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Abstract. In this paper, we consider the robust interpretation of met-
ric temporal logic (MTL) formulas over timed sequences of states. For
systems whose states are equipped with nontrivial metrics, such as con-
tinuous, hybrid, or general metric transition systems, robustness is not
only natural, but also a critical measure of system performance. In this
paper, we define robust, multi-valued semantics for MTL formulas, which
capture not only the usual Boolean satisfiability of the formula, but
also topological information regarding the distance, e, from unsatisfi-
ability. We prove that any other timed trace which remains e-close to
the initial one also satisfies the same MTL specification with the usual
Boolean semantics. We derive a computational procedure for determining
an under-approximation to the robustness degree e of the specification
with respect to a given finite timed state sequence. Our approach can be
used for robust system simulation and testing, as well as form the basis
for simulation-based verification.

Keywords: Robustness, Metric spaces, Monitoring, Timed State Se-
quences, Metric and Linear Temporal Logic.

1 Introduction

Model checking [I] has been proven to be a very useful tool for the verification
of the properties of software and hardware systems. The tools and methodolo-
gies developed for such systems do not naturally extend to systems whose state
space is some general metric space, for example linear, nonlinear and hybrid
systems. In this case, the model checking problem becomes harder and in most
of the cases is undecidable [2]. Therefore, the verification of such systems still
relies heavily on methods that involve monitoring and testing [3I4I56]. Further-
more, general metric transition systems either model physical processes or the
interaction between some software and/or hardware system and the continuous
physical world. Up to now no formal model exists that can capture accurately
the behaviour of such a system — especially if it also exhibits a chaotic behaviour.
Moreover, these types of systems have a certain degree of sensitivity with respect
to initial conditions or to system parameters. This has one major implication.
Deciding the Boolean truth value of a temporal logic specification with respect
to a system’s trajectory - in some of the cases - does not allow us to draw any
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Fig. 1. Two trajectories o' and o which Fig.2. The trajectory o2 modified by
satisfy the specification: O(7w; — O<aom2). random noise. The arrow points to the
Here, O(m1) = R<_10 and O(m1) = R>10. point in time where the property fails.

conclusions about the real system. A small perturbation of the trajectory or the
parameters of the system can lead to a different truth value for the formula.

For example, consider the trajectories o and o2 in Fig.dl Both of them satisfy
the same specification “if the value of the state drops below -10, then it should
also raise above 10 within 2 time units”. Nevertheless, a visual inspection of Fig.
[ indicates that there exists a qualitative difference between o' and o?. The
later “barely” satisfies the specification. Indeed as we can see in Fig. 2l adding
a bounded noise on o2 renders the property unsatisfiable on o2.

In order to differentiate between such trajectories of a system, we introduce
the concept of robustness degree. Informally, we define the robustness degree
to be the bound on the perturbation that the trajectory@ can tolerate without
changing the truth value of a specification expressed in the Linear [7] or Metric
Temporal Logic [§]. To formally define the robustness degree, we take a topo-
logical perspective. We consider finite timed state sequences which take values
in some space X equipped with a metric d. If these trajectories are of length n,
then each sequence of states is isomorphic to a point in X", which is the space
of all possible trajectories of length n. In order to quantify how close are two
different state sequences in X", we define the notion of distance using a metric
p on the space X™. Given an LTL or MTL formula ¢, we can partition the space
X" into two sets: the set P? of state sequences that satisfy ¢ and the set N of
state sequences that do not satisfy ¢. Then, the formal definition of robustness
comes naturally, it is just the distance of a state sequence ¢ from the set P?
or its complement N?. Using the degree of robustness and the metric p, we can
define an open ball (tube) around o and, therefore, we can be sure that any state
sequence ¢’ that remains within the open ball also stays either in P? or in N¢.

1 'We should bring to notice that we are not interested in the properties of the (pos-
sibly) continuous trajectory, but in the properties of its finite representation. Here,
we model the finite representation of a continuous trajectory using timed state se-
quences. Under certain assumptions about the structure of the system, the results
in this paper could be mapped back to the continuous case.
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However, the computation of the set P? and, hence, the computation of the
robustness degree are hard problems. To address them, we develop an algo-
rithm that computes an under-approximation of the robustness degree. For that
purpose, we define robust semantics for MTL by borrowing ideas from the quan-
titative version of the linear temporal logic QLTL [9]. Our definition is similar
to QLTL (we do not consider discounting), but now the truth values of the MTL
formulas range over the closure of the reals instead of the closed interval [0, 1].
The atomic propositions in the robust version of MTL evaluate to the distance
from the current state in the timed state sequence to the subset of X that the
atomic proposition represents. As established in the aforementioned work, the
conjunction and disjunction in the Boolean logic are replaced by the min and
max operations. Here, the logical negation is replaced by the usual negation of
the reals. We prove that when an MTL formula is evaluated with robust seman-
tics over a timed state sequence 77, then it returns an under-approximation e
of the robustness degree and, therefore, any other timed state sequence 75 that
remains e-close to 77 satisfies the same specification. We conclude the paper by
presenting a monitoring algorithm (similar to [TOJTT]) that is based on the ro-
bust semantics of MTL and computes the under-approximation of the robustness
degree.

Application-wise the importance of the main contribution of this paper is
straightforward: if a system has the property that under bounded disturbances
its trajectories remain ¢ close to the nominal one and, also, its robustness de-
gree with respect to an MTL formula ¢ is ¢ > 6, then we know that all the
system’s trajectories also satisfy the same specification. The timing bounds on
the temporal operators, that is the use of MTL instead of LTL, can be justified
if one considers that the applications of such a framework are within the systems
area. For example, signal processing and simulations of physical systems most of
the times do require such constraints. The methodology that we present in this
paper can be readily used in several applications such as Qualitative Simulation
[12], verification using simulation [13], mobile robot path planning [14] and in
behavioral robotics [15].

2 Metric Temporal Logic over Timed State Sequences

2.1 Metric Spaces

Let R be the set of the real numbers, Q the set of the rational numbers and
N the set of the natural numbers. We denote the extended real number line
by R = R U {+o0o}. Furthermore, we let B = {T, L}, where T and L are the
symbols for the boolean constants true and false respectively. If (X, <) is a
totally ordered set with an ordering relation <, then an interval of X is denoted
by [a,blx = {z € X | a < x < b}. When X = R, we drop the subscript R. In
addition, we use pseudo-arithmetic expressions to represent certain subsets of
the aforementioned sets. For example, R>( denotes the subset of the reals whose
elements are greater or equal to zero. If C is a set, then cl(C) denotes the closure
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of the set C. Let (X, d) be a metric space, i.e. a set X whose topology is induced
by the metric d.

Definition 1 (Metric). A metric on a set X is a positive functiond : X x X —
R>o, such that the three following properties hold

1. Vxq1,29,23 € X.d(l“l,xg) < d(l‘l,l‘z) + d(l‘z,l‘g)
2. Vaxl,axg S X.d(l‘l,l‘z) =0 21 =29
3. Vaxl,axg S X.d(l‘l,l‘z) = d(l‘z,ﬂ?l)

Using a metric d, we can define the distance of a point € X from a set C' C X.
Intuitively, this distance is the shortest distance from x to all the points in C.
In a similar way, the depth of a point = in a set C' is defined to be the shortest
distance of z from the boundary of C. Both the notions of distance and depth
(Fig. B) will play a fundamental role in the definition of the robustness degree
(see Sect. B]).

Definition 2 (Distance, Depth, Signed Distance [16] §8). Let z € X be a
point, C C X be a set and d be a metric. Then, we define the

— Distance from z to C to be disty(z,C) := inf{d(z,y) | y € cl(C)}
— Depth of z in C to be depth,(z,C) := disty(z, X\C)
— Signed Distance from x to C' to be

. [ —disty(z,C) ifxgC
Dista(z, C) := {depthd(a;7 C) ifzeC
We should point out that we use the extended definition of supremum and infi-
mum, where sup) = —oo and inf ) = +oo. Also of importance is the notion of
an open ball of radius ¢ centered at a point x € X.

Definition 3 (e-Ball). Given a metric d, a radius € € R<g and a point v € X,
the open e-ball centered at  is defined as By(x,e) ={y € X | d(z,y) < e}.

It is easy to verify that if the distance (disty) of a point = from a set C is
e > 0, then By(z,e) N C = . And similarly, if depth;(z,C) = ¢ > 0, then
By(z,e) C C.

2.2 Timed State Sequences in Metric Spaces

In this paper, we use timed state sequences (T'SS) to describe the behavior of
a real-time system. Typical models of real time systems are the formalisms of
hybrid automata, timed automata, linear and non-linear systems. A state of
such a system is a point x in a metric space X = (X, d). With each state of the
system x we associate a time period At, which represents the duration between
the occurrence of the current and the previous system states.

Let AP be a finite set of atomic propositions, then the predicate mapping O :
AP — 2% is a set valued function that assigns to each atomic proposition = € AP



182 G.E. Fainekos and G.J. Pappas

a set of states O(m) C X . Furthermore, if the collection of sets {O(m)}rcap is not
a cover of X, i.e. UrcapO(m) # X, then we add to AP a special proposition 7.
that maps to the set O(n.) = X\ Ureap O(7). Therefore, we can now define the
“inverse” map of O as O~ !(z) = {r € AP |z € O(n)} for z € X. If x € O(n),
then we say that x is a 7 state. Notice that using the notion of distance, we can
quantify how close is a state x to becoming a 7 state.

The execution of a system can result in an infinite or finite sequence of states.
In this paper, we focus on finite sequences of states, which can model the finite
representation of a real valued signal or the result of the numerical integration
of differential equations.

Definition 4 (TSS). A timed state sequence T is a tuple (o,7,O) where: ¢ =
X0, T1,-..,%y 18 a sequence of states, T = Atg, Atq, ..., At, is a sequence of
time periods and O : AP — 2% is a predicate mapping; such thatn € N, z; € X
and At; € Rxq for all i € {0,1,...,n} and Ato, Atg + Aty, ..., > 1 At; is a
strictly monotonically increasing sequence.

We let o; and 7; denote x; and At; respectively. By convention, we set Aty = 0.

We define o; to be the prefix of the state sequence o, i.e. o|;= xg,21,..., 24,
while o7; is the suffix, i.e. 07;= z;, %;41, ..., 2,. The length of 0 = zg, 21, ..., 2,
is defined to be |o|] = n 4+ 1. For convenience, we let |7| = |r| = |o| and

T1:= (o1i,71i, O) (similarly for]).

In the following, we use the convention that 7 and S denote the timed state
sequences 7 = (o,7,0) and § = (¢/, 7, O) (and similarly for their superscripted
versions). We define X'x to be the set of all possible timed state sequences in the
space X = (X,d) and ¥(7) to be the set of all possible timed state sequences
with the same predicate mapping O and the same sequence of time periods
as 7. That is X(7) = {(o/,7,0) | ' € X7I}. Notice that the sequence o is
isomorphic to a point in the product space X1

2.3 Metric Temporal Logic over Finite Timed State Sequences

The Metric Temporal Logic (MTL) [8§] is an extension of the Linear Temporal
Logic (LTL) [7]. In MTL, the syntax of the logic is extended to include timing
constraints on the usual temporal operators of LTL. Using LTL specifications
we can check qualitative timing properties, while with MTL specifications quan-
titative timing properties. Recently, it was shown by Ouaknine and Worrell [17]
that MTL is decidable over finite timed state sequences. In this section, we re-
view the basics of MTL with point-based semantics (as opposed to interval based
semantics [I8]) over finite timed state sequences.

Definition 5 (Syntax of MTL). Let AP be the set of atomic propositions, D
the set of truth degree constants and I an interval of R>q with rational endpoints.
The set ®p of all well-formed formulas (wff) is the smallest set such that

— it contains all the members of D and AP, i.e. D, AP C &p
— if 1,02 € Pp, then =1, ¢1V 2, Ozd1, d1 Uz d2 belong to Pp
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In the following, we fix the set AP, while the set D varies. As usual, ¢1 A ¢o =
—(m¢1 Vo) and ¢ — Pg = 1 Vo. Here, (7 is the next time operator and Uz
the until operator. We can also define the common temporal operators eventually
Oz = TUr¢ and always Oz¢p = =Oz—¢. In the case where Z = [0, +00), we
remove the subscript Z from the temporal operators, i.e. we just write U, O,
<& and O. When all the subscripts of the temporal operators are of the form
[0, +00), then the MTL formula ¢ reduces to an LTL formula and we can ignore
the time periods.

The subscript Z imposes timing constraints on the temporal operators. The
interval Z can be open, half-open or closed, bounded or unbounded. The function
b returns the lower (or left) bound of the interval Z whereas the function ub
returns the upper (or right) bound. Note that [b(Z),ub(Z) € Qs and that it
could be the case that ub(Z) = b(Z), i.e. Z is a singleton. For any ¢ € Q, we
define Z+t = {t'+t | t' € Z}. Also, we do not consider relative [10] and absolute
congruences [19] and we have not included the since and last temporal operators
(the past fragment) in the syntax of MTL.

Metric Temporal Logic (MTL) formulas are interpreted over timed state se-
quences 7 with |7| > 0. The constraint |7| > 0 implies that the sequence
has at least one state, that is we ignore the pathological cases of empty state
sequences. In this paper, we denote formula satisfiability using a membership
function {(¢)) : ¥x — B instead of the usual notation 7 |= ¢. The functional
approach enables us to maintain a uniform presentation throughout this paper.
We say that a timed state sequence T satisfies the formula ¢ when {(p)(7) = T.
In this case, we refer to 7 as a model of ¢. The set of all models of ¢ is denoted
by L(6), i.e. £(8) = {T € Ex | ()(T) = T}.

Definition 6 (Semantics of MTL). Let 7 = (0,7,0) € Yx, v €B, 7 € AP,
i,jENand KX ={i €[0,|7| - 1]y | Z;:o T; € I}, then the semantic of any
formula ¢ € Py are inductively defined by

(ol (T) :=v
{(m)(T) =00 € O()
{~NT) == - <1/J>>(T)
{(d1 V2 )(T) - {(@2)(T)

)V
n €)ANTT) o [T|>1

otherwise

(01 Urgo)(T) = \/ 5 (G € KT) A () (T1) A N\ b1 )(T15))

Informally, the path formula ¢ U, p)¢2 expresses the property that over the
timed state sequence 7 and in the time interval [a,b], ¢2 becomes true and for
all previous time ¢, holds.

2 Note that here we overload the symbols and we use the same notation for both the
logical connectives in the MTL formulas and their respective Boolean truth degree
functions.
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Fig. 3. A tube (dashed lines) around a nominal state sequence o (dash-dotted line).
The tube encloses a set of state sequences (dotted lines). Also, the definition of distance
and depth and the associated neighborhoods.

3 Robust Satisfaction of MTL Specifications

3.1 Toward a Notion of Robust Satisfaction

In this section, we define what it means for a timed state sequence (taking values
in some metric space) to satisfy a Metric Temporal Logic specification robustly.
In the case of the timed state sequences that we consider in this paper, we can
quantify how close are two different state sequences by using the metric d. Let
T = (0,7,0) be a timed state sequence and (o’,7,0) € X(T), then

plo,0") = max{d(i, 07) | i € [0, |o] — 1w} (1)

is a metric on the set X!7!, which is well defined since |7 is finite. Now that the
space of state sequences is equipped with a metric, we can define a tube around
a timed state sequence 7. Given an € > 0, we let

YA(T)={(c!,7,0) € X(T) | 0’ € By(o,¢)}

to be the set of all timed state sequences that remain e-close to 7.

Informally, we define the degree of robustness that a timed state sequence 7°
satisfies an MTL formula ¢ to be a number € € R. Intuitively, a positive € means
that the formula ¢ is satisfiable and, moreover, that all the other timed state
sequences that remain e-close to the nominal one also satisfy ¢. Accordingly, if
¢ is negative, then 7 does not satisfy ¢ and all the other timed state sequences
that remain within the open tube of radius |¢| also do not satisfy ¢.

Definition 7 (Robustness Degree). Let ¢ € &5, T = (0,7,0) € Xx and
p be the metric (). Define P;z = {d' | (¢/,7,0) € X(T) N L(P)}, then the
robustness degree € € R of T with respect to ¢ is defined as € := Dist, (o, ng)

Remark 1. ng is the set of all models with a sequence of time periods 7 that
satisfy ¢. If we define N3 := {o’ | (¢/,7,0) € Z(T) N Ex\L(¢)}, then the set
{P2, N2} forms a partition of the set X!7|. Therefore, we have duality P¢ =
XITA\NS and Ng = XIT\PS.
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The following proposition is derived directly from the definitions. It states that all
the timed state sequences S, which have distance from 7 less than the robustness
degree of 7 with respect to ¢, satisfy the same specification ¢ as 7.

Proposition 1. Let ¢ € P, 7 = (0,7,0) € Zx and ¢ = Dist,(o, P;f) If
le| >0, then for all S € X\ |(T) it is (o) (S) = (oN(T).

Remark 2. If ¢ = 0, then the truth value of ¢ with respect to 7 is not robust,
i.e. any small perturbation of a critical state in the timed state sequence can
change the satisfiability of the formula with respect to 7.

Theoretically, the set ij (or N;‘i) can be computed. A naive, but straightforward,
way to construct the set P;é is as follows. Instead of timed state sequences
in a metric space X, let us consider finite timed state sequences where each
state is a set of atomic propositions. We will refer to the later as timed words
for clarity. In more detail, consider the timed word 7,, = (£, 7) where for all
i =0,1,...,|T —1itis & € AP = 24P\. In [I7], it was proven the one
can construct an acceptor Ag (in the form of a timed alternating automaton
with one clock) for the finite models 7, of any formula ¢ in the logic MTL with
the standard semantics (that is (7)(7y) := 7 € &). Assume now that we are
given an MTL formula ¢, a sequence of time periods 7 and a predicate mapping
O. For that particular 7, we can find the set £,(Ag) of timed words (¢, 7)
that are accepted by A4. One way to do so is to construct the set UW, of all

possible untimed words £ of length |7], that is UW, = APlTl, and, then, for each
& € UW, verify whether (¢, 7) is accepted by Ay, i.e. whether (§,7) € L(Ayp)
and, thus, (¢,7) € £,(Ag). This can be done in time O(|7||AP|I!) since given
the automaton A, it takes linear time in the length of the timed word to decide
whether the word is in the language or not. From the set £ (Ay), we can easily
derive the set Py = U(f,T)E[,T(A¢) ((Nreg, O(m)) X ... X (Nree )7, O(m))).

The following toy example illustrates the concept of robustness for temporal
logic formulas interpreted over finite (timed) state sequences.

Example 1. Assume that we are given the LTL specification ¢ = m Umy such
that O(m) = [1,2] € R and O(m2) = [0,1) C R. Moreover, we have O(n.) =

. - B
S S
= T 2 Q0 d 2
s 4 0?=1.7,13 2 %4— 0
S 1o 3
..... + ¢/=1.0,0.5 ()
T T time 1 2 state at T,

Fig. 4. On the left appears the time-domain representation of the timed state sequences
71 (blue crosses) and Tz (green crosses) of Example[Il On the right appears the space
of the state sequences of length 2. Each x represents a state sequence as a point in R?.
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R\(O(m1) U O(m2)) = (—00,0) U (2,4+00). Note that the sets O(m1), O(m2) and
O(7.) are mutually disjoint. Consider now two timed state sequences 77 =
(61, 7,0) and T3 = (0?,7,0) taking values in R such that ¢! = 1,0.5 and
0? = 1.7,1.3. Since ¢ is an LTL formula, we can ignore the sequence of time
periods 7. In this simple case, we can compute the set P? with the procedure
described above. The four untimed words that satisfy the specification ¢ and
generate non-empty sets are &8 = {m}, {m}, &2 = {m}, {m}, & = {m}, {r.}
and ¢* = {m},{m}. Therefore, we get P? = P% = P% = O(ms) x O(my) U
O(m2) x O(m2) UO(ma) x O(m) UO(m1) x O(m2) = [0,1) x RU[1,2] x [0,1) (see
Fig. H). Therefore, e; = Dist,(c!, P?) = 0.5 and &5 = Dist, (02, P?) = —0.3.

3.2 Computing an Under-Approximation of the Robustness Degree

The aforementioned theoretical construction of the set P;é cannot be of any
practical interest. Moreover, the definition of robustness degree involves a num-
ber of set operations (union, intersection and complementation) in the possibly
high dimensional spaces X and X!7!, which can be computationally expensive
in practice. Therefore in this section, we develop an algorithm that computes
an under-approximation of the robustness degree ¢ by directly operating on the
timed state sequence while avoiding set operations. In the following, we refer to
the approximation of the robustness degree as the robustness estimate. As it is
usually the case in trade-offs, we gain computational efficiency at the expense of
accuracy.

In order to compute the robustness estimate, we define robust semantics for
MTTL. For this purpose, we extend the classical notion of formula satisfiability to
the multi-valued case. In this framework, each formula takes truth values over
a finite or infinite set of values that have an associated partial or total order
relation. In this paper, we differentiate from previous works [9] by providing the
definition of multi-valued semantics for MTL based on robustness considerations.

Let ;R = (R, <) be the closure of the reals with the usual ordering relation.
We define the binary operators LI : R x R — R and M : R x R — R using the
maximum and minimum functions as x Uy := max{x,y} and x My := min{z, y}.
Also, for some R C R we extend the above definitions as follows | | R := sup R
and [ | R := inf R. Recall that | |R = 400 and [ |R = —oo and that any subset
of R has a supremum and infimum. Finally, because fR is a totally ordered set,
it is distributive, i.e. for all a,b,c € RitisaM(bU¢) = (aMb) U (aMec) and
ald(®ne)=(aUb)MN(alc).

We propose multi-valued semantics for the Metric Temporal Logic where the
valuation function on the atomic propositions takes values over the totally or-
dered set R according to the metric d operating on the state space X of the
timed state sequence 7. For this purpose, we let the valuation function to be
the signed distance from the current point in the state sequence oy to a set C'
labeled by the atomic proposition. Intuitively, this distance represents how ro-
bustly is the point g within a set C'. If this metric is zero, then even the smallest
perturbation of the point can drive it inside or outside the set C, dramatically
affecting membership.
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For the purposes of the following discussion, we use the notation [¢](7) to
denote the robustness estimate with which the structure 7 satisfies the specifi-
cation ¢ (formally [¢] : ¥x — R).

Definition 8 (Robust Semantics of MTL). Let 7 = (0,7,0) € X'x, v € R,
7€ AP, 4,5 € Nand KX = {i € [0,|7| — 1]n | > i=0Tj € I}, then the robust
semantics of a formula ¢ € g with respect to T are inductively defined by

[WI(T) =v
[7](T) := Distg(cg, O(n))
[-(T) == -[¥](T)
[¢1V $2](T) = [:](T) U [92](T)
o= (00

[61 Uz o] (T) := | |1Z5" (mv(i € KT) A [al(T1:) N[ ] i2b[ea](T15))

where the unary operator (=) is defined to be the negation over the reals.

Remark 3. Tt is easy to verify that the semantics of the negation operator give
us all the usual nice properties such as the De Morgan laws: allb = —(—aT1—b)
and a Mb = —(—a U —b), involution: —(—a) = a and antisymmetry: a < b iff
—a > —b for a,b e R.

Since the truth degree constants of the formulas in @p differ from those of the
formulas in @y, we define a translation function mv : ¢ — @, which takes as
input a formula ¢ € @p and replaces the occurrences of L and T by —oco and
+00 respectively. All the other symbols in ¢ are left the same. The following
proposition states the relationship between the usual and the robust semantics
of MTL (the proof uses induction on the structure of ¢).

Proposition 2 (proof in [20]). Let ¢ € &, » = mv(¢) and T € Xx, then

(1) WIT)>0 = (eN(T) =T 2) (W) =T = [$I(T) =0
@) WIT) <0 = (eN(T) =L @) (o)(T) =1L = [¥I(T) <0

Note that the equivalence in the above proposition fails because, if a point is
on the boundary of the set, its distance to the set or its depth in the set is by
definition zero. Therefore, the point is classified to belong to that set even if the
set is open in the topology.

The following theorem identifies the robustness estimate as an underapproxi-
mation of the robustness degree (proof by induction on the structure of ¢).

Theorem 1 (proof in [20]). Given ¢ € P and T = (0,7,0) € Xx, then
[mv(¢)[(T)| < |Dist, (o, PY)| (2)

In more detail, —depth,, (o, N2) < [o)(T) < depth,, (o, P2).
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In the above theorem, the equality in equation (2] fails due to the robust inter-
pretation of the disjunction connective. The inequality manifests itself in four
distinct ways: (i) at the level of the atomic propositions, i.e. w1 V ma, (i) due to
the existence of tautologies in the formula, i.e. 7V -7, (iii) when we consider
disjuncts of MTL subformulas, i.e. ¢1 V ¢2, and more importantly, (iv) due to
the disjunctions in the semantics of the until temporal operator.

The first case can be remedied by introducing a new symbol for each Boolean
combination of atomic propositions. The second and third conditions require the
attention of the user of the algorithm. Even though the above cases can be fixed
by introducing syntactic restrictions, the last case (iv) captures a fundamental
shortcoming of the robust semantics. The timed state sequences that have state
sequences in B, (o, |Dist (o, P;f)\) can satisfy or falsify the specification ¢ at dif-
ferent time instants than 7. On the other hand, the robustness estimate returns
the “radius” of the neighborhood of traces that satisfy the specification at the
same point in time.

Ezample 2. Going back to Example[I] we have seen that ¢ = Dist,(c!, P?) =
0.5. Nevertheless, [¢](71) = [m2](71)U([71](71)[72](7111)) = 00(0M0.5) = 0 #
1. Consider now a timed state sequence 7' = (¢/, 7, O) such that ¢’ = 1.1,0.5.
It is immediate to see that {(¢)(7’) = T and that 7’ € X, (77). Note that 7;
satisfies the specification at time 71, while 7" satisfies ¢ at time 7. The robust
semantics of MTL cannot capture this.

From Proposition [[l and Theorem [Il we derive the next theorem as a corollary.

Theorem 2. Given ¢ € Pp and T € Xx, if [mv(e)][(T) = € and |e| > 0, then
Jor all § € Xo|(T) it is ($)(S) = (ON(T).

Theorem [2 has several implications. First, in the simplest case where we just
simulate the response of a system, we can derive bounds for the magnitude of
the disturbances that the system can tolerate while still satisfying the same MTL
specification. Second, we can use approximation metrics [2I] in order to verify a
system using simulations [22].

4 Monitoring the Robustness of Temporal Properties

In this section, we present a procedure that computes the robustness estimate of
a timed state sequence 7 with respect to a specification ¢ stated in the Metric
Temporal Logic. For this purpose, we design a monitoring algorithm based on
the classical and robust semantics of MTL.

Starting from the definition of the Boolean semantics of the until operator and
using the distributive law, we can derive an equivalent recursive formulation (see
also [10]):

((0€Z) A (@) (T))V
(o1 Uz )(T) = § V((DL)(T) A (b1 Uz—7,$2)(TT1)) if T[> 1
(0€Z) A {p2)(T) otherwise
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Algorithm 1. Monitoring the Robustness of Timed State Sequences

Input: The MTL formula ¢ and the timed state sequence 7 = (o, 7, O)
Output: The formula’s Boolean truth value and the robustness parameter
1: procedure MONITOR(¢,7)

2: if |7| > 1 then return ¢ «— PROGRESS(¢, 5o, 11, L, O)
else return ¢ «— PROGRESS(¢, 09,0, T, O)
end if
if ¢ = (v,e) then return (v, ¢) pve{T,L}ande eR
else return MONITOR(¢, 7 71)
end if

end procedure

A similar recursive formulation holds for the robust MTL semantics (see [20]).
Using the recursive definitions, it is easy to derive an algorithm that returns
the Boolean truth valudd of the formula and its robustness degree. The main
observation is that each value node in the parse tree of the MTL formula should
also contain its robustness degree. Therefore, the only operations that we need
to modify are the negation and disjunction which must perform, respectively, a
negation and a maximum operation on the robustness values of their operants.
Then, the new semantics for the conjunction operator can be easily derived from
these two.

Definition 9 (Hybrid Semantics for Negation and Disjunction). Let
(v1,€1), (v2,€2) € B x R, then we define

— Negation: =(v,¢) := (—w, —¢)
— Disjunction: (vi,e1) V (va,e2) := (v1 V v2, max{e, ea})

Given a timed state sequence 7 and an MTL formula ¢, we can construct a
monitoring algorithm (Algorithm [I]) that can decide both the satisfaction of the
formula and the robustness parameter € on-the-fly. Algorithm [2 is the core of
the monitoring procedure. It takes as input the temporal logic formula ¢, the
current state s and the time period before the next state occurs, it evaluates the
part of the formula that must hold on the current state and returns the formula
that it has to hold at the next state of the timed trace. In Algorithm [2 T is
defined as follows
T { [0,Ib(Z)]UT if 0 < Ib(Z)
s otherwise

The constraint 0 € (f is added in order to terminate the propagation of the
subformula ¢1 Uz _ -, $2, when the timing constraints for the occurrence of ¢2 have
already been violated. Note that this timing constraint is meaningful only if we
also perform the following simplifications at each recursive call of the algorithm
PROGRESS: (i) ¢ A (T,+00) = ¢, (ii) ¢ V (L,—00) = ¢, (iii) ¢ V (T,4+00) =
(T,400) and (iv) ¢ A (L, —o0) = (L, —00).

3 Note that the Boolean truth valued is required in the cases where the robustness
degree is zero (see Proposition [2).
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Algorithm 2. Formula Progression Algorithm
Input: The MTL formula ¢, the current state s, the time period At for the next state,
a variable last indicating whether the next state is the last and the mapping O
Output: The MTL formula ¢ that has to hold at the next state

1: procedure PROGRESS(¢, s, At, last, O)

2: if ¢ = (v,e) € {1, T} xR then return (v,¢)

3: else if ¢ = m then return (s € O(r), Distg(s, O(m)))

4: else if ¢ = —1) then return —~PROGRESS(v, s, At, last, O)

5: else if ¢ = ¢1 V ¢2 then

6: return PROGRESS(¢1, s, At, last, O)V PROGRESS(¢2, s, At, last, O)

7 else if ¢ = Ozvy then return HYBRID(—last A (At € T)) A

8: else if ¢ = ¢1 Uz 2 then

9: a — HYBRID(0 € Z)A PROGRESS(¢2, s, At, last, O)

10: B «— HYBRID(—last A (0 € ?))/\ PROGRESS(¢1, s, At, last, O) A o1 Uz—atd2
11: return a Vv j3

12: end if

13: end procedure

1: function HYBRID(Bool)

2: if Bool = T return (T,+c0) else return (L, —o0) end if
3: end function

When we check how robustly a timed state sequence 7 satisfies a specification
¢, we cannot stop the monitoring process as soon as we can determine that the
MTL formula holds on 7. This is because a future state in the timed state
sequence may satisfy the specification more robustly. Therefore, it is preferable
to execute the procedure MONITOR for the whole length of the timed state
sequence 7.

The proof of the following theorem is standard and uses induction on the
structure of ¢ based on the classical and robust semantics of MTL.

Theorem 3 (proof in [20]). Given an MTL formula ¢ € P and a timed state
sequence T € Xx, the procedure MONITOR(¢, T ) returns

— (T,e) if and only if (&N(T) =T and [mv(d)](7)=ec >0
— (L,¢e) if and only if (&)(T) = L and [mv(4)](7) =¢ <0.

The theoretical complexity of the monitoring algorithms has been studied in
the past for both the Linear [23] and the Metric Temporal Logic [10]. Practical
algorithms for monitoring using rewriting have been developed by several authors
[11124]. The new part in Algorithm 2lis the evaluation of the atomic propositions.
How easy is to compute the signed distance? When the set X is just R, the set C'
is an interval and the metric d is the function d(z, y) = |z —y|, then the problem
reduces to finding the minimum of two values. For example, if C' = [a,b] C R
and x € C, then Disty(z,C) = min{|z — al,|z — b|}. When the set X is R",
C C R™is a closed and convex set and the metric d is the euclidean distance, i.e.
d(z,y) = ||x—yl|2, then we can calculate the distance (dist,) by solving a convex
optimization problem. If in addition the set C'is a hyperplane C' = {z | aTx = b}



Robustness of Temporal Logic Specifications 191

or a halfspace C = {x | a¥x < b}, then there exist analytical solutions. For
further details see [16].

5 Conclusions and Future Work

The main contribution of this work is the definition of a notion of robust satis-
faction of a Linear or Metric Temporal Logic formula which is interpreted over
finite timed state sequences that reside in some metric space. We have also pre-
sented an algorithmic procedure that can monitor such a timed state sequence
and determine an under-approximation of its robustness degree. As mentioned
in the introduction, the applications of this framework can extend to several
areas. We are currently exploring several new directions such as the extension of
the definitions of the robustness degree and the robust MTL semantics so they
can handle infinite timed state sequences. Also of interest to us is the addition
of a metric on the time bounds as it is advocated in [25] and [26]. Finally, the
methodology that we have presented in this paper comprises the basis for the
extension of recent results on the safety verification of discrete time systems [13]
to a more general verification framework using the metric temporal logic as a
specification language [22].
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