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Preface

Software validation is one of the most cost-intensive tasks in modern software
production processes. The objective of FATES/RV 2006 was to bring scien-
tists from both academia and industry together to discuss formal approaches
to test and analyze programs and monitor and guide their executions. Formal
approaches to test may cover techniques from areas like theorem proving, model
checking, constraint resolution, static program analysis, abstract interpretation,
Markov chains, and various others. Formal approaches to runtime verification
use formal techniques to improve traditional ad-hoc monitoring techniques used
in testing, debugging, performance monitoring, fault protection, etc.

The FATES/RV 2006 workshop selected 14 high-quality papers out of 31
submissions. Each paper underwent at least three anonymous reviews by either
PC members or external reviewers selected by them. In addition to the 14 regular
papers, the proceedings contain two papers corresponding to the invited talks
by Wolfgang Grieskamp (Microsoft Research, USA) and Oege de Moor (Oxford
University, UK).

This was the first time that the two workshops, FATES and RV, were held
together. The success of this joint edition shows that the integration of these
two communities can be profitable for both of them. Previous editions of these
two events were held in the following places: FATES 2001 was held in Aal-
borg (Denmark) and FATES 2002 in Brno (Czech Republic). In both cases, the
workshop was affiliated with CONCUR. FATES 2003 and FATES 2004 were
held in Montreal (Canada) and Vienna (Austria), respectively, in affiliation with
ASE. FATES 2005 was co-located with CAV in Edinburgh (UK). Since 2003, the
FATES workshop proceedings have been published by Springer (LNCS series).
In parallel, RV 2001 was held in Paris (France), followed by RV 2002 in Copen-
hagen (Denmark), and RV 2003 in Boulder (USA). These first three editions
were affiliated with CAV. RV 2004 was held in Barcelona (Spain), affiliated with
TACAS 2004. Finally RV 2005 was held in Edinburgh (UK), co-located with
CAV. All previous editions of RV were published in Elsevier’s Electronic Notes
in Theoretical Computer Science. In addition, selected papers from RV 2001 and
RV 2002 were published in Springer’s journal Formal Methods in System Design,
in issues 24(2) (March 2004) and 27(3) (November 2005), respectively.

We would like to express our gratitude to all the authors and invited speakers
for their valuable contributions. We would also like to thank all members of the
FATES/RV 2006 Program Committee and the additional reviewers for their
efforts to accurately review the papers on time. Wolfgang Grieskamp supported
the organization of the workshop by providing a PC projector and the printouts
of these preliminary proceedings. In addition, Microsoft Research gave financial
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support for the organization of the workshop. Finally, we would like to thank
the local organization of FLoC 2006 for their help.

September 2006 Klaus Havelund
Manuel Núñez
Grigore Roşu

Burkhart Wolff
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Multi-paradigmatic Model-Based Testing

Wolfgang Grieskamp

Microsoft Research, Redmond, WA, USA
wrwg@microsoft.com

Abstract. For half a decade model-based testing has been applied at Microsoft
in the internal development process. Though a success story compared to other
formal quality assurance approaches like verification, a break-through of the tech-
nology on a broader scale is not in sight. What are the obstacles? Some lessons
can be learned from the past and will be discussed. An approach to MBT is de-
scribed which is based on multi-paradigmatic modeling, which gives users the
freedom to choose among programmatic and diagrammatic notations, as well as
state-based and scenario-based (interaction-based) styles, reflecting the different
concerns in the process. The diverse model styles can be combined by model
composition in order to achieve an integrated and collaborative model-based test-
ing process. The approach is realized in the successor of Microsoft Research’s
MBT tool Spec Explorer, and has a formal foundation in the framework of action
machines.

1 Introduction

Testing is one of the most cost-intensive activities in the industrial software develop-
ment process. Yet, not only is current testing practice laborious and expensive but often
also unsystematic, lacking engineering methodology and discipline, and adequate tool
support.

Model-based testing (MBT) is one of the most promising approaches to address these
problems. At Microsoft, MBT technology has been applied in the production cycle since
1999 [1,2,3,4,5]. One key for the relative success of MBT at Microsoft is its attraction
for a certain class of well-educated, ambitious test engineers, to which it is one way to
raise testing to a systematic engineering discipline.

However, at the larger picture, an estimate based on the number of subscriptions to
internal mailing lists for MBT would count only about 5-10% of product teams which
are using or have tried using MBT for their daily tasks. While these numbers can be
considered a success compared to other formal quality assurance approaches like veri-
fication, they are certainly not indicating a break-through. So what are the obstacles in
applying MBT, and how can a larger group of users be attracted to the technology?

This paper first makes an attempt to answer this question, based on feedback from
the user base of the Spec Explorer tool [5], its predecessor AsmL-T [3], and other
internal MBT tools at Microsoft. The major issues, apart of the ubiquitous problem in
the industry that people do not have enough time to try out new technology and educate
themselves, seem to be the steep learning curve for modeling notations together with
the lack of state-of-the-art authoring environments, missing support for scenario-based
(interaction-based) modeling, thus involving not only the test organization but also other
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2 W. Grieskamp

stakeholders in the process, poor documentation of the MBT tools, and last but not least
technical problems like dealing with state explosion, fine-grained test selection, and
integration with test management tools.

The paper then sketches a new model-based testing environment which is currently
under development at Microsoft Research and attempts to overcome some of the ob-
stacles. The environment, called “Spec Explorer for Visual Studio” (for short, SEVS),
tries to address the identified challenges by providing a full integration into the develop-
ment environment of Visual Studio, using a multi-paradigmatic approach to modeling,
allowing to describe models on different levels of abstraction, using scenario and state
oriented paradigms as well as diagrammatic and programmatic notations, and enabling
the combination of those diverse artifacts for a given modeling and testing problem.

SEVS is internally based on the framework of action machines [6,7], which allows for
uniform encoding of models which can stem from a variety of notations, and to combine
and relate them using various compositions. The action machine framework supports
the representation of models with symbolic parts in states and actions, which gives rise
to the expressive power of defining partial models on a higher level of abstraction and
compose them with lower-level models.

This paper is organized as follows. Sect. 2 describes lessons learned in applying
MBT at Microsoft and draws some conclusions. Sect. 3 gives a high-level overview on
the approach of the SEVS tool using examples. Sect. 4 gives a summary of the formal-
ization of the underlying concepts, and Sect. 5 concludes.

2 Model-Based Testing in Practice: Lessons Learned

MBT has a long application tradition at Microsoft, and various tools have been and are
in use. The first tool, the Test Modeling Toolkit (TMT), was deployed in 1999, and is
based on extended finite state machines (EFSM) [1]. Microsoft Research deployed two
tools, AsmL-T in 2002 [3] and Spec Explorer in 2004 [5], both using executable spec-
ification languages based on the the abstract state machine paradigm (ASM) [8] as the
modeling notation. Other internal tools which have not been published are also around.
The general mailing alias used for internal discussion of MBT issues at Microsoft cur-
rently exceeds 700 members.

All these tools, though quite different in details and expressiveness, share some com-
mon principles. Models are described by guarded-update rules on a global data state.
The rules describe transition between data states and are labeled with actions which cor-
respond to invocations of methods in a test harness or in the actual system-under-test
(SUT). Rules can be parameterized (and the parameters then usually also occur in the
action labels). A user provides value domains for the parameters, using techniques like
pairwise combination or partitioning. In the approach as realized by AsmL-T and Spec
Explorer, the parameter domains are defined by expressions over the model state, such
that for example they can enumerate the dynamically created instances of an object type
in the state where the rule is applied.

A very simple example to demonstrate the basic concepts as they appear in Spec
Explorer today is considered. The model describes the publish-subscribe design pattern
which is commonly used in object-oriented software systems. According to this pattern,



Multi-paradigmatic Model-Based Testing 3

class Publisher {
Set<Subscriber> subscribers = Set{};
[Action(ActionKind.Controllable)]
Publisher(){}
[Action(ActionKind.Controllable)]
void Publish(object data)
{

foreach (Subscriber sub
in subscribers)

sub.mbox += Seq{data};
}

}

class Subscriber {
Seq<object> mbox = Seq{};
[Action(ActionKind.Controllable)]
Subscriber(Publisher publisher)
{

publisher.subscribers += Set{this};
}
[Action(ActionKind.Observable)]
void Handle(object data)
requires mbox.Count > 0 &&

mbox.Head.Equals(data);
{

mbox = mbox.Tail;
}

}

Fig. 1. Publisher-Subscriber Model

various subscriber objects are registered with a publisher object to receive asynchronous
notification callbacks when information is published via the publisher object (in fact,
the subscribers can dynamically register and unregister at a publisher, but this aspect is
simplified here.) Thus this example includes dynamic object creation as well as reactive
behavior.

The model is given in Fig. 1 (top). The state of the model consists of publisher and
subscriber instances. A publisher has a field containing the set of registered subscribers,
and a subscriber has a field representing the sequence of data it has received but not yet
handled (its “mailbox”). The model simply describes how data is published by deliv-
ering it to the mailboxes of subscribers, and how it is consumed by a subscriber in the
order it was published. The precondition of the handling method of the subscriber en-
ables it only if the mailbox is not empty, and if the data parameter equals to the first
value in the mailbox. Note that the Handle method is an observable action, which
comes out as spontaneous output from the system under test (SUT).

Fig 1 (bottom) shows an excerpt from the state graph generated by Spec Explorer
from this model. This kind of graph corresponds to an interface automaton [9]. In this
fragment, one publisher and two subscribers are configured (the state graph omits the
configuration phase). From state S3, a Publish invocation is fired, leading to state S4,
which is an observation state where the outgoing transitions are observable actions. The
meaning of an observation state is that the SUT has an internal choice to do one of the
outgoing transitions, as opposed to a control state (S3) where it must accept all of the
outgoing transitions. Thus, effectively, the model gives freedom to an implementation
to process the subscribers of a publisher in any given order.
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In order to generate the state graph, the model was augmented with further infor-
mation: the parameters passed to the Publish method have been specified (here,
"foo"), the number of publishers and subscribers to be created has been bounded,
as well as the number of messages in the mailbox of a subscriber.

Such state graphs are then input to traversal algorithms to generate a test suite which
can be executed offline, or are dynamically traversed using online/on-the-fly testing.
For both cases, the test execution environment takes care of binding object values in the
model to objects in the implementation, as well as queuing asynchronous observable
action invocation events in the SUT for consumption by the model. For details, see [5].

In practice, models written with Spec Explorer are significantly larger than this sim-
ple example; yet they are rarely on the scale of real programs. In the applications at
Microsoft, models typically introduce about 10 to 30 actions, with up to 2000 lines of
model code, in exceptions over 10000 lines. Yet, these models are able to test features
with a code-base which is larger by an order of magnitude or more. This stems from the
level of abstraction chosen in modeling. Model-based testing is used for a wide range
of application types, including user interfaces, protocols, windows core components,
frameworks, device drivers, and hardware abstraction layers.

While in general successfully used in practice, the technology of Spec Explorer, as
well of the other available tools at Microsoft, raises some challenges which hinder wider
adoption. These will be discussed in the remainder of this section.

2.1 The Modeling Problem

Authoring. Computer folklore says: “every editor is better than a new editor”. Though
clearly this statement is sarcastic, one should not underestimate its wisdom. The author
of this paper, for example, used to apply the vi editor (a great relict of very early Unix
times) for his programming over many years, even though on the development plat-
form Visual Studio was available, which provides automatic indentation, incremental
compilation, context-sensitive completion, refactoring, and many more nice features.

When initially rolling out one approaches’ favorite modeling notation to end users,
the gravity of habits is even stronger: users are asked to use a new language in an
authoring environment which usually does not provide the convenience features they
are acquainted with from modern environments.

Notations have perhaps become less important today than the environments which
support them. This at least applies to users which are heavily using these modern devel-
opment environments – among which are most younger testers and developers. It might
apply less to other stakeholders (like the author of this text, which is still using a vi
emulation mode under Emacs to write this document in LATEX).

The lesson learned is that if one comes up with a new notation, one should better be
sure that either the users of that notation do not care about modern authoring support,
or one should match this support. The later is unfortunately not trivial. The effort for
decent authoring support for a language is probably an order of magnitude higher than
providing its compiler.

Executable Specifications vs Programming Languages. The first generation of the
Microsoft Research MBT tools was based on the Abstract State Machine Language
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(AsmL), a high-level executable specification language, which integrates concepts from
functional programming languages and specification languages like Z, B and VDM.
Though the basic concepts of this language seem to be simple and intuitive (it uses
a “pseudo-code” style notation and avoids any mathematical symbols), apart of some
stellar exceptions, for most testers the learning curve was too steep (see [4] for a dis-
cussion).

Testers struggled with concepts like universal and existential quantification and set
comprehensions. Under the assumption that the problem was not the concept itself but
perhaps the unfamiliar way in which it was presented, the next generation, Spec Ex-
plorer, offered in addition to AsmL the Spec# notation, which disguised the high-level
concepts in C# concrete syntax. Though this approach was more successful, the basic
problems remained. Typically, beginners and even intermediate levels in Spec# prefer
to write a loop where a comprehension would be much more natural and concise.

This phenomena is not just explained by the inability of users. It is more the un-
willingness to learn many new concepts at the same time, in particular if they are not
obviously coherent. Confronted with a new technology like MBT and the challenges
to understand the difference between model and implementation and finding the right
abstraction levels, having in addition the challenge to learn a new language, is mastered
only by a minority.

Some people argue that a high-level notation which differs from the programming
notations might support identifying different levels of abstractions, as they are essential
for modeling. The AsmL and Spec# experiences do not confirm this, at least in the
beginning of the adoption process. Rather, it seems that if the notation is mastered after
some time, a misleading conceptualization takes place: abstraction is identified with
notation, which after all is only syntactic sugar (in the case of executable specification
languages). Someone who already masters the abstraction process will certainly benefit
from a more concise way to write things down. But for others, the notation can be just
a further roadblock in mastering the technology.

The conceptual distance between programming languages like C# and executable
specification languages like Spec# is shrinking steadily. The new forthcoming C# ver-
sion 3.0 will contain – in addition to the relatively declarative notational features C#
has already now – support for comprehension notations (as part of the LINQ project
[10]). When new language concepts are build into main-stream programming languages
like C# or Java, a campaign is kicked off. Manufactures provide early technology pre-
views, blogs and message boards are filled, books are written or newly edited, and so
on. After some time, the concepts which might have appeared strange to the average
programmer are familiar to many. Why trying to compete with this?

The lesson learned here is that it appears wiser not to mix evangelizing executable
specification languages with the very core of model-based testing concepts. This should
not mean that those notations do not have a place in MBT – they are indeed rather impor-
tant. It just means that users should not be forced to use a new notation and environment
in order to write their first models. Let them use existing programming notations and
their authoring environments if they like. The core of a model-based testing approach
and tool should be agnostic about this choice; it should be multi-paradigmatic.
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Scaling Up to Model-Based Development. One of the promises of MBT is to be an en-
try door for model-based development. In course of applying MBT at Microsoft, several
test teams have attempted to incorporate program managers, domain experts, business
analysts, and the like into the modeling process. This has not been very successful so
far, though some exceptions exist.

One interesting observation is that executable specification languages like AsmL,
which provide a high-level pseudo-code style notation, are more attractive to those
stakeholders than programming-oriented notations like Spec#. AsmL had more users
authoring system models, compared to just models for test, whereas with the introduc-
tion of Spec# and Spec Explorer, these applications diminished. This is a strong argu-
ment to continue supporting high-level executable specification languages like AsmL
for MBT (just do not make them the only choice).

However, it seems that the main obstacle here is not the language but the model-
ing style. AsmL, Spec#, or any of the other MBT approaches used at Microsoft are
not attractive in the requirements phase since they are state-based instead of scenario-
based. In this way they represent a design by itself – even if on an higher-level of
abstraction. These high-level designs are well suited for analysis, but less well for un-
derstanding and communicating usage scenarios. Thus to incorporate stakeholders from
the requirements league, scenario-based modeling must be supported.

Scenarios are also heavily used inside of the test organizations themselves. For ex-
ample, test plans are commonly used at Microsoft to describe (in an informal way) what
usage scenarios of a feature should be tested. These test plans, as well as the scenarios
coming from the requirements phase, are intrinsically partial, omitting a lot of details,
in particular oracles, parameter assignments, and so on. It is the job of the test engineers
to “implement” these test plans.

The challenge for MBT to scale up to model-based development is the support of
both the state-based and the scenario-based paradigm in one approach, where it is pos-
sible to combine (compose) models coming from those different sources. For example,
a scenario might provide the control flow, and a state machine the oracle, and the com-
position of both produces an instantiated test suite.

How should scenario-based models be written down? In [11], a programmatic ap-
proach based on Spec# is suggested. While this approach is useful in some instances,
diagrammatic approaches like activity charts or interaction charts look more promising,
as far as stakeholders from the requirements phase should be involved. Because of the
wealth of literature available, it seems wise to orient toward UML 2.0 when support-
ing diagrammatic notations, instead of inventing ones own. But again, the choice of the
notation should not be part of the core of an MBT approach and tool.

Education and Documentation. For more than a decade, proponents of formal meth-
ods claim that the major problem in adoption is education. In particular universities are
in charge of providing better preparation for those technologies. However, as long as
there are no practical applications and tools around, only a minority of students will
subscribe to this content.

Until then, the adoption problem must be solved in the field. To that end manage-
ment support is the essence. At Microsoft, the most successful applications of MBT
emerged in areas where the technology was pushed from management level by making
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time resources available for the adoption phase. This has to go in combination with
introduction classes and seminars, and – most important – good documentation and
samples. See [4] for a discussion.

2.2 The Technology Problems

State Explosion. MBT is known to easily generate a huge amount of tests from even
small models. But this turns out to be more a problem in practice than an advantage,
commonly referred to as the “state explosion problem”. In fact, this is the main concern
mentioned by users of MBT tools at Microsoft.

The state explosion problem has a number of facets. First, the time required to run a
test-suite is a significant cost factor. For example, at Microsoft, developers need to run
so-called “basic verification tests” (BVT) before they can submit sources to a shared
depot. The time required to run the BVT is important for development productivity. If
BVTs require hours to finish, developers tend to submit their changes in larger time
intervals, which raises problems with the integration of their changes with other devel-
opers changes.

This is also a reason why stochastic on-the-fly/online testing is not the solution for
the state explosion problem. It is not realistic to run millions of tests “over night” in
the standard development process. Indeed, this kind of testing has its proper use in test
deployments which run in test labs asynchronously with the development process and
in larger time intervals.

Test Selection. The notion of test selection is generally used in the MBT community
to name the process of selecting some representative set of tests from the model. Thus
it should provide the tools to overcome the state explosion problem. Test selection tra-
ditionally covers graph traversal techniques which can be applied to models which are
boiled down to some finite state machine representation, as well as techniques for gen-
erating parameters of tested actions, like pairwise combination, partitioning, and so on.
In the context of models which have an unbounded state space, like Spec Explorer mod-
els, test selection can also include bounds, filters, state grouping, and other techniques
to prune the state space.

While these techniques are mostly automated and well understood, it is a regular
complain of MBT users at Microsoft that they have not enough fine-grained control
over the test selection process. For example, a typical user problem is to choose the
set of tests from the model where during some initialization phase an arbitrary path is
sufficient, in the operation phase paths should be chosen such that all transitions are
covered, and in the shutdown phase again an arbitrary path is good enough. MBT tools
need to support this kind of fine-grained control over the test selection process.

Some tools support defining so-called test purposes which are combined with the
model to slice some desired behavior, using special notations for that [12,13]. Instead
of introducing a further notation for describing test purposes, it looks desirable to use
models to express test purposes and view the test selection problem with test purposes
as a model composition problem. Test purposes then fall together with test plans and
requirement scenarios, as discussed previously. Even more than for those applications,
models used as test purposes must allow to express partial behavior which omits many
details.
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Model Analysis. Another facet of the state explosion problem is the understanding of
what the model actually does. Since models represent human abstractions they can be
error-prone in missing some intended behaviors because of over-abstraction. Therefore,
they require “debugging”. Debugging a model for MBT effectively means exploring and
analyzing the state space it spans, both by humans and automatically.

The Spec Explorer tool invests a great lot of detail to support human analysis by its
viewing capabilities, which allow to visualize the state space directly or using projection
techniques. These capabilities are one major cornerstone for the success of the tool, and
need to be maintained and extended.

The Spec Explorer tool also supports model-checking with safety and liveness prop-
erties. However, this support is not very well developed in comparison to decent model-
checking tools, and temporal property checking is not available. Model checking is a
key feature that makes modeling more attractive for stakeholders outside of the test or-
ganization. Consequently, user requests for supporting model-checking in model-based
testing tools come from this side.

Test Management. Test automation does not end with the generation of test cases.
In particular, if it comes to testing of distributed systems and/or testing of software on
heterogeneous hardware, test management is a significant effort of the overall process.

At Microsoft, a variety of test management tools are in use which allow distribution
of test jobs on matching hardware and execution of orchestrated tests inclusive of log-
ging for collecting the test results. Other tools support measuring coverage of test suites.
The integration of this set of tools with model-based testing tools is only marginally de-
veloped, and an improvement here is an often requested feature. For example, users
want end-to-end tracking of test case execution with the model source, test versioning,
automatic bug filing, generation of repros for failed test runs, and so on.

Visual Studio Team Suite 2005 added support for test management, as well as for
unit testing. It is desirable to leverage this support for an MBT solution integrated into
Visual Studio. However, experiences show that requirements and tools for test manage-
ment often differ from product unit to product unit. Thus a unified, single solution for
test management might not be adequate. Therefore, the best strategy for an MBT tool
seems be to have a well-defined abstraction layer over the test management support,
which allows deployment of different tools underneath – very similar like development
environments do today for source control and versioning. The definition of this layer is
an open problem.

3 A Multi-paradigmatic Approach and Tool

Over the past year, Microsoft Research has developed a new tool for modeling and
model-based testing, called “Spec Explorer for Visual Studio” (for short SEVS), which
strikes out to meet some of the challenges learned from the experiences with older tool
generations. This tool provides a full integration of model-based testing and model-
checking in the Visual Studio environment on base of a multi-paradigmatic approach
to modeling as motivated in the previous section.

In its intended final stage of expansion, models can be written in SEVS using any .NET
language (including AsmL), supporting whatever authoring environment is available
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for a given language. The tool also provides the use of UML 2.0 behavior diagrams,
which are realized using Visual Studio’s domain specific language support [14]. Models
can be either state-based or scenario-based, in both textual and diagrammatic flavors.

A central feature of SEVS is the ability to compose models stemming from different
paradigms. For example, a scenario-based model (given in any notation) can be put in
parallel composition with a state-based model (given in any notation), producing the
combined behavior of both. As discussed in the previous section, the scenario model
could e.g. be a test plan which describes a control flow on a high abstraction level,
whereas the state-based model could represent the “implementation” of the omitted
details of the test plan (and other test plans in the same domain).

Besides parallel composition, the tool supports various other compositions (for a
complete description see [7]). SEVS is based on the semantic and implementation frame-
work of action machines [6]. The action machine framework supports the representation
of models with symbolic, “omitted” parts in states and actions, which gives rise to the
expressive power to define models on a higher level of abstraction and compose them
with lower-level models. A synopsis of the formal background of action machines is
given in Sect. 4.

This section provides a look-and-feel sample of the usage of SEVS. Namely, it presents
the well-known ATM (automatic teller machine) sample to illustrate the combination of
different paradigms. The sample uses UML 2.0 activity charts to describe the behavior
of the ATM in a scenario-based style. A state-based C# model is used to describe the
sub-behavior of the “bank” actor in the overall model, which maintains a data-base of
customers and their accounts.

3.1 The ATM Scenario Model

Fig. 2 shows a screen shot of Visual Studio displaying the activity chart for one depicted
use case. The model is built from four use cases, which are hierarchicaly organized.
The top-level use case “Session” describes an interaction of a customer with the bank
via the ATM system, the use case “Transactions” describes an iteration of transactions
a customer can perform, and the use cases “Inquiry” and “Withdrawal” describe the
individual transaction types.

The activity diagram for the “Transactions” use case describes a loop where the
user can enter a transaction type (variable ttype), and in dependency of that type the
“Withdrawal” or the “Inquiry” use case is invoked, or processing further transactions is
canceled.

Such scenario descriptions might result from the requirements phase or from mod-
eling test plans. In course of concretizing them for an analysis or testing problem, the
so-far abstract nodes of the activity are mapped to action patterns. In the screen shot,
the tool tip underneath the activity “Input Transaction Type” shows such a mapping.
Namely, this activity is mapped to the action invocation console.InputTType
(ttype), where console is a variable representing the customer console of the
system, which has been declared elsewhere. This mapping has been performed man-
ually based on an underlying object model for the ATM, but it can be also performed
automatically by synthesizing actions from the activity node name and the variables in
scope.
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Fig. 2. ATM Use Case Diagram and the “Transactions” Use Case

Variables in activity charts play an important role for the expressiveness of the ap-
proach, since they bound inputs and outputs from different activities together. All vari-
ables are purely declarative (logical variables). Flows can add constraints over those
variables. Variables may be scoped inside iterations, like here the ttype variable.

Action patterns might be more complex than just describing action invocations. They
impose regular expression constructs plus all the composition operators available in the
framework (see [7] for the action pattern language of SEVS). The implementation of
the activity chart shown in Fig. 2 is actually based on a translation into a single action
pattern which looks as follows:

([TransactionType ttype]
( [. ttype == TransactionType.Withdrawal .] :
Console.InputTType(ttype); Withdrawal(console,bank,cinfo)

| [. ttype == TransactionType.Inquiry .] :
console.InputTType(ttype); Inquiry(console,bank,cinfo)

)
)*
([TransactionType ttype]
[. ttype == TransactionType.Cancel .] :
console.InputTType(ttype); console.DisplayCanceled()

)

Here, the notation [T x]pat introduces a variable scoped over action pattern pat,
and [.exp.]:pat stands for a constraint expressed by an embedded host language
expression exp (which can be C#); the other constructs come from regular expres-
sions. The action pattern language is the only “new” language which is introduced by
SEVS. However, users do not need to know its full range of possibilities to use it.



Multi-paradigmatic Model-Based Testing 11

Fig. 3. Exploration Graph Resulting from ATM Model

Given a scenario model as above, users can explore it under SEVS to visualize its
behavior. Exploration yields in a graph as shown in Fig. 3. This graph is similar to
the one shown in Sect. 2 for the old Spec Explorer tool and basically depicts an in-
terface automaton [9], where nodes of the graph represent states and transitions action
invocations. Round nodes are control points where input is provided to the system and
diamond nodes represent observation points where output is observed from the sys-
tem. Note how variable v5 in the left part of the graph (which represents the amount
a user want to withdraw) express causalities which go beyond pure control flow: the
same given amount in v2.InputAmount(v5) must also be withdrawn from the
bank (v4.?TryWithdrawal(v1,v5)). However, the model has also some partial-
ity: the value of variable v5 is not fixed, and the model does not contain any information
when the verification of a pin (state S2) or the withdrawal from the bank (state S10)
is actually successful; it only states what the successive behavior is supposed to be in
either of that cases.

3.2 Refining the Bank

The behavior generated from the ATM model, as shown in Fig. 3, is partial regarding
the behavior of the bank. While such a model can already be used for testing (after
providing some additional information for parameter domains and traversals, and then
applying test selection), it may miss some important parts: If the bank is “trivial”, that
is always returns false on pin verification, no interesting tests are performed. Making
the bank non-trivial can be either achieved in the manual setup for the test or can be
modeled as well.

Fig. 4 gives a state-based model of the bank in C#. The model introduces four ac-
tions: In addition to VerifyPIN and TryWithdrawal, which already appeared in
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class Bank {
MapContainer<int,int> pins = new MapContainer<int,int>();
MapContainer<int,int> balances = new MapContainer<int,int>();
Bank(){

pins = new MapContainer<int,int>();
balances = new MapContainer<int,int>();

}
void AddCustomer(int id, int pin, int balance){

Contracts.Requires(!pins.Contains(id));
pins[id] = pin; balances[id] = balance;

}
bool VerifyPIN(int id, int pin){

return pins.Contains(id) && pins[id] == pin;
}
bool TryWithdrawal(int id, int amount){

Contracts.Requires(balances.Contains(id));
if (balances[id] >= amount){

balances[id] -= amount;
return true;

} else
return false;

}
}

Fig. 4. Model of the Bank in C#

the ATM scenario model, a constructor for the bank and an action SetCustomer is
introduced which allows to add a customer with a given id, pin, and initial balance to the
bank. The model uses library support to express pre-conditions (enabling conditions) of
actions. Contracts.Requires(!pins.Contains(id)), for example, ensures
that the action is only enabled if a customer with the given id is not yet added to the
bank.

This model could be explored, analyzed and converted to a test suite by itself. Ob-
viously, it would suffer from the problem of state explosion, since its state space is
unbounded. In order to test the bank standalone, one could provide a scenario which
prunes the behavior. However, the focus here is on combining it with the ATM model
given before to not only prune the model, but also yield a composed model which is
richer than each individual model.

A small piece of the action pattern language can be used for this purpose (in its
intended final stage of expansion, SEVS will provide UI abstractions for defining such
compositions). Let BankModel describe the model of the bank, and Session the
model of the ATM, then the composition can be defined as follows:

(new Bank();_.AddCustomer(1,1,10);Session()) |?| Bank()

Here a scenario is constructed which creates a new bank, adds one customer, and then
runs the Session scenario; this scenario is composed in parallel with the bank model
itself, where the |?| composition enforces synchronization of actions common to both
operands, and allows interleaving of other actions. Note that since there is only one bank
object ever created in this construction, an assignment to the bank receiver parameter
can be left open, since there are no choices.

Fig. 5 shows the result of exploring the given composition. The parameter for
InputAmount was fixed to 10 (in practice, one could use a larger domain, but the
result would be harder to understand for the purpose of this paper). With an additional
balance of 10 and a withdrawal amount of 10, there are two states in the composed
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Fig. 5. Exploration Graph Resulting from ATM Model in Composition with Bank Model

model from which the customer can make transactions: in state S6 she has 10 dollars
on the account, whereas in state S16, she has zero dollars on the account.

3.3 What Else?

The ATM sample showed only a fragment of the possibilities of the new tool. For ex-
ample, the ATM scenario model could have been directly given in the action pattern
language or defined programmatically. Fig. 6 gives an idea on how a programmed sce-
nario looks like in AsmL (C# could have been used here as well). The SEVS imple-
mentation allows to create symbolic values in .NET programs. It is able to abstract the
calls to actions over which a scenario program is defined. In other words, the action
InputTType here is not really executed; instead, it will create a state transition in the
generated behavior which is labeled with the action and its parameters. If an action is
non-void the result will be represented by a free symbolic value.

In its final stage of expansion, SEVS will also allow to represent state-based models
using diagrams, namely, by supporting Statecharts.

Other features which have been taken for granted here without deeper explanation
are the possibility to explore symbolic state spaces, the traversal techniques and the
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Transactions()
var continue = true
step while continue

let ttype = Symbolic.Any<TransactionType>()
step
console.InputTType(ttype)

step
match ttype

Cancel : console.DisplayCanceled()
continue := false

Inquiry : Inquiry()
Withdrawal : Withdrawal()

Fig. 6. Scenario Program for the Transactions Use Case in AsmL

parameter selection techniques, and, moreover, the possibility to run tests on-the-fly
(before traversal) or to persist test suites as data or programs (after traversal).

One application of SEVS which has not been shown as well is model-checking of
temporal properties. This is supported by exploration of the parallel composition of
anti-models – models whose behavior is unwanted – with regular models. If the result
of this exploration is non-empty, it represents the “counter examples”. Anti-models can
be directly written down by a user – in the form of anti-scenarios, for example – or
generated from temporal formulas.

4 Foundations: Action Machines

This section provides to the interested reader a sketch of action machines, the under-
lying semantic and implementation framework of SEVS. For a complete description,
see [6].

Action machines combine concepts from abstract state machines, finite automata,
and labeled transition systems, and as such they constitute a novel hybrid. Their con-
struction is motivated by the practical need to express data as well as control state,
transitions which are labeled with actions, symbolic data and actions, and compositions
of behavior, both in parallel and sequential style. In contrast to other approaches com-
bining state and control based formalisms, action machines support full sharing of data
state in compositions, which is essential for the application in SEVS. The formalization
of action machines uses natural semantics [15] and is very close to the actual imple-
mentation. The implementation is based on the Exploring Runtime, a software-model
checker for .NET [16].

Terms, Constraints, and Actions. An abstract universe of terms over a given signa-
ture, t ∈ T, is assumed. Terms capture values in the domain of the modeling and imple-
mentation languages, constraints, as well as action labels. Terms also contain (logical)
variables, V ⊆ T.

The class of terms which represent constraints is C ⊆ T. The actual structure of
constraints does not matter. However, it is assumed that C contains at least the tautology
true, equivalences between terms (denoted as t1 ≡ t2), and is closed under conjunction
(c1 ∧ c2).

Terms have an interpretation in a mathematical value domain, D, which is described
by a function ξT ∈ (V → D) × T → D. Given a value assignment to variable terms,
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the interpretation function delivers the value of the term in D. For constraint terms, the
truth value in the interpretation image is denoted as trueD.

The further explicit structure of terms does not matter here. However, to aid in-
tuition, and for use in examples, the structure of terms that represent action labels
is described in an instance of the framework where actions stand for method invoca-
tions. m(t1, . . . , tn)/t denotes an action term representing a method invocation, where
m is a symbol identifying the invoked method, ti are input arguments, and t is the re-
turned value. The symbol m behaves for the term language like a free constructor (self-
interpreting function). Henceforth, two action labels are equivalent exactly when the
action symbols are equal and the input and output terms are equivalent.

During the rest of this section an oracle for renaming of variables in terms is used:
rename(t) denotes the term t after renaming all variables to be distinct from other vari-
ables in use.

Environments. An environment, e ∈ E, is a representation of a (partial) global data
state. Let L be a countable set of locations (global state variables). An environment is
syntactically represented by a pair (α, c), where α ∈ L �→ T is a partial function from
locations to terms, and c ∈ C is a constraint. A model of an environment is represented
by a (total) function Γ ∈ L→ D; Γ is valid for e, denoted as Γ |= e, as follows:

Γ |= e ⇔ ∃ v : V→ D | ξT(v, ce) = trueD ∧ ∀ l ∈ dom(αe) · Γ (l) = ξT(v, αe(l))

Note that locations not used by the environment can have arbitrary assignments in the
model.

The interpretation of an environment is the set of models it has, denoted as ξE(e) =
{Γ | Γ |= e}. Environments are partially ordered by subsumption which directly maps
to inclusion of environment model sets: e1 � e2 ⇔ ξE(e1) ⊇ ξE(e2). Subsumption
e1 � e2 indicates that e1 is more general (contains less information) than e2. This can be
because e1 fixes less locations than e2, or because its constraint is weaker. Equivalence
on environments, as derived from the subsumption ordering, is denoted as e1 ≡ e2, and
coincides with model set equality.

With the ordering =�−1, environments build a complete lattice [17] with meet
(least upper bound) e1 � e2 = ξE(e1) ∪ ξE(e2), join (greatest lower bound) e1 � e2 =
ξE(e1) ∩ ξE(e2), and top and a bottom elements �E and ⊥E, where�E = L→D is the
set of all environment interpretations and ⊥E = ∅.

In the construction of action machine transitions the transition label is stored in the
environment instead of representing it explicitly. This greatly simplifies the formaliza-
tion of synchronization in composition, which is performed both on target environments
and labels. Let ν ∈ L denote a distinguished “scratch” location used for storing an ac-
tion label. e[t] denotes the environment where the term t is assigned to the location ν,
and all other locations are mapped to the assignment in e. Henceforth, dom(αe[t]) =
dom(αe) ∪ {ν}, αe[t](ν) = t and ∀ l ∈ dom(αe[t]) · l �= ν ⇒ αe[t](l) = αe(l).

Computable Operations on Environments. Environment operations like joining are not
computable in arbitrary term domains. The range of the computable part depends on
the power of the underlying decision procedures (that is, a constraint solver or theorem
prover), from which the formalization here intends to abstract.
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To this end, is a computable approximation to joining is defined. One writes (e1 �c

e2) �→ e3 to indicate that a join may result in an environment which has models. This
operator is a relation on syntactic environment representations and is related to the
model semantics as follows: (e1�c e2) �→ e3 ⇒ e1�e2 ≡ e3, and (¬ ∃ e3 ·(e1�c e2) �→
e3) ⇒ e1 � e2 ≡ ⊥E. The incompleteness of an underlying decision procedure is
reflected as follows: If an operational join proceeds, the resulting environment might be
infeasible (has no models), but it respects the model semantics. If an operational join
does not proceed, then also the model join is empty.

Similarly, a computable approximation to extending an environment by a constraint
is required. Let c be a constraint. One writes (e1 ∧c c) �→ e2 to denote that e2 is
the extension of e1 by c. The constraint c might share variables with e1. Extension is
explained as follows: let e′2 be constructed as (αe1 , [[ce1 ∧ c]]), then (e1 ∧c c) �→ e2 ⇒
e2 ≡ e′2, and ¬ ((e1 ∧c c) �→ e2)⇒ e′2 ≡ ⊥E.

Machines. Let E denote an environment domain as described above. An action ma-
chine is given as a tuple M = (C, A, I, T). C is a set of so-called control points, and
A ⊆ C is a set of accepting control points. I ⊆ E×E×C is the initialization transition
relation, and T ⊆ E× C × E× C is the (regular) transition relation.

A pair of an environment and a control point is called a (machine) state and denoted
as e·c ∈ E×C. Initialization transitions from I relate an environment with an initial ma-
chine state. One writes e1 −→M e2 · c2 for initialization transitions. Regular transitions
from T lead from states to states; the action label is contained in the special location ν

of the target environment. For readability, one writes e1 · c1
t−→M e2 · c2 for regular

transitions, which is syntactic sugar for (e1, c1, e2[t], c2) ∈ T.
Initialization transitions are allowed to refine the environment, but not to change

it. This is imposed by the following property which holds for every action machine M:
∀(e1 −→M e2 ·c2) ∈ I ·e1 � e2. Such a refinement could be, for example, the allocation
of a new location, or the strengthening of the environment constraint.

Instances of Action Machines. Some instances of action machines are defined to illus-
trate the approach. The guarded-update machine shows the principal way how state-
based notations, like AsmL or C#, are mapped into action machines. The guarded-
update machine, UI,R = (C, A, I, T) is defined by a given initialization transition rela-
tion I and a set of rules R, (t, p, u) ∈ R, where t ∈ T is an action label term, p ∈ C is a
constraint, and u ∈ E→E×C is an update function which maps a given environment to
a new machine state. One has C = {�, ◦} and A = {◦}, that is the machine has exactly
two control states, one of which is accepting and the other is not. The transition relation
of the machine is defined by rule U1 in Fig. 7.

The synchronized parallel composition of two action machines results in a machine
that steps both machines simultaneously. A transition is only possible if the action labels
and the target environments can be joined. Let M1 ‖ M2 = (C, A, I, T) denote the
parallel machine, where C = CM1 × CM2 and A = AM1 × AM2 . Rule P1 describes
initialization transitions, while rule P2 describes regular transitions.

The sequential composition of two machines, M1; M2 = (C, A, I, T), exhibits the
behavior of M1, and when M1 is at an accepting control point, it also exhibits transitions
into M2. One has C = CM1 � CM2 and A = AM2 . The regular transitions of M2 are
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U1
(t0, p0, u) ∈ R (t, p) = rename(t0, p0) (e[t] ∧c p) �→ e′[t′] e′′[t′′] · c′ = u(e′[t′])

e · c
t′′−→UI,R e′′ · c′

P1

e −→M1 e1 · c1 e −→M2 e2 · c2

(e1 �c e2) �→ e′

e −→M1‖M2 e′ · (c1, c2)
P2

e · c1
t1−→M1 e1 · c′

1 e · c2
t2−→M2 e2 · c′

2

(e1[t1] �c e2[t2]) �→ e′[t′]

e · (c1, c2)
t′−→M1‖M2 e′ · (c′

1, c′
2)

S1
e −→M1 e′ · c1

e −→M1; M2 e′ · c1
S2

e −→M1 e1 · c1 c1 ∈ AM1 e1 −→M2 e2 · c2

e −→M1; M2 e2 · c2

S3
e · c

t1−→M1 e′
1 · c′

1

e · c
t1−→M1; M2 e′

1 · c′
1

S4
e · c

t1−→M1 e′
1 · c′

1 c′
1 ∈ AM1 e′

1 −→M2 e′
2 · c′

2

e · c
t1−→M1; M2 e′

2 · c′
2

Fig. 7. Guarded Update, Parallel, and Sequential Composition Rules

contained in T (TM2 ⊆ T). Rule S1 and rule S2 describe initialization transitions of
this machine; in the case that an initial control point of M1 is accepting the machine
offers also the initial control points of M2. Rule S3 and S4 describe regular transitions;
similar as with initialization, if an accepting control point is reached, the transition is
duplicated to also reach an initial control point of the second machine. Note that in [6]
a slightly more complex definition of sequential composition is provided which avoids
duplication of transitions. The definition given here is sufficient for illustration but less
practical.

The action machine framework provides many more composition operators, among
the most interesting to mention are alternating simulation, hiding, and hierarchical
composition. In order to formalize alternating simulation – the used testing confor-
mance notion – in the presence of an incomplete decision procedure, [6] distinguishes
between may and must transitions of action machines. May-transitions have been used
in this paper. They represent an over-approximation and are thus safe (no false posi-
tives) when providing inputs to a system-under-test. However, for checking outputs of
a system, must-transitions are required. The details can be found in [6].

Implementation. The implementation of action machines is based on the Exploring
Runtime (XRT) [16], a software model-checker and virtual execution framework for
.NET which is based on byte code interpretation. XRT provides symbolic state repre-
sentation and exploration of full .NET code. Action machines are realized as a layer on
top of XRT. This layer takes environments as provided by XRT’s data state model and
adds the constructs of action machines as a set of interfaces. Transition relations are
described by lazy enumerations delivered by those interfaces. The interface abstraction
is very close to the semantic model.
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The action machine coordination language, Cord [7], is a declarative intermediate
notation which realizes a textual frontend to action machines. Apart from providing ac-
tion patterns, as used before in this paper, and composition between machines, it allows
the definition of configurations for model-based testing and model-checking problems,
like parameter generators, exploration bounds, traversals, and so on.

5 Conclusion

Model-based testing promises a significant contribution in raising software testing to
a systematic engineering discipline, and providing an entry door to model-based de-
velopment. Its application for internal development at Microsoft for half a decade is
considered a success, though a break-through of the technology is not in sight. This pa-
per attempted to identify some of the obstacles for wider adoption of MBT at Microsoft,
which are typical at least for software development at enterprise level.

The conclusion drawn is that in order to address different concerns both inside the
testing organizations as well as in the broader scope of model-based development, a
model-based testing tool and approach should be multi-paradigmatic, supporting pro-
grammatic and diagrammatic notations, as well as state-based and scenario-based styles.
Programmatic notations with decent authoring support should be provided for test engi-
neers, best using mainstream programming languages, whereas diagrammatic, scenario-
based notations as well as executable specification languages should be provided for test
architects and stakeholders outside of the test organizations. Moreover, model-checking
should be seen as an integral part of model-based testing tools. The paper sketched a
new tool which is currently in development, “Spec Explorer for Visual Studio”, which
is designed from these goals, and proves that they are feasible. The semantic founda-
tion of this tool, action machines, has been described as well. Whether the approach of
this tool works in practice has to be validated once it has been rolled out to the internal
Microsoft user community.

The general message of the paper does not come as a surprise: Multi-paradigmatic
approaches are ubiquitous in model-based development, as for example reflected in
UML. However, model-based testing requires that there are full programmatic nota-
tions, and not only diagrammatic ones, and puts strong demands on the semantic and
tool-technical integration of the various behavioral notations, requiring them to be com-
posable for a common testing goal. This demand is indeed also a long term goal for
model-based development in general – yet the model-based testing application pro-
vides very concrete requirements, the implementation of which promises immediate
payoff.
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Abstract. A trace monitor observes the sequence of events in a system, and takes
appropriate action when a given pattern occurs in that sequence. Aspect-oriented
programming provides a convenient framework for writing such trace monitors.

We provide a brief introduction to aspect-oriented programming in AspectJ.
AspectJ only provides support for triggering extra code with single events, and we
present a new language feature (named tracematches) that allows one to directly
express patterns that range over the whole current trace. Implementing this feature
efficiently is challenging, and we report on our work towards that goal.

Another drawback of AspectJ is the highly syntactic nature of the event pat-
terns, often requiring the programmer to list all methods that have a certain prop-
erty, rather than specifying that property itself. We argue that Datalog provides
an appropriate notation for describing such properties. Furthermore, all of the
existing patterns in AspectJ can be reduced to Datalog via simple rewrite rules.

This research is carried out with abc, an extensible optimising compiler for
AspectJ, which is freely available for download.

1 Introduction

When checking temporal properties at runtime, it is convenient to use a special tool for
instrumentation. Ideally we would like to give a clean, declarative specification of the
property to be checked, and then leave it to a tool to insert the appropriate instrumen-
tation, possibly applying optimisations to reduce the overheads inherent in checking
properties at runtime.

Aspect-oriented programming shares many of these goals, and in fact its stated am-
bitions are even grander, namely to improve software modularity in general. Briefly, an
aspect observes all events (method calls, field sets/gets, exceptions, . . . ) that occur in
a system, and when certain events of interest happen, the aspect runs some extra code
of its own. The events of interest are specified by the programmer via special patterns
named pointcuts; the intercepted events are named joinpoints.

In this paper, we aim to assess the suitability of AspectJ (the most popular aspect-
oriented programming language) for checking temporal properties. We do this via a
familiar example, namely that of checking the safe use of enumerations (no updates to
the underlying collection may happen while an enumeration is in progress).

In AspectJ one can specify only patterns that range over individual events, and we
present a language extension where patterns can range over the whole computation
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history instead. It is quite hard to implement such a feature efficiently, and we report on
the success we have had in approaching the efficiency of hand-coded solutions.

Another difficulty with AspectJ is that the patterns are very syntactic. It is common,
for instance, that one needs to intercept calls to ‘any methods of a class C that may
change the state of C’. In AspectJ the solution is to list all such methods by name. We
propose to use Datalog instead to write queries that directly capture the property in
question. Datalog is a little more verbose than the pattern language of AspectJ, but we
show AspectJ patterns are merely syntactic sugar: they can all be translated into Datalog
via a set of simple rewrite rules.

2 Aspect-Oriented Programming

In this section, we present aspect-oriented programming using fail-safe Enumerations
as a motivating example. In subsequent sections, we will show how the aspect-oriented
implementation of this example can be further improved using tracematches and Data-
log pointcuts.

The Enumeration interface is an older version of the more well-known Iterator type:
in particular it provides a nextElement method, and also hasMoreElements. An impor-
tant difference is that implementations of Iterator are expected to be fail-fast: if the
underlying collection is modified while iteration is in progress (through any method
other than Iterator.remove()) an exception should be thrown. There is no such expecta-
tion for implementations of Enumeration.

To illustrate, suppose we have a vector v that is accessed by two concurrent threads.
Thread 1 creates an enumeration (say e) over v, and does some enumeration steps. In
the meantime, thread 2 modifies v by adding an element. When thread 1 does another
enumeration step, its result is undefined. This situation is illustrated in Figure 1.

THREAD 1: THREAD 2:

. . .
Enumeration e = new MyEnum(v);
. . .
Elt a = (Elt) e.nextElement(); . . .
. . . v.add(b)
a = (Elt) e.nextElement(); . . .

Fig. 1. Unsafe use of Enumeration

Of course there is an easy way to make implementations of Enumeration safe. First,
add a stamp field of type long to both the Vector class, and to any class implementing
Enumeration. One can think of this stamp as a version number: we use it to check
whether the current version of a vector is the same as when the enumeration was created.
Furthermore, every Enumeration should have a source field, which records the data
source (a Vector) being enumerated.

Whenever a new enumeration e over a vector v is created, we make the following
assignments:
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e .stamp = v.stamp;
e . source = v;

The version of a vector v changes upon each modification, so whenever a change is
made to v, we execute

v.stamp++;

Finally, whenever we do an enumeration step, it is checked that the version numbers
are still in synch:

if (e . source != null && e.stamp != e . source .stamp)
throw new ConcurrentModificationException ();

We must make the check that the source is not null in case the enumeration e is in fact
not over a vector, but instead over some other collection type.

2.1 Aspects

Aspect-oriented programming provides us with the means to implement the check out-
lined above in a nice, modular fashion. Intuitively, an aspect can inject new members
into existing classes (the new stamp and source fields above). An aspect can also inter-
cept events like the creation of an enumeration, and execute some extra code.

In AspectJ, aspects are implemented via a weaver that takes the original system
and the aspect, and it instruments the original system as described in the aspect. As a
consequence, aspects achieve the goal set out at the beginning of this paper: the instru-
mentation code is neatly separated from the system being observed.

An outline of the aspect for the example of fail-fast enumeration is shown in Figure
2. Note how we introduce the stamp field on Vector by the declaration on Line 3. It is
declared private — that means it is visible only from the aspect that introduced it.

Similarly, we introduce the stamp and source fields on the Enumeration interface,
along with appropriate accessor methods (Lines 6–12). This has the effect of introduc-
ing these new members on every implementation of Enumeration as well.

This mechanism of introducing new members onto existing classes is an admittedly
rather crude form of open classes; we shall briefly mention some more disciplined al-
ternatives below.

Now our task is to program the requisite updates to these newly introduced fields. In
AspectJ, one does this through so-called advice declarations. A piece of advice consists
of a pattern (the pointcut) describing the event we wish to intercept, some extra code to
execute, and an instruction when to execute that code (before or after the event).

Figure 3 shows three pieces of advice. The first piece, on Lines 1-6, intercepts all
constructor calls on implementations of the enumeration interface, where the construc-
tor call has the data source ds of type Vector as its actual argument. We are assuming,
therefore, that all enumerations over vectors are created via such constructor calls. As
indicated earlier, here we have to set the version number (stamp) of the enumeration, as
well as its source field.

The next piece of advice in Figure 3, on Lines 8-12, intercepts updates to the Vec-
tor class, and whenever they occur, the version number is incremented. Here we have
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1 public aspect SafeEnum {
2
3 private long Vector .stamp = 0;
4
5 // introduce new members on every implementation of Enumeration
6 private long Enumeration.stamp;
7 private void Enumeration.setStamp(long n) { stamp = n; }
8 private long Enumeration.getStamp() { return stamp; }
9

10 private Vector Enumeration.source ;
11 private void Enumeration.setSource (Vector v) { vector = v;}
12 private Vector Enumeration.getSource () {return vector ;}
13
14 // ... intercept creation , update and nextElement ...
15 }

Fig. 2. Making Enumeration safe

employed a named pointcut vector update to describe all calls to methods that may
change the state of Vector, and we shall look at its definition shortly.

The final piece of advice in Figure 3 occurs on Lines 14-19. This intercepts calls to
nextElement, and it checks whether the version number on the enumeration agrees with
that on the vector. If they do not coincide, an exception is thrown.

1 synchronized after (Vector ds) returning (Enumeration e) :
2 call (Enumeration+.new (..)) && args(ds)
3 {
4 e.setStamp(ds .stamp);
5 e . setSource (ds );
6 }
7
8 synchronized after (Vector ds) :
9 vector update () && target (ds)

10 {
11 ds .stamp++;
12 }
13
14 synchronized before(Enumeration e) :
15 call (Object Enumeration.nextElement ()) && target(e)
16 {
17 if (e . getSource () != null && e.getStamp() != e. getSource (). stamp)
18 throw new ConcurrentModificationException ();
19 }

Fig. 3. Advice for safe enumeration

The final piece of code we must write to complete this aspect is the pointcut for
intercepting calls that may change the state of the Vector class. The received way of
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doing that is to carefully examine each method in Vector, and list it in the pointcut. The
result is shown in Figure 4. Note that to reduce the number of disjucts, we have used
wildcards in the name patterns.

pointcut vector update () :
call (∗ Vector .add∗ (..)) ||
call (∗ Vector . clear ()) ||
call (∗ Vector . insertElementAt (..)) ||
call (∗ Vector . remove∗ (..)) ||
call (∗ Vector . retainAll (..)) ||
call (∗ Vector . set∗ (..));

Fig. 4. Pointcut for updates on Vector

To use the aspect we have just written, one just includes it on the command line of
the compiler, and the result is an instrumented version of the original program, now
with the ability to catch unsafe uses of enumerations over vectors, whenever they occur.

2.2 Pros and Cons of Aspects

The advantages of using aspects are apparent. It allows easy, flexible instrumentation,
while retaining the advantages (in particular good compiler error messages) of a high-
level programming language. Experiments show that for the above example, the over-
heads introduced by aspects (as compared to making the changes by hand in the original
program) are negligible. Finally, AspectJ is a fairly mature programming language, with
good tool support, and numerous textbooks for newcomers to get started.

Not all is rosy, however. Our purpose is to check a property of traces – that no updates
occur during enumeration – and while that property is encoded in the above aspect, it
would be much preferable to state the property directly, in an appropriate specification
formalism. The compiler should then generate the checking code from the specification.
Also the pointcut in Figure 4 leaves much to be desired: for a library class like Vector
it might be acceptable, but what about a class that might change over time? Whenever
a new method is introduced, we have to remember that the pointcut may need to be
altered as well. Both of these problems (direct specification of trace properties and
semantic pointcuts) will be addressed below.

There are some further disadvantages of aspects that we shall not discuss further, but
it is still worthwhile to mention them here. For now, the semantics of aspects remain an
area of active research. In particular, a crisp definition of the AspectJ language itself is
still lacking. More generally, aspects introduce many problems with modular reasoning
about programs, because they can interfere with existing code in unpredictable ways.

Finally, above we have made light of the problem of modifying library classes like
Vector and Enumeration. Without support in the JVM, this is hard to achieve, and if we
wish to use a compile-time weaver some trickery is needed to replace every Vector in an
application by our own subclass MyVector. These changes, while somewhat akward, can
be concisely expressed in AspectJ as well; a complete version of the above aspect, with
these changes incorporated, is available on-line as part of a more general benchmark
suite [2].
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2.3 Further Reading

The AspectJ language was introduced by Kiczales et al. in [55]. It is now widely used
in practice, and there is a wealth of textbooks available, for instance [19, 27, 41, 56,
57, 63]. We found especially Laddad’s book [57] very helpful, because it discusses a
wide variety of applications. It also identifies some common design patterns in aspect-
oriented programming.

Method interception as found in aspect-oriented programming has its origins in pre-
vious work on meta-programming with objects, in particular [14, 54]. Of course there
have been earlier systems that provided similar forms of method interception, for in-
stance the POP-2 language [23] or even Cobol [59]. It was only with the advent of
aspects, however, that this language feature was recognised as a structuring mechanism
in its own right: before that, it was mostly used for debugging purposes.

The static features of aspects, namely the ability to inject new class members into
existing classes also has a long history. Harrison and Ossher coined the term subject-
oriented programming [48], but arguably their composition mechanisms are much more
powerful than those offered by AspectJ, as their open classes can be symmetrically
composed. Recent years have seen a lot of research on giving open classes a more
disciplined basis, for instance [26]. Nested inheritance [64] and virtual classes [37, 65]
have similar goals, while satisfying stronger formal properties.

While AspectJ is presently the most popular aspect-oriented programming language,
it is certainly not the only language available. CaesarJ adds dynamic deployment of
aspects, creating new instances of aspect classes and attaching them to computations at
runtime; it also has a notion of virtual classes instead of AspectJ’s member injections
[7]. A long list of current aspect-oriented programming systems can be found at [6].

Following closely on the growing popularity of aspect-oriented programming, re-
searchers have started to address the problem of defining its semantics. An early attempt
was a definitional interpreter by Wand et al. [76]; this offered little help, however, in
reasoning about aspect code. More refined models have since been proposed by Walker
et al. [74], Bruns et al. [21], and Aldrich [4]. Aldrich’s model is especially attractive
because it gives a basis for modular reasoning about aspects. We have ourselves adapted
his language design to a full extension of the AspectJ language [66].

Our own interest in AspectJ started with a study of the runtime overheads [36]. At
the time, it was believed that such overheads are negligible, but it turns out that certain
features (in particular the cflow pointcut and around advice) can lead to substantial
costs at runtime. We therefore decided to implement our own extensible, optimising
compiler, named the AspectBench Compiler, or abc for short [8]. Using its analysis
infrastructure, we were able to eliminate most of the overheads we identified earlier [9]
(one of the optimisations had been proposed earlier in [70], for a small toy language).
abc is however not only intended for optimisation; it is also designed as a workbench for
experiments in language design. The two major case studies we have undertaken so far
are tracematches [5] (discussed in the next section), and open modules [66] (mentioned
above). A detailed overview of all the work on abc to date, as well as a comparison
with the other AspectJ compiler ajc, can be found in [10]. abc itself can be downloaded
from [1].
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3 Tracematches

Tracematches are a new feature that we have introduced into AspectJ. As mentioned
earlier, normal advice in AspectJ is triggered by single events. Instead, in tracematches
one can specify a regular pattern that is matched against the whole computation history
so far.

We need to be a bit more precise about the nature of events at this point. In AspectJ,
pointcuts intercept composite events like method calls, which have a duration. Instead,
when we talk about a trace, we mean the sequence of before/after actions associated
with such composite events: these are atomic.

To illustrate, an example tracematch is shown in Figure 5. It is intended to introduce
an autosave feature into an existing editor system. A tracematch consists of three parts:
the declaration of the symbols (events) of interest (Lines 3 and 4), a regular pattern (Line
6) and a piece of code (Line 8). Here there are two symbols: the end of a save operation,
and the end of the execution of a command. The pattern specifies five consecutive oc-
currences of the action symbol. Because we have declared an interest in saves as well,
that means the pattern only matches if five actions occur, with no intervening saves.
When that happens, the extra code is run, and here that is just the autosave method.

1 tracematch() {
2
3 sym save after : call ( ∗ Application . save () ) || call ( ∗ Application . autosave () );
4 sym action after : call ( ∗ Command.execute() );
5
6 action [5]
7
8 { Application . autosave (); }
9 }

Fig. 5. An example tracematch

This is an important point: the symbol declarations determine what trace we match
against. The original trace is filtered, leaving out all events that do not correspond to a
declared symbol. The pattern is then matched against all suffixes of the filtered trace,
and when it matches, the code in the body of the tracematch is executed. Note that we
never filter out the very last event that happened: if we did, one could run the code
some time after an actual match occurred, with some irrelevant events in between. This
process of filtering and matching is illustrated in Figure 6.

The above tracematch is atypical because it does not bind any variables. Local trace-
match variables may be declared in the header, and are bound by the matching process.
In Figure 7, we have displayed a tracematch that is equivalent to the aspect for safe enu-
meration discussed earlier. This tracematch does bind two variables, namely the vector
ds and the enumeration e (Line 1). Here there are three symbols of interest (Lines 3-5):
creating an enumeration, doing a next step, and updating the source. We wish to catch
unsafe uses of enumerations, and this is expressed by the pattern (Line 7). First we see
an enumeration being created, then zero or more ‘next’ steps, one or more updates and
finally an erroneous attempt to continue the enumeration.
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Fig. 6. Filtering of traces (no variables)

1 tracematch(Vector ds , Enumeration e) {
2
3 sym create enum after returning(e) : call (Enumeration+.new (..)) && args(ds);
4 sym call next before : call (Object Enumeration.nextElement ()) && target(e);
5 sym update source after : vector update () && target(ds);
6
7 create enum call next∗ update source+ call next
8
9 { throw new ConcurrentModificationException (); }

10
11 }

Fig. 7. Tracematch for safe enumeration

It might appear that there is no need to mention the intervening enumeration steps
via call next *. However, because of our definition of matching via filtering, that would
be wrong. The pattern is matched against all suffixes of the filtered trace, and not to
arbitrary subsequences.

The precise meaning of filtering in the presence of local tracematch variables is de-
fined in the obvious manner: instantiate the free variables in all possible ways, and then
match as we did before. This process is illustrated in Figure 8. As the figure suggests, if
a match occurs with multiple variable bindings, the extra code is run for each of those
bindings separately.

While it is nice to understand the semantics of tracematches in terms of all possible
instantiations of its free variables, that does not provide a basis for implementation. We
therefore also require an operational semantics. It is fairly obvious that this semantics
will keep a finite state machine for the pattern. Each state of the machine is labelled
with a constraint that describes the variable bindings made to arrive at that state. To
wit, these constraints are equalities (variable = object), inequalities (variable �= object),
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Fig. 8. Filtering of traces (with variables)

or combinations with conjunction and disjunction of these. A detailed definition of the
operational semantics can be found in our original paper on tracematches [5].

Unfortunately a direct implementation of the operational semantics does not yield a
practical system. The main problem is that of memory leaks, and there are two possible
sources of these. First, we may hang on too long to existing objects, merely because
they were bound to a tracematch variable. Second, partial matches may stay around
forever, despite the fact that they can never be completed. In fact, we keep our con-
straints in disjunctive normal form, so ‘partial matches’ correspond to disjuncts in our
representation of constraints.

To solve the problem of memory leaks, we have devised a static analysis of the
tracematch, which classifies each variable v on each state s in one of three categories:

collectable when all paths in the automaton from s to all final states contain a transition
that binds v. In that case we can use weak references for bindings of v. Further-
more, when the garbage collector nullifies that weak reference, we can discard all
disjuncts that contain it.

weak not collectable, but the advice body does not mention v. We can still use weak
references for bindings of v, but it would be incorrect to discard a disjunct upon
nullification.

strong not collectable and not weak. A normal strong reference must be used to store
bindings of v.

Note that this is a purely local analysis on the tracematch, involving no analysis of the
instrumented system, so that it does not significantly affect compile times.

The technique appears to be highly effective in practice. As an example, we have
applied this instrumentation to JHotDraw, the popular open source drawing program.
It has a feature for animating a drawing; that in fact introduces an unsafe use of enu-
merations, because one can edit the drawing while the animation is in progress. The
results of measuring memory usage over time are shown in Figure 9. We compared a
number of different systems. First, we evaluated our tracematch implementation with
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leak detection and prevention disabled, using strong references for everything. This line
(TMNoLeak) stops after a few steps because execution becomes infeasibly slow. PQL
is a runtime trace property checking system created by Monica Lam and her students
at Stanford [61]. We tried several version of this benchmark with PQL (PQL and PQL-
Neg), and both show linear memory growth over time. Next the figure shows a naive
aspect (AjNaive), that instead of using new fields associates time stamps via an iden-
tity hash map. The figure also shows a smarter aspect (AjNormal), that uses a weak
identity hash map for the same purpose, and finally our optimised implementation of
tracematches. The aspect shown at the beginning of this paper also has constant space
usage. More details of these experiments can be found in a technical report [11].

Fig. 9. Memory usage for SAFEENUM (moving average to show trends)

Timewise our implementation is still quite a lot behind the hand-coded aspect at the
beginning of this paper. The time taken for 100,000 animation steps is shown in Figure
10. TM indicates our optimised implementation, whereas AjGold is the ‘gold standard’
aspect shown earlier. We believe that a static analysis of the instrumented program can
bring one closer to the gold standard, but for now that remains future work. While this
result may appear disappointing, we should mention the instrumented animation is still
quite usable on a normal PC.

Figure 11 shows some further substantial applications of tracematches. It would take
us too far afield to discuss each of these in detail, but a number of interesting trends
can be identified. The first column shows the name of the tracematch being applied,
the second the base program being instrumented, and the third column displays the
size of that base program. Note that we have used some non-trivial applications. The
column marked ‘none’ shows the execution time, in seconds, of the non-instrumented
application. The ‘AspectJ’ column displays the execution time of a hand-coded version
in AspectJ for each benchmark. The final three columns measure our own implemen-
tation. ‘leak’ refers to switching off the above analysis, whereas ‘noidx’ means that
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Fig. 10. Runtimes for SAFEENUM

we do not use a special indexing data structure to quickly identify the relevant partial
matches when a new variable binding occurs. The final column is our optimised im-
plementation with both leak prevention and indexing switched on. Clearly indexing is
just as important as leak prevention, as indicated by the highlighted numbers in the top
three rows. The interested reader is referred to [11] for full details of these and other
experiments. The full experimental setup is available on-line for others to try with their
own monitoring systems [2].

Fig. 11. More tracematch benchmarks

3.1 Summary of Tracematches

The implementation of tracematches is surprisingly tricky to get right. Even ignoring
the issue of space leaks, we found several bugs in our first prototype, which only came
to light when we tried to prove the equivalence of the declarative and operational seman-
tics. As shown by the above experiments, the implementation has now been thoroughly
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tested, and it is available in the standard distribution of the AspectBench Compiler (abc)
for AspectJ.

The key to our efficient implementation consists of two parts: the prevention of mem-
ory leaks, and an efficient data structure for retrieving partial matches. Both of these
only rely on local analysis of the tracematch itself, not of the instrumented program.
We are currently investigating analyses of the instrumented program that may help to
approach the efficiency of hand-coded solutions.

3.2 Further Reading

The idea of generating trace monitors from specifications is an old one, and there exists
a very large amount of previous research on this topic, e.g. [5, 12, 16, 17, 25, 28, 31–
35, 38, 40, 50, 61, 71, 72, 75]. These studies range from applications in medical image
generation through business rules to theoretical investigations of the underlying calcu-
lus. The way the patterns are specified varies, and temporal logic, regular expressions
and context-free languages all have been considered.

One theme shines through all of these previous works: trace monitors are an attrac-
tive, useful notion, worthy of integration into a mainstream programming language.
This has not happened, however, because it turns out to be very difficult to generate
efficient code when the trace monitor is phrased as a declarative specification.

Our own contributions have been to provide a solid semantic basis for trace moni-
tors [5] (in particular a proof of equivalence between the declarative and operational se-
mantics), and to devise optimisations that make trace monitors feasible in practice [11].

4 Datalog Pointcuts

We now turn to the way individual events are intercepted in AspectJ. Recall the defini-
tion of the vector update pointcut in Figure 4: it was just a list of the relevant methods.
It would be much nicer to express the desired semantic property directly, and leave it to
the weaver to identify individual methods that satisfy the property.

So in this example, what is the property exactly? We are interested in methods that
may change the behaviour of the nextElement method on the Enumeration interface.
Therefore, we seek to identify those methods of Vector that write to a memory loca-
tion that may be read by an implementation of nextElement. How do we express that
intuition in a formal notation?

The key idea is that the program could be regarded as a relational database. Pointcuts
are then just queries over that database, which are used to identify shadows. A shadow
is a piece of code which at run-time gives rise to an event (a joinpoint) that can be
intercepted by AspectJ.

Examples of the relations that make up a program are shown in Figure 12. The first
three refer to declarations; the implements relation is not transitive. The shadow rela-
tions identify calls, method bodies, and field gets. Of course this list is not complete:
there are shadows for all kinds of events that can be intercepted in AspectJ. Finally, there
is the lexical containment relation contains. Again this is not assumed to be transitive.

We now have to decide on the query language for identifying shadows where the as-
pect weaver will insert some extra code. Many authors have suggested the use of logic
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typeDecl (RefType T, String N, Boolean IsIntf, Package P )
T has name N in package P, IsIntf indicates T interface or not

implements (Class C, Interface I)
C implements interface I

methodDecl (Method M, String N, RefType C, Type T)
M has name N, is declared in C, and has return type T

callShadow (Shadow S, Method M, RefType T)
S is a call to M with static receiver type T

executionShadow (Shadow S, Method M)
S is the body of M

getShadow (Shadow S, Field F, RefType T)
S is get of F with static receiver type T

contains (Element P, Element C)
C is lexically contained in P

Fig. 12. Program relations

programming for this purpose, in particular Prolog. There are numerous problems with
that choice, however. First, it is notoriously hard to predict whether a Prolog query ter-
minates. In the present setting, non-terminating queries yield uncompilable programs,
which is undesirable. Second, to achieve acceptable efficiency, Prolog programs must
be annotated with parameter modes, with the cut operation and with tabling instruc-
tions. Again, for this application that would not be acceptable. Yet, the arguments for
using logic programming, in particular recursive queries, are quite compelling.

The appropriate choice is therefore ‘safe, stratified Datalog’ [39]. Datalog is similar
to Prolog, but it does not allow the use of data structures; consequently its implemen-
tation is far simpler. The restriction to safe, stratified Datalog programs guarantees that
all queries terminate. Yet, this restricted query language is powerful enough to express
the properties we desire.

This is illustrated in Figure 13, which identifies the update methods M of the Vector
class. It starts by finding the Vector class, and some implementation I of Enumeration;
I contains a method N named nextElement. We check whether there exists a field F that
may be read by N, while it may be written by M.

It remains to show how predicates like mayRead(N,F) can be defined. The key is that
N does not need to directly read F; we must also cater for the situation where N calls
another method, which in turn reads F. Similarly, the read shadow may not be directly
lexically contained in the body of N, but perhaps in a method of a local class defined
inside N. The relevant Datalog query is shown in Figure 14: M may transitively contain
a shadow G which is a read of the field F.

4.1 An Alternative Surface Syntax

Datalog is powerful, but for really simple pointcuts (like identifying calls to a method
with a specific signature) it is verbose and awkward. By contrast, the AspectJ pointcut
language shines in such examples, not least because any valid method signature is also
a valid AspectJ method pattern. This is one of the reasons newcomers find AspectJ easy
to pick up: if you know Java, you know how to express simple pointcuts. Can we give
Datalog a similarly attractive syntax?
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vector update method(Method M) :-
// M is a method in a class V named Vector
typeDecl(V,’Vector’, , ),
methodDecl(M, ,V, , ),

// N is a method named nextElement in an
// implementation I of the Enumeration interface
typeDecl(E,’Enumeration’, , ),
implements(I,E),
methodDecl(N,’nextElement’,I, ),

// N may read field F (possibly via a chain of calls)
mayRead(N,F),

// M may write field F
mayWrite(M,F).

Fig. 13. Datalog for update methods

mayRead(Method M,Field F) :-
callContains(M,G),
getShadow(F,G).

callContains(Method M, Shadow G) :-
mayCall*(M,M’), // static call chain from M to M’
executionShadow(E,M’), // body of M’ is E
contains+(E,G), // it contains a shadow G

mayCall*(Method X, Method Z) :- X=Z, method(X).
mayCall*(Method X, Method Z) :- mayCall(X,Y),mayCall*(Y,Z).

contains+(Element X, Element Z) :- contains(X,Z).
contains+(Element X, Element Z) :- contains(X,Y),contains+(Y,Z).

Fig. 14. Definition of mayRead

One might also be concerned about the formal expressive power of Datalog. When it
comes to the finer points of AspectJ pointcuts, can they really be expressed as Datalog
queries?

The answer to both of these questions is ‘yes’. We have constructed a translation
from AspectJ pointcuts to Datalog, which consists solely of simple rewrite rules. It is
our intention to open up that implementation to advanced users, so they can define new
query notations, along with rules for reducing them to Datalog.

Here is an example rule, used in the translation of call pointcuts.

aj2dl(call(methconstrpat),C,S)
→
∃ X, R : (methconstrpat2dl(methconstrpat,C,R,X), callShadow(S,X,R))
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The constructor aj2dl(PC,C,S) is used to drive the translation: it takes a pointcut PC,
the current aspect class C, and a shadow S. This will be reduced to a Datalog query con-
taining just C and S as free variables. Our implementation uses Stratego, which allows
one to record the rewrite rules in concrete syntax, almost exactly as shown above [73].

4.2 Further Reading

Various deficiencies of the AspectJ pointcut language are well-documented in the liter-
ature and on mailing lists [13, 18, 22, 49]. Such dissatisfaction has led to several propos-
als for adopting Prolog as an alternative pointcut language [30, 43, 45]. Indeed, exam-
ples of systems that have built on those ideas are Alpha, Aspicere, Carma, Compose*,
LogicAJ, Sally, and Soul [3, 15, 20, 42, 44, 47, 69]. However, the complex operational
behaviour of Prolog renders it, in our view, too strong for the purpose of a pointcut lan-
guage. We believe that this is the principal reason that none of these research prototypes
has found widespread usage.

The program understanding community has long advocated a view of software sys-
tems as a relational database [24, 60]. They also considered new query languages, in-
cluding Prolog, with [53] being an early example. It was soon realised that at a min-
imum, the query language must be able to express transitive closure [67]. Jarzabek
proposed a language named PQL [52] that added such operators to a variant of SQL
(not to be confused with PQL of Lam et al., discussed below). The SQL syntax makes
it rather awkward to express graph traversals concisely, however. A modern system that
uses a tabled variant of Prolog is JQuery [51, 62].

The program analysis community has also frequently revisited the use of logic pro-
gramming for specifying analyses. An early example making the connection is a paper
by Reps [68]. More recently [29] provided an overview of the advantages of using logic
programming to specify complex dataflow analyses. Very recently Martin et al. pro-
posed another PQL (not to be confused with Jarzabek’s language discussed above), to
find bugs in compiled programs [58, 61]. Interestingly, the underlying machinery is that
of Datalog, but with a completely different implementation, using BDDs to represent
solution sets [77].

All these developments led us to the conclusion that Datalog is an appropriate query
language for applications in program understanding, for pointcuts in aspect-oriented
programming, and for program analysis. We have implemented the CodeQuest system
as a first prototype, and are now working towards its integration into our AspectJ com-
piler abc [46].

5 Conclusion

We have shown how aspects can be used for checking temporal properties at runtime.
The design and implementation of new features for such property checking is an in-
teresting new field, requiring the joint efforts of experts in specification formalisms, in
aspect-orientation, in program analysis and in compiler construction. We believe we
have only scratched the surface, and hopefully this paper will encourage others to join
us in our exploration. It would be especially interesting to consider other logics for
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expressing trace properties. One of us (Bodden) has already implemented a similar sys-
tem [17, 71] based on LTL in lieu of regular patterns, also on top of abc.

It is important that a system for runtime instrumentation allows the programmer to
make a judicious choice between static properties and dynamic ones. Our use of Datalog
to describe compile-time analysis, for the purpose of identifying instrumentation points,
is a step in that direction.

It is unlikely that a perfect specification notation can be found to express all desirable
properties. It seems that an extensible syntax, where programmers can introduce new
notations that are reduced to existing notions, provides a good compromise.

Acknowledgments. We would like to thank Chris Allan, Aske Simon Christensen,
Sascha Kuzins and Jennifer Lhoták for the collaboration that led up to this work. This
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de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient Trace Monitoring. Tech-
nical Report abc-2006-1, AspectBench Compiler Project, 2006. http://abc.comlab.
ox.ac.uk/techreports#abc-2006-1.

12. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In Fifth International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 04), volume 2937 of Lecture Notes in Computer Science, pages 44–
57. Springer, 2003.

13. Ohad Barzilay, Yishai A. Feldman, Shmuel Tyszberowicz, and Amiram Yehudai. Call and
execution semantics in AspectJ. In Foundations Of Aspect Languages (FOAL), pages 19–24,
2004. Technical report TR #04-04, Department of Computer Science, Iowa State University.

14. Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and Frank
Zdybel. Commonloops: merging common lisp and object-oriented programming. In Nor-
man K. Meyrowitz, editor, ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), volume 791, pages 152–184. ACM Press, 1986.

15. Christoph Bockisch. Alpha. http://www.st.informatik.tu-darmstadt.de/
static/pages/projects/alpha/index.html, 2005.

16. Christoph Bockisch, Mira Mezini, and Klaus Ostermann. Quantifying over dynamic proper-
ties of program execution. In 2nd Dynamic Aspects Workshop (DAW05), Technical Report
05.01, pages 71–75. Research Institute for Advanced Computer Science, 2005.

17. Eric Bodden. J-LO - A tool for runtime-checking temporal assertions. Master’s thesis,
RWTH Aachen University, 2005.

18. Ron Bodkin. Pointcuts need a long form. http://dev.eclipse.org/mhonarc/
lists/aspectj-users/msg05971.html, 2006.
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33. Rémi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In Aspect-oriented
Software Development, pages 141–150. Addison-Wesley, 2004.
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Abstract. The starting point for Model-Based Testing is an implemen-
tation relation that formally defines when a formal model represent-
ing the System Under Test conforms to a formal model constituting its
specification. An implementation relation for the formalism of Labelled
Transition Systems is ioco. For ioco several test generation algorithms
and test tools have been built. In this paper we define a framework for
the symbolic implementation relation sioco which lifts ioco to Symbolic
Transition Systems. These are transition systems with an explicit notion
of data and data-dependent control flow. The introduction of symbolism
avoids the state-space explosion during test generation, and it preserves
the information present in data definitions and constraints for use during
the test selection process. We show the soundness and completeness of
the symbolic notions w.r.t. their underlying Labelled Transition Systems’
counterparts.

1 Introduction

Model-Based Testing (MBT) is a form of black-box testing where a System Under
Test (SUT) is tested for conformance against a formally described specification,
or model, of the SUT. Test cases can be automatically generated from this model,
and test results can be automatically evaluated.

The starting point for MBT is a precise definition of what it means that an
SUT conforms to its specification. Such a definition is expressed by an imple-
mentation relation: a formal relation between the specification formalism and
the implementation formalism. Although such a relation is formally expressed,
it cannot be used to directly verify the relation between an SUT and its speci-
fication. Since an SUT is a physical system that we observe as a black-box, we
can only perform tests on the black-box to check the relation to its specification.
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Yet, it is assumed that the SUT exhibits a behavior which could be expressed in
the implementation formalism, even if we do not know this behavior in detail.
This assumption is commonly referred to as the test hypothesis. By so doing we
can consider SUTs as formal systems, and we can formally reason about the
soundness and completeness of the testing process.

Many different implementation relations have been proposed; see [3] for an
overview of the state-of-the-art. A prominent example of an implementation rela-
tion is the implementation relation ioco [16], which is based on the formalism of
Labelled Transition Systems (LTSs). Several testing tools implement it, e.g. TorX
[1] and TGV [10]. The LTS formalism is a powerful semantic model to describe
systems. However, it has some drawbacks which make its direct use for MBT
cumbersome. In particular, the use of data values and variables is not possible.
None the less all state-of-the-art modeling formalisms allow for such a symbolic
treatment of data and often have underlying LTS-semantics, e.g. Statecharts [9]
or the data-enriched process algebra LOTOS [2]. To use such a model for serving
as the input to an LTS-based testing tool all data must be encoded in action
names representing concrete values; there is no symbolic treatment of data. This
mapping of data values leads to the infamous state space explosion problem,
which limits the usability of test generation tools. A second disadvantage of this
mapping is that all structure and information available in the data definitions
and constraints is lost. This information can be very useful in the test selection
process (see e.g. [4]).

To overcome these problems we introduced Symbolic Transition Systems (STS)
in [6]. An STS is a transition system incorporating an explicit notion of data and
data-dependent control flow, such as guarded transitions, founded on first order
logic. The underlying first order structure gives formal means to define both the
data part algebraically, and the control flow part logically. The emphasis in [6]
was on presenting an on-the-fly algorithm for generating ioco test cases derived
directly from STSs.

In this paper we go a fundamental step ahead by lifting the ioco relation
to the level of STSs: we give a fully symbolic version of ioco, called sioco.
Hence, sioco relates symbolic specifications to symbolically modeled implemen-
tations. The goal is to have a complete formal framework for symbolic testing.
By being sound and complete for ioco the framework allows to reason about all
conformance aspects, for instance repetitive quiescence. It serves as a founda-
tion to define further symbolic aspects like symbolic test cases, coverage criteria
based on symbolic reachability, etc., and to gain insight into the underlying
symbolic mechanisms. Studying the implementation relation sioco and the con-
cepts needed to define it, also provides a necessary and well-defined basis for the
development of symbolic test generation tools.

Overview. In Sect. 2, we recall the first order concepts underlying the STS
formalism. The ioco relation is summarized in Sect. 3. Section 4 introduces
STSs and the symbolic framework. Section 5 defines the symbolic variant sioco.
An outlook at applications of the presented theory is given in Sect. 6, followed
by conclusions and related work in Sect. 7.
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2 First Order Logic

We use basic concepts from first order logic as our framework for dealing with
data. For a general introduction into logic we refer to [5]. Throughout this paper
we use the following conventions: for sets A and B, the set of all total functions
from A to B is denoted BA. For functions f :B→C and g:A→B, we denote the
composition of f and g by f ◦ g. We sometimes treat a tuple 〈x1, . . . , xn〉 as the
set {x1, . . . , xn} when the context allows this.

From hereon we assume a first order structure (S, M) as given. S = (F, P )
is a logical signature with F being a set of function symbols. Each f∈F has
a corresponding arity n∈N. P is a set of predicate symbols. Each p∈P has a
corresponding arity n∈N+. The model M = (U, (fM)f∈F , (pM)p∈P ) consists of
U being a non-empty set called universe, and for all f∈F with arity n, fM is
a function of type Un→U. For every p∈P with arity n we have pM ⊆ Un. For
simplicity, and without loss of generality, we restrict to one-sorted signatures.

Let X be a set of variables; we assume sets X, Y ⊆ X. Terms over X , denoted
T(X), are built from variables x∈X and function symbols f∈F . The set of
variables appearing in a term t is denoted var(t). A term-mapping is a function
σ:X → T(X). For a given tuple of variables 〈x1, . . . , xn〉 we set σ(〈x1, . . . , xn〉) =
〈σ(x1), . . . , σ(xn)〉. The identity term-mapping id is defined as id(x) = x for all
x∈X. By σX , we denote a restricted term-mapping σ that is only to be applied
on variables from X , i.e., σX(x) = σ(x) if x∈X , and x otherwise. The set of
all term-mappings σ∈T(X)X for which hold that σ(x)∈T(Y ) for all x∈X , and
σ(x) = x for all x /∈ X , is denoted T(Y )X�X . We will omit the mentioning of X
and just write T(Y )X in the remainder.

The set of free variables of a first order formula ϕ is denoted free(ϕ). The
set of all first order formulas ϕ satisfying free(ϕ) ⊆ X is denoted F(X). A tau-
tology is represented by �; we set ¬� = ⊥. We write ∃Xϕ for the formula
∃x1∃x2 . . . ∃xn : ϕ, where {x1, . . . , xn} = X ∩ free(ϕ), referred to as the existen-
tial closure for X of ϕ. Analogously we define the universal closure ∀Xϕ.

Let σ be a term-mapping. Given a formula ϕ, the substitution of σ(x) for
x∈free(ϕ) is denoted ϕ[σ]. Substitutions are side-effect free, i.e. they do not add
bound variables. This is achieved using an implicit proper renaming of bound
variables. Likewise, for a term t, the substitution of σ(x) for x∈ var(t) is denoted
t[σ]. Together we get [σ] : F(X) ∪ T(X)→ F(X) ∪ T(X).

A valuation is a function ϑ∈UX. For a given tuple of variables 〈x1, . . . , xn〉
we set ϑ(〈x1, . . . , xn〉) = 〈ϑ(x1), . . . , ϑ(xn)〉. Let ∗ denote an arbitrary element
of the set U. A partial valuation is a function ϑX∈UX ; ϑX can be extended to
a valuation ϑ as follows: ϑ(x) = ϑX(x) if x∈X , and ϑ(x) = ∗ when x∈X \ X .
Having two partial valuations ϑ∈UX and ς∈UY , with X ∩ Y = ∅, their union
(ϑ∪ς)∈UX∪Y is defined as (ϑ∪ς)(x) = ϑ(x) if x∈X , and (ϑ∪ς)(x) = ς(x) if x∈Y .
The satisfaction of a formula ϕ w.r.t. a given valuation ϑ is denoted ϑ |= ϕ. The
extension to evaluate terms based on a valuation ϑ is called a term-evaluation
and denoted ϑeval:T(X)→ U.
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3 A Testing Relation for Labelled Transition Systems

We assume the reader has some basic familiarity with (ioco-based) model-based
testing techniques as described in e.g. [16], and recall only those concepts and
conventions relevant to this paper.

Definition 1. A Labelled Transition System (LTS) is a tuple L = 〈S, s0, Σ,→〉,
where S is a set of states and s0∈S is the initial state. The set Σ is a set of
observable action labels. The action label τ /∈ Σ denotes an unobservable action;
Στ abbreviates the set Σ ∪ {τ}. The relation → ⊆ S×Στ×S is the transition
relation; s

μ−→ s′ abbreviates (s, μ, s′)∈→.

Let L = 〈S, s0, Σ,→〉 be an LTS. The generalized transition relation =⇒⊆
S ×Σ∗ × S of L is obtained in the standard way, i.e. it is the smallest relation
satisfying:

(Tε) s
ε=⇒ s, with s∈S,

(Tτ) s
σ=⇒ s′ if s

σ=⇒ s′′ and s′′
τ−→ s′, with s, s′, s′′∈S and σ∈Σ∗,

(Tμ) s
σ·μ
=⇒ s′ if s

σ=⇒ s′′ and s′′
μ−→ s′, with s, s′, s′′∈S, σ∈Σ∗ and μ∈Σ.

We use the following shorthand notations and functions:

1. s
μ−→ abbreviates ∃s′∈S : s

μ−→ s′, with s∈S and μ∈Στ ,
2. s

σ=⇒ abbreviates ∃s′∈S : s
σ=⇒ s′, with s∈S and σ∈Σ∗,

3. traces(s) =def { σ∈Σ∗ | s σ=⇒ }, with s∈S,
4. der (s) =def {s′ | ∃σ∈Σ∗ : s

σ=⇒ s′}, with s∈S.

A specialization of the model of LTSs is the model of Input-Output Labelled
Transition Systems (IOLTSs), which captures the notion of initiative of actions
(i.e. whether the action is an input or an output).

Definition 2. An IOLTS is a tuple 〈S, s0, ΣI , ΣU ,→〉, such that 〈S, s0, ΣI ∪
ΣU ,→〉 is an LTS and ΣI ∩ ΣU = ∅; ΣI is the set of inputs and ΣU is the set
of outputs.

Let L = 〈S, s0, ΣI , ΣU ,→〉 be an IOLTS. An observation from L is an output
action μ∈ΣU or the refusal of all outputs; we refer to such a refusal as quiescence.
A state s∈S in L is quiescent, denoted δ(s), iff ∀μ∈ΣU ∪ {τ} : s � μ−→. Let δ be a
constant not part of any action label set; Σδ abbreviates ΣI ∪ΣU ∪{δ}, and Σ∗

δ

is referred to as the set of extended traces. We define the suspension transition
relation =⇒δ⊆ S ×Σ∗

δ × S as the smallest relation satisfying rules Tε, Tτ , Tμ
(with =⇒δ replacing =⇒) and Tδ, where Tδ is given as:

(Tδ) s
σ·δ=⇒δ s′ if s

σ=⇒δ s′ and δ(s′), with s, s′∈S and σ∈Σ∗
δ .

We define the following functions for arbitrary s∈S, C ⊆ S and σ∈Σ∗
δ :

1. Straces(s) =def {σ∈Σ∗
δ | s

σ=⇒δ}, is the set of suspension traces,
2. C after σ =def

⋃
s∈C s after σ , where s after σ =def {s′∈S | s σ=⇒δ s′},
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3. out(C) =def
⋃

s∈C out(s), where out(s) =def {μ∈ΣU | s
μ−→} ∪ {δ | δ(s)}.

The testing hypothesis [16] states that implementations can be modeled as input-
enabled IOLTSs, where an IOLTS 〈S, s0, ΣI , ΣU ,→〉 is input-enabled if and only
if:

∀s∈der(s0)∀μ∈ΣI : s after μ �= ∅.
The conformance testing relation ioco is defined as follows:

Definition 3. Let S = 〈S, s0, ΣI , ΣU ,→S〉 be a specification IOLTS, and let
F ⊆ Straces(s0). An input-enabled IOLTS P = 〈P, p0, ΣI , ΣU ,→P〉 is iocoF -
conform to S, denoted by P iocoF S, iff

∀σ∈F : out( p0 after σ ) ⊆ out( s0 after σ )

4 The Symbolic Framework

In practical situations, LTSs lack the required level of abstraction for modeling
complex, data-intensive systems. This problem is solved by the model of Symbolic
Transition Systems (see e.g. [15,6]), which we introduce in this section.

4.1 Syntax and Semantics for Symbolic Transition Systems

The STS model extends the model of LTSs by incorporating an explicit notion
of data and data-dependent control flow (such as guarded transitions), founded
on first order logic.

Definition 4. An STS is a tuple S = 〈L, l0,V , I, Λ,→〉, where L is a set of
locations and l0∈L is the initial location. V is a set of location variables and
I is a set of interaction variables; V ∩ I = ∅, and we set Var =def V ∪ I. Λ is
the set of gates; constant τ /∈ Λ denotes an unobservable gate; Λτ abbreviates
Λ∪{τ}. The relation → ⊆ L×Λτ×F(Var)×T(Var)V×L is the switch relation;

l
λ,ϕ,ρ−−−→ l′ abbreviates (l, λ, ϕ, ρ, l′)∈→, where ϕ is the switch restriction and ρ is

the update mapping. We use the following functions and vocabulary:

1. arity : Λτ→N is the arity function,
2. type(λ) yields a tuple of size arity(λ) of interaction variables for gate λ,
3. S is well-defined iff arity(τ) = 0, type(λ) yields a tuple of distinct interaction

variables, and l
λ,ϕ,ρ−−−→ l′ implies free(ϕ) ⊆ V∪type(λ) and ρ∈T(V∪type(λ))V ,

4. S(ι) is an initialized STS, where ι∈UV initializes all variables from V in l0.

We only consider well-defined STSs in this paper.

Example 1. The STS 〈{li | 0 ≤ i ≤ 5}, l0, {rp, q, r}, {prod, quant, ref}, Λ,→〉, with
Λ = {?rq, !gq, ?ord, !confirm, !cancel} is depicted in Fig. 1; → is given by the di-
rected edges linking the locations. We have e.g. arity(?rq) = 2 and type(?rq) =
<prod,quant>. The underlying first order structure is based on a natural number
universe with the common “less-than” predicate <. The STS specifies a simplified
supplier system which can be requested for a quote for a given product prod and
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1 2 3

5

4

0

!confirm<ref>
[ref = r]

l

l

l ?ord<ref>
[ref=r]

!cancel<ref>
[ref = r]

?rq<prod, quant>
rp := prod, q := quant

!gq<ref, prod, quant>
[prod = rp & quant < q]
r := ref

l l l

Fig. 1. An STS specifying a simplified Supplier

quantity quant via gate ?rq located on the switch from l0 to l1. The requested prod-
uct and quantity are stored in the location variables rp and q, respectively. Next a
quote is returned via gate !gq which must deal with the same product and with a
quantity less than the requested one. Subsequently, the quote can be ordered via
gate ?ord by giving the correct reference number from the received quote. Finally
the supplier nondeterministically communicates a cancellation of the order via the
!cancel gate, or confirms the order via the !confirm gate. As a convention, switch
constraints � and update-mappings id are not explicitly drawn. We will refer to
this STS in the following examples as the Supplier STS. �

The interpretation of an STS is defined in terms of LTSs.

Definition 5. Let S = 〈L, l0,V , I, Λ,→〉 be an STS. Its interpretation [[S]]ι in
the context of ι∈UV , is defined as [[S]]ι = 〈L × UV , (l0, ι), Σ,→〉 for all ι∈UV ,
where

– Σ =
⋃

λ∈Λ({λ} × Uarity(λ)), is the set of actions.
– → ⊆ (L× UV)× (Σ ∪ {τ})× (L× UV) is defined by the following rule:

l
λ,ϕ,ρ−−−→ l′ ς∈Utype(λ) ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ

(l, ϑ)
(λ, ς(type(λ)))−−−−−−−−−→ (l′, ϑ′)

The semantics of an initialized STS S(ι) is given by the LTS [[S]]ι.

4.2 Symbolic Executions and Symbolic States

The notion of a trace of an STS can be defined by appealing to the semantics
of an initialized STS. This, however, suffers from the disadvantage that all high-
level information and structure about the data that is communicated over gates
is lost. Therefore, we choose to define a notion of traces on the level of symbolic
executions.

Symbolic execution as a technique was initially developed to symbolically
execute imperative programs with the aim of proving correctness. This can be
a hard task since the symbolic execution tree can for instance be of infinite size
due to loops in the program. For this reason already early approaches suggested
to just partially generate the execution tree for testing the program against a
given specification, see e.g. [12].
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Even if our domain of interest, i.e. reactive systems, has some fundamental
originalities like nondeterminism, non-termination, etc., many of the classical
symbolic execution techniques can be recovered in our setting. We do not adopt
the symbolic tree representation, though, instead we use a more compact, linear
representation which fits better to the standard notions we have introduced
in Sect. 3. Whereas in a symbolic tree the ordering of events is encoded in
its depth, we do so explicitly via so called history variables, which represent
possible interactions. These variables provide a representation for the data that
could have been communicated over a particular gate appearing at some point
in a symbolic execution.

Example 2. Starting in location l0 we can let the Supplier symbolically move to
location l1. Here the gate ?rq requests a product prod and a quantity quant.
These values are stored in the location variables rp and q, respectively. All we
know after executing this switch symbolically is that rp equals the value of prod,
and q equals the value of quant. Proceeding symbolically we may encounter
again the interaction variables prod or quant, hence it is necessary to make
explicit that we are referring to the first occurrence of these variables within
the symbolic execution. We do so by introducing the history variables prod1 and
quant1. Hence we can, after moving from l0 to l1, formally record that rp �→ prod1
and q �→ quant1. Proceeding now from l1 to l2 the gate !gq returns a quote which
also consists of a quantity, represented again by the interaction variable quant.
This variable is now constrained by quant < q. In our symbolic context this
equals quant < quant1. Also here we have to refer to the correct occurrence of
the interaction variable, so we introduce another history variable quant2 and
record here quant2 < quant1. Analogously we get prod2 = prod1 and r �→ ref2. �

For the remainder of this section we assume an STS S = 〈L, l0,V , I, Λ,→〉.
Henceforth, we assume to have history variable sets I1, I2, . . . which are disjoint
from each-other and from the set Var of S. We set Î =def

⋃
j Ij , and V̂ar =def

V ∪ Î. In addition, we assume to have bijective variable-renamings rn∈IIn .
The generalized switch relation =⇒⊆ L×Λ∗×F(V̂ar)×T(V̂ar)V×L, is defined

as the smallest relation satisfying the following three rules:

(Sε) l
ε, �, id

=====⇒ l,

(Sτ) l
σ, ϕ∧ψ[ρ], [ρ]◦π

===========⇒ l′ if l
σ, ϕ, ρ

=====⇒ l′′ and l′′
τ, ψ, π−−−−−→ l′,

(Sλ) l
σ·λ, ϕ∧(ψ[rn])[ρ], ([ρ]◦([rn]◦π))V======================⇒ l′ if l

σ, ϕ, ρ
=====⇒ l′′ and l′′

λ,ψ,π−−−→ l′ and n =
length(σ)+1.

Analogously to the generalized transition relation =⇒ for LTSs, the generalized
switch relation hides unobservable events without affecting the observable events
that can follow it. The intuition behind a generalized switch l

σ,ϕ,ρ
====⇒ l′ is that

location l′ can be reached from location l via a series of interactions over gates,
the sequence of which is dictated by σ, and the values that are passed over these
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gates satisfy the conditions collected in ϕ (called attainment constraint1); the
values for the location variables V are specified by update-mapping ρ.

Using a variable-shifting for the involved attainment constraints and term-
mappings, generalized switches can be composed to yield larger generalized
switches. A variable-shifting function re-indexes sets of history variables: having
renamings r(j,k)∈I

Ij

k between all pairs Ij and Ik, defined as r(j,k) =def rk ◦ r−1
j ,

for all i, j, k∈N+ (where rk∈IIk is a bijective renaming function for history vari-
ables), we define a variable-shifting function s�i∈ÎI for all i∈N as follows:

s�i(x) =def

{
r(j,j+i)(x) if x∈Ij for some j,
x otherwise

Proposition 1. If l
σ1, ϕ1, ρ1=======⇒ l′′ and l′′

σ2, ϕ2, ρ2=======⇒ l′ and n = length(σ1), then

also l
σ1·σ2, ϕ1∧(ϕ2[s�n])[ρ1], ([ρ1]◦([s�n]◦ρ2))V=============================⇒ l′.

Note that there may be a large number of different executions (generalized
switches) to get from l to l′. Each of these may have different effects on the
values for the location variables at location l′. Therefore, given a location, we
have no means to deduce what the possible values for the location variables are.
These values are required to compute the semantical states of an STS, which
in turn is required for defining the implementation relation ioco. To solve this
issue, we introduce the concept of symbolic states. Symbolic states provide a
finite characterization of (possibly infinite) sets of semantical states of an STS.

Definition 6. A symbolic state is a tuple (l, ϕ, ρ)∈L×F(V̂ar)×T(V̂ar)V . When
the history variables referenced by attainment constraint ϕ and update-mapping
ρ are from a set not above some i∈N, we may add an index to the symbolic
state (l, ϕ, ρ) and refer to it as an indexed symbolic state, denoted (l, ϕ, ρ)i. We
require that (l, ϕ, ρ)i satisfies:

1. ϕ∈F(V ∪
⋃

j≤i Ij), and
2. ρ∈T(V ∪

⋃
j≤i Ij)V .

The interpretation of a symbolic state in the context of location variable valua-
tion ι and history variable valuation υ is a set of states of [[S]]ι.

Definition 7. Let ι∈UV and let υ∈UI . The interpretation of a symbolic state
(l, ϕ, ρ) with respect to ι and υ is defined by:

[[(l, ϕ, ρ)]]ι,υ =def {(l, (ι ∪ υ)eval ◦ ρ) | ι ∪ υ |= ϕ}

Remark that |[[(l, ϕ, ρ)]]ι,υ| ≤ 1; as a convention we identify the singleton set
with its only element, omitting the set notation at our convenience. For sets of
symbolic states C ⊆ L× F(V̂ar)× T(V̂ar)V , we define the following shorthands:

1 The attainment constraint ϕ corresponds to what is called a path condition in the
literature for symbolic execution of programs.
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1. [[C]]ι,υ =def
⋃

(l,ϕ,ρ)∈C [[(l, ϕ, ρ)]]ι,υ,
2. [[C]]ι =def

⋃
υ∈UI [[C]]ι,υ.

Example 3. The history variables for the Supplier are Ij = {prodj , quantj , refj}
with j∈N+. A generalized switch is l0

?rq·!gq·?ord·!cancel, ϕ, ρ
===============⇒ l0 with ϕ = (prod2 =

prod1)∧(quant2 < quant1)∧(ref3 = ref2)∧(ref4 = ref2) and ρ = {rp �→ prod1, q �→
quant1, r �→ ref2}. The symbolic state (l0, ϕ, ρ) can be indexed by 4 or greater,
and [[{(l0, ϕ, ρ)}]]ι = {(l0, {rp �→ x, q �→ y, r �→ z}) | x, z∈N, y∈N+} for all
ι∈UV . ��

5 A Symbolic Implementation Relation for STSs

In this section, we introduce the necessary concepts to define the implementation
relation sioco on the level of STSs, which we prove to be equivalent to ioco on
LTSs. We specialism the model of STSs by recognizing input-gates and output-
gates. The resulting model is called Input-Output Symbolic Transition Systems
(IOSTSs).

Definition 8. An IOSTS is a tuple 〈L, l0,V , I, ΛI , ΛU ,→〉 with 〈L, l0,V , I, ΛI∪
ΛU ,→〉 being an STS and ΛI ∩ ΛU = ∅; ΛI is the set of input gates and ΛU is
the set of output gates.

Throughout this section we assume a given IOSTS S = 〈L, l0,V , I, ΛI , ΛU ,→〉.
The interpretation of S is a function from initialization functions to IOLTSs;
it is a straightforward adaptation of Def. 5, in which ΣI is the set of actions
(λ, ) with λ∈ΛI , and ΣU is the set of actions (λ, ) with λ∈ΛU . Distinguishing
between input- and output interactions at the symbolic level allows us to define
a symbolic analogue to quiescence. Since quiescence of a location l∈L depends
on the values for the location variables and the existence of proper values for
interaction variables, we are primarily interested in the condition under which
location l is quiescent. This symbolic quiescence condition is denoted Δ(l)∈F(V),
and is defined as follows:

Δ(l) =def

∧
{¬∃type(λ)ψ | ∃l′, π : l

λ,ψ,π−−−→ l′ with λ∈ΛU ∪ {τ}}

Example 4. To transform the Supplier STS into an IOSTS we set ΛI = {?rq, ?ord}
and ΛU = {!gq, !confirm, !cancel}. We get Δ(l1) = ¬

(
∃ref∃prod∃quant : prod =

rp ∧ quant < q
)

for the Supplier. In the underlying natural numbers model the
satisfiability of this formula boils down to q = 0, i.e. l1 is quiescent given that
the requested quote has a zero quantity. The switch restriction from l1 to l2 is
unsolvable, resulting in deadlock. �

Communications over output gates λ∈ΛU , or the refusals δ of any output commu-
nication are the observables of an IOSTS. In contrast to the semantic framework
of LTSs, these communications may depend on values that were communicated
at an earlier stage, meaning that the observations are conditional. The com-
bination of such conditions and the communications over a gate is referred to
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as a symbolic observation. Let the set of symbolic observations O for a given
IOSTS S be defined as the set O =def (ΛU ∪ {δ})× F(V̂ar) × F(V̂ar ∪ I) with
free(ψ) ⊆ type(λδ) ∪ V̂ar for all (λδ, ϕ, ψ)∈O (assuming type(δ) = ∅). We inter-
pret a symbolic observation in terms of semantic actions:

Definition 9. Let (λδ, ϕ, ψ) be a symbolic observation. The interpretation
[[(λδ, ϕ, ψ)]]ι,υ of (λδ, ϕ, ψ) is given in the context of ι∈UV and υ∈UI:

[[(δ, ϕ, ψ)]]ι,υ = {δ | ι ∪ υ |= ϕ ∧ ψ}
[[(λ, ϕ, ψ)]]ι,υ = {(λ, ς(type(λ))) | ι ∪ υ ∪ ς |= ϕ ∧ ψ with ς∈Utype(λ)}

The interpretation of a set O ⊆ O in the context of ι∈UV and υ∈UI is defined
as follows: [[O]]ι,υ =def

⋃
(λδ, ϕ, ψ)∈O [[(λδ, ϕ, ψ)]]ι,υ

The function outs is defined on symbolic states, yielding a set of observations.

Definition 10. Let (l, ϕ, ρ) be a symbolic state. We define:

outs((l, ϕ, ρ)) =def {(λ, ϕ, ψ[ρ])∈O | ∃l′, π : l
λ,ψ,π−−−→ l′} ∪ {(δ, ϕ, Δ(l)[ρ])}

Let C be a set of symbolic states. Here we set:

outs(C) =def

⋃
(l,ϕ,ρ)∈C

outs((l, ϕ, ρ))

Lemma 1. For all ι∈UV , υ∈UI and sets C of symbolic states we have:

[[outs(C)]]ι,υ= out([[C]]ι,υ)

From hereon, we set Λδ =def ΛI ∪ ΛU ∪ {δ}. We define the symbolic suspension
switch relation =⇒δ⊆ L × Λ∗

δ × F(V̂ar) × T(V̂ar)V × L as the smallest relation
satisfying rules Sε, Sτ , Sλ (with =⇒δ replacing =⇒) and Sδ, given as:

(Sδ) l
σ·δ, ϕ∧Δ(l′)[ρ], ρ

============⇒ δl
′ if l

σ,ϕ,ρ
====⇒ δl

′.

The rule Sδ reveals the fact that quiescence is an intrinsic semantical property.
During a symbolic execution we can at any step just hypothesize that the system
is quiescent and add a corresponding logical statement to the attainment con-
straint (that is what rule Sδ does). Solving the constraint semantically means
to compute the conditions under which quiescence really occurs (i.e. the traces
which lead to a quiescent state).

The history variables that are allowed to be addressed in a sequence σ∈Λ∗
δ

are given by var(σ), where var :Λ∗
δ→2I is defined inductively as:⎧⎨⎩

var(ε) = ∅
var(σ · δ) = var(σ)
var(σ · λ) = var(σ) ∪ {rlength(σ)+1(ν) | ν∈type(λ)}
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Lemma 2. If l
σ, ϕ, ρ

=====⇒ δl
′ then we have ϕ∈F(V ∪var(σ)) and ρ∈T(V ∪var(σ))V

and (l′, ϕ, ρ)length(σ) is an indexed symbolic state.

Let E denote the set of symbolic extended traces {(σ, ϕ)∈Λ∗
δ ×F(V̂ar) | free(ϕ) ⊆

V ∪ var(σ)}. The interpretation of symbolic extended traces is given below:

Definition 11. Let ι∈UV and let υ∈UI . The interpretation of a symbolic ex-
tended trace (σ, ϕ) with respect to ι and υ is an extended trace, defined by:

[[(σ, ϕ)]]ι,υ =def {etraceυ(σ) | ι ∪ υ |= ϕ}

where etraceυ(σ) is inductively defined as follows:⎧⎨⎩etraceυ(ε) = ε
etraceυ(σ · δ) = etraceυ(σ) · δ
etraceυ(σ · λ) = etraceυ(σ) · (λ, υ(rn(type(λ)))) with n = length(σ) + 1

Note that |[[(σ, ϕ)]]ι,υ| ≤ 1; as a convention, we identify the singleton set with its
only element. For sets E ⊆ E , we define the following shorthands:

1. [[E]]ι,υ =def
⋃

(σ,ϕ)∈E [[(σ, ϕ)]]ι,υ,
2. [[E]]ι =def

⋃
υ∈UI [[E]]ι,υ.

To complete the set of symbolic counterparts for the relevant semantical notions
we define a symbolic afters function, mapping pairs of indexed symbolic states
and symbolic extended traces to new indexed symbolic states.

Definition 12. Let (l, ϕ, ρ)i be an indexed symbolic state and let (σ, χ)∈E be a
symbolic extended trace. We define the binary function afters as follows:

(l, ϕ, ρ)i afters(σ, χ)

=def {(l′, ϕ ∧ ((ψ ∧ χ)[s�i])[ρ], ([ρ] ◦ ([s�i] ◦ π))V )i+length(σ) | l
σ,ψ,π

====⇒ δl
′}

Let C be a set of indexed symbolic states. Here we set
C afters(σ, χ) =def

⋃
(l,ϕ,ρ)i∈C(l, ϕ, ρ)i afters(σ, χ).

Lemma 3. Let (l, ϕ, ρ)i be an indexed symbolic state and let (σ, χ)∈E be a sym-
bolic extended trace. Then for all ι∈UV and υ∈UI, we have:

[[(l, ϕ, ρ)i afters(σ, χ)]]ι,υ = [[(l, ϕ, ρ)i]]ι,υ after [[(σ, χ)]](ι∪υ)eval◦ρ, υ◦s�i

Example 5. For the Supplier we get (l2, r > prod3, id)3 afters(?ord, ref1 < 42) =
{(li, ξ, id)4 | i = 3, 4, 5} with ξ = r > prod3 ∧ ref4 = r ∧ ref4 < 42. If we call
the latter set M and apply common first order equalities we get outs(M) =
{(δ, ξ,⊥), (!confirm, ξ, ref = r), ((!cancel, ξ, ref = r))}. �

The symbolic concepts that have been introduced so far provide a characteri-
zation of the semantically relevant concepts that were introduced in Section 3.
The precise connection is established in the following two theorems.
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Theorem 1 (Soundness). Let S = 〈L, l0,V , I, ΛI , ΛU ,→〉 be an IOSTS. Then
for all ι∈UV and all υ∈UI we have: if both l

σ,ϕ,ρ
====⇒ δ l′ and ι∪ υ |= ϕ then also

[[(l,�, id)]]ι,υ
[[(σ,ϕ)]]

ι,υ=======⇒ δ [[(l′, ϕ, ρ)]]ι,υ.

Theorem 2 (Completeness). Let S = 〈L, l0,V , I, ΛI , ΛU ,→〉 be an IOSTS.
For all states (l, ι), (l′, ι′) we have: (l, ι) σ=⇒ δ (l′, ι′) implies there is a valuation
υ∈UI and a suspension switch l

σ,ϕ,ρ
====⇒ δl

′ satisfying ι ∪ υ |= ϕ, σ = [[(σ, ϕ)]]ι,υ
and (l′, ι′) = [[(l′, ϕ, ρ)]]ι,υ.

The set of symbolic suspension traces of a location l of an IOSTS S is denoted
Stracess(l), which is defined as Stracess(l) =def {(σ, ϕ)∈E | ∃l′, ρ : l

σ,ϕ,ρ
====⇒ δl

′}.

Corollary 1. Let S(ι) = 〈L, l0,V , I, ΛI , ΛU ,→〉 be an initialized IOSTS. Then
we have [[Stracess(l0)]]ι = Straces((l0, ι)).

Definition 13. Let S(ι) be an initialized IOSTS. We set: S(ι) is input enabled
⇔def [[S]]ι is an input-enabled IOLTS.

Now we are in the position to give the symbolic sioco variant of the ioco relation,
based on the notions introduced so far.

Definition 14 (sioco). Let Fs be a set of symbolic extended traces for an ini-
tialized specification IOSTS S(ιS) = 〈LS , lS ,VS , I, Λ,→S〉, satisfying [[Fs]]ιS

⊆
Straces((l0, ιS)). An implementation, given as an input-enabled IOSTS P(ιP ) =
〈LP , lP ,VP , I, Λ,→P 〉, with VS ∩ VP = ∅, is siocoFs-conform to S(ιS) (written
P(ιP ) siocoFs S(ιS)) iff

∀(σ, χ)∈Fs ∀λδ∈ΛU ∪ {δ} : ιP ∪ ιS |= ∀I∪I
(
Φ(lP , λδ, σ) ∧ χ→ Φ(lS , λδ, σ)

)
where Φ(κ, λδ , σ) =

∨
{ϕ ∧ ψ | (λδ , ϕ, ψ)∈ outs((κ,�, id)0 afters(σ,�))}

The following theorem expresses that sioco coincides with ioco.

Theorem 3. Let S(ιS) = 〈L, l0,V , I, ΛI , ΛU ,→〉 be an initialized IOSTS and
let P(ιP ) be an input-enabled IOSTS. Let Fs be a set of symbolic extended traces
for S, satisfying [[Fs]]ιS

⊆ Straces((l0, ιS)). Then

P(ιP ) siocoFs S(ιS) iff [[P ]]ιP
ioco[[Fs]]ιS

[[S]]ιS

6 Application

The concepts that we have defined can be employed to define relations such as
symbolic state inclusion, which allow one to efficiently prune symbolic executions
(see e.g. [7]). Another example of how our theory contributes in improving and
studying practically relevant testing problems is given in this section. We first
define a naive (but often used) coverage measure that is based on reachability
of states, and show that in the presence of data and control, coverage measures
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that are based on the concepts of locations and symbolic states are much more
appropriate. In practice, a coverage measure can be used to fuel the test selection
process; such a test selection process could e.g. be combined with the on-the-fly
test derivation algorithm we presented in [6]. Note that the coverage measures
described in this section are defined on the basis of the specification, rather than
on the implementation (which is considered to be a black box). The underlying
assumption is that a higher coverage value is an indication of a higher test
quality; as such, one would always aim at a coverage value of 1 (i.e. full coverage).

We assume that the execution of a set of test cases (see e.g. [16] for a de-
finition) on an implementation has resulted in a number of test runs, which
we assume can be represented by a prefix-closed set of extended traces. Let
L = 〈S, s0, ΣI , ΣU ,→〉 be an LTS-specification; a state-coverage measure Ps(R)
of a set of executed test runs R ⊆ Σ∗

δ can be defined as the ratio between states
that have potentially been covered by test runs from R, and the total number
of reachable states:

Ps(R) =def |
|
⋃

ρ∈R s0 after ρ |
| der(s0) |

State-coverage quickly becomes impractical when data plays a role, since the set
of reachable states becomes extremely large or even infinite. This is exemplified
by the Supplier STS: there is an infinite number of initial transitions leading
to an infinite number of reachable states, since the underlying LTS model of
the Supplier STS is infinitely branching in its initial state, effectively giving
Ps(R) = 0 for all sets of test runs R. Note that this problem persists, even when
we consider an alternative definition of Ps which relies on the total number of
states that can be reached within a finite (known) number of steps.

A coverage measure that side-steps this problem is location-coverage for STSs.
Let S(ι) = 〈L, l0,V , I, ΛI , ΛU ,→〉 be an STS-specification (we assume it has se-
mantics 〈S, s0, ΣI , ΣU ,→〉); a location-coverage Pl(R) of a set of executed test
runs R ⊆ Σ∗

δ is defined as the ratio between locations that have potentially been
covered by test runs from R, and the total set of reachable locations of S:

Pl(R) =def
| {l′∈L | ∃ρ∈R : ∃ι′∈UV : (l′, ι′)∈ s0 after ρ } |

| {l′∈L | ∃ι′∈UV : (l′, ι′)∈der (s0))} |
While the (in)finiteness of a state space is irrelevant for the location-coverage
(in the usual case that L is finite), a major drawback of location-coverage is
that e.g. a full coverage largely relies on control-flow; data is not considered on
equal footing. In the Supplier STS, this means that Pl(R) = 1 does not imply
that R has a test run ?rq〈p, 0〉 (where p∈N is some instantiation), leading to a
data-dependent quiescence observation.

A refinement of location-coverage that does treat data and control on equal
footing is symbolic state-coverage. Let n∈N be the maximal length of a test run.
The symbolic state-coverage Pss(R, n) of a set of executed test runs R ⊆ Σ∗

δ of
length at most n is defined as the ratio between the symbolic states that have
been covered by test runs from R, and the total set of (semantically) reachable
symbolic states of S (using experiments of length n at most):
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Pss(R, n) =def
| {(l, ϕ, ρ) | ∃σ∈Λ≤n

δ : l0
σ,ϕ,ρ

====⇒ δl and [[{(σ, ϕ)}]]ι ∩R �= ∅} |
| {(l, ϕ, ρ) | ∃σ∈Λ≤n

δ : l0
σ,ϕ,ρ

====⇒ δl and [[{(σ, ϕ)}]]ι �= ∅} |

We leave it to the reader to check that in order to achieve Pss(R, n) = 1, with n >
1 for the Supplier STS, the set R must also contain a test run ?rq〈p, 0〉 (for some
p∈N). A test selection process aiming at a particular coverage using coverage
measure Pss could employ (subsets of) the set appearing in the denominator of
Pss to select test cases that reach symbolic states in this set.

7 Conclusions and Related Work

We have presented a symbolic implementation relation sioco, and proven its
soundness and completeness w.r.t. the semantical ioco relation. The symbolic
concepts that were needed to define sioco are not mere artefacts of the definition
of sioco, but they have their own merits. We illustrated this by defining a test
coverage measure that is based on symbolic states, which has advantages over
coverage measures based on locations or semantic states. Similar advantages
were found when investigating symbolic test case generation (not discussed in
this paper), and, we expect to be able to reuse these concepts in e.g. test data
selection.

To the best of our knowledge, this is the first approach that gives a fully sym-
bolic implementation relation including quiescence. A closely related approach is
described in [15], that uses a variant of a symbolic transition system and a weaker
relation, e.g. they do not deal with quiescence. In [11] the problem of symbolic
reachability analysis is approached with over-approximation techniques.

Also [7] presents a symbolic variation of the theme which is more focused on
implementation issues. Their models are syntactically less expressive, e.g. inputs
cannot directly be constrained, and the underlying implementation relation is
not fully ioco (repetitive quiescence is missing). By having a simpler model
without dedicated interaction variables, some computational tasks are easier to
solve, for instance symbolic quiescence becomes quantifier-free.

Symbolic transitions systems are somewhat similar to Statecharts [9], and to
their UML-variant called State Machines [14]. State Machines, though, tend to
be applied in a synchronous setting, where inputs and outputs appear together
on a single transition. This has consequences for compositionality issues, nonde-
terminism, etc., and corresponds to the semantical model of a Mealy Machine
(also called Finite State Machine (FSM)). There is an important branch of for-
mal testing which is based on Mealy Machines and their symbolic variant called
Extended Finite State Machine, see [13] for a survey. Also the approach to test-
ing in general differs, see e.g. [8] for a comparison. The testing approaches which
are based on LTSs have instead an asynchronous nature, inputs and outputs
appear here isolated on transitions. We hope that the presented framework can
aid in embedding and reasoning about the many variations of LTS-based testing
approaches which have been defined.
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It is one of our main current research directions to investigate efficient imple-
mentations of the presented framework. One concrete instance is a Java-based
test system for testing web services implementing the on-the-fly algorithm of [6]
together with the symbolic coverage criteria as being indicated in Sect. 6.
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test purpose definition. In M. Ü. Uyar, A. Y. Duale, and M. A. Fecko, editors,
TestCom 2006, volume 3964 of LNCS, pages 1–18. Springer, 2006.

8. N. Goga. Comparing torx, autolink, tgv and uio test algorithms. In SDL ’01:
Proceedings of the 10th International SDL Forum Copenhagen on Meeting UML,
pages 379–402, London, UK, 2001. Springer-Verlag.

9. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, 1987.
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Abstract. We propose a syntax-driven test generation technique to au-
tomaticaly derive abstract test cases from a set of requirements expressed
in a linear temporal logic. Assuming that an elementary test case (called
a “tile”) is associated to each basic predicate of the formula, we show how
to generate a set of test controlers associated to each logical operator,
and able to coordinate the whole test execution. The test cases produced
are expressed in a process algebraic style, allowing to take into account
the test environment constraints. We illustrate this approach in the con-
text of network security testing, for which more classical model-based
techniques are not always suitable.

1 Introduction

Testing is a very popular validation technique, used in various application do-
mains, and for which several formalizations have been proposed. In particular, a
well-defined theory is the one commonly used in the telecommunication area for
conformance testing of communication protocols [1]. This approach, sometimes
called “model-based” approach, consists in defining a conformance relation [2,3]
between a specification of the system under test and a formal model of its actual
implementation. The purpose of the test is then to decide if this relation holds or
not. A practical interest is that test cases can be automatically produced from
this specification. Several tools implement this automatic generation technique,
e.g. [4,5,6,7].

However, this model-based approach requires a rather complete operational
specification of the system under test, defined on a precise interface level. If
this constraint can be usually fulfilled for specific pieces of software (e.g., a
communication protocol), it may be difficult to achieve for large systems. A
typical example of such situation is testing the compliance of a network to a
given security policy. Indeed, security rules are usually enforced by combining
several mechanisms, operating at different architectural levels (fire-walls, anti-
virus softwares, cryptographic protocols, etc.). Clearly, all these levels can be
hardly encompassed in a single operational model of the network behaviour.

In a previous work [8], we have proposed an alternative approach for testing
system requirements expressed as a set of (temporal) logic formulae. For each
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formula φ, an abstract test case tφ is produced following a syntax-driven tech-
nique: assuming that an elementary test case ti (called hereafter a “tile”) has
been associated to each literal pi of formula φ, the whole test case ti is obtained
by combining the tiles using test operators corresponding to the logical opera-
tors appearing in formula φ. This provides a structural correspondence between
formulae and tests and it is easy to prove that the test obtained are sound with
respect to the semantics of the formulae (in other words we give a “test based”
semantics of the logic which is compatible with the initial one). The originality
of this approach is then that a part of the system specification is encoded into
the tiles, that can be provided by the system designer or a by a test expert. We
claim that it is easier to obtain that a global operational specification.

This paper extends this previous work from the test execution point of view.
In [8], abstract test cases were directly expressed by labelled transition systems,
independently of the test architecture. We propose here to better take into ac-
count the test execution and to express the test cases in a higher level formalism.
In particular we show how to produce well structured test cases consisting of a
set of test drivers (one test driver for each elementary tile), coordinated by a
set of test controllers (corresponding to the logical operators appearing in the
formula). Thus, independent parts of the formula can be tested in parallel (ei-
ther to speed up the test execution, or due to test environment constraints),
each local verdicts being combined in a consistent way by the test controllers.
Formally, test cases are expressed in a classical process algebra (called a “test
calculus”), using basic control operators (parallel composition and interruption)
and data types to handle test parameters and verdicts.

This paper is organized as follows: section 2 introduces our “test calculus”
process algebra, and section 3 defines the notions of test execution and test
verdicts. We propose in section 4 a simple temporal logic allowing to express
network security requirements, and we show how to produce test cases from this
logic in section 5. Finally, section 6 provides some examples in the context of
network security policies.

2 Test Process Algebra

To model processes, we define a rather classic term algebra with typed variables,
inspired from CCS [9], CSP [10] and Lotos. We suppose a set of predefined actions
Act, a set of types T , and a set of variables Var. Actions are either modifications
of variables or communications through channels which are also typed. In the
following, we do not address the problem of verifying that communications and
assignments are well-typed. We denote by exprτ (resp. xτ ) any expression (resp.
variable) of type τ . Thus, when we write xτ := exprτ , we consider that this
assignment is well typed.

A test is described as a term of our process algebra. We distinguish between
elementary test cases, which are elements of a basic process algebra and com-
pound test cases. We give the syntax and an operational semantics of this test
process algebra.
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2.1 Basic Processes

Our basic process algebra allows to describe sequences of atomic actions, com-
munication and iteration. A term of this algebra is called a tile, which are the
elementary test components and we note TILE the set of all tiles.

The syntax of tiles and actions is given by the following grammar:

e ::= α ◦ e | e + e | nil | recX e | X
α ::= [b]γ
γ ::= xτ := exprτ | !c(exprτ ) | ?c(xτ )
b ::= true | false | b ∨ b | b ∧ b | ¬b | exprτ = exprτ

where e ∈ TILE is a tile, b a boolean expression, c a channel name, γ an action,
◦ is the prefixing operator (◦ : Act × TILE → TILE), + the choice operator,
X a term variable, and recX : TILE → TILE allows recursive tile definition
(with X a term variable) 1. When the condition b is true, we abbreviate [true]γ
by γ. The special tile nil does nothing.

There are two kinds of actions (γ ∈ Act). The first ones are the internal actions
(modification of variables). The second ones are the communication actions. Two
kinds of communications exist: ?c(xτ ) denotes value reception on a channel c
which is stored in variable xτ ; !c(exprτ ) denotes the emission of a value exprτ

on a channel c. Communication is done by “rendez-vous”.

2.2 Composing Processes

Processes are compositions of tiles. Choices we made about composition oper-
ators came from needs appearing in our case studies in network security poli-
cies [8]. Composing tests in sequence is quite natural; however, for independent
actions, and in order to speed-up test executions, one might want to parallelize
some tests executions, for example, if one wants to scan several computers on a
network. The parallel composition is also used to model the execution and com-
munication between the test processes and the rest of the system. We assume a
set C of channels used by tiles to communicate. We distinguish internal channels
(set Cin) and external channels (set Cout), and we have C = Cin ∪ Cout.

In case of several processes executing in parallel, one might want to interrupt
them. We choose to add an operator providing an exception mechanism: it per-
mits to replace a process by an other one on the reception of a communication
signal.

So, we define a set of operators, {‖L, �I}, respectively the parallel (with
communication through a channel list L ⊆ C), and exception (with an action
list I) compositions.

The grammar for term processes (TERM) is:

t ::= e | t ‖L t | t �I t

1 we will only consider ground terms: each occurence of X is binded to recX.
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The parallel operator ‖L is associative and commutative. It expresses either
the interleaving of independant action or the emission !c(exprτ ) of the value of
an expression exprτ on a channel c. When the value is received by a process
?c(xτ ), the communication is denoted at the syntactic level by c(exprτ/xτ ). The
independent and parallel execution ‖∅ is noted ‖.
The Join-Exception operator �I is used to interrupt a process and replace it
with an other when a synchronization/global/communication action belonging
to its synchronization list I occurs. Intuitively, considering two processes t, t′

and a communication action α, t�{α} t′ means that if α is possible, t is replaced
by t′, else t continues normally.

2.3 Semantics

α ∈ Act (◦)
α ◦ t

α
⇀ t

t[recX ◦ t/X] α
⇀ t′ α ∈ Act

(rec)
recX ◦ t

α
⇀ t′

α ∈ Act t2
α
⇀ t′

2 (+)
t1 + t2

α
⇀ t′

2

α /∈ {[b]!c(exprτ ), [b]?c(xτ )|c ∈ L, b ∈ Bexp} t1
α
⇀ t′

1 (‖¬L)
t1 ‖L t2

α
⇀ t′

1 ‖L t2

c ∈ Cin ∧ c ∈ L t1
[b]!c(exprτ )

⇀ t′
1 t2

[b]?c(xτ )
⇀ t′

2 (‖Cin)
t1 ‖L t2

[b]c(exprτ /xτ )
⇀ t′

1 ‖L t′
2

c ∈ Cout ∧ c ∈ L t1
[b]!c(exprτ )

⇀ t′
1 (! ‖Cout)

t1 ‖L t2
[b]!c(exprτ )

⇀ t′
1 ‖L t2

c ∈ Cout ∧ c ∈ L t1
[b]?c(xτ )

⇀ t′
1 (? ‖Cout)

t1 ‖L t2
[b]?c(xτ )

⇀ t′
1 ‖L t2

α ∈ I t2
α
⇀ t′

2 (�I
α)

t1 �I t2
α
⇀ t′

2

α /∈ I t1
α
⇀ t′

1 (�I
¬α)

t1 �I t2
α
⇀ t′

1 �I t2

Fig. 1. Rules for term rewriting

Let Dom(τ) be the domain of the value s of type τ . A runtime environment
ρ maps the set of variables to the set of values. We note E the set of all en-
vironments. Actions modify environments in a classical way; we note ρ

γ→ ρ′

the modification of environment ρ into ρ′ by action γ. For example, ρ
xτ :=expτ−→

ρ[ρ(expτ )/xτ ], where ρ[ρ(expτ )/xτ ] is the environment ρ in which variable xτ

is associated the value ρ(expτ ). In the following, environments are extended to
any typed expression.

A labelled transition system (LTS, for short) is a quadruplet (Q, A, T, q0) where
Q is a set of states, A a set of labels, T the transition relation (T ⊆ Q×A×Q)
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and q0 the initial state (q0 ∈ Q). We will use the following definitions and nota-
tions: (p, a, q) ∈ T is noted p

a−→T q (or simply p
a−→ q). An execution sequence

λ is a composition of transitions: q0 a1−→ q1
a2−→ q2 · · ·

an−→ qn. We denote by σλ

(resp. αλ) the sequence of states (resp. observable actions) associated with λ.
The sequence of actions αλ is called a trace. We note by ΣS , the set of finite
execution sequences starting from the initial state q0 of S. For any sequence λ
of length n, λi or λ(i) denotes the i-th element and λ[i···n] denotes the suffix
λi · · ·λn.

The semantics of a process is based on a LTS where states are “configura-
tions”, pairs (t, ρ), t being a term of the process algebra, ρ an environment, and
transitions are given by definition 2. Configurations are used to represent process
evolutions. We note Cterm def= TERM× E the set of configurations.

Definition 1 (Term-transition). A term rewriting transition ⇀ is an element
of TERM×Act×TERM. We say that the term t is rewritten in t′ by action α.
We note: t

α
⇀ t′. This semantics is similar with the CCS one [9].

Term-transitions are defined in Figure 1 (using the fact that ‖ and + are com-
mutative and associative).

Definition 2 (Transitions). A transition is an element of Cterm×Act×Cterm.
We say that the term t in the environment ρ is rewritten in t′ modifying the
environment ρ in ρ′.

We have four transition rules, one for an assignment, and three for communica-
tion exchange. They are defined in Figure 2.

ρ(b) = true ρ(exprτ) = v t
[b]xτ :=exprτ

⇀ t′
(:=)

(t, ρ) xτ :=v−→ (t′, ρ[v/xτ ])

ρ(exprτ) = v t
[b]!c(exprτ )

⇀ t′ ρ(b) = true
(!)

(t, ρ)
!c(v)−→ (t′, ρ)

v ∈ Dom(τ ) t
[b]?c(xτ )

⇀ t′ ρ(b) = true
(?)

(t, ρ)
?c(v)−→ (t, ρ[v/xτ ])

ρ(exprτ) = v t
[b]c(exprτ /xτ )

⇀ t′ ρ(b) = true
(c(exprτ/xτ ))

(t, ρ)
c(v)−→ (t, ρ[v/xτ ])

Fig. 2. Rules for environment modification

3 Test Execution and Test Verdicts

As seen in the previous section, the semantics of a test case represented by a
TERM process t is expressed by a LTS St = (Qt, At, T t, qt

0). From a practical
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point of view the System Under Test (SUT) is not a formal model (it is a
black-box implementation interacting with a tester). However, and similarly to
the classical conformance testing theory, we consider here that its underlying
execution model can be expressed by a LTS I = (QI , AI , T I , qI

0). A test execution
is then a sequence of interactions between t and the SUT to deliver a verdict
indicating whether the test succeeded or not. We first explain how verdicts are
computed in our context, and then we give a formal definition of a test execution.

3.1 Tiles Verdicts

We assume in the following that any elementary tile ti owns at least one variable
used to store its local verdict, namely a value of enumerated type V erdict =
{pass, fail, inc}. This variable is supposed to be set to one of these values when
tile execution terminates. The intuitive meaning we associate to each of these
values is similar to the one used in conformance testing:

• pass means that the test execution of ti did not reveal any violation of the
requirement expressed by ti;

• fail means that the test execution of ti did reveal a violation of the require-
ment expressed by ti;

• inc means that the test execution of ti did not allow to conclude about the
validity of the requirement expressed by ti.

We now have to address the issue of combing the different verdicts obtained
by each tile execution of a whole test case.

3.2 Verdict Management

The solution we adopt is to include in the test special processes (called test
controlers) for managing tile verdicts. When tiles end their execution, i.e. have
computed a verdict, they emit it toward a designated test controler which cap-
tures it. Depending on verdicts received, the controller emits a final verdict –
and may halt the executions of some tests if they are not needed anymore. The
“main” controler then owns a variable vg to store the final verdict.

Test controllers can easily be written in our process algebra with communi-
cation operations as shown on the following example. The whole test case is
then expressed as a term of our process algebra (with parallel composition and
interuptions between processes).

An example of test controller. Let us consider a test controller waiting to receive
two pass verdicts in order to decide a global pass verdict (in other cases, it
emits the last verdict received). Let c v, be the channel on which verdicts are
waited. The environment of this controller contains three variables, v for the
verdicts received, vg for the global verdict, and N to count numbers of verdicts
remaining. An LTS representation is shown in Figure 3 and a corresponding
algebraic expression is:

� def= (recX ?c vi(vi) ◦ [vi = pass] N-- ◦ X) +

([vi ∈ {inc, fail}] vg := vi ◦ !c vg(vg) ◦ !Stop ◦ nil) +

([N = 0] vg := pass ◦ !c vg(vg) ◦ !Stop ◦ nil)
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?c v(v)

[v = pass] N--

[N = 0] vg := pass

!c vg(vg)

[v ∈ {inc, fail}] vg := v

!Stop

Fig. 3. Verdict controller combining pass verdicts

3.3 Test Execution

An execution of a test t (modelled by an LTS St) on a SUT (modelled by a LTS
I), noted Exec(t, I), is simply expressed as a set of common execution sequences
of St and I, defined by a composition operator ⊗.

Let λI = qI
0

a1−→ qI
1

a2−→ qI
2 · · ·

an−→ qI
n · · · ∈ ΣI and λSt = q0,t a1−→ qt

1
a2−→

qt
2 · · ·

an−→ qt
n ∈ ΣSt , then λSt ⊗ λI = (q0,t, qI

0) a1−→ (qt
1, q

I
1) · · · an−→ (qt

n, qI
n) ∈

Exec(t, I).
Let Σpass

St
(resp. Σfail

St
, Σinconc

St
) be the sets of states of St where variable vg is

set to pass (resp. fail, inc):

Σpass
St

= {(r, ρ) | ρ(vg) = pass}
Σfail

St
= {(r, ρ) | ρ(vg) = fail}

Σinc
St

= {(r, ρ) | ρ(vg) = inc}

For λ ∈ Exec(t, I), we define the verdict function: VExec(λ) = pass (resp.
fail , inconc) iff there is λSt ∈ Σpass

St
(resp. Σfail

St
, Σinconc

St
) and λI ∈ ΣI such that

λSt ⊗ λI = λ.

4 Security Rules Formalization

This work was initiated by a case study those objectives was to test the com-
pliance of the IMAG network (which connects the IMAG’s laboratories) to a
security policy. This security policy is expressed as a set of informal rules de-
scribing (conditional) obligations and interdictions that have to be fulfilled by
the network administrators. We focussed our attention to a subset of rules ded-
icated to electronic mail and users account management. As a mater of fact,
it happened that most of these rules could be formalized using a simple logic
where interdiction, obligation and permission are expressed by means of tempo-
ral modalities. We give here the syntax and semantics of this logic.

4.1 Syntax

A security policy rule is expressed by a logical formula (ϕ), built upon liter-
als. Each literal can be either a condition literal (pc ∈ Pc), or an event literal
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(pe ∈ Pe). A condition literal is a (static) predicate on the network configu-
ration (e.g., extRelay(h) holds iff machine h is configured as an external mail
relay), and an event literal corresponds to the occurrence of a transition in the
network behavior (e.g., enterNetwork(m) holds if message m is received by
the network). A conjunction of condition literals is simply called a condition
(C), whereas a conjunction of a single event literal and a condition is called a
(guarded) event (E). The abstract syntax of a formula is given in Table 1. The
intuitive meaning of these formulae is the following:

– An O-Rule expresses a conditional obligation: when a particular condition
holds, then another condition should also hold (logical implication).

– An OT -Rule expresses a triggered obligation: when a given event happens,
then another condition should hold (or some event should occurs) before
expiration of a given amount of time.

– An F -Rule expresses an interdiction: when a given condition holds, or when
a given event happens, then a given event is always prohibited.

Table 1. Syntax of logic formulae

ϕ ::= C ⇒ O C (O-Rule )
| E ⇒ OT C | E ⇒ OT E (OT -Rule)
| C ⇒ F C | C ⇒ F E (F-Rule)

E ::= pe[C] | pe (Event)
C ::= n

i=1 pci (Condition)

4.2 Semantics

Formulas are interpreted over LTS. Intuitively, a LTS S satisfies a formula ϕ iff all
its execution sequences λ do, where condition literals are interpreted over states,
event literals are interpreted over labels. We first introduce two interpretation
functions for condition and event literals:
fc : Pc → 2Q, associates to pc the set of states on which pc holds;
fe : Pe → 2A, associates to pe the set of labels on which pe holds.

The satisfaction relation of a formula ϕ on an execution sequence λ (λ |= ϕ)
is then (inductively) defined as follows:

– λ |= C for C = p1
c ∧ · · · ∧ pn

c iff ∀i. σλ(1) ∈ fc(pi
c)

– λ |= pe iff αλ(1) ∈ fe(pe)
– λ |= pe[C] iff (αλ(1) ∈ fe(pe) ∧ λ(2) |= C)
– λ |= ϕ1 ⇒ Oϕ2 iff ((λ |= ϕ1) ⇒ (λ |= ϕ2))
– λ |= ϕ1 ⇒ OT ϕ2 iff ((λ |= ϕ1) ⇒ (∃j ∈ [1, |λ|]. λ(j) |= ϕ2))
– λ |= ϕ1 ⇒ Fϕ2 iff ((λ |= ϕ1)⇒ (∀j ∈ [1, |λ|]. λ(j) �|= ϕ2))

Finally, S |= ϕ iff ∀λ ∈ ΣS . λ |= ϕ.
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5 Test Generation

We define a structural generation function GenTest to convert a rule into the
desired combination of elementary tiles with controllers. It associates controllers
in such a way that the final verdict is pass iff the rule is satisfied by the SUT.
Each controller emits its verdict on a channel, and may uses variables. In the
following, new variables and channels will be silently created whenever necessary.

GenTest generates parallel and architecturally independent sub-tests. Formula
semantics is ensured by the controller verdict combinations. Suitable scheduling
of sub-tests is supplied by the controllers through channels used to start and stop
sub-tests (given below by Test function).

5.1 Test Generation Function GenTest

Transformation of tiles. Given a tile tp (computing its verdict in the variable
ver) associated to an elementary predicate p, the Test function transforms it.
Intuitively, Test(tp,L), where L is a channel list, is tp modified in order to be
controlled through the channel list L. More formally:

Test(tp, {c start, c stop, c loop, c ver}) def=
recX (?c start() ◦ tp ◦ (?c loop() ◦ X+!c ver(ver) ◦ nil)) �{?c stop()}?c stop() ◦ nil

A representation on a LTS is shown in Figure 4.

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Fig. 4. Extension of tile tp in a testing form

GenTest definition. The rule general form is: Pl ⇒ MPr where Pl, Pr ∈
{E, C} are predicates and M∈ {O,OT ,F} a modality.

The GenTest function is defined on the rule structure, giving an expression to
be instantiated according to the different modalities. We suppose that the final
verdict is emitted on the main channel, and tci , tpe are the tiles respectively
associated to elementary predicates ci, pe.

GenTest(Pl ⇒MPr)
def
= (GenTestP (Pl, Ll) ‖ GenTestP (Pr, Lr)) ‖L �M(Ll, Lr)

with L = Ll ∪ Lr,
Ll = {c startl, c stopl, c loopl, c verl}, Lr = {c startr, c stopr, c loopr, c verr}
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GenTestP (pe[C], {c start, c stop, c loop, c ver}) def
=

Test(tpe, Le) ‖ GenTestC(C, Lc) ‖L �E({c start, c stop, c loop, c ver}, Le, Lc)

with L def= Le ∪ Lc

Le = {c starte, c stope, c loope, c vere}, Lc = {c startc, c stopc, c loopc, c verc}
GenTestP (pe, {c start, c stop, c loop, c ver})

def
= Test(tpe, {c start, c stop, c loop, c ver})

GenTestP (C,L) def= GenTestC(C, L)

GenTestC(∧n
i=1ci, {c start, c stop, c loop, c ver}) def

=
if n = 1, Test(tc1 , {c start, c stop, c loop, c ver})
else /* n > 1 */

‖n
i=1 Test(tci, Li) ‖L �∧({c start, c stop, c loop, c ver}, (Li)i=1...n, n)

with L = ∪n
i=1Li; ∀i ∈ {1 . . . n}, Li = {c start, c stop, c loop, c veri}

5.2 Verdict Controllers

Several verdict controllers are used in the GenTest definition. Controllers have
different purposes. They are first used to manage the execution of sub-tests
corresponding to the components of the rule. For example, for a OT formula,
we have to wait for the left-side subtest before starting the right-side subtest.
Controllers are also used to “implement” the formula semantics by combining
verdicts from sub-tests.

Controllers definitions are parameterized with channel parameters. We give
here an informal description of the controllers, with a graphical representation for
the more important ones. Other controllers are similar and are easy to formalize
in our test calculus (see [11] for a complete description).

!c startl()

!c startr()

?c vr(vr) [vr ∈ {inc, fail}]?c vl(vl)

[vr = pass]?c vl(vl)

[vl ∈ {inc, fail}]vg := inc

[vl = pass]vg := vr

[vl = pass]vg := pass[vl ∈ {inc, fail}]vg := inc

?c vl(vl)
[vl ∈ {inc, fail}]vg := inc

[vl = pass]?c vr(vr)

vg := vr

!main(vg)

!main(vg)

!c stopr()

!main(vg)

!main(vg)

!main(vg)

!main(vg)

Fig. 5. An instantiated LTS representation of the �O controller
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Formula level controllers. They emit their verdict on the channel main.

1. �O(channel list, channel list). This controller is used to manage the execu-
tion of tiles corresponding to the left and right part of a static implication.
The controller starts the two tests corresponding to the two sides of the
implication. Then it waits for the reception of a verdict (verdicts can ar-
rive in any order). According to the semantics of implication and the first
verdict received, it decides either to wait for the second verdict or to emit
a verdict immediately. The controller takes two channel lists as parameters
for managing the execution and verdict of each side of the implication. The
associated environment contains three variables. A LTS representation of
�O({c startl, c stopl, c vl, c loopl}, {c startr, c stopr, c vr, c loopr}) is shown
in Figure 5.

2. �OT (channel list, channel list). This controller is used to manage the ex-
ecution of tiles corresponding to the sides of an implication with a trig-
gered obligation. The controller starts the test corresponding to the left
side of the implication. If this test is inconclusive or fails, a inc verdict is
decided. Otherwise, the timer and the second test are started. If the test
emits pass, the final verdict is pass. As long as the timer is not expired,
(that is, the boolean variable t out is false), if the second test ends with
fail or inc, the test is started again. When the the timer expires, a stop
signal (!c stopr) is sent to the right side test. In that case, the final verdict
is inc if an inc verdict occurred, fail otherwise. A LTS representation of
�OT ({c startl, c stopl, c loopl, c verl}, {c startr, c stopr, c loopr, c verr}) is
shown in Figure 6.

3. �F(channel list, channel list). This controller is similar to the �O controller.
It waits for a fail verdict for the right-side subtest in order to conclude on a
pass verdict.

start timer

!c startl

?c verl(vl)

[vl ∈ {fail, inc}]vg := inc

[vl = pass]!c startr

?c verr

[vr = inc ∧ ¬t out]!c loopr
1 inc := true

[vr = fail ∧ ¬t out]!c loopr

!main(vg)

[¬1 inc]vg := fail !main(vg)

[vr = pass ∧ ¬t out]vg := pass

[1 inc]vg := inc

[t out]

1 inc := false

Fig. 6. An instantiated LTS representation of the �OT controller
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Predicate Level Controllers

1. �E(channel list, channel list, channel list). This controller is used to man-
age executions and verdicts around an event. The controller starts the ex-
ecution of the event, and then, depending on the verdict received, it starts
the sub-tests associated to the condition predicates in E. These conditions
have to be tested after the event.

2. �∧(channel lists, integer). Informally this controller starts different tests
and waits for verdicts. Like the other controllers it controls sub-tests with a
channel. If all tests succeed, the controller emits a pass verdict. If some tests
do not respond pass the controller emits the last verdict received and stops
the other potentially executing sub-tests. This controller is a generalization
of the one presented in 3.1.

5.3 Soundness Proposition

We now express that an abstract test case produced by function GenTest is
always sound, i.e. it delivers a fail verdict when executed on a network behavior
I only if formula φ does not hold on I. To do this, we follow a very similar ap-
proach than in [8]. Two hypotheses are required in order to prove this soundness
property:

H1. First, for any formula ϕ, we assume that each elementary test case ti pro-
vided for the (event or condition) literals pi appearing in ϕ is strongly sound
in the following sense:
Execution of ti on SUT I always terminate, and
∀λ ∈ Exec(ti, I)·VExec(λ) = Pass ⇒ λ |= pi∧(VExec(λ) = Fail ⇒ λ �|= pi).

H2. Second, we assume that the whole execution of a (provided or generated)
test case t associated to a condition C is stable with respect to condition
literals: the valuation of these literal does not change during the test ex-
ecution. This simply means that the network configuration is supposed to
remain stable when a condition is tested. Formally:
∀pi ∈ Pc. ∀λ ∈ ΣI · λSt ⊗ λ ∈ Exec(t, I) ⇒ (σλ ⊆ fc(pi) ∨ σλ ∩ fc(pi) = ∅)
where σλ denotes here tacitly a set of states instead of a sequence.

We now formulate the soundness property:
Proposition: Let ϕ a formula, I an LTS and t = GenTest(ϕ). Then:

λ ∈ Exec(t, I) ∧VExec(λ) = fail =⇒ I �|= ϕ

The proof of this proposition relies on a structural induction of the formula
(using auxiliary lemmas to show the correctness of each intermediate GenTest
function).

6 Application

In this section we apply the GenTest function to two rule patterns taken from
the case study presented in [8].
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6.1 O-Rule

Consider the requirement “External relays shall be in the DMZ 2”, this could
be reasonably understood as “If a host is an external relay, it has to be in the
DMZ”. A possible modelisation is:

extRelay(h)⇒ O (inDMZ(h))

The goal of this test is to verify that each external relay h is in the DMZ. The
GenTest function can be applied on this formula, leading to the following test:

GenTest(extRelay(h) ⇒ O (inDMZ(h)))
= GenTestP (extRelay(h),Ll) ‖ GenTestP (inDMZ(h), Lr) ‖L �O(Ll, Lr)

= Test(textRelay(h), Ll) ‖ Test(tinDMZ(h), Lr) ‖L �O(Ll, Lr)
where L = Ll ∪ Lr

Ll = {c startl, c stopl, c vl, c loopl} and Lr = {c startr, c stopr, c vr, c loopr}

For a given machine h, predicates extRelay(h) and inDMZ(h) can be checked
either by analyzing the configuration of devices in the network and/or adminis-
trators’ databases (if this information can be trusted), or rather by testing the
actual behaviour of this machine (does it act as an external relay?). In this last
case, we need some tiles for these two predicates.

A possible tile for textRelay(h) consists in attempting to send a mail m from
an external machine he to an internal machine hi by first opening a connection
from he to h (!connect(he, h)), and then asking for mail transfers from he to h
(!transfer(he, h, m)) and from h to hi (!transfer(h, hi, m)). If these operation
succeed the verdict is pass, otherwise it is fail (h does not act as an external
relay). Not that if the connection from he to h fails for external reasons (e.g,
network overloading) then the verdict is inc (inconclusive). This tile can be
formalized as follows:

textRelay(h)
def=

!connect(he, h)◦
?ok◦!transfer(he, h, m)◦

[?ok◦!tranfer(h, hi, m)◦ (ver := pass)◦nil+?ko◦ (ver := fail)◦nil]
+ (?ko ◦ (ver := inc) ◦ nil)

6.2 OT -Rule

Security policies may also express availability requirements. Consider “When
there is a request to open an account, user privileges and resources must be
activated within one hour”. We formalize this requirement as:

request open account(c)[¬ex account(c)] ⇒ O1H(open account(c)[allocate disk(c)])

2 for demilitarized zone, a strongly controlled buffer zone between the inside and out-
side of the network.
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Supposing that there exists a tile for each predicate and that all tiles are
independent. One could generate a test from appropriate derivation:

GenTest(req acc(c)[¬ex acc(c)] ⇒ O1H(op acc(c)[alloc(c)]))
= Test(treq acc(c), Lle) ‖ Test(ex acc(c), Llc) ‖Lle∪Llc �E(Ll, Lle, Llc)

‖ Test(top acc(c), Lre) ‖ Test(talloc disk(c), Lrc) ‖Lre∪Lrc �E(Lr, Lre, Lrc)

‖L �O1H (Ll, Lr)
with: L = Ll ∪ Lr, Lx = {c startx, c stopx, c loopx, c verx}x, x ∈ {l, r, le, lc, re, rc}

7 Conclusion

We have proposed a test generation technique for testing the validity of a tem-
poral logical formula on a system under test. The originality of this approach
is to produce the tests by combinations of elementary test cases (called tiles),
associated to each atomic predicates of the formula. These tiles are supposed to
be provided by the system designer or a test expert, and, assuming they are cor-
rect, it can be proved that the whole test case obtained is sound. The practical
interest of this approach is that it can be applied even if a formal specification
of the system under test is not available, or if the test execution needs to mix
several interface levels. A concrete example of such a situation is network se-
curity testing, where the security policy is usually expressed as a set of logical
requirements, encompassing many network elements (communication protocols,
firewalls, antivirus softwares, etc.) and those behavior would be hard to describe
on a single formal specification. The abstract test cases we obtain are expressed
in a process algebraic style, and they are structured into test drivers (the tiles),
and test controllers (encoding the logical operators). This approach makes them
close to executable test cases, and easy to map on a concrete (and distributed)
test architecture. Independent parts of the tests can then be executed concur-
rently.

This work could be continued in several directions. First, the logic we pro-
posed here could be extended. So far, the kind of formulae we considered was
guided by a concrete application, but, staying in the context of network security,
other deontic/temporal modalities could be foreseen, like“interdiction within a
delay”, or “permission”. We also believe that this approach would be flexible
enough to be used in other application domains, with other kinds of logical for-
mulae (for instance with nested temporal modalities, which were not considered
here). A second improvement would be to produce a clear diagnostic when a
test execution fails. So far, test controllers only propagate “fail” verdicts, but
it could be useful to better indicate to the user why a test execution failed
(which sub-formula was unsuccessfully tested, and what is the incorrect exe-
cution sequence we obtained). Finally, we are currently implementing this test
generation technique, and we expect that practical experimentations will help us
to extend it towards the generation of concrete test cases, that could be directly
executable.
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Abstract. Input-output conformance test theory for discrete systems
has established itself in research and industry already. A couple of years
ago also input-output conformance test theories for timed systems were
defined. The next step is to develop conformance test theory for hybrid
systems as well. In this paper we present a conformance relation for
model-based testing of hybrid systems and we formalize tests for hybrid
systems.

1 Introduction

A hybrid system is a system with both discrete behavior and continuous be-
havior. It has discrete controllers or computers, running discrete software, with
discrete input and discrete output; it receives continuous input through the ob-
servations of sensors; and it generates continuous output through actuators (e.g.
motors, hydraulics, heaters). A hybrid system can be very complex and testing
it thoroughly can be of critical importance. This is the case when the safety of
people is involved or when an unreliable machine may cause a huge loss of profit
for a manufacturer.

The main purpose of model-based conformance testing is to develop a test
tool that uses a formal specification to generate tests. These tests describe the
input with which the system under test should be stimulated, and the output
that is expected from it. Model-based test generation is preferably supported
by a mathematical input-output conformance theory that formally defines when
an implementation is to be considered conform a specification. With respect to
this theory, the set of tests generated from a specification by the algorithm can
then be proved to be sound (meaning that only faulty implementations can fail a
generated test) and exhaustive (meaning that every faulty implementation fails
at least one generated test). Some of the main advantages of model-based testing
are that, since tests are automatically generated and executed, many more tests
can be performed in less time, and tests can be easily repeated. Moreover, the
specifications can also be used to formally verify the design of a system.
� This work has been carried out as part of the TANGRAM project under the respon-
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the Netherlands Ministry of Economic Affairs under grant TSIT2026.
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Tretmans [8] proposed an input-output conformance test theory for discrete
event systems; it led to the test tool TorX [10], which has been successfully
applied in several industrial settings. Recently, extensions for real-time systems
were proposed [2, 5, 6]. In this paper we present an input-output conformance
test theory for hybrid systems.

We start from the assumption that the specification is a hybrid transition
system, which has a discrete transition relation labelled with actions and a con-
tinuous transition relation labelled with trajectories (flows of variables). With
every hybrid transition relation we associate a set of tests, which are themselves
a special kind of hybrid transition systems. Roughly, tests are generated from
the specification by a recursive algorithm that chooses to either select an input
action or an input trajectory from the specification, or to evaluate the observed
output (actions and trajectories). If the observed output action or trajectory is
allowed according to the specification, test case generation may continue or end
with the verdict pass, whereas if the output action or trajectory is not allowed
according to the specification, then the test aborts with the verdict fail.

For the purpose of validating the test generation algorithm, we also develop
a mathematical input-output conformance theory for hybrid transition systems.
In this theory it is assumed that also the implementation is a hybrid transition
system, which is moreover assumed to be input enabled (at all times it should
be able to accept any input from its environment). We propose an input-output
conformance relation that formalizes the idea that, in every reachable state, a
correct implementation should only perform output actions or output flows that
are allowed according to the specification.

This paper is organized as follows. In Section 2 we informally discuss some of
the issues that play a rôle in a theory of model-based input-output conformance
testing for hybrid systems. In Section 3 we introduce hybrid transition systems.
In Section 4 we formalize when an implementation (an input enabled hybrid
transition system) should be considered conform a specification (also a hybrid
transition system). In Section 5 we inductively associate with every specification
a set of tests. In Section 6 we discuss some issues that will still need to be solved
before our theory can be implemented. The paper ends with some conclusions
in Section 7.

2 Hybrid Model-Based Testing by an Example

In this section we informally introduce the main concepts of model-based testing
for hybrid systems. Consider a simple brake control system of a car. The system
allows a car to stay behind another car. The system continuously measures the
distance with the car in front. If the car comes too close to the car in front
it starts braking. The brake system can be turned ON or turned OFF. If the
system is turned OFF, then a warning light is turned ON to notify the driver.
If the system detects a new car in front, the driver is also notified.

Testing a system means stimulating it with input behavior and observing the
output behavior. For instance, the brake system is stimulated by turning it ON
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Fig. 1. A Braking System of a Car

and it is observed whether the warning light is turned OFF. Or, the sensor
which is measuring the distance with the car in front is stimulated with distance
measurement and the change of brake pressure is observed.

What makes testing hybrid systems difficult is that continuous input and
continuous output always occur, that they occur in synchrony and that they
depend on each other. If the brake system is stimulated with a steadily decreasing
distance, then the brake pressure should increases steadily. It is even possible
that the continuous input depends on the continuous output. For instance, if the
car brakes, the amount of brake pressure influences how rapidly the distance with
the car in front decreases (or increases). Furthermore, discrete output behavior
also depends on continuous input behavior and discrete output behavior may
have time constraints. For instance, if the distance measurement with the car
in front makes a jump (which means a new car is detected), then a ”New Car”
output has to occur within 0.5 seconds. A test is passed if only expected output
is observed (given the input applied) and it fails if an unexpected output is
observed. If the brake pressure does not increase while the distance with the car
in front decreases (as expected), then the test fails.

The goal of model-based testing, in the form we consider it, is to automate
test generation and execution. The behavior of the system is specified by a for-
mal model and tests are automatically generated from this specification. The
specification can be a transition system, an automaton, a process algebra term,
or a (formal) specification language. Tests are generated by selecting discrete or
continuous input from the specification and enumerating the possible observa-
tions. A verdict pass or fail is attached to each possible observation in accordance
with the specification. Tests are executed by automatically stimulating the im-
plementation with the input described by the test and simultaneously observing
the output from the implementation.

It is usually assumed that the implementation is input enabled. It is possible
to stimulate the system under test (which is the system that is tested) with
every conceivable behavior at any moment in time.This assumption simplifies
automated test generation and execution because the test tool does not need to
check whether the implementation accepts the input. In most cases it is also a
natural assumption on the implementation. Stimulating the brake system with
”Hello World” instead of ”System ON” affects the system and it should be
possible to test this. It is not required that the specification is input enabled.
This makes it possible to steer the test process as only the behavior is tested
for which the specification provides the input. For example it is possible to only
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specify gradual distance change and test the system using this input, or it is
possible to specify a jump in distance change and test the system using this
input.

The conformance relation formally defines if an implementation conforms to
the specification. The test generation procedure defines how tests are generated
from a specification. With a formal definition of how a test is constructed and a
formal conformance relation it is possible to prove whether our tests are sound
and exhaustive with respect to the conformance relation. That is, if the imple-
mentation conforms to the specification then the implementation will pass all
tests that can be generated from the specification and if the implementation is
not conform the specification then it is possible to generate a test which fails.

In this paper we define a formal conformance relation and formal tests for
hybrid systems.

3 Hybrid Transition Systems

We define our hybrid input-output conformance relation on the semantic model
of hybrid transition systems [3]. We only introduce the definitions necessary for
our theory. We only use symbolic states and we leave open the initial valuation
of variables (which can be defined by the initial state). Before we can formally
define hybrid transition systems, we first need to define trajectories. In order to
define trajectories we need some mathematical preliminaries.

1. An interval over R is called left-closed if it has a minimum, right-closed if it
has a maximum, and closed if it has both a minimum and a maximum.

2. Let f : A → B be a function; for A′ ⊆ A we define f restricted to A′,
denoted by f!A′, as the function f!A′ : A′ → B defined by f!A′(a) = f(a)
for a ∈ A′.

3. Let f : A → B with A ⊆ R be a function and let A + t = {a + t|a ∈ A}; for
t ∈ R we define f + t : A + t→ B by (f + t)(t′) = f(t′ − t), with t′ ∈ A + t.

A trajectory is defined as a function from a interval to a vector of valuations
of variables. A trajectory is defined over a right-closed interval of R, starting
at 0.

Definition 1

1. Let V be a set of (continuous) variables. A valuation for V, denoted by
val(V), is a function that associates with each variable v ∈ V a value of the
type of v. We write val(V ) for the set of all valuations for V .

2. Let t ∈ R>0 be a positive real number and let V be a set of variables. A
trajectory σ is a function σ : (0, t] → val(V ) that associates with each ele-
ment in the domain (0, t] a valuation. We write trajs(V) for the set of all
trajectories with respect to V .

3. Let σ be a trajectory. We write dom(σ) for the domain of σ, σ.fval for the
first valuation of σ, σ.lval for the last valuation of σ, and σ.ltime for the
maximum of the domain of σ. Note that σ(σ.ltime) = σ.lval.
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4. Let σ and σ′ be trajectories. The concatenation of σ and σ′ (denoted by
σ � σ′) is defined as:

σ � σ′ = σ ∪ (σ′ + σ.ltime).

5. Let σ be a trajectory on variables V ; for V ′ ⊆ V we define σ restricted to
V ′, denoted by σ ↓ V ′ as the function σ ↓ V ′ : J → (V ′ → val(V ′)) defined
by σ ↓ V ′(t) = σ(t)!V ′ with t ∈ J .

6. Let σ be a trajectory defined over an interval (0, t], with t > 0 and let t′ ∈ R>0

with t′ ≤ t; then:
σ � t′ = σ!(0, t′];
σ � t′ = (σ!(t′, t])− t′.

7. Let σ and σ′ be two trajectories; then σ is a prefix of σ′, denoted by σ ≤ σ′,
if there exists a t ∈ R>0 such that σ = σ′ � t. We write σ < σ′ if σ ≤ σ′

and σ.ltime < σ′.ltime.

A hybrid transition system is a tuple consisting of a set of states, an initial state,
a set of discrete transitions, and a set of continuous transitions. Every transition
has a label. A label is either an action or a trajectory. The set of actions A is
partitioned into disjunct sets of input actions AI and output actions AO and
internal action τ , i.e. A = AI �AO � {τ}. Every trajectory is defined on a set of
variables V . V is partitioned into disjunct sets of input variables VI and output
variables VO, i.e. V = VI � VO.

A trajectory also models time. The interval over which the trajectory is defined
is the time in which the flow takes place.

Definition 2. A hybrid transition system (HTS) is a tuple H = (S, s0,→, �),
where

– S is a (possibly infinite) set of states;
– s0 ∈ S is the initial state;
– →⊆ S ×A× S is the set of discrete transitions for a set of actions A; and
– �⊆ S × Σ × S is the set of continuous transitions for a set of trajectories

Σ.

From now on, H always is a HTS H = (S, s0,→, �). We write s
a→ s′ instead

of (s, a, s′) ∈→. We write s
σ� s′ instead of (s, σ, s′) ∈�. We also write s

a→
instead of ∃s′∈S : s

a→ s′. and we write s
σ� instead of ∃s′∈S : s

σ� s′.
For our theory we need to assume three conditions on every HTS H. The first

condition we call trajectory interpolation, the second condition we call trajectory
additivity, and the third condition we call trajectory determinism.

– A1: If s
σ′� σ′′

∼∼∼� s′′, then there exists a s′ ∈ S such that s
σ′
� s′ and s′

σ′′
� s′′.

– A2: If s
σ′
� s′ and s′

σ′′
� s′′ then s

σ′� σ′′

∼∼∼� s′′.
– A3: If s, s′, s′′ ∈ S such that s

σ� s′ and s
σ� s′′ then s′ = s′′.
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We use the standard definition of input action enabling. A HTS accepts any
input action in every state. Our definition of input trajectory enabling is that
a HTS accepts any input trajectory in every state, possibly interrupted by an
output action or τ , with the exception of states in which no trajectories are
possible. Observe that in this definition, after a trajectory is interrupted, the
trajectory can still be completed. The reason is that, since the system accepts
any input trajectory, it also accepts the suffix of the interrupted trajectory after
the output action or τ .

Definition 3. Let H be a HTS.

– H is input action enabled if for every s ∈ S and i ∈ AI : s
i→.

– H is input trajectory enabled if for every s ∈ S:
1. there exists an action a ∈ AO ∪ {τ} such that s

a→ and there does not
exist a σ ∈ Σ such that s

σ�; or
2. for every u ∈ trajs(VI ) there exists a σ ∈ Σ with σ ↓ VI ≤ u and:

(a) σ ↓ VI = u and there exists an s′ ∈ S: s
σ� s′; or

(b) σ ↓ VI < u and there exists an action a ∈ AO ∪ {τ} and s′ ∈ S such
that: s

σ� s′
a→.

– H is input enabled if it is both input action enabled and input trajectory
enabled.

The execution of a hybrid transition system is described by a sequence of observ-
able actions and trajectories. A transition with an action or a trajectory leads
to a state from which another transition can be taken. A sequence of which the
start state is the initial state of the HTS is called a trace. Note that in our
definition the internal action τ does not occur in a sequence or a trace.

Definition 4. Let H be a HTS.

1. We inductively define the generalized transition relation ⇒⊆ S×(A∪Σ)∗×S
as the least relation that satisfies for all s, s′, s′′ ∈ S:
– s

ε⇒ s;
– if s

τ→ s′, then s
ε⇒ s′;

– if s
a→ s′, then s

a⇒ s′;
– if s

σ� s′, then s
σ⇒ s′; and

– if s
α⇒ s′ and s′

β⇒ s′′, then s
αβ⇒ s′′.

2. If s ∈ S is a state of S, then a trace of HTS H is a sequence α ∈ (A ∪ Σ)∗

such that s0
α⇒ s. The set of all traces of H is denoted by traces(H).

For a state s and a sequence α we also write s
α⇒ instead of ∃s′∈S : s

α⇒ s′.
We denote by s after α the set of reachable states from s after a trace α.

Definition 5. Let H be a HTS, s ∈ S and α ∈ (A ∪Σ)∗; then:

s after α = {s′|s α⇒ s′}.
For a set of states C ⊆ S we define:

C after α =
⋃
c∈C

c after α.

We sometimes write H after α instead of s0 after α.
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4 The Hybrid Input-Output Conformance Relation

In this section we define the conformance relation for hybrid systems. This con-
formance relation tells us whether a hybrid implementation conforms to a hybrid
specification. This is the case if, in every reachable state, the implementation only
contains specified discrete and continuous output behavior. The implementation
is not conform a specification if, in some reachable state, the implementation
performs an output action or a trajectory that is not specified.

We define our conformance relation on the class of systems that can be de-
scribed by a hybrid transition system. Both the implementation and the spec-
ification are defined as hybrid transition systems. An implementation is input
enabled and a specification does not need to be input enabled.

Fig. 2. Example Hybrid Transition Systems

Figure 2 shows four hybrid transition system examples. In these examples σ1
and σ2 with input variables VI and output variables VO, and a1 is an output
action. We assume that conditions A1 to A3 hold, even though we cannot depict
this (as this means we need to draw infinitely many states and transitions). These
examples are not input enabled either. Still, we will use them to illustrate our
theory.

Intuitively, H3 is not conform H1 because H3 can perform an output action
(in state u0), while H1 cannot. On the other hand, H1 conforms to H3 because
H3 allows all the behavior that H1 can display. H3 is not conform H2 because
when according to H2 an output action has to happen, according to H3 it may
not happen. On the other hand, H2 conforms to H3 because when the output
action a1 occurs, it can also occur according to H3. If the flow of input variables
in trajectory σ1 is different from the flow of input variables in trajectory σ2
(i.e., σ1 ↓ VI �= σ2 ↓ VI), then H4 conforms to H1. The reason is that with
respect to the input trajectory H4 displays the same output behavior as H1.
However, if the flow of input variables is the same for σ1 and σ2 (or there are
no input variables) and the flow of output variables is not the same for σ1 and
σ2, then H4 is not conform H1 because H4 can display output behavior that is
not allowed according to H1. For our conformance relation we first define the
set of trajectories allowed in a state s by traj(s) and we define the trajectories
allowed in a set of states C by traj(C) .
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Definition 6. Let H be a HTS and let s ∈ S be a state of H; then:

traj(s) = {σ ∈ Σ|s σ�}.

For a set of states C ⊆ S we define:

traj(C) =
⋃
c∈C

traj(c).

For instance, traj(s0) of H1 is {σ1} and traj(u0) of H4 is {σ1, σ2}.
Since an implementation is input enabled and a specification does not have

to be input enabled, the specification determines which trajectories are relevant
in our relation. Namely, those trajectories for which an input trajectory exists
in the specification. For instance, in case we determine whether H4 conforms to
H3: if σ1 ↓ VI �= σ2 ↓ VI , then we only want to take into account σ1 ; and if
σ1 ↓ VI = σ2 ↓ VI , then we want to take into account σ1 and σ2.

Definition 7. Let ΣI and ΣS be two sets of trajectories on a set of variables
V with input variables VI ⊆ V ; then:

infilter(ΣI , ΣS) = {σ ∈ ΣI |∃σ′∈ΣS : σ ↓ VI = σ′ ↓ VI}.

For instance, if σ1 ↓ VI �= σ2 ↓ VI , then infilter(traj(v0), traj(s0)) = {σ1}.
As described earlier, in a hybrid transition system time progresses through

trajectories. Actions are instantaneous. It is possible to specify that time cannot
progress unless an action happens first. It allows us for instance to specify urgent
actions, by states from which exactly one action is possible and no trajectories
are possible. However, because we want to restrict conformance of the implemen-
tation to the set of possible input trajectories we do not know whether according
to implementation an (output) action had to happen. For instance, if we apply
the infilter with H3 as implementation and H2 as specification; then, in the
initial states u0 and t0 respectively, the resulting set of trajectories turns out
to be empty (infilter(traj(u0), traj(s0)) = ∅). The information that a1 did not
have to happen is lost. To solve this problem we use a symbol ξ which indicates
that, in a state, besides output actions also trajectories are allowed.

Definition 8. Let H be a HTS and let s ∈ S be a state of H; then:

out(s) =

{
{o ∈ AO|∃s′∈S : s

o→ s′} ∪ {ξ} , if ∃σ∈Σ,s′∈S : (s σ� s′);
{o ∈ AO|∃s′∈S : s

o→ s′} , otherwise.

For a set of states C ⊆ S we define:

out(C) =
⋃
c∈C

out(c).

For instance, out(s0) of H1 is {ξ} and out(u0) of H3 is {a1, ξ}.
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Finally we can define our conformance relation for hybrid systems called
hioco. Informally, in every reachable state the set of output actions and the
set of trajectories performed by the implementation, filtered on input allowed
by the specification, should be a subset of the set of output actions and the set
of trajectories in the specification.

Definition 9. Let S be a HTS and let I be an input enabled HTS. We say that
I is input-output conform S (notation: I hioco S) iff:

∀α∈traces(S) : out(I after α) ⊆ out(S after α) ∧

infilter(traj(I after α), traj(S after α)) ⊆ traj(S after α).

Checking the conformance using our relation for our example systems with re-
spect to some of the others has the following results.

– H1 is input-output conform H3.
– H2 is input-output conform H3.
– H3 is not input-output conform H2 because after the trace ε, out(t0) =
{a1, ξ} and out(s0) = {ξ} and therefore out(t0) � out(s0).

– If we assume that σ1 �= σ2 and σ1 ↓ VI �= σ2 ↓ VI , then H4 is input-output
conform H1 and H4 is input-output conform H3.

– If we assume that σ1 �= σ2 and σ1 ↓ VI = σ2 ↓ VI , then H4 is not input-
output conformH1 because infilter({σ1, σ2}, {σ1}) = {σ1, σ2} and therefore
{σ1, σ2} � traj(t0).

These results comply with our intuition about when these examples should
be conform each other or not.

5 Tests for Hybrid Systems

In the rest of this paper, HTS S = (SS , s0S ,→S , �S) always is a specification
and HTS I = (SI , s0I ,→I , �I) always is an implementation. For testing the
conformance between a hybrid implementation and a hybrid specification we
associate a set of tests with the specification. A hybrid test is a hybrid transition
system T C = (T ∪{pass, fail}, t0,→T C , �T C) with a tree like structure and two
terminal states pass or fail as leaves. Besides being deterministic for trajectories,
a test is also deterministic with respect to actions. A hybrid test has the following
properties.

– The states pass and fail are terminal states of the test. That is, there does
not exist a ∈ A ∪ΣT C such that pass a→ or fail a→.

– A test is deterministic with respect to actions. That is, for all t, t′, t′′ ∈ T
and a ∈ A, if t

a→T C t′ and t
a→T C t′′, then t′ = t′′.

– The conditions A1, A2, and A3 hold for tests as well.
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A test is associated to a specification as follows. If according to the speci-
fication some input actions are allowed, the test can allow one of these input
actions. If according to the specification some output actions are allowed but no
trajectories, the allowed output actions may lead to the verdict pass or continu-
ation of the test. The other output actions and all trajectories lead to the verdict
fail. If according to the specification trajectories are allowed, a particular input
trajectory is chosen. If the complete trajectory (including output variables) is
allowed according to the specification, then the test may lead to the verdict pass
or testing may be continued. All other trajectories lead to the verdict fail. It
may be that applying the selected input trajectory and observing the output
trajectory is interrupted by an output action. If this interruption is allowed ac-
cording to the specification, then the test may be continued or the verdict pass
may be given. If the output action was not allowed the verdict fail is given.

Fig. 3. Example Hybrid Test

Figure 3 depicts an illustrative (but not complete) test T C generated from a
hybrid system H. In our displayed system the transition with output action !a2
means that trajectory σ1 is interrupted. Note that also for this example we did
not depict all the transitions and states such that A1 to A3 hold.

The example test T C says first to apply the input action ?i to the implemen-
tation, and immediately observe the output action !a1. The observation of all
other behavior (output actions or trajectories) leads to the verdict fail. After
that, either the complete trajectory σ1 or the prefix of this trajectory followed
by output action !a2 is correct behavior and leads to a verdict pass. All other
behavior leads to the verdict fail.

Tests are described by a process algebra like notation for action prefixing or
trajectory prefixing, and alternative composition. I.e., a; T C denotes a test pre-
fixed by an action a, σ; T C denotes a test prefixed by a trajectory σ,

∑
T S de-

notes the alternative composition of a set of tests T S. We write T C+T C′ instead
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of
∑
{T C, T C′}. For the formal definition of this notation we refer to the report

version of this paper [12]. We also write pass for the HTS ({pass},pass, ∅, ∅)
and we write fail for the HTS ({fail}, fail, ∅, ∅).

Definition 10. Let S be a specification and let C ⊆ S be a non-empty set of
states; then the set of tests TestsS(C) is inductively defined as follows:

1. pass is an element of TestsS(C);
2. if i ∈ AI and C after i �= ∅ and T C′ ∈ TestsS(C after i), then i; T C′ is an

element of TestsS(C);
3. if traj(C)=∅ and, for all o∈AO with o∈out(C), T Co ∈ TestsS(C after o),

then ∑
{o; T Co|o ∈ AO ∩ out(C)}+∑
{o; fail|o ∈ AO\out(C)}+∑
{σ; fail|σ ∈ Σ}

is an element of TestsS(C); or
4. if

– u ∈ {σ ↓ VI |σ ∈ traj(C)} is an input trajectory and
– traju(C) = {σ|σ ↓ VI = u ∧ σ ∈ traj(C)} is the set of trajectories with

input trajectory u and
– subtraju(C) = {σ|∃σ′∈traju(C) : σ ≤ σ′} is the set of prefixes of the set

of trajectories traju(C),
and j = u.ltime and for all σ ∈ traju(C), T Cσ ∈ TestsS(C after σ) and for
all σ′ ∈ subtraju(C) and o ∈ out(C after σ′), T Cσ′o ∈ Tests(C after σ′o),
then∑
{σ; TCσ|σ ∈ traju(C)} +

∑
{σ; fail|σ /∈ subtraju(C)} +∑

{o; T Co|o ∈ AO ∩ out(C)}+
∑
{o; fail|o ∈ AO\out(C)}+∑

{σ′; o; T Cσ′o|σ′ ∈ subtraju(C) ∧ σ′.ltime < j ∧ o ∈ out(C after σ′)} +∑
{σ′; o; fail|σ′ ∈ subtraju(C) ∧ σ′.ltime < j ∧ o /∈ out(C after σ′)}

is an element of TestsS(C).

Note that in a test we do not need a special action to observe the symbol ξ that
we used in our conformance relation because ξ can be observed by applying and
observing a trajectory.

The execution of a test is defined by the synchronous composition of the test
and the implementation.

Definition 11. Let T C be a test and I be an implementation. The synchronous
composition of T C is defined as T C ‖ I = (S, (t0, s0),→, �) with:

– S = T × SI;
– →= {(t, s) a→ (t′, s′)|t a→T C t′ ∧ s

a→I s′ ∧ a ∈ A} ∪ {(t, s) τ→ (t, s′)|s τ→I s′};
– �= {(t, s) σ� (t′, s′)|t σ�T C t′ ∧ s

σ�I s′ ∧ σ ∈ Σ}.
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Definition 12. Let T C be a test and I be an implementation. The set of test
runs, defined by testruns(T C ‖ I), is the set of all traces that lead to a state
pass or fail.

testruns(T C ‖ I) = {α|∃s∈SI : (t0, s0)
α⇒ (pass, s) ∨ (t0, s0)

α⇒ (fail, s)}

We say a hybrid implementation passes a hybrid test if only the verdict pass is
reachable in the execution of the test.

Definition 13. If T C is a test and I is an implementation, then I passes T C
is defined as

I passes T C ⇐⇒ ∀α∈testruns(T C‖I) : ∃s′∈S : (t0, s0)
α⇒ (pass, s′).

If T CS is a set of tests, then

I passes T CS ⇐⇒ ∀T C∈T CS : I passes T C.

6 Towards Hybrid Model-Based Testing in Practice

The next step in our research will be to develop tooling based on our hybrid
test theory. As a first step we reformulate the inductive definition of tests in
section 4 as a recursive test generation algorithm. Let S be a specification and
let C be a set of initial states of S; then tests are generated by the following
algorithm.

algorithm tcg(S, C) =
select non-deterministically

1. T C := pass
2. select an i ∈ {a|a ∈ AI ∧C after a �= ∅}
T C := i; tcg(S, C after i)

3. if traj(C) = ∅ and there exists an o ∈ AO such that C after o �= ∅,
then

T C :=
∑
{o; tcg(S, C after o)|o ∈ Ao ∩ out(C)} +∑
{o; fail|o ∈ Ao\out(C)} +∑
{σ; fail|σ ∈ Σ}

4. if traj(C) �= ∅ then
select an u ∈ {σ ↓ VI |σ ∈ traj(C)}
let traju(C) = {σ|σ ↓ VI = u ∧ σ ∈ traj(C)}
let subtraju(C) = {σ|∃σ′∈traju(C) : σ ≤ σ′}
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T C :=
∑
{σ; tcg(S, C after σ)|σ ∈ traju(C)} +∑
{σ; fail|σ /∈ subtraju(C)} +∑
{o; T Co|o ∈ AO ∩ out(C)} +

∑
{o; fail|o ∈ AO\out(C)}+∑

{σ′; o; tcg(S, C after σ′o)|σ′ ∈ subtraju(C) ∧
σ′.ltime < u.ltime ∧ o ∈ out(C after σ′)} +∑

{σ′; o; fail|σ′ ∈ subtraju(C) ∧
σ′.ltime < u.ltime ∧ o /∈ out(C after σ′)}

return T C

This algorithm is not directly implementable. Below we discuss several imple-
mentation issues that need to be resolved.

In our theory and our algorithm a test has uncountable many states and tra-
jectories and summations over infinite domains. In practice we can of course only
deal with finite representations for tests: e.g. trajectories specified as differential
equations or algebraic equations, or only by specifying on valuations of variables,
and sets of states represented symbolically: e.g. by zones.

In our algorithm we did not define how we select input actions and input
trajectories. In practice we need to select and generate possible input trajectories
in some way. A first way is to let the test generator choose input actions and
trajectories at random. A second way is to have the user of the test tool manually
select input and construct tests interactively with the tool. A third way is to do
guided input selection based on coverage criteria or based on the (physical)
behavior of the environment of the system under test.

In our theory continuous behavior is defined over a dense real time domain.
In practice tests can only be executed by stimulating the implementation with
samples of input, and by observing samples of output in small time steps. In
this case selecting a trajectory is selecting a sequence of samples. We can only
conclude a verdict with respect to the samples we observe. If according to our
specification we need to observe a constant flow of 0, then it is theoretically
possible that we observe value 0 in all samples, while in between samples the
value fluctuates. Furthermore, samples will be rounded and therefore we can
only conclude a verdict with respect to rounded observations.

In our theory the behavior of a test with respect to an implementation is
defined by the synchronous composition of a test and an implementation. In
practice we need to stimulate the implementation with input generated from
the test and we need to observe the output from the implementation. The first
option is to generate executable code from a test. This program provides input
for an implementation and observes the output of the implementation. An in-
frastructure is needed to connect implementation and test. The second option
is on the fly test generation. In this case a test tool selects one input (action or
trajectory), computes which verdict to attach to the output, and then provides
the input to the implementation. It observes the output from the implementa-
tion simultaneously, after which a new input (action or trajectory) is selected
and applied (in case the test did not lead to verdict fail). An infrastructure is
needed to connect the test tool with the implementation under test. On the fly
test generation seems more practical. However it might not be possible to the



Hybrid Input-Output Conformance and Test Generation 83

select input and apply the input and observe the output and give a verdict, all
in real-time. We need to investigate which method works (best).

For the implementation of a tester we want to use an existing specification
language and reuse algorithms of existing hybrid system tools (e.g. Charon [1],
HyTech [4], or hybrid χ [11]).

7 Conclusions

In this paper we presented the hybrid input-output conformance relation hioco
for hybrid systems. This relation defines in which cases we consider an hybrid
implementation correct with respect to a hybrid specification. We presented an
inductive definition of tests that is sound and exhaustive. For the formal proofs
of soundness and exhaustiveness of our tests we refer to the report version of
this paper [12].

Our hybrid conformance relation and test definition are based on the discrete
conformance relation of Tretmans [8, 9] and his test generation procedure for
discrete systems. The differences are, besides including trajectories, that we do
not have the quiescence action δ and that we introduce the symbol ξ to indicate
the presence of urgent actions. In our tests we observe this ξ implicitly when
an urgent output action did not occur but a trajectory is applied and observed
instead.

The real-time conformance relation developed by Brandan [2] is also based the
discrete conformance theory of Tretmans. However, we believe that our hybrid
conformance relation is closer related to the real-time conformance relation of
Krichen [5] because in that relation time is viewed as (continuous) output of
the implementation. We do not find it necessary to restrict our theory to non
Zeno systems, unlike Brandan. However, in practice we only consider non Zeno
systems because in practice time cannot stop.

The next step in our research is to take our hybrid test theory into practice and
develop tooling. We acknowledge that in our theory we allow uncountable many
actions, trajectories, states, and uncountable many tests. We also acknowledge
that in our theory we allow dense real-time and trajectories are selected, applied
and observed in synchrony with each other and without delay. We need to fit
our theory to what is possible in practice but we can still relate a practical
implementation to the theory.

The only research in hybrid model based testing before our hybrid test theory
was a proof of concept tester [7] developed at the University of Pennsylvania.
No theory was formed for this test tool. The idea of this tool is that a tester
is generated from an environment model (that provides the input) and check
temporal properties at run time. This is different from our theory in which we
generate tests, containing both input and possible output. The advantage of our
theory is that we also specifies the relation between input and output. With the
Charon tester it is only possible to test whether the continuous output of the
implementation stays within certain bounds. In our theory we test whether the
continuous output variables behave according to the specified flow of variables.
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Abstract. We present a way to generate test sequences from EFSM
models using a guided model checker: Uppaal Cora. The approach allows
to specify various structural test coverage criteria of EFSMs, for example,
selected states/transitions, all transitions, all transition pairs, etc. We
describe a method to construct Uppaal models to achieve test sequences
satisfying these criteria and experiment with the search options of Uppaal
to achieve test sequences that are suboptimal in terms of length. We
apply a bitstate hashing space reduction based iterated search refinement
method to shorten the length of test sequences with respect to the length
gained using depth first search. The test generation method and different
search strategies are compared by applying them on a stopwatch and
INRES protocol based case study. The outcome shows the feasibility
of applying guided model checking in conjunction with iterated search
refinement for generating suboptimal test sequences.

1 Introduction

In this paper we target test generation for software systems from specifications
in the form of extended finite state machines (EFSMs). We propose a method
of test generation that combines techniques of model construction with bitstate
hashing based iterated search refinement in model checking.

One possible motivation for working with EFSMs is that specifications pro-
vided in terms of, for example, suitably restricted UML statecharts can be con-
verted into EFSMs. Converting UML statecharts to EFSMs is not the topic of
the current paper and thus we use EFSMs as the starting point for the reason
that they provide a semantically well-defined model representation that can be
applied for test generation. The problem of generating test sequences is formu-
lated as a bounded reachability problem and solved by model checking.

The procedure of searching for a suitable test sequence is simple if the soft-
ware is modeled as a finite state machine that has neither variables nor guard
conditions. Introducing variables and guard conditions, as in EFSMs, makes the
search much more complex.

K. Havelund et al. (Eds.): FATES/RV 2006, LNCS 4262, pp. 85–99, 2006.
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The complexity arises from the large number of combinations of values that
the variables can be assigned and from the need to satisfy guard conditions for
taking transitions. One well known option for generating tests for EFSMs is to
use the search machinery provided out-of-the-box by model checkers.

If a model checker solves a reachability task, it generates a witness trace that
corresponds to an abstract test sequence.

The most critical factor of space exploration based methods is scalability, i.e.,
the ability to handle the exponential growth of the search space.

One example of problems where scalability quickly becomes acute, is targeting
some structural test coverage criteria that result in long traces. For example
all transitions of the Implementation Under Test (IUT) model or all possible
subsequences of transitions of some length k > 1 of the IUT. Our goal is to
generate preset tests for models of deterministic IUT models.

We compare different search strategies and iterated search refinement on the
well-known benchmark examples of stopwatch and the INRES protocol [1].

We show how guiding the search with a cost variable influences the lengths
and required amounts of memory of test generation. In fact, we merge guiding
together with iterated search refinement to reduce the lengths of generated test
sequences and to improve the scalability of applying explicit state model checking
for test generation.

We use the model checker Uppaal and its guided counterpart Uppaal Cora [2]
because it enables us to demonstrate both, the influence of guiding, and iterated
search refinement, in the presented context of test generation.

2 Related Work

The most common coverage criteria in the context of model-based testing are
structural coverage criteria, such as state coverage and transition coverage [3].
Test generation according to structural coverage criteria is often treated as a
reachability problem and solved either by symbolic or explicit state model check-
ing [4].

An automated test generation tool SAL-ATG based on SAL2 symbolic model
checker is proposed in [5]. An alternative approach to test case generation by
explicit state model checking is studied extensively on the basis of the Uppaal
family of tools1. Special testing environments Uppaal Tron [7] and Uppaal CoVer
[8], [9] have been built upon the main search engine of Uppaal.

Cost automata based Uppaal Cora [2] is designed for solving cost guided
reachability problems and can be used also for introducing context information
to guide test case generation. One important problem in using model checking
for test case generation is encoding test coverage criteria. In [10] the structural
coverage criteria are represented by a set of CTL formulae. Similarly, temporal
logics LTL and CTL are used respectively in [11] and in [8] for specifying path
conditions that are transformed to property automata. In SAL-ATG the test
1 The representation of time in Uppaal is symbolic. The representation of locations

and integer and boolean variables is explicit state [6].
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purpose is stated directly as an observer state machine. Finding a minimal-
cost or time optimal witness for a formula is combinatorially hard. Existing
model checkers search minimal-cost witnesses typically by breadth-first search
(enhanced with some heuristic) of state space that is known to be a NP-hard
problem [10].

The search options of model checking tools have a significant influence on
the performance of reachability search when the whole state space need not be
traversed. For instance, traversal options such as depth first, breath first, ran-
dom first etc are supported by the majority of model checkers. Optimization
techniques used in model checking include also preprocessing of the model, for
example, cone of influence reduction [5]. Instrumenting the model with trap vari-
ables is a standard technique used in prioritized traversal [8]. One step further is
combining model checking with other methods using scriptable model checkers as
reported in [5]. It is shown that combining different methods by scripting allows
even a bounded model checker to reach deep states at low resource footprint.

The work presented in the current paper takes a different approach by com-
bining guiding of Uppaal Cora with iterated search refinement.

3 Case Studies

We use the following two case studies in the paper: stopwatch [5] and a modified
INRES protocol [1].

Fig. 1. Stopwatch as UML state machine

Stopwatch. In [5] it was claimed that explicit state model checkers are not suit-
able for finding test cases from models that have deep counter-dependent loops.
Such a counter (in the range 0..6000) is present in the stopwatch example. Re-
ferring to our experiments with Uppaal Cora we show how guiding and iterated
search refinement improve test generation using explicit state model checking.

The stopwatch in [5] is modeled using Stateflow notation. In Fig. 1 there
is an equivalent UML state machine. For our experiments we used a flattened
representation in Uppaal.
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Modified INRES protocol. INRES protocol is a well-known example in the
model verification and test generation community. The protocol is simple but
not trivial and provides a good reference for studying performance and scala-
bility issues of competing methods. We use it to demonstrate the scalability of
our test generation method. The case study shows that the generation of test
sequences for ”all transition triples” test coverage results in very long test se-
quences. The protocol was introduced in [1] and was modified in [12] and is
depicted in Fig. 2 as an EFSM. We chose this particular model because it has
several loops, for example, a self loop (at the Sending state) and a (minimally)
two-step loop (Sending, Blocked, Sending), the depths of which depend on the
input parameters datarequest.n and datarequest.b respectively.

Idle

Wait Connect ion

Connected

Wait Sending

Wait Disconnected

Sending

Blocked

t1
U:sendrequest /
L:cr

t17
L:disrequest /
U:disindication

t2
L:cc /
U:sendconfirm

t3
U:datarequest /
sdu:=datarequest.sdu;
number:=0;
counter:=0;
no_of_segment:=datarequest.n;
blockbound:=datarequest.b

t5
L:resume

t4
L:tokengive /

L:dt(sduElement=sdu[number]);
timer1.start;

number:=number+1
t6
timer1.timeout /
L:token_release;
number:=number-1

t7
L:ack [number == no_of_segment] /
U:monitor_complete(par=counter);
L:token_release;
L:disrequest

t8
L:ack [number < no_of_segment] /

L:dt(sduElement=sdu[number]);
timer1.start;

number:=number+1

t9
L:block /
counter:=counter+1

t10
L:resume

[counter<=blockbound]

t12
timer1.timeout
[counter<=blockbound] /
L:token_release;
number:=number-1

t13
L:resume

t14
L:block

t15
L:ack

t16
L:disrequest /
U:disindication

t11
[counter>blockbound] /
L:token_release;
U:monitor_incomplete
    (par=number);
L:disrequest

Fig. 2. Modified version of the INRES protocol [12]

4 Model Construction for Test Generation

An Extended Finite State Machine (EFSM) is a FSM extended with variables
with finite domains, for example, Booleans and bounded integers. In addition to
input and output, every transition may have a guard condition and assignments
to variables. We assume that the EFSM of the initial IUT is deterministic and
strongly connected.

The source EFSM that is given as a UML state machine is transformed into
a Uppaal automaton in three steps. In the first step, the UML state machine is
flattened and parallel states are sequentialized. The result is transformed to a
Uppaal automaton in the second step. We are interested in finding a sequence of
transitions that satisfies the selected structural coverage criterion in the model,
thus the inputs and outputs of the model are abstracted away, so that only
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the information influencing the control flow of the Uppaal model is kept. Thus
we reduce the search space in a way that makes trace generation by model
checking feasible. In the last step the model is annotated with auxiliary variables
to mark passing certain states or transitions. Such trap variable declarations,
trap variable assignments and, additionally, cost functions are added to each
transition according to the selected coverage criterion. After the generation of
test sequence the inputs and outputs associated with each transition in the test
sequence are reintroduced in the tester code generation step, which is beyond
the scope of the current paper.

As in [5], [10], [13], and [14], we encode the coverage criterion as a reachability
problem using trap variables. For example, in the case of all transitions criterion,
an initially false boolean trap variable ti is added to the model for each transition
and an assignment ti = true is added to each transition. A witness trace that
passes all transitions at least once is generated by the model checker by checking
reachability of the property E♦(t1 ∧ t2 ∧ ... ∧ tn), where n is the number of
transitions in the model. We extend this approach for k-switch [15] coverage
criterion.

1-switch criterion requires that all pairs of consecutive transitions are covered
by a test sequence at least once. For the construction of a reachability property
corresponding to the 1-switch criterion we add trap variables titj for each feasible
transition pair (ti, tj). Trap variables titj are initially set to false. To remem-
ber the previously visited transition an auxilary variable prev is declared. On
each transition tj a case statement is added for assigning 1-switch trap variables
to true depending on the previously passed transition, in Fig. 3 (left), where
ti1, ..., til are incoming transitions to the source state of transition tj . The prop-
erty to be checked involves a conjunction of all feasible 1-switch trap variables
titj : E♦

∧
i,j(titj).

select (prev) {
case (prev==ti1) ti1tj=true;
...
case (prev==til) tiltj=true;

}

select (prev) {
case (prev==i1)

select (befprev) {
case (befprev==tj1) tj1ti1tk=true;
...
case (befprev==tjm) tjmti1tk=true;

}
...
case (prev==til)

select (befprev) {
case (befprev==tj1) tj1ti1tk=true;
...
case (befprev==tjm) tjmti1tk=true;

}
}

Fig. 3. Trap variable assignments for 1-switch for tj (left) and 2-switch for tk (right)

2-switch is a triple of consecutive transitions and a test satisfying all 2-switches
coverage criterion passes all feasible transition triples. For transforming all 2-
switches criterion to a reachability problem we add a trap variable titjtk for each
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feasible triple and auxilary variables prev and befprev to remember the previous
and before-the-previous traversed transition, respectively. In Fig. 3 (right) there
is an example of a nested case statement that is added to each transition tk for
assigning 2-switch trap variables where tj1, ..., tjm are incoming transitions to the
source state of transition tj . The property to be checked contains a conjunction
of all feasible 2-switch trap variables titjtk: E♦

∧
i,j,k(titjtk).

Idle

WaitConnection

Connected

WaitSending Blocked

Sending

WaitDisconnected

//t1

cost+=cost_t1(),

trap_t1(), steps++//t17

cost+=cost_t17(),

trap_t17(), steps++
//t2

cost+=cost_t2(),

trap_t2(), steps++

//t3

cost+=cost_t3(),

number=0, counter=0, 

no_of_segment=n,

blockbound=b,

trap_t3(), steps++

//t4

cost+=cost_t4(), number++, 

trap_t4(),

steps++
//t6

cost+=cost_t6(), number--, 

trap_t6(), steps++

counter<=blockbound
//t10

cost+=cost_t10(),

trap_t10(), steps++

//t9

cost+=cost_t9(),

counter++, trap_t9(),

steps++
counter>blockbound
//t11

cost+=cost_t11(),

trap_t11(), steps++

number ==no_of_segment
//t7

cost+=cost_t7(), trap_t7(), steps++

//t16

cost+=cost_t16(),

trap_t16(), steps++

//t5

cost+=cost_t5(),

trap_t5(), steps++

number <no_of_segment
//t8

cost+=cost_t8(), number++,

trap_t8(), steps++

//t15

cost+=cost_t15(), trap_t15(), steps++

//t13

cost+=cost_t13(),

trap_t13(), steps++

//t14

cost+=cost_t14(),

trap_t14(), steps++

counter<=blockbound

//t12

cost+=cost_t12(), number--, trap_t12(), steps++

Fig. 4. Uppaal model of the modified INRES protocol with traps and cost functions

In Fig. 4 there is a Uppaal representation of the INRES model in Fig. 2
for generating all 2-switch test sequence. In Fig. 5 (left) there is an example
of the relevant trap variable assignment function, where case statements are
implemented in terms of if-then-else.

// 2-switch trap variable assignments
// procedure on the transition t1

void trap_t1() {
if (prev==16) {

if (befprev==7) t7t16t1=true;
else if (befprev==11) t11t16t1=true;
else if (befprev==13) t13t16t1=true;
else if (befprev==14) t14t16t1=true;
else if (befprev==15) t15t16t1=true;

}
else if (prev==17)

if (befprev==1) t1t17t1=true;
befprev=prev; prev=1;

}

//2-switch cost function on the transition t1

int cost_t1() {
if (prev==16 and (

(befprev==7 and t7t16t1) or
(befprev==11 and t11t16t1) or
(befprev==13 and t13t16t1) or
(befprev==14 and t14t16t1) or
(befprev==15 and t15t16t1)
)) return PENALTY;

if (prev==17 and (
(befprev==1 and t1t17t1)
)) return PENALTY;

return 0;
}

Fig. 5. Implementations of the trap assignment function (left) and cost assignment
function (right)

Uppaal Cora has support for guiding the reachability search with a built-
in cost variable which can be used to minimise the lengths of generated test
sequences. We define the cost variable assignment on each transition so that the
cost increment is zero while the switch has not been passed (the trap variable of
the switch is false) and increases the cost by a fixed penalty after it is set to true.
In Fig. 5 (right) there is an example of a cost function used in the experiments.
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5 Iterated Search Refinement for Test Generation

Model checking in general involves searching possibly very large state spaces to
prove or disprove a query — a formula typically in some temporal logic. We
make use of the feature of model checking to generate witness traces. We specify
one test coverage criterion at a time as a reachability query.

We chose to use Uppaal Cora version 060206 because it enabled us to demon-
strate the behaviour of regular search options and in addition the influence of
guiding and iterated search refinement in the presented context of test gener-
ation using a single model format and thus avoiding influences to results that
may be introduced by converting a model to several modelling formalisms.

5.1 Standard Search and Trace Generation Options of Model
Checking

Standard search strategies typically used to traverse the state space are depth
first and breadth first. The standard version of Uppaal implements both [16] and
additionally also a random depth first search strategy. Breadth first search looks
for all reachable states at current search depth before proceeding deeper while
depth first search takes one path and goes along it deeper until the property
is satisfied or it needs to backtrack to look at alternative paths. Reachability
queries considered in the current context do not in practice require full traversal
of the state space if the property is satisfiable.

Trace generation options that Uppaal provides [16] are for generating some,
shortest, and fastest trace. Since we have currently omitted the use of clocks in
our models, we do not use the latter option in the experiments.

Additional search strategies of guided model checking provided by Uppaal
Cora are best first, random best depth first, and smallest heur first [2]. As we
use only the cost variable for guiding, the latter search option is not used in the
experiments.

An additional trace generation option of guided model checking provided by
Uppaal Cora is best trace. This means that the trace generated has the lowest
aggregate value of cost in the context of the search strategy used.

5.2 Iterated Search Refinement Using Bitstate Hashing

Bitstate hashing, also known as supertrace, is a well known method applied for
model checking and thoroughly analysed in [17] for reducing memory consump-
tion of the whole state space search by storing only a single bit for each seen
state at the address calculated by a hash function. The drawback of the method
is the possibility of hash collisions that will result in unexplored parts of the
search space, rendering the method sound but incomplete. Still, fast reachability
checks that yield a valid trace can be quite useful for applying model checking,
for example, for test sequence generation from an EFSM model.

In general, the bigger the hash table, the lower the probability of hash col-
lisions. But big hash tables may still require unavailable amounts of memory.
Iterated search refinement is briefly mentioned in [18] and is based on the idea
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of iteratively increasing the size of the hash table and thus search thoroughness.
We make use of the property of a division remainder based hash function to
distribute hash collisions pseudorandomly as the divisor (the hash table size)
is changed. Thus, the states considered similar by collisions change too. Since
Uppaal uses a modulus based hash function [6] for bitstate hashing, we use
unmodified Uppaal Cora to compare the influences of different search options.

Basic Iterated Search Refinement, ISR, works as follows. There is a model M
and a reachability query q. The bitstate hash table is initially set very small (for
example 1 bit). The reachability of the query q is checked on model M . If a trace
to the reachable state is not found then the bitstate hash table size is increased
by 1. The hash table size is increased by small steps for some configurable number
of times and then it is increased by some factor, for example 2. The small steps
are necessary to try several different paths at each thoroughness level and big
steps are to speed up finding the appropriate hash table size for the particular
task. The minimal size of the bitstate hash table yielding a trace may differ by
many orders of magnitude for different tasks. The bigger the hash table, the
longer each iteration step takes.

Improvement of the first result gained in the basic approach is possible for
some specific types of models. Let us assume that we look for a trace that is as
short as possible and exhaustive search is not possible due to memory and/or
processor time limits. Then we can iteratively constrain the reachability query by
the trace length bound found in the previous step. In such an approach there is
no clear criterion when to stop, as we cannot be sure if the result gained at some
iteration step is actually the shortest possible. The most important criterion is
the amount of time we have to wait for an improved result.

Combining ISR with guiding is a very important aspect in the current ap-
proach. Namely, the shape of the reachable search space of a model given a
bitstate hash table size is dependent on search strategy, as the state hashing to
some address in the bitstate hash table is traversed only during the first visit
and the next states hashing to the same value are already considered seen.

6 Comparison of Search Strategies for Test Generation

In this section we present a comparison of different search strategies and trace
generation options that can be used in model checking for test sequence deriva-
tion. The experiments are run on an EFSM represented as a Uppaal model of
the stopwatch example described in Section 3. All experiments described in this
paper were run on a 2.4 GHz Xeon processor with 512 kB of cache, 533 MHz
FSB and 6 GB of 266 MHz DDR memory.

The Uppaal model of the stopwatch is presented in Fig. 6. The model is dec-
orated with trap variables that are used for finding a trace that passes through
all transitions. The transitions are labelled by the names of trap variables, for
example //t0. To make the comparison of all available search options possi-
ble, the model is optimised by declaring variables min, disp cent, disp sec,
disp min, and steps as hidden (meta), meaning that the states where only the
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cent==maxcent
//t9

cost+=(t9?PENALTY:0),

cent=0, sec++, t9=true

sec==maxsec
//t10

cost+=(t10?PENALTY:0),

sec=0, min++, t10=true
sec<maxsec

//t11

cost+=(t11?PENALTY:0),

t11=true

cent<maxcent
//t8

cost+=(t8?PENALTY:0),

t8=true//t6

cost+=(t6?PENALTY:0),

disp_cent = 0, 

disp_sec = 0,

disp_min = 0, 

cent = 0,

sec = 0,

min = 0,

t6=true, steps++

//t5

cost+=(t5?PENALTY:0),

t5=true, steps++
//t7

cost+=(t7?PENALTY:0),

t7=true, steps++

//t0

cost+=(t0?PENALTY:0),

disp_cent = 0, disp_sec = 0,

disp_min = 0, cent = 0,  sec = 0,

min = 0, t0=true, steps++

//t1

cost+=(t1?PENALTY:0),

t1=true, steps++
//t3

cost+=(t3?PENALTY:0),

t3=true, steps++
//t2

cost+=(t2?PENALTY:0),

t2=true, steps++
//t4

cost+=(t4?PENALTY:0),

t4=true, steps++

//t13

cost+=(t13?PENALTY:0),

cent++,

t13=true, steps++

//t13

cost+=(t13?PENALTY:0),

cent++,

t13=true, steps++

cent==maxcent
//t9

cost+=(t9?PENALTY:0),

cent=0, sec++, t9=true

sec==maxsec
//t10

cost+=(t10?PENALTY:0),

sec=0, min++, t10=true

sec<maxsec
//t11

cost+=(t11?PENALTY:0),

t11=truecent<maxcent
//t8

cost+=(t8?PENALTY:0),

t8=true

//t12

cost+=(t12?PENALTY:0), t12=true

//t12

cost+=(t12?PENALTY:0), disp_cent = cent, disp_sec = sec,  disp_min = min, t12=true

Fig. 6. Uppaal model of the stopwatch with trap variables and cost assignments

values of such hidden variables are different are considered equivalent by the
model checker. The steps variable is used for capturing the length of the trace.

The model is also decorated with assignments to a special purpose built-in
cost variable which is used for guiding the model checker.

Table 1. Test sequence lengths found using different search options for the model
without guiding

Search order Trace No. of steps Time [sec] Memory [MB]

BF some 6012 21 146
DF some 30009 52 45

RDF some 8988 12 12

In Table 1 there are experimental results of applying Breadth First (BF),
Depth First (DF) and Random Depth First (RDF) search strategies on the
model in Fig. 6 with the goal of covering all transitions (equivalent to all trap
variables t0...t13 becoming true). The trace generation option is set to some
because setting it to best caused the model checker to run out of memory (3GB
per process due to 32 bit architecture). Breadth first search did not yield an
answer without declaring some of the integer variables to be hidden. We can see
that depth first search yielded an answer quickly but the trace is 5 times longer
than the minimal, which is 6011 steps in length. Random depth first search
yielded a better answer than regular depth first.

In Table 2 there are results for applying the iterated search refinement with
the same search strategies. The figures show that using breadth first search
consumes considerably more memory and requires considerably more time to
find an answer than depth first and random depth first search. By comparing
the results in Table 1 and in Table 2, we can see that the result obtained by
depth first search using ISR is considerably shorter.

But can we improve these results? Intuitively, if we could guide the search,
we should find a shorter trace sooner.
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Table 2. Test sequence lengths found using ISR and model without guiding (first trace
found)

Search order Trace No. of steps Time [sec] Mem. [MB] Hash table [Mbit]
BF some 6141 276 48 44
DF some 6137 106 11 1

RDF some 9000 80 11 3

First, we add cost assignments to all transitions that are equipped with trap
variables. The cost assignments cost+=(trap?PENALTY:0) are C style assign-
ments, meaning that PENALTY is added to cost only when the corresponding
trap variable has already become true before evaluating the assignment.

Table 3. Test sequence lengths found using guiding with cost variable definition

Search order Trace No. of steps Time [sec] Memory [MB]

BeF best 6011 22 147
RBDF best N/A 2230 out of memory

Table 3 summarizes the results of applying Uppaal Cora with Best First (BeF)
and Random Best Depth First (RBDF) search. One can see that best first strat-
egy yields the optimal answer but requires a considerable amount of memory for
this rather small example. In fact, the result is very close to breadth first search
in the model without guiding. Random best depth first did not yield an answer
at all due to running out of memory.

Table 4. Test sequence lengths found using ISR and a model with cost assignments
on all transitions (first trace found)

Search order Trace No. of steps Time [sec] Mem. [MB] Hash table [Mbit]
BeF some 6302 6063 622 1408
BeF best 6155 5837 628 1408

RBDF some 8508 138 17 3
RBDF best 8505 138 21 3

Next we combine guiding and ISR. The results of running ISR with cost as-
signments on every transition are presented in Table 4. The results show that
using the best first search strategy combined with ISR produces considerably
worse results than breadth first search. Random best depth first search gives
interesting results that are comparable to random depth first search in the unit-
erated case (Table 1) and to depth first and random depth first in the iterated
case without guiding (Table 2).
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The results are not significantly improved. Can we tune guiding for better
results?

We tune the model by removing the cost of taking entry transitions to loops
where counters are incremented, for example transition t13 in Fig. 6. In this
way we relieve multiple entries to loops from penalties and thus make the model
checker choose such transitions more often. This requires an extra analysis of
the model which is currently not automated.

Table 5. Test sequence lengths found by Uppaal Cora using ISR and model with
guiding and loop entry optimisations

Search order Trace No. of steps Time [sec] Mem. [MB] Hash table [Mbit]

First trace found
BeF some 6226 5745 625 1408
BeF best 6254 5485 599 1408

RBDF some 7279 259 12 5
RBDF best 6714 286 27 5

Shortest trace found before system memory or hash table overflow
BeF some 6151 7431 628 1408
BeF best 6133 8059 599 1408

RBDF some 6011 3810 265 176
RBDF best 6011 3515 310 176

The results of running the ISR on the tuned guided model are presented in
Table 5. The first results obtained by the ISR algorithm by random best depth
first search with either some or best trace generation option are significantly
better than in the previous case. Additionally, if the iteration is continued, the
actual optimum is also reachable by ISR (the lower half of Table 5.). The draw-
back of ISR is that there is no indication how far the current result is from the
optimal value.

We presented a comparison of different search strategies on a relatively small
and optimised example. In the next section we look at how depth first search
without iteration, depth first search with iteration and random best depth first
with best trace generation option behave on a larger example. These options
are chosen because these have low memory footprint and yield relatively good
results and thus have the potential to be scalable.

7 Scalability of ISR and Guiding for Test Generation

The modified INRES protocol in Fig. 2 contains a self-loop where a variable is
incremented (transition t8) and several cycles of two or more transitions (for
example, a variable is incremented in the cycle containing t9 and t10). The test
sequence length depends on the parameters n and b defining the upper limits
of loop counters. A manually obtained estimation of the shortest length of all
2-switch test sequence can be given as 352 + 15n + 26b, when n ≥ 5 and b ≥ 3.
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Table 6. Combinations of search options used for the INRES case study

Abbreviation ISR Search order Trace Guiding

DF - depth first some -
IterDF first result depth first some -

IterRBDF first result random best depth first best uniform
IterRBDF tuned first result random best depth first best tuned

Next we present the results of searching for all 2-switch test sequences in the
model in Fig. 2 using options listed in Table 6. The results that are obtained
using random best depth first search and ISR are average values of 3 runs. While
the first value found can vary considerably in different runs, the value obtained
by refining the initial result for some proportional amount of time converges
fast. Uniform guiding means that all trap variables are associated with similar
cost and tuned guiding means that the cost functions have been modified not to
penalize for entering the loops where counters are incremented, i.e. consequent
incrementations of the counters is favoured.
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Fig. 7. Lengths of sequences in the INRES model for the 2-switch coverage criterion

The trace lengths of all 2-switch test sequences generated with different search
options are given in Fig. 7. Estim. stands for the estimated value. The line
representing DF search ends at n = 300 on the rightmost diagram because the
model checker ran out of memory. We see that the iterated approach scales with
all selected combinations of options for larger models than the depth first search.
Tuned guiding yields traces that are quite close to the estimated shortest.

The maximum amount of memory that was required to generate the traces
is given in Fig. 8. We can see that DF search takes little memory in the case
where counters are shallow (the diagram on the left) but the amount of required
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Fig. 8. Memory required to find sequences for the 2-switch coverage criterion
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Fig. 9. Time spent for finding sequences for the 2-switch coverage criterion

memory increases rapidly when the counters become deeper (the diagram on the
right). The iterated approach requires much less memory than plain DF search.

The time it took to generate the traces is given in Fig. 9. We can see that
the gain in memory and shorter trace lengths is paid for with processor time.
The iterative approach takes generally much longer than depth first search. This
problem can be relieved by running the iterations on multiple processors in
parallel as each iteration is independent. In addition, in most cases, it is OK to
wait for more than just a few seconds for a test sequence satisfying some stronger
structural coverage criterion.
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8 Conclusion and Discussion

We presented a way to build Uppaal models from EFSM models to generate
test sequences covering some structural criteria, for example all transitions, all
transition pairs and all transition triples. We conducted a comparison of different
search strategies on a stopwatch model. The comparison confirmed what has
previously been stated in the literature, that explicit state model checking does
not scale well for test sequence generation purpose: breadth first search, which
would yield a short sequence, runs out of memory with quite simple models and
depth first search produces very long sequences while consuming large amounts of
memory as the model becomes more complex. A bitstate hashing based iterated
search refinement method for checking reachability proved to be more scalable
on unmodified models for test generation than the traditional search strategies
used in model checking. Additionally, extending the EFSM model with guiding
cost expressions yielded better results in terms of sequence length. Some tuning
of the cost expressions further improved the results. Thus, we have shown how
the lengths of test sequences generated using explicit state model checking can
be improved by combining guiding and iterated search refinement.
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Abstract. To efficiently solve safety verification and testing problems for an
aspect-oriented system, we use multitape automata to model aspects and pro-
pose algorithms for the aspect-oriented system specified by a number of primary
labeled transition systems (some of them are black-boxes) and aspects. Our al-
gorithms combine automata manipulations over the aspects and primary systems
with black-box testing over each individual black-box, but without generating the
woven system.

1 Introduction

Aspect-oriented Programming (AOP) [1] has been considered among “ten emerging ar-
eas of technology that will soon have a profound impact on the economy and on how
we live and work” [14]. In a software system, a concern is understood as a property
of interest. Separation of concerns has long been regarded as a main principle in soft-
ware engineering. A concern can be implemented as a component (if it can be cleanly
encapsulated in a generalized procedure or object) or as a cross-cutting aspect (if other-
wise; e.g., a security aspect interleaved with several components) [1]. In AOP, primary
systems can be woven with aspects into woven systems – final executables – by aspect
weavers. This process is called weaving, which has provided a new way to compose
a complex system, whose reusability, extensibility and adaptability may also be in-
creased. The successes of AOP at the code level (e.g., AspectJ [2]) have also inspired
researchers to study methodologies in aspect-oriented design that bring in cross-cutting
concerns even at earlier software development stages [9,10,8,12,3,4].

Despite its convenience in addressing cross-cutting concerns, introducing aspects into
a system on the other hand raises a quality assurance issue in the woven system: how
to assure that a collection of aspects really add the functionality they are supposed to,
and moreover, do not invalidate desirable properties of the primary system to which the
aspects are woven? That is, we would like to assure that aspects perform their intended
behavioral modifications over the primary system without producing any undesirable
side effects. Theoretically, it is clear that, once a primary system is given, a well-specified
aspect (we assume that the aspect “knows” how to weave) will give us a construction on
the woven system. Therefore, the quality assurance problem is essentially a verification
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problem and verification techniques like model checking [5] can be applied on the woven
system directly. However, this direct approach has serious issues:

– Before the model-checking starts on the woven system, one has to wait till the
woven system is constructed. But when the model-checking actually starts, the state
space in the woven system may have already exploded, in particular when nested
weaving is involved.

– When the primary system contains components that are black-boxes (such as a
COTS component, whose source code or design details are unavailable), a woven
system may not even be available.

To address the issues, in this paper, we study fundamental algorithms that are possi-
ble to verify/test an aspect-oriented system or design, but without weaving (i.e., without
constructing the woven system).

In our study, a system or design is modeled as a labeled transition system. An aspect
is a multitape automaton, or more precisely, the tuple language accepted by the au-
tomaton. It characterizes how behaviors of several primary systems can be woven into
a behavior of the woven system. We then define an aspect-oriented system A as a tree
whose leaves are primary systems and nonterminal nodes are aspects. As defined in the
paper, the woven system, also denoted by A, can be constructed through automata ma-
nipulations (assuming that the automata for the aspects as well as the primary systems
are of finite-state). We study the safety verification problem as follows: Given a regular
set Bad (of event sequences), whether the woven system has a behavior in Bad. Our
safety verification algorithm is a top-down and then bottom-up process that explores the
structure of the tree A (using automata manipulations), during which a regular badSet
is calculated and updated for each node. Once any one of these badSets becomes empty,
the algorithm halts. Our algorithm makes it possible to obtain the answer to the safety
verification problem before the entire tree is explored. We also study the safety testing
problem which is exactly the same as the safety verification problem, except that one
or more of the primary systems are black-boxes. Our safety testing algorithm explores
the structure of the tree A and makes use of the white-box primary systems as well as
the test results of those black-boxes that have been tested in the algorithm. Then, the
algorithm computes, through automata manipulations, a badSet for the black-box that
is about to test. This badSet has the following property: a behavior of the black-box that
is not in the badSet can not cause the woven system A to have a behavior in the given
Bad. Hence, this badSet can be used to further eliminate the unnecessary tests that
would otherwise be tested on the black-box. The algorithm selects and performs tests
for each of the black-boxes in this way. The algorithm halts when one of these badSets
becomes empty. Therefore, essentially, our safety testing algorithm is decompositional
and dynamic: tests run on a black-box are tailored to the specific safety testing problem
instance of A. Furthermore, tests performed over a black-box will be used later in the
algorithm to further trim away unnecessary tests performed over other black-boxes.

2 Related Work

Recently, a significant amount of papers have been published to address the modeling
and verification problems of aspect-oriented systems.
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In [18,16], model-checking has been used to verify aspect-oriented systems at the
source code level by extracting finite-state designs. Unfortunately, such an approach
may cause false negatives on the verification results. References [9,10,8,12,3] extend
the UML (Unified Modeling Language) to support aspect-oriented design, where the
primary system and aspects can be woven at the design level. However, since the seman-
tics of UML is not formal in general, the woven design can not be faithfully verified. To
address the issue, some researchers seek to translate a subclass of aspect-oriented UML
to a formal specification language associated with a formal analysis tool. For instance,
in [4], performance is modeled as an aspect using aspect-oriented UML which is trans-
lated into Rapide ADL [15] to evaluate if the woven system satisfies a time-response
requirement. Reference [17] adapts a role-based aspect-oriented modeling method for
aspect-oriented UML design and uses Alloy, a lightweight formal specification lan-
guage and analysis tool, to verify the woven system. However, as pointed out by au-
thors, the translation from UML to Alloy was done manually and only worked for some
special cases.

Our approach is totally different from all approaches we mentioned above. Our safety
verification and testing algorithms verify and test aspect-oriented systems without con-
structing the actual woven systems. We also believe that our formal approach of us-
ing multitape automata and their manipulations in studying verification problems of
aspect-oriented systems is also new: this approach will also make research results that
are already established in automata theory be available in analyzing aspects and aspect-
oriented systems, e.g., aspects that are of infinite-state.

Our algorithms are also related to our decompositional testing algorithms [6] for
concurrent systems containing black-box components. In these latter algorithms which
are inspired by the decompositional verification ideas by Giannakopoulou et. al.[7], test
sequences are generated and run on a concurrent component that are customized to
its specific deployment environment. Since blackbox testing (instead of verification) is
used in [6], unlike the framework in [7], the testing algorithms in [6] does not require
a complete specification about a component to be incorporated into the concurrent sys-
tem. On the other hand, we study decompositional testing algorithms for aspect-oriented
systems in this paper instead of concurrent systems in [6].

3 Systems, Transactions, and Aspects

In this paper, a system M is a (nondeterministic) labeled transition system, where its
labels, called (external) events, are drawn from a given finite alphabet Σ. Formally,
M = (Q, q0, Σ, δ), where Q is a (not necessarily finite) set of states (with q0 ∈ Q
being the initial state) and δ ⊆ Q × (Σ ∪ {ε})× Q defines transitions, each of which
is in the form of (q, a, q′), for some q, q′ ∈ S and a ∈ Σ ∪ {ε}, indicating that state
q transits to state q′ while event a is observed (when a = ε (i.e., a is silent), nothing
is observed). Therefore, when M runs by following the state transitions, one observes
a sequence of events, i.e., a word w in Σ∗. Formally, an execution of M is, for some
n, a sequence (q0, a1, q1)(q1, a2, q2), · · · , (qn−1, an, qn) of transitions in δ, which starts
from the initial state q0. A word w is a behavior of M if, for some execution of M shown
above, w is a1 · · · an (after ignoring all the silent events in a1 · · · an). In particular, when
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the word ends with a special event♥ ∈ Σ, its is called a valid transaction of M . Notice
that the special symbol is an indication of the end of a transaction and, moreover, there
could be multiple appearances of♥’s before the last appearance of♥ in the transaction.
As usual, we use L(M) to denote the set of all transactions of M .

The events in Σ serves as the interface of M . Even though M can be an infinite-state
system (i.e., the state set Q is infinite), its behaviors over the interface could be simple;
e.g., L(M) forms a regular language (such a view of interface automata is studied in
[11]). Clearly, when M is a finite-state system (i.e., the state set Q is finite), L(M) has
to be a regular language.

Labeled transition systems M are a popular abstract representation of a software
system and its design. In case when the transition graph δ of M is unknown (but its
interface Σ is known), M is considered as a black-box. In this paper, we assume that
the black-box can be tested. That is, there is a procedure BTest(M, w) that returns a
definite (yes/no) answer on whether w is a transaction of M . In automata theory, this
is called membership testing; i.e., whether w ∈ L(M). Clearly, in order for one to im-
plement the procedure BTest, a number of requirements of M must be met (e.g., one
needs to distinguish input events and output events in M , one might want to assume that
M is input deterministic, M has an implementation to run, etc.; see [13] for a compre-
hensive survey on black-box testing). For ease of presentation, we simply assume that
the black-box M has already met all the necessary requirements such that the black-box
testing procedure BTest does exist and is given. As we all know, black-box testing can
even run on infinite-state systems.

An important class of verification queries, called the safety verification problem, is
as follows:

Given: a system M and a set Bad ⊆ Σ∗,
Question: L(M) ∩Bad = ∅?

In above, Bad ⊆ Σ∗ specifies a set of bad transactions that are not supposed to be the
transactions of M . Clearly, a negative answer to the Question indicates an error in the
system with respect to its requirement specified as “no Bad transactions”. Automata-
theoretic model-checking techniques can be used to solve the safety verification prob-
lem when both M and Bad are in certain restricted forms. In particular, when M is a
finite-state system and Bad is a regular set, the problem can be solved.

When M is a black-box, the safety verification problem can not be solved in gen-
eral. In this case, black-box testing can be used to obtain an inconclusive answer as
follows. We assume that a procedure GenTests(M, Σ) is given which returns a set
of words. Each word w that is in the set and in Bad is then run on the testing proce-
dure BTest(M, w). If one of such w is successful (i.e., BTest(M, w) returns “yes”),
then a negative answer to the Question in the safety verification problem is identified.
Otherwise, the answer is inconclusive. The set of tests that GenTests generates has
to be finite (patience of a test engineer is practically bounded). In practice, it is still
an ongoing research issue in Software Engineering on how to define an “adequate”
GenTests, in particular when M is a grey-box (with partial information on its transi-
tion graph known). Nevertheless, in this paper, we assume that such a GenTests exists
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and given (e.g., a straightforward version of GenTests is to return the set of all words
in Σ∗ whose length are not longer than 40).

Before we proceed further, we present a simple banking system (modified from [12])
shown in Figure 1, which will be used throughout this paper. With this simple banking
system, a customer can open and close a bank account. With a bank account, the cus-
tomer can login to the system and perform a number of atomic accesses on the bank
account, then logout the system. An atomic access can be any one of withdraw,
deposit or getBlance on the account. According to Figure 1,

open,deposit,getBlance,logout,♥

is a valid transaction: the customer opens an account and deposits some money on
the account, then getBlance of the new created account before logout. However,

open,withdraw,getBlance,logout,♥

is not valid transaction: the figure specifies that any costumer should deposit some cash
to the account first, before withdrawing from the account.

getBalance

depositopen
q2 q3q0

q1

logout

q4 q5
close ♥

withdraw,

login

♥

deposit,

Fig. 1. A simple banking system

In aspect-oriented software development, an aspect can be understood as a structural
transformer (e.g., a program transformer in AspectJ) or a behavioral transformer (a
relation between event sequences). We use the latter understanding in this paper and
thus an aspect is called a behavioral aspect. The semantics of the aspect, which is
specified by the relation, is independent of the syntax (i.e., the transition graph) and
the semantics (i.e., the behaviors) of a primary system M . Therefore, even without the
primary system M , one can still design an aspect. Also, it guarantees that the semantics
of the woven system does not change whenever the semantics of the primary system
does not change. In the following, we will present a formal definition of an aspect,
which can be applied to several primary systems (e.g., “interleaving” can be considered
as an aspect that weaves two systems into one where the two systems run concurrently).

Formally, a k-ary behavioral aspect A is a relation A ⊆ (Σ∗)k×Σ∗, which specifies
how to weave k primary behaviors into a woven behavior. Let M1, · · · , Mk be labeled
transition systems over events Σ. The set of woven transactions, written A(L(M1), · · · ,
L(Mk)), is the set of all words w♥ such that there are transactions w1♥, · · · , wk♥
in L(M1), · · · , L(Mk), respectively, satisfying (w1♥, · · · , wk♥, w♥) ∈ A. To further
abuse the notation, we simply use A(M1, · · · , Mk) to denote the set. For a given be-
havioral aspect A, a weaving function is a function WA(M1, · · · , Mk) that maps from
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M1, · · · , Mk (called primary systems) to some system M , called a woven system, such
that L(M) = A(M1, · · · , Mk). Notice that, even though a behavioral aspect is inde-
pendent of the transition graphs of the primary systems, as an exercise in computability
theory, one can show that a computable weaving function always exists and can be
constructed for a given recursively enumerable behavioral aspect, when the primary
systems are given as Turing machines (or any other universal computing devices). That
is, the existence of such a computable weaving function tells us that, in the most general
sense, a woven system can be constructed automatically from primary systems using a
behavioral aspect.

4 Finite-State Behavioral Aspects and Weaving

We now study finite-state behavioral aspects that are tuple languages accepted by multi-
tape finite automata. A (nondeterministic) multitape finite automaton consists of a finite
control and n (for some n) input tapes. Each tape has a one-way and read-only head.
The automaton starts in its initial state with all the heads on the leftmost cells of their
tapes. Each transition is of the form (q, a1, · · · , an, p) where q and p are states and
a1, · · · , an are symbols (in Σ ∪ {ε}). On firing the transition, the automaton can, when
in state q, for each i, read ai from the i-th tape, and enter state p. The automaton accepts
the tuple of n input strings if each head reaches the right end of its tape while entering a
designated final state. It is known that multitape finite automata are essentially different
from (one-tape) NFA; e.g., the equivalence problem (whether two automata accept the
same language) is undecidable for multitape finite automata.

A k-ary behavioral aspect A is of finite-state if there is a (k+1)-tape finite automaton
M such that A equals the (k + 1)-tuple language accepted by M . In this case, we
sometimes abuse the A as the M .

Now let us go back to the simple banking system example. As the simple banking
system evolves, the requirement changes. Developers might be asked to add a new fea-
ture to the system: Every atomic access to an account should be logged by recording
the name of the accessing customer and the type of the access in a log file. This logging
feature is a typical example of a crosscutting concern, which can not be easily repre-
sented in an object-oriented design as it interleaves the same feature into every atomic
access in the original simple banking system. Adding such a feature is best supported
by aspect-oriented software development. In this example, we use a logging aspect
to implement this feature.

(ε,log)

S0 S1

(getBalance,getBalance),

(withdraw.withdraw),
(deposit,deposit)

(open,open),

(close,close),
(login,login),
(logout,logout)

(♥,♥)

Fig. 2. The logging aspect modeled as a two-tape finite automaton
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The logging aspect is quite simple. Figure 2 shows how the logging aspect can
be modeled as a deterministic two-tape automaton A. A has two states S0 and S1 and
two transitions between them. For transition from S0 to S1, the two tapes of A read
same input; for the transition from S1 to S0, the first tape reads nothing and the second
tape reads log as input. As a result, whenever there is an atomic access in primary
behavior, there is a same atomic access appended by a log event in woven behavior.
It should be noticed that our logging aspect does not log the events open, close,
login, logout since they are not atomic accesses. Therefore, the aforementioned
primary behavior open,deposit,getBlance,logout,♥ becomes the following
woven behavior after weaving the logging aspect and the simple banking system:
open,deposit,log,getBlance,log,logout,♥. Indeed, the logging aspect
defines a relationship between the behavior of a primary system and the behavior of a
woven system.

Let A be a k-ary finite-state behavioral aspect and M1, · · · , Mk be finite-state sys-
tems. In this case, a woven system M = WA(M1, · · · , Mk) can be constructed as
follows (sketch). M is a finite automaton that simulates the multitape automaton A.
During the simulation, the tape contents of the first k tapes in A are guessed and also
run over the systems M1, · · · , Mk, respectively. The content of the last tape in A is fed
by the input tape content of M itself. M accepts when A accepts. It can be shown that,
in worst case, the size (state number) of the woven system is O(|A| · |M1| · · · |Mk|).
Apply the weaving process to the simple banking system in Figure 1 and the logging
aspect in Figure 2, the woven system is shown in Figure 3.

♥

q0, S0 q2, S0 q3, S1

q1, S0

q3, S0
close

q5, S0

login

♥deposit,
withdraw,
getBalancedepositopen q4, S0

log

logout

Fig. 3. The simple banking system woven with the logging aspect

5 Safety Verification and Testing of Aspect-Oriented Systems

At the heart of aspect-oriented software development methodology, aspects are used
along with multiple primary systems to construct a final woven system through (nested)
weaving. One can raise the same safety verification problem for the woven system.
However, one of the difficulties now is how to deal with the case when some of the
primary systems are black-boxes (a white-box can also be marked as a black-box when
its behaviors are hard to analyze; e.g., some infinite-state systems.). Our solution is a
decompositional algorithm that combines model-checking with black-box testing. Be-
fore we proceed further, we first formally define aspect-oriented systems. To simplify
our presentation (but WLOG), we assume that a behavioral aspect is 2-ary.



Decompositional Algorithms for Safety Verification and Testing of AOS 107

Let M1, · · · , Mn be some given primary systems, and A1, · · · , Am be some given
(2-ary) behavioral aspects. An aspect-oriented system A is a binary tree T where each
node is either a leaf or a nonterminal node (with two children). There are n leaves in
T , which are labeled with M1, · · · , Mn, respectively. Each nonterminal node is labeled
with an aspect Ai for some 1 ≤ i ≤ m. Notice that distinct nonterminal nodes could
have the same label. For a nonterminal node u, we use u.left and u.right to indicate its
left and right children, respectively. The semantics of the aspect-oriented system A is
defined recursively as follows. We associate a system Mu to each node u in T . When u
is a leaf, Mu is simply the system Mi originally labeled on u. Then, recursively, when u
is a nonterminal node, Mu is the woven system WA(Mu.left, Mu.right), where A is the
behavioral aspect originally labeled on u. The final woven system ofA is then specified
by the woven system associated with the root node root; i.e., Mroot. Sometimes, we
simply use A itself to indicate the Mroot. Figure 4 (a) shows an A with four primary
systems and three aspects.

5.1 Safety Verification Algorithm for Aspect-Oriented Systems

The safety verification problem for aspect-oriented systems is to decide whether an
aspect-oriented system A has a bad transaction in a given regular set Bad; i.e., L(A)∩
Bad = ∅?. Suppose that all the primary systems M1, · · · , Mn as well as all the be-
havioral aspects A1, · · · , Am in A are of finite-state. To solve the problem, a naive
approach would be to construct the final woven system A (which is still a finite-state
system) directly and then use this A to check against the emptiness of L(A) ∩ Bad.
However, there is an issue with this approach. Calculating the final woven system A is
expensive: in worst case, the size of the woven system is O(Nnαn) where N is a state
number bound for the primary systems M1, · · · , Mn, and α is a state number bound for
the aspects A1, · · · , Am. But the real issue is that one has to perform such an expensive
calculation before the verification result on the emptiness of L(A) ∩Bad could be ob-
tained (whose time complexity is O(Nnαn|MBad|) where |MBad| is the size of a finite
automaton accepting Bad). Therefore, it is desirable to design a verification algorithm
where the verification result can be established earlier (e.g., before the entire woven
system A is calculated) whenever it is possible. To this end, we present a safety veri-
fication algorithm verifyAOS(A, Bad). For each node u in the tree A, the algorithm

Algorithm 1. verifyAOS(A, Bad)
1: initialize(A, Bad)
2: checkNode(root)
3: return “no” //A does have Bad transactions

maintains and updates a set, denoted by u.badSet, which is always a regular set in Σ∗.
Initially (line 1), only the set in the root node, root.badSet, is set to be the given Bad;
the sets in other nodes are all Σ∗. Then (line 2), the algorithm updates all the badSets
in the tree starting from the root, during which the main algorithm verifyAOS(A, Bad)
could halt with “yes” (i.e., A does not have Bad transactions) returned (otherwise, as
in line 3, “no” is returned).
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We now explain the procedure checkNode(root) in line 2 in a little more detail.
For each node u starting from the root, it “projects” its current u.badSet down to its
left child; i.e., (u.left).badSet is set to be ProjectA(↓, Σ∗, u.badSet), where A is the
aspect that u is labeled with. 1 Similarly, u also projects u.badSet down to its right
child. In case when u is a leaf, it intersects its current u.badSet with the transaction
set of the system M that u is labeled with and obtains a new u.badSet. Then, for each
nonterminal node u (from the lowest level up to the root), the procedure will project the
new badSets of u’s children up to u itself; i.e.,

u.badSet := ProjectA((u.left).badSet, (u.right).badSet, ↓)
It shall be noticed that, during the procedure, once a badSet becomes empty (this could
happen at an earlier stage of the execution), we can conclude thatA does not have Bad
transactions – no further execution of the algorithm is necessary. In the following, we
present the recursive procedure checkNode(NODE u):

Procedure 2. checkNode (NODE u)
1: if u is a leaf then
2: M be the primary system that u is labeled with
3: u.badSet := u.badSet ∩ L(M)
4: if u.badSet is empty then
5: return “yes” // A does not have Bad transactions
6: exit // the main algorithm verifyAOS halts
7: end if
8: else
9: let A be the aspect that u is labeled with

10: (u.left).badSet := ProjectA(↓, Σ∗, u.badSet)
11: (u.right).badSet := ProjectA(Σ∗, ↓, u.badSet)
12: checkNode(u.left)
13: checkNode(u.right)
14: u.badSet := ProjectA((u.left).badSet, (u.right).badSet, ↓)
15: if u.badSet is empty then
16: return “yes” and exit
17: end if
18: end if

Due to space limitation, we omit the correctness proof of the algorithm. Notice that,
in our algorithm presentation, set operations, such as emptiness testing, intersection,
and ProjectA, are used. In fact, one can use finite automata to represent badSets and
multitape finite automata to represent aspects A. It should be straightforward that all
these set operations can be implemented using the corresponding automata manipula-
tions. One can also prove that, in worst case, the time complexity of our algorithm is
O(|MBad| · Nn · αn · |MBad|n · αn log n), comparing to the naive algorithm’s time
complexity O(|MBad| · Nn · αn) mentioned earlier. Notice that N (the state number

1 For a 2-ary aspect A, and sets X and Y , we define ProjectA(↓, X, Y ) to be the set of all w♥
such that there are x♥ ∈ X and y♥ ∈ Y satisfying x♥ and y♥ can be woven into w♥ using
A; i.e., (w♥, x♥, y♥) ∈ A. Accordingly, ProjectA(X, ↓, Y ) and ProjectA(X, Y, ↓) can be
defined.
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in primary systems) is the dominate parameter which is usually ' all the other para-
meters (specifications for Bad and for aspects are typically simple and n is also small).
So, as long as N ' the slow down factor |MBad|n ·αn log n, our algorithm’s worst-case
time complexity is the same as the naive one, not to mention the additional benefit of
possible earlier termination when worst-cases do not happen.

5.2 Safety Testing Algorithm for Aspect-Oriented Systems

When some of the primary systems are black-boxes (whose state number could be in-
finite), the safety testing problem for A is exactly the safety verification problem for A
in which each black-boxes M is replaced with a finite-state system M ′ whose trans-
actions are exactly those in GenTests(M, Σ). We shall emphasize that, even though
GenTests(M, Σ) could return a huge set of tests (such as strings on Σ not longer
than 40), the safety testing problem is to seek a definite yes/no answer. In this case,
one would follow the naive approach by first testing each black-box M using the tests
generated from GenTests(M, Σ) and then replacing the M with a system whose be-
havior is exactly those successful tests. However, exhaustive testing of the entire test set
GenTests(M, Σ) is not feasible. It is desirable to have an algorithm using the tree A
as well as the set Bad to trim the test set GenTests(M, Σ) before actual tests are run
on the M (i.e., tests on a black-box are tailored to the specific safety testing problem
of A). Furthermore, successful tests themselves are valuable information on the actual
behavior of M . This information should be used to further trim away unnecessary tests
performed over other black-boxes. To this end, we propose a safety testing algorithm
testAOS(A,Bad) as follows:

Algorithm 3. testAOS(A, Bad)
1: initialize(A, Bad)
2: trim(root)
3: for each leaf node u labeled with a black box do
4: propagate(root)
5: test(u)
6: trim(root)
7: end for
8: return “no”

Each node u inA is associated with u.badSet, u.flag (which is white or black), and
Boolean value u.updated. Initially (line 1), only the set in the root node, root.badSet,
is set to be the given Bad; the sets in other nodes are all Σ∗. Also, for each leaf node
u, if it is labeled by a black-box then its flag is black else the flag is white. The rest
of initialize(A,Bad) in line 1 is to run init(root), which is defined recursively in
Procedure 4.

Roughly speaking, init(root) recursively “projects down” the Bad set to the badSet
of each nonterminal node and leaf, much the same as checkNode(root) does in veri-
fyAOS. When a leaf is a white primary system M , an updated badSet is calculated
by intersecting it with L(M). Additionally, for a black node, all its ancestors are also
flagged black.
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Procedure 4. init(Node u)
1: if u.badSet is empty then
2: return “yes” and exit //the main algorithm testAOS halts
3: end if
4: if u is a leaf with a white flag then
5: let M be the primary system that u is labeled with
6: u.badSet := u.badSet ∩ L(M)
7: if u.badSet is empty then
8: return “yes” and exit
9: end if

10: set u.updated to be True
11: else
12: let A be the aspect that u is labeled with
13: (u.left).badSet := ProjectA(↓, Σ∗, u.badSet)
14: (u.right).badSet := ProjectA(Σ∗, ↓, u.badSet)
15: init(u.left)
16: init(u.right)
17: set u.updated to be False
18: if each of u’s two children has a white flag then
19: set the flag of u to be white
20: else
21: set the flag of u to be black
22: end if
23: end if

Procedure 5. trim(Node u)
1: if u is not a leaf then
2: trim(u.left)
3: trim(u.right)
4: end if
5: if u has at least a child whose updated is True then
6: let A be the aspect that u is labeled with
7: u.badSet := ProjectA((u.left).badSet, (u.right).badSet, ↓)
8: if u.badSet is empty then
9: return “yes” and exit

10: end if
11: set u.updated to be True
12: if each of u’s two children has a white flag then
13: delete these two children (so u is a leaf now)
14: end if
15: end if

In line 2 of testAOS, trim(root) “projects up” all the “updated” badSets at leaf nodes
to all their ancestors by updating the ancestors’ badSets. In the mean time, a white node
becomes a white leaf (i.e., children are trimmed away) whenever the children are also
white nodes. The procedure is presented in Procedure 5.
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Now, the for-loop of testAOS (lines 4,5,6) is to test each black-box primary system
one by one. Suppose that we are currently processing black-box M that is labeled on
some leaf node u. We first use propagate(root) in line 4 to “project down” the updated
badSet of the root all the way to every black-box which then obtains a new (and smaller)
badSet. Later in line 5, the black-box M at node u is tested using tests that are in both
GenTests(M, Σ) and the new u.badSet. All the successful tests are collected and
form the “updated” u.badSet now. At this time, the black-box node u is flagged white
(the black-box M is finished processing). Finally in line 6, this newly added white
node u and the test results (recorded in the “updated” u.badSet) are used to “trim” the
tree (as well as update all the badSets of its ancestors). When the for-loop continues,
the next black-box picked will again first “propagate” the root’s updated badSet (as a
result of the previous black-box’s test results), and so on. Details of propagate(root)
and test(u) are shown in Procedures 6 and 7.

Procedure 6. propagate(Node u)
1: if u.badSet is empty then
2: return “yes” and exit
3: end if
4: set u.updated to be False
5: if u is not a leaf and u.left has a black flag then
6: (u.left).badSet := ProjectA(↓, Σ∗, u.badSet) ∩ (u.left).badSet
7: propagate(u.left)
8: end if
9: if u is not a leaf and u.right has a black flag then

10: (u.right).badSet := ProjectA(Σ∗, ↓, u.badSet) ∩ (u.right).badSet
11: propagate(u.right)
12: end if

Procedure 7. test(Node u)
1: let M be the black-box primary system labeled on leaf u
2: for each test w♥ in GenTests(M, Σ)∩u.badSet do
3: run black-box testing BTest(M, w♥)
4: end for
5: set u.badSet to be the set all successful tests w♥
6: set the flag of u to be white
7: set u.updated to be True

Figure 4 shows an example execution of the safety testing algorithm testAOS over
the aspect-oriented system A shown in Figure 4 (a), where M1, M2, M3, M4 are pri-
mary systems (in which M2 and M4 are black-boxes), and A1, A2, A3 are behavioral
aspects.

At any time when the algorithm testAOS runs, if the badSet at some node be-
comes empty, then the algorithm halts and return a “yes” answer to the safety testing
problem. When this happens before any black-box primary system is tested, we simply
do not need test any black-box at all for the safety testing problem. When this happens
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Fig. 4. An example run of safety testing algorithm testAOS over the aspect-oriented system in
(a). The black boxes M2 and M4 are lightly shaded and (the root node labeled with aspect) A1 is
associated with a badSet initially being the regular set Bad. In the sequel, each badSet at a node
is simply denoted by a special symbol B in the figure. (b) the result of running init(A1) at line
1 of testAOS. Each non-root node is associated with a B using Project operations. When the
node is a white-box node, i.e. M1 or M3, its B is further updated by B ∩ M , which is denoted
as B†. The flag (i.e., in the figure, a shaded/clear circle corresponds to a black/white flag) of
each nonterminal node is set according to the flags of the two children. (c) The result of running
trim(A1) at line 2 of testAOS. The B of each node is updated to B† using Project operations
if one of the children is associated with B†. In our example, since M3 was associated with B† in
(b), the B of the parent A3 is therefore updated to B†. Similarly, the B of A2 as well as A1 is also
updated to B†. (d) The result of running propagate(A1) at line 4 of testAOS. From (c), a new
B is associated with the root A1, then all shaded nodes (flagged with black) are associated with
new B’s recursively using Project operations starting from the root A1. In this step, updated is
reset to False in all nodes; i.e., all updated B† is renamed as un-updated B. (e) The result of
running test(M2) at line 5 of testAOS. Through testing, the black-box M2 is associated with
an updated B† and its flag is set to white (M2, after testing, is a white-box now). (f) trim(A1)
again at line 6 of testAOS. Notice that the flags of A3’s children (M2 and M3) are both white
now. In this case, both children are deleted from the tree after B of A3 is updated. (g) Repeat
procedures from d to f (i.e., the for-loop in testAOS) until all the black-boxes are tested.
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after some black-boxes have already been tested, all the remaining black-boxes are not
needed to test. Also in the algorithm, procedures trim(root) and propagate(root) work
together to make sure that, after a black-box is tested, the test results (the successful
tests) are used to create a smaller test set for each of the remaining black-boxes yet to
be tested.

Again, due to space limitation, the correctness prove of the algorithm is omitted.
Similarly, in the algorithm, all the set operations can be implemented through automata
manipulations. It is hard to conduct a precise complexity analysis for the safety testing
algorithm, since the test results for a black-box affect the test sets that will be run over
the other black-boxes. At least when there is no black-box, testAOS does not perform
worse than verifyAOS. It is reasonable to assume that black-box testing is expensive,
in particular when one exhaustively runs every test from a huge (e.g., 1024 in [6]) test
set generated from GenTests. The saved testing time resulted from eliminating a large
number of unnecessary tests from the test set would well make up the overhead of cal-
culating the unnecessary tests using our algorithm testAOS. For instance, concurrent
composition (through interleaving) can be considered as a concurrency aspect (though
it is very special). The case-study performed in [6] is a very special case of our safety
testing algorithm that runs over one white-box and three black-boxes and with only one
4-ary concurrency aspect (which is the root). The case-study shows that a huge test set
with 1024 tests is reduced into a set with 105 tests after removing all unnecessary tests.
On the other hand, state-space explosion seems unavoidable when a even larger test set
is selected. In that case-study, automata manipulations (for the concurrency aspect and
tests results) failed to complete. We would anticipate similar experimental results for
our safety testing algorithm testAOS.

6 Conclusions

In this paper, we use multitape automata to model aspects and study verification and
testing algorithms for an aspect-oriented system specified by a number of primary la-
beled transition systems (some of them are black-boxes) and aspects. Our algorithms
combine automata manipulations with black-box testing over each individual black-
box, but without generating the woven system.

In a forthcoming paper, we are going to implement the algorithms and perform case-
studies in order to justify the real-world efficiency of the algorithms. The authors thank
Anneliese Andrews and Curtis Dyreson for discussions.
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Abstract. In this paper we present a novel automated, on-line, model-
based testing system for on-the-fly testing of thin-client web applications.
Web applications are specified by means of Extended State Machines.
To handle dynamic web applications, arbitrarily large and complex state
input and output types, and the transport of information from the web-
page to the state of the specification, we define a new, ioco like, confor-
mance relation. In this conformance relation a specification is a function
from state and input to functions from output to the new states. The
implementation builds on the G∀ST test tool and spots errors in real web
applications.

1 Introduction

Web-applications have rapidly become popular. Web-interfaces are defined for
many ordinary applications. Just like any other software system these web-
applications and interfaces tend to contain mistakes. In order to determine the
quality of software with a web-based interface it needs to be tested. Testing such
software can be done most thoroughly and cost effectively by using an automatic
model based test system. Such a system automatically generates test sequences
based on a formal specification of the desired behavior of the system, executes
the associated tests, and makes a verdict based on the observed behavior of the
implementation under test, the iut.

In this paper we present a novel testing system that performs automated, on-
line, model-based testing of thin-client (no processing on the client) web appli-
cations. Systems are specified using non-deterministic Extended State Machines
(ESMs) with arbitrarily rich states, inputs, and outputs. Additionally, the tran-
sitions in these state machines are specified by defining them as functions over
the output domain to the reachable states. This allows us to concisely express
highly dynamic systems with states that depend on the output and eliminates
the need to specify and enumerate all possible HTML outputs. For these systems
we define a conformance relation that is closely related to the well-known ioco re-
lation [20,19]. The system performs on-line testing, as propagated by e.g. Larsen
et al.[10]. We identify the same advantages: we can employ potentially long test
runs, we can limit the state space to a finite portion, and use non-deterministic
specifications.
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We intend to perform a black box test and look only at the input and output
of the web application. For a web application this implies that the test system
performs an input from the current page, e.g. press a button or edit a text field,
and receives a new page in HTML. We restrict ourselves to testing the web ap-
plication based on the HTML input elements available in the page. Hence, we do
not consider navigating by back/forward browser buttons, window cloning and
history caches. Furthermore, we restrict ourselves to thin clients. The behavior
of the web-interface should be determined by exchanging HTML code with the
server instead of things like Java(scripts) embedded in the web-page. This re-
striction enables us to investigate the response to an input just by looking at
the HTML code.

We show how a web application can be specified by an ESM. Since there is
always a strict relation between selecting an input from the current page and
obtaining a new page, we prefer a state machine based specification rather than
a specification by a Labeled Transition System (LTS). The web application itself
can have an arbitrary complex state, and can contact any system it needs, e.g. a
database. As mentioned above, in our black box approach we restrict ourselves to
the input to the web-application and the associated new page (in sharp contrast
with the approach by Margaria et al.[15]) This may appear to be very restrictive,
but that is not the case. The test engineer can incorporate any knowledge of the
back-end of the system in the ESM specification.

The specification of the web-application can be nondeterministic, either be-
cause the iut is not deterministic, or because the specification has only partial
knowledge of the world. One of the case studies in this paper tests a web-shop.
If it is not known whether an item is available in the web-shop, the specification
should handle the situation that the item is available and that it is unavailable.
The output of a web-application is typically large, containing a lot of HTML code
that is sent to the browser. We do not want to specify each and every detail of
this HTML code, nor do we wish to enumerate all allowed responses. Special
about our approach is that instead of explicitly describing the allowed outputs
in the specification, we use a function that has the actual output as argument
and yields the allowed target states. This function can be a predicate that checks
aspects of the HTML code. Typical examples are the presence of buttons and key
texts. The function can also extract information from the HTML code and store
it in the target state. An example of information that we want to store in the
state of the specification is the result of queries executed by the web-application.
The results can determine future behavior, and should be consistent with later
responses of the web-application. In this way we can test the contents of the
HTML code produced by very dynamical web-applications, like web-shops.

We define a conformance relation that incorporates parameterized data types
for state input and output (infinite number of states), nondeterministic systems,
and functions from the output to the target state. The conformance relation
is based on the well-known ioco relation. As a host language, we use the pure
functional programming language Clean [18]. Clean is a state-of-art programming
language with support for Algebraic Data Types (ADTs), generic programming
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[1], and features the generic test tool G∀ST [6] that is used in this work to
implement the testing framework.

The remainder of this paper is structured as follows: we present the formal
definitions and the conformance relation in Sect. 2. In Sect. 3 we introduce the
test tool G∀ST and explain how it is used to implement the test system based
on the formal definitions. Two case studies are presented in Sect. 4: one of a
small number guessing game, and one of a dedicated web-shop. Related work is
discussed in Sect. 5. Finally, we conclude in Sect. 6.

2 Specification

The test tool G∀ST can handle two kinds of properties. It can test properties
stated in logic about (combinations of) functions and it can test the behavior of
reactive systems based on an Extended State Machine (ESM). Web applications
are reactive systems.

An ESM consists of states with labeled transitions between them. A transi-
tion is of the form s

i/o−−→ t, where s, t are states, i is an input which triggers the
transition, and o is a, possibly empty, sequence of outputs. The domains of the
states, S, inputs, I, and outputs, O, are given by arbitrarily complex, recursive
ADTs. These types can be used to model parameterized states, inputs and out-
puts. None of these types is required to be finite. The model of the system can be
nondeterministic, it is possible to define several transitions for one combination
of state and input. The conformance relation defined in Sect. 2.2 states that
the tested system is free to choose one of these transitions. This constitutes the
main difference with traditional testing with state machines where the testing
algorithms can only handle finite domains and deterministic systems [12].

A transition s
i/o−−→ t is represented by the tuple (s, i, o, t). A relation based

specification δr is a set of these tuples: δr ⊆ S × I × O∗ × S. Since none of
these types is finite, there can be infinitely many transitions. Our specification
describes synchronous systems. As reaction on input i the system produces a list
of outputs. We assume that we are able to detect the end of this list of outputs.
This is similar to detecting quiescence in many ioco based approaches [19].

For instance, a system that has natural numbers as state, input and output

can have transitions of the form: ∀s, i : N · s i/[s,s+i]−−−−−→ i which is equivalent to
the set {(s, i, [s, s+ i], i)|s ∈ N, i ∈ N}. The output of this system consists of the
previous input and the sum of the previous input and the current input. The new
state is the current input. This rule describes obviously infinitely many individual

transitions. Usually we omit the universal quantifiers and write s
i/[s,s+i]−−−−−→ i.

Such an infinite set of transitions is fine for a mathematical specification, but
unsuited as a specification for model based testing. Listing all transitions in a
table, as is often done for FSM based testing, is impossible. For our ESMs this
would yield an infinite table. A predicate that given the source state, input,
output and target state tells whether the transition is allowed is also not suited
for several reasons. First of all, we want an easy way to determine for which
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inputs a transition is defined given the current state s. Secondly, we want to
compute the target state, t, from a known source state, the supplied input and
the observed output.

2.1 Transition Functions

In [7,23] we defined a transition function that meets the requirements that were
mentioned in the previous section. The transition function δf is defined by

δf (s, i) = {(o, t)|(s, i, o, t) ∈ δr}. Hence, s
i/o−−→ t is equivalent to (o, t) ∈ δf (s, i).

The type of δf is s×i→ IP (o∗×s), with IP x powerset of x. The system contain-

ing only the transition s
i/[s,s+i]−−−−−→ i can be specified by δf (s, i) = {([s, s + i], i)}.

The transition function δf works very well as specification in model based
testing if the number of output-target state tuples, (o, t) in the specification is
small. In a number of situations the number of output-target state tuples can
become very large. A typical example is an authentication protocol. On the input
get-challenge, the protected system should produce a number from a large set,
say a 64-bit number. This would require 264 output-target state tuples. For web
based specifications the situation is even worse. We do not want to specify each
and every detail of the HTML code obtained from the server. We only require
some details like the title of the web page and the availability of certain buttons.
This would require an unbounded number of output-target state tuples.

In order to cope with these requirements we replace 1 the output-target state
tuples by a function from output to the allowed target states. This yield a new
kind of transition function called δF (s, i) of type s× i → (o∗ → (IP s)):

∃f ∈ δF (s, i) ∧ (o �→ T ) ∈ f ⇔ ∀t ∈ T : (s, i, o, t) ∈ δr.

or in other words s
i/o−−→ t⇔ ∃f ∈ δF (s, i) : t ∈ f(o).

For our example s
i/[s,s+i]−−−−−→ i we can use the transition function

δF (s, i) = {f} where f o = if (o == [s, s + i]) then {i} else ∅

If we require that the output is a value between the current state and current
input we have: δF (s, i) = { o → if (s ≤ o ∧ o ≤ i ∨ i ≤ o ∧ o ≤ s) {i} ∅}
This system is much harder to describe by a function yielding a set of tuples,
the number of tuples and their contents depends on s and i. Enumerating all
possibilities is cumbersome and can yield a very large set of tuples. Hence, the
specification by transition functions that yield a function instead of a set of
output-target state pairs really adds descriptive power.

A specification is partial if for some state s and input i we have δF (s, i) = ∅.
A specification is deterministic if for all states and inputs all functions from the
corresponding set of functions contain at most one function and there is at most
one target state for each output. Formally: ∀s ∀i,∀o : #

⋃
f(o)|f ∈ δF (s, i) ≤ 1.

1 The test tool G∀ST allows that the transition function yields tuples or functions.
This gives maximum freedom in the specification of the system. For simplicity we
assume here that the new transition function always yields a function.
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A trace σ is a sequence of inputs and associated outputs from a given state.
Traces are defined inductively: the empty trace connects a state to itself: s

ε⇒ s.

We combine a trace s
σ⇒ t and a transition t

i/o−−→ u from the target state t,

to trace s
σ;i/o
=⇒ u. We define s

i/o−→ ≡ ∃t.s i/o−→ t and s
σ⇒ ≡ ∃t.s σ⇒ t. All

traces from state s are: traces(s) = {σ|s σ⇒}. The inputs allowed in a state are

given by init(s) = {i|∃o : s
i/o
=⇒}. The states after trace σ in state s are given

by s after σ ≡ {t|s σ⇒ t}. We overload traces, init , and after for sets of states
instead of a single state by taking the union of the individual results. When the
transition function, δF , is not clear from the context, we add it as subscript.

2.2 Conformance

The basic assumption for testing is that the iut has the same input/output
behavior as a state machine: all output is initiated by an input. This implies
that it is possible to obtain a trace from the iut. Since we do black box testing,
the state of the iut is invisible. It is assumed that the iut accepts any trace of
the specification. This is a weaker requirement than total or input enabled which
is often assumed in similar conformance relations. These traces only contain
inputs/output pairs covered by the specification. This means for instance that
if the specification allows to push a button on a web-page after a sequence of
transitions, that the iut should accept this input as well.

Conformance of the iut to the specification spec is defined as (s0 is the initial
state of spec, and t0 the initial state of iut):

iut conf spec ≡ ∀σ ∈ tracesspec(s0), ∀i ∈ init(s0 afterspec σ), ∀o ∈ O∗.

(t0 afteriut σ)
i/o−→⇒ (s0 afterspec σ)

i/o−→

Intuitively: if the specification allows input i after trace σ, then the observed
output of the iut should be allowed by the specification. If spec does not specify
a transition for the current state and input, anything is allowed. This notion of
conformance is very similar to the ioco relation [20,19] for LTSs. In a LTS each
input and output is modeled by a separate transition. In our approach an input
and all induced outputs up to quiescence are modeled by a single transition.

2.3 Testing Conformance

The conformance relation conf tells when an implementation iut conforms to a
specification spec. In practice it is usually impossible to determine conformance
by testing. Both the number of traces of the specification, tracesspec(s0), and the
length of individual traces can be infinite. This implies that determining con-
formance by experimentation generally requires the execution of infinitely many
transitions, and hence takes infinitely long. Instead of determining the confor-
mance of all transitions from all possible traces, we determine the correctness of
a limited amount of transitions in a limited number of traces. As usual, testing
approximates the conformance relation. If we find an error during testing the
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conformance relation does not hold. When no errors are found we gain confidence
in the conformance of the iut to the specification, but errors may remain.

For the implementation of a test system it is very inconvenient to record all
traces of the specification corresponding to the observed trace of the implemen-
tation. There can be a huge number, in fact even infinitely many, of these traces
of the specification. Instead of keeping track of all traces of the specification that
conform to the observed trace, our test algorithm records all states in the after set
of the specification given the observed trace. By a well engineered specification,
this set can always be sufficiently small.

In the test algorithm we assume that the iut is available as a function of type
(Siut × I) → (O∗ × Siut). In this function Siut is the abstract state of the iut
that is carried around as a black box. The test algorithm for a single trace is:

testConfF : N× ( IP S)× Siut → Verdict

testConfF (n, s, u) = if s = ∅
then Fail

else if init (s) = ∅ ∨ n = 0
then Pass

else testConfF (n− 1, t, v)

where i ∈ init(s); (o, v) = iut (u, i); s
i/o−→ t

Since the transition function yields a function, the new set of possible states is ac-
tually computed as t =

⋃
{f(o) | ∀f ∈ δf (si, i), ∀si ∈ s}. Due to the overloading

of the transition notation we can write it concisely as s
i/o−→ t.

Testing of a single trace is initiated by testConf (N, {s0}, S0
iut), where N is

the maximum length of this trace, s0 the initial state of the specification, and
S0

iut the initial abstract state of the iut. The input i used in each step can be
chosen arbitrarily from the set init(s). In the actual implementation it is possi-
ble to control this choice. In a complete test the nondeterministic computation
testConf (N, {s0}, Siut) is repeated M times. Before each of these test runs, the
iut is brought to its initial state by applying the function reset : Siut → Siut to
the state of the iut. If one of these test runs yields Fail, the iut is known to be
not conforming to the specification, otherwise it passes the conformance test.

Due to the dynamic choice of the input to be used in the next transition the
testing is called on-the-fly. This means that input generation, test execution,
and result analysis are performed in lock-step, so that only the inputs actually
needed are generated.

2.4 Testing Consistency of Outputs

For large and rich outputs, like HTML code, the internal consistency of the
output as well as the consistency of the output with the target state requires
some attention. For instance, if one goes to the next page in a series of pages in
a web-shop, it is required that the items displayed in the HTML code are indeed
the items on the desired page.
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In principle it is possible to handle this in the transition function. If the output
does not correspond to the intended target state, the transition function can
simply yield an empty set of states. If there are no other transitions specified,
there will be no target state and hence our test algorithm will determine an
error. However, it can be pretty hard to spot the error in the given trace. We
can improve this by introducing a separate predicate over the observed output
and the set of target states of the specification. If the predicate holds, testing
continues as usual. Otherwise, we have found an error and testing terminates 2.
To capture this notion we define a new transition function δP that is very similar

to δF . The extension is that a transition s
i/o;p(o,t)−−−−−−→ t implies s

i/o−−→ t ∧ p(o, t).

Written in terms of the transition function this is: s
i/o;p(o,t)−−−−−−→ t⇔ ∃f ∈ δF (s, i) :

t ∈ f(o)∧p(o, t). The corresponding testing algorithm makes clear why it is more
convenient to have a predicate of type O∗ × IP S → Bool than O∗ × S → Bool:

testConfP : N× ( IP S)× Siut → Verdict

testConfP (n, s, u) = if s = ∅
then Fail

else if init (s) = ∅ ∨ n = 0
then Pass

else if Pconsistent(o, t)
then testConfP (n− 1, t, v)
else Fail

where i ∈ init(s); (o, v) = iut (u, i); s
i/o−→ t

G∀ST implements this algorithm extended with the collection of data indicating
the trace and the error if testing yields Fail. Moreover, the test engineer is able
to influence testing details like the choice of the input i from init(s).

3 G∀ST

The test tool G∀ST executes conformance tests according to the conformance
relation in Sect. 2. In order to execute such a conformance test we use: (1) a
specification in some executable form; (2) an implementation of the conformance
test algorithm; and (3) an interface to the iut. We discuss these topics briefly.

In Sect. 2 we have shown that specifications are represented by functions over
user defined, and problem dependent, ADTs for state, input and output. Instead
of defining a new language for this purpose, we use the high level functional pro-
gramming language Clean as carrier for these specifications. Modern functional
programming languages are known for their high expressive power and concise
function definitions. We consider it much better to reuse decades of language
design and compiler technology than to define a new language.
2 In the actual implementation of G∀ST, this predicate is replaced by a function yield-

ing success or a list of error messages.
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For the implementation of the test system we also use Clean. This prevents a
language border between the specification and its use. Moreover, Clean provides
polymorphism, overloading and generic programming. These techniques enable
us to use functions over various types in a very convenient way. This is particulary
useful for the functions used as specification. The types used in these functions
for state, input and output are tailor-made for the system at hand. Using generic
programming the generation of input elements [8], the printing and comparing
of elements of all types needed can be generated automatically.

The test tool G∀ST implements the test algorithm presented above with a few
additional bells and whistles. For instance, the system records the trace leading
to an error. Most importantly, it controls the choice of the input to be applied
to the iut. By default G∀ST generates a list of elements and pseudo randomly
selects an input element, i, that is accepted by the specification. That is, there is
a state si in the set of possible states of the system such that δf (si, i) �= ∅. The
test engineer can provide a user defined selection algorithm. A default algorithm
is provided to select all traces needed to fully test a FSM. The test engineer can
provide an algorithm to guide the test to specific targets.

In order to apply an input to the iut and to obtain the answer, the test
system needs an interface to the iut. G∀ST assumes that there are two functions
in this interface. The first function takes the input to the iut as argument and
yields the corresponding output from the iut to G∀ST. In the case of testing
web applications typical inputs are pushing buttons and editing text boxes. The
output is the HTML code that corresponds with the new web page. The second
function, reset, brings the iut to its initial state at the start of a new trace.

4 Testing Web Applications

We test web applications from the viewpoint of a user. The user enters a URL in
a browser and obtains an initial web-page. In such a page there can be various
ways to give input, like buttons, edit fields, and dropdown menus. If the user
supplies such an input, the browser sends the current page and information about
the input to the web application. In response the web application sends a new
web-page in HTML to the browser.

For automatic model based testing, our test system G∀ST provides the input
and checks the HTML code received as response. We use a data structure repre-
senting the HTML code instead of a textual representation. The data structures
for HTML from the iData approach [16,17] are reused. Without restricting the
general approach in any way we test web applications constructed with iData.
Compared with testing an arbitrary web application it has as advantage that
it enables us to make a shortcut that increases the speed of testing. Instead
of transforming the data structures generated by the web-application to HTML
text, transmitting this text over the web, parsing the text, and converting it to a
suitable data structure to inspect the code in a structural way, we directly pass
the HTML data structure to the web-interface of G∀ST. Also the input is sent
directly as data structure from G∀ST to the web-application under test.
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Within the HTML data structure all viewable information is stored in a list of
body-tags. The recursive ADT for body-tags contains separate cases for items
like strings, tables, buttons, and edit fields. To retrieve information from these
data structures easily we have created functions to select strings, tables and table
contents from HTML or body-tags. The function findBodyTags finds the named
list of body-tags in a specification.

In the examples below we assume that we have limited information of the iut.
In the number guessing game the specification does not know the number to be
found, and in the CD-shop the specification does not know the content of the
CD database at the back-end of the application. Nevertheless, we are able to do
useful tests and to spot errors in both cases. Including the CD database in the
specification allows us to check more details of the obtained web-pages.

4.1 Example 1: A Number Guessing Game

The first example is a number guessing game that randomly selects a number be-
tween integer bounds low and up. After each guess, the game provides feedback:
if the number is too low (high), the guess count is incremented, and the player
is told that the number to guess is larger (smaller); if the number matches, then
the player’s name and used number of guesses are entered and displayed in the
Hall of Fame. At any time, a different player name can be entered.

Although this is a small example, there are many aspects that can be tested.
To mention just a few of them: (1) the game should give consistent answers
to guesses; (2) the Hall of Fame should add the player with the given name
and number of guesses; (3) the Hall of Fame should be persistent and not alter
existing entries; (4) entering a different player name should not change the state.
Here we test aspect (1) and (4).

The specification is a state transition function written in Clean [18] is given
in figure 1. The function spec is the heart of the specification. The state used in
this specification consists only of the integer to be guessed. The transition from
initial state to running state (line 2) is a standard idiom for web applications.
In this line Init is some integer value outside the range of valid numbers to be
guessed. Line 3 captures every switch to a new name. Lines 4-7 are concerned
with numerical input. Lines 5 and 6 handle incorrect inputs. Line 5 states that
if the input i is smaller than the goal g only the transitions described by the
function tooLow are allowed. Line 6 states that only the transition described by
tooHigh is allowed when i>g. If i is neither smaller nor larger than g, it will be
equal to g. This is handled in line 7. In this situation the guess should be correct.
This is handled by the function correct.

The functions tooLow, tooHigh, and correct are the functions that compute
the reachable states from the associated input and output page. They are very
similar. They inspect the HTML text elements that are tagged with labels "Hint"
and "Answer". For instance, correct demands that the text line labeled with
"Answer" has content "Congratulations" and resets to a new guess state. Note
that each function alternative yields a list of functions of type [Html ] → [Int ] .
This is the instance of O∗ → IP S for this test.
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spec :: Int In → [ [ Html ] → [Int ] ] 1

spec Init input = [ FTrans (λhtml = newGuess ) ] 2

spec r (StringTextBox s) = [λhtml = [r ] ] 3

spec g (IntTextBox i) 4

| i<g = [(tooLow [g ] ) ] 5

| i>g = [(tooHigh [g ] ) ] 6

| otherwise = [(correct newGuess ) ] 7

tooLow r [html ] 8

| htmlTexts (findBodyTags "Answer" html) == ["Sorry" ] ∧ 9

htmlTexts (findBodyTags "Hint" html) == ["larger" ] = r 10

| otherwise = [ ] 11

tooHigh r [html ] 12

| htmlTexts (findBodyTags "Answer" html) == ["Sorry" ] ∧ 13

htmlTexts (findBodyTags "Hint" html) == ["smaller" ] = r 14

| otherwise = [ ] 15

correct r [html ] 16

| htmlTexts (findBodyTags "Answer" html) == ["Congratulations" ] = r 17

| otherwise = [ ] 18

Fig. 1. The specification of the number guessing game

The function newGuess yields the list of states for a new game. Since we as-
sumed that the specification has no knowledge about the choice of numbers to
be guessed, it yields the list of all numbers from the lower bound up to the upper
bound: newGuess = [low..up ] .

The states of numbers, g, that appear to be incorrect will be eliminated as
soon as the iut gives a reply that is not consistent with the behavior of spec

for that g. Suppose that low is 1, up is 10. This implies that all number from 1
to 10 are allowed states in the specification after initialization. Assume that we
supply the input 5 and the iut replies Sorry , larger. This will eliminate states 1
to 5. When the next input is 4 and the iut would answer Sorry , smaller this is
clearly inconsistent behavior. The specification will notice this since there is no
transition matching this HTML-output on input 4 for states 6 to 10. As a result
the set of allowed states in the specification becomes empty. Hence, the iut did
a transition that is not covered by the specification, i.e. an error occurred.

Input Generation. The inputs for this web-application are either a new name
in the string text box, or a new guess in the integer text box. This is modeled
by the algebraic data type In.

:: In = StringTextBox String | IntTextBox Int

During testing instances of this type are needed in order to determine the next
input. G∀ST is able to derive all possible inputs values from the type definition
for In automatically. However, the generic generation algorithm used for this has
no notion of the intended use of these values and will produce many values that
are not very sensible for testing this web-application. Instead of deriving values
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for the type In, we specify to use only the name Tester and the integer values
from low-1 to up+1.

ggen{|In|} = [StringTextBox "tester": [IntTextBox i \\ i ← [low-1..up+1 ] ] ]

The border values low-1 and up+1 are added to include some invalid numbers
in the tests. A single name appears to be sufficient in the tests. Using different
names would be very simple. G∀ST tries these values in a pseudo random order.
In each state G∀ST applies the first input element that is accepted by one of the
current states of the specification (e.a. is an element of init(s)). Since all inputs
of type In are accepted by the given specification, the sequence of inputs used in
the tests is a pseudo random choice of elements from the values defined above.

Test Results. We have run the test against an iut that interprets the switching
of player names differently than the specification does: whenever a new player
name is entered, the iut starts with a new number to guess. This violates the
behavior specified at line 3 of the test specification: nothing should change. After
entering a new name the iut gives answers that are not consistent to previous
guesses. G∀ST spots that there are no transitions according to the reactions
observed from the iut for the remaining states. Hence an issue is reported. When
testing against a maximum trace length of 100 transitions, the system requires on
average 3 paths to reveal the error (more precisely, 325 transitions). The average
testing time was 0.80 sec per detected error. Testing was done on an AMD Athlon
XP 2200+, 1.80GHz PC, 512MB RAM, running Microsoft Windows XP.

This very simple example shows that G∀ST is able to find real errors in web-
applications. In order to find this inconsistent behavior, the test system has to
gather information from the HTML-page generated by the iut and compare it
with information from previous responses.

Efficient State Representation in the Specification. The specification in
Fig. 1 uses one state for each value that is still a possible number to be guessed.
For ranges up to hundreds of allowed numbers this is no problem. When the
range of numbers would be extended to many thousands of values, handling all
these individual numbers in the test system states takes a noticeable amount of
time. Fortunately, it easy to change the specification such that also a huge range
of numbers to be guessed can be handled. The numbers that might be correct
is always the entire sequence of numbers from the largest guess that was too
low, up to the smallest guess that was to high. Instead of storing all possible
numbers, we can better store the bounds of this sequence. The corresponding
specification is given in Fig. 2. The type SpecState defined in line 1 stores the
bounds of the correct numbers in the arguments of the constructor RunningS.
Line 2 states that the bounds of the possible correct numbers are initial the
bounds given in the game. Line 3 and 4 handles the initial game and entering a
new name, these are direct mirrors of line 2 and 3 of spec in figure 1. Line 7 and
8 state that for a guess outside the bounds only the corresponding output with
Sorry is allowed. When the input is equal to both bounds, it has to be correct
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:: SpecState = InitS | RunningS Int Int 1

newGame = RunningS low up 2

spec2 :: SpecState In → [ [ Html ]→[SpecState ] ] 3

spec2 InitS input = [λhtml = [newGame ] ] 4

spec2 r (StringTextBox s) = [λhtml = [r ] ] 5

spec2 (RunningS l u) (IntTextBox i) 6

| i < l = [tooLow [RunningS l u ] ] 7

| i > u = [tooHigh [RunningS l u ] ] 8

| i == l ∧ i == u = [correct [newGame ] ] 9

| l≤i ∧ i≤u = [tooLow [RunningS (i+1) u ] , tooHigh [RunningS l (i-1 ) ] 10

,correct [newGame ] ] 11

Fig. 2. The specification of the number guessing game using one single state

(line 9). Otherwise the guess might be too low, too high or correct. The state is
adapted correspondingly in line 10 and 11.

Testing with this specification produces the same issue as the tests with the
previous specification. Since the number to be guessed in in the range from 1 to
10, choice of the seed for the pseudo random numbers in G∀ST dominates the
effects of the more compact representation of the states.

More Controlled Tests. When the test engineer wants more control over the
test there are several options. By using a partial specification one can exclude
parts of the behavior from the tests. For instance if the right hand side of the
function alternatives of line 7 and 8 are replaced by [ ] (undefined) no tests for
input values outside the range of possible correct numbers will be done. In this
example the error is found quicker by inputs that have to yield too low or too
high. These inputs are excluded in the test by the partial specification. Hence it
takes about 20% more transitions to find the error.

Another possibility to control the test process is by specifying a function that
determines the possible inputs for a given state. This function can be supplied as
optional argument to G∀ST. In this way we can force G∀ST to test only guessing
by binary search and changing names:

iFun (RunningS l h) = [StringTextBox "tester2" , IntTextBox ((l+h)/2)]
iFun InitS = [StringTextBox "tester1" , IntTextBox ((low+up)/2)]

Using binary search and the original specification form Fig. 2, the error is found
in about 20% less transitions. No matter what variant of testing we use the error
is always found pretty quickly. The longest test run to the first error observed is
1605 transitions and takes less than 5 seconds. For more complicated examples
it might be worthwhile to guide the testing process more precisely. This section
just indicates that G∀ST offers the tools to do this easily.
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4.2 Example 2: A Web-Shop

Our second example is a highly dynamic web-shop selling CD’s. This application
contains four main views: (1) the initial home-view; (2) the shop-view to browse,
search and order the CDs in the shop; (3) the basket-view to examine and change
the CDs the user is ordering; (4) the order-view to make the order definitive
and pay. The actual contents of the shop-view is determined by the contents of
a database. The contents of the basket-view and order-view are determined by
the CDs selected by the user.

Fig. 3. Screen shots of the web-shop. On the left page 3 of the shop-view, on the right
the graphical representation of the error found by G∀ST

The specification does not know the contents of the database, so we cannot
check whether the right CDs are displayed. Still, the specification does prescribe
consistent behavior during the navigation and searching in the shop-pages, and
takes care that ordered items appear in the basket and the final order.

Also in this web-application G∀ST found an error. If the user is not on the
first page with CDs and makes a selection (on artist name, album or song), the
web application does not go to the first page of CDs. This can cause that an
empty page with CDs is shown although there are CDs in the selection.

The complete specification is too large for this paper. Fig. 4 contains a self-
contained specification that is just capable of finding the described error. This

shopSpec :: ShopState ShopInput → [ [ Html ] → [ShopState ] ] 1

shopSpec s=:{view=InitView} input = [λo → [{s&view = HomeView } ] ] 2

shopSpec s ShopButton 3

= [ λ[html ] → [{s&view = ShopView , cds = findCdCount html} ] ] 4

shopSpec s=:{view = ShopView} (PageButton (PageNum n)) 5

| n �= s.pageNum ∧ n*s.itemsPage < s.cds 6

= [λ[html ] → [{s & pageNum = n} ] ] 7

| otherwise = [ ] 8

shopSpec s=:{view = ShopView} (SearchTextBox str) 9

= [ λ[html ] → [{s & pageNum = 0, cds = findCdCount html} ] ] 10

shopSpec s i = [ ] /∗ default: undefined ∗/ 11

Fig. 4. The partial specification of the web-shop
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is only part of the complete specification, but it can be used on its own by G∀ST
and finds the error quickly. Line 2 covers the standard transition from the initial
state to the home page. The lines 3 and 4 states that the shop-button brings
you from any state to the shop-view. The number of CDs is retrieved from the
HTML code and stored in the cds field of the shop state record of type ShopState.
Lines 5− 8 handle navigation through the various pages in the shop-view. Such
a transition is only possible if the target page is different from the current page
and exists. Entering a new text in the search box is specified in line 9− 10. The
specification states that the number of CDs in the state must be read from the
page and the page number should be set to 0.

The inconsistency is spotted by a predicate over the output and the new
state. This predicate checks whether the CDs with desired numbers, represented
as string like "3/7" (third of seven CDs), are listed on the current page.

5 Related Work

Testing web applications is experiencing an increased interest. A wide variety of
existing testing techniques and theories are being extended and modified for the
web. It is beyond the scope of this paper to discuss them all.

In van Beek and Mauw [22] black box conformance testing of thin (no local
client based computations) Internet applications is presented. In their approach,
Internet applications are modelled with MRRTS-es (multi request-response tran-
sition systems). In order to create specifications conveniently, they use the
process algebraic DiCons [21] specification language. DiCons has been devel-
oped specifically for distributed consensus applications. These are applications
in which several users have a common goal that needs to be reached. In their test
system, they run the implementation under test and consider the link-activations
and form submissions. Differences with our approach are that we use a functional
specification style with rich algebraic data types; the implementation under test
is a function that yields HTML code; we test only form submissions.

In Sect. 1 we have argued that interactive applications are modelled natu-
rally with Extended State Machines, which are LTSs over input/output pairs.
Conformance of these systems is well studied by Latella and Massink [11]. They
prove that a quiescence supporting semantics is crucial to obtain substitutivity
properties: implementations conforming to a specification can be safely replaced
with a testing equivalent implementation without breaking conformance, and
implementations conforming to a specification also conform to testing equiva-
lent specifications. Our approach is geared towards practical situations in the
sense that we consider states, input and output labels to be values of arbitrarily
complex, recursive ADTs. It is an interesting and open question whether the
theoretical results also hold for our approach.

Frantzen et al.[4] study black box conformance testing with symbolic state.
This is related to our work because they address the issue of working with
arbitrarily complex data structures. In their approach the data structures are
specified by means of first order logic specifications. Their approach is more
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general than our approach, but this leads to a number of open issues, such
as finding the solution to a logical formula (if it exists at all), and the actual
computation of concrete input values to the iut. Our approach is based on ADTs,
and functional term graph rewriting. Confluence holds for these systems, and
our ESMs can rely on arbitrarily complex state transition functions to describe
complex systems.

Andrews et al.[2] employ FSMs with constraints to model and test web ap-
plications. Hierarchical decomposition and constraints are used to control the
usual state space explosion problem: with hierarchical decomposition the FSM
can be decomposed recursively into subsystems. For each subsystem tests can
be generated and assembled into compound tests up to the entire application
level. Constraints for sequencing and sets remove the need to tediously specify all
different possible input sequences in terms of state transitions. The hierarchical
decomposition is done manually by the tester, as well as defining the constraints.
The inputs on which the constraints are defined correspond with standard form
elements, such as (multi-)lines, URLs, links, (radio) buttons, and so on. As in
our approach, they model the web application at the user level.

Wu and Offutt [24] model web applications by identifying the structure of web
pages in terms of atomic sections that are composed with process algebraic like
operators such as sequential composition, choice, and aggregation. Interactions,
such as link transitions, composite transitions, and operational transitions, define
the relationship between different pages. From these models, tests can be derived.
As with our approach, the authors restrict themselves to monitoring HTML
output only. In contrast with our approach, they deliberately ignore state. This
is argued by the fact that the HTTP protocol is stateless. However, a standard
way to include state is to pass additional information along with the HTML.

Jia and Liu [5] present a general framework to automatically test several key
aspects of web applications, such as functionality, page structure (which is what
our approach concentrates on), security and performance. XML is chosen to
formally specify the test because it also provides access to specify page structure
properties using standard utilities such as DOM and XPath. A test specification
is a set of test suites. A test suite is a set of test steps. A test case is a tree of
test steps. A test sequence is a traversal from root to leaf of a test case. A test
step is a (possibly guarded) request-response pair that is executed only if the
guard is true. The request is a pattern of HTTP request that need to be matched.
The response is an assertion on the HTTP output of the web application. XML
is also used by Lee and Offutt [13] as a vehicle for test specifications and data
transmissions. In our approach web pages are modelled by means of ADTs,
and access to these pages is provided by means of functions. Advantages of
our approach are that specifications are type correct, and that the user can
specify arbitrarily complex computations on these pages (for instance, extract
the complete content of a table and return it as a matrix of values).

Although we have not considered incorporating testing of browser function-
ality such as window cloning and the use of the back/forward browsing buttons
as done e.g. by Di Lucca and Di Penta [3], our framework can be used for these
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purposes. It is up to the test engineer to model the desired behavior of the
application under these circumstances. This is even the case when testing the
behavior of web applications in the presence of users who manually edit links
or even alter page codes. Usually for these kinds of robustness tests white box
testing techniques are used (e.g. Liu et al.[14] and Kung et al.[9]). Our system is
independent of the concrete implementation language(s) of the web application.

6 Conclusions

The automatic, model based, testing of web applications is an important topic
since the number applications is growing rapidly. Thin-client web applications
send a complete new web page in pure HTML to the browser in response to each
input. Usually it is undesirable to specify each and every aspect of this HTML
code. For most specification techniques this is troublesome since they commonly
require to explicitly list the combinations of allowed output and target state.
In this paper we introduced a specification technique and the associated, ioco-
like, conformance relation to tackle this problem. The key step is to replace the
combination of allowed outputs and target states by a function from output to
allowed target states. This function can check aspects of the output, as well as
retrieve information to be stored in the target state.

This technique is implemented as an extension of the on-the-fly test tool G∀ST.
In this paper we illustrate with two examples that it is possible to (partially)
specify the desired behavior of highly dynamic web applications in this way and
to find errors in the concrete implementations of these web applications.
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Abstract. When models are formal, model based testing approaches
usually construct a coverage graph through symbolic execution and de-
rive test cases in the form of paths in the coverage graph. Thereafter
consistency between the model and the implementation is verified in re-
lation to the test cases. Existing approaches, especially when dealing
with model oriented languages like B, partition the input space of each
operation in the model to create operation instances, and then animate
the model in relation to these instances. The paths or the test cases are
now a sequence of operation instances. However, in this approach, there
is no guarantee that we test the user scenarios. In this paper, we first de-
fine scenario based test cases in relation to the initial specification. When
this specification passes through a succession of refinements, we derive
scenario based test cases for each refinement and show that all these test
cases are equivalent to the test cases of the original specification.

Keywords: Model Based Testing; Scenarios; B-Method.

1 Introduction

Software models are usually built to reduce the complexity of the development
process and to ensure software quality. A software model is an abstraction in
the sense that it captures the most important requirements of the system while
omitting unimportant details. A model is usually a specification of the system
which is developed from the requirements early in the development cycle [4].
This paper concerns formal models; in particular, we deal with model oriented
formal languages like Z [16], VDM [9] , B [1] and Event-B [11]. By model oriented
we mean, the system behavior is described using an explicit model of the system
state along with operations (or events) on the state.

Model based testing is usually based on the notion of a coverage graph
obtained from the symbolic execution of the model. A subset of the paths in
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this graph can be treated as a test suite from the viewpoint of test case gener-
ation. Even though model based testing is an incomplete activity, the selected
behaviors could be enriched to capture interesting properties of the system and
hence using those in testing would give us confidence about the correctness of
the system.

Existing testing tools or techniques dealing with model oriented languages
[2,15] partition the input space of an operation into equivalence classes to create
operation instances. Then a Finite State Automaton (FSA) or a coverage graph is
constructed in which the initial node corresponds to the initial state of the model,
and edges correspond to application of operation instances. Usually a coverage
graph is constructed up to a predefined depth or size. Some paths of this graph
are selected as test cases. When the implementation is subjected to the same
sequence of operations as in a test case, we get an image of the original path in
the model execution. Now if the properties of the implementation path matches
with the properties of the path in the model, we declare that the implementation
has passed the test case; otherwise, a failure.

However, in these approaches, there is no guarantee that the user scenarios are
tested. A user scenario is like a usecase scenario in UML [12]; in this article, we use
scenarios and usecases interchangeably. The paths that we test as test cases may
be unrelated to the usecases. How to know that we are not missing some scenarios?
Of course if all possible operation instances do appear in the coverage graph, and
we are able to test all of them, we can say that the user scenarios have been tested
in an implicit way. But since we fix a predefined bound on the depth of the coverage
graph, some operation instances may lie beyond this bound, and then there is no
way to locate them. Furthermore, some valid operation instance may not appear in
the graph at all. In this paper, we address these issues. Of course, here we assume
that the entire development path from the specification to code is not entirely
formal, in which case testing may not be necessary; however, in practice, the entire
development process is less often formal.

The basic idea behind our paper can be seen from Figure 1. We define an
initial usecase-based test case T0 in terms of a sequence of operations in relation
to the initial specification R0. Thereafter, given any successive refinement pair
Ri and Ri+1, and Ti as the usecase-based test case for Ri, we derive Ti+1 such
that it is a valid behavior of Ri+1, and then show that Ti and Ti+1 are equivalent
to each other. The main contributions of our paper are:

– We relate our test cases to user scenarios; in the process, we also find out if
the refinement has missed out on some scenarios.

– Our approach generates a small number of test cases, and in addition, it takes
care to keep the lengths of the test cases small. These may have impact on
the time to test the test cases.

The organization of the paper is as follows. Section 2 discusses related work
and the testing terminology we use. Section 3 describes the problem in a formal
manner. In Section 4, we discuss our approach over a running example. Section 5
discusses the strengths and the weaknesses of our approach. Section 6 concludes
the paper.
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Fig. 1. The Basic Idea

2 Related Work

A testing criterion is a set of requirements on test data which reflects a notion
of adequacy on the testing of a system [14,18]. An adequacy criterion serves
two purposes: (a) it defines a stopping rule which determines whether sufficient
testing has already been done; so, testing can now be stopped, and (b) it provides
measurements to obtain the degree of adequacy obtained after testing stopped.
For our purpose, the testing criterion would be to test the usecases. However,
the usecases are usually generic in nature; so the criterion would be to test some
instances of the usecases.

The work by Dick and Faivre [3] is a major contribution to the use of formal
methods in software testing. A VDM specification has state variables and an
invariant (Inv) to restrict the variables. An operation, say OP, is specified by a
pre-condition (OPpre) and a post-condition (OPpost). The approach partitions
the input space of OP by converting the expression (OPpre∧ OPpost∧ Inv) into
its Disjunctive Normal Form (DNF), and each disjunct, unless a contradiction,
represents an input subdomain of OP. Next as many operation instances are
created as the number of non-contradictory disjuncts in the DNF. An attempt
is then made to create a FSA in which each node represents a possible machine
state and an edge represents an application of an operation instance. A set of test
cases is then generated by traversing the FSA, each test case being a sequence
of operation instances.

BZ-Testing Tool (BZ-TT) [2] and the ProTest approach [15] both generates
functional test cases from B specifications. The partitioning algorithm to obtain
operation instances and the generation of test cases from a coverage graph are
similar to the methods described in [3].

All approaches usually partition the input space to create operation instances,
but when a specification is further refined, the original partitions may have
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no meaning in relation to the refinements because the data space might have
changed. Derrick and Boiten [5] have developed a strategy to transform the
operation instances so that they remain meaningful in relation to the appropriate
refinement.

2.1 The Event-B Method

The B-method, originally developed by J.-R. Abrial [1], is a theory and methodol-
ogy for formal development of sequential programs. B is used to cover the whole
range of the software development cycle; the specification is used to generate
code with a set of refinement steps in between. At each stage, the current refine-
ment needs to be proved consistent with the previous refinement. The Event-B
method [11] is an extension of the B method which is meant for the modeling
and development of distributed systems. The essential difference between B and
Event-B is that in B, operations are invoked, whereas in Event-B, events are exe-
cuted in response to changes in the environment. This paper focuses on Event-B
models.

An Event-B specification has a static part called context, and a dynamic
part called the machine. The context contains the set declarations and constant
definitions along with their properties. A machine has access to its context via
the SEES relationship. The machine mainly consists of state variables and events.
The state variables are given their initial values by an INITIALISATION clause
and thereafter, the state variables can be modified by the execution of the events.
And event is of the form:

E = WHEN G(v) THEN S(v) END

where G(v) is a guard and S(v) is a generalized substitution, both may in-
volve state variables represented by v. An event becomes enabled only if the
guard holds; otherwise, the event is blocked. A generalized substitution can be
empty, deterministic or non-deterministic. The empty substitution is skip which
does nothing. The deterministic substitution is of the form: x := E(v). A non-
deterministic assignment is of the form:

ANY t WHERE P (t, v) THEN x := F (t, v) END

Here t is a local variable which is non-deterministically given a value such that
predicate P (t, v) holds. And then the value of t is used to change the machine
state through the substitution F .

2.2 Refinement in Event-B

In the Event-B method, the initial specification passes through a succession of
refinements and the code can be generated from the final refinement. In practice,
the whole refinement sequence is generated less often. One approach could be to
produce a few refinement steps and then to generate code from the most concrete
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refinement; consistency of the implementation is then left to model based testing.
Our approach is relevant in this context.

Refining a machine consists of refining its states and events. A machine which
is a refinement of another, has a state which is related to the abstract state by a
predicate, called the gluing invariant. The gluing predicate usually involves the
state variables of both the original machine and its refinement. The refinement
machine retains the original abstract events, but may have some new events.
Each new event must be proved to refine the event skip which does nothing.
In addition, the new events are not allowed to take control collectively for ever.
This is ensured by providing a unique variant expression V (w) which is strictly
decreased by each new event. If the new event evt with J(v,w) as the gluing
predicate is:

evt = WHEN R(w) THEN w := G(w) END

then for termination, one has to prove:

I(v) ∧ J(v, w) ⇒ V (w) ∈ N ∧ V (G(w)) < V (w)

This means that the variant expression evaluates to a natural number. This also
means that once the value of w is known then one can always put an upper
bound on the value of V (w). In summary, the number of times that all the new
events can be executed is limited by this upper bound.

If an event in the refinement is not a new event, it must have a forward simu-
lation relationship [6,10] with its abstract version. Let us consider two successive
refinements: R1 and R2, the latter being a refinement of the former. Let GI be
the gluing invariant between them. Furthermore, let AI and CI represent the
abstract and concrete initial states of the two refinements. Let AOP and COP
stand for an abstract operation in R1 and its concrete version in R2 respectively.
Then forward simulation as a relational definition is as shown in Figure 2 [8,10].
In other words:

– Every concrete initial state must be related to some initial abstract state
– If concrete state c and abstract state a are linked by GI, and a concrete

operation COP takes c to c′, then there must exist an abstract state a′ so
that the relationship in the diagram holds.

If R1 and R2 satisfy these relationships then we can say that R2 is consistent
with R1. The proof obligations generated by the tools supporting Event-B prove
this relationship.

2.3 An Example

We have taken the leader election problem as our running example. The Event-B
machine Leader.mch shows the initial specification. The Appendix presents this
machine along with its two successive refinements. A finite number of processors
are arranged in a ring, each processor has a numeric ID. The processor with
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Fig. 2. Relational Definition of Forward Simulation

the highest numeric value is elected as the leader. In machine Leader.mch, after
initialization, one execution of the event elect finds the leader.

LeaderR.mch is the first refinement of Leader.mch. It has two new events,
called accept and reject in addition to the single event in the original machine.
LeaderRR.mch is a refinement of LeaderR.mch. It has one more new event called
send. We will refer to the new events in a refinement as τ -operations in relation
to its previous refinement (or specification); they are internal operations from
the viewpoint of the parent machine.

3 The Problem

In the B-method, partitioning of the input space creates operation instances;
similarly, partition of the input space of an event will give rise to event instances.
Usually all the operation (or event) instances do not appear in a coverage graph
generation. The reasons are as follows:

– If the model invariant is weak then a valid operation instance may not be
reachable. For instance, the constraint 10 ≤ X ≤ 20 could be present in a
model as 0 ≤ X ≤ 100. If X in a state gets a value of 50, then some valid
operations may not be applicable and so would not appear in the coverage
graph. Usually the invariants suffer from incompleteness.

– A poor initialization may stop some operation instances to appear. For in-
stance, let an invariant be: num of rooms ≥ 1. Now if num of rooms gets
initialized to 1, then many interesting operation instances would not appear.

– An operation instance may not occur because we make a finite construc-
tion of the coverage graph according to some predefined depth; but, had
we continued with graph construction, possibly some more instances might
have appeared. But the missing operation instances may be related to the
usecases.
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3.1 Scenario Based Test Cases

A scenario shows a typical interaction between the system and the environment
[13]. In other words, it is a possible situation within an usecase. The initial
specification that we refer to usually defines a small set of very high level events
and they are meaningful from the viewpoint of a user. Note this from the machine
Leader.mch which has a single high level event elect. Therefore, in general, the
a scenario can easily be expressed as a linear sequence in terms of these high
level events, and its length would be small. For the present example, the only
possible scenario would be: elect a leader. There is only one state variable and
only one operation called elect besides the initialization clause. This lone usecase
can be expressed as the sequence: < init, elect >.

However, some usecases may be non-terminating. Consider the use case: send
messages; this means any number of messages can be sent. This usecase
can be expressed by the regular expression: send.(send)∗. In such a case, we
only take a finite instance of this as our initial test cases, say the sequence:
< send, send, send, send >.

Usually the initial specification undergoes a succession of refinements, and
one such refinement, say Ri, is referred to while writing the code. Let us call this
as the implementation refinement. Now our initial test cases in this situation do
not hold any ground because the semantic gap between the current refinement
and the initial specification could be very high. There is a need to make the test
cases we have created for the initial specification meaningful to Ri. This is the
problem that we address in this paper.

3.2 The Approach

Refer to Figure 3. Let us assume that refinement Ri+1 has been obtained from
Ri through forward simulation. Further Ri satisfies test case Ti; in other words,
Ti is a valid trace of Ri. Under this situation, our intention is to derive a test
case Ti+1 which is satisfied by Ri+1, and in addition Ti+1 is a trace refinement
of Ti. The algorithm of Table 1 does exactly this.

R
i

R
i+1

T
i

satisfies

satisfies

i+1

GI Trace 
refinement

(exists) T     

Fig. 3. A step in the synthesis of Test Cases
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Table 1. Algorithm for graph creation

Algorithm: GenerateTestCases

Input: (i) Event-B specification (R0) and its K successive refinements as R1, . . . , RK

with GIi as the gluing invariant between Ri and Ri−1.
(ii) Test case T0 as a sequence of events in R0 (to be a trace needs instantiation).

Output: K + 1 test sequences : T0, . . . , TK (all instantiated).
step 1:

Create K + 1 nodes I0, . . . , IK as initial nodes of T0, . . . , TK .
Let Ii have the assignments of the Initialization clause in Ri.

/* constants and deferred sets in each Ri not yet instantiated */
step 2

Consider the variant in RK . Instantiate the deferred sets
and the constants so that the variant value remains small.
Based on this, instantiate IK

step 3:
Project IK backwards to give full instantiation to I0, . . . IK−1.

step 4:
Instantiate T0 to make it a valid trace of R0 in a symbolic execution.
i = 1;

step 5:
Looking at Ti−1, construct Ti as follows:
Let Ti−1 have t states (nodes) as Ii−1 = A1, . . . , At

for (j = 2, . . . , t) do
Construct for Ti, node Bj ; Using GIi, project the instantiated node Aj

to obtain possible instantiations of variables in Bj .
Let evej be the event of the edge joining Aj−1 and Aj .
Construct a path from Bj−1 to Bj such that the path has a single
occurrence of evej , and the rest are the τ -operations of Ri.

/*This path length would be limited by the variant in Ri.*/
endfor
output: the current path is Ti

step 6:
if (i = K) stop.
else i = i + 1, Goto step 5.

Refer to the initial specification as R0. We are given a usecase-based test case
T0 for R0. We then can apply the same algorithm repeatedly to obtain test cases
for successive refinements. Figure 1 illustrates exactly this.

4 The Algorithm

The Algorithm in Table 1 assumes that a scenario based test case for the initial
specification (R0) is given, and then it synthesizes corresponding test cases for
subsequent refinements. We will illustrate our algorithm over the leader election
problem as the running example. The uninstantiated test case here is the sequence
< init, elect >. In the first step, the algorithm creates initial nodes for all the
refinements. In Figure 4, this is shown by nodes A0, B0, and C0 respectively.
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Fig. 4. Steps in generating the Coverage Graphs

Because of the new events, a test case for the current refinement could be
larger in size in relation to the test case of the previous refinement; the extent
to which it could be larger is strictly dependent on the variant upper-bound
defined in the current refinement. As we will soon discuss, the construction
algorithm is of exponential complexity. Therefore, we limit this bound by a
suitable instantiation of the constants and the deferred sets (and possibly to
some state variables). This task is performed by Step 2 in the algorithm.

For the present example, the variant to control the new events in R1 is v1 =
n∗(n+1), where n is the value of constantN . This also means that the combination
of the accept and the reject events in a trace is limited by v1. The variant v2 for
R2 is also n ∗ (n + 1).

Now in order to control the problem size, we give a small to N , say 3;
thus v2 gets the value of 12. We then can select any values for M , say the
set {10, 15, 20}. And then we give some instantiation to the constant function
next = {(10, 20), (20, 15), (15, 10)}which shows the directions to treat the subset
as a ring. This instantiation has been shown in a box on top of node C0.
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We first give instantiation to the initial node of the last refinement and then
project these instantiations through the gluing invariants backwards so that the
initial states of all refinements receive instantiation. In the algorithm, this is
done by step 3. In the example, we project the instantiation of C0 to B0 and
A0. They have been shown in the boxes attached to the respective nodes.

In step 4 of the algorithm, we symbolically execute the specification (or refine-
ment R0) in terms of the event sequence in the test case, and thus obtain T0 as
a trace. In the process all the nodes occurring in the trace receive instantiation.
Note this at node A1 in the figure.

Step 5 discusses how we take a fully instantiated trace of a refinement and
then derive incrementally a fully instantiated trace of the next refinement. We
illustrate this through the example. < A0, A1 > is a fully instantiated path in
R0. Let us assume there exists a state for a trace in R1 having a gluing relation
with A1, and let us name it B3. Then from the gluing relation and the fact
that A1 is instantiated, we can give instantiation to B3 which may be a partial
instantiation; more about this latter. Since the gluing relation here is ID (identity
function) – the relation between winner in R0 and the winner in R1. Thus for
B3, winner = 20. Next we try to find a path between B0 and B3 such that only
one edge would be labeled with event elect and the rest with the new events.
And the number of new events in this trace will not exceed variant v1.

The algorithm for finding the shortest path between two such states is NP-
Complete [7] because it is a variant of the satisfiability problem. So, we follow
a greedy strategy. The strategy states that whenever you need data values for
the events for the path under construction, always select the values from the
target state. To be more specific, the state variables in the target node may have
instantiated values, and some of them may coincide with values of the state
variables in the source state. We select values from the state variables in the
target state which differ from the assignments in the source state.

For the current example, we have winner= 20 in the target state; so we try
to use this value as choice options of the events meant for the current path. In
the process we create the path < B0, B1, B2, B3 >. We could have applied he
other τ -event reject, but giving it the value of 20 made its guard false.

Thereafter we repeat step 5 to complete the graph construction for all the
refinements. For the current example, we need to obtain a trace for refinement
R2. The gluing relation, say GI1 between R1 and R2 is:

position(x) = y ⇔ out(x) = y ∨ next(y) = in(x)

We now discover a node to be sync with B1 such that the above gluing relation
holds. However, we can discover many nodes denoted by X which can be related
with B1; we go for the most generic one. For the present C4 is the state which
is in sync with B1 in terms of the gluing relation. Note in the Figure 4, how
assignment of some state variables of C4 have been given in the form of predicates
which makes it generic.

As per our greedy strategy, whenever we select choices for events accept and
send, we select 15 or 20; this is because these are the places where C0 and C4
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differ. In the process we discover the path < C0, C1, C4 >. Next, we discover
a node C10 in sync with node B2. So, now our task is to find a path between
C4 till C10 by use of Step 5 once again. And this continues till we discover test
cases for all the refinements.

4.1 Exponential Nature of the Algorithm

While constructing a path as discussed above, it may so happen that we may
not succeed in obtaining the complete path. Refer to Figure 5. The graph at the
top shows some traces for refinement R1 and assume that all the traces shown
implements the single test case of its previous refinement. If we hide the internal
events of some traces of R1, and then if it reduces to be a trace of R0, then we
say that all the traces of R1 implement the trace of R0. The image of a trace of
R0 need not be unique in R1.

Now as per the rules of refinement, if R2 implements any of the traces of R1
then we are done and we can conclude that R2 implements the original usecase.
However, the situation is much more difficult when we have to show that R2
does not implement the usecase.

Let us see how our algorithm works. Consider the situation when the con-
struction for R1 is over and we are dealing with R2. The algorithm first takes
the trace < A, B, E > and constructs a path < X, Y, Z, . . . > to show the
correspondence. It may so happen that we fail to find such a trace. If so, we
next consider the path < A, B, F > and see if a trace for it exists in R2. If
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P Q
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Trace 3

A C

D
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1 F
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Trace 1
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Trace 2

Fig. 5. Showing non-existence of trace implementation
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we fail again we try < A, C, G >. If we fail for all traces, it may be legal from
refinement point of view, but it would also mean that R2 does not implement
the given usecase. And then a warning could be given to the developer to show
this deficiency in the refinement process.

Since in the worst case we may have to go for exhaustive enumeration of traces,
the algorithm is of exponential nature. However, the length of each trace is limited
by the variants of the τ -operations in the refinement. But we always select small
values for our variants because of which we do not let the algorithm explode.

Theorem: The traces obtained by the algorithm in Section 4 conform to the
commutative diagram of Figure 3.

Proof: Refer to Figure 3. The algorithm assumes that Ri, Ri+1 and Ti are given,
and then it computes a trace Ti+1. The fact that Ri+1 satisfies Ti+1 is obvious,
since the trace is one of the behaviors of Ri+1. The construction also ensures
that Ti+1 preserves the trace of Ti. More formally, when we treat the new events
in Ri+1 as the internal τ -operations then there exists a rooted branching bisim-
ulation [17] between Ti and Ti+1 with respect to the gluing relation; this simply
comes from our construction method. Rooted branching bisimulation preserves
trace equivalence under refinement of actions provided actions are atomic [17].
And in B, the operations or actions are atomic. �

5 Analysis

The following are the highlights of our approach:

– A tool supporting the generation of usecase-based test cases would be semi-
automatic in the following sense. The tool would take the initial usecase-
based test case instances as input, a specification and a set of successive
refinements. The developer may initialize the parameters to limit the solution
size. Thereafter, rest of the process could be automated.

– To make the test cases robust one could consider more than one initializa-
tion. Furthermore, one could consider multiple instances of the same usecase
scenario.

– The approach is capable of generating test cases of shorter length. The cur-
rent approaches usually create a coverage graph in an ad-hoc manner like:
take the initial state and go on applying operation instances till a predefined
depth is reached. Our method gives an orientation to the graph creating
process; we predefine a depth but our predefined depth has a logical basis.

– Our method can warn the developer of refinement incompleteness in the sense
that the refinement omits a certain desired scenario. Thus, our method can
help in making the refinements robust.

The following are the low points which needs further research.

– It seems the exponential nature of our algorithm is unavoidable. Even though
we limit the problem size, we need intelligent strategies to further cut down
the creation of redundant nodes.
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– When we show the non-existence of a desired path in a refinement, we need
enumeration of all possible paths limited by the variants. Optimization issues
in this situation need to be addressed.

6 Conclusion

We have presented a method in which model based test cases are usecase ori-
ented. Whenever, a specification or a refinement is further refined, our usecase-
based test cases can be upgraded to remain in sync with the refinement. Our
approach also finds incompleteness in refinements which can be corrected much
ahead in the development cycle. Most of the steps in our method can be auto-
mated.

Our approach also helps in the formal development process. The method can
help in making refinements themselves robust in relation to the original specifi-
cation. It can also help in cutting down the time to prove proof obligations. After
creating a refinement and before proving the proof obligations, the refinement
can be tested against the specification in relation to the test cases derived from
our method. If it shows some inconsistencies, then certainly, we have avoided
performing some unnecessary proofs.
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Appendix

Machine Leader.mch
CONSTANTS M
PROPERTIES M ⊂ N
VARIABLES winner
INITIALISATION winner :∈ M /* assign any element of M */
OPERATIONS
elect = BEGIN winner := max(M) END
END

Machine LeaderR.mch
CONSTANTS next, n /* next gives ordering in the ring */
PROPERTIES next ∈ M–> M ∧ next = {(10, 20, (20, 15), (15, 10)} ∧ n ∈ M ∧ n = card(M)
VARIABLES position, v1
INVARIANT position = M+-> M ∧ v1 ∈ N /*+-> : partial function*/
INITIALISATION

winner :∈ M || position := ID(M) || v1 := n ∗ (n + 1)
accept = ANY x WHERE x ∈ dom(position) ∧ next(position(x)) < x THEN

position(x) := next(position(x)) || v1 := v1 − 1 END;
reject = ANY x WHERE x ∈ dom(position) ∧ X < next(position(X)) THEN

position := {x} <+ position || v1 := v1 − 1 END;
elect = ANY x WHERE x ∈ dom(position) ∧ x = next(position(x)) THEN

winner := x END
END

MACHINE LeaderRR.mch
VARIABLES in, out , v2
INVARIANT in = M+-> M ∧ out = M+-> M ∧ v2 ∈ N
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INITIALISATION
winner :∈ M || in := ∅ || out := ID(M) || v2 := m(m + 1)

send = ANY x WHERE x ∈ dom(out) THEN
in(x):= next(out(X)) || out := {x} <+ out || v2 := v2 − 1 END

accept = ANY x WHERE x ∈ dom(in) ∧ in(x) < x THEN
out(x) := in(x) || in := {x} <+ in END

reject = ANY x WHERE x ∈ dom(in) ∧ x < in(x) THEN
in := {x} <+ in END;

elect = ANY x WHERE x ∈ dom(in) ∧ in(x) = x THEN
winner := x END

END
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Abstract. A well-established theory exists for testing finite-state ma-
chines, in particular Moore and Mealy machines. A fundamental class
of problems handled by this theory is state identification: we are given
a machine with known state space and transition relation but unknown
initial state, and we are asked to find experiments which permit to iden-
tify the initial or final state of the machine, called distinguishing and
homing experiments, respectively.

In this paper, we study state-identification for finite-state transducers.
The latter are a generalization of Mealy machines where outputs are
sequences rather than symbols. Transducers permit to model systems
where inputs and outputs are not synchronous, as is the case in Mealy
machines. It is well-known that every deterministic and minimal Mealy
machine admits a homing experiment. We show that this property fails
for transducers, even when the latter are deterministic and minimal. We
provide answers to the decidability question, namely, checking whether a
given transducer admits a particular type of experiment. First, we show
how the standard successor-tree algorithm for Mealy machines can be
turned into a semi-algorithm for transducers. Second, we show that the
state-identification problems are undecidable for finite-state transducers
in general. Finally, we identify a sub-class of transducers for which these
problems are decidable. A transducer in this sub-class can be transformed
into a Mealy machine, to which existing methods apply.

1 Introduction

Testing is a fundamental step in any development process. It consists in applying
a set of experiments to a system, with multiple aims, from obtaining some piece of
unknown information to checking correctness or measuring performance. These
different aims give rise to different classes of testing problems, for instance,
conformance testing or performance testing.

A particularly interesting class of testing problems, pioneered in the seminal
1956 paper of Moore [6], is state identification. We are given an input-output
machine with known state-transition diagram but unknown initial state. We are
asked to perform an experiment in order to, either find the unknown initial state
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(distinguishing experiment), or verify that the machine is indeed in an assumed-
to-be state (state-verification experiment), or identify the final state, reached at
the end of the experiment (homing experiment), or lead the machine to a given
state (synchronizing experiment), etc.

An extensive theory is available on state identification problems for Moore
and Mealy machines. These machines have a common characteristic, namely,
that inputs and outputs are synchronous: an input is immediately followed by
an output. This implies that each output symbol in an output sequence σ corre-
sponds to a unique input symbol in the input sequence that generated σ. Such
a machine models a length-preserving function from input sequences to output
sequences.

Models where inputs and outputs are synchronous are particularly well-suited
for a number of applications, for example, synchronous circuits. They are not
suitable, however, for other applications such as multi-threaded software, con-
current or real-time systems. In such systems, inputs and outputs are inherently
asynchronous: an input may not give rise to an output immediately, but only
some time latter; an output may require more than one inputs to occur in a
certain order (thus, a single input produces no output at all); an input may
produce a sequence of outputs rather than a single output; and so on.

Sometimes, with appropriate modeling, such applications can be casted in a
synchronous input-output framework. For example, one may model an absence
of output by a special output symbol ⊥ which denotes precisely “no output”;
or one may model a sequence of outputs by a special output symbol which
denotes precisely this sequence. However, when doing so in a testing context,
it is important to realize that one implicitly makes certain assumptions on the
capabilities of the tester. For instance, in the case of ⊥, one implicitly assumes
that the absence of output is observable. In the case of a sequence of outputs, one
implicitly assumes that this sequence can be distinguished from sequences which
are identical but result from more than one inputs (thus, the output symbol oab

modeling the sequence of outputs ab is distinguishable from the output sequence
oa · ob, where oa models the output a and ob the output b).

In this paper we study state identification problems in a more general context,
namely, for the model of finite-state transducers. Each transition of a transducer
is labeled by an input symbol and a sequence (possibly empty) of output symbols.
Thus, a transducer is a generalization of a Mealy machine where the output of
a transition is a sequence rather than a single output symbol.

It is well-known that in the case of deterministic and minimal Mealy ma-
chines a homing experiment always exists. We show that this is not the case
for finite-state transducers, even when the latter are deterministic and mini-
mal. Consequently, the question arises: is there an algorithm to check, given a
finite-state transducer, whether it admits a homing experiment? We generalize
this question to consider distinguishing experiments as well. Since existence of
any type of experiment is not guaranteed anyway, we make no assumptions on
determinism or minimality of the transducers.
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In the rest of the paper, we offer answers to the above question. First, we
consider a standard algorithm for finding state identification experiments in
Mealy machine, namely, the successor-tree algorithm [4].1 There is a simple way
to modify this algorithm and obtain a semi-algorithm which can handle trans-
ducers. It is a semi-algorithm in the sense that termination is not guaranteed.
Indeed, the standard termination conditions do not apply in our case.

Second, we prove that the state-identification problems are undecidable for
finite-state transducers in general.

Finally, we consider a sub-class of the FST model, called wait-synchronize
transducers (WS-FSTs). Roughly speaking, a WS-FST is a transducer where
(1) the user (tester) can eventually apply a special input wait after which it is
allowed to “synchronize” with the outputs (i.e., it can safely observe all remain-
ing outputs) and (2) the number of outputs that can be generated until the
synchronization occurs is finite. We show that state identification is decidable
for WS-FSTs. The method consists in transforming the transducer to a (possibly
non-deterministic) Mealy machine and then applying existing algorithms [1].

The rest of this paper is organized as follows. In Section 2 we present the model
of finite-state transducers. In Section 3 we define the various state identification
problems. In Section 4 we recall the successor-tree algorithm and show how it can
be turned into a semi-algorithm for the transducer model. In section 5 we show
the state-identification problems to be undecidable in general. In Section 6 we
define the sub-class of WS-FSTs and provide an algorithm for state-identification
problems in this class. Section 7 gives directions for future work.

2 Finite-State Transducers

Definition 1. A finite-state transducer (FST) is a quadruple T = (Q, In, Out, E)
where:

– Q = {q1, q2, ..., qn} is a finite set of states;
– In = {a, b, ...} is a finite set of input symbols;
– Out = {0, 1, ...} is a finite set of output symbols;
– E ⊆ Q×Q× In× Out∗ is a finite set of transitions.

A transition (q, q′, a, σ) ∈ E is denoted as q
a/σ−→ q′. The interpretation is that,

when the transducer is at state q and receives input a, it may move to q′ and
output σ. Notice that σ may be the empty sequence, σ = ε. Also note that
non-determinism is allowed.

For a1, ..., ak ∈ In, σ1, ..., σk ∈ Out∗ and q0, q1, ..., qk ∈ Q, we use the notation

q0
π/σ−→ qk iff ∀i ∈ {1, ..., k}.qi−1

ai/σi−→ qi, π = a1 · · · ak and σ = σ1 · · ·σk. By

convention q
ε/ε−→ q holds for any q ∈ Q. We also use the notation q

π/σ−→ as a

shorthand for ∃q′.q π/σ−→ q′.
1 Although this is not the most efficient algorithm, it is the simplest, thus, serves as a

good starting point for studying decidability.
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Fig. 1. Two FSTs T and T ′

T is called input-complete if ∀q ∈ Q.∀a ∈ In.∃σ ∈ Out∗.q
a/σ−→. It is called

deterministic if ∀q, q′, q′′ ∈ Q .∀a ∈ In . ∀σ′, σ′′ ∈ Out∗ . (q
a/σ′

−→ q′ ∧ q
a/σ′′

−→ q′′) ⇒
(q′ = q′′ ∧ σ′ = σ′′).

A FST is a generalization of a Mealy machine. A Mealy machine is a special
case of a FST where every output sequence σ consists of a single output symbol.

Two examples of FSTs are given in Figure 1. T is a Mealy machine. It has
four states (q1, q2, q3 and q4), one input (a) and two outputs (0 and 1). T ′ is
obtained from T by substituting the output symbol 1 by the output sequence
00.

Next, we also use the following notation:

– For a ∈ In: q
a−→Def

= ∃σ.q
a/σ−→;

– For q ∈ Q and π ∈ In+: outT,q(π)
Def
= {σ ∈ Out∗|q π/σ−→};

– For q ∈ Q, π ∈ In+ and σ ∈ Out∗: succT,q(π, σ)
Def
= {q′ ∈ Q|q π/σ−→ q′};

– For x ∈ In∗ ∪ Out∗: |x| Def
= the length of x;

– For Q′ ⊆ Q: |Q′| Def
= the cardinality of Q′;

– For X, Y ⊆ Out∗: XY = {xy |x ∈ X ∧ y ∈ Y };
– For T1 = (Q1, In1, Out1, E1) and T2 = (Q2, In2, Out2, E2):

T1 ∪ T2 = (Q1 ∪Q2, In1 ∪ In2, Out1 ∪Out2, E1 ∪ E2).

A FST T is called minimal if for any distinct states q1, q2 ∈ Q there exists
π ∈ In∗ such that outT,q1(π) �= outT,q2(π). The two FSTs T and T ′ given in
Figure 1 are both input-complete, deterministic and minimal.

3 State-Identification Problems for FSTs

We consider a FST T the model of which is known.2 The current state of T
is not known precisely, but known to be in a set of states Q0 ⊆ Q. Q0 models
2 For the moment, we make no assumption on T (i.e., T may be non-input-complete,

non-deterministic or non-minimal).
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the uncertainty of the tester at the beginning of the experiment. Notice that Q0
may equal Q, which means the tester has no knowledge of the initial state. The
goal is to perform an input/output experiment which allows to deduce the state
occupied by T either at the beginning of the experiment (the initial state) or at
the end of the experiment (the final state). The two types of experiments are
called homing and distinguishing experiments, respectively.

An input/output experiment consists in applying inputs on T and observing
the generated outputs. The experiment may be preset or adaptive [2].3 In a preset
experiment (PX for short) the input sequence the tester applies is totally known
in advance (before the experiment starts). In an adaptive experiment (AX for
short) the tester is allowed to decide which inputs to apply depending on the
outputs observed so far. Clearly, adaptive experiments are more general.

AXs and PXs are illustrated in Figure 2. An AX is a tree the internal nodes
of which are labeled with finite non-empty input sequences πi ∈ In+. The edges
of the tree are labeled with finite output-sequences σi ∈ Out∗. The labels of
two edges emanating from the same internal node must be distinct (e.g., in the
figure, σ1 �= σ2 and σ3 �= σ4). Each leaf is labeled with state in Q. The AX
shown in the figure is to be interpreted as follows:

Issue the input sequence π1 and collect the observed output sequence.
If the latter equals σ2 then stop the experiment and declare that the
result of the experiment is q2. Otherwise (i.e., σ1 is observed), issue the
input sequence π2 and collect the observed output sequence. If the latter
equals σ3 then the result of the experiment is q2. Otherwise (i.e., σ4 is
observed) the result is q1.4

The definition of AX proposed above is a slight generalization of the standard
definition (for instance, found in [5]) in the sense that we allow πi to contain
more than one symbols. As mentioned in the introduction, a definition of an
experiment captures a set of implicit assumptions made on the observational
capabilities of the tester. This is particularly true for adaptive experiments. For
instance, the AX shown in Figure 2 implicitly assumes that, having issued input
sequence π1 the tester can “stop and wait”, until it observes the entire output
sequence produced as a result of π1. This assumption may not be valid in all
situations.

For example, the FST in Figure 3 models a mouse device which produces
single and double clicks. Here, the tester cannot stop and wait after issuing the
first click, because waiting implicitly means that a “timeout” will occur and
the mouse will output a single click. Thus, waiting for the timeout must be
considered as an input action of the tester.

The above discussion shows that it is probably a good idea to model explicitly
the assumptions on the observational capabilities of the tester. We do this by a
subset of synchronizing input events, Insync ⊆ In. The tester is allowed to stop

3 Adaptive experiments are called branching experiments in [6].
4 Depending on whether we are dealing with a distinguishing or a homing experiment,

the result will be interpreted differently.



State-Identification Problems for Finite-State Transducers 153

q1

π1

σ1 σ2

σ3 σ4

q2 q1

q2

π1

σ1

q2q2

σ2

σ3

π2

Fig. 2. The general scheme of adaptive experiments (left) and preset experiments
(right)

q1 q2
click/ε

click/double

tick/simple

Fig. 3. A mouse device producing single and double clicks

and wait after issuing a iff a ∈ Insync. Formally, each πi in an internal (non-leaf)
node of the AX must end with a symbol in Insync.

In the special case where Insync = In, the problem of finding an AX for a
FST T can be reduced to an equivalent problem of finding an AX for a Mealy
machine M : it suffices to associate, for each output sequence ρ appearing in a
transition of T , an output symbol oρ in M , such that oρ �= o′ρ iff ρ �= ρ′. Thus,
the problem is interesting only when Insync is a strict subset of In.

The situation is somewhat simpler in the case of PXs. Here, the tester is
not allowed to make decisions while executing the test, but only at the end.
Thus, there is an implicit “end-of-test” action where the tester is allowed to
observe the entire output sequence. Here, we will assume that the tester cannot
distinguish which part of the output sequence corresponds to which symbol of
the input sequence (otherwise, we can reduce the problem to a problem for Mealy
machines, as previously). For example, if the tester issues aa to the FST T ′ of
Figure 1 while T ′ is initially at state q′2, then the tester will observe 000. The
same will happen if T ′ is initially at state q′4.

For sake of simplicity, in the sequel we restrict ourselves to the case of preset
experiments.

Next we introduce the notion of distinguishable states Before that, we need
to introduce the notion of non-blockingness. Given a FST T = (Q, In, Out, E),
Q0 ⊆ Q and π ∈ In∗, π is said to be non-blocking with respect to T and Q0 iff
for all q ∈ Q0, q

′ ∈ Q, π′ ∈ In∗, σ′ ∈ Out∗ and a ∈ In : if π′a is a prefix of π and
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q
π′/σ′

−→ q′ then q′
a−→. In other terms, π is non-blocking if it is possible to apply

it starting from any state q in Q0.

Definition 2 (Distinguishable states). Given a FST T = (Q, In, Out, E), the
two states qi and qj of T are said to be distinguishable iff there exists π ∈ In∗

such that (1) π is non-blocking with respect to T and {qi, qj}, and (2) outT,qi(π)∩
outT,qj (π) = ∅. 5 In that case, qi and qj are said to be distinguishable in T by π.

Given T , qi and qj , checking whether qi and qj are distinguishable or not will
be referred to as the distinguishable-state problem (DStP).

Now we give the definitions of distinguishing and homing preset experiments.

Definition 3 (Distinguishing preset experiment). For a given FST T =
(Q,In,Out,E) and Q0 ⊆ Q, the input sequence π ∈ In∗ is said to be a distinguish-
ing preset experiment or DPX with respect to T and Q0 iff (1) π is non-blocking
with respect to T and Q0, and (2) for each pair of states (qi, qj) from Q0 qi and
qj are distinguishable by π.

The subset Q0 corresponds to the initial uncertainty about the FST T . Checking
whether T has a DPX or not will be referred to as the distinguishing sequence
problem (DSqP).

Definition 4 (Homing preset experiment). Given T = (Q, In, Out, E) and
Q0 ⊆ Q, the input sequence π ∈ In∗ is said to be a homing preset experiment or
HPX with respect to T and Q0 iff (1) π is non-blocking with respect to T and
Q0, and (2) for each pair of states (qi, qj) from Q0 qi and qj we have

∀σ ∈ outT,qi(π) ∪ outT,qj (π).|succT,qi(π, σ) ∪ succT,qj (π, σ)| = 1.

Checking whether T has a HPX or not will be referred to as the homing sequence
problem (HSqP).

Note that in the definitions above we make no restriction on whether the
considered FST T is deterministic, minimal, input-complete or not.

It is well-known that, for deterministic Mealy machines, every distinguishing
experiment is also a homing experiment. For example, the sequence aa is both a
DPX and a HPX for the machine T shown in Figure 1. This property carries over
to deterministic FSTs as well: if T is deterministic then every DPX is a HPX.
However, other properties do not carry over. In particular, it is known that every
deterministic and minimal Mealy machine possesses a HPX (although it may not
possess a DPX). We now show that this is not true for deterministic and minimal
FSTs.

Consider the FST T ′ of Figure 1. We claim that T ′ has no HPX with respect
to Q0 = {q′1, q′2, q′3, q′4}. To show this, we first argue that none of a, aa, or aaa
is a HPX. Then we argue that the effect of input sequence an, where n ≥ 4
is equivalent to the effect of input sequence an mod 4, where mod is the modulo
operator.
5 Note that {ε} �= ∅.
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a is not a HPX because, on input a and starting from q′1 and q′2, respectively,
T ′ produces the same sequence of outputs, 00, and moves to different final states,
q′2 and q′3, respectively. Thus, a cannot resolve the initial uncertainty between
q′1 and q′2. Similarly, aa cannot resolve the initial uncertainty between q′2 and q′4,
and aaa cannot resolve the initial uncertainty between q′1 and q′4.

Longer input sequences do not help: a4 has the same effect as giving no input
at all, since it brings the machine to exactly the state it started from and it
produces the output sequence 06, no matter what the initial state was. Similarly,
a5 has the same effect as a, a6 has the same effect as aa, and so on.

4 The Successor-Tree Method

A standard method for solving state-identification problems for a Mealy machine
is based on the machine’s successor-tree [2,4]. Let us briefly recall this method
before studying its application to FSTs. For simplicity, we restrict our discussion
to homing preset experiments. It can be generalized to other types of experiments
as well.

We first recall the notion of current uncertainty. Given a FST T and an input
sequence π of it, C(π) the initial uncertainty of T with respect to Q0 is defined
as the set of subblocks Bσ1 , Bσ2 , ..., BσN , where σi are all the possible output
sequences T may produce starting from any arbitrary state in Q0. The subblock

Bσi contains all the states q′ for which ∃q ∈ Q0 such that q
π/σi→ q′. That is, if on π

the FST T produces σi then we are sure that the current state of T is in Bσi . For
example for the FST T given in Figure 1, we have C(a) = {{q2, q3}0, {q4, q1}1}.

Clearly, a given input sequence π is a HPX for T iff C(π) is made up only by
singletons. For instance, aa is a HPX for the FST T given in Figure 1 since we
have C(aa) = {{q3}00, {q4}01, {q1}11, {q2}10}.

In the case of Mealy machines, the classical way for checking whether such
a HPX exists or not consists in computing the successor tree of the considered
Mealy machine T . The successor tree of T is a (possibly infinite) graph S. For
each node v of S, the edges emanating from v are labeled with input symbols:
one outgoing edge for each input symbol of the machine. Let πv denote the input
sequence obtained by the concatenation of the labels of the edges on the path
from the root of S to v. The node v is labeled with C(πv).

The definition of the successor tree of a FST is given in the same manner
as above. For instance, a FST and a portion of its successor tree (up to depth
3) are given in Figure 5. Furthermore, the graphs S and S′ given in Figure 4
are portions of the successor trees of the FSTs T and T ′ given in Figure 1,
respectively. 6 S and S′ are one-branch trees since T and T ′ have only one
input.

The difference between Sand S′ starts from depth 3. This difference amounts
to the fact that the former is able to distinguish between the two output se-
quences “ 0 ·1 ” and “ 1 ·0 ”, however,the latter considers “ 0 ·00 ” and “ 00 ·0 ”
6 In order not to overload the figure, we write 02 instead of 00, 03 instead of 000 and

so on.
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Fig. 4. S and S′: portions of the successor trees of the FSTs T and T ′ given in Figure 1 ,
respectively

as the same output sequence (“ 000 ”). So in S, q2 and q4 are splitted into {q2}10
and {q4}01. However in S′, q′2 and q′4 are grouped together in {q′2, q′4}000.

In the case of Mealy machines, checking the existence of a HPX is decidable
due to the fact that two nodes v and v′ of the successor tree of the considered
machine labeled with {Bσ1 , .., BσN } and {Bσ′

1
, ..., Bσ′

N
} are considered equivalent

if Bσ1 = Bσ′
1
∧ ... ∧ BσN = Bσ′

N
. Now, since the number of combinations of

the form {B1, .., BN} is finite then an equivalent finite representation of the
successor tree of the machine can be given and therefore the problem turns out
to be decidable.

Now for the case of FSTs, v and v′ are to be considered equivalent if we have
Bσ1 = Bσ′

1
∧...∧BσN = Bσ′

N
and also ∃α ∈ Out∗ such that σ1 = α·σ′

1∧...∧σN =
α·σ′

N . For example in the successor tree given in Figure 5, the nodes labeled with
{q1, q2, q3, q4}, {q1, q2, q3, q4}0 and {q1, q2, q3, q4}00, respectively, are equivalent.
The nodes of the successor tree S′ (Figure 4) labeled with {q1, q2, q3, q4} and
{q1, q2, q3, q4}06 , respectively, are equivalent. That even allows us to deduce that
the corresponding FST has no HPX.

The problem with FSTs is that the number of possible combinations of the
form {Bσ1 , .., BσN } may be infinite, since the equences σi may be arbitrarily
long. Thus, we are not always guaranteed to have a finite representation of the
successor tree of the considered FST. Consequently, we are not sure whether
checking the existence of a HPX for a FST is decidable or not.
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5 Undecidability of the State-Identification Problems for
FSTs

In this section we prove that DStP, DSqP and HSqP are all undecidable. For that
we reduce the famous Post’s correspondence problem. So, we first give a brief
recall about this problem [7].

Definition 5 (Post’s correspondence problem). An instance of the Post’s
correspondence problem (PCP) is an ordered quadruple (V, n, α, β) where V is
an alphabet, n ≥ 1 and

α = (α1, · · · , αn) and β = (β1, · · · , βn)

are ordered n-tuples of nonempty words over V . A solution to PCP is a nonempty
sequence of indices i1, · · · , ik such that

αi1 · · ·αik
= βi1 · · ·βik

.

Theorem 6 (Undecidability of PCP [7]). There is no algorithm for deciding
whether or not an arbitrary Post’s correspondence problem possesses a solution.

More precisely, we reduce the variant of PCP introduced in [3].

Definition 7 (Variant of PCP [3]). PCP′ is a variant of PCP. A PCP′ system
over (In, Out) is a pair of maps (g, h) from In to Out+ −Out. Maps g and h are
extended to In+ as follows. If π, � ∈ In+,

g(π�) = g(π)g(�) and h(π�) = h(π)h(�).

The associated problem is to tell whether there is a string π ∈ In+ such that
g(π) = h(π).

Theorem 8 (Undecidability of PCP′ [3]). PCP′ is undecidable.

We first prove that DStP is undecidable.
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Theorem 9 (Undecidability of DStP). DStP is undecidable.

The proof we give next is quite parallel to the one proposed in [3] to show the
undecidability of the equivalence problem for Λ-free nondeterministic generalized
machines.

Proof. We consider a PCP′ system (g, h) over (In, Out). Let

n = max(|g(a)|, |h(a)| : a ∈ In). 7

We define the FST Tn = ({q}, In, Out, En), such that

En = {(q, q, a, σ)|a ∈ In ∧ σ ∈ Out+ ∧ |σ| ≤ n}.

Then

outTn,q(π) = {σ ∈ Out+| |π| ≤ |σ| ≤ n|π|}, ∀π ∈ In+.

Let T ′ = (Q′, In, Out, E′) a new FST such that

∃r ∈ Q′.∀π ∈ In+.outT ′,r(π) = outTn,q(π)− {g(π)}. (1)

A possible way for constructing T ′ is given in [3]. Furthermore, T ′ is guaranteed
to be input-complete. Let s be a new state and T ′′ = ({s}, In, Out, E′′) a new
FST such that

E′′ = {(s, s, a, h(a))|a ∈ In}.

Clearly T ′′ is input-complete and

outT ′′,s(π) = {h(π)}, ∀π ∈ In+. (2)

Finally, let us consider the FST T̃ = T ′∪T ′′. Since T ′ and T ′′ are input-complete
then T̃ is so too and all π ∈ In∗ are non-blocking with respect to T and {r, s}.
By (1) and (2), we deduce that for π ∈ In+:

outT,r(π) ∩ outT,s(π) = ∅ iff g(π) = h(π).

Thus we conclude that

r and s are distinguishable in T̃ iff the PCP′ system (g, h) has a solution.
��

Now, we prove that DSqP is undecidable.

Theorem 10 (Undecidability of DSqP). DSqP is undecidable.

Proof. It is not difficult to see that each instance of DStP is a particular instance
of DSqP. That is “DStP ⊆ DSqP”. So, since DStP is undecidable (Theorem 9)
then DSqP is so too. ��

Finally, we prove that HSqP is undecidable too.
7 Since we deal with a PCP′ system then n is guaranteed to be ≥ 2. That will help for

the construction of T ′ mentioned later on.
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Theorem 11 (Undecidability of HSqP). HSqP is undecidable.

Proof. Once again we reduce from PCP′. We consider a PCP′ system (g, h) over
(In, Out). We construct the FST T̃ = (Q̃, In, Out, Ẽ) in the same manner we did
in proof of Theorem 9. Let T̂ = (Q̃, In ∪ {�}, Out, Ê) be a new FST such that
� /∈ In and

Ê = Ẽ ∪ {(t, r, �, ε) | t ∈ Q′} ∪ {(s, s, �, ε)}.

Since T̂ is input-complete then T̂ is so too. Next we prove the following

The PCP′ (g, h) has a solution ⇔ T̂ has a homing sequence with respect to Q̂.

(⇒) We assume that there exists π ∈ In+ such that g(π) = h(π). Let π′ = �π�.
Since T̂ is input-complete then π′ is clearly non-blocking with respect to
T̂ and Q̂. Furthermore, it is not difficult to see that π′ is homing sequence
for T̂ . That is, if we apply π′ and then observe σ = g(π) = h(π) then we
know that T̂ has just moved to s. Otherwise, if we observe σ �= g(π) then
T̂ has just moved to r.

(⇐) Now, we assume that T̂ has a homing sequence π′ ∈ (In ∪ {�})+. Let
π1, · · · , πk the elements of In∗ such that

π′ = π1 � π2 � · · · � πk .

Since π′ is homing sequence for T̂ with respect to Q̂ and that there is no
common reachable state starting from s and r then we necessarily have

outT,r(π
′) ∩ outT,s(π

′) = ∅ . (3)

Next we prove by contradiction that there exists at least one πi such that
outT,s(πi) ∩ outT,r(πi) = ∅. For that, let us assume that ∀i ∈ {1, · · · , k}

outT,r(πi) ∩ outT,s(πi) �= ∅ . (4)

We know that outT,r(π
′) = outT,r(π1�π2�· · ·�πk). Moreover, it not difficult

to see that all the possible transitions labeled by � appearing on this path

are of the form t
�/ε−→ r. That is, they all produce the empty sequence ε and

move back to state r. Thus, it can be deduced that

outT,r(π
′) = outT,r(π1) · · · outT,r(πk) .

By the same reasoning we deduce that

outT,s(π
′) = outT,s(π1) · · · outT,s(πk) .

By assumption (4), it turns out that outT,r(π
′) ∩ outT,s(π

′) �= ∅ which is
in contradiction with (3). Consequently, assumption (4) is false. That is,
there exists at least one πi such that outT,r(πi) ∩ outT,s(πi) = ∅. For that
to be true, we must clearly have g(πi) = h(πi) . Thus the PCP′ system
(g, h) has a solution.

��
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6 Decidability for a Sub-class of FSTs

We first consider a sub-class of FSTs called wait-synchronize FSTs, or WS-FSTs.
A WS-FST is a FST which has a special input action wait ∈ In and a special
output action sync ∈ Out satisfying the following properties:

P1. wait and sync appear only in transitions of the form q
wait/σ·sync−→ q′ where

σ ∈ (Out \ {sync})∗.
P2. From any state q and any infinite sequence of transitions starting at q, wait

eventually appears on this sequence.

Property P1 says that the output symbol sync is generated iff the input symbol
wait is applied. It also says that once wait is applied the considered FST T
generates an output sequence which ends with sync and contains no other sync.
Property P2 says that from any state q, wait is eventually possible.8

Intuitively, wait and sync are to be interpreted as follows: wait models explicitly
the waiting of the user of the machine; sync models the “timeout” after which
the user can safely assume that all remaining outputs have been generated.

An input sequence π ∈ (In\{wait})∗ ·wait is called an input-vertebra. Similarly,
an output sequence σ ∈ (Out \ {sync})∗ · sync is called an output-vertebra. The
sets of input- and output-vertebrae are denoted Vertin and Vertout, respectively.
In view of the discussion in Section 3, we set Insync = {wait}. Thus, the internal
nodes of the AX tree are labeled with input-vertebrae and its edges are labeled
with output-vertebrae.

A FST T is said to be output-bounded iff all the possible output-vertebrae
that T may produce are of bounded length. Formally:

P3. ∃nmax . ∀q ∈ Q .∀π ∈ Vertin . ∀σ ∈ Vertout . q
π/σ→⇒ |σ| ≤ nmax.

It is not difficult to see that each WS-FST is output-bounded.
We now propose a method which permits to solve state-identification problems

for a given WS-FST T . The method is based on transforming T into a (possibly
non-deterministic) Mealy machine M and then applying existing algorithms for
state-identification problems on non-deterministic Mealy machines [1].

M has the same set of states as T . The transformation consists of the following
steps:

Step 1. We identify the states of T with an incoming edge the input-label of
which is wait. These states are called wait-states. The latter are these
states which can be reached by an input-vertebra.

Step 2. For every state q and every wait-state qwait of T , we compute the language

LO
q,qwait

containing all σ ∈ Vertout such that q
π/σ→ qwait, for some π ∈ Vertin.

LO
q,qwait

is a finite set of output-vertebrae since T is output-bounded.

8 Notice that Mealy machines are essentially a special case of WS-FSTs: we can “split”

every transition q
a/x−→ q′ of a Mealy machine into two transitions q

a/x−→ q′′ wait/sync−→ q′

and obtain an equivalent, for the purposes of testing, WS-FST.
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Step 3. For each σ ∈ LO
q,qwait

, we compute LI
q,qwait,σ = {π | π ∈ Vertin and q

π/σ→
qwait}, the set of input-vertebrae the execution of which may generate
σ. LI

q,qwait,σ is a regular language since it is induced by a subgraph of T .
After computing LI

q,qtick,wait, we add, in M , a new edge from q to qwait

labeled with LI
q,qwait,σ/σ. LI

q,qwait,σ is called the language-symbol of the
edge.

Step 4. We collect the language-symbols that appear on the edges of the ma-
chine M so far constructed. Let L1, ..., LN be the list of these language-
symbols. For being able to solve the identification problems, the latter
must be disjoint. Only if this holds we have the right to consider two
different language-symbols as different input symbols in M . For this pur-
pose, we compute L′

1, ..., L
′
N ′ , the coarsest partition of L1∪L2∪ ...∪LN

which respects each Li. Thus, L′
k are pairwise disjoint and each Li is

“split” into a number of L′
k, namely:

Li = L′
j1 ∪ · · · ∪ L′

ji
.

Then, we replace each edge q
Li/σ→ q′ by the edges q

L′
j1

/σ
→ q′, ..., q

L′
ji

/σ
→ q′.

Checking whether M has a given type of experiment can be done using the
algorithms of [1]. These algorithms permit not only to check existence but also
to construct an experiment in case it exists. The algorithms are based on the
synthesis of strategies in games with incomplete information. The game is played
between the tester who provides the inputs and the system under test who
provides the outputs. The strategy of the system corresponds to resolving non-
deterministic choices (when such choices exist). The strategy of the tester cor-
responds to choosing the inputs. The tester has incomplete information because
it only observes the outputs, not the current state of the game. Finding preset
experiments corresponds to finding a blindfold strategy for the tester, that is, a
strategy which is totally defined in advance. Finding preset and adaptive exper-
iments is shown in the above paper to be PSPACE-complete and EXPTIME-
complete problems, respectively.

It is not difficult to show that T has a DPX (resp., HPX) iff M has a DPX
(resp., HPX). Moreover, the way for constructing an experiment for T given an
experiment for M is straightforward.

7 Perspectives

We have presented a framework for state-identification problems for finite-state
transducers. A number of open questions remain: decidability in the case of
deterministic finite-state transducers, complexity, properties on the worst-case
size of experiments, when the latter exist, and so on. We are currently studying
these questions. We are also experimenting with the modeling possibilities of
the sub-class identified in this paper, in particular in the context of testing with
timing constraints.
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Abstract. We describe a framework for dynamic verification of temporal asser-
tions based on assertion compilation into deterministic automata. The novelty of
our approach is that it allows efficient dynamic verification of general linear tem-
poral formulas written in formal property specification languages such as LTL,
ForSpec, PSL, and SVA, while the existing approaches are applicable to limited
subsets only. We also show an advantage of the described framework over in-
dustrial simulators, which typically use transaction-based verification. Another
advantage of our approach is its ability to use deterministic checkers directly for
hardware emulation. Finally, we compare the deterministic compilation with the
OBDD-based on-the-fly simulation of deterministic automata. We show that al-
though the OBDD-based simulation method is much slower, the two methods
may be efficiently combined for hybrid simulation, when the RTL signals in as-
sertions are mixed with symbolic variables.

1 Introduction

One of the most significant results in the area of formal methods over the last two
decades has been the development of algorithmic methods for verifying temporal spec-
ifications of finite-state programs, cf. [17]. By now, these methods have had important
industrial impact, cf. [11,19]. Nevertheless, even in design projects with significant ap-
plication of formal methods, such methods rarely account for more than 10% of the
verification effort [9]. It seems that, in the near future at least, traditional, simulation-
based, dynamic verification techniques will continue to constitute the basic approach to
design verification. This calls for exploration of techniques that combine the dynamic
and formal approaches to verification, cf. [30].

An important aspect of verification consists of expressing assertions that capture the
intended behavior of the design. Using the same formal verification languages based
on linear temporal logic (LTL)[36] such as ForSpec [5], Sugar [7], PSL [18] or SVA1

� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and ANI-
0216467, by BSF grant 9800096, and by Texas ATP grant 003604-0058-2003. Part of this
work was done while the author was visiting the Isaac Newton Institute for Mathematical
Sciences, as part of a Special Programme on Logic and Algorithms.

1 SVA is not, strictly speaking, a language based on LTL; nevertheless, the ideas described in
this work apply to SVA as well.
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[41] for both formal and dynamic verification leads to increased productivity in the
verification effort.

Even if the same assertions are used in formal and dynamic verification, their treat-
ment in the two contexts is different. In the formal context, temporal assertions are
usually compiled into nondeterministic automata [39] (cf. [4], however), while in the
dynamic context the compilation is into deterministic automata, also referred to as mon-
itors or checkers [1,12,28]. This is because in formal verification we search through the
transition graph of the product of the design and the automaton, while in dynamic veri-
fication we simulate the monitor along executions of the design. Indeed, the work in [1]
reports on a compilation of a fragment of Sugar into deterministic monitors. In the same
spirit, the PSL Reference Manual [2] defines a fragment called Simple PSL, which is
suitable for compilation into deterministic monitors (cf. also [26]). Such an approach,
however, poses two difficulties. First, it is possible that an assertion written for formal
verification is not compilable for dynamic verification, making it difficult to use the
same specification base for both formal and dynamic verification. Second, the existence
of two compilers, one for formal verification and one for dynamic verification, raises
the risk that the two compilers may actually differ in their semantics, as they might
compile the same assertion into inequivalent automata. For example, in [29,30], LTL
semantics is defined over infinite traces for formal verification, but over finite traces for
dynamic verification, creating a potential mismatch. The focus on assertion compila-
tion for both formal and dynamic verification distinguishes our approach to dynamic
temporal monitors from that of many published works in this area, cf. [6,20,35].

We describe in this paper a framework for dynamic verification, which uses asser-
tions expressed in ForSpec. (We express the ideas in terms of LTL, but they are ap-
plicable also to other linear-temporal languages extended with regular events, such as
PSL, without the Optional Branching Extension, and SVA). The key goals underlying
the framework are: (1) the semantics of assertions in dynamic verification should be
consistent with the semantics of assertions in formal verification; (2) all assertions in
the underlying assertion language should be accepted, rather than just a fragment of
the language; and (3) the compilation into deterministic monitors should be as close as
possible to the compilation into nondeterministic automata.

To accomplish semantic consistency, we adopt a three-valued semantics for finite
traces. When a formula is reported to hold in a finite trace, the formula holds in all
extensions of the trace; this is a pass. When a formula is reported to fall in a finite traces,
the formula fails in all extensions of the trace; this is a fail. When a formula is reported to
be ongoing, it means that the finite trace does not provide enough information to decide
the truth value of the formula. Our notion of success and failure over finite traces is that
defined for ForSpec [3,5], and elucidated further in [22]. We define it here in automata-
theoretic terms (see below). This approach allows us to accomplish our second goal.
Every assertion in the language can be compiled for dynamic verification; there is no
need to define a “simple” fragment. (Of course, for some assertions this approach is not
useful. For example, it is not useful to test the assertion always eventually p
over finite traces. We generate a trivial monitor for this assertion.)

We describe two approaches to accomplish the third goal, which is to keep formal
compilation and dynamic compilation as close as possible. The first approach attempts
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to eliminate the deterministic compilation completely. The ForSpec compiler compiles
temporal assertions into alternating Büchi automata on infinite traces [38], where every
state is responsible for checking one subformula. The fairness condition guarantees
that all eventualities are satisfied rather than postponed forever. As suggested in [32],
by considering this automaton as an automaton on finite words, we get an automaton
that accepts finite traces on which the formula is guaranteed to succeed. The ForSpec
compiler translates the alternating automaton to an implicit representation of a nonde-
terministic automaton. Instead of compiling this nondeterministic automaton into a de-
terministic monitor using the subset construction, we generate the states of the monitor
on the fly during dynamic verification. Since the nondeterministic automaton is repre-
sented implicitly, states of the monitor are sets of truth assignments, represented using
Ordered Binary Decision Diagrams (OBDDs) [13] over the variables of the implicit
representation. While this approach offers the smallest “distance” between the compi-
lations for formal and dynamic verification, it proves empirically to be, in general, too
slow in comparison to our second approach.

The second approach addresses the performance issue by direct conversion of the
alternating automaton into an explicitly represented nondeterministic automaton. This
step involves an exponential blowup in the worst case, but our experience with LTL com-
pilation has shown that this translation is quite amenable to optimization, cf. [21,24,37].
Once the nondeterministic automaton is represented explicitly, we do not explicitly gen-
erate a deterministic automaton, as, for example, in [29]. Rather, we synthesize an im-
plicitly represented, equivalent deterministic monitor represented in a register transfer
level (RTL). Every state of the nondeterministic automaton gives rise to a sequential
element, and the combinational logic describes the subset construction. Thus, the size
of the RTL description is linear in the size of the explicitly represented nondeterminis-
tic automaton, while an explicit determinization may incur an exponential blowup. The
advantage of using RTL representation is that it matches the representation used in dy-
namic verification, as both design and assertion are now represented in RTL. We show
that this approach yields dramatic improvement in performance. (Another advantage of
this approach is that the monitors can also be used in hardware emulation, and not only
in software simulation, of the design under verification.)

The two compilation methods may be combined to implement an efficient hybrid
simulation engine: the deterministic part of the assertion can be compiled into a deter-
ministic monitor, while the nondeterministic part can be simulate by means of OBDDs.

Example 1. Nondeterministic model.2

rigid bit [64] data; // unknown constant
assert always /start & data = /datain ->

eventually [2,5] /end & data = /dataout &
/z[64] = /x[64] * /y[64];

The above assertion is nondeterministic, since the variable data is symbolic and
its value is unknown. On the other hand the product is deterministic and can be very

2 rigid declares property variables that are assigned a nondeterministic value at time 0, which
then does not change. Names that are prefixed with “/” refer to design variables.
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efficiently computed by an RTL simulator. The assumption and the rest of the assertion
are simulated as OBDD. Attempting to simulate everything as OBDD would result in
a blowup, since the OBDD for the product is known to be exponential in the length of
the arguments.

A key feature of our deterministic approach is its scalability with respect to simulation
length. Since we generate a deterministic finite-state monitor, monitoring overhead is
independent of simulation run length. A common approach in the semiconductor indus-
try (e.g., Synopsys’ VCS R©) is transaction-based monitoring, which in effect constructs
the monitor dynamically [16]. For example, in monitoring the property always (p
→ eventually q), the simulator spawns a new thread waiting for q each time it
observes p ∧ ¬q. Such a thread is called a transaction. With this approach the number
of active transactions is potentially unbounded, resulting in degraded performance for
long simulation runs. (The conventional methodology [10] advises users to prevent this
problem by bounding the number of active transactions.)

The outline of the paper is as follows. In Section 2 we describe the theory underlying
our approach. Section 3 describes experimental results for both OBDD-based and RTL-
based monitors. Section 4 describes the framework. We conclude with a discussion in
Section 5.

2 Underlying Theory

LTL formulas are constructed from a set AP of atomic proposition using the usual
Boolean operators and the temporal operators X (“next time”), U (“until”), and V (“re-
lease”). Formally, given a set AP , an LTL formula in positive normal form (PNF) is
defined as follows: (1) true, false, p, or ¬p, for p ∈ AP , (2) ψ1 ∨ ψ2, ψ1 ∧ ψ2, Xψ1,
ψ1Uψ2, or ψ1V ψ2, where ψ1 and ψ2 are LTL formulas. The semantics of LTL is de-
fined over infinite traces, which are elements of (2AP )ω; see details in [23]. For an LTL
formula ψ over a set AP of atomic propositions, let ‖ψ‖ denote the set of traces in that
satisfy ψ.

For a given set X , let B+(X) be the set of positive Boolean formulas over X , where
we also allow the formulas true and false. For Y ⊆ X , we say that Y satisfies a formula
θ ∈ B+(X) iff the truth assignment that assigns true to the members of Y and assigns
false to the members of X \ Y satisfies θ. The transition function ρ : Q×Σ → 2Q of a
nondeterministic automaton with state space Q and alphabet Σ can be represented using
B+(Q). For example, a transition ρ(q, σ) = {q1, q2, q3} can be written as ρ(q, σ) =
q1∨q2∨q3. While transitions of nondeterministic automata correspond to disjunctions,
transitions of alternating automata can be arbitrary formulas in B+(Q). We can have,
for instance, a transition δ(q, σ) = (q1 ∧ q2) ∨ (q3 ∧ q4), meaning that the automaton
accepts from state q a suffix wl, starting by σ, of w, if it accepts wl+1 from both q1

and q2 or from both q3 and q4. For a formal definition of runs of alternating automata
on finite or infinite words, see [38]. A word (either finite or infinite) is accepted by A
iff there exists an accepting run on it. The language of A, denoted L(A), is the set of
words that A accepts.
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Given an LTL formula ψ in PNF, one can build a nondeterministic Büchi automaton
Aψ such that L(Aψ) = ‖ψ‖ [40]. The size of Aψ is exponential in |ψ| in the worst
case. It is shown in [38] that when alternating automata are used, the translation of ψ to
Aψ is inductive and it involves only a linear blow up in the number of states.

Theorem 1. [38] Given an LTL formula ψ, we can construct an alternating Büchi au-
tomatonAψ = 〈2AP , cl(ψ), δ, {ψ}, F 〉, such that L(Aψ) = ‖ψ‖.

See [14] for an extension of this construction to LTL extended with a regular layer
(which is essentially common to ForSpec, PSL, and SVA).

Using the (potentially exponential) translation described in [34] from alternating
Büchi automata to nondeterministic Büchi automata, we get:

Corollary 1. [40] Given an LTL formula ψ, we can construct a nondeterministic Büchi
automatonNψ such that L(Nψ) = ‖ψ‖.

Consider a language L ⊆ Σω of infinite words over the alphabet Σ. A finite word
x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σω, we have x · y �∈ L. Thus, a bad prefix
is a finite word that cannot be extended to an infinite word in L. It is shown in [32] that
a nondeterministic automaton that accepts all bad prefixes of ψ is, in general, of size
that is doubly exponential in the length of ψ. Thus, instead of trying to detect all bad
prefixes, we focus on detecting informative prefixes.

For an LTL formula ψ in PNF and a finite trace π = σ1 ·σ2 · · ·σn, with σi ∈ 2AP , we
say that π is an informative prefix for ψ iff there exists a mapping L : {1, . . . , n+1} →
2cl(¬ψ) such that the following holds:

(1) ¬ψ ∈ L(1).
(2) L(n + 1) is empty.
(3) For all 1 ≤ i ≤ n and ϕ ∈ L(i), the following hold.

– If ϕ is a propositional assertion, it is satisfied by σi.
– If ϕ = ϕ1 ∨ ϕ2 then ϕ1 ∈ L(i) or ϕ2 ∈ L(i).
– If ϕ = ϕ1 ∧ ϕ2 then ϕ1 ∈ L(i) and ϕ2 ∈ L(i).
– If ϕ = Xϕ1, then ϕ1 ∈ L(i + 1).
– If ϕ = ϕ1Uϕ2, then ϕ2 ∈ L(i) or [ϕ1 ∈ L(i) and ϕ1Uϕ2 ∈ L(i + 1)].
– If ϕ = ϕ1V ϕ2, then ϕ2 ∈ L(i) and [ϕ1 ∈ L(i) or ϕ1V ϕ2 ∈ L(i + 1)].

Note that the emptiness of L(n+1) guarantees that all the requirements imposed by¬ψ
are fulfilled along π. For example, while the finite computation {p} · ∅ is informative
for Gp (e.g., with a mapping L for which L(1) = {F¬p},L(2) = {F¬p,¬p}, and
L(3) = ∅), it is not informative for ψ = G(p ∨ (Xq ∧ X¬q)). Indeed, as ¬ψ =
F (¬p ∧ (X¬q ∨Xq)), an informative prefix for ψ must contain at least one state after
the first state in which ¬p holds.

An informative prefix for ψ is also a bad prefix for ψ. Thus, if π is an informative
prefix for ψ, we say that ψ fails on π, and if π is an informative prefix for ¬ψ, we say
that ψ passes on π. It is possible for π to be informative neither for ψ nor for ¬ψ. In
this case ψ is ongoing on π. The vast majority of the assertions used in practice have
always as the outmost temporal operator. Such assertions cannot pass, but only fail
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or remain ongoing. Dynamic verification engineers are typically interested in assertion
failure, and do not distinguish between passed and ongoing assertions.

Given an LTL formula ψ and a finite trace π of length n, the problem of deciding
whether π is an informative prefix for ψ can be solved in time O(n·|ψ|). [32]. However,
this algorithm requires offline access to the finite trace π and, therefore is not appropri-
ate for dynamic monitoring. For that we need a deterministic automaton that accepts
the informative prefixes of ψ.

As described earlier, given a PNF formula ψ, one can build an alternating Büchi au-
tomaton Aψ = 〈2AP , 2cl(ψ), δ, ψ, F 〉 such that L(Aψ) = ‖ψ‖. Essentially, each state
of L(Aψ) corresponds to a subformula of ψ, and its transitions follow the semantics
of LTL. We define the alternating Büchi automaton Atrue

ψ = 〈2AP , 2cl(ψ), δ, ψ, ∅〉 by
redefining the set of accepting states to be the empty set. So, while in Aψ a copy of the
automaton may accept by either reaching a state from which it proceeds to true or visit-
ing states of the form ϕ1V ϕ2 infinitely often, inAtrue

ψ all copies must reach a state from
which they proceed to true. Accordingly,Atrue

ψ accepts exactly these computations that
have a finite prefix that is informative for ψ. To see this, note that such computations
can be accepted by a run of Aψ in which all the copies eventually reach a state that is
associated with propositional assertions that are satisfied. Now, let fin(Atrue

ψ ) be Atrue
ψ

when regarded as an automaton on finite words; we claim that we have constructed an
automaton for informative prefixes [32] (see also [25,27,33]).

Theorem 2. For every formula ψ, the automaton fin(Atrue
¬ψ ) accepts exactly the pre-

fixes that are informative for ψ.

We note that searching for informative prefixes rather than for bad prefixes is the basic
idea underlying finite failure of temporal formulas in [3,22]. Thus, the construction of
fin(Atrue

¬ψ ) essentially extracts from ψ its “informative safety” part (a safety property is
a property whose failure is always witnessed by a bad prefix).

The automaton fin(Atrue
¬ψ ) is an alternating automaton, and it is compiled into a non-

deterministic automaton. All that remains now is to apply a determinization construc-
tion and we get a monitor automaton for informative prefixes. We have thus accom-
plished the three goals we set out: (1) Informative prefixes provide an approximation
to bad prefixes, using the standard semantics of LTL; (2) The construction applies to
the full assertion language, with no need to define special fragments; (3) the compila-
tion into deterministic monitors is very close to the compilation into nondeterministic
automata, as it requires just a final determinization construction. Of course, automata
determinization is exponential in the worst case, so the final step is far from trivial and
is discussed further below. (Note, however, that directly constructing of deterministic
monitors from LTL formulas, by induction on the structure of the formula, as in [12,28],
can yield monitors of nonelementary size 3, unless care is taken to minimize the monitor
after each step of the induction.)

A nondeterministic automaton over finite words is a tuple A = 〈Σ, Q, ρ, Q0, F 〉,
where ρ : Q×Σ → 2Q is the transition function. To determinize, one applies the subset
construction and obtainsAd = 〈Σ, 2Q, {Q0}, ρd, F d〉, where F d = {P : P ∩F �= ∅},

3 That is, the blow-up may not be bounded by any finite tower of exponentials.



Deterministic Dynamic Monitors for Linear-Time Assertions 169

and ρd(P, a) = ∪s∈P ρ(s, a). Note that in our case the nondeterministic automaton is
obtained via a potentially exponential translation from an alternating automaton [15].
Thus, the translation from an alternating automaton to a deterministic automaton is
potentially doubly exponential [15].

One way to avoid this blow-up is to avoid constructing Ad. Instead, we can sim-
ulate Ad on the fly. Given a finite trace a0, . . . , an−1, we construct a run P0, . . . , Pn

of Ad as follows: P0 = {Q0}, and Pi+1 = ρd(Pi, ai). Note that each state of Ad

in this run is of size linear in the size of A. Thus, we have avoided the exponen-
tial blowup of the determinization construction, with the price of having to compute
transitions on the fly. To implement this the nondeterministic automaton is represented
implicitly. Recall that informative prefixes are accepted by the alternating automaton
fin(Atrue

ψ ) = 〈2AP , S, δ, {s0}, ∅〉, where S = 2cl(ψ) and s0 = ψ. We can represent a
nondeterministic automaton that is equivalent to fin(Atrue

ψ ) as a nondeterministic se-
quential circuit, where we consider AP as the set of input variables and S as the set
of state variables. (That is, the state set of the nondeterministic automaton is Q = 2S.)
Finally, the transition relation of the circuit is represented as a Boolean function f with
domain 2AP × 2S × 2S: f(a, P, P ′) = 1 precisely when P ′ satisfies δ(p, a) for all
p ∈ P . We can describe this function as the conjunction of constraints of the form
p ∧ a → next(δ(p, a)), where next replaces each variable s by its primed version s′,
referring to the value of s in the next cycle. The initial and final state of the nondeter-
ministic automaton can be expressed as Boolean functions over 2S ; the representation
has size that is linear in the size of the input formula. Note that since a state of the
nondeterministic automaton is an element of 2S , a state of Ad is a subset of 2S. Thus,
a state of Ad can be represented via OBDD over the variables in S, and the next state
function of ρd can be computed using an OBDD-based image operation.

It may seem surprising to consider using OBDD operations that are known to be
quite “heavy” in formal-verification applications. There is a fundamental difference,
however, between the symbolic operations used here and the symbolic operations used
in the model checking. In the model checking, we conduct a breadth-first search over
the state space of the design. In essence, we simulateAd across all possible traces. Here,
we simulateAd over a single trace, so one would expect the OBDDs to be significantly
smaller. In practice, however, we discovered that OBDDs operations did slow the sim-
ulator significantly, and symbolic simulation did not prove to be a viable approach.

A more successful approach is to construct the nondeterministic automaton explic-
itly. This translation can be exponential in the worst case, but a lot of research has been
reported on optimizing this translation (cf. [21,24,37]) and an unacceptable blow-up is
rarely seen in practice. Once the nondeterministic automaton A is represented explic-
itly, the deterministic automaton Ad can be represented implicitly, as a deterministic
sequential circuit. That is, every proposition in AP is viewed as an input signal and
every element of Q is viewed as a sequential element. The initial state of Ad is the one
in which precisely the elements in Q0 are assigned 1 and the accepting states are the
one in which some element in F is assigned 1. Finally, with each element q ∈ Q we
associate a Boolean transition function fq : 2Q × 2AP → {0, 1} defined as follows:
fq(P, a) = 1 if q ∈ ρd(P, a).
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By viewing Ad as a deterministic sequential circuit, we can synthesize an RTL rep-
resentation of Ad from A with no blowup. The advantage of using RTL representation
is that it matches the representation used in dynamic verification, as both design and
assertion are now represented in RTL. We show in Section 4 that this approach yields
significant improvement in performance over the symbolic-simulation approach.

However, as was mentioned in the introduction, the symbolic and the determinis-
tic approaches may be successfully combined when some of the variables used in the
assertion are symbolic.

Example 2. Consider the following safety property:next a wuntil next b. The
property is first negated and then the negation is propagated:

next !b until ((next !a) & (next !b)). The negated property is then
translated into an alternating automaton on finite words; see Fig. 1.

Fig. 1. Alternating automaton Fig. 2. Nondeterministic automaton

For the non-deterministic compilation the alternating automaton can be converted to
an implicitly represented nondeterministic automaton:

s0 → (s′1 ∧ s′2) ∨ (s′0 ∧ s′3)
s1 ∧ ¬a → fail
s2 ∧ ¬b → fail
s3 ∧ ¬b → fail

Alternatively, for the deterministic compilation we can convert the nondeterministic
automaton to an explicit representation [4]; see Fig. 2. Finally, the explicitly represented
nondeterministic automaton can be converted to an implicitly represented deterministic
automaton, using an RTL; we use here Verilog. (In the following code sysclk is an
auxiliary signal corresponding to the reference clock):
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reg s0, s12, s03;
wire fail, sysclk;
assign fail = s12 && !a & !b;
initial begin

s0 = 1’b1; s12 = 1’b0; s03 = 1’b0;
end
always @(posedge sysclk) begin

s0 <= 1’b0;
s12 <= s0 || !b && s03;
s03 <= s0 || s03 && !b;

end

3 Dynamic-Verification Framework

ARCHITECTURE: This framework was developed for dynamic verification of ForSpec
assertions. It can easily be adapted to other LTL-based property specification languages,
such as PSL or SVA, by changing the compiler front-end.

The framework consists of two parts: a compiler and a run-time system. The com-
piler first checks whether the assertion is deterministic. If not, it generates an implicit
representation of a nondeterministic automaton. For such assertions, the compiler pro-
duces a persistent OBDD representation of the nondeterministic automaton.

Otherwise, is generates an explicit representation of the nondeterministic automaton,
cf. [4]. Although this stage theoretically involves an exponential blowup [38], it has
always been feasible in practice. Then an RTL-represented deterministic monitor is
generated from this automaton.

Explicitly compiled monitors are directly simulated by the run-time system. For im-
plicitly compiled monitors the run-time system generates OBDD-represented states on
the fly by means of OBDD operations. The run-time system runs in parallel to the DUT
(Design Under Test) simulation environment and reads signal values from it. These sig-
nals are used to exercise the monitor. The run-time system queries the DUT model for
checker signal changes and reports checker violation or success. The compilation flow
overview is shown in Fig. 3; the simulation paradigm is shown in Fig. 4.
COMPILER OPTIMIZATIONS: The compiler applies several optimizations. Some opti-
mizations result in a more efficient synthesis, while others are necessary to avoid the
blowup, and to make the compilation feasible. In this section we sketch the follow-
ing optimizations: reachability analysis, automata minimization, next normalization,
explicit conjunction, permanent state elimination, and state counting:

Reachability analysis for nondeterministic automata. To analyze a property failure,
only states that are backward reachable from the accepting state need to be kept.
Other states can be pruned away.

Automata minimization. Automata minimization may be used to synthesize a more
efficient code and sometimes to avoid an exponential blowup. The minimization
may be held at different stages - at the stage of an alternating, non-deterministic and
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Fig. 3. Compilation flow Fig. 4. Simulation flow

deterministic automaton. (It should be emphasized that the goal is not necessarily
to minimize the number of the automaton states.)

next normalization. In many cases it pays off to “pull out” next operators. For exam-
ple, consider the property a until next[10] b. It is preferable to rewrite it
first as next[10] past(a,10) until b.

Explicit conjunction. If the complemented assertion in PNF has a form of a conjunc-
tion ϕ1 ∧ ϕ2, then it is preferable to construct separate monitors for ϕ1 and ϕ2
rather than a monitor for ϕ1 ∧ ϕ2. This is a rather common case, since when we
start with an assumption ϕ and assertion ψ, the complemented assertion is φ∧¬ψ.

Permanent state elimination. The vast majority of the assertions in practice have the
form always ϕ. The standard monitor construction generate an RTL variable that
is always on. Such a variable can be eliminated.

State counting. There are cases when the assertion check is delayed by several cycles.
i.e., the assertion has a form next[n] A, where n is a positive integer number,
and A is an arbitrary assertion. Then instead of synthesizing a thread of n states for
next[n], an appropriate counter may be synthesized using log n variables.

4 Experimental Results

We ran two sets of experiments: the first one was to compare the OBDD-based and the
RTL-based implementations of dynamic monitors for ForSpec assertions; the second
one was to compare the RTL-based and the transaction-based monitoring for SVA as-
sertions. (Our experiments were run on Intel R©XeonTMCPU 3.06GHz with 4GB RAM,
using the Linux operating system.)

RTL-BASED VERSUS BDD-BASED MONITORS: The first experiment was to com-
pare the run time of the two implementations for simple assertions, where we scale up a
time window. We ran the assertion always a triggers always[0,n] b for
different values of n (we refer to the interval [0, n] as the time window) for a simula-
tion run of 25,000 clock cycles. The results are shown i n Table 1. The time reported is
the additional time required to complete the simulation, compared to an assertion-free
simulation run (the latter time is less than one second). We used a big industrial design
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and the VCS simulation engine. Note that while the number of OBDD variables grows
logarithmically in n, the number of RTL variables grows linearly in n. The run time of
both implementations of the monitors grows linearly with the size of the time, but the
slope is quite steeper for the OBDD implementation.

Table 1. Time Window Scaling

Window size # BDD vars #RTL variables Time BDD (sec) Time RTL (sec)
1 1 1 4.2 0.22

500 9 500 5.82 0.85
1,000 10 1,000 7.81 1.43
1,500 11 1,500 10.85 1.95
2,000 11 2,000 14.6 2.46

The second experiment was to check the effect of the number of assertions on the
run time. We execute n assertions of the form always ai triggers next bi,
for different design signals ai and bi, for a simulation run of 25,000 clock cycles. The
results are shown in Table 2. Again, we report on incremental running time. We can see
that the number of assertions has a significant impact for the OBDD implementation,
whereas the impact is marginal for the RTL implementation. Therefore the RTL imple-
mentation can handle large amount of assertions, while the OBDD implementation is
capable of handling only a few tens of assertions. The RTL implementation proved to
be efficient in handling thousands of real-life assertions; e.g., 10,000 assertions cause
only a 10% overhead for the full-chip simulation of a CPU design.

Table 2. Assertion Scaling

n # BDD vars #RTL states Time BDD (sec) Time RTL (sec)
1 1 1 3.78 0.22
5 5 5 10.38 0.24

10 10 10 18.24 0.25
15 15 15 28.69 0.26
20 20 20 40.21 0.27
25 25 25 57.4 0.30

The third experiment was to compare between the two implementations for real-life
assertions. Only very few real-life monitors, covering a small number of assertions, can
be run using pure OBDD implementation without a significant slow-down. The results
are shown in Table 3. Again, we can see that the RTL implementation runs in more than
one order of magnitude faster than the OBDD implementation.

RTL-BASED VERSUS TRANSACTION-BASED MONITORING: As discussed in the
introduction, many industrial assertion monitors use a transaction-based approach [16].
This approach is problematic in two aspects: 1) It is suitable mostly to assertions of
the form r1 triggers r2, where r1 and r2 are regular events; it is difficult to adapt
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Table 3. Real-life Monitors

Test number #cycles #assertions Time BDD (sec) Time RTL (sec)
1 4630 8 3.97 0.49
2 4630 9 5.2 0.52
3 4630 27 48.69 0.91
4 4630 25 9.41 0.55
5 1724 4 0.78 0.26
6 1724 8 1.38 0.17
7 1724 23 4.79 0.16

to general temporal assertions. 2) The performance of transaction-based monitors is
very sensitive to the number of outstanding transactions. Consequently, the standard
methodology recommends to limit the number of the outstanding transactions using
time windows [10], which may be inefficient for formal-verification tools. This results
in different assertions written for formal and dynamic verification.

We compared the performance of VCS, which implements transaction-based moni-
toring, with automata-based monitors. We measured only the run time overhead intro-
duced by assertion monitoring for a simulation run of 100,000 cycles.

The following simple Verilog model has been used:

module test;
logic clk, a, b, c;
initial begin

a = 1’b1; b = 1’b0; c = 1’b1; clk = 1’b0;
#1000000 b = 1’b1;
#1000000 $finish;

end
always #10 clk = !clk;
// assertion goes here
endmodule

with the following SVA assertions:

1. @(posedge clk) a ##[0:$] b |=> c
2. @(posedge clk) a[*0:1000] ##1 b |=> c
3. @(posedge clk) a |=> c[*1000]

The results are shown in Table 4.

Table 4. RTL monitors vs. VCS

Assertion 1 Assertion 2 Assertion 3

RTL-based monitors 1.46 3.58 3.58
VCS 525.13 26.71 7.70
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Our results clearly show the advantage of the RTL-based approach when the number
of active transactions is not bounded by a small constant. The RTL-based approach is
insensitive to the number of active transactions since the assertion has been compiled
into a finite-state monitor.

5 Discussion

We described here a framework for dynamic verification of temporal assertions. We
showed how to obtain deterministic compilation for dynamic verification that is as close
as possible to the nondeterministic compilation of temporal assertions for formal ver-
ification. Further research is called for, in view of our results. A general issue is how
to optimize the construction of monitors. For example, it is known that deterministic
automata can be minimized canonically [31]. We do not know, however, whether it
would beneficial to minimize monitors using automata-minimization techniques . On
one hand, minimization would reduce the number of state variables in the RTL rep-
resentation of the monitor; on the other hand, the logic of the transition function may
get significantly more complex. More generally, the results here and in [4] show the
advantage of using deterministic compilation in various settings of functional design
verification. We believe that this issue ought to be investigated also in other settings.
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Abstract. In this paper, we consider the robust interpretation of met-
ric temporal logic (MTL) formulas over timed sequences of states. For
systems whose states are equipped with nontrivial metrics, such as con-
tinuous, hybrid, or general metric transition systems, robustness is not
only natural, but also a critical measure of system performance. In this
paper, we define robust, multi-valued semantics for MTL formulas, which
capture not only the usual Boolean satisfiability of the formula, but
also topological information regarding the distance, ε, from unsatisfi-
ability. We prove that any other timed trace which remains ε-close to
the initial one also satisfies the same MTL specification with the usual
Boolean semantics. We derive a computational procedure for determining
an under-approximation to the robustness degree ε of the specification
with respect to a given finite timed state sequence. Our approach can be
used for robust system simulation and testing, as well as form the basis
for simulation-based verification.

Keywords: Robustness, Metric spaces, Monitoring, Timed State Se-
quences, Metric and Linear Temporal Logic.

1 Introduction

Model checking [1] has been proven to be a very useful tool for the verification
of the properties of software and hardware systems. The tools and methodolo-
gies developed for such systems do not naturally extend to systems whose state
space is some general metric space, for example linear, nonlinear and hybrid
systems. In this case, the model checking problem becomes harder and in most
of the cases is undecidable [2]. Therefore, the verification of such systems still
relies heavily on methods that involve monitoring and testing [3,4,5,6]. Further-
more, general metric transition systems either model physical processes or the
interaction between some software and/or hardware system and the continuous
physical world. Up to now no formal model exists that can capture accurately
the behaviour of such a system – especially if it also exhibits a chaotic behaviour.
Moreover, these types of systems have a certain degree of sensitivity with respect
to initial conditions or to system parameters. This has one major implication.
Deciding the Boolean truth value of a temporal logic specification with respect
to a system’s trajectory - in some of the cases - does not allow us to draw any
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Fig. 1. Two trajectories σ1 and σ2 which
satisfy the specification: �(π1 → �≤2π2).
Here, O(π1) = R≤−10 and O(π1) = R≥10.
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Fig. 2. The trajectory σ2 modified by
random noise. The arrow points to the
point in time where the property fails.

conclusions about the real system. A small perturbation of the trajectory or the
parameters of the system can lead to a different truth value for the formula.

For example, consider the trajectories σ1 and σ2 in Fig. 1. Both of them satisfy
the same specification “if the value of the state drops below -10, then it should
also raise above 10 within 2 time units”. Nevertheless, a visual inspection of Fig.
1 indicates that there exists a qualitative difference between σ1 and σ2. The
later “barely” satisfies the specification. Indeed as we can see in Fig. 2, adding
a bounded noise on σ2 renders the property unsatisfiable on σ2.

In order to differentiate between such trajectories of a system, we introduce
the concept of robustness degree. Informally, we define the robustness degree
to be the bound on the perturbation that the trajectory1 can tolerate without
changing the truth value of a specification expressed in the Linear [7] or Metric
Temporal Logic [8]. To formally define the robustness degree, we take a topo-
logical perspective. We consider finite timed state sequences which take values
in some space X equipped with a metric d. If these trajectories are of length n,
then each sequence of states is isomorphic to a point in Xn, which is the space
of all possible trajectories of length n. In order to quantify how close are two
different state sequences in Xn, we define the notion of distance using a metric
ρ on the space Xn. Given an LTL or MTL formula φ, we can partition the space
Xn into two sets: the set Pφ of state sequences that satisfy φ and the set Nφ of
state sequences that do not satisfy φ. Then, the formal definition of robustness
comes naturally, it is just the distance of a state sequence σ from the set Pφ

or its complement Nφ. Using the degree of robustness and the metric ρ, we can
define an open ball (tube) around σ and, therefore, we can be sure that any state
sequence σ′ that remains within the open ball also stays either in Pφ or in Nφ.
1 We should bring to notice that we are not interested in the properties of the (pos-

sibly) continuous trajectory, but in the properties of its finite representation. Here,
we model the finite representation of a continuous trajectory using timed state se-
quences. Under certain assumptions about the structure of the system, the results
in this paper could be mapped back to the continuous case.
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However, the computation of the set Pφ and, hence, the computation of the
robustness degree are hard problems. To address them, we develop an algo-
rithm that computes an under-approximation of the robustness degree. For that
purpose, we define robust semantics for MTL by borrowing ideas from the quan-
titative version of the linear temporal logic QLTL [9]. Our definition is similar
to QLTL (we do not consider discounting), but now the truth values of the MTL
formulas range over the closure of the reals instead of the closed interval [0, 1].
The atomic propositions in the robust version of MTL evaluate to the distance
from the current state in the timed state sequence to the subset of X that the
atomic proposition represents. As established in the aforementioned work, the
conjunction and disjunction in the Boolean logic are replaced by the min and
max operations. Here, the logical negation is replaced by the usual negation of
the reals. We prove that when an MTL formula is evaluated with robust seman-
tics over a timed state sequence T1, then it returns an under-approximation ε
of the robustness degree and, therefore, any other timed state sequence T2 that
remains ε-close to T1 satisfies the same specification. We conclude the paper by
presenting a monitoring algorithm (similar to [10,11]) that is based on the ro-
bust semantics of MTL and computes the under-approximation of the robustness
degree.

Application-wise the importance of the main contribution of this paper is
straightforward: if a system has the property that under bounded disturbances
its trajectories remain δ close to the nominal one and, also, its robustness de-
gree with respect to an MTL formula φ is ε > δ, then we know that all the
system’s trajectories also satisfy the same specification. The timing bounds on
the temporal operators, that is the use of MTL instead of LTL, can be justified
if one considers that the applications of such a framework are within the systems
area. For example, signal processing and simulations of physical systems most of
the times do require such constraints. The methodology that we present in this
paper can be readily used in several applications such as Qualitative Simulation
[12], verification using simulation [13], mobile robot path planning [14] and in
behavioral robotics [15].

2 Metric Temporal Logic over Timed State Sequences

2.1 Metric Spaces

Let R be the set of the real numbers, Q the set of the rational numbers and
N the set of the natural numbers. We denote the extended real number line
by R = R ∪ {±∞}. Furthermore, we let B = {�,⊥}, where � and ⊥ are the
symbols for the boolean constants true and false respectively. If (X,≤) is a
totally ordered set with an ordering relation ≤, then an interval of X is denoted
by [a, b]X = {x ∈ X | a ≤ x ≤ b}. When X = R, we drop the subscript R. In
addition, we use pseudo-arithmetic expressions to represent certain subsets of
the aforementioned sets. For example, R≥0 denotes the subset of the reals whose
elements are greater or equal to zero. If C is a set, then cl(C) denotes the closure
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of the set C. Let (X, d) be a metric space, i.e. a set X whose topology is induced
by the metric d.

Definition 1 (Metric). A metric on a set X is a positive function d : X×X →
R≥0, such that the three following properties hold

1. ∀x1, x2, x3 ∈ X.d(x1, x3) ≤ d(x1, x2) + d(x2, x3)
2. ∀x1, x2 ∈ X.d(x1, x2) = 0 ⇔ x1 = x2
3. ∀x1, x2 ∈ X.d(x1, x2) = d(x2, x1)

Using a metric d, we can define the distance of a point x ∈ X from a set C ⊆ X .
Intuitively, this distance is the shortest distance from x to all the points in C.
In a similar way, the depth of a point x in a set C is defined to be the shortest
distance of x from the boundary of C. Both the notions of distance and depth
(Fig. 3) will play a fundamental role in the definition of the robustness degree
(see Sect. 3).

Definition 2 (Distance, Depth, Signed Distance [16] §8). Let x ∈ X be a
point, C ⊆ X be a set and d be a metric. Then, we define the

– Distance from x to C to be distd(x, C) := inf{d(x, y) | y ∈ cl(C)}
– Depth of x in C to be depthd(x, C) := distd(x, X\C)
– Signed Distance from x to C to be

Distd(x, C) :=
{
−distd(x, C) if x �∈ C
depthd(x, C) if x ∈ C

We should point out that we use the extended definition of supremum and infi-
mum, where sup ∅ = −∞ and inf ∅ = +∞. Also of importance is the notion of
an open ball of radius ε centered at a point x ∈ X .

Definition 3 (ε-Ball). Given a metric d, a radius ε ∈ R>0 and a point x ∈ X,
the open ε-ball centered at x is defined as Bd(x, ε) = {y ∈ X | d(x, y) < ε}.

It is easy to verify that if the distance (distd) of a point x from a set C is
ε > 0, then Bd(x, ε) ∩ C = ∅. And similarly, if depthd(x, C) = ε > 0, then
Bd(x, ε) ⊆ C.

2.2 Timed State Sequences in Metric Spaces

In this paper, we use timed state sequences (TSS) to describe the behavior of
a real-time system. Typical models of real time systems are the formalisms of
hybrid automata, timed automata, linear and non-linear systems. A state of
such a system is a point x in a metric space X = (X, d). With each state of the
system x we associate a time period Δt, which represents the duration between
the occurrence of the current and the previous system states.

Let AP be a finite set of atomic propositions, then the predicate mapping O :
AP → 2X is a set valued function that assigns to each atomic proposition π ∈ AP
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a set of statesO(π) ⊆ X . Furthermore, if the collection of sets {O(π)}π∈AP is not
a cover of X , i.e. ∪π∈APO(π) �= X , then we add to AP a special proposition πc

that maps to the set O(πc) = X\∪π∈AP O(π). Therefore, we can now define the
“inverse” map of O as O−1(x) = {π ∈ AP | x ∈ O(π)} for x ∈ X . If x ∈ O(π),
then we say that x is a π state. Notice that using the notion of distance, we can
quantify how close is a state x to becoming a π state.

The execution of a system can result in an infinite or finite sequence of states.
In this paper, we focus on finite sequences of states, which can model the finite
representation of a real valued signal or the result of the numerical integration
of differential equations.

Definition 4 (TSS). A timed state sequence T is a tuple (σ, τ,O) where: σ =
x0, x1, . . . , xn is a sequence of states, τ = Δt0, Δt1, . . . , Δtn is a sequence of
time periods and O : AP → 2X is a predicate mapping; such that n ∈ N, xi ∈ X
and Δti ∈ R≥0 for all i ∈ {0, 1, . . . , n} and Δt0, Δt0 + Δt1, . . . ,

∑n
i=0 Δti is a

strictly monotonically increasing sequence.

We let σi and τi denote xi and Δti respectively. By convention, we set Δt0 = 0.
We define σ↓i to be the prefix of the state sequence σ, i.e. σ↓i= x0, x1, . . . , xi,
while σ↑i is the suffix, i.e. σ↑i= xi, xi+1, . . . , xn. The length of σ = x0, x1, . . . , xn

is defined to be |σ| = n + 1. For convenience, we let |T | = |τ | = |σ| and
T ↑i= (σ↑i, τ↑i,O) (similarly for↓).

In the following, we use the convention that T and S denote the timed state
sequences T = (σ, τ,O) and S = (σ′, τ,O) (and similarly for their superscripted
versions). We define ΣX to be the set of all possible timed state sequences in the
space X = (X, d) and Σ(T ) to be the set of all possible timed state sequences
with the same predicate mapping O and the same sequence of time periods
as T . That is Σ(T ) = {(σ′, τ,O) | σ′ ∈ X |T |}. Notice that the sequence σ is
isomorphic to a point in the product space X |σ|.

2.3 Metric Temporal Logic over Finite Timed State Sequences

The Metric Temporal Logic (MTL) [8] is an extension of the Linear Temporal
Logic (LTL) [7]. In MTL, the syntax of the logic is extended to include timing
constraints on the usual temporal operators of LTL. Using LTL specifications
we can check qualitative timing properties, while with MTL specifications quan-
titative timing properties. Recently, it was shown by Ouaknine and Worrell [17]
that MTL is decidable over finite timed state sequences. In this section, we re-
view the basics of MTL with point-based semantics (as opposed to interval based
semantics [18]) over finite timed state sequences.

Definition 5 (Syntax of MTL). Let AP be the set of atomic propositions, D
the set of truth degree constants and I an interval of R≥0 with rational endpoints.
The set ΦD of all well-formed formulas (wff) is the smallest set such that

– it contains all the members of D and AP , i.e. D, AP ⊆ ΦD

– if φ1, φ2 ∈ ΦD, then ¬φ1, φ1 ∨ φ2,©Iφ1, φ1 UIφ2 belong to ΦD
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In the following, we fix the set AP , while the set D varies. As usual, φ1 ∧ φ2 =
¬(¬φ1∨¬φ2) and φ1 → φ2 = ¬φ1∨φ2. Here,©I is the next time operator and UI
the until operator. We can also define the common temporal operators eventually
�Iφ = �UIφ and always �Iφ = ¬�I¬φ. In the case where I = [0, +∞), we
remove the subscript I from the temporal operators, i.e. we just write U , ©,
� and �. When all the subscripts of the temporal operators are of the form
[0, +∞), then the MTL formula φ reduces to an LTL formula and we can ignore
the time periods.

The subscript I imposes timing constraints on the temporal operators. The
interval I can be open, half-open or closed, bounded or unbounded. The function
lb returns the lower (or left) bound of the interval I whereas the function ub
returns the upper (or right) bound. Note that lb(I), ub(I) ∈ Q≥0 and that it
could be the case that ub(I) = lb(I), i.e. I is a singleton. For any t ∈ Q, we
define I+ t = {t′+ t | t′ ∈ I}. Also, we do not consider relative [10] and absolute
congruences [19] and we have not included the since and last temporal operators
(the past fragment) in the syntax of MTL.

Metric Temporal Logic (MTL) formulas are interpreted over timed state se-
quences T with |T | > 0. The constraint |T | > 0 implies that the sequence
has at least one state, that is we ignore the pathological cases of empty state
sequences. In this paper, we denote formula satisfiability using a membership
function 〈〈φ〉〉 : ΣX → B instead of the usual notation T |= φ. The functional
approach enables us to maintain a uniform presentation throughout this paper.
We say that a timed state sequence T satisfies the formula φ when 〈〈φ〉〉(T ) = �.
In this case, we refer to T as a model of φ. The set of all models of φ is denoted
by L(φ), i.e. L(φ) = {T ∈ ΣX | 〈〈φ〉〉(T ) = �}.

Definition 6 (Semantics of MTL). Let T = (σ, τ,O) ∈ ΣX , v ∈ B, π ∈ AP ,
i, j ∈ N and KT

I = {i ∈ [0, |T | − 1]N |
∑i

j=0 τj ∈ I}, then the semantics2 of any
formula φ ∈ ΦB are inductively defined by

〈〈v〉〉(T ) := v

〈〈π〉〉(T ) := σ0 ∈ O(π)
〈〈¬ψ〉〉(T ) := ¬〈〈ψ〉〉(T )

〈〈φ1 ∨ φ2〉〉(T ) := 〈〈φ1〉〉(T ) ∨ 〈〈φ2〉〉(T )

〈〈©Iψ〉〉(T ) :=
{

(τ1 ∈ I) ∧ 〈〈ψ〉〉(T ↑1) if |T | > 1
⊥ otherwise

〈〈φ1 UIφ2〉〉(T ) :=
∨ |T |−1

i=0

(
(i ∈ KT

I ) ∧ 〈〈φ2〉〉(T ↑i) ∧
∧

i−1
j=0〈〈φ1〉〉(T ↑j)

)
Informally, the path formula φ1 U[a,b]φ2 expresses the property that over the
timed state sequence T and in the time interval [a, b], φ2 becomes true and for
all previous time φ1 holds.

2 Note that here we overload the symbols and we use the same notation for both the
logical connectives in the MTL formulas and their respective Boolean truth degree
functions.
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Fig. 3. A tube (dashed lines) around a nominal state sequence σ (dash-dotted line).
The tube encloses a set of state sequences (dotted lines). Also, the definition of distance
and depth and the associated neighborhoods.

3 Robust Satisfaction of MTL Specifications

3.1 Toward a Notion of Robust Satisfaction

In this section, we define what it means for a timed state sequence (taking values
in some metric space) to satisfy a Metric Temporal Logic specification robustly.
In the case of the timed state sequences that we consider in this paper, we can
quantify how close are two different state sequences by using the metric d. Let
T = (σ, τ,O) be a timed state sequence and (σ′, τ,O) ∈ Σ(T ), then

ρ(σ, σ′) = max{d(σi, σ
′
i) | i ∈ [0, |σ| − 1]N} (1)

is a metric on the set X |T |, which is well defined since |T | is finite. Now that the
space of state sequences is equipped with a metric, we can define a tube around
a timed state sequence T . Given an ε > 0, we let

Σε(T ) = {(σ′, τ,O) ∈ Σ(T ) | σ′ ∈ Bρ(σ, ε)}

to be the set of all timed state sequences that remain ε-close to T .
Informally, we define the degree of robustness that a timed state sequence T

satisfies an MTL formula φ to be a number ε ∈ R. Intuitively, a positive ε means
that the formula φ is satisfiable and, moreover, that all the other timed state
sequences that remain ε-close to the nominal one also satisfy φ. Accordingly, if
ε is negative, then T does not satisfy φ and all the other timed state sequences
that remain within the open tube of radius |ε| also do not satisfy φ.

Definition 7 (Robustness Degree). Let φ ∈ ΦB, T = (σ, τ,O) ∈ ΣX and
ρ be the metric (1). Define Pφ

T := {σ′ | (σ′, τ,O) ∈ Σ(T ) ∩ L(φ)}, then the
robustness degree ε ∈ R of T with respect to φ is defined as ε := Distρ(σ, P φ

T ).

Remark 1. Pφ
T is the set of all models with a sequence of time periods τ that

satisfy φ. If we define Nφ
T := {σ′ | (σ′, τ,O) ∈ Σ(T ) ∩ ΣX\L(φ)}, then the set

{Pφ
T , Nφ

T } forms a partition of the set X |T |. Therefore, we have duality Pφ
T =

X |T |\Nφ
T and Nφ

T = X |T |\Pφ
T .
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The following proposition is derived directly from the definitions. It states that all
the timed state sequences S, which have distance from T less than the robustness
degree of T with respect to φ, satisfy the same specification φ as T .

Proposition 1. Let φ ∈ ΦB, T = (σ, τ,O) ∈ ΣX and ε = Distρ(σ, P φ
T ). If

|ε| > 0, then for all S ∈ Σ|ε|(T ) it is 〈〈φ〉〉(S) = 〈〈φ〉〉(T ).

Remark 2. If ε = 0, then the truth value of φ with respect to T is not robust,
i.e. any small perturbation of a critical state in the timed state sequence can
change the satisfiability of the formula with respect to T .

Theoretically, the set Pφ
T (or Nφ

T ) can be computed. A naive, but straightforward,
way to construct the set Pφ

T is as follows. Instead of timed state sequences
in a metric space X , let us consider finite timed state sequences where each
state is a set of atomic propositions. We will refer to the later as timed words
for clarity. In more detail, consider the timed word Tw = (ξ, τ) where for all
i = 0, 1, . . . , |Tw| − 1 it is ξi ∈ AP = 2AP \∅. In [17], it was proven the one
can construct an acceptor Aφ (in the form of a timed alternating automaton
with one clock) for the finite models Tw of any formula φ in the logic MTL with
the standard semantics (that is 〈〈π〉〉(Tw) := π ∈ ξ0). Assume now that we are
given an MTL formula φ, a sequence of time periods τ and a predicate mapping
O. For that particular τ , we can find the set Lτ (Aφ) of timed words (ξ, τ)
that are accepted by Aφ. One way to do so is to construct the set UWτ of all

possible untimed words ξ of length |τ |, that is UWτ = AP
|τ |

, and, then, for each
ξ ∈ UWτ verify whether (ξ, τ) is accepted by Aφ, i.e. whether (ξ, τ) ∈ L(Aφ)
and, thus, (ξ, τ) ∈ Lτ (Aφ). This can be done in time O(|τ ||AP ||τ |) since given
the automaton Aφ it takes linear time in the length of the timed word to decide
whether the word is in the language or not. From the set Lτ (Aφ), we can easily
derive the set Pφ

T =
⋃

(ξ,τ)∈Lτ (Aφ)

(
(∩π∈ξ0O(π)) × . . .× (∩π∈ξ|T |−1O(π))

)
.

The following toy example illustrates the concept of robustness for temporal
logic formulas interpreted over finite (timed) state sequences.

Example 1. Assume that we are given the LTL specification φ = π1 Uπ2 such
that O(π1) = [1, 2] ⊆ R and O(π2) = [0, 1) ⊆ R. Moreover, we have O(πc) =
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Fig. 4. On the left appears the time-domain representation of the timed state sequences
T1 (blue crosses) and T2 (green crosses) of Example 1. On the right appears the space
of the state sequences of length 2. Each x represents a state sequence as a point in R2.
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R\(O(π1) ∪ O(π2)) = (−∞, 0) ∪ (2, +∞). Note that the sets O(π1), O(π2) and
O(πc) are mutually disjoint. Consider now two timed state sequences T1 =
(σ1, τ,O) and T2 = (σ2, τ,O) taking values in R such that σ1 = 1, 0.5 and
σ2 = 1.7, 1.3. Since φ is an LTL formula, we can ignore the sequence of time
periods τ . In this simple case, we can compute the set PΦ with the procedure
described above. The four untimed words that satisfy the specification φ and
generate non-empty sets are ξ1 = {π2}, {π1}, ξ2 = {π2}, {π2}, ξ3 = {π2}, {πc}
and ξ4 = {π1}, {π2}. Therefore, we get Pφ = Pφ

T1
= Pφ

T2
= O(π2) × O(π1) ∪

O(π2)×O(π2)∪O(π2)×O(πc)∪O(π1)×O(π2) = [0, 1)×R∪ [1, 2]× [0, 1) (see
Fig. 4). Therefore, ε1 = Distρ(σ1, Pφ) = 0.5 and ε2 = Distρ(σ2, Pφ) = −0.3.

3.2 Computing an Under-Approximation of the Robustness Degree

The aforementioned theoretical construction of the set Pφ
T cannot be of any

practical interest. Moreover, the definition of robustness degree involves a num-
ber of set operations (union, intersection and complementation) in the possibly
high dimensional spaces X and X |T |, which can be computationally expensive
in practice. Therefore in this section, we develop an algorithm that computes
an under-approximation of the robustness degree ε by directly operating on the
timed state sequence while avoiding set operations. In the following, we refer to
the approximation of the robustness degree as the robustness estimate. As it is
usually the case in trade-offs, we gain computational efficiency at the expense of
accuracy.

In order to compute the robustness estimate, we define robust semantics for
MTL. For this purpose, we extend the classical notion of formula satisfiability to
the multi-valued case. In this framework, each formula takes truth values over
a finite or infinite set of values that have an associated partial or total order
relation. In this paper, we differentiate from previous works [9] by providing the
definition of multi-valued semantics for MTL based on robustness considerations.

Let R = (R,≤) be the closure of the reals with the usual ordering relation.
We define the binary operators � : R × R → R and � : R × R → R using the
maximum and minimum functions as x�y := max{x, y} and x�y := min{x, y}.
Also, for some R ⊆ R we extend the above definitions as follows

⊔
R := sup R

and
�

R := inf R. Recall that
⊔

R = +∞ and
�

R = −∞ and that any subset
of R has a supremum and infimum. Finally, because R is a totally ordered set,
it is distributive, i.e. for all a, b, c ∈ R it is a � (b � c) = (a � b) � (a � c) and
a � (b � c) = (a � b) � (a � c).

We propose multi-valued semantics for the Metric Temporal Logic where the
valuation function on the atomic propositions takes values over the totally or-
dered set R according to the metric d operating on the state space X of the
timed state sequence T . For this purpose, we let the valuation function to be
the signed distance from the current point in the state sequence σ0 to a set C
labeled by the atomic proposition. Intuitively, this distance represents how ro-
bustly is the point σ0 within a set C. If this metric is zero, then even the smallest
perturbation of the point can drive it inside or outside the set C, dramatically
affecting membership.
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For the purposes of the following discussion, we use the notation [[φ]](T ) to
denote the robustness estimate with which the structure T satisfies the specifi-
cation φ (formally [[φ]] : ΣX → R).

Definition 8 (Robust Semantics of MTL). Let T = (σ, τ,O) ∈ ΣX , v ∈ R,
π ∈ AP , i, j ∈ N and KT

I = {i ∈ [0, |T | − 1]N |
∑i

j=0 τj ∈ I}, then the robust
semantics of a formula φ ∈ Φ

R
with respect to T are inductively defined by

[[v]](T ) := v

[[π]](T ) := Distd(σ0,O(π))
[[¬ψ]](T ) := −[[ψ]](T )

[[φ1 ∨ φ2]](T ) := [[φ1]](T ) � [[φ2]](T )

[[©Iψ]](T ) :=
{

mv(τ1 ∈ I) � [[ψ]](T ↑1) if |T | > 1
−∞ otherwise

[[φ1 UIφ2]](T ) :=
⊔ |T |−1

i=0

(
mv(i ∈ KT

I ) � [[φ2]](T ↑i) �
�

i−1
j=0[[φ1]](T ↑j)

)
where the unary operator (−) is defined to be the negation over the reals.

Remark 3. It is easy to verify that the semantics of the negation operator give
us all the usual nice properties such as the De Morgan laws: a� b = −(−a�−b)
and a � b = −(−a � −b), involution: −(−a) = a and antisymmetry: a ≤ b iff
−a ≥ −b for a, b ∈ R.

Since the truth degree constants of the formulas in ΦB differ from those of the
formulas in Φ

R
, we define a translation function mv : ΦB → Φ

R
which takes as

input a formula φ ∈ ΦB and replaces the occurrences of ⊥ and � by −∞ and
+∞ respectively. All the other symbols in φ are left the same. The following
proposition states the relationship between the usual and the robust semantics
of MTL (the proof uses induction on the structure of φ).

Proposition 2 (proof in [20]). Let φ ∈ ΦB, ψ = mv(φ) and T ∈ ΣX , then

(1) [[ψ]](T ) > 0 ⇒ 〈〈φ〉〉(T ) = � (2) 〈〈φ〉〉(T ) = � ⇒ [[ψ]](T ) ≥ 0
(3) [[ψ]](T ) < 0 ⇒ 〈〈φ〉〉(T ) = ⊥ (4) 〈〈φ〉〉(T ) = ⊥ ⇒ [[ψ]](T ) ≤ 0

Note that the equivalence in the above proposition fails because, if a point is
on the boundary of the set, its distance to the set or its depth in the set is by
definition zero. Therefore, the point is classified to belong to that set even if the
set is open in the topology.

The following theorem identifies the robustness estimate as an underapproxi-
mation of the robustness degree (proof by induction on the structure of φ).

Theorem 1 (proof in [20]). Given φ ∈ ΦB and T = (σ, τ,O) ∈ ΣX , then

|[[mv(φ)]](T )| ≤ |Distρ(σ, P φ
T )| (2)

In more detail, −depthρ(σ, Nφ
T ) ≤ [[φ]](T ) ≤ depthρ(σ, P φ

T ).
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In the above theorem, the equality in equation (2) fails due to the robust inter-
pretation of the disjunction connective. The inequality manifests itself in four
distinct ways: (i) at the level of the atomic propositions, i.e. π1 ∨ π2, (ii) due to
the existence of tautologies in the formula, i.e. π ∨ ¬π, (iii) when we consider
disjuncts of MTL subformulas, i.e. φ1 ∨ φ2, and more importantly, (iv) due to
the disjunctions in the semantics of the until temporal operator.

The first case can be remedied by introducing a new symbol for each Boolean
combination of atomic propositions. The second and third conditions require the
attention of the user of the algorithm. Even though the above cases can be fixed
by introducing syntactic restrictions, the last case (iv) captures a fundamental
shortcoming of the robust semantics. The timed state sequences that have state
sequences in Bρ(σ, |Distρ(σ, P φ

T )|) can satisfy or falsify the specification φ at dif-
ferent time instants than T . On the other hand, the robustness estimate returns
the “radius” of the neighborhood of traces that satisfy the specification at the
same point in time.

Example 2. Going back to Example 1, we have seen that ε1 = Distρ(σ1, Pφ) =
0.5. Nevertheless, [[φ]](T1) = [[π2]](T1)�([[π1]](T1)�[[π2]](T1↑1)) = 0�(0�0.5) = 0 �=
ε1. Consider now a timed state sequence T ′ = (σ′, τ,O) such that σ′ = 1.1, 0.5.
It is immediate to see that 〈〈φ〉〉(T ′) = � and that T ′ ∈ Σε1(T1). Note that T1
satisfies the specification at time τ1, while T ′ satisfies φ at time τ0. The robust
semantics of MTL cannot capture this.

From Proposition 1 and Theorem 1 we derive the next theorem as a corollary.

Theorem 2. Given φ ∈ ΦB and T ∈ ΣX , if [[mv(φ)]](T ) = ε and |ε| > 0, then
for all S ∈ Σ|ε|(T ) it is 〈〈φ〉〉(S) = 〈〈φ〉〉(T ).

Theorem 2 has several implications. First, in the simplest case where we just
simulate the response of a system, we can derive bounds for the magnitude of
the disturbances that the system can tolerate while still satisfying the same MTL
specification. Second, we can use approximation metrics [21] in order to verify a
system using simulations [22].

4 Monitoring the Robustness of Temporal Properties

In this section, we present a procedure that computes the robustness estimate of
a timed state sequence T with respect to a specification φ stated in the Metric
Temporal Logic. For this purpose, we design a monitoring algorithm based on
the classical and robust semantics of MTL.

Starting from the definition of the Boolean semantics of the until operator and
using the distributive law, we can derive an equivalent recursive formulation (see
also [10]):

〈〈φ1 UIφ2〉〉(T ) =

⎧⎨⎩ ((0 ∈ I) ∧ 〈〈φ2〉〉(T ))∨
∨(〈〈φ1〉〉(T ) ∧ 〈〈φ1 UI−τ1φ2〉〉(T ↑1)) if |T | > 1
(0 ∈ I) ∧ 〈〈φ2〉〉(T ) otherwise
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Algorithm 1. Monitoring the Robustness of Timed State Sequences
Input: The MTL formula φ and the timed state sequence T = (σ, τ, O)
Output: The formula’s Boolean truth value and the robustness parameter
1: procedure Monitor(φ,T )
2: if |T | > 1 then return φ ← Progress(φ, σ0, τ1, ⊥, O)
3: else return φ ← Progress(φ, σ0, 0, �, O)
4: end if
5: if φ = (v, ε) then return (v, ε) � v ∈ {�, ⊥} and ε ∈ R
6: else return Monitor(φ, T ↑1)
7: end if
8: end procedure

A similar recursive formulation holds for the robust MTL semantics (see [20]).
Using the recursive definitions, it is easy to derive an algorithm that returns
the Boolean truth value3 of the formula and its robustness degree. The main
observation is that each value node in the parse tree of the MTL formula should
also contain its robustness degree. Therefore, the only operations that we need
to modify are the negation and disjunction which must perform, respectively, a
negation and a maximum operation on the robustness values of their operants.
Then, the new semantics for the conjunction operator can be easily derived from
these two.

Definition 9 (Hybrid Semantics for Negation and Disjunction). Let
(v1, ε1), (v2, ε2) ∈ B× R, then we define

– Negation: ¬(v, ε) := (¬v,−ε)
– Disjunction: (v1, ε1) ∨ (v2, ε2) := (v1 ∨ v2, max{ε1, ε2})

Given a timed state sequence T and an MTL formula φ, we can construct a
monitoring algorithm (Algorithm 1) that can decide both the satisfaction of the
formula and the robustness parameter ε on-the-fly. Algorithm 2 is the core of
the monitoring procedure. It takes as input the temporal logic formula φ, the
current state s and the time period before the next state occurs, it evaluates the
part of the formula that must hold on the current state and returns the formula
that it has to hold at the next state of the timed trace. In Algorithm 2,

←−I is
defined as follows

←−I =
{

[0, lb(I)] ∪ I if 0 < lb(I)
I otherwise

The constraint 0 ∈ ←−I is added in order to terminate the propagation of the
subformula φ1 UI−τ1φ2, when the timing constraints for the occurrence of φ2 have
already been violated. Note that this timing constraint is meaningful only if we
also perform the following simplifications at each recursive call of the algorithm
Progress: (i) φ ∧ (�, +∞) ≡ φ, (ii) φ ∨ (⊥,−∞) ≡ φ, (iii) φ ∨ (�, +∞) ≡
(�, +∞) and (iv) φ ∧ (⊥,−∞) ≡ (⊥,−∞).
3 Note that the Boolean truth valued is required in the cases where the robustness

degree is zero (see Proposition 2).
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Algorithm 2. Formula Progression Algorithm
Input: The MTL formula φ, the current state s, the time period Δt for the next state,
a variable last indicating whether the next state is the last and the mapping O
Output: The MTL formula φ that has to hold at the next state
1: procedure Progress(φ, s, Δt, last, O)
2: if φ = (v, ε) ∈ {⊥, �} × R then return (v, ε)
3: else if φ = π then return (s ∈ O(π),Distd(s, O(π)))
4: else if φ = ¬ψ then return ¬Progress(ψ, s, Δt, last,O)
5: else if φ = φ1 ∨ φ2 then
6: return Progress(φ1, s, Δt, last,O)∨ Progress(φ2, s, Δt, last, O)
7: else if φ = ©Iψ then return Hybrid(¬last ∧ (Δt ∈ I)) ∧ ψ
8: else if φ = φ1 UIφ2 then
9: α ← Hybrid(0 ∈ I)∧ Progress(φ2, s, Δt, last,O)

10: β ← Hybrid(¬last∧ (0 ∈ ←−I ))∧ Progress(φ1, s, Δt, last,O)∧φ1 UI−Δtφ2

11: return α ∨ β
12: end if
13: end procedure
1: function Hybrid(Bool)
2: if Bool = � return (�, +∞) else return (⊥, −∞) end if
3: end function

When we check how robustly a timed state sequence T satisfies a specification
φ, we cannot stop the monitoring process as soon as we can determine that the
MTL formula holds on T . This is because a future state in the timed state
sequence may satisfy the specification more robustly. Therefore, it is preferable
to execute the procedure Monitor for the whole length of the timed state
sequence T .

The proof of the following theorem is standard and uses induction on the
structure of φ based on the classical and robust semantics of MTL.

Theorem 3 (proof in [20]). Given an MTL formula φ ∈ ΦB and a timed state
sequence T ∈ ΣX , the procedure Monitor(φ, T ) returns

– (�, ε) if and only if 〈〈φ〉〉(T ) = � and [[mv(φ)]](T ) = ε ≥ 0
– (⊥, ε) if and only if 〈〈φ〉〉(T ) = ⊥ and [[mv(φ)]](T ) = ε ≤ 0.

The theoretical complexity of the monitoring algorithms has been studied in
the past for both the Linear [23] and the Metric Temporal Logic [10]. Practical
algorithms for monitoring using rewriting have been developed by several authors
[11,24]. The new part in Algorithm 2 is the evaluation of the atomic propositions.
How easy is to compute the signed distance? When the set X is just R, the set C
is an interval and the metric d is the function d(x, y) = |x−y|, then the problem
reduces to finding the minimum of two values. For example, if C = [a, b] ⊆ R
and x ∈ C, then Distd(x, C) = min{|x − a|, |x − b|}. When the set X is Rn,
C ⊆ Rn is a closed and convex set and the metric d is the euclidean distance, i.e.
d(x, y) = ||x−y||2, then we can calculate the distance (distd) by solving a convex
optimization problem. If in addition the set C is a hyperplane C = {x | aT x = b}
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or a halfspace C = {x | aT x ≤ b}, then there exist analytical solutions. For
further details see [16].

5 Conclusions and Future Work

The main contribution of this work is the definition of a notion of robust satis-
faction of a Linear or Metric Temporal Logic formula which is interpreted over
finite timed state sequences that reside in some metric space. We have also pre-
sented an algorithmic procedure that can monitor such a timed state sequence
and determine an under-approximation of its robustness degree. As mentioned
in the introduction, the applications of this framework can extend to several
areas. We are currently exploring several new directions such as the extension of
the definitions of the robustness degree and the robust MTL semantics so they
can handle infinite timed state sequences. Also of interest to us is the addition
of a metric on the time bounds as it is advocated in [25] and [26]. Finally, the
methodology that we have presented in this paper comprises the basis for the
extension of recent results on the safety verification of discrete time systems [13]
to a more general verification framework using the metric temporal logic as a
specification language [22].
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Abstract. We present a new lockset-based algorithm, Goldilocks, for pre-
cisely computing the happens-before relation and thereby detecting data-
races at runtime. Dynamic race detection algorithms in the literature are
based on vector clocks or locksets. Vector-clock-based algorithms precisely
compute the happens-before relation but have significantly more overhead.
Previous lockset-based race detection algorithms, on the other hand, are
imprecise.They check adherence to aparticular synchronization discipline,
i.e., a sufficient condition for race freedom and may generate false race
warnings.Our algorithm, like vector clocks, is precise, yet it is efficient since
it is purely lockset based.

We have implemented our algorithm inside the Kaffe Java Virtual
Machine. Our implementation incorporates lazy evaluation of locksets
and certain “short-circuit checks” which contribute significantly to its
efficiency. Experimental results indicate that our algorithm’s overhead is
much less than that of the vector-clock algorithm and is very close to
our implementation of the Eraser lockset algorithm.

1 Introduction

Race conditions on shared data are often symptomatic of a bug and their de-
tection is a central issue in the functional verification of concurrent software.
Numerous techniques and tools have been developed to analyze races and to
guard against them [15,19,7,1]. These techniques can be broadly classified as
static and dynamic. Some state-of-the-art tools combine techniques from both
categories. This paper is about a dynamic race detection algorithm.

Algorithms for runtime race detection make use of two key techniques: locksets
and vector clocks. Roughly speaking, lockset-based algorithms compute at each
point during an execution for each shared variable q a set LS (q). The lockset
LS (q) consists of the locks and other synchronization primitives that, according
to the algorithm, protect accesses to q at that point. Typically, LS (q) is a small
set and can be updated relatively efficiently during an execution. The key weak-
ness of lockset-based algorithms in the literature is that they are specific to a
particular locking discipline which they try to capture directly in LS (q). For in-
stance, the classic lockset algorithm popularized by the Eraser tool [15], is based
on the assumption that each potentially shared variable must be protected by
a single lock throughout the whole computation. Other similar algorithms can

K. Havelund et al. (Eds.): FATES/RV 2006, LNCS 4262, pp. 193–208, 2006.
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handle more sophisticated locking mechanisms [1] by incorporating knowledge
of these mechanisms into the lockset inference rules. Still, lockset-based algo-
rithms based on a particular synchronization discipline have the fundamental
shortcoming that they may report false races when this discipline is not obeyed.
Vector-clock [11] based race detection algorithms, on the other hand, are precise,
i.e., declare a race exactly when an execution contains two accesses to a shared
variable that are not ordered by the happens-before relation. However, they are
significantly more expensive computationally than lockset-based algorithms as
argued and demonstrated experimentally in this work.

In this paper we provide, for the first time, a lockset-based algorithm, Goldi-
locks, that precisely captures the happens-before relation. In other words, we
provide a set of lockset update rules and formulate a necessary and sufficient
condition for race-freedom based solely on locksets computed using these rules.
Goldilocks combines the precision of vector clocks with the computational effi-
ciency of locksets. We can uniformly handle a variety of synchronization idioms
such as thread-local data that later becomes shared, shared data protected by
different locks at different points in time, and data protected indirectly by locks
on container objects.

For dynamic race detection tools used for stress-testing concurrent programs,
precision may not be desired or necessary. One might prefer an algorithm to
signal a warning about not only about races in the execution being checked, but
also about “feasible” races in similar executions [12]. It is possible to incorpo-
rate this kind of capability into our algorithm by slightly modifying the lockset
update rules or the race condition check. However, the target applications for
our race detection algorithm are continuous monitoring for actual races during
early development and deployment, and for partial-order reduction during model
checking as is done in [8]. False alarms and reports of feasible rather than actual
races unnecessarily interrupt execution and take up developers’ time in the first
application and cause computational inefficiency in the latter. For these reasons,
for the targeted applications, the precision of our algorithm is a strength and
not a weakness.

We present an implementation of our algorithm that incorporates lazy com-
putation of locksets and “short circuit checks”: constant time sufficient checks
for race freedom. These implementation improvements contribute significantly
to the computational efficiency of our technique and they appear not to be ap-
plicable to vector clocks. We implemented our race-detection algorithm in C,
integrated with the Kaffe Java Virtual Machine [18]. An important contribution
of this paper is an experimental comparison of the Goldilocks algorithm with
the vector-clock algorithm and our implementation of the Eraser algorithm. We
demonstrate that our algorithm is much more efficient than vector clocks and
about as efficient as Eraser.

This paper is organized as follows. Section 2 describes the Goldilocks algo-
rithm and presents an example which contrasts our algorithm with existing lock-
sets algorithms. Section 3 explains the implementation of our algorithm in the
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Kaffe JVM. Experimental evaluation of our algorithm is presented in Section 4.
Related work is discussed in Section 5.

2 The Goldilocks Algorithm

In this section, we describe our algorithm for checking whether a given execution
σ has a data-race. We use the standard characterization of data-races based on
the happens-before relation, i.e., there is a data race between two accesses to
a shared variable if they are not ordered by the happens-before relation. The
happens-before relation for an execution is defined by the memory model. We
use a memory model similar to the Java memory model [10] in this paper. Our
algorithm is sound and precise, that is, it reports a data-race on an execution iff
there is a data-race in that execution.

2.1 Preliminaries

A state of a concurrent program consists of a set of local variables for each
thread and a set of global objects shared among all threads. Let Tid be the set
of thread identifiers and Addr be the set of object identifiers. Each object has a
finite collection of fields. Field represents the set of all fields. and is a union of
two disjoint sets, the set Data of data fields and the set Volatile of volatile fields.
A data variable is a pair (o, d) of an object o and a data field d. A synchronization
variable is a pair (o, v) of an object o and a volatile field v. A concurrent execution
σ is represented by a finite sequence s1

α1−→t1 s2
α2−→t2 . . .

αn−→tn sn+1, where si is
a program state for all i ∈ [1 . . . n+1] and αi is one of the following actions for all
i ∈ [1 . . . n]: acq(o), rel(o), read(o, d), write(o, d), read(o, v), write(o, v), fork (u),
join(u), and alloc(o). We use a linearly-ordered sequence of actions and states
to represent an execution for ease of expressing the lockset-update rules and the
correctness of the algorithm. This sequence can be any linearization of the union
of the following partial orders defined in [10]: (i) the program order for each
thread and (ii) the synchronizes-with order for each synchronization variable.
The particular choice of the linearization is immaterial for our algorithm. In our
implementation (Section 3) each thread separately checks races on a (linearly-
ordered) execution that represents its view of the evolution of program state.

The actions acq(o) and rel(o) respectively acquire and release a lock on object
o. There is a special field l ∈ Volatile containing values from Tid∪{null} to model
the semantics of an object lock. The action acq(o) being performed by thread t
blocks until o.l = null and then atomically sets o.l to t. The action rel(o) being
performed by thread t fails if o.l �= t, otherwise it atomically sets o.l to null .
Although we assume non-reentrant locks for ease of exposition in this paper,
our algorithm is easily extended to reentrant locks. The actions read(o, d) and
write(o, d) respectively read and write the data field d of an object o. A thread
accesses a variable (o, d) if it executes either read(o, d) or write(o, d). Similarly,
the actions read(o, v) and write(o, v) respectively read and write the volatile field
v of an object o. The action fork (u) creates a new thread with identifier u. The
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action join(u) blocks until the thread with identifier u terminates. The action
alloc(o) allocates a new object o. Of course, other actions (such as arithmetic
computation, function calls, etc.) also occur in a real execution but these actions
are irrelevant for our exposition and have consequently been elided.

Following the Java Memory Model [10], we define the happens-before relation
for a given execution as follows.

Definition 1. Let σ = s1
α1−→t1 s2

α2−→t2 . . .
αn−→tn sn+1 be an execution of the

program. The happens-before relation hb−→ for σ is the smallest transitively-closed
relation on the set {1, 2, . . . , n} such that for any k and l, we have k

hb−→ l if
1 ≤ k ≤ l ≤ n and one of the following holds:

1. tk = tl.
2. αk = rel(o) and αl = acq(o).
3. αk = write(o, v) and αl = read(o, v).
4. αk = fork (tl).
5. αl = join(tk).

We use the happens-before relation to define data-race free executions as follows.
Consider a data variable (o, d) in the execution σ. The execution σ is race-free
on (o, d) if for all k, l ∈ [1, n] such that αk, αl ∈ {read(o, d),write(o, d)}, we have
k

hb−→ l or l
hb−→ k. For now, our definition does not distinguish between read and

write accesses. We are currently refining our algorithm to make this distinction
in order to support concurrent-read/exclusive-write schemes.

2.2 The Algorithm

Our algorithm for detecting data races in an execution σ uses an auxiliary partial
map LS from (Addr × Data) to Powerset((Addr × Volatile) ∪ Tid). This map
provides for each data variable (o, d) its lockset LS(o, d) which contains volatile
variables, some of which represent locks and thread identifiers. The algorithm
updates LS with the execution of each transition in σ. The set of rules for these
updates are shown in Figure 1. Initially, the partial map LS is empty. When an
action α happens, the map LS is updated according to the rules in the figure.

Goldilocks maintains for each lockset LS (o, d) the following invariants: 1) If
(o′, l) ∈ LS(o, d) then the last access to (o, d) happens-before a subsequent
acq(o′). 2) If (o′, v) ∈ LS (o, d) then the last access to (o, d) happens-before a
subsequent read(o′, v). 3) If t ∈ LS(o, d) then the last access to (o, d) happens-
before any subsequent action by thread t. The first two invariants indicate that
LS (o, d) contains the locks and volatile variables whose acquisitions and reads,
respectively, create a happens-before edge from the last access of (o, d) to any
subsequent access of (o, d), thereby preventing a race. As a result of the last
invariant, if t ∈ LS(o, d) at an access to a data variable (o, d) by thread t,
then the previous access to (o, d) is related to this access by the happens-before
relation. A race on (o, d) is reported in Rule 1, if LS (o, d) �= ∅ and t �∈ LS (o, d)
just before the update.
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1. α = read(o, d) or α = write(o, d):
if LS(o, d) �= ∅ and t �∈ LS(o, d), report data race on (o, d); LS(o, d) := {t}

2. α = read(o, v):
for each (o, d) ∈ dom(LS): if (o, v) ∈ LS(o, d) add t to LS(o, d)

3. α = write(o, v):
for each (o, d) ∈ dom(LS): if t ∈ LS(o, d) add (o, v) to LS(o, d)

4. α = acq(o):
for each (o, d) ∈ dom(LS): if (o, l) ∈ LS(o, d) add t to LS(o, d)

5. α = rel(o):
for each (o, d) ∈ dom(LS): if t ∈ LS(o, d) add (o, l) to LS(o, d)

6. α = fork(u):
for each (o, d) ∈ dom(LS): if t ∈ LS(o, d) add u to LS(o, d)

7. α = join(u):
for each (o, d) ∈ dom(LS): if u ∈ LS(o, d) add t to LS(o, d)

8. α = alloc(x):
for each d ∈ Data : LS(x, d) := ∅

Fig. 1. The lockset update rules for the Goldilocks algorithm

We now present the intuition behind our algorithm. Let (o, d) be a data vari-
able, α be the last access to it by a thread a, and β be the current access to it
by thread b. Then α happens-before β if there is a sequence of happens-before
edges connecting α to β. The rules in Figure 1 are designed to compute the tran-
sitive closure of such edges. When α is executed, the lockset LS(o, d) is set to
the singleton set {a}. This lockset grows as synchronizing actions happen after
the access. The algorithm maintains the invariant that a thread identifier t is in
LS (o, d) iff there is a sequence of happens-before edges between α and the next
action performed by thread t. The algorithm adds a thread identifier to LS (o, d)
as soon as such a sequence of happens-before edges is established.

Note that each of the rules 2–7 requires updating the lockset of each data
variable. A naive implementation of this algorithm would be too expensive for
programs that manipulate large heaps. In Section 3, we present a scheme to
implement our algorithm by applying these updates lazily.

The following theorem expresses the fact that our algorithm is both sound
and precise.

Theorem 1 (Correctness). Consider an execution σ=s1
α1−→t1 s2 · · · sn

αn−→tn

sn+1 and let LS i be the value of the lockset map LS as computed by the Goldilocks
algorithm when σ reaches state si. Let (o, d) be a data variable and i ∈ [1, n− 1]
be such that αi and αn access (o, d) but αj does not access (o, d) for all j ∈
[i + 1, n− 1]. Then tn ∈ LSn(o, d) iff i

hb−→ n.

The proof appears in the appendix of the full version of our paper [6].
Our algorithm has the ability to track happens-before edges from a write to

a subsequent read of a volatile variable. Therefore, our algorithm can handle any
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synchronization primitive, such as semaphores and barriers in the java.util.-
concurrent package of the Java standard library, whose underlying implemen-
tation can be described using a collection of volatile variables.

Goldilocks can also handle the happens-before edges induced by the wait-notify
mechanism of Java without needing to add new rules. The following restrictions of
Java ensure that, for an execution the happens-before relation computed by our
lockset algorithm projected onto data variable accesses remains unchanged even
if the wait/notify synchronization adds new happens-before edges: 1) Each call to
o.wait() and o.notify() be performed while holding the lock on object o. 2)
The lock of o released when o.wait() is entered and it is again acquired before
returning from o.wait().

2.3 Example

In this section, we present an example of a concurrent program execution in
which lockset algorithms from the literature declare a false race while our algo-
rithm does not. The lockset algorithms that we compare ours with are based on
the Eraser algorithm [15], which is sound but not precise.

The pseudocode for the example is given below. The code executed by each
thread Ti is listed next to Ti:.

Class IntBox { Int x; }

IntBox a = new IntBox(); // IntBox object o1 created
IntBox b = new IntBox(); // IntBox object o2 created

T1: acq(L1); a.x++; rel(L1);
T2: acq(L1); acq(L2); tmp = a; a = b; b = tmp; rel(L1); rel(L2);
T3: acq(L2); b.x++; rel(L2);

In this example, two IntBox objects o1 and o2 are created and locks L1 and
L2 are used for synchronization. The program follows the convention that L1
protects accesses to a and a.x, similarly, L2 protects accesses to b and b.x. At
all times, each IntBox object and its integer field x are protected by the same
lock. T2 swaps the objects referred to by the variables a and b.

Consider the interleaving in which all actions of T1 are completed, followed
by those of T2 and then T3. T2 swaps the objects referred to by variables a and
b so that during T3’s actions b refers to o1. o1.x is initially protected by L1 but
is protected by L2 after T2’s actions are completed.

The most straightforward lockset algorithm is based on the assumption that
each shared variable is protected by a fixed set of locks throughout the execution.
Let LH (t) represent the set of locks held by thread t at a given point in an
execution. This algorithm attempts to infer this set by updating LS (o, d) to be
the intersection LH (t) ∩ LS(o, d) at each access to (o, d) by a thread t. If this
intersection becomes empty, a race is reported. This approach is too conservative
since it reports a false race if the lock protecting a variable changes over time.
In the example above, when T3 accesses b.x, the standard lockset algorithm
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Fig. 2. Evaluation of LS(o1.x) by Goldilocks

declares a race since LS (o1.x) = {L1} (b points to o1) before this access and
T3 does not hold L1.

A less conservative alternative is to update LS (o, d) to LH (t) rather than
LH (t) ∩ LS (o, d) after a race-free access to (o, d) by a thread t. For any given
execution, this strategy, just like the previous strategy, will report a data-race
if there is one but is still imprecise and might report false races. In the example
above, this approach is unable to infer the correct new lockset for o1.x after T2’s
actions are completed. This is because T2 does not directly access o1.x and, as
a result, LS (o1.x) is not modified by T2’s actions.

Variants of lockset algorithms in the literature use additional mechanisms
such as a state machine per shared variable in order to handle special cases such
as thread locality, object initialization and escape. However these variants are
neither sound nor precise, and they all report false alarms in scenarios similar
to the one in the example above.

Our algorithm’s lockset update rules allow a variable’s locksets to grow and
change during the execution. The lockset of a variable may be modified even
without the variable being accessed. In this way, we are able to handle dynam-
ically changing locksets and ownership transfers and avoid false alarms. In the
example above, the lockset of o1.x evolves with our update rules during the
execution as illustrated in Figure 2.

The vector-clock algorithm does not declare a false race in this example and
similar scenarios. However, as discussed in Section 3, it accomplishes this at
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significantly increased computational cost compared to our optimized implemen-
tation of the lockset update rules.

3 Implementation with Lazy Evaluation

We implemented the Goldilocks algorithm in Kaffe [18], a clean room implemen-
tation of the Java virtual machine in C. Our implementation currently runs in
the interpreting mode of Kaffe’s runtime engine. The pseudocode is given in Fig-
ure 3. There are two important features that contribute to the performance of
the algorithm in practice: short-circuit checks and lazy evaluation of lockset up-
date rules. Short-circuit checks are cheap, sufficient checks for a happens-before
edge between the last two accesses to a variable. We use short-circuit checks to
eliminate unnecessary application of the lockset update rules. Lazy evaluation
runs the lockset update rules in Figure 1 only when a data variable is accessed
and all the short-circuit checks fail to prove the existence of a happens-before
relationship.

There are two reasons we implemented our lockset algorithm lazily: 1) Man-
aging and updating a separate lockset for each data variable have high memory
and computational cost. Our lockset rules are expressed in terms of set lookups
and insertions, and making the lockset a singleton set with the current thread
id after an access. These simple update rules make possible a very easy and
efficient form of computing locksets lazily only at an access. 2) For thread-local
and well-synchronized variables, there may be no need to run (all of) the lockset
update rules, because a short-circuit check or a subset of synchronization actions
may be sufficient to show race freedom.

In our way of performing lazy evaluation, we do not explicitly associate a
separate lockset LS (o, d) for each data variable (o, d). Instead, LS(o, d) is created
temporarily, when (o, d) is accessed and the algorithm, after all short-circuit
checks fail, finds it necessary to compute happens-before for that access using
locksets. In addition, the lockset update rule for a synchronization action in
Figure 1 is not applied to LS (o, d) when the action is performed. We defer
the application of these rules until (o, d) is accessed and the lockset update
rules are applied for that access. We store the necessary information about a
synchronization action in a cell, consisting of the current thread and the action.
During the execution, cells are kept in a list that we call update list, which is
represented by its head and tail pointers in the pseudocode. When a thread
performs a synchronization action, it atomically appends its corresponding cell
to the update list .

Each variable (o, d) is associated with an instance of Info. info maps variables
to Info instances. info(o, d) keeps track of three pieces of information necessary to
check an access to (o, d): 1) pos is a pointer to a cell in the update list (ref (Cell)
is the reference type for Cell). 2) owner is the identifier of the thread that last
accessed (o, d). After each access to (o, d) by thread t, info(o, d) is updated so
that pos is assigned to the reference of the cell at the tail of the update list
and owner is assigned to t. 3) alock is used in a short-circuit check as explained
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record Cell { record Info {
thread : Tid ; pos : ref (Cell);
action : Action; owner : Tid ;
next : ref (Cell);} alock : Addr ; }

head , tail : ref (Cell); info: (Addr × Data) −→ Info;

Initially head := new Cell ; tail := head ; info := EmptyMap;

Handle-Action (t, α):
1 if (α ∈ {acq(o), rel(o), fork(u), join(u), read(o, v), write(o, v),

finalize(x), terminate(t)}) {
2 tail→thread := t;
3 tail→action := α;
4 tail→next := newCell ;
5 tail := tail→next ;
6 }
7 else if (α ∈ {read(o, d), write(o, d)}) {
8 if (info(o, d) is not defined) { //initialize info(o, d) for the first access to (o, d)
9 info(o, d) := newInfo;
10 info(o, d).alock := (choose randomly a lock held by t, if any exists);
11 } else {
12 if ((info(o, d).owner �= t) ∧ (info(o, d).alock is not held by t)) {
13 Apply-Lockset-Rules (t, (o, d)); // run the lockset algorithm
14 // because short circuits failed, reassign the random lock for (o, d)
15 info(o, d).alock := (choose randomly a lock held by t, if any exists);
16 }
17 }
18 // reset info(o, d) after each access to (o, d)
19 info(o, d).owner := t;
20 info(o, d).pos := tail ;
21 Garbage-Collect-Cells (head , tail);
22 }

Fig. 3. Implementation of the Goldilocks algorithm

below. Notice that because locksets are created temporarily only when the full
checking for the lockset rules is to be done, there is no field of info(o, d) that
points to a lockset.

We instrumented the JVM code by inserting calls to Handle-Action. The pro-
cedure Handle-Action is invoked each time a thread performs an action relevant
to our algorithm. We performed the instrumentation so that the synchronizes-
with order and the order of corresponding cells in the update list are kept consis-
tent throughout the execution. Similarly, the order of cells respects the program
order of the threads in the execution. We needed only for volatile reads/writes
to insert explicit locks to make atomic the volatile access and appending the cell
for that action to the update list.



202 T. Elmas, S. Qadeer, and S. Tasiran

Handle-Action takes as input a thread t and an action α performed by t.
If α is a synchronization action, Handle-Action appends a cell referring to α
to the end of the update list (lines 1-6). If α reads from or writes to a data
variable (o, d) and it is the first access to (o, d) it creates a new Info for (o, d)
and sets its alock to one of the locks held by t (lines 8-11). Otherwise, it first
runs two short-circuit checks (line 12). If both of the short-circuit checks fail, the
procedure Apply-Lockset-Rules is called. Before exiting Handle-Action, info(o,d)
is updated to reflect the last access to (o, d) (lines 19-20). Handle-Action also
garbage collects the cells in the update list that are no longer referenced, by
calling Garbage-Collect-Cells (line 21).

Apply-Lockset-Rules applies the lockset update rules in Figure 1 but uses
a local, temporarily-created lockset LS (o, d). LS (o, d) is initialized to contain
info(o,d).owner , the identifier of the thread that last accessed (o, d), to reflect
the effect of Rule 1 for variable accesses. Then the rules for the synchronization
actions performed after the last access to (o, d) are applied to LS(o, d) in turn.
The cells in the update list between the cell pointed by info(o,d).pos and the cell
pointed by tail are used in this computation. The access causes no warning if
the current thread t is added to LS(o, d) by some rule. This check is performed
after handling each cell and is also used to terminate the lockset computation
before reaching the tail of the update list. If t is not found in LS(o, d), a race
condition on (o, d) is reported.

Short-circuit checks: Our current implementation contains two constant time,
sufficient checks for the happens-before relation between the last two accesses to
a variable (see line 12 of Handle-Action). 1) We first check whether the currently
accessing thread is the same as the last thread accessed the variable by comparing
t and info(o,d).owner . This helps us to handle checking thread local variables
in constant time without needing the lockset rules. 2) The second check handles
variables that are protected by the same lock for a long time. We keep track
of a lock alock for each variable (o, d). info(o, d).alock represents an element of
LS (o, d) chosen randomly. At the first access to (o, d) info(o, d).alock is assigned
one of the locks held by the current thread randomly, or null if there is no such
lock (line 10). After the next access to (o, d) we check if the lock info(o, d).alock
is held by the current thread. If this check fails, info(o, d).alock is reassigned by
choosing a new lock (line 15).

Comparison with the vector-clock algorithm: The vector-clock algorithm
is as precise as our algorithm. However, the precision of the vector-clock algo-
rithm may come at a significantly higher computational cost than Goldilocks
because lazy evaluation and the short circuit checks make our approach very
efficient. This fact is highlighted by the following example. Consider a program
with a large number of threads t1, ..., tn all accessing the same shared vari-
able (o, d), where all accesses to (o, d) are protected by a single lock l. At each
synchronization operation, acq(l) or rel(l), Goldilocks performs a constant-time
operation to add the synchronization operation to the update list. Moreover,
once info(o, d).alock = l, then at each access to (o, d) Goldilocks performs a
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Fig. 4. Per access race checking time against the increasing number of threads

constant-time look-up to determine the absence of a race. The vector-clock al-
gorithm, on the other hand, maintains a vector of size n for each thread and for
each variable. At each synchronization operation, two such vectors are compared
element-wise and updated. At each access to (o, d), the vector-clock algorithm
performs constant-time work just like Goldilocks. While the vector-clock algo-
rithm does Θ(n) work for each synchronization operation and Θ(1) for each data
variable access, Goldilocks does Θ(1) work for every operation. As this example
highlights and our experimental results demonstrate, the Goldilocks algorithm
is more efficient than the vector-clock algorithm. The SharedSpot microbench-
mark in Section 4 is based on the example described above and the experiments
confirm the preceding analysis.

4 Evaluation

In order to evaluate the performance our algorithm, we ran the instrumented
version of the Kaffe JVM on a set of benchmarks. In order to concentrate on
the races in the applications, we disabled checks for fields of the standard li-
brary classes. Arrays were checked by treating each array element as a separate
variable. We first present our experiments and discuss their results in Section 4.1.

In order to compare our algorithm with traditional lockset and vector-clock
algorithms, we implemented a basic version of the Eraser algorithm that we
call Basic-Eraser and a vector-clock based algorithm similar to the one used by
Trade [5]. Where possible, we used the same data structure implementations
while implementing the three algorithms. For Basic-Eraser, we used the same
code for keeping and manipulating locksets that we developed for Goldilocks.

Microbenchmarks: The Multiset microbenchmark consists of a number of
threads accessing a multiset of integers concurrently by inserting, deleting and
querying elements to/from it. The SharedSpot benchmark illustrates the case in
which a number of integers, each of which is protected by a separate unique lock,
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are accessed concurrently by a number of threads for applying arithmetic oper-
ations on them. The LocalSpot benchmark is similar to SharedSpot but each
variable is thread-local. We ran experiments parameterizing the microbench-
marks with the number of threads starting from 1 and doubling until 256. Fig-
ure 4 plots for three algorithms the average time spent for checking each variable
access against increasing number of threads.

Large benchmarks: We used six benchmark programs commonly used in the
literature to compare the performance of the three algorithms on large programs:
Raja1 is a ray tracer (≈ 6K lines). SciMark2 is a composite Java benchmark con-
sisting of five computational kernels (≈ 2300 lines). Four of our benchmarks are
from the Java Grande Forum Benchmark Suite3. They are moldyn, a molecular
dynamics simulation (≈ 650 lines), raytracer, a 3D ray tracer (≈ 1200 lines),
montecarlo, a Monte Carlo simulation (≈ 3K lines) and sor, a successive over-
relaxation program (≈ 220 lines).

Table 1 presents the performance statistics of the three algorithms on the
benchmark programs. The purpose of this batch of experiments is to contrast
the overhead that each of the three approaches incur while checking for races. In
this batch of experiments, race checking for a variable was not turned off after
detecting a race on it, as would be the case in normal usage of a race detection
tool. The purpose of this was to enable a fair comparison between algorithms.
On this set of benchmarks, Basic-Eraser conservatively declared false races on
many variables early in the execution. If race checking on these variables were
turned off after Basic-Eraser detects a race on them, Basic-Eraser would have
ended up doing a lot less work and checking a lot fewer accesses than the other
two approaches, especially since these variables are typically very likely to have
races on them later in the execution as well. This would have made the overhead
numbers difficult to compare. In Table 1, we give the number of threads created
in each program below the name of the benchmark. The column titled “Uninstru-
mented” reports the total runtime of the program in the uninstrumented JVM,
and the total number of variable accesses (fields+array indices) performed at
runtime. Each column for an algorithm presents, for each benchmark, the total
execution time and the slowdown ratio of the program with instrumentation.
The time values are given in seconds. The slowdown ratio is the ratio of the
difference between the instrumented runtime and the uninstrumented runtime
to the uninstrumented runtime. The number of variable accesses checked for
races is important for assessing the amount of work carried out by the algorithm
during execution and average checking time for each variable access.

Table 2 lists the results of our experiments with Goldilocks where checks for
fields on which a race is detected are disabled. This is a more realistic setting
to judge the overhead of our algorithm in absolute terms. The measurements
reported in the first three rows are the same as the ones in Table 1, taken

1 Raja can be obtained at http://raja.sourceforge.net/.
2 Scimark can be obtained at http://math.nist.gov/scimark2/.
3 Java Grande Forum Benchmark Suite can be obtained at

http://www.epcc.ed.ac.uk/computing/research activities/java grande/threads.html.
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Table 1. Runtime statistics of the benchmark programs

Uninstrumented Vector-clock Basic-Eraser Goldilocks
Benchmark Runtime (sec.) Runtime (sec.) Runtime (sec.) Runtime (sec.)
# threads # accesses Slowdown Slowdown Slowdown
Raja 8.6 145.1 105.9 70.2
3 5979629 15.7 11.1 7
SciMark 28.2 51.3 46.1 33.1
7 3647012 0.8 0.6 0.1
moldyn 11.2 195 138.9 92.8
7 8610585 16.3 11.3 7.2
raytracer 1.9 122.8 79.8 50
7 5299350 63.1 40.6 25.1
montecarlo 5.7 243.8 160 117.5
7 10491747 41.4 26.8 19.4
sor 27.2 145.9 157.5 107
7 7696597 4.3 4.7 2.9

Table 2. Runtime statistics when fields with races detected on them are disabled

Algorithm Raja SciMark moldyn raytracer montecarlo sor
Runtime 70.2 33.1 92.8 50 117.6 107
Slowdown 7 0.1 7.2 25.1 19.4 2.9
# checks 5979629 3647012 8610585 5299350 10491747 7696597
Runtime* 65.8 35.5 57.0 17.6 111.2 63.8
Slowdown* 6.5 0.2 4 8.2 18.3 1.3
# checks* 5979629 4104754 5268021 1884836 10484544 3416928

* Results after disabling checks to the fields.

without disabling any checks. The second three rows give the runtime statistics
when we followed the approach described above.

4.1 Discussion

The plots in Figure 4 show per access checking times of the three algorithms.
The very low acceleration in the per access runtime overhead of our algorithm
and Eraser in the SharedSpot and LocalSpot examples is noteworthy. Short
circuit checks in our algorithm allow constant time overhead for thread-local
variables and variables protected by a unique lock. This makes our algorithm
asymptotically better than the vector-clock algorithm.

The runtime statistics in Table 1 indicate that Goldilocks performs better than
the vector-clock algorithm for large-scale programs. As the number of checks
done for variable accesses are the same, we can conclude that per variable access
checking time of our lockset algorithm on average is less than the vector-clock
algorithm.

SciMark, moldyn and sor are well-synchronized programs with few races and
a simple locking discipline. Thus the short circuit checks mostly succeed and the
overhead of the lockset algorithm is low. However, more elaborate synchroniza-
tion policies in Raja, raytracer and montecarlo caused long runs of the lockset
algorithm, thus the slowdown ratio increases. These programs have a relatively
high number of races.
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The results indicate that our algorithm works as efficiently as Basic-Eraser
while Basic-Eraser can not handle all the synchronization policies used in the
benchmarks. The main reason for our algorithm performing slightly better in
our experiments is the fact that Basic-Eraser does lockset intersections while
checking the accesses. Intersection is fundamentally an expensive operation. Our
algorithm, on the other hand, requires insertions and lookups, which can be im-
plemented in constant amortized time. Clearly, a more optimized implementation
of Eraser would have performed better. The goal of the comparison with Basic-
Eraser was to demonstrate that our algorithm does not have significantly more
cost than other lockset algorithms.

Disabling checking accesses to fields on which races were detected dramat-
ically decreases the number of accesses to be checked against races, thus the
total runtime of the instrumented program. This can be seen from Table 1. For
the benchmarks moldyn, raytracer and sor, the differences in the number of
accesses point to this effect.

5 Related Work

Dynamic race-detection methods do not suffer from false positives as much as
static methods do but are not exhaustive. Eraser [15] is a well-known tool for
detecting race conditions dynamically by enforcing the locking discipline that
every shared variable is protected by a unique lock. It handles object initial-
ization patterns using a state-based approach but can not handle dynamically
changing locksets since it only allows a lockset to get smaller. There is much
work that refines the Eraser algorithm by improving the state machine it uses
and the transitions to reduce the number of false positives. One such refine-
ment is extending the state-based handling of object initialization and making
use of object-oriented concepts [17]. Harrow used thread segments to identify
the portions of the execution in which objects are accessed concurrently among
threads [9]. Another approach is using a basic vector-clock algorithm to capture
thread-local accesses to objects and thus eliminates unnecessary and imprecise
applications of the Eraser algorithm [19]. Precise lockset algorithms exist for Cilk
programs but their use for real programs is still under question [2]. The general
algorithm in [2] is quite inefficient while the efficient version of this algorithm
requires programs to obey the umbrella locking discipline, which can be violated
by race-free programs.

The approaches that check a happens-before relation [5,14,16] are based on
vector clocks [11], which create a partial order on program statements. Trade [5]
uses a precise vector-clock algorithm. Trade is implemented at the Java byte code
level and in interpreter mode of JVM as is our algorithm. To reduce the overhead
of the vector clocks for programs with a large number of threads, they use reach-
ability information through the threads, which makes Trade more efficient than
other similar tools. Schonberg computes for each thread shared variable sets and
concurrency lists to capture the set of shared variables between synchroniza-
tion points of an execution [16]. His algorithm is imprecise for synchronization
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disciplines that use locks and needs to be extended for asynchronous coordination
to get precision for these disciplines.

Hybrid techniques [13,19] combine lockset and happens-before analysis. For
example, RaceTrack’s happens-before computation is based on both vector clocks
and locksets. but is not sound as its lockset part of the algorithm is based on
Eraser algorithm. Our technique, for the first time, computes a precise happens-
before relation using an implementation that makes use of only locksets. Choi
et.al. present an unsound runtime algorithm [4] for race detection. They used a
static method [3] to eliminate unnecessary checks for well-protected variables.
This is a capability we intend to integrate into Goldilocks in the future.

6 Conclusions

In this paper, we present a new sound and precise race-detection algorithm.
Goldilocks is based solely on the concept of locksets and is able to capture all
mutual-exclusion synchronization idioms uniformly with one mechanism. The
algorithm can be used, both in the static or the dynamic context, to develop
analyses for concurrent programs, particularly those for detecting data-races,
atomicity violations, and failures of safety specifications. In our future work,
we plan to develop and integrate into Goldilocks a static analysis technique to
reduce the cost of runtime checking.
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Abstract. Object models capture key properties of object-oriented archi-
tectures, and they can highlight relationships between types, occurrences
of sharing, and object encapsulation. We present a dynamic analysis to ex-
tract object models from legacy code bases. Our analysis reconstructs each
intermediate heap from a log of object allocations and field writes, applies
a sequence of abstraction-based operations to each heap, and combines the
results into a single object model that conservatively approximates all ob-
served heaps from the program’s execution. The resulting object models
reflect many interesting and useful architectural properties.

1 Introduction

Object models capture the essence of object-oriented designs. However, many
systems are developed without documented object models or evolve in ways that
deviate from the original model. Tools to reconstruct object models are a valuable
aid for understanding and reasoning about such systems. This paper presents
a dynamic analysis to extract object models from existing code bases. We have
found that these inferred object models explicate key structural invariants of
object-oriented designs.

As an illustrative example, Figure 1 shows the inferred object model for parts
of the abstract syntax tree (AST) data structure related to class declarations
from the ESC/Java code base [15]. This object model is drawn as a UML class
diagram [7], in which nodes represent classes and edges represent indicate both
association and generalization relationships between classes. The graph reveals
a number of important (and occasionally surprising) properties of ASTs:

– Each ClassDecl (at the top of the graph) has a superClass field with
the somewhat unexpected multiplicity label ‘?’, indicating that this field
may be null. Inspection of the code revealed that the superClass field
can in fact be null in one special case, namely when the ClassDecl is for
java.lang.Object, the root of the class hierarchy.

– Each ClassDecl has a field elems containing one or more TypeDeclElem
objects, as indicated by the multiplicity ‘+’. Again, this label was somewhat
unexpected, since empty class declarations are valid in Java. However, fur-
ther investigation revealed that the parser automatically adds an implicit
nullary constructor to such classes.

K. Havelund et al. (Eds.): FATES/RV 2006, LNCS 4262, pp. 209–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Object Model for the AST Package from ESC/Java’s Front-End

– Each TypeDeclElemmay be a MethodDecl, ConstructorDecl, or FieldDecl,
as indicated by the hollow-tipped generalization arrows from the subtypes to
the supertype.

– Each MethodDecl contains zero or more FormalParaDecls, as shown via the
multiplicity ‘*’.

– The bold, diamond-tailed edges indicate unique references. All edges in
this object model are unique, except for the parent pointers from each
TypeDeclElem, which point back to the containing ClassDecl. Thus, the
overall structure is mostly a tree, but documenting the non-unique parent
pointers is crucial since any tree traversal algorithm must include special
treatment for these pointers.

– Although not present in Figure 1, we also infer ownership and containment
properties, which we found necessary to express encapsulation properties in
complex situations where unique references are not sufficient, and we have
enriched UML class diagrams to express these additional properties.

Object models could be reconstructed statically, by analyzing the program
source code [5,25,23,26]. However, precise static alias analysis is a notoriously
difficult problem, and so static analyses have some difficulties inferring precise
invariants regarding heap structure and sharing (although progress continues to
be made on this topic).

In contrast, dynamic alias analysis reduces to a simple pointer comparison, and
so dynamic analyses can provide very precise information regarding structural
properties of heaps, such as: which portions of the heap follow a tree structure,
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which pointers are unique, and which objects are encapsulated within other ob-
jects. Of course, any dynamic analysis is limited by test coverage and may infer
false invariants. In our experience, such anomalies, once discovered, are straight-
forward to rectify by appropriately extending the test inputs.

Figure 2 presents a schematic of our analysis tool, Aardvark, which is based
on offline heap reconstruction. It first executes an instrumented version of the
target program that records a log of all object allocations and field writes. The
Builder phase then uses this log to reconstruct a snapshot of the heap at each
intermediate stage in the program’s execution. The primary focus of this paper
is on how to infer object models from these reconstructed heaps.

For each heap snapshot, Aardvark isolates the relevant fragment of that
heap via the projection and closure operations described in Section 2. It then
uses abstraction (or object merging) to generate an initial object model for that
heap, as described in Section 3. That object model is extended with additional
information regarding multiplicities, unique pointers, ownership, and contain-
ment (see Section 4). Thus, the sequence of heap snapshots is abstracted into a
corresponding sequence of object models.

We formalize the space of object models as labeled graphs, which form an
abstract domain [12] with abstraction and concretization functions. Section 5
defines the upper bound operation � on this domain, which we use to compute a
single object model that conservatively approximates all of the heap snapshots
from the program’s execution.

The implementation of Aardvark is described in Section 6. Preliminary ex-
periments indicate that the inferred object models are quite precise and useful,
and that they explicate important architectural details. In many cases, we can
produce sufficiently accurate results by analyzing only a small sample of heap
snapshots. Section 8 discusses some important topics for future work, including
developing incremental versions of our abstraction algorithms.

2 Heap Projection and Closure

We begin by formalizing the notion of an object heap. We ignore primitive data
(such as integers) and focus only on the structure of the heap. Let A be the set
of object addresses (or simply objects) and let F be the set of field names in
the program. We use a, b, c, . . . as meta-variables ranging over object addresses,
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and use f to range over field names. A heap H is a relation H ⊆ A × F × A
describing how fields of some objects point to other objects.1 Each edge in H is
written as (a →f b), meaning that field f of object a points to object b.

In many situations, we may be interested only in certain parts of the heap,
such as the objects corresponding to a particular package or data structure. If
the object set J ⊆ A describes these objects of interest, then the projection of a
heap H onto J isolates them:

proj J (H) = {(a →f b) | (a →f b) ∈ H ∧ a, b ∈ J}

Figure 3(a) shows a heap projection that focuses on the AST data structure of
the ESC/Java front-end. The diagram shows that each class declaration contains
a set of method, constructor, and field declarations.

This diagram also includes nodes that describe how class declarations are rep-
resented, via a TypeDeclElemVec object that contains an array. We often want
to abstract away such low-level representation details, which is accomplished via
the following closure operation that elides these intermediate objects (or repre-
sentation nodes. For any set of low-level representation nodes J ⊆ A, the closure
of a heap H with respect to J is defined by

closeJ (H) =
{

(a →f b) a, b �∈ J and ∃ a path in H from a to b whose first
field is f and whose intermediate nodes are in J

}
The closure of Figure 3(a) with respect to representation nodes yields the

diagram of Figure 3(b), which more directly shows the relationship between
class declarations and their elements.

3 Abstraction

After projection and closure, the next step is to abstract from each program
heap H (with perhaps millions of objects) a concise graphical representation
G of the object model. Here, G is simply a graph over a collection of abstract
nodes and edges, as defined precisely in Section 3.1. We consider a sequence of
increasingly-precise abstractions. For clarity, we formalize the semantics of each
representation with a concretization function γ that defines the meaning of a
graph G as the set of heaps γ(G) matching that description. Conversely, the
abstraction function α maps a given concrete heap H to a corresponding graph
G = α(H). For soundness, we require that the meaning of G includes the original
graph H , i.e., H ∈ γ(α(H)).

A graph G1 is more precise than G2, denoted G1  G2, if γ(G1) ⊆ γ(G2).
Unlike in static analyses where the primary purpose of abstraction is to facilitate
convergence, the purpose of abstraction in our setting is to ignore low-level details
and isolate architectural invariants. For this reason, we do not require α(H) to
be a most precise element of {G | H ∈ γ(G)}.
1 We formalize the heap as a relation instead of a partial function A × F →p A to

facilitate our subsequent development.
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Fig. 3. Closure, Abstraction, and Generalization

3.1 Heap Abstraction

The first class of abstractions we consider simply merges concrete objects into
summary, or abstract, objects. Each abstract object â is a set of corresponding
concrete objects (i.e., â ⊆ A), and we use Â to denote the set of abstract objects.
Thus Â ⊆ 2A. An (abstract) graph G is a pair (Â, Ê), where Ê ⊆ Â× F × Â is a
set of field-labeled edges between abstract objects. Each abstract edge (â →f b̂)
describes a set of possible concrete edges according to the edge concretization
function γ:

γ(â →f b̂) = {(a →f b) | a ∈ â, b ∈ b̂}

Each abstract graph (Â, Ê) represents a set of concrete heaps according to the
concretization function γe:

γe(Â, Ê) =
{
H ∀e ∈ H. ∃ê ∈ Ê. e ∈ γ(ê)

}
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This function requires that every edge in the concrete heap H is represented
by some corresponding edge in Ê. (The superscript on γe distinguishes this
concretization function from the ones presented below, and by convention the
superscript always corresponds to the last component in the graph tuple.)

Applying this abstraction requires first determining a suitable collection of
abstract objects. Since objects of the same class typically exhibit similar be-
havior, a particularly important abstraction is to partition objects according
to their type, as shown in Figure 3(c). In this situation, Â is a partition of A
and is isomorphic to the set of non-abstract class types in the program. It is
straightforward to define the corresponding abstraction function αe:

αe(H) = (Â, Ê)
where Â partitions A according to type
and Ê =

{
(â →f b̂) â, b̂ ∈ Â ∧ (∃a ∈ â, b ∈ b̂. (a →f b) ∈ H)

}
Other possible partitioning strategies include, for example, partitioning objects
according to their creation site, or merging objects that satisfy the same predi-
cates, as in shape analyses [32]. Applying these ideas to object modeling remains
for future work.

The following lemma states that αe infers a conservative approximation of the
given heap.

Lemma 1 (Soundness). ∀H. H ∈ γe(αe(H)).

We next extend our notion of abstraction to incorporate generalization (or
subtype) edges, which are a key concern in object-oriented designs. Note that
Figure 3(c) shows the elems field of a ClassDecl storing three different kinds of
declarations. A better object model is shown in Figure 3(d), which indicates that
elems stores a set of TypeDeclElems, and the generalization edges (with hollow-
tipped arrowheads) indicate that method, constructor, and field declarations are
all subtypes of TypeDeclElem.

To illustrate how we perform generalization, suppose a class A extends B.
We create corresponding abstract objects â and b̂ as before, except that b̂ now
contains all concrete objects whose type is B or any subtype of B, including
A. Thus â ⊆ b̂, and we indicate this containment relationship by drawing a
generalization edge from â to b̂.

The presence of generalization edges complicates the abstraction mapping. In
general, a set of classes to which a field (such as elems) points could be general-
ized to any common supertype, but the best choice is the most-specific common
supertype. Due to Java’s multiple interface inheritance, this most-specific com-
mon supertype may not be unique, in which case Aardvark employs simple
heuristics to choose the most appropriate generalization.

4 Multiplicities and Structural Attributes

The abstractions of the previous section can produce precise summaries of large
heaps, but they can also lose key information. This section enriches those abstract
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graphs with additional attributes describing the multiplicity of abstract edges, as
well as sharing and structural properties of the heap.

4.1 Multiplicities

The object model in Figure 1 labels each abstract edge with a multiplicity that
describes how many objects it points to: “?” for at most one, “ε” for exactly
one, “∗” for zero or more, and “+” for one or more. Here ε indicates the absence
of a multiplicity label. These multiplicity labels reveal that class declarations
contain at least one element, method declarations contain zero or more formal
parameters, and method declarations contain exactly one statement.

To compute this information, we annotate each abstract edge (â →f b̂) with
a multiplicity set that describes, for each concrete object a ∈ â, how many b̂-
objects the object a points to. Specifically, the multiplicity set m((â →f b̂), H)
of an abstract edge (â →f b̂) in a heap H is the set of natural numbers given by:

m((â →f b̂), H) = {t1, . . . tn} where â = {a1, . . . , an}
and ti =

∣∣∣{b | b ∈ b̂ ∧ (ai →f b) ∈ H}
∣∣∣

We extend the abstract graph (Â, Ê) with an additional component M : Ê →
2Nat describing the multiplicity sets of each abstract edge. The concretization
function enforces this intended meaning, and the abstraction function computes
the appropriate multiplicities from the concrete graph:

γm(Â, Ê, M) =
{

H ∈ γe(Â, Ê) ∀ê ∈ Ê. m(ê, H) ⊆ M(ê)
}

αm(H) = (Â, Ê, M) where (Â, Ê) = αe(H) and M = λê ∈ Ê. m(ê, H)

Lemma 2 (Soundness Of Multiplicities). ∀H. H ∈ γm(αm(H)).

Since multiplicity sets are rather dependent on the specific program execution,
when drawing diagrams we generalize them to the more abstract multiplicity
labels “?”, “ε”, “∗”, and “+”, described above.

4.2 Uniqueness

The process of abstracting or object merging loses information about cycles
or sharing in the underlying concrete heap. This limitation is illustrated by
the abstract graph of Figure 4(a). From this graph, it is unclear whether the
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original heap was actually a binary tree, a doubly-linked list, a DAG, or some
more general graph structure. To avoid this limitation, we next describe three
increasingly sophisticated ways to enrich the abstract graph with additional
information describing the degree to which sharing can occur in the underlying
heap.

We begin by introducing the notion of unique edges. A concrete edge (a →f b)∈
H is unique if it points to an unshared object, that is, if H does not contain any
other edge (c →g b) that also points to b. This notion of uniqueness naturally ex-
tends to abstract edges: an abstract edge is unique if it only corresponds to unique
concrete edges. In Figure 4(b), these unique edges (drawn in bold with a solid di-
amond on the tail) clarify that no sharing occurs, and thus this object model is
more precise than Figure 4(a) since it describes only trees, and not other DAG or
graph structures.

To formalize this notion of uniqueness, we extend the abstract graph (Â, Ê, M)
of the previous section with an additional component U ⊆ Ê that describes which
abstract edges are unique. The concretization and abstraction functions become:

γu(Â, Ê, M, U) ={
H ∈ γm(Â, Ê, M) ∀ê ∈ U. ∀e ∈ γ(ê) ∩ H. e is unique in H

}
αu(H) = (Â, Ê, M, U) where (Â, Ê, M) = αm(H) and

U = {ê ∈ Ê | ∀e ∈ γ(ê) ∩ H. e is unique in H}

Lemma 3 (Soundness Of Uniqueness). ∀H. H ∈ γu(αu(H)).

4.3 Ownership

Unique pointers provide precise information in the ideal case where there is no
sharing but cannot describe controlled or encapsulated sharing. For example,
the concrete heap of Figure 5(a) includes two java.util.LinkedLists, each
of which is represented by a doubly-linked list of LinkedList$Entrys. Each
LinkedList$Entry contains a Point, except for the dummy node at the head
of the list.

Even though LinkedList$Entrys are encapsulated by their owning list, point-
ers to LinkedList$Entrys are not unique. Thus, the abstract graph of Fig-
ure 5(b) loses this key encapsulation information and instead suggests that
LinkedList$Entrys could be shared between LinkedLists.

To remedy this limitation, we incorporate the notion of object ownership
based on dominators [11]. An object a dominates object b if every path from
a root of the heap to b must pass through a. Thus, the dominates relation
domH ⊆ A × A for a heap H is the greatest fixpoint of the equations:

domH (b) = {b} if b is a root of H

domH (b) = {b} ∪
( ⋂

(a →f b)∈H

domH (a)
)

otherwise

Roots could be, for example, all static fields in a program, or perhaps a more
specific collection of objects, depending on the particular domain.
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We extend this dominator relation to abstract graphs, and say that â domi-
nates b̂ in H (written â �H b̂) if every b̂-object is dominated by some â-object,
i.e., if ∀b ∈ b̂. ∃a ∈ â. a ∈ domH (b). When drawing abstract graphs, we indi-
cate the closest, most precise dominator of each abstract object as an ownership
edge, drawn as a dashed arrow. In Figure 5(c), these ownership edges show that
each LinkedList$Entry object is owned by some LinkedList, which means
that LinkedList$Entrys are never shared between LinkedLists. As expected,
Points are owned by the object Main and not the lists, since a Point is shared
between both lists. For LinkedList, which is the target of a unique pointer, an
ownership edge would be a redundant inverse of that unique pointer, and so is
omitted.

We include this abstract domination relation �H ⊆ Â × Â as an additional
component in the abstract graph, whose concretization and abstraction functions
become:

γ�(Â, Ê, M, U, �) =
{
H ∈ γu(Â, Ê, M, U) � ⊆ �H

}
α�(H) = (Â, Ê, M, U, �H) where (Â, Ê, M, U) = αu(H)

Lemma 4 (Soundness Of Ownership). ∀H. H ∈ γ�(α�(H)).

4.4 Containment

Our final refinement captures encapsulation in complex situations for which nei-
ther uniqueness nor ownership suffices. Consider the concrete heap of Figure 6(a),
which shows two java.util.HashMap objects, each of which has an array of
HashMap$Entry objects and some iterators that also point to the HashMap$Entry
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objects. Each HashMap$Entry object is encapsulated in its HashMap and corre-
sponding iterators. Thus, the HashMap representations can be partitioned into
two connected components or containers.

However, in the abstract graph of Figure 6(b), neither uniqueness nor owner-
ship is sufficient to explicate this partitioning. In particular, the only owner for
the HashMap$Entrys is the object Main, since HashMap$Entrys are not dominated
by either HashMaps or the iterator. Thus, the graph suggests that HashMap$Entry
objects could be shared between HashMaps, in which case updating one HashMap
could then change the state of other HashMaps.

To remedy this limitation, we introduce the notion of containment and single-
tons. A container C is a set of abstract objects that represents an encapsulated
data structure. For example, Figure 6(c) includes a container (drawn as a large
box) encompassing the HashMap and related objects. Each concrete heap contains
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some number of container instances c1, . . . , cn, where each container instance ci

is a set of concrete objects. The key concept of containment is that there can be
no concrete edges between container instances.

Figure 6(c) also shows that HashMap is a singleton (drawn as a double box),
indicating that each container instance contains exactly one HashMap object.
Thus, each container instance includes a single HashMap and its associated itera-
tors, entries, and Strings, which means that HashMap$Entrys are never shared
between HashMaps. To formalize these notions, we extend abstract graphs and
the concretization function with two additional components, the container C
and the set of singleton objects S:

γs(Â, Ê, M, U, �, C, S) =⎧⎪⎪⎨⎪⎪⎩H ∈ γ�(Â, Ê, M, U, �)

∃n, c1, . . . , cn.

∀â, b̂ ∈ C, a ∈ â, b ∈ b̂.
((a →f b) ∈ H ⇒ ∃i. a, b ∈ ci)

∧ ∀â ∈ S. ∀i ∈ 1..n. |â ∩ ci| = 1

⎫⎪⎪⎬⎪⎪⎭
The corresponding abstraction function assumes we are given a fixed container
C by the programmer2. This function infers the set of container instances by
computing (using a union-find algorithm) the maximal partition P of the con-
tainer objects into valid container instances, and it then computes the set S of
singleton objects with respect to these containers:

αs(H) = (Â, Ê, M, U, �, C, S)
where (Â, Ê, M, U, �) = α�(H)
and P is the maximal partitioning of the container objects ∪C such that
∀â, b̂ ∈ C, a ∈ â, b ∈ b̂, if (a →f b) ∈ H then a and b are in the same partition

and S = {â ∈ C | ∀c ∈ P. |â ∩ c| = 1}

Lemma 5 (Soundness Of Containment). ∀H. H ∈ γs(αs(H)).

5 From Heaps to Traces

The previous two sections show how to extract an abstract graph from each con-
crete heap. Applying this abstraction process to each observed heap H1, . . . , Hn

in the instrumented execution yields a sequence of graphs G1, . . . , Gn, where
Gi = α(Hi). The final step is to merge these graphs into a single graph.

For this purpose, we introduce the following upper bound operation on ab-
stract graphs (Â, Ê, M, U, �, C, S). We assume that the graphs are defined over
the same collection of abstract objects Â, heap roots, and container C. The upper
bound operation then combines the remaining components by taking the union
of the abstract edge sets; the point-wise union (denoted ∪m) of the multiplicity
maps; and the intersection of the unique edge sets, the domination relations, and
the singleton sets:
2 This technique generalizes to multiple different containers, and we are currently

exploring ways to algorithmically or heuristically identify likely containers.
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(Â, Ê1, M1, U1, �1, C, S1) � (Â, Ê2, M2, U2, �2, C, S2) =
(Â, Ê1 ∪ Ê2, M1 ∪m M2, U1 ∩ U2, �1 ∩ �2, C, S1 ∩ S2)

The point-wise union of two multiplicity maps is defined as:

(M1 ∪m M2)(ê) =

⎧⎨⎩M1(ê) ∪ M2(ê) if ê ∈ domain(M1), ê ∈ domain(M2)
M1(ê) ∪ {0} if ê ∈ domain(M1), ê �∈ domain(M2)
{0} ∪ M2(ê) if ê �∈ domain(M1), ê ∈ domain(M2)

The next lemma states that operation � is an upper bound operation on
abstract graphs.

Lemma 6 (Upper Bound). For any graphs G1 and G2:

Gi � G1 � G2 for all i ∈ 1..2

We use this upper bound operation to combine the sequence of abstract graphs
G1, . . . , Gn into a single graphical summary G = G1 � · · · � Gn. The following
lemma states that the final graph G is a conservative approximation for each
observed heap in the program’s execution.

Theorem 1 (Soundness for Traces). Suppose Gi = αs(Hi) for i ∈ 1..n and
that G = G1 � · · · � Gn. Then Hi ∈ γs(G) for all i ∈ 1..n.

6 Implementation

We have implemented our analysis in the Aardvark tool. Aardvark uses
the BCEL binary instrumentor [6] to modify Java class files to record each ob-
ject allocation and field write in a log file. The instrumentation overhead is
roughly 10x–50x, depending on how memory-intensive the target program is.
Currently, only single-threaded programs are supported, and analyzing concur-
rent programs remains for future work.

The off-line analysis then reconstructs a sequence of heaps from this log and
applies the abstractions of the previous sections to each heap before finally merg-
ing the results into a single object model. The visual output is then generated
by the dot utility [16].

A key characteristic of architectural diagrams is that they highlight concepts
by eliding, or abstracting away, extraneous details, such as the representation
nodes discussed in Section 2. Since which details are considered extraneous is
domain-dependent, we intend our tool to be used in an interactive setting in
which the software architect iteratively converges on an abstraction highlighting
the desired architectural features. To support this methodology, Aardvark is
extensible and driven by a script that configures and composes various pre-
defined, or user-defined, abstractions. Figure 7 shows an example script.

Our prototype is capable of handling fairly large graphs. For example, the
concrete heap used to construct Figure 1 contains 380,000 nodes and 435,000
edges. Aardvark reconstructs this concrete heap in 15 seconds and computes
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// g starts as the graph for the concrete heap.
// First, filter out nodes not reachable from ClassDecls:
g = proj(g, reachable(g, "ClassDecl"));
// Close over arrays and program-specific collections:
g = close(g, match(g, ".*\[\]|.*Vec|.*Set"));
g = abstractTypes(g);
g = generalizeTypes(g);
uniqueness(g); multiplicity(g);
ownership(g, match(g, "ClassDecl")); // ClassDecls are the roots

Fig. 7. Aardvark Script for ESC/Java AST Package

the abstract graph in another 15 seconds on a 3.06GHz Pentium Xeon worksta-
tion. While the concrete heaps for a trace are built incrementally, we currently
do not use incremental abstraction algorithms, meaning that the tool cannot ef-
ficiently examine the several million intermediate heaps reconstructed from that
log file. Instead, Aardvark samples these heaps in a configurable manner, which
in most cases is sufficient to yield precise object models. Figure 1 was produced
by sampling only the last heap from the log; all other graphs were produced by
abstracting and merging all intermediate heaps, which required only a couple of
seconds.

Further experimentation is needed to determine the best sampling technique
for Aardvark, both in terms of performance and precision. Specifically, chang-
ing the granularity of logging from individual heap updates to, for example,
method call boundaries, may lead to more precise models. The current low-level
logging can reveal a method call’s intermediate states in which structural in-
variants have been temporarily violated, resulting in imprecisions in the overall
abstraction. We are currently designing incremental algorithms, which we expect
to substantially improve scalability.

7 Related Work

Our tool produces graph representations similar in spirit, and based on, UML
class diagrams [7]. Other tools extract some pieces of UML class diagrams from
source code statically [5,25,23,26], but they do not compute, or use unsound or
imprecise heuristics to compute, the structural attributes we have discussed. Of
these static tools, only SuperWomble [34] supports a limited form of user-defined
abstraction. Ptidej [18] uses a dynamic analysis similar to Aardvark to refine
statically-computed class diagrams. That tool does not explore the richer notions
of ownership and containment or support user-defined abstractions.

Several studies have explored how to compute and visually present ownership
information [21,30,28] from a program’s heap. However, since no abstraction is
performed, even small heaps can be too large to view effectively. More recently,
Mitchell [27] shows how to compute ownership information for very large heaps in
order to identify inefficiencies in a program’s memory footprint. That approach
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uses a similar technique of repeatedly refining an initial heap configuration into
an abstract summary, but it deals primarily with allocation and storage patterns
and not other architectural issues. A number of other heap visualization tools
also focus on memory or garbage collector profiling, i.e. [29,22].

Several projects have dynamically inferred likely program invariants, includ-
ing pre- and post- conditions [13], algebraic class specifications [20], and API
usage requirements [35,4]. Ernst et al. [14] have developed a technique to infer a
class of common, but lower-level, data invariants for collection classes. We plan
to generalize Aardvark to dynamically infer high-level, architectural specifica-
tions, such as usage patterns [19] and communication integrity constraints [1],
which describe how components in a system may interact.

Shape analysis computes a set of abstract memory locations reachable from
a pointer [24,9,17,31,32]. The goal of our work is similar to shape analysis in
that we infer the relationships between objects in an abstract heap. One inter-
esting avenue for future work is to extend Aardvark with additional notions
of abstraction that compute shape information for use in subsequent dynamic
or static analyses.

There are many static analyses for ownership and confinement, such as
[11,10,3,2,8] and [33], respectively. For confinement, static analysis can ensure
that specified containment relationships are not violated by leaking references
to contained objects outside of a protection domain. While we capture similar
containment relationships between objects, we have not focused on enforcing
them. A dynamic enforcement mechanism may be an interesting, and perhaps
more precise, alternative in some situations.

8 Conclusions and Future Directions

Tools for inferring architecture-level models can be very valuable for reasoning
about legacy systems. This paper proposes that dynamic analysis is a promising
approach that can identify not only relationships between types, but also inter-
esting structural properties such as uniqueness, ownership, and containment. We
see a number of interesting extensions and applications for this work, including:

– inferring (and enforcing) architecture-level specifications and invariants, in-
cluding data dependent and temporal properties;

– seeding subsequent static, or dynamic, analyses with the shape information
computed by our tool;

– exploring how object models evolve in large systems;
– inferring object models for lower-level languages such as C or C++; and
– supporting concurrency.

To support the studies of large systems, we are also currently developing incre-
mental abstraction algorithms to improve scalability.

Acknowledgments. This work was supported in part by the National Science
Foundation under Grants CCR-0341179 and CCR-0341387 and by a Fellowship
from the Alfred P. Sloan Foundation.
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Abstract. This paper describes the automated generation of test se-
quences derived from a JML specification and a safety property written
in an ad hoc language, named JTPL. The functional JML model is ani-
mated to build the test sequences w.r.t. the safety properties, which rep-
resent the test targets. From these properties, we derive strategies that
are used to guide the symbolic animation. Moreover, additional JML an-
notations reinforce the oracle in order to guarantee that the safety prop-
erties are not violated during the execution of the test suite. Finally, we
illustrate this approach on an industrial JavaCard case study.

Keywords: automated testing, safety properties, black-box testing, Java
Modeling Language, JavaCard.

1 Motivations

Annotation languages provide an interesting approach for the verification and
validation of programs, allowing to describe, using annotations, the expected
behavior of a class. Their advantage is to share a common level of abstraction
with the considered programming language, which is useful in program verifica-
tion/validation activities such as testing [11]. In this latter category, the Java
Modeling Language [12] (JML) makes it possible to use lightweight annotations
as well as heavyweight annotations to specify the behaviors of the methods. JML
is well tool-supported and has shown its usefulness in industrial case studies, es-
pecially in the domain of JavaCard verification [6].

We propose an automated model-based testing approach for the validation of
safety properties on a JavaCard application. A previous work [3], introducing
JML-Testing-Tools1 (JML-TT), has presented our ability to generate func-
tional test sequences from a JML model, by performing the symbolic animation
of the JML specification in order to reach a pertinent test target. We present in
this paper the extension of this technology destined to the generation of test se-
quences that cover a user-defined safety property. This latter is expressed using
the Java Temporal Pattern Language (JTPL) [19]. The JAG tool2 [9] has been
1 http://lifc.univ-fcomte.fr/~jmltt/
2 http://lifc.univ-fcomte.fr/~groslambert/JAG/
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Fig. 1. General Approach

designed to use the JTPL in order to express and to check safety properties on
a model or on an implementation, by generating extra JML annotations ensur-
ing the satisfaction of the JTPL property. Our proposal is to combine JAG and
JML-TT in order to generate test cases that are complementary of the functional
ones and relevant w.r.t. the safety property.

For example, suppose that after the invocation of a method m, a property
P must be established in all the states of the program. This property can be
written with a JTPL pattern as follows:

after m called always P (1)

Then, only executions where the method m is invoked are relevant for this prop-
erty. Therefore, we would like to generate only these kinds of executions.

Our approach is summarized in Fig. 1. Firstly, we analyze the safety prop-
erty φ and generate a strategy of test sequences generation Sφ. This strategy is
built by combining test patterns according to the safety property schema. Sec-
ondly, from the JML interface M and Sφ, JML-TT computes a test suite, relevant
w.r.t. φ and covering the functional behavior of the application. Then, these test
sequences are executed on the annotated implementation Iφ generated by the
JAG tool from the annotated implementation I enriched by annotations speci-
fying the temporal property φ. These JML annotations provides the oracle that
concludes on the verdict of the test. In addition, the extra annotations provide
an oracle that concludes on the satisfaction of the property φ. If the annotations
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derived from this latter fail to be checked at run-time, and thanks to the JAG
traceability, we are able to retrieve the original temporal property that is not
satisfied on the implementation, and furthermore, to retrieve the requirements
of the security policies that have not been correctly implemented.

This paper is organized as follows. Section 2 presents the Java Modeling Lan-
guage and its on-the-fly verification capacities, using the JML Runtime Assertion
Checker (RAC). Section 3 presents the JTPL temporal logic language, used to
express the requirements of an application in terms of a temporal property. The
generation of annotations for these properties is also described. Section 4 ex-
plains how the JML-TT framework computes test sequences driven by a safety
property. Section 5 presents the result of an experiment made on a case study,
and draws a comparison between our approach and a combinatorial test genera-
tion tool. Section 6 compares our approach with related works and discusses its
originality. Finally, Section 7 concludes and presents the future work.

2 JML and Runtime Assertion Checking

The Java Modeling Language [12] is a behavioral interface specification language
for Java programs, designed by G.T. Leavens et al. The specification consists in
decorating a Java code or an interface in a comment-like syntax (//@ for single-
line annotations, /*@ . . .@*/ for multiple-line annotations). JML is based on the
Design By Contract principles, stating that the system has to fulfill the methods
requirements (i.e., their preconditions) to invoke them. As a counterpart, the
methods establish their postconditions.

JML considers different clauses to express the specifications. They involve
the use of predicates in a Java-based syntax, enriched with specific JML key-
words. Figure 2 presents an example of a JML specification. This specification
describes a simplified electronic purse, specified by a balance (bal), to which
money can be credited or withdrawn, using methods init(byte,short) and
complete() to respectively initialize and complete the transaction. This specifi-
cation illustrates the different clauses that can be used to design the JML model.
The invariant clause describes the class invariant that applies on the class
attributes. The method specifications are described using by specifying the pre-
condition (requires clause), the normal postcondition (ensures clause) which
gives the postcondition established when the method terminates normally, the
exceptional postcondition (signals clause) which gives the postcondition that is
established when the method throws an exception, and the list of the attributes
which are modified by the invocation of the method (assignable clause). An
expression enclosed by the keyword \old must be evaluated with the value of
the variables in the preceding state.

The Runtime Assertion Checker is a compiler that enriches the Java byte-
code with the checking of the different JML clauses. The execution of the RAC-
compiled Java classes makes it possible to automatically check the specification
predicates when running the program. If an execution violates one of the JML
assertions, a specific exception is raised indicating which assertion has not been
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class Purse {

//@ invariant max >= 0;
protected short max;

/*@ invariant bal >= 0 && bal <= max; */
protected short bal;

/*@ public normal_behavior
@ assignable bal, max, transVal;
@ ensures
@ (m > 0 ==> max == m) &&
@ (m <= 0 ==> max == 1) &&
@ bal == 0 && transVal == 0;
@*/

public Purse(short m) {...}

/*@ behavior
@ requires transVal != 0;
@ assignable bal, transVal;
@ ensures bal ==
@ (short) (\old(bal)+transVal);
@ ensures transVal == 0;
@ also
@ requires transVal == 0;
@ assignable \nothing;
@ signals (IllegalUseException) true;
@*/

public void complete()
throws IllegalUseException { ... }

private short transVal;

final static byte CREDIT_MODE = 0;
final static byte DEBIT_MODE = 1;

/*@ behavior
@ requires a > 0 && transVal == 0;
@ {|
@ requires P1 == CREDIT_MODE &&
@ bal + a <= max;
@ assignable transVal;
@ ensures transVal == a;
@ also
@ requires P1 == DEBIT_MODE &&
@ bal - a >= 0;
@ assignable transVal;
@ ensures transVal == (short)(- a);
@ |}
@ also
@ requires (P1 != CREDIT_MODE &&
@ P1 != DEBIT_MODE) ||
@ a <= 0 || transVal != 0;
@ assignable \nothing;
@ signals (IllegalUseException) true;
@*/

public void init(byte P1, short a)
throws IllegalUseException {...}

... }

Fig. 2. Example of a JML specification

satisfied. Therefore, this feature is used as an oracle. JML can be used to reinforce
the code or to help the proof of the code (e.g. using JACK [7]). For model-
based testing, the user must provide a complete model of its application. If the
hypothesis may seem strong for all Java programs, we believe that it is worth
doing the effort of writing a complete JML specification, with strong pre- and
postconditions, in the domain of embedded programs, such as JavaCard [17]. In
our approach, we use JML as a source for test target definition and model-based
test case computation. A recent evolution has been proposed to express temporal
properties in JML, involving the use of the RAC. It is now described.

3 A Temporal Logic Extension for JML-Like Language

We present an extension of JML with temporal specifications, first defined in [19].
This language, called Java Temporal Pattern Language (JTLP), is inspired by
Dwyer’s specification patterns [8]. Dwyer shows through a study of 500 speci-
fication examples, that 80% of the temporal specification requirements can be
covered by a finite number of formulae. This high-level temporal logic language
for Java follows this philosophy, providing to the user structures to express com-
mon temporal requirements on Java classes. Moreover, the language can deal
with both normal and exceptional terminations of methods. This language can
be used to express safety or liveness properties. In this paper, we only focus
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<Event> ::= <Method> called [ with <JMLProp>]
| <Method> normal [ with <JMLProp>]
| <Method> exceptional [ with <JMLProp>]
| <Method> terminates [with <JMLProp> ]

<Events> ::= <Event>,<Events>
<StateProp> ::= <JMLProp>

| <Method> enabled [ with <JMLProp>]
| <Method> not enabled[ with <JMLProp>]

<TraceProp> ::= always <StateProp>
| never <StateProp>

| <TraceProp> and <TraceProp>
| <TraceProp> or <TraceProp>

<Temp> ::= after <Events> <Temp>
| before <Events> <TraceProp>

| <TraceProp> unless <Events>
| <TraceProp>

Fig. 3. Syntax of the safety patterns

on safety properties, for which we give the corresponding syntax and semantics.
Readers can refer to [19] for a formal definition of the whole language semantics.

3.1 Syntax and Semantics of the Language

The syntax of the subset of the JTPL language expressing safety properties is
displayed given in Fig. 3. This language is based on the notions of events and
state properties.

Events can be either: (i) m called, meaning that the method m has been
called, without considering the method termination; (ii) m normal, meaning
that the method m has terminated normally; (iii) m exceptional, meaning that
the method m has terminated exceptionally (by throwing an exception); (iv)
m terminates, meaning that the method m has terminated (either normally
or by throwing an exception). The events can be enriched with a predicate P
introduced by the keyword with. Thus, m called with P means that m has
been called within a state satisfying P and m terminates (resp. normal and
exceptional) with P means that m terminates (resp. terminates normally and
terminates by throwing an exception) in a state satisfying the predicate P .

A state property P can be either: (i) a JML predicate; (ii) m enabled, mean-
ing that if the method m is called and if the method m terminates, then it
terminates normally; (iii) m not enabled, meaning that if the method m is
called and if the method m terminates, then it terminates exceptionally, i.e., by
throwing an exception.

The state properties m enabled and m not enabled are especially designed to
express properties on JavaCard applets, since JavaCard commands can be called
from any state. Thus, once a method is called, either the call is licit w.r.t. the
expected state variable values and the parameters values and thus the method
terminates normally, or the call is illicit and the method terminates exceptionally.
Notice that these two state properties are true if the method is not called or if the
method is called but does not terminate (i.e., the method diverges). This clause
can also be enriched with a predicate P introduced by the keyword with.
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class Purse {

//@ ghost boolean inProgress = false;
...

/*@ behavior
@ ...
@ ensures inProgress == false;
@ also
@ ...
@*/

public void complete()
throws IllegalUseException {

//@ set inProgress = false;
...

}

/*@ behavior
@ ...
@ ensures inProgress == true;
@ ensures \old(inProgress) ==> false;
@ also
@ ...
@*/

public void init(byte P1, short a)
throws IllegalUseException {

...
}
finally {

//@ set inProgress = true;
}

}
}

Fig. 4. Example of annotations produced by the JAG tool

Finally, events and state properties can be combined with the keywords of the
language: (i) always P , which is true on an execution σ if the state properties
P holds on every state of σ; (ii) never P , which is true on an execution σ if
the state properties P never holds on any state of σ. It is equivalent to always
¬P ; (iii) C unless E, which is true on an execution σ if the trace property C is
satisfied on the segment of σ ending with an event in E, or if the trace property
C is satisfied on the whole of σ and no event in E happens; (iv) before E C,
which is true on an execution σ if any occurrences of an event in E is preceded
by a prefix of σ satisfying the trace property C; or (v) after E T , which is
true on an execution σ if the suffix of σ starting with any event in E satisfies
the temporal formula T . Notice that conjunctions and disjunctions, respectively
denoted by and and or, have a standard meaning. Notice also that the language
expresses a property of a class like a class invariant, state properties inside JTPL
can refer to the instances of the other classes included in the fields of the class.
This language is an input of the JAG tool, presented in the next subsection.

3.2 Translation of JTPL into JML with JAG

The JAG tool [9] generates JML annotations ensuring a given temporal property.
As an illustration, we present a safety property that has to hold on the example
of Fig. 2, specifying that after a successful init, one can invoke init once again
only if the transaction has been validated by invoking complete:

after init normal
always init not enabled unless complete called (S0)

The additional annotations, automatically generated and related to this prop-
erty, are given in Fig. 4. This property is expressed by:

– a ghost boolean variable inProgress, initialized to false. This variable is
set to true when the event init normal occurs and set to false again
when complete called occurs.
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– a postcondition ensuring that init cannot terminate normally when variable
inProgress is equal to true. This predicate reinforces the normal postcon-
dition by preventing it from being evaluated to true if inProgress is true,
stating, as a consequence, that the method can not terminate normally in
this particular case.

The interested reader will find in [19] the details of the translation, for all
structures of the language. Notice that JAG keeps a trace of the generation:
given a generated annotation, JAG is able to find the original temporal property.

4 Test Generation from Temporal Properties

We describe in this section the definition of the principles which consist in an-
imating the specification according to a given temporal logic property. Then,
we present the coverage criteria that we apply on the specification. Finally, we
explain the test sequences computation.

4.1 Principles

Our approach is an extension of the previous work about functional test genera-
tion that is presented in [4] on the symbolic animation of JML specifications. The
principle of our approach is to associate a test suite to each safety property we
consider. Thus, we perform the symbolic animation of the specification in order
to build a test sequence that exercises the property, by activating the behaviors
of the JML specification.

A behavior is described as a before-after predicate extracted from the JML
method specification. It represents a transition between states. Informally, the
execution of the transition represents the resolution of a constraint satisfaction
problem (CSP) between the constraints representing the state before and the
constraints given by the behavior. The satisfiability of this constraint system
gives the activability of the behavior. (More details can be found in [4]).

The computation of the test sequences is driven by a strategy derived from
the temporal formula, to guide the animation of the specification. A strategy
is composed of a sequence of steps in which our aim is to activate a particular
behavior of the specification or to cover all the behaviors. When the last step
is done, the test generation stops. In addition, we consider a bound that lim-
its the test sequences length, and guarantees the termination for each step of
the research. In addition, we rely on the JML annotations describing the safety
property, and produced by the JAG tool, to complete the oracle. Thus, if one of
these annotations fails to be checked at run-time, we are able to provide to the
user an indication concerning the original temporal property and the original
requirement that have been violated.

4.2 Coverage Criteria

Our approach considers the classical coverage of the specification, at three levels:
the specification coverage, the decision coverage, and the data coverage.
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/*@ behavior

Normal
behavior

8>>>>>>>>>><
>>>>>>>>>>:

@ requires P1;
@ assignable A;
@ ensures Q1;
@ also
@ ...
@ also
@ requires PN;
@ assignable A;
@ ensures QN;
@ also

Exceptional

behaviors

8>>>>>>>>>><
>>>>>>>>>>:

@ requires PN+1;
@ assignable A;
@ signals (E1 e1) S1;
@ also
@ . . .
@ also
@ requires PN+M;
@ assignable A;
@ signals (EM eM) SM;
@*/

Type meth(T1 p1, . . .) throws E1, . . . , EM { . . . }

1

2

3 4 ... 5

11 ... 15

6

7

8

9

10

0

P1 ‖ . . . ‖ PN ‖ PN+1 ‖ . . . ‖ PN+M

T = no exception
PN+1

PN+M

P1

!P1

Q1

PN

!PN

QN

T = E1 T = EM

S1
SM

A

Fig. 5. Extraction of the behaviors from a JML method specification

Specification coverage The specification coverage is achieved by activating the
different behaviors that we extract from the JML method specifications. Figure 5
describes the extraction of behaviors from a JML method specification. A be-
havior is represented by a path leading from node 1 to node 0. According to this
figure, we assume that the method may deterministically terminate (expressed
by T ) either normally (T = no_exception) or by throwing one of its M spec-
ified exceptions (T = Ei for 1 ≤ i ≤ M). We also assume that the exceptional
behaviors are deterministic, which means that their guards are mutually exclu-
sive. De facto, the behaviors of the methods only depend on the current state
variables values, and the parameter values.

Decision coverage. We achieve the decision coverage by rewriting the disjunc-
tions within the preconditions of the JML specifications. We consider four clas-
sical rewritings of the disjunctions, described by a ∨ b. Rewriting 1 consists in
leaving the disjunction unmodified. Rewriting 2 consists in creating a choice be-
tween the two predicates (a [] b). Thus, the first branch and the second branch
independently have to succeed when being evaluated. Rewriting 3 consists in
creating an exclusive choice between the two predicates (a ∧ ¬b [] ¬a ∧ b). Only
one of the sub-predicates of the disjunction is checked at one time. Rewriting
4 consists in testing all the possible values for the two sub-predicates to satisfy
the disjunction (a∧¬b [] ¬a∧ b [] a∧ b). Each one of these rewritings guarantees
at least one decision coverage.

Data coverage. When performing the symbolic animation of the specification, the
input parameters of the methods that are invoked are left unspecified, and their
symbolic values are managed by constraint solvers. When the symbolic sequence
computation is over, we select the boundary values for the unspecified parameters.
More details about the application of this work to JML can be found in [3].



Safety Properties Driven Test Generation from JML Specifications 233

Strategy(after Events Temp) = Research(Events); Strategy(Temp)

Strategy(before Events TraceProp) = Cover; Strategy(TraceProp); Research(Event)

Strategy(TraceProp unless Events) = CoverStop(Events); Strategy(TraceProp)

Strategy(always StateProp) = Cover;Strategy(StateProp)

Strategy(StateProp1 and StateProp2) = Strategy(StateProp1) [] Strategy(StateProp2)

Strategy(StateProp1 or StateProp2) = Strategy(StateProp1) [] Strategy(StateProp2)

Strategy( <JMLProp>) = ε

Strategy(m enabled [ with <JMLProp>] ) = Active(m exceptional [ with <JMLProp>])

Strategy(m not enabled [ with <JMLProp>] ) = Active(m normal [ with <JMLProp>] )

Fig. 6. Strategies for the JTPL language

In addition to these classical coverage criteria, we are especially interested in
exercising the temporal property. This is achieved by defining different strategies
that are in charge of activating the JML method behaviors w.r.t. the temporal
property. We now describe these strategies, which represent the main contribu-
tion of the paper.

4.3 Test Sequence Computation

The test sequence computation strategy depends on the safety property that has
been defined. According to the pattern that matches the temporal property, a
specific strategy is employed.

The translation from JTPL into JML-TT strategies is described by the func-
tion Strategy given in Fig. 6, in which ε denotes that no strategy is applied. A
strategy consist of sequences (denoted by “;”) or choices (denoted by “[]”) of
steps among the four following patterns:

– Research of E (Research(E)). This strategy performs a best-first algorithm
that aims at activating an event in E. This principle has been already de-
scribed in [3].

– Coverage of behaviors (Cover). This strategy performs the symbolic ani-
mation of the specification in order to cover all the behaviors. This is done
by a depth-first algorithm that activates the normal behaviors of the model.
The main advantage of using the specification is that it delays the combina-
torial explosion occurring during the exploration of the reachability graph
by filtering the sequence of methods, so as to comply with the methods con-
tracts. When a behavior is newly activated, the current execution sequence
is returned to provide a test case. A “backtracking” mechanism makes it
possible to resume the depth-first research.

– Coverage of behaviors with stop on E (CoverStop(E)). This strategy
is similar to the previous one, but the depth-first algorithm stops when an
event in E is activated. As in the previous case, a backtracking occurs to
resume the computation.

– Activation of E (Active(E)). This consists in a systematic activation of the
events in E. This step is crucial since it will be used to activate the expected
or unexpected events, expressed in the property. For example, if the state
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property is of type m [not] enabled, the method m is tried to be activated.
This step is also performed using a depth-first algorithm. (Un)Expected be-
haviors are detected by considering the specification and performed in a try-
catch mecanism that is in charge of either catching a unexpected exception,
or throwing a specific exception when the expected exceptional behavior has
not been thrown.

Notice that the sequences Cover;CoverStop(E) and CoverStop(E);Cover are re-
duced to CoverStop(E).

Example 1 (Strategy for S0). The strategy associated to S0, given by the func-
tion Strategy of Fig. 6 is the following:

Research(init normal); CoverStop(complete called); Active(init normal)

It corresponds to the following steps: (i) we research a sequence that ends with
the activation of the normal behavior of init; (ii) we cover all the behaviors
of the class, the research is stopped when the event complete called occurs;
(iii) we try to activate the normal behavior of method init to test if init is
effectively not enabled.

This automatic test generation approach, using the strategies explained above,
has been applied to a case study. The results of this experiment are exposed in
the next Section.

5 Experiment of a Case Study

We now present an experiment that we have done on a case study. We start
by describing the specification, before expressing the temporal properties from
which we want to generate test cases, and finally we compare our approach with
a similar tool.

5.1 Presentation of the Demoney Specification

Demoney is an electronic purse developed by Trusted Logic [15]. This JavaCard
application makes it possible to pay a purchase in a store using a terminal and
can be credited from cash or from a bank account in an ATM. Demoney is not
an industrial application but is complex enough to handle typical features and
security problems related to banking systems.

Similarly to the other JavaCard applications, the life cycle of the card starts
with a personalization phase, where particular variables, such as the maximum
balance amount, are fixed using the PUT DATA command. Then, a STORE DATA
command stores the personalization variables. The application can only be per-
sonalized once. There are four access levels (public, debit, credit and admin),
which restrict the activation of the commands. For example, the STORE DATA
command can only be invoked with the admin access level. Access levels can
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be selected using the INITIALIZE UPDATE and EXTERNAL AUTHENTICATE com-
mands. For a successful change, the methods have to be atomically invoked,
e.g. INITIALIZE UPDATE must immediately be followed by EXTERNAL AUTHENTI-
CATE. INITIALIZE TRANSACTION and COMPLETE TRANSACTION are used to per-
form transactions, whose types (debit or credit from cash or from bank) are
expressed using parameter P1 of the first command. These two commands also
have to be atomically invoked for a successful transaction. For a credit from
a bank account, the PIN code of the card must have been checked using the
VERIFY PIN command. The number of tries is limited and chosen at the person-
alization time. Finally, when the pin is blocked after unsuccessful VERIFY PIN
invocations, it is possible to unblock the card using the PIN CHANGE UNBLOCK
command.

For the test generation, we use a JML model of Demoney designed from the
informal public specification. This model represents over 500 lines of JML and
has been validated with the JML-TT Symbolic Animator [4].

5.2 Temporal Properties

We illustrate the test generation on two safety properties. In addition, in order
to pilot the test generation and to have interesting test sequences, we add some
requirements on the state in which the considered commands terminate. These
requirements are used to force the first part of the test cases to configure the
card with interesting values for the maximal balance on the card (maxBalance),
the maximal debit amount (maxDebit) and the pin code (pin.code). These
requirements are expressed using the with clause of the JTPL expressions, by a
context predicate C:

maxBalance == 10000 & maxDebit == 5000 & pin.code == 1234

We address the verification of the two following safety properties.

1. The personalization is unique:

after STORE DATA normal with C always STORE DATA not enabled (S1)

2. When the pin is blocked, it is impossible to credit the card from a bank
unless a successful call to the PIN CHANGE UNBLOCK method in the
unblocking mode (expressed by value UNBLOCK for parameter P1).

after VERIFY PIN terminates with pin.tries == 0 & C
always INITIALIZE TRANSACTION not enabled

with P1 == CREDIT FROM BANK
unless PIN CHANGE UNBLOCK normal with P1 == UNBLOCK;

(S2)

Using the JAG tool, we generate the JML annotations that ensures the satis-
faction of these properties. The challenge is to validate the implementation w.r.t.
these temporal properties. According to Sect. 4.3, the JAG tool computes the
following strategies for S1 and S2:

Research(STORE DATA normal with C); Cover; Active(STORE DATA normal) (S1)
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Research(VERIFY PIN terminates with pin.tries == 0 & C);
CoverStop(PIN CHANGE UNBLOCK normal with p1 == UNBLOCK);
Active(INITIALIZE TRANSACTION with P1 == CREDIT FROM BANK)

(S2)

These strategies are used in JML-TT to drive the automated test generation
previously explained. Results of the generation for these two properties are now
presented, and a comparison with a combinatorial test generation tool is exposed.

5.3 Results, Comparison, and Discussion

Tests have been generated for different values n of the depth search. An ex-
ample of test generated for the property S1 is displayed in Fig. 7. The test is
composed as follows: (a) a prelude reaches a state where STORE DATA is acti-
vated under the C condition; (b) we try to cover a particular behavior (here
COMPLETE TRANSACTION); (c) the method STORE DATA is activated once again;
(d) a try...catch statement observes if a exception has been thrown by the
execution of STORE DATA. Table 2 displays the general results of the test genera-
tion. We remark that the number of test cases is twice the number of behaviors
covered. This is explained by the boundary values selection which both mini-
mizes and maximizes data values. For each property we cover all the reachable
behaviors (13 for S1, 8 for S2) for a reasonable depth, with a minimal number
of test cases.

The test suites driven by temporal properties complement the test suites we ob-
tained using the functional techniques presented in [3], as it was expected. More-
over, these two approaches do not generate the same test cases, since the functional
test cases try to activate each behavior by reaching the shortest path leading to a
state that makes it possible to activate it. For example, the test case, displayed in
Fig. 7, is not produced in the functional approach. Since these two approaches can
not be compared, i.e., they do not aim at the same purpose, we wanted to draw a
comparison with a tool that has a similar approach to ours: Tobias [13].

Tobias is a combinatorial test generation tool that uses user-defined regular
expressions to build test sequences consisting of Java method calls. This approach

Table 2. Results of experiments with JML-TT

Safety Property n # of tests # of behaviors covered

S1 1 10 4/17
S1 2 12 5/17
S1 3 18 9/17
S1 4, 5, 6 22 11/17
S1 7 24 12/17
S1 ≥ 8 26 13/17
S2 1 8 4/17
S2 2 12 6/17
S2 3, 4 14 7/17
S2 ≥ 5 16 8/17
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then relies on the JML-RAC to provide an oracle that gives the test verdict. Since
this approach does not consider the JML specification for the generation, it may
produce inconclusive tests, when the precondition of a method is not satisfied.
Both Tobias and our approach consist in semi-automatic testing, since a user is
asked to respectively provide a test schema or a safety property. We tried to cover
the property S1 using the following Tobias test schema:

prelude; STORE DATA; (other methods)0..n; STORE DATA

This test schema’s automaton recognizes the test cases that we have produced.
With n = 4, this schema produces roughly 45436 test cases, of which 10% are
relevant, and covering 11 behaviors, as we also do. The prelude part consists in
configuring the card before the personalization. This part had to be manually
generated.

The second property gave similar results, asking much more effort to manually
define the prelude and describe the remainder of the test schema.

This experiment has shown the ad-

Demoney v = new Demoney();
v.INITIALIZE_UPDATE((byte) 3,(byte) 1);
v.EXTERNAL_AUTHENTICATE((byte) 11,(byte) 0);
v.PUT_DATA((byte) 3,(byte) 15,(short) 1234);
v.PUT_DATA((byte) 2,(byte) 0,(short) 5000);
v.PUT_DATA((byte) 1,(byte) 0,(short) 20000);
v.STORE_DATA((byte) 80,(byte) 0);
v.INITIALIZE_UPDATE((byte) 2,(byte) 1);
v.EXTERNAL_AUTHENTICATE((byte) 1,(byte) 0);
v.INITIALIZE_TRANSACTION((byte) 1,(byte) 0,

(short) 20000);
v.COMPLETE_TRANSACTION((byte) 0,(byte) 0);
v.INITIALIZE_UPDATE((byte) 3,(byte) 1);
v.EXTERNAL_AUTHENTICATE((byte) 1,(byte) 0);
try {

v.STORE_DATA((byte) 80,(byte) 0);
throw new JMLTTUnraisedException

("IllegalUseException");
}
catch (IllegalUseException e) {

// Nothing to do in this case.
}

a

b

c

d

Fig. 7. A test case generated by JML-TT

vantages of our approach, since: (i)
we achieved a higher level of automa-
tion in the test case generation; (ii)
we mastered the combinatorial explo-
sion and created less test cases which
are all relevant (since they are based
on the symbolic animation of the mo-
del), and which cover all the reachable
behaviors for a given depth; (iii) the
effort asked to the user is minimal and
requires less expertise from the vali-
dation engineer, since he only has to
describe a temporal property (and its
optional context) instead of providing
subsets of the test sequences; (iv) the
expressiveness of our approach, and
especially the possibility of expressing
an optional context, allows to subtly
drive the test generation.

6 Related Work

Testing Java programs using JML annotations has already been well studied
and other tools are available. Korat [5] aims at providing an exhaustive set
of structures satisfying a Java predicate, using SAT solving technologies. This
approach has been adapted to JML, and relies on the method preconditions to
build satisfying test data. Whereas Korat only considers an object creation and
a method invocation, our approach proposes to build complex test sequences
of method invocations. Jartege [16] produces stochastic test cases based on a
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Java program. The Runtime Assertion Checker is used when the test sequence
is being built, in order to filter the irrelevant method invocations. The major
advantage of Jartege is its full automation, but its main problem is the absence of
strategy in the test generation which prevents it from being used in the domain
of JavaCard.

Most of LTL based testing approaches use model checkers such as Spin [10]
to generate test cases. By fully exploring the state space of a model of the ap-
plication, a model checker verifies that every configuration of the model satisfies
a given property. When the property is not satisfied, the model checker exhibits
a counter-example, i.e., a run of the model that does not satisfy the property.
Approaches based on model checking use this counter-example mechanism to
produce traces that can be transformed in test sequences. Sokolsky and al. [18],
for a given LTL formula φ, compute a set of ∃LTL formulae that covers every
subformulae of φ. In [2], Ammann and al. propose the mutation of the model or
of the property to generate the counter-examples and then, the test suite. Both
approaches need to use a finite abstraction of the model to generate the tests.

Our approach, based on symbolic animation and constraint solving that re-
duces the state place explosion, can handle potentially huge or infinite models.
Although the JML-TT framework does not provide a complete exploration of the
state space, it shows its effectiveness in practice.

The coverage metrics of the temporal property is an important and well-
studied criteria for selecting relevant test cases. The approach of Sokolsky in [18],
relies on the concept of non-vacuity in model checking, capturing traces of the
model that satisfy a property non-trivially. Implicitly, we have used this notion
on our approach, since for each pattern of the language, we only generate tests
that are relevant for the property.

7 Conclusion and Future Work

In this paper, we proposed an extension of the JML-TT framework, for the gen-
eration of test suites driven by safety properties. Based on the experimentation
on a case study, this approach has shown its complementarity with the existing
techniques of test for Java/JML and has led to effective results.

Our next task is to establish the coverage of the test suites in terms of cover-
age criteria of the safety property. Intuitively, it requires to consider the Büchi
automaton extracted from the property and to define coverage in terms of states,
transitions, or paths.

Our approach can be easily adapted to other specification languages such as
SPEC� [14] or B [1]. One of the future challenge is to generalize the methodology
presented in this paper to other temporal specification languages supported by
the JAG tool. In particular, we are interested in LTL. Model checking techniques,
such as presented in Sect. 6, based on mutation of the formula or the model, can
also be adapted to our automatic test generation framework, since our approach
is close to bounded model checking.
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Another interesting future work is using property-driven generation for a col-
laboration between proof and test techniques. Using the JAG tools, one can
generate the JML annotations on the implementation of an application and try-
ing to prove it with a proof obligation generator such as Jack [7]. If the proof
of a generated annotation fails, and using the JAG traceability, we are able to
retrieve the temporal annotations and generate, via JML-TT, intensive test sets
related to this particular property.
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Abstract. Online testing is a practical technique where test derivation and test
execution are combined into a single algorithm. In this paper we describe a new
online testing algorithm that optimizes the choice of test actions using Reinforce-
ment Learning (RL) techniques. This provides an advantage in covering system
behaviors in less time than with a purely random choice of test actions. Online
testing with conformance checking is modeled as a 1 1

2 -player game, or Markov
Decision Process (MDP), between the tester as one player and the implementa-
tion under test (IUT) as the opponent. Our approach has been implemented in C#,
and benchmark results are presented in the paper. The specifications that generate
the tests are written as model programs in any .NET language such as C# or VB.

1 Introduction

Many software systems are reactive. The behavior of a reactive system, especially when
distributed or multithreaded, can be nondeterministic. For example, systems may pro-
duce spontaneous outputs like asynchronous events. Factors such as thread scheduling
are not entirely under the control of the tester but may still affect the behavior observed.
In these cases, a test suite generated offline may be infeasible, since all of the observ-
able behaviors would have to be encoded a priori as a decision tree, and the size of such
a decision tree can be very large.

Online testing (also called on-the-fly testing) can be more appropriate than offline
tests for reactive systems. The reason is that with online testing the tests may be dy-
namically adapted at runtime, effectively pruning the search space to include only
those behaviors actually observed instead of all possible behaviors. The interaction be-
tween tester and implementation under test (IUT) is seen as a game [1] where the tester
chooses moves based on the observed behavior of the implementation under test. Only
the tester is assumed to have a goal; the other player (the IUT) is unaware that it is
playing. This kind of game is known in the literature as a 1 1

2 -player game [6].
Online testing is a form of model-based testing (MBT), where the tester uses a specifi-

cation (or model) of the system’s behavior to guide the testing and to detect the discrep-
ancies between the IUT and the model. It is an established technique, supported in tools
like TorX [18] and Spec Explorer [20]. For the purposes of this paper, we express the
model as a set of guarded update rules that operate on an abstract state. This formulation

� Part of this work was done during the author’s summer internship at Microsoft Research.

K. Havelund et al. (Eds.): FATES/RV 2006, LNCS 4262, pp. 240–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is called a model program. Both the IUT and the model are viewed as interface automata
[8] in order to establish a a formal conformance relation between them.

We distinguish between moves of the tester and moves of the IUT. The actions avail-
able to the tester are called controllable actions. The IUT’s responses are observable
actions. A conformance failure occurs when the IUT rejects a controllable action pro-
duced by the model or when the model rejects an observable action produced by the
IUT.

A principal concern of online testing is the strategy used to choose test actions. A
poor strategy may fail to provoke behaviors of interest or may take an infeasible amount
to time to achieve good coverage. One can think of strategy in economic terms. The
cost of testing increases with the number of test runs and the number of steps per run.
We want to minimize the number of steps taken to achieve a given level of coverage for
the possible behaviors. Exhaustive coverage is often infeasible. Instead, we strive for the
best coverage possible within fixed resource constraints. The main challenge is to choose
actions that minimize backtracking, since resetting the IUT to its initial state can be an
expensive operation.

A purely random strategy for selecting test actions can be wasteful in this regard,
since the tester may repeat actions that have already been tested or fail to systematically
explore the reachable model states. A random strategy cannot benefit from remembering
actions chosen in previous runs.

In this paper we propose an algorithm for online testing, using the ideas from Re-
inforcement Learning (RL) [16,12]. RL techniques address some of the drawbacks of
random action selection. Our algorithm is related to the anti-ant algorithm introduced
in [13], which avoids the generation of redundant test cases from UML diagrams.

RL refers to a collection of techniques in which an agentmakes moves (called actions)
with respect to the state of an environment. Actions are associated with rewards or costs
in each state. The agent’s goal is to choose a sequence of actions to maximize expected
reward or, equivalently, to minimize expected cost.

The history needed to compute the strategy is encoded in a data structure called a
“Test-Trace Graph (TTG)”. We compare several such strategies below. The results show
that a greedy strategy (LeastCost) has a suboptimal solution. The probability of reaching
a failure state does not change with a purely randomized strategy (Random), though the
probability reduces monotonically in a randomized greedy strategy (RandomizedLeast-
Cost). This is because the probability in the latter case is negatively reinforced by the
number of times a failure state has been visited, whereas it remains same in the former
case.

The contributions of this paper are the following:

– We transform the online testing problem into a special case of reinforcement learning
where the frequencies of various abstract behaviors are recorded. This allows us to
better choose controllable actions.

– We show with benchmarks that an RL-based approach can significantly outperform
random action selection.

The rest of the paper is organized as follows. In Section 2 we provide definitions for
model programs, interface automata and a conformance relation. In Section 3 we give a
detailed description of the algorithm. In Section 4 we give the experimental results from
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our benchmarks. We discuss related work in Section 5 and open problems and future
work in Section 6.

2 Testing Theory

In model-based testing a tester uses a specification for two purposes. One is conformance
checking: to decide if the IUT behaves as expected or specified. The other is scenario
control: which actions should be taken in which order and pattern. Model-based testing
is currently a growing practice in industry. In many respects the second purpose is the
main use of models to drive tests and relates closely to test scenarios is traditional testing.
However, with a growing complexity and need for protocol level testing and interaction
testing, the first purpose is gaining importance.

Formally, model programs are mapped (unwound) to interface automata in order to do
conformance checking. The conformance relation that is used can be defined as a form
of alternating refinement. This form of testing is provided by the Spec Explorer tool, see
e.g. [20].

2.1 Model Programs as Specifications

States are memories that are finite mappings from (memory) locations to a fixed uni-
verse of values. By an update rule we mean here a finite representation of a function
that given a memory (state) produces an updated memory (state). An update rule p may
be parameterized with respect to a sequence of formal input parameters x̄, denoted by
p[x̄]. The instantiation of p[x̄] with input values v̄ of appropriate type, is denoted by p[v̄].
In general, an update rule may be nondeterministic, in which case it may yield several
states from a given state and given inputs. Thus, an update rule p[x1, . . . , xn] denotes a
relation [[p]] ⊆ States × Valuesn × States. When p is deterministic, we consider [[p]] as a
function [[p]] : States × Valuesn → States and we say that the invocation (or execution)
of p[v̄] from state s yields the state [[p]](s, v̄).

A guard ϕ is a state dependent formula that may contain free logic variables x̄ =
x1, . . . , xn, denoted by ϕ[x̄]; ϕ is closed if it contains no free variables. Given values
v̄ = v1 . . . , vn we write ϕ[v̄] for the replacement of xi in ϕ by vi for 1 ≤ i ≤ n. A closed
formula ϕ has the standard truth interpretation s |= ϕ in a state s. A guarded update rule
is a pair (ϕ, p) containing a guard ϕ[x̄] and an update rule p[x̄]; intuitively (ϕ, p) limits
the execution of p to those states and arguments v̄ where ϕ[v̄] holds.

Definition 1. A model program P has the following components.

– A state space States.
– A value space Values.
– An initial state s0 ∈ States,
– A finite vocabulary Σ of action symbols partitioned into two disjoint sets

• Σc of controllable action symbols, and
• Σo of observable action symbols.

– A reset action symbol Reset ∈ Σc.
– A family (ϕf , pf )f∈Σ of guarded update rules.
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• The arity of f is the number of input parameters of pf .
• The arity of Reset is 0 and [[pReset]](s) = s0 for all s |= ϕReset.

P is deterministic if, for all action symbols f ∈ Σ, pf is deterministic.

An n-ary action symbol has logically the term interpretation, i.e. two ground terms whose
function symbols are action symbols are equal if and only if the action symbols are iden-
tical and their corresponding arguments are equal. An action has the form f(v1, . . . , vn)
where f is an n-ary action symbol and each vi is a value that matches the required type
of the corresponding input parameter of pf . We say that an action f(v̄) is enabled in
a state s if s |= ϕ(v̄). Notice the two special cases regarding reset: one when reset is
always disabled (ϕReset = false), in which case the definition of pReset is irrelevant, and
the other one when reset is always enabled (ϕReset = true), in which case pReset must be
able to reestablish the initial state from any other program state.

We sometimes use action to mean an action symbol, when this is clear from the con-
text or when the action symbol is nullary in which case there is no distinction between
the two.

2.2 Example: Recycling Robot

We show a model program of a collection of recycling robots written in C# in Figure 1.
A robot is a movable recycle-bin, it can either

1. move and search for a can if its power level (measured in percentage) is above the
given threshold 30%, or

2. remain stationary and wait for people to dispose of a can if its power level is below
the given threshold 50%.

Notice that both cases are possible when the power level is between 30% and 50%. A
robot gets a reward by collecting cans. The reward is bigger when searching than while
waiting, but each search reduces the power level of the robot by 30%. A robot can be
recharged when it is not fully charged, i.e when the power level is less than 100%. New
robots can be started dynamically provided that the total number of robots does not ex-
ceed a limit (if such a limit is given).

Actions. In this example, the action symbols are Start, Search, Wait and Recharge,
where the first three symbols are classified as being controllable and the last one is clas-
sified as being observable. All of the symbols are unary (i.e., they take one input). All ac-
tions have the form f(i) where f is one of the four action symbols and i is a non-negative
integer representing the id of a robot. The reset action is in this example implicit, and is
assumed to be enabled in all states.

States. The state signature has three state variables, a map Robot.Instances from
object ids (natural numbers) to robots (objects of type Robot), and two field value maps
power and reward that map robots to their corresponding power and reward values.
The initial state is the state where all those maps are empty.
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class Robot : EnumeratedInstance // The base class keeps track of created robot instances
{

int power = 0;
int reward = 0;

}

class RobotModel
{

static int maxNoOfRobots = ...;

[Action]
static void Start(int robotId)
{

Assume.IsTrue(Robot.Instances.Count < maxNoOfRobots &&
¬ Robot.Instances.Count == robotId));

new Robot(robotId);
}

[Action]
static void Search(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power > 30);

robot.power = robot.power - 30;
robot.reward = robot.reward + 2;

}

[Action]
static void Wait(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power <= 50);

robot.reward = robot.reward + 1;
}

[Action(Kind = Observable)]
static void Recharge(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power < 100);

robot.power = 100;
}

}

Fig. 1. Model Program of the Recycling Robot example

Guarded update rules. For each of the four actions f the guarded update rule (ϕf , pf)
is defined by the corresponding static method f of the RobotModel class. Given a robot
id i and a state s, the guard ϕf (i) is true in s, if all the Assume.IsTrue statements
evaluate to true in s. Execution of pf [i] corresponds to the method invocation of f(i).
For example, in the initial state, say s0, of the robot model, the single enabled action is
Start(0). In the resulting state [[pStart]](s0, 0) a new robot with id 0 has been created
whose reward and power are 0.

2.3 Deterministic Model Programs as Interface Automata

We use the notion of interface automata [8,7] following the exposition in [7]. The view of
a model program as an interface automaton is important for formalizing the conformance
relation. To be consistent with the rest of the paper, we use the terms “controllable” and
“observable” here instead of the terms “input” and “output” used in [7].
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Definition 2. An interface automaton M has the following components:

– A set S of states.
– A nonempty subset S init of S called the initial states.
– Mutually disjoint sets of controllable actions Ac and observable actions Ao.
– Enabling functions Γ c and Γ o from S to subsets of Ac and Ao, respectively.
– A transition function δ that maps a source state and an action enabled in the source

state to a target state.

In order to identify a component of an interface automaton M , we index that compo-
nent by M , unless M is clear from the context. Let P be a deterministic model pro-
gram (States, Values, s0, Σ, Σc, Σo, Reset, (ϕf , pf )f∈Σ). P has the following straight-
forward denotation [[P ]] as an interface automaton:

S[[P ]] = States

S init
[[P ]] = {s0}

Ac
[[P ]] = {f(v̄) | f ∈ Σc, v̄ ⊆ Values}

Ao
[[P ]] = {f(v̄) | f ∈ Σo, v̄ ⊆ Values}

Γ c
[[P ]](s) = {f(v̄) ∈ Ac

[[P ]] | s |= ϕf (v̄)}
Γ o

[[P ]](s) = {f(v̄) ∈ Ao
[[P ]] | s |= ϕf (v̄)}

δ[[P ]](s, f(v̄)) = [[Pf ]](s, v̄) (for f ∈ Σ, s ∈ States, s |= ϕf (v̄))

Note that δ[[P ]] is well-defined, since P is deterministic. In light of the above definition we
occasionally drop the distinction between P and the interface automaton [[P ]] it denotes.

2.4 Implementing a Model Program as an Interface Automaton

A model program P exposes itself as an interface automaton through a stepper that pro-
vides a particular “walk” through the interface automaton one transition at a time. A
stepper of P is implemented through the IStepper interface defined below. A stepper
has an implicit current state that is initially the initial state of P . In the current state s
of a stepper, the enabled actions are given by Γ[[P ]](s). Doing a step in the current state
s of the stepper according to a given action a corresponds to setting the current state of
the stepper to δ[[P ]](s, a). The Reset action is handled separately and is not included in
the set of currently enabled actions EnabledControllables.

interface IStepper
{

Sequence<Action> EnabledControllables { get; }
Sequence<Action> EnabledObservables { get; }
void DoStep(Action action);

void Reset();
bool ResetEnabled { get; }

}

For conformance testing, an implementation is also assumed to be an interface au-
tomaton that is exposed through a stepper. If both the model and the IUT are interface
automata with a common action signature, we test the conformance of the two automata
using the refinement relation between interface automata as defined in [7].
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3 Online Testing Algorithm

In this section we describe an algorithm that uses reinforcement learning to choose con-
trollable actions during conformance testing of an implementation I against a model
(specification) M . Both M and I are assumed to be given as model programs that ex-
pose an IStepper interface to the algorithm. In addition, the model exposes an interface
that provides an abstract value of the current state of the model and an abstract value of
any action enabled in a given state. It is convenient to view this interface as an extension
IModelStepper of the IStepper interface:

interface IModelStepper : IStepper
{

IComparable GetAbstractState(Action action);
IComparable GetAbstractAction(Action action);

}

The main motivation for these functions is to divide the state space and the action
space into equivalence classes that reflect “interesting” groups of states and actions for
the purposes of coverage.

Example 1. Consider the Robot model. We could define the abstract states and abstract
actions to be the concrete states and the concrete actions as follows. In other words, there
is no grouping of either states or actions in this case.

class RobotModel : IModelStepper
{

Sequence<Pair<int,int>> GetAbstractState(Action action)
{

return [(r.power, r.reward) | r in Robot.Instances]
}
Action GetAbstractAction(Action action);
{

return action;
}

}

Example 2. A more interesting case is if we abstract away the id of the robot and project
the state to the state of the robot doing the action, or a default value if the robot has not
been started yet. This is reasonable because the robots do not interact with each other.

class RobotModel : IModelStepper
{

Pair<int,int> GetAbstractState(Action action)
{

if (action.Name == "Start") return (-1, -1);
Robot r = Robot.Instances[action.Argument(0)];
return (r.power, r.reward);

}
string GetAbstractAction(Action action);
{

return action.Name;
}

}

We use pseudo code that is similar to the original implementation code written in
C# to describe the algorithm. We consider two controllable action selection strategies
Lct and Rlc that are explained below, in addition to a memoryless purely randomized
strategy Rnd.

enum Strategy {Rnd, Lct, Rlc}
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The algorithm uses also an “oracle” to ask advice about whether to observe an observ-
able action from the implementation, to call a controllable action, or to end a particular
test run, during a single step of the algorithm. The oracle makes a random choice between
controlling an observing when an observable action is enabled in the implementation at
the same time as a controllable action is enabled in the model. If there are no observable
actions enabled in the implementation and no controllable actions enabled in the model
then the only meaningful advice the oracle can give is to end the current test run.

enum Advice {Control, Observe, End}

class Oracle
{

IStepper M;
IStepper I;

Advice Advise()
{

bool noCtlrs = M.EnabledControllables.IsEmpty;
bool noObs = I.EnabledObservables.IsEmpty;

if (noCtlrs ∧ noObs) return Advice.End;
if (noCtlrs) return Advice.Observe;
if (noObs) return Advice.Control;
return new Choose(Advice.Control, Advice.Observe);

}
}

3.1 Top Level Loop

The top level loop of the algorithm is described by the following pseudo code.

class OnlineTesting
{

IModelStepper M;
IStepper I;
int maxRun;
int maxStep;
Strategy h;
Oracle oracle;

bool ResetEnabled {get return M.ResetEnabled ∧ I.ResetEnabled;}

void Run()
{

int run = 0;
while (run < maxRun)
{

RunTestCase(); // The core algorithm
if (¬ResetEnabled) return; // Cannot continue, must abort
Reset();
run += 1;

}
}

}

The inputs to the algorithm are a model program M that provides the IModelStepper
interface and is the specification, a model program I that provides the IStepper inter-
face an is the implementation under test, an upper bound maxRun on the total number of
runs, an upper bound maxStep on the total number of steps (state transitions) per one
run, a strategy h, and an oracle oracle as explained above.

3.2 The Core Algorithm

The algorithm keeps track of the weights of abstract transitions that have occurred dur-
ing the test runs. An abstract transition is a pair (s, a) where s is an abstract state and
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a is an abstract action. The weight of an abstract transition is total number of times it
has occurred plus one, since the algorithm was started. The abstract state and action val-
ues are calculated using the IModelStepper interface introduced above. This weight
information is stored in a test trace graph that is updated dynamically and is initially
empty.

class TestTraceGraph
{

Map<AbstractTransition, int> F = ∅; // Frequencies of explored abstract transitions
IModelStepper M;

int W(Action a) // Weights are positive
{

AbstractState s = M.GetAbstractState(a);
AbstractAction b = M.GetAbstractAction(a);
if ((s,b) ∈ F) return F[(s,b)]; else return 1;

}

void Update(Action a, int w)
{

AbstractState s = M.GetAbstractState(a);
AbstractAction b = M.GetAbstractAction(a);
F[(s,b)] = W(a) + w;

}
}

The next controllable action is chosen by the algorithm from a nonempty set of con-
trollable actions that are currently enabled, using the given strategy.

class TestTraceGraph
{

Action ChooseAction(Sequence<Action> acts, Strategy h)
{

switch (h)
{
case Strategy.Lct:

Action a = acts.Head;
Pair<Set<Action>,int> lct =

acts.Tail.Reduce(Reducer,({acts.Head},W(acts.Head)));
return lct.First.Choose();

case Strategy.Rlc:
Sequence<int> costs = [W(a) | a ∈ acts];
int prod = ...; // Compute an approximate common multiple of costs
Sequence<int> occurs = [prod/x | x ∈ costs];
Bag<Action> bg = {{(acts[i], occurs[i]) | i < acts.Count}};
return bg.Choose();

default:
return acts.Choose();

}
}
Pair<Set<Action>,int> Reducer(Action a, Pair<Set<Action>,int> lct)
{

if (W(a) < lct.Second) return ({a}, w);
else if (W(a) == lct.Second) return (lct.First ∪ {a}, w);
else return lct;

}
}

Lct: Choose an action that has the “least cost”. Here cost of an action a is measured
as the current weight of the abstract transition (s, b), where s is the abstract state
computed in the current model state with respect to a, and b is the abstract action
corresponding to a, computed in the current model state. If several actions have the
same least cost, one is chosen randomly from among those.

Rlc: Choose an action with a likelihood that is inversely proportional to its current cost,
with cost having the same meaning as above. Intuitively this means that the least
frequent actions are the most favored ones. In other words, if the candidate actions
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are (ai)i<k for some k, having costs (ci)i<k , then the probability of selecting the
action ai is c−1

i /
∑

j �=i c−1
j . The implementation uses a built-in bag construct to

make such a choice.
Rnd: Make a random choice.

The algorithm runs one test case until, either a conformance failure occurs (in form of
a violation of the refinement relation between [[M]] and [[I]]), or until the given maximum
number of steps has been reached.

class OnlineTesting
{

TestTraceGraph ttg = new TestTraceGraph(M);

bool RunTestCase()
{

int step = 0;
while (step < maxStep)
{

Advice advice = oracle.Advise();

if (advice == Advice.Control)
{

Sequence<Action> cs = M.EnabledControllables;
Action c = ttg.ChooseAction(cs, h);
ttg.Update(c, 1); // Increase the weight by 1
M.DoStep(c); // Do the step in M

if (c ∈ I.EnabledControllables)
I.DoStep(c); // Do the corresponding step in I

else
return false; // Conformance failure occurred

}
else if (advice == Advice.Observe)
{

Sequence<Action> os = I.EnabledObservables;
// This is an abstract view of the execution of the implementation, in reality
// the implementation performs the choice itself and notifies the test harness
Action o = os.Choose();
I.DoStep(o);

if (o ∈ M.EnabledObservables)
{

ttg.Update(o, 1); // Increase the weight by 1
M.DoStep(o); // Do the corresponding step in M

}
else

return false; // Conformance failure occurred

#endregion
}
else

return true; // No more steps can be performed
step += 1;

}
return true; // The test case succeeds

}
}

The Lct strategy is a greedy approach; it is very simple and relatively cheap to com-
pute. However, it favors actions that have been used less frequently, and thus may sys-
tematically avoid long sequences of the same action, as is illustrated next.

Example 3. Consider a bounded stack of size n. The stack has two controllable actions,
top and push, enabled in every state. The greedy strategy will alternate between these
two actions until the stack is full. If we want to test the behavior of push when the stack
is full, we need to continue testing for at least 2n steps (so that push is executed n times).

In the given algorithm, the weight increase is always 1. This value can be made domain
specific and can vary depending both on the action and the current state, for example by
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extending the IModelStepper interface with a function that provides the wait increase
for the given action in the current state and using that function instead of 1.

By using Rlc, the probability of selecting an action is inversely proportional to its
frequency. Thus, the more an action has been selected the less likely it is that it will be
selected again. So the potential problem shown in Example 3is still there but ameliorated,
since no enabled action is excluded from the choice.

4 Experiments

We used the Robot model to conduct a few experiments with the algorithm in order to
evaluate and compare the different strategies. The main purpose was to see if the two
proposed strategiesLct or Rlc are useful by providing better or at least as good coverage
of the state space as the purely random approach. Since we are interested in state and
transition coverage only, we ran the algorithm against a correct implementation. We ran
the algorithm with a different maximum number of robots, different abstraction functions
introduced in the examples above, and different limits on the total number of runs and
the total number of steps per run. The experiments are summarized in Tables 1 and 2.
We ran each case independently 50 times, the entries in the tables are shown on the form
m ± σ where m is the mean of the obtained results and σ is the standard deviation.
The absolute running times are shown only for comparison, the concrete machine was a
3GHz Pentium 4.

If states and actions are not grouped at all, by assuming the definitions given in Exam-
ple 1, the majority of abstract transitions will occur only a single time and the strategies
perform more or less as the random case, which is shown in Table 1. One can see that
Lct performs marginally better than Rnd when the number of robots and the number of
runs increases.

Table 1. Execution of the online algorithm on the Robot model without grouping

Parameters Lct Rlc Rnd
Robots Runs Steps #States t(ms) #States t(ms) #States t(ms)
1 1 100 100 ± 0 3 100 ± 0 1 100 ± 0 1
1 10 100 420 ± 11 20 415 ± 8 19 414 ± 9 15
1 100 100 503 ± 3 275 503 ± 3 241 502 ± 2 172
1 100 500 2485 ± 5 1303 2485 ± 5 1292 2485 ± 6 968
2 1 100 100 ± 0 3 100 ± 0 1 100 ± 0 2
2 10 100 951 ± 8 24 941 ± 10 22 938 ± 12 14
2 100 100 7449 ± 83 286 7085 ± 110 284 7055 ± 114 201
2 100 500 44119 ± 225 1548 42437 ± 339 1479 42364 ± 289 1040
5 1 100 100 ± 0 5 100 ± 0 3 100 ± 0 1
5 10 100 972 ± 3 42 971 ± 3 37 969 ± 4 18
5 100 100 9368 ± 17 516 9328 ± 22 468 9322 ± 24 297
5 100 500 49364 ± 19 2794 49330 ± 25 2541 49320 ± 19 1587

When the states and the actions are mapped to abstract values, as defined in Example 2,
then Lct starts finding many more abstract states than Rndas the number of robots grows.
The robot id is ignored by the abstraction and thus concrete transitions of different robots
that differ only by the id are mapped to the same abstract transition. Overall this will have
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Table 2. Execution of the online algorithm on the Robot model with state grouping and action
grouping

Parameters Lct Rlc Rnd
Robots Runs Steps #States t(ms) #States t(ms) #States t(ms)
1 1 100 100 ± 0 3 100 ± 0 <1 100 ± 0 <1
1 10 100 417 ± 9 9 413 ± 8 7 416 ± 8 4
1 100 100 502 ± 2 100 503 ± 3 88 502 ± 2 44
1 100 500 2486 ± 5 508 2486 ± 6 417 2484 ± 6 234
2 1 100 100 ± 0 1 90 ± 3 <1 93 ± 5 <1
2 10 100 419 ± 7 10 284 ± 21 9 237 ± 8 4
2 100 100 502 ± 3 106 437 ± 12 96 293 ± 6 46
2 100 500 2485 ± 5 561 1602 ± 33 506 1324 ± 15 241
5 1 100 100 ± 0 <1 66 ± 4 1 61 ± 2 <1
5 10 100 418 ± 10 10 279 ± 30 11 117 ± 5 5
5 100 100 503 ± 3 115 472 ± 7 116 155 ± 7 50
5 100 500 2484 ± 5 561 1696 ± 96 657 582 ± 10 247
5 100 1000 4949 ± 8 1200 2467 ± 95 1388 1088 ± 13 540
10 10 100 418 ± 9 10 293 ± 25 12 91 ± 6 5
10 100 100 502 ± 3 103 473 ± 6 137 128 ± 6 59
10 100 1000 4951 ± 11 1131 3541 ± 198 1718 602 ± 10 578
10 1000 1000 4985 ± 8 12521 4352 ± 66 18043 654 ± 9 5953

the effect that the Lct approach will favor actions that transition to new abstract states.
The same is true for the Rlc case but the increase in coverage is smaller.

The Robot case study is representative for models that deal with multiple agents at the
same time, which is a typical case in testing of multi-threaded software [20]. Often the
threads are mostly independent, an abstraction technique that can be used in this context
is to look at the part of the state that belongs to the agent doing the action. This is an
instance of so-called multiple state-grouping approach that is also used as an exploration
technique for FSM generation [4]. This is exactly what is done in Example 2. It seems
that Lct is a promising heuristic for online testing of these kinds of models. One can
note that, the coverage provided by the random approach degrades almost by half as the
number of robots is doubled (for example from 5 to 10).

5 Related Work

The basic idea of online testing has been introduced in the context of labeled transition
systems using ioco theory [3,17,19] and implemented in the TorX tool [18]. TGV [11]
is another tool frequently used for online or on-the-fly test generation that uses ioco.
Ioco theory is a formal testing theory based on labeled transition systems with input
actions and output actions. Interface automata [7] are suitable for the game view [5]
of online testing and provide the foundation for the conformance relation that we use.
Online testing with model programs in the SpecExplorer tool is discussed in in [20]. The
algorithm in [20] does not use learning, and as far as we know learning algorithms have
not been considered in the context of model based testing. The relation between ioco and
refinement of interface automata is briefly discussed in [20]. Specifications given by a
guarded command language are used also in [15].

In Black-box testing, some work [14] has been done which uses supervised learn-
ing procedures. As far as we know, no previous work has addressed online testing with
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learning in the context of Model Based Testing. The main intuition behind our algo-
rithm is similar to an anti-ant approach [13] used for test case generation form UML
diagrams. From the game point of view, the online testing problem is a 1 1

2 -player game.
It is known that 1 1

2 -player games are Markov Decision Processes [6]. The view of finite
explorations of model programs for offline test case generation as negative total reward
Markov decision problems with infinite horizon are studied in [2].

6 Open Problems and Future Work

One of the interesting areas that is also practically very relevant is to gain better understa-
ting of approaches for online testing that learn from model-coverage that uses abstrac-
tions. The experiments reported in Section 4 exploited that idea to a certain extent by
using state and action abstraction through the IModelStepper interface, but the gen-
eral technique and theory need to be developed further. Such abstraction functions can
either be user-provided [9,4] or automatically generated from program text similar to
iterative refinement [15].

Currently we have an implementation of the presented algorithm using a modeling
library developed in C#. As a short-term goal, we are working on a more detailed report
where we are considering larger case studies.

The algorithm can also be adapted to run without a model, just as a semi-random
(stress) testing tool of implementations. In that case the history of used actions is kept
solely based on the test runs of the implementation. In this case, erroneous behaviors
would for example manifest themselves through unexpected exceptions thrown by the
implementation, rather than trough conformance violations.
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