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Abstract. The starting point for Model-Based Testing is an implemen-
tation relation that formally defines when a formal model represent-
ing the System Under Test conforms to a formal model constituting its
specification. An implementation relation for the formalism of Labelled
Transition Systems is ioco. For ioco several test generation algorithms
and test tools have been built. In this paper we define a framework for
the symbolic implementation relation sioco which lifts ioco to Symbolic
Transition Systems. These are transition systems with an explicit notion
of data and data-dependent control flow. The introduction of symbolism
avoids the state-space explosion during test generation, and it preserves
the information present in data definitions and constraints for use during
the test selection process. We show the soundness and completeness of
the symbolic notions w.r.t. their underlying Labelled Transition Systems’
counterparts.

1 Introduction

Model-Based Testing (MBT) is a form of black-box testing where a System Under
Test (SUT) is tested for conformance against a formally described specification,
or model, of the SUT. Test cases can be automatically generated from this model,
and test results can be automatically evaluated.

The starting point for MBT is a precise definition of what it means that an
SUT conforms to its specification. Such a definition is expressed by an imple-
mentation relation: a formal relation between the specification formalism and
the implementation formalism. Although such a relation is formally expressed,
it cannot be used to directly verify the relation between an SUT and its speci-
fication. Since an SUT is a physical system that we observe as a black-box, we
can only perform tests on the black-box to check the relation to its specification.
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Yet, it is assumed that the SUT exhibits a behavior which could be expressed in
the implementation formalism, even if we do not know this behavior in detail.
This assumption is commonly referred to as the test hypothesis. By so doing we
can consider SUTs as formal systems, and we can formally reason about the
soundness and completeness of the testing process.

Many different implementation relations have been proposed; see [3] for an
overview of the state-of-the-art. A prominent example of an implementation rela-
tion is the implementation relation ioco [16], which is based on the formalism of
Labelled Transition Systems (LTSs). Several testing tools implement it, e.g. TorX
[1] and TGV [10]. The LTS formalism is a powerful semantic model to describe
systems. However, it has some drawbacks which make its direct use for MBT
cumbersome. In particular, the use of data values and variables is not possible.
None the less all state-of-the-art modeling formalisms allow for such a symbolic
treatment of data and often have underlying LTS-semantics, e.g. Statecharts [9]
or the data-enriched process algebra LOTOS [2]. To use such a model for serving
as the input to an LTS-based testing tool all data must be encoded in action
names representing concrete values; there is no symbolic treatment of data. This
mapping of data values leads to the infamous state space explosion problem,
which limits the usability of test generation tools. A second disadvantage of this
mapping is that all structure and information available in the data definitions
and constraints is lost. This information can be very useful in the test selection
process (see e.g. [4]).

To overcome these problems we introduced Symbolic Transition Systems (STS)
in [6]. An STS is a transition system incorporating an explicit notion of data and
data-dependent control flow, such as guarded transitions, founded on first order
logic. The underlying first order structure gives formal means to define both the
data part algebraically, and the control flow part logically. The emphasis in [6]
was on presenting an on-the-fly algorithm for generating ioco test cases derived
directly from STSs.

In this paper we go a fundamental step ahead by lifting the ioco relation
to the level of STSs: we give a fully symbolic version of ioco, called sioco.
Hence, sioco relates symbolic specifications to symbolically modeled implemen-
tations. The goal is to have a complete formal framework for symbolic testing.
By being sound and complete for ioco the framework allows to reason about all
conformance aspects, for instance repetitive quiescence. It serves as a founda-
tion to define further symbolic aspects like symbolic test cases, coverage criteria
based on symbolic reachability, etc., and to gain insight into the underlying
symbolic mechanisms. Studying the implementation relation sioco and the con-
cepts needed to define it, also provides a necessary and well-defined basis for the
development of symbolic test generation tools.

Overview. In Sect. 2, we recall the first order concepts underlying the STS
formalism. The ioco relation is summarized in Sect. 3. Section 4 introduces
STSs and the symbolic framework. Section 5 defines the symbolic variant sioco.
An outlook at applications of the presented theory is given in Sect. 6, followed
by conclusions and related work in Sect. 7.
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2 First Order Logic

We use basic concepts from first order logic as our framework for dealing with
data. For a general introduction into logic we refer to [5]. Throughout this paper
we use the following conventions: for sets A and B, the set of all total functions
from A to B is denoted BA. For functions f :B→C and g:A→B, we denote the
composition of f and g by f ◦ g. We sometimes treat a tuple 〈x1, . . . , xn〉 as the
set {x1, . . . , xn} when the context allows this.

From hereon we assume a first order structure (S, M) as given. S = (F, P )
is a logical signature with F being a set of function symbols. Each f∈F has
a corresponding arity n∈N. P is a set of predicate symbols. Each p∈P has a
corresponding arity n∈N

+. The model M = (U, (fM)f∈F , (pM)p∈P ) consists of
U being a non-empty set called universe, and for all f∈F with arity n, fM is
a function of type Un→U. For every p∈P with arity n we have pM ⊆ Un. For
simplicity, and without loss of generality, we restrict to one-sorted signatures.

Let X be a set of variables ; we assume sets X, Y ⊆ X. Terms over X , denoted
T(X), are built from variables x∈X and function symbols f∈F . The set of
variables appearing in a term t is denoted var(t). A term-mapping is a function
σ:X → T(X). For a given tuple of variables 〈x1, . . . , xn〉 we set σ(〈x1, . . . , xn〉) =
〈σ(x1), . . . , σ(xn)〉. The identity term-mapping id is defined as id(x) = x for all
x∈X. By σX , we denote a restricted term-mapping σ that is only to be applied
on variables from X , i.e., σX(x) = σ(x) if x∈X , and x otherwise. The set of
all term-mappings σ∈T(X)X for which hold that σ(x)∈T(Y ) for all x∈X , and
σ(x) = x for all x /∈ X , is denoted T(Y )X�X . We will omit the mentioning of X
and just write T(Y )X in the remainder.

The set of free variables of a first order formula ϕ is denoted free(ϕ). The
set of all first order formulas ϕ satisfying free(ϕ) ⊆ X is denoted F(X). A tau-
tology is represented by �; we set ¬� = ⊥. We write ∃Xϕ for the formula
∃x1∃x2 . . . ∃xn : ϕ, where {x1, . . . , xn} = X ∩ free(ϕ), referred to as the existen-
tial closure for X of ϕ. Analogously we define the universal closure ∀Xϕ.

Let σ be a term-mapping. Given a formula ϕ, the substitution of σ(x) for
x∈free(ϕ) is denoted ϕ[σ]. Substitutions are side-effect free, i.e. they do not add
bound variables. This is achieved using an implicit proper renaming of bound
variables. Likewise, for a term t, the substitution of σ(x) for x∈ var(t) is denoted
t[σ]. Together we get [σ] : F(X) ∪ T(X) → F(X) ∪ T(X).

A valuation is a function ϑ∈UX. For a given tuple of variables 〈x1, . . . , xn〉
we set ϑ(〈x1, . . . , xn〉) = 〈ϑ(x1), . . . , ϑ(xn)〉. Let ∗ denote an arbitrary element
of the set U. A partial valuation is a function ϑX∈UX ; ϑX can be extended to
a valuation ϑ as follows: ϑ(x) = ϑX(x) if x∈X , and ϑ(x) = ∗ when x∈X \ X .
Having two partial valuations ϑ∈UX and ς∈UY , with X ∩ Y = ∅, their union
(ϑ∪ς)∈UX∪Y is defined as (ϑ∪ς)(x) = ϑ(x) if x∈X , and (ϑ∪ς)(x) = ς(x) if x∈Y .
The satisfaction of a formula ϕ w.r.t. a given valuation ϑ is denoted ϑ |= ϕ. The
extension to evaluate terms based on a valuation ϑ is called a term-evaluation
and denoted ϑeval:T(X) → U.
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3 A Testing Relation for Labelled Transition Systems

We assume the reader has some basic familiarity with (ioco-based) model-based
testing techniques as described in e.g. [16], and recall only those concepts and
conventions relevant to this paper.

Definition 1. A Labelled Transition System (LTS) is a tuple L = 〈S, s0, Σ, →〉,
where S is a set of states and s0∈S is the initial state. The set Σ is a set of
observable action labels. The action label τ /∈ Σ denotes an unobservable action;
Στ abbreviates the set Σ ∪ {τ}. The relation → ⊆ S×Στ×S is the transition
relation; s

μ−→ s′ abbreviates (s, μ, s′)∈→.

Let L = 〈S, s0, Σ, →〉 be an LTS. The generalized transition relation =⇒⊆
S × Σ∗ × S of L is obtained in the standard way, i.e. it is the smallest relation
satisfying:

(Tε) s
ε=⇒ s, with s∈S,

(Tτ) s
σ=⇒ s′ if s

σ=⇒ s′′ and s′′ τ−→ s′, with s, s′, s′′∈S and σ∈Σ∗,
(Tμ) s

σ·μ
=⇒ s′ if s

σ=⇒ s′′ and s′′
μ−→ s′, with s, s′, s′′∈S, σ∈Σ∗ and μ∈Σ.

We use the following shorthand notations and functions:

1. s
μ−→ abbreviates ∃s′∈S : s

μ−→ s′, with s∈S and μ∈Στ ,
2. s

σ=⇒ abbreviates ∃s′∈S : s
σ=⇒ s′, with s∈S and σ∈Σ∗,

3. traces(s) =def { σ∈Σ∗ | s
σ=⇒ }, with s∈S,

4. der (s) =def {s′ | ∃σ∈Σ∗ : s
σ=⇒ s′}, with s∈S.

A specialization of the model of LTSs is the model of Input-Output Labelled
Transition Systems (IOLTSs), which captures the notion of initiative of actions
(i.e. whether the action is an input or an output).

Definition 2. An IOLTS is a tuple 〈S, s0, ΣI , ΣU , →〉, such that 〈S, s0, ΣI ∪
ΣU , →〉 is an LTS and ΣI ∩ ΣU = ∅; ΣI is the set of inputs and ΣU is the set
of outputs.

Let L = 〈S, s0, ΣI , ΣU , →〉 be an IOLTS. An observation from L is an output
action μ∈ΣU or the refusal of all outputs; we refer to such a refusal as quiescence.
A state s∈S in L is quiescent, denoted δ(s), iff ∀μ∈ΣU ∪ {τ} : s � μ−→. Let δ be a
constant not part of any action label set; Σδ abbreviates ΣI ∪ΣU ∪{δ}, and Σ∗

δ

is referred to as the set of extended traces. We define the suspension transition
relation =⇒δ⊆ S × Σ∗

δ × S as the smallest relation satisfying rules Tε, Tτ , Tμ
(with =⇒δ replacing =⇒) and Tδ, where Tδ is given as:

(Tδ) s
σ·δ=⇒δ s′ if s

σ=⇒δ s′ and δ(s′), with s, s′∈S and σ∈Σ∗
δ .

We define the following functions for arbitrary s∈S, C ⊆ S and σ∈Σ∗
δ :

1. Straces(s) =def {σ∈Σ∗
δ | s

σ=⇒δ}, is the set of suspension traces,
2. C after σ =def

⋃
s∈C s after σ , where s after σ =def {s′∈S | s

σ=⇒δ s′},
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3. out(C) =def
⋃

s∈C out(s), where out(s) =def {μ∈ΣU | s
μ−→} ∪ {δ | δ(s)}.

The testing hypothesis [16] states that implementations can be modeled as input-
enabled IOLTSs, where an IOLTS 〈S, s0, ΣI , ΣU , →〉 is input-enabled if and only
if:

∀s∈der(s0)∀μ∈ΣI : s after μ �= ∅.
The conformance testing relation ioco is defined as follows:

Definition 3. Let S = 〈S, s0, ΣI , ΣU , →S〉 be a specification IOLTS, and let
F ⊆ Straces(s0). An input-enabled IOLTS P = 〈P, p0, ΣI , ΣU , →P〉 is iocoF -
conform to S, denoted by P iocoF S, iff

∀σ∈F : out( p0 after σ ) ⊆ out( s0 after σ )

4 The Symbolic Framework

In practical situations, LTSs lack the required level of abstraction for modeling
complex, data-intensive systems. This problem is solved by the model of Symbolic
Transition Systems (see e.g. [15,6]), which we introduce in this section.

4.1 Syntax and Semantics for Symbolic Transition Systems

The STS model extends the model of LTSs by incorporating an explicit notion
of data and data-dependent control flow (such as guarded transitions), founded
on first order logic.

Definition 4. An STS is a tuple S = 〈L, l0, V , I, Λ, →〉, where L is a set of
locations and l0∈L is the initial location. V is a set of location variables and
I is a set of interaction variables; V ∩ I = ∅, and we set Var =def V ∪ I. Λ is
the set of gates; constant τ /∈ Λ denotes an unobservable gate; Λτ abbreviates
Λ∪{τ}. The relation → ⊆ L×Λτ ×F(Var)×T(Var)V ×L is the switch relation;

l
λ,ϕ,ρ−−−→ l′ abbreviates (l, λ, ϕ, ρ, l′)∈→, where ϕ is the switch restriction and ρ is

the update mapping. We use the following functions and vocabulary:

1. arity : Λτ→N is the arity function,
2. type(λ) yields a tuple of size arity(λ) of interaction variables for gate λ,
3. S is well-defined iff arity(τ) = 0, type(λ) yields a tuple of distinct interaction

variables, and l
λ,ϕ,ρ−−−→ l′ implies free(ϕ) ⊆ V∪type(λ) and ρ∈T(V∪type(λ))V ,

4. S(ι) is an initialized STS, where ι∈UV initializes all variables from V in l0.

We only consider well-defined STSs in this paper.

Example 1. The STS 〈{li | 0 ≤ i ≤ 5}, l0, {rp, q, r}, {prod, quant, ref}, Λ, →〉, with
Λ = {?rq, !gq, ?ord, !confirm, !cancel} is depicted in Fig. 1; → is given by the di-
rected edges linking the locations. We have e.g. arity(?rq) = 2 and type(?rq) =
<prod,quant>. The underlying first order structure is based on a natural number
universe with the common “less-than” predicate <. The STS specifies a simplified
supplier system which can be requested for a quote for a given product prod and
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1 2 3

5

4

0

!confirm<ref>
[ref = r]

l

l

l ?ord<ref>
[ref=r]

!cancel<ref>
[ref = r]

?rq<prod, quant>
rp := prod, q := quant

!gq<ref, prod, quant>
[prod = rp & quant < q]
r := ref

l l l

Fig. 1. An STS specifying a simplified Supplier

quantity quant via gate ?rq located on the switch from l0 to l1. The requested prod-
uct and quantity are stored in the location variables rp and q, respectively. Next a
quote is returned via gate !gq which must deal with the same product and with a
quantity less than the requested one. Subsequently, the quote can be ordered via
gate ?ord by giving the correct reference number from the received quote. Finally
the supplier nondeterministically communicates a cancellation of the order via the
!cancel gate, or confirms the order via the !confirm gate. As a convention, switch
constraints � and update-mappings id are not explicitly drawn. We will refer to
this STS in the following examples as the Supplier STS. �

The interpretation of an STS is defined in terms of LTSs.

Definition 5. Let S = 〈L, l0, V , I, Λ, →〉 be an STS. Its interpretation [[S]]ι in
the context of ι∈UV , is defined as [[S]]ι = 〈L × UV , (l0, ι), Σ, →〉 for all ι∈UV ,
where

– Σ =
⋃

λ∈Λ({λ} × Uarity(λ)), is the set of actions.
– → ⊆ (L × UV) × (Σ ∪ {τ}) × (L × UV) is defined by the following rule:

l
λ,ϕ,ρ−−−→ l′ ς∈Utype(λ) ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ

(l, ϑ)
(λ, ς(type(λ)))−−−−−−−−−→ (l′, ϑ′)

The semantics of an initialized STS S(ι) is given by the LTS [[S]]ι.

4.2 Symbolic Executions and Symbolic States

The notion of a trace of an STS can be defined by appealing to the semantics
of an initialized STS. This, however, suffers from the disadvantage that all high-
level information and structure about the data that is communicated over gates
is lost. Therefore, we choose to define a notion of traces on the level of symbolic
executions.

Symbolic execution as a technique was initially developed to symbolically
execute imperative programs with the aim of proving correctness. This can be
a hard task since the symbolic execution tree can for instance be of infinite size
due to loops in the program. For this reason already early approaches suggested
to just partially generate the execution tree for testing the program against a
given specification, see e.g. [12].
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Even if our domain of interest, i.e. reactive systems, has some fundamental
originalities like nondeterminism, non-termination, etc., many of the classical
symbolic execution techniques can be recovered in our setting. We do not adopt
the symbolic tree representation, though, instead we use a more compact, linear
representation which fits better to the standard notions we have introduced
in Sect. 3. Whereas in a symbolic tree the ordering of events is encoded in
its depth, we do so explicitly via so called history variables, which represent
possible interactions. These variables provide a representation for the data that
could have been communicated over a particular gate appearing at some point
in a symbolic execution.

Example 2. Starting in location l0 we can let the Supplier symbolically move to
location l1. Here the gate ?rq requests a product prod and a quantity quant.
These values are stored in the location variables rp and q, respectively. All we
know after executing this switch symbolically is that rp equals the value of prod,
and q equals the value of quant. Proceeding symbolically we may encounter
again the interaction variables prod or quant, hence it is necessary to make
explicit that we are referring to the first occurrence of these variables within
the symbolic execution. We do so by introducing the history variables prod1 and
quant1. Hence we can, after moving from l0 to l1, formally record that rp �→ prod1
and q �→ quant1. Proceeding now from l1 to l2 the gate !gq returns a quote which
also consists of a quantity, represented again by the interaction variable quant.
This variable is now constrained by quant < q. In our symbolic context this
equals quant < quant1. Also here we have to refer to the correct occurrence of
the interaction variable, so we introduce another history variable quant2 and
record here quant2 < quant1. Analogously we get prod2 = prod1 and r �→ ref2. �

For the remainder of this section we assume an STS S = 〈L, l0, V , I, Λ, →〉.
Henceforth, we assume to have history variable sets I1, I2, . . . which are disjoint
from each-other and from the set Var of S. We set Î =def

⋃
j Ij , and V̂ar =def

V ∪ Î. In addition, we assume to have bijective variable-renamings rn∈II
n .

The generalized switch relation =⇒⊆ L×Λ∗×F(V̂ar)×T(V̂ar)V×L, is defined
as the smallest relation satisfying the following three rules:

(Sε) l
ε, �, id

=====⇒ l,

(Sτ) l
σ, ϕ∧ψ[ρ], [ρ]◦π

===========⇒ l′ if l
σ, ϕ, ρ

=====⇒ l′′ and l′′
τ, ψ, π−−−−−→ l′,

(Sλ) l
σ·λ, ϕ∧(ψ[rn])[ρ], ([ρ]◦([rn]◦π))V======================⇒ l′ if l

σ, ϕ, ρ
=====⇒ l′′ and l′′

λ,ψ,π−−−→ l′ and n =
length(σ)+1.

Analogously to the generalized transition relation =⇒ for LTSs, the generalized
switch relation hides unobservable events without affecting the observable events
that can follow it. The intuition behind a generalized switch l

σ,ϕ,ρ
====⇒ l′ is that

location l′ can be reached from location l via a series of interactions over gates,
the sequence of which is dictated by σ, and the values that are passed over these
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gates satisfy the conditions collected in ϕ (called attainment constraint1); the
values for the location variables V are specified by update-mapping ρ.

Using a variable-shifting for the involved attainment constraints and term-
mappings, generalized switches can be composed to yield larger generalized
switches. A variable-shifting function re-indexes sets of history variables: having
renamings r(j,k)∈IIj

k between all pairs Ij and Ik, defined as r(j,k) =def rk ◦ r−1
j ,

for all i, j, k∈N
+ (where rk∈II

k is a bijective renaming function for history vari-
ables), we define a variable-shifting function s�i∈Î�I for all i∈N as follows:

s�i(x) =def

{
r(j,j+i)(x) if x∈Ij for some j,
x otherwise

Proposition 1. If l
σ1, ϕ1, ρ1=======⇒ l′′ and l′′

σ2, ϕ2, ρ2=======⇒ l′ and n = length(σ1), then

also l
σ1·σ2, ϕ1∧(ϕ2[s�n])[ρ1], ([ρ1]◦([s�n]◦ρ2))V=============================⇒ l′.

Note that there may be a large number of different executions (generalized
switches) to get from l to l′. Each of these may have different effects on the
values for the location variables at location l′. Therefore, given a location, we
have no means to deduce what the possible values for the location variables are.
These values are required to compute the semantical states of an STS, which
in turn is required for defining the implementation relation ioco. To solve this
issue, we introduce the concept of symbolic states. Symbolic states provide a
finite characterization of (possibly infinite) sets of semantical states of an STS.

Definition 6. A symbolic state is a tuple (l, ϕ, ρ)∈L×F(V̂ar)×T(V̂ar)V . When
the history variables referenced by attainment constraint ϕ and update-mapping
ρ are from a set not above some i∈N, we may add an index to the symbolic
state (l, ϕ, ρ) and refer to it as an indexed symbolic state, denoted (l, ϕ, ρ)i. We
require that (l, ϕ, ρ)i satisfies:

1. ϕ∈F(V ∪
⋃

j≤i Ij), and
2. ρ∈T(V ∪

⋃
j≤i Ij)V .

The interpretation of a symbolic state in the context of location variable valua-
tion ι and history variable valuation υ is a set of states of [[S]]ι.

Definition 7. Let ι∈UV and let υ∈U
�I . The interpretation of a symbolic state

(l, ϕ, ρ) with respect to ι and υ is defined by:

[[(l, ϕ, ρ)]]ι,υ =def {(l, (ι ∪ υ)eval ◦ ρ) | ι ∪ υ |= ϕ}

Remark that |[[(l, ϕ, ρ)]]ι,υ| ≤ 1; as a convention we identify the singleton set
with its only element, omitting the set notation at our convenience. For sets of
symbolic states C ⊆ L × F(V̂ar) × T(V̂ar)V , we define the following shorthands:

1 The attainment constraint ϕ corresponds to what is called a path condition in the
literature for symbolic execution of programs.
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1. [[C]]ι,υ =def
⋃

(l,ϕ,ρ)∈C [[(l, ϕ, ρ)]]ι,υ,
2. [[C]]ι =def

⋃
υ∈U�I [[C]]ι,υ.

Example 3. The history variables for the Supplier are Ij = {prodj , quantj , refj}
with j∈N

+. A generalized switch is l0
?rq·!gq·?ord·!cancel, ϕ, ρ

===============⇒ l0 with ϕ = (prod2 =
prod1)∧(quant2 < quant1)∧(ref3 = ref2)∧(ref4 = ref2) and ρ = {rp �→ prod1, q �→
quant1, r �→ ref2}. The symbolic state (l0, ϕ, ρ) can be indexed by 4 or greater,
and [[{(l0, ϕ, ρ)}]]ι = {(l0, {rp �→ x, q �→ y, r �→ z}) | x, z∈N, y∈N

+} for all
ι∈UV . ��

5 A Symbolic Implementation Relation for STSs

In this section, we introduce the necessary concepts to define the implementation
relation sioco on the level of STSs, which we prove to be equivalent to ioco on
LTSs. We specialism the model of STSs by recognizing input-gates and output-
gates. The resulting model is called Input-Output Symbolic Transition Systems
(IOSTSs).

Definition 8. An IOSTS is a tuple 〈L, l0, V , I, ΛI , ΛU , →〉 with 〈L, l0, V , I, ΛI ∪
ΛU , →〉 being an STS and ΛI ∩ ΛU = ∅; ΛI is the set of input gates and ΛU is
the set of output gates.

Throughout this section we assume a given IOSTS S = 〈L, l0, V , I, ΛI , ΛU , →〉.
The interpretation of S is a function from initialization functions to IOLTSs;
it is a straightforward adaptation of Def. 5, in which ΣI is the set of actions
(λ, ) with λ∈ΛI , and ΣU is the set of actions (λ, ) with λ∈ΛU . Distinguishing
between input- and output interactions at the symbolic level allows us to define
a symbolic analogue to quiescence. Since quiescence of a location l∈L depends
on the values for the location variables and the existence of proper values for
interaction variables, we are primarily interested in the condition under which
location l is quiescent. This symbolic quiescence condition is denoted Δ(l)∈F(V),
and is defined as follows:

Δ(l) =def

∧
{¬∃type(λ)ψ | ∃l′, π : l

λ,ψ,π−−−→ l′ with λ∈ΛU ∪ {τ}}

Example 4. To transform the Supplier STS into an IOSTS we set ΛI = {?rq, ?ord}
and ΛU = {!gq, !confirm, !cancel}. We get Δ(l1) = ¬

(
∃ref∃prod∃quant : prod =

rp ∧ quant < q
)

for the Supplier. In the underlying natural numbers model the
satisfiability of this formula boils down to q = 0, i.e. l1 is quiescent given that
the requested quote has a zero quantity. The switch restriction from l1 to l2 is
unsolvable, resulting in deadlock. �

Communications over output gates λ∈ΛU , or the refusals δ of any output commu-
nication are the observables of an IOSTS. In contrast to the semantic framework
of LTSs, these communications may depend on values that were communicated
at an earlier stage, meaning that the observations are conditional. The com-
bination of such conditions and the communications over a gate is referred to
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as a symbolic observation. Let the set of symbolic observations O for a given
IOSTS S be defined as the set O =def (ΛU ∪ {δ}) × F(V̂ar) × F(V̂ar ∪ I) with
free(ψ) ⊆ type(λδ) ∪ V̂ar for all (λδ, ϕ, ψ)∈O (assuming type(δ) = ∅). We inter-
pret a symbolic observation in terms of semantic actions:

Definition 9. Let (λδ, ϕ, ψ) be a symbolic observation. The interpretation
[[(λδ, ϕ, ψ)]]ι,υ of (λδ, ϕ, ψ) is given in the context of ι∈UV and υ∈U

�I:

[[(δ, ϕ, ψ)]]ι,υ = {δ | ι ∪ υ |= ϕ ∧ ψ}
[[(λ, ϕ, ψ)]]ι,υ = {(λ, ς(type(λ))) | ι ∪ υ ∪ ς |= ϕ ∧ ψ with ς∈Utype(λ)}

The interpretation of a set O ⊆ O in the context of ι∈UV and υ∈U
�I is defined

as follows: [[O]]ι,υ =def
⋃

(λδ, ϕ, ψ)∈O [[(λδ, ϕ, ψ)]]ι,υ

The function outs is defined on symbolic states, yielding a set of observations.

Definition 10. Let (l, ϕ, ρ) be a symbolic state. We define:

outs((l, ϕ, ρ)) =def {(λ, ϕ, ψ[ρ])∈O | ∃l′, π : l
λ,ψ,π−−−→ l′} ∪ {(δ, ϕ, Δ(l)[ρ])}

Let C be a set of symbolic states. Here we set:

outs(C) =def

⋃

(l,ϕ,ρ)∈C
outs((l, ϕ, ρ))

Lemma 1. For all ι∈UV , υ∈U
�I and sets C of symbolic states we have:

[[outs(C)]]ι,υ= out([[C]]ι,υ)

From hereon, we set Λδ =def ΛI ∪ ΛU ∪ {δ}. We define the symbolic suspension
switch relation =⇒δ⊆ L × Λ∗

δ × F(V̂ar) × T(V̂ar)V × L as the smallest relation
satisfying rules Sε, Sτ , Sλ (with =⇒δ replacing =⇒) and Sδ, given as:

(Sδ) l
σ·δ, ϕ∧Δ(l′)[ρ], ρ

============⇒ δl
′ if l

σ,ϕ,ρ
====⇒ δl

′.

The rule Sδ reveals the fact that quiescence is an intrinsic semantical property.
During a symbolic execution we can at any step just hypothesize that the system
is quiescent and add a corresponding logical statement to the attainment con-
straint (that is what rule Sδ does). Solving the constraint semantically means
to compute the conditions under which quiescence really occurs (i.e. the traces
which lead to a quiescent state).

The history variables that are allowed to be addressed in a sequence σ∈Λ∗
δ

are given by var(σ), where var :Λ∗
δ→2�I is defined inductively as:

⎧
⎨

⎩

var(ε) = ∅
var(σ · δ) = var(σ)
var(σ · λ) = var(σ) ∪ {rlength(σ)+1(ν) | ν∈type(λ)}
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Lemma 2. If l
σ, ϕ, ρ

=====⇒ δl
′ then we have ϕ∈F(V ∪var(σ)) and ρ∈T(V ∪var(σ))V

and (l′, ϕ, ρ)length(σ) is an indexed symbolic state.

Let E denote the set of symbolic extended traces {(σ, ϕ)∈Λ∗
δ ×F(V̂ar) | free(ϕ) ⊆

V ∪ var(σ)}. The interpretation of symbolic extended traces is given below:

Definition 11. Let ι∈UV and let υ∈U
�I . The interpretation of a symbolic ex-

tended trace (σ, ϕ) with respect to ι and υ is an extended trace, defined by:

[[(σ, ϕ)]]ι,υ =def {etraceυ(σ) | ι ∪ υ |= ϕ}

where etraceυ(σ) is inductively defined as follows:
⎧
⎨

⎩

etraceυ(ε) = ε
etraceυ(σ · δ) = etraceυ(σ) · δ
etraceυ(σ · λ) = etraceυ(σ) · (λ, υ(rn(type(λ)))) with n = length(σ) + 1

Note that |[[(σ, ϕ)]]ι,υ| ≤ 1; as a convention, we identify the singleton set with its
only element. For sets E ⊆ E , we define the following shorthands:

1. [[E]]ι,υ =def
⋃

(σ,ϕ)∈E [[(σ, ϕ)]]ι,υ,
2. [[E]]ι =def

⋃
υ∈U�I [[E]]ι,υ.

To complete the set of symbolic counterparts for the relevant semantical notions
we define a symbolic afters function, mapping pairs of indexed symbolic states
and symbolic extended traces to new indexed symbolic states.

Definition 12. Let (l, ϕ, ρ)i be an indexed symbolic state and let (σ, χ)∈E be a
symbolic extended trace. We define the binary function afters as follows:

(l, ϕ, ρ)i afters(σ, χ)

=def {(l′, ϕ ∧ ((ψ ∧ χ)[s�i])[ρ], ([ρ] ◦ ([s�i] ◦ π))V )i+length(σ) | l
σ,ψ,π

====⇒ δl
′}

Let C be a set of indexed symbolic states. Here we set
C afters(σ, χ) =def

⋃
(l,ϕ,ρ)i∈C(l, ϕ, ρ)i afters(σ, χ).

Lemma 3. Let (l, ϕ, ρ)i be an indexed symbolic state and let (σ, χ)∈E be a sym-
bolic extended trace. Then for all ι∈UV and υ∈U

�I, we have:

[[(l, ϕ, ρ)i afters(σ, χ)]]ι,υ = [[(l, ϕ, ρ)i]]ι,υ after [[(σ, χ)]](ι∪υ)eval◦ρ, υ◦s�i

Example 5. For the Supplier we get (l2, r > prod3, id)3 afters(?ord, ref1 < 42) =
{(li, ξ, id)4 | i = 3, 4, 5} with ξ = r > prod3 ∧ ref4 = r ∧ ref4 < 42. If we call
the latter set M and apply common first order equalities we get outs(M) =
{(δ, ξ, ⊥), (!confirm, ξ, ref = r), ((!cancel, ξ, ref = r))}. �

The symbolic concepts that have been introduced so far provide a characteri-
zation of the semantically relevant concepts that were introduced in Section 3.
The precise connection is established in the following two theorems.
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Theorem 1 (Soundness). Let S = 〈L, l0, V , I, ΛI , ΛU , →〉 be an IOSTS. Then
for all ι∈UV and all υ∈U

�I we have: if both l
σ,ϕ,ρ

====⇒ δ l′ and ι ∪ υ |= ϕ then also

[[(l, �, id)]]ι,υ
[[(σ,ϕ)]]

ι,υ=======⇒ δ [[(l′, ϕ, ρ)]]ι,υ.

Theorem 2 (Completeness). Let S = 〈L, l0, V , I, ΛI , ΛU , →〉 be an IOSTS.
For all states (l, ι), (l′, ι′) we have: (l, ι) σ=⇒ δ (l′, ι′) implies there is a valuation
υ∈U

�I and a suspension switch l
σ,ϕ,ρ

====⇒ δl
′ satisfying ι ∪ υ |= ϕ, σ = [[(σ, ϕ)]]ι,υ

and (l′, ι′) = [[(l′, ϕ, ρ)]]ι,υ.

The set of symbolic suspension traces of a location l of an IOSTS S is denoted
Stracess(l), which is defined as Stracess(l) =def {(σ, ϕ)∈E | ∃l′, ρ : l

σ,ϕ,ρ
====⇒ δl

′}.

Corollary 1. Let S(ι) = 〈L, l0, V , I, ΛI , ΛU , →〉 be an initialized IOSTS. Then
we have [[Stracess(l0)]]ι = Straces((l0, ι)).

Definition 13. Let S(ι) be an initialized IOSTS. We set: S(ι) is input enabled
⇔def [[S]]ι is an input-enabled IOLTS.

Now we are in the position to give the symbolic sioco variant of the ioco relation,
based on the notions introduced so far.

Definition 14 (sioco). Let Fs be a set of symbolic extended traces for an ini-
tialized specification IOSTS S(ιS) = 〈LS , lS , VS , I, Λ, →S〉, satisfying [[Fs]]ιS

⊆
Straces((l0, ιS)). An implementation, given as an input-enabled IOSTS P(ιP ) =
〈LP , lP , VP , I, Λ, →P 〉, with VS ∩ VP = ∅, is siocoFs-conform to S(ιS) (written
P(ιP ) siocoFs S(ιS)) iff

∀(σ, χ)∈Fs ∀λδ∈ΛU ∪ {δ} : ιP ∪ ιS |= ∀
�I∪I

(
Φ(lP , λδ, σ) ∧ χ → Φ(lS , λδ, σ)

)

where Φ(κ, λδ , σ) =
∨

{ϕ ∧ ψ | (λδ , ϕ, ψ)∈ outs((κ, �, id)0 afters(σ, �))}

The following theorem expresses that sioco coincides with ioco.

Theorem 3. Let S(ιS) = 〈L, l0, V , I, ΛI , ΛU , →〉 be an initialized IOSTS and
let P(ιP ) be an input-enabled IOSTS. Let Fs be a set of symbolic extended traces
for S, satisfying [[Fs]]ιS

⊆ Straces((l0, ιS)). Then

P(ιP ) siocoFs S(ιS) iff [[P ]]ιP
ioco[[Fs]]ιS

[[S]]ιS

6 Application

The concepts that we have defined can be employed to define relations such as
symbolic state inclusion, which allow one to efficiently prune symbolic executions
(see e.g. [7]). Another example of how our theory contributes in improving and
studying practically relevant testing problems is given in this section. We first
define a naive (but often used) coverage measure that is based on reachability
of states, and show that in the presence of data and control, coverage measures
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that are based on the concepts of locations and symbolic states are much more
appropriate. In practice, a coverage measure can be used to fuel the test selection
process; such a test selection process could e.g. be combined with the on-the-fly
test derivation algorithm we presented in [6]. Note that the coverage measures
described in this section are defined on the basis of the specification, rather than
on the implementation (which is considered to be a black box). The underlying
assumption is that a higher coverage value is an indication of a higher test
quality; as such, one would always aim at a coverage value of 1 (i.e. full coverage).

We assume that the execution of a set of test cases (see e.g. [16] for a de-
finition) on an implementation has resulted in a number of test runs, which
we assume can be represented by a prefix-closed set of extended traces. Let
L = 〈S, s0, ΣI , ΣU , →〉 be an LTS-specification; a state-coverage measure Ps(R)
of a set of executed test runs R ⊆ Σ∗

δ can be defined as the ratio between states
that have potentially been covered by test runs from R, and the total number
of reachable states:

Ps(R) =def |
|

⋃
ρ∈R s0 after ρ |
| der(s0) |

State-coverage quickly becomes impractical when data plays a role, since the set
of reachable states becomes extremely large or even infinite. This is exemplified
by the Supplier STS: there is an infinite number of initial transitions leading
to an infinite number of reachable states, since the underlying LTS model of
the Supplier STS is infinitely branching in its initial state, effectively giving
Ps(R) = 0 for all sets of test runs R. Note that this problem persists, even when
we consider an alternative definition of Ps which relies on the total number of
states that can be reached within a finite (known) number of steps.

A coverage measure that side-steps this problem is location-coverage for STSs.
Let S(ι) = 〈L, l0, V , I, ΛI , ΛU , →〉 be an STS-specification (we assume it has se-
mantics 〈S, s0, ΣI , ΣU , →〉); a location-coverage Pl(R) of a set of executed test
runs R ⊆ Σ∗

δ is defined as the ratio between locations that have potentially been
covered by test runs from R, and the total set of reachable locations of S:

Pl(R) =def
| {l′∈L | ∃ρ∈R : ∃ι′∈UV : (l′, ι′)∈ s0 after ρ } |

| {l′∈L | ∃ι′∈UV : (l′, ι′)∈der (s0))} |
While the (in)finiteness of a state space is irrelevant for the location-coverage
(in the usual case that L is finite), a major drawback of location-coverage is
that e.g. a full coverage largely relies on control-flow; data is not considered on
equal footing. In the Supplier STS, this means that Pl(R) = 1 does not imply
that R has a test run ?rq〈p, 0〉 (where p∈N is some instantiation), leading to a
data-dependent quiescence observation.

A refinement of location-coverage that does treat data and control on equal
footing is symbolic state-coverage. Let n∈N be the maximal length of a test run.
The symbolic state-coverage Pss(R, n) of a set of executed test runs R ⊆ Σ∗

δ of
length at most n is defined as the ratio between the symbolic states that have
been covered by test runs from R, and the total set of (semantically) reachable
symbolic states of S (using experiments of length n at most):
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Pss(R, n) =def
| {(l, ϕ, ρ) | ∃σ∈Λ≤n

δ : l0
σ,ϕ,ρ

====⇒ δl and [[{(σ, ϕ)}]]ι ∩ R �= ∅} |
| {(l, ϕ, ρ) | ∃σ∈Λ≤n

δ : l0
σ,ϕ,ρ

====⇒ δl and [[{(σ, ϕ)}]]ι �= ∅} |

We leave it to the reader to check that in order to achieve Pss(R, n) = 1, with n >
1 for the Supplier STS, the set R must also contain a test run ?rq〈p, 0〉 (for some
p∈N). A test selection process aiming at a particular coverage using coverage
measure Pss could employ (subsets of) the set appearing in the denominator of
Pss to select test cases that reach symbolic states in this set.

7 Conclusions and Related Work

We have presented a symbolic implementation relation sioco, and proven its
soundness and completeness w.r.t. the semantical ioco relation. The symbolic
concepts that were needed to define sioco are not mere artefacts of the definition
of sioco, but they have their own merits. We illustrated this by defining a test
coverage measure that is based on symbolic states, which has advantages over
coverage measures based on locations or semantic states. Similar advantages
were found when investigating symbolic test case generation (not discussed in
this paper), and, we expect to be able to reuse these concepts in e.g. test data
selection.

To the best of our knowledge, this is the first approach that gives a fully sym-
bolic implementation relation including quiescence. A closely related approach is
described in [15], that uses a variant of a symbolic transition system and a weaker
relation, e.g. they do not deal with quiescence. In [11] the problem of symbolic
reachability analysis is approached with over-approximation techniques.

Also [7] presents a symbolic variation of the theme which is more focused on
implementation issues. Their models are syntactically less expressive, e.g. inputs
cannot directly be constrained, and the underlying implementation relation is
not fully ioco (repetitive quiescence is missing). By having a simpler model
without dedicated interaction variables, some computational tasks are easier to
solve, for instance symbolic quiescence becomes quantifier-free.

Symbolic transitions systems are somewhat similar to Statecharts [9], and to
their UML-variant called State Machines [14]. State Machines, though, tend to
be applied in a synchronous setting, where inputs and outputs appear together
on a single transition. This has consequences for compositionality issues, nonde-
terminism, etc., and corresponds to the semantical model of a Mealy Machine
(also called Finite State Machine (FSM)). There is an important branch of for-
mal testing which is based on Mealy Machines and their symbolic variant called
Extended Finite State Machine, see [13] for a survey. Also the approach to test-
ing in general differs, see e.g. [8] for a comparison. The testing approaches which
are based on LTSs have instead an asynchronous nature, inputs and outputs
appear here isolated on transitions. We hope that the presented framework can
aid in embedding and reasoning about the many variations of LTS-based testing
approaches which have been defined.



54 L. Frantzen, J. Tretmans, and T.A.C. Willemse

It is one of our main current research directions to investigate efficient imple-
mentations of the presented framework. One concrete instance is a Java-based
test system for testing web services implementing the on-the-fly algorithm of [6]
together with the symbolic coverage criteria as being indicated in Sect. 6.
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test purpose definition. In M. Ü. Uyar, A. Y. Duale, and M. A. Fecko, editors,
TestCom 2006, volume 3964 of LNCS, pages 1–18. Springer, 2006.

8. N. Goga. Comparing torx, autolink, tgv and uio test algorithms. In SDL ’01:
Proceedings of the 10th International SDL Forum Copenhagen on Meeting UML,
pages 379–402, London, UK, 2001. Springer-Verlag.

9. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, 1987.
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