
Threshold Implementations
Against Side-Channel Attacks and Glitches�

Svetla Nikova1, Christian Rechberger2, and Vincent Rijmen2

1 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Belgium

Svetla.Nikova@esat.kuleuven.be
2 Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
{Christian.Rechberger, Vincent.Rijmen}@iaik.tugraz.at

Abstract. Implementations of cryptographic algorithms are vulnera-
ble to side-channel attacks. Masking techniques are employed to counter
side-channel attacks that are based on multiple measurements of the
same operation on different data. Most currently known techniques re-
quire new random values after every nonlinear operation and they are
not effective in the presence of glitches. We present a new method to
protect implementations. Our method has a higher computational com-
plexity, but requires random values only at the start, and stays effective
in the presence of glitches.

Keywords: Masking, secret sharing, side-channel attacks.

1 Introduction

Several approaches to design circuits that counteract side-channel attacks, have
been published recently. A popular approach is to make the intermediate results
of the cryptographic algorithm being executed independent of the secret key.
This can be done both at the algorithm level [2,5,10,18] and at the gate level
[12,25]. These approaches have in common that they require the use of random
values in order to mask the data that is being processed. A common feature of
all these approaches is that in order to implement nonlinear circuits, they require
the introduction of additional (fresh) random values. Among other reasons, these
additional random values are needed in order to mask the intermediate results
computed by the circuits. Without the fresh random values, these intermediate
results would cause leakage of information. Additionally, it has been shown that
the occurrence of glitches can lead to side-channel information in circuits that

� The work described in this paper has been supported in part by the European
Commission under contract IST-2002-507932 (ECRYPT) and through the Austrian
Science Fund (FWF) under grant number P16110-N04. The information in this paper
is provided as is, and no warranty is given or implied that the information is fit for
any particular purpose. The user thereof uses the information at its sole risk and
liability.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 529–545, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

530 S. Nikova, C. Rechberger, and V. Rijmen

were previously believed to be secure [15,16]. Recently, also other ways to break
gate level masking schemes have been devised [24].

In terms of software implementations, in [19], it is shown that many existing
masking proposals are not secure against higher-order attack. A first proposal
to secure AES software implementations against higher-order attacks is given in
[22]. Gate-level solutions are proposed in [9,20]. Our method addresses this issue
at the circuit level.

In this paper we describe a new approach to mask, based on secret sharing
[3,23], threshold cryptography [8] and multi-party computation protocols [27].
The main contributions of this paper are the following. Firstly, we show circuits
that resist side-channel attacks, even in the presence of glitches. Secondly, we
achieve provable security against first-order side-channel attacks. Thirdly, our
circuits also resist higher-order attacks that are based on a comparison of mean
power consumption.

Compared to traditional masking approaches, our approach uses more random
values during the setup. A related approach was presented in [6]. It requires
new random values for remasking during the computation, which is costly in
many environments. Furthermore, remasking can be effective only if the delays
of all the circuits are fully controlled and if there are no glitches [15,16,18]. An
alternative approach to avoid the generation of fresh random values is presented
in [2]: they derive new masking values from the old ones by applying linear
functions. Another related approach was presented in [11]. Also there, the effect
of glitches is not considered.

We introduce notation and terminology in Section 2. In Sections 3–5 we
present the main contribution of this paper: a new theory for designing im-
plementations that are provably secure against first-order side-channel attacks,
even in the presence of glitches. In Section 6 we illustrate our approach by
discussing an important application: the implementation of the multiplicative
inverse in the field GF(2m). We briefly discuss the resistance of our schemes
against template attacks in Section 7 and conclude with suggestions for future
work in Section 8.

2 Notation and Terminology

We use ⊕,
⊕

to denote addition in the field GF(2m) (XOR) and +,
∑

to denote
addition of real numbers. A vector (x1, x2, . . . , xn) is also denoted by x, and the
reduced vector (x1, x2, . . . , xi−1, xi+1, . . . , xn) by xi. We denote by Pr(t(x) = T)
the probability that the variable t takes value T , i.e. the number of times that
t(x) = T divided by the number of values the input of the circuit can take.

In our approach, the data is not masked by only one random value, but by
two or more. Hence, during setup we need typically more random values than
with traditional approaches. Our approach is inspired by methods used in secret
sharing and threshold computing systems. We say that a variable x is split into
n shares xi if

Threshold Implementations Against Side-Channel Attacks and Glitches 531

x =
n⊕

i=1

xi . (1)

We will only use (n, n) secret sharing schemes, hence all n shares are needed in
order to determine x uniquely. In a perfect (n, n) secret sharing scheme, knowl-
edge of up to n−1 shares doesn’t give any additional information on the value of
x. Observe that a (2, 2) secret sharing scheme corresponds to a traditional mask-
ing scheme. In a (k, t, n) ramp scheme [4], t honest parties are needed to recover
the secret, but more than k malicious parties can already obtain information
about the secret. In this paper, we use (1, n, n) ramp schemes and secret sharing
schemes where the conditional probability distribution Pr(X|X) is uniform and
hence:

∀X : Pr(x = X) = c Pr(x =
n⊕

i=1

Xi), (2)

with c a normalization constant, which ensures that
∑

X Pr(x = X) = 1.

3 Basic Principle

We introduce our approach to implement linear and non-linear transformations
in a secure way. We point out how this idea is related to threshold cryptography
and we give an example that we will use in the remainder of this paper.

3.1 Linear Transformations

Consider a transformation z = L(x) over GF(2m), which is linear over GF(2).
The easiest way to implement a linear transformation securely is to process the
n shares independently. Indeed, if

zi = L(xi), 0 ≤ i < n, (3)

then by definition of a linear transformation, we have

z =
n⊕

i=1

zi =
n⊕

i=1

L(xi) = L

(
n⊕

i=1

xi

)

= L(x) . (4)

Linear transformations taking more inputs can be treated in the same way. For
a linear transformation z = LL(x, y, . . .), we take all fi = LL.

Such an implementation of a linear transformation doesn’t leak information
that can be used in a side-channel attack, even if presence of glitches is taken into
account [15,16]. A typical property of this implementation is that each output
share zi depends only on one input share of each variable (xi, yi, . . .).

3.2 Non-linear Transformations

Our idea is to construct circuits for non-linear transformations having a similar
property as the secure circuits for linear transformations discussed in the previ-
ous section. Intuitively, it is clear that if a share zi doesn’t depend on the value

532 S. Nikova, C. Rechberger, and V. Rijmen

of an input share xi, yi, . . . , then zi can’t be correlated to x, y, . . . Neither will
the computation of zi leak information about the value of x, y, . . . By imposing
additional constraints, we will also ensure that no correlation to the output z
exists. In this section, we introduce two properties. In the next section, we will
show that with functions satisfying these properties, we can construct secure
circuits.

Let z = N(x, y, . . .) denote a transformation over GF(2m) which is not lin-
ear over GF(2). Let f1, f2, . . . , fn be a set of functions satisfying the following
properties:

Property 1 (Non-completeness). Every function is independent of at least one
share of each of the input variables x, y, . . .

z1 = f1(x2, x3, . . . , xn, y2, y3, . . . , yn, . . .) = f1(x1, y1, . . .)
z2 = f2(x1, x3, . . . , xn, y1, y3, . . . , yn, . . .) = f2(x2, y2, . . .)

. . .
zn = fn(x1, x2, . . . , xn−1, y1, y2, . . . , yn−1, . . .) = fn(xn, yn, . . .)

(5)

Property 2 (Correctness). The sum of the output shares gives the desired output.

z =
n⊕

i=1

zi =
n⊕

i=1

fi(. . .) = N(x). (6)

Property 1 and 2 impose a lower bound on the number of shares n.

Theorem 1. The minimum number of shares required to implement a product
of s variables with a realization satisfying Property 1 and 2 is given by

n ≥ 1 + s .

Proof. Multiplying s factors with n shares each can be done in the following
way. Collect in the first output share all terms that don’t contain the first share
of any of the inputs. Collect in the second output share all terms that contain
the first share of any of the inputs, but not the second share of any of the inputs.
Continuing in this way, collect in output share i all the terms containing input
shares 1, 2, . . . and i − 1, but not input share i. Finally, collect in output share
n the terms containing the terms with input shares 1, 2, . . . and n − 1 but not
input share n. Only if n − 1 ≥ s, there are no terms left after step n. ��

It follows that we need at least 3 shares in order to implement a non-linear
function. The construction used in the proof of Theorem 1 can also be used
to implement more general monomials. For instance, the monomial x3y can
be implemented as a product of four variables. Because not all variables are
independent, it might be that there exist other solutions with a lower number
of shares. Hence, we have the following corollary.

Threshold Implementations Against Side-Channel Attacks and Glitches 533

Corollary 1. The maximum number of shares required to implement a function
N of u variables over GF(2m), equals 1 + 2mu.

Proof. Since ∀x ∈ GF(2m) : x2m

= x, it is always possible to describe N as
a multi-variate polynomial of degree at most 2mu. For instance, we can use the
Lagrange interpolation formula. We construct the functions fi for each separate
monomial of N by applying the same method as in the proof of Theorem 1. Sum-
ming up the functions for each monomial, we obtain the functions for N. ��

3.3 Effects on the Power Consumption

By definition, knowledge of up to n − 1 shares of an input variable, doesn’t
reveal any information on this input variable. In a circuit satisfying Property 1,
each share zi of the output z is independent of at least one share of each input
variable. Consequently, we have that the output shares are uncorrelated to the
input variables. Such a circuit has the following advantages:

1. Each intermediate result of the computation is uncorrelated to the input
variables. Hence, no additional random values are needed for masking the
intermediate results of the computation.

2. Even the presence of glitches doesn’t result in the leakage of information,
provided that we can restrict an attacker to look at only one fi at a time. We
will discuss in Section 4.2 what we can do in case an attacker can measure
the consumption of more than one fi simultaneously.

We generalize now condition (2) in the following way:

Pr(x = X, y = Y , . . .) = c Pr(x =
⊕

i

Xi, y =
⊕

i

Yi, . . .). (7)

In words, this means that any bias present in the joint distribution of x and y is
due to biases in the joint distribution of x and y. Under this condition, we can
prove the following.

Theorem 2. In a circuit implementing a set of functions satisfying Property 1
and Property 2, when the input satisfies (7), all the intermediate results are
independent of the inputs x, y, . . . and the output z. Also the power consumption,
or any other characteristic of each individual function fi are independent of x,
y, . . . and z.

The proof is given in Appendix A.

Example 1. Consider the multiplication of two operands in a finite field with
characteristic 2: z = N(x, y) = xy. Let the number of shares n = 3 and define
the 3 functions fi as follows:

z1 = f1(x2, x3, y2, y3) = x2y2 ⊕ x2y3 ⊕ x3y2
z2 = f2(x1, x3, y1, y3) = x3y3 ⊕ x1y3 ⊕ x3y1
z3 = f3(x1, x2, y1, y2) = x1y1 ⊕ x1y2 ⊕ x2y1

(8)

534 S. Nikova, C. Rechberger, and V. Rijmen

The functions fi satisfy Property 1. Furthermore, since

z1 ⊕ z2 ⊕ z3 = (x1 ⊕ x2 ⊕ x3)(y1 ⊕ y2 ⊕ y3) = xy = z, (9)

also Property 2 is satisfied and the functions fi form a secure realization of
N(x, y).

Example 2. The following example illustrates why we need condition (7). Con-
sider the linear transformation z = L(x, y) = x ⊕ y. The realization

zi = f(xi+1, yi+1) = xi+1 ⊕ yi+1 (10)

satisfies Properties 1 and 2. If x = y, then z =
⊕

i zi = 0. Suppose now that
Pr(x = X, y = Y) = Pr(x = X) if X = Y , and zero otherwise. With this
dependency between x and y, we get always zi = 0, ∀i, and each zi is perfectly
correlated to z.

3.4 Relation to Multi-party Computation and Threshold
Cryptography

Multi-Party Computation (MPC) protocols enable a set of players to securely
evaluate an arbitrary function on their private inputs, but some of the players
could be corrupted by an adversary. Consider n players, each player holding an
input xi. The players want to compute a function F (x1, . . . , xn) = z in a secure
manner, which informally implies two things. The adversary cannot interrupt the
computation, hence the computed value is correct. Additionally the adversary
cannot learn any information about the inputs of the honest players, except
of course what can be inferred from the function value. The results can be
easily extended to more general types of functionality e.g. computing a function
F (x1, . . . , xn) = (z1, . . . , zn).

A (t, n) threshold system allows n parties to do secure computations when
at least t parties are honest. We equate each function fi with a party, thus we
have an (n, n) threshold system. Our situation differs from the typical MPC
case, because each input xi is used by several parties (functions). Since each two
functions together (possibly) use all inputs, we have an (1, n, n) ramp scheme.

The functions are corrupt by means of side-channel attacks. A corrupt function
still produces correct results, hence we have passive corruption. In a first-order
attack, the attacker can corrupt at most one function at a time. Theorem 2
shows we achieve perfect security against first-order attacks.

If the attacker can corrupt several functions simultaneously, then the attack
is called a higher-order attack [13,17]. We discuss issues that arise in this setting
in Section 4.2.

4 Glitches

In this section, we first illustrate how glitches can cause leakage of information.
Subsequently, we examine one traditional masking scheme and we show that our
approach leads to improved security.

Threshold Implementations Against Side-Channel Attacks and Glitches 535

CMOS circuits consume very low amounts of power. Consequently, the power
consumption caused by glitches is relatively large compared to the power con-
sumption caused by the “normal” operation of CMOS circuits. Most masking
schemes1 presented in the cryptographic literature don’t take the presence of
glitches into account [5,18,25]. It has been shown that for many of these tra-
ditional masking schemes the presence of glitches or delays in logical circuits
causes side-channel leakage in the power consumption [15,16].

Firstly, consider a simple AND gate, with inputs x, y and output z. Assume
now that a glitch occurs in x, or that input x becomes stable significantly later
than input y. If input y equals 1, then a variation or glitch in input x will cause
the AND gate to temporarily change state, because z = x. However, if y = 0,
then z = 0 and changes at input x will not affect the output. Consequently, the
power consumption caused by glitches in input x depends on the value of input
y. In the next subsection, we will study the effect of glitches in a masked AND
gate.

4.1 Glitches in a Traditionally Masked AND-Gate

We consider a typical implementation of a masked AND gate [25], illustrated in
Figure 1. To make the analysis easier, we assume here that XOR gates exist as
basic primitives: we don’t decompose them into smaller building blocks.

The circuit takes 5 inputs: the two random masks a, b, the two masked inputs
x̃ = a⊕x, ỹ = b⊕y, and a new random value c to mask the output z = x AND y.
The circuit outputs the output mask and the masked output, which is computed
as follows:

z̃ = x̃ỹ ⊕ (bx̃ ⊕ (aỹ ⊕ (ab ⊕ c))) . (11)

Note that the order in which the XOR gates are evaluated, is not arbitrary. If
the circuit would compute at any time the sum of any of the products, then
there would be leakage. For instance, x̃ỹ ⊕ b · x̃ = yx̃, which leaks information
about y. This is one of the reasons why the new random value c is introduced
in the beginning and why all the products are added one by one to it.

Consider now what happens if a glitch occurs in input x̃. The propagation of
this glitch will depend on the values of b and ỹ. The power consumption caused
by the glitch is related to the number of gates that “see” the glitch. It is clear
from Table 1 that the energy consumption depends on the values of b and ỹ.
Since the mean power consumption is different for y = 0 and y = 1, the power
consumption leaks information on the value of y. Similar results can be obtained
by analyzing the effect of a glitch in one of the other inputs, and the cases where
some of the inputs arrive delayed with respect to the other inputs [15,16].

We conclude that switching characteristics of logical circuits may invalidate
some of the assumptions commonly made in proofs of security against side-
channel attacks. A slightly frustrating aspect of the findings in [15] is that it
remains unclear how to construct security proofs that do take into account the

1 In this section we use the terms “mask” and “masked gate” in order to stay close to
the original description of the schemes.

536 S. Nikova, C. Rechberger, and V. Rijmen

� �� �� �� �

� �

� �

� �

� �

•

cba�ya�xb�y
�x

�z

Fig. 1. Glitch propagation through a masked AND gate

Table 1. Number of affected gates in the circuit of Figure 1, when a glitch occurs in
input �x

b �y AND XOR
0 0 0 0
0 1 1 1
1 0 1 2
1 1 2 2

presence of glitches. In order to avoid exhaustive analysis of all the possible
combinations of signal arrival times, it seems beneficial to use a circuit that has
Property 1.

4.2 Glitches in a Shared AND-Gate

The realization (8) can be used to implement multiplication in a finite field
with characteristic two. Multiplication in GF(2) corresponds to the logical AND
operation. Hence, the circuit can be used as a masked AND gate in order to
implement arbitrary Boolean functions.

Theorem 3. If the distributions of the input shares x, y satisfy (7), then the
mean power consumption of a circuit implementing realization (8) is independent
of x, y and z, even in the presence of glitches or the delayed arrival of some
inputs.

Proof. Theorem 2 states that all characteristics of the circuits implementing one
of the functions fi are independent of x, y, and z. Since no assumption is made on
the behavior of the circuit and/or the presence of glitches, the theorem also holds
in this case. Consequently, also the mean power consumption of each individual
circuit is independent of x, y, z, even in the presence of glitches. Since the mean

Threshold Implementations Against Side-Channel Attacks and Glitches 537

power consumption of the whole circuit equals the sum of the mean power con-
sumptions of the individual functions, it is also independent of x, y, z. ��

Theorem 3 only applies to the mean power consumption of the circuit. We don’t
achieve indistinguishable distributions of the power consumption as demanded
in [5]. Nevertheless, since the mean power consumption of the circuit is always
the same, it resists the type of higher-order attacks that are based on the mean
value of the addition or subtraction of the power consumption traces of the
different circuits [17]. Although one can theoretically devise side-channel attacks
that don’t require a difference in the mean power consumption, such attacks
have not been demonstrated in practice yet.

If the used logic style prevents the occurrence of glitches, then not only the
mean power consumption, but also the variance are independent of the values of
x, y, z. This can be shown by simply going through all possible state transitions.

5 Implementing Arbitrary Functions

Theorem 1 shows that implementing more complicated functions typically leads
to an increase in the number of shares required, as well as an increase in the
number of gates required. As a rough rule of thumb, going from 1 share to n
shares will increase the number of gates with a factor n2. This should’t come as
a big surprise, because introducing resistance gainst power attacks always comes
at a price. For instance, in [20], the authors report an increase in area with a
factor 5, for a decrease in performance with factor 0.6. The software solution
proposed in [22] doubles the code size, multiplies the RAM requirements with
a factor of 20 and decreases the performance with a factor 50. Other proposals
add more complexity for the same security level. Nevertheless, for functions with
large numbers of inputs, it is better to adopt pipelining.

Pipelining is often used to speed up hardware implementations. In order to
allow large clock frequencies, combinatorial logic circuits shouldn’t be many
levels deep. Pipelining is an implementation technique where a logical circuit
with l levels is divided into two circuits with l/2 levels, separated by a register,
which stores the intermediate result of the first stage until the active phase of the
next clock cycle. As an example, the AES implementation of [26] uses a pipeline
with two stages to implement the S-boxes.

Dividing a combinatorial circuit into separate pipelining stages, can also re-
duce the number of shares and the number of gates required for a secure imple-
mentation. By definition, a register is insensible to glitches. The registers storing
the intermediate results at the end of stage bound the propagation of glitches
and delays. When considered individually, each of the pipeline stages represents
a mathematical function that is less complex than the full circuit: the nonlinear
degree will be lower and/or the number of monomials that needs to be summed.
This will typically reduced the required number of shares and gates.

If the mean power consumption of each pipeline stage is constant, then also
the mean of the total power consumption is constant, and the circuit is secure
against first-order differential power attacks. Note that condition (7) needs now

538 S. Nikova, C. Rechberger, and V. Rijmen

to be fulfilled at the input of each pipeline stage in order for Theorem 3 to hold.
Since the input of the next pipeline stage is formed by the output of the previous
pipeline stage, we can achieve this goal by demanding that the circuits satisfy
an additional balance property.

Property 3 (Balance). A realization of z = N(x, y, . . .) is balanced if for all
distributions of the inputs x, y, . . . , and for all input share distributions satisfying
(7) the conditional probability

Pr(z = Z|z =
⊕

i

Zi)

is constant.

If the function N is invertible, then Property 3 is satisfied by invertible real-
izations. In an invertible realization of z = N(x), every vector z is reached for
exactly one input vector x. This condition is stricter than the requirement that
every value z is reached for exactly one input x.

Example 3. The realization (8) of the multiplication in Example 1 doesn’t have
Property 3. In fact, there is no realization for multiplication satisfying this prop-
erty with 3 shares only. The following realization with 4 shares satisfies Prop-
erty 1, 2 and 3:

z1 = (x3 ⊕ x4)(y2 ⊕ y3) ⊕ y2 ⊕ y3 ⊕ y4 ⊕ x2 ⊕ x3 ⊕ x4
z2 = (x1 ⊕ x3)(y1 ⊕ y4) ⊕ y1 ⊕ y3 ⊕ y4 ⊕ x1 ⊕ x3 ⊕ x4
z3 = (x2 ⊕ x4)(y1 ⊕ y4) ⊕ y2 ⊕ x2
z4 = (x1 ⊕ x2)(y2 ⊕ y3) ⊕ y1 ⊕ x1.

(12)

Property 1 and 2 can be verified with pen and paper. Property 3 was verified by
direct computation of all conditional probabilities.

6 Example: Inversion over Finite Fields

Finite field inversion is an important map, for instance because of its use in the
AES. As illustration, we study here inversion in GF(16).

Firstly, let GF(4) be represented as GF(2)[t]/(t2 + t+1). Operations in GF(4)
then correspond to:

(at ⊕ b) ⊕ (ct ⊕ d) = (a ⊕ c)t ⊕ (b ⊕ d)
(at ⊕ b) × (ct ⊕ d) = (ad ⊕ bc ⊕ ac)t ⊕ (bd ⊕ ac)
(at ⊕ b)−1 = at ⊕ (a ⊕ b)
(at ⊕ b)3 = ab ⊕ a ⊕ b.

(13)

Secondly, let GF(16) be represented by GF(4)[s]/(s2⊕s⊕α). Inversion in GF(16)
then becomes:

(as ⊕ b)−1 = a(a2α ⊕ ab ⊕ b2)−1s ⊕ (a ⊕ b)(a2α ⊕ ab ⊕ b2)−1.

Threshold Implementations Against Side-Channel Attacks and Glitches 539

Defining c = a ⊕ b, we obtain:

(as ⊕ (c ⊕ a))−1 = a(a2α ⊕ ac ⊕ c2)−1s ⊕ c(a2α ⊕ ac ⊕ c2)−1

= (a2α2 ⊕ a3c2 ⊕ ac)s ⊕ (acα2 ⊕ a2c3 ⊕ c2). (14)

Combining (13) with (14) and choosing α = t, we obtain

((xt ⊕ y)s ⊕ (zt ⊕ v))−1 = (ft ⊕ g)s ⊕ (ht ⊕ k),

where f , g, h, and k are Boolean functions defined as follows:

f = x ⊕ y ⊕ xv ⊕ xyz

g = y ⊕ xv ⊕ yz ⊕ xyz ⊕ xyv

h = y ⊕ xv ⊕ yv ⊕ xzv

k = z ⊕ v ⊕ xz ⊕ yz ⊕ yv ⊕ xzv ⊕ yzv.

Theorem 1 predicts we need at least 4 shares to implement these functions. Ex-
haustive search revealed that no realization with 4 shares can satisfy Property 3.
We give a realization with 5 shares for f, g, h and k in Appendix B.

7 Considering Template Attacks

In the previous sections of this paper, we ignored the possibility of simple power
attacks [14]. We assumed that an attacker can’t use a single measurement to
obtain a meaningful signal. Provided that a few basic rules are followed during
the implementation, this is usually a realistic assumption, which is commonly
made when discussing masking schemes. However, more sophisticated methods
have been developed since then.

7.1 Template Attacks

Template attacks were introduced in [7], as an extension of simple power at-
tacks. A template attack starts with a profiling phase, during which the attacker
has at his disposal a freely programmable device which is identical to the tar-
geted device. This device is used to build a model (templates) of its state while
performing different operations on (parts of) the secret key. Afterwards, in the
hypothesis-testing phase, these templates are used to classify the single trace
of the targeted device which in turn reduces the entropy of the key. In order
to improve classification results, multivariate instead of univariate statistics is
employed to yield practical classification results.

Recent advances in template attacks highlight the importance of this topic
in the context of masking schemes [1]. These results are summarized as follows.
Using single-bit templates even masked implementations can be broken. The
new, but in many practical circumstances reasonable setting is that an attacker
can get hold of a device with a biased RNG which is generating the used masks.
Using templates generated from such a card, it is shown that even devices with
perfectly unbiased masks can be attacked.

540 S. Nikova, C. Rechberger, and V. Rijmen

7.2 Resistance Against Template Attacks

Our proposal to protect implementations does not prevent this type of attack if
a biased RNG is in the hands of an attacker. However it makes it more difficult
to implement the attack, because the parallel computation of the n shares lowers
the signal-to-noise ratio. For example, consider a Hamming weight based leakage
model. Let w denote the bit-width of a share. Ignoring noise, the relative leakage
l is given by:

l =
nw − log2(

∑nw
i=0

(nw
i)2

2n·w)
nw

. (15)

Since we assume that all shares are uncorrelated, the number of shares n effec-
tively multiplies the bit-width. As a consequence the number of samples needed
in the profiling step is greatly increased. If this number of samples can’t be taken,
then the classification results will get worse. In turn, the gain for the attacker,
namely the reduction of the key entropy, is less.

8 Conclusions and Open Problems

We presented a new method to design implementations that counteract side-
channel attacks. The big advantages are that we don’t need fresh random val-
ues after every nonlinear transformation and that we achieve provable security
against first order attacks, even in the presence of glitches. The scheme also re-
sists certain types of higher-order attacks. To illustrate the design method, we
applied it to the computation of the multiplicative inverse over GF(24).

Disadvantages are the increased data storage requirements due to the higher
number of shares, and the corresponding increase in computational complexity.

Investigating whether other attacks are feasible and how to protect against
them is proposed as topic of further research. Future work also includes the
design of more complicated circuits. Clearly, implementing more complex circuits
in one go, will increase the complexity of our circuits dramatically. We propose
to employ techniques from proactive secret sharing schemes [21] in order to
reduce the circuit complexity. This has the added benefit to limit an attacker’s
possibilities even further, but has as disadvantage that now fresh random values
are required.

References

1. Dakshi Agrawal, Josyula R. Rao, Pankaj Rohatgi, Kai Schramm, “Templates as
Master Keys”, J.R. Rao, B. Sunar, Eds., CHES 2005, LNCS 3659, Springer-Verlag,
2005, pp. 15–29.

2. Mehdi-Laurent Akkar, Christophe Giraud, “An implementation of DES and AES,
secure against some attacks”, Ç Koç, D. Naccache, Ch. Paar, Eds., CHES 2001,
LNCS 2162, Springer-Verlag, 2001, pp. 309–318.

3. George Blakley, Safeguarding cryptographic keys, AFIPS 48, 1979, pp. 313-317.

Threshold Implementations Against Side-Channel Attacks and Glitches 541

4. George Blakley, Catherine Meadows, “Security of ramp schemes”, CRYPTO ’84,
LNCS 196, Springer-Verlag, 1984, pp. 242–268.

5. Johannes Blömer, Jorge Guajardo Merchan, Volker Krummel, “Provably Secure
Masking of AES”, H. Handschuh, M. Anwar Hasan, Eds., Selected Areas in Cryp-
tography (SAC 2004), LNCS 3357, Springer-Verlag, 2004, pp. 69-83.

6. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, Pankaj Rohatgi, “Towards Sound
Approaches to Counteract Power- Analysis Attacks” CRYPTO ’99, LNCS 1666,
Springer-Verlag, 1999, pp. 398-412.

7. Suresh Chari, Josyula R. Rao, Pankaj Rohatgi, “Template Attacks”, B. Kaliski, Ç
Koç, Ch. Paar, Eds., CHES 2002, LNCS 2523, Springer-Verlag, 2003, pp. 13–28.

8. Yvo Desmedt, “Some recent research aspects of threshold cryptography”, E.
Okamoto, G. Davida, M. Mambo, Eds., Information Security, LNCS 1396, Springer-
Verlag, 1997, pp. 158–173.

9. Wieland Fischer, Berndt M. Gammel, “Masking at Gate Level in the Presence
of Glitches,” J.R. Rao, B. Sunar, Eds., CHES 2005, LNCS 3659, Springer-Verlag,
2005, pp. 187–200.

10. Jovan D. Golić, Christophe Tymen, “Multiplicative masking and power analysis”,
B. Kaliski, Ç Koç, Ch. Paar, Eds., CHES 2002, LNCS 2523, Springer-Verlag, 2003,
pp. 198–212.

11. Louis Goubin, Jacques Patarin, “DES and differential power analysis – the dupli-
cation method”, Ç. Koç, Ch. Paar, Eds., CHES ’99, LNCS 1717, Springer-Verlag,
1999, pp. 158–172.

12. Yuval Ishai, Amit Sahai, David Wagner, “Private circuits: securing hardware
against probing attacks”, D. Boneh, Ed., CRYPTO 2003, LNCS 2729, Springer-
Verlag, 2003, pp. 463–481.

13. Marc Joye, Pascal Paillier, Berry Schoenmakers, “On second-order differential
power analysis,” J.R. Rao, B. Sunar, Eds., CHES 2005, LNCS 3659, Springer-
Verlag, 2005, pp. 293–308.

14. Paul Kocher, Joshua Jaffe, Benjamin Jun, “Differential Power Analysis”, M.
Wiener, Ed., CRYPTO ’99, LNCS 1666, Springer-Verlag, 1999, pp. 388–397.

15. Stefan Mangard, Thomas Popp, Berndt M. Gammel, “Side-channel leakage of
masked CMOS gates”, A.J. Menezes, Ed., CT-RSA 2005, LNCS 3376, Springer-
Verlag, 2005, pp. 351–365.

16. Stefan Mangard, Norbert Pramstaller, Elisabeth Oswald, “Successfully attacking
masked AES hardware implementations,” J.R. Rao, B. Sunar, Eds., CHES 2005,
LNCS 3659, Springer-Verlag, 2005, pp. 157–171.

17. Thomas S. Messerges, “Using second-order power analysis to attack DPA resistant
software,” Ç.K. Koç, Ch. Paar, Eds., CHES 2000, LNCS 1965, Springer-Verlag,
2000, pp. 238–251.

18. Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, Vincent Rijmen, “A Side-
Channel Analysis Resistant Description of the AES S-box”, FSE 2005, LNCS 3557,
Springer-Verlag, pp. 413–423.

19. Elisabeth Oswald, Stefan Mangard, Christoph Herbst, Stefan Tillich, “Practical
Second-Order DPA Attacks for Masked Smart Card Implementations of Block
Ciphers”, CT-RSA 2006, LNCS 3860, Springer-Verlag, pp. 192–207.

20. Thomas Popp, Stefan Mangard, “Masked dual-rail pre-charge logic: DPA-resistance
without routing constraints,” J.R. Rao, B. Sunar, Eds., CHES 2005, LNCS 3659,
Springer-Verlag, 2005, pp. 172–186.

21. Rafail Ostrovsky, Moti Yung, “How to withstand mobile virus attacks”, Proc. 10th
ACM Symposium on Principles of Distributed Computing (PODC), 1991, pp. 51-59.

542 S. Nikova, C. Rechberger, and V. Rijmen

22. Kai Schramm, Christof Paar, “Higher Order Masking of the AES”, CT-RSA 2006,
LNCS 3860, Springer-Verlag, pp. 208–225.

23. Adi Shamir, “How to share a secret”, Commun. ACM 22, 1979, pp. 612-613.
24. Kris Tiri, Patrick Schaumont, “Changing the Odds against Masked Logic”, Selected

Areas of Cryptagraphy 2006 (SAC), LNCS, Springer-Verlag, to appear.
25. Elena Trichina, Tymur Korkishko, “Small size, low power, side channel immune

AES coprocessor design and synthesis results”, Proc. fourth conference on the Ad-
vanced Encryption Standard (AES4), LNCS 3373, Springer-Verlag, 2005, pp. 113–
127.

26. Johannes Wolkerstorfer, Elisabeth Oswald, Mario Lamberger, “An ASIC imple-
mentation of the AES S-boxes”, B. Preneel, Ed., CT-RSA 2002, LNCS 2271,
Springer-Verlag, 2002, pp. 67–78.

27. Andrew Yao, “Protocols for secure computation”, FOCS’82, 1982, pp. 160-164.

A Proof of Theorem 2

For sake of readability, we give the proof for the case of two input variables. The
general case follows straightforwardly.

Let t(x1, y1) be any intermediate result or any physical characteristic of the
circuit implementing f1. The only assumption we make about t is that it doesn’t
depend on the values of x1 and y1. Let δ(X, Y) be the function that is equal to
1 if X = Y and 0 otherwise. Let A, A1 denote the following sets:

A = {(X, Y) | t(X1, Y 1) = T }
A1 = {(X1, Y 1) | t(X1, Y 1) = T } .

and let B denote the set of possible values for (x1, y1). Since t doesn’t depend
on the values of x1 and y1, we have A = B × A1. By definition and using (2):

Pr(t = T) =
∑

X∈A

Pr(x = X) =
∑

(X,Y)∈A

c Pr(x =
⊕

i

Xi, y =
⊕

i

Yi)

Splitting up the summation results in

Pr(t = T) =
∑

(X1,Y 1)∈A1

c
∑

(X1,Y1)∈B

Pr(x =
⊕

i

Xi, y =
⊕

i

Yi) .

Since the shares X2, . . . , Xn, Y2, . . . , Yn give no information on X, Y , the latter
summation equals 1 and hence:

Pr(t = T) =
∑

(X1,Y 1)∈A1

c (16)

Similarly, we obtain:

Pr(t = T, x = X, y = Y)

=
∑

(X1,Y 1)∈A1

Pr(x = (X ⊕
n⊕

i=2

Xi, X1), y = (Y ⊕
n⊕

i=2

Yi, Y 1))

=
∑

(X1,Y 1)∈A1

c Pr(x = X, y = Y)

Threshold Implementations Against Side-Channel Attacks and Glitches 543

Using (16), we obtain:

Pr(t = T, x = X, y = Y) = Pr(t = T) Pr(x = X, y = Y).

Hence t is independent of x and y. Let C(Z) denote the set

C(Z) = {(X, Y) | N(X, Y) = Z} = {(X, Y) | δ(N(X, Y), Z) = 1} .

Then, we can write for z:

Pr(z = Z) =
∑

(X,Y)∈C(Z)

Pr(x = X, y = Y) .

Pr(t = T, z = Z)

=
∑

(X,X)∈A

δ(N(
⊕

i

Xi,
⊕

i

Yi), Z) Pr(x = X, y = Y)

=
∑

(X1,X1)∈A1

∑

(X1,Y1)∈B

δ(N(
⊕

i

Xi,
⊕

i

Yi), Z)c Pr(x =
⊕

i

Xi, y =
⊕

i

Yi) .

Since the shares X2, . . . , Xn, Y2, . . . , Yn give no information on X ,Y , we can
rewrite this as follows:

Pr(t = T, z = Z) =
∑

(X1,Y 1)∈A1

c
∑

(X,Y)∈C(Z)

Pr(x = X, y = Y)

= Pr(t = T) Pr(z = Z) .

B Realization of Inversion in GF(16) with 5 Shares for
f, g, h, k

f1 = x2 ⊕ y2 ⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

f2 = x3 ⊕ y3 ⊕ x1(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1

⊕ x1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5) ⊕ y1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5) ⊕ x1y1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(y3 ⊕ y4 ⊕ y5)

⊕ y1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1z1

f3 = x4 ⊕ y4 ⊕ x2v1 ⊕ x1v2 ⊕ x1y1z2 ⊕ x1y2z1 ⊕ x2y1z1 ⊕ x1y2z2 ⊕ x2y1z2 ⊕ x2y2z1

⊕ x1y2z4 ⊕ x2y1z4 ⊕ x1y4z2 ⊕ x2y4z1 ⊕ x4y1z2 ⊕ x4y2z1 ⊕ x1y2z5 ⊕ x2y1z5

⊕ x1y5z2 ⊕ x2y5z1 ⊕ x5y1z2 ⊕ x5y2z1

f4 = x5 ⊕ y5 ⊕ x1y2z3 ⊕ x1y3z2 ⊕ x2y1z3 ⊕ x2y3z1 ⊕ x3y1z2 ⊕ x3y2z1

f5 = x1 ⊕ y1

544 S. Nikova, C. Rechberger, and V. Rijmen

g1 = (x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5) ⊕ y2

g2 = x1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5) ⊕ y1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5) ⊕ x1y1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(y3 ⊕ y4 ⊕ y5)

⊕ y1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1z1 ⊕ x1(y3 ⊕ y4 ⊕ y5)(v3 ⊕ v4 ⊕ v5)

⊕ y1(x3 ⊕ x4 ⊕ x5)(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5)

⊕ x1y1(v3 ⊕ v4 ⊕ v5) ⊕ x1v1(y3 ⊕ y4 ⊕ y5) ⊕ y1v1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1v1

⊕ x1(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1 ⊕ y1(z3 ⊕ z4 ⊕ z5)

⊕ z1(y3 ⊕ y4 ⊕ y5) ⊕ y1z1 ⊕ y3

g3 = x1y1z2 ⊕ x1y2z1 ⊕ x2y1z1 ⊕ x1y2z2 ⊕ x2y1z2 ⊕ x2y2z1 ⊕ x1y2z4 ⊕ x2y1z4

⊕ x1y4z2 ⊕ x2y4z1 ⊕ x4y1z2 ⊕ x4y2z1 ⊕ x1y2z5 ⊕ x2y1z5 ⊕ x1y5z2 ⊕ x2y5z1

⊕ x5y1z2 ⊕ x5y2z1 ⊕ x1y1v2 ⊕ x1y2v1 ⊕ x2y1v1 ⊕ x1y2v2 ⊕ x2y1v2 ⊕ x2y2v1

⊕ x1y2v4 ⊕ x2y1v4 ⊕ x1y4v2 ⊕ x2y4v1 ⊕ x4y1v2 ⊕ x4y2v1 ⊕ x1y2v5 ⊕ x2y1v5

⊕ x1y5v2 ⊕ x2y5v1 ⊕ x5y1v2 ⊕ x5y2v1 ⊕ x2v1 ⊕ x1v2 ⊕ y2z1 ⊕ y1z2 ⊕ y4

g4 = x1y2z3 ⊕ x1y3z2 ⊕ x2y1z3 ⊕ x2y3z1 ⊕ x3y1z2 ⊕ x3y2z1 ⊕ x1y2v3 ⊕ x1y3v2

⊕ x2y1v3 ⊕ x2y3v1 ⊕ x3y1v2 ⊕ x3y2v1 ⊕ y5

g5 = y1

h1 = (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)(z2 ⊕ z3 ⊕ z4 ⊕ z5) ⊕ y3 ⊕ v2

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

h2 = x1(v3 ⊕ v4 ⊕ v5)(z3 ⊕ z4 ⊕ z5) ⊕ v1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(v3 ⊕ v4 ⊕ v5) ⊕ x1v1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(v3 ⊕ v4 ⊕ v5)

⊕ v1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1z1 ⊕ x1(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1

⊕ y1(v3 ⊕ v4 ⊕ v5) ⊕ v1(y3 ⊕ y4 ⊕ y5) ⊕ y1v1 ⊕ y4 ⊕ v1 ⊕ v5

h3 = x1v1z2 ⊕ x1v2z1 ⊕ x2v1z1 ⊕ x1v2z2 ⊕ x2v1z2 ⊕ x2v2z1 ⊕ x1v2z4 ⊕ x2v1z4

⊕ x1v4z2 ⊕ x2v4z1 ⊕ x4v1z2 ⊕ x4v2z1 ⊕ x1v2z5 ⊕ x2v1z5 ⊕ x1v5z2 ⊕ x2v5z1

⊕ x5v1z2 ⊕ x5v2z1 ⊕ x2v1 ⊕ x1v2 ⊕ y2v1 ⊕ y1v2 ⊕ y5 ⊕ v1 ⊕ v2 ⊕ v5

h4 = x1v2z3 ⊕ x1v3z2 ⊕ x2v1z3 ⊕ x2v3z1 ⊕ x3v1z2 ⊕ x3v2z1 ⊕ y1 ⊕ v1

h5 = y2 ⊕ v1

k1 = (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (v2 ⊕ v3 ⊕ v4 ⊕ v5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(v2 ⊕ v3 ⊕ v4 ⊕ v5) ⊕ z2 ⊕ v2

Threshold Implementations Against Side-Channel Attacks and Glitches 545

k2 = x1(v3 ⊕ v4 ⊕ v5)(z3 ⊕ z4 ⊕ z5) ⊕ v1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(v3 ⊕ v4 ⊕ v5) ⊕ x1v1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(v3 ⊕ v4 ⊕ v5)

⊕ v1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1z1 ⊕ v1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5)

⊕ y1(v3 ⊕ v4 ⊕ v5)(z3 ⊕ z4 ⊕ z5) ⊕ z1(v3 ⊕ v4 ⊕ v5)(y3 ⊕ y4 ⊕ y5)

⊕ v1y1(z3 ⊕ z4 ⊕ z5) ⊕ v1z1(y3 ⊕ y4 ⊕ y5) ⊕ y1z1(v3 ⊕ v4 ⊕ v5) ⊕ v1y1z1

⊕ x1(z3 ⊕ z4 ⊕ z5) ⊕ z1(x3 ⊕ x4 ⊕ x5) ⊕ x1z1 ⊕ y1(z3 ⊕ z4 ⊕ z5)

⊕ z1(y3 ⊕ y4 ⊕ y5) ⊕ y1z1 ⊕ y1(v3 ⊕ v4 ⊕ v5) ⊕ v1(y3 ⊕ y4 ⊕ y5) ⊕ y1v1

⊕ z3 ⊕ v3

k3 = x1v1z2 ⊕ x1v2z1 ⊕ x2v1z1 ⊕ x1v2z2 ⊕ x2v1z2 ⊕ x2v2z1 ⊕ x1v2z4 ⊕ x2v1z4

⊕ x1v4z2 ⊕ x2v4z1 ⊕ x4v1z2 ⊕ x4v2z1 ⊕ x1v2z5 ⊕ x2v1z5 ⊕ x1v5z2 ⊕ x2v5z1

⊕ x5v1z2 ⊕ x5v2z1 ⊕ v1y1z2 ⊕ v1y2z1 ⊕ v2y1z1 ⊕ v1y2z2 ⊕ v2y1z2 ⊕ v2y2z1

⊕ v1y2z4 ⊕ v2y1z4 ⊕ v1y4z2 ⊕ v2y4z1 ⊕ v4y1z2 ⊕ v4y2z1 ⊕ v1y2z5 ⊕ v2y1z5

⊕ v1y5z2 ⊕ v2y5z1 ⊕ v5y1z2 ⊕ v5y2z1 ⊕ x2z1 ⊕ x1z2 ⊕ y2z1 ⊕ y1z2 ⊕ y2v1

⊕ y1v2 ⊕ z4 ⊕ v4

k4 = x1v2z3 ⊕ x1v3z2 ⊕ x2v1z3 ⊕ x2v3z1 ⊕ x3v1z2 ⊕ x3v2z1 ⊕ v1y2z3 ⊕ v1y3z2

⊕ v2y1z3 ⊕ v2y3z1 ⊕ v3y1z2 ⊕ v3y2z1 ⊕ z5 ⊕ v5

k5 = z1 ⊕ v1

	Introduction
	Notation and Terminology
	Basic Principle
	Linear Transformations
	Non-linear Transformations
	Effects on the Power Consumption
	Relation to Multi-party Computation and Threshold Cryptography

	Glitches
	Glitches in a Traditionally Masked AND-Gate
	Glitches in a Shared AND-Gate

	Implementing Arbitrary Functions
	Example: Inversion over Finite Fields
	Considering Template Attacks
	Template Attacks
	Resistance Against Template Attacks

	Conclusions and Open Problems
	Proof of Theorem 2
	Realization of Inversion in GF(16) with 5 Shares for f,g,h,k

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

