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Abstract. Online testing is a practical technique where test derivation and test
execution are combined into a single algorithm. In this paper we describe a new
online testing algorithm that optimizes the choice of test actions using Reinforce-
ment Learning (RL) techniques. This provides an advantage in covering system
behaviors in less time than with a purely random choice of test actions. Online
testing with conformance checking is modeled as a 1 1

2 -player game, or Markov
Decision Process (MDP), between the tester as one player and the implementa-
tion under test (IUT) as the opponent. Our approach has been implemented in C#,
and benchmark results are presented in the paper. The specifications that generate
the tests are written as model programs in any .NET language such as C# or VB.

1 Introduction

Many software systems are reactive. The behavior of a reactive system, especially when
distributed or multithreaded, can be nondeterministic. For example, systems may pro-
duce spontaneous outputs like asynchronous events. Factors such as thread scheduling
are not entirely under the control of the tester but may still affect the behavior observed.
In these cases, a test suite generated offline may be infeasible, since all of the observ-
able behaviors would have to be encoded a priori as a decision tree, and the size of such
a decision tree can be very large.

Online testing (also called on-the-fly testing) can be more appropriate than offline
tests for reactive systems. The reason is that with online testing the tests may be dy-
namically adapted at runtime, effectively pruning the search space to include only
those behaviors actually observed instead of all possible behaviors. The interaction be-
tween tester and implementation under test (IUT) is seen as a game [1] where the tester
chooses moves based on the observed behavior of the implementation under test. Only
the tester is assumed to have a goal; the other player (the IUT) is unaware that it is
playing. This kind of game is known in the literature as a 1 1

2 -player game [6].
Online testing is a form of model-based testing (MBT), where the tester uses a specifi-

cation (or model) of the system’s behavior to guide the testing and to detect the discrep-
ancies between the IUT and the model. It is an established technique, supported in tools
like TorX [18] and Spec Explorer [20]. For the purposes of this paper, we express the
model as a set of guarded update rules that operate on an abstract state. This formulation
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is called a model program. Both the IUT and the model are viewed as interface automata
[8] in order to establish a a formal conformance relation between them.

We distinguish between moves of the tester and moves of the IUT. The actions avail-
able to the tester are called controllable actions. The IUT’s responses are observable
actions. A conformance failure occurs when the IUT rejects a controllable action pro-
duced by the model or when the model rejects an observable action produced by the
IUT.

A principal concern of online testing is the strategy used to choose test actions. A
poor strategy may fail to provoke behaviors of interest or may take an infeasible amount
to time to achieve good coverage. One can think of strategy in economic terms. The
cost of testing increases with the number of test runs and the number of steps per run.
We want to minimize the number of steps taken to achieve a given level of coverage for
the possible behaviors. Exhaustive coverage is often infeasible. Instead, we strive for the
best coverage possible within fixed resource constraints. The main challenge is to choose
actions that minimize backtracking, since resetting the IUT to its initial state can be an
expensive operation.

A purely random strategy for selecting test actions can be wasteful in this regard,
since the tester may repeat actions that have already been tested or fail to systematically
explore the reachable model states. A random strategy cannot benefit from remembering
actions chosen in previous runs.

In this paper we propose an algorithm for online testing, using the ideas from Re-
inforcement Learning (RL) [16,12]. RL techniques address some of the drawbacks of
random action selection. Our algorithm is related to the anti-ant algorithm introduced
in [13], which avoids the generation of redundant test cases from UML diagrams.

RL refers to a collection of techniques in which an agentmakes moves (called actions)
with respect to the state of an environment. Actions are associated with rewards or costs
in each state. The agent’s goal is to choose a sequence of actions to maximize expected
reward or, equivalently, to minimize expected cost.

The history needed to compute the strategy is encoded in a data structure called a
“Test-Trace Graph (TTG)”. We compare several such strategies below. The results show
that a greedy strategy (LeastCost) has a suboptimal solution. The probability of reaching
a failure state does not change with a purely randomized strategy (Random), though the
probability reduces monotonically in a randomized greedy strategy (RandomizedLeast-
Cost). This is because the probability in the latter case is negatively reinforced by the
number of times a failure state has been visited, whereas it remains same in the former
case.

The contributions of this paper are the following:

– We transform the online testing problem into a special case of reinforcement learning
where the frequencies of various abstract behaviors are recorded. This allows us to
better choose controllable actions.

– We show with benchmarks that an RL-based approach can significantly outperform
random action selection.

The rest of the paper is organized as follows. In Section 2 we provide definitions for
model programs, interface automata and a conformance relation. In Section 3 we give a
detailed description of the algorithm. In Section 4 we give the experimental results from
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our benchmarks. We discuss related work in Section 5 and open problems and future
work in Section 6.

2 Testing Theory

In model-based testing a tester uses a specification for two purposes. One is conformance
checking: to decide if the IUT behaves as expected or specified. The other is scenario
control: which actions should be taken in which order and pattern. Model-based testing
is currently a growing practice in industry. In many respects the second purpose is the
main use of models to drive tests and relates closely to test scenarios is traditional testing.
However, with a growing complexity and need for protocol level testing and interaction
testing, the first purpose is gaining importance.

Formally, model programs are mapped (unwound) to interface automata in order to do
conformance checking. The conformance relation that is used can be defined as a form
of alternating refinement. This form of testing is provided by the Spec Explorer tool, see
e.g. [20].

2.1 Model Programs as Specifications

States are memories that are finite mappings from (memory) locations to a fixed uni-
verse of values. By an update rule we mean here a finite representation of a function
that given a memory (state) produces an updated memory (state). An update rule p may
be parameterized with respect to a sequence of formal input parameters x̄, denoted by
p[x̄]. The instantiation of p[x̄] with input values v̄ of appropriate type, is denoted by p[v̄].
In general, an update rule may be nondeterministic, in which case it may yield several
states from a given state and given inputs. Thus, an update rule p[x1, . . . , xn] denotes a
relation [[p]] ⊆ States × Valuesn × States. When p is deterministic, we consider [[p]] as a
function [[p]] : States × Valuesn → States and we say that the invocation (or execution)
of p[v̄] from state s yields the state [[p]](s, v̄).

A guard ϕ is a state dependent formula that may contain free logic variables x̄ =
x1, . . . , xn, denoted by ϕ[x̄]; ϕ is closed if it contains no free variables. Given values
v̄ = v1 . . . , vn we write ϕ[v̄] for the replacement of xi in ϕ by vi for 1 ≤ i ≤ n. A closed
formula ϕ has the standard truth interpretation s |= ϕ in a state s. A guarded update rule
is a pair (ϕ, p) containing a guard ϕ[x̄] and an update rule p[x̄]; intuitively (ϕ, p) limits
the execution of p to those states and arguments v̄ where ϕ[v̄] holds.

Definition 1. A model program P has the following components.

– A state space States.
– A value space Values.
– An initial state s0 ∈ States,
– A finite vocabulary Σ of action symbols partitioned into two disjoint sets

• Σc of controllable action symbols, and
• Σo of observable action symbols.

– A reset action symbol Reset ∈ Σc.
– A family (ϕf , pf )f∈Σ of guarded update rules.
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• The arity of f is the number of input parameters of pf .
• The arity of Reset is 0 and [[pReset]](s) = s0 for all s |= ϕReset.

P is deterministic if, for all action symbols f ∈ Σ, pf is deterministic.

An n-ary action symbol has logically the term interpretation, i.e. two ground terms whose
function symbols are action symbols are equal if and only if the action symbols are iden-
tical and their corresponding arguments are equal. An action has the form f(v1, . . . , vn)
where f is an n-ary action symbol and each vi is a value that matches the required type
of the corresponding input parameter of pf . We say that an action f(v̄) is enabled in
a state s if s |= ϕ(v̄). Notice the two special cases regarding reset: one when reset is
always disabled (ϕReset = false), in which case the definition of pReset is irrelevant, and
the other one when reset is always enabled (ϕReset = true), in which case pReset must be
able to reestablish the initial state from any other program state.

We sometimes use action to mean an action symbol, when this is clear from the con-
text or when the action symbol is nullary in which case there is no distinction between
the two.

2.2 Example: Recycling Robot

We show a model program of a collection of recycling robots written in C# in Figure 1.
A robot is a movable recycle-bin, it can either

1. move and search for a can if its power level (measured in percentage) is above the
given threshold 30%, or

2. remain stationary and wait for people to dispose of a can if its power level is below
the given threshold 50%.

Notice that both cases are possible when the power level is between 30% and 50%. A
robot gets a reward by collecting cans. The reward is bigger when searching than while
waiting, but each search reduces the power level of the robot by 30%. A robot can be
recharged when it is not fully charged, i.e when the power level is less than 100%. New
robots can be started dynamically provided that the total number of robots does not ex-
ceed a limit (if such a limit is given).

Actions. In this example, the action symbols are Start, Search, Wait and Recharge,
where the first three symbols are classified as being controllable and the last one is clas-
sified as being observable. All of the symbols are unary (i.e., they take one input). All ac-
tions have the form f(i) where f is one of the four action symbols and i is a non-negative
integer representing the id of a robot. The reset action is in this example implicit, and is
assumed to be enabled in all states.

States. The state signature has three state variables, a map Robot.Instances from
object ids (natural numbers) to robots (objects of type Robot), and two field value maps
power and reward that map robots to their corresponding power and reward values.
The initial state is the state where all those maps are empty.
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class Robot : EnumeratedInstance // The base class keeps track of created robot instances
{

int power = 0;
int reward = 0;

}

class RobotModel
{

static int maxNoOfRobots = ...;

[Action]
static void Start(int robotId)
{

Assume.IsTrue(Robot.Instances.Count < maxNoOfRobots &&
¬ Robot.Instances.Count == robotId));

new Robot(robotId);
}

[Action]
static void Search(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power > 30);

robot.power = robot.power - 30;
robot.reward = robot.reward + 2;

}

[Action]
static void Wait(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power <= 50);

robot.reward = robot.reward + 1;
}

[Action(Kind = Observable)]
static void Recharge(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power < 100);

robot.power = 100;
}

}

Fig. 1. Model Program of the Recycling Robot example

Guarded update rules. For each of the four actions f the guarded update rule (ϕf , pf)
is defined by the corresponding static method f of the RobotModel class. Given a robot
id i and a state s, the guard ϕf (i) is true in s, if all the Assume.IsTrue statements
evaluate to true in s. Execution of pf [i] corresponds to the method invocation of f(i).
For example, in the initial state, say s0, of the robot model, the single enabled action is
Start(0). In the resulting state [[pStart]](s0, 0) a new robot with id 0 has been created
whose reward and power are 0.

2.3 Deterministic Model Programs as Interface Automata

We use the notion of interface automata [8,7] following the exposition in [7]. The view of
a model program as an interface automaton is important for formalizing the conformance
relation. To be consistent with the rest of the paper, we use the terms “controllable” and
“observable” here instead of the terms “input” and “output” used in [7].
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Definition 2. An interface automaton M has the following components:

– A set S of states.
– A nonempty subset S init of S called the initial states.
– Mutually disjoint sets of controllable actions Ac and observable actions Ao.
– Enabling functions Γ c and Γ o from S to subsets of Ac and Ao, respectively.
– A transition function δ that maps a source state and an action enabled in the source

state to a target state.

In order to identify a component of an interface automaton M , we index that compo-
nent by M , unless M is clear from the context. Let P be a deterministic model pro-
gram (States, Values, s0, Σ, Σc, Σo, Reset, (ϕf , pf )f∈Σ). P has the following straight-
forward denotation [[P ]] as an interface automaton:

S[[P ]] = States

S init
[[P ]] = {s0}

Ac
[[P ]] = {f(v̄) | f ∈ Σc, v̄ ⊆ Values}

Ao
[[P ]] = {f(v̄) | f ∈ Σo, v̄ ⊆ Values}

Γ c
[[P ]](s) = {f(v̄) ∈ Ac

[[P ]] | s |= ϕf (v̄)}
Γ o

[[P ]](s) = {f(v̄) ∈ Ao
[[P ]] | s |= ϕf (v̄)}

δ[[P ]](s, f(v̄)) = [[Pf ]](s, v̄) (for f ∈ Σ, s ∈ States, s |= ϕf (v̄))

Note that δ[[P ]] is well-defined, since P is deterministic. In light of the above definition we
occasionally drop the distinction between P and the interface automaton [[P ]] it denotes.

2.4 Implementing a Model Program as an Interface Automaton

A model program P exposes itself as an interface automaton through a stepper that pro-
vides a particular “walk” through the interface automaton one transition at a time. A
stepper of P is implemented through the IStepper interface defined below. A stepper
has an implicit current state that is initially the initial state of P . In the current state s
of a stepper, the enabled actions are given by Γ[[P ]](s). Doing a step in the current state
s of the stepper according to a given action a corresponds to setting the current state of
the stepper to δ[[P ]](s, a). The Reset action is handled separately and is not included in
the set of currently enabled actions EnabledControllables.

interface IStepper
{

Sequence<Action> EnabledControllables { get; }
Sequence<Action> EnabledObservables { get; }
void DoStep(Action action);

void Reset();
bool ResetEnabled { get; }

}

For conformance testing, an implementation is also assumed to be an interface au-
tomaton that is exposed through a stepper. If both the model and the IUT are interface
automata with a common action signature, we test the conformance of the two automata
using the refinement relation between interface automata as defined in [7].
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3 Online Testing Algorithm

In this section we describe an algorithm that uses reinforcement learning to choose con-
trollable actions during conformance testing of an implementation I against a model
(specification) M . Both M and I are assumed to be given as model programs that ex-
pose an IStepper interface to the algorithm. In addition, the model exposes an interface
that provides an abstract value of the current state of the model and an abstract value of
any action enabled in a given state. It is convenient to view this interface as an extension
IModelStepper of the IStepper interface:

interface IModelStepper : IStepper
{

IComparable GetAbstractState(Action action);
IComparable GetAbstractAction(Action action);

}

The main motivation for these functions is to divide the state space and the action
space into equivalence classes that reflect “interesting” groups of states and actions for
the purposes of coverage.

Example 1. Consider the Robot model. We could define the abstract states and abstract
actions to be the concrete states and the concrete actions as follows. In other words, there
is no grouping of either states or actions in this case.

class RobotModel : IModelStepper
{

Sequence<Pair<int,int>> GetAbstractState(Action action)
{

return [(r.power, r.reward) | r in Robot.Instances]
}
Action GetAbstractAction(Action action);
{

return action;
}

}

Example 2. A more interesting case is if we abstract away the id of the robot and project
the state to the state of the robot doing the action, or a default value if the robot has not
been started yet. This is reasonable because the robots do not interact with each other.

class RobotModel : IModelStepper
{

Pair<int,int> GetAbstractState(Action action)
{

if (action.Name == "Start") return (-1, -1);
Robot r = Robot.Instances[action.Argument(0)];
return (r.power, r.reward);

}
string GetAbstractAction(Action action);
{

return action.Name;
}

}

We use pseudo code that is similar to the original implementation code written in
C# to describe the algorithm. We consider two controllable action selection strategies
Lct and Rlc that are explained below, in addition to a memoryless purely randomized
strategy Rnd.

enum Strategy {Rnd, Lct, Rlc}
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The algorithm uses also an “oracle” to ask advice about whether to observe an observ-
able action from the implementation, to call a controllable action, or to end a particular
test run, during a single step of the algorithm. The oracle makes a random choice between
controlling an observing when an observable action is enabled in the implementation at
the same time as a controllable action is enabled in the model. If there are no observable
actions enabled in the implementation and no controllable actions enabled in the model
then the only meaningful advice the oracle can give is to end the current test run.

enum Advice {Control, Observe, End}

class Oracle
{

IStepper M;
IStepper I;

Advice Advise()
{

bool noCtlrs = M.EnabledControllables.IsEmpty;
bool noObs = I.EnabledObservables.IsEmpty;

if (noCtlrs ∧ noObs) return Advice.End;
if (noCtlrs) return Advice.Observe;
if (noObs) return Advice.Control;
return new Choose(Advice.Control, Advice.Observe);

}
}

3.1 Top Level Loop

The top level loop of the algorithm is described by the following pseudo code.

class OnlineTesting
{

IModelStepper M;
IStepper I;
int maxRun;
int maxStep;
Strategy h;
Oracle oracle;

bool ResetEnabled {get return M.ResetEnabled ∧ I.ResetEnabled;}

void Run()
{

int run = 0;
while (run < maxRun)
{

RunTestCase(); // The core algorithm
if (¬ResetEnabled) return; // Cannot continue, must abort
Reset();
run += 1;

}
}

}

The inputs to the algorithm are a model program M that provides the IModelStepper
interface and is the specification, a model program I that provides the IStepper inter-
face an is the implementation under test, an upper bound maxRun on the total number of
runs, an upper bound maxStep on the total number of steps (state transitions) per one
run, a strategy h, and an oracle oracle as explained above.

3.2 The Core Algorithm

The algorithm keeps track of the weights of abstract transitions that have occurred dur-
ing the test runs. An abstract transition is a pair (s, a) where s is an abstract state and
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a is an abstract action. The weight of an abstract transition is total number of times it
has occurred plus one, since the algorithm was started. The abstract state and action val-
ues are calculated using the IModelStepper interface introduced above. This weight
information is stored in a test trace graph that is updated dynamically and is initially
empty.

class TestTraceGraph
{

Map<AbstractTransition, int> F = ∅; // Frequencies of explored abstract transitions
IModelStepper M;

int W(Action a) // Weights are positive
{

AbstractState s = M.GetAbstractState(a);
AbstractAction b = M.GetAbstractAction(a);
if ((s,b) ∈ F) return F[(s,b)]; else return 1;

}

void Update(Action a, int w)
{

AbstractState s = M.GetAbstractState(a);
AbstractAction b = M.GetAbstractAction(a);
F[(s,b)] = W(a) + w;

}
}

The next controllable action is chosen by the algorithm from a nonempty set of con-
trollable actions that are currently enabled, using the given strategy.

class TestTraceGraph
{

Action ChooseAction(Sequence<Action> acts, Strategy h)
{

switch (h)
{
case Strategy.Lct:

Action a = acts.Head;
Pair<Set<Action>,int> lct =

acts.Tail.Reduce(Reducer,({acts.Head},W(acts.Head)));
return lct.First.Choose();

case Strategy.Rlc:
Sequence<int> costs = [W(a) | a ∈ acts];
int prod = ...; // Compute an approximate common multiple of costs
Sequence<int> occurs = [prod/x | x ∈ costs];
Bag<Action> bg = {{(acts[i], occurs[i]) | i < acts.Count}};
return bg.Choose();

default:
return acts.Choose();

}
}
Pair<Set<Action>,int> Reducer(Action a, Pair<Set<Action>,int> lct)
{

if (W(a) < lct.Second) return ({a}, w);
else if (W(a) == lct.Second) return (lct.First ∪ {a}, w);
else return lct;

}
}

Lct: Choose an action that has the “least cost”. Here cost of an action a is measured
as the current weight of the abstract transition (s, b), where s is the abstract state
computed in the current model state with respect to a, and b is the abstract action
corresponding to a, computed in the current model state. If several actions have the
same least cost, one is chosen randomly from among those.

Rlc: Choose an action with a likelihood that is inversely proportional to its current cost,
with cost having the same meaning as above. Intuitively this means that the least
frequent actions are the most favored ones. In other words, if the candidate actions
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are (ai)i<k for some k, having costs (ci)i<k , then the probability of selecting the
action ai is c−1

i /
∑

j �=i c−1
j . The implementation uses a built-in bag construct to

make such a choice.
Rnd: Make a random choice.

The algorithm runs one test case until, either a conformance failure occurs (in form of
a violation of the refinement relation between [[M]] and [[I]]), or until the given maximum
number of steps has been reached.

class OnlineTesting
{

TestTraceGraph ttg = new TestTraceGraph(M);

bool RunTestCase()
{

int step = 0;
while (step < maxStep)
{

Advice advice = oracle.Advise();

if (advice == Advice.Control)
{

Sequence<Action> cs = M.EnabledControllables;
Action c = ttg.ChooseAction(cs, h);
ttg.Update(c, 1); // Increase the weight by 1
M.DoStep(c); // Do the step in M

if (c ∈ I.EnabledControllables)
I.DoStep(c); // Do the corresponding step in I

else
return false; // Conformance failure occurred

}
else if (advice == Advice.Observe)
{

Sequence<Action> os = I.EnabledObservables;
// This is an abstract view of the execution of the implementation, in reality
// the implementation performs the choice itself and notifies the test harness
Action o = os.Choose();
I.DoStep(o);

if (o ∈ M.EnabledObservables)
{

ttg.Update(o, 1); // Increase the weight by 1
M.DoStep(o); // Do the corresponding step in M

}
else

return false; // Conformance failure occurred

#endregion
}
else

return true; // No more steps can be performed
step += 1;

}
return true; // The test case succeeds

}
}

The Lct strategy is a greedy approach; it is very simple and relatively cheap to com-
pute. However, it favors actions that have been used less frequently, and thus may sys-
tematically avoid long sequences of the same action, as is illustrated next.

Example 3. Consider a bounded stack of size n. The stack has two controllable actions,
top and push, enabled in every state. The greedy strategy will alternate between these
two actions until the stack is full. If we want to test the behavior of push when the stack
is full, we need to continue testing for at least 2n steps (so that push is executed n times).

In the given algorithm, the weight increase is always 1. This value can be made domain
specific and can vary depending both on the action and the current state, for example by
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extending the IModelStepper interface with a function that provides the wait increase
for the given action in the current state and using that function instead of 1.

By using Rlc, the probability of selecting an action is inversely proportional to its
frequency. Thus, the more an action has been selected the less likely it is that it will be
selected again. So the potential problem shown in Example 3is still there but ameliorated,
since no enabled action is excluded from the choice.

4 Experiments

We used the Robot model to conduct a few experiments with the algorithm in order to
evaluate and compare the different strategies. The main purpose was to see if the two
proposed strategiesLct or Rlc are useful by providing better or at least as good coverage
of the state space as the purely random approach. Since we are interested in state and
transition coverage only, we ran the algorithm against a correct implementation. We ran
the algorithm with a different maximum number of robots, different abstraction functions
introduced in the examples above, and different limits on the total number of runs and
the total number of steps per run. The experiments are summarized in Tables 1 and 2.
We ran each case independently 50 times, the entries in the tables are shown on the form
m ± σ where m is the mean of the obtained results and σ is the standard deviation.
The absolute running times are shown only for comparison, the concrete machine was a
3GHz Pentium 4.

If states and actions are not grouped at all, by assuming the definitions given in Exam-
ple 1, the majority of abstract transitions will occur only a single time and the strategies
perform more or less as the random case, which is shown in Table 1. One can see that
Lct performs marginally better than Rnd when the number of robots and the number of
runs increases.

Table 1. Execution of the online algorithm on the Robot model without grouping

Parameters Lct Rlc Rnd
Robots Runs Steps #States t(ms) #States t(ms) #States t(ms)
1 1 100 100 ± 0 3 100 ± 0 1 100 ± 0 1
1 10 100 420 ± 11 20 415 ± 8 19 414 ± 9 15
1 100 100 503 ± 3 275 503 ± 3 241 502 ± 2 172
1 100 500 2485 ± 5 1303 2485 ± 5 1292 2485 ± 6 968
2 1 100 100 ± 0 3 100 ± 0 1 100 ± 0 2
2 10 100 951 ± 8 24 941 ± 10 22 938 ± 12 14
2 100 100 7449 ± 83 286 7085 ± 110 284 7055 ± 114 201
2 100 500 44119 ± 225 1548 42437 ± 339 1479 42364 ± 289 1040
5 1 100 100 ± 0 5 100 ± 0 3 100 ± 0 1
5 10 100 972 ± 3 42 971 ± 3 37 969 ± 4 18
5 100 100 9368 ± 17 516 9328 ± 22 468 9322 ± 24 297
5 100 500 49364 ± 19 2794 49330 ± 25 2541 49320 ± 19 1587

When the states and the actions are mapped to abstract values, as defined in Example 2,
then Lct starts finding many more abstract states than Rndas the number of robots grows.
The robot id is ignored by the abstraction and thus concrete transitions of different robots
that differ only by the id are mapped to the same abstract transition. Overall this will have
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Table 2. Execution of the online algorithm on the Robot model with state grouping and action
grouping

Parameters Lct Rlc Rnd
Robots Runs Steps #States t(ms) #States t(ms) #States t(ms)
1 1 100 100 ± 0 3 100 ± 0 <1 100 ± 0 <1
1 10 100 417 ± 9 9 413 ± 8 7 416 ± 8 4
1 100 100 502 ± 2 100 503 ± 3 88 502 ± 2 44
1 100 500 2486 ± 5 508 2486 ± 6 417 2484 ± 6 234
2 1 100 100 ± 0 1 90 ± 3 <1 93 ± 5 <1
2 10 100 419 ± 7 10 284 ± 21 9 237 ± 8 4
2 100 100 502 ± 3 106 437 ± 12 96 293 ± 6 46
2 100 500 2485 ± 5 561 1602 ± 33 506 1324 ± 15 241
5 1 100 100 ± 0 <1 66 ± 4 1 61 ± 2 <1
5 10 100 418 ± 10 10 279 ± 30 11 117 ± 5 5
5 100 100 503 ± 3 115 472 ± 7 116 155 ± 7 50
5 100 500 2484 ± 5 561 1696 ± 96 657 582 ± 10 247
5 100 1000 4949 ± 8 1200 2467 ± 95 1388 1088 ± 13 540
10 10 100 418 ± 9 10 293 ± 25 12 91 ± 6 5
10 100 100 502 ± 3 103 473 ± 6 137 128 ± 6 59
10 100 1000 4951 ± 11 1131 3541 ± 198 1718 602 ± 10 578
10 1000 1000 4985 ± 8 12521 4352 ± 66 18043 654 ± 9 5953

the effect that the Lct approach will favor actions that transition to new abstract states.
The same is true for the Rlc case but the increase in coverage is smaller.

The Robot case study is representative for models that deal with multiple agents at the
same time, which is a typical case in testing of multi-threaded software [20]. Often the
threads are mostly independent, an abstraction technique that can be used in this context
is to look at the part of the state that belongs to the agent doing the action. This is an
instance of so-called multiple state-grouping approach that is also used as an exploration
technique for FSM generation [4]. This is exactly what is done in Example 2. It seems
that Lct is a promising heuristic for online testing of these kinds of models. One can
note that, the coverage provided by the random approach degrades almost by half as the
number of robots is doubled (for example from 5 to 10).

5 Related Work

The basic idea of online testing has been introduced in the context of labeled transition
systems using ioco theory [3,17,19] and implemented in the TorX tool [18]. TGV [11]
is another tool frequently used for online or on-the-fly test generation that uses ioco.
Ioco theory is a formal testing theory based on labeled transition systems with input
actions and output actions. Interface automata [7] are suitable for the game view [5]
of online testing and provide the foundation for the conformance relation that we use.
Online testing with model programs in the SpecExplorer tool is discussed in in [20]. The
algorithm in [20] does not use learning, and as far as we know learning algorithms have
not been considered in the context of model based testing. The relation between ioco and
refinement of interface automata is briefly discussed in [20]. Specifications given by a
guarded command language are used also in [15].

In Black-box testing, some work [14] has been done which uses supervised learn-
ing procedures. As far as we know, no previous work has addressed online testing with
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learning in the context of Model Based Testing. The main intuition behind our algo-
rithm is similar to an anti-ant approach [13] used for test case generation form UML
diagrams. From the game point of view, the online testing problem is a 1 1

2 -player game.
It is known that 1 1

2 -player games are Markov Decision Processes [6]. The view of finite
explorations of model programs for offline test case generation as negative total reward
Markov decision problems with infinite horizon are studied in [2].

6 Open Problems and Future Work

One of the interesting areas that is also practically very relevant is to gain better understa-
ting of approaches for online testing that learn from model-coverage that uses abstrac-
tions. The experiments reported in Section 4 exploited that idea to a certain extent by
using state and action abstraction through the IModelStepper interface, but the gen-
eral technique and theory need to be developed further. Such abstraction functions can
either be user-provided [9,4] or automatically generated from program text similar to
iterative refinement [15].

Currently we have an implementation of the presented algorithm using a modeling
library developed in C#. As a short-term goal, we are working on a more detailed report
where we are considering larger case studies.

The algorithm can also be adapted to run without a model, just as a semi-random
(stress) testing tool of implementations. In that case the history of used actions is kept
solely based on the test runs of the implementation. In this case, erroneous behaviors
would for example manifest themselves through unexpected exceptions thrown by the
implementation, rather than trough conformance violations.

Acknowledgment

We thank Nikolai Tillmann and Wolfgang Grieskamp for many valuable discussions and
for help in using the underlying exploration framework XRT [10] during the initial im-
plementation of the ideas. We thank Luca de Alfaro and Wolfram Schulte for valuable
comments on earlier drafts of this paper.

References

1. R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nondeterministic and
probabilistic machines. In Proc. 27th Ann. ACM Symp. Theory of Computing, pages 363–372,
1995.

2. A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. Technical Report MSR-
TR-2005-04, Microsoft Research, January 2005. Short version of this report was presented
at FATES 2005.

3. E. Brinksma and J. Tretmans. Testing Transition Systems: An Annotated Bibliography. In
Summer School MOVEP’2k – Modelling and Verification of Parallel Processes, volume 2067
of LNCS, pages 187–193. Springer, 2001.



Online Testing with Reinforcement Learning 253

4. C. Campbell and M. Veanes. State exploration with multiple state groupings. In D. Beauquier,
E. Börger, and A. Slissenko, editors, 12th International Workshop on Abstract State Machines,
ASM’05, March 8–11, 2005, Laboratory of Algorithms, Complexity and Logic, University
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