.

1. Let G be a group and G[1,m] = ∪1≤i≤nGi and |G| = N . A function f :
G[1,m] → G[1,m] is called a length preserving injective function if f restricted
to Gi is an injective map from Gi to Gi.

2. Let f be a length-preserving injective function and M = M1 ‖ · · · ‖ Mm,
then we write f(M) = (f (1)(M), · · · , f (m)(M)), where f (i)(M) ∈ G. f is said
to be on-line if there exists a function X : G[1,m] → G such that for every
M = M [1] ‖ · · · ‖ M [m], f (i)(M) = X(M [1] ‖ · · · ‖ M [i]). It says that first i
blocks of cipher only depends on the first i blocks of message. Note that for
each i ≥ 1, and (M [1] ‖ · · · ‖ M [i− 1]) ∈ Gi−1, X(M [1] ‖ · · · ‖M [i− 1] ‖ x)
is an injective function from G to G as a function of x since f is length-
preserving injective function. We also say that X is an on-line function.

3. XU is said to be uniform random on-line function if X is chosen uniformly
from the set of all on-line functions from G[1,m] to G.

Hash-CBC

Let H be a random function from G to G which satisfies the following property.
Pr[H(x1)−H(x2) = y] ≤ ε for all x1 �= x2 ∈ G and y ∈ G. We say this random
function by ε-almost universal random function. Thus for any (xi, yi), 1 ≤ i ≤ k,
with distinct xi’s we have,

Pr[H(xi) + yi = H(xi) + yj for some i �= j] ≤ k(k − 1)ε
2

. (6)

Given an ε-almost universal random function and a uniform random injective
function v on G we define a random on-line function F , known as HCBC (or
Hash-CBC), as follows: X(M [1] · · ·M [j]) = C[j], where C[i] = v(H(C[i−1])+
M [i]), 1 ≤ i ≤ j and C[0] = 0.

Note that X is a random on-line function. Let x1, · · · , xk ∈ G[1,m] and P be
the set of all non-empty prefixes of these messages. Let yp ∈ G, where yp’s are
distinct and not equal to 0 and |P| = q. Now we want to compute Pr[X(p) =
yp, ∀p ∈ P] where the probability is based on uniform random injective function
v and ε-almost universal random function H . Let D be the event that for all p,
(H(ychop(p)) + last(p))’s are distinct where yλ := 0 and λ is the empty string.
Since yp’s are distinct and not equal to 0, Pr[D] ≥ 1− q(q−1)ε

2 . Condition on D
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all inputs of v are distinct. Thus, Pr[X(p) = yp, ∀p ∈ P | D] = 1
N(N−1)···(N−q+1)

and hence Pr[X(p) = yp, ∀p ∈ P] ≥ (1− q(q−1)ε
2 )

N(N−1)···(N−q+1) (by Equation 6) ≥ (1 −
q(q−1)ε

2 ) × Pr[XU (p) = yp, ∀p ∈ P] since Pr[XU (p) = yp, ∀p ∈ P] ≤ 1/N(N −
1) · · · (N − q + 1). Given any query functions, let XU [q] and X [q] denote the
joint distribution of XU and X on P respectively. Let T = {(yp)p∈P : ychop(p) �=
0 ∀p, and yp

′s are distinct } It is easy to check that Pr[XU /∈ T ] ≤ q(q−1)
2N . Now

by Lemma 3 we obtain the following main Theorem of this section.

Theorem 5. For any query function, the statistical distance dstat(XU [q], X [q]) ≤
q(q − 1)ε + q(q−1)

N and hence AdvXU ,X(q) ≤ q(q − 1)ε + q(q−1)
N .

Remark 4. In Appendix C, we note that in the original proof of the security of
Hash-CBC has flaws. Thus a correction is must for this construction. Here we
provide not only a correct proof but a simple proof for security.

Remark 5. In [2], authors also consider chosen-cipher text security for a vari-
ant of the above construction. In this scenario, there are two different types of
queries. Let P denotes the set of all prefixes of the queries of on-line function X
and P∗ denotes the set of all prefixes of queries of corresponding inverse on-line
function Y (say). Now one can similarly prove that

Pr[X(p) = yp, ∀p ∈ P and Y (p) = wp∀p ∈ P∗]

≤ (1− ε)× Pr[XU (p) = yp, ∀p ∈ P and Y U (p) = wp∀p ∈ P∗],

where XU and Y U denote the uniform random on-line function and it’s corre-
sponding inverse function respectively. So we have same security analysis. We
leave reader to verify all the details of the chosen cipher text security.

6 Conclusion and Future Work

In this paper we make a unifying approach to prove the indistinguishability of
many existing constructions. This paper attempts to clean up several results
regarding indistinguishability so that the researchers can feel and understand
the subject in a better and simpler way. As a concluding remark we would like
to say that one can view the security analysis in the way we have observed in
this paper and can have better and simpler proof for it. Some cases people have
wrong proofs due to length and complicity of it. Thus, a more concrete as well
as simple proof is always welcome.

In future, this unifying idea may help us to make good constructions. It seems
that one may find constructions where the security bound is more than the
birth day attack bound. Till now, there is no known construction based on ideal
function (having output n-bit) which has security close to 2n. One may obtain
a better bound for CBC as we have used only those output functions which
induces an injective input functions. One can try to estimate the other output
functions also.
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Appendix A: Proofs of Lemmas in Section 2

Lemma 1. dstat(X, Y ) = Pr[X ∈ T0] − Pr[Y ∈ T0] = 1
2 ×

∑
a∈S

∣∣Pr[X =
a]− Pr[Y = a]

∣∣, where T0 = {a ∈ S : Pr[X = a] ≥ Pr[Y = a]}.

Proof. For T0 as given in the Lemma 1, it is easy to see that∑
a∈S

∣∣Pr[X = a]− Pr[Y = a]
∣∣ = 2×

(
Pr[X ∈ T0]− Pr[Y ∈ T0]

)
.

For any T ⊂ S, 2× (Pr[X ∈ T ]− Pr[Y ∈ T ])

=
∑

a∈T

(
Pr[X = a]− Pr[Y = a]

)
−
∑

a/∈T

(
Pr[X = a]− Pr[Y = a]

)
≤
∑

a∈S |Pr[X = a]− Pr[Y = a]|.
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Lemma 2. Let X and Y be two random variable taking values on S and ε > 0.
If Pr[X = a] ≥ (1− ε)× Pr[Y = a], ∀a ∈ S or Pr[X = a] ≤ (1 + ε)× Pr[Y = a],
∀a ∈ S then dstat(X, Y ) ≤ ε.

Proof. For any subset T ⊂ S, Pr[X ∈ T ] ≥ (1 − ε) × Pr[Y ∈ T ] since Pr[X =
a] ≥ (1 − ε)× Pr[Y = a] ∀ a. So, Pr[Y ∈ T ]− Pr[X ∈ T ] ≤ ε× Pr[Y ∈ T ] ≤ ε.
Thus, dstat(X, Y ) ≤ ε. Similarly one can prove for the other case.

Lemma 3. Let X and Y be two random variables taking values on S. Let for
a subset T ⊂ S, Pr[X = a] ≥ (1 − ε1)× Pr[Y = a], ∀a ∈ T and Pr[Y /∈ T ] ≤ ε2
then dstat(X, Y ) ≤ 2ε1 + 2ε2.

Proof. For any subset T1 ⊂ T , Pr[Y ∈ T1]−Pr[X ∈ T1] ≤ ε1×Pr[Y ∈ T1] ≤ ε1.
From the given relation we also note that Pr[X ∈ T ] ≥ (1 − ε1) × Pr[Y ∈ T ].
Thus, Pr[X /∈ T ] ≤ ε1+ε2−ε1ε2. Thus, dstat(X, Y ) ≤ ε1+Pr[X ∈ ¬ T ]+Pr[Y ∈
¬ T ] ≤ 2(ε1 + ε2).

Lemma 4. For any A, dA(X, Y ) ≤ dstat(X, Y ). Conversely, there exists an
algorithm A0 (may not be efficient) such that dA0(X, Y ) = dstat(X, Y ).

Proof. Output of A is completely determined by a pair (r, z), where r is the
random string chosen from R and z is the input. Let Sr0 = {a ∈ S : A(r0, a) =
1}. Thus, dA(X, Y )

=
∣∣Pr[A(r, X) = 1]− Pr[A(r, Y ) = 1]

∣∣
=
∣∣∑

r0∈R Pr[r = r0]
(
Pr[A(r0, X) = 1 | r = r0]− Pr[A(r0, Y ) = 1 | r = r0]

)∣∣
=
∣∣∑

r0∈R Pr[r = r0]
(
Pr[A(r0, X) = 1]− Pr[A(r0, Y ) = 1]

)∣∣
=
∣∣∑

r0∈R Pr[r = r0]
(
Pr[X ∈ Sr0 ]− Pr[Y ∈ Sr0 ]

)∣∣ ≤ dstat(X, Y ).

The equality holds if Sr0 = T0 as in Lemma 1. Thus, on input z, A0 computes
the probability Pr[X = z], Pr[Y = z] and outputs 1 if Pr[X = z] ≥ Pr[Y = z],
otherwise 0. Hence dA0(X, Y ) = dstat(X, Y ).

Theorem 1. If Pr[f [k](a) = y] ≥ (1 − ε) × Pr[g[k](a) = y] for each a ∈ H [k]
and y ∈ Gk, then for any k-query function x = (x1, · · · , xk), dstat(f [k]x, g[k]x)
≤ ε and hence df,g(k) ≤ ε.

Proof. Pr[f [k]x1,··· ,xk
= (y1, · · · , yk)]

= Pr[f [k](a1, · · · , ak) = (y1, · · · , yk)] ((a1, · · · , ak) is uniquely determined
by (y1, · · · , yk))

≥ (1− ε)× Pr[g[k](a1, · · · , ak) = (y1, · · · , yk)]

= (1−ε)×Pr[g[k]x1,··· ,xk
= (y1, · · · , yk)], ∀ (y1, · · · , yk) ∈ Gk. The Theorem

follows from Lemma 2.
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Appendix B: Some Known PRFs for Variable Length
Input

There are three popularly known constructions which deals with variable size
input and uses CBC mode. These are XCBC [5], TMAC [9], OMAC [7] and
PMAC [6]. Let K1 and K2 be two secret constants from {0, 1}n. Given M =
M1 ‖ · · ·Ml−1 ‖ Ml with |M1| = · · · = |Ml−1| = n, |Ml| = n1, 1 ≤ n1 ≤ n and a
random function f on {0, 1}n, define f∗ as follows :

f∗(M) = f+
l (M1 ‖ · · · ‖Ml−1 ‖ (Ml ⊕K1)) if n1 = n

= f+
l (M1 ‖ · · · ‖Ml−1 ‖ (Ml10i ⊕K2)) if n1 < n, i = n− n1 − 1

}
(7)

XCBC, TMAC and OMAC are defined on the basis of choices of K1 and
K2.

– If K1 and K2 are chosen independently from f then it is known as XCBC.
– If K2 = c ·K1 and K1 is chosen independently from f then it is known as

TMAC where c ∈ {0, 1}n is some fixed known constant not equal to 1 and
0, and · is a field multiplication on {0, 1}n = GF(2n).

– If K1 = c · L and K2 = c2 · L where L = f(0) then it is known as OMAC.

Security of OMAC

Here we only consider security for OMAC. For the other constructions, one can
make a similar treatment as in CBC. For OMAC as in the previous Remark 2 we
have two sequences of colored DAGs Gl

1 and Gl
2. Each graph is a sequential graph

with one more edge at the end. More precisely, V l = {vs = 1, · · · , l = vf , viv}
and El = {(1, 2), · · · , (l − 1, l), (viv, l)}. The color function for Gl

1 is as follows
: cl((i, i + 1)) = 1 and cl((viv , l)) = c, where c �= 0, 1. Similarly, the color
function for Gl

2 is as follows : cl((i, i + 1)) = 1 and cl((viv , l)) = c2. We choose
ivl = 0 ∈ {0, 1}n. It is easy to check that each colored DAG is non-singular.
Any colored DAG can not be isomorphic to a colored subgraph as the sink
node has inward degree 2 where as the other nodes have inward degree 1. Thus,
the sequence is admissible. The pseudo randomness property follows from the
Theorem 4.

Security of PMAC

One can similarly observe that PMAC also belong to this class. The underlying
graph Dl = (V l, El), where V l = {viv, 1, · · · , l−1, vf} and El = {(viv, i), (i, vf),
1 ≤ i ≤ l − 1} ∪ {(viv, vf )}. There is two color functions depending on the
message size. When message size is multiple of n, c1(viv , i) = ci and c1(viv , vf ) =
0, otherwise it takes constant 1. The other color function is same except that
c2(viv , vf ) = a. Here, c and a are some constants not equal to 0 and 1, and
ivl = 0 ∈ {0, 1}n.
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Appendix C: A Flaw in the Original Proof [2]

In the original paper due to Bellare et. al. [2], the security proof has some flaw.
The Claim 6.5 of [2] says that if some bad event does not occur then the dis-
tribution of the view is identical for both classes of functions. More precisely,
X(p)’s and XU (p)’s are identically distributed condition on some bad event does
not occur (i.e., the inputs of uniform random injective function v are distinct).
In case of XU , all conditional random variables XU (p)’s are uniformly and iden-
tically distributed on the set T . But, conditional distribution of X(p)’s is not so
as the condition is itself involved with X(p) and an unknown distribution due
to H . For example, when p1 = x1 and p2 = x1 ‖ x2 then X(p1) = v(H(0)⊕ x1)
and X(p2) = v(H(X(p1)) ⊕ x2). The conditional event E (the complement of
bad event) is H(0) ⊕ x1 �= H(X(p1)) ⊕ x2 and v(H(0) ⊕ x1) �= 0. According to
their claim for any 0 �= y1 �= y2, p = Pr[v(H(0)⊕ x1) = y1, v(H(X(p1))⊕ x2) =
y2 | E] = 1

(N−1)(N−1) (note that y2 can be zero). Let a := x1⊕x2, C = H(0)⊕x1

and εy,z,c = Pr[H(y)⊕H(z) = c].
Now, p1 := Pr[v(H(0)⊕ x1) = y1 ∧ v(H(y1)⊕ x2) = y2 ∧ E]

=
∑

h1,h2 : h1⊕h2 �=a

Pr[v(h1 ⊕ x1) = y1, v(h2 ⊕ x2)

= y2, H(0) = h1, H(y1) = h2 =
ε0,y1,a

N(N − 1)

and p2 := Pr[E] = Pr[v(C) �= 0, H(v(C)⊕ x2) �= C]

=
∑

z,h : z �=0

Pr[v(h⊕ x1) = z, H(0) = h, H(z) �= h⊕ a]

=
1
N
×

∑
z : z �=0

Pr[H(0)⊕H(z) �= a].

Thus, p = ε0,y1,a

(N−1)× z �=0 ε0,z,a
�= 1

(N−1)(N−1) in general. This can occur if ε0,z,a =
ε0,y1,a for all z �= 0, but there is no such assumption for H in [2]. A similar flaw
can be observed in the Claim 8.6 of [2] where the chosen cipher text security is
considered.

Appendix D: Improved Security Bound of CBC [1]

In this section we will give a simple partial proof of improved security analysis
given by Bellare et. al. [1]. We will follow same notation as in Section 3. We say
an output function op is induced if there exists an u such that opu = op. We
define an event D∗[k] where the corresponding input function of induced output
function ip : P→ G satisfies the following property :

∀ p1 ∈ {x1, · · · , xk}, p2 ∈ P and p1 �= p2, ip(p1) �= ip(p2). (8)
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In [1] for k = 2, it has been proved that Pr[¬D∗[2]] ≤ (8m/N + 64m4/N2).
For k ≥ 2 it is easy to check that Pr[¬D∗[k]] ≤ k(k−1)/2×(8m/N +64m4/N2).
Here we will assume this result as we have not found any simple proof of this.
Secondly, one can translate this into a purely combinatorial problem which
was solved rigorously by Bellare et. al. (Lemma 2 of [1]). Now Pr[u+

x1,··· ,xk
=

(y1, · · · , yk) | D∗[k]] = 1/Nk. This is true that for any induced output function
op with above property there exists NN−q1 many u’s which induces op and there
are NN−q1−k many u’s which induces op and u+(xi) = yi ∀ i, where q1 denotes
the size of range of induced input function of op (see Corollary 1). Here, we do
not need that the corresponding input function is injective. We can still have a
similar statement like in Corollary 1 as the input function is taking completely
different values on {x1, · · · , xk} from the values on P1 (see Equation 8). Thus,
Pr[u+

x1,··· ,xk
= (y1, · · · , yk)] ≥

(
1− k(k−1)×(8m/N+64m4/N2)

2

)
× 1

Nk . Thus we have,

Theorem 6. Advu+
m,u(m)(k) ≤ k(k − 1)/2× (8m/N + 64m4/N2).
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Abstract. We investigate the impact of larger digit sets on the length
of Double-Base Number system (DBNS) expansions. We present a new
representation system called extended DBNS whose expansions can be
extremely sparse. When compared with double-base chains, the average
length of extended DBNS expansions of integers of size in the range 200–
500 bits is approximately reduced by 20% using one precomputed point,
30% using two, and 38% using four. We also discuss a new approach
to approximate an integer n by d2a3b where d belongs to a given digit
set. This method, which requires some precomputations as well, leads to
realistic DBNS implementations. Finally, a left-to-right scalar multipli-
cation relying on extended DBNS is given. On an elliptic curve where
operations are performed in Jacobian coordinates, improvements of up
to 13% overall can be expected with this approach when compared to
window NAF methods using the same number of precomputed points. In
this context, it is therefore the fastest method known to date to compute
a scalar multiplication on a generic elliptic curve.

Keywords: Double-base number system, Elliptic curve cryptography.

1 Introduction

Curve-based cryptography, especially elliptic curve cryptography, has attracted
more and more attention since its introduction about twenty years ago [1,2,3], as
reflected by the abundant literature on the subject [4,5,6,7]. In curve-based cryp-
tosystems, the core operation that needs to be optimized as much as possible is a
scalar multiplication. The standard method, based on ideas well known already
more than two thousand years ago, to efficiently compute such a multiplication
is the double-and-add method, whose complexity is linear in terms of the size
of the input. Several ideas have been introduced to improve this method; see [8]
for an overview. In the remainder, we will mainly focus on two approaches:

• Use a representation such that the expansion of the scalar multiple is sparse.
For instance, the non-adjacent form (NAF) [9] has a nonzero digit density of
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1/3 whereas the average density of a binary expansion is 1/2. This improve-
ment is mainly obtained by adding −1 to the set {0, 1} of possible coefficients
used in binary notation. Another example is the double-base number system
(DBNS) [10], in which an integer is represented as a sum of products of
powers of 2 and 3. Such expansions can be extremely sparse, cf. Section 2.

• Introduce precomputations to enlarge the set of possible coefficients in the
expansion and reduce its density. The k-ary and sliding window methods as
well as window NAF methods [11,12] fall under this category.

In the present work, we mix these two ideas. Namely, we investigate how
precomputations can be used with the DBNS and we evaluate their impact on
the overall complexity of a scalar multiplication.

Also, computing a sparse DBNS expansion can be very time-consuming al-
though it is often neglected when compared with other representations. We in-
troduce several improvements that considerably speed up the computation of a
DBNS expansion, cf. Section 4.

The plan of the paper is as follows. In Section 2, we recall the definition and
basic properties of the DBNS. In Section 3, we describe how precomputations
can be efficiently used with the DBNS. Section 4 is devoted to implementation
aspects and explains how to quickly compute DBNS expansions. In Section 5, we
present a series of tests and comparisons with existing methods before concluding
in Section 6.

2 Overview of the DBNS

In the Double-Base Number System, first considered by Dimitrov et al. in a
cryptographic context in [13], any positive integer n is represented as

n =
�∑

i=1

di2ai3bi , with di ∈ {−1, 1}. (1)

This representation is obviously not unique and is in fact highly redundant.
Given an integer n, it is straightforward to find a DBNS expansion using a
greedy-type approach. Indeed, starting with t = n, the main task at each step is
to find the {2, 3}-integer z that is the closest to t (i.e. the integer z of the form
2a3b such that |t− z| is minimal) and then set t = t − z. This is repeated until
t becomes 0. See Example 2 for an illustration.

Remark 1. Finding the best {2, 3}-approximation of an integer t in the most
efficient way is an interesting problem on its own. One option is to scan all the
points with integer coordinates near the line y = −x log3 2+ log3 t and keep only
the best approximation. A much more sophisticated method involves continued
fractions and Ostrowski’s number system, cf. [14]. It is to be noted that these
methods are quite time-consuming. See Section 4 for a more efficient approach.
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Example 2. Take the integern = 841232.We have the sequence of approximations

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 2232 − 2.

As a consequence, 841232 = 2738 + 2136 − 2232 + 21.

It has been shown that every positive integer n can be represented as the sum
of at most O

(
log n

log log n

)
signed {2, 3}-integers. For instance, see [13] for a proof.

Note that the greedy approach above-mentioned is suitable to find such short
expansions.

This initial class of DBNS is therefore very sparse. When one endomorphism is
virtually free, like for instance triplings on supersingular curves defined over F3,
the DBNS can be used to efficiently compute [n]P with max ai doublings, a very
low number of additions, and the necessary number of triplings [15]. Note that
this idea has recently been extended to Koblitz curves [16]. Nevertheless, it is not
really suitable to compute scalar multiplications in general. For generic curves
where both doublings and triplings are expensive, it is essential to minimize the
number of applications of these two endomorphisms. Now, one needs at least
max ai doublings and max bi triplings to compute [n]P using (1). However, given
the DBNS expansion of n returned by the greedy approach, it seems to be highly
non-trivial, if not impossible, to attain these two lower bounds simultaneously.

So, for generic curves the DBNS needs to be adapted to compete with other
methods. The concept of double-base chain, introduced in [17], is a special type
of DBNS. The idea is still to represent n as in (1) but with the extra require-
ments a1 � a2 � · · · � a� and b1 � b2 � · · · � b�. These properties allow to
compute [n]P from right-to-left very easily. It is also possible to use a Horner-like
scheme that operates from left-to-right. These two methods are illustrated after
Example 3.

Note that, it is easy to accommodate these requirements by restraining the
search of the best exponents (aj+1, bj+1) to the interval [0, aj]× [0, bj].

Example 3. A double-base chain of n can be derived from the following sequence
of equalities:

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 33 + 7,

7 = 32 − 2,

2 = 31 − 1.

As a consequence, 841232 = 2738 + 2136 − 33 − 32 + 31 − 1.

In that particular case, the length of this double-base chain is strictly bigger
than the one of the DBNS expansion in Example 2. This is true in general as
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well and the difference can be quite large. It is not known whether the bound
O
(

log n
log log n

)
on the number of terms is still valid for double-base chains.

However, computing [841232]P is now a trivial task. From right-to-left, we
need two variables. The first one, T being initialized with P and the other one,
S set to point at infinity. The successive values of T are then P , [3]P , [32]P ,
[33]P , [2136]P , and [2738]P , and at each step T is added to S. Doing that, we
obtain [n]P with 7 doublings, 8 triplings, and 5 additions. To proceed from
left-to-right, we notice that the expansion that we found can be rewritten as

841232 = 3
(
3
(
3
(
2133(2632 + 1)− 1

)
− 1

)
+ 1

)
− 1,

which implies that

[841232]P = [3]
(
[3]
(
[3]
(
[2133]([2632]P + P )− P

)
− P

)
+ P

)
− P.

Again, 7 doublings, 8 triplings, and 5 additions are necessary to obtain [n]P .
More generally, one needs exactly a1 doublings and b1 triplings to compute

[n]P using double-base chains. The value of these two parameters can be opti-
mized depending on the size of n and the respective complexities of a doubling
and a tripling (see Figure 2).

To further reduce the complexity of a scalar multiplication, one option is
to reduce the number of additions, that is to minimize the density of DBNS
expansions. A standard approach to achieve this goal is to enlarge the set of
possible coefficients, which ultimately means using precomputations.

3 Precomputations for DBNS Scalar Multiplication

We suggest to use precomputations in two ways. The first idea, which applies
only to double-base chains, can be viewed as a two-dimensional window method.

3.1 Window Method

Given integers w1 and w2, we represent n as in (1) but with coefficients di in
the set {±1,±21,±22, . . . ,±2w1,±31,±32, . . . ,±3w2}. This is an indirect way
to relax the conditions a1 � a2 � · · · � a� and b1 � b2 � · · · � b� in order
to find better approximations and hopefully sparser expansions. This method,
called (w1, w2)-double-base chain, lies somewhere between normal DBNS and
double-base chain methods.

Example 4. The DBNS expansion of 841232 = 2738 +2136− 2232 +21, can be
rewritten as 841232 = 2738 + 2136− 2× 2132 + 21, which is a (1, 0)-window-base
chain. The exponent a3 that was bigger than a2 in Example 2 has been replaced
by a2 and the coefficient d3 has been multiplied by 2 accordingly. As a result, we
now have two decreasing sequences of exponents and the expansion is only four
terms long.

It remains to see how to compute [841232]P from this expansion. The right-to-
left scalar multiplication does not provide any improvement, but this is not the
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case for the left-to-right approach. Writing 841232 = 2
(
32
(
34(2632 +1)−2

)
+1

)
,

we see that

[841232]P = [2]
(
[32]

(
[34]([2632]P + P )− [2]P

)
+ P

)
.

If [2]P is stored along the computation of [2632]P then 7 doublings, 8 triplings
and only 3 additions are necessary to obtain [841232]P .

It is straightforward to design an algorithm to produce (w1, w2)-double-base
chains. We present a more general version in the following, cf. Algorithm 1. See
Remark 6 (v) for specific improvements to (w1, w2)-double-base chains.

Also a left-to-right scalar multiplication algorithm can easily be derived from
this method, cf. Algorithm 2.

The second idea to obtain sparser DBNS expansions is to generalize the win-
dow method such that any set of coefficients is allowed.

3.2 Extended DBNS

In a (w1, w2)-double-base chain expansion, the coefficients are signed powers of
2 or 3. Considering other sets S of coefficients, for instance odd integers coprime
with 3, should further reduce the average length of DBNS expansions. We call
this approach extended DBNS and denote it by S-DBNS.

Example 5. We have 841232 = 2738 + 5× 2532 − 24. The exponents form two
decreasing sequences, but the expansion has only three terms. Assuming that [5]P
is precomputed, it is possible to obtain [841232]P as

[24]
(
[2132]([2236]P + [5]P )− P

)
with 7 doublings, 8 triplings, and only 2 additions

This strategy applies to any kind of DBNS expansion. In the following, we present
a greedy-type algorithm to compute extended double-base chains.

Algorithm 1. Extended double-base chain greedy algorithm

Input: A positive integer n, a parameter a0 such that a0 � �log2 n�, and
a set S containing 1.

Output: Three sequences (di, ai, bi)1�i�� such that n = �
i=1 di2

ai3bi

with |di| ∈ S , a1 � a2 � · · · � a�, and b1 � b2 � · · · � b�.

1. b0 ← �(log2 n − a0) log2 3� [See Remark 6 (ii)]

2. i ← 1 and t ← n

3. s ← 1 [to keep track of the sign]

4. while t > 0 do

5. find the best approximation z = di2
ai3bi of t

with di ∈ S , 0 � ai � ai−1, and 0 � bi � bi−1

6. di ← s × di

7. if t < z then s ← −s
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8. t ← |t − z|
9. i ← i + 1

10. return (di, ai, bi)

Remarks 6

(i) Algorithm 1 processes the bits of n from left-to-right. It terminates since the
successive values of t form a strictly decreasing sequence.

(ii) The parameters a0 and b0 are respectively the biggest powers of 2 and 3
allowed in the expansion. Their values have a great influence on the density
of the expansion, cf. Section 5 for details.

(iii) To compute normal DBNS sequences instead of double-base chains, replace
the two conditions 0 � ai � ai−1, 0 � bi � bi−1 in Step 5 by 0 � ai � a0

and 0 � bi � b0.
(iv) In the following, we explain how to find the best approximation di2ai3bi

of t in a very efficient way. In addition, the proposed method has a time-
complexity that is mainly independent of the size of S and not directly
proportional to it as with a näıve search. See Section 4 for details.

(v) To obtain (w1, w2)-double-base chains, simply ensure that S contains only
powers 2 and 3. However, there is a more efficient way. First, introduce
two extra variables amax and bmax, initially set to a0 and b0 respectively.
Then in Step 5, search for the best approximation z of t of the form 2ai3bi

with (ai, bi) ∈ [0, amax +w1]× [0, bmax +w2] \ [amax +1, amax +w1]× [bmax +
1, bmax+w2]. In other words, we allow one exponent to be slightly bigger than
its current maximal bound, but the (exceptional) situation where ai > amax

and bi > bmax simultaneously is forbidden. Otherwise, we should be obliged
to include in S products of powers of 2 and 3 and increase dramatically the
number of precomputations. Once the best approximation has been found, if
ai is bigger than amax, then ai is changed to amax while di is set to 2ai−amax .
If bi is bigger than bmax, then bi is changed to bmax while di is set to 3bi−bmax .
Finally, do amax ← min(ai, amax) and bmax ← min(bi, bmax) and the rest of
the Algorithm remains unchanged.

(vi) In the remainder, we discuss some results obtained with Algorithm 1 using
different sets of coefficients. More precisely, each set Sm that we consider
contains the first m + 1 elements of {1, 5, 7, 11, 13, 17, 19, 23, 25}.

We now give an algorithm to compute a scalar multiplication from the expansion
returned by Algorithm 1.

Algorithm 2. Extended double-base chain scalar multiplication

Input: A point P on an elliptic curve E, a positive integer n represented
by (di, ai, bi)1�i�� as returned by Algorithm 1, and the points [k]P for
each k ∈ S .

Output: The point [n]P on E.
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1. T ← OE [OE is the point at infinity on E]

2. set a�+1 ← 0 and b�+1 ← 0

3. for i = 1 to 	 do

4. T ← T ⊕ [di]P

5. T ← [2ai−ai+13bi−bi+1 ]T

6. return T

Example 7. For n = 841232, the sequence returned by Algorithm 2 with a0 = 8,
b0 = 8, and S = {1, 5} is (1, 7, 8), (5, 5, 2), (−1, 4, 0). In the next Table, we show
the intermediate values taken by T in Algorithm 2 when applied to the above-
mentioned sequence. The computation is the same as in Example 5.

i di ai − ai+1 bi − bi+1 T

1 1 2 6 [2236]P
2 5 1 2 [2132]([2236]P + [5]P )
3 −1 4 0 [24]

(
[2132]([2236]P + [5]P )− P

)
Remark 8. The length of the chain returned by Algorithm 1 greatly determines
the performance of Algorithm 2. However, no precise bound is known so far,
even in the case of simple double-base chains. So, at this stage our knowledge
is only empirical, cf. Figure 2. More work is therefore necessary to establish the
complexity of Algorithm 2.

4 Implementation Aspects

This part describes how to efficiently compute the best approximation of any
integer n in terms of d12a13b1 for some d1 ∈ S, a1 � a0, and b1 � b0. The
method works on the binary representation of n denoted by (n)2. It operates on
the most significant bits of n and uses the fact that a multiplication by 2 is a
simple shift.

To make things clear, let us explain the algorithm when S = {1}. First, take
a suitable bound B and form a two-dimensional array of size (B + 1) × 2. For
each b ∈ [0, B], the corresponding row vector contains [(3b)2, b]. Then sort this
array with respect to the first component using lexicographic order denoted by
� and store the result.

To compute an approximation of n in terms of 2a13b1 with a1 � a0 and
b1 � b0, find the two vectors v1 and v2 such that v1[1] � (n)2 � v2[1]. This can
be done with a binary search in O(log B) operations.

The next step is to find the first vector v′1 that smaller than v1 in the sorted
array and that is suitable for the approximation. More precisely, we require that:
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• the difference δ1 between the binary length of n and the length of v′1[1]
satisfies 0 � δ1 � a0,

• the corresponding power of 3, i.e. v′1[2], is less than b0.

This operation is repeated to find the first vector v′2 that is greater than v2 and
fulfills the same conditions as above. The last step is to decide which approxi-
mation, 2δ13v′

1[2] or 2δ23v′
2[2], is closer to n.

In case |S| > 1, the only difference is that the array is of size
(
|S|(B +1)

)
×3.

Each row vector is of the form [(d3b)2, b, d] for d ∈ S and b ∈ [0, B]. Again the
array is sorted with respect to the first component using lexicographic order.
Note that multiplying the size of the table by |S| has only a negligible impact
on the time complexity of the binary search. See [18, Appendix A] for a concrete
example and some improvements to this approach.

This approximation method ultimately relies on the facts that lexicographic
and natural orders are the same for binary sequences of the same length and
also that it is easy to adjust the length of a sequence by multiplying it by some
power of 2. The efficiency comes from the sorting operation (done once at the
beginning) that allows to retrieve which precomputed binary expansions are close
to n, by looking only at the most significant bits.

For environments with constrained memory, it may be difficult or even impos-
sible to store the full table. In this case, we suggest to precompute only the first
byte or the first two bytes of the binary expansions of d3b together with their bi-
nary length. This information is sufficient to find two approximations A1, A2 in
the table such that A1 � n � A2, since the algorithm operates only on the most
significant bits. However, this technique is more time-consuming since it is neces-
sary to actually compute at least one approximation and sometimes more, if the
first bits are not enough to decide which approximation is the closest to n.

In Table 1, we give the precise amount of memory (in bytes) that is required
to store the vectors used for the approximation for different values of B. Three
situations are investigated, i.e. when the first byte, the first two bytes, and the
full binary expansions d3b, for d ∈ S and b � B are precomputed and stored.
See [19] for a PARI/GP implementation of Algorithm 1 using the techniques
described in this section.

5 Tests and Results

In this section, we present some tests to help evaluating the relevance of extended
double-base chains for scalar multiplications on generic elliptic curves defined over
Fp, for p of size between 200 and 500 bits. Comparisons with the best systems
known so far, including �-NAFw and normal double-base chains are given.

In the following, we assume that we have three basic operations on a curve E
to perform scalar multiplications, namely addition/subtraction, doubling, and tri-
pling. In turn, each one of these elliptic curve operations can be seen as a sequence
of inversions I, multiplications M, and squarings S in the underlying field Fp.

There exist different systems of coordinates with different complexities. For
many platforms, projective-like coordinates are quite efficient since they do not
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Table 1. Precomputations size (in bytes) for various bounds B and sets S

Bound B 25 50 75 100 125 150 175 200

S = {1}
First byte 33 65 96 127 158 190 221 251

First two bytes 54 111 167 223 279 336 392 446

Full expansion 85 293 626 1,084 1,663 2,367 3,195 4,108

S = {1, 5, 7}
First byte 111 214 317 420 523 627 730 829

First two bytes 178 356 534 712 890 1,069 1,247 1,418

Full expansion 286 939 1,962 3,357 5,122 7,261 9,769 12,527

S = {1, 5, 7, 11, 13}
First byte 185 357 529 701 873 1,045 1,216 1,381

First two bytes 300 597 894 1,191 1,488 1,785 2,081 2,366

Full expansion 491 1,589 3,305 5,642 8,598 12,173 16,364 20,972

S = {1, 5, 7, 11, 13, 17, 19, 23, 25}
First byte 334 643 952 1,262 1,571 1,881 2,190 2,487

First two bytes 545 1,079 1,613 2,148 2,682 3,217 3,751 4,264

Full expansion 906 2,909 6,026 10,255 15,596 22,056 29,630 37,947

require any field inversion for addition and doubling, cf. [20] for a comparison.
Thus, our tests will not involve any inversion. Also, to ease comparisons between
different scalar multiplication methods, we will make the standard assumption
that S is equivalent to 0.8M. Thus, the complexity of a scalar multiplication
will be expressed in terms of a number of field multiplications only and will be
denoted by NM.

Given any curve E/Fp in Weierstraß form, it is possible to directly obtain [3]P
more efficiently than computing a doubling followed by an addition. Until now,
all these direct formulas involved at least one inversion, cf. [21], but recently, an
inversion-free tripling formula has been devised for Jacobian projective coordi-
nates [17]. Our comparisons will be made using this system. In Jacobian coor-
dinates, a point represented by (X1 : Y1 : Z1) corresponds to the affine point
(X1/Z

2
1 , Y1/Z

3
1 ), if Z1 �= 0, and to the point at infinity OE otherwise. A doubling

can be done with 4M + 6S, a tripling with 10M + 6S and a mixed addition, i.e.
an addition between a point in Jacobian coordinates and an affine point, using
8M + 3S.

With these settings, we display in Figure 1, the number of multiplications
NM required to compute a scalar multiplication on a 200-bit curve with Al-
gorithm 2, for different choices of a0 and various DBNS methods. Namely, we
investigate double-base chains as in [17], window double-base chains with 2 and
8 precomputations, and extended double-base chains with S2 = {1, 5, 7} and
S8 = {1, 5, 7, 11, 13, 17, 19, 23, 25}, as explained in Section 3.2. Comparisons are
done on 1, 000 random 200-bit scalar multiples. Note that the costs of the pre-
computations are not included in the results.
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Figure 1 indicates that a0 = 120 is close to the optimal choice for every
method. This implies that the value of b0 should be set to 51. Similar computa-
tions have been done for sizes between 250 and 500. It appears that a simple and
good heuristic to minimize NM is to set a0 = �120×size/200� and b0 accordingly.
These values of a0 and b0 are used in the remainder for sizes in [200, 500].

In Figure 2, we display the average length of different extended DBNS ex-
pansions in function of the size of the scalar multiple n. Results show that the
length of a classic double-base chain is reduced by more than 25% with only 2
precomputations and by 43% with 8 precomputations.

In Table 2, we give the average expansion length �, as well as the maxi-
mal power a1 (resp. b1) of 2 (resp. 3) in the expansion for different methods
and different sizes. The symbol #P is equal to the number of precomputed
points for a given method and the set Sm contains the first m + 1 elements of
{1, 5, 7, 11, 13, 17, 19, 23, 25}. Again, 1, 000 random integers have been considered
in each case.

In Table 3, we give the corresponding complexities in terms of the number of
multiplications and the gain that we can expect with respect to a window NAF
method involving the same number of precomputations.

See [18] for a full version including a similar study for some special curves.

6 Conclusion

In this work, we have introduced a new family of DBNS, called extended DBNS,
where the coefficients in the expansion belong to a given digit set S. A scalar
multiplication algorithm relying on this representation and involving precompu-
tations was presented. Also, we have described a new method to quickly find the
best approximation of an integer by a number of the form d2a3b with d ∈ S.
This approach greatly improves the practicality of the DBNS. Extended DBNS
sequences give rise to the fastest scalar multiplications known to date for generic
elliptic curves. In particular, given a fixed number of precomputations, the ex-
tended DBNS is more efficient than any corresponding window NAF method.
Gains are especially important for a small number of precomputations, typically
up to three points. Improvements larger than 10% over already extremely opti-
mized methods can be expected. Also, this system is more flexible, since it can
be used with any given set of coefficients, unlike window NAF methods.

Further research will include an extension of these ideas to Koblitz curves, for
which DBNS-based scalar multiplication techniques without precomputations
exist already, see [16,22,23]. This will most likely lead to appreciable performance
improvements.
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Appendix: Graphs and Tables
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Table 2. Parameters for various scalar multiplication methods on generic curves

Size 200 bits 300 bits 400 bits 500 bits
#P � a1 b1 � a1 b1 � a1 b1 � a1 b1

2NAF2 0 66.7 200 0 100 300 0 133.3 400 0 166.7 500 0
Binary/ternary 0 46.1 90.7 68.1 69.2 136.4 102.2 91.9 182.6 136.3 114.4 228.0 170.7
DB-chain 0 45.6 118.7 50.4 68.2 178.7 75.5 91.3 239.0 100.6 113.7 298.6 126.2
3NAF2 1 50 200 0 75 300 0 100 400 0 125 500 0
(1, 0)-DB-chain 1 46.8 118.9 50.2 70.5 179.1 75.1 94.5 239.3 100.3 117.7 298.8 125.9
(0, 1)-DB-chain 1 42.9 118.7 50.4 63.8 178.7 75.5 85.4 239.0 100.6 106.4 298.6 126.2
S1-DB chain 1 36.8 118.1 49.9 55.0 178.0 75.0 72.9 238.2 100.1 91.0 297.8 125.7
2NAF3 2 50.4 0 126 75.6 0 189 100.8 0 252 126 0 315
(1, 1)-DB-chain 2 39.4 118.9 50.2 58.5 179.1 75.1 77.9 239.3 100.3 96.6 298.8 125.9
S2-DB chain 2 32.9 117.8 49.8 49.2 177.8 74.9 65.3 238 100.0 81.5 297.7 125.6
4NAF2 3 40 200 0 60 300 0 80 400 0 100 500 0
S3-DB chain 3 30.7 117.5 49.7 45.7 177.5 74.8 60.6 237.8 99.8 75.6 297.3 125.4
(2, 2)-DB-chain 4 36.8 119.2 49.8 54.7 179.3 74.8 72.6 239.4 100.1 90.5 299.0 125.7
S4-DB chain 4 28.9 117.3 49.6 43.2 177.3 74.7 57.6 237.6 99.8 71.5 297.1 125.4
(3, 3)-DB-chain 6 35.3 119.3 49.5 52.2 179.4 74.6 69.2 239.5 99.6 86.1 299.2 125.2
S6-DB chain 6 27.3 117.4 49.4 40.6 177.3 74.5 54.0 237.6 99.6 67.1 297 125.3
3NAF3 8 36 0 126 54 0 189 72 0 252 90 0 315
(4, 4)-DB-chain 8 34.2 119.3 49.3 50.5 179.5 74.2 67.0 239.6 99.3 83.5 299.3 125
S8-DB chain 8 25.9 117.2 49.3 38.5 177.1 74.4 51.2 237.4 99.5 63.6 296.9 125.2

Table 3. Complexity of various extended DBNS methods for generic curves and gain
with respect to window NAF methods having the same number of precomputations

Size 200 bits 300 bits 400 bits 500 bits
#P NM Gain NM Gain NM Gain NM Gain

2NAF2 0 2442.9 — 3669.6 — 4896.3 — 6122.9 —
Binary/ternary 0 2275.0 6.87% 3422.4 6.74% 4569.0 6.68% 5712.5 6.70%
DB-chain 0 2253.8 7.74% 3388.5 7.66% 4531.8 7.44% 5666.5 7.45%
3NAF2 1 2269.6 — 3409.6 — 4549.6 — 5689.6 —
(1, 0)-DB-chain 1 2265.8 0.17% 3410.3 −1.98% 4562.3 −1.72% 5707.4 −1.69%
(0, 1)-D B-chain 1 2226.5 1.90% 3343.2 1.95% 4471.0 1.73% 5590.4 1.74%
S1-DB chain 1 2150.4 5.25% 3238.1 5.03% 4326.3 4.91% 5418.1 4.77%
2NAF3 2 2384.8 — 3579.3 — 4773.8 — 5968.2 —
(1, 1)-DB-chain 2 2188.6 8.23% 3285.5 8.21% 4390.0 8.04% 5487.7 8.05%
S2-DB chain 2 2106.5 11.67% 3174.1 11.32% 4243.6 11.11% 5314.8 10.95%
4NAF2 3 2165.6 — 3253.6 — 4341.6 — 5429.6 —
S3- DB chain 3 2078.1 4.04% 3132.8 3.71% 4189.8 3.50% 5248.5 3.34%
(2, 2)-DB-chain 4 2158.2 — 3242.6 — 4333.1 — 5421.6 —
S4-DB chain 4 2056.7 — 3105.0 — 4156.1 — 5204.0 —
(3, 3)-DB-chain 6 2139.4 — 3215.0 — 4291.7 — 5371.9 —
S6-DB chain 6 2036.3 — 3074.3 — 4115.4 — 5155.1 —
3NAF3 8 2236.2 — 3355.8 — 4475.4 — 5595.0 —
(4, 4)-DB-chain 8 2125.4 4.95% 3192.2 4.88% 4264.1 4.72% 5340.5 4.55%
S8-DB chain 8 2019.3 9.70% 3049.8 9.12% 4084.3 8.74% 5116.8 8.55%
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Abstract. The Merkle signature scheme (MSS) is an interesting alter-
native for well established signature schemes such as RSA, DSA, and
ECDSA. The security of MSS only relies on the existence of cryptograph-
ically secure hash functions. MSS has a good chance of being quantum
computer resistant. In this paper, we propose CMSS, a variant of MSS,
with reduced private key size, key pair generation time, and signature
generation time. We demonstrate that CMSS is competitive in practice
by presenting a highly efficient implementation within the Java Cryp-
tographic Service Provider FlexiProvider. We present extensive exper-
imental results and show that our implementation can for example be
used to sign messages in Microsoft Outlook.
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1 Introduction

Digital signatures have become a key technology for making the Internet and
other IT infrastructures secure. Digital signatures provide authenticity, integrity,
and support for non-repudiation of data. Digital signatures are widely used in
identification and authentication protocols, for example for software downloads.
Therefore, secure digital signature algorithms are crucial for maintaining IT
security.

Commonly used digital signature schemes are RSA [RSA78], DSA [Elg85],
and ECDSA [JM99]. The security of those schemes relies on the difficulty of
factoring large composite integers and computing discrete logarithms. However,
it is unclear whether those computational problems remain intractable in the
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future. For example, Peter Shor [Sho94] proved that quantum computers can
factor integers and can calculate discrete logarithms in the relevant groups in
polynomial time. Also, in the past thirty years there has been significant progress
in solving the integer factorization and discrete logarithm problem using classi-
cal computers (Lenstra and Verheul). It is therefore necessary to come up with
new signature schemes which do not rely on the difficulty of factoring and com-
puting discrete logarithms and which are even secure against quantum computer
attacks. Such signature schemes are called post-quantum signature schemes.

A very interesting post-quantum signature candidate is the Merkle signature
scheme (MSS) [Mer89]. Its security is based on the existence of cryptographic
hash functions. In contrast to other popular signature schemes, MSS can only
verify a bounded number of signatures using one public key. Also, MSS has
efficiency problems (key pair generation, large secret keys and signatures) and
was not used much in practice.

Our contribution. In this paper, we present CMSS, a variant of MSS, with re-
duced private key size, key pair generation time, and signature generation time.
We show that CMSS is competitive in practice by presenting a highly efficient
CMSS Java implementation in the Java Cryptographic Service Provider Flexi-
Provider [Flexi]. This implementation permits easy integration into applications
that use the Java Cryptography Architecture [JCA02]. We present experiments
that show: As long as no more that 240 documents are signed, the CMSS key pair
generation time is reasonable, and signature generation and verification times in
CMSS are competitive or even superior compared to RSA and ECDSA. We also
show that the CMSS implementation can be used to sign messages in Microsoft
Outlook using our FlexiS/MIME plug-in [FOP03]. The paper specifies CMSS keys
using Abstract Syntax Notation One (ASN.1) [Int02] which guarantees interop-
erability and permits efficient generation of X.509 certificates and PKCS#12
personal information exchange files. CMSS is based on the Thesis of Coronado
[Cor05b] and incorporates the improvements of MSS from [Szy04, DSS05].

Related Work. Szydlo presents a method for the construction of authentica-
tion paths requiring logarithmic space and time in [Szy04]. Dods, Smart and
Stam give the first complete treatment of practical implementations of hash
based digital signature schemes in [DSS05]. In [NSW05], Naor et. al. propose a
C implementation of MSS and give timings for up to 220 signatures. A prelim-
inary version of CMSS including security proofs appeared in the PhD thesis of
Coronado [Cor05b] and in [Cor05a].

Organization. The rest of this paper is organized as follows: In Section 2,
we describe the Winternitz one-time signature scheme and the Merkle signa-
ture scheme. In Section 3, we describe CMSS. Section 4 describes details of the
CMSS implementation in the FlexiProvider and the ASN.1 specification of the
keys. Section 5 presents experimental data including a comparison with standard
signature schemes. Section 6 describes the integration of the CMSS implemen-
tation into Microsoft Outlook. Section 7 states our conclusions.
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2 Preliminaries

Before we describe CMSS in Section 3, we first describe the Winterzitz one-time
signature scheme used in CMSS and the Merkle signature scheme (MSS) which
CMSS is based on.

2.1 The Winternitz One-Time Signature Scheme

In this section, we describe the Winternitz one-time signature scheme (OTSS)
that was first mentioned in [Mer89] and explicitly described in [DSS05]. It is
a generalization of the Merkle OTSS [Mer89], which in turn is based on the
Lamport-Diffie OTSS [DH76]. The security of the Winternitz OTSS is based on
the existence of a cryptographic hash function H : {0, 1}∗ → {0, 1}s [MOV96]. It
uses a block size parameter w that denotes the number of bits that are processed
simultaneously. Algorithms 1, 2, and 3 describe the Winternitz OTSS key pair
generation, signature generation, and signature verification, respectively.

Algorithm 1. Winternitz OTSS Key Pair Generation
System Parameters: hash function H : {0, 1}∗ → {0, 1}s, parameters w ∈ N and

t = �s/w� + �(�log2�s/w�� + 1 + w)/w�
Output: signature key X, verification key Y
1: choose x1, . . . , xt ∈R {0, 1}s uniformly at random.
2: set X = (x1, . . . , xt).
3: compute yi = H2w−1(xi) for i = 1, . . . , t.
4: compute Y = H(y1|| . . . ||yt), where || denotes concatenation.
5: return (X, Y ).

Algorithm 2. Winternitz OTSS Signature Generation
System Parameters: hash function H : {0, 1}∗ → {0, 1}s, parameters w ∈ N

and t = �s/w�+ �(�log2�s/w��+ 1 + w)/w�
Input: document d, signature key X
Output: one-time signature σ of d
1: compute the s bit hash value H(d) of document d.
2: split the binary representation of H(d) into �s/w� blocks b1, . . . , b�s/w� of

length w, padding H(d) with zeros from the left if required.
3: treat bi as the integer encoded by the respective block and compute the

checksum

C =
�s/w�∑
i=1

2w − bi.

4: split the binary representation of C into �(�log2�s/w��+ 1 + w)/w� blocks
b�s/w�+1, . . . , bt of length w, padding C with zeros from the left if required.

5: treat bi as the integer encoded by the respective block and compute σi =
Hbi(xi), i = 1, . . . , t, where H0(x) := x.

6: return σ = (σ1, . . . , σt).
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Algorithm 3. Winternitz OTSS Signature Verification
System Parameters: hash function H : {0, 1}∗ → {0, 1}s, parameters w ∈ N

and t = �s/w�+ �(�log2�s/w��+ 1 + w)/w�
Input: document d, signature σ = (σ1, . . . , σt), verification key Y
Output: TRUE if the signature is valid, FALSE otherwise
1: compute b1, . . . , bt as in Algorithm 2.
2: compute φi = H2w−1−bi(σi) for i = 1, . . . , t.
3: compute Φ = H(φ1|| . . . ||φt).
4: if Φ = Y then return TRUE else return FALSE

The parameter w makes the Winternitz OTSS very flexible. It allows a trade-
off between the size of a signature and the signature and key pair generation
times. If w is increased, more bits of H(d) are processed simultaneously and the
signature size decreases. But more hash function evaluations are required during
key and signature generation. Decreasing w has the opposite effect. In [DSS05],
the authors show that using w = 2 requires the least number of hash function
evaluations per bit.

Example 1. Let w = 2 and H(d) = 110001110. Hence s = 9 and t = 8. Therefore
we have (b1, . . . , b5) = (01, 10, 00, 11, 10), C = 12 and (b6, b7, b8) = (00, 11, 00).
The signature of d is σ =

(
H(x1), H2(x2), x3, H

3(x4), H2(x5), x6, H
3(x7), x8

)
.

2.2 The Merkle Signature Scheme

The basic Merkle signature scheme (MSS) [Mer89] works as follows. Let H :
{0, 1}∗ → {0, 1}s be a cryptographic hash function and assume that a one-time
signature scheme (OTSS) is given. Let h ∈ N and suppose that 2h signatures are
to be generated that are verifiable with one MSS public key.

MSS Key Pair Generation. At first, generate 2h OTSS key pairs (Xi, Yi),
i = 1, . . . , 2h. The Xi are the signature keys. The Yi are the verification keys.
The MSS private key is the sequence of OTSS signature keys. To determine the
MSS public key, construct a binary authentication tree as follows. Consider each
verification key Yi as a bit string. The leafs of the authentication tree are the
hash values H(Yi) of the verification keys. Each inner node (including the root)
of the tree is the hash value of the concatenation of its two children. The MSS
public key is the root of the authentication tree.

MSS Signature Generation. The OTSS key pairs are used sequentially. We
explain the calculation of the MSS signature of some document d using the ith
key pair (Xi, Yi). That signature consists of the index i, the ith verification key
Yi, the OTSS signature σ computed with the ith signature key Xi, and the
authentication path A for the verification key Yi. The authentication path A is
a sequence of nodes (ah, . . . , a1) in the authentication tree of length h that is
constructed as follows. The first node in that sequence is the leaf different from
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the ith leaf that has the same parent as the ith leaf. Also, if a node N in the
sequence is not the last node, then its successor is the node different from N with
the same parent as N . Figure 1 shows an example of an authentication path for
h = 2. Here, the authentication path for Y2 is the sequence A2 = (a2, a1).

Fig. 1. Merkle’s Tree Authentication

MSS Signature Verification. To verify a MSS signature (i, Y, σ, A), the ver-
ifier first verifies the one-time signature σ with the verification key Y . If this
verification fails, the verifier rejects the MSS signature as invalid. Otherwise, the
verifier checks the validity of the verification key Y by using the authentication
path A. For this purpose, the verifier constructs a sequence of nodes of the tree
of length h+1. The first node in the sequence is the ith leaf of the authentication
tree. It is computed as the hash H(Y ) of the verification key Y . For each node
N in the sequence which is not the last node, its successor is the parent P of N
in the authentication tree. The verifier can calculate P since the authentication
path A included in the signature contains the second child of P . The verifier
accepts the signature, if the last node in the sequence is the MSS public key.

3 CMSS

In this section, we describe CMSS. It is an improvement of the Merkle signature
scheme (MSS) [Mer89]. A preliminary version of CMSS including security proofs
appeared in the PhD thesis of Coronado [Cor05b] and in [Cor05a].

For any h ∈ N, MSS signs N = 2h documents using N key pairs of a one-time
signature scheme. Unfortunately, for N > 225, MSS becomes impractical because
the private keys are very large and key pair generation takes very long.

CMSS can sign N = 22h documents for any h ∈ N. For this purpose, two MSS
authentication trees, a main tree and a subtree, each with 2h leafs, are used. The
public CMSS key is the root of the main tree. Data is signed using MSS with the
subtree. But the root of the subtree is not the public key. That root is authenti-
cated by an MSS signature that uses the main tree. After the first 2h signatures
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have been generated, a new subtree is constructed and used to generate the next
2h signatures. In order to make the private key smaller, the OTSS signature keys
are generated using a pseudo random number generator (PRNG) [MOV96]. Only
the seed for the PRNG is stored in the CMSS private key.

CMSS key pair generation is much faster than that of MSS, since key gen-
eration is dynamic. At any given time, only two trees, each with only 2h leafs,
have to be constructed. CMSS can efficiently be used to sign up to N = 240

documents. Also, CMSS private keys are much smaller than MSS private keys,
since only a seed for the PRNG is stored in the CMSS private key, in contrast
to a sequence of N OTSS signature keys in the case of MSS. So, CMSS can be
used in any practical application. CMSS is illustrated in Figure 2 for h = 2.

Fig. 2. CMSS with h = 2

In the following, CMSS is described in detail. First, we describe CMSS key
pair generation. Then, we explain the CMSS signature generation process. In
contrast to other signature schemes, the CMSS private key is updated after
every signature generation. This is necessary in order to keep the private key
small and to make CMSS forward secure [Cor05a]. Such signature schemes are
called key-evolving signature schemes and were first defined in [BM99].

CMSS Key Pair Generation. Algorithm 6 describes CMSS key pair gen-
eration. The algorithm uses two subroutines described in Algorithms 4 and 5.
CMSS uses the Winternitz OTSS described in Section 2.1. For the OTSS key pair
generation, we use a pseudo random number generator (PRNG) f : {0, 1}s →
{0, 1}s× {0, 1}s [MOV96]. In our experiments, we use a PRNG based on SHA1
which is part of the SUN JCE provider [JCA02]. The modified Winternitz OTSS
key pair generation process is described in Algorithm 4.
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Algorithm 4. Winternitz OTSS key pair generation using a PRNG

System Parameters: PRNG f : {0, 1}s → {0, 1}s × {0, 1}s, hash function
H : {0, 1}∗ → {0, 1}s, parameters w ∈ N and t = �s/w� + �(�log2�s/w�� +
1 + w)/w�

Input: a seed seedin ∈R {0, 1}s chosen uniformly at random
Output: a Winternitz OTSS key pair (X, Y ) and a seed seedout ∈ {0, 1}s

1: compute (seedout, s0) = f(seedin)
2: for i = 1, . . . , t do
3: compute (si, xi) = f(si−1)
4: set X = (x1, . . . , xt)
5: compute the verification key Y as in steps 3 and 4 of Algorithm 1
6: return (X, Y ) and seedout

Algorithm 5 is used to construct a binary authentication tree and its first au-
thentication path. This is done leaf-by-leaf, using a stack for storing intermediate
results. Algorithm 5 carries out the computation for one leaf. It is assumed that
in addition to the node value, the height of a node is stored. The algorithm is
inspired by [Mer89] and [Szy04].

Algorithm 5. Partial construction of an authentication tree
System Parameters: hash function H : {0, 1}∗ → {0, 1}s

Input: a leaf value H(Y ), algorithm stack stack, sequence of nodes A
Output: updated stack stack and updated sequence A
1: set in = H(Y )
2: while in has same height as top node from stack do
3: if in has greater height than last node in A or A is empty then
4: append in to A

5: pop top node top from stack
6: compute in = H(top||in)
7: push in onto stack
8: return stack, A

CMSS key pair generation is carried out in two parts. First, the first subtree and
its first authentication path are generated using Algorithms 4 and 5. Then, the
main tree and its first authentication path are computed. The CMSS public key
is the root of the main tree. The CMSS private key consists of two indices i and j,
three seeds for the PRNG, three authentication paths (of which one is constructed
during signature generation), the root of the current subtree and three algorithm
stacks for subroutines. The details are described in Algorithm 6.

CMSS Signature Generation. CMSS signature generation is carried out in
four parts. First, the MSS signature of document d is computed using the subtree.
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Algorithm 6. CMSS key pair generation
System Parameters: hash function H : {0, 1}∗ → {0, 1}s, PRNG f : {0, 1}s →

{0, 1}s × {0, 1}s, Winternitz parameter w
Input: parameter h ∈ N, two seeds seedmain and seedsub chosen uniformly at random

in {0, 1}s

Output: a CMSS key pair (priv,R)
1: set N = 2h and seed0 = seedsub

2: initialize empty stack stacksub and empty sequence of nodes A1

3: for i = 1, . . . , N do
4: compute ((Xi, Yi), seedi) ← Algorithm 4(seedi−1)
5: compute (stacksub, A1) ← Algorithm 5(H(Yi), stacksub, A1)

6: let R1 be the single node in stacksub; R1 is the root of the first subtree
7: set seednext = seedN and seed0 = seedmain

8: initialize empty stack stackmain and empty sequence of nodes B1

9: for j = 1, . . . , N do
10: compute ((Xj , Yj), seedj) ← Algorithm 4(seedj−1)
11: compute (stackmain, B1) ← Algorithm 5(H(Yj), stackmain, B1)

12: let R be the single node in stackmain; R is the root of the main tree
13: initialize empty stacks stackmain, stacksub, and stacknext and empty sequence of

nodes C1

14: set priv = (1, 1, seed{main,sub,next}, A1, B1, C1, R1, stack{main,sub,next})
15: return (priv, R)

Then, the MSS signature of the root of the subtree is computed using the main
tree. Then, the next subtree is partially constructed. Finally, the CMSS private
key is updated.

The CMSS signature generation algorithm uses an algorithm of Szydlo for the
efficient computation of authentication paths. We do not explain this algorithm
here but we refer to [Szy04] for details. We call the algorithm Szydlo.auth.
Input to Szydlo.auth are the authentication path of the current leaf, the seed
for the current tree and an algorithm stack. Output are the next authentication
path and the updated stack. Szydlo.auth needs to compute leaf values of leafs
with higher index than the current leaf. For this purpose, Algorithm 7 is used.
The details of CMSS signature generation are described in Algorithm 8.

Algorithm 7. leafcalc
System Parameters: hash function H : {0, 1}∗ → {0, 1}s, PRNG f : {0, 1}s →

{0, 1}s × {0, 1}s

Input: current leaf index i, current seed seed, leaf index j > i
Output: leaf value H(Yj) of jth leaf
1: set seed0 = seed
2: for k = 1, . . . , j − i do compute (seedk, s0) = f(seedk−1)
3: compute ((Xj , Yj), seedout) ← Algorithm 4(seedj−i)
4: return H(Yj)
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Algorithm 8. CMSS signature generation
System Parameters: hash function H : {0, 1}∗ → {0, 1}s

Input: document d, CMSS private key priv = (i, j, seedmain, seedsub, seednext,
Ai, Bj , C1, Rj , stackmain, stacksub, stacknext)

Output: signature sig of d, updated private key priv, or STOP if no more signatures
can be generated

1: if j = 2h + 1 then STOP

2: obtain an OTSS key pair: ((Xi, Yi), seedsub) ← Algorithm 4(seedsub)
3: compute the one-time signature of d: σi ← Algorithm 2(d, Xi)
4: obtain second OTSS key pair: ((Xj , Yj), seedtemp) ← Algorithm 4(seedmain)
5: compute the one-time signature of Rj : τj ← Algorithm 2(Rj , Xj)
6: set sig = (i, j, σi, τj , Ai, Bj)

7: compute the next authentication path for the subtree:
(Ai+1, stacksub) ← Szydlo.auth(Ai, seedsub, stacksub)
and replace Ai in priv by Ai+1

8: partially construct the next subtree:
((Xi, Yi), seednext) ← Algorithm 4(seednext)
(stacknext, C1) ← Algorithm 5(H(Yi), stacknext, C1)

9: if i < 2h then set i = i + 1
10: else
11: let Rj+1 be the single node in stacknext; Rj+1 is the root of the (j+1)th subtree.
12: compute the next authentication path for the main tree:

(Bj+1, stackmain) ← Szydlo.auth(Bj , seedmain, stackmain)
and replace Bj in priv by Bj+1

13: replace Rj in priv by Rj+1, seedmain by seedtemp, and Ai by C1

14: set i = 1 and j = j + 1

15: return the CMSS signature sig of d and the updated private key priv

CMSS Signature Verification. CMSS signature verification proceeds in two
steps. First, the two authentication paths are validated, then the validity of the
two one-time signatures is verified. The details are described in Algorithm 9.

Algorithm 9. CMSS signature verification
System Parameters: hash function H : {0, 1}∗ → {0, 1}s

Input: document d, CMSS signature sig = (i, j, σi, τj , Ai, Bj), CMSS public key R
Output: TRUE if the signature is valid, FALSE otherwise.
1: repeat steps 1 to 3 of Algorithm 3 with input d and σi to obtain an alleged verifi-

cation key Φi

2: using Φi and Ai, compute the root Rj of the current subtree as in the case of MSS
signature verification (see Section 2.2).

3: repeat steps 1 to 3 of Algorithm 3 with input Rj and τj to obtain an alleged
verification key Ψj

4: using Ψj and Bj , compute the root Q of the main tree as in the case of MSS.
5: if Q is not equal to the CMSS public key R then return FALSE

6: verify the one-time signature σi of d using Algorithm 3 and verification key Φi

7: verify the one-time signature τj of Rj using Algorithm 3 and verification key Ψj

8: if both verifications succeed return TRUE else return FALSE
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4 Specification and Implementation

This section describes parameter choices and details of our CMSS implementa-
tion. CMSS is implemented as part of the Java Cryptographic Service Provider
(CSP) FlexiProvider [Flexi]. It is therefore possible to integrate the implementa-
tion into any application that uses the Java Cryptographic Architecture [JCA02]
and Java Cryptography Extension [JCE02]. Our CMSS implementation is avail-
able at [Flexi] as open source software.

Scheme Parameters. The hash function H used in the OTSS and the authen-
tication trees can be chosen among SHA1, SHA256, SHA384, and SHA512. The
Winternitz parameter w can be chosen among 1, 2, 3, and 4. As PRNG f , we use
a PRNG based on SHA1 which is part of the SUN JCE provider [JCA02]. For
each choice, there exists a distinct object identifier (OID) that can be found in
Appendix B.

As described earlier, CMSS makes use of the Winternitz OTSS. However,
it is possible to replace the Winternitz OTSS by any other one-time signature
scheme. If unlike in the case of Winternitz OTSS the verification keys can not be
computed from the signature keys, they have to be part of the CMSS signature.
Also, the PRNG based on SHA1 can be replaced by any other PRNG.

Key Generation. The CMSS private and public keys are stored using Abstract
Syntax Notation One (ASN.1) [Int02]. ASN.1 ensures interoperability between
different applications and also allows efficient generation of X.509 certificates
and PKCS#12 personal information exchange files. The ASN.1 encoding of the
keys can be found in Appendix A. In addition to what was described in Section
3, both the CMSS public and private key contain the OID of the algorithm they
can be used with.

Signature Generation and Verification. For the computation of authenti-
cation paths, we use the preprint version of the algorithm Szydlo.auth which
is more efficient than the conference version. See [Szy04] for details.

Each time a new CMSS signature is computed, the signature of the root of
the current subtree is recomputed. This reduces the size of the CMSS private
key. The time required to recompute this MSS signature is tolerable.

5 Experimental Results

This section compares the CMSS implementation with RSA, DSA, and ECDSA.
We compare the times required for key pair generation, signature generation,
and signature verification as well as the sizes of the private key, public key, and
signatures. For RSA, DSA, and ECDSA, the implementations provided by the
Java CSP FlexiProvider are used, which is available at [Flexi] as open source
software.
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The results are summarized in Table 1. In case of CMSS, the first column
denotes the logarithm to the base 2 of the number of possible signatures N . For
RSA, DSA, and ECDSA, the column mod denotes the size of the modulus. The
size of the keys is the size of their DER encoded ASN.1 structure.

The experiments were made using a computer equipped with a Pentium M
1.73GHz CPU, 1GB of RAM and running Microsoft Windows XP.

Table 1. Timings for CMSS, RSA, DSA, and ECDSA

log N spublic key sprivate key ssignature tkeygen tsign tverify

CMSS with SHA1, w = 1
20 46 bytes 1900 bytes 7168 bytes 2.9 s 10.2 ms 1.2 ms
30 46 bytes 2788 bytes 7368 bytes 1.5 min 13.6 ms 1.2 ms
40 46 bytes 3668 bytes 7568 bytes 48.8 min 17.5 ms 1.2 ms

CMSS with SHA1, w = 2
20 46 bytes 1900 bytes 3808 bytes 2.6 s 9.2 ms 1.3 ms
30 46 bytes 2788 bytes 4008 bytes 1.4 min 12.4 ms 1.4 ms
40 46 bytes 3668 bytes 4208 bytes 43.8 min 14.9 ms 1.3 ms

CMSS with SHA1, w = 3
20 46 bytes 1900 bytes 2688 bytes 3.1 s 9.7 ms 1.5 ms
30 46 bytes 2788 bytes 2888 bytes 1.5 min 13.2 ms 1.5 ms
40 46 bytes 3668 bytes 3088 bytes 47.8 min 16.9 ms 1.6 ms

CMSS with SHA1, w = 4
20 46 bytes 1900 bytes 2128 bytes 4.1 s 12.5 ms 2.0 ms
30 46 bytes 2788 bytes 2328 bytes 2.0 min 17.0 ms 2.0 ms
40 46 bytes 3668 bytes 2528 bytes 62.3 min 21.7 ms 2.0 ms

mod spublic key sprivate key ssignature tkeygen tsign tverify

RSA with SHA1
1024 162 bytes 634 bytes 128 bytes 0.4 s 13.8 ms 0.8 ms
2048 294 bytes 1216 bytes 256 bytes 3.4 s 96.8 ms 3.0 ms

DSA with SHA1
1024 440 bytes 332 bytes 46 bytes 18.2 s 8.2 ms 16.2 ms

ECDSA with SHA1
192 246 bytes 231 bytes 55 bytes 5.1 ms 5.1 ms 12.9 ms
256 311 bytes 287 bytes 71 bytes 9.6 ms 9.8 ms 24.3 ms
384 441 bytes 402 bytes 102 bytes 27.3 ms 27.3 ms 66.9 ms

The table shows that the CMSS implementation offers competitive signing and
verifying times compared to RSA, DSA, and ECDSA. The table also shows that
a CMSS public key is significantly smaller than a RSA or a DSA public key.

In the case of N = 240, key pair generation takes quite long. However, this
does not affect the usability of the implementation, since key pair generation
has to be performed only once. Also, the size of the signature and the private
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key is larger compared to RSA and DSA. While this might lead to concerns
regarding memory constrained devices, those sizes are still reasonable in an end-
user scenario.

To summarize, CMSS offers a very good trade-off concerning signature gen-
eration and verification times compared to RSA and DSA while preserving a
reasonable signature and private key size. Appendix C contains a table showing
timings for CMSS with SHA256.

6 Signing Messages in Microsoft Outlook with CMSS

Section 5 showed that the space and time requirements of our CMSS implemen-
tation are sufficiently small for practical usage. Also, the number of signatures
that can be generated is large enough for practical purposes.

The implementation can be easily integrated in applications that use the JCA.
An example for such an application is the FlexiS/MIMEOutlook plug-in [FOP03],
which enables users to sign and encrypt emails using any Java Cryptographic
Service Provider in a fast and easy way. The plugin is available at [FOP03] as
a free download and is compatible with Microsoft Outlook 98, 2000, 2002, XP
and 2003.

In addition to the basic functions like key pair generation, signature genera-
tion and verification, the plug-in also supports the generation of self-signed X.509
certificates and PKCS#10 conform certification requests for a certification au-
thority. Furthermore, it is possible to import and export X.509 certificates and
PKCS#12 personal information exchange files.

Using the FlexiS/MIMEOutlook plug-in in conjunction with the FlexiProvider
implementation, we are able to sign emails with CMSS. Furthermore, CMSS can
be easily integrated into existing public-key infrastructures.

7 Conclusion

In this paper, we present CMSS, an improved Merkle signature scheme with
significantly reduced private key size, key pair generation, and signature gener-
ation times. We describe an efficient CMSS FlexiProvider implementation. The
implementation provides competitive or even superior timings compared to the
commonly used signature schemes RSA, DSA, and ECDSA. This demonstrates
that it is already possible today to use quantum computer resistant signature
schemes without any loss of efficiency concerning signature generation and ver-
ification times and with reasonable signature and key lengths. Using CMSS, it
is possible to sign up to 240 messages, while preserving moderate key pair gen-
eration times. Because CMSS is implemented as part of a Java Cryptographic
Service Provider, it can be used with any application that uses the JCA, e.g. the
FlexiS/MIME plug-in, which can be used to sign emails with Microsoft Outlook.
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A ASN.1 Encoding

This section describes the specification of the CMSS public and private keys
using Abstract Syntax Notation number One (ASN.1) [Int02].

CMSSPublicKey ::= SEQUENCE {
algorithm OBJECT IDENTIFIER
height INTEGER
root OCTET STRING

}

CMSSPrivateKey ::= SEQUENCE {
algorithm OBJECT IDENTIFIER
counterSub INTEGER
counterMain INTEGER
seedMain OCTET STRING
seedSub OCTET STRING
seedNext OCTET STRING
authMain AuthPath
authSub AuthPath
authNext AuthPath
stackMain Stack
stackSub Stack
stackNext Stack

}

AuthPath ::= SEQUENCE OF OCTET STRING
Stack ::= SEQUENCE OF OCTET STRING

B Object Identifiers

This section lists the object identifiers (OIDs) assigned to our CMSS implemen-
tation. The main OID for CMSS as well as the OID for the CMSSKeyFactory
is

1.3.6.1.4.1.8301.3.1.3.2

The OIDs for CMSS are summarized in the following table, where the column
“Hash function” denotes the hash function used in the OTSS and the authenti-
cation trees, and the column “w” denotes the Winternitz parameter w.
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Table 2. OIDs assigned to CMSS

Hash function w Object Identifier (OID)

SHA1 1 1.3.6.1.4.1.8301.3.1.3.2.1

SHA1 2 1.3.6.1.4.1.8301.3.1.3.2.2

SHA1 3 1.3.6.1.4.1.8301.3.1.3.2.3

SHA1 4 1.3.6.1.4.1.8301.3.1.3.2.4

SHA256 1 1.3.6.1.4.1.8301.3.1.3.2.5

SHA256 2 1.3.6.1.4.1.8301.3.1.3.2.6

SHA256 3 1.3.6.1.4.1.8301.3.1.3.2.7

SHA256 4 1.3.6.1.4.1.8301.3.1.3.2.8

SHA384 1 1.3.6.1.4.1.8301.3.1.3.2.9

SHA384 2 1.3.6.1.4.1.8301.3.1.3.2.10

SHA384 3 1.3.6.1.4.1.8301.3.1.3.2.11

SHA384 4 1.3.6.1.4.1.8301.3.1.3.2.12

SHA512 1 1.3.6.1.4.1.8301.3.1.3.2.13

SHA512 2 1.3.6.1.4.1.8301.3.1.3.2.14

SHA512 3 1.3.6.1.4.1.8301.3.1.3.2.15

SHA512 4 1.3.6.1.4.1.8301.3.1.3.2.16

C CMSS Timings Using SHA256

Table 3. Timings for CMSS with SHA256

log N spublic key sprivate key ssignature tkeygen tsign tverify

CMSS with SHA256, w = 1
20 58 bytes 2884 bytes 17672 bytes 7.0 s 23.4 ms 2.9 ms
30 58 bytes 4244 bytes 17992 bytes 3.8 min 32.3 ms 3.3 ms
40 58 bytes 5604 bytes 18312 bytes 120.9 min 41.3 ms 3.3 ms

CMSS with SHA256, w = 2
20 58 bytes 2884 bytes 9160 bytes 6.3 s 19.6 ms 2.8 ms
30 58 bytes 4244 bytes 9480 bytes 3.2 min 27.3 ms 2.8 ms
40 58 bytes 5604 bytes 9800 bytes 101.3 min 34.9 ms 2.9 ms

CMSS with SHA256, w = 3
20 58 bytes 2884 bytes 6408 bytes 7.5 s 23.3 ms 3.7 ms
30 58 bytes 4244 bytes 6728 bytes 3.8 min 31.9 ms 3.7 ms
40 58 bytes 5604 bytes 7048 bytes 120.7 min 40.9 ms 3.7 ms

CMSS with SHA256, w = 4
20 58 bytes 2884 bytes 4936 bytes 10.2 s 31.6 ms 5.1 ms
30 58 bytes 4244 bytes 5256 bytes 5.2 min 43.4 ms 5.1 ms
40 58 bytes 5604 bytes 5576 bytes 165.5 min 55.8 ms 5.1 ms



Constant-Size ID-Based Linkable and

Revocable-iff-Linked Ring Signature

Man Ho Au1, Joseph K. Liu2, Willy Susilo1, and Tsz Hon Yuen3

1 Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong 2522, Australia

{mhaa456, wsusilo}@uow.edu.au
2 Department of Computer Science

University of Bristol
Bristol, BS8 1UB, UK
liu@cs.bris.ac.uk

3 Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
thyuen4@ie.cuhk.edu.hk

Abstract. In this paper, we propose a new notion called Revocable-iff-
Linked Ring Signature (R-iff-L Ring Signature). In R-iff-L ring signa-
tures, a signer can sign on behalf of the whole group, just like ordinary
ring signatures. However, if he signs twice or more, he can be linked
and his identity can be revoked by everyone. We formally define a new
security model for the new notion in identity-based (ID-based) setting
and propose a constant-size ID-based construction, that is, the size of
the signature is independent of the size of the group. In addition, we
enhance the security model of ID-based linkable ring signature scheme
and provide an implementation with constant size setting. Both schemes
are provably secure in our new model.

Keywords: Anonymity, Linkable, Revocable, Ring Signature.

1 Introduction

Group-oriented cryptography refers to cryptographic systems in which a group
of users are involved. In schemes where participation of one or a proper subset
of members is required to complete a process, anonymity refers to whether par-
ticipants are distinguishable from non-participants. According to [2], anonymity
for group-oriented cryptography can be divided into 7 different levels, namely,
Full Anonymity, Linkable Anonymity, Revocable-iff-Linked Anonymity, Revo-
cable Anonymity, Linkable and Revocable Anonymity, Revocable-iff-Linked and
Revocable Anonymity and No Anonymity. Examples of group-oriented crypto-
graphic schemes with different levels of anonymity are shown in the following
table while interested readers can refer to [2] for a more detailed discussion.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 364–378, 2006.
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Anonymity Level Examples Size Event-Oriented Ad-hoc

Full Ring Sign[18] O(n) N/A �
Anon Ident[11,16] O(1) N/A �

Linkable Linkable Ring[13] O(n) × �
Eo-Linkable Ring[24] O(n) � �

Revocable-iff-Linked
2-times E-Cash[6,1],TbL[25] O(1) × ×

this paper O(1) � �
k-times Compact E-Cash[7] O(1) × ×

k-TAA[20] O(k) � ×
dynamic k-TAA[17] O(k) � �

constant-size K-TAA[21] O(1) � ×
k-Times Group Signature [2] O(1) � ×

Full+OA Group Signatures O(1) × ×
Link+OA Fair E-Cash[8,22] O(1) × ×

Fig. 1. Examples of group-oriented cryptographic schemes with different levels of
anonymity

Ring Signature. Ring signature allows a user to sign on behalf of the whole
group, yet no one knows who the actual signer is. The idea was first proposed
in by Cramer et al [10] and the notion was formalized by Rivest et al [18].
Variants include threshold setting [26,12,15] and enhanced security [4,9] have
been proposed later.

Identity-based Cryptography. In 1984, Shamir [19] introduced the notion of
Identity-based (ID-based) cryptography to simplify certificate management. The
unique feature of ID-based cryptography is that a user’s public key can be any
arbitrary string. Since then, many other ID-based signature schemes have been
proposed.

In the case of ID-based ring signature, we have to take extra care for the design
of schemes. While some of the existing schemes provide anonymity uncondition-
ally, others are computational only. The Private Key Generator (PKG) itself may
have extra advantage in breaking the anonymity since it is in possession of all the
private keys. This problem does not sound serious in normal ID-based ring signa-
ture scheme because almost all existing schemes is unconditionally anonymous.
However, in the case of linkable ring signatures [13,24,14,23,3] where the verifier
is able to determine whether two signatures are signed by the same signer, it
is still an open problem to construct one with unconditional anonymity. Within
the constraint of computational anonymity, it is a great challenge of providing
privacy in an ID-based setting (to the PKG). We require special attention in the
design of the scheme.

Contribution. In this paper, we propose a new notion called Revocable-iff-
Linked Ring Signature which belongs to the Revocable-iff-Linked Anonymity
category. In addition, we have the following contributions:
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– We formally define a new security model for this notion, in an ID-based setting.
– We provide a constant size concrete implementation. When compared with

the scheme in [2], we do not require any setup or group manager. The forma-
tion is spontaneous and is suitable for ad-hoc environment, which is a nice
inherited property of ring signature.

– We propose a constant size ID-based ring signature scheme which is secure
in the enhanced security model.

Organization. The rest of the paper is organized as follow. The enhanced secu-
rity models of ID-based Linkable Ring Signature scheme and ID-based
Revocable-iff-Linked Ring Signature scheme are given in Section 3. Our con-
crete implementations are presented in Section 4. We conclude the paper in
Section 5.

2 Preliminaries

2.1 Notations

Let N be a product of two primes. N is a safe prime product if N = pq =
(2p′ + 1)(2q′ + 1) for some primes p, q, p′, q′ such that p′ and q′ are of the same
length. Denote by QR(N) the group of quadratic residues modulo a safe prime
product N .

Let ê be a bilinear map such that ê : G1 ×G2 → GT .

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and GT has unique binary representation.
– g0, h0 are generators of G1 and G2 respectively.
– ψ : G2 → G1 is a computable isomorphism from G2 to G1, with ψ(h0) = g0.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g0, h0) �= 1.

G1 and G2 can be same or different groups. We say that two groups (G1, G2)
are a bilinear group pair if the group action in G1, G2, the isomorphism ψ and
the bilinear mapping ê are all efficiently computable.

2.2 Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follows: On input a quadruple (g, ga, gb, gc) ∈
G4, output 1 if c = ab and 0 otherwise. We say that the (t, ε)-DDH assumption
holds in G if no t-time algorithm has advantage at least ε over random guessing
in solving the DDH problem in G.

Definition 2 (q-Strong Diffie-Hellman). The q-Strong Diffie-Hellman (q-
SDH) problem in (G1, G2) is defined as follow: On input a (q + 2)-tuple (g0, h0,

hx
0 , hx2

0 , · · · , hxq

0 ) ∈ G1 ×Gq+1
2 , output a pair (A, c) such that A(x+c) = g0 where

c ∈ Z∗
p. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no t-time

algorithm has advantage at least ε in solving the q-SDH problem in (G1, G2).

The q-SDH assumption is shown to be true in the generic group model [5].
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3 Security Model

3.1 Definition

The security definition of ID-Based Linkable Ring Signature and ID-Based
Revocable-iff-Linked Ring Signature are very similar. Therefore we describe the
security notions of them together, and their differences are specified at appro-
priate places.

An ID-Based Linkable (or Revocable-iff-Linked) Ring Signature scheme is a
tuple of probabilistic polynomial-time (PPT) algorithms below:

– Setup. On input an unary string 1λ where λ is a security parameter, the
algorithm outputs a master secret key s and a list of system parameters
param that includes λ and the descriptions of a user secret key space D, a
message space M as well as a signature space Ψ .

– Extract. On input a list param of system parameters, an identity IDi ∈
{0, 1}∗ for a user and the master secret key s, the algorithm outputs the
user’s secret key di ∈ D. When we say identity IDi corresponds to user
secret key di or vice versa, we mean the pair (IDi, di) is an input-output
pair of Extract with respect to param and s. Usually this algorithm is
executed by a trusted party called Private Key Generator (PKG).

– Sign. On input a list param of system parameters, a group size n of length
polynomial in λ, a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities, a
message m ∈ M, and a secret key {dj ∈ D|j ∈ [1, n]}, the algorithm outputs
an ID-based linkable (or revocable-iff-linked) ring signature σ ∈ Ψ .

– Verify. On input a list param of system parameters, a group size n of
length polynomial in λ, a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities,
a message m ∈ M, a signature σ ∈ Ψ , it outputs either valid or invalid.

– Link. On input two signatures σ1, σ2 ∈ Ψ , it outputs either link or unlink.
– Revoke. (For ID-based revocable-iff-linked ring signature only.) On input

two signatures σ1, σ2 ∈ Ψ such that link← Link(σ1, σ2), it outputs ID.

Correctness. An ID-Based Linkable Ring Signature scheme should satisfy:

– Verification Correctness – Signatures signed by honest signers are verified
to be invalid with negligible probability.

– Linking Correctness – If two signatures are linked, they must be generated
from the same secret key of the same signer.

For ID-Based Revocable-iff-Linked Ring Signature, the Revoking Correctness re-
quire that the output of Revoke of two linked signaturesmust be the actual signer.

3.2 Security Requirement of ID-Based Linkable Ring Signature

A secure ID-Based Linkable Ring Signature scheme should possess unforgeability,
anonymity, linkability and non-slanderability which will be defined below.
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Unforgeability. An adversary should not be able to forge any signature just
from the identities of the group members. We specify a security model which
mainly captures the following two attacks:

1. Adaptive chosen message attack
2. Adaptive chosen identity attack

Adaptive chosen message attack allows an adversary to obtain message-signature
pairs on demand during the forging attack. Adaptive chosen identity attack
allows the adversary to forge a signature with respect to a group chosen by the
adversary. To support adaptive chosen message attack, we provide the adversary
the following oracle queries.

– Extraction oracle (EO): On input IDi, di ← Extract(param, IDi) is
returned . The oracle is stateful, meaning that if IDi = IDj , then di = dj .

– Signing oracle (SO): A chooses a group of n identities {IDi}i∈[1,n], a
signer identity IDj among them and a message m, the oracle outputs a
valid ID-based linkable (or revocable-iff-linked) ring signature denoted by
σ ← Sign(param, n, {IDi|i ∈ [1, n]}, m, dj). The signing oracle may query
the extraction oracle during its operation.

– Hash oracle (H): A can ask for the values of the hash functions for any
input.

We have the following unforgeability game:

1. A simulator S takes a sufficiently large security parameter λ and runs Setup
to generate the public parameters param and master secret key s. The ad-
versary A is given param.

2. A can make a polynomial number of oracle queries to EO, SO and H adap-
tively.

3. A outputs a signature σ∗ for message m∗ and ring L∗.

A wins the above game if

1. Verify(param, |L∗|, L∗, m∗, σ∗) = valid;
2. (L∗, m∗) and σ∗ should not be in the set of oracle queries and replies between
A and SO; and

3. A did not query EO on any identity ID ∈ L∗.

The advantage of A is defined as the probability that A wins.

Definition 3 (Unforgeability). A scheme is unforgeable if no PPT adversary
has non-negligible advantage in winning the above game.

L-Anonymity. An adversary should not be able to tell the identity of the
signer with a probability larger than 1/n, where n is the cardinality of the ring.
A crucial difference between Anonymity for ring signatures and L-Anonymity
for linkable ring signatures is that in the latter, the adversary cannot query
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signatures of a user who appears in the challenge phase. The rationale is that if
the adversary obtains signature of user i, it can tell if the challenge signature is
generated by this user due to the linking property.

Different from a non-ID-based linkable ring signature scheme, the PKG who
knows the master secret key (thus it knows the secret key of every user), may gain
advantage on the anonymity of a signature. In order to capture this potential
attack, we enhance our model in a way that the adversary is also given the
master secret key.

In order to capture the potential attack, we further define the following oracle:

– Reversed Extraction oracle (REO): The only difference between REO
and the traditional EO is that, it is simulated by the adversary instead of the
simulator. The initial request can be made by the adversary if the extracted
protocol is an interactive one. In this case, the simulator acts as an honest
user to provide interactions and the oracle records the necessary transcript
of the interaction. Note that this maybe different from the final output of
the interaction protocol due to some secret information which is only known
to the honest user.

We have the following anonymity game:

1. A simulator S takes a sufficiently large security parameter λ and runs Setup
to generate the public parameters param and master secret key s. The ad-
versary A is given param and s.

2. A can make a polynomial number of oracle queries to REO, SO and H
adaptively.

3. In the challenge phase, A picks two identities ID∗
1 , ID∗

2 , which are not
queried to the SO as a signer. A also picks a message m∗ and a set of
n identities L∗. Then A receives a challenge signature σ∗ = Sign(param, n+
2, L∗ ∪ {ID∗

1 , ID∗
2}, m∗, dID∗

b
), where b ∈ {0, 1}.

4. A can queries oracles REO, SO and H adaptively, where ID∗
1 , ID∗

2 are not
queried to the SO as a signer.

5. Finally A outputs a guess b′ ∈ {0, 1}.
A wins the above game if b = b′. The advantage of A is defined as the

probability that A wins minus 1/2.

Definition 4 (Anonymity). A scheme is anonymous if no PPT adversary has
non-negligible advantage in winning the above game.

Note 1: Although the adversary has the master secret key and it can generate
an additional secret key for ID∗

1 or ID∗
2 , this secret key is different from the

one owned by ID∗
1 or ID∗

2 (generated by REO). According to our definition of
Linking Correctness, those signatures generated by these two secret keys cannot
be linked, although they are corresponding to the same identity.

Linkability. An adversary should not be able to form two signatures with the
same secret key without being linked by the Link protocol.

We have the following linkability game:
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1. A simulator S takes a sufficiently large security parameter λ and runs Setup
to generate the public parameters param and master secret key s. The ad-
versary A is given param.

2. A can make a polynomial number of oracle queries to EO, SO and H
adaptively.

3. A outputs signatures σ∗
i for messages m∗

i and rings L∗
i for i ∈ {0, 1}.

Let C be the set of identities queried to EO. A wins the above game if:

– σ0 and σ1 are not outputs from SO.
– Verify(param, |L∗

i |, L∗
i , m

∗
i , σ

∗
i ) = valid for i ∈ {0, 1};

– Link(σ∗
0 , σ∗

1) = Unlink; and
– |(L∗

0 ∪ L∗
1) ∩C| ≤ 1.

The advantage of A is defined as the probability that A wins.

Definition 5 (Linkability). A scheme is linkable if no PPT adversary has
non-negligible advantage in winning the above game.

Non-slanderability. Informally speaking, non-slanderability ensure that no ad-
versary, can frame an honest user for signing a signature. That is, an adversary
cannot produce a valid signature that is linked to a signature generated by a
user. In addition to the above oracles, we define one more:

– Challenged Signing oracle (CSO): The only difference between CSO and
the traditional SO is that, it requires the simulator to use the secret key
queried from the REO and execute Sign algorithm specified in the scheme
to generate the signature. REO should be queried before if necessary.

Formally it is defined as follow:

1. A simulator S takes a sufficiently large security parameter λ and runs Setup
to generate param and master secret key s. S sends param and s to the
Adversary A.

2. Amakes a polynomial number of oracle queries toREO andH in an adaptive
manner.

3. A submits a polynomial number of oracle queries to CSO adaptively for
generating challenged signatures.

4. A outputs a signature σ∗ for message m∗ and ring L∗.

A wins the game if

– Verify(param, |L∗|, L∗, m∗, σ∗) returns valid.
– σ∗ is not an output of any CSO query.
– Link(σ∗, σ̂) = Link where σ̂ is any signature outputted from CSO.

Definition 6 (Non-slanderability). A scheme is non-slanderability if no PPT
adversary has non-negligible advantage in winning the above game.
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Note 2: Although the adversary may initialize the query of REO, it cannot get
the user secret key since it does not know some secret information which is only
known to the honest user (that is, the simulator in this game). Thus it cannot gen-
erate a signature by that particular secret key which is linked together with some
signatures outputted by CSO. In addition, the remark of Note 1 also applies here.

Theorem 1. For an ID-based linkable ring signature scheme, if it is linkable
and non-slanderable, it implies that it is unforgeable.

Proof. (sketch) We assume that the scheme is linkable and non-slanderable. Sup-
pose there exists an adversaryA who can forge the signature with non-negligible
probability. A plays the game in Linkability. It submits one query to EO and
produces a signature using this secret key. It forges another signature with an-
other identity as the actual signer. Obviously these two signatures are unlink.
That is, it breaks linkability, contradicts our assumption. 	


3.3 Security Requirement of ID-Based Revocable-iff-Linkable Ring
Signature

The definitions of unforgeability and anonymity are the same as ID-based Link-
able Ring Signature defined in Section 3.2. We skip here.

Revoke-iff-Linkability. An adversary should not be able to form two signatures
with the same secret key without being linked by the Link protocol or pointed
to a user outside the rings.

We have the following linkability game:

1. A simulator S takes a sufficiently large security parameter λ and runs Setup
to generate the public parameters param and master secret key s. The ad-
versary A is given param.

2. A can make a polynomial number of oracle queries to EO, SO and H adap-
tively.

3. A outputs signatures σ∗
i for messages m∗

i and rings L∗
i for i ∈ {0, 1}.

Let C be the set of identities queried to EO. A wins the above game if it fulfils
either condition:

1. – σ0 and σ1 are not outputs from SO.
– Verify(param, |L∗

i |, L∗
i , m

∗
i , σ

∗
i ) = valid for i ∈ {0, 1};

– Link(σ∗
0 , σ∗

1) = Unlink; and
– |(L∗

0 ∪ L∗
1) ∩ C| ≤ 1.

OR
2. – σ0 and σ1 are not outputs from SO.

– Verify(param, |L∗
i |, L∗

i , m
∗
i , σ

∗
i ) = valid for i ∈ {0, 1};

– Link(σ∗
0 , σ∗

1) = Link; and
– Revoke(σ∗

0 , σ∗
1) = ID′ where ID′ /∈ {L∗

0 ∪ L∗
1} or ID′ has not been

inputted to EO.
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The advantage of A is defined as the probability that A wins.

Definition 7 (Revoke-iff-Linkability). A scheme is revocable-iff-linked if no
PPT adversary has non-negligible advantage in winning the above game.

Non-slanderability. The non-slanderability includes the one defined above in
Section 3.2 (Def. 6) and the definition of Revoke-iff-linkability (Def. 7).

Definition 8 (Non-slanderability). A scheme is non-slanderable if no PPT
adversary has non-negligible advantage in winning the games defined in Def. 6
and Def. 7.

4 Our Proposed Schemes

4.1 Construction

System Setup

– Init (Common parameter): Let λ be the security parameter. Let (G1, G2)
be a bilinear group pair with computable isomorphism ψ such that |G1| =
|G2| = p for some prime p of λ bits. Let H : {0, 1}∗ → Zp, be a crypto-
graphic hash function. Also assume Gp be a group of order p where DDH
is intractable. Let g0, g1, g2 be generators of G1, h0, h1, h2 be generators of
group G2 such that ψ(hi) = gi for i = 0, 1, 2 and u0, u1, u2 be generators
of Gp such that relative discrete logarithm of the generators are unknown.
This can be done by setting the generators to be output of a hash function
of some publicly known seed.

– Init (Accumulator): Choose a generator h of G2. Randomly select q ∈R Z∗
p

and compute qi = h(qi) for i = 1 · · · tmax, where tmax is the maximum
number of accumulation.

PKG Setup: The PKG randomly selects γ ∈R Z∗
p and compute w = h0

γ . The
master secret is γ while the public parameters are (H, ψ, G1, G2, Gp, p, g0, g1, g2,
h0, h1, h2, u0, u1, u2, h, q1, . . . , qtmax , w).

Extract: User with identity IDu obtain the corresponding secret key from PKG
through the following interactive protocol.

1. User with identity IDu randomly selects s′, rs ∈R Z∗
p and sends C′ = gs′

1 grs
2 ,

along with the proof Π0 = SPK{(s′, rs) : C′ = gs′
1 grs

2 } to PKG.
2. PKG verifies that Π0 is valid. If it is valid, it randomly selects s′′ ∈R Z∗

p and
computes

C = C′gs′′
1 e = H(IDu) A = (g0C)

1
e+γ

and sends (A, e, s′′) to the user.
3. User computes s = s′ + s′′ and checks if e(A, whe

0) = e(g0g
s
1g

rs
2 , h0). It then

stores (A, e, s, rs).
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Sign(Link Version): For signing a message M , compute

v = h
k=|{ID}|
k=1 (q+H(IDk)) vw = h

k=|{ID}|
k=1,k �=u (H(IDk)+q) S = u0

s

SPK{(A, e, s, rs, vw) : Ae+γ = g0g
s
1g

rs
2 ∧ ve+q

w = v ∧ S = u0
s}(M)

Note that S is the linkability tag and v
(q+H(IDu))
w = v. This can be turned into

event-oriented version by replacing u0 with G(event) where G is some suitable
hash function. The signature contains (v, vw, S) and the transcript of the SPK.

Sign(Revocable-iff-Link Version): Same as above except adding the follow-
ing two elements. Compute T = u0

rT u1
s and Y = urY

0 ue
1 for some randomly

generated rT , rY ∈R Z∗
p and modify the above SPK to the following:

SPK{(A, e, s, rs, vw, rT , rY ) : Ae+γ = g0g
s
1g

rs
2 ∧ ve+q

w = v ∧ S = u0
s

∧ T = u0
rT us

1 ∧ Y = urY

0 u1
e}(M)

This can be efficiently constructed as a discrete-log relation SPK, by randomly
generating some variables r1, r2 ∈R Z∗

p and computing

A1 = g1
r1 , A2 = Ag2

r1 , A3 = gr2
1 , A4 = vwgr2

2 , α = r1e, β = r2e

SPK{(r1, r2, α, β, e, s, rs, rT , rY ) : A1 =gr1
1 ∧ Ae

1 =gα
1 ∧ A3 =gr2

1 ∧ Ae
3 =gβ

2

∧ e(g0, h0)
e(A2, w)

= e(g1, h0)se(g2, h0)rse(g2, w)r1e(g2, h0)αe(A2, h0)−e ∧ S = us
0 ∧

T = urT
0 us

1 ∧ Y = urY
0 ue

1 ∧
e(A4, q1)
e(v, h)

= e(g2, q1)r2e(g2, h)−βe(A4, h)e}(M)

Finally compute sr = rT −crY and se = s−ce where c is the challenge used in
the above SPK. The signature contains (v, vw, S, T, Y, A1, A2, A3, A4, α, β, sr, se)
and the transcript of the SPK.

Verify: Verify the SPK. For revocable-iff-link version, also check if T = Y cusr
0 use

1 .

Link: Two signatures are linked if the share the same link tag S.

Revoke: Revoke can be done by computing e = se−s′
e

c′−c . Note that e = H(ID).

Security Analysis is given in the Appendix.

5 Conclusion

In this paper, we proposed a new notion called Revocable-iff-Linked Ring Signa-
ture. We defined a new model in an ID-based setting and provide a constant-size
concrete implementation. We also proposed an ID-based linkable ring signature
scheme with constant size space complexity.
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8. S. Canard and J. Traoré. On Fair E-cash Systems Based on Group Signature
Schemes. In ACISP ’03, volume 2727 of LNCS, pages 237–248. Springer, 2003.

9. S. S. M. Chow, J. K. Liu, V. K. Wei, and T. H. Yuen. Ring signatures without
random oracles. In AsiaCCS ’06, pages 297–302. ACM, 2006.

10. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In CRYPTO ’94, volume 839 of
LNCS, pages 174–187. Springer, 1994.

11. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad hoc
groups. In EUROCRYPT ’04, volume 3027 of LNCS, pages 609–626. Springer, 2004.

12. J. K. Liu, V. K. Wei, and D. S. Wong. A Separable Threshold Ring Signature
Scheme. In ICISC ’03, volume 2971 of LNCS, pages 12–26. Springer, 2003.

13. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable Spontaneous Anonymous Group
Signature for Ad Hoc Groups (Extended Abstract). In ACISP ’04, volume 3108
of LNCS, pages 325–335. Springer, 2004.

14. J. K. Liu and D. S. Wong. Linkable ring signatures: Security models and new
schemes. In ICCSA ’05, volume 3481 of LNCS, pages 614–623. Springer, 2005.

15. J. K. Liu and D. S. Wong. On The Security Models of (Threshold) Ring Signature
Schemes. In ICISC ’04, volume 3506 of LNCS, pages 204–217. Springer-Verlag, 2005.

16. L. Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA
’05, volume 3376 of LNCS, pages 275–292. Springer, 2005.

17. L. Nguyen and R. Safavi-Naini. Dynamic k-Times Anonymous Authentication.
Cryptology ePrint Archive, Report 2005/168, 2005. http://eprint.iacr.org/.

18. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT
’01, volume 2248 of LNCS, pages 552–565. Springer, 2001.

19. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO
’84, volume 196 of LNCS, pages 47–53. Springer, 1984.

20. I. Teranishi, J. Furukawa, and K. Sako. k-Times Anonymous Authentication (Ex-
tended Abstract). In ASIACRYPT ’04, volume 3329 of LNCS, pages 308–322.
Springer, 2004.

21. I. Teranishi and K. Sake. k-times Anonymous Authentication with a Constant
Proving Cost. In PKC ’06, volume 3958 of LNCS, pages 525–542. Springer, 2006.

22. M. Trolin. A universally composable scheme for electronic cash. Cryptology ePrint
Archive, Report 2005/341, 2005. http://eprint.iacr.org/.



Constant-Size ID-Based Linkable and R-iff-L Ring Signature 375

23. P. P. Tsang and V. K. Wei. Short Linkable Ring Signatures for E-Voting, E-Cash
and Attestation. In ISPEC ’05, volume 3439 of LNCS, pages 48–60. Springer, 2005.

24. P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong. Separable
Linkable Threshold Ring Signatures. In INDOCRYPT ’04, volume 3348 of LNCS,
pages 384–398. Springer, 2004.

25. V. K. Wei. Tracing-by-linking group signatures. In ISC ’05, volume 3650 of LNCS,
pages 149–163. Springer, 2005.

26. D. S. Wong, K. Fung, J. K. Liu, and V. K. Wei. On the RS-Code Construction of
Ring Signature Schemes and a Threshold Setting of RST. In ICICS ’03, volume
2836 of LNCS, pages 34–46. Springer, 2003.

A Security Analysis

The Revocable-iff-Link Version can be regarded as a generalization of the Link
Version. Thus we only show the security analysis of the Revocable-iff-Link Ver-
sion and the security analysis of the Link Version is straightforward followed
directly from the Revocable-iff-Link Version. In rest of this section, we refer “our
scheme” as the proposed ID-Based Revocable-iff-Link Ring Signature scheme.

Theorem 2. Our scheme is anonymous if the DDH assumption in G1 holds in
the random oracle model.

Proof. (sketch.) By the zero-knowledge property of the SPK in Sign, the param-
eters computed inside the SPK protocol reveal no information about the signer
identity. Therefore only the parameters (A1, A2, A3, A4, S, T, Y, sr, se) may reveal
such information.

For the case of (A1, A2, A3, A4) leaking information, suppose we are given a
DDH tuple (g, gx, gy, R) ∈ G4

1 to determine if R = gxy. S picks the master secret
key and sets g1 = g, g2 = gy. He simulates all oracles correctly with the master
secret key. Then at the challenge phase, S picks b ∈R {0, 1} and z ∈R Z∗

p. He sets:

A∗
1 = gx, A∗

2 = AbR, A∗
3 = gxz, A∗

4 = ewb
Rz

and simulates the rest of the signature. If A finally outputs b′ = b, then S outputs
1 for the DDH problem. Otherwise, S outputs 0.

For the case of S leaking information, we can prove similarly by setting g1 =
g, u0 = gy. For all reversed extraction oracle queries, S picks zi ∈R Z∗

p and sets
C′ = gxzigrs

2 . Then at the challenge phase, S picks b ∈R {0, 1}. Suppose ID∗
b

used C′ = gxzbg
rs,b

2 in REO. Then S sets S = Rzbgys′′
b . and simulates the rest of

the signature. If A finally outputs b′ = b, then S outputs 1 for the DDH problem.
Otherwise, S outputs 0.

For the case of (T, Y, sr, se), T is redundant as it can be computed by the
other three values and c. We have sr = rT + crY . As the random number rT

only appears in sr, sr leaks no information about rY . Then we have Y = urY
0 ue

1.
As rY only appears in sr and Y , Y leaks no information about e. We also have
C′ = gs′

1 grS
2 . By the zero-knowledge property of the SPK in Extract, the SPK

leaks no information about rS . Hence C′ leaks no information about s′ as rS
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only appears in C′. Finally we have se = s′ + s′′ − ce. As s′ only appears in C′

and se, se leaks no information about e and s′′.
As the parameters (A1, A2, A3, A4, S, T, Y, sr, se) do not reveal the information

about the signer identity, anonymity is achieved if the DDH assumption holds
in G1.

Theorem 3. Our scheme is non-slanderable if the q-SDH assumption in holds
in the random oracle model.

According to definition 8, our scheme is non-slanderable if there is no PPT
adversary can win the game in definition 6 and definition 7.

Lemma 1. There is no PPT adversary has non-negligible advantage in winning
the game defined in definition 6 if the DL assumption holds in the random oracle
model.

Proof. (Sketch.) We first simulate the game in definition 6. Assume there is an
adversary A exists. We are going to construct another PPT S that makes use of
A to solve the DL problem. S is given the DL tuple (y, g).
A setups by randomly picking param and s with g1 = g, u0 = gμ for some

random μ. S sends param and s to A. A mostly simulates REO, CSO and H
honestly as a nornal signer. Except for one REO query IDi, S sets C′

1 = ygrs
2

for rs ∈R Z∗
p and simulates the SPK in Extract using the random oracle H. S

obtains (A, e, s′′, rs)
Finally, A returns a valid signature σ∗, which is not the output from CSO,

but is linked to one of them. If it is linked to IDi, S rewinds and extracts the
SPK to obtain s. Then S returns s− s′′ as the solution to the DL problem.

Lemma 2. There is no PPT adversary has non-negligible advantage in winning
the game defined in definition 7 if the q-SDH assumption in holds in the random
oracle model.

Proof. We then simulate the game in definition 7. Assume there is an adversary
A exists. We are going to construct another PPT S that makes use of A to solve
the q-SDH problem.

Setup. S receives a q-SDH tuple (g′1, g
′
2, g

′
2
x
, . . . , g′2

xq

). S randomly picks e1, . . .

eq−1 ∈ Z∗
p and computes f(x) =

∏q−1
i=1 (x + ei). If x = −ei for some i, S solves

the q-SDH problem directly.
S uses the q-SDH tuple to compute:

h0 = g′2
f(x)

, w = g′2
xf(x)

, g0 = ψ(h0).

S picks e∗, a∗, k∗ ∈ Z∗
p and computes:

h1 = [(whe∗
0 )k∗

h−1
0 ]1/a∗

= h
(e∗+x)k∗−1

a∗
0 , g1 = ψ(h1).

S randomly picks μ ∈ Z∗
p, h ∈ G2, sets g2 = gμ

0 and sets qi accordingly. S
computes:

Ai = g
1/x+ei

0 = ψ(g′2
f(x)/x+ei)



Constant-Size ID-Based Linkable and R-iff-L Ring Signature 377

for 1 ≤ i ≤ q. A is given param = (g0, g1, g2, h0, w, h, q1, . . . , qtmax). For simplic-
ity, denote e∗ = eq.

Oracle Simulation. B simulates the extraction and signing oracles as follow:

(Hash oracle.) With probability q/qH , a new hash oracle query H(ID) will return
a new ei that has never been returned by the hash oracle. Otherwise, S will return
a random number in Z∗

p.

(Extraction oracle.) For extraction oracle with input IDi, if H(IDi) �= ei, S de-
clares failure and exits. Otherwise, S runs the Extract protocol with A, rewinds
and extracts (s′, rs) from the PoK. For i = 1, . . . , q−1, S randomly picks s′′ ∈ Z∗

p

and computes:

A = (g0Cgrs
2 )1/x+ei

= (g1+rsμ+ (s′+s′′)[(e∗+x)k∗−1]
a∗

0 )1/x+ei

= A
1+rsμ− (s′+s′′)

a∗
i g

(s′+s′′)k∗(e∗+x)
a∗(ei+x)

0

= A
(1+rsμ− (s′+s′′)

a∗ )

i

(
g

(s′+s′′)k∗
a∗

0

)(1− ei−e∗
ei+x )

= A
(1+rsμ− (s′+s′′)

a∗ − (s′+s′′)k∗(ei−e∗)
a∗ )

i

(
g

(s′+s′′)k∗
a∗

0

)
S returns (A, ei, s

′′) to A.
For i = n, S returns (An = gk∗

0 , en, s′′ = a∗ − s′) to A.

(Signing oracle.) By controlling the hash function used in the SPK in Sign, S
can always generate a correct signature by the soundness property of the SPK.

Output Calculation. If A wins in the game in definition 7, A returns a signa-
ture σ∗

i for message m∗
i and ring L∗

i for i = 0, 1. Assume A wins by condition
1 of definition 7, then A must not query KEO for one ID∗ before. WLOG,
assume A didn’t query for ID0. Denote the secret keys for ID0 used in σ∗ as
(A, e, s, vw, rT , rY ). Then he must conducted a false proof in part of the SPK
such that at least one of the following is fake:

1. Ae+x = g0g
s
1g

rs
2

2. ve+q
w = v

3. S = u0
s

4. T = u0
rT us

1

5. Y = urY
0 u1

e

Item 2 happens with negligible probability under the assumption that the ac-
cumulator is secure [16] (which is also reduced to the q-SDH assumption). Item
3,4,5 happens with negligible probability under the DL assumption. Therefore
we need to consider item 1.
S rewinds and extracts (A, e, s, rs) from the SPK. We have the following

possibilities:
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– Case 1: e /∈ {e1, . . . , en}. Then S computes:

Ae+x = g0g
s
1g

rs
2 = g

1+rsμ+ s[(e∗+x)k∗−1]
a∗

0

A =
(
g

a∗+rsμa∗−s
a∗(e+x)

0

)[(
g

sk∗
a∗

0

)(1− e−e∗
e+x )]

B =
(
Ag

− sk∗
a∗

0

) a∗
a∗+rsμa∗−s−sk∗(e−e∗)

S returns (B, e) as a new SDH pair.
– Case 2: e = ei and A �= Ai for some i. With probability 1/q, e = e∗, S

computes as in case 1:

A =
(
g

a∗+rsμa∗−s
a∗(e+x)

0

)(
g

sk∗
a∗

0

)
B =

(
Ag

− sk∗
a∗

0

) a∗
a∗+rsμa∗−s

S returns (B, e) as a new SDH pair.
– Case 3: e = ei and A0 = Ai for some i. We must have Aei+x

i g−s
1 grs

2 =
Aei+x

i g−si
1 g

rsi
2 , implies that s+μrs = si +μrsi . If S simulates the game with

μ = x and all other keys and parameters randomly chosen by S, then S
solves the discrete logarithm problem with respect to x. Hence S can solve
the q-SDH problem.

From the new SDH pair, we can solve the q-SDH problem. We have:

B = g′1
f(x)/(x+e) = g′1

q−1
i=0 cix

i+c−1/(x+e)

where c−1, c0, . . . , cq−1 can be computed by S with c−1 �= 0. Then S get:

g′1
1/(x+e) =

(
B

q−1∏
i=0

ψ(g′2
xi

)−ci
)1/c−1

which is the solution to the q-SDH problem.
Now assume A wins by condition 2 of definition 7. If ID′ /∈ {L∗

0 ∪ L∗
1}, then

it contradicts the soundness property of the SPK. If ID′ has not been input to
the EO, then S simulates as in the above case.

To conclude the proof of Theorem 3, the scheme is non-slanderable if DL as-
sumption and q-SDH assumption holds in the random oracle model. However
if one can solve the DL problem, he can obviously solve the q-SDH problem.
Therefore we have the non-slanderability reduced to the q-SDH problem.

Theorem 4. Our scheme is Revoke-iff-Link if the q-SDH assumption holds in
the random oracle model.

The proof of this theorem overlaps with the proof of Lemma 2.
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Abstract. Following the work of Al-Riyami et al. we define the no-
tion of key encapsulation mechanism supporting cryptographic work-
flow (WF-KEM) and prove a KEM-DEM composition theorem which
extends the notion of hybrid encryption to cryptographic workflow. We
then generically construct a WF-KEM from an identity-based encryption
(IBE) scheme and a secret sharing scheme. Chosen ciphertext security
is achieved using one-time signatures. Adding a public-key encryption
scheme we are able to modify the construction to obtain escrow-freeness.
We prove all our constructions secure in the standard model.

Keywords: Cryptographic Workflow, Key Encapsulation, Secret Shar-
ing, Identity-Based Encryption.

1 Introduction

The term workflow is used to describe a system in which actions must be per-
formed in a particular order. In cryptographic workflow [23] this is achieved by
making decryption a privileged action which can only be executed by users which
possess an appropriate set of authorisation credentials, or simply credentials. Cre-
dentials are issued by a set of authorisation authorities, which can ensure that
some action has been performed, or that some event has occurred, before grant-
ing them to users. Restricting access to encrypted messages in this way, workflow
mechanisms can be implemented with cryptographic security guarantees.

An encryption scheme supporting cryptographic workflow should provide the
following functionality [1]. Alice specifies the credentials that Bob should have
in a policy that she decides before encrypting. Alice should be able to perform
this encryption without knowing what credentials Bob actually has. A particular
authorisation authority will validate that Bob is entitled to a given credential
before awarding it. Each credential acts as a (partial) decryption key. Alice may
also want to be sure that no colluding set of these authorisation authorities is
able to decrypt and recover the message that she intended for Bob. If this is the
case, the system should be escrow-free.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 379–393, 2006.
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In this paper we introduce the notion of KEMs supporting cryptographic
workflow (WF-KEM) and their escrow-free counterparts (EFWF-KEM). We
adapt the security models proposed in [1] for encryption schemes accordingly.
We argue that the KEM-DEM paradigm introduced by Cramer and Shoup [14]
for public-key encryption schemes also applies when one moves to encryption
schemes supporting cryptographic workflow. In fact, we show that combining
a secure WF-KEM (EFWF-KEM) with a secure DEM, one obtains a secure
(escrow-free) encryption scheme supporting cryptographic workflow.

We present a generic construction that permits building WF-KEMs out of
simpler cryptographic primitives. This is a generalisation of the construction
presented in [1] based on the identity-based encryption (IBE) scheme of Boneh
and Franklin. We show how one can construct analogous schemes by replac-
ing its building blocks with other components providing the same functionality.
More specifically, we prove that our transformation permits constructing a secure
WF-KEM using secure IBE and Secret Sharing (SS) schemes. Finally, we extend
our generic construction to obtain an EFWF-KEM using a secure public-key en-
cryption scheme. Chosen ciphertext security is achieved via a one-time signature
scheme. Our constructions are all secure in the standard model.

The paper is structured as follows. We first review related work in Section 2
and present the cryptographic primitives we use as building blocks in Section 3.
Then in Section 4 we define precisely what we mean by secure WF-KEMs and
EFWF-KEMs. In Section 5 we propose generic constructions of these primitives
and prove them secure. Finally, in Section 6, we analyse the implications and
efficiency of our results for cryptographic workflow and related problems.

2 Related Work

Identity-based cryptography was initially proposed by Shamir [26], who also
introduced the first identity-based signature scheme. The first practical identity-
based encryption (IBE) scheme is that proposed by Boneh and Franklin in [7],
whose operation relies on the use of bilinear maps over groups of points on an
elliptic curve. Sakai and Kasahara [24] later proposed another IBE scheme, also
based on bilinear maps, but adopting a different key construction. The security
of this scheme was established by Chen et al. in [11]. The latter scheme allows
for more efficient encryption operation. Both these schemes are secure in the
random oracle model (ROM). Recently, Waters [28], Kiltz [20] and Gentry [17]
have proposed practical IBE schemes which are secure in the standard model.

The KEM-DEM construction was formalised by Cramer and Shoup in [14]. It
captures the concept of hybrid encryption whereby one constructs a public-key
encryption scheme by combining a symmetric Data Encapsulation Mechanism
(DEM) with an asymmetric Key Encapsulation Mechanism (KEM). The security
of the hybrid construction depends, of course, on the security of the KEM and
DEM. In [14] it is shown that if the KEM and DEM constructions are individually
secure, the resulting public-key encryption scheme will be also secure. The rela-
tions between the security notions for KEMs and the conditions for the security
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of KEM/DEM constructions are further discussed in [22,18] respectively. Dent
[15] describes several constructions for secure KEMs. The KEM-DEM paradigm
has been extended to the identity-based setting in [6].

Cryptographic workflow follows from the original ideas by Chen et al. in
[12,13]. There the authors explored the possibilities of using the Boneh and
Franklin IBE scheme in a setting where a user can extract different identity-based
private keys from multiple TAs. They proposed using credential descriptors as
public keys, in place of the usual identity strings, and showed that combining
the master public keys of the TAs in different ways, one may securely send a
message to a recipient and restrict her ability to decrypt it with a high degree
of flexibility. Smart [27] applied the same principle to access control. Patterson
[23] first employed the term workflow to describe this type of scheme.

Key escrow is an inherent property of identity-based cryptography, since it is
the TA that computes private keys. This may be a problem in some applications.
To solve this (and the issue of certificate management), Al-Riyami and Paterson
[2] propose certificateless public-key cryptography (CL-PKC). CL-PKC is a mod-
ification of identity-based techniques which requires each user to have a (possibly
unauthenticated) public key. Messages are encrypted using a combination of a
user’s public key and its identity.

Al-Riyami et al. [1] formalised the definitions of primitives and security models
associated with cryptographic workflow and proposed an efficient escrow-free
encryption scheme supporting cryptographic workflow. The scheme is based on
the Boneh and Franklin IBE and it is proved secure under two security notions.
The first one, called receiver security, ensures that only users with an appropriate
set of credentials can decrypt the message. The second, called external security,
captures the escrow-freeness notion: it must be unfeasible for any colluding set
of TAs to decrypt the message. Unlike CL-PKC, however, escrow-freeness is
achieved using a classical public-key encryption layer which relies on public key
certification to achieve security.

Encryption schemes supporting cryptographic workflow are very close to those
associated with hidden credential systems [9,19]. Both types of schemes typically
employ a secret sharing layer and an identity-based encryption layer, although
the goals in each case are different. In hidden credential systems one seeks to
keep the access control policy secret, whereas in workflow schemes this is not
the case. Secret sharing schemes are covered in [5,21,25].

A common feature of many schemes proposed for CL-PKC, cryptographic
workflow and hidden credentials is that they are based on the concept of multiple
encryption (or re-encryption). In multiple encryption, a ciphertext is created
by combining the results of several instances of an encryption algorithm with
different encryption keys. In the simplest case, where only two decryption keys
are involved, the objective is that even if the adversary is in possession of one
of those keys, she obtains no advantage. Recently, Dodis and Katz [16] have
addressed the chosen ciphertext security of multiple encryptions in the general
case, and have proposed generic constructions which are semantically secure.
Our constructions build on these results.
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3 Building Blocks

Due to space limitations we omit the public key encryption (PKE), data encap-
sulation mechanism (DEM) and identity-based encryption (IBE) primitive and
security model definitions. We refer the reader to the full version of the paper
[3], or alternatively to [14,7], for the details.

3.1 Secret Sharing

We follow the approach in [5] for secret sharing over general access structures.

Definition 1. A collection P of subsets of a set P = {X1, . . . , Xn} is called a
monotone access structure on P if:

∀A ∈ P and ∀B ⊆ P, A ⊆ B ⇒ B ∈ P .

A set Q ⊆ P is called a qualifying subset of P if Q ∈ P.

The access structures considered in this paper are all monotone and non-trivial
i.e. P �=Ø. Note that non-triviality implies P ∈ P .

A secret sharing scheme is defined as a pair of algorithms as follows:

– S(1κ, s,P): This is the probabilistic secret sharing algorithm which on input
of the security parameter 1κ, a string s and a (monotone) access structure
P , outputs a list of shares shr = (shr1, . . . , shrn) one for each element in
P = {X1, . . . , Xn} as well as some auxiliary information aux.

– S−1(shr, aux): This is the deterministic secret reconstruction algorithm. On
input of a list of shares shr and some auxiliary information aux, outputs a
secret s or a failure symbol ⊥.

A secret sharing scheme is sound if for all access structures P and strings
s ∈ {0, 1}∗ of polynomial length in κ, we have:

Pr

⎛⎜⎜⎝
(shr, aux) ← S(1κ, s,P)

s = S−1(shr′, aux) Q ← P
Parse (Xi1 , . . . , Xik

) ← Q
[shr′]j ← [shr]ij , 1 ≤ j ≤ k

⎞⎟⎟⎠ = 1.

The level of security provided by the secret sharing scheme will influence the
overall security of our constructions. We consider both perfect and computational
(non-perfect) secret sharing schemes [21].

For perfect secret sharing we will not require a game-based security defini-
tion. When necessary, we use an information theoretical argument based on the
following definition of security.

Definition 2. (Perfect Secret Sharing) A secret sharing scheme provides perfect
secrecy if every non-qualifying subset of shares does not contain any information
about the secret (in the information-theoretic sense). Formally, for any non-
empty and non-qualifying set {i1, . . . , in} of an access structure P, and for every
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two secrets sec0 and sec1, let (auxb, shrb)← S(secb,P), for b ∈ {0, 1}. Then, for
every possible share value shrij , 1 ≤ j ≤ n and for every possible aux value

Pr[shrij = [shr0]ij ]=Pr[shrij = [shr1]ij ] and Pr[aux = aux0]=Pr[aux = aux1].

Note that, for perfect secret sharing schemes we do not have an asymptotic defi-
nition of security, and therefore we drop the security parameter in the primitive
definition.

In perfect secret sharing schemes, the secret size constitutes a lower bound
on the individual size of shares. To reduce this lower bound, one must relax
the security definition and settle for polynomial-time indistinguishability. For
computational secret sharing, we shall use the following definitions of semantic
security: secret indistinguishability against selective share attacks (IND-SSA),
and against adaptive share attacks (IND-CSA).

IND-SSA
1. (s, s0, s1,P∗, i1, . . . , ik) ← A1(1κ)
2. b ← {0, 1}
3. (shr∗, aux∗)← S(1κ, sb,P∗)
4. b′ ← A2(aux∗, ([shr∗]ij )k

j=1, s)

IND-CSA
1. (s, s0, s1,P∗)← A1(1κ)
2. b← {0, 1}
3. (shr∗, aux∗)← S(1κ, sb,P∗)
4. b′ ← AO

2 (aux∗, s)

AdvIND−atk
SS (A) := |Pr[b′ = b]− 1/2|.

Here atk ∈ {SSA, CSA}. In the SSA model, k ≤ n, and {i1, . . . , ik} must not
include a qualifying set of shares in P∗. In the CSA model,O is a share extraction
oracle subject to the condition that the adversary cannot extract a set of shares
corresponding to a qualifying set in P∗.

3.2 One-Time Signature

In our constructions we achieve chosen ciphertext security using an adaptation of
the technique by Canetti et al. [10] which is based on a one-time signature (OTS)
scheme. An OTS is a weak form of signature in which the signing/verification key
pair can only be used once. More specifically, an OTS is defined by a three-tuple
of PPT algorithms:

– GOTS(1κ): This is the key generation algorithm which, on input of the security
parameter, outputs a key pair (vk, sk).

– Sig(m, sk): This is the signature algorithm, which takes a message m and a
secret key sk, and returns a signature σ.

– Ver(m, σ, vk): This is the deterministic verification algorithm which, given a
message, a signature σ and a verification key returns either 0 (reject) or 1
(accept).

The strong unforgeability security of an OTS is defined through the following
game in which any PPT adversary must have negligible advantage.
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UF
1. (vk, sk) ← GOTS(1κ)
2. (m, s)← A1(vk)
3. σ ← Sig(sk, m)
4. (m′, σ′)← A2(s, σ)

AdvUFOTS(A) := Pr[(σ′, m′) �= (m, σ) ∧ Ver(m′, σ′, vk) = 1].

Note that this unforgeability definition implies that it must be unfeasible
to create a new valid signature for a previously signed message. OTS schemes
meeting this security definition can be constructed from any one-way function.

4 KEM Primitives for Cryptographic Workflow

4.1 Access Structures, Policies and Credentials

We first explain how we treat access structures in our constructions. We follow
an approach similar to that in [1], but we briefly clarify this point stating our
assumptions on their meaning in real life.

Suppose that we would like to encrypt a message such that only British na-
tionals can read. To achieve this, we need a TA who issues credentials only to
those who possess British nationality. For example, the Home Office would be
the obvious TA to issue British Nationality certificates. However, it could be the
case that two or more TAs are able to issue such a credential. For instance, the
user’s employer could, after checking the appropriate documentation, grant her
a similar credential. We therefore need to specify precisely which authority we
are trusting. The need for this is even more apparent when the policy is more
complex. Consider the policy English ∧ English ∧ Adult, where the first two
terms refer to nationality and language with credentials issued by the Home Of-
fice and the British Council, respectively. It could also be the case that the same
authority issues credentials on age and nationality: it is up to the authority to
interpret the semantics.

For this reason, we view a policy term as a pair (ID, Mpk) where ID ∈ {0, 1}∗
is an identifier for the policy term and Mpk is the public key of the authority
issuing the credential described in ID. We denote by m the number of distinct
TAs present in the system, by n the number of distinct policy terms in an access
structure and by k the number of distinct policy terms in a qualifying set.

4.2 KEMs Supporting Cryptographic Workflow

A key encapsulation mechanism supporting cryptographic workflow (WF-KEM)
is defined as a four-tuple of polynomial time (PT) algorithms as follows:

– GWF−KEM(1κ, m): This is the probabilistic authority key generation algorithm
which on input of a security parameter 1κ outputs m authority secret/public
key pairs ((Mski, Mpki))

m
i=1, as well as the descriptions of the key, randomness
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and ciphertext spaces. These are denoted by KWF−KEM, RWF−KEM and CWF−KEM,
respectively1.

– XWF−KEM(X, Msk): This is the probabilistic credential extraction algorithm
which on input of a policy term X , consisting of a policy identifier/authority
public key pair (ID, Mpk), and the secret key Msk corresponding to Mpk, out-
puts a pair (crd, X) which we call a credential.

– EWF−KEM(P): This is the probabilistic key encapsulation algorithm which on
input of an access structure P on n policy terms P = {X1, . . . , Xn} outputs
a pair (k, c) where k ∈ KWF−KEM and c is an encapsulation of k.

– DWF−KEM(c, crd): This is the deterministic decapsulation algorithm which on
input of an encapsulation c and a list of k credentials crd, outputs a key or
a failure symbol ⊥.

A WF-KEM scheme is called sound if for every policy P on n terms with
m, n ∈ N we have:

Pr

⎛⎜⎜⎜⎜⎝
((Mski, Mpki))

m
i=1 ← GWF−KEM(1κ, m)

(k, c)← EWF−KEM(P)
k = DWF−KEM(c, crd) Q← P

Parse (Xi1 , . . . , Xik
) ← Q

[crd]j ← XWF−KEM(Xij , Mskij ), 1 ≤ j ≤ k

⎞⎟⎟⎟⎟⎠=1.

The security games against chosen credential and ciphertext attacks for a
WF-KEM are defined as follows. As in [1] we call this notion recipient security.

(m, n)-IND-atk
1. ((Mski, Mpki))

m
i=1 ← GWF−KEM(1κ, m)

2. (s,P∗)← AO1
1 (Mpk1, . . . , Mpkm)

3. k0 ← KWF−KEM

4. (k1, c∗)← EWF−KEM(P∗)
5. b ← {0, 1}
6. b′ ← AO2

2 (kb, c∗, s)

Adv(m,n)−IND−atk
WF−KEM (A) := |Pr[b′ = b]− 1/2|.

Here P∗ must be on n terms; O1 and O2 contain credential extraction and
decapsulation oracles subject to the following restrictions: the set of queries
that the adversary makes to the credential extraction oracle must not form a
qualifying set of P∗; the adversary cannot query the decapsulation oracle on c∗.

We distinguish adaptive (atk = CCCA) and non-adaptive (atk = CCCA−) at-
tacks. The difference is that in non-adaptive attacks, the adversary is not allowed
to query the extraction oracle on any X = (ID, Mpk) with X ∈ P ∗ in the second
stage of the game. A WF-KEM scheme is called IND-CCCA (IND-CCCA−)

1 From this point on we assume that the public keys of various primitives in this paper
include these as well as the security parameter.
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secure if all PPT attackers have negligible advantage in the above game as a
function of the security parameter.

Note that WF-KEMs are intrinsically multi-user, as anyone who is able to
obtain a qualifying set of credentials will be capable of decapsulating. However,
in most practical cases this probably will not be the case, as the credential policy
term semantics will include the intended recipient’s identity. This is related to
another important characteristic of WF-KEMs. Any colluding set of TAs who can
produce a qualifying set of credentials are also able to invert the encapsulation,
and this means that a WF-KEM is not escrow-free.

4.3 KEMs Supporting Escrow-Free Cryptographic Workflow

The notion of a KEM supporting escrow-free cryptographic workflow (EFWF-
KEM) implies modifying the previous primitive to remove recipient ambiguity.
We follow an approach similar to [1] and [2] whereby the primitive is extended
to include a recipient public and private key pair.

EFWF-KEMs are defined through five PT algorithms. Four of these algo-
rithms are analogous to those defined for WF-KEMs. In addition to these we
add an extra user key generation algorithm:

– GEFWF−KEM(1κ, m): This is the probabilistic authority key generation algorithm
which on input of a security parameter 1κ outputs m authority secret/public
key pairs ((Mski, Mpki))

m
i=1, as well as the descriptions of the key, random-

ness and ciphertext spaces. These are denoted by KEFWF−KEM, REFWF−KEM and
CEFWF−KEM, respectively.

– GU
EFWF−KEM(1

κ): This is the probabilistic user key generation algorithm which
on input of the security parameter 1κ outputs a private/public key pair
(SK, PK).

– XEFWF−KEM(X, Msk): This is the probabilistic credential extraction algorithm
which on input of a policy term X , consisting of a policy identifier/authority
public key pair (ID, Mpk), and the secret key Msk corresponding to Mpk, out-
puts a pair (crd, X) which we call a credential.

– EEFWF−KEM(P , PK): This is the probabilistic key encapsulation algorithm which
on input of an access structure P on n policy terms P = {X1, . . . , Xn} and
a public key PK, outputs a pair (k, c) where k ∈ KEFWF−KEM and c is an
encapsulation of k.

– DEFWF−KEM(c, crd, SK): The deterministic decapsulation algorithm which on
input of an encapsulation c, a list of k credentials crd, and a secret key SK
outputs a key or a failure symbol ⊥.

An EFWF-KEM scheme is called sound if for every policy P on n terms with
m, n ∈ N we have:

Pr

⎛⎜⎜⎜⎜⎝
((Mski, Mpki))

m
i=1 ← GEFWF−KEM(1κ, m)

(SK, PK)← GU
EFWF−KEM(1

κ)
k = DEFWF−KEM(c, crd, SK) (k, c)← EEFWF−KEM(P , PK)

Q← P ; Parse (Xi1 , . . . , Xik
)← Q

[crd]j ← XEFWF−KEM(Xij , Mskij ), 1 ≤ j ≤ k

⎞⎟⎟⎟⎟⎠=1.
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Recipient security for an EFWF-KEM is defined through a game very similar
to that presented for a WF-KEM. The only difference is that here the adversary
is provided with a user key pair which is generated at the beginning of the
game. This captures the notion that even the user who knows the private key
must possess a qualifying set of credentials to decapsulate. The game is specified
below on the left. Again, P∗ must be on at most n terms; the O1 and O2 oracles
are exactly as in the previous game for adaptive (atk = CCCA) and non-adaptive
chosen credential attacks (atk = CCCA−).

(m, n)-IND-atk
1. ((Mski, Mpki))

m
i=1 ← GEFWF−KEM(1κ)

2. (SK, PK)← GU
EFWF−KEM(1κ)

3. (s,P∗) ← AO1
1 ((Mpk1)

m
i=1, SK, PK)

4. k0 ← KEFWF−KEM

5. (k1, c∗)← EEFWF−KEM(P∗, PK)
6. b ← {0, 1}
7. b′ ← AO2

2 (kb, c∗, s)

(m, n)-IND-CCA2
1. ((Mski, Mpki))

m
i=1 ← GEFWF−KEM(1κ)

2. (SK, PK)← GU
EFWF−KEM(1κ)

3. (s,P∗)← AO1
1 ((Mski, Mpki)

m
i=1, PK)

4. k0 ← KEFWF−KEM

5. (k1, c∗)← EEFWF−KEM(P∗, PK)
6. b← {0, 1}
7. b′ ← AO2

2 (kb, c∗, s)

To capture escrow-freeness, we follow the approach in [1] and define external
security through the indistinguishability game shown above on the right. Note
that the adversary controls everything except the user secret key. Here P∗ must
be on n terms; O1 andO2 denote a decapsulation oracle subject to the restriction
that the adversary cannot query it on c∗. An EFWF-KEM scheme is called
IND-CCCA (IND-CCCA−) and IND-CCA2 secure if all PPT attackers have
negligible advantage in the above games as a function of the security parameter,
where advantages are defined as

Adv(m,n)−IND−atk
EFWF−KEM (A) := |Pr[b′ = b]− 1/2|,

Adv(m,n)−IND−CCA2
EFWF−KEM (A) := |Pr[b′ = b]− 1/2|.

4.4 Hybrid Encryption Supporting Cryptographic Workflow

The concept and security model of an encryption scheme supporting escrow-free
cryptographic workflow (EFWF-ENC), as proposed in [1], are defined in a very
similar manner to an EFWF-KEM. We refer the reader to [3] for the details.
Using an EFWF-KEM and a standard DEM with compatible key spaces, one
can construct a hybrid encryption scheme supporting escrow-free cryptographic
workflow in the usual way:

EEFWF−ENC(m,P , PK)
– (k, c̄)← EEFWF−KEM(P , PK)
– c← EDEM(m, k)
– c← (c̄, c)
– Return c

DEFWF−ENC(c, crd, SK)
– (c̄, c)← c
– k← DEFWF−KEM(c̄, crd, SK)
– If k =⊥ then return ⊥
– m← DDEM(c, k)
– Return m

In the full version of paper [3] we prove the following theorem relating the
security of this hybrid encryption scheme to that of its EFWF-KEM and DEM
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components. We use a technique similar to that in [14]. A similar result holds
for non-escrow free primitives.

Theorem 1. The hybrid EFWF-ENC scheme as constructed above is secure in
the recipient and external security models if the underlying EFWF-KEM and
DEM are secure. More precisely, for atk ∈ {CCCA, CCCA−} we have:

Adv(m,n)−IND−atk
EFWF−ENC (A) ≤ 2 ·Adv(m,n)−IND−atk

EFWF−KEM (B1) + AdvFG−CCA
DEM (B2),

Adv(m,n)−IND−CCA2
EFWF−ENC (A) ≤ 2 ·Adv(m,n)−IND−CCA2

EFWF−KEM (B1) + AdvFG−CCA
DEM (B2).

5 Generic Constructions

5.1 A WF-KEM Construction

We first present a construction of a WF-KEM using an IBE, a secret sharing
scheme and a one-time signature scheme.

The authority key generation and credential extraction algorithms of the re-
sulting WF-KEM are direct adaptations of the master key generation and secret
key extraction algorithms of the underlying IBE:

– GWF−KEM(1κ, m): Runs the GIBE(1κ) algorithm m times obtaining (Mpk, Msk).
The key space is KWF−KEM = {0, 1}κ.

– XWF−KEM(X, Msk): Parses X to get (ID, Mpk), extracts crd = XIBE(ID, Msk) and
returns (crd, X).

The encapsulation and decapsulation algorithms are as follows.

EWF−KEM(P)
– (vk, sk)← GOTS(1κ)
– k← KWF−KEM

– (shr, aux) ← S(1κ, k,P)
– For j = 1, . . . , n do

(ID, Mpk) ← Xj

cj ← EIBE([shr]j ||vk, ID, Mpk)
– c← (c1, . . . , cn, vk, aux,P)
– σ ← Sig(c, sk)
– Return (k, c||σ)

DWF−KEM(c||σ, crd)
– (c1, . . . , cn, vk, aux,P)← c
– If Ver(c, σ, vk) �= 1 return ⊥
– For j = 1, . . . , k do

(crd, X)← [crd]j
Find ci corresponding to X
([shr]j ||vkj) ← DIBE(ci, crd)
If ([shr]j ||vkj) =⊥ return ⊥
If vkj �= vk return ⊥

– k← S−1(shr, aux)
– If k =⊥ return ⊥
– Return k

Note that, similarly to what is done in [16] for multiple encryption in the
public-key setting, one could use an IBE primitive modified to include non-
malleable public labels to bind vk to each individual cj. We chose not to do
this so that we could base our construction on the more standard IBE primitive
and security model. The security of the above construction is captured via the
following theorem which is proved in [3].
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Theorem 2. The above construction is (m, n)-IND-CCCA secure if the under-
lying IBE is IND-CCA2 secure, the OTS is UF secure, and the secret sharing
scheme is information theoretically secure. More precisely we have:

AdvIND−CCCA
WF−KEM (A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2

IBE (B2).

The best result we obtain in the standard model for computational secret sharing
schemes is the following. In Section 6 we explain why this is the case. A sketch
proof is also provided in [3].

Theorem 3. The above construction is (m, n)-IND-CCCA− secure if the un-
derlying IBE is IND-CCA2 secure, the OTS is UF secure, and the secret sharing
scheme is IND-SSA secure. More precisely we have:

AdvIND−CCCA−
WF−KEM (A) ≤ AdvUFOTS(B1) + 2mn2 · AdvIND−CCA2

IBE (B2) + AdvIND−SSA
SS (B3).

5.2 An EFWF-KEM Construction

We now extend the previous generic construction to achieve escrow-freeness.
We build an EFWF-KEM using an additional component: a PKE scheme. The
authority key generation and credential extraction algorithms are as in the WF-
KEM construction. The user key generation algorithm is that of the underlying
PKE. Finally, the encapsulation and decapsulation algorithms are:

EEFWF−KEM(P , PK)
– (vk, sk)← GOTS(1κ)
– k1, k2 ← KEFWF−KEM

– (shr, aux) ← S(1κ, k1,P)
– c̄← EPKE(k2||vk, PK)
– For j = 1, . . . , n do

(ID, Mpk) ← Xj

cj ← EIBE([shr]j ||vk, ID, Mpk)
– c← (c̄, c1, . . . , cn, vk, aux,P)
– σ ← Sig(c, sk)
– Return (k1 ⊕ k2, c||σ)

DEFWF−KEM(c||σ, crd, SK)
– (c̄, c1, . . . , cn, vk, aux,P)← c
– If Ver(c, σ, vk) �= 1 return ⊥
– For j = 1, . . . , k do

(crd, X)← [crd]j
Find ci corresponding to X
([shr]j ||vkj) ← DIBE(ci, crd)
If ([shr]j ||vkj) =⊥ return ⊥
If vkj �= vk return ⊥

– k1 ← S−1(shr, aux)
– k2 ← DPKE(c̄, SK)
– If k1 =⊥ or k2 =⊥ return ⊥
– Return k1 ⊕ k2

Again we have two security results which depend on the security provided by
the underlying secret sharing scheme. The following theorems are proved in [3].

Theorem 4. The above EFWF-KEM construction is (m, n)-IND-CCCA and
(m, n)-IND-CCA2 secure if the underlying PKE and IBE are IND-CCA2 secure,
the OTS is UF secure, and the secret sharing scheme is information-theoretically
secure. More precisely we have:

AdvIND−CCCA
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2mn2 ·AdvIND−CCA2

IBE (B2),

AdvIND−CCA2
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2AdvIND−CCA2

PKE (B2).
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Theorem 5. The above EFWF-KEM construction is (m, n)-IND-CCCA− and
(m, n)-IND-CCA2 secure if the underlying PKE is IND-CCA2 secure, the un-
derlying IBE is IND-CCA2 secure, the OTS is UF secure, and the secret sharing
scheme is IND-SSA secure. More precisely we have:

AdvIND−CCCA−
EFWF−KEM (A) ≤ AdvUFOTS(B1) + 2mn2 · AdvIND−CCA2

IBE (B2) + AdvIND−SSA
SS (B3),

AdvIND−CCA2
EFWF−KEM(A) ≤ AdvUFOTS(B1) + 2AdvIND−CCA2

PKE (B2).

6 Discussion

The main contribution in this work is the fact that, through the generic con-
structions that we propose, and using underlying components which achieve the
required levels of security in the standard model, we obtain the first WF-KEM
and EFWF-KEM schemes provably secure in the standard model.

There are, however, other interesting aspects to the results presented in the
previous sections, which we now discuss.

Relation with the original construction in [1]: The concrete EFWF-KEM
scheme in [1] is originally defined as a full encryption scheme, although internally
it is structured as a KEM-DEM construction. The basic building block in the
KEM part is a weak version of the IBE scheme by Boneh and Franklin [7].
Chosen ciphertext security is achieved globally through a transformation akin
to that used in the KEM constructions in [15], which is valid in the random
oracle model. We require fully chosen ciphertext secure individual components,
and the way we achieve global CCA2 security in the standard model comes from
the IBE to PKE transformation in [10], adapted to multiple encryption in [16].

Our constructions do inherit the combination of a secret sharing scheme, an
IBE scheme and a PKE scheme. However, if we allow for computational secret
sharing, then we can only achieve IND-CCCA− security. This is true even if the
underlying secret sharing scheme tolerates adaptive chosen share attacks. This
is the main difference between the security of our construction and that in [1].
Intuitively this can be explained as follows. Using the RO heuristic one can per-
form a late binding between challenge share values and the challenge ciphertext.
This makes it possible to construct the challenge without explicitly knowing the
shares, and directly map the adversary’s credential extraction queries to external
calls to a share extraction oracle.

The standard model does not allow the same proof strategy, so we cannot
prove the security of our constructions against adaptive credential extracting
attackers unless we adopt perfect secret sharing. This will only be an issue in
terms of the overall efficiency of the constructions, which we discuss below.

Finally, it is interesting to note the very effective application of the randomness
reuse paradigm [4] in [1] to achieve impressive computational and ciphertext
length savings.
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Relation with multiple encryption: This work builds on the general results
by Dodis and Katz [16] for chosen ciphertext security of multiple encryption.
However our constructions require that we extend these results in three differ-
ent aspects: (1) to consider adaptive user corruption attacks, (2) to consider
generalised access structures and (3) we require a mix of identity-based and
public-key encryption techniques. Our results imply that equivalent extensions
can be derived in the context of generic multiple encryption.

Relation with certificateless encryption: We will not explore this con-
nection in detail due to space constraints. However, we do note the similarity
between the security models of a CL-KEM scheme [6] and the EFWF-KEM se-
curity models introduced. This similarity implies that a simplified version of our
construction considering only one credential and a single authority can be seen
as a CL-KEM scheme which can be proved IND-CCA2 secure against Type I-
and Type II adversaries [6].

Efficiency considerations: We analyse the efficiency of our constructions by
looking at the computational load and ciphertext length that they produce. A
high level analysis shows that the computational weight associated with encap-
sulation and decapsulation is that of sharing the secret key, encrypting the n
shares using the IBE scheme, possibly encrypting another secret key with the
PKE scheme, and generating a one-time signature. The corresponding cipher-
texts include the public sharing information, n IBE ciphertexts, possibly one
PKE ciphertext, the OTS verification key and a signature string.

An obvious way to optimise the end-result is to choose underlying components
which are themselves efficient. For example, adopting the IBE scheme of Sakai
and Kasahara [11] one obtains a solution which is computationally more efficient
than the original construction in [1]. However, there are three techniques which
can further improve the efficiency of our constructions.

The enhanced IBE to PKE transformation proposed in [8], which replaces
the OTS component by a MAC and a weak form of commitment has also been
adapted to achieve chosen ciphertext security in [16] for a weak form of multiple
encryption. It turns out that this weak form of multiple encryption is sufficient
to allow an extension to WF-KEMs similar to what we achieved with the OTS-
based technique. We chose not to include these results in this paper as they lead
to more involved proofs and they are less intuitive.

The randomness reuse paradigm [4] can also be applied in this context, al-
though to the best of our knowledge there is currently no IBE scheme which is
IND-CCA2 secure in the standard model, and which allows reuse of random-
ness. This, in itself, is an interesting open problem. However, if we settle for the
fully secure version of the Boneh and Franklin IBE scheme, then we can obtain
bandwidth and computational (point multiplication) savings by re-using the first
component in all IBE ciphertexts. Further improvements may be attainable by
re-using the same randomness in the PKE component as in [1].

Our constructions can be easily adapted to work with IBE and PKE schemes
extended to take labels as additional parameters, and bind them non-malleably



392 M. Barbosa and P. Farshim

to the ciphertext. This adaptation reduces to using the OTS verification key as
the label parameter. Potential benefits of this would arise from labelled IBE or
PKE schemes which achieve this functionality more efficiently than the direct
non-malleable labelling that we adopted in our constructions.

As a final note on efficiency, we look at the potential benefits of using a compu-
tational secret sharing scheme rather than a perfect secret sharing scheme. The
main advantage in this is to obtain share sizes which are smaller than the shared
secret, which is important when the secret is large. For example, the scheme in
[21] uses a perfect secret sharing scheme as an underlying component to split an
auxiliary secret key. This key is then used to encrypt the results of partitioning
the (large) secret using an information dispersal algorithm. This provides share
sizes which asymptotically approach the optimal |S|/n by detaching the size of
the (large) secret from the input to the perfect secret sharing scheme. In our case
this is an invalid argument, as the secrets we share are themselves secret keys.
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Abstract. This paper describes two identity based encryption (IBE)
protocols in the multi-receiver setting. The first protocol is secure in the
selective-ID model while the second protocol is secure in the full model.
The proofs do not depend on the random oracle heuristic. The main
interesting feature of both protocols is that the ciphertext size is |S|/N ,
where S is the intended set of receivers and N is a parameter of the
protocol. To the best of our knowledge, in the multi-receiver IBE setting,
these are the first protocols to achieve sub-linear ciphertext sizes. There
are three previous protocols for this problem – two using the random
oracle heuristic and one without. We make a detailed comparison to
these protocols and highlight the advantages of the new constructions.

Keywords: Multi-receiver encryption, identity based encryption,
bilinear pairing.

1 Introduction

In a multi-recipient public key encryption scheme [4,21,5] all users use a common
public key encryption system. Suppose there are n users indexed by 1, . . . , n; user
i having public and private key pair (pki, ski). A sender who wants to send mes-
sages M1, . . . , Mn to users 1, . . . , n, where Mi is intended for the user i, encrypts
Mi using pki and sends the resulting ciphertexts C1, . . . , Cn. This general setting
is referred to as multi-plaintext, multi-recipient public key encryption scheme in
the literature [21]. If a single message is encrypted, i.e., M1 = · · · = Mn = M ,
then we get a single-plaintext, multi-recipient public key encryption scheme.
In terms of functionality the later is same as a public key broadcast encryp-
tion [17,18].

Alternatively, one can send an encapsulated session key K to multiple parties,
whereas the original message M is encrypted through a symmetric encryption
scheme using K. In this case, the ciphertext consists of the encapsulation of K,

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 394–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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together with an encryption of M using K. Smart [24] considered this notion
of mKEM, i.e., an efficient key encapsulation mechanism for multiple parties in
the KEM-DEM philosophy.

In the identity-based setting [22,9], the public key corresponding to each user
is her/his identity. Given an identity v, a trusted private key generator (PKG)
creates the secret key corresponding to v using its own master secret. Now con-
sider the problem of encrypting the same message M for a large set of identities,
for example in a group mail. One can either directly encrypt M or use a key-
encapsulation mechanism. A trivial solution would be to encrypt (resp. encap-
sulate) M (resp. K) separately for each individual identities and then transmit
them separately. Let the set of identities be S. Then one has to perform |S|
many independent encryptions/encapsulation, where |S| denotes the cardinality
of S. This solution is clearly too expensive in terms of bandwidth requirement
as well as pairing computation.

Baek, Safavi-Naini and Susilo considered this problem in [1]. Along with a
formal definition and security model for MR-IBE, they proposed a construc-
tion based on the Boneh-Franklin IBE using bilinear pairing. This protocol was
proved secure in the selective-ID model using the random oracle heuristic. Inde-
pendent of this work, Barbosa and Farshim [2] proposed an identity-based key
encapsulation scheme for multiple parties. This is an extension of the concept
of mKEM of Smart [24] to the identity-based setting. Their construction was
inspired by the “OR” construction of Smart for access control [23] using bilinear
pairing. Security of this scheme also uses the random oracle heuristic, though
in the full model. A construction without using the random oracle heuristic has
been described in [14]. The construction is based on the Boneh-Boyen (H)IBE [6].

Our contribution: One common limitation of all the above protocols – be it
encryption or key encapsulation and whether they use the random oracle heuris-
tic or not – is that the ciphertext size becomes large as the set S of intended
recipients increase. For all three protocols, the ciphertext consists of approxi-
mately |S| many elements of an elliptic curve group of suitable order.

The context of the current work is based on the following scenario.

– The sender uses a broadcast channel for transmission. Each receiver picks
out the part relevant to him/her from the entire broadcast.

– Each recipient gets to know the entire set of receivers. In other words, each
receiver knows who are the other persons receiving the same message.

In a broadcast transmission, it is of interest to lower the amount of data to be
transmitted. Secondly, since each receiver gets to know the entire set of receivers,
this set has to be broadcast along with the message. Thus, the only way of
reducing the amount of transmission is by reducing the size of the ciphertext (or
the encapsulation of the secret key).

In this work, we concentrate on the problem of reducing the ciphertext size
in multi-receiver identity based key encapsulation (mID-KEM). We give con-
structions where the expected ciphertext size is a fraction of |S|. This, comes at
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a cost of increasing the private key size. In other words, what we achieve is a
controllable trade-off between the ciphertext size and the private key size.

Our first construction is proved secure in the selective-ID model while the
second construction is secure in the full model. Both the protocols are proved
to be secure without using the random oracle heuristic. Also, for both the proto-
cols, we first prove security against chosen plaintext attacks and then adapt the
techniques of Boyen-Mei-Waters [11] to attain CCA-security.

Our technique for constructing the mID-KEM is based on the constant size
ciphertext hierarchical identity based encryption (HIBE) protocol (BBG-HIBE)
in [8]. The algebraic ideas behind the construction are drawn from this work
though there are a few differences to be taken care of. Some of these are discussed
below. First, an mID-KEM does not require the key delegation property of a
HIBE. Though this is not directly required, the simulation of key-extraction
queries in the security proof has to use the techniques from [8]. Second, in a
HIBE an encryption is to an identity whose maximum length is equal to the
depth of the HIBE. In an mID-KEM, the set of users to which a key has to be
encapsulated can be large and has no relation to the public parameters of the
system. The third difference is that while the security of our protocol depends
on the hardness of the DBDHE problem introduced in [8], the security of the
BBG-HIBE itself can be based on the weaker problem wDBDHI∗ (see the full
version of [8] at the eprint server).

Due to lack of space, the proofs are omitted. These are available in the full
version of the paper at the eprint sever maintained by IACR.

2 Definitions

2.1 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups of same prime order p and G1 = 〈P 〉, where we
write G1 additively and G2 multiplicatively. A mapping e : G1 × G1 → G2 is
called a cryptographic bilinear map if it satisfies the following properties:

– Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry prop-
erty. Modified Weil pairing [9] and Tate pairing [3,19] are examples of crypto-
graphic bilinear maps where G1 is an elliptic curve group and G2 is a subgroup
of a finite field. This motivates our choice of the additive notation for G1 and
the multiplicative notation for G2. In papers on pairing implementation [3,19], it
is customary to write G1 additively and G2 multiplicatively. Initial “pure” pro-
tocol papers such as [9,20] followed this convention. Later works such as [6,7,25]
write both G1 and G2 multiplicatively. Here we follow the first convention as it
is closer to the known examples of bilinear maps.
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2.2 mID-KEM Protocol

Following [1,2], we define a multi-receiver Identity-Based Key Encapsulation
(mID-KEM) scheme as a set of four algorithms: Setup, Key Generation, Encap-
sulation and Decapsulation.

Setup: It takes input 1κ, where κ is a security parameter and returns the system
public parameters together with the master key. The system parameters include
a description of the groups G1, G2 and e(). These are publicly known while the
master key is known only to the private key generator (PKG).

Key Generation: It takes as input an identity v, the system public parameters
and returns a private key dv, using the master key. The identity v is used as a
public key while dv is the corresponding private key.

Encapsulation: It takes as input the public parameters and a set of identities
S and produces a pair (K, Hdr), where K is a key for a symmetric encryption
algorithm and Hdr is a header which encapsulates K. An actual message M is
encrypted by a symmetric encryption algorithm under K to obtain CM . The
actual broadcast consists of (S, Hdr, CM ), where (S, Hdr) is called the full header
and CM is called the broadcast body.

Decapsulation: It takes as input a pair (S, Hdr); an identity v and a private key
dv of v. If v ∈ S, then it returns the symmetric key K which was used to encrypt
the message. This K can be used to decrypt the broadcast body CM to obtain
the actual message M .

2.3 Hardness Assumption

Security of our mID-KEM scheme is based on the decisional bilinear Diffie-
Hellman exponent (DBDHE) problem introduced by Boneh-Boyen-Goh in [8].
The l-DBDHE problem is stated as follows.

Given P, Q, aP, . . . , al−1P, al+1P, . . . , a2lP for random a ∈ ZZp and Z ∈
G2, decide whether Z = e(P, Q)al

or whether Z is random.

Let B be a probabilistic algorithm which takes this instance as input and pro-
duces a bit as output. The advantage of B in solving this decision problem is
defined to be

AdvDBDHE
B = |Pr[B(P, Q,

−→
R, e(P, Q)al

) = 1]− Pr[B(P, Q,
−→
R, Z) = 1]|

where −→R = (aP, a2P, . . . al−1P, al+1P, . . . , a2lP ) and Z is a random element of
G2. The probability is calculated over the random choices of a ∈ ZZp, Z ∈ G2

and also the random bits used by B.
The (t, ε, l)-DBDHE assumption holds if AdvDBDHE

B ≤ ε for any algorithm B
for the l-DBDHE problem, where the runtime of B is at most t.
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2.4 Security Model of mID-KEM

We define indistinguishability under chosen ciphertext attack for multi-receiver
identity-based key encapsulation scheme. The adversarial behaviour is defined
by the following game between an adversary A and a simulator B.

A is allowed to query two oracles – a decryption oracle and a key-extraction
oracle. At the initiation, it is provided with the system public parameters.

Phase 1: A makes a finite number of queries where each query is addressed
either to the decryption oracle or to the key-extraction oracle. In a query to the
decryption oracle, it provides the full broadcast header as well as the identity
under which it wants the decryption. In return, the simulator B provides A with
either the corresponding symmetric key or bad. In a query to the key-extraction
oracle, it provides an identity and the corresponding private key is given to it by
the simulator B. A is allowed to make these queries adaptively, i.e., any query
may depend on the previous queries as well as their answers.

Challenge: At this stage, A fixes a set of identities S∗, under the (obvious)
constraint that it has not asked for the private key of any identity in S∗. The
simulator B generates a proper pair (K∗, Hdr∗) corresponding to the set of iden-
tities S∗ as defined by the encryption algorithm. It then chooses a random bit γ
and sets K0 = K∗ and sets K1 to be a random symmetric key of equal length.
B returns (Kγ , Hdr∗) to A.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious)
restriction that it cannot ask the decryption oracle for the decryption of Hdr∗

under any identity in S∗ nor the key-extraction oracle for the private key of any
identity in S∗.

Guess: A outputs a guess γ′ of γ.

Adversarial Advantage: The advantage of the adversaryA in attacking the mID-
KEM scheme is defined as:

AdvmID-KEM
A = |Pr[(γ = γ′)]− 1/2|.

The mID-KEM protocol is said to be (ε, t, qv, qC , σ)-secure against chosen
ciphertext attacks (IND-mID-CCA secure), if for any adversary running in time
t; making qv key-extraction queries; making qC decryption queries; and with
|S∗| ≤ σ, we have AdvmID-KEM

A ≤ ε.
We include the upper bound on the size of set of target identities S∗ as part

of the adversary’s resources. The set S∗ is the set of identities under which
the adversary wants the encryption in the challenge stage. Intuitively, increas-
ing the size of this set allows the possibility of the adversary receiving more
information.



Multi-receiver Identity-Based Key Encapsulation 399

2.5 Selective-ID Model

We can have a weaker version of the above model by restricting the adversary. In
this model, the adversary has to commit to the set of target identities S∗ even
before the protocol is set-up. During the actual game, it cannot ask the key-
extraction oracle for the private key of any identity in S∗ and in the challenge
stage the set S∗ is used to generate K∗.

Henceforth, we will call this restricted model the selective-ID (sID) model and
the unrestricted model to be the full model.

2.6 CPA Security

We may impose another restriction on the adversary, namely, we do not allow the
adversary access to the decryption oracle. This restriction can be made on both
the full and the sID models. One can define the advantage of such an adversary
in a manner similar to above.

As above, a mID-KEM protocol is said to be (ε, t, q, σ) IND-mID-CPA secure
if for any adversary running in time t; making q queries to the key-extraction
oracle; and with |S∗| ≤ σ, we have AdvmID-KEM

A ≤ ε.
In the identity based setting, there are generic methods [13,10] for transform-

ing a CPA-secure protocol into a CCA-secure protocol. Thus, one can simply
prove the CPA-security of a protocol and then apply known transformations to
obtain CCA-security. Recently [11], a non-generic method has been obtained for
transforming the CPA-secure protocols in [25,6] into CCA-secure protocols.

3 Construction of CPA-Secure mID-KEM in the sID
Model

Let, e(), G1, G2 be as defined in Section 2.1 and identities are assumed to be
elements of ZZ∗

p.

Setup: Let P be a generator of G1. Choose a random secret x ∈ ZZp and set
P1 = xP . Also choose random elements P2, P3 in G1 and a random vector−→
U = (U1, . . . , UN ) with entries in G1. The significance of the parameter N is
discussed later. The public parameters are

〈P, P1, P2, P3,
−→
U , H()〉

where H() is a publicly computable surjective function H : ZZ∗
p → {1, . . . , N}.

The master secret key is xP2.

Key Generation: Given any identity v ∈ ZZ∗
p, this algorithm generates the private

key dv of v as follows.
Compute k = H(v) ∈ {1, . . . , N}. Choose a random element r ∈ ZZp and

output

dv = (d0, d1, b1, . . . , bk−1, bk+1, . . . , bN)
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where d0 = (xP2 + r(P3 + vUk)); d1 = rP ; and for 1 ≤ i ≤ N , bi = rUi. Note
that bk is not part of the private key for any identity v, such that k = H(v). The
private key for any identity consists of (N + 1) elements of G1.

A Notation: For a set S of identities, we introduce the notation

V (S) = P3 +
∑
v∈S

vUH(v). (1)

The expression vUH(v) denotes the scalar multiplication of Uk by v, where k =
H(v). The use of this notation will simplify the description of the protocol.

Encapsulation: Let S be a set of identities for which we want to encapsulate a
session key K. We partition S into several subsets in the following manner.

Let H(S) = {j1, . . . , jk} be the set of distinct indices obtained by applying
H() to the elements of the set S. For 1 ≤ i ≤ k, let {si,1, . . . , si,τi} be the subset
of all elements in S which map to ji. Let τ = max1≤i≤k(τi). We view S as a
(possibly incomplete) k × τ matrix having entries si,j where 1 ≤ i ≤ k and
1 ≤ j ≤ τi. For 1 ≤ j ≤ τ , define the set Sj to be the jth column of this matrix.
Then S is a disjoint union of S1, . . . , Sτ and for all j, |Sj | = |H(Sj)|, i.e., H is
injective on Sj .

Choose a random s ∈ ZZp, compute K = e(P1, P2)s and then set the header as

Hdr = (sP, sV (S1), . . . , sV (Sτ )).

The header consists of τ + 1 elements of G1. The full header is the tuple
(S1, . . . , Sτ , Hdr), where K is used to obtain the broadcast body CM by encrypt-
ing the message M using symmetric encryption. The entire broadcast consists
of (S1, . . . , Sτ , Hdr, CM ).

Discussion
1. There is no security assumption on H(). We need H() to be surjective to

ensure that the entire set of public parameters are used. While there is
no security requirement on H(), we still expect the output of H() to be
uniformly distributed. The expected size of the header is equal to |S|/N
under this assumption. We would like to emphasize that H() is not assumed
to be a random oracle. In particular, this assumption is not used in the
security proof. Rather, this should be seen as the usual assumption on a
hash function used in data/file structure.

2. The parameter N in the protocol controls the trade-off between header size
and the size of the public parameters as well as the size of the private key.
For each i in the range {1, . . . , N}, there is a component of the public key
corresponding to this index i. Any identity is mapped to an index in the
range {1, . . . , N} using H() and the corresponding component of the public
key is used to obtain the component d0 of the private key of the identity. If
S is a random set of identities, then under the assumption that the output of
H() is uniformly distributed, the expected size of the header is 1 + �|S|/N�.
N still has another role – in the security reduction this is the maximum
number of identities that the adversary is allowed to target.
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Decapsulation: An individual user does not need the full header

(S1, . . . , Sτ , Hdr = (C0, C1, . . . , Cτ ))

for decapsulation. For a user with identity v, it is sufficient for him to obtain
(Sj , C0, Cj), such that v ∈ Sj . This can be easily picked out by the user from
the general broadcast of the full header. Note that by construction, for v, v̂ ∈ Sj

with v �= v̂, we have H(v) �= H(v̂), i.e., in other words H() is injective on Sj .
Thus, the input to the decapsulation algorithm is a tuple (̂v, S, C, D), where

v̂ ∈ S; H() is injective on S; C = sP and D = sV (S). The private key dv for v̂ is

dv = (d0, d1, b1, . . . , bk−1, bk+1, . . . , bN)

where k = H(v̂). Suppose that r was used during the generation of the private
key dv for v̂. Then d0 = xP2 + r(P3 + v̂UH(v), d1 = rP and bi = rUi. Compute

keyv = d0 +
∑

v∈S∧v�=v

(
vbH(v)

)
= xP2 + r(P3 + v̂UH(v)) + r

∑
v∈S∧v�=v

(
vUH(v)

)
= xP2 + r

(
P3 +

∑
v∈S

vUH(v)

)
.

It then obtains the session key K from the components C0, Cj of Hdr, keyv and
d1 as

e(keyv, C0)
e(Cj , d1)

=
e
(
xP2 + r(P3 +

∑
v∈S vUH(v)), sP

)
e
(
s(P3 +

∑
v∈S vUH(v)), rP

) = e(P1, P2)s.

In the above protocol, each identity is mapped to an index in the range
{1, . . . , N} using the function H(). Each index has an associated public pa-
rameter. While generating the private key for an identity, the identity itself as
well as the public parameter part corresponding to the index of this identity is
“mixed” to the master secret xP2, while the parts corresponding to all other
public parameters are provided individually to the users. In the case, where two
identities have the same index, the corresponding private keys will be differ-
ent. One reason for this is that the randomizers r will be different for the two
identities. More importantly, the first component of the private key depends on
the actual value of the identity and hence will be different for the two distinct
identities.

Now suppose that during encryption, an identity v in the broadcast set S
has an index i. Then as shown above, the entity possessing a private key cor-
responding to v can decrypt the message. On the other hand, suppose there is
an identity v′ /∈ S such that H(v) = i = H(v′). Then we must be assured that
possessing the private key of v′ does not allow decryption. Suppose that during
encryption v is assigned to set Sj . Then the (j + 1)th entry of the header is
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of the form s
∑

v∈Sj
Vv. In particular, this sum includes the value Vv. During

decryption, v constructs keyv = xP2 + r
∑

v∈Sj
Vv, where r was used to generate

the private key for v. Let S′
j = (Sj \ {v}) ∪ {v′}. Then v′ can compute the value

keyv′ = xP2 + r′
∑

v∈S′
j
Vv, where r′ was used to generate the private key for v′.

In general, there is no way to compute keyv from keyv′ .

Theorem 1. The mID-KEM protocol is (t, q, ε, N)-secure against chosen plain-
text attacks in the sID model under the assumption that (t+t′, ε′, N +1)-DBDHE
assumption holds for 〈G1, G2, e()〉, where ε ≤ ε′ and t′ is the time required for
O(q) scalar multiplications in G1 and O(N) multiplications in ZZp.

4 Construction of CPA-Secure mID-KEM in the Full
Model

We first discuss the modifications required in the construction of Section 3 to
make it secure against adaptive adversary. Here, identities are assumed to be
n-bit strings. Let � be a size parameter, 1 < � ≤ n, chosen a-priori.

Set-up: The public parameter consists of N vectors, each of length �. Let, −→P3 =
(P1, . . . , PN ) and U = (−→U1, . . . ,

−→
UN ), where −→Ui = (Ui,1, . . . , Ui,�) with each Pi

and each Ui,j in G1. So the public parameters are

〈P, P1, P2,
−→
P3,U , H()〉.

The function H : {0, 1}n → {1, . . . , N} is a surjective map whose role is as in
the protocol of Section 3.

A Notation: For any identity v = (v1, . . . , v�), where each vi is a bit string of
length n/�, we define

V (v) = P3,k +
∑�

j=1 vjUk,j where k = H(v);
V (S) =

∑
v∈S V (v) for any set S of identities.

}
(2)

When the context is clear we use Vv in place of V (v).
The parameters (N, n, �) control the configuration of the mID-KEM. Hence,

we will refer to the construction as (N, n, �) mID-KEM construction.

Key Generation: Given any identity v this algorithm generates the private key
dv of v as follows. Compute k = H(v) ∈ {1, . . . , N}. Choose a random element
r ∈ ZZp and output

dv = (d0, d1, a1, . . . , ak−1, ak+1, . . . , aN ,
−→
b1 , . . . ,

−−→
bk−1,

−−→
bk+1, . . . ,

−→
bN )

where d0 = (xP2 + rVv); d1 = rP ; and for 1 ≤ i ≤ N , ai = rP3,i;
−→
bi = r

−→
Ui.

Note that ak and −→bk are not part of the private key for any identity v, such that
k = H(v). The private key for any identity consists of N(�+1)− (�−1) elements
of G1.
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Encapsulation: Let S be the set of identities under which we want to perform
the encryption. Form the sets S1, . . . , Sτ based on the function H() as in the
encapsulation algorithm of the protocol in Section 3. Choose a random s ∈ ZZp.
The header consists of

Hdr = (sP, sV (S1), . . . , sV (Sτ )).

The full header is formed from Hdr as in Section 3.

Decapsulation: As in Section 3, a user with identity v̂ = (v̂1, . . . , v̂�) does not
require the full header for decapsulation. From the full header, the user forms
the tuple (v̂, S, sP, sV (S)). The user also has the private key dv corresponding
to v̂. Note that v̂ = (v̂1, . . . , v̂�) and suppose r was used to generate dv. Recall

that d0 = xP2 + r
(
P3,H(v) +

∑�
j=1 v̂jUH(v),j

)
. Compute

keyv = d0 +
∑

v∈S,v�=v

⎛⎝aH(v) +
�∑

j=1

vjUH(v),j

⎞⎠ .

It can be shown that keyv = xP2 + rV (S). Using keyv, it is possible to obtain
e(P1, P2)t as in Section 3.

The following theorem shows that the above scheme is secure against an adap-
tive adversary.

Theorem 2. The (N, n, �) mID-KEM protocol is (ε, t, q, h)-secure against cho-
sen plaintext attacks in the full model under the assumption that (t′, ε′, (N +1))-
DBDHE assumption holds, where

ε ≤ 2(2σ(μl + 1))hε′; and t′ = t + χ + O(ε−2 ln(ε−1)λ−1 ln(λ−1))

with μl = l((2n)1/l − 1), λ = 1/(2(2σ(μl + 1))h), σ = max(2q, 2n/�) and χ is
the time required for O(q) scalar multiplications in G1 and O(N) multiplications
in ZZp.

5 Security Against Chosen Ciphertext Attack

We adapt the technique of Boyen-Mei-Waters [11] for attaining CCA-security.
This technique applies to both the sID-secure and the full model secure protocols
giving rise to the following two protocols.

1. M1: A CCA-secure mID-KEM in the sID model.
2. M2: A CCA-secure mID-KEM in the full model.

Below we describe how to obtain M1 by modifying the construction in Section 3.
Essentially the same thing also holds for the full model secure protocol.

Set-Up: In addition to the set-up for the CPA-secure scheme, we choose a random
element W from G1. This W is part of the public parameters. There is also an
injective encoding H1 : G1 → ZZp.
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Key Generation: Remains same as before.

Encapsulation: In addition to what was provided earlier, one more element B is
provided as part of the header. This element is computed in the following manner.
Let the full header for the CPA-secure protocol be (S1, . . . , Sτ , sP, sA1, . . . , sAτ ).
Let ν = H1(sP ) and set B = s(νP2 + W ). The full header for the new protocol is

(S1, . . . , Sτ , sP, sA1, . . . , sAτ , B).

Note that one B is used for all the users, i.e., B is independent of the identity.

Decapsulation: The input to the decapsulation algorithm is a tuple (v, S, C =
sP, D = sA, B). The portion (v, S, sP, sA) was used as input to the decapsulation
algorithm for the CPA-secure protocol. The new entry is B. Compute A =
V (S) = P3 +

∑
v∈S vUH(v), ν = H1(C) and E = νP2 + W . The following public

verification checks are performed:

1. Does v ∈ S?
2. Is H injective on S?
3. Is e(P, D) = e(C, A)?
4. Is e(P, B) = e(C, E)?

If the answer to any of the above questions is no, then return bad. Otherwise,
obtain the encapsulated key as in the case of the CPA-secure algorithm.

6 Comparison

Here we make a comparison of M1 and M2 with the previous three protocols
proposed so far, i,e., BSS [1], BaFa [2] and CS [14] protocols.

We would like to note that the various protocols are based on different hard-
ness assumptions. Strictly speaking, a comparison between them is not possible.
The comparison we make assumes that all the hard problems are “equally hard”.
Under this assumption, one can perhaps make a meaningful comparison.

For the sake of uniformity we assume that the BSS protocol is used for key en-
capsulation and the header (Hdr) consists of only elements of G1. During decryp-
tion the symmetric key (K) is decapsulated from this header as in our construc-
tion of Section 3. The BSS protocol was proved secure in the sID model using the
random oracle assumption. This protocol is in a sense an extension of the Boneh-
Franklin IBE [9] to the multi-receiver setting. Here the public parameter consists
of three elements of G1, including the generator of the group. The private key cor-
responding to a given identity is generated using a map-to-point function modeled
as a random oracle and consists of a single element of G1.

The protocol of [14] is based on the Boneh-Boyen HIBE [6]. The protocol
is proved to be CPA-secure but can be made CCA-secure using a technique
similar to the one described in this paper (based on the Boyen-Mei-Waters [11]
construction). The protocol does not use the random oracle heuristic. Here the
public parameter consist of 4 + N elements of G1, where N is the number of
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target identities committed by the adversary [14]. The private key is similar to
that in the Boneh-Boyen scheme [6] and consists of two elements of G1.

In Table 1, we make a comparison between the public parameter size, private
key size and the header size for the three protocols. The public parameter size
and the private key size are smaller for the BSS protocol – that is because they
use a random oracle to generate the private key. For both CS as well as M1 the
public parameter is linear in N , where N is a parameter of the model and once
chosen is constant. Also, the private key size for the new construction is N , while
that for CS is only 2. The real advantage of the new protocol is in shortening
the header size. The header size for both BSS and CS protocols are |S|+ 1. In
contrast, the expected header size for the new protocol is �|S|/N�+ 1.

A typical value of N would be 16. For this value of N , the public parameter
of M1 consists of 19 elements (elliptic curve points) of G1 and the private key
consists of 16 elements of G1. Both these sizes are within acceptable limits. On
the other hand, a broadcast to a group of around 1000 users will consist of
around 60 elements of G1, which is also within reasonable limits. On the other
hand, for both the BSS and the CS protocols, the broadcast will consist of 1000
elements of G1, which can be prohitively costly. Thus, in certain situations, the
reduction in the size of the broadcast can be more significant than the increases
in the sizes of the public parameters and that of the private key.

Efficiency: Let us consider the efficiency of different operations (key generation,
encapsulation and decapsulation) for the various protocols. The efficiency of key
generation is proportional to the size of the private key for all the protocols.

Similarly, the decapsulation efficiency is proportional to the part of the full
header required by an individual user for decapsulation. For M1, this is N scalar
multiplications plus two pairing computations, while for the other protocols this
is only two pairing computations. The reason is that in attempting to reduce
the header size below |S|, we are grouping users during encapsulations. Thus,
during decapsulation, each user has to use the information about which of the
other groups have been grouped with it. Since each group has at most N users,
decapsulation requires at most N scalar multiplications.

The encapsulation efficiency for the BSS protocol is 1 + |S| scalar multiplica-
tions. On the other hand, the CS protocol requires N×|S| scalar multiplications.
Thus, the cost of removing the random oracle heuristic is a decrease in the ef-
ficiency of encapsulation. This cost is even more than the trivial protocol of
encrypting separately to all the identities in S using (say) the BB-IBE. The cost
in this case will be 2|S| scalar multiplications. However, the header size in this
trivial protocol is going to be 2|S|. If we want to reduce the header size to |S|
(and avoid the random oracle heuristic), then the CS protocol increases the cost
of encapsulation.

The encapsulation efficiency for M1 is approximately |S|(N + 1)/N . For
N > 1, this value is less than 2|S| and hence our protocol is more efficient
than the trivial protocol. On the other hand, it is less efficient than the BSS
protocol. Thus, compared to the BSS protocol, our contribution is to decrease
the header size and avoid the random oracle heuristic.
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Table 1. Comparison of mID-KEM protocols secure in the selective-ID model. Here S
is the set of identities to which the encapsulation is formed.

Protocol Hardness Random Pub. Para. size Pvt. Key size Header size
Assumption Oracle (elts. of G1) (elts. of G1) (elts. of G1)

BSS [1] DBDH Yes 3 1 |S| + 1

CS [14] DBDH No 4 + N 2 |S| + 1

M1 DBDHE No 3 + N N �|S|/N� + 1

Table 2. Comparison of mID-KEM protocols secure in the full model. The security
degradation of both protocols is exponential in N , which is the number of attacked
users. Here S is the set of identities to which the encapsulation is formed.

Protocol Hardness Random Pub. Para. size Pvt. Key size Header size
Assumption Oracle (elts. of G1) (elts. of G1) (elts. of G1)

BaFa [2] GBDH Yes 2 1 |S| + 2

M2 DBDHE No 3 + N + N	 N(	 + 1) − (	 − 1) �|S|/N� + 1

Full Model Secure Protocols: The comparison of the full model secure protocols is
given in Table 2. The security of the BaFa protocol was proved in the full model
using the random oracle heuristic assuming the hardness of gap bilinear Diffie-
Hellman problem. The system suffers from an exponential security degradation
which is around qN , where q is the number of random oracle queries and N
is the number of target identities. The construction of Section 4 is also secure
in the full model but without using the random oracle heuristic. The security
degradation is again qN . The large security degradation of both these protocols
imply that these protocols are not really useful when N is around 10 or so.
Thus, our contribution in the full model is really to show that it is possible to
obtain security without using random oracle and simultaneously obtain sublinear
header size.

7 Conclusion

We present two protocols for multi-receiver identity-based key encapsulation
system. The first protocol is secure in the selective-ID model while the second
protocol is secure in the full model. The security proofs do not use the ran-
dom oracle heuristic and are based on the hardness of decisional bilinear Diffie-
Hellman exponentiation problem. The main advantage of the new protocols over
the previous ones is that for encryption to a set S of users, the header size in
the new protocols is sub-linear in |S|, whereas for the previous protocols this is
approximately |S|.

Acknowledgement. We would like to thank the reviewers for their comments and
for pointing out several typos.
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Abstract. In this paper, we apply the parallel key-insulation mech-
anism to identity-based encryption (IBE) scenarios, and minimize the
damage caused by key-exposure in IBE systems. We first formalize the
definition and security notions for ID-based parallel key-insulated en-
cryption (IBPKIE) systems, and then propose an IBPKIE scheme based
on Water’s IBE scheme. To the best of our knowledge, this is the first
IBPKIE scheme up to now. Our scheme enjoys two attractive features:
(i) it is provably secure without random oracles; (ii) it not only allows
frequent key updating, but also does not increase the risk of helper key-
exposure.

Keywords: Parallel Key-Insulation, Identity-Based Encryption, Key-
Exposure, Bilinear Pairings.

1 Introduction

1.1 Background and Previous Work

The traditional public key infrastructure involves complex construction of certi-
fication authority(CA), and requires expensive communication and computation
cost for certification verification. To relieve this burden, Shamir [27] introduced
an innovative concept called identity-based cryptography, where user’s public-
key is determined as his identity such as e-mail address and telephone num-
ber. The identity is a natural link to a user, hence it simplifies the certification
management in public key infrastructures. The first usable IBE schemes are in-
dependently proposed by Boneh and Franklin [3] and Cocks [12], followed by
many other elegant IBE schemes (see [2] for some of these). These classical IBE
schemes rely on the assumption that secret keys are kept perfectly secure. In
� Supported by the National Science Foundation of China under Grant Nos.60303026,

60403007, 60573030 and 60673077.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 409–423, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



410 J. Weng et al.

practice, however, it is easier for an adversary to obtain the secret key from a
naive user than to break the computational assumption on which the system is
based. With more and more cryptographic primitives are deployed on insecure
environments (e.g. mobile devices), the key-exposure problem becomes an ever-
greater threat. No matter how strong these IBE systems are, once the secret
keys are exposed, their security is entirely lost.

In conventional public key encryption scenarios, certificate revocation list
(CRL) can be utilized to revoke the public key in case of key-exposure. Users can
become aware of other users’ revoked keys by referring to the CRL. However,
straightforward implementation of CRL will not be the best solution to IBE
schemes. Remember that utilizing the CRL, the public key will also be renewed.
However, the public key in IBE system represents a user’s identity and is not
desired to be changed. One exemplification as shown in [22] is the application of
IBE systems in a mobile phone scenario, where the phone number represents a
user’s identity, and it will be simple and convenient for the mobile phone users to
identify and communicate with each other only by their phone numbers. Hence
renewing the phone number is not a practical solution.

To mitigate the damage caused by key-exposure, several key-evolving pro-
tocols have been studied. This mechanism includes forward security [1,5,8],
intrusion-resilience [24,13] and key-insulation [15,14]. The latter was introduced
by Dodis, Katz, Xu and Yung [15], followed by several elegant key-insulated
systems [7,14,11,26,19,22,25,20,29,21,16]. In this model, a physically-secure but
computationally-limited device, named base or helper, is involved. The full-
fledged secret key is divide into two parts: a helper key and an initial temporary
secret key. The former is stored in the helper while the latter is kept by the
user. The lifetime of the system is divided into discrete periods. The public key
is fixed for all the lifetime, while temporary secret key is updated periodically:
at the beginning of each period, the user obtains from the helper an update key
for the current period. By combining this update key with the temporary secret
key for the previous period, the user can derive the temporary secret key for the
current period. Cryptographic operations (such as signing and decryption) in a
given period only involve the corresponding temporary secret key in this period.
Exposure of the temporary secret keys at some periods will not enable an ad-
versary to derive temporary secret keys for the remaining periods. Thus there is
no need to change the public key, which is a desirable property for IBE systems.
Hanaoka, Hanaoka, Shikata and Imai [22] applied the key-insulation mechanism
to IBE system and proposed an ID-based hierarchical strongly key-insulated
encryption scheme which is secure in the random oracle model.

Hanaoka et al. [20] first noticed the following situations in public key-insulated
encryption (PKIE) schemes: when key-exposure occurs in key-insulated cryp-
tosystems, to alleviate the damage, temporary secret key has to be updated
at very short intervals; however, this will in turn increase the frequency of
helper’s connection to insecure environments and increase the risk of helper key-
exposure. Keep in mind that once the helper key is exposed, the PKIE scheme
will be broken if one of the temporary secret key is also exposed. Is it possible to
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increase the security of both temporary secret keys and helper key simultane-
ously? Hanaoka, Hanaoka and Imai [20] provided a very clever method named
parallel key-insulation to deal with this problem for PKIE sysems: based on
Boneh-Franklin’s IBE scheme [3], they proposed a parallel key-insulated pub-
lic key encryption scheme. Their scheme differs from the original key-insulated
model in that two distinct helpers are introduced and alternately used to update
the temporary secret keys. The two helper keys are independent of each other,
and they can successfully increase the security of users and helpers by allowing
for frequent key updates without increasing the risk of helper key-exposure. Since
it’s a worthwhile task to deal with the key-exposure problem in IBE scenarios,
a natural question is to construct an ID-based parallel key-insulated encryption
(IBPKIE) scheme. We notice that Hanaoka et al’s [20] PKIE scheme is secure
in the random oracle model. As pointed in [9], the security of a cryptographic
scheme in the random oracle model does not always imply its security of im-
plementation. Thus another natural question to construct an IBPKIE whose
security does not rely on the random oracle model.

1.2 Our Contributions

In this paper, we try to answers the aforementioned questions. We first formalize
the definition and security notions for IBPKIE systems, and then propose an
IBPKIE scheme which is provably secure without random oracles. To the best
of our knowledge, this is the firs IBPKIE scheme up to now. The proposed
scheme supports frequent key updates without increasing the risk of helper key-
exposure. This is an attractive advantage which the standard ID-based key-
insulated encryption scheme can not possess.

1.3 Organization

The rest of this paper is organized as follows. Section 2 gives an introduction to
bilinear pairings and related complexity assumptions. We formalize the definition
and security notions for IBPKIE in Section 3. A concrete IBPKIE scheme is
proposed in Section 4. Section 5 gives the security proof for our proposed scheme
and Section 6 concludes this paper.

2 Preliminaries

2.1 Bilinear Pairings

We first briefly review bilinear pairings. Let G1 and G2 be two cyclic mul-
tiplicative groups with the same prime order q. A bilinear pairing is a map
ê : G1 ×G1 → G2 with the following properties:

– Bilinearity: ∀u, v ∈ G1, ∀a, b ∈ Z∗
q , we have ê(ua, vb) = ê(u, v)ab;

– Non-degeneracy: there exist u, v ∈ G1 such that ê(u, v) �= 1G2 ;
– Computability: there exists an efficient algorithm to compute ê(u, v) for
∀u, v ∈ G1.
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As shown in [3], such non-degenerate admissible maps over cyclic groups can
be obtained from the Weil or Tate pairing over supersingular elliptic curves or
abelian varieties.

2.2 Decisional Bilinear Diffie-Hellman Assumption

We proceed to recall the definition of decisional bilinear Diffie-Hellman (DBDH)
assumption on which our scheme is based.

Definition 1. The DBDH problem in (G1, G2) is to distinguish the distribu-
tions (g, ga, gb, gc, ê(g, g)abc) ∈ G4

1 × G2 and (g, ga, gb, gc, ê(g, g)z) ∈ G4
1 × G2,

where a, b, c, z ∈R Z∗
q. For a probabilistic polynomial-time (PPT) adversary B,

we define his advantage against the DBDH problem in (G1, G2) as

AdvDBDH
B �

∣∣Pr
[
B(g, ga, gb, gc, ê(g, g)abc)=1

]
−Pr

[
B(g, ga, gb, gc, ê(g, g)z)=1

] ∣∣,
where the probability is taken over the random choice of a, b, c, z and the random
bits consumed by B.

Definition 2. We say the (t, ε)-DBDH assumption holds in (G1, G2) if no
t-time adversary has at least advantage ε in solving the DBDH problem.

3 Framework of IBPKIE

3.1 Syntax

An IBPKIE scheme Π consists of a tuple of six polynomial-time algorithms:

Setup (k, N): a probabilistic setup algorithm takes as input the security param-
eter k and (possibly) the total number of periods N . It returns a system
parameter param and a master key msk;

Extract (msk, param, ID): a probabilistic key extraction algorithm takes as in-
put msk, param and an identity ID. It returns this user’s initial temporary
secret key TSKID,0 and two helper keys (HKID,1, HKID,0);

UpdH (t, ID, HKID,i): a (possibly) probabilistic helper key update algorithm
which takes as input a period index t, a user’s identity ID and the i-th helper
key HKID,i. This algorithm, run by the i-th (here i = t mod 2) helper for
user ID, returns an update key UKID,t;

UpdT (t, ID, UKID,t, TSKID,t−1): a deterministic temporary secret key update
algorithm which takes as input the index t of the next period, a user’s identity
ID, the temporary secret key TSKID,t−1 and the update key UKID,t. It
returns the temporary secret key TSKID,t;

Encrypt (t, ID, m): a probabilistic encryption algorithm which takes as input a
period index t, an identity ID and a plaintext m. It returns a pair (t, C)
composed of the period t and a ciphertext C;

Decrypt ((t, C), TSKID,t): a deterministic decryption algorithm which takes as
input a ciphertext (t, C) and the matching temporary secret key TSKID,t.
It returns either a plaintext m or “⊥”.
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Consistency requires that for ∀t ∈ {1, · · · , N}, ∀m ∈ M, ∀ID ∈ {0, 1}∗,
Decrypt((t, C), TSKID,t) = m holds, where (t, C) = Encrypt(t, ID, m) and M
denotes the plaintext space.

3.2 Security Notions for IBPKIE

In this subsection, we formalize the security notions for IBPKIE schemes. This
is based on the security definitions in (parallel) key-insulated encryption [15,20]
and IBE systems [3].

Chosen-Ciphertext Security. We first consider the basic (i.e., non-stong)
key-insulation security for IBPKIE. On the one hand, as standard IBE systems,
the extract queries and decryption queries should be considered. On the other
hand, as traditional key-insulated encryption schemes, the temporary secret key
exposure should be addressed. Moreover, we provide the helper key queries for
the adversary: we allow him to compromise all the helper keys for the non-
challenged identities, and even allow him to compromise one of the helper keys for
the challenged identity. More precisely, the semantic security against an adaptive
chosen-ciphertext attack in the sense of key-insulation (IND-ID&KI-CCA) is
defined by the following game between an adversary A and a challenger C:

– Setup: The challenger C runs the Setup algorithm and gives adversary A
the resulting system parameter param, keeping the master key mst itself.

– Phase 1: A adaptively issues a set of queries as below:
• Extract query 〈ID〉: C runs algorithm Extract to generate the initial tem-

porary secret key TSKID,0 and the two helper keys (HKID,1, HKID,0).
C then sends (TSKID,0, (HKID,1, HKID,0)) to A.

• Helper key query 〈ID, j〉: C runs algorithm Extract to generate HKID,j

and sends it to A.
• Temporary secret key query 〈ID, t〉: C runs algorithm UpdT to obtain

TSKID,t and sends it to A.
• Decryption query 〈(t, C), ID〉 : C responds by running algorithm UpdT

to generate the temporary secret key TSKID,t. It then runs algorithm
Decrypt to decrypt the ciphertext (t, C) using TSKID,t and sends the
resulting plaintext to A.

– Challenge: Once A decides that Phase 1 is over, it outputs an identity ID∗,
a period index t∗ and two equal length plaintext m0, m1 ∈ M on which it
wishes to be challenged. C flips a random coin β ∈R {0, 1} and sets the
challenged ciphertext to C∗ = (t∗, Encrypt(t∗, ID∗, mβ)), which is sent to A.

– Phase 2:A adaptively issues queries as Phase 1, and C answers these queries
in the same way as Phase 1.

– Guess: Finally, A outputs a guess β′ ∈ {0, 1}. A wins the game if β′ = β
and the following conditions are satisfied:
• 〈ID∗〉 does not appear in extract queries;
• 〈ID∗, t∗〉 does not appear in temporary secret key queries;
• A can not issue both temporary secret key query 〈ID∗, t∗−1〉 and helper

key query 〈ID∗, t∗ mod 2〉;
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• A can not issue both temporary secret key query 〈ID∗, t∗+1〉 and helper
key query 〈ID∗, 1− t∗ mod 2〉;

• Both 〈ID∗, 1〉 and 〈ID∗, 0〉 do not simultaneously appear in helper key
queries.

• A can not issue decryption query on 〈(t∗, C∗), ID∗〉.

We refer to such an adversaryA as an IND-ID&-KI-CCA adversary. We define
A’s advantage in attacking scheme Π as AdvΠ

A �
∣∣Pr[β′ = β]− 1

2

∣∣.
Remark 1. For those non-challenged identities, the temporary secret key query
is of no help for adversary A, since he can derive any temporary secret key for
these identities by issuing extract query. Therefore, without loss of generality,
we require that in the above game, adversary A only issue temporary secret key
queries on the challenged identity.

Definition 3. We say that an IBPKIE scheme Π is (t, qe, qh, qt, qd, ε)-secure
if for any t-time IND-ID&KI-CCA adversary A who makes at most qe ex-
tract queries, qh helper key queries, qt temporary secret key queries and qd

decryption queries, we have that AdvΠ
A < ε. As shorthand, we say that Π is

(t, qe, qh, qt, qd, ε)-IND-ID&KI-CCA secure.

Chosen-Plaintext Security. As usual, we define chosen-plaintext security for
IBPKIE systems as in the preceding game, except that adversary A is disallowed
to issue any decryption query. The security notion is termed as IND-ID&KI-CPA.

Definition 4. We say that an IBPKIE system Π is (t, qe, qh, qt, ε)-IND-ID&KI-
CPA secure if Π is (t, qe, qh, qt, 0, ε)-IND-ID&KI-CCA secure.

Strong Key-Insulation. In [15,14], Dodis et al. introduced a notion named
strong key-insulation by addressing attacks that compromise the the helper (this
includes attacks by the helper itself, in case it is untrustworthy). They model
this attack by giving the helper key to the adversary, whereas the adversary is
prohibited to issue any temporary secret key query. Here we can also deal with
this attack in IBPKIE scenarios, and we name it by IND-ID&SKI-CCA. We
allow him to query both the two helper keys for any identity, even including the
challenged identity. However, as the strong key-insulated security in [15,14], the
adversary is disallowed to issue temporary secret key query on the challenged
identity for any period. Note that we allow the adversary to query temporary
secret key on any other identities for any period. Since these queries is implied
by the extract queries, we do not explicitly provide them for the adversary.
Concretely, the IND-ID&SKI-CCA security is defined by the following game
between an adversary A and a challenger C:

– Setup: The same as the IND-ID&KI-CCA game.
– Phase 1: Adversary A adaptively issues extract queries, helper key queries

and decryption queries. C responds to these queries in the same way as the
IND-ID&KI-CCA game.

– Challenge: The same as the IND-ID&KI-CCA game.
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– Phase 2: The same as in Phase 1.
– Guess: Eventually, A outputs a guess β′ ∈ {0, 1}. A wins the game if β′ = β

and the following two conditions are both satisfied:
• 〈ID∗〉 does not appear in extract queries;
• A can not issue decryption query on 〈(t∗, C∗), ID∗〉.

Similarly to Definition 3 and 4, we can define the notions of (t, qe, qh, qd, ε)-
IND-ID&SKI-CCA security and (t, qe, qh, ε)-IND-ID&SKI-CPA security.

Finally, as in [14], we address an adversary who compromises the user’s
storage while a key is being updated from TSKID,t−1 to TSKID,t, and we
call it a key-update exposure at (ID, t). When this occurs, the adversary gets
TSKID,t−1, UKID,t and TSKID,t (actually, the latter can be computed from
the formers). We say an IBKIS scheme has secure key-updates if a key-update
exposure at (ID, t) is of no more help to the adversary than compromising
TSKID,t−1 and TSKID,t.

Definition 5. An IBKIS scheme has secure key-updates if the view of any
adversary A making a key-update exposure at (ID, t) can be perfectly simulated
by an adversary A′ making temporary secret key queries on 〈ID, t − 1〉 and
〈ID, t〉.

4 Our Proposed Scheme

In this section, based on Water’s IBE scheme [28], we present an IBPKIE scheme.
Let G1 and G2 be two groups with prime order q of size k, g be a random

generator of G1, and ê be a bilinear map such that ê : G1×G1 → G2. Let H be
a collision-resistant hash function such that H : {0, 1}∗ → {0, 1}nu. Inspired by
the cryptographic applications of pseudo-random function (PRF) in [17], we also
use a PRF F such that given a k-bit seed s and a k-bit argument x, it outputs
a k-bit string Fs(x). The proposed IBPKIE scheme consists of the following six
algorithms:

Setup: Given a security parameter k, this algorithm works as follows:
1. Pick α ∈R Z∗

q , g2 ∈R G1 and define g1 = gα.
2. Choose u′ ∈R G1 and a vector U = (ui) with ui ∈R G1 for i = 1, · · · , nu.
3. For clarity, we define a function L such that for any set S ⊆ {1, · · · , nu},

L(S) = u′∏
i∈S ui.

4. Return the master key mst = gα
2 and the public parameters

param = (G1, G2, ê, q, g, g1, g2, u
′, U , H, F, L).

To make the notation easy to follow, hereafter, we use UID,t and U ′
ID to

denote the following sets for a given identity ID and a given period index t
as below.

UID,t =
{
i
∣∣S1[i] = 1, S1 = H(ID, t)

}
⊆ {1, · · · , nu},

U ′
ID =

{
j
∣∣S2[j] = 1, S2 = H(ID)

}
⊆ {1, · · · , nu}.
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Extract: Given an identity ID, the PKG constructs the private key as below:
1. Randomly choose two helper keys HKID,1, HKID,0 ∈R {0, 1}k. Com-

pute kID,−1 = FHKID,1 (−1‖ID), kID,0 = FHKID,0 (0‖ID). Note that if
the length of the input for F is less than k, we can add some “0”s as the
prefix to meet the length requirement.

2. Choose r ∈R Z∗
q , compute the initial temporary secret key TSKID,0 as(

gα
2 L(U ′

ID)rL (UID,−1)
kID,−1 L (UID,0)

kID,0 , gkID,−1 , gkID,0 , gr
)

. (1)

3. Return (TSKID,0, HKID,1, HKID,0).
UpdH: Given an identity ID and a period index t, the i-th (here i = t mod 2)

helper for ID acts as follows: compute kID,t−2 = FHKID,i (t−2‖ID), kID,t =
FHKID,i (t‖ID), define and return the update key as

UKID,t =
(

L(UID,t)kID,t

L(UID,t−2)kID,t−2
, gkID,t

)
.

UpdT: Given a period index t, an update key UKID,t and a temporary secret
key TSKID,t−1, user ID acts as follows:
1. Parse UKID,t as (ÛID,t, R̂ID,t), and TSKID,t−1 as (UID,t−1, RID,t−2,

RID,t−1, R).

2. Define and return TSKID,t as
(
UID,t−1 · ÛID,t, RID,t−1, R̂ID,t, R

)
.

Note that if we let i = t mod 2 and j = 1 − i, then the temporary secret
key TSKID,t is always set to(

gα
2 L(U ′

ID)rL (UID,t−1)
kID,t−1 L (UID,t)

kID,t , gkID,t−1 , gkID,t , gr
)

, (2)

where kID,t−1 = FHKID,j (t− 1‖ID), kID,t = FHKID,i (t‖ID).
Encrypt: In period t, a message m ∈ G1 is encrypted for an identity ID as

follows: choose s ∈R Z∗
q and then define the ciphertext as

C =
(
t, ê(g1, g2)s ·m, gs, L(U ′

ID)s, L(UID,t−1)s, L(UID,t)s
)
. (3)

Decrypt: Given a ciphertext C = (t, C1, C2, C3, C4, C5) for the identity ID, C
can be decrypted by TSKID,t = (UID,t, RID,t−1, RID,t, R) as

m = C1
ê(R, C3)ê(RID,t−1, C4)ê(RID,t, C5)

ê(UID,t, C2)
.

It is easy to see that the above scheme satisfies the correctness requirement.

5 Security Analysis

To support our scheme, in this section, we will show how to achieve the provable
security for our scheme in the standard model.
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5.1 Chosen Plaintext Security

Theorem 1. The proposed IBPKIE scheme is (T, qe, qh, qt, ε)-IND-ID&KI-CPA
secure in the standard model, assuming the (T ′, ε′)-DBDH assumption holds in
(G1, G2) with

T ′ ≤ T +O
(
(qe + qt)(te + nutm)

)
, ε′ ≥ 9ε

512(qe + qt)3(nu + 1)3
,

where te and tm denote the running time of an exponentiation and a multiplica-
tion in group G1 respectively.

Proof. Suppose there exist a (T, qe, qh, qt, ε)-IND-ID&-KI-CPA adversary against
our scheme, we can construct a (T ′, ε′)-adversaryB against the DBDH assumption
in (G1, G2). On input (g, ga, gb, gc, h) ∈ G4

1 × G2 for some unknown a, b, c ∈R Z∗
q ,

B’s goal is to decide whether h = ê(g, g)abc. B flips a fair coin COIN ∈ {1, 2}. B
plays Game 1 withA if COIN = 1 and else Game 2.

Game 1: In this game, B acts as a challenger expecting that A will never corrupt
the helper key on the challenged identity. B interacts with A as follows:
Setup: B constructs the public parameters for A in the following way:

1. Set lu = 4(qe+qt)
3 , randomly choose an integer ku with 0 ≤ ku ≤ nu.

We assume that lu(nu + 1) < q.
2. Randomly choose the following integers:

x′ ∈R Zlu , y′ ∈R Zq,
x̂i ∈R Zlu , for i = 1, · · · , nu. Let X̂ = {x̂i}.
ŷi ∈R Zq, for i = 1, · · · , nu. Let Ŷ = {ŷi}.

3. Construct a set of public parameters as below:

g1 = ga, g2 = gb, u′ = gx′−luku
2 gy′

,

U = (ûi) with ûi = gx̂i
2 gŷi for i = 1, · · · , nu.

All these public parameters are passed to A.
Observe that from the perspective of the adversary, the distribution of
these public parameters are identical to the real construction. Note that
the master key is implicitly set to be gα

2 = ga
2 = gab.

To make the notation easy to follow, we also define two functions J and
K such that for any set S ⊆ {1, · · · , nu}, K(S) = x′ − luku +

∑
i∈S x̂i,

J(S) = y′+
∑

i∈S ŷi. Note that for any set S ⊆ {1, · · · , nu}, the following
equality always holds:

g
K(S)
2 gJ(S) = L(S).

Before giving the oracles simulation, we point out that some implicit re-
lations exist in our scheme: (i) according to Equ. (1) and (2), as for
a given identity, his initial temporary secret key and all the tempo-
rary secret keys share the same exponent r; (ii) all the temporary se-
cret keys for a given user ID are mutually dependent on one another,
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i.e., TSKID,t−1 and TSKID,t share the same exponent kID,t−1, while
TSKID,t and TSKID,t+1 share the same exponent kID,t+1. To embody
these relations in the simulation, B forms a list named Rlist as explained
below. For easy explanation, an algorithm named RQuery is also defined.
Algorithm RQuery(ID, t):
Begin

If there exists a tuple in Rlist for this input
then output the predefined value.

Else if t =′ −′ then
choose r̂ ∈R Z∗

q , add (ID,′−′, r̂) on Rlist, return r̂.
Else

choose k̂ID,t ∈R Z∗
q , add (ID, t, k̂ID,t) on Rlist, return k̂ID,t.

End if
End if

End.
Phase 1: B answers a series of queries for A in the following way:

– Helper key queries. B maintains a list HK list which is initially empty.
Upon receiving a helper key query 〈ID, i〉 with i ∈ {1, 0}. B first
checks whether HK list contains a tuple (ID, i, HKID,i). If it does,
HKID,i is returned to A. Otherwise, B chooses HKID,i ∈R Z∗

q , adds
(ID, i, HKID,i) on HK list and returns HKID,i to A.

– Extract queries. Upon receiving an extract query for identity ID,
B outputs “failure” and aborts if K(U ′

ID) ≡ 0 mod q (denote this
event by E1). Otherwise, B acts as follows:
1. Issue helper key queries on 〈ID, 1〉 and 〈ID, 0〉 to obtain HKID,1

and HKID,0.
2. Compute r̂ = RQuery(ID,′−′) and define the initial temporary

secret key TSKID,0 as

g

−J(U′
ID)

K(U′
ID

)
1 L(U ′

ID)
r̂
L(UID,−1)

kID,−1 L(UID,0)
kID,0 , g

kID,−1 , g
kID,0 , g

−1
K(U′

ID
)

1 g
r̂

,

where kID,−1 = FHKID,1 (−1‖ID) and kID,0 = FHKID,0 (0‖ID).
3. Return (TSKID,0, HKID,1, HKID,0) to A.

Observe that if let r = r̂ − a
K(U ′

ID) , then it can be verified that
TSKID,0 has the correct form as Equ. (1).

– Temporary secret key queries. As argued in Remark 1, we require
that A just issue temporary secret key queries for the challenged
identity. To maintain the mutually dependent relation among all the
temporary secret keys for a given user, we do not make use of the
case L(UID,t′) �≡ 0 mod q for an odd t′, where t′ is equal to either
t or t − 1 (note that not making use of an even t′ can be handled
similarly). Concretely, upon receiving a temporary secret key query
〈ID, t〉 (wlog, we assume t is even, since an odd t can be handled
in a similar manner), B outputs “failure” and aborts if L(U ′

ID) ≡
L(UID,t) ≡ 0 mod q holds (denote this event by E2). Otherwise,
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B first computes r̂ = RQuery(ID,′−′), k̂ID,t−1 = RQuery(ID, t− 1),
k̂ID,t = RQuery(ID, t), and then constructs the temporary secret key
TSKID,t for A according to the following tow cases: if L(U ′

ID) �≡ 0
mod q, define TSKID,t as

g
−J(U′

ID )

K(U′
ID

)
1 L(U ′

ID)
r̂
L(UID,t−1)

k̂ID,t−1 L(UID,t)
k̂ID,t , gk̂ID,t−1 , gk̂ID,t , g

−1
K(U′

ID
)

1 g
r̂

,

otherwise, i.e.,
(
L(U ′

ID) ≡ 0 mod q
)
∧
(
L(UID,t) �≡ 0 mod q

)
, define

TSKID,t as

g
−J(UID,t)

K(UID,t)
1 L(U ′

ID)r̂L(UID,t−1)k̂ID,t−1L(UID,t)
k̂ID,t , gk̂ID,t−1 , g

−1
K(UID,t)
1 gk̂ID,t , gr̂ .

Observe that in both cases, TSKID,t has the correct form as Equ. (2).
Moreover, the aforementioned relations are also satisfied. Note that
since F is a PRF and adversary A does not know the corresponding
seeds HKID,1 and HKID,0, the exponents kID,t−1 and kID,t are
indistinguishable from the real construction in A’s view.

Challenge: Once A decides that Phase 1 is over, he outputs an identity
ID∗, a period index t∗ and two equal-length messages m0, m1 ∈ G1

on which it wishes to be challenged. B outputs “failure” and aborts if
L(U ′

ID∗) ≡ L(UID∗,t∗−1) ≡ L(UID∗,t∗) ≡ 0 mod q does not holds (de-
note this event by E3). Otherwise, B picks a random bit β ∈ {0, 1} and
responds with the challenged ciphertext

C∗ =
(
t∗, h ·mβ, gc, (gc)J(U ′

ID∗ ), (gc)J(UID∗,t∗−1), (gc)J(UID∗,t∗ )
)

.

Note that if h = ê(g, g)abc, then we can see that C∗ is indeed a valid
challenged ciphertext for A due to the following equalities:

h = ê(g1, g2)c, (gc)J(U ′
ID∗ ) = L(U ′

ID∗)c,

(gc)J(UID∗,t∗−1) = L(UID∗,t∗−1)c, (gc)J(UID∗,t∗ ) = L(UID∗,t∗)c.

On the other hand, if h is uniform and independent in G1, then C∗ is
independent of β in adversary A’s view.

Phase 2: A issues the rest of queries as in Phase 1 with the restriction
described in Section 3.2. B responds to these queries for A in the same
way as Phase 1.

Guess: Eventually, A outputs a guess β′ ∈ {0, 1}. B first checks whether
A has corrupted one of ID∗’s helper keys during this game. If it does,
B outputs “failure” and aborts (denote this event by E4). Otherwise, B
concludes its own game by outputting a guess as follows: if β′ = β then
B outputs 1 meaning h = ê(g, g)abc; otherwise, it outputs 0 meaning that
h is a random element in G2.
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Game 2: In this game, B acts as a challenger expecting that A will corrupt
exactly one of the helper keys on the challenged identity. B picks γ ∈R {1, 0}
and bets on that A queries on the γ-th helper. Wlog, we assume γ = 1
(the case of γ = 0 can be handled in a similar manner). Note that for
the challenged identity ID and a period index t, A has no information on
the exponent kID,t since he does not know HKID,0. Algorithm RQuery is
defined as in Game1. B conducts the phases of Setup, helper key queries,
extract queries and Challenge for A in the same way as Game 1. Here we
let F1 and F3 denote the abort events in extract queries and Challenge
respectively. B answers the temporary secret key queries for A as follows:
– Temporary secret key queries: As in Game 1, we also assume that A

just issues temporary secret key queries for the challenged identity. For
a temporary secret key query 〈ID, t〉, we explain how to deal with the
case of an odd t (the case of an even t can be handled in a similar
manner). Note that A can not compute kID,t−1 since he does not know
HKID,0. B outputs “failure” and aborts if L(U ′

ID) ≡ L(UID,t−1) ≡ 0
mod q holds (denote this event by F2). Otherwise, B first computes r̂ =
RQuery(ID,′−′), k̂ID,t−1 = RQuery(ID, t − 1), kID,t = FHKID,1 (t‖ID),
and then constructs the temporary secret key TSKID,t for A according
to two cases: if L(U ′

ID) �≡ 0 mod q, define TSKID,t as

g
− J(U′

ID)
K(U′

ID
)

1 L(U ′
ID)r̂L(UID,t−1)

k̂ID,t−1 L(UID,t)
kID,t , gk̂ID,t−1 , gkID,t , g

−1
K(U′

ID
)

1 gr̂ ,

otherwise, define and TSKID,t as

g
−J(UID,t−1)

K(UID,t−1)
1 L(U ′

ID)r̂L(UID,t−1)
k̂ID,t−1 L(UID,t)

kID,t , g

−1
K(UID,t−1)
1 gk̂ID,t−1 , gkID,t , gr̂ .

It can be verified that in both cases, TSKID,t has the correct form as
Equ. (2).

Guess: Eventually, A outputs a guess β′ ∈ {0, 1}. B first checks whether
A has corrupted HKID∗,1 during this game. If not, B outputs “failure”
and aborts (denote this event by F4). Otherwise, B concludes its own
game by outputting 0 or 1 in the same way as Game1.

This completes the simulation. From the description of B, we know that the
time complexity of B is dominated by the exponentiations and the multiplications
in the extract queries and temporary secret key queries. Since there are O(1)
exponentiations and O(nu) multiplications in each stages, we known that the
time complexity of B is bounded by T ′ ≤ T +O

(
(qe + qt)(te + nutm)

)
.

We can also bound B’s advantage against the DBDH assumption in (G1, G2)

by ε′ ≥ 9ε

512(qe + qt)3(nu + 1)3
. Due to the space limit, we do not provide the

details here.
This completes the proof of the theorem. 	
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Our IBPKIE scheme aslo provides strong key-insulated security. Concretely, we
have the following theorem.

Theorem 2. The proposed scheme is (T, qe, qh, ε)-IND-ID&SKI-CPA secure in
the standard model, assuming the (T ′, ε′)-DBDH assumption holds in (G1, G2)
with

T ′ ≤ T +O
(
qe(te + nutm)

)
, ε′ ≥ 9

512q3
e(nu + 1)3

,

where te and tm denote the same meanings as Theorem 1.

Proof. (Sketch) On input (g, ga, gb, gc, h) ∈ G4
1×G2 for some unknown a, b, c ∈R

Z∗
q , B’s goal is to decide whether h = ê(g, g)abc. B interacts with A as follows:

Setup: The same as Game 1 in Theorem 1 except that lu is set to be lu = 4qe

3 .
Phase 1: B answers the helper key queries and extract queries for A in the

same way as Game 1 in Theorem 1. Note that A is allowed to query all the
challenged identity’s helper keys, whereas the temporary secret key queries
are no longer provided for A.

Challenge: The same as Theorem 1.
Phase 2: B answers the helper key queries and extract queries for A as in Phase

1 with the restriction described in Section 3.2.
Guess: Eventually, A outputs a guess β′ ∈ {0, 1}. B outputs 1 if β′ = β and 0

otherwise.

We can bound the time complexity of B by T ′ ≤ T + O
(
qe(te + nutm)

)
and

the advantage of B by ε′ ≥ 9ε

512q3
e(nu + 1)3

. 	


Theorem 3. The proposed IBPKIE scheme has secure key-updates.

This theorem follows from the fact that for any period index t and any identity
ID, the update key UKID,t can be derived from TSKID,t and TSKID,t−1.

5.2 On Achieving Chosen-Ciphertext Security

Recent results of Canetti et al. [10], further improved by [4,6], show how to
build a CCA-secure IBE scheme from a 2-level HIBE scheme[18,23]. Similarly
to Water’s IBE scheme, we can also transform the scheme in Section 4 into
a hybrid 2-level HIBE, and then get an IND-ID&KI-CCA(IND-ID&SKI-CCA)
secure IBKIE scheme.

6 Conclusion

Classical IBE schemes rely on the assumption that secret keys are kept per-
fectly secure. In practice, however, key-exposure seems inevitable. No matter
how strong these IBE systems are, once the secret keys are exposed, their secu-
rity is entirely lost. Thus it’s a worthwhile task to deal with the key-exposure
problem in IBE systems.
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In this paper, we have applied the parallel key-insulation mechanism to IBE
scenario and minimized the damage caused by key-exposure in IBE systems. We
propose an IBPKIE scheme which is provably secure without resorting to the
random oracle methodology. This is a desirable property since a proof in the
random oracle model can only serve as a heuristic argument and can not imply
the security in the implementation. The proposed scheme can allow frequent key
updates without increasing the risk of helper key-exposure. This is an attractive
advantage which the standard ID-based key-insulated encryption schemes can
not possess.
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Abstract. Information security on small, embedded devices has be-
come a necessity for high-speed business. ARM processors are the most
common for use in embedded devices. In this paper, we analyze speed
and memory tradeoffs of AES, the leading symmetric cipher, on an
ARM7TDMI processor. We give cycle counts as well as RAM and ROM
footprints for many implementation techniques. By analyzing the tech-
niques, we give the options we found which are the most useful for certain
purposes. We also introduce a new implementation of AES that saves
ROM by not explicitly storing all the SBOX data.

1 Introduction

Rijndael was selected as the Advanced Encryption Standard (AES) in 2001 by
the National Institute of Standards and Technology (NIST) for use in govern-
ment cryptographic purposes [1]. Before and after its adoption by the NIST,
Rijndael received much study in the area of optimization. Many papers give
software methods for optimizing certain portions of the algorithm. These papers
usually focus on only one part of the algorithm. However, real world implemen-
tations are often a trade-off between speed, program size, and memory available.
Rarely is one aspect fully optimized at the expense of the others.

ARM processors are the most common for embedded systems, with over 1
billion sold worldwide [6]. Their use in applications like digital radios and PDAs
capable of electronic funds transfers has necessitated software implementations
of AES for the ARM core.

The contribution of this paper is a detailed study of software optimization
options of the Rijndael cipher on ARM processors. Previous work has focused on
specific ideas for limited resource environments. We bring together the previous
methods and some new ideas to give accurate timings and memory calculations
for the AES cipher. Our work covers the key setup and encryption/decryption
of AES with all three key sizes approved by the NIST. This paper focuses on
the 128-bit key size, but the methods extend in a natural way.
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The rest of the paper has the following format. In section 2, we give a
short description of AES and set some notation. In section 3, we describe the
ARM7TDMI and the diagnostic tools we used to test our implementations. In
section 4, we discuss options for the key expansion of AES. In section 5, we
give code optimizations for the actual encryption and decryption. Section 6 de-
tails some results from combining various implementation tricks. In section 7,
we summarize our results.

2 Description of AES

A full description of AES is included in [4], and we will maintain the same
notation. AES is a 128-bit block cipher with 128-, 192-, or 256- bit keys. The
data is operated on as a 16-byte state, which is thought of as four 32-bit column
vectors. The number of rounds (Nr) is 10, 12, and 14 for the three respective
key sizes (128, 192, and 256). The cipher starts with an XOR of the first 128
bits of the key with the plaintext. Then there are Nr - 1 rounds consisting of
four parts: the S-BOX substitution, a byte permutation, a MixCol operation
that operates on the state as four separate four-byte column vectors, and a key
addition (XOR). The final round has no MixCol part. The MixCol operation
is multiplication by a constant fourbyte vector, as described in [4]. The key for
each round is determined by transformations of the key for the previous round,
with the first key being the cipher key. Each part of a round is invertible. We
shall denote the inverse of the MixCol operation as InvMixCol.

AES was designed to give excellent performance on many platforms. In partic-
ular, the cipher performs well on 32-bit platforms such as the ARM. The state and
key can be implemented as an integer number of 32-bit variables. The key addition
is a straightforward XOR with the state. The SBOX substitution has an algebraic
description, but implementing it is more efficient in time and space when using a
table with 256 one-byte entries. The byte permutation can be implemented when
performing the S-BOX. As noted in [3], the best method for optimizing the algo-
rithm lies in the implementation of the MixCol and InvMixCol operations.

3 ARM Information

The ARM processor family, created in 1985, has established itself as the leading
embedded systems processor. The processors use RISC (Reduced Instruction Set
Computer) architecture design philosophy. Due to the constrained environments
the processors are used in, the processors have little power consumption and a
high code density.

We tested all of our implementations for the ARM7TDMI. This processor is
one of the most popular ARM designs, used mainly in mobile embedded sys-
tems such as cell phones, pagers, and mp3 players. The processor has a three
stage pipeline. It uses a Von Neumann architecture design, so the data and the
instructions use the same bus. This ARM core is particularly low power, using
just .06 mW/Mhz. The lower power usage is partly due to the fact there is no
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cache, which can sacrifice performance. The use of encryption in cellular tech-
nology and Digital Rights Management (DRM) issues for mobile media players
necessitates efficient encryption on the ARM7TDMI.

To give memory and cycles usage, we used a program provided by ARM Ltd.
called ARMulator [7]. The software can provide ROM footprints for each portion
of the program, even separating code and static variables. The software gives cy-
cle counts to calculate time requirements. To simulate a real world environment,
we started counting cycles before a call to the function performing the desired
operation, such as encryption, decryption, or a key setup. We stopped count-
ing cycles after the function was exited. For RAM measurements, we needed
to include all data that was rewritable in the program, as well as the stack
and heap. The ARMulator provides RAM measurements for the dynamic vari-
ables. The stack was measured by initializing the stack space to the constant
value 0xcc. Then, after the program completed, the stack space was checked
to find the position of the first byte not equal to 0xcc. The heap was treated
similarly.

4 Key Scheduling

As with most block ciphers, the key for each round can be computed and stored be-
fore the cipher is performed on a specific plaintext. This section details the meth-
ods for computing the key schedule. Later, we shall give methods that compute
the key for a particular round when it is needed to save on storage costs.

4.1 Large Decryption Tables

The key for each round is a function of the key from the previous round. When
using large decryption tables, most of the key expansion will need to be operated
on by InvMixCol, for ease in the actual decryption code. These operations can be
calculated on one 32-bit word per iteration of the loop. The best way to perform
the InvMixCol is a lookup to the SBOX table followed by a lookup to the full
decryption table. This method is superior to the standard method given in [4] in
both speed and code size, as shown in Table 1. We use this method for all code
versions with the large decryption table.

Table 1. Cost of InvMixCol Methods for Dec. Key Expansion

Method Cycles ROM

Table Lookups 58 176

Standard 60 240
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4.2 Loops in Key Expansion

When calculating the key expansion, we found the most compact option was to
have one rounds key computed in each iteration of a loop. It is possible to unroll
this loop to lower the cycle cost, but the code size is drastically larger. Given
the large gains in ROM compared to the small cost in cycles, and the fact that
the key expansion is usually performed once for many encryptions/decryptions,
we suggest using a loop to perform the key expansion for most applications. All
of our future comparisons that use a key expansion will assume that the key
expansion was performed using a loop. The results for various key expansion
options are given in Table 2.

Table 2. Effects of Loops on Key Expansion Stage

Type of Key Expansion Loop Cycles ROM

Encryption Yes 628 176

Encryption No 442 900

Decryption Yes 1903 144

Decryption No 1627 3688

5 Cipher Code Optimizations

In this section, we examine a number of potential techniques to provide trade-offs
between ROM, RAM, and/or cycle count. The general outline of each subsection
is to describe the technique and then provide a table showing how implementing
some of the techniques affect performance.

5.1 Using Pre-computed Tables

As noted in [4], the SBOX substitution has a nice algebraic description. For
implementation purposes, the SBOX and Inverse SBOX substitutions are best
performed by two 256-byte table lookups. In [4], the designers of Rijndael de-
scribe how each encryption round, except for the round key addition, can be
tabularized as well. The SBOX substitution followed by MixCol can be imple-
mented in four tables with 256 entries of 32 bits each, for a total of 4096 bytes of
storage. The four tables are simply rotations of each other, so in fact one table
can be used to save ROM, at the expense of extra rotations. The same method
can be used to tabularize the decryption, but the round keys must be altered by
the InvMixCol operation prior to use (see Equivalent Inverse Cipher in [1]).

As mentioned in section 3 and [6], the ARM processor allows registers to be
rotated by the barrel shifter prior to an operation. This makes the use of four tables
disadvantageous, as it uses more ROM and has no benefit in clock cycles. In fact,
we found that the use of tables added cycles to each implementation we tested.
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Table 3. Effects of Several Enc/Dec Tables vs. One Enc/Dec Table

Number of Tables Enc Cycles Dec Cycles ROM for Tables (Kb)

1 1197 1199 2

4 1281 1283 8

This is easily seen by using a public version of AES code by Gladman [7]. The
results of his code with one or four tables are shown in Table 3 for 128-bit keys.

The constant four-byte vector used in the MixCol operation has two 01 entries.
This means that two of the bytes in each entry of the encryption table are
precisely the same as the corresponding SBOX table entry. We propose using
only the encryption table, and rotating it as necessary to recover the SBOX
table. This will save 256 bytes for the SBOX table storage in ROM, with the
disadvantage of slightly more code and cycles for the rotations. As shown in
Table 4, the penalty in cycles for the proposed method is only 17 for encryption
and 50 for the key setup, while a net gain of 140 bytes is achieved in ROM. This
gain is identical for all three key sizes, since the SBOX is only used for the last
round of the cipher.

Table 4. Effects of the Proposed No-SBOX Method vs. Standard Method

Method Enc Cycles Enc Key Setup Cycles Total ROM

Standard 2094 628 3924

Proposed 2111 678 3784

5.2 Use of Loops

Since the cipher has (Nr -1) identical rounds, the use of a loop will save on ROM
footprint size. The costs are the extra variable on the stack as a counter for
the loop and the cycles to increment and check the counter. Partial unrolling
is also possible, where each iteration of the loop performs more than one round
of the cipher. We tried performing two and three rounds per iteration for the
128-bit key. Doing three rounds per iteration has the advantage that no check
is necessary to ensure the correct number of rounds is performed, since three
divides the number of total normal rounds (9).

5.3 Use of Functions

The use of functions has the potential to greatly reduce the code size of a pro-
gram. The cost will be in the possible increase of the stack and the cycles to
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Table 5. Effects of Different Loop Rolling on 128-bit AES

Loop Status Total Cycles Total ROM Total RAM

Unrolled Full 1994 6900 280

Unrolled Thrice 2052 4488 284

Unrolled Twice 2085 4068 284

pass variables and enter the function. Many portions of the cipher can be im-
plemented as functions. We tried implementing an entire round as a function
as well as several byte manipulations that occur frequently in the cipher. When
a function is used for a small task, such as selecting a particular byte out of a
32-bit word, the added code to enter and exit the function was too great to see
a benefit in code size. The performance was slowed also, making the technique
useless for improving the implementation. There was, however, a small gain in
ROM size when the macros to turn four bytes into a word were made into a
function (Table 6).

Table 6. Effects of Macros vs. Functions for Byte Manipulations

Method Total Cycles Total ROM Total RAM

Macros 2094 3604 284

Function 2149 3572 284

When the round was implemented as a function, the code was still larger than
when using a loop to run the rounds. Also, the performance was much worse than
simply using a loop. For this reason, we recommend not using functions for the
entire round.

5.4 Compact Versions

When ROM is the main constraint, using full encryption/decryption tables can
be undesirable due to their large size. To save the 2 kilobytes used by the tables,
an implementation can use tables for the SBOX and its inverse, while performing
the Mix-Col and InvMixCol in full. There is a significant cost in cycles, but in
constrained environments this can be necessary. Several techniques have been
given for speeding up the original methods given in [5], such as the ideas in
[2] and [3]. We have implemented the ideas from these papers and tested their
performance. Given the necessity in this environment for a small ROM footprint,
we used a loop for all the tests. Unrolling the loop would have resulted in a larger
ROM footprint and worse performance than using tables with a loop.
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An optimized version of the MixCol operation for ARM processors is given
in [2]. Since the MixCol operation acts independently on each byte, it is pos-
sible to make each round calculation a loop that executes four times, once for
each column of the state. Our results for the no encryption table option are
given in Table 7. Looping within the round saves 116 bytes of ROM, at a loss
of 1366 cycles. The decryption in the Table 7 options is done using the idea
from [3].

Table 7. Statistics for Options That Dont Use Encryption Tables

Loop within each Round Total Cycles Total ROM Total RAM

Yes 4981 2172 280

No 3615 2296 280

For the InvMixCol operation, [3] gives a method of transposing the state
matrix to make parallel calculations easier. There is an extra cost in cycles
and code for the key set up, as the key expansion must be transposed as well.
Also, there is more code in the decryption function to transpose the state array.
The benefit is in clock cycles for decryption. This method cannot be looped as
the original method can; because once the state is transposed the InvMixCol
operation no longer acts on columns independently.

Alternatively, the decryption round can be executed in a loop similar to the
encryption round loop. Our results for different decryption options are given in
Table 8. We designate as Loop 1 the method of within each round perform-
ing the InvMixCol and key addition inside a loop. We designate as Loop 2 the
method of performing the InvSBOX substitution as well in a loop. The encryp-
tion in Table 8 calculations is done using the method described in [2]. Since
the InvMixCol is so costly, we included the option of a full decryption table for
comparison.

Table 8. Statistics for Options That Dont Use Decryption Tables

Method Total Cycles Total ROM Total RAM

Transposed State 3615 2296 280

Loop 1 5119 2108 284

Loop 2 5542 1972 284

Full Dec. Table 2589 2800 284
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5.5 No Key Expansion

To save RAM, the key for each round can be computed during the encryption
and decryption, rather than before. This method is very costly in clock cycles
if the same key is used for consecutive encryptions or decryptions, as it repeats
operations for each encryption or decryption. The method also makes use of
decryption tables, since the key for each round must be transformed by the
InvMixCol operation before each use. Then the key must be transformed by the
MixCol operation so that it can be used to derive the next rounds key. We give
the statistics on the best options we found in Table 9.

Table 9. Statistics for Options That Dont Use Key Expansion

Full Enc Table Total Cycles Total ROM Total RAM

Yes 4763 3760 120

No 5760 3040 120

5.6 Table Generation

The tables used in AES can be generated rather than stored in ROM. The code
to generate these tables is surprisingly small, due to choice of SBOX and constant
polynomial for the MixCol operation. The downside, as illustrated by Table 10, is
a large cycle cost and RAM footprint. To store the complete tables takes just as
much memory in RAM as it would require storing the tables in ROM. In addition,
to generate the SBOX and Inverse SBOX, 512 bytes of temporary storage are
needed. The SBOX and Inverse SBOX can be generated simultaneously. Due to
the large overhead in cycles, generating the tables should only be done when a
significant number of encryptions/decryptions are needed and ROM is the main
limiting factor. The following table shows only the cycles, ROM, and RAM
required for the table generation, so it would be an upfront one-time cost to the
results given previously using various tables, minus the ROM cost of the tables
themselves.

Table 10. Statistics for Generating the Tables

Table Type Total Cycles Total ROM Total RAM

SBOX + Inv. SBOX 12528 216 1024

Full Enc. Table 2271 116 1024

Full Dec. Table 14091 232 1024
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6 Combining Techniques

Many of the various techniques described in this paper can be combined to form
a single version. Doing so gives various cost trade-offs between the three critical
counts (cycles, ROM, and RAM). Actually, a fourth trade-off occurs, too, as
some implementations will perform a single encryption and/or decryption faster
than another but fall behind for bulk encryption/decryption.

Some versions are clearly better than others, too. We provide two of the more
interesting examples. One possible implementation is to not have an SBOX (us-
ing the large encryption table for that), partially unroll the round loop (two
rounds/loop iteration), and to use one large table each for encryption and de-
cryption with a rolled key schedule (SRTxP in Table 11). This program uses
4228 bytes of ROM, takes 4863 cycles for key set-up, plus one encryption, and
one decryption, and uses 284 bytes of RAM. However, including the SBOX but
leaving the round tightly looped (SRTSN) only uses 3924 bytes of ROM, 4625
cycles, and 284 bytes of RAM, so it is clearly a superior option.

A second example shows a bit more subtlety. A program which unrolls both
loops during key expansion but keeps only puts two rounds per loop in encryp-
tion/decryption (SBTSP) only requires 8192 bytes of ROM, 284 bytes of RAM,
and 4163 cycles for a single set-up, plus encrypt and decrypt. A similar program
which unrolls the decryption portion of the key scheduling and puts three rounds
in each loop (SDTST) requires 8332 bytes of ROM, 284 bytes of RAM, and 4307
cycles for a single set-up, encrypt, decrypt trio. However, the second program is
fasterfor repeated operations, so that 10 encryptions/decryptions take the first
23009 cycles but the second only 22775. Thus, no conclusion of pure superiority
of one against the other can be made.

7 Conclusions and Future Work

This work identified many options available to implement AES on an ARM7TDMI
processor. We have shown the actual cost of the various tradeoffs available to the
programmer. It has been shown that for relatively small losses in the time for en-
cryption, significant gains in ROM size can be achieved. Additionally, larger gains
in ROM footprint can be made if the speed of the algorithm is significantly reduced.
One of the methods for tradeoff, the use of no SBOX, has not yet been seen in the
literature. The tradeoff for cutting the RAM by more than 50% is very costly in
time, especially if multiple encryptions/decryptions shall be performed.

We have included Table 11 to compare many of the techniques mentioned
before. The Total ROM includes all key setup and the encryption and decryption
functions. The Total RAM includes rewritable data and stack/heap readings.
The cycles are given for only one encryption and decryption, as well as for
ten. As shown in the table, some methods offer good performance only when
performing one or two encryptions.

Future work in the area should focus on several ideas. New embedded proces-
sors, such as Intels Xscale, will continue to be developed. While many of the ideas
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from work like this can be transferred to other processors, each new processor
offers new methods of optimization. For maximum ease for the end user, each
processor can be optimized individually. Software implementations of other cryp-
tographic algorithms, such as Elliptic Curve Cryptography, on the ARM7TDMI
should also be researched to complete the knowledge of this processor.
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A Appendix

We include here a comprehensive table of interesting implementations. We inten-
tionally left in some sub-optimal results for comparison purposes, but extremely
bad options (like not using tables but completely unrolling the decryption key
setup) are not included.

The names in this table require some explanation. The first letter or two
determines the treatment of key expansion. If the first letter is S, then the key is
set-up before any encryptions or decryptions. The format is then Sabcd, where
a tells what was rolled in key setup (R means all rolled, E means encryption
key unrolled only, D means decryption key unrolled only, and B means both
unrolled). The third position, b, tells whether large tables were used, with T
denoting Table and S denoting only the S-box and its inverse stored in ROM.
The final two letters meanings depend on whether tables were used or not. When
c is T, d tells whether the S-box is additionally present (S indicating presence
and x indicating its absence) and e indicates the number of rounds looped (F
is fully unrolled, P indicates two rounds in each loop, T means three rounds in
each loop, and N means no unrolling was done, so that one round is done each
pass through the loop). In the cases were c is S, d denotes whether encryption
was rolled (E means encryptions was rolled, x means not rolled), and e tells how
decryption was rolled (similar notation to Table 7, where x means not rolled,
1 and 2 are certain rollings, B is the entire process looped, and T meaning the
large decryption table was used).
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Table 11. Combined Data

Name Cycles for 1 Cycles for 10 ROM RAM

SRSE2 9646 73681 2164 304
SRSEB 9540 72621 2172 308
SRSx2 8073 57951 2292 304
SRSE1 9223 69451 2300 304
SRSB 7967 56891 2300 308
SRSx1 7650 53721 2428 304
SRSEx 7719 54411 2488 300
SRSxx 6146 38681 2616 280
SESE2 9460 73495 2888 304
SESEB 9354 72435 2896 308
SRSET 6693 44151 2992 300
SESx2 7887 57765 3016 304
SESE1 9037 69265 3024 304
SESxB 7781 56705 3024 308
FRxx 5760 57600 3040 120
SRSxT 5120 28421 3120 284
SESx1 7464 53535 3152 304
SESEx 7533 54225 3212 300
SESxx 5960 38495 3340 280
SESET 6507 43965 3716 300
FREx 4763 47630 3760 120
SRTxN 4866 23811 3784 284
SESxT 4934 28235 3844 284
SRTSN 4625 23471 3924 284
FRxD 6366 63660 4164 124
SRTxP 4863 23781 4228 284
SRTSP 4616 23381 4368 284
SRTxT 4830 23451 4568 284
SETSN 4439 23285 4648 284
SRTST 4583 23051 4788 284
FRED 5514 55140 4808 124
SETSP 4430 23195 5092 284
SETST 4397 22865 5512 284
SRTxF 4772 22871 7080 280
SRTSF 4525 22471 7220 280
SDTSN 4349 23195 7468 284
SDTSP 4340 23105 7912 284
SETSF 4339 22285 7944 280
SBTSP 4163 23009 8192 284
SDTST 4307 22775 8332 284
SBTSN 4154 22919 8636 284
SBTSN 4121 22589 9056 284
SDTSF 4249 22195 10764 280
SBTSF 4063 22009 11488 280
FxEx 4770 47700 14676 120
FxED 5345 53450 15468 120
Fxxx 5655 56550 16224 120
FxxD 6230 62300 17020 120
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When the key is not set-up before encryption and decryption, the first letter
in the name is F, for keying on the fly. The rest of the name indicates what other
options were set. If the second letter is R, then the rounds were done in a large
loop, else they were fully unrolled (x). The third letter indicates the presence of
the large encryption table (E yes, x no), and the final letter the same for the
decryption table.
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Abstract. A new side channel attack against a simple LFSR is pre-
sented. The proposed attack targets a single Galois LFSR running on an
embedded device where the only accessible information is the side chan-
nel leakage. Even if it is made only of simple XOR gates, such an object
is vulnerable to side channel cryptanalysis depending on its implemen-
tation. Our attack combines simple side channel analysis and statistical
analysis to guess output bits and fast correlation attack to recover the
initial state. In practice, even if a LFSR is never used alone, this attack
shows that simple XOR gates can reveal significant information in some
circumstances.

1 Introduction

Since the introduction of Power Analysis Attacks by Kocher et al., Side Channel
Analysis and Side Channel Resistance of cryptographic algorithms performed
on embedded devices are being deeply studied. These attacks allow full recovery
of secret data with relatively low complexity and small investment compared to
mathematical cryptanalysis. Thus, the security of cryptographic algorithms on
embedded devices is usually not only studied in a mathematical way but also in
a side channel based approach.

While these attacks focus on key-dependent operations, values handled by
the device and non-linear functions, elementary logic gates have rarely been
studied in the literature. Moreover, stream ciphers, which are mainly composed
of such gates, are not prime targets for side channel attacks. Still, there are a
few publications on this topic such as [7] and [14]. We show in this paper that in
the context of stream ciphers based on Linear Feedback Shift Register (LFSR)
the leakage of XOR gates can be exploited in a Simple Side Channel Attack.

From the mathematical point of view, the security of LFSR based stream
cipher as been deeply studied. In particular, correlation attacks are often con-
sidered. This class of attack studies how to recover the internal state of the
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underlying LFSR by viewing the output of the stream cipher as a noisy version
of the LFSR output (modeled by a binary symmetric channel). It is especially
useful when a good linear approximation of the output function can be found.
Ordinary correlation attacks can only be applied to small LFSR where the in-
ternal state can by exhaustively searched. Thus they are often used in a divide
and conquer manner against stream ciphers which rely on several small LFSRs.
With larger LFSRs, it is possible to use fast correlation attacks which overcome
this length limitation at the cost of using longer output sequences. These Fast
Correlation Attacks, were introduced by Meier and Staffelbach [9], and have two
different phases. The first and most time consuming consists in finding as many
parity check equations as possible (low-weight linear relations between the output
bits and the initial state). Many papers (e.g. see [10], [3], [4]) describe efficient
methods to compute such equations. The second phase decodes the sequence
observed to reconstruct the initial state of the LFSR.

LFSRs are often implemented as divisor registers (also known as Galois LF-
SRs) (Fig. 2) because they offer minimal latency and higher speed for the same
output sequence. We show in the following that such an implementation is vul-
nerable to Simple Side Channel Attacks. From now on, we consider a n-bit length
divisor register running on an embedded device where the only available infor-
mation is the side channel leakage. This roughly models a strong mathemati-
cal LFSR based stream cipher, where the output function is cryptographically
strong. In that case, the stream output does not offer any usable information to
an attacker wishing to recover the secret key or equivalently the LFSR state. In
this model, we exhibit a significant bias between the side channel leakage of the
Galois LFSR and the value of the bit which is shifted out of the LFSR.

If the bias is large enough to correctly predict n consecutive output bits then
simple linear algebra allows direct recovery of the initial state. However, the side
channel analysis is oftennoisy so this extremely favorable case is unlikely tohappen.

As a consequence, we mix the basic side channel approach with cryptanalytic
tools in order to go further. More precisely, the side channel analysis produces a
biased prediction of the Galois LFSR output bits. In order to make a simplified
analysis, we assume that the prediction of different bits is independent and thus
behave as in the Binary Symmetric Channel model (BSC). Since correlation
and fast correlation attacks are already described in this model, it is of course
natural to use them as a tool to amplify the side channel predictions and recover
the LFSR initial state. In other words, the basic idea in this paper is to replace
the correlation between LFSR output and stream cipher output usually used
in correlation attacks by a side channel correlation. Note that in some cases,
it could also be possible to combine both the side channel information and the
stream cipher output in order to get an even better bias. We do not consider
this variant in depth.

The present paper is organized as follows : in section 2 we recall the basics on
LFSRs and divisor registers. Section 3 is devoted to Side Channel Attacks. We
analyze the leakage induced by the XOR gates of our Galois LFSR with respect to
two often used models : the Hamming weight model and the Hamming distance
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model. In section 4, we correlate the leakage observed with prediction among
output bits. We link the expected population of output bits that can be guessed
with some non negligible advantage to the number of gates τ of the LFSR. Finally
we explain how to recover the initial state using traditional cryptanalysis and
illustrate the approach with some numerical evidence on various LFSRs.

2 LFSR and Divisor Register

LFSRs are among the simplest objects used in cryptography. They are the basis
of many stream ciphers and Random Number Generators. Two points are im-
portant to provide sufficient security to a n-bit length LFSR. In order to avoid
many mathematical attacks, the value n must be high enough and its feedback
polynomial P should be irreducible in order to generate a maximum length
sequence.

There is an interesting map between LFSRs (Fig. 1) and divisor registers
(Fig. 2). Let P (X) be the feedback polynomial of a LFSR over F2:

P (X) =
n∑

i=0

piX
i, pi ∈ F2

Then there is an equivalent divisor register with feedback polynomial:

P �(X) =
n∑

i=0

pn−iX
i, pi ∈ F2

Fig. 2 and Fig. 1 respectively show a divisor register and its equivalent LFSR.
Swapping from one implementation to the other is not a difficult task.
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So if we are trying to attack a divisor register, we can consider its equiva-
lent LFSR where mathematical cryptanalysis is concerned. All known attacks
against LFSRs can be applied to divisor registers, this includes all forms of Fast
Correlation Attacks.

In a hardware environment, LFSRs are often implemented in their Galois
form. Each implementation has the same number of XOR cells but the latter
form offers an important advantage. The XORs are computed in parallel in the
Galois LFSR whereas there are at least logα(τ) stages to compute the shifted in
value in a traditional LFSR, where τ is the number of taps and α the number of
inputs to a XOR gate (depending on the hardware). Thus the Galois form offers
a shorter critical path, allowing higher speed.

When using LFSR in hardware, one often seeks to reduce the weight of the
feedback polynomial in order to minimize the number of gates. On the other
hand, this is usually not pushed to an extreme in LFSR based stream ciphers.
This is mainly due to historical reasons. Indeed, older correlation attacks worked
better on low weight feedback polynomials and avoiding these polynomials was
seen as a safety measure. Ironically the side channel attack presented here works
better when the feedback polynomial has a relatively high weight.

3 Side Channel Attacks

3.1 Background on Side Channel Attacks

The Side Channel Attacks appeared in preprints in 1998; the first publication
appeared at Crypto 1999 [6] and revealed that a naive implementation of cryp-
tographic algorithms on an embedded device (e.g. smart card) allows an easy
recovery of the sensitive data (such as the private keys) by observing some side
channels. There are several types of side channels considered in the literature,
timing attacks, power leakage, electromagnetic leakage [1] and others less fre-
quently encountered such as acoustic analysis.

The equipment required to implement Side Channel Attacks is reasonably
simple and quite widely available. For example, power attacks require a single
computer and a digital oscilloscope measuring the electrical current consumed
by the chip during the computation. This measurement is typically performed by
inserting a small resistor (e.g. 50Ω) on the power pin VCC or on the ground pin
VGND and by measuring the voltage drop induced at the resistor. Electromag-
netic attacks require almost the same equipment, swapping the resistor and the
measurement setup for an electromagnetic probe measuring the electromagnetic
emanations of the chip during the computation. Of course, finer measurements
require more costly equipment, however, in all cases, it remains much more af-
fordable than specific cryptanalytic hardware intended for fast exhaustive key
searches or other mathematical cryptanalysis.

Power and electromagnetic attacks can further by divided in a few categories
among which the most known are the Simple Attacks and the Differential At-
tacks. The first category gathers attacks for which the secret data is directly
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recovered from a single curve of observed leakage. On the contrary, the Differen-
tial Attacks require a large number of curves in order to exhibit biases correlated
with the values handled by the device.

In this paper, we focus on a Simple attack, involving a single leakage curve,
of either power or electromagnetic origin.

In order to explain the validity of the Side Channel Attacks, many papers
model the leakage of an electronic device with the data handled ([2], [13], [12]).
Different models coexist but two of them are often encountered: the Hamming
weight model and the Hamming distance model, where the leakages are respec-
tively described as functions of the Hamming weight of current data or of the
Hamming distance between current and previous data. More precisely, these two
models describe the side channel leakage as follows.

W = a×H(x) + b (1)

for the Hamming weight model and

W = a×H(x⊕ p) + b (2)

for the Hamming distance model, where a and b are reals, x is the data currently
handled, p the previous one, and H(y) denotes the Hamming weight of the data
y (i.e. the number of bits equal to 1 in y). In the next section, we analyze the
behavior of LFSRs in these two models.

3.2 A Side Channel Attack Building Block Against Galois LFSR

Taking a closer look at the divisor register (Fig. 2), we see that at the beginning
of each clock cycle, all the XORs are performed in parallel. Moreover, all these
XORs share a common bit, the output bit c. Thanks to this simple remark it
is possible to construct a bit oriented side channel attack that can predict the
(internal) output bit c produced by the LFSR. This basic attack by itself is not
sufficient to predict the complete initial state of the LFSR, however, we show
in section 4 how fast correlation attacks can be used to recover the initial state
from a stream of such predictions for many consecutive bits.

The key idea behind this side channel prediction of bit c is that depending on
the value of c, two different cases occur:

1. If c = 0, only 0⊕ 0 and 0⊕ 1 are computed in the XOR gates.
2. If c = 1, 1⊕ 0 and 1⊕ 1 are computed.

Moreover, the number of XOR gates used in the implementation is equal to the
Hamming weight τ of the feedback polynomial thus the common bit c is used in τ
(essentially) independent XOR gates during each clock cycle. As a consequence,
the total leakage observed while the XORs are computed is going to reflect these
two cases. Moreover, since it is a sum of τ independent leakages (one for each
XOR gate) all related to c, we expect a good Signal To Noise Ratio (SNR).
Informally, even though a single XOR gate does not leak enough information to
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recover c, many XOR gates with one common operand and independent second
operands may leak enough information to predict c with a good bias. More
precisely, we expect the bias to grow as a function of the number of gates τ .

In the rest of this section, we study the theoretical probability of success of
our basic approach in two widely used models of side channel leakage (described
in section 3). We show that in both models the above intuitive result about the
signal to noise ratio holds. More precisely, we show that the part of the leakage
correlated to c grows linearly with τ , while the associated noise is proportional
to
√

τ . As a consequence, this implies that for large enough values of τ the LFSR
output can be predicted with a good bias. In order to reach this conclusion, we
first consider the leakage of a single XOR gate in each model, then add up the
contributions of the individual gates to obtain the global side channel leakage.

Hamming Weight Model. Considering the Hamming weight model (equation
1) and assuming that retrieving the input values and computing the XOR are
roughly simultaneous, for each XOR gate i ∈ �1, n�, with inputs E1 and E2, we
can write:

W (i)(E1, E2) = αH(E1) + βH(E2) + γH(E1 ⊕ E2) + b(i) (3)

where b(i) denotes some noise induced by the measurement and has a Gaussian
distribution with mean μb and variance σ2

b , while α, β and γ are reals and denote
the importance of each value. Since we deal with XOR gates on one bit values,
we can see that H(Ei) = Ei.

Since XOR gates are symmetric at the mathematical level, it is at first tempt-
ing to consider that 0⊕ 1 and 1⊕ 0 behave in the same way and to assume that
α = β. However, since the common bit is reused in many gates, this reduces the
symmetry, thus we keep these two coefficients in the equations. Equation 3 can
then be rewritten as:

W (i)(E1, E2) = αE1 + βE2 + γ(E1 ⊕ E2) + b(i) (4)

In the sequel, we assume that the common input to the XOR gates is E1. Thus
the equation becomes:

W (i)(0, E2) = (β + γ)E2 + b(i)

W (i)(1, E2) = α + βE2 + γ(1− E2) + b(i)

Now, considering the influence of the τ XOR gates of the divisor register, we
can express the leakage according to the output bit c (the common operand):

W(c=0) = (β + γ)
τ∑

i=1

E
(i)
2 +

τ∑
i=1

b(i)

W(c=1) = τ(α + γ) + (β − γ)
τ∑

i=1

E
(i)
2 +

τ∑
i=1

b(i)
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Looking more precisely at the source of the noises b(i), we can distinguish
two main sources. A global noise, that is due to the overall circuit environment
and a gate by gate noise which depends on the exact individual configuration of
each gate. Assuming that the global noise contribution is G and that the gate by
gate measurement noises b

(i)

ind are independent, we find that b = G+
∑τ

i=1 b
(i)

ind
follows a normal distribution of mean μG + τμb and standard deviation (σ2

G +
τσ2

b )1/2 (also noted N (μG + τμb, σ
2
G + τσ2

b )).
Thus, in this model, we find the expected result about the signal to noise

ratio induced by the τ XOR gates for the physical measurement noise. Indeed,
the contribution of the global noise decreases very quickly (linearly with τ),
while the contribution of the gate by gate noise decreases proportionally to

√
τ .

Moreover, viewing the other bits of the Galois LFSR entering the XOR gates
as independent random bits, the Hamming weight of the resulting τ -bit word,
follows the binomial distribution with parameter 1

2 and order τ . This can be
approximated by the normal distribution N ( τ

2 , τ
4 ). Finally, if we consider this

Hamming weight and the measurement noise to be independent, we find:

W(c=0) = N
(

(β + γ)
τ

2
+ τμb + μG,

(β + γ)τ
4

+ τσ2
b + σ2

G

)
(5)

W(c=1) = N
(

(2α + β + γ)
τ

2
+ τμb + μG,

(β − γ)τ
4

+ τσ2
b + σ2

G

)
(6)

Examining these two formulas, we find that:

– They differ in terms of mean and variance thus the two Gaussian curves
induced are distinct. This leads to two different profiles of observed leakage
depending on the output value, as we expected.

– The bigger τ is, the wider the difference between the means. A large number
of XOR cells in the divisor register leads to a non-negligible difference in
leaked signal when two different bit values are shifted out.

– The total contribution of the noise has a fixed part and a part proportional
to
√

τ whereas the distance between the means is proportional to τ . Thus
the Signal to Noise Ratio increases with τ by a factor

√
τ or better.

Thus, for given values α, β and γ, determined by the gate technology, these
two distributions highly differ for sufficiently large τ . We can expect noticeable
differences in terms of power consumption or EM emanations depending on the
shifted-out bit. Fig. 3 and Fig. 4 respectively show theoretical results with 10
and 40 XOR gates when the global noise G contribution is neglected.

In practice, the exact values of α, β and γ are not easy to determine. However,
it seems that for CMOS gates, the contribution of power consumption (and thus
the leakage) depends more on the output value than on the input values. This
means that α and β is quite small compared to γ and thus that the two Gaussian
curves overlap a lot. As a consequence, the prediction bias of a single XOR gate
is expected to be low.

Hamming Distance Model. In this model, the data leakage is proportional
to the Hamming distance between the last value and the current value. Thus we
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Fig. 4. Theoretical repartition of leakage observed, 40 XOR gates
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introduce the time parameter T . We denote E
(i,T )
j the entry Ej , j ∈ {1, 2} of

XOR gate i at time T . With this notation, equation 2 becomes:

W (i,T )(E1, E2) = α
(
E

(i,T )
1 ⊕ E

(i,T−1)
1

)
+ β

(
E

(i,T )
2 ⊕ E

(i,T−1)
2

)
+ γ

(
E

(i,T )
1 ⊕ E

(i,T−1)
1 ⊕ E

(i,T )
2 ⊕ E

(i,T−1)
2

)
+ b(i,T )

In the above formula, we see that the common bit contributes in the form
E

(i,T )
1 ⊕E

(i,T−1)
1 instead of the simpler form E

(i)
1 . Since this is the only significant

difference between this equation and the corresponding equation in the Hamming
weight model, we can skip the intermediate steps and directly conclude. After
summing up the contributions of τ gates, we obtain a biased prediction of cT ⊕
cT−1, the XOR of the output bit c at time T and T −1, instead of a prediction of
c. However, it is well known that due to linearity predicting a linear function of
the output of an LFSR is as good as predicting the LFSR output itself. Indeed,
the linear output function can be transformed into a linear change of initial
state and then removed. Thus, for the rest of our analysis, we can consider both
theoretical leakage models as equivalent.

4 Distinguishers and Correlation Attacks

4.1 Optimal Distinguisher

We have to choose a distinguisher D to predict output values cT by observing the
measured leakage. In order to maximize correct predictions over the output bits,
we use a variant of the optimal distinguisher depicted in [11]. After the theoretical
analysis of section 3, we need to distinguish between two different Gaussian
distributions D0 = N (m0, σ

2
0) and D1 = N (m1, σ

2
1). In [11], it was assumed

that σ0 = σ1, since this is not the case here, we need a slight generalization.
Assume that a value of vT is chosen according either to D0 (with density function
f0) or D1 (with density f1), for a random uniform choice of one of these two
distributions. Given a measured vT value, we want to analyze the a posteriori
probability that vT was generated according to D0, which we denote p0(vT ).
Using Bayes’ inversion formula, we find that:

p0(vT ) =
f0(vT )

f0(vT ) + f1(vT )
.

Similarly, the a posteriori probability that vT was generated according to D1,
which we denote p1(vT ), is:

p1(vT ) =
f1(vT )

f0(vT ) + f1(vT )
.

Of course, p0(vT ) + p1(vT ) = 1.
This analysis of a posteriori probabilities gives an optimal distinguisher. When

vT is measured, predict that D0 was used when p0(vT ) > 1/2 and predict that
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D1 was used when p1(vT ) > 1/2. Since the boundary case p0(vT ) = p1(vT ) = 1/2
corresponds to the finite1 set of intersection points of the two Gaussian curves,
it is encountered with null probability and thus is not a problem.

In order to say more about the above optimal distinguisher, we need to analyze
the intersection points of the two Gaussian curves. We recall that:

f0(x) =
1

σ0

√
2π

e
− 1

2
x−m0

σ0

2

and f1(x) =
1

σ1

√
2π

e
− 1

2
x−m1

σ1

2

.

When σ0 = σ1, the curves intersect in a single point (m0+m1)/2 and the analysis
simplifies. When σ0 �= σ1, the two Gaussians intersect in two distinct points.
Between these two intersection points, the distinguisher predicts the distribution
with the lowest σ value, outside, it predicts the one with the highest σ value.

4.2 Using the Distinguisher in Fast Correlation Attacks

Since the side channel measurements give a biased prediction of the LFSR out-
put bits, they can be used to replace the usual correlations in the stream cipher
output function in a fast correlation attack. However, with side channel corre-
lation there is a essential difference, we do not only get a predicted value, we
also know a precise measure. This can be very helpful since it allows us to learn
additional information about the quality of the prediction. As a consequence, in
order to use a set of measurements in a subsequent fast correlation attack, three
approaches are now possible:

– The most basic approach is to directly use the optimal distinguisher output
as a biased prediction for the fast correlation attack. In other words, we
forget the measured value and only keep the corresponding prediction. In
that case, given D0 and D1 it suffices to compute the probability of success
of the optimal distinguisher and to directly apply a fast correlation attack on
the output of the distinguisher. In this attack, the distinguisher prediction
directly replaces the stream cipher bits. With this small change, all known
correlation attacks can be used.

– Alternatively, it is also possible to predict only a good fraction of the LFSR
output bits. More precisely, when p0 is far enough from 1/2 we give a predic-
tion, when it is too near we refuse to predict. Using this approach, we predict
a fraction of the output bits with a better bias. With a little care, we can
still apply a fast correlation attack, keeping only parity checks corresponding
to predicted bits. Using a good trade-off, we can improve the basic attack.
This approach is very similar to the conditional correlation attacks which is
described in [8].

– Finally, it is also possible to fully use the extra information present in the
measured value vT and to develop a specific fast correlation attack in order
to fully use this information.

In the sequel, we address each approach in turn.
1 Unless D0 = D1, in which case distinguishing is of course not possible.
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Direct fast correlation attack approach. In this first approach, we need
given the two distributions D0 = N (m0, σ

2
0) and D1 = N (m1, σ

2
1) to compute

the bias of the optimal distinguisher. When σ0 = σ1, the probability of success
is p =

∫ (m0+m1)/2

−∞ f0(t)dt and assuming that m0 < m1 the bias is:

ε = 2p− 1 = 2
∫ (m0+m1)/2

m0

f0(t)dt =
2

σ0

√
2π

∫ (m0+m1)/2

m0

e
− 1

2
t−m0

σ0

2

dt.

The rightmost integral can easily be computed in many computer algebra sys-
tems, using either the erf or the erfc function.

When σ0 �= σ1, let a and b, with a < b, denote the two roots of the equation
f0(x) = f1(x). Assuming that σ0 < σ1, a measured value between a and b
corresponds to a prediction of D0. The probability of correctly predicting D0

and D1 are respectively:

p(0) =
∫ b

a

f0(t)dt and p(1) = 1−
∫ b

a

f1(t)dt.

The total bias is obtained from the average probability and can be expressed as:

ε = p(0) + p(1) − 1 =
∫ b

a

(f0(t)− f1(t))dt.

It can also be computed using the erf or the erfc function.
Once the prediction bias is know, we can directly apply any fast correlation

attack, for example, the attack from [4]. In fact, for short enough LFSRs, it
would also be possible to use a correlation attack instead. When feasible, this
is the approach which requires the smallest amount of measurements. Given
approximately 1/ε2 measured bits, one can exhaustively search among the 2n

possible initial states. The correct initial state gives a sequence that matches
the prediction corresponding to the measurement on more points than incorrect
states. One possible application of this correlation attack approach could be to
recover the state of a short LFSR based internal pseudo-random generator.

Conditional fast correlation attack approach. In this section, keeping the
previous notations, we need an extra parameter ζ > 1 that serves as a cutoff
threshold for the distinguisher. When f0(vT ) > ζf1(vT ), D0 is predicted, when
f1(vT ) > ζf0(vT ), D1 is predicted. The rest of the time, the distinguisher refuses
to output a prediction. In this context, two parameters are essential, the fraction
Fζ of predicted bits and the expected bias εζ for predicted bits. Both values can
be computed in a similar way using various integrals. The integrations bounds
involve the roots of f1 = ζf0 and of f0 = ζf1. When optimizing this approach,
two main effects need to be accounted for, on the one hand the fraction of parity
checks of weight2 k being kept is F k−1

ζ , on the other hand the number of parity

2 Usually a parity check of weight k as k − 1 terms corresponding to measured bits
and one term to the bit to predict.



Galois LFSR, Embedded Devices and Side Channel Weaknesses 447

checks needed for evaluation is ε2−2k
ζ . As a consequence, we see that Fζε

2
ζ should

be maximized to reduce the number of parity checks and get the best possible
efficiency. In that case, we see that the conditional correlation attack essentially
behaves like a basic correlation attack with a different bias ε′ = εζ

√
Fζ . Note

that we gain memory in the final phase, since we perform the parity checks
evaluation on a smaller set.

The refined approach: parity-check equations with overall probability.
As we previously mentioned, for each value vT of measured leakage, we associate
a probability pT = g(vT ) of false prediction. In this approach, we use this proba-
bility to obtain a bias εT for each output bit. Instead of using the traditional bias
εT = 1−2pT , it is convenient to use a signed representation. More precisely, when
the predicted output bit is 0 we keep εT as above, when the predicted output bit
is 1 we replace εT by its opposite. This is convenient since multiplying signed bi-
ases allows to multiply the unsigned biases and XOR the predicted bits in a single
operation. Following [4], where the output bits of the LFSR (our cT ) are denoted
by zi, we obtain parity-check equations of the form:

zi = zm1 ⊕ . . .⊕ zmk−1 ⊕
B−1∑
j=0

cj
m,ixj (7)

As a consequence, if each output bit zmj has εmj as its signed bias, the overall
signed bias for this equation is, for a given (guessed) value X of length B:

εi =
∏

j∈�1,k−1�

εmj × (−1)c.X (8)

After collecting many parity checks giving predictions of the same value zi,
we need to decide whether zi = 0 or 1 depending on the signed biases of all pre-
dictions. We proceed as follows, we let P0 denote the product of the probabilities
of having zi = 0 for each individual parity check. Likewise, we denote by P1 the
product of the probabilities of having zi = 1. If P0 > P1 our overall prediction
is zi = 0, otherwise it is zi = 1. Thus, we simply compute:

w =
P0

P1
=
∏
εi

1 + εi

1− εi

Taking logarithms, we find:

log(w) =
∑
εi

log
(

1 + εi

1− εi

)
≈
∑
εi

2εi when εi is small

Now, computing the overall prediction of one target bit is very simple, by
summing the contributions of all parity check equations and taking the sign of
the result. Moreover, the contributions of each parity checks behave nicely with
respect to changes in the guessed part X of the LFSR. Indeed, when a bit Xj

changes, two things can happen in a parity check. Either Xj is not present in its
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expression and the prediction and bias do not change. Or it is present, the pre-
diction changes and this change is reflected by negating the signed bias. Further-
more, when εi takes the opposite sign, it is easy to see that log ((1 + εi)/(1− εi))
undergoes the same change. As a consequence, this additive way of dealing with
the signed biases is fully compatible with the algorithms described in [4], we
simply need to replace equation counts by weighted counts, where the weights
are computed from the parity checks biases.

Thus, for each value of X , we can efficiently compute the corresponding
log(w). If log(w) is far enough from 0 we decide that the value of X is correct and
set zi according to the sign of log(w). Compared to the previous approaches, we
gain for two important reasons. First, equations associated to extreme leakage
have a large weight and count much more than they do in the basic approach.
Second, even the equations with bad weight still give some information instead
of being thrown away. Moreover, we no longer need to optimize the threshold
choice. As a consequence, this improved algorithm is both more efficient and sim-
pler to use. Its drawback is that when replacing equation counters by weighted
counters, we usually need to replace integers by floating point numbers, thus
requiring about twice as much memory as the basic approach.

5 Simulated Results on 80 and 128-Bit LFSR

In this section, we study the practical application of our attack on LFSRs. One
essential factor to the success of this attack is the amount of data leaked by
individual XOR gates. Clearly, if XOR gates do not leak any signal, our approach
fails. In the sequel, we assume that the leakage is low but still present. More
precisely, we assume that for an individual gate, observing its leakage level allows
to recover the considered input bit with a probability p0 > 1/2. To illustrate the
power of the technique we use, we show how the attack can work for a low value
such as p0 = 0.51. In order to simplify the analysis, we assume that the side
channel leakage corresponding to 0 and 1 are two Gaussian distributions with
the same deviation but with different mean values.

Note that in the other extreme case where the two distributions have different
deviations but the same means, having access to many copies of the bit c in
several XOR gates does not help. In order to improve the bias when adding
Gaussian distributions, the mean values should be different.

Since the efficiency of the attack also depends on the LFSR length and the
weight of the feedback polynomial, we propose to first consider a 80-bit LFSR
with feedback weight 9. This illustrates our technique on a cryptographically
significant size when the feedback polynomial has a relatively low weight. For
example, one of the eStream phase 2 focus algorithm: Grain [5] uses a 80-bit
LFSR with a feedback polynomial of weight 7. We chose 9 instead of 7 in order
to work with a square. For this example, we computed theoretical complexity and
also run the fast correlation attacks on simulated data. The simulated leakage
measurement was generated using a simple program which adds together the
τ = 9 leakage levels corresponding to each output bit.
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On this first example, we wanted to choose a value of p0 near 0.51, in order to
show that the attack already works with a small leakage level. We achived this
goal by modeling the leakage of a single XOR gate with a 0 value on input c by a
Gaussian of mean −0.025 and variance 1, while a 1 value on input c correspond
to mean 0.025 and variance 1. Applying the computations of section 4, this choice
yields p0 = 0.50997. Having the same variance for both c = 0 and c = 1 is a
simplifying hypothesis that makes the analysis easier, but does not significantly
change the overall result. Similarly, shifting the leakage base level to get an
overall 0 average also is a simplifying hypothesis.

From a theoretical point of view, putting together 9 gates with common gives
input c, we obtain total leakage modeled by Gaussians with mean 0.225 or−0.225
and variance 9, i.e. normal deviation 3. From this data, we can compute the
theoretical efficiency of the three attack variants. Using these data, we run a
fast correlation attack on the 80-bit LFSR using parity checks of weight k = 4,
where the target bit is correlated to 3 measured bits. As in [4], we have a certain
number of bits which are guessed during the attack and removed from the LFSR
size for the parity check computations. We omit the part of the fast correlation
attack that aims at recovering the full register and simply focus on predicting a
single bit zi together with the correct guess for the removed bits. Let us compare
our three variants on this numerical example:

– The basic approach is very similar to a numerical example given in [4]
(with 1 − p = 0.469, which corresponds to probability 0.531 and register
size 89). With our proposed parameters, the value of c can be predicted
with probability 0.52989, i.e. bias 0.05978. As a consequence, we roughly
need 22 000 000 parity checks. With this number of parity checks we find a
probability of correct around 84 percent if we keep the false alarm rate at
1/2. From a complexity point of view, it is possible to get enough parity
checks with k as above using 227 bits of keystream, if we choose to guess
B = 26 bits. We need a precomputation step of 254 to build the parity
checks (with memory requirements, around 227). The attack itself requires
about 24 · 2B ≈ 230.6 operations to recover one bit zi.

– With the conditional correlation approach, we want to minimize the ratio
ε′ = εζ

√
Fζ . Using numerical analysis, we find a maximum value ε′ ≈ 0.06738

with ζ ≈ 1.0958. This corresponds to a predicted fraction Fζ ≈ 0.543 and
a bias for predicted bits of εζ ≈ 0.09144. Compared to the basic approach,
we can either use half as many parity checks or get a better prediction
probability around 92 percents. From a complexity point of view, we roughly
gain a factor of 3, because the Walsh transform phase is perform on a much
smaller set of equations. Moreover, we require about 1/8 of the memory of
the basic approach.

– For the refined approach, we do not know how to compute the theoretical
success probability, however, practical experiments on these parameters show
that with 22 000 000 parity checks, the probability of correct prediction is
higher than 97 percents. However, this approach requires about twice as
much memory as the basic approach.
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In practice, it is always better not to use the basic approach and to prefer either
the conditional or refined approach. On parameters where the attack is limited by
the amount of measurement, the refined approach should be the preferred choice.
When the limiting factor is the computer memory, the conditional approach
should be used.

In the following table, we summarize our results and also give theoretical
results for 128-bit LFSR with feedback polynomials of weight 16 and 64. We
only ran simulations for the 80-bit LFSR.

LFSR k B N Pre Att ε ε′ ζ Fζ εζ Par. Checks

80–9 3 26 227 254 230.6 0.05978 0.06738 1.0958 0.543 0.09144 22 000 000
128–16 3 48 235 270 251 0.07966 0.08973 1.12943 0.545 0.1216 4 000 000
128–64 4 32 231 271 236.4 0.1585 0.1779 1.2706 0.557 0.2383 2 500 000

6 Conclusion

We have presented a new side channel attack against LFSRs and more precisely
against the Galois implementation of LFSRs. Galois LFSRs (or divisor registers)
present an important side channel leakage growing with the Hamming weight
of their feedback polynomial. This implementation (Fig. 2) is more interesting
than the traditional one (Fig. 1) in terms of speed and critical path but the
leakage induced allows an attacker to recover the initial state with a Simple Side
Channel Analysis paired with a Fast Correlation Attack.

As a consequence, simple Galois implementation of LFSRs in embedded de-
vices should either be thoroughly tested or be avoided. One way to reduce the
attack efficiency is to use very low weight feedback polynomials. Moreover, as
of now, the traditional implementation (Fig. 1) seems immune to this attack
since the XOR gates do not share a common operand. It is also possible to use
a simple, but costly, masking technique by running several copies of the Galois
implementation. Every copy but the last one can be initialized with a random
value and the final copy should be chosen to ensure that the XOR of all ini-
tial values correspond to initial value in a single register implementation. By
linearity, the XOR of all outputs yields the expected value.

More generally, the attack presented here shows that in any circuit reusing
the same logical output many times may induce powerful side channel analysis
by reducing the overall noise ratio of this output. Thus, use logical gates with
large fan-out should better be limited where possible.
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