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Abstract. We provide an improved FPTAS for multiobjective shortest
paths, a fundamental (NP-hard) problem in multiobjective optimization,
along with a new generic method for obtaining FPTAS to any multiob-
jective optimization problem with non-linear objectives. We show how
these results can be used to obtain better approximate solutions to three
related problems that have important applications in QoS routing and
in traffic optimization.

1 Introduction

Multiobjective shortest paths (MOSP) is a core problem in the area of multiobjec-
tive optimization [3,4] with numerous applications. Informally, the problem con-
sists in finding a set of paths that captures not a single optimum but the trade-off
among d > 1 objective functions in a digraph whose edges are associated with
d-dimensional attribute (cost) vectors. In general, an instance of a multiobjec-
tive optimization problem is associated with a set of feasible solutions Q and a
d-vector function f = [f1, . . . , fd]T (d is typically a constant) associating each fea-
sible solution q ∈ Q with a d-vector f(q) (w.l.o.g. we assume that all objectives
fi, 1 ≤ i ≤ d, are to be minimized). In a multiobjective optimization problem,
we are interested not in finding a single optimal solution, but in computing the
trade-off among the different objective functions, called the Pareto set or curve
P , which is the set of all feasible solutions in Q whose vector of the various ob-
jectives is not dominated by any other solution (a solution p dominates another
solution q iff fi(p) ≤ fi(q), ∀1 ≤ i ≤ d). Multiobjective optimization problems
are usually NP-hard (as indeed is the case for MOSP). This is due to the fact
that the Pareto curve is typically exponential in size (even in the case of two ob-
jectives). On the other hand, even if a decision maker is armed with the entire
Pareto curve, s/he is left with the problem of which is the “best” solution for the
application at hand. Consequently, three natural approaches to solve multiobjec-
tive optimization problems are to: (i) study approximate versions of the Pareto
curve; (ii) optimize one objective while bounding the rest (constrained approach);
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and (iii) proceed in a normative way and choose the “best” solution by intro-
ducing a utility (typically non-linear) function on the objectives (normalization
approach). In this paper, we investigate all of them for MOSP.

Multiobjective Shortest Paths. Despite so much research in multiobjective
optimization [3,4], only recently a systematic study of the complexity issues re-
garding the construction of approximate Pareto curves has been initiated [11,14].
Informally, an (1 + ε)-Pareto curve Pε is a subset of feasible solutions such that
for any Pareto optimal solution, there exists a solution in Pε that is no more
than (1 + ε) away in all objectives. Papadimitriou and Yannakakis show in a
seminal work [11] that for any multiobjective optimization problem there exists
a (1 + ε)-Pareto curve Pε of (polynomial) size |Pε| = O((4B/ε)d−1), where B
is the number of bits required to represent the values in the objective functions
(bounded by some polynomial in the size of the input); Pε can be constructed
by O((4B/ε)d) calls to a GAP routine that solves (in time polynomial in the size
of the input and 1/ε) the following problem: given a vector of values a, either
compute a solution that dominates a, or report that there is no solution better
than a by at least a factor of 1 + ε in all objectives.

For the case of MOSP (and some other problems with linear objectives), it is
shown in [11] how a GAP routine can be constructed (based on a pseudopoly-
nomial algorithm for computing exact paths), and consequently a FPTAS is
provided. Note that FPTAS for MOSP were already known in the case of two ob-
jectives [8], as well as in the case of multiple objectives in directed acyclic graphs
(DAGs) [15]. In particular, the 2-objective case has been extensively studied [4],
while for d > 2 very little has been achieved; actually, the results in [11,15] are
the only and currently best FPTAS known (see Table 1). Let Cmax denote the
ratio of the maximum to the minimum edge weight (in any dimension), and let
n (resp. m) be the number of nodes (resp. edges) in a digraph.

Our first contribution in this work (Section 3) is a new and remarkably simple
FPTAS for constructing a set of approximate Pareto curves (one for every node)
for the single-source version of the MOSP problem in any digraph. For any
d > 1, our algorithm runs in time O(nm(n log(nCmax)

ε )d−1) for general digraphs,
and in O(m(n log(nCmax)

ε )d−1) for DAGs. Table 1 summarizes the comparison of
our results with the best previous ones. Our results improve significantly upon
previous approaches for general digraphs [11,14] and DAGs [14,15], for all d > 2.
For d = 2, our running times depend on ε−1; those in [14] are based on repeated
applications of a stronger variant of the GAP routine, like a FPTAS for the
restricted shortest path (RSP) problem (see e.g., [9], and thus depend on ε−2.
Hence, our algorithm gives always better running times for DAGs, while for
general digraphs we improve the dependence on 1/ε.

Non-linear Objectives. Our second contribution in this work concerns two
fundamental problems in multiobjective optimization: (i) Construct a FPTAS for
the normalized version of a multiobjective optimization problem when the utility
function is non-linear. (ii) Construct a FPTAS for a multiobjective optimization
problem with non-linear objectives.
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Table 1. Comparison of new and previous results for MOSP. TGAP denotes the time
of a GAP routine, which is polynomial in the input and 1/ε (but exponential in d).

Best previous This work
General
digraphs

d = 2 O
�
nm 1

ε
log (nCmax)

�
log log n + 1

ε

��
[14] O

�
n2m 1

ε
log (nCmax)

�
d > 2 O((log(nCmax)/ε)d · TGAP ) [11] O

�
nm

�
n log(nCmax)

ε

�d−1
�

DAGs
d = 2 O

�
nm 1

ε
log n log (nCmax)

�
[15]

O
�
nm 1

ε
log (nCmax)

�
O
�
nm 1

ε2 log (nCmax)
�

[14]

d > 2 O
�
nm(n log(nCmax)

ε
)d−1 logd−2(n

ε
)
�

[15] O

�
m
�

n log(nCmax)
ε

�d−1
�

An algorithm for the first problem was given in [12] (earlier version of this
work) for d ≥ 2 objectives and polynomial utility function, and independently
in [1] for d = 2 objectives and quasi-polynomially bounded utility function. Let
T (1/ε, m′) denote the time to generate an (1+ε)-Pareto curve for an instance of
a multiobjective optimization problem of size m′. The algorithm in [1] provides
a FPTAS with time complexity T (Λ1/ε2, m′), where Λ1 is polylogarithmic on
the maximum cost in any dimension.

We show in Section 4 that we can construct a FPTAS for the normalized
version of any multiobjective optimization problem with d ≥ 2 objectives and
quasi-polynomially bounded utility function in time T (Λ2/ε, m′), where Λ2 < Λ1
is polylogarithmic on the maximum cost in any dimension. Our results are based
on a novel and simple analysis, and improve upon those in [1] both w.r.t. the
running time (better dependence on 1/ε and Λ2 < Λ1) and the number of
objectives – as well as upon those in [12] w.r.t. the class of utility functions.

The only generic method known for addressing the second problem is that in
[11], which assumes the existence of a GAP routine. Such routines for the case
of non-linear objectives are not known. The GAP routines given in [11] concern
problems with linear objectives only.

We show in Section 4 that a FPTAS for any multiobjective optimization prob-
lem M′ with quasi-polynomially bounded non-linear objective functions can be
constructed from a FPTAS for a much simpler version M of the problem. M
has the same feasible solution set with M′ and objectives the identity functions
on the attributes of the non-linear objective functions of M′. In other words, our
result suggests that restricting the study of approximate Pareto curves to iden-
tity (on the attributes) objectives suffices for treating the non-linear case. Our
approach constitutes the first generic method for obtaining FPTAS for any mul-
tiobjective optimization problem with quasi-polynomial non-linear objectives.

Applications. The following problems play a key role in several domains.

Multiple Constrained (Optimal) Paths. One of the key issues in networking [10]
is how to determine paths that satisfy QoS constraints, a problem known as
QoS routing or constraint-based routing. The two most fundamental problems in
QoS routing are the multiple constrained optimal path (MCOP) and the multiple
constrained path (MCP) problems (see e.g., [7,10]). In MCOP, we are given a
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d-vector of costs c on the edges and a (d − 1)-vector b of QoS-bounds. The
objective is to find an s-t path p that minimizes cd(p) =

∑
e∈p cd(e), and obeys

the QoS-bounds, i.e., ci(p) =
∑

e∈p ci(e) ≤ bi, ∀1 ≤ i ≤ d−1. MCOP is NP-hard,
even when d = 2 in which case it is known as the restricted shortest path problem
and admits a FPTAS (see e.g., [9]). In MCP, the objective is to find an s-t path
p that simply obeys a d-vector b of QoS-bounds, i.e., ci(p) =

∑
e∈p ci(e) ≤ bi,

∀1 ≤ i ≤ d. MCP is NP-complete. For both problems, the case of d = 2 objectives
has been extensively studied and there are also very efficient FPTAS known (see
e.g., [9]). For d > 2, apart from the generic approach in [11], only heuristic
methods and pseudopolynomial time algorithms are known [10]. We are able to
show how (quality guaranteed) approximate schemes to both MCOP and MCP
can be constructed that have the same complexity with MOSP, thus improving
upon all previous approaches for any d > 2.
Non-Additive Shortest Paths. In this problem (NASP), we are given a digraph
whose edges are associated with d-dimensional cost vectors and the task is to find
a path that minimizes a certain d-attribute non-linear utility function. NASP is
a fundamental problem in several domains [5,6], the most prominent of which
is finding traffic equilibria [5]. NASP is an NP-hard problem. By virtue of the
results in [1,12], there exists a FPTAS for d = 2 and quasi-polynomial utility
function [1], and a FPTAS for any d ≥ 2 and polynomial utility function [12].

In Section 5, we show how our FPTAS for MOSP, along with our generic
framework for dealing with non-linear objectives, can be used to obtain a FPTAS
for NASP for any d > 1 and a larger than quasi-polynomially bounded family
of utility functions. Our results improve considerably upon those in [1,12] w.r.t.
time (dependence on 1/ε), number of objectives, and class of utility functions.

2 Preliminaries

Recall that an instance of a multiobjective optimization problem is associated
with a set of feasible solutions Q and a d-vector function f = [f1, . . . , fd]T as-
sociating each feasible solution q ∈ Q with a d-vector f(q). The Pareto set or
curve P of Q is defined as the set of all undominated elements of Q. Given a
vector of approximation ratios ρ = [ρ1, . . . , ρd]T (ρi ≥ 1, 1 ≤ i ≤ d), a solution
p ∈ Q ρ-covers a solution q ∈ Q iff it is as good in each objective i by at least a
factor ρi, i.e., fi(p) ≤ ρi · fi(q), 1 ≤ i ≤ d. A set Π ⊆ Q is a ρ-cover of Q iff for
all q ∈ Q, there exists p ∈ Π such that p ρ-covers q (note that a ρ-cover may
contain dominated solutions). A ρ-cover is also called ρ-Pareto set. If all entries
of ρ are equal to ρ, we also use the terms ρ-cover and ρ-Pareto set.

A fully polynomial time approximation scheme (FPTAS) for computing the
Pareto set of an instance of a multiobjective optimization problem is a family of
algorithms that, for any fixed constant ε > 0, contains an algorithm that always
outputs an (1 + ε)-Pareto set and runs in time polynomial in the size of the
input and 1/ε. W.l.o.g. we make the customary assumption that ε ≤ 1, yielding
ln(1 + ε) = Θ(ε), which will be used throughout the paper.

If a=[a1, a2,· · ·,ad]T is a d-dimensional vector and λ a scalar, then we denote by
aλ =[aλ

1 , aλ
2 , · · ·,aλ

d ]T . A vector with all its elements equal to zero is denoted by 0.
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3 Single-Source Multiobjective Shortest Paths

In the multiobjective shortest path problem, we are given a digraph G = (V, E)
and a d-dimensional function vector c : E → [IR+]d associating each edge e
with a cost vector c(e). We extend the cost function vector to handle paths
by extending the domain to the powerset of E, thus considering the function
c : 2E → [IR+]d, where the cost vector of a path p is the sum of the cost vectors
of its edges, i.e., c(p) =

∑
e∈p c(e). Given two nodes v and w, let P (v, w) denote

the set of all v-w paths in G. In the multiobjective shortest path problem, we
are asked to compute the Pareto set of P (v, w) w.r.t. c. In the single-source
multiobjective shortest path (SSMOSP) problem, we are given a node s and the
task is to compute the Pareto sets of P (s, v) w.r.t. c, ∀v ∈ V .

Given a vector ε = [ε1, ε2, · · · , εd−1]T of error parameters (εi > 0, 1 ≤ i ≤
d − 1) and a source node s, we present below an algorithm that computes, for
each node v, a ρ-cover of P (s, v), where ρ = [1+ε1, 1+ε2, · · · , 1+εd−1, 1]T . Note
that we can be exact in one dimension (here w.l.o.g. the d-th one), without any
impact on the running time. In the following, let cmin

i ≡ mine∈E ci(e), cmax
i ≡

maxe∈E ci(e), and Ci = cmax
i

cmin
i

, for all 1 ≤ i ≤ d. Let also P i(v, w) denote the set

of all v-w paths in G with no more than i edges; clearly, Pn−1(v, w) ≡ P (v, w).

3.1 The SSMOSP Algorithm

Our algorithm resembles the classical (label correcting) Bellman-Ford method.
Previous attempts to straightforwardly apply such an approach [2,3,4] had a very
poor (exponential) performance, since all undominated solutions (exponentially
large sets of labels) have to be maintained. The key idea of our method is that
we can implement the label sets as arrays of polynomial size by relaxing the
requirements for strict Pareto optimality to that of ρ-covering.

We represent a path p = (e1, e2, · · · , ek−1, ek) by a label that is a tuple
(c(p), pred(p), lastedge(p)), where c(p) =

∑
e∈p c(e) is the d-dimensional cost

vector of the path, pred(p) = q is a pointer to the label of the subpath q =
(e1, e2, · · · , ek−1) of p, and lastedge(p) = ek points to the last edge of p. An empty
label is represented by (0, null, null), while a single edge path has a null pred
pointer. This representation allows us to retrieve the entire path, without implic-
itly storing its edges, by following the pred pointers. Let r = [r1, . . . , rd−1, 1] be a
vector of approximation ratios. The algorithm proceeds in rounds. In each round
i and for each node v the algorithm computes a set of labels Πi

v, which is an
ri-cover of P i(s, v). We implement these sets of labels using (d − 1)-dimensional
arrays Πi

v[0..	logr1
(nC1)
, 0..	logr2

(nC2)
, · · · , 0..	logrd−1
(nCd−1)
], and index

these arrays using (d−1)-vectors. This is done by defining a function pos : 2E →
[IN0]d−1. For a path p, pos(p)=[	logr1

c1(p)
cmin
1


, 	logr2

c2(p)
cmin
2


, · · ·, 	logrd−1

cd−1(p)
cmin

d−1

]T

gives us the position in Πi
v corresponding to p. The definition of pos along with

the fact that for any path p we have ci(p) ≤ (n − 1)cmax
i , ∀1 ≤ i ≤ d, justifies

the size of the arrays.
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Initially, Π0
v = ∅, for all v ∈ V − {s}, and Π0

s contains only the trivial empty
path. For each round i ≥ 1 and for each node v the algorithm computes Πi

v

as follows. Initially, we set Πi
v equal to Πi−1

v . We then examine the incoming
edges of v, one by one, and perform an Extend-&-Merge operation for each
edge examined. An Extend-&-Merge operation takes as input an edge e = (u, v)
and the sets Πi−1

u and Πi
v. It extends all labels p ∈ Πi−1

u by e, and merges
the resulting set of s-v paths with Πi

v. Since each extension results in a new
label (path) q = (c(p) + c(e), p, e) whose pos(q) leads to an array position
which may not be empty, the algorithm maintains in each array position the
(at most one) path that covers all other paths with the same pos(·) value,
which turns out to be the path with the smallest cd cost. This keeps the size
of the sets polynomially bounded. In particular, q is inserted in the position
pos(q) = [	logr1

c1(q)
cmin
1


, 	logr2

c2(q)
cmin
2


, · · · , 	logrd−1

cd−1(q)
cmin

d−1

]T of Πi

v, unless this

position is already filled in with a label q′ for which cd(q′) ≤ cd(q).
The next two lemmas establish the algorithm’s correctness and complexity.

Lemma 1. For all v ∈ V and for all i ≥ 0, after the i-th round Πi
v ri-covers

P i(s, v).

Proof. It suffices to prove that for all p ∈ P i(s, v), there exists q ∈ Πi
v such that

c�(q) ≤ ri
�c�(p), ∀1 ≤ � ≤ d. We prove this by induction.

For the basis of the induction (i = 1) consider a single edge path p ≡ (e) ∈
P 1(s, v). At each round all incoming edges of v are examined and an Extend-&-
Merge operation is executed for each edge. After the first round and due to the
if condition of the Extend-&-Merge operation, position pos(p) of Π1

v contains a
path q for which: (i) pos(q) = pos(p); and (ii) cd(q) ≤ cd(p). From (i) it is clear
that for all 1 ≤ � ≤ d − 1, we have 	logr�

c�(q)
cmin

�


 = 	logr�

c�(p)
cmin

�


, and therefore

logr�

c�(q)
cmin

�

−1 ≤ logr�

c�(p)
cmin

�

. This, along with (ii) and the fact that rd = 1, implies
that c�(q) ≤ r�c�(p), ∀1 ≤ � ≤ d.

For the induction step consider a path p ≡ (e1, e2, . . . , ek = (u, v)) ∈ P i(s, v),
for some k ≤ i. The subpath p′ ≡ (e1, e2, . . . , ek−1) of p has at most i − 1 edges
and applying the induction hypothesis we get that there exists a path q′ ∈ Πi−1

u

such that c�(q′) ≤ ri−1
� c�(p′), 1 ≤ � ≤ d. Let now q̄ be the concatenation of q′

with edge ek. Then, we have:

c�(q̄) ≤ ri−1
� c�(p), 1 ≤ � ≤ d (1)

It is clear by our algorithm that during the Extend-&-Merge operation for edge
ek in the i-th round q̄ was examined. Moreover, at the end of the i-th round and
due to the if condition of the Extend-&-Merge operation, position pos(q̄) of Πi

v

contains a path q for which: (iii) pos(q) = pos(q̄); and (iv) cd(q) ≤ cd(q̄). From
(iii) it is clear that 	logr�

c�(q)
 = 	logr�
c�(q̄)
, ∀ 1 ≤ � ≤ d − 1, and therefore

logr�
c�(q) − 1 ≤ logr�

c�(q̄), ∀ 1 ≤ � ≤ d − 1, which implies that

c�(q) ≤ r�c�(q̄), 1 ≤ � ≤ d − 1. (2)

Since rd = 1, combining now (iv) and (2) with (1), we get that c�(q) ≤ ri
�c�(p),

∀ 1 ≤ � ≤ d. �
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Lemma 2. Algorithm SSMOSP computes, for all v ∈ V , an rn−1-cover of
P (s, v) in total time O(nm

∏d−1
j=1(	logrj

(nCj)
 + 1)).

Proof. From Lemma 1, it is clear that, for any v ∈ V , Πn−1
v is an rn−1-cover

of Pn−1(s, v) ≡ P (s, v), since any path has at most n − 1 edges. The algorithm
terminates after n − 1 rounds. In each round it examines all of the m edges and
performs an Extend-&-Merge operation. The time of this operation is propor-
tional to the size of the arrays used, which equals

∏d−1
j=1 (	logrj

(nCj)
 + 1) and

therefore the total time complexity is O(nm
∏d−1

j=1 (	logrj
(nCj)
 + 1)). �


Applying Lemma 2 with r = [(1+ε1)
1

n−1 , (1+ε2)
1

n−1 , · · · , (1+εd−1)
1

n−1 , 1], and
taking into account that ln(1 + δ) = Θ(δ) for small δ, yields our main result.

Theorem 1. Given a vector ε = [ε1, ε2, · · · , εd−1]T of error parameters and a
source node s, there exists an algorithm that computes, for all v ∈ V , a ρ-cover
of P (s, v) (set of all s-v paths), where ρ = [1 + ε1, 1 + ε2, · · · , 1 + εd−1, 1]T , in
total time O(ndm

∏d−1
j=1 ( 1

εj
log(nCj))).

Let Cmax = max1≤j≤d−1 Cj . In the special case, where εi = ε, ∀1 ≤ i ≤ d − 1,
we have the following result.

Corollary 1. For any error parameter ε > 0, there exists a FPTAS for the
single-source multiobjective shortest path problem with d objectives on a digraph
G that computes (1 + ε)-Pareto sets (one for each node of G) in total time
O(nm(n log(nCmax)

ε )d−1).

Further improvements can be obtained in the case of DAGs; see [13].

4 Non-linear Objectives

In this section, we present two generic methods to construct a FPTAS for the
normalized version of any multiobjective optimization problem with a non-linear
utility function, as well as a FPTAS for any multiobjective optimization problem
with non-linear objectives, for a quite general family of non-linear functions. The
only precondition is the existence of a FPTAS for a much simpler version of the
problems.

Let M be (an instance of) a multiobjective optimization problem with set of
feasible solutions Q and vector of objective functions c = [c1, . . . , cd]T , associat-
ing each feasible solution q ∈ Q with a d-vector of attributes c(q); i.e., the i-th
objective is the identity function of the i-th attribute.

Let N be the normalized version of M w.r.t. a non-decreasing, non-linear
utility function U : [IR+]d → IR; i.e., the objective of N is minq∈Q U(c(q)). We
will show that a FPTAS for M can provide a FPTAS for N . To obtain such a
FPTAS, we consider a quite general family of non-linear functions U(x).

A multiattribute function U(x) is called quasi-polynomially bounded (see e.g.,

[1]) if there exist some constants γ and δ such that
∂U
∂xi

(x)
U(x) ≤ γ 1

xi

∏d
k=1 lnδ xk,
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1 ≤ i ≤ d. For instance, the function U([x1, x2]T ) = x
polylog(x1)
1 + x

polylog(x2)
2

is quasi-polynomially bounded, while the function U([x1, x2]T ) = 2xμ
1 + 2xμ

2 ,
for some μ > 0, is not. Note also that this class includes all non-decreasing
polynomials.

Let Ci = maxq∈Q ci(q) be the maximum cost in the i-th dimension, and let
log Ci be polynomial to the input size (as indeed is the case for MOSP and other
problems, like the multiobjective versions of spanning tree, perfect matching,
knapsack, etc). We can prove the following.

Theorem 2. Let the objective function U of N be quasi-polynomially bounded.
If there exists a FPTAS for M with time complexity T (1/ε, m′), then there exists
a FPTAS for N with complexity T (Λ/ε, m′), where m′ is the input size of M
and Λ = γd

∏d
i=1 lnδ Ci.

Proof. We construct an (1 + ε′)-Pareto set Π for M, where ε′ will be chosen
later. Pick q = argminp∈Π(U(c(p))). Let p∗ denote the optimal solution with
cost vector c∗ = c(p∗). By the definition of Π , we know that there exists some
p′ ∈ Π such that ci(p′) ≤ min{(1 + ε′)c∗i , Ci}. By the choice of q we have that
U(c(q)) ≤ U(c(p′)), thus it suffices to bound U(c(p′))

U(c(p∗)) .
Let c′ be the vector whose elements are given by c′i = min{(1+ε′)c∗i , Ci}, ∀1 ≤

i ≤ d. Since U(·) is non-decreasing, U(c(p′))
U(c(p∗)) ≤ U(c′)

U(c∗) = exp [lnU(c′) − ln U(c∗)].

We write the exponent as a telescopic sum ln U(c′)− lnU(c∗) =
∑d

k=1 [Fk(c′k)−
Fk(c∗k)], where Fk(x) = lnU([c′1, . . . , c′k−1, x, c∗k+1, . . . , c

∗
d]

T ). On each term k
of the sum, we apply the well-known Mean Value Theorem1 for Fk(x) on the
interval (c∗k, c′k). Hence, ∀1 ≤ k ≤ d, there exists some ζk with c∗k < ζk < c′k such

that Fk(c′k) − Fk(c∗k) = F ′
k(ζk)(c′k − c∗k) ≤

∂U
∂xk

(c[k])

U(c[k]) ε′c∗k, where c[k] are vectors

with c
[k]
i =

{
c′
i if 1 ≤ i < k

ζk if i = k
c∗
i if k < i ≤ d

. Consequently, U(c′)
U(c∗) ≤ exp

[

ε′
∑d

k=1

[
∂U

∂xk
(c[k])

U(c[k]) c∗k

]]

.

Observe now that the term
∑d

k=1

[
∂U

∂xk
(c[k])

U(c[k]) c∗k

]

is bounded by Λ=γd
∏d

i=1 lnδ Ci.

Hence, choosing ε′= ln(1+ε)
Λ , yields an 1+ε approximation in time T (Λ/ε, m′). �


The above result improves upon that of [1] both w.r.t. d (number of objectives)
and time; the time in [1] (d = 2) is T (Λ′/ε2, m′), where Λ′ = γ2δ+4 ∏2

i=1 lnδ+1 Ci.
Now, let M′ be a multiobjective optimization problem, defined on the same

with M set of feasible solutions Q, but having a vector of objective functions
U = [U1, . . . , Uh]T associating each q ∈ Q with an h-vector U(q). These objective
functions are defined as Ui(q) = Ui(c(q)), 1 ≤ i ≤ h, where Ui : [IR+]d → IR are
non-linear, non-decreasing, quasi-polynomially bounded functions. By working
similarly to Theorem 2, we can show the following (details in [13]).

1 Mean Value Theorem: Let f(x) be differentiable on (a, b) and continuous on [a, b].
Then, there is at least one point c ∈ (a, b) such that f ′(c) = (f(b) − f(a))/(b − a).
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Theorem 3. Let the objective functions of M′ be quasi-polynomially bounded.
If there exists a FPTAS for M with time complexity T (1/ε, m′), then there exists
a FPTAS for M′ with complexity T (Λ/ε, m′), where m′ is the input size of M
and Λ = γd

∏d
i=1 lnδ Ci.

5 Applications

Multiple Constrained (Optimal) Paths. Let ρ = [1 + ε1, 1 + ε2, · · · , 1 +
εd−1, 1]T and let Π be a ρ-cover Π of P (s, t), constructed using the SSMOSP al-
gorithm as implied by Theorem 1. For MCOP, choose p′=argminp∈Π{cd(p); ci(p)
≤ (1+ εi)bi, ∀1 ≤ i ≤ d−1}. This provides a so-called acceptable solution in the
sense of [7] by slightly relaxing the QoS-bounds; that is, the path p′ is at least as
good as the MCOP-optimum and is nearly feasible, violating each QoS-bound
bi, 1 ≤ i ≤ d−1, by at most an 1+εi factor. For MCP, choose a path p′ ∈ Π that
obeys the QoS-bounds, or answer that there is no path p in P (s, t) for which
ci(p) ≤ bi/(1 + εi), ∀1 ≤ i < d. In the latter case, if a feasible solution for MCP
exists, then (by the definition of Π) we can find a solution in Π that is nearly fea-
sible (i.e., it violates each QoS-bound bi, 1 ≤ i ≤ d−1, by at most an 1+εi factor).
By Theorem 1, the required time for both cases is O(ndm

∏d−1
j=1 ( 1

εj
log(nCj)),

which can be reduced to O(ndm
∏d−1

j=1 ( 1
εj

log(min{nCj , bj/cmin
j })) by observ-

ing that it is safe to discard any path p for which cj(p) > (1 + εj)bj for some
1 ≤ j ≤ d − 1 (thus reducing the size of the Πi

v arrays).

Non-Additive Shortest Paths. In this problem (NASP) we are given a di-
graph G = (V, E) and a d-dimensional function vector c : E → [IR+]d associating
each edge e with a vector of attributes c(e) and a path p with a vector of at-
tributes c(p) =

∑
e∈p c(e). We are also given a d-attribute non-decreasing and

non-linear utility function U : [IR+]d → IR. The objective is to find a path p∗,
from a specific source node s to a destination t, that minimizes the objective
function, i.e., p∗ = argminp∈P (s,t)U(c(p)). (It is easy to see that in the case
where U is linear, NASP reduces to the classical single-objective shortest path
problem.) For the general case of non-linear U , it is not difficult to see that
NASP is NP-hard.

Theorem 2 suggests that our FPTAS for MOSP yields an (improved w.r.t.
[1,12]) FPTAS for NASP for the case of quasi-polynomially bounded functions.
We show that we can do better by taking advantage of the fact that our FP-
TAS for MOSP is exact in one dimension (w.l.o.g. the d-th). This allows us to
provide a FPTAS for an even more general (than quasi-polynomial) family of
functions. Specifically, we consider d-attribute functions for which there exist

some constants γ and δ such that
∂U
∂xi

(x)
U(x) ≤ γ 1

xi

∏d
k=1 lnδ xk, 1 ≤ i ≤ d − 1.

The fact that we do not require that this condition holds for the d-th attribute
allows U to be even exponential on xd; e.g., U([x1, x2]T ) = x

polylog(x1)
1 + 2xμ

2 , for
any μ > 0. Note that this does not contradict the inapproximability result in
[1], which applies to functions of the form U([x1, x2]T ) = 2xμ

1 + 2xμ
2 , for μ > 0.
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Our result makes the gap between NASP approximability and inapproximability
even tighter. Let Ci denote the maximum path cost in the i-th dimension, i.e.,
Ci = (n − 1)maxe∈E ci(e). We can show the following (see [13]).

Theorem 4. Let U be a non-decreasing function for which
∂U
∂xi

(x)
U(x) ≤ γ 1

xi

∏d
k=1

lnδ xk, 1 ≤ i ≤ d−1. Then, for any ε > 0, there exists an algorithm that computes
in time O(ndm( log(nCmax)Λ

ε )d−1) an (1+ε)-approximation to the NASP optimum
w.r.t. U(x), where Λ = γ(d − 1)

∏d
i=1 lnδ Ci.

References
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