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Abstract. This paper presents a new reverse engineering method for creating 
3D mesh models, which approximates unorganized noisy point data without 
orientation information. The main idea of the method is based on statistics 
Bayesian model. Firstly the feature enhancing prior probabilities over 3D data 
retrieve the sharp features, such as edges or corners. Then a local polynomial 
probabilistic model is used to approximate a continuous differentiable manifold. 
The Bayesian model uses an iterative fitting clustering algorithm to improve the 
noise tolerance in geometry accuracy. After iteration a density-based estimation 
function can automatically remove the outliers. Furthermore, the current sphere 
cover meshing approach is improved to reconstruct the mesh surface from the 
noisy point data. Experimental results indicate that our approach is robust and 
efficient. It can be well applied to smoothing noisy data, removing outliers, 
enhancing features and mesh reconstruction.  

Keywords: Mesh reconstruction, Bayesian model, reverse engineering, 
denoising. 

1   Introduction 

Surface mesh reconstruction from an unorganized point data has been a very 
important task and attracted increasing attention in various computer sciences, such as 
computer vision, virtual reality and CAD/CAM. Many 3D scanning devices can yield 
rather dense and accurate surface data samples. However, noise, outliers and defective 
data are inevitable because of the device precision and electronic disturbance. With 
these point cloud, a number of surface reconstruction techniques have been proposed 
recently. Despite of the versatility of large amount of algorithms nowadays, however, 
most of these algorithms are not efficiently enough and make certain strong 
assumptions on the original surface and its sample points. For example, some 
approaches become expensive in time and storage, many algorithms [2], [3], [5], [12] 
need additional knowledge such as surface normal or interior/exterior information, 
some are not tolerant of noise and defective data. 

1.1   Previous Work 

Statistical learning techniques, such as Bayesian method, support vector machines and 
clustering, have begun to be applied to computer graphics during recent years. 
Statistical learning methods for denoising and retrieving sharp features have attracted 
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many researchers’ interest. Diebel et al. [1] applied Bayesian model to probable 
surface reconstruction and decimation from noisy surface meshes. Pauly et al. [4] 
introduced the clustering method in shaping point cloud. More recently, mean shift 
method was applied to denoising of noisy point cloud by Schall et al. [7]. However, 
these two methods cannot retrieve sharp features. Robust statistics [11], such as least 
median of squares, also has obtained a good experimental effect on reconstructing a 
piecewise smooth surface, but it is low efficient.  

The topic of meshing the scattered point data with sharp features has a long 
history. Hoppe et al. [13] used a sign distance function to handle different topologies, 
and they approximate the normal at each sample using principal component analysis, 
which had been adopted by many researchers. Recently Ohtake et al.[5], Kobbelt et 
al.[12] extracted the edges or corners by the intersection of two or more piecewise 
quadratic functions. Both of these methods need the exterior additive accurate normal 
information. In [6], Ohtake used a local quadric error minimization strategy to get 
sharp features, but this method may fail to afford a satisfactory reconstruction when 
the level of noise is very high. Newly a particularly powerful point set surface 
approach, the moving least squares (MLS), has attracted many researchers’ interest 
[4], [8], [9], [14], [15]. These methods based on MLS and extremal surfaces are very 
difficult to obtain the sharp feature. 

1.2   Contribution 

The main contribution of our approach is to provide a very efficient, robust and 
satisfied mesh reconstruction from noisy point data. Compared to robust filtering of 
noisy scattered point data [7], our method can retrieve the sharp feature very efficient, 
and avoid the artificial selection of kernel size. Our approach is also closely related to 
the Bayesian method of mesh surface reconstruction [1], but our approach is specially 
designed to work on meshing the noisy scanning point data, and it need automatically 
remove the outliers.  

The main idea of our approach can be stated as followed three steps:  
Firstly a nonparametric kernel density function is used to relate the computed 

qualities to the sample density. It will afford reliable outlier removal and the weight of 
the point data. We make use of the Shannon entropy to optimize window-width 
parameter, which avoids the artificial selection of input parameter. The details are 
described in section 2. 

Then a Bayesian probability is introduced to construct the surface model of noisy 
point data without orientation (explained in section 3). We use an iterative clustering 
algorithm, which is integrated with Bayesian model, to improve the noise tolerance in 
geometry accuracy. At the same time, the sharp feature is preserved and enhanced. 
After iteration, the detached outliers are removed by density function. The iteration 
process is explained in section 4. 

Finally the new point set is generated. We mesh the new point set. The non-
manifold mesh is refined by normal comparison between the new vertex and the mesh 
topology (described in section 5). 

The main stages of our approach are described below in detail. 
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2   Kernel Density Function 

Firstly we introduce some basic concepts and definitions. Let R3 denote the 3D 
Euclidean space. Considering a set of scattered points Ps={pk}k∈index(Ps), pk∈R3, pk is 
an arbitrary point in a point set. index(Ps) is the index of the point set. | Ps | represents 
the total element numbers of point set Ps. To describe the local approximation error 
and weight function, we introduce the support set SPT(pk)⊂Ps and the support radius 
Rk of point pk. Here, SPT(pk)={pj}, j≠k, pj satisfies the expression || pk-pj ||< Rk. ||•|| is 
the Euclidean distance in R3.  

2.1   Density Function 

It is often important to attach the computed qualities to sample density for scanned 
scattered point set. Informally, the kernel density function is a mathematical 
description of the influence a point data has within its neighborhood. The density 
function at a point x∈R3 is defined as the sum of the influence functions of all 
neighboring data at that point. Thus a kernel density function Ds(x) can be given by 
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The Smooth parameter σ is called window-width size. Like the clustering method 
[16], it is a local density function approximating the overall density function. The 
density threshold ξ determines our selection to outliers. 

2.2   Optimized Parameter 

The window-width parameter σ of Ds(x) decides the influence field of each point in 
its neighborhood. Density-based method is an efficient clustering method, so it can 
discover outliers and be insensitive to noisy point data. However, this method badly 
depends on the selection of the parameter. We know that Shannon’ entropy can be 
used to measure the uncertainty of system. In our density function, if function value 
distributes unevenly, the uncertainty will be small. To obtain an optimized density 
function, we introduce the density entropy: 

1

( ) ( )
( ) log .

( ) ( )

N
k k

k k kk k

Ds p Ds p
En Ps

Ds p Ds p=

= −∑∑ ∑
 (2) 

When σ→0, the density function value of each point approximate 1/n and the 
density entropy arrives at maximum log(n). When σ varys from zero to infinity, 
density entropy gradually decreases to some optimized value, whereafter increases to 
maximum again. Simply minimizing the density entropy En(Ps) we obtain the 
optimized window-width σ. This method helps us to avoid the artificial repetitious 
selection of input parameter. 

After shrinking iteration of our reconstruction model (in section 4), some outliers 
cannot move to the Bayesian probability surface. We found out that setting density 
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threshold 0.4 ( )ξ = Ds x  is appropriate. ( )Ds x  is the mean density function value 
when point data even distributes. When ( ) ξ>

k
Ds p  , the point

k
p  is preserved for 

further process. Otherwise, we will regard it as outlier and remove it from point set Ps 
(see Fig. 1). 

   

Fig. 1. Density function filtering. Left is the bosom of the raw Stanford bunny. Right is the 
result of density function filter the noisy point data. The outliers have been removed well.  

2.3   Curvature Penalty 

Weight is frequently used to give the different feature point a special influence. In this 
part, we will consider assigning an optimized weight to each noisy point data. Firstly 
we assess the normals through the correlation matrix Mk of neighboring points.   
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Here qk is the center of the neighborhood pi. Its three eigenvalues are {λ1, λ2, λ3}, 
λ1<λ2<λ3. Their corresponding eigenvectors {ν1,ν2,ν3} form an orthogonal basis and 
ν1 approximates the surface normal at qk. We note the normal nk of each point qk. 
From [17], we know the relations of the eigenvalues and shape of correlation 
ellipsoid. We give each point a curvature penalty weight: 

2 1 3
( ) ( ) .

k
Cur p λ λ λ= −  (4) 

In the presence of noise or near a discontinuity, the curvature penalty weight will 
be very small. Finally in our reconstruction model, we attach a weight wk to each 
point pk: 

( ) ( ) .
k k k

w Ds p Cur p= ⋅   (5) 

wk will be large when the small neighborhood of a point is dense and flat (or local 
smooth). When the small neighborhood is noisy or local discontinuous, wk is very 
small even approximating zero. 
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3   Reconstruction Model 

We define a surface approximating the noisy point data as a differentiable manifold 
S(x,y). Let x be the real surface sample point of the object being scanned. Instead of x, 
the sensor detects noisy measurements {yi}i=1,2,…,N of the surface of the object. The 
measurements are the noisy point data for our analysis. Intuitively, if we know some 
hints about the most probable location of the differentiable manifold in the 3D space, 
we can see this idea results from the probability density P(x|{yi}). So we give the 
higher probability to the measurements which close to the most probable proximity of 
the manifold in space. Bayesian formula enables us to realize this probability. 

3.1   Bayesian Probability 

Given the measurements {yi}i=1,2,…,N, with Bayesian rule we construct followed model 

({ } | ) ( )
( | { }) .

({ })
i

i
i

P y x P x
P x y

P y
=  (6) 

Here P({yi}|x) is the probability of the measurements in the hypothesis that yi 
approximates x, and P(x) is a prior probability distribution on surface of the object. 
From the maximum principle, the process of most probable surface reconstruction is 
to find the surface x that maximizes the posterior probability P(x|{yi}) in (6). Because 
P({yi}) is a constant which is independent of x, maximizing P(x|{yi}) just is 
maximizing P(x) and P({yi}|x) respectively. These two different parts need us to 
construct corresponding models. In the followed two paragraphs, we will present how 
to construct the prior probability P(x) and measurements probability P({yi}|x). 

3.2   Prior Probable Surface 

Without a prior, the most probable surface should be the measurement {yi} itself. The 
prior probable surface is quite important to our surface mesh reconstruction. Applying 
the prior probability distribution can help us to preserve or enhance the shape 
features.  

We define the prior probable function  

2

( )

( ( )) .
k

k i i i k

i SPT p

w n p pϕ
∈

= ⋅ −∑  (7) 

where weight wi has been explained at paragraph 2. Thus each ϕk is a field potential 
and nonnegative. If all pi and pk are on the plane C⊂R3, then ϕk=0. This field distance 
function is essential used to enhance the shape features, like edges or corners. It is 
developed firstly by Hoppe et al. [13]. From equation (7), we can see the prior 
probable function ϕk is linear piecewise, but the general fit functions, like piecewise 
quadratic polynomial, are wholly differential manifold, i.e. smooth and continuous. 

When x locates on the prior surface function, ϕk reaches minimum. Then we think 
that surface prior probability has been maximized. The surface prior probability has 
followed formula 
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( ) ln( .)
x

P x ϕ= −  (8) 

Negative natural logarithm is made the most of to obtain positive P(x). 

3.3   Manifold Surface 

P({yi}|x) has been defined for the probability of the measurements ahead. Here x is the 
true surface point of the scanned object. Subjected to sensor noise and merged error, the 
original scattered point cloud in hand are often very difficult to model directly. We can’t 
assume that the preprocessing points follow the Gaussian probability distribution, 
because the point cloud is commonly merged by several layers. Thus such distribution 
probability is very difficult to formulate. Approximating the intrinsic surface of 
unorganized space points is still a quite young topic. 

In defining point-set surfaces [14], [15], we know that the extremal surfaces, 
include MLS surface, are defined by an energy function and a vector field. The 
extremal surface is essential a smooth continuous manifold reconstruction. When 
multiple surfaces intersect, forming sharp feature, the vector field singularities will 
cause non-manifold singularities in the extremal surface. The non-manifold 
singularities just can be extracted by the prior probable function ϕk. 

Inspired by point-set surface [15], we define an implicit function: 

( ) ( ) ( ) .x n x f xφ = ⋅ ∇   (9) 

where n(x) is vector field, and ∇f(x) is gradient potential field of iso-surface f(x). φ(x) 
is a extremal manifold surface. The effect of ∇f(x) in our approach is that we can let 
the scattered point iteratively shrink towards the zero iso-surface along the vector 
field. Transforming equation (9) adapted to scattered points, we can obtain a more 
computable formation: 
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Fig. 2. The manifold surface function (a 2D example). Red vector x-c is used to approximate 
∇f(x), when x locates on the blue line(manifold surface), φ(x)=0. φ(x) is the approximative 
estimation of the distance between point x and manifold surface. 
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−∑ ∑k k kk k
x w p w is used to approximate ∇f(x). ε is a ratio coefficient and set 
0.4∼0.6 (see Fig. 2). If ε is too large, it will cause shape shrinking at high curvature  
regions. φ(x) might be negative, it isn’t suitable for probabilistic measurement 
function. Easily we square φ(x) and use negative nature logarithm to generate 
probabilistic measurements function: 

2({ } | ) ln( ( ) ) .
i

P y x xφ= −   (11) 

4   Shrinking Iteration  

With equation (6) constructed, maximizing the posterior probability can obtain the 
optimized surface reconstruction. We invert equation (6) into: 
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When equation (12) approximates zero, the posterior probability arrives at the 
maximum. Equation (12) can be decomposed into two key parts: 
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This means to move all measurements to positions of high probability. The 
iterative moving process alters the sample positions along the gradient ascent 
maximization. When equation (12) iteratively converges approximately to zero, we 
stop the iteration. To control the total computation time, In fact, we also need to 
decide reasonable steps. We use followed practical point-iteration equation: 
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When 1 2|| || 10 σ+ −− <k k

i i
p p , the iterations stop. 

5   Meshing and Visualization 

In the section 4, we have finished the shrinking iteration, and then we remove the 
detached outliers to acquire new point set. We need to connect them to generate mesh 
data struct Ω. The traditional meshing method is to compute the Delaunay 
triangulation. Computing the Delaunay triangulation can be slow and susceptible to 
numerical errors. Our meshing approach is based on spherical cover method [6]. 
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We use equation (7) as an error function instead of Ohtake’ local quadric error 
function. Then we generate the adaptive spherical cover. By this means, the resulting 
triangle mesh may have non-manifold parts and hole boundary. Each vertex with 1-
ring neighborhood is classified: simple, non-manifold and hole boundary. We need to 
refine the original mesh further.  

The optimal mesh should satisfied two conditions: the triangles are approximate to 
the surface of the object; the mesh is fair. Ohtake’s mesh cleaning method takes the 
disk-shaped 1-ring neighborhood that has minimal curvature, which cannot satisfy the 
two conditions. By comparing the normal deviation of the neighboring triangles with 
the vertex, we remove disk-shaped 1-ring neighborhoods which have large normal 
deviation. From equation (3) we get the normal of the vertex n(i). We define the 
normal of the kth disk-shaped 1-ring neighborhood of vertex i 

( ) .
j j j

N k θ ξ θ=∑ ∑  (16) 

Where θ
j

is the area of the triangle
j

T , ξ
j
is the normal of the triangle

j
T . The 

deviation of the two normals is 

| ( ) ( ) |D n i N k= ⋅  .  (17) 

If 0.8<D , the kth 1-ring neighborhood of vertex i is recognized as false and 
eliminated. If 0.8≥D , then we compare the fairness of the triangle mesh. We define 
the fair parameter  

( ) / 1/ .
j j j

kε θ θ=∑ ∑  (18) 

Where 
j
is the length ratio of the longest edge and the shortest edge in triangle

j
T . 

To fair the mesh we take the minimal ( )ε k . So we get the optimal disk-shaped 1-ring 
neighborhood. 

By above process, the hole boundary of the mesh is remained. We remove the 
isolated vertices and check the hole boundary loops to fill the holes. If the holes are 
too big, The subdivision can be adopted to increase the hole mesh density.  

6   Results and Discussion 

The goal of our work is to design an efficient and robust algorithm for meshing noisy 
point data. Our method can be applied to unorganized point set consisting of millions 
of points without orient information on standard PCs. We will show several 
representative experimental results for the Bayesian mesh model reconstruction. All 
examples presented in this paper are computed on a P4 2.0 GHz PC with 512Mb 
RAM running on WINDOWS 2000.  

Next we will compare our mesh reconstruction method to the other method in 
existing literature. Fig. 3 compares Bayesian mesh reconstruction to the quadric-error 
function iteration method of Ohtake et al. [6]. Here we don’t use the density function 
to filter the outliers. Obviously our method is very robust to smooth noise and recover 
the shape of the object.  Fig. 4 shows the different mesh reconstruction results from 
 



 Bayesian Mesh Reconstruction from Noisy Point Data 827 

the Bimba model. The triangle faces numbers of two different Bimba mesh models 
are both 147K. These comparisons show our Bayesian probable surface mesh method 
performs well.  

Table 1 shows the computational time comparison of Bayesian probable surface 
mesh reconstruction process for different models. However, dragon scans model with 
fewer points than Bimba scans consumes more time, because the point data of dragon 
scans is noisier and distributes unevenly. From the results we notice that out method 
is very fast. The memory usage of our method is very low. The peak RAM is 350Mb 
in processing AIM@SHAPE Bimba model with 1.8M scanning points. 

Table 1. The experimental results on computational time and the size of the point set for 
different models 

Point Set Points N   Triangle F    Time 
361K 74.1K 17.5sec Bunny 

scans 361K 185K 24.7sec 
1406K 21K 114.3sec Dragon 

scans 1406K 243K 227.6sec 
1873K 149K 75.6sec Bimba  

scans 1873K 255K 84.7sec 

 

  
                             (a)                                  (c)                                  (e) 

 
                             (b)                                  (d)                                 (f) 

Fig. 3. A comparison to the public results of Ohtake et. al [6]. (a) (b) are raw scanned point data 
of Stanford dragon nail consists of 47 scans and mesh reconstruction [6]. (c) shows Ohtake’s 
quadric-error iteration which is used to smooth noisy data in (a). (d) is mesh reconstruction. (e) 
shows the results of shrinking iteration of Bayesian probable surface in (a) and we don’t 
remove the outliers. (f) is the mesh reconstruction of point data in (e). 
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                  (a)                             (b)                             (c)                       (d) 

Fig. 4. A comparison to the public results of ReMESH [18]. (a) and (c) shows Simplification of 
scanned Bimba model with PlyDeci. Cleaning, hole-filling and smoothing with ReMESH [19]. 
(b) and (d) shows our results of Bayesian probable surface method. From the comparison our 
method can preserve and enhance the features. 

7   Conclusion and Future Research 

In this paper we present a novel noise-tolerable surface mesh reconstruction method, 
which is based on a statistics Bayesian model. Compared to other mesh reconstruction 
approach for processing noisy point data, our algorithm is very robust, efficient and 
easily to realized. Our method also consumes low memory with large point data set. 
The feature is enhanced by our prior probable surface model. We believe that our 
method can be applied to many surface reconstructions, such as multi-level 
smoothing, feature enhancing, noise filtering, and decimation.  

Of course, the denoising procedure and automatic outliers removal remain an 
intensive research topic. Our method is an important step to the robust smooth, but so 
far no algorithms is perfect and satisfied to any noisy point data set. Many scanning 
model need new algorithm to apply. Our holes repair region may not look optimal 
when there are complex holes with highly curved shapes. 
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