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Preface

It is our great pleasure to welcome you to the Eighth International Conference
on Information and Communications Security (ICICS 2006), held in Raleigh,
North Carolina, USA, December 4–7, 2006. The ICICS conference series is an
established forum that brings together researchers and scholars involved in mul-
tiple disciplines of Information and Communications Security in order to foster
exchange of ideas. The past seven ICICS conferences were held in Beijing, China
(ICICS 1997); Sydney, Australia (ICICS 1999); Xi’an China (ICICS 2001); Sin-
gapore (ICICS 2002); Hohhot City, China (ICICS 2003); Malaga, Spain (ICICS
2004); and Beijing, China (ICICS 2005). The conference proceedings of the past
seven events have been published by Springer in the Lecture Notes in Computer
Science series, in LNCS 1334, LNCS 1726, LNCS 2229, LNCS 2513, LNCS 2836,
LNCS 3269, and LNCS 3783, respectively.

This year we received a total of 119 submissions on various aspects of ad-
hoc and sensor network security. The Program Committee selected 22 regular
papers and 17 short papers that cover a variety of topics, including security
protocols, applied cryptography and cryptanalysis, access control in distributed
systems, privacy, malicious code, network and systems security, and security
implementations.

Putting together ICICS 2006 was a team effort. First of all, we would like to
thank the authors of every paper, whether accepted or not, for submitting their
papers to ICICS 2006. We would like to express our gratitude to the Program
Committee members and the external reviewers, who worked very hard in re-
viewing the papers and providing suggestions for their improvements. We would
also like to thank the Organizing Committee members, who did a wonderful job
in organizing the conference. We would like to thank our sponsor, North Carolina
State University (NCSU)/Duke University Center for Advanced Computing and
Communications (CACC), for supporting the conference. Finally, we would like
to express our gratitude to the US Army Research Office and the US National
Science Foundation for the generous financial support of this conference. Their
grants provided travel supports for graduate students to attend the conference.

We hope that you will find these proceedings interesting and thought-
provoking.

September 2006 Peng Ning and Sihan Qing
Program Chairs, ICICS 2006
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Pedro Garćıa-Teodoro
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Strong and Robust RFID Authentication
Enabling Perfect Ownership Transfer

Chae Hoon Lim and Taekyoung Kwon�

Dept. of Computer Engineering, Sejong University, Seoul 143-747, Korea
{tkwon, chlim}@sejong.ac.kr

Abstract. RFID technology arouses great interests from both its advo-
cates and opponents because of the promising but privacy-threatening
nature of low-cost RFID tags. A main privacy concern in RFID systems
results from clandestine scanning through which an adversary could con-
duct silent tracking and inventorying of persons carrying tagged objects.
Thus, the most important security requirement in designing RFID pro-
tocols is to ensure untraceability of RFID tags by unauthorized parties
(even with knowledge of a tag secret due to no physical security of low-
cost RFID tags). Previous work in this direction mainly focuses on back-
ward untraceability, requiring that compromise of a tag secret should not
help identify the tag from past communication transcripts. However, in
this paper, we argue that forward untraceability, i.e., untraceability of
future events even with knowledge of a current tag secret, should be con-
sidered as an equally or even more important security property in RFID
protocol designs. Furthermore, RFID tags may often change hands dur-
ing their lifetime and thus the problem of tag ownership transfer should
be dealt with as another key issue in RFID privacy problems; once owner-
ship of a tag is transferred to another party, the old owner should not be
able to read the tag any more. It is rather obvious that complete transfer
of tag ownership is possible only if some degree of forward untraceability
is provided. We propose a strong and robust RFID authentication pro-
tocol satisfying both forward and backward untraceability and enabling
complete transfer of tag ownership.

1 Introduction

Radio Frequency Identification (RFID) is an automated identification technol-
ogy in which a small transponder, attached to a real world object, receives and
responds to radio-frequency queries from a transceiver. The transponder is usu-
ally called an RFID tag while the transceiver is an RFID reader. The RFID
tag incorporates silicon chips with radio antennas for electronic operations and
wireless data transmissions. It tends to have extremely limited capabilities in
every aspect of computation, communication, and storage for economic viabil-
ity. Passive tags are not equipped with an internal power source, contrary to
� Research by the 2nd author was supported by grant No. R01-2005-000-11261-0 from

Korea Science and Engineering Foundation in Ministry of Science & Technology.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 1–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 C.H. Lim and T. Kwon

semi-passive or active tags with built-in batteries. They store authentic data
and respond for identification and authentication, with neither physical nor vi-
sual contact. The RFID reader communicates with tags and cooperates with a
backend database which contains information on the tagged objects.

In fact, this technology is not fundamentally new; rather it has been around
since the late 1960s and is being used in the public domain [11]. Recently, RFID
has aroused a great interest from various communities due to the promising
nature of small low-cost RFID tags in future smart applications. Rapid RFID
progress has already been made in retail sectors, such as Wal-Mart and Procter
& Gamble, as well as in government sectors, such as U.S. DoD and Postal Ser-
vice [14]. The U.S. government also has mandated adoption by Oct 26, 2006 of
e-passports (biometrically-enabled RFID tags) by the 27 countries in the Visa-
Waiver Program [16]. It is widely believed that RFID tags will more rapidly
spread over and its cost will go down fast in the near future.

RFID systems however raise a lot of privacy concerns, mainly due to the
possibility of clandestine tracking and inventorying of tags [27,30,24,5,15,16,14].
For example, adversarial parties equipped with commodity RFID readers may
trace a person carrying a tagged item by recognizing the same tag in differ-
ent places at different times. This traceability problem is considered as the
biggest security challenge to general acceptability and wide-scale deployment
of RFID technology. Actually the boycott movement from those fearing pri-
vacy infringement made companies like Benetton and Gillette drop or recon-
sider their RFID-tagging plans [7,29]. Fortunately, a number of studies have
also been done for handling such security and privacy issues in RFID systems
[17,24,10,13,19,4,8,23]. The approaches taken in these studies vary, from schemes
based on weak but realistic models to strong cryptographic techniques, and each
approach may have its own merit and demerit.

In this paper, we are more interested in a stronger security model, assuming
that tag secrets may be read by an adversary, since most low-cost RFID tags
have no protection capability of the tag memory. Since reading the tag memory
content endows the adversary with full capability of the tag from the moment, it
is very important to see how the past and the future transactions of the tag are
related with the current internal state of the tag at the time of memory break-
in. This observation brings us the security notions of backward (resp. forward)
untraceability, meaning that knowledge of a tag’s current internal state must not
help identify the tag’s past (resp. future) interactions.1 Most previous studies
focus on backward untraceability and, as far as we know, no attention has been
paid explicitly to forward untraceability yet. In this paper, we would like to call
our attention to the importance of forward untraceability and related issues.

We argue that forward untraceability is even more important than backward
untraceability in RFID systems. Suppose that compromise of tag secrets results
in complete loss of control over the tags. Then, it may be catastrophic if tag
secrets are compromised in some point of tag deployment or during their cir-

1 Note that we used the terms ‘forward’ and ‘backward’ opposite to usual definitions.
See Section 2 for our justification.
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culation within supply chains; then it would be much easier to trace the tags
and reproduce cloned tags. Another important related issue is the problem of
ownership transfer. Since tags may change hands frequently during their life-
time, it is certainly necessary to provide some means of ownership transfer of
a tag from one party to another. Ownership of a tag means the ability to read
the tag and thus ownership transfer should guarantee that once ownership of
a tag is transferred, the tag should be able to be read only by the new owner
but never by the old owner. Such a complete transfer of tag ownership would
be impossible unless some degree of forward untraceability is provided, since the
old owner would have already owned all the information necessary to control the
tag. Note that we are talking about perfect ownership transfer between users,
contrary to Molnar et al.’s temporary ownership transfer or time-limited access
delegation [23] (See Section 4 for more details).

Our Contribution. As discussed above, there is of no doubt on the importance
of forward untraceability, in addition to traditional backward untraceability, in
designing RFID authentication protocols. Backward untraceability is easy to
achieve by updating tag secrets based on a one-way key chain and has been
widely studied in the literature. However, it is never easy to achieve forward
untraceability using cryptographic techniques in low-cost RFID tags, due to the
very limited resources available in such tags. The mobility of tagged items is
our primary finding as a means of achieving forward untraceability with little
increase of complexity. That is, even if an adversary learns the tag secret of a
particular person’s belonging, he will not be able to physically track the target
item all the way from the moment of tag break-in. Thus, assuming that it is not
possible for the adversary to eavesdrop all the interactions of the target tag af-
terwards, we will be able to completely refresh the tag secret in synchronization
with the backend database by injecting into the tag secret the shared random-
ness involved in every successful authentication. In this paper, we first bring the
notion of forward untraceability explicitly and rigorously in the design of RFID
authentication protocols and propose such a protocol achieving both require-
ments of forward and backward untraceability. Furthermore, we show that our
protocol enables perfect transfer of tag ownership between users. This feature
will be essential in trading tagged objects in the real world. We also show that
this feature can be used to delegate access to tags to potentially untrustworthy
readers for distributed processing of a central database and may help thwart tag
cloning by refreshing the tag secret whenever necessary.

2 RFID Systems and Security

2.1 The Communication Model

An RFID system consists of three main entities such as RFID tags, RFID readers,
and a backend database server, along with communication channels between
them. Figure 1 depicts the high-level view of the communication and security
model for conducting RFID authentication in general. The channels between the
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Fig. 1. The top-level communication and security model for RFID systems

tag and the reader are wireless radio channels which can be read or engaged by
an adversary, while those between the reader and the database might be wired
channels which are usually assumed secure. The channel from a reader to a tag
is called the forward channel and its opposite is the backward channel. Due to
the difference of signal strengths flowing in different directions, the adversary
may have in general more chances to read the forward channel. Since we can’t
imagine physically secure tag chips in most low-cost RFID tags, it is reasonable
to assume that the tag memory could be read by an adversary. In this respect,
we may view read access to the tag memory as another hypothetical channel,
called the memory channel [2], wiretapable by the adversary.

It is still a challenging task to design and analyze RFID authentication pro-
tocols since the capabilities of passive tags are extremely limited. The problem
becomes rather paradoxical in the context of tag authentication without public
key cryptography. Actually a legitimate reader cannot authenticate itself to a
tag until it knows which key to use, requiring the tag’s identity ahead, while the
tag does not want to reveal its identity to an unauthenticated reader for privacy
reasons. In Figure 1, the reader may shout without knowing the tag’s identity
in the first flow, and the tag should not reveal its identity to an illegitimate
reader while whispering in the second flow. The third flow may be necessary for
authenticating the reader and possibly updating the tag’s internal state.

2.2 Forward Versus Backward Untraceability

In the above communication model, an adversary is able to collect a set of
readings on both the forward and backward communication channels and also to
tamper with a target tag’s memory channel to learn its internal state at a certain
moment. Thus we need to define untraceability of a tag in either direction of time
travels from the moment of tag memory break-in. This brings us the notions of
backward and forward untraceability. Unfortunately, the terms ‘forward’ and
‘backward’ have been used in security definitions somewhat ambiguously and
are still controversial [28,1]. The cryptographic community has long time used
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the term ‘forward security’ loosely to mean the protection capability of past
traffic even with disclose of a current secret in many public key designs, in
order to mitigate the damage from the long-term secret key exposure (e.g., key
exchange protocols, public key encryption and digital signatures). However, the
opposite concept, ‘backward security’, is rarely used explicitly (though some
key-evolving signatures introduce an external trusted authority to achieve such
a security property; e.g., see [22]). This might be one reason for the lack of efforts
in establishing agreed-upon concrete definitions for both security notions. Note
however that these definitions are exactly opposite to the verbatim meaning of
the words and also to our intuition. They are awkward in particular when used
in conjunction with untraceability. We will thus use the terms ‘forward’ and
‘backward’ untraceability literally as defined below (more general and formal
definitions on various untraceability notions are provided in Appendix A).

Backward and forward untraceability are concerning the indistinguishability
of past and future interactions of a tag with knowledge of the current internal
state of the tag at the time of memory break-in. Backward untraceability states
that even if given all the internal states of a target tag at time t, the adversary
should not be able to identify the target tag’s interactions that occurred at
time t′ < t. That is, it requires that knowledge of a tag’s current internal state
should not help identify the tag’s past interactions. Backward untraceability has
been considered as the most important security requirement in strong RFID
authentication, since otherwise the past transcripts of a tag (e.g., from readers’
logs) may allow tracking of the tag owner’s past behaviors.

On the other hand, to our best knowledge, the opposite concept, forward un-
traceability, has not yet brought explicitly in the research community of RFID
security. Forward untraceability can be similarly defined as requiring that knowl-
edge of a tag’s internal state at time t should not help identify the tag’s inter-
actions that occurred at time t′ > t. In fact, not much attention has been paid
to this security notion, since it is obvious that there exists no way (without the
help of some external trusted authority) to maintain the future security once the
current secret is exposed. The only thing we can do is to detect key compromise
a.s.a.p. and to replace the exposed key with a fresh one to protect future trans-
actions. However, this may not be easy in RFID systems; it is almost impossible
to detect compromise of a tag secret and the tag secret may not be manageable
by the tag owner.

Obviously, perfect forward untraceability makes no sense, since the adversary
ia able to trace the target tag at least during the authentication immediately
following a compromise of the tag secret. Thus the minimum restriction that may
be imposed to achieve forward untraceability would be such that there should
exist some non-empty gap between the time of memory break-in and the attack
time in which the adversary could not hear the interactions (see Appendix for
more details). Forward untraceability is thus harder to achieve than backward
untraceability in general, in particular under the very constrained environment
such as RFID tags. Nevertheless, we note that forward untraceability is never



6 C.H. Lim and T. Kwon

less important than backward untraceability in RFID systems. There may exist
some situations in which forward untraceability is even more important.

Both security requirements will be equally important in fighting against the
universal surveillance threat by some powerful organizations (such as intelligence
agencies) capable of collecting a huge amount of interaction logs (legally or il-
legally) almost without limitation in time and coverage. On the other hand, in
the case of target tracing, we may not need such a power. It suffices to some-
how steal the tag secret attached to a particular target’s always-carry-on item
and collect interaction logs from the target’s frequently visiting places to trace
the future behaviors of the particular target. Such a target tracing is trivial
without forward untraceability. An even catastrophic scenario without forward
untraceability would be such a case that tag secrets are leaked at some point of
tag deployment or during the stay in supply chains. Then, all such tags could
be traced afterwards. We thus raise a strong motivation to the need of forward
untraceability in RFID protocol designs (even if not perfect), in addition to the
well-recognized backward untraceability. This property is also closely related to
the problem of ownership transfer of tags as we will see in Section 4.

2.3 Previous Work

There have been proposed a number of RFID security protocols in the literature
[30,25,17,24,12,13,6,8,21,19,23]. They can be classified into two broad classes; a
class of protocols trying to enhance privacy and security in RFID systems with-
out using standard cryptographic primitives, e.g., [17,24,13,19], and a class of
protocols relying on symmetric-key primitives such as block ciphers and hash
functions, e.g., [30,25,24,12,6,8,21,23]. The former proposals aim at finding some
security enhancements best achievable and easy to implement under the cur-
rent hardware and functionality of RFID tags (e.g., EPC UHF Gen2 tags) but
they still have a number of practical issues to be addressed for actual implemen-
tations and not so easy to implement in the current standard tags either. On
the other hand, the latter protocols assume enhanced tags with built-in hard-
ware circuits for a symmetric primitive and pursue stronger security under still
resource-constrained environments. There also exist some work on optimized
design and implementation of block ciphers for low-cost RFID tags, e.g., [10,20].

We do not survey previous work in detail, but refer the reader to, e.g.,
[5,2,15,14]. We briefly examine the Ohkubo-Suzuki-Kinoshita (OSK, for short)
protocol [25,6] however, as it is most relevant to and the starting point of our
proposed protocol. The basic idea of the scheme is to use a one-way key chain to
evolve a tag secret in response to every query request. Then, only the backend
database can identify the tag since it is the only other party with knowledge
of the initial tag secret for the one-way key chain. More specifically, a tag Ti is
initialized with a random secret si and, whenever queried, emits ri = h(0, si)
and evolves the tag secret si as si ← h(1, si), where h is a one-way function. If
the backend server keeps a key chain of length m for each tag Ti, i.e., {rk

i }m−1
k=0 ,

where rj
i = h(0, sj

i ), sj
i = h(1, sj−1

i ) and s0
i = si, then a tag can be identified

just by searching the database for each query response ri. Once the tag Ti is
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identified, the backend server updates the precomputed key chain so that it now
contains m key chain values starting from the verified tag secret si. Thus the
parameter m specifies the maximum number of authentication failures allowable
between two valid sessions. Actually, this protocol should be modified into a
challenge-response type to get resistance against replay attacks and there may
exist more efficient time-memory tradeoffs to enhance the efficiency of the back-
end server (see [6,4]). It is easy to see that this protocol is backward untraceable
due to the tag secret evolution through a one-way key chain.

3 The Proposed Authentication Protocol

3.1 Design Rationale

Our proposed protocol starts with the simple OSK protocol and augments it with
mutual authentication and further protection capability in view of forward un-
traceability, thus making the resulting protocol immune against both the forward
and the backward tracking attacks. First note that the OSK protocol achieves
backward untraceability by updating a tag secret deterministically in response to
every authentication request. The backend database then maintains a key chain
of length m evolved from the tag secret of the last successful authentication, so
that desynchronization up to m times can be resolved within this key chain.

The basic idea to enhance the protocol with forward untraceability is to re-
fresh the tag secret simultaneously within both the tag and the central database,
whenever the authentication is completed successfully, using the authentic ran-
dom numbers exchanged during the protocol execution. Note that we use the
term update to mean deterministic evolution of tag secrets while refresh to mean
probabilistic evolution. That is, in every authentication session, the tag secret
is evolved using a one-way key chain in two different ways; If the authentication
succeeds, then both the tag and the database refresh the tag secret probabilisti-
cally using the exchanged random numbers, while, if the protocol fails anyway,
the tag updates its secret deterministically as in the OSK protocol. Then, the
resulting protocol would be made forward untraceable from the moment that an
adversary is missing even one successful authentication session after compromis-
ing the tag secret.

One problem still remains in the above approach. If the adversary executes
the protocol with a tag immediately after compromising the tag secret (she
can do it successfully since she knows the tag secret), then the tag secret will
be permanently desynchromized in the tag and the backend database, and the
tag can be read only by the adversary.2 This is because the tag refreshes its
secret probabilistically using the randomness only shared with the adversary.
To repair this problem, we introduce another one-way key chain maintained by
the database and verified by the tag. The tag then refreshes its secret only if a
received key chain value is verified. Note that this key chain is used in reverse
2 This very property can be used to transfer tag ownership from the database to a

consumer, as we can see later.
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Fig. 2. The proposed protocol

order, contrary to the key chain for tag secret update, so we call it as a backward
key chain while the latter as a forward key chain. We thus use the forward key
chain for tag secret evolution and the backward key chain for server validation
which triggers a refresh of the tag secret.

Finally, we note that there may still exist some subtle desynchronization prob-
lem in the case that the protocol message in the third flow is lost during transmis-
sion due to either unreliable medium or denial-of-service attacks by an adversary.
The loss of the last protocol message in transit again results in permanent de-
synchronization of the tag secret, since then the tag will update the tag secret
while the server will refresh it. We solve this problem by making the database
keep two key chains of length m of relevant secrets, one based on the old secret
and the other based the new secret, and examine both key chains in the next
authentication. The problem can then be resolved, since the tag secret will be-
long to one of the two key chains, depending on whether or not the last protocol
message arrives correctly.

3.2 Protocol Description

Parameters. The following parameters are used in the proposed protocol.

– m : The maximum number of allowable authentication failures between two
valid sessions. If the protocol fails more than this threshold after the last
successful interaction with the server (via an honest reader), then the tag
stops evolving its secret and keeps using the last updated secret until the
next successful authentication.
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– n : The length of the backward key chain used for server authentication. This
value can be set around the maximum number of successful authentications
(not counting failed sessions) expected during the tag lifetime.

– � : The bit-length of a tag secret.
– �1 : The bit-length of random challenges and responses.
– �2 : The bit-length of the tag secret transmitted in clear to help the backend

server to identify the tag secret in its database. This value may depend on
the tag population managed by the server (e.g., �2 � log2 2mN , where N is
the maximum expected number of tags). The tag secret of length � = �2 + �′

thus has the effective key length of �′ bits.

Pseudorandom Functions. Our protocol makes use of three pseudorandom
functions f, g and h, all of which may be constructed from a single lightweight
block cipher as can be seen later. We denote by g(x)n n-times applications of
the function g on x :

– f : {0, 1}� × {0, 1}2�1 → {0, 1}2�1 : A pseudorandom function to generate
authenticators.

– g : {0, 1}� → {0, 1}� : A pseudorandom function to build the forward key
chain used to evolve tag secrets.

– h : {0, 1}2�1 → {0, 1}2�1 : A pseudorandom function to build the backward
key chain used to authenticate the server.

Tag & Database Initialization. Each tag Ti is initialized by the backend
database server as follows:

– The server chooses a random secret si (say, of 128 bits) for the tag Ti,
evaluates (m−1) evolutions of si, s0

i = si and sj
i = g(sj−1

i ) for 1 ≤ j ≤ m−1,
and extracts the key identifiers tji for sj

i as tji = ext(sj
i , �2) for 0 ≤ j ≤ m−1,

where ext(x, �) denotes a simple extract function returning � bits out of x
(e.g., x mod 2�).

– The server also chooses a random ui ∈ [0, 22�1) for each tag Ti and computes
a key chain of length n, {wj

i }n−1
j=0 , such that wn

i = ui and wj
i = h(wj+1

i ) for
0 ≤ j < n. This key chain is used in reverse order to authenticate the server
and to trigger a refresh of a tag secret.

– The tag then stores the pair of (tag secret, server validator) 〈si, wi,T 〉 and
initializes the failure counter ci as ci = 0, where wi,T = w0

i .
– The server makes two entries for Ti, Dold[i] (initially empty) and Dnew[i], in its

database and stores the Ti’s identification data 〈si, {tji}m−1
j=0 , ui, ni, wi,T , wi,S〉

in the entry Dnew[i], where wi,S = w1
i and ni = n. Here, the variable ni

maintains the depth of the current wi,S in the key chain (i.e., wi,S = h(ui)ni).
Note that wi,T = h(wi,S).

Authentication Procedures

1. The reader picks r1 ∈R [0, 2�1) and sends it to the tag.
2. The tag chooses r2 ∈R [0, 2�1), computes ti =ext(si, �2) and σ1 =ext(f(si, r1 ‖

r2), �1) and sends 〈ti, r2, σ1〉 to the reader.
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3. The reader then queries 〈ti, r1, r2, σ1〉 to the database server.

4. The server searches its database to find an entry containing the received key
identifier ti. If no match is found, the server responds with σ2 =⊥ (denoting
‘failure’) and stops. Suppose that a match of ti = tji for some j is found in one
of Ti’s entries, Dold[i] or Dnew[i], containing 〈si, {tki }m−1

k=0 , ui, ni, wi,T , wi,S〉.
Then, the server computes the tag secret corresponding to tji by s′i = g(si)j

and checks that ext(f(s′i, r1 ‖ r2), �1) = σ1. If the check fails, the server stops
with output σ2 =⊥. If the check succeeds, the server sends the response σ2
to the reader, where σ2 = f(s′i, (r2 ‖ r1)) ⊕ wi,S . The server then updates
the two entries, Dold[i] and Dnew[i], of the identified tag Ti as follows:

1) The server moves the set of data found in the identified entry to Dold[i]
after updating the key identifiers tji ’s according to the verified tag se-
cret s′i; t̂ki = tj+k+1

i for 0 ≤ k ≤ m − j − 1, ŝi = g(s′i) and t̂ki =
ext(g(ŝi)k−m+j , �2) for m − j ≤ k ≤ m − 1. Thus, we have Dold[i] =
〈ŝi, {t̂ki }m−1

k=0 , ui, ni, wi,T , wi,S〉.
2) The server then generates new data for Dnew[i] as follows: si ← g(si ⊕

(wi,S ‖ r1 ‖ r2)), tji = ext(g(si)j , �2) for 0 ≤ j ≤ m − 1, ni ←
ni − 1, wi,T ← wi,S and wi,S = h(ui)ni and stores the set of data
〈si, {tki }m−1

k=0 , ui, ni, wi,T , wi,S〉 in the entry Dnew[i].

5. If σ2 =⊥, the reader stops. Otherwise, it forwards the received σ2 to the tag.

6. The tag computes w′
i,S = σ2⊕ f(si, r2 ‖ r1) and checks that h(w′

i,S) = wi,T .
If the check succeeds, then the tag sets ci = 0 and updates its secret and
validator pair 〈si, wi,T 〉 as wi,T ← w′

i,S and si ← g(si ⊕ (wi,T ‖ r1 ‖ r2)).
If the check fails, the tag increases the failure counter ci ← ci + 1 and, if
ci < m, updates its secret by si ← g(si), and, if ci ≥ m, does nothing,
keeping its current state unchanged.

Construction of Functions f, g and h. We may use a block cipher as a build-
ing block for construction of the functions f, g and h. Note that block ciphers usu-
ally allow more compact hardware implementations than hash functions and that
we only need to implement the encryption function for our purpose. In particular,
it was shown that a lightweight block cipher deigned for resource-constrained en-
vironments could be implemented using just a few thousand (NAND-equivalent)
gates [20] (see also [10]).

Suppose that we have chosen parameters of l = 128, l1 = l2 = 32 and
that we have a 64-bit block cipher with 128-bit key length, denoted by E :
{0, 1}128 × {0, 1}64 → {0, 1}64. The function f can then be simply the encryp-
tion function E, so f(k, x) = Ek(x). The one-way function g may be constructed
by g(k) = f(k, c0) ‖ f(k, c1) for some 64-bit constants c0 and c1. Similarly, we
may construct the half-sized key chain function h by h(k) = f(k ‖ k, c2) for
another 64-bit constant c2. If the encryption function is secure, then inversion of
functions g and h would require an exhaustive search for the keys involved. Also
note that even if 32 bits of k are disclosed, there remain large enough secret bits
so that an exhaustive search is still infeasible.
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3.3 Security and Privacy

It is easy to see that the proposed protocol works correctly if both the tag and the
backend server behave honestly. We show in this section that our protocol is se-
cure, and backward and forward untraceable under some reasonable assumption.
For the security analysis, we assume that the functions f, g and h are one-way
and behave like random functions.

Attacks on tag authentication. We first consider possible attacks by the
adversary impersonating a tag. The aim of the adversary in these attacks in the
context of authentication is to make the backend database accept a fake tag as
valid. First note that the tag secret constantly evolves in every query request
from readers and thus past tag responses may be assumed uniformly distributed
irrespective of the queries requested (thus of no use for future attacks). Thus a
fake tag T̃i without knowledge of a valid secret si has no better strategy than
to reply with random t̃i ∈ [0, 2�2) and σ̃1 ∈ [0, 2�1). Let N be the total number
of tags managed by the backend server. Then the probability of this reply being
accepted by the server is at most 2mN/2�1+�2 for each query response, since for
a random tag identifier t̃i there exist at most 2mN/2�2 matching tag identifiers
in the database and for each matching tag identifier the probability of a random
σ̃1 being verified is 1/2�1. Thus, our protocol achieves tag authentication with a
cheating probability of at most 2mN/2�1+�2 .

Attacks on reader authentication. We next consider possible attacks by
the adversary impersonating a legitimate reader. The aim of the adversary in
these attacks in the context of authentication is to make an honest tag accept
the adversary as a legitimate reader. Possible results of a successful attack may
include tracking a tag or illegal modification of tag’s internal states. A fake
reader without knowledge of valid secrets (si, wi,S) associated with an honest tag
Ti again has no better strategy than to send a random σ̃2 in the final protocol
flow. The probability of such a response being accepted by the tag is negligible
(around 1/22�1 on average).

We now consider an adversary tampering with a tag Ti at some point. Suppose
that the adversary somehow obtains Ti’s secrets (si, wi,T ) at time t. Obviously,
this information becomes useless if Ti has completed even one valid session (with
a legitimate reader) at time t′ > t which the adversary could not eavesdrop,
since then the tag secret si would have been refreshed with a random number
of length 2�1 unknown to the adversary. We thus only consider the case of the
adversary attacking Ti immediately after compromising the tag secrets. Even in
this case, the adversary cannot successfully cheat Ti without knowledge of the
corresponding server validator wi,S . The only way to get a live value of wi,S

would be to intercept a valid σ2 (sent by a legitimate reader) and then to in-
validate it immediately so that it cannot be accepted by Ti. Then the adversary
can recover a live value of wi,S from σ2 which can be used later to trigger a
refresh of the tag secret by Ti. This is the only potential threat identified but
inevitable in our protocol. However, the feasibility of such an attack requiring
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instant intercept-then-invalidate operation over the air is highly questionable for
proximate wireless transmissions in typical RFID tag environments.

Other attacks. Our protocol has strong resistance against Denial-of-Service
(DoS) attacks on the last protocol message. Any alteration of this message may
cause desynchronization of tag secrets in the tag and the backend server, but such
a desynchronization problem can be resolved by dual copies of tag state informa-
tion maintained in the server. Authentication failures more than the threshold
m just cause the tag secret to remain static, which may break untraceability,
but the tag secret is restored to a fresh after a secure reading of the tag.

Tag cloning is also ineffective in our protocol. Cloned tags are made useless
as soon as tag secrets of the original tags are refreshed by a legitimate reading.

Forward and backward untraceability. From the above discussions, it is
obvious that our protocol is backward untraceable and also forward untraceable
under a reasonable assumption. Tag secrets at time t does not help identify tag
interactions executed at time t′ < t, as far as the one-wayness of the function g
remains intractable, thus resulting in backwrad untraceability.

Forward untraceability is also provided to some extent under the natural
assumption that the adversary compromising a tag cannot eavesdrop all the
future interactions of the tag. The tag secret is refreshed upon every successful
interaction with the server and thus a compromised tag becomes untraceable
from the moment that the adversary misses even a single valid session of the
tag. That is, forward untraceability of a tag, even if broken at any point during
its lifetime, can be restored just by a single secure reading of the tag. However,
we should be careful for the potential threat to this nice property as explained
above (i.e., a possibility of intercept-then-invalidate of wireless signals over the
air), since its realization would result in complete loss of control over the tag.

3.4 Efficiency Considerations

Suppose that the function f is implemented as the encryption function of a 64-
bit block cipher supporting 128-bit keys and the functions g and h are derived
from f as explained at the end of Section 3.2. Also suppose that we choose the
parameters � = 128 and �1 = �2 = 32. Each tag Ti then needs to store 196
bits of rewritable data (a 128-bit si and a 64-bit wi,T ) and exchange 192 bits of
data per session (send 96 bits and receive 96 bits). A tag requires 5 blocks of
encryption for each session.

Consider an RFID system with N = 220 tags. The length m of precomputed
key chains stored in the backend server controls untraceability between two re-
freshes and determines the storage requirement of the server; it need not be
chosen too large, since the tag owner can refresh the tag secrets whenever nec-
essary (e.g., m = 64). The server requires at least (m + 3) invocations of the
function g for each successful query from the reader to update the precompu-
tation table entries. The length n for the backward key chain determines the
number of valid authentications during the whole tag lifetime and thus may be
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chosen quite large for long-lived tags, say n = 220. The server requires ni in-
vocations of the function h to update the current server validator wi,S in each
successful authentication. This workload however can be reduced to a fixed c in-
vocations if the server precomputes (say, at every midnight) and stores the c-th
upward value in addition, assuming that at most c legitimate readings of the tag
in a day are sufficient (e.g., c = 100). The server then requires storage of just
around 620 Mbytes for tag identification data (i.e., Dold[i]’s and Dnew[i]’s) and
less than 250 evaluations of the encryption function for each successful query on
average. Note that the storage requirement of the server never exceeds tens of
gigabytes (still easily available even in potable devices such as PDAs) even if we
take a larger value of m and store full values in both forward and backward key
chains for computational efficiency and robustness against DoS attacks.

4 Ownership Transfer, Delegation and Anti-cloning

4.1 Ownership Transfer

Ownership of RFID tags may be changed frequently during their lifetime. For
example, tags are initially created and attached to objects by manufacturers
and tagged objects are then handed over to retailers, and finally consumers
buy tagged objects in shopping malls. The owner of a tagged object may also
transfer its ownership to another party (e.g., by buying an object and giving it
to his friend as a birthday present, or by selling or swapping used objects via a
garage sale or in a swap meet). Ownership transfer of a tag means transfer of
authorization to read the tag. Thus, such an ownership transfer must guarantee
that once ownership is transferred to another party, the old owner should not be
able to read the tag any more.

The problem of ownership transfer seems not extensively studied in the RFID
security community yet, but we argue that this problem is in fact in the core of
the RFID privacy problem. Suppose that Alice bought an tagged item from a
shopping mall. The ideal consequence of this transaction would be such that Alice
should take over the complete control of the tag via her portable RFID reader3

and then even the backend server of the shopping mall should not be able to trace
the sold tag any longer. Once receiving all the necessary information to control
the tag, the new owner’s reader can now take the place of the server. Obviously,
this problem is closely related to forward untraceability, since the backend server
still maintains all the secret information on the tag, which should be made useless
(at least in tracing the tag) after the sales transaction. This requirement is more
obvious in the case of ownership transfer between users.

It is rather simple to transfer tag ownership in our protocol. Suppose that
Alice wants to take over a tag Ti from the database server since she bought

3 Commodity mobile RFID readers will be available soon in various mobile devices,
such as mobile handsets and PDAs. In particular, mobile phones with built-in RFID
readers will constitute the majority of mobile readers. Mobile phones could also be
the best place to host RFID proxy for various personal belongings (e.g., see [26,18]).
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the tagged item. Alice then uses her mobile reader to securely communicate
with the server via the checkout reader and receives all the relevant information
from the server via the secured channel. The information received will certainly
include the Ti’s table entries, Dold[i] and Dnew[i], and the tag ID. Alice can then
take over the ownership of the tag simply by reading the tag via her mobile
reader. This will make the tag refresh its secret based on the randomness shared
only with Alice’s mobile reader and thus no one else can read the tag from the
moment. Note that no eavesdropper, except the backend server, can refresh the
tag secret, since the backward key chain needed for this operation is only known
to Alice’s reader (and the backend server; thus tag reading may be done outside
the communication range of the checkout reader for safety).

We note that no previous work explicitly deals with this kind of perfect own-
ership transfer between users. Molnar et al.’s pseudonym protocol [23] is the
only one we found that deals with the problem of ownership transfer explicitly.
However, their method for ownership transfer is not complete in the sense that
the backend server still maintains all the control power of the tag. Only par-
tial information is delivered to a reader, so that the reader can read the tag by
some predetermined number of times without on-line connectivity to the server.
Thus, strictly speaking, their scheme corresponds to time-limited access dele-
gation rather than ownership transfer. Contrary to this, ownership transfer in
our protocol is perfect. Ownership transfer can be carried out every time tagged
objects change hands during their lifetime.

4.2 Access Delegation and Anti-cloning

In most RFID authentication scenarios, an RFID reader tends to act as a dumb
relay, just passing protocol messages back and forth between a tag and a cen-
tral database server. This may overburden the server in both computing and
communication complexities. Availability may also be a big issue; on-line access
to the database server should be always available in a reliable way but readers
may have intermittent connectivity for various reasons. It is however not easy to
distribute the functionality of the database into a large number of readers scat-
tered over the RFID infrastructure. Readers may not be always trustworthy and
consistency of the database is hard to manage in such a large scale distribution.

Time-limited access delegation may be useful in such a case. We may delegate
access to a set of tags to a particular reader, so that the reader can read the
tags in a limited time span without on-line connectivity to the server. After the
specified time span, however, the reader’s access to the tags should expire and
thus the reader should not be able to read the tags any more without interaction
with the server. Molnar et al. proposed such a time-limited access delegation in
their pseudonym protocol [23].

In our protocol, we propose a different approach to time-limited access delega-
tion. Due to the probabilistic nature of tag secret evolution, it is not possible in
our protocol to delegate access authorization that automatically expires after a
specified time limit. However, our protocol has such a nice feature that only the
server can refresh tag secrets using the backward key chain for server validators.
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We may thus deliver only two forward key chains for the tag secret and the tag
ID to the reader but not the backward key chain for server validation. Then,
the reader may identify the tag from the first two protocol flows but cannot
respond with a valid answer in the third flow. We note that our protocol works
correctly even if the third protocol message is suppressed (the reader may send
an arbitrary dummy answer as σ2 for the tag to proceed without waiting until
the timeout). This makes the tag secret evolved deterministically and eventu-
ally remain static after m readings. Thus the server never loses its control over
the tag. Though untraceability may be broken by more than m readings, this
may not be a problem, since untraceability is in fact not much necessary before
tagged objects are handed over to consumers.

A remaining issue in the above scenario is how to cancel access authorization
given to the reader. The solution is fairly simple. We can just read the tag as
before using a reader on-line connected to the server to refresh the tag secret, so
that the access delegated reader cannot read the tag any more. This method of
distributed processing can be effectively used to manage a large volume of tags
as well. For example, suppose the case of warehouse inventory of tagged objects.
The database server makes a copy of its database only containing two forward
key chains for the tag secret and the tag ID for each tag and delivers it to a local
database or a set of readers used for inventorying the warehouse (even hand-held
readers (say, PDAs) may have storage of several or tens of gigabytes, so they
can easily hold a copy of the database). The distributed local databases can be
made useless at any time by scanning the tags using a reader on-line connected
to the central server as before.

The authorized refreshability of tag secrets in our protocol may also be used
to thwart tag cloning. Suppose that a warehouse employee in the above example
steals a set of tag secrets from the local database and reproduces cloned tags.
These cloned tags however can be made easily obsolete by refreshing tag secrets
in both the original tags and the central database, say, before tagged objects
leave the warehouse. This time, we may need two readings in order to wipe out
old tag secrets in the central database as well. Note that tag refresh cannot be
done by the malicious employee, instead, to make the original tags obsolete, since
he is not given any value of the backward key chain.

5 Conclusion

We have introduced the concept of forward untraceability and its importance in
designing RFID security protocols. It has also been shown that forward untrace-
ability is the key ingredient for perfect ownership transfer of RFID tags. Based
on these observations and requirements, we presented a strong and robust RFID
security protocol providing both forward and backward untraceability. As far as
we know, our protocol achieves the strongest possible security in RFID authen-
tication. The proposed protocol also has several nice features such as complete
ownership transfer between users and distributed processing capability of the
central database maintaining tag identification information. Though our protocol
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may not be easy to implement in low-end RFID tags under the current standard
and technology, we expect that it could be used right away in high-end tags
for stronger security and probably low-end tags as well in the near future as
hardware technology advances.
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A The Security Model for Untraceability

Not much work has been done yet on formal security models for RFID security
protocols, though a number of proposals based on varying assumptions have
been proposed and analyzed in the literature. Juels have proposed a somewhat
weak but realistic security model specific to his pseudonym protocol [13]. On
the other hand, Avoine introduced a rather strong cryptographic model to de-
fine the strong privacy notion of untraceability in RFID protocols [2]. Here,
we would like to take a step toward a generic security model that can cover
weak to strongest possible security in RFID protocols. Our model closely follows
Avoine’s model but makes it more general and flexible by incorporating vari-
ous possible restrictions existing in RFID systems. We primarily focus on the
strongest privacy notion of untraceability, in particular, forward and backward
untraceability, but it would be rather easy to extend it to include the general
notion of authentication as well.
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Oracles. An RFID protocol, P , is formally a probabilistic algorithm that de-
termines how instances of the principals, a tag T and a reader R, behave in
response to inputs sent from their environment. The inputs may be given by an
adversary, A, that may have complete control over the environment. The adver-
sary is a probabilistic algorithm with a distinguished query tape. Queries written
on this tape are answered by principals according to P . Each of the principals
can run several instances of P . We denote a tag instance at time i by πi

T and a
reader instance at time j by πj

R. The adversary A is allowed to have access to
the following oracles:

– Query(πi
T , m1, m3): this query models A actively querying T . It sends a re-

quest m1 to T through the forward channel and subsequently responds with
the message m3 after having received an answer from T .

– Send(πj
R, m2): this query models A actively querying R. It sends the message

m2 to R through the backward channel and receives an answer from R.
– Execute(πi

T , πj
R): this query models A passively eavesdropping on the com-

munication channels between T and R. It executes an instance of P between
T and R and obtains the messages exchanged on both the forward and the
backward channels.

– Execute∗(πi
T , πj

R): this query models A passively eavesdropping only on the
forward channel. It executes an instance of P between T and R, but only
obtains the messages exchanged on the forward channel. This oracle may be
used to model the secure backward channel assumption in some protocols.

– Reveal(πi
T ): this query models A obtaining the content of T ’s memory chan-

nel. This query is only allowed during the time interval of A’s training phase.
Other queries can still be used even after the reveal query (possibly under
some restriction).

For simplicity, let Q,S,E,E∗, and R represent, respectively, the oracles Query,
Send, Execute, Execute∗ and Reveal. Note that the adversary is passive when
using the oracles E and E∗, while it is active when using the oracles Q and S. In
fact, the oracle E may be simulated using the oracles Q and S by the man-in-
the-middle attack, but the reverse is not true.

Attack Models. The adversary attacking untraceability may use the above
oracles in arbitrary manner according to its strategy, except the reveal oracle.
The aim of the adversary is to distinguish a particular tag or a set of tags from
others in different instances of the protocol (a more formal definition will be
given below). The adversary’s ability to achieve this aim can be characterized
by the oracles to which the adversary is given access. We can thus classify the
attack models according to the set of oracles available to the adversary. For
example, the QSE model and the QSER model may be most intersting among
others.

In typical RFID system environments, however, it may be too strong to allow
unrestricted access to the oracles provided. Typically, tags and readers operate
only at short communication range and for a relatively short period of time.
Furthermore, RFID tags may be assumed in many cases highly mobile and thus
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hard to trace physically (otherwise, we do not need to worry about privacy
infringement due to the traceability of tagged items). Therefore, it may not be
unrealistic in practice to put some restrictions to the adversary’s oracle access in
terms of access time and frequency. We thus consider two access models, namely
the universal or unrestricted access (UA) model and the restricted access (RA)
model. Access restriction in the RA model is hard to define generically and thus
a specific RA model should include a description on the imposed restrictions.
For example, natural restrictions that could be imposed on the adversary may
include some limitation in the number of successive queries to target tags and
some limitation in the number of successive valid sessions that can be read by
the adversary (e.g., as in the minimalist security model [13]).

We can thus talk of untraceability under the combined model of available
oracles and access restriction. For example, we can say that a given protocol
is untraceable under the UA-QSE model, meaning that the protocol is untrace-
able against any adversary who can interact with target tags and readers and
eavesdrop interactions between target tags and legitimate readers at any time it
wishes.

Attack Games. Let ωi(T ) be the result of the application of an oracle Q,E,E∗,
or R on a tag T , where ωi(T ) ∈ {Query(πi

T , ∗), Execute(πi
T , ∗), Execute∗(πi

T , ∗),
Reveal(πi

T )} (note that tags are involved in all oracles, except the Send oracle).
A tag interaction is defined as a set of oracle execution results on the same tag
(identified by physical tracing or through an active query). More precisely, an
interaction is defined by ΩI(T ) = {ωi(T )|i ∈ I} ∪ {Send(πi

∗, ∗)|i ∈ J}, where
I, J ⊂ N. The length of an interaction ΩI(T ) is equal to |I| by definition. We
use the notation I < J for I, J ⊂ N to denote that numbers in I precede those
in J ; i.e., I = [a, b], J = [c, d] such that a ≤ b < c ≤ d.

Untraceability can be formally defined by a game being played between a
Challenger and an adversary A, where the adversary is allowed to interact with
given oracles. The game begins with the Challenger randomly choosing a target
tag T and providing it to the adversary A. After having experimented with the
target T using a set of oraclesO provided (possibly including the reveal oracle R)
under some access restriction R and thus obtaining an interaction ΩI(T ) over its
chosen interval I, the adversary A requests challenge tags from the Challenger,
which then provides two tags T0 and T1, one of which is T (i.e., Tb = T for some
hidden bit b ∈ {0, 1}). The adversary continues experimenting with the two tags
as before, except that the reveal oracle, if provided, is not allowed to query in
this stage, and thus obtains two interactions ΩI0 (T0) and ΩI1(T1), where the
intervals I0 and I1 should not overlap with the interval I. Finally, A outputs her
best guess b′ based on the experiments. If the probability of b = b′ is negligible
for every I0 and I1 and for every A, then we say that the protocol is untraceable
under the R-O model.

More formally: Let O be the set of oracles available to the adversary, where
O ∈ {E∗, E, QS, QSE∗, QSE, QSER}, and let R be the (description of) access
restriction imposed on the oracles, whereRmay be empty. Let O′ be the same as
O except that O′ = QSE in the case of O = QSER. Let OR be the set of oracles
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O under the access restriction R. That is, when a query is received, OR first
checks the given access restrictionR and returns an answer only if it satisfies the
restriction. We use Oracle to simulate the set of oracles to which the adversary
has access. More precisely, Oracle takes as inputs a tag T and a time interval I,
makes calls to the oracles of OR or OR

′ and sends back an interaction ΩI(T ).
Let �ref and �ch be security parameters controling the length of interactions
that the adversary can execute during the training and the cracking phases
of the experiment. We first define a general experiment for untraceability, the
strongest privacy notion, and then define forward and backward untraceability
based on this experiment.

1. The Challenger randomly picks a target tag T (among all possible random
tags) and gives it to the adversary A, together with the permission of oracle
accesses to OR.

2. A chooses I and calls Oracle(T, I,OR}) where |I| ≤ �ref , and gets ΩI(T ).
3. A requests the Challenger to provide challenge tags and receives T0 and T1

such that Tb = T for a hidden bit b ∈ {0, 1}.
4. A chooses I0 and I1 such that |I0|, |I1| ≤ �ch and (I0 ∪ I1) ∩ I = Ø, calls

Oracle(T0, I0,OR
′) and Oracle(T1, I1,OR

′), and gets ΩI0(T0) and ΩI1(T1).
5. A finally outputs her best guess b′.

Note that the reveal oracle R, if provided, can only be queried during the train-
ing phase (step 2) but never in the cracking phase (step 4). The advantage of
A for a given protocol P under the R-O model is defined by AdvUNT

P (AOR) =
Pr(b′ = b) − 1

2 , where the probability is taken over the coin tosses of A and
Challenger and over the choice of random intervals and random tags. In gen-
eral, we say that P is O-untraceable under the restriction R if this advantage
is negligible w.r.t the security parameters �ref and �ch. We simply say that P
is untraceable if R = ∅ (the UA model) and O = QSE, since this is the best
achievable untraceability notion without the reveal oracle.

When the reveal query is allowed (i.e., if O = QSER), we make a further
distinction according to the additional restriction on the choice of experiment
time intervals. If I, I0 and I1 are chosen such that I > I0 and I > I1, then
the protocol is said to be backward untraceable under the restriction R (simply
backward untraceable if R = ∅). If the restriction is such that I < I0 and
I < I1, then we say that the protocol is forward untraceable under the restriction
R. Note that forward untraceability under the UA model makes no sense, since
once obtaining the tag secret by the reveal query, the adversary takes all the
power of the tag itself and thus can trace the target tag at least during the
authentication immediately following the attack. Thus, the minimum restriction
for forward untraceability is such that there should exists some non-empty gap
not accessable by the adversary between the time of a reveal query and the attack
time. That is, there should exist some non-empty intervals J0 and J1 such that
I < J0 < I0 and I < J1 < I1. Forward untraceability under this restriction
would be the best one we can achieve in any RFID authentication protocol.
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Abstract. There has been considerable interest recently on developing
a system to track items like pharmaceutical drugs or food products. Such
a system can help prevent counterfeits, aid product recall, and improve
general logistics. In this paper, we present such system based on radio
frequency identity (RFID) technology. Our solution provides the means
of storing the entire movement of the item from original manufacturer to
final consumer on the RFID tag itself, and also makes it more difficult
to introduce large numbers of counterfeits. The solution also allows the
end user to easily verify the authenticity of the item.

1 Introduction

A tracking system, or electronic pedigree system, is an architecture for creating
digital documentation for movement of goods. With this documentation, the
entire route from beginning to end can be recreated. For instance, consider the
case of some cargo shipped from a supplier to a customer. The electronic pedigree
tracks the journey from the supplier’s warehouse until it reaches the customer. It
includes information like which intermittent stops were made and possibly more
detailed information like which trucks were used. This form of documentation is
useful for routine inventory control and tracking, as well as rare time-sensitive
operations like product recalls. An electronic pedigree that tracks goods on an
individual packaging basis can be used to defend against the counterfeits. Instead
of relying on random checks at large warehouses, a per item electronic pedigree
allows the end user who just purchased a product to verify the authenticity using
electronic pedigree, thus improving the detection of counterfeits.

Recent developments in radio frequency identity (RFID) technology have
made it possible to implement an electronic pedigree on a per item basis. RFID
technology is made up of small powerless tags and their corresponding readers.
These tags can be attached to different products like shipping crates or bottles of
medication, and can contain information like the unique identity number of the
product, origin, transit locations, storage instructions. RFID readers obtain the
stored information by querying the tag from a distance without line of sight. One
possible method of integrating RFID technology is described in [12] as “track
and trace”. It uses a central database to keep track of the unique ID number
embedded in each tag. When products with attached RFID tags are received,
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an RFID reader reads in the ID from each tag. The ID can be verified against
the central database containing information like the location of particular ID.
An ID that shows up in the wrong location, or does not exist in the database
could indicate potential problems. However, the paper also pointed out that this
method is not robust enough against inevitable human errors, or instances where
access to the database is limited.

Furthermore, the use of RFID tags introduces new security problems. Since
an RFID tag can be read from a distance without line of sight, an adversary can
steal large numbers of RFID data and then place the real data onto counter-
feit RFID tags. This way, both the real and fake RFID tags contain legitimate
information. Trials on RFID-enhanced passports reported RFID readers being
able to access RFID data from 30 feet away [13]. For an RFID based pedigree
system to function, it has to be robust enough to function without constant ac-
cess to a central database. It also has to defend against counterfeits which can
be introduced anywhere inside the supply chain.

In this paper, we present an RFID-based electronic pedigree system that does
not depend on constant access to a database to function. Our system adds pedi-
gree data onto the RFID tag itself in a secure manner. Since the RFID tag is
always attached to the object, receiving the object means receiving the tag as
well. With more information stored on the tag, pedigree information can be ac-
cessed more conveniently. Our solution also provides the end user, or consumer,
with a means of easily verifying the authenticity of a tag while preserving his
privacy.. The rest of the paper is as follows. The next section discusses some
related work on RFID. Section 3 formalizes our problem and section 4 present
our basic pedigree scheme. Section 5 improves on the basic scheme and section
6 concludes.

2 Related Work

There has been relatively little research that explicitely addresses using RFID
for tracking purposes. Gonzalez et. al [3] addresses the problem of managing
large quantities of RFID data generated when RFID tags are widely used for
tracking. The work focuses on techniques for aggregating and indexing RFID
data and query processing. Staake et. al [12] discusses how RFID used in tracking
inventory can also be used for anti-counterfeiting purposes.. It described the
track and trace method whereby each object is tagged with its own RFID tag
embedded with some unique data. A main database is used to keep track of the
tag data. As each object moves through the supply chain, information like object
location can be matched against the tag unique data and database. This makes
introducing counterfeits more difficult. However, this method requires all entities
to update the database promptly, making it less robust to inevitable errors.

Texas Instruments (TI) [8] presented the authenticated RFID model which
combines public key and RFID, and is targeted at pharmaceutical products.
Under this model, the unique id of each RFID is first hashed, and then digitally
signed with private key. This signature is stored onto the RFID tag itself together
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with the tag unique id before leaving the drug manufacturer. Later, authorized
RFID readers like the pharmacist receiving the RFID tag authenticate the tag
by reading in the digital signature and unique id. The pharmacist decrypts the
signature with the public key, and compares the value against the hashed result
of the unique id. If they match, then the tag is considered genuine. This model
also allows additional information like timestamps to be signed and placed onto
the RFID tag for additional security. However, as Juels [6] pointed out, this
model has a vulnerability. An adversary will be unable to forge the signature,
but is perfectly able to copy it. This means that an adversary could simply copy
the genuine RFID tag data, and then place them onto the counterfeit drugs.
Our solution also uses public key cryptography, but specifically addresses the
problem of copying.

The copying of data from real RFID tags is know as skimming the tag, and
placing real tag data onto fake RFID tags is known as cloning the tag. Juels [5]
discusses the risks of RFID tag cloning, and provided solutions for a reader to
authenticate a tag. The basic solution assumes that each RFID tag has a secret
that is not reveled when queried. An authenticated reader will know this secret,
and challenges the tag with it. The RFID tag is designed to return a 1 bit if
the challenge secret matches its own secret, otherwise returns 0. So the RFID
reader issues a series of challenges, some using the the tag secret, others not.
A real tag will be able to return the correct answer each time. A counterfeit
tag which was cloned from the real tag will not know this secret. However,
this particular solution may require several interactions between reader and tag
before the reader is satisfied that the tag is genuine, make it less efficient.

Another cloning resistant scheme by Dimitriou [2] uses a different approach.
His approach uses a secure external server for authentication. The RFID tag
returns a reply that can only be decrypted by the external server. The server
releases the tag data to the reader only after authenticating him. This means
that an adversary will not be able to obtain the RFID tag data without going
through the secure server, thus preventing skimming. However, this scheme like
track and trace, requires persistent access to a database.

There are other security protocols that can prevent cloning, and we refer in-
terested readers to the excellent website maintained by Avoine [1], and recent
survey papers [6,11]. In general, they all rely on only having authenticated RFID
readers having access to RFID tag data. However, this concept can create po-
tential privacy problems when applied to the electronic pedigree system. The
problem lies in authenticating the RFID readers. Consider the example of a
drug company shipping drugs to the clinic. After a patient purchases the med-
ication, he would like to read the RFID tag data to make sure it is genuine. If
only authenticated readers can read the RFID tag, then the patient will have to
authenticate himself to the drug company, thus violating his privacy. Allowing
any RFID reader to reader the tag protects the patient’s privacy, but also allow
malicious agents to clone the RFID tags. To prevent large scale RFID tag data to
be stolen without use authorized RFID readers, we borrow a similar idea from [7]
that uses both a optical and radio channel. Their paper focuses on banknotes
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embedded with an RFID tag. The RFID data is changed periodically so that it
does not always return the same value, thus serving as a pseudo identifier for the
banknote. The serial number is the optical channel that controls the changing
of RFID data so that the data cannot be changed by malicious agents remotely.

3 Problem Formulation and Assumptions

We can abstract the problem of moving products from manufacturer to con-
sumer as

D0 → (D1 · · ·Dn) → C

where D0 is the original manufacturer, and C is the final consumer. D0 is as-
sumed to be always trusted, and C is assumed to always verify his purchase.
D1 · · ·Dn are the different intermediaries that the product goes through before
reaching the consumer. These intermediaries are entities that come into contact
with the product, for example resellers, warehouse operators or delivery trucks.
Each individual product has a unique RFID tag, T , with identity, id. Subscripts
are used to distinguish one tag from another. Since every product has an RFID
tag, referring to a particular tag, Ti, refers to both the RFID tag and the prod-
uct. We consider an adversary denoted as α that can attack anywhere between
(D1 · · ·Dn). The goal of α is to create large numbers of counterfeit RFID tags
that are indistinguishable from real RFID tags.

We assume that different intermediaries like Di and Dj can verify each other’s
identity and create a secure channel to exchange information. We also assume
that consumers will have easy access to RFID readers and barcode readers. This
is a realistic assumption since these readers are beginning to be integrated with
cell phones [9],[10]. The RFID tags used in this paper are assumed to have a
memory divided into multiple cells. This division of RFID memory into different
cells was also adopted in [7] in which the RFID attached to a banknote has two
memory cells. Finally the memory cells in the basic pedigree scheme are write
once only, while the cells in the improved scheme can be written multiple times.
Both types of RFID tags are currently available [4].

4 Basic Pedigree Scheme

In the basic scheme, the tags attached to each product have multiple memory
cells, in which each cell can only be written once. We assume that the tag has
n memory cells, and there are less than n intermediaries. Furthermore, each
product also contains a 2D barcode which stores more data than a conventional
1D barcode. This 2D barcode is place in such a manner that is difficult to
read without damaging the packaging. In a packet of medication, for example,
the RFID tag can be attached to the outside packaging while the barcode is
placed inside the packaging. The only way to read the 2D barcode is to open the
packaging.
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Consider the case when D0 is manufacturing a product with a particular
tag Ti. D0 first generates an idi and stores the pairing of idi and Ti. It then
creates a 2D barcode embedded with idi and attaches the barcode to the product.
Finally, D0 stores the hashed result of idi, h(idi) into the first cell of Ti. Figure
1 illustrates Ti and barcode after preprocessing. When D0 prepares to hand Ti

Barcode Memory Cell 1 Memory Cell 2 · · · Memory Cell n
idi h(idi) · · ·

Fig. 1. Ti after preprocessing

off to D1, both parties first authenticate each other. Then, D1 sends a random
number nD1 to D0. D0 signs the concatenation of this random number and D1’s
identity using his private key, (nD1 ||D1)D0 , and stores the result into the next
empty memory cell of Ti. When D1 receives Ti, he reads in the last written
memory cell in Ti and applies D0 public key to the result. If D1 gets back nD1,
he is convinced that Ti comes from D0. This entire transaction can occur in real
time just as D0 hands off Ti to D1. Figure 2 illustrates Ti when D1 receives it.
Figure 2 illustrates Ti when D1 receives it. The same authentication process is

Barcode Memory Cell 1 Memory Cell 2 · · · Memory Cell n
idi h(idi) (nD1 , D1)D0 · · ·

Fig. 2. Ti after D0 passes off to D1

performed by the remaining intermediaries when they receive Ti. Thus when D1
hands Ti off to D2, D1 will add (nD2 ||D2)D1 to Ti, and so on. D2 can also verify
that D1 is supposed to possess Ti by checking the earlier memory cells in Ti. D2
first asks D1 who it receive Ti from. Then, D2 can use D0’s public key to open
the package (nD1 ||D1)D0 found in the earlier memory cell and check if the D1
identity is indeed stored the earlier memory cell. More generally, an intermediary
Di can backtrack back to D0 by reading the data off the RFID tag and asking
earlier intermediaries and thus recreating the entire movement of a particular
product from the data stored in the RFID tag. This approach is feasible when
the intermediaries are related and their public keys easily available., for example
when Ti is passed from one FedEx truck to another, or when intermediaries are
compelled to cooperate by the relevant authorities.

When the consumer receives Ti, he opens the package to reveal the 2D barcode.
He then checks if the hashed result of the 2D barcode is equivalent to the data
stored in the first memory cell of Ti. If they match, he then checks h(idi) against
a public website managed by D0. Since D0 stores the pairing of idi and Ti during
preprocessing, D0 will be able to identify a valid h(idi). If either test fails, the
consumer rejects the package and contacts the relevant authorities.
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4.1 Evaluating the Basic Scheme

A robust pedigree system needs to store and recover information from the RFID
tag without using a persistent central server. From the scheme above, we see that
storing data onto the RFID tag does not require a central server. Here, we show
how to obtain information from the RFID tag data. A secure pedigree system
has to prevent large number of counterfeit RFID tags from being accepted by
intermediaries.

A key function of a pedigree record is to retrieve information about a particular
product like which warehouse it was stored in or which truck transported it. The
difference of a pedigree system using RFID is that it allows the creation of a pedi-
gree record on a per item basis. Thus, an effective pedigree system will be able to
easily retrieve this information. Every intermediary Di, that comes into contact
with Ti stores the identity of the next intermediary Dj it passes Ti to by storing
(nDj ||Dj)Di . Thus, when there is a need to identify all the products that came into
contact with Dj due to a contamination or product recall, the relevant authori-
ties can release the identities and the public keys of the intermediaries around like
Di, Dj , Dk. Concerned consumers can scan the RFID tag of their own products
and apply the different public keys to verify if they have a product that passed
through Dj. Intermediaries can also verify their inventories since RFID tags can
be read quickly without line of sight. Note that the electronic pedigree based on
RFID tags does not supplant existing inventory management, but complements
it. Thus we can assume that relevant authorities can identify the potential inter-
mediaries and disseminate their public key information. The entire route taken by
a particular product can also be recreated by backtracking back to D0.

For an adversary α to create a large number of counterfeits to flood the system,
α will also need to convince the intermediaries that it is a legitimate recipient
of the product. Consider the case where Dj is supposed to pass Ti to Dk. α
can scan Ti from Dj , attach it to its counterfeits, and try to pass it off to Dk.
Assuming that Dj got Ti from Di, the contents of Ti scanned by α will be

{h(idi)
∣∣(nD1 , D1)D0

∣∣· · · ∣∣(nDj , Dj)Di}

After α passes of Ti to Dk, Ti will become

{h(idi)
∣∣(nD1 , D1)D0

∣∣· · · ∣∣(nDj , Dj)Di

∣∣(nDk
, Dk)α}

When Dk asks α to verify that it is a legitimate recipient of Ti, α will have to
provide the identity of the intermediary he received the product from. However,
the previous memory cell contains (nDj , Dj)Di , and not (nα, α)Di which Dk is
expecting. Thus, α will not be able to convince Dk is a legitimate recipient of
Ti. Since Dk can continue to ask each previous intermediary up till the original
D0 which is always trusted, multiple adversaries colluding can still be identified.

However, the above scheme does not protect against a legitimate intermediary
who is also an α. Consider the case where Dk receives a legitimate tag Ti from
Dj . Dk is also malicious, so he reads the data from the Ti, and place the data onto
another RFID tag attached to a counterfeit product. Let us term this counterfeit
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product’s RFID tag as T̂i. Now, the backtracking approached used above does
not work, since Ti and T̂I both contain the same data. To detect this form of
counterfeit, we rely of the consumer verifying the RFID tag. When the consumer
wishes to verify his purchase, he will first read the idi stored in the 2D barcode
and compare the hashed result of the 2D barcode against the first memory cell
of Ti which is h(idi). Since a one-way hash is used, α will not be able to derive
idi from h(idi). Thus, the counterfeit product will not have a 2D barcode whose
hashed value matches the value on the RFID tag. An alternative is for α to create
a fake idi termed ˆidi, and create a fake tag T̂i that has h( ˆidi). However, when
the consumer checks the hashed value against the public website maintained
by D0, he will discover h( ˆidi) is invalid. Finally, α can obtain a legitimate 2D
barcode by physically opening one product, and then replicate the same Ti and
2D barcode on multiple counterfeits. While this form of attack is able to fool a
consumer, the scope of such an attack is rather limited. Since barcode contains
a unique identifier, all the counterfeit RFID tags by α will have the same h(idi)
stored in the first memory cell, making it easy for intermediaries to detect.

5 Improved Pedigree Scheme

One drawback of the basic scheme is it is unsuitable when there are too many
intermediaries. The number of memory cells needed will be too expensive to at-
tach to individual products. The improved scheme limits the number of memory
cells needed by compressing the data. The improved scheme retains the use of
the 2D barcode, but uses a re-writable RFID tag. This means that the data on
a particular cell on the RFID tag can be overwritten.

The improved scheme requires three memory cells on the RFID tag. The first
cell is used to store the hashed result of the barcode. The remaining two cells are
used to store signatures from the different intermediaries. The improved scheme
retains the same preprocessing step as the basic scheme. For sake of brevity, we
denote h(idi) as r1 and (nD1 , D1)D0 as d1. Both r1 and d1 are stored in the first
memory cell of Ti. This cell cannot be over written. Figure 3 shows Ti when D1
receives it. When D1 hands off Ti over to D2, it will generate d2 = (nD2 , D2)D1

Barcode Memory Cell 1 Memory Cell 2 Memory Cell 3
idi d1 = (nD1 , D1)D0

r1 = h(idi)

Fig. 3. Ti when passed to D1

and r2 = h(r1||d1) and store it into the next empty memory cell. The || denotes
concatenation. D2 handing off to D3 will have d3 = (nD3 , D3)D3 and r3 =
h(r2||d2). Figure 4 shows Ti when D3 receives the it from D2. When D3 prepares
to pass Ti to D4, there are no more empty cells left in Ti. D3 then replaces the
contents of memory cell 2 with information regarding d4 = (nD4 , D4)D3 and
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Barcode Memory Cell 1 Memory Cell 2 Memory Cell 3
idi d1 = (nD1 , D1)D0 d2 = (nD2 , D2)D1 d3 = (nD3 , D3)D2

r1 = h(idi) r2 = h(r1||d1) r3 = h(r2||d2)

Fig. 4. D3 getting Ti from D2

r4 = h(r3||d3). Figure 5 illustrates Ti when D4 receives it. D4 can verify that d4
is correct by applying D3’s public key and checking the random number nD4 .
D4 uses r3 and d3, both found in memory cell 3, to verify that D3 computed the
correct r4 value. Using r4, we can derive the structure shown in Figure 6, where
the information captured in the basic scheme can be derived.

As in the basic scheme, Ti can be backtracked to D0 by having the interme-
diary ask each previous intermediary whom they received Ti from. This infor-
mation is then checked against the data found in the tag. The consumer can
verify the product using the 2D barcode and ri found in memory cell 1 as in the
basic scheme. However, unlike the basic scheme, this solution does not permit
the consumer or an intermediary from checking whether Ti had passed through
any particular intermediary simply by releasing the identity and public keys.
This information can only be found via backtracking.

Barcode Memory Cell 1 Memory Cell 2 Memory Cell 3
idi d1 = (nD1 , D1)D0 d4 = (nD4 , D4)D3 d3 = (nD3 , D3)D2

r1 = h(idi) r4 = h(r3||d3) r3 = h(r2||d2)

Fig. 5. D4 getting Ti from D3

r1 = h(idi) d1 = (nD1 , D1)D0

r2 = h(r1||d1) d2 = (nD2 , D2)D1

r3 = h(r2||d2) d3 = (nD3 , D3)D2

r4 = h(r3||d3)

Fig. 6. Building pedigree from r3

6 Conclusion

In this paper, we examine how RFID tags can be used to establish an electronic
pedigree. We present two schemes that allow pedigree information to be stored
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directly onto the RFID tag itself. The end user can verity the authenticity of
his purchase. Finally, both schemes make large scale counterfeits difficult to
accomplish.
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Abstract. In this paper, we study the solvability of fair exchange in the
context of Byzantine failures. In doing so, we first present a generic model
with trusted and untrusted processes, and propose a specification of the
fair exchange problem that clearly separates safety and liveness, via fine-
grained properties. We then show that the solvability of fair exchange
depends on a necessary and sufficient topological condition, which we
name the reachable majority condition. The first part of this result, i.e.,
the condition is necessary, was shown in a companion paper and is briefly
recalled here. The second part, i.e., the condition is sufficient, is the focal
point of this paper. The correctness proof of this second part consists in
proposing a solution to fair exchange in the aforementioned model.

1 Introduction

Intuitively, a fair exchange is an exchange of items among two or more parties
where the only possible outcome is either that all parties obtain their items,
or none of them do. In our modern daily lives, the notions of fair exchange and
trust are ubiquitous: everyday, without even noticing, we participate in numerous
commercial exchanges, which we expect to be fair (and most actually are). Such
exchanges range from buying a coffee to spending a significant part of our savings
in buying a house. A key enabler to make all these exchanges occur is the notion
of trust. In the physical world, this trust is supported by the identification and
the implicit reputation of tangible exchange partners.

In the digital world, on the contrary, fair exchange is a surprisingly difficult
problem. This can be explained by the lack of trust that characterizes the digital
realm. In an e-commerce environment, an exchange partner behaving unfairly can
vanish without a trace, in contrast with a physical commercial environment where
a partner can be approached physically and held accountable for a misbehavior.
Yet, fair exchange is a fundamental problem that has constantly been studied over
the past decades and that has recently regained interest [1,2,3,4]. This is partly due
to the advent of m-business as a natural evolution of e-business, i.e., extending the
possibilities of e-business through the use of mobile devices, e.g., cellular phones.
When it comes to solving fair exchange in such semi-open environments, i.e., where
all parties are not necessarily identified a priori, carefully modeling and analyzing
trust relationships between peers is a key issue.
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Contribution and Roadmap. This paper propose a generic model in order to
study fair exchange in different network settings and also provides a topological
condition, both necessary and sufficient, for solving fair exchange. In Section 2,
we introduce a synchronous distributed model where processes are divided into
two categories, namely participants, which can be Byzantine, and trustees, which
are known a priori to be correct. In that section, we then formally define the fair
exchange problem via fine-grained properties that separately capture the liveness
and safety requirements of the problem. In Section 3, based on an impossibility
result shown in a companion paper, we present a necessary and sufficient topo-
logical condition for solving fair exchange in a model with trustees. Section 4
then presents a solution to fair exchange under the aforementioned condition:
this solution and its proof provide the correctness proof for the condition. Finally,
Section 5 discusses related work, while Section 6 summarizes our contribution
and sketches ongoing and future work.

2 Model and Problem Statement

Intuitively, our model consists in a synchronous distributed system composed
of two types of processes: participants, which are processes potentially subject
to Byzantine failures, and trustees, which are known a priori to be correct (and
which can thus be trusted). The addition of trusted processes in our model is
motivated by the fact that fair exchange is impossible in the absence of trust,
i.e., without at least one correct process trusted a priori by all other processes [4].
Adding only a single trusted process would however limit the scope of our model
and imply a specific role for that trustee, i.e., that of a Trusted Third Party
(TTP). For this reason, we associate a trustee with each process, hence uniformly
splitting the notion of trust among participants of the exchange and allowing for
fully decentralized approaches.

A Generic Yet Realistic Model. The notion of trustees allows us to pro-
duce a generic model applicable to various trust and network topologies [2,5]. In
particular, this model does not dictate the role of trustees in the fair exchange
protocol, i.e., how trustees are connected or the amount of computation they
bear. As a consequence, most existing solutions, either centralized or decentral-
ized, can be described in our model. For example, Figure 1(a) shows a classical
centralized trust setting, typically via a TTP as in [5], and the equivalent set-
ting in our model. Figure 1(b) then illustrates a distributed trust setting, as with
Guardian Angels [2]. By splitting the trust among all participants, via their re-
spective trustees, we can show that the existence of a decentralized solution to
fair exchange depends on a rather simple topological condition.

In practice, a trustee is typically implemented via a tamperproof piece of hard-
ware embedded in each host, e.g., a specialized chip or a smart card. This hardware-
based approach is gaining momentum in the industry, as illustrated by efforts from
IBM, with both its PCI 4758 and PCI-X 4764 cryptographic coprocessors [6], and
from Intel, with its Trusted Platform Module [7]. Such solutions are expected to
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Fig. 1. Examples of trust topologies

eventually become mainstream, as the urge to go beyond software-based security
increases, in particular in the realm of digital rights management, and as fully de-
centralized peer-to-peer architectures are being deployed.

2.1 System Model

More formally, we consider a distributed system consisting of a set Π of n
processes, Π = {p1, p2, . . . , pn}. Processes of Π are called participants. We com-
plete our model with a set Π ′ of n trusted processes, Π ′ = {p′1, p′2, . . . , p′n}, i.e.,
a trusted process is known to be correct a priori by all other processes. Processes
of Π ′ are called trustees. Furthermore, each p′i is matched in a one-to-one rela-
tionship with the corresponding participant pi and is directly connected to it.
The set Π+ is then the set of all 2n processes, i.e., Π+ = Π ∪Π ′. Participants
are processes actually taking part in the exchange by offering and demanding
items, and they may exhibit Byzantine behaviors. Trustees on the contrary are
trusted processes that have no direct interest in the exchange. Their role is to
decide when it is appropriate to provide their associated participant with its ex-
pected item. We also assume the existence of a Public Key Infrastructure (PKI),
i.e., each process (participants and trustees) owns a private key and made the
corresponding public key accessible to all other processes. Among other things,
this assumption provides message unforgeability.

Topology and Synchrony. Processes are interconnected by a communication
network and communicate by message passing. The system is synchronous : it
exhibits synchronous computation and synchronous communication, i.e, there
exists upper bounds on processing and communication delays. To help our rea-
soning, we also assume the existence of some global real time clock, whose tick
range, noted T , is the set of natural numbers.1

Regarding the network topology, we assume that processes of Π+ form a con-
nected graph and that there exists a direct link between any participant and

1 This global clock is virtual in the sense that processes do not have access to it.
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its trustee. Links are reliable bidirectional communication channels, i.e, if both
the sender and the receiver are correct, any message inserted in the channel is
eventually delivered by the receiver. The synchronous system assumption fur-
ther tells us that the delivery will occur within some known time bound ΔPL.
Formally, such channels are said to be perfect links (PL), which provide send and
deliver primitives (respectively PL.send() and PL.deliver() functions) and ensure
the well-known termination and no creation properties.

Executions and Failure Patterns. We define the execution of algorithm A as
a sequence of steps executed by processes of Π+. In each step, a process has the
opportunity to atomically perform all three following actions: (1) send a message,
(2) receive a message and (3) update its local state.2 Based on this definition, a
Byzantine process is one that deviates from A in any sort of way, so a Byzantine
process is Byzantine against a specific algorithm A. It is a known result that
Byzantine failures can only be defined with respect to some algorithm [8]. A
Byzantine failure pattern f is then defined as a function of T to 2Π where f(t)
denotes a set of Byzantine processes that have deviated from A through time t.
In a way, a failure pattern f can be seen as a projection of all process failures
during some execution of A. Once a process starts misbehaving, it cannot return
to being considered correct, i.e., f(t) ⊆ f(t+1). We also define F as the set of all
possible failure patterns of A, so f ∈ F . Let Byz(f) =

⋃
t∈T f(t) denote the set of

Byzantine processes in f . We then define the set Fb of all failure patterns where
no more than b processes are Byzantine. More formally, Fb is the largest subset
of F such that, for any failure pattern f ∈ Fb, |Byz(f)| ≤ b, with 0 ≤ b ≤ n:

Fb = {f ∈ F : |Byz(f)| ≤ b} with 0 ≤ b ≤ n .

Note that b is bounded by n, the number of processes in Π . From this definition,
b is the maximum number of Byzantine processes in any failure pattern of Fb and
Fn = F . Note that all the above definitions regarding executions and failures are
similar to the models of [8,9], but that failures refer exclusively to participants,
i.e., processes of Π , since trustees are correct.

2.2 The Fair Exchange Problem

The fair exchange problem consists in a group of processes trying to exchange
digital items in a fair manner. The difficulty of the problem resides in achieving
fairness. Intuitively, fairness means that, if one process obtains the desired digital
item, then all processes involved in the exchange should also obtain their desired
digital item. The assumption is made that each process knows both the set Π
of processes participating in the fair exchange and the terms of the exchange.
The terms of the exchange are defined by a set D of expected item descriptions,
D = {d1, d2, . . . , dn}, and a set Ω of pairs of processes (pi, pj). A description di is
the description of the item expected by process pi. Furthermore di is unique, so
2 At each step, the process can of course choose to skip any of these actions, e.g., if it

has nothing to send.
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if i �= j, then di �= dj . A pair (pi, pj) defines the receiver pj of the item offered by
pi. Elements of Ω are defined such that pj is the image of pi through a bijective
map (or permutation) of Π , with i �= j. Finally, let M denote the set of digital
items mi actually offered by process pi during an execution of fair exchange,
M = {m1, m2, . . . , mn}. Note that, accordingly, for each description in D there
does not necessarily exist a corresponding item in M , since M includes items
that might have been offered by Byzantine processes. Finally, let desc(m) be the
function returning the description of item m.

Fair Exchange as Service. Fair exchange can be seen as a service allowing
processes to exchange digital items in a fair manner. Each process offers an item
in exchange for a counterpart of which it has the description. The exchange is
completed when every process releases the desired counterpart or all processes
release the abort item ϕ, meaning that the exchange has aborted. To achieve
this, the service offers the two following primitives.

offer(mi, pj) – Enables the process pi to initiate its participation in the
exchange with processes of Π by offering item mi to pj , in exchange for the
item matching description di, with di and Π known a priori.3

release(x) – Informs the process that the exchange completed and works as
a callback. Process pi receives item x, which is either an item matching di

or the abort item ϕ.

Note that, at the end of an exchange, we say that pi releases an item, meaning
that the service calls back the release operation of pi. This convention is sim-
ilar to the one used for typical deliver primitives, e.g., with reliable broadcast
primitives [10].

Fair Exchange Properties. We now specify the formal properties of the
fair exchange problem. While several other specifications exist in the litera-
ture [2,3,11], our specification differs in that it separates safety and liveness
via fine-grained properties. Such elemental properties then allow us to better
reason about the correctness of our solution.

Validity. If a correct process pi releases an item x, then either x ∈ M and x
matches di, or x is the abort item ϕ.

Uniqueness. No correct process releases more than once.
Non-triviality. If all processes are correct, no process releases the abort item ϕ.
Termination. Every correct process eventually releases an item.
Integrity. No process pj releases an item mi, with process pi correct, if mi

matches description dk of some correct process pk, with pk �= pj .
Fairness. If any process pi releases an item mj matching description di, with

pi or pj correct, then every correct process pk releases an item matching
description dk.

3 When defining the FE problem, trustees are not required since they have no direct
interest in the exchange.
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Among these six properties, the last two, integrity and fairness, are specific
to the problem of fair exchange and define precisely the possible outcomes of
fair exchange algorithms. Other specifications of fair exchange usually rely on a
single property to capture the notion of fairness [2,5,11]. However we argue that
if those specifications are suitable for cases where n = 2, they are impossible to
satisfy in models allowing more than one Byzantine process. In [2], for example,
the fairness property requires that if any correct process does not obtain its
item, then no process obtains any items from any other process. This is clearly
unsustainable in the presence of two or more Byzantine processes because one
cannot prevent two Byzantine processes from conspiring in order for one of them
to obtain the item of the second one. A simple but flawed fix would be to modify
this definition as follows: if any correct process does not obtain its item, then
no process obtains any items from any correct process. If it first seems correct,
this definition of fairness now allows a correct process to obtain the item of a
Byzantine process, even if other correct processes do not obtain anything.

Coming back to our specification, integrity ensures that no process obtains
an item offered by a correct process and matching the description of some other
correct process. Notice that this does not prevent a Byzantine process from illic-
itly obtaining the item destined to or offered by some other Byzantine process,
since such a behavior cannot be prevented and does not prejudice any correct
process. Then, fairness guarantees that if any process obtains its desired item
offered by some other process, with at least one of them being correct, then every
correct process also obtains its desired item. In other words this property pre-
vents a Byzantine process from taking advantage of a correct process but does
not protect other Byzantine processes from their own incorrect behaviors. More
trivially, it also ensures that no correct process takes advantage of any process.

3 The Reachable Majority Condition

In a companion paper [4], we showed that a necessary condition to solve fair
exchange in the model with trustees is to have every correct participant reliably
connected to a majority of trustees. To formally define this condition, named the
reachable majority (RM) condition, we must first define the notion of reliable
path as follows. Let pi and pj be two correct processes of Π+. We say that pi

and pj are connected by a reliable path, if there exists at least one path between
pi and pj such that no process along that path is Byzantine. The RM condition
is then formally defined as follows.

Definition 1 (Reachable majority condition). Topological condition under
which, for any correct process p ∈ Π and any failure pattern f ∈ Fb, p is
connected by a reliable path to a strict majority of trustees, i.e., �n

2 + 1�, even
in the presence of up to b Byzantine processes.

Note that trustees described in Definition 1 are called major trustees, whereas
others are called minor trustees. The strict majority of Definition 1 ensures
that the set of major trustees is identical for all correct processes, since if two
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processes have a single major trustee in common, then they have all their major
trustees in common. The main focus of this paper is to show that not only is this
condition necessary, it is also sufficient (Theorems 1 and 2 hereafter). This con-
dition then allows us to better reason on the solvability of fair exchange and to
compare different topologies. Indeed, given a topology and a number of Byzan-
tine processes, one can infer whether a solution exists in that context. Or maybe
more interestingly, it is possible to determine the maximum number of Byzantine
processes that a specific network topology may sustain and yet still allow true
fair exchange (by opposition to probabilistic fairness). Note that if the RM con-
dition is met, it implies that all correct processes and a majority of trustees are
interconnected by reliable paths. However, it is important to note that it does
not imply, nor require, a majority of correct processes. Figure 2 gives examples of
topologies allowing true fair exchange, including their respective upper bounds
on the number of Byzantine processes. As illustrated in Figure 2(a), a TTP is
able to sustain any number of Byzantine processes, whereas Figure 2(b) and (c)
show topologies sustaining respectively a minority of Byzantine processes and
up to the parity between correct and Byzantine processes.
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Fig. 2. Topologies allowing true fair exchange

3.1 Impossibility and Solvability Theorems

As already mentioned, in [4] we showed that the RM condition is a necessary
condition in order to deterministically solve fair exchange in the model with



A Topological Condition for Solving Fair Exchange 37

trustees. Hereafter, Theorem 1 gives an informal reading of this result. Further-
more, in this paper, we argue through Theorem 2 that the RM condition is also
sufficient in order to solve fair exchange.

Theorem 1 (Impossibility). In the context of a synchronous model with trus-
tees and Byzantine failures, there is no deterministic solution to the fair exchange
problem, if the reachable majority condition is not satisfied.

The formal proof of Theorem 1 falls outside the scope of this paper and can be
found in [4]. However, to give an intuition of its correctness, first observe that, in
order to ensure fairness, trustees must make a consistent decision whether to al-
low their respective processes to obtain their items or not. Then, since a process
and its trustee are directly connected, if some correct process p is not reliably
connected to a majority of trustees, neither is its trustee p′. So, either p′ is not
allowed to make a decision and p ends up violating the termination property
of fair exchange; or p′ is indeed allowed to make a decision in the absence of
a majority, in which case there is no means to prevent fairness from being vio-
lated, e.g., if another group of reliably connected trustees make a contradictory
decision.

Theorem 2 (Solvability). In the context of a synchronous model with trustees
and Byzantine failures, there exists a deterministic solution to the fair exchange
problem under the reachable majority condition.

Proof. In Section 4, we present Algorithms 1 and 2, which combine to produce
a generic solution to fair exchange, for any topology and any number of Byzan-
tine processes respecting the RM condition. We then prove the correctness of
Theorem 2 by proving that our solution preserves the validity, uniqueness, non-
triviality, termination, integrity and fairness properties of fair exchange.

4 Fair Exchange Under the RM Condition

In this section, we propose a solution to fair exchange that relies on the use of
trustees. As described in Section 2.1 (system model), participants communicate
by message passing and the network is a connected graph with respective partic-
ipants and trustees connected directly. Our solution is composed of Algorithm 1
and Algorithm 2 and, other than perfect links presented in the model, they rely
on two communication modules described hereafter, i.e., a best-effort multicast
module and a Byzantine agreement module. Note that we merely aim at prov-
ing that a generic solution does exist under the RM condition and are thus not
concerned with performance.

Best-Effort Multicast (BM). In order to solve fair exchange, Algorithms 1
and 2 rely on a best-effort multicast module that provides processes (participants
and trustees) with the means to send messages to any group of processes with
best effort. As described in our model, directly connected processes communicate
via reliable channels. However, two processes that do not benefit from a direct
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link are not necessarily reliably connected, since paths between them might go
through a Byzantine process, making communications potentially unreliable.
The BM module provides a means to reliably send messages to processes acces-
sible through at least one reliable path.4 The module provides two primitives,
send and deliver, described hereafter.

BM.send(pi, S, ‘type’, m) – Enables a process pi to multicast a message m to
a defined set S of processes. The message type prevents confusion among
different messages.

BM.deliver(pi, pj , ‘type’, m) – Works as a callback and enables a process pj of
S to receive a message m from process pi.

Hereafter, we present the validity and agreement properties of best-effort mul-
ticast, which are the two main properties ensured by the BM module. A no
creation property is also part of the specification of the best-effort multicast
abstraction but is not detailed here. Note that one can ensure that the validity
property of BM is achieved within some maximum time bound ΔBM , e.g., by
having ΔBM = n×ΔPL in the worst case.

Validity. Let pi and pj be any two correct processes connected by a reliable
path, if pi BM.sends a message m to a set S, with pj ∈ S, then pj eventually
delivers m.

Agreement. Let pi and pj be any two correct processes of some set S that are
connected by a reliable path, if pi BM.delivers a message m BM.sent to S,
then pj BM.delivers m.

Byzantine Agreement (BA). In Algorithm 2, we use a Byzantine Agree-
ment module that provides trustees with a means to reach agreement among
major trustees, in spite of Byzantine failures that may occur along the various
paths. This version of Byzantine agreement is largely based on [13]. However
it differs in the sense that no Byzantine processes participate in the agreement
(only trustees) but communications along unreliable paths may be blocked by
Byzantine processes. Now, by considering minor trustees responsible for Byzan-
tine failures happening along the unreliable paths leading to them, one can then
apply Byzantine agreement to our model, i.e., by considering major trustees as
correct processes, minor trustees as Byzantine processes and unreliable paths
as reliable. The BA module provides three primitives, BA.start(), BA.send() and
BA.deliver(), described hereafter in details.

BA.start(p′j) – Enables a trustee p′i to start an execution of BA in order to
receive a message from a trustee p′j. For each execution of the protocol,
every trustee calls the start primitive at the same time (see explanation
below) and trustee p′j calls the send primitive.

BA.send(p′i, m) – Enables a trustee p′i to reliably broadcast a message m to all
trustees.

4 This can be achieved using flooding as presented in Appendix A or some more
sophisticated algorithm [12].
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BA.deliver(p′i, M) – Works as a callback and enables a trustee p′j to receive a
set M of messages as the result of a reliable broadcast by trustee p′i. Possible
outcomes of the broadcast are twofold: (1) M is a singleton, meaning that
transmissions from the sender were not blocked, so that message can be
used; (2) M is the empty set, meaning that the sender did not call the send
primitive in a timely fashion or that messages from the sender were blocked.

Intuitively, the goal consists in preventing Byzantine processes along unreliable
paths from causing major trustees to receive different sets M . When relying on
unforgeable signed messages, a solution is known to exists for any number of
Byzantine processes [13], i.e., in our case minor trustees. Hereafter, we recall the
two interactive consistency (IC) properties ensured by the BA module.

IC1 – Agreement. If a major trustee BA.delivers a set of messages M , then
every major trustee BA.delivers M .

IC2 – Validity. If a major trustee BA.sends a message m, then every major
trustee eventually BA.delivers the set {m}.

An implicit assumption in [13] is that all trustees roughly start at the same time
to allow the absence of messages to be detected. Since all trustees roughly start
Algorithm 2 at the same time, the start primitive of BA enables us to explicitly
ensure this assumption by having all trustees calling the primitive at the same
time (line 13 of Algorithm 2), i.e., at time t0 + ΔBM . This ensures termination
of BA, even if a trustee does not send any vote or messages are blocked by some
Byzantine processes.

4.1 Fair Exchange Algorithm

Algorithms 1 and 2 provide a generic solution to the fair exchange problem for
any topology and any number of Byzantine processes meeting the RM condi-
tion. For sake of simplicity, we assume that all correct processes – including all
trustees – have local clocks that are synchronized within some fixed maximum
error, as discussed in [14], so they are able to start the algorithms at the same
time. We also assume that upon actions are executed atomically with respect to
one another. Participants execute Algorithm 1, which initiates the fair exchange
protocol, and trustees execute Algorithm 2. In Algorithm 1, each participant
sends an encrypted version of its offered item to the trustee of the correspond-
ing participant, according to Ω (the terms of the exchange). It then waits to
receive and release the content of the first message sent by its trustee. The ter-
mination of Algorithm 1 is ensured by the timeout contained in Algorithm 2. In
Algorithm 2, each trustee waits to receive the item expected by its associated
participant. Algorithm 2 is then structured in two phases described hereafter:
(1) the voting phase, and (2) the clue exchange phase.

Voting Phase. In this phase, trustee p′i sends its vote to every trustee to inform
them that it holds the expected item, and waits to receive the vote of every
trustee. In Algorithm 2, once trustee p′i receives the encrypted item (line 7), it
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Algorithm 1. Fair Exchange executed by participant pi, with (pi, pj) ∈ Ω

1: Uses: Perfect Link (PL), Best-effort Multicast (BM)
2: Initialisation:
3: released ← ‘false’

4: function offer(item, pj)
5: BM.send(pi, {p′

j}, ‘item’, encrypt(p′
j , item)) {sends its encrypted item to p′

j}

6: upon PL.deliver(p′
i, pi, item) do {callback from PL}

7: if ¬released then {avoids releasing}
8: released ← ‘true’ {more than once}
9: release(item) {releases the item received}

deciphers it using its private key, checks if it matches its description and starts
the voting process. The trustee signs and broadcasts its proceed vote (line 12)
using BA, indicating that it holds the expected item. It also starts BA for each
trustee to ensure termination of all executions of BA. Then, upon reception of
a vote, the validProceedVote() function checks if the delivered set is a singleton
containing the proceed vote of the sender (line 17). If the vote is valid, it is
added to the set of votes. Once all votes are gathered, a trustee knows that every
trustee voted proceed and that they thus hold the expected item. With that
information, trustee p′i enters the final phase by signing and then sending the n
votes – called the i-th clue – to every trustee (line 21).

Clue Exchange Phase. In this phase, trustee p′i sends its clue to all trustees to
inform them that it received all n votes, and waits to receive the clues from a
majority of trustees (line 27). Upon reception of a clue, the validClue() function
checks if the clue contains a signed set of all n proceed votes (line 25). With
�n

2 + 1� clues, it sends the deciphered item to its corresponding participant
(line 28). The majority is necessary to ensure that at least one major trustee
was able to produce its i-th clue in order for any process to release its item. At
this stage, no Byzantine process is able to prevent trustees of correct processes
to send the expected item to their respective process.

4.2 Correctness Proof

In the following, we prove that Algorithms 1 and 2 solve fair exchange under
the reachable majority condition. Our correctness proof shows that Algorithms 1
and 2 preserve the validity, uniqueness, non-triviality, termination, integrity and
fairness properties of fair exchange. Based on Lemma 1, the respective theorems
hereafter validate each of these properties. Note that, hereafter, the term process
is only used to designate participants, i.e., processes of Π , unless specifically
mentioned otherwise.
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Algorithm 2. Fair Exchange protocol executed by trustee p′i

1: Uses: Perfect Link (PL), Best-effort Multicast (BM), Byzantine Agreement (BA)
2: Initialisation:
3: t0 ← time() {sets t0 to starting time}
4: di ← ... {sets description to known value}
5: item ← ⊥ {sets variable to null}
6: votes, clues ← ∅ {sets variables to empty set}

7: upon BM.deliver(pj , p
′
i, ‘item’, sealedItem) do {callback from BM}

8: if (item = ⊥) then {checks for duplicate send}
9: item ← decipher(sealedItem) {deciphers and stores received item}

10: if desc(item) = di then {check if item matches description}
11: vote ← sign(‘proceed’) {produces proceed vote}
12: BA.send(p′

i, vote) {sends vote}

13: upon time() > t0 + ΔBM do {item exchange phase is over}
14: for all p′

j ∈ Π ′ do {for all trustees}
15: BA.start(p′

j) {starts BA}

16: upon BA.deliver(p′
j , vote) do {callback from BA}

17: if validProceedVote(vote) then {checks vote}
18: votes ← votes ∪ vote {adds p′

j’s vote to set}
19: if (|votes| = n) then {if all votes are proceed}
20: clue ← sign(votes) {produces clue}
21: BM.send(p′

i, Π
′, ‘clue’, clue) {sends clue}

22: else
23: PL.send(p′

i, pi, ϕ) {sends ϕ to pi}

24: upon BM.deliver(p′
j , p

′
i, ‘clue’, clue) do {callback from BM}

25: if validClue(clue) then {checks if message is valid}
26: clues ← clues ∪ {clue} {adds pj’s clue to set}
27: if (|clues| > n/2) then {checks for majority of clues}
28: PL.send(p′

i, pi, item) {sends item to pi}

Lemma 1. If some trustee does not receive the expected encrypted item, then
no trustee sends an item at line 28 of Algorithm 2.

Proof. If some trustee does not receive the expected item, it does not send the
proceed vote. Hence no trustee receives all n proceed votes, so no trustee
sends its i-th clue. If no trustee sends its i-th clue, then no trustee receives any
clue. Without a majority of clues, no trustee sends the item to its corresponding
participant at line 28 of Algorithm 2.

Theorem 1 (Validity). If a correct process pi releases an item x, then either
x ∈ M and x matches di, or x is the abort item ϕ.

Proof. In Algorithm 1, a process pi only releases an item at line 9. Process pi

releases upon reception of an item from its trustee p′i, so the possible items
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are those sent by p′i in Algorithm 2. In Algorithm 2, trustee p′i explicitly sends
the abort item ϕ at line 23 so pi would release ϕ. The only other case of item
transmission is at line 28: p′i sends the item that is stored in variable item. From
Lemma 1, if a trustee sends an item at line 28, it has previously received the
expected item and stored it in variable item. Since, from line 8, no two different
items can be stored in variable item, p′i sends the expected item at line 28. So pi

would release the expected item.

Theorem 2 (Uniqueness). No correct process releases more than once.

Proof. The boolean variable released in Algorithm 1 and the atomic execution
of upon statements prevent any correct process from releasing more than once.

Theorem 3 (Non-triviality). If all processes are correct, no process releases
the abort item ϕ.

Proof. Since every process is correct, every process sends the correct encrypted
item at line 5 of Algorithm 1 as agreed in the terms of the exchange. From the
validity property of BM, every trustee p′i receives an item matching description di

before time t1 = t0 + ΔBM , so every trustee produces and sends its proceed
vote at line 12 of Algorithm 2 in a timely fashion. From the IC2 property of
BA, no process receives an invalid proceed vote. So finally, no trustee sends
the abort item ϕ (line 23) of Algorithm 2 and thus no process releases ϕ.

Theorem 4 (Termination). Every correct process eventually releases an item.

Proof. The assumption that participants and trustees start Algorithms 1 and 2
at the same time and the timeout at line 13 of Algorithm 2 ensures that every
trustee starts all n executions of BA at the same time. This implies that, from
the existence of a time bound for the termination of BA and the IC1 property,
there is a time after which: either every trustee of correct processes receives
at least one invalid proceed vote and sends the abort item ϕ, prompting the
corresponding correct process to release ϕ; or every major trustee receives all
n valid proceed votes. In the latter case, every major trustee produces and
sends its i-th clue at line 21 of Algorithm 2. From the validity property of BM
and the reachable majority condition, every trustee of correct processes receives
a majority of clues and then sends the item at line 28 of Algorithm 2. Finally,
from the termination property of PL, every correct process releases the item.

Theorem 5 (Integrity). No process pj releases an item mi, with process pi

correct, if mi matches description dk of some correct process pk, with pk �= pj.

Proof. Firstly, since any process pk and its trustee p′k are directly connected,
no process pj intercepts the transmission of any deciphered item mi by p′k at
line 28 of Algorithm 2. Secondly, only in a single step of Algorithm 1, i.e., at
line 5, does a correct process pi transmit its item mi through the network. Since
pi is correct, pi encrypts mi using the public key of p′k in order to send it through
the network. So no process other than pi and pk holds a deciphered version of
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mi and, since both are correct, they do not send a deciphered version of mi to
pj . From assumption on the PKI unforgeability, pj is not capable of obtaining a
deciphered version of mi and thus does not release mi.

Theorem 6 (Fairness). If any process pi releases an item mj matching de-
scription di, with pi or pj correct, then every correct process pk releases an item
matching description dk.

Proof. The proof is by contradiction.

Assume that some correct process pk does not release an item matching descrip-
tion dk and that some other process pi releases an item mj matching descrip-
tion di, with pi or pj correct. If pi releases mj (line 9 of Algorithm 1), either pi

is correct and only releases an item received from its trustee p′i; or pj is correct
and encrypted mj before sending it to p′i (line 5 of Algorithm 1) and thus pi is
only capable of releasing mj by receiving it from its trustee p′i. So in either cases,
if pi releases mj , mj is received from trustee p′i, which sends mj at line 28 of
Algorithm 2. Trustee p′i thus receives a majority of clues in some previous steps.
From the reachable majority condition, at least one of these clues is produced
by some major trustee p′x. Trustee p′x thus receives all n proceed votes. So,
from the IC1 property of BA, every major trustee also receives all n proceed
votes, including all trustees of correct processes. This implies that no trustee of
correct processes sends the abort item ϕ (line 23 of Algorithm 2), including p′k,
so pk does not release ϕ. From the validity and termination properties of FE,
if pk does not release ϕ, then pk releases an item matching description dk. A
contradiction.

4.3 Discussion

As presented in Section 4, our generic solution relies both on best-effort multi-
cast (BM) and Byzantine agreement (BA) modules. The BM module is used in
Algorithms 1 and 2, i.e., by participants and trustees, whereas the BA module
is only used in Algorithm 2, i.e., by trustees.

Since both modules share very similar validity and agreement properties, a
reasonable question is: could we have done with only one module? The answer
is: yes, a modified version of BM would be sufficient. To understand why, let us
first point out a key guarantee offered by BA: trustees always eventually deliver
a set of messages, even if the sender did not call the send primitive or all its
messages where blocked by Byzantine processes (in which case the set is empty).
The eventual delivery of BA is achieved through the use of the start primitive,
allowing trustees to detect the absence of messages.5

The BM module, on the contrary, offers no such guarantee. However, by
adding a start primitive to BM and by slightly changing its semantics, we could
rely on the BM module to reach deterministic agreement among major trustees.

5 Major trustees are thus able to agree on the votes of all trustees, including minor
trustees, even if some (or all) messages sent by minor trustees are blocked.
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However, since the BM module already accomplishes two different tasks, i.e.,
point-to-point and multicast communication, overloading it with a third seman-
tics would make our solution more difficult to understand.

5 Related Work

Research on fair exchange has produced an impressive body of work over the past
decades, as testified by several surveys [15,16]. At least three different commu-
nities of researchers are showing major interest in this problem, namely people
active in e-business solutions, in cryptographic algorithms and in distributed
systems. This diversity results in a variety of problem statements and underly-
ing assumptions, as well as an even larger number of approaches to solve fair
exchange.

Modeling Fair Exchange. The fair exchange problem comes basically in two
flavors, namely a weak variant and a true variant [16]. Weak fair exchange does
not require the exchange to be fair but rather that honest peers are able to gather
evidence of potential misbehaviors. This variant thus assumes that misbehaving
peers can be brought to justice, which is not the case in our approach. The
problem we address in this paper is true fair exchange, which on the contrary
requires a strong enforcement of fairness.

Within the realm of true fair exchange, various specifications have been pro-
posed, with slightly different sets of properties [15]. Among these properties,
fairness is the most difficult to capture and hence where most specifications tend
to differ, as in [2,5,11]. Despite what is sometimes claimed, several such specifica-
tions are really meaningful for exchanges involving only two processes, i.e., they
are impossible to satisfy in models allowing more than one Byzantine process.
Note also that many researches explicitly aimed at the fair exchange variant
involving only two peers [5,17,18,19,20], in particular when it comes to specific
applications of fair exchange, e.g., exchanges of digital signatures, of emails and
their receipts, etc. Our specification of the fair exchange problem, on the con-
trary, considers the general case where more than two peers might be involved,
as already discussed in Section 2.2.

Besides proposing a specification, some authors also discuss the difficulty of
fair exchange and propose impossibility results in various models. In [11], fair
exchange is measured against consensus, and an impossibility result on fair ex-
change in asynchronous models is shown by comparison with the FLP impossi-
bility [21]. In [22], fair exchange is shown to be impossible to solve deterministi-
cally in an asynchronous system with no Trusted Third Party (TTP). In another
feasibility study [23], complex exchanges are broken into sub-exchanges – each
relying on a different TTP – and represented as a graph. Reduction rules are
then applied to the graph in order to demonstrate the feasibility of the exchange.
This method also makes it possible to illustrate how closely exchange feasibility
relies on trust. Along that line, we have shown that fair exchange is insolvable in
a synchronous model in the absence of some identified process that every other
process can trust a priori [4].
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Before moving to the discussion on existing fair exchange solutions, let us
clarify an often misunderstood specificity of fair exchange. Indeed, this misun-
derstanding leads some people to believe that the above impossibility results are
in fact contradicting an important result by Chaum et al. in [24]. Intuitively, this
result states that any multiparty protocol can be achieved in an unconditionally
secure manner, provided that the system is synchronous and that at least 2

3 of
the peers are honest. The key difference here is in what one is really trying to
achieve. Indeed, the problem considered by Chaum et al. consists in having a
set of peers compute a multiparty function while preserving privacy regarding
each peer’s input and output [25]. However, fairness is out of their scope, i.e.,
they do not achieve it, nor discuss it, hence the confusion, since the absence of
discussion may unintentionally lure the reader into thinking otherwise.

Solving Fair Exchange. Most solutions to fair exchange rely on some kind
of Trusted Third Party (TTP). A TTP is a process directly accessible to all
processes. Fairness is thus trivially ensured by having processes send their items
to the TTP, which forwards the items, if the terms of the exchange are ful-
filled [26]. A TTP brings synchronism and control over terms of the exchange in
order to ensure fairness but constitutes a bottleneck and a single point of fail-
ure. For this reason, various so-called optimistic algorithm have been proposed
that only involve the TTP when something goes wrong, i.e., when an attempt
to cheat is detected [5,19,26,27,28]. However optimistic approaches are based on
the strong assumption that the environment is mostly honest. To weaken the
role of the TTP, in [18] for instance, Franklin and Reiter propose a solution
using a semi-trusted third party that can misbehave on its own but does not
conspire with either of the two participant peers. Similarly, the authors of [29]
propose a solution based on a cluster of untrusted servers acting as third parties.
In the latter paper, however, the authors recognize that they are merely solving
a variant of the weak fair exchange.

By relying on fully decentralized tamperproof modules, other approaches de-
part from the traditional TTP-based approach [1,2,3], assuming fully connected
processes but embedded tamperproof modules dependant of their process for
communicating. A very interesting feature of the approach proposed in [2] lies
in its ability to gracefully degrade its quality of service from true fairness to
probabilistic fairness.

6 Concluding Remarks

In this paper, we extended a previous result [4] by proposing a necessary and
sufficient topological condition – the reachable majority condition – on the solv-
ability of fair exchange in a synchronous model with Byzantine failures and
trustees. We gave a solution to fair exchange under the reachable majority con-
dition, along with its correctness proof. This result thus validates the correctness
of our reachable majority condition. Currently, we are further studying the rela-
tionship between various topologies and the reachable majority condition. We are
also further investigating the relationship between our results and those found in
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the domain of secure multiparty computation and fair computation [30]. In [24]
for instance, Chaum et al. show that any multiparty protocol can be achieved
in an unconditionally secure manner, provided that the system is synchronous
and that at least 2

3 of the peers are honest.
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A Best-Effort Multicast

Algorithm 3 provides a solution to the best-effort multicast abstraction presented
in Section 4 and thus shows that the BM module is implementable in the context
of our model. We assume that every process knows its direct neighbors and we
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define Vpi as the set of neighbors of process pi. Intuitively Algorithm 3 satisfies
the properties of best-effort multicast by having correct processes flooding the
network with the message. Flooding is achieved by forwarding any received mes-
sage the first time it is received. Upon reception of that message, if the process is
included in the set S of recipients, it also delivers the message. Note that having
a Byzantine process deliver a message it was not suppose to does not jeopardize
the validity of BM, nor cause any sort of problems.

Algorithm 3. Best-effort multicast protocol executed by process pi

1: Uses:
2: Perfect Link (PL)

3: Initialisation:
4: forwarded ← ∅ {set of forwarded messages}

5: function send(pi, S, m)
6: for all pj ∈ Vpi do {for all neighbors}
7: PL.send(pi, pj , 〈pi, S, signi(m)〉) {sign and send the message}
8: if pi ∈ S then {check if message destined to self}
9: deliver(m) {deliver the message}

10: upon PL.deliver(pj, pi, 〈pk, S, signk(m)〉) do
11: if m /∈ forwarded then {check if not forwarded}
12: forwarded ← forwarded ∪ {m} {add the message to forwarded set}
13: for all px ∈ Vpi − {pj} do {for all neighbors except pj}
14: PL.send(pi, px, 〈pk, S, signk(m)〉) {forward the message}
15: if pi ∈ S then {check if message destined to self}
16: deliver(m) {deliver the message}

Correctness Proof. In the following, our correctness proof aims at showing
that Algorithm 3 preserves the Agreement and Termination properties of best-
effort multicast and that such a module is thus implementable in our model.
Note that in Lemma 1 the term ‘receive a message’ does not imply that the
message is delivered but it relates to messages that are either obtained from the
send() function (line 5 of Algorithm 3) or from the PL.deliver() callback (line 10
of Algorithm 3).

Lemma 1. Let pi and pj be any two correct processes that are connected through
a reliable path, if pi receives a message m, then pj receives m.

Proof. The proof is by induction.
Basis step. Assume that some correct process pi receives a message m (line 5
or 10) and that pi and pj are directly connected. So either pi is the originator
of m and sends m to processes of Vpi ; or pi receives m from some process px

and sends m to processes of Vpi − {px}. In both cases, from the termination
property of perfect links, all processes of Vpi eventually receive m. From our
initial assumption, since pj ∈ Vpi , pj receives m.
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Inductive step. Assume that any two correct processes pi and pj are connected
through a reliable path. From definition of reliable paths, there exists a process
pk such that pk is on that reliable path and pj ∈ Vpk

. Moreover, pk is correct and
connected to pi through a reliable path. So now assume that pi and pk receive a
message m. Again either pk is the originator of m and sends m to processes of
Vpk

; or pk receives m from some process py and sends m to processes of Vpk
−{py}.

In both cases, from the termination property of perfect links, all processes of Vpk

eventually receive m. From our initial assumption, since pj ∈ Vpk
, pj receives m.

Theorem 1 (Agreement). Let pi and pj be any two correct processes of S
that are connected through a reliable path, if pi delivers a message m, then pj

delivers m.

Proof. Assume that any two correct processes pi and pj of S are connected
through a reliable path and that pi delivers a message m. So pi receives m in
a previous step of Algorithm 3 (line 5 or 10). From Lemma 1, pj also receives
m. Since pj is a correct process of S, either m is in the forwarded set of pj and
pj has delivered m, or m is not in the forwarded set of pj and pj delivers m at
line 16.

Theorem 2 (Termination). Let pi and pj be any two correct processes con-
nected through a reliable path, with pj ∈ S, if pi sends a message m, then pj

eventually delivers m.

Proof. Assume that any two correct processes pi and pj of S that are connected
through a reliable path and that pi sends a message m. So pi receives m, as the
originator of m. From Lemma 1, pj also receives m. Since pj is a correct process
of S, either m is in the forwarded set of pj and pj has delivered m, or m is not
in the forwarded set of pj and pj delivers m at line 16.
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1 Introduction

The ability to precisely synchronize clocks among distributed components is
critical for electrical power systems, industrial automation, telecommunication
systems, military applications, and other fields where timing is crucial to their
correctness and performance. The components of these distributed systems often
contain real-time clocks that control their performance and coordination.

The IEEE 1588 standard [1] specifies a precision clock synchronization pro-
tocol for networked measurement and control systems that may utilize non-IP
networks. It is equivalent to the IEC 61588 standard [6]. Both standards are
known as “Precise Time Protocol” (PTP). In this paper, we use the terms “PTP”
and “IEEE 1588” interchangeably. Networked heterogeneous systems can employ
this protocol to synchronize clocks with accuracy in the sub-microsecond range.
Real-world examples of PTP applications can be found in [9,10].

Although existing protocols such as the Network Time Protocol (NTP) [7] and
the Global Positioning System (GPS) are used to synchronize clocks within net-
works, PTP is the only one that offers accuracy at the sub-microsecond level for
small self-administered networks [4,5]. NTP also requires the underlying network
to be IP-based, whereas PTP does not have this restriction.

Even though PTP is being positioned by the industry to serve as a key time
synchronization technology for automation and control [10], its resilience to se-
curity attacks has not yet been publicly studied. For PTP to serve its intended
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role, the automation and control community needs to be aware of the protocol’s
security properties.

In this paper, we report on the results of our security analysis of the 2002
revision of the IEEE 1588 specification [1]. The analysis focused on PTP’s mes-
sage transmission period, i.e., when networked devices exchange synchronization
messages. The results of this analysis can assist the developers and users of PTP-
based technologies in identifying the security requirements and developing the
necessary security mechanisms for the protocol.

We made several assumptions for the purpose of analysis. In order to focus
on PTP-related attacks and to exclude attacks specific to other protocols from
our analysis, we assumed that the network being analyzed is a “closed network,”
i.e., none of the network nodes is connected to other external networks, such
as the Internet. For those environments where the above assumption does not
hold, additional types of attacks (e.g., distributed denial of service), including
those specific to general-purpose network protocols, such as IP, UDP, and TCP,
have to be taken into account. As a consequence of the first assumption, our
second assumption was that only adversaries who have direct access to the PTP
network can initiate attacks. Our third assumption was that the attacker(s) can
mount passive (message eavesdropping) as well as active (message modification,
removal, and injection) attacks. On the other hand, we could not make the
assumption that IPSec [8] and its supporting services (e.g., key management)
are available in the automation and control system that uses PTP because the
PTP specification does not mandate IPSec.

Due to the lack of built-in protection, PTP messages can be easily tampered
with by anyone who has access to the network. More importantly, the results of
our analysis also suggest that attackers can easily use this weakness to incorrectly
resynchronize clocks or to illegally rearrange (or even disrupt) the hierarchy
of PTP clocks. Additionally, the protocol lacks a mechanism for detecting and
compensating “out of range” data that can result in an inconsistent state of PTP
participants. Furthermore, we discovered several PTP-specific attacks that, we
believe, are very hard to detect by a network intrusion detection system, unless it
maintains the state of the victim PTP clock hierarchy, which could be expensive.

The rest of the paper is organized as follows. Background on the PTP is
provided in Section 2. Section 3 describes the attacks that we identified PTP to
be vulnerable to. We draw conclusions and outline future work in Section 4.

2 Background on the Precise Time Protocol

This brief overview of the standard is based on the 2002 revision of the IEEE
1588 specification [1]. A more detailed description can be found in [12]. The
main two elements of any PTP network are the clock and port. The clock is a
network node that can provide measurements of time. An example of a clock
is a network switch connected to two or more subnets. Its connections with the
subnets are referred to as ports. The switch is referred to as a boundary clock,
which has more than one port. Ordinary clocks have only a single port.
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Fig. 1. A hypothetical PTP network (adapted from [3])

Each clock port serves as either a master or slave clock. The master clock is
used as a reference for calibrating all of the slave clocks. Above all, the grand
master clock (GMC) is the root clock that all the master clocks of the subnets
are synchronized to. The master clock and the GMC are elected via the best
master clock (BMC) algorithm, which is executed by every port individually
and autonomously. The algorithm ensures that there is only one master clock
active at any given moment on any subnet. The BMC algorithm is explained in
detail in [12], and its vulnerabilities are analyzed in Section 3.1 of this paper.

Figure 1 shows a hypothetical PTP network with two subnets connected via
one switch. Switching Device A is a boundary clock with two ports. Port 2 acts
as a slave, and port 1 acts as the master clock. The standard allows messages
to be transmitted either directly in Ethernet frames or as UDP payload. PTP
defines both management and time synchronization messages. For the purposes
of this paper, we are concerned only with the latter. There are four types of syn-
chronization messages used in the PTP protocol: Sync, Follow Up, Delay Req,
and Delay Response. They are used for the regular synchronization procedure,
and are propagated only within one PTP subnet. The contents of these messages
are listed in Appendix B of [12]. Time synchronization is performed over three
phases: master clock selection, time offset correction, and communication delay
measurement. The first two phases are executed every synchronization interval,
which by default is 2 seconds [5]. Delay measurement is initiated by each slave
individually on irregular bases, between 4 and 60 seconds by default [5]. The
message flow during time synchronization is illustrated by the example shown
in Figure 2.

The Sync message is multicasted by the master clock to all of the slaves on the
subnet. The main purpose of the message is to deliver the estimated time that it
has left the master clock. Upon receipt of this message, the slave clocks record
the reception time, which is used to calculate the offset between the slave and
master clocks. The optional Follow Up message is sent immediately following
the Sync message by the master , and contains the precise sending time of the
Sync message. After receiving the Follow Up message, the slave clock calculates
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Master clock Slave clock

Sync message:

estimated sending time = 999

Follow_Up message:

Precise sending time of Sync = 1000

Delay_Req message

Delay_Response message:

precise arrival time of Delay_Req at master = 1102
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Record precise arrival
time of the Sync

message = 1005

Delay_Req message

is sent out at 1100

One-way delay

calculation

Record precise

sending time of
Sync message

= 1000

Record precise

arrival time of
Delay_Req

message = 1102

Fig. 2. An example of message flow during time synchronization

the offset. Communication delay between each slave and the master clock is
computed with the aid of delay request and response messages.

Referring again to the example in Figure 2, the one-way delay was calculated
from the Delay Req and Delay Response messages as [(1005− 1000) + (1102−
1100)]/2 = (5 + 2)/2 = 3.5 time units, whereas the offset was 1005 − 1000 −
delay = 5 − 3.5 = 1.5 time units. The slave’s clock was then recalibrated using
the offset value.

3 Threat Analysis

Like Bishop’s security analysis [2] of the NTPv2, we studied the goals, attack
methods, effects of attacks, and possible countermeasures for the following five
types of threats: modification, masquerading, delay, replay, and denial of service.
Specifically, we analyzed how these attacks could jeopardize synchronization
objectives of PTP participants. The following subsections discuss results of our
analysis for each of the five threat types. A more detailed analysis of the threats
can be found in the long version of this paper [12].

3.1 Modification

The goal of a modification attack could be to: (a) cause denial of service, (b)
cause slave clocks(s) to incorrectly resynchronize, or (c) alter the hierarchy of
the master and slave clocks. The attack can be launched by manipulating the
content of messages. Furthermore, the modification of the messages sent by a
master clock would produce the greatest effect, since a master clock can send
messages used for both time synchronization and management.
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(a) Attacking to deny service: In the analyzed version of the PTP, there is
no mechanism for checking the authenticity of a message other than by checking
the source of the message against the node’s data sets. The data sets contain
information such as the local clock and parent clock attributes, and informa-
tion about the “current master”, i.e., the clock whose Sync messages are used
for correcting time. Slave clocks verify that a message came from the correct
master by comparing the sourceCommunicationTechnology, sourceUuid and
sourcePortId of the message (see Appendix B of [12]) with the corresponding
fields in the parent data set of the slave clock. If the comparison fails, the message
is discarded. By modifying the above fields of the Sync messages, an attacker can
make the matching of Sync messages fail; thus, slave clocks would refuse to syn-
chronize with the true current master. This can cause a denial of service (DoS)
attack without a generic network intrusion detection system (NIDS) detecting
the attack, unless the NIDS “knows” the correct values of these fields. Further-
more, modifying the sequence ID of the message can also lead to a PTP-specific
DoS attack variant, which we discuss in detail in Section 3.5.

(b) Attacking to cause incorrect resynchronization: Tampering with
the timestamp clock and variance fields of Sync messages can cause an incor-
rect resynchronization of the slave clock(s) or a miscalculation of the network
latency. The originTimestamp field serves as the record of time at which the
Sync message leaves the master clock.

(c) Attacking to alter the hierarchy of the master and slave clocks:
Wrong information about the grandmaster clock within Sync messages can lead
to setting the port to a different mode, e.g., slave or passive. Each slave clock
executes the BMC algorithm for electing the best master clock for the next
round of synchronization. Since the BMC algorithm uses information about the
grandmaster clock, by altering the grandmaster clock information in a Sync
message, an attacker can easily make this message “better” than other Sync
messages received by most clocks in the given PTP subnet. As a result, this
crafted Sync message could become the best message for all local clocks from
the attacker’s subnet. Then, by winning all the comparisons used in the BMC
algorithm (Figure 3 of [12]), the attacker can make the victim clock(s) switch
into passive mode or slave mode. As a result, the attacker could disrupt or even
destroy the synchronization hierarchy of clocks on the victim PTP network.

To illustrate the above attack, consider the PTP network depicted in Figure 1.
If, say, the attacker controls Slave A2, it can start sending Sync messages that
are “better” than those sent by the true GMC. As a result, Slave A1 as well
as switching devices A and B will elect Slave A2 as their new master clock.
Switching device A will also change its port 1 into slave mode and port 2 into
master mode. As a result, the true GMC will switch into slave mode, and the
original hierarchy of PTP clocks shown in Figure 3(a), will transform into the
hierarchy shown in Figure 3(b), with Slave A2 being a rogue GMC.

Suggested countermeasures: We recommend employing cryptographic in-
tegrity protection on all PTP messages as a basic countermeasure. However,
it is not obvious how the issue of key management can be addressed in PTP
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True GMC

Slave B1 Slave B2 Switching Device A

Switching Device B Slave A1 Slave A2

(a) Before the attack

True GMC Slave B1 Slave B2

Switching Device A Switching Device B

Slave A2

Slave A1

(b) After the attack

Fig. 3. PTP clock hierarchy before and after a hypothetical attack on the PTP network
shown in Figure 1

networks, as the protocol does not have any provisions for registering slave or
master clocks, or binding their identities to keys. Efficiency is another issue to
be considered when cryptographic integrity protection is employed. Further in-
vestigation is needed to decide which cryptographic integrity protection scheme
is most suitable for PTP. An alternative countermeasure is to employ port-level
security [11] to enforce such simple rules as “only the network interfaces of the
true GMC, port 1 of the switching device A, as well as ports 2 and 3 of the
switching device B can send Sync messages.” These access controls based on
port-level security might be more effective performance-wise than those based
on cryptography. In addition, key management can be avoided. However, the use
of port-level security might fall short of enforcing all rules necessary to counter
attacks on PTP clock hierarchies. For instance, if switching device A is compro-
mised, then its port 1 can send bogus Sync messages even with the above rule
enforced. Port-level security also increases the overhead of configuring network
switches, and, as a result, increases the risk of “friendly denial of service” due
to configuration errors.

3.2 Masquerading

The goal of a masquerading attack in a PTP network is to masquerade as the
master clock and use the false identity to launch other attacks. To launch the
attack, an adversary can first obtain information about the “true” master clock,
and then eavesdrop on Sync, Delay Req, and Delay Resp messages that are
sent to the slave clocks from the master. Once necessary data are obtained, the
attacker can spoof Sync, Delay Req, and Delay Resp messages to masquerade
as a master clock. Masquerading as a master clock could permit the attacker
to send out incorrect timing and management messages to other slave clocks,
causing different kinds of damage to the system. For example, the attacker could
send out incorrect timing information to slave clocks, leading to errors in the
synchronization process.

Suggested countermeasures: We recommend using a centralized or chained
authentication process. For centralized authentication, the grandmaster clock
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can act as the authentication server. For the chained authentication process, the
authentication information of the new clock is passed on to the existing PTP
network for verification via a network component that is already connected to
the PTP network. This network component has previously authenticated the
new clock by its own means.

As with the modification attack described in Section 3.1, port-level security
can be used to control which network device can send Sync, Delay Req, and
Delay Resp. However, such controls reduce the robustness of the PTP in the
presence of network failures. Since PTP clocks locally elect best master clocks
for time synchronization, the role of master clock needs to be passed from clock
to clock as the network topology changes due to device additions and failures.

3.3 Delay

The goal of a delay attack in a PTP network is to delay the arrival of messages
at the recipient nodes, thus causing an increase in the values used in the offset
and one-way delay calculations. The attack can be carried out through the use
of hardware or software to interrupt the transmission of a message between
nodes and later re-inject it into the communication channel. By intentionally
delaying the reception time of the Sync message by a certain slave clock, the
attacker may dramatically increase the offset of the slave clock with respect to
the master clock, setting the slave clock off synchronization with the rest of the
system.

Delaying the reception of the Follow Up message at the slave clock can cause
a timeout of the synchronization event. If this condition continues, it may lead
to the slave clock being denied synchronization with the master. The slave will
either pick the wrong clock on the subnet to synchronize with, or operate based
on its local clock, eventually drifting from the true master clock.

A delay caused in the transmission of the Delay Req message has a similar
effect as a delay in the Sync message. Yet, a delay attack in the Delay Req
message can cause a more significant disruption of the synchronization process,
because the calculation of the one-way delay is not done as frequently as the
offset correction synchronization process. An incorrect value of one-way delay
can cause errors in all upcoming offset calculations.

Finally, if the Delay Response message is not received back at the slave clock
after a fixed delay-request interval, the whole calibration process of the one-way
delay would be voided. An adversary can even launch this attack, and then add
in more delay fluctuations, such as new network components, to the system.
Since the one-way delay is not being recalculated due to the timeout of the
delay request interval, the additional delay from the new components is not
being accounted for in the calculation of the offset.

Suggested countermeasures: PTP can be modified to have a backup plan
to compensate for the missing or delayed messages. For example, by taking the
averages of the Delay Req and Delay Response messages in combination with
previous values, the effects of timed out or postponed messages can be reduced.
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Also, there should be an algorithm in PTP to determine any abnormal values
of the timestamps in the messages. If any abnormality is found for an extended
period of time (e.g., the last four one-way delays are significantly higher than
the first four), validation of the data against other neighboring nodes might be
helpful.

3.4 Replay

The goal of a replay attack is to either create congestion in the network stacks of
the clocks, or to desynchronize clocks. The attack can be executed by recording
legitimate message(s) being transmitted on the communication path and, at a
later time, slightly modifying and then re-injecting the recorded message(s) into
the network. The replayed messages would be interpreted as genuine messages.
Any occurrence of events caused by the messages would be processed in a First-
In-First-Out order. For example, when the Sync message is being replayed to
the slave clock, the slave clock would record the precise reception time of it.
However, we were uncertain how the precise reception time is stored. If there is
one storage location for it, then the later replayed message would overwrite the
precise reception time of the first Sync message. If there are multiple storage
places, then the precise recorded times can be queued up and would not lead to
a problem. Furthermore, replaying messages can saturate the processing queue
at the clocks and congest their network stacks, which may result in dropping
authentic synchronization messages from the true master clocks.

Suggested countermeasures: We suggest using an integrity protected net-
work path, e.g., a VPN connection, to prevent messages from being spoofed or
injected into the network. An alternative would be to use a capable message
authentication mechanism to ensure the authenticity of the PTP messages.

3.5 Denial of Service (DoS)

In addition to generic DoS attacks through flooding communication channels and
overflowing communication stacks, an adversary can also deny PTP clock(s) time
synchronization service in a protocol-specific way. The significance of this attack
is that generic NIDS’s are unlikely to detect it.

An adversary could trick the attacked slave clock into rejecting Sync and
Follow Up messages from the true master clock. Since the attack is the same for
both types of messages, we explain it using the Sync message case.

For performing DoS using Sync messages, the adversary first spoofs the victim
slave clock with a Sync message using the true master clock address, albeit with
a sequenceID value greater than the one in the previous Sync message. Upon
processing this message, the victim clock updates its parent data set accordingly.
Denial of service occurs when the true master sends its next Sync message to
the victim. Since the parent last sync sequence in the slave clock has already
been incremented upon receiving the spoofed Sync message, the Sync message
from the true master clock has sequenceID value less than or at most equal to



58 J. Tsang and K. Beznosov

the parent last sync sequence. Therefore, this Sync message is rejected by
the victim slave without the master being notified. No synchronization can take
place until the true master’s Sync message has a sequenceID greater than the
parent last sync sequence in the slave clock. The greater the sequenceID in
the adversary’s Sync messages, the longer the synchronization service is denied.
If the adversary keeps on sending Sync messages to increase the victim’s value
of parent last sync sequence before the true master can catch up with it, the
victim can be permanently deprived of synchronization with the true master.
The adversary starts controlling the time of the slave clock without the victim
or its master clock realizing this.

A small-scale DoS attack may cause time synchronization to be less accurate
across the system. If only slave clocks are affected, they may then be set to
run on a local clock, drifting away from each other due to the differences in
each clock’s skew. The bigger the scale of the attack, the greater the number of
PTP clocks that would have to run on local clocks. Furthermore, the tree-like
hierarchical organization of PTP networks allows attacker(s) to increase the scale
of the attack dramatically by denying synchronization to just a few boundary
clocks that are close to the GMC.

Suggested countermeasures: Employ message authenticity and integrity pro-
tection or use port-level security to limit the set of the devices authorized to send
synchronization messages. The limitations and drawbacks of both types of coun-
termeasures were discussed in the previous sections.

4 Conclusions and Future Work

Since it is able to provide synchronization accuracy in the sub-microsecond range,
the PTP has been deployed in a wide range of application domains, from factory
automation to avionics, to power grids, and to military systems. However, the
protocol lacks security mechanisms necessary to ensure the integrity of trans-
mitted messages and to validate the authenticity of the sender. We analyzed the
effects of five different types of attacks on a PTP network in this paper: modi-
fication, masquerading, delay, replay, and denial of service. It can be seen that
PTP alone is weak against these attacks, and that additional security mecha-
nisms are necessary to protect a PTP network. Damage caused by failure in time
synchronization can be dramatic.

We did not implement the discovered attacks or countermeasures due to the
lack of publicly available PTP implementations. When the situation changes,
developing a proof of concept for our attacks and countermeasures could be very
helpful for evaluating their feasibility and for testing corresponding countermea-
sures. Because of the critical nature of the PTP application domains [9,10], we
prefer to make the community of security professionals aware of our results now.

We limited our analysis to synchronization messages. The damage caused
by corrupting management messages or using them to launch attacks (e.g., to
change information on data sets of PTP clocks) can be much greater than that re-
sulting from corrupted time synchronization messages, because they can control
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all of the data sets as well as the status of a PTP clock. Analysis of management
messages is a promising avenue for future research. Another interesting direction
is to validate the feasibility of cryptographic countermeasures applied to PTP.

Acknowledgments. The authors would like to thank the following people who
provided comments on earlier versions of the paper: Galina Antonova, Matt
Bishop, and John Eidson. Craig Wilson helped us to improve the readability of
the paper.
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Abstract. A proxy signature enables an original signer to delegate her
signing capability to a proxy signer and then the proxy signer can sign
a message on behalf of the original signer. In this paper we propose
an ID-based proxy signature scheme from bilinear pairings. We provide
exact security proof of the proposed ID-based proxy signature scheme
in the random oracle model under the Computational Diffie-Hellman
assumption without using Forking Lemma.

1 Introduction

In 1984, Shamir [11] introduced the concept of ID-based cryptography. In tra-
ditional public key cryptosystems, Alice’s public key is a random string. When
Bob wishes to send a message to Alice, he must first obtain her authenticated
public key in public directories. The central idea in ID-based cryptosystems is
to eliminate the public key distribution problem by making Alice’s public key
derivable from some known aspect of her identity, such as her email address.
Such cryptosystems alleviate the certificate overhead and solve the problems of
Public Key Infrastructure (PKI) technology: certificate management, including
storage and distribution, and the computational cost of certificate verification.
Over the years a number of researchers tried to propose secure and efficient ID-
based encryption schemes, but with little success. This state of affairs changed
in 2001 when an ID-based encryption scheme based on Weil pairing was pro-
posed by Boneh and Franklin [4]. The pairings of algebraic curves have initiated
some completely new fields in cryptography, making it possible to realize cryp-
tographic primitives that were previously unknown or impractical. In particular,
the pairing-based cryptosystems provide solutions for construction of special-
purposed signature schemes; short signature, aggregate signature, multisigna-
ture, verifiably encrypted signature, etc. [6,5,1,3,13,15].

The concept of proxy signature was first introduced by Mambo, Usuda, and
Okamoto in 1996 [8]. The proxy signature schemes allow a proxy signer to sign
messages on behalf of an original signer within a given context (the context
and limitations on proxy signing capabilities are captured by a certain warrant
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issued by the delegator which is associated with the delegation act). Proxy sig-
natures have found numerous practical applications, particularly in distributed
computing where delegation of rights is quite common; distributed systems, Grid
computing, mobile agent applications, distributed shared object systems, global
distribution networks, and mobile communications. Since Mambo et al.’s scheme,
many proxy signature schemes have been proposed [14,7,9,13,14,15]. Almost all
of these works only provide informal security analysis, i.e., there are no proven-
secure proxy signature schemes. The first work to formally define the model of
proxy signatures, is the work of Boldyreva, Palacio, and Warinschi [2]. However,
the security of almost all of (ID-based) signature and proxy signature schemes
including Boldyreva et al.’s triple Shnorr proxy signature scheme is proved by
using Forking Lemma [10], i.e., they do not provide tight security reductions.
Recently, Xu et al. [12] proposed an ID-based proxy signature scheme from
pairings. They extended Boldyreva et al.’s security model for proxy signature
schemes to the ID-based setting and proved its security in that model without
using Forking Lemma. In this paper we define a new security model for ID-based
proxy signature schemes and propose a more efficient ID-based proxy signature
scheme from pairings with a tight security reduction to the intractability of the
Computational Diffie-Hellman problem without using Forking Lemma.

The rest of this paper is organized as follows. In the following Section, we de-
scribe basic tools and new security notions for ID-based proxy signature schemes.
In Section 3, we propose an ID-based proxy signature scheme from pairings.
We then provide exact security proof of the proposed ID-based proxy signature
scheme in the random oracle model under the Computational Diffie-Hellman
assumption. A concluding remark is given in Section 4.

2 Preliminaries

2.1 Definition and Assumption

Let G1 and G2 be two cyclic groups of a large prime order q. We write G1 addi-
tively and G2 multiplicatively. We assume that the discrete logarithm problems
in both G1 and G2 are hard.

Admissible Pairing: We call e an admissible pairing if e : G1 × G1 → G2 is a
map with the following properties:

1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and for all a, b ∈ Z.
2. Non-degeneracy: There exists P ∈ G1 such that e(P, P ) �= 1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for any

P, Q ∈ G1.

The Weil and Tate pairings associated with supersingular elliptic curves or
abelian varieties can be modified to create such admissible pairings, as in [4].

We consider the following problem and assumption in (G1, +).

Definition 2.1. [Computational Diffie-Hellman (CDH) Problem]. Given
(P, xP, yP ), to compute xyP , where x, y ∈R Z

∗
q , and P is a generator of G1.
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Definition 2.2. [Computational Diffie-Hellman (CDH) Assumption].
Let G be a CDH parameter generator. We say that an algorithmA has advantage
ε(k) in solving the CDH problem for G if for a sufficiently large k,

AdvG,A(t) = Pr

[
A(q, G1, P, xP, yP ) = xyP

|(q, G1)← G(1k), P ← G1, x, y ← Z∗
q

]
≥ ε(k)

We say that G satisfies the CDH assumption if for any randomized polynomial-
time in t algorithm A we have that AdvG,A(t) is a negligible function. When G
satisfies the CDH assumption we say that CDH is hard in G1 generated by G.

2.2 Security Notions

We define the security notion for ID-based proxy signature schemes by simpli-
fying Boldyeva et al’s and Xu et al’s ones [1,12]. An ID-based proxy signature
scheme consists of three kinds of participants, an original signer, a proxy signer
and a verifier, and the following five algorithms: Setup, Extract, Proxy Key
Extract, Sign, and Verify. We remove the Proxy Designation Protocol
and Standard Signature Signing Algorithm from Boldyeva et al’s and Xu
et al’s ones by adding the Proxy Key Extract algorithm whose roles are desig-
nation of a proxy signer and to extract a proxy signing key for the designated
proxy signer.

Component of ID-based proxy signature schemes. An ID-based proxy
signature scheme IBPS=(Setup, Extract, Proxy Key Extract, Sign, Verify)
is specified by five polynomial time algorithms with the following functionality;

1. The randomized parameter generation algorithm Setup takes input 1k, where
k ∈ Z is the security parameter and outputs some publicly known system
parameters Params. These may contain a security parameter, the description
of a cyclic group and a generator, and the description of a hash function.

2. The randomized private key extraction algorithm Extract takes input sys-
tem parameters Params and an identity ID and outputs a pair (QID, SID)
consisting of a public key and the corresponding private key, respectively.

3. The randomized proxy signing key extraction algorithm Proxy Key Extract
takes input system parameters Params and a pair of identities {IDi, IDj}
with a warrant w (it implies that an original signer IDi designates IDj as
a proxy signer) and outputs a proxy signing key σP for IDj. The order of
{IDi, IDj} is important, i.e, {IDi, IDj} and {IDj, IDi} are different inputs
in the Proxy Key Extract algorithm.

4. The randomized proxy signing algorithm Sign takes input a proxy signing
key corresponding to an identity IDj, a message m ∈ {0, 1}∗ and outputs a
proxy signature σ ←Sign(σP , m).

5. The randomized verification algorithm Verify takes input a set of identities
{IDi, IDj} with a warrant w, a message m ∈ {0, 1}∗ and a proxy signature
σ of m for {IDi, IDj}, and outputs True if the signature is correct, or ⊥
otherwise, i.e., {True, ⊥} ← Verify(w, m, IDi, IDj, σ).
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The most general security notion of a standard signature scheme is existential
unforgeability under an adaptively chosen-message attack. We extend this no-
tion to an ID-based proxy signature scheme, namely, existential unforgeability
under an adaptively chosen-message and an adaptively chosen-ID attack, where
an adversary can adaptively choose identities as well as messages. Informally,
existential forgery here means that the adversary attempts to forge an ID-based
proxy signature on identities and messages of his choice, i.e., adversary’s goal is
the existential forgery of a proxy signature. We give the adversary the power to
choose identities on which it wishes to forge a proxy signature and the power to
request private keys and proxy signing keys on all these identities. The adver-
sary is also given access to a Sign oracle on any desired identity. All designation
phases defined in Boldyeva et al’s and Xu et al’s ones are unified into the Proxy
Key Extract. We formalize the ID-based proxy signature model as follows.

Unforgeability of ID-based Proxy Signature Schemes. Adversary’s ad-
vantage AdvIBPS,A is defined as its probability of success in the following game
between a challenger C and an adversary A;

1. C runs Setup algorithms and its resulting system parameters are given to A.
2. A issues the following queries;

– Hash Query: C computes the hash value of the requested input and sends
the value to A.

– Extract Query: Given an identity ID, C computes its private key SID

corresponding to QID derived from ID.
– Proxy Key Extract Query: Proceeding adaptively, for a given pair of

identities {IDi, IDj} with a warrant w, i.e., it implies that an original
signer IDi designates IDj as a proxy signer, C computes IDj’s proxy
signing key.

– Sign Query: Given a message m for {IDi, IDj} with a warrant w, C
returns a proxy signature σ.

3. A outputs σ on a message m for {IDi, IDj} with a warrant w such that
i) m is not equal to the inputs of any query to Sign under IDj,
ii) {IDi, IDj} with a warrant w is not requested to Proxy Key Extract

query, i.e., IDj was not designated by IDi as a proxy signer.
A wins the game if σ is a valid proxy signature.

Definition 2.3. A forger A(t, qE , qPE , qS , qH , ε)-breaks an ID-based proxy sig-
nature scheme IBPS if A runs in time at most t, A makes at most qE Extract
queries, qPE Proxy Key Extract queries, qS Sign queries and at most qH

queries to the hash function, and AdvIBPS,A is at least ε. An ID-based proxy sig-
nature scheme is AdvIBPS,A(t, qE , qPE , qS , qH , ε)-existentially unforgeable under
an adaptively chosen-message and an adaptively chosen-ID attack if no forger
AdvIBPS,A(t, qE , qPE , qS , qH , ε)-breaks it.

Security Requirements of ID-based Proxy Signature Schemes. Like
the general proxy signature, an ID-based proxy signature scheme should satisfy
the following requirements [7,8];
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1. Distinguishability: Proxy signatures are distinguishable from normal sig-
natures by everyone.

2. Verifiability: From the proxy signature, the verifier can be convinced of the
original signers agreement on the signed message.

3. Strong Non-Forgeability: A designated proxy signer can create a valid
proxy signature for the original signer. But the original signer and other
third parties who are not designated as a proxy signer cannot create a valid
proxy signature.

4. Strong Identifiability: Anyone can determine the identity of the corre-
sponding proxy signer from the proxy signature.

5. Strong Non-Deniability: Once a proxy signer creates a valid proxy sig-
nature of an original signer, he/she cannot repudiate the signature creation.

6. Prevention of Misuse: The proxy signer cannot use the proxy key for
other purposes than generating a valid proxy signature. That is, it cannot
sign messages that have not been authorized by the original signer.

3 New ID-Based Proxy Signature Scheme from Pairings

3.1 Proposed ID-Based Proxy Signature Scheme: NIBPS
We propose a new ID-based proxy signature scheme NIBPS from pairings. Let
A and B be an original signer and a proxy signer with identities IDA and IDB,
respectively. The scheme consists of five algorithms; Setup, Extract, Proxy Key
Extract, Sign, and Verify. We let k be the security parameter given to the
Setup algorithm. The proposed ID-based proxy signature scheme NIBPS runs
as follows;

Setup. Given a security parameter k ∈ Z, the algorithm works as follows;

1. Run the parameter generator G on input k to generate a prime q, two groups
G1, G2 of order q, two different generators P and Q in G1 and an admissible
pairing e : G1 ×G1 → G2.

2. Pick a random s ∈ Z∗
q and set PPub = sP .

3. Choose cryptographic hash functions H1 : {0, 1}∗ → G1 and Hi : {0, 1}∗ →
Zq, i = 2, 3. The security analysis will view H1, H2 and H3 as random oracles.
The system parameters is Params=< q, G1, G2, e, P, Q, PPub, H1, H2, H3 >.

Extract. For a given string ID ∈ {0, 1}∗, the algorithm does;

1. Compute QID = H1(ID) ∈ G1.
2. Set the private key SID to be s ·QID, where s is a master secret.

Proxy Key Extract

1. The original signer, A prepares a warrant w which is explicit description of
the delegation relation.
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2. A chooses rA ∈R Z∗
q and computes

U = rAP ∈ G1, hA = H2(w, UA) ∈ Zq, VA = hASA + rAQ ∈ G1.

Then A sends (w, UA, VA) to the proxy signer B.
3. The proxy signer verifies whether

e(VA, P ) = e(hAQA, PPub) · e(UA, Q)

holds or not. If it holds, B computes hB = H3(w, UA) and

σP = VA + hBSB ∈ G2

and keeps it as a proxy signing key.

Sign. Given its proxy signing key VP , and a message M ∈ {0, 1}∗, B does;

1. Choose a random r ∈ Z∗
q and compute U = rP ∈ G1, h = H3(w, M, U) ∈ Zq.

2. Compute V = h · σP + rQ ∈ G1.
3. Output the proxy signature (w, M, UA, U, V ).

Verify. Given a proxy signature (w, M, UA, U, V ) for the original signer A and
the proxy signer B, a verifier does;

1. Compute QA = H1(IDA), QB = H1(IDB) and hA = H2(w, UA), hB =
H3(w, UA), h = H3(w, M, U) ∈ Zq.

2. Verify whether

e(V, P ) = e(h[hAQA + hBQB], PPub) · e(hUA + U, Q)

holds or not. If it holds, accept the signature.

Correctness. By bilinearity of the pairing e, the consistency of the signature
scheme is easy to verify;

e(V, P ) = e(h · σP + rQ, P ) = e(h[hASA + rAQ + hBSB ] + rQ, P )

= e(h[hAQA + hBQB], PPub) · e(hUA + U, Q).

3.2 Security Proof

Now, we prove the security of the proposed ID-based proxy signature scheme
NIBPS. Let an adversaryA be a probabilistic polynomial time algorithm whose
input is Params=< q, G1, G2, e, P, Q, H1, H2, H3 >, where q ≥ 2k. A can make
qS queries to the Sign, qH1 queries to the H1-hash, qH2 queries to the H2-hash,
qH3 queries to the H3-hash, qE queries to the Extract and qPE queries to the
Proxy Key Extract.
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Theorem 3.1. If the CDH problem is (t′, ε′)-hard, the proposed proxy signa-
ture scheme NIBPS is (t, qH1 , qH2 , qH2 , qE , qPE , qS , ε)-secure against existential
forgery under an adaptively chosen-message and an adaptively chosen-ID attack,
for any t and ε satisfying

ε ≥ e · (qE + 1) · ε′,
t ≤ t′ − cG1(qH1 + qE + 4qPE + 6qS + 5),

where e is the base of natural logarithms, and cG1 is the time of computing a
scalar multiplication G1 and an inversion in Z∗

q.

Proof. Suppose that A is a forger who breaks the proposed ID-based proxy sig-
nature scheme NIBPS. A CDH instance (P, xP, yP ) is given for x, y ∈R Z∗

q . By
using the forgery algorithm A, we will construct an algorithm B which outputs
the CDH solution xyP in G1. Algorithm B performs the following simulation by
interacting with forger A.

Setup. Algorithm B choose a random t ∈ Z∗
q , computes tP and sets PPub = xP

and Q = tP . B starts by giving A the system parameters including 〈Q, Ppub〉.
At any time, algorithm A can query the random oracles H1, H2 and H3 and

Extract, Proxy Key Extract and Sign queries. To answer these queries, B does
the following;

H1-queries. To respond to H1-queries, algorithm B maintains a list of tuples
(ID, W, b, c) as explained below. We refer to this list as the H1-list. The list is
initially empty. When A queries the oracle H1 at a point ID ∈ {0, 1}∗, algorithm
B responds as follows;

1. If the query ID already appears on the H1-list in a tuple (ID, W, b, c) then
algorithm B responds with H1(ID) = W ∈ G1.

2. Otherwise, B picks a random coin c ∈ {0, 1} with Pr[c = 0] = 1
qE+1 .

– If c = 0 then B computes W = b(yP ) for a random b ∈ Z∗
q .

– If c = 1 then B computes W = bP for a random b ∈ Z∗
q .

B adds the tuple (ID, W, b, c) to the H1-list and responds to A with
H1(ID) = W .

H2-queries. To respond to H2-queries, algorithm B maintains a list of tuples
(m, U, h) as explained below. We refer to this list as the H2-list. The list is
initially empty. When A queries the oracle H2 at a point m ∈ {0, 1}∗, algorithm
B responds as follows;

1. If the query m already appears on the H2-list in a tuple (m, U, h) then
algorithm B responds with H2(m, U) = h ∈ Zq.

2. Otherwise, B picks a random h ∈ Zq and adds the tuple (m, U, h) to the
H2-list and responds to A with H2(m, U) = h.

H3-queries. To respond to H3-queries, algorithm B maintains a list of tuples
(m, U, h′) as explained below. We refer to this list as the H3-list. The list is
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initially empty. When A queries the oracle H3 at a point m ∈ {0, 1}∗, algorithm
B responds as follows;

1. If the query m already appears on the H3-list in a tuple (m, U, h′) then
algorithm B responds with H3(m, U) = h′ ∈ Zq.

2. Otherwise, B picks a random h′ ∈ Zq and adds the tuple (m, U, h′) to the
H3-list and responds to A with H3(m, U) = h′.

Extract Queries. When A queries the private key corresponding to ID, B first
finds the corresponding tuple (ID, W, b, c) from the H1-list;

– If c = 0 then B fails and halts.
– Otherwise, it means that H1(ID) = bP was previously determined. Then

algorithm B computes SID = bPpub = b(xP ) and responds to A with SID

as a private key of ID.

Proxy Key Extract Queries. When A queries a proxy signing key with inputs
{IDi, IDj, w} (it means that an original signer IDi designates IDj as a proxy
signer), B first finds (IDi, Wi, bi, ci) and (IDj , Wj , bj , cj) from the H1-list;

– If ci = 0 or cj = 0 then B fails and halts.
– Otherwise, it means that H1(IDi) = biP and H1(IDj) = bjP were previ-

ously determined. Then algorithm B chooses ri ∈R Z∗
q , computes Ui = riP

and chooses hi, h
′
i ∈R Zq. If the tuples containing hi and h′

i already appear
in H2-list and H3-list, respectively then B chooses another ri and tries
again. Then B computes

σP = hi(biPPub) + riQ + h′
i(bjPPub)

and stores (w, Ui, hi) and (w, Ui, h
′
i) in H2-list and H3-list, respectively.

Finally, B responds to A with (Ui, σP ) as IDj ’s proxy signing key.

Sign Queries. When A makes a Sign-query on M with {IDi, IDj, w}, B first
finds the corresponding tuples (IDi, Wi, bi, ci) and (IDj , Wj , bj, cj) from the
H1-list;

– If ci = 0 or cj = 0 then B fails and halts.
– Otherwise, it means that H1(IDi) = biP and H1(IDj) = bjP were pre-

viously determined. Then algorithm B chooses ri, rj ∈R Z∗
q and computes

Ui = riP , Uj = rjP .
• If the queries w already appear on the H2-list and H3-list in a tuple

(w, Ui, hi), (w, Ui, h
′
i) and (w, m, Uj , h

′
j), respectively, then B uses such

hi, h′
i and h′

j .
• Otherwise, B chooses random hi, h

′
i, h

′
j ∈R Zq and stores (w, Ui, hi),

(w, Ui, h
′
i), and (w, m, Uj , h

′
j) in the H2-list and H3-list, respectively.

Then, B computes

V = h′
j[hi(biPPub) + riQ + h′

i(bjPPub)] + rjQ

and responds to A with σ = (Ui, Uj, V ).
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All responses to Sign queries are valid; indeed, the output (w, m, Ui, Uj , V )
of Sign query is a valid proxy signature on m for {IDi, IDj , w}, to see this,

e(V, P ) = e(h′
j[hi(biPPub) + riQ + h′

i(bjPPub)] + rjQ, P )

= e(h′
jVP , PPub) · e(h′

jUi + Uj, Q).

If B does not abort as a result of A’s Sign queries, Extract queries and Proxy
Key Extract queries then A’s view is identical to its view in the real attack.

Output. Eventually A outputs a forgery σ on a message M for {IDi, IDj , w}.
Again by assumption, A has previously issued hash-queries for {IDi, IDj}. If
the coins flipped by B for the query to IDk, where k is one of i and j, did not
show 0 then B fails (in fact, ci = 0 and cj = 0 do not appear simultaneously
because Pr[c = 0] = 1

qE+1 ). Otherwise, (ci = 0, cj = 1) or (ci = 1, cj = 0).

– If (ci = 0, cj = 1) then H1(IDi) = bi(yP ) and H1(IDj) = bjP and B outputs

(h′
j · hi · bi)−1[V − h′

jtUi − h′
jh

′
i(bjPPub)− tUj]

= (h′
j · hi · bi)−1[h′

jhiSIDi ] = (h′
j · hi · bi)−1h′

jhix(biyP ) = xyP.

– If (ci = 1, cj = 0) then H1(IDi) = biP and H1(IDj) = bj(yP ) and B outputs

(h′
j · h′

i · bj)−1[V − h′
jhi(biPPub)− h′

jtUi − tUj]

= (h′
j · h′

i · bj)−1[h′
jh

′
iSIDj ] = (h′

j · h′
i · bj)−1h′

jh
′
ix(bjyP ) = xyP.

This completes the description of algorithm B. It remains to show that B solves
the given instance of the CDH problem with probability at least ε′. To do so,
we analyze five events needed for B to succeed;

– E1: B does not abort as a result of any of A’s Extract queries.
– E2: B does not abort as a result of any of A’s Proxy Key Extract queries.
– E3: B does not abort as a result of any of A’s Sign queries.
– E4: A generates a valid signature forgery (w, M, IDi, IDj, Ui, Uj , V ).
– E5: Event E4 occurs and ck = 0, where k is one of i and j such that ck = 0

for the tuple containing IDk on the H1-list.

B succeeds if all of these events happen. The probability Pr[E1∧E1∧E3∧E4∧E5]
is decomposed as

Pr[E1 ∧ E1 ∧ E3 ∧E4 ∧ E5] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∧ E2]

·Pr[E4|E1 ∧ E2 ∧ E3] · Pr[E5|E1 ∧E2 ∧ E3 ∧ E4] · · · · · · (1).

The following claims give a lower bound for each of these terms.

Claim 1. The probability that algorithm B does not abort as a result of A’s
Extract queries is at least (1− 1

qE+1 )qE . Hence, Pr[E1] ≥ (1− 1
qE+1 )qE .
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Claim 2. The probability that algorithm B does not abort as a result of A’s
Proxy Key Extract queries is 1 since it is simulated so that B does not abort
as a result of any of A’s Proxy Key Extract queries under the aborted result
of any of A’s Extract queries. Hence, Pr[E2|E1] = 1.

Claim 3. The probability that algorithm B does not abort as a result of A’s
Sign queries is 1.

Proof. It is simulated so that B does not abort as a result of any of A’s Sign
queries under the aborted result of any of A’s Extract and Proxy Key Extract
queries. Hence, Pr[E2|E1 ∧ E2] = 1.

Claim 4. If B does not abort as a result of A’s Sign queries, Extract queries
and Proxy Key Extract queries then A’s view is identical to its view in the
attack. Hence, Pr[E4|E1 ∧E2 ∧ E3] ≥ ε.

Claim 5. The probability that algorithm B does not abort after A outputs a
valid and nontrivial forgery is at least (1− 1

qE+1 ) · 1
qE+1 . Hence, Pr[E5|E1∧E2∧

E3 ∧ E4] ≥ (1− 1
qE+1 ) · 1

qE+1 .

Proof. Algorithm B succeeds only if A generates a forgery such that ck = 0,
where k is one of i and j for {IDi, IDj}. Hence, Pr[E5|E1 ∧ E2 ∧ E3 ∧ E4] ≥
(1− 1

qE+1 ) · 1
qE+1 .

Algorithm A produces the correct forgery with probability at least

(1− 1
qE + 1

)qE · ε · 1
qE + 1

(1 − 1
qE + 1

)

≥ (1− 1
qE + 1

)qE+1 · ε · 1
qE + 1

≥ 1
e
· ε

(qE + 1)
≥ ε′

as required.
Algorithm B’s running time is the same as A’s running time plus the time is

takes to respond to (qH1 + qH2 + qH2 + qS) hash queries, qE Extract queries,
qPE Proxy Key Extract queries and qS Sign queries, and the time to transform
A’s final forgery into the CDH solution. The H1, Extract, Proxy Key Extract
and Sign queries requires 1, 1, 4, and 6 scalar multiplications. The output phase
requires 4 scalar multiplications and an inversion. We assume that a scalar mul-
tiplication in G1 and an inversion in Z

∗
q take time cG1 . Hence, the total running

time is at most t + cG1(qH1 + qE + 4qPE + 6qS + 5) ≤ t′ as required. �

3.3 Further Security Analysis

Now, we show that our ID-based proxy signature scheme satisfies all the require-
ments described in the section 2.

1. Distinguishability: This is obvious, because there is a warrant w in a valid
proxy signature, at the same time, this warrant w and the public keys of the
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original signer and the proxy signer must occur in the verification equations
of proxy signatures.

2. Verifiability: It derived from correctness of the proposed ID-based proxy
signature scheme. In general, the warrant contains the identity information
and the limitation of the delegated signing capacity and so satisfies the ver-
ifiability.

3. Strong Non-Forgeability: It derived from correctness of the Theorem 3.1.
4. Strong Identifiability: It contains the warrant w in a valid proxy signature,

so anyone can determine the identity of the corresponding proxy signer from
the warrant w.

5. Strong Non-Deniability: As the identifiability, the valid proxy signature
contains the warrant w, which must be verified in the verification phase, it
cannot be modified by the proxy signer. Thus once a proxy signer creates a
valid proxy signature of an original signer, he cannot repudiate the signature
creation.

6. Prevention of Misuse: In our proxy signature scheme, using the warrant
w, we had determined the limit of the delegated signing capacity in the
warrant w, so the proxy signer cannot sign some messages that have not
been authorized by the original signer.

4 Conclusion

We have proposed a new ID-based proxy signature scheme from bilinear pairings
with a tight security reduction without using the Forking Lemma [10]. The pro-
posed scheme requires a scalar multiplication (two scalar multiplications can be
precomputed) in signing and 3 scalar multiplications and 3 pairing computation
in verification.
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Abstract. At PODC’05, Subramanian, Katz, Roth, Shenker and Stoica
(SKRSS) introduced and formulated a new theoretical problem called re-
liable broadcast problems in unknown fixed-identity networks [3] and fur-
ther proposed a feasible result to this problem. Since the size of signatures
of a message traversing a path grows linearly with the number of hops
in their implementations, this leaves an interesting research problem (an
open problem advertised by Subramanian et al in [3]) − how to reduce the
communication complexity of their reliable broadcast protocol?

In this paper, we provide a novel implementation of reliable broadcast
problems in unknown fixed-identity networks with lower communication
complexity. The idea behind of our improvement is that we first transfer
the notion of path-vector signatures to that of sequential aggregate path-
vector signatures and show that the notion of sequential aggregate path-
vector is a special case of the notion of sequential aggregate signatures.
As a result, the currently known results regarding sequential aggregate
signatures can be used to solve the open problem. We then describe
the work of [3] in light of sequential aggregate signatures working over
independent RSA, and show that if the size of an node vi,j ’s public key
|g(vi,j)| is ti,j and the number of hops in a path pi is di in the unknown
fixed-identity graph G (with k adversaries), the reduced communication
complexity is approximate to di−1

j=1 ti,j while the computation (time)
complexity of our protocol is the same as that presented in [3].

Keywords: aggregate path-vector signatures, path-vector signatures, re-
liable broadcast problem.

1 Introduction

At PODC’05, Subramanian, Katz, Roth, Shenker and Stoica (SKRSS) intro-
duced and formulated a new theoretical problem called reliable broadcast prob-
lems in unknown fixed-identity networks [3] and then proposed a feasible result
such that given a bound k on the number of adversaries, there exists a distrib-
uted algorithm that achieves reliable broadcast in an unknown fixed-identity
network if and only if G is (2k + 1) vertex connected. The key idea behind their
construction is that − if a node u propagates a path-vector message (m, s, p) to
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v, then v’s identity is already appended to the path p by u signifying that u has
propagated the message to v. As a result, the signatures’ size of the message over
the path grows linearly with the number of hops and thus increases communi-
cation overheads. This leaves an interesting research problem (an open problem
advertised by Subramanian et al in [3]) − how to reduce the communication
complexity of the proposed reliable broadcast protocol?

1.1 More on SKRSS’ Assumptions

To remove the public key infrastructure (PKI) assumption, Subramanian, Katz,
Roth, Shenker and Stoica further made the followings two assumptions on mobile
nodes:

– Assumption 1: the identity of a node is fixed which cannot be forged;
– Assumption 2: a node knows the identities of its neighbors in the under-

lying graph.

We stress that the second assumption can be absorbed by a broadcasting
protocol itself and thus can be implemented without any difficulty. For example,
an initiator node broadcasts a message ”hello, every neighbor node sends me a
reply message please”. Each node within one hop that receives this request for
the first time appends its identifier to the received message and then sends it
back to the initiator.

We also stress that an implementation of the first assumption however is a
difficult task in the non-PKI setting since if the identity of a node cannot be
forged, then some kinds of digital signatures or commitment schemes should be
involved just like the certificates in the PKI setting. A simple way here is that we
allow a device manufactory (serving as a trusted third party) to sign individual
device id. The concatenation of a device id and its signature in turn is viewed as
a fixed device id which can be publicly verified. Since a verifier cannot check the
validation of the manufactory’s public key on time in the non-PKI setting (yet
this verification can be made off-line or with the help of proxies of the device,
i.e., via delegation technique), we refer to this kind of signatures as obliviously
committed signatures. Intuitively, an obliviously committed signature is a digital
signature that is used for signing an id of a device by a third party (need not
to be trusted), and the validity of the signer’s public key is questionable from
the point view of a verifier at the current time, and thus it is oblivious (1-out-
of 2, validity (1) or invalidity (0)), however the verifier will obtain a correct
answer (0 or 1) with the help of others. Since there is no satisfactory solution to
this problem, we thus leave an interesting problem to the research community −
how to implement secure yet efficient (with low computation and communication
complexities) obliviously committed signatures in the non-PKI environment?

1.2 This Work

The goal of this paper is to provide a solution to Subramanian et al’s open
problem. We employ sequential aggregate signatures to accomplish this task.
The contribution of this paper is twofold.
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– In the first fold, we transfer the notion of path-vector signatures to that
of sequential aggregate path-vector signatures and show that the notion of
sequential aggregate path-vector is a special case of the notion of sequen-
tial aggregate signatures. As a result, the currently known results regarding
sequential aggregate signatures can be used to solve the open problem.

– In the second fold, we describe the work of [3] in light of the best result
regarding sequential aggregate signatures that are working over independent
RSA moduli presented in [4] and show that assuming that vi,j ’s public key
size is |g(vi,j)| =ti,j and the number of hops in a path pi is di in the un-
known fixed-identity graph G (with k adversaries), the reduced communica-
tion complexity is approximate to

∑di−1
j=1 ti,j while the computation (time)

complexity of our protocol is the same as that presented in [3]. We thus,
provide a solution to the open problem presented in [3].

2 From Path-Vector Signatures to Sequential Aggregate
Signatures

2.1 Path-Vector Signatures

The basic tool used to solve the reliable broadcast problem in unknown fixed-
identity networks is the notion of path-vector signatures introduced in [3]. In-
formally, a path-vector signature consists of the following three algorithms [2]:

– Public-key initialization: By m, we denote a message sent by v1 to vn over
a path (v1, · · · , vn). Every node vi generates its public key g(vi), and com-
municates it to its neighbor vi−1.

– Message initialization: The source node v1 sends the message m1 = [(m, s, p),
sig1] to its neighbor v2 where s =(v1, g(v1)), p1=[(v1, g(v1)), (v2, g(v2))], and
sig1 = sig((m, s, p1), g(v1));

– Incremental update: Node vi receives message mi−1 = [(m, s, pi−1), sigi−1]
from its predecessor vi−1. It then sends message mi =[(m, s, pi), sigi] to
its successor vi+1 where pi = [(pi−1, (vi+1, g(vi+1)] and sigi = (sigi−1,
sig((m, s, pi), (vi, g(vi)).

We stress that the notion of a path-vector signatures presented in [3] is order
specified. Furthermore, it allows multi-signer to sign same message m. As a
result, the notion of a path-vector signatures is equivalent to that of order-
specified multi-signature schemes and thus notion of sequential aggregate path-
vector is a special case of the notion of sequential aggregate signatures.

To reduce communication complexity of the reliable broadcasting problem,
we need to compress the size of the underlying path-vector signature. Motivated
by this consideration, a new notion which we called sequential aggregate path-
vector signatures can be introduced and formalized (where the same message m
is signed by all nodes along the path p) in a natural way. We however derive
this new notion from the standard notion of sequential aggregate signatures so
that currently known results regarding sequential aggregate signatures can be
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used for our purpose, rather than formalize the stand-alone notion of sequential
aggregate path-vector signatures.

2.2 Syntax of Sequential Aggregate Signatures in the Public-Key
Infrastructure (PKI) Environment

Syntax. A sequential aggregate signature scheme (KG, AggSign, AggVf) consists
of the following algorithms [2]:

– Key generation algorithm (KG): On input l and ki, KG outputs system pa-
rameters param (including an initial value IV , without loss of generality, we
assume that IV is a zero strings with length l-bit), on input param and user
index i ∈ I and ki, it outputs a public key and secret key pair (PKi, SKi)
of a trapdoor one-way permutation fi for a user i.

– Aggregate signing algorithm (AggSign): Given a message mi to sign, and
a sequential aggregate σi−1 on messages {m1, · · · , mi−1} under respective
public keys PK1, · · ·, PKi−1, where m1 is the inmost message. All of m1,
· · ·, mi−1 and PK1, · · ·, PKi−1 must be provided as inputs. AggSign first
verifies that σi−1 is a valid aggregate for messages {m1, · · · , mi−1} using the
verification algorithm defined below (if i=1, the aggregate σ0 is taken to be
zero strings 0l). If not, it outputs ⊥, otherwise, it then adds a signature on
mi under SKi to the aggregate and outputs a sequential aggregate σi on all
i messages m1, · · · , mi.

– Aggregate verifying algorithm (AggVf): Given a sequential aggregate sig-
nature σi on the messages {m1, · · · , mi} under the respective public keys
{PK1, · · · , PKi}. If any key appears twice, if any element PKi does not de-
scribe a permutation or if the size of the messages is different from the size
of the respective public keys reject. Otherwise, for j = i, · · · , 1, set σj−1 =
fj(PK1, · · · , PKj, σj). The verification of σi−1 is processed recursively. The
base case for recursion is i = 0, in which case simply check that σ0. Accepts
if σ0 equals the zero strings.

A sequential aggregate signature is called a sequential aggregate path-vector
signature if all nodes over a path p=(PK1, · · · , PKn) sign any same message
(i.e., m1 = · · · =mn).

The Definition of Security. The following security definition of sequential
aggregative signature schemes is due to [2]. The aggregate forger A is provided
with a initial value IV , a set of public keys PK1, · · ·, PKi−1 and PK, generated
at random. The adversary also is provided with SK1, · · ·, SKi−1; PK is called
target public key. A requests sequential aggregate signatures with PK on mes-
sages of his choice. For each query, he supplies a sequential aggregate signature
σi−1 on some messages m1, · · ·, mi−1 under the distinct public keys PK1, · · ·,
PKi−1, and an additional message mi to be signed by the signing oracle under
public key PK. Finally, A outputs a valid signature σi of a message mi which
is associated with the aggregate σi−1. The forger wins if A did not request (mi,
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σi−1) in the previous signing oracle queries. By AdvAggSignA, we denote the
probability of success of an adversary.

We say a sequential aggregate signature scheme is secure against adaptive
chosen-message attack if for every polynomial time Turing machine A, the prob-
ability AdvAggSignA that it wins the game is at most a negligible amount, where
the probability is taken over coin tosses of KG and AggSign and A. The security
of sequential aggregate path-vector signatures can be defined in a similar way as
that of sequential aggregate signatures with the restriction mi =m for the jth

oracle query over a path p=(PK1, · · · , PKn).

Sequential Aggregate Signatures from RSA. In [2], Lysyanskaya, Micali,
Reyzin, Shacham proposed two approaches to instantiate their generic construc-
tion from RSA trapdoor one-way permutations:

– the first approach is to require the user’s moduli to be arranged in increasing
order: N1 < N2 < · · · < Nt. At the verification, it is important to check that
the i-th signature σi is actually less than Ni to ensure the signatures are
unique if H is fixed. As long as log(N1) − log(Nt) is constant, the range of
H is a subset of ZN1 whose size is the constant fraction of N1, the scheme
will be secure;

– the second approach does not require the moduli to be arranged in increasing
order, however they are required to be of the same length. The signature will
expanded by n bits b1, · · ·, bn, where n is the total number of users. Namely,
during signing, if σi ≥ Ni+1, let bi =1; else, let bi =0. During the verification,
if bi =1, add Ni+1 to σi before proceeding with the verification of σi. Always,
check that σi is in the correct range 0 ≤ σi ≤ Ni to ensure the uniqueness
of signatures.

For applications of aggregate path-vector signature schemes in reliable com-
munication where a graph G is unknown, the choice of a claimed public key
of a node vi is completely independent on the choice of a claimed public key
of another node vj in the Internet. Thus, for any RSA-based aggregate path-
vector signature that works over an unknown fixed-identity graph, a reasonable
assumption should be that the sizes of all moduli are bounded by a fixed size
(this requirement does not violate the unknown of underlying graph G). We
stress that there is efficient implementation of sequential aggregate signatures
presented in [4], which is sketched below:

Sequential aggregate signatures working over independent RSA moduli

Let H : {0, 1}∗ → {0, 1}l be a cryptographic hash function and IV be the ini-
tial vector that should be pre-described by an aggregate path-vector signature
scheme. The initial value could be a random l-bit string or an empty string.
Without loss of generality, we assume that the initial value IV is 0l. Our aggre-
gate path-vector signature is described as follows:

– Key generation: Each user i generates an RSA public key (Ni, ei) and secret
key (Ni, di), ensuring that |Ni| = ki and that ei > Ni is a prime. Let Gi:
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{0, 1}ti → {0, 1}ki, be cryptographic hash function specified by each user i,
ti = l − ki.

– AggPVSig: User i is given an aggregate path-vector signature gi−1 and (b1,
· · ·, bi−1), a sequence of messages m1, · · ·, mi−1, and the corresponding keys
(N1, e1), · · ·, (Ni−1, ei−1). User i first verifies σi−1, using the verification
procedure below, where σ0 = 0l. If this succeeds, user i computes Hi =
H(m1, · · ·, mi, (N1, e1), · · ·, (Ni, ei)) and computes xi = Hi ⊕ gi−1. Then
it separates xi = yi||zi, where yi ∈ {0, 1}ki and zi ∈ {0, 1}ti, ti = l − ki.
Finally, it computes gi = f−1

i (yi ⊕ Gi(zi))||zi. By σi ← (gi, bi), we denote
the aggregate path-vector signature( if yi ⊕ Gi(zi) > Ni, then bi =1, if
yi⊕Gi(zi) < Ni, then bi = 0; again we do not define the case yi⊕Gi(zi) = Ni

since the probability the event happens is negligible), where f−1
i (y) = ydi

mod Ni, the inverse of the RSA function fi(y) = yei mod Ni defined over
the domain Z∗

Ni
.

– AggPVf: The aggregate path-vector verification algorithm is given as input
an aggregate path-vector signature gi, (b1, · · · , bi), the messages m1, · · · , mi,
the correspondent public keys (N1, e1), · · ·, (Ni, ei) and proceeds as follows.
Check that no keys appears twice, that ei > Ni is a prime. Then it computes:
• Hi = H(m1, · · · , mi, (N1, e1), · · · , (Ni, ei));
• Separating gi = vi||wi;
• Recovering xi form the trapdoor one-way permutation by computing zi

← wi, yi = Bi(fi(vi) + biNi) ⊕ Gi(zi), and xi =yi||zi, where Bi(x) is
the binary representation of x ∈ Z (with ki bits).

• Recovering gi−1 by computing xi⊕Hi. The verification of (gi−1, bi−1) is
processed recursively. The base case for recursion is i = 0, in which case
simply check that σ0 =0l.

Lemma 1. ([4]): Let ∪i∈Ifi be a certificated homomorphic trapdoor permutation
family, the sequential aggregate signature scheme described above is secure in the
random oracle model.

2.3 Optimal Result

Let f be an RSA trapdoor one-way permutation defined over Z∗
N , where N=PQ,

P and Q are two large prime numbers and |N |=k. Let H : {0, 1}∗ → {0, 1}l be
a cryptographic hash function. Let f(x) = xe mod N and f−1(x) = xd mod N ,
where ed ≡ 1 mod φ(N), e is a public key, and d is the correspondent secret key.
Throughout this section, we assume that l ≥ k + 1.

On input a message m ∈ {0, 1}∗, we obtain a string H(m) ∈ {0, 1}l which
in turn can be rewritten as the form qN + r (= H(m)), where 0 ≤ r < N . Let
g1(m) =f−1(r) and g2(m) =P(q), where P is a padding algorithm (UP is the
correspondent un-padding algorithm) which is further defined below.

– Padding algorithm P : on input a random string q ∈ {0, 1}τ , P outputs a
(l − k)-bit codeword 0l−k−τ ||q of q which is denoted by P(q);

– Un-padding algorithm UP: on input (l−k)-bit string P(q), UP(P(q)) outputs
a τ -bit string q, i.e., UP(P(q))=q ∈ {0, 1}τ .
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By (N, e, H, k, l, (P ,UP)), we denote the public key of a signature scheme.
The secret key is (d, N). Our signature scheme working in an extended domain
is defined as follows:

– Signing algorithm: on input a message m, the signer computes H(m),
and then writes H(m) as the form qN + r (0 ≤ r < N , |N | =k); Finally it
computes g1(m) ← f−1(r) and g2(m) ← P(q), where P(q) is a padding of
q; The signature σ of message m is (g1(m), g2(m));

– Verification algorithm: given a putative signature σ(m), a verifier com-
putes r ← f(g1(m)), and q ← UP (g2(m)); Finally, the verifier checks H(m)
?= qN + r.

Using the same technique presented in [4], we show that assuming that the
RSA function is a trapdoor one-way permutation defined over Z∗

N , our signa-
ture scheme defined above is provably secure against existential forgery under
an adaptive chosen-message attack in the random oracle model. This ordinary
signature can be further transferred to a sequential aggregate signature without
bit-expansion. For simplicity, in the following discussion, we provide our solution
to the open in light of the base signature case and leave an exercise to readers
in the optimal case.

3 Reliable Broadcast in Unknown Fixed-Identity
Networks

Given an undirected graph G, two vertices u and v are called connected if there
exists a path from u to v; Otherwise they are called disconnected. The graph G
is called connected graph if every pair of vertices in the graph is connected. A
vertex cut for two vertices u and v is a set of vertices whose removal from the
graph disconnects u and v. A vertex cut for the whole graph is a set of vertices
whose removal renders the graph disconnected. The vertex connectivity k(G)
for a graph G is the size of minimum vertex cut. A graph is called k vertex
connected if its vertex connectivity is k or greater.

3.1 Removal of Certificated Public Keys

We stress that a collection of claimed public keys within a path-vector signature
must be certificated. Thus, either a trusted third party (a certificate authority) or a
public key infrastructure is required. To remove the concept of certificated identity
graphGx frompath-vector signatures, a newnotion called keyed-identity graphGx

is first introduced and formalized in [3]. To do so, the fixed-identity assumption is
critical. The fixed-identity assumption states the following thing: each node in an
undirected graph G has a unique identity it cannot fake and it knows the identities
of its neighbors in G. If this assumption is not met and an adversary uses different
identities to different neighbors, then for any given integer m > 0, there exists an
m-vertex connected network G on n nodes where each node is initially aware of the
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identities if only its neighbors such that, a single adversaryusing multiple identities
is sufficient to disrupt reliable broadcast in G.

With the help of fixed-identity assumption, an algorithm determining genuine
keyed-identity can be proposed [3]. Suppose the underlying graph G is 2k + 1
vertex connected with k adversaries, then, between every pair of good nodes,
there exists at least k + 1 vertex disjoint paths that traverse only good nodes
(the fact that adversaries can at most prove k disjoint paths to a fake node is
critical for the solvability of this problem.).

3.2 Sequential Aggregate Based Broadcast Protocols

Now we can embed sequential aggregate signatures into the SKRSS asynchro-
nous broadcast algorithm presented in [3]. That is, given a path-vector message
(m, s, p) and its signature, we define the keyed identity path PI(m, s, p) associ-
ated with (m, s, p) to consist of vertices (vi, g(vi)), where vi is the identity of
a node in p and g(vi) is the public key of vi in the signature. We borrow the
notation Gx from [3] to denote the keyed-identity graph computed by a node x
with a set of neighbors N(x). Every good node x performs the following set of
operations.

Sequential aggregate based broadcast protocol in identity-fixed networks.

– Asynchronous node wake up: A node can either begin broadcast by itself or
begin transmissions upon receipt of the first message from a neighbor.

– Initiation: Gx consists of one vertex (x, g(x)).
– For every u ∈ N(x), x transmits (m(x), x, [x, u]) to u along with its sequential

aggregate signature sas.
– Propagation: For every path-vector message (m, s, p) with sequential aggre-

gate signature sas that x receives from u ∈ N(x), x performs:
• Immediate-neighbor key check: Check if public-key of u in S matches

the same public-key used in previous messages. If not, reject (m, s, p); if
v ∈ N(x) \ {u} appears in p, then the public-key of v should also match
the one directly advertised by v.

• Verify S using the verification algorithm of the aggregate path-vector
signature.

• Learn one vertex at a time: Accept the message only if PI(m, s, p) con-
tains at most one new keyed identity (at the end of the path) not present
in Gx. If so, update Gx with PI(m, s, p).

• Message suppression: If PI(m, s, p) adds no new vertices or edges to Gx,
ignore the message.

• To every u ∈ N(x), x transmits (m, s, p′) where p′ = p ∪ {u} after
updating the signature.

– Flow computation: If the number of identity-disjoint paths to (v, g(v)) in Gx

is at least k + 1, then x deems v to be a genuine identity and g(v) to be
its public key. By identity disjoint paths, we mean that no two paths should
contain two different vertices (v, g(v)) and (v, g′(v)) which share the same
identity v. The immediate-neighbor key check is necessary to ensure that if
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an adversary v ∈ N(x), then v uses only a single keyed-identity (v, g(v)) in
all its messages propagated to x. Any other message that x receives (from
other neighbors) which contains the identity v is accepted only if it contains
the same public key g(v).

Theorem 1. Given a bound k on the number of adversaries, the algorithm de-
scribed above achieves reliable broadcast in an unknown fixed-identity network
U(n, G, N) if and only if G is 2k + 1 vertex connected.

Proof. The necessary condition can be argued as follows: the structure of graph
G is unknown but each node knows the identities of its neighbors in our model
while the entire graph G is known to all nodes in Dolev’s model [1]. Clearly,
Dolev’s model is a special case of our model. It follows that the assumption that
G is (2k+1)-vertex connected is a necessary condition for reliable communication
in our model.

The sufficient condition can be argued as follows: Let G′ be a subgraph of
G consisting of all edges between honest nodes. since the underlying graph G
is (2k + 1)-vertex connected with k adversaries, it follows that G′ is at least
(k+1)-vertex connected. If every good node u can learn all the edges in G′, then
it can definitely compute (k+1) identity disjoint paths to every other good node
and hence, can successfully determine every other good node v. Consequently,
to show the proposed routing algorithm achieving reliability, it is sufficient to
show that every good node will eventually learn all edges in G′. Now we consider
the presence of k > 0 adversaries and two good nodes u and v are separated
by τ hops. By the broadcasting algorithm described above, we know that at the
ith hop, an individual node exchanges the new sequential aggregate signature it
learnt from the (i− 1)th with its neighbors. Recursively, every good node learns
all edges in G′ eventually since G′ is at least (k +1)-vertex connected subgraph.

4 Computation and Communication Complexity

Assuming that vi,j ’s public key size is |g(vi,j)| =ti,j and the number of hops in a
path pi={vi,1, · · · , vi,di} is di. The message flow of the original SKRSS protocol
is that:

– message flow generated by vi,1: mi,1 = < mi, (vi,1, g(vi,1)), (vi,2, g(vi,2)) >,
and < sigi,1(mi,1) >;

– message flow generated by vi,2: mi,2= < mi, (vi,1, g(vi,1)), (vi,2, g(vi,2)),
(vi,3, g(vi,3)) > and < sigi,1(mi,1) and sigi,2(mi,2) >;

– · · ·;
– message flow generated by vi,di−1: mi,di−1 = < mi, (vi,1, g(vi,1)), · · ·, (vi,di−1,

g(vi,di−1)) >, and < sigi,1(mi,1), · · ·, sigi,di−1(mi,di−1) >.

The message flow along the path pi of our reliable broadcast protocol are that:

– message flow generated by vi,1: vi,1: mi,1=<mi, (vi,1, g(vi,1)), (vi,2, g(vi,2)) >,
< sigi,1(mi,1) >;
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– message flow generated by vi,2: mi,2= < mi, (vi,1, g(vi,1)), (vi,2, g(vi,2)),
(vi,3, g(vi,3)) > and < bi,1, sigi,2(mi,2) >, where bi,1 ∈ {0, 1};

– · · ·
– message flow generated by vi,di−1: mi,di−1 = < mi, (vi,1, g(vi,1)), · · ·, (vi,di−1,

g(vi,di−1)) >, and < bi,1, · · ·, bi,di−2, sigi,di−1(mdi−1)>, where bi,i ∈ {0, 1},
1 ≤ i ≤ di − 2;

By compi, we denote the communication complexity of original scheme along
the path pi; and by ˜compi, we denote the communication complexity of our
scheme along the same path pi. Thus, we have the following estimation (typically,
di − 1 � min{ti,1, · · · , ti,di−1}): compi- ˜compi = ti,1 + · · · + ti,di−1 − (di − 1)
(the term (di − 1) is eliminated in case that our optimal sequential aggregate
signature scheme is applied).

5 Conclusion

In this paper, we have transferred the notion of path-vector signatures to that of
sequential aggregate signatures and have also shown that the notion of sequential
aggregate path-vector is a special case of the notion of sequential aggregate
signatures. We have described the work of [3] in light of sequential aggregate
signatures to realize the same functionality of path-vector signatures. We have
presented alternative solution to reliable broadcast problem with nearly optimal
communication complexity and thus provided an efficient solution to the open
problem addressed in the introduction section.
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Abstract. One of the most commonly used two-factor authentication
mechanisms is based on smart card and user’s password. Throughout the
years, there have been many schemes proposed, but most of them have
already been found flawed due to the lack of formal security analysis. On
the cryptanalysis of this type of schemes, in this paper, we further review
two recently proposed schemes and show that their security claims are
invalid. To address the current issue, we propose a new and simplified
property set and a formal adversarial model for analyzing the security of
this type of schemes. We believe that the property set and the adversarial
model themselves are of independent interest.

We then propose a new scheme and a generic construction framework.
In particular, we show that a secure password based key exchange pro-
tocol can be transformed efficiently to a smartcard and password based
two-factor authentication scheme provided that there exist pseudoran-
dom functions and collision-resistant hash functions.

1 Introduction

Password authentication with smart card is one of the most convenient and ef-
fective two-factor authentication mechanisms. This technology has been widely
deployed for various kinds of authentication applications which include remote
host login, online banking, access control of restricted vaults, activation of se-
curity devices, and many more. Although some smart-card-based password au-
thentication systems have already been in use, many of them are having issues
on both security and performance aspects.

A smart-card-based password authentication scheme involves a server S and
a client A with identity IDA. At the very beginning, S issues a smart card to

� The author was supported by a grant from CityU (Project No. 7001959).

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 82–91, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Formal Analysis and Systematic Construction 83

A with the smart card being personalized with respect to IDA and some initial
password. This phase is called the registration phase and is carried out only once
for each client in some secure way. After obtaining the smart card, A can access
S in the login-and-authentication phase. This phase can be carried out as many
times as needed. However, in this phase, there could have various kinds of passive
and active adversaries in the communication channel between A and S. They can
eavesdrop messages and even modify, remove or insert messages into the channel.
The security goal of the scheme in this phase is to ensure mutual authentication
between A and S in the presence of these adversaries. In particular, it is required
to both have A’s smart card and know A’s password in order to carry out the
smart-card-based password authentication scheme successfully with server S,
that is, maintaining two-factor security that the scheme should provide. There
are also some other desirable properties people would like the scheme to possess.
We will discuss these properties shortly.

Besides registration phase and login-and-authentication phase, A may want to
change password from time to time. Conventionally, this activity usually has S
involved and requires S to maintain a database for storing the passwords or some
derived values of the passwords of its clients. In this paper, we promote the idea
of letting A change the password at will without interacting with or notifying S
(while ensuring two-factor security), and also eliminating any password database
at the server side.

Current systems also suffer from other potential security vulnerabilities. One
prominent issue is security against offline guessing attack (also known as offline
dictionary attack). The purpose of offline guessing attack is to compromise a
client’s password through exhaustive search of all possible password values. In
the context of a password-based cryptosystem, we consider that passwords are
short in the sense that they are human memorizable. In other words, we assume
that the password space is so small that an adversary is able to enumerate all
possible values in the space within some reasonable amount of time.

A stronger notion of security against offline guessing attack is to require that
compromising a client’s smart card does not help the adversary launch offline
guessing attack against the client’s password. In practice, the adversary may steal
the smart card and extract all the information stored in it through reverse engi-
neering. This notion is reminiscent of password-based key exchange protocols [6].
The difference is that for password-based key exchange protocols, the focus is on
preventing adversaries from getting any useful information about the password
mainly from the transcripts of protocol runs, while for smart-card-based pass-
word authentication schemes, in addition to thwarting related attacks against
password-based key exchange protocols, we also need to protect the password
from being known even after the client’s smart card is compromised.

Since Lamport [9] introduced a remote user authentication scheme in 1981,
there have been many smart-card-based password authentication schemes pro-
posed (some recent ones are [2,14,15,10]). These schemes are aimed for different
security goals and properties, and noticeably, there is no common set of desir-
able security properties that has been widely adopted for the construction of this
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type of schemes. Although the construction and security analysis of this type of
schemes have a long history, recently proposed schemes are still having various
security weaknesses being overlooked, and we can find many of these schemes
broken shortly after they were first proposed [4,5,12,11,15].

1.1 Our Results

In this paper, we contribute on three areas:

1. We propose a new and simplified set of desirable security properties for
a smart-card-based password authentication scheme. We also propose an
adversarial model for formal analysis of the security of this type of schemes.

2. We show that two recently proposed schemes are insecure with respect to
their claimed security properties which have also been captured in our de-
sirable property set.

3. We propose a generic construction framework and show that a secure smart-
card-based password authentication scheme can be constructed by trans-
forming a proven secure password based key exchange protocol (under some
appropriate security model which will be specified) provided that there exist
pseudorandom unctions and collision-resistant hash functions. The trans-
formation is very efficient. It essentially adds in only two additional hash
evaluations and one pseudorandom function evaluation.

Paper Organization: In Sec. 2, we propose a set of desirable properties and
an adversarial model for smart-card-based password authentication schemes. In
Sec. 3, we review a scheme proposed by Liao et al. in [10] and show that the
scheme is insecure. In Sec. 4, we propose a new scheme and show its security. In
Sec. 5, we propose a generic construction framework that can be used to convert
a proven secure password-based mutual authentication protocol to a smart-card-
based password authentication scheme.

2 Security Properties

As introduced in Sec. 1, there are two phases and one activity in a smart-card-
based password authentication system. The two phases are registration phase
and login-and-authentication phase, and the activity is called password-changing
activity.

In the registration phase, an authenticated and secure environment is assumed
to present, and all parties are assumed to be honest and perform exactly accord-
ing to the scheme specification. In the real world, this stage may require the
client who is requesting for registration to show up in person at the server’s
office and then have a smart card initialized and personalized using a secure
and isolated machine. The smart card is finally issued to the client at the end
of the stage. After this phase is completed, the client is said to be registered. In
the login-and-authentication phase, the communication channel between server
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S and a registered client A is no longer considered to be secure. Both passive and
active adversaries are present and their objective is to compromise the scheme’s
primary security goal, that is, mutual authentication between S and A. During
the password-changing activity, a registered client A change the password and
updates the smart card accordingly. A may need to interact with S for changing
the password. However, this is undesirable due to the scalability issue and the
concern of user friendliness. It will be better if A can change the password freely
without the help or notification of S. In the following, we describe what we want
a secure smart-card-based password authentication system to achieve (i.e. secu-
rity goals / desirable properties) and what the capabilities of the adversary are
(adversarial model).

2.1 Desirable Properties and Adversarial Model

Below are the five desirable properties that a smart-card-based password au-
thentication system should achieve.

1. (Client Authentication) The server is sure that the communicating party is
indeed the registered client that claims to be at the end of the protocol.

2. (Server Authentication) The client is sure that the communicating party is
indeed the server S at the end of the protocol.

3. (Server Knows No Password) S should not get any information of the pass-
word of a registered client or anything derived from the password.

4. (Freedom of Password Change) A client’s password can freely be changed by
the client without any interaction with server S. S can be totally unaware
of the change of the client’s password.

5. (Short Password) The password space is small enough so that the underlying
adversary can enumerate all the possible values of the space in a reasonable
amount of time. We consider a human-memorizable password to be a value
in this password space.

Adversarial Model. Consider an adversary A who has the full control of the
communication channel between the server S and any of the registered clients.
A can obtain all the messages transmitted between the server S and a registered
client; A can also modify or block those transmitted messages; and A can even
make up fake messages and send to any entity in the system while claiming
that the messages are from another entity in the system (i.e. impersonation).
To simulate insider attack [1], we also allow A to know the passwords and all
information stored in the smart cards of all the clients except those of a client
who is under attack from A. In addition, we also allow A to either compromise
the password or the smart card of the client under attack, but not both. However,
A is not allowed to compromise S.

Discussions. In the list of desirable properties above, the first two consti-
tute the primary security requirement of a secure smart-card-based password
authentication scheme, that is, mutual authentication between the server S and
a registered client A. The third property helps solve the scalability problem at
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the server side. In addition, since there is no information about clients’ pass-
words stored at the server side, the property also alleviate damage entailed to
the clients if the server is compromised. The fourth property will help improve
the user friendliness of the system as there is no additional communication over-
head when a client changes her password. One should note that property 3 does
not imply property 4. It is always possible to construct a scheme such that the
server does not have any information of a client’s password while the client can-
not change the password either once after registration. The fifth property means
that we always consider that if an adversary launches an attack which needs
to search through the password space (for example, an offline guessing attack),
the adversary can always evaluate all the possible values in the space within the
running time of the adversary. To prevent an adversary from launching offline
guessing attack, we therefore need to make sure that the scheme is not going to
leak any information useful about the client’s password to the adversary, even
though the password is considered to be weak and low-entropy.

Note that the adversary can always launch the online guessing attack. In this
attack, the adversary impersonates one of the communicating parties and sends
messages based on a trial password chosen by the adversary. If the trial pass-
word is guessed incorrectly, the other party will reject the connection. If so, the
adversary will try another password and repeat the steps until a trial password
leads to an acceptance of connection. Online guessing attack is easy to defend
against in practice. Conventionally, a system can set up a policy mandating that
if the password of a client is entered incorrectly for three times in a row, then
the client will be blocked and refused to connect any further. This policy works
well in practice and can effectively defend against online guessing attack if the
attack only allows the adversary to try one password in each impersonation at-
tack. However, we should also note that a secure scheme should not allow the
adversary to test two passwords or more in each of this impersonation attack.

In our full paper [13], we also present a comparison between our model and
a set of requirements for smart-card-based password authentication schemes re-
cently proposed by Liao et al. [10].

3 Offline Guessing Attack Against a Smart-Card-Based
Password Authentication Scheme

In this section, we show that the scheme proposed by Liao et al. [10] is insecure
against offline guessing attack. In our full paper [13], we show that another
scheme recently proposed by Yoon and Yoo [15] is insecure either.

Here are the notations that we will use for describing Liao et al.’s scheme.
Let p be a 1024-bit prime. Let g be a generator of Z∗

p. The server S chooses a
secret key x. In [10], the authors did not specify the length of x, however, in
order to prevent brute-force search, we assume x to be a random string of at
least 160 bits long. Let h be a hash function (e.g. SHA-256) and a‖b denote the
concatenation of a and b.
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Registration phase: Server S issues a smart card to a client A as follows.

1. A arbitrarily chooses a unique identity IDA and password PWA. PWA is
a short password that is appropriate for memorization. A then calculates
h(PWA) and sends (IDA, h(PWA)) to S.

2. S calculates B = gh(x‖IDA)+h(PWA) mod p and issues A a smart card which
has (IDA, B, p, g) in it.

Login-and-authentication phase: A attaches the smart card to an input device
and keys in IDA and PWA. Afterwards, S and A (the smart card) carry out the
following steps.

1. A sends a login request to S.
2. On receiving the login request, S calculates B′′ = gh(x‖IDA)R mod p where

R ∈ Z
∗
p is a random number, and sends h(B′′) and R to A.

3. Upon receiving the message from S, A calculates B′ = (Bg−h(PWA))R mod p
and checks if h(B′′) = h(B′). If they are not equal, S is rejected. Otherwise,
A calculates C = h(T ‖B′) where T is a timestamp, and sends (IDA, C, T )
to S.

4. Let T ′ be the time when S receives (IDA, C, T ). S validates A using the
following steps.
(a) S checks if IDA is in the correct format1. If it is incorrect, S rejects.
(b) Otherwise, S compares T with T ′. If T ′−T ≥ ΔT , S rejects, where ΔT

is the legal time interval for transmission delay.
(c) S then computes C′ = h(T ‖B′′) and checks if C = C′. If they are not

equal, S rejects. Otherwise, S accepts.

3.1 Offline Guessing Attack

Malicious user offline guessing attack. In [10], the scheme above is claimed
to be secure against offline guessing attack even if the client’s smart card is
compromised. In the following, we show that this is not true. Suppose client
A’s smart card is compromised by an adversary A. A can carry out the offline
guessing attack as follows.

1. A impersonates A and sends a login request to S.
2. S calculates B′′ = gh(x‖IDA)R mod p and sends back (h(B′′), R).
3. A then carries out offline guessing attack by checking if

h(B′′) = h((Bg−h(PW ∗
A))R mod p)

for each trial password PW ∗
A (i.e. A’s guess of PWA).

1 In [10], the format of identity IDA was not given. We hereby assume that there is
some pre-defined format for all the identities used in their system.
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Note that after A receives the message from S in step (2), A does not need to
provide any response to S and therefore S does not know whether the commu-
nicating party is launching an attack or simply the message sent by S is lost
during transmission. This makes the guessing attack described above difficult to
detect. Also notice that if A possesses a past communication transcript Trans
between A and S, A can perform the offline guessing attack directly without
interacting with S.

4 A New Scheme

In this section, we propose a new smart-card-based password authentication
scheme which is proven secure and also satisfies all the properties we described
in Sec. 2. This new scheme can also be extended to a generic construction frame-
work which allows us to convert most of the proven secure password-based key
exchange protocols [6] to smart-card-based versions. The significance of this
framework is that we can now design provably secure smart-card-based pass-
word authentication scheme in a systematic way and make use of those proven
secure password-based key exchange protocols as the main building blocks. The
schemes constructed in this framework will also have session keys established
that are generally useful for target applications. More details of the generic con-
struction framework will be given in Sec. 5. In this section, we focus on describing
how the new scheme is constructed.

In [3], Halevi and Krawczyk defined a security model for password-based au-
thentication and also proposed a protocol of this type. The definition of security
in this model essentially says that the “best” possible strategy for the adver-
sary to compromise user authentication is online guessing attack, which can
be thwarted in practice by limiting the number of consecutive authentication
failures that each user is allowed. Based on the Halevi-Krawczyk one-way
password-based authentication protocol, we build a proven secure password-
based authenticated key exchange (PWAKE) protocol, and then “upgrade” the
PWAKE protocol to our final smart-card-based password authentication scheme.
Here we merely present the PWAKE protocol and the final smart-card-based
password authentication scheme, for all the details, readers can refer to our full
paper [13].

A PWAKE Protocol. Let G be a subgroup of prime order q of a multiplicative
group Z

∗
p. Let g be a generator of G. Let (PKS , SKS) denote a public/private

key pair of the server S. User A has a password PWA which is shared with S.

A→ S : A, sid, gx̂

A← S : S, sid, gŷ, SIGSKS
(S, A, sid, gx̂, gŷ)

A→ S : A, sid, c = ENCPKS
(PWA, A, S, sid, gx̂, gŷ)

The session key is calculated as σ = gxy.
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4.1 A Smart-Card-Based Password Authentication Scheme

Notations: let p, G, g, q be the group parameters defined as above. Besides a
public/private key pair (PKS , SKS), the server S also maintains a long-term
secret x which is a random string of length k. Let H : {0, 1}∗ → {0, 1}k denote a
collision resistant hash function and PRFK : {0, 1}k → {0, 1}k a pseudorandom
function keyed by K.

Registration phase: Server S issues a client A as follows.

1. A arbitrarily chooses a unique identity IDA and sends it to S.
2. S calculates B = PRFx(H(IDA))⊕H(PW0) where PW0 is the initial pass-

word (e.g. a default such as a string of all ‘0’).
3. S issues A a smart card which contains PKS , IDA, B, p, g, q. In practice,

we can have all these parameters except B be “burned” in the read-only
memory of the smart card when the smart card is manufactured.

4. On receiving the smart card, A changes the password immediately by per-
forming the password-changing activity (described below).

Login-and-authentication phase: A attaches the smart card to an input device,
and then keys in IDA and PWA. The smart card checks if the identity is equal to
the value stored in it. If not, the smart card will refuse carrying out any further
operation. Otherwise, the smart card retrieves the value LPW = B⊕H(PWA).
A (actually performed by the client’s smart card) and S then use LPW as the
password to perform the PWAKE protocol.

Password-changing activity: If A wants to change the password, A carries out
the following steps.

1. Select a new password PW ′
A.

2. Compute Z = B ⊕H(PWA)⊕H(PW ′
A), where PWA is the old password.

3. Replace B with Z in the smart card.

Remarks: The “password” used in the login-and-authentication phase is LPW ,
instead of the real password PWA. Note that S can compute the value of LPW
once after receiving IDA. Hence it does not violate property 3 (Server Knows No
Password) in Sec. 2. From the password-changing activity above, it is obvious
that the scheme also satisfies property 4 (Freedom of Password Change).

In the two-factor security, we do not consider the case that both the password
and the smart card are compromised, but we need to consider the other three
cases: (1) neither the password nor the smart card is compromised; (2) the
password is leaked while the smart card remains secure; (3) the smart card is
compromised but the password remains secure. It is obvious that security under
case (1) can be ensured if security under either case (2) or case (3) is guaranteed.
And our goal is to achieve security under both case (2) and case (3). In other
words, compromising one factor should not affect the other.

Case (2) Security. If the smart card is not compromised (even when the
password is leaked), our proposed scheme deduces the success probability of the
adversary to a negligible level by assuming that pseudo-random functions exist.
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Theorem 1. If the smart card is not compromised, and PRFK(·) is a pseudo-
random function, then the adversary has only a negligible success probability in
the Halevi-Krawczyk model.

The proof is given in our full paper [13].

Case (3) Security. If the smart card is compromised while the password
remains secure, there is no security “upgrade” when compared with a password-
based protocol. It is easy to see that if PRFK(·) is replaced by a random function,
then the protocol provides the same security as the password protocol. And by
using the same approach as in the proof of Theorem. 1, we can show that our
scheme provides almost the same security level (with at most a negligible gap)
when compared with the password-based protocol.

5 A Generic Construction Framework

Up to this point, readers may have already realized that a smart-card-based pass-
word authentication scheme can readily be built from a proven secure password-
based mutual authentication protocol by applying the upgrading technique of
Sec. 4.1. The resulting scheme will then be secure under a model similar to the
security model for the original password-based protocol, but extended according
to the discussions in Sec. 4.1.

For example, we may choose an efficient password-based mutual authentica-
tion (and key exchange) protocol, such as [8,7], then we “upgrade” it to an effi-
cient smart-card-based password authentication scheme using the technique de-
scribed in Sec. 4.1. Interestingly, both of the protocols in [8,7] are proven secure
without random oracle. Our upgrading technique does not rely on random oracle
either. The “upgraded” smart-card-based scheme will then be secure with secu-
rity statements similar to that of Theorem 1 (but now in the corresponding model
of the original password-based authentication protocol) and also with respect to
Case (2) as well as Case (3) Security. We refer readers to [6] for other examples of
password-based mutual authentication (and key exchange) protocols.

Efficiency. The “upgrading” technique proposed in Sec. 4.1 is very efficient.
During the login-and-authentication phase, the smart card only needs to carry
out one pseudorandom function evaluation and two hashes in addition to the
operations incurred by the underlying password-based protocol. The generic
construction framework allows us to choose a password-based protocol which
is efficient enough when implemented on smart cards.

A Practical Issue. In the description above, we consider the server S to main-
tain one single long-term secret x for communication with all the clients. As a
result, the secrecy of x is utmost important because the security of the entire
system essentially relies on the security of x. In practice, we can alleviate the
damage caused to a system by using multiple values of x to partition the system,
and in each partition, a randomly generated x is used by a disjoint set of clients.
Each partition is to be handled by a distinct and independent server. Compro-
mising one server will therefore only affect the security of the corresponding
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partition of clients rather than the entire system. Note that this partitioning
method does not affect the fulfillment of any of the desirable properties for a
secure smart-card based password authentication scheme proposed in Sec. 2. An-
other mechanism which can be used in conjunction with the mechanism above
is to set each long-term secret x with a validity period. Usually, smart cards are
used such that they are valid only for a period of time. Hence for a different
period of time, a fresh long-term secret x can be used.
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Abstract. We propose a hierarchical key-assignment method to reduce
the ciphertext size in a black-box tracing scheme presented at ASIA-
CRYPT 2004. Applying the proposed method to this scheme, the cipher-
text size is reduced from O(

√
n) to O(k+log(n/k)) without a substantial

increase in the decryption-key size, where k, n denote the maximum num-
ber of colluders in a coalition and the total number of receivers respec-
tively. The resulting scheme also supports black-box tracing and enjoys
the following properties: Even if a pirate decoder does not respond any
further queries when it detects itself being examined, the pirate decoder
can be traced back to a person who participated in its construction. A
tracer’s key, which is necessary for black-box tracing, is public.

Keywords: Hierarchical key assignment, black-box tracing, reduced ci-
phertext size.

1 Introduction

The piracy becomes a serious threat in an increasing number of applications
where a sender broadcasts data to many receivers and the data should be avail-
able only to authorized receivers. As an example of the applications, consider
a content-distribution system illustrated in Fig. 1. A broadcaster encrypts (i) a
digital content with a session key and (ii) the session key itself with a broad-
caster’s key. We call the ciphertext as a header. The broadcaster broadcasts
the encrypted content and the header to authorized receivers (users). The users
decrypt the header (and consequently the encrypted content) by using their de-
cryption boxes (decoders) which contain their decryption keys (personal keys).
In this system, malicious users (traitors) may build a pirate decoder by illegally
using their personal keys and sell it at the black market. The redistribution of
the personal key is serious since this piracy enables the non-users who possess
the pirate decoder to have illegal access to the content.
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Fig. 1. Content-distribution system

To combat against this piracy, traitor tracing [4] has been studied extensively.
Its goal is to develop a scheme in which, from the confiscated pirate decoder,
a tracer can identify at least one of its producers by executing a tracing algo-
rithm with a tracer’s key. (We give a formal definition in 2.2.) The efficiency is
evaluated on the following criteria: the header size, the personal-key size, the
broadcaster’s-key size, the computational cost for decryption, etc. One of the
most important criteria is the header size. To construct a traitor-tracing scheme
with O(n) header size is straightforward, where n denotes the total number of
users. Such a scheme is inefficient since the transmission overhead becomes lin-
early larger as the number of users increases. Therefore, to achieve the sublinear
header size is a minimum requirement. If the bandwidth of a broadcast channel
is limited, the header size must not greatly be affected by n. This is required in
the case of satellite broadcasting and other wireless transmissions. In this paper,
we seek a scheme with more efficient header size than O(

√
n).

We mention related work from the viewpoints of assumptions on a pirate
decoder and the public availability of a broadcaster’s key and a tracer’s key. It
is desirable that a traitor-tracing scheme support black-box tracing, in which
the tracer can identify the traitor(s) without breaking open the pirate decoder
and thus it is assured that the traitor(s) is traced no matter how the pirate
decoder is implemented. There are two kinds of assumptions on a pirate decoder
in black-box tracing.

(1-1) The pirate decoder always output a plaintext or (1-2) if it detects itself
being examined, it may give the tracer intentionally incorrect outputs or
no output for further inputs by activating a self-defensive mechanism1.

(2-1) A test during black-box tracing is done independently of the other tests
by resetting the pirate decoder or (2-2) the pirate decoder memorizes the

1 Note that (i) for simplicity we assume that the reaction is triggered deterministically,
i.e., it is activated once the pirate decoder detects tracing and (ii) a tracing algorithm
in the deterministic case can be extended to the general probabilistic case under an
assumption that plural pirate decoders constructed by the same traitors are available
in tracing.
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previous inputs and reacts based on its history record. Usually, the former
is supposed for simplicity since a method for converting a scheme in the
former case into one in the latter case by using digital watermarks is
presented in [5].

In this paper, (1-2) and (2-1) are supposed. We call a pirate decoder under these
two assumptions as self-defensive one, which can be regarded as a type-2 pirate de-
coder categorized in [5]. The schemes of [7,1,5,8,2] cope with a self-defensive pirate
decoder. In the schemes of [7,1], however, there is a problem that a tracing algo-
rithm requires that the number of suspects be narrowed down to k before tracing,
where k denotes the maximum number of traitors in a coalition. In [5], a partial
solution to this problem is presented by relaxing a requirement on the result of
tracing, i.e., the tracing algorithm outputs a list of suspects and it is assured that
at least one of the traitors is included in the list. This scheme achieves the O(

√
n)

header size. Unfortunately, this relaxation causes another problem that there ex-
ists a trade-off between the header size and the suspect-list size, i.e., the detection
probability. The schemes of [8,2] solve both of the above problems and generates
a header of size O(

√
n). (We mention the difference between the two schemes in

1.1.) Our interest is in reducing the header size in this kind of scheme.
The public availability of a broadcaster’s key and a tracer’s key enhances

the scalability of a system. It is desirable that the broadcaster’s key be public
since plural broadcasters can use the same system without sharing any secret
information. For example, in the schemes of [7,1] the broadcaster’s key is public.
Note that even in a scheme (e.g., [4]) where the broadcaster’s key is designed to
be secret, it can be publicized by replacing a symmetric-key cryptosystem used
to build a header with a public-key cryptosystem. Among the schemes in which
the broadcaster’s key is public, the schemes of [6,2] require that the tracer’s
key be secret, while it is also public in other schemes (e.g., [8,3])2. It is desirable
that the tracer’s key be public since plural entities can be delegated to do tracing
without sharing any secret information and the existence of a larger number of
tracers is a stronger deterrent to the piracy. In this paper, we consider a scheme
in which both of them are public.

1.1 Our Contributions

The construction of the scheme of [8] is algebraic, while that of [2] is not. Since
the algebraic construction is suited to reduce the header size, we extend the
scheme of [8] to the one which generates a header of size less than O(

√
n). In

order to achieve this, we propose a hierarchical key-assignment method which
can be applied to the scheme of [8]. The header size cannot be reduced by
straightforwardly extending the scheme of [8]. We explain this in Sect. 3.

The resulting scheme achieves that the header size is reduced from O(
√

n) to
O(k + log(n/k)) while allowing the personal-key size to increase from O(1) to
O(log(n/k)). Since the resulting scheme is based on the scheme of [8], it also has

2 In the multi-user case in the scheme of [3], a private procedure by a trusted party is
required in order to decide a traitor, as pointed out in [3].
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Fig. 2. Structure of T (L = 8)

the following inherent properties: (i) The scheme supports black-box tracing even
if the pirate decoder is self-defensive, (ii) in contrast to the scheme of [2], both the
broadcaster’s key and the tracer’s key are public, (iii) the maximum coalition size
is limited to k, while that of [2] is fully collusion resistant, and (iv) the computa-
tional cost for decryption is linear in k, while it is constant in that of [2].

The rest of the paper is organized as follows. In Sect. 2, definitions are given.
We clarify what to be resolved in Sect. 3. The proposed key-assignment method
and the resulting scheme are shown in Sect. 4. The resulting scheme is analyzed
in terms of security and efficiency in Sect. 5 and Sect. 6 respectively. In Sect. 7,
conclusions are presented.

2 Definitions
2.1 Tree Structure

We define notations on a tree structure used in this paper.

Definition 1 (Notations on a Tree Structure). We define T,NT as a tree
with L leaves and a set of all of the nodes including the leaves but not the root
in T respectively. We simply suppose that N T = {0, . . . , |N T | − 1}. For a node,
v (v ∈ N T ), Uv is defined as a set of the users who correspond to the leaves of the
subtree rooted at v. For a given T , we define a collection, YT , of subsets of users as
YT = {U0, . . . ,U |NT |−1}. We define U as a set of all of the users. The depth of a
node means the number of branches on the path from the root to the node.

Figure 2 illustrates a structure of T in the case where L = 8. For example, in
Fig. 2(a), N T = {0, . . . , 2L− 3 (= 13)}, U i0 is a set of the users who correspond
to the leftmost leaf, and U i8 = U i0∪U i1 . In Fig. 2(b), N T = {0, . . . , L−1 (= 7)}.

2.2 Black-Box Tracing

Black-box tracing consists of four processes.

Key Generation. A trusted party generates and secretly gives every user a
personal key. The personal key is stored in the decoder.
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Encryption. A broadcaster encrypts (i) a content with a session key and (ii)
the session key itself with a broadcaster’s key (as a header). Then, the broad-
caster broadcasts the encrypted content and the header. To avoid complication,
we suppose that an encryption algorithm used for encryption of the content is
secure and publicly known and focus on how to construct a header. We also
suppose that a broadcast channel is reliable in the sense that the received infor-
mation is not altered.
Decryption. Receiving the header, users compute the session key (and conse-
quently the content) by inputting it to their decoders.
Black-Box Tracing. Suppose that the pirate decoder is confiscated. A tracer
builds a header for tracing with a tracer’s key, gives the header to the pirate
decoder, and observe whether it decrypts correctly or not. The tracer decides a
traitor based on its outputs.

This model is described formally as follows.
Definition 2 (BBTS). A black-box tracing scheme (BBTS) is a 4-tuple of
polynomial-time algorithms, (Gen, Enc, Dec, BBT), s.t.

Gen, the key-generation algorithm, is a probabilistic algorithm which takes as
input a security parameter, �, the total number of users, n, and the maximum
number of colluders in a coalition, k. It returns a broadcaster’s key, BK, n
personal (secret) keys, du1 , . . . , dun , a tracer’s key, TK, and a collection, Y , of
subsets of users.

Enc, the encryption algorithm, is a probabilistic algorithm which takes as input
BK, Y , and a session key (a message), s. It returns a header (a ciphertext), H.

Dec, the decryption algorithm, is a deterministic algorithm which takes as input
dui and H. It returns s or an incorrect one, We require that Dec(dui , Enc(BK, Y,
s)) = s for all of the session keys (unless the user, ui, is revoked).

BBT, the black-box tracing algorithm, is a probabilistic algorithm which takes
as input TK, Y , and a pirate decoder, PD, as a black box. It returns one of the
traitors’ IDs, uj.
In this paper, we consider a BBTS in which (i) Y is represented by a tree
structure and (ii) both BK and TK are public.

2.3 Security

We describe security definitions of a BBTS. A BBTS is said to be secure if it
satisfies indistinguishability and black-box traceability defined as follows.

Definition 3 (Indistinguishability). Let Π =(Gen, Enc, Dec, BBT) be aBBTS.
Given a header, Π is said to be indistinguishable if no non-users (eavesdroppers)
can distinguish a session key corresponding to the header from a random session
key with non-negligible advantage.

Definition 4 (Black-Box Traceability). Let Π = (Gen, Enc, Dec, BBT) be a
BBTS and PD be a pirate decoder. When PD is constructed by a coalition of
at most k traitors, Π is said to be black-box traceable if at least one of them is
identified, only by observing inputs and outputs of PD, with probability 1 − ε
where ε is negligible.
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3 Basic Scheme

First, we review the scheme of [8]. Secondly, we explain why its simple extension
is not a satisfactory solution and clarify what to be resolved.

3.1 The Scheme of [8]

Gen(1�, n, k): Generate two primes, p, q, s.t. |q| = �, q|p− 1, and q ≥ n + 2k− 1.
Let Gq be a subgroup of Z

∗
p of order q. Generate a generator, g, of Gq. In the

paper, ∈R denotes a random selection of an element of the set on its right side,
and the calculations are done over Z

∗
p unless otherwise specified.

Let U be a set of all of the users. Split U into L disjoint subgroups each of
which has at most 2k elements, define an L-ary tree, T , of depth 1 and generate
a collection, YT , of subsets of users. T is depiced in Fig. 2(b), and each split
subgroup corresponds to a different leaf.

Choose a0, . . . , a2k−1, b0, . . . , bL−1 ∈R Zq and compute a public key, e (=
BK = TK), as follows.

e = (p, q, g, {y0,i = gai}i=0,...,2k−1, {y1,i = gbi}i=0,...,L−1).

Suppose that u ∈ Uv. The subscriber u’s personal key is (u, v, fv(u)) where

fv(x) =
2k−1∑
i=0

av,ix
i mod q, (1)

av,i =
{

ai (i �= v mod 2k),
bv (i = v mod 2k).

Enc(e, YT , s): Suppose that s ∈R Gq. Select R0, R1 ∈R Zq. For each leaf, vj (1 ≤
j ≤ L), in T , set bitvj to 0 or 1 at random. Then, calculate Hvj as follows.

Hvj = (h̄vj (= grvj ), hvj ,0, . . . , hvj ,2k−1),

hvj ,i =

{
y

rvj

0,i (i �= vj mod 2k),
sy

rvj

1,vj
(i = vj mod 2k),

rvj =
{

R0 (bitvj = 0),
R1 (bitvj = 1).

A header, H , is a collection of Hvj ’s computed in the above procedure.

Dec(du, H): Suppose that u ∈ Uvj . The user, u, correctly computes the session
key, s, by using (u, vj , fvj (u)) ∈ du and Hvj ∈ H as follows.

⎛⎝∏2k−1
i=0 hui

vj ,i

h̄
fvj

(u)
vj

⎞⎠1/uvj mod 2k

= s

(
grvj

2k−1
i=0 avj,iu

i

grvj
fvj

(u)

)1/uvj mod 2k

= s.
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BBT(e, YT , PD): First, we give an outline of the algorithm and secondly a con-
crete description. The tracer examines whether a user is a traitor one by one.
In the jth test, where 1 ≤ j ≤ n, the tracer chooses a user, uj , and builds the
header in which all of the users in X = {u1, . . . , uj} are revoked and the others
are not, where u1, . . . , uj−1 has been selected in the (j − 1)th test. Throughout
this paper, X means a set of revoked users in a header for tracing. The tracer
inputs this header to the pirate decoder and observes whether it decrypts cor-
rectly or not. If its output is (i) correct for the input where X = {u1, . . . , uj−1}
and (ii) incorrect for the input where X = {u1, . . . , uj}, then the tracer decides
that the user, uj, is a traitor.

The algorithm is concretely described as follows. Let it be the (t + 1)th leaf
from the left in T as illustrated in Fig. 2. For simplicity, we suppose that |U it | =
2k for all t’s (0 ≤ t ≤ L− 1) and n = 2kL. Label all of the elements in U it ’s as
follows.

U it = {u2kt+1, . . . , u2k(t+1)} (0 ≤ t ≤ L− 1). (2)

For 1 ≤ j ≤ n, repeat the following procedure.

– Set ctrj = 0 and then repeat the following test m times3.
1. Set X = {u1, . . . , uj} and choose a session key, s ∈R Gq. Then build the

header, H . (We omit the construction of H .)
2. Give H to the pirate decoder and observe its output.
3. If it decrypts correctly, then increment ctrj by one. (If a self-defensive

reaction is triggered, then decide that the user, uj, is a traitor.)

Finally, find an integer, j ∈ {1, . . . , n}, s.t. ctrj−1 − ctrj is the maximum and
then decide that uj is a traitor, where ctr0 = m.

3.2 Simple Extension

As illustated in Fig. 2(b), the depth of a tree in the scheme of [8] is 1. Therefore,
it can be expected that the header size will be reduced by constructing a multi-
level version of the scheme of [8], i.e., introducing a complete binary tree and
applying the complete subtree method presented in [10] to the scheme of [8]4.
We try constructing a simple extension of the scheme of [8].

Gen′(1�, n, k): Define a complete binary tree, T , as illustrated in Fig. 2(a) and
generate a collection, YT , of subsets of users. Define a key-generation polynomial,
Fv(x). (We discuss how to build Fv(x) below.) The personal key of a user, u, is
represented as du = {(u, v, Fv(u))|v ∈ N T , u ∈ Uv}. For example, in Fig. 2(a),
if u ∈ U i0 , then du = {(u, i0, Fi0 (u)), (u, i8, Fi8(u)), (u, i12, Fi12(u))}.
3 It is shown in [5] that at least one traitor is identified with overwhelming probability

if m = O(n2 log2 n).
4 One would wonder if the subset difference method, which is the other covering

method presented in [10], can be applied to the scheme of [8] with efficient personal-
key size. Our current answer would be negative since it seems hard to support the
personal-key derivation, by which the size of the personal key is reduced.
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There are two simple methods for constructing Fv(x). One is that Fv(x) is
generated from a single system. For instance, in Fig. 2(a), if u ∈ U i0 , then
du = {(u, i0, fi0(u)), (u, i8, fi8(u)), (u, i12, fi12(u))}, where fv(x) is defined in (1).
Unfortunately, this is insecure against the following collusion attack: Suppose
that colluders, x1, . . . , xk, belong to the same subgroup, U i0 . They can reveal a
value of each coefficient of the key-generation polynomial by solving the following
system of equations.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fij (x1) =
∑2k−1

t=0 aij ,tx
t
1

fij (x2) =
∑2k−1

t=0 aij ,tx
t
2

...
fij (xk) =

∑2k−1
t=0 aij ,tx

t
k

(j = 0, 8, 12). (3)

Since the number of equations and that of variables are 3k, 2k + 3 respectively,
they can compute another user’s personal key if k ≥ 3.

The other is to use plural systems, i.e., Fv(x) is generated from the δth system
where v is a node at depth δ. For example, in Fig. 2(a), du = {(u, i0, f

(3)
i0

(u)), (u,

i8, f
(2)
i8

(u)), (u, i12, f
(1)
i12

(u))}, where f
(δ)
v (x) denotes a key-generation polynomial

assigned to a node, v, at depth δ. Since the number of variables in (3) is 6k (with
overwhelming probability), the above collusion attack is impossible. Hereafter,
we consider the simple extension by using the latter key-generation method. Let
e(δ) be a public key which corresponds to f

(δ)
v (x).

Enc′((e(1), . . . , e(log2 L)), YT , s): Execute an algorithm, Sel, described as follows.
Sel takes as input YT and returns ID’s of log2 L + 1 nodes in T .

Sel(YT ): Select log2 L+1 nodes including one or more leaves, v1, . . . , vlog2 L+1,
which satisfy the condition that

⋃log2 L+1
i=1 Uvi = U5. In Fig. 2(a), 4 (= log2 8+

1) nodes, e.g., i0, i1, i9, i13 (
⋃

j∈{0,1,9,13} U ij = U), are selected.

Execute Enc in 3.1 with the following two relations: (i) Hvj is calculated for each
selected nodes, vj (1 ≤ j ≤ log2 L+1), and (ii) e(δ) is used as a public key when
computing Hvj where vj is a node at depth δ.

The header size in the simple extension is O(k log L) since each Hvj is calcu-
lated from a corresponding e(δ). This is inefficient as shown in Fig. 3.

To summarize, (i) if the key-generation polynomial is generated from a single
system, the resultant scheme is vulnerable to the collusion attack, and (ii) the
collusion attack is avoided by running log2 L systems in parallel, but the header
size in the resultant scheme is inefficient. It is non-trivial to avoid the collusion
attack and reduce the header size at the same time.
5 If the number of Hvj ’s in H for broadcasting is always less (or greater) than that for

tracing, this difference enables the pirate decoder to distinguish one from the other.
This is why we fix the number of selected nodes. We set the number of selected
nodes to log2 L + 1 because a leaf has to be chosen in building a header for tracing,
as described in BBT′′ in Sect. 4.
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4 The Hierarchical Key-Assignment Method

We present the hierarchical key-assignment method and apply it to the scheme of
[8]. Let (Gen′′, Enc′′, Dec′′, BBT′′) be the resulting scheme. The proposed method
is shown in Gen′′. The other algorithms than Gen′′ are so constructed as to adapt
the scheme of [8] to the hierarchical key assignment.

Gen′′(1�, n, k): Generate two primes, p, q (q ≥ n + 2k), and a generator, g, and
split U into L disjoint subsets in the same way as in Gen in 3.1.

Define a complete binary tree, T , as depicted in Fig. 2(a) and generate a
collection, YT , of subsets of users.

Choose ai, bi ∈R Zq for 0 ≤ i ≤ 2k − 1, and ci, λi ∈R Zq for 0 ≤ i ≤ 2L − 3.
Compute a public key, e (= BK = TK), as follows.

e = (p, q, g, {y0,i = gai}i=0,...,2k−1, {y1,i = gci}i=0,...,2L−3, {y2,i = gλi}i=0,...,2L−3).

Next, define key-generation polynomials, Av(x), B(x), as follows.

Av(x) =
2k−1∑
i=0

(av,i − λvbi)xi mod q,

B(x) =
2k−1∑
i=0

bix
i mod q,

av,i =
{

ai (i �= v mod 2k),
cv (i = v mod 2k),

Note that it always holds that

Av(x) + λvB(x) =
2k−1∑
i=0

av,ix
i mod q. (4)

This relation enables the decryption algorithm to work. A personal key, du, of
a user, u, is represented as du = {(u, v, Av(u), B(u))|v ∈ N T , u ∈ Uv}. In
Fig. 2(a), for instance, if u ∈ U i0 , then

du = {(u, i0, Ai0(u), B(u)), (u, i8, Ai8 (u), B(u)), (u, i12, Ai12(u), B(u))}.
Remark 1. We explain the rationale behind introducing Av(x), B(x). Consider
the same collusion attack as described in 3.2. Suppose that colluders, x1, . . . , xk,
belong to the same subgroup, Uv1 , where v1 is a leaf. They also belong to
Uv2 , . . . ,Uvlog2 L

where v2, . . . , vlog2 L are the nodes on the path from the leaf
to the root. They try to determine the coefficients of Avj (x), B(x) by solving the
following system of equations.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Avj (x1) + λvj B(x1) =
∑2k−1

i=0 avj ,ix
i
1

Avj (x2) + λvj B(x2) =
∑2k−1

i=0 avj ,ix
i
2

...
Avj (xk) + λvj B(xk) =

∑2k−1
i=0 avj ,ix

i
k

(1 ≤ j ≤ log2 L). (5)
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In (5), however, the coefficients remain indeterminate even though the number of
equations exceeds that of variables. Therefore, this collusion attack is impossible.

Enc′′(e, YT , s): Execute Sel in 3.2 and then do Enc in 3.1 with the following two
relations: (i) Hvj is calculated for each selected nodes, vj (1 ≤ j ≤ log2 L + 1),
and (ii) Hvj = (h̄vj , ĥvj (= y

rvj

2,vj
), hvj ,0, . . . , hvj ,2k−1).

Note that in this paper we do not consider changes in group membership in the
normal broadcast, although arbitrary revocation can be supported by integrating
the mechanism of flexible revocation presented in [9] into the resulting scheme. If
we focus on black-box tracing, it is not necessarily required to support arbitrary
revocation since BBT in 3.1, which is also used in BBT′′, only requires that
suspects be examined (i.e., revoked) in such a way that each user is added to a
set of revoked users one by one.

Dec′′(du, H): Suppose that u ∈ Uvj . The user, u, correctly computes the session
key, s, by using (u, vj , Avj (u), B(u)) ∈ du and Hvj ∈ H as follows.

⎛⎝ ∏2k−1
i=0 hui

vj ,i

h̄
Avj

(u)
vj ĥ

B(u)
vj

⎞⎠1/uvj mod 2k

= s

{
grvj

2k−1
i=0 avj,iu

i

grvj(Avj
(u)+λvj

B(u))

}1/uvj mod 2k

= s (∵ (4)).

BBT′′(e, YT , PD): Execute BBT in 3.1, where H is built by executing Enc′′′

defined as follows.

Enc′′′(e, YT , s): Execute Enc′′ with the following two relations: (i) The fol-
lowing two conditions are added in selecting nodes: (a) X ∩ Uvj = ∅, 0 <
|Uvj\(X ∪ Vvj )| < 2k, or X ∩ Uvj = Uvj and (b) at most one node, vj ,
s.t. 0 < |Uvj\(X ∪ Vvi)| < 2k is chosen, where Vvj is defined as Vvj =⋃

1≤t≤log2 L+1,t�=j Uvt . For example, in Fig. 2(a), if X = {u1, . . . , u7k}, four
nodes, i2, i3, i8, i13 (

⋃
j∈{2,3,8,13} U ij = U , X∩U i2 = U i2 , |U i3\(X∪

⋃
j∈{2,8,13}

U ij )| = |{u7k+1, . . . , u8k}| = k, X ∩U i8 = U i8 , X ∩U i13 = ∅), can be selected
and (ii) the process of calculating hvj ,i branches as follows6.
– If X ∩ Uvj = ∅, then

hvj ,i

(	
= h′

vj ,i

)
=

{
y

rvj

0,i (i �= vj mod 2k),
sy

rvj

1,vj
(i = vj mod 2k),

where if there exists a node, vi, among the selected ones s.t. 0 < |Uvi\(X ∪
Vvi)| < 2k, then set bitvj = 0. Otherwise (there is no such vi), set bitvj to
0 or 1 at random.

– If 0 < |Uvj\(X ∪Vvj )| < 2k, first, suppose that Uvj\(X ∪Vvj ) = {α1, . . . ,
αm} and choose 2k−m−1 distinct elements, αm+1, . . . , α2k−1 ∈R Zq\(U∪

6 The branched processes are also similar to those in the scheme of [8].
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{0}), when 2k −m− 1 > 0. Secondly, find elements, L0, . . . , L2k−1 ∈ Zq,
s.t.

∑2k−1
i=0 Liα

i
t = 0 mod q for 1 ≤ t ≤ 2k − 1. Finally, set bitvj = 1 and

compute hvj ,i as follows.

hvj ,i

(	
= h′′

vj ,i

)
=

{
gLiy

rvj

0,i (i �= vj mod 2k),
sgLiy

rvj

1,i (i = vj mod 2k).
(6)

We explain how a user, u ∈ Uvj ∩ X , is revoked. The user, u, tries to
compute the session key as follows.

{
2k−1∏
i=0

hui

vj ,i

/(
h̄

Avj
(u)

vj ĥB(u)
vj

)}1/uvj mod 2k

= s
{
g

2k−1
i=0 Liu

i

grvj
2k−1
i=0 avj,iu

i
/

grvj (Avj
(u)+λvj

B(u))
}1/uvj mod 2k

.

Since it does not hold that
∑2k−1

i=0 Liu
i = 0 mod q, the session key cannot

be obtained.
– If X ∩ Uvj = Uvj , then set bitvj to 0 or 1 randomly. Set hvj ,i = h′

vj ,i

with the exception that (i) if bitvj = 1 and there exists a node, vi, among
the selected ones s.t. 0 < |Uvi\(X ∪ Vvi)| < 2k, then set hvj ,i = h′′

vj ,i

and (ii) if bitvj = 1 and there is no such vi, then the following procedure
can optionally be performed for one vj only: Choose α1, . . . , α2k−1 ∈R
Zq\(U ∪ {0}) and compute h′′

vj ,i as in (6). If this optional procedure is
done, we regard that there exists a node, vi, s.t. 0 < |Uvi\(X ∪Vvi)| < 2k.
In any case, select zvj ∈R Zq and replace hvj ,vj mod 2k with gzvj .
Note that all of the users in Uvj are revoked by replacing the element,
hvj ,vj mod 2k, which is used only by them, with the random element, gzvj .

5 Security

The security of the resulting scheme shown in Sect. 4 is based on the difficulty
of the decision Diffie-Hellman (DDH for short) problem. Proofs are given in
the appendix. The proofs of Lemma 3 and Theorem 2 are omitted due to space
limitation. Lemma 3 can be proved in a similar way to Lemmas 1 and 2. The
proof of Theorem 2 is the same as in [8, Theorem 2].

Theorem 1 (Indistinguishability). The resulting scheme is indistinguishable
as defined in Definition 3 under the assumption that the DDH problem is in-
tractable in Gq.

The next lemmas are used to prove black-box traceability of the resulting scheme.
Let valid and invalid inputs denote headers for broadcasting and those for tracing
respectively.
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Table 1. Efficiency comparison (H, S, P , B: sets of possible headers, session keys,
personal keys, and broadcaster’s keys respectively, n: the total number of users, k: the
maximum coalition size, L: the total number of leaves in a tree (L = n/2k))

Header size Personal-key size Broadcaster’s-key size
(log |H|/ log |S|) (log |P|/ log |S|) (log |B|/ log |S|)

[8] 4k + L + 2 1 2k + L
Simple extension of [8] (2k + 1)(log2 L + 1) log2 L 2(k log2 L + L − 1)

Resulting scheme 4k + log2 L + 5 log2 L + 1 2(k + 2L − 2)
[2] 6

√
n 1 3

√
n

Is a tracer’s Collusion resistance Computational cost
key public? (max. coalition size) for decryption

[8] Yes Limited to k O(k)
Simple extension of [8] Yes Limited to k O(k)

Resulting scheme Yes Limited to k O(k)
[2] No Unlimited O(1)

Lemma 1 (Indistinguishability of an Input). Distinguishing a valid input
from an invalid one by any coalition of k non-revoked users is as difficult as the
DDH problem in Gq.

Lemma 2 (Indistinguishability in an Invalid Input). Given an invalid
input, distinguishing a session key corresponding to the input from a random
element in Gq by any coalition of k users revoked in the input is as difficult as
the DDH problem in Gq.

Lemma 3 (Indistinguishability of a Suspect). Recall that X denotes a set
of revoked users in an invalid input, H. Suppose that all of the users are labeled
as represented in (2). Given a user, uj, distinguishing an invalid input in which
X = {u1, . . . , uj−1} from an invalid one in which X = {u1, . . . , uj} by any
coalition, C, of k users is as difficult as the DDH problem in Gq, when uj /∈ C.

From Lemmas 1, 2, and 3, it follows that the next theorem holds.

Theorem 2 (Black-Box Traceability). The resulting scheme is black-box
traceable as defined in Definition 4 under the assumption that the DDH prob-
lem is intractable in Gq.

6 Efficiency

In Table 1, the scheme of [8], its simple extension, the resulting scheme shown in
Sect. 4, and the scheme of [2] are compared. The construction of the first three
schemes is algebraic, while that of the last one is pairing-based.

Figure 3 numerically shows the header size in each scheme when n = 106, where
we suppose that L = n/2k in the first three schemes. The header size in the re-
sulting scheme can be considered linear only in k. Contrary to this, the depth of
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Fig. 3. Header size when the total number of users is 106

a tree greatly affects the header size in the simple extension. Compared with the
scheme of [8], the resulting scheme is always more efficient if k < n/11. Compared
with the scheme of [2], the resulting scheme is more efficient if, roughly speaking,
k is less than 1.5

√
n or so. Such a value of k can be chosen in real applications.

In the schemes of [8,2], the personal-key size is constant, while in the simple
extension and the resulting scheme it is linear in the depth of a underlying tree.
However, in the case that e.g., n = 106, k = 103, it holds that log2 L < 9 and
thus this is not a heavy storage burden in practice.

In all of the schemes in Table 1, the broadcaster’s key is public. The broadcast-
er’s-key size in the scheme of [8] and the resulting scheme is O(

√
n) (k = O(

√
n))

but becomes less efficient than that of [2] as k comes close to n. In Table 1, p, q, g
are not included as a broadcaster’s key in the first three schemes. Similarly, some
public information is not counted as a broadcaster’s key in the scheme of [2].

In the resulting scheme, the tracer’s key is also public, while it must be kept
secret in the scheme of [2]. The secret tracer’s key is an obstacle to delegate plural
entities to perform tracing since the security is degraded when the tracer’s key
is compromised.

In the resulting scheme, the number of traitors in a coalition must be limited
to k and the number of modular exponentiations required for decryption is linear
in k, while in the scheme of [2] there is no upper bound on the coalition size and
a constant number of pairing computations are required for decryption. The re-
sulting scheme can be an option to applications where reducing the transmission
overhead is a top priority.

7 Conclusions

We have proposed a hierarchical key-assignment method which can be used to
reduce the header size in the scheme of [8]. The resulting scheme achieves (i)
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the header size is reduced from O(
√

n) to O(k + log(n/k)) without a substantial
increase in the personal-key size, (ii) the scheme supports black-box tracing even
if the pirate decoder is self-defensive, (iii) both the broadcaster’s key and the
tracer’s key are public. The computational cost for decryption is linear in k and
remains to be improved.
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A Security Proofs

A.1 Definitions

We define the DDH problem and the MDDH problem, which is a modified ver-
sion of the DDH problem. Subsequently, we prove that the MDDH problem is
computationally equivalent to the DDH problem and use it to proof Lemmas 1, 2,
and 3.

Definition 5 (DDH). The DDH problem is the following: Given a generator,
g ∈ G, where G is a cyclic group of prime order, q, and a 4-tuple, (g1, g2, g3, g4) =
(g1, g2, g

a
1 , gb

2), where g1, g2 ∈R G, a, c ∈R Zq, and b = a or c, decide whether b = a
or not. A probabilistic polynomial-time (PPT for short) algorithm, Alg, solves the
DDH problem if it satisfies, for some fixed α > 0 and sufficiently large n,

|Pr[Alg(q, g, g1, g2, g
a
1 , ga

2) = “b = a”]
−Pr[Alg(q, g, g1, g2, g

a
1 , gc

2) = “b = a”]| > 1/nα.
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We call a 4-tuple coming from the distribution, 〈g1, g2, g
a
1 , ga

2〉, as a Diffie-Hellman
tuple.

Definition 6 (MDDH). The MDDH problem is the following: Given a gen-
erator, g ∈ G, where G is a cyclic group of prime order, q, and a 6-tuple,
(g1, g2, g3, g4, g5, g6) = (g1, g2, g

a
1 , gb

2, g
c
1, g

c
2), where g1, g2 ∈R G, a, c, d ∈R Zq,

and b = a or d, decide whether b = a or not. A PPT algorithm, Alg, solves the
MDDH problem if it satisfies, for some fixed α > 0 and sufficiently large n,

|Pr[Alg(q, g, g1, g2, g
a
1 , ga

2 , gc
1, g

c
2) = “b = a”]

−Pr[Alg(q, g, g1, g2, g
a
1 , gd

2 , gc
1, g

c
2) = “b = a”]| > 1/nα.

We also call a 6-tuple coming from the distribution, 〈g1, g2, g
a
1 , ga

2 , gc
1, g

c
2〉, as a

Diffie-Hellman tuple. In Definitions 5 and 6, we assume that G is a multiplicative
group. If G is an additive one, these definitions can be rewritten additively. In
the proposed schemes, one can take an additive group of points of an elliptic
curve over a finite field instead of Gq.

Let DDH, MDDH be PPT algorithms which solve the DDH problem and the
MDDH problem in Gq respectively. For two PPT algorithms, A, B, we mean by
A⇒ B that the existence of A implies that of B and by A⇔ B that A⇒ B and
B⇒ A.

Lemma 4. The DDH problem in Gq is as difficult as the MDDH problem in
Gq.

Proof. We prove that DDH ⇔ MDDH. First it is clear that DDH ⇒ MDDH.
Secondly, we show that MDDH⇒ DDH by constructing DDH using MDDH as a
subroutine. The construction of DDH is as follows.

Algorithm 1
Input: A challenge 4-tuple, (g1, g2, g3, g4).
Output: “Diffie-Hellman tuple” or “Random tuple.”

1. Select r ∈R Zq and build a 6-tuple (g1, g2, g3, g4, g
r
1 , g

r
2). Observe that if

the challenge 4-tuple is a Diffie-Hellman tuple, the 6-tuple is also a Diffie-
Hellman tuple. Otherwise, it is not.

2. Give the 6-tuple to MDDH. If MDDH decides that the 6-tuple is a Diffie-
Hellman tuple, then output “Diffie-Hellman tuple.” Otherwise, output “Ran-
dom tuple.” Since MDDH behaves differently for Diffie-Hellman tuples and
random ones in Gq, DDH can solve the given challenge. ��

A.2 Proof of Theorem 1

Let Dis be a PPT algorithm the non-users use to distinguish between the session
key corresponding to the header and a random element in Gq. We prove that
Dis ⇔ DDH. First, it is clear that DDH ⇒ Dis. Secondly, we show that Dis ⇒
DDH by constructing DDH using Dis as a subroutine. The construction of DDH
is as follows.
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Algorithm 2
Input: A challenge 4-tuple, (g1, g2, g3, g4).
Output: “Diffie-Hellman tuple” or “Random tuple.”

1. Define T and generate YT .
2. Select β ∈R Zq, ai ∈R Zq for 0 ≤ i ≤ 2k − 1, and αv, λv ∈R Zq for 0 ≤ v ≤

2L− 3. Then, compute e as follows.

e = (p, q, g1, {gai
1 }i=0,...,2k−1, {gαi

1 gβ
2 }i=0,...,2L−3, {gλi

1 }i=0,...,2L−3).

3. Select s ∈R Gq and execute Enc′′ in Sect. 4 with the relation that Hvj is
computed as follows.

Hvj =
(
gr
1g3, (gr

1g3)
λvj , hvj ,0, . . . , hvj ,2k−1

)
,

hvj ,i =
{

(gr
1g3)

ai (i �= vj mod 2k),
s (gr

1g3)
αi (gr

2g4)
β (i = vj mod 2k),

where r = R0 if bitvj = 0. Otherwise (bitvj = 1), r is set to 0.
Observe that if the challenge 4-tuple is a Diffie-Hellman tuple, the session
key corresponding to the header is s. Otherwise, it is a random element in
Gq.

4. Give e, H, s to Dis. If Dis decides that s is the session key corresponding to
H , then output “Diffie-Hellman tuple.” Otherwise, output “Random tuple.”
Since Dis behaves differently for session keys and random elements in Gq,
DDH can solve the given challenge. ��

A.3 Proof of Lemma 1

Let C be a set of k non-revoked colluders and DisC be a PPT algorithm the
colluders use to distinguish a valid input from an invalid one. We prove that
DisC ⇔ DDH for any C with X∩C = ∅, |C| = k. First, it is clear that DDH ⇒ DisC
for any C with X ∩ C = ∅, |C| = k. Secondly, since it is proved in Lemma 4 that
DDH ⇔ MDDH, we use MDDH instead and show that DisC ⇒ MDDH for any C
with X ∩C = ∅, |C| = k by constructing MDDH using DisC as a subroutine. The
construction of MDDH is as follows.

Algorithm 3
Input: A challenge 6-tuple, (g1, g2, g3, g4, g5, g6).
Output: “Diffie-Hellman tuple” or “Random tuple.”

1. Choose U , define T , and generate YT in the same way as in Gen′′ in Sect. 4.
Then, choose C.

2. We plan to generate a public key, e, only from the colluders’ personal keys.
Suppose that C = {x1, . . . , xk}. Choose k − 1 distinct elements, xk+1, . . . ,
x2k−1 ∈R Zq\C, θ, μ ∈R Zq, zA,t ∈R Zq for 1 ≤ t ≤ k, and ϕt, ψt ∈R Zq
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for k + 1 ≤ t ≤ 2k − 1. Then, there exists a unique polynomial, AR(x) =∑2k−1
i=0 αix

i mod q, s.t.

(AR(x1), . . . , AR(x2k−1))T = (zA,1, . . . , zA,2k−1)T

= (α0, . . . , α0)T + W (α1, . . . , α2k−1)T mod q,

g
zA,0
1 = gθ

1g
μ
2 ,

g
zA,t

1 = gϕt

1 gψt

2 (k + 1 ≤ t ≤ 2k − 1),

where

W =

⎛⎜⎝ x1 . . . x2k−1
1

...
. . .

...
x2k−1 . . . x2k−1

2k−1

⎞⎟⎠ mod q.

Since W is a Vandermonde matrix, we obtain

(α1, . . . , α2k−1)T = W−1(zA,1 − zA,0, . . . , zA,2k−1 − zA,0)T mod q.

Let (wt,1, . . . , wt,2k−1) be the tth row of W−1. For 1 ≤ t ≤ 2k − 1, αt is
represented as follows.

αt = wt,1(zA,1 − zA,0) + · · ·+ wt,2k−1(zA,2k−1 − zA,0)
= wt,1zA,1 + · · ·+ wt,2k−1zA,2k−1 − zA,0(wt,1 + · · ·+ wt,2k−1) mod q.

Therefore, gαt
1 is calculated as follows.

gαt
1 = g

wt,1zA,1+···+wt,2k−1zA,2k−1
1

/
(gzA,0

1 )wt,1+···+wt,2k−1 ,

=
k∏

�=1

(
g

wt,�zA,�

1

) 2k−1∏
�=k+1

(
gϕ�

1 gψ�

2

)wt,�
/(

gθ
1g

μ
2

)wt,1+···+wt,2k−1
.

Recall that N T = {0, . . . , 2L−3}. Define N = {v|v ∈ N T , xi ∈ C, xi ∈ Uv}
and suppose that xi ∈ Uv (xi ∈ C, v ∈ N ). Choose η, σ, ω ∈R Zq, ηv ∈R Zq

for each v ∈ N , and σt, ωt ∈R Zq for 0 ≤ t ≤ 2L − 3, t /∈ N . Then, there
exist a unique element, ζ ∈ Zq, for each v ∈ N s.t.

η = λ− ζ mod q,

ηv = λv − ζ mod q,

gλ
1 = gσ

1 gω
5 ,

gλt
1 =

{
gλ+ηt−η
1 (t ∈ N ),

gσt
1 gωt

5 (0 ≤ t ≤ 2L− 3, t /∈ N ),

Select δv ∈R Zq for each v ∈ N . Then, there exists a unique element, γv ∈ Zq,
for each v ∈ N s.t.

δv = γv − αv mod 2k mod q.
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Choose zB,i ∈R Zq for 1 ≤ i ≤ k. We plan to compute each colluder’s
personal key, dxi , as follows.

dxi = {(xi, v, Av(xi), B(xi))|v ∈ N , xi ∈ Uv},
B(xi) = zB,i mod q (1 ≤ i ≤ k),

Av(xi) = AR(xi) + δvxv mod 2k
i − ηvB(xi)

= α0 + α1xi + · · ·+ γvxv mod 2k
i + · · ·+ α2k−1x

2k−1
i − λvzB,i

+ζzB,i mod q.

Note that it is allowed to give the values of ηv, δv to the colluders since
they can compute them from their personal keys. Select θt, μt ∈R Zq for
0 ≤ t ≤ 2L− 3, t /∈ N . To satisfy the relation in (4) for each xi ∈ C, at and
ct are represented as follows.

gat
1 = gαt+βt

1 (0 ≤ t ≤ 2k − 1),

gct
1 =

{
gδt+αt mod 2k+βt mod 2k

1 (t ∈ N ),
gθt
1 gμt

2 (0 ≤ t ≤ 2L− 3, t /∈ N ),

where we can set gβ0
1 , . . . , g

β2k−1
1 to any of the solutions of the following

system of equations.

g
2k−1
t=0 βtx

t
i

1 = g
ζzB,i

1 ,

=
(
gσ
1 gω

5

/
gη
1

)zB,i

(1 ≤ i ≤ k).

Finally, set e = (p, q, g1, {gai
1 }i=0,...,2k−1, {gci

1 }i=0,...,2L−3, {gλi
1 }i=0,...,2L−3).

3. Choose s ∈R Gq and r ∈R Zq. Set bitvj to 0 or 1 at random, and compute
Hvj as follows.

Hvj =

{
(gr

1 , g
λvj

r

1 , ga0r
1 , . . . , sg

cvj
r

1 , . . . , g
a2k−1r
1 ) (bitvj = 0),

(g3, g
λvj

3 , ga0
3 , . . . , sg

cvj

3 , . . . , g
a2k−1
3 ) (bitvj = 1),

g
λvj

3 =

{
gσ
3 gω

6 g
ηvj

−η

3 (vj ∈ N ),
g

σvj

3 g
ωvj

6 (0 ≤ vj ≤ 2L− 3, vj /∈ N ),

gai
3 = gαi+βi

3 ,

gαi
3 =

k∏
�=1

(
g

wi,�zA,�

3

) 2k−1∏
�=k+1

(
gϕ�

3 gψ�

4

)wi,�
/(

gθ
3g

μ
4

)wi,1+···+wi,2k−1
,

g
cvj

3 =

{
g

δvj
+αvj mod 2k+βvj mod 2k

3 (vj ∈ N ),

g
θvj

3 g
μvj

4 (0 ≤ vj ≤ 2L− 3, vj /∈ N ),

where we can set gβ0
3 , . . . , g

β2k−1
3 to any of the solutions of the following

system of equations.

g
2k−1
t=0 βtx

t
i

3 =
(
gσ
3 gω

6

/
gη
3

)zB,i

(1 ≤ i ≤ k).
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Observe that if the challenge 6-tuple is a Diffie-Hellman tuple, H is a valid
input. Otherwise, it is an invalid one in which the k colluders in C are not
revoked, i.e., X ∩ C = ∅.

4. Give dx1 , . . . , dxk
, e, H to DisC . If DisC decides that H is a valid input, then

output “Diffie-Hellman tuple.” Otherwise output “Random tuple.” Since
DisC behaves differently for valid inputs and invalid ones, MDDH can solve
the given challenge. Since C with X∩C = ∅, |C| = k can be chosen arbitrarily,
it holds that DisC ⇒ MDDH for any C with X ∩ C = ∅, |C| = k. ��

A.4 Proof of Lemma 2

Let C be a set of k colluders revoked in the invalid input and Dis′C be a PPT
algorithm the colluders use to distinguish a session key corresponding to the
input from a random element in Gq. We prove that Dis′C ⇔ DDH for any C
with C ⊆ X , |C| = k. First, it is clear that DDH ⇒ Dis′C for any C with
C ⊆ X , |C| = k. Secondly, since it is proved in Lemma 4 that DDH ⇔ MDDH, we
use MDDH instead and show that Dis′C ⇒ MDDH for any C with C ⊆ X , |C| = k
by constructing MDDH using Dis′C as a subroutine. The construction of MDDH
is as follows.

Algorithm 4
Input: A challenge 6-tuple, (g1, g2, g3, g4, g5, g6).
Output: “Diffie-Hellman tuple” or “Random tuple.”

1. Choose U , define T , and generate YT in the same way as in Gen′′ in Sect. 4.
Suppose that all of the users are labeled as represented in (2). Select m ∈R
{1, . . . , n} and define a set of revoked users, X = {u1, . . . , um}. Then, choose
C s.t. C ⊆ X .

2. Suppose that C = {x1, . . . , xk}. Compute dx1 , . . . , dxk
, and e by executing

the same procedure as in Algorithm 3.
3. Choose s ∈R Gq and r, x, y ∈R Zq. Execute Enc′′′ in Sect. 4, where X =
{u1, . . . , um}, with the following relation:

h̄vj =
{

gr
3 (bitvj = 0),

gx
1 gy

3 (bitvj = 1),

ĥvj =

{
g

λvj
r

3 (bitvj = 0),
(gx

1 gy
3)λvj (bitvj = 1),

h′
vj ,i =

⎧⎪⎪⎨⎪⎪⎩
gair
3 (i �= vj mod 2k, bitvj = 0),

sg
cvj

r

3 (i = vj mod 2k, bitvj = 0),
(gx

1 gy
3)ai (i �= vj mod 2k, bitvj = 1),

s (gx
1gy

3 )cvj (i = vj mod 2k, bitvj = 1),

h′′
vj ,i =

{
gLi
1 (gx

1gy
3 )ai (i �= vj mod 2k),

sgLi
1 (gx

1gy
3 )cvj (i = vj mod 2k).
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In this procedure, g
λvj

3 , gat
3 , and g

cvj

3 are computed in the same manner as in
Algorithm 3. Observe that if the challenge 6-tuple is a Diffie-Hellman tuple,
s is the session key corresponding to H . Otherwise, it is not.

4. Give dx1 , . . . , dxk
, e, H, s to Dis′C . If Dis′C decides that s is the session key

corresponding to H , then output “Diffie-Hellman tuple.” Otherwise output
“Random tuple.” Since Dis′C behaves differently for session keys and random
elements in Gq, MDDH can solve the given challenge. Since C with C ⊆
X , |C| = k can be chosen arbitrarily, it holds that Dis′C ⇒ MDDH for any C
with C ⊆ X , |C| = k. ��
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Abstract. Cache based side-channel attacks have recently been
attracted significant attention due to the new developments in the field.
In this paper, we present an efficient trace-driven cache attack on a widely
used implementation of the AES cryptosystem. We also evaluate the cost
of the proposed attack in detail under the assumption of a noiseless en-
vironment. We develop an accurate mathematical model that we use in
the cost analysis of our attack. We use two different metrics, specifically,
the expected number of necessary traces and the cost of the analysis
phase, for the cost evaluation purposes. Each of these metrics represents
the cost of a different phase of the attack.

Keywords: Side-channel Analysis, cache attacks, trace-driven attacks,
AES.

1 Introduction

There are various cache based side-channel attacks in the literature, which are
discussed in detail in the next section. Trace-driven attacks are one of the three
types of cache based attacks that had been distinguished so far. We present a
trace-driven cache based attack on AES in this paper. There are already two
trace-driven attacks on AES in the literature [5,12]. However, our attack re-
quires significantly less number of measurements (e.g. only 5 measurements in
some cases) and is much more efficient than the previous attacks. We show that
trace-driven attacks have indeed much more power than what was stated in the
previous studies.

Furthermore, we present a robust computational model for trace-driven
attacks that allows one to evaluate the cost of such attacks on a given imple-
mentation and platform. Although, we only apply our model to a single attack
on AES in this paper, it can also be used for other symmetric ciphers like DES.
The main contribution of our model to the field is that it can be used to quanti-
tatively analyze the cost of trace-driven attacks on different implementations of
a cipher. Therefore, we can analyze the effectiveness of various mitigations that
can be used against such attacks. Thus, a designer can use our model to deter-
mine which mitigations she needs to implement against trace-driven attacks to
achieve a predetermined security level.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 112–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Background and Previous Work

The feasibility of the cache based side-channel attacks, abbreviated to “cache
attacks” from here on, was first mentioned by Kocher and then Kelsey et al. in
[10,11]. D. Page described and simulated a theoretical cache attack on DES [16].
Actual cache based timing attacks were implemented by Tsunoo et al. [18,19].
The original attack on MISTY1 proposed in [19] has recently been improved in
[20].

Although, cache side-channel threat had been known for a couple of years,
the first efficient and realistic attacks were not developed until 2005. Bernstein
showed the vulnerability of AES software implementations on various platforms
[4]. There was a common belief that Bernstein’s attack is a realistic remote
attack and it can recover an entire AES key. However, Neve et al. showed in [13]
that this is only a fallacy. They described the circumstances in which the attack
might work and also the limitations of the Bernstein attack. A realistic general
remote cache attack was developed by Acıiçmez et al [3].

Osvik et al. described various local cache attack variants in [15]. They made
use of a local array and exploited the collisions between the table lookups and
the access operations to this array. Neve et al. improved these attacks by taking
the last AES round into consideration [14]. The same idea of exploiting collisions
between two different processes was also used by Colin Percival in [17] to develop
an attack on RSA.

Similar to external collisions between different processes, the internal collisions
inside a cipher can also be taken advantage of. Internal cache collisions were first
used in [18] and [19]. The attacks presented in [3,12,6] are also based on internal
collisions.

There are three different types of cache attacks, namely time-driven, trace-
driven, and access-driven. Time-driven and trace-driven attacks were first de-
scribed by Page in [16]. Access-driven attacks are relatively new and first seen
in [15]. The difference between these attack types are the capabilities of the
adversary.

The adversary is assumed to be able to capture the profile of the cache activity
during an encryption in trace-driven attacks. This profile includes the outcomes
of every memory access the cipher issues in terms of cache hits and misses.
Therefore, the adversary has the ability to observe if a particular access to a
lookup table yields a hit and can infer information about the lookup indices,
which are key dependent. This ability gives an adversary the opportunity to
make inferences about the secret key.

Time-driven attacks, on the other hand, are less restrictive because they do
not rely on the ability of capturing the outcomes of individual memory accesses.
Adversary is assumed to be able to observe the aggregate profile, i.e., total
numbers of cache hits and misses or at least a value that can be used to approx-
imate these numbers. For example, the total execution time of the cipher can
be measured and used to make inferences about the number of cache misses in
a time-driven cache attack.
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In access-driven attacks, the adversary can determine the cache sets that
the cipher process modifies. Therefore, she can understand which elements of
the lookup tables or S-boxes are accessed by the cipher. Then, the wrong key
assumptions that would cause an access to unaccessed parts of the tables can be
eliminated.

2.1 Overview of Trace-Driven Cache Attacks

Trace-driven attacks on AES were first presented in [12,5]. Bertoni et al. im-
plemented a cache based power attack that exploits external collisions between
different processes [5]. Their attack requires 256 power traces to reveal the se-
cret AES key. Lauradoux’s power attack exploits the internal collisions inside
the cipher but only considers the first round AES accesses and can reduce the
exhaustive search space of a 128-bit AES key to 80 bits.

We described much more efficient trace-driven attacks on AES in [2]. Our
two-round attack is a known-plaintext attack and exploits the collisions among
the first two rounds of AES. A more efficient version, which we call the last
round attack, considers last round accesses and is a known-ciphertext attack.
Due to the space limitation, we only present our last round attack in this paper.

In trace-driven cache attacks, the adversary obtains the traces of cache hits
and misses for a sample of encryptions and recovers the secret key of a cryptosys-
tem using this data. We define a trace as a sequence of cache hits and misses.
For example,

MHHM, HMHM, MMHM, HHMH, MMMM, HHHH

are examples of a trace of length 4. Here H and M represents a cache hit and
miss respectively. The first one in the first example is a miss, second one is a
hit, and so on. If an adversary captures such traces, she can determine whether
a particular access during an encryption is a hit or a miss.

The trace of an encryption can be captured by the use of power consumption
measurements as done in [5,12]. In this paper, we do not get into the details of
how to capture cache traces. We analyze trace-driven attacks on AES under the
assumption that the adversary can capture the traces of AES encryption. This
assumption corresponds to clean measurements in a noiseless environment. In
reality, an adversary may have noise in the measurements in some circumstances,
in which case the cost of the attack may increase depending on the amplitude
of the noise. However, an analysis under the above assumption gives us a more
clear understanding of the attack cost. Assumption of a noiseless environment
also enables us to make more reliable comparison of different attacks.

In a side-channel attack, there are essentially two different phases:

– Online Phase: consists of the collection of side-channel information of the
target cipher. This phase is also known as the sampling phase of the attack.
The adversary encrypts or decrypts different input values and measures the
side-channel information, e.g., power consumption or execution time of the
device.
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– Offline Phase: is also known as the analysis phase. In this phase, the adver-
sary processes the data collected in the online phase and makes predictions
and verifications regarding the secret value of the cipher.

An adversary usually performs the former phase completely before the latter one.
However, in some cases, especially in adaptive chosen-text attacks (e.g. [7,1]),
these two phases may overlap and may be performed simultaneously.

We use two different metrics to evaluate the cost of our last round attack
presented in this paper. The first metric is the expected number of traces that
we need to capture to narrow the search space of the AES key down to a certain
degree. The second metric is the average number of operations we need to perform
to analyze the captured traces and eliminate the wrong key assumptions. These
metrics basically represent the cost of the online and offline phases of our attack.
As the reader can clearly see in this paper, there is a trade-off between the costs
of these two phases.

3 Trace-Driven Cache Attacks on the AES

In this paper, we present a trace-driven attack on the most widely used imple-
mentation of AES, and estimate its cost. We assume that the cache does not
contain any AES data prior to each encryption, because the captured traces
cannot be accurate otherwise. Therefore, the adversary is assumed to clean the
cache (e.g., by loading some garbage data as done in [5,19,18,15,17]) before the
encryption process starts.

Another assumption we make is that the data in AES lookup tables cannot
be evicted from the cache during the encryption once they are loaded into the
cache. This assumption means that each lookup table can only be stored in a
different non-overlapping location of the cache and there is no context-switch
during an encryption or any other process that runs simultaneously with the
cipher and evicts the AES data. These assumptions hold if the cache is large
enough, which is the case for most of the current processors. An adversary can
also discard a trace if a context-switch occurs during the measurement.

We also assume that each measurement is composed of the cache trace of
a single message block encryption. In this paper, we only consider AES with
128-bit key and block sizes. Our attack can easily be adapted to longer key and
block sizes; however we omit these cases for the sake of simplicity.

The implementation we analyze is described in [9] and it is suitable for 32-bit
architectures. It employs 4 different lookup tables in the first 9 rounds and a
different one in the last round. In this implementation, all of the component
functions, except AddRoundKey, are combined into four different tables and the
rounds turn to be composed of table lookups and bitwise exclusive-or operations.

The S-box lookups in the final round are implemented as table lookups to an-
other 1KB-large table , called T4, with 256 many 32-bit elements. Four repeta-
tions of the same 8-bit long Sbox element are concatenated to each other to form
the corresponding 32-bit long element of T4. There are 16 accesses to T4 in that
round. The indices of these accesses are S10

w , where St
w is the byte w of the
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intermediate state value that becomes the input of round t and w ∈ {0, .., 15}.
Let C be the ciphertext, i.e. the output of the last round, and represented as an
array of 16 bytes, C = (c0, c1, ..., c15). Individual bytes of C are computed as:

ci = Sbox[Ii]⊕RK10
i ,

where RK10
i is the ith byte of the last round key, Sbox[Ii] is the S-box output

for the input index Ii, and Ii = S10
w for known w, i ∈ {0, 1, ..., 15}.

Ii is equal to S10
w for known values of i and w, but the actual mapping between

these variables is not relevant for our purposes. In this paper, we present our
attack under the assumption that the AES memory accesses in the last round
are issued by the processor in a given order, i.e., first T4[I0], second T4[I1], etc.
However, the actual order is implementation specific and may differ from our
assumption. Our attack can easily be adapted to any given order without any
performance loss. We also need to mention that the S-box in AES implements a
permutation, and therefore its inverse, i.e. Sbox−1, exists.

The outcomes of the last round accesses to T4 leak information about the
values of the last round key bytes, i.e., RK10

i where i ∈ {0, .., 15}. For example,
if the second access to T4 results in a cache hit, we can conclude that the indices
I0 and I1 are equal. If it is a cache miss, then the inequality of these values
becomes true. We can use this fact to find the correct round key bytes RK10

0
and RK10

1 as the following.
We can write the value of Ii in terms of RK10

i and ci:

Ii = Sbox−1[ci ⊕RK10
i ] ,

If I0 and I1 are equal, so are Sbox−1[c0⊕RK10
0 ] and Sbox−1[c1⊕RK10

1 ], which
also mandates the equality of c0 ⊕RK10

0 and c1 ⊕RK10
1 . This equality can also

be written as

c0 ⊕RK10
0 = c1 ⊕RK10

1 ⇒ c0 ⊕ c1 = RK10
0 ⊕RK10

1

Since the value of C is known to the attacker, RK10
0 ⊕ RK10

1 can directly
be computed from the values of c0 and c1 if the second access to T4 results in
a cache hit. In case of a cache miss, we can replace the = sign in the above
equations with �= and we can use the inequalities to eliminate the values that
cannot be the correct value of RK10

0 ⊕RK10
1 .

In a real environment, even if the index of the second access to a certain
lookup table is different than the index of the first access, a cache hit may still
occur. Any cache miss results in the transfer of an entire cache line, not only
one element, from the main memory. Therefore, whenever an access retrieves
an element, which lies in the same cache line of the previously accessed data, a
cache hit occurs.

Let δ be the number of bytes in a cache line and assume that each element
of the table is k bytes long. Under this situation, there are δ/k elements in each
line, which means any access to a specific element will map to the same line with
(δ/k−1) different other accesses. If two different accesses to the same array read
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the same cache line, the most significant parts of their indices, i.e., all of the bits
except the last � = log2(δ/k) bits, must be identical.

Therefore, we observe a cache hit in the second access to T4 whenever

〈I0〉 = 〈I1〉 ,

and so

〈Sbox−1[c0 ⊕RK10
0 ]〉 = 〈Sbox−1[c1 ⊕RK10

1 ]〉 ,

where 〈A〉 stands for the most significant part of A. However due to the non-
linearity of the AES S-box, only the correct RK10

0 and RK10
1 values obey the

above equation for every ciphertext sample. Therefore, we can find the correct
RK10

0 and RK10
1 values instead of their difference. This increases the search

space of this initial guessing problem from 8 bits to 16 bits. However, once we
find these round key bytes, we only need to search through 8 bits to find each
of the remaining round key bytes.

The value of RK10
2 can also be determined by analyzing the first three accesses

to T4 after the correct values of RK10
0 and RK10

1 are found. Similarly, if we
extend our focus to the first four accesses, we can find RK10

3 . Then we can
find RK10

4 and so on. After revealing the entire round key, it becomes trivial to
compute the actual secret key, because the key expansion of the AES cipher is
a reversible function.

We want to explain some details of our attack that are not mentioned above.
We call all possible values that can be the correct value of a round key byte
as the hypotheses of that particular round key byte or shortly round key byte
hypotheses. Incorrect values are called wrong hypotheses. Initially all of the 256
possible values are considered as the round key byte hypotheses for a particular
round key byte. During the course of the attack, we distinguish some of these
values as wrong hypotheses; thus decrease the number of hypotheses and increase
that of wrong hypotheses.

In our attack, we consider each access to T4 separately, starting from the
second one. The first access is always a miss because of the cache cleaning
and the assumptions explained above. We start a search on all possible hy-
potheses of (RK0,RK1) pair by assigning RK0 = x, RK1 = y and checking
whether (x,y) obeys the captured traces, x, y ∈ {0, ..., 255}. We then eliminate
the wrong hypotheses those do not obey the traces. Then we extend our focus
to the third access and perform a similar search on ((RK0,RK1),RK2). Again
we eliminate the wrong hypotheses of RK2 for each remaining (RK0,RK1) pairs
and end up only with (RK0,RK1,RK2) values those obey the traces. We con-
tinue this method by considering fourth access and so on. After we determine all
of the round key hypotheses actually obeying the traces, we perform an exhaus-
tive search on the final remaining set. The above method is the same as AC-3
algorithm, which is an optimal propogation algorithm for binary constraints just
like our case.
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4 Analysis of the Attacks

In this section we estimate the number of traces need to be capture to recover the
secret key. In other words, we determine the cost of the attack presented above.
We first present a computational model that allows us to determine the cost of
trace-driven attacks and then we use this model to perform the cost analysis of
the proposed attack.

4.1 Our Model

Let m be 2(8−�), i.e. the number of blocks in a table. A block of elements of a
lookup table that are stored together in a single cache line is defined as a block
of this table. The cost of a trace-driven attack is a function of m. The two most
common values of m are 16 and 32 today and thus we evaluate the cost of the
attacks for these two values of m.

In order to calculate the expected number of traces, first we need to find an
equation that gives us the expected number of table blocks that are loaded into
the cache after the first k accesses. We denote this expected number as #k.

The probability of being a single table block not loaded into the cache after
k accesses to this table is (m−1

m )k. The expected number of blocks that are not
loaded becomes m ∗ (m−1

m )k. Therefore,

#k = m−m ∗ (
m− 1

m
)k .

Let Rk
expected be the expected fraction of the wrong key hypotheses that obeys

a captured trace in kth step of the attack. In other words, a wrong key hypothesis
that generated the same trace with the correct key in the first k accesses of an
encryption has a chance of generating the captured outcome for the next access
with a probability of Rk

expected. Therefore, if the adversary captures the outcomes
of the first (k + 1) accesses (1 ≤ k ≤ 15) to T4 during a single encryption, she
can eliminate (1 − Rk

expected) fraction of the wrong key hypotheses in the kth

step of the attack, where

Rk
expected =

#k

m
∗ #k

m
+ (1− #k

m
) ∗ (1− #k

m
) , 1 ≤ k ≤ 15 .

Notice that Rk
expected is not the kth power of a constant Rexpected here, but it is

defined as a variable that is specified by the parameter k. The left (right) side of
the above summation is the product of the probability of a cache hit (miss, resp.)
and the expected ratio of the wrong hypotheses that remain after eliminating
the ones that do not cause a hit (miss, resp.).

Figure.1 shows the approximations of Rk
expected and #k for different values of

k and m. We want to mention again that these values are experimentally verified.
The differences between the calculated and empirical values of Rk

expected are less
than 0.2% in average. We can use these values to find the expected number of
remaining wrong key hypotheses after t measurements or the expected number
of measurements to reduce the key space down to a specific number or in any
such calculations.
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k m=32 m=16
Rk

expected #k Rk
expected #k

1 0.939453 1.000000 0.882813 1.000000
2 0.884523 1.968750 0.787140 1.937500
3 0.834806 2.907227 0.709919 2.816406
4 0.789923 3.816376 0.648487 3.640381
5 0.749522 4.697114 0.600528 4.412857
6 0.713273 5.550329 0.564035 5.137053
7 0.680868 6.376881 0.537265 5.815988
8 0.652021 7.177604 0.518709 6.452488
9 0.626464 7.953304 0.507063 7.049208

10 0.603946 8.704763 0.501197 7.608632
11 0.584236 9.432739 0.500138 8.133093
12 0.567116 10.137966 0.503050 8.624775
13 0.552384 10.821155 0.509209 9.085726
14 0.539850 11.482994 0.517999 9.517868
15 0.529340 12.124150 0.528890 9.923002

Fig. 1. The calculated values of #k and Rexpected for different values of m

4.2 Trade-Off Between Online and Offline Cost

There is an obvious trade-off between online and offline cost of the attack. If
an adversary can capture a higher number of traces, it becomes easier to find
the key. Eliminating more wrong hypotheses in early steps reduces the cost of
the later steps. The change in the offline cost of the attack with the number of
captured traces can be seen in Figure.2.

As shown in the figure, the last round attack requires only 5 measurements
to reduce the computational effort of breaking the entire 128-bit key below the
recommended minimum security levels (c.f. [8]). NSA and NIST recommends a
minimum key length of 80 bits for symmetric ciphers so that the computational
effort of an exhaustive search should not be lower than 280.

5 Experimental Details

We performed experiments to test the validity of the values we have presented
above. The results show a very close correlation between our model and empirical
results and confirm the validness of our model and calculations.

Bertoni et al. showed that the cache traces could be captured by measuring
power consumption [5]. In our experimental setup, we did not measure the power
consumption, instead we assumed the correctness of their argument. We simply
modified the AES source code of OpenSSL. The purpose of our modifications
was not to alter the execution of the cipher, but to store the values of the access
indices. These index values were then used to generate the cache traces. This
process allows us to capture the traces and obtain the empirical results.

We generated one million randomly chosen cipherkeys and encrypted 100
random plaintext under each of these keys. In other words, we performed the
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m=16 m=32
Number of traces Cost ≈ Number of traces Cost ≈

1 2117.68 1 2120.93

5 274.51 5 290.76

10 235.12 10 256.16

20 224.22 20 233.97

30 221.36 30 227.77

40 220.08 40 224.88

50 219.46 50 223.25

75 219.13 75 221.22

100 219.12 100 220.39

Fig. 2. The cost analysis results of the last round attack

attack steps with 100 random plaintext. After each encryption, we determined
the ratio of the number of remaining wrong key hypotheses to the number of
wrong key hypotheses that were present before the encryption. We call this ratio
the reduction ratio, which is denoted as Rk

expected. We calculated the average
of these measured values. Our results show very close correlation between the
measured and calculated values. The average difference between the empirical
and calculated values of Rk

expected, i.e, the error rate, is less than 0.2%. The
calculated Rk

expected values are given in Subsection 4.1.

6 Conclusion

We have presented a trace-driven cache attack on the most widely used software
implementation of AES cryptosystem. We have also developed a mathematical
model, accuracy of which is experimentally verified, to evaluate the cost of the
proposed attack. We have analyzed the cost using two different metrics, each of
which represents the cost of a different phase of the attack.

Our analysis shows that such trace-driven attacks are very efficient and require
very low number of encryptions to reveal the secret key of the cipher. To be more
specific, an adversary can reduce the strength of 128-bit AES cipher below the rec-
ommended minimum security level by capturing the traces of only 5 encryptions.
Having more traces reduces the total cost of the attack significantly. Our results
also show this trade-off between the online and offline cost of the attack in detail.
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Abstract. The notion of Oblivious Commitment Based Envelope (OCBE) was
recently proposed; it enables attribute-based access control without revealing any
information about the attributes. Previous OCBE protocols are designed by tak-
ing zero-knowledge proof protocols that prove a committed value satisfies some
property and changing the protocols so that instead of one party proving to the
other party, the two parties compute two keys that agree if and only if the commit-
ted value indeed satisfy the property. In this paper, we introduce a more general
approach for designing OCBE protocols that uses zero-knowledge proof proto-
cols in a black-box fashion. We present a construction such that given a zero-
knowledge proof protocol that proves a committed value satisfies a predicate, we
have an OCBE protocol for that predicate with constant additional cost. Com-
pared with previous OCBE protocols, our construction is more general, more
efficient, and has wide applicability.

1 Introduction

In attribute-based access control systems, access decisions are based on attributes of the
requester, which are established by digitally signed certificates through which certificate
issuers assert their judgements about the attributes of entities. Each certificate associates
a public key with the key holder’s identity and/or attributes such as employer, group
membership, credit card information, date of birth, citizenship, and so on. Because these
certificates are digitally signed, they can serve to introduce strangers to one another
without online contact with the attribute authorities. In many scenarios, the attribute
information in a certificate is sensitive and needs to be protected. The requester may
want to disclose only the information that is absolutely necessary to obtain the resource
from the server.

Recently, Li and Li [20] proposed a cryptographic primitive called Oblivious Com-
mitment Based Envelope (OCBE) that enables oblivious access control; that is, it
enables attribute-based access control without revealing any information about the
attributes. Informally, in an OCBE scheme, the receiver has a private attribute value
a which has been committed to the sender; the sender has a public predicate b (i.e., her
access control policy) and a private message M . The sender and the receiver engage in
an interactive protocol such that in the end, the receiver gets the message M if and only

� Most of this work was done while the author was at Purdue University.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 122–138, 2006.
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if her attribute value satisfies the predicate, i.e., b(a) = true. Furthermore, the sender
learns nothing about the receiver’s attribute value. Formal definition of OCBE will be
reviewed in Section 2.

Li and Li [20] developed OCBE protocols for the Pedersen commitment scheme [25]
and predicates such as =, �=, <, >,≤,≥ as well as logical combinations of them. Their
approach for designing the OCBE protocols is to take zero-knowledge proof protocols
that prove a committed value satisfies some property and change the protocols so that
instead of one party proving to the other party, the two parties compute two keys that
agree if and only if the committed value indeed satisfy the property.

In this paper, we introduce a more general approach for designing OCBE protocols.
Rather than taking zero-knowledge proof protocols and finding ways to change them,
we use these protocols in a black box fashion. The basic idea is as follows. The receiver
first sends a commitment of another attribute value to the sender, and then uses zero-
knowledge proof protocols to prove that the committed value in the new commitment
satisfies the policy. Finally, the receiver and the sender run a protocol such that the
receiver can retrieve the message if and only if the values in the two commitments are
the same, and the sender does not learn whether the two committed values are the same.

We apply this approach to the commitment scheme introduced by Fujisaki and
Okamoto [17] and later extended by Damgård and Fujisaki [14]. We prove that our
protocol is secure under the Strong RSA assumption and the Computational Diffie-
Hellman assumption modulo an RSA modulus in the Random Oracle Model.

Compared with previous work [20], our approach has the following advantages:

– Our OCBE construction achieves a general result; i.e., if there exists a zero-
knowledge proof of knowledge protocol that can prove a committed value satisfies
a predicate, then we can build an OCBE protocol for that predicate with constant
additional cost. As a result, one does not need develop new OCBE protocols for
each new families of predicates from the scratch and prove their security. Instead,
one can directly take advantage of the existence of efficient zero-knowledge proof
protocols for properties of committed values.

– Our OCBE protocol is more efficient than the previous OCBE protocols [20]. The
OCBE protocols in [20] for the comparison predicates other than the equality pred-
icates have linear computation and communication costs; i.e., both the sender and
the receiver need to perform O(�) modular exponentiations where � is the maximum
length of the receiver’s attribute. In comparison, our OCBE protocol has constant
computation cost for comparison predicates.

– Unlike the OCBE protocols in [20] where the input range for the receiver is limited
to Zq , where q is a prime; the set of the receiver’s committed input in our OCBE
protocol can be Z, the set of all integers. This feature is particularly important for
linear relation predicates, i.e., to test whether a committed value satisfies a linear
relation over Z.

– Our OCBE protocols are compatible with the anonymous credentials [24,8,11]. The
OCBE scheme in [20] is designed primarily for Oblivious Attribute Certificates
(OACerts) [20] and is not compatible with the anonymous credential systems. The
reason is that, in [20], the commitment is computed by the trusted third party rather
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than the receiver. We modify the definition of OCBE to let the receiver commit, so
that the new definition is compatible with the anonymous credentials.

The rest of this paper is organized as follows. We first give our notations and
review the definition of OCBE in Section 2. We next review in Section 3 cryptographic
assumptions and tools that we use. In Section 4, we present our OCBE protocol and
prove that it is secure. In Section 5, we describe how the OCBE protocol can be applied
in attribute-based access control systems and automated trust negotiation systems, in
particular, we show how our OCBE protocol can be used together with the anony-
mous credentials. We discuss the related work in Section 6 and conclude our paper in
Section7.

2 Review the Definition of OCBE

2.1 Notation

In the rest of this paper, we use the following notations. We say that μ(k) is a negligible
function, if for every polynomial p(k) and for all sufficiently large k, μ(k) < 1/p(k).
We say ν(k) is overwhelming if 1− ν(k) is negligible.

If S is a probability space, then the probability assignment x ← S means that an
element x is chosen at random according to S. If S is a finite set, then x ← S denotes
that x is chosen uniformly from S. Let A be an algorithm, we use y ← A(x) to denote
that y is obtained by running A on input x. In case A is deterministic, then y is unique;
if A is probabilistic, then y is a random variable. Let A and B be interactive Turing
machines, we use (a ← A(·) ↔ B(·) → b) to denote that a and b are two random
variables corresponding to the outputs of A and B as a result of their joint computation.

Let p be a predicate and A1, A2, . . . , An be n algorithms, We use
Pr [{xi ← Ai(yi)}1≤i≤n : p(x1, · · · , xn)] to denote the probability that p(x1, · · · , xn)
will be true after running sequentially algorithms A1, . . . , An on inputs y1, . . . , yn.

2.2 Definition of OCBE

We now briefly review the definition of OCBE [20]. We slightly modify the definition
to make the OCBE scheme compatible with the anonymous credential schemes. The
difference between our new definition and the OCBE definition in [20] is that, in our
new definition, we let the sender to commit rather than the trusted third party. Please
refer to Section 5 for the detailed explanation. Note that, our OCBE protocol presented
in Section 4 works both this new definition and the original definition in [20].

Definition 1 (OCBE). An OCBE scheme is parameterized by a commitment scheme
commit. An OCBE scheme involves a sender, a receiver, and a trusted third party, and
has the following four phases:

Setup. The trusted third party takes a security parameter k and outputs public para-
meters P for commit, a set S of possible values, and a set B of predicates (i.e.,
boolean functions). Each predicate b ∈ B maps each element in S to either true or
false. The domain of commit contains S as a subset. The trusted third party sends
〈P, S, B〉 to the sender and the receiver.



A Construction for General and Efficient OCBE Protocols 125

Initialization. The receiver chooses a value a ∈ S, computes the commitment c =
commit(a, r) where r is a random number, and sends c to the sender. The sender
chooses a message M ∈ {0, 1}∗ and a predicate b ∈ B and then reveals b to the
receiver.
The sender has b, c, and M . The receiver has a, b, c, and r.

Interaction. The sender and the receiver run an interactive protocol, during which an
envelope containing an encryption of M is delivered to the receiver.

Open. After the interaction phase, if b(a) is true, the receiver outputs the message M .
Otherwise, the receiver does nothing.

Note that, in the initialization phase, it is crucial for the sender to reveal the predicate
b after the receiver has committed a. Otherwise, the receiver could choose a value a′

that satisfies the predicate and commit a′ rather than a, so that she can always open the
envelope and obtain M in the end.

An OCBE scheme must satisfy the following three properties [20]. It must be sound,
oblivious, and semantically secure against the receiver.

Sound. An OCBE scheme is sound if in the case that b(a) is true and both the sender
and the receiver are honest, the receiver can output the message M with overwhelming
probability.

Oblivious. An OCBE scheme is oblivious if the sender learns nothing about a. More
precisely, no adversary sender A has a non-negligible advantage against the challenger
C in the following game: C first runs the setup program and sends 〈P, S, B〉 to A. Then
A chooses a random message M ∈ {0, 1}∗, two values a0, a1 ∈ S, and a predicate
b ∈ B, and sends a0, a1, b to C. Next C chooses randomly a ∈ {a0, a1}, computes
the commitment c for a, and interacts with A by emulating the receiver. In the end, A
outputs a′ ∈ {a0, a1}. The adversary wins the game if a = a′. An OCBE scheme is
oblivious if

| Pr
[
a′ ← A(1k)↔ C(1k) → a : a′ = a

]
− 1/2 | = μ(k)

where the symbols←,↔,→ are defined in Section 2.1, and μ(k) is negligible function
in k. In other words, the adversary cannot do substantially better than random guessing
whether the receiver’s committed value is a0 or a1.

Secure against the receiver. An OCBE scheme is secure against the receiver if the
receiver learns nothing about M when b(a) is false. More precisely, no adversary sender
A has a non-negligible advantage against the challenger C in the following game: C first
runs the setup program and sends 〈P, S, B〉 to A. Then A chooses a value a ∈ S and
a value r1, computes the commitment c = commit(a, r), and sends a, r, c to C. A also
chooses two equal length messages M0, M1 ∈ {0, 1}∗ and sends M0, M1 to C. Next, C
chooses a predicate b ∈ B such that b(a) equals to false, chooses randomly a message
M ∈ {M0, M1}, and interacts with A by emulating the sender. In the end, A outputs

1 In [20], r is chosen by the challenger rather than the adversary. This is because in the original
definition of OCBE [20], the trusted third party chooses r; whereas in our new definition, the
receiver chooses r and computes the commitment.
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M ′ ∈ {M0, M1}. The adversary wins the game if M = M ′. An OCBE scheme is
secure against the receiver if

| Pr
[
M ′ ← A(1k)↔ C(1k)→M : M ′ = M

]
− 1/2 | = μ(k)

where μ(k) is negligible function in k. In other words, even if we give the adversary
the power to pick two equal-length messages M0 and M1 of her choice, she still cannot
distinguish an envelope containing M0 from one containing M1.

3 Cryptographic Assumptions and Tools

In this section, we first review some standard assumptions in cryptography that we use,
then review two cryptographic tools that shall be used in our OCBE protocol, one is the
integer commitment scheme, the other is zero-knowledge proofs of knowledge.

3.1 Security Assumptions

In the rest of this paper, we shall use the following cryptographic assumptions and mod-
els, namely, the computational Diffie-Hellman assumption, the strong RSA assumption,
and the random oracle model. The strong RSA assumption was introduced by Barić and
Pfitzmann [3] and has been used in proving the security of many cryptographic schemes
(e.g., [17,10], to list a few).

Computational Diffie-Hellman (CDH) Assumption. Given a finite cyclic group G, a
group generator g, and group elements ga, gb; there exists no polynomial-time algo-
rithm that can compute gab with non-negligible probability.

Strong RSA Assumption. Given an RSA modulus n and a random value x in Z∗
n, there

exists no polynomial-time algorithm that can compute e > 1 and y ∈ Z
∗
n with non-

negligible probability such that ye = x mod n.

Random Oracle Model. The random oracle model is an idealized security model intro-
duced by Bellare and Rogaway [5]. Roughly speaking, a random oracle is a function
H : X → Y chosen uniformly at random from the set of all functions {h : X → Y }.
Random oracles are used to model cryptographic hash functions such as SHA-1.

3.2 Integer Commitment Scheme

Our OCBE protocol use the following integer commitment scheme introduced by
Fujisaki and Okamoto [17] and later extended by Damgård and Fujisaki [14]. The
reasons we choose this integer commitment scheme instead of the Pedersen commit-
ment scheme [25] used in [20] are that: first, the input domain of this commitment
scheme is the set of all integers rather than a set of values in a group; and second, this
commitment scheme supports efficient proof that a committed value lies in a given in-
terval [6]. This second feature shall be used to construct efficient OCBE protocol for
greater-than-or-equal-to predicates.
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Definition 2 (Integer Commitment Scheme)

Setup. This step takes a security parameter k and outputs a special RSA modulus n =
pq, such that p = 2p′+1 and q = 2q′+1 where p, q, p′, q′ are primes. It also outputs
h ← QRn and g ← 〈h〉, where QRn is the set of quadratic residues modulo n and
〈h〉 is the group generated by h. The public parameters of this commitment scheme
are (n, g, h).

Commit. The domain of the committed values is Z. To commit an integer a ∈ Z,
the prover chooses r ← Z and computes the commitment c = commit(a, r) =
gahr mod n.

Open. To open a commitment c, the prover reveals a and r; then the verifier verifies
whether c = gahr mod n.

The integer commitment scheme is statistically hiding: under the factoring assump-
tion, commit(a, r) statistically reveals no information to the verifier. More formally,
there exists a simulator which outputs simulated commitments to a which are statis-
tically indistinguishable from true commitments to a. This commitment scheme is
computationally binding: the prover cannot commit herself two distinct values a0 and
a1 by the same commitment unless she can factorize n. In other words, under the factor-
ing assumption, it is computationally infeasible for the prover to compute a0, a1, r0, r1
where a0 �= a1 such that commit(a0, r0) = commit(a1, r1).

3.3 Zero-Knowledge Proofs of Knowledge

We now list a few known proof of knowledge protocols based on the Fujisaki and
Okamoto commitment scheme. In the rest of this paper, all the computations are modulo
n unless explicitly specified.

– Proof of knowledge on how to open a commitment [14]. That is, given the parame-
ters (n, g, h) of the integer commitment scheme and a commitment c, the prover
proves the knowledge of a and r such that c = gahr. We denote the protocol as

PK{(a, r) : c = gahr}

– Proof that a committed value is equal to a given integer [14]. That is, given the
parameters (n, g, h) of the integer commitment scheme, a commitment c, and an
integer a0; the prover proves the knowledge of a and r such that c = gahr and
a = a0. We denote the protocol as

PK{(a, r) : c = gahr ∧ a = a0}

– Proof that a committed value lies in a given integer interval [6]. That is, given
the parameters (n, g, h) of the integer commitment scheme, a commitment c, and
integers a0 and a1; the prover proves the knowledge of a and r such that c = gahr

and a0 ≤ a ≤ a1. We denote the protocol as

PK{(a, r) : c = gahr ∧ a0 ≤ a ≤ a1}
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– Proof that a committed value is the product of two other committed values [14].
That is, given the parameters (n, g, h) of the integer commitment scheme and three
commitments c, c0, c1, the prover proves the knowledge of a0, a1, r, r0, r1 such that
c = ga0a1hr, c0 = ga0hr0 , and c1 = ga1hr1 . We denote the protocol as

PK{(a0, a1, r, r0, r1) : c = ga0a1hr ∧ c0 = ga0hr0 ∧ c1 = ga1hr1}

– Proof that a committed value has a linear relation with n committed values [14].
That is, given the parameters (n, g, h) of the integer commitment scheme, n + 1
commitments c, c1, . . . , cn, and integers z0, z1, . . . , zn; the prover proves the com-
mitted values a, a1, . . . , an satisfy the equation a = z0 + a1z1 + · · · + anzn. We
denote the protocol as

PK{ (a, r, a1, r1, . . . , an, rn) : {ci = gaihri}1≤i≤n ∧ c = gahr ∧
a = z0 + a1z1 + · · ·+ anzn

}

All the above described protocols have constant computational and communication
costs. These protocols are secure under the strong RSA assumption.

4 Our OCBE Protocol

In this section, we first present a construction that turns any zero-knowledge proof pro-
tocol that proves a committed value satisfies some predicate into an OCBE protocol for
that predicate. Then we prove that our protocol is secure and compare our protocol with
the several OCBE protocols described in [20].

4.1 Construction of OCBE Protocol

In [20], Li and Li developed several OCBE protocols for comparison predicates, i.e.,
one OCBE protocol for each type of predicates. In this paper, we present a more general
and more efficient result:

Our result. Let S be a set of integers and B be a set of predicates, such that each
predicate b ∈ B : S → {true, false}. Let commit be an integer commitment scheme
described in Section 3.2. Suppose for every predicate b ∈ B, there exists an efficient
zero-knowledge proof of knowledge protocol that can prove a committed value a ∈
S satisfies the predicate b, i.e., PK{(a, r) : c = commit(a, r) ∧ b(a) = true}. Then
with constant additional cost, we can develop an efficient OCBE protocol for predicates
set B.

Before we present the OCBE protocol, we briefly describe the intuition how the pro-
tocol works. Let (n, g, h) be the public parameters of the integer commitment scheme,
a be the receiver’s private input, c be the corresponding commitment. Consider the fol-
lowing scheme: If b(a) is true, The receiver first proves to the sender that the value
committed in c satisfies the predicate b; then the sender sends the message M to the
receiver. Such scheme is secure against the receiver, but not oblivious; i.e., the sender
learns some information about a.
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In our proposed scheme, if b(a) is true, then the receiver chooses a′ = a; otherwise,
she chooses a′ such that b(a′) = true. Then the receiver commits a′ to the sender; i.e.,
she chooses r, computes c′ = ga′

hr′
, and gives c′ to the sender. The receiver also proves

that the value committed in c′ satisfies the predicate b. Observe that the sender learns
nothing about a — all she learns so far is that the value committed under c′ satisfies b.
Also note that, if b(a) is true, then a = a′ and c/c′ = gahr/ga′

hr′
= hr−r′

; otherwise,
c/c′ = ga−a′

hr−r′
. In other words, if b(a) is true, the receiver has the knowledge of

logh(c/c′). The sender can use this fact to build a Diffie-Hellman style key-agreement,
so that only b(a) is true can the receiver obtain the encryption key.

Protocol 1 (OCBE). Let E be a semantically secure symmetric encryption scheme
with keyspace {0, 1}s. Let H : Zn → {0, 1}s be a cryptographic hash function that
extracts a key for E from an element in the group Zn. The OCBE protocol involves a
sender, a receiver, and a trust third party.

Setup. The trusted third party takes a security parameter k and runs the setup algorithm
of the integer commitment scheme in Section 3.2 to create P = (n, g, h). The third
party also outputs an integer set S ⊆ Z, and a set B of predicates. For each b ∈ B,
b : S → {true, false}. The trusted third party sends 〈P, S, B〉 to the sender and the
receiver.

Suppose for each a ∈ S and b ∈ B, if b(a) = true, there is an efficient zero-
knowledge proof of knowledge protocol PK{(a, r) : c = gahr ∧ b(a) = true}.

Initialization. The receiver chooses a value a ∈ S and a value r ∈ Z, computes the
commitment c = gahr, and sends c to the sender. The sender chooses a message
M ∈ {0, 1}∗ and a predicate b ∈ B and then reveals b to the receiver.
The sender has b, c, and M . The receiver has a, b, c, and r.

Interaction. The sender and the receiver run the following steps:
1. If ∀a ∈ S, b(a) = false; then the sender and the receiver terminate the protocol

immediately.
2. If b(a) = true, the receiver set a′ = a, otherwise the receiver randomly chooses

a′ such that b(a′) = true. The receiver chooses r′ ← Z and computes the
commitments c′ = ga′

hr′
. The receiver sends c′ to the sender.

3. The sender and the receiver runs the zero-knowledge proof of knowledge
protocol

PK{(a′, r′) : c′ = ga′
hr′ ∧ b(a′) = true}

to prove that the value committed in c′ satisfies the predicate b.
4. The sender picks y ← Zn, computes σ = (c/c′)y , and then sends to the re-

ceiver the pair 〈η = hy, C = EH(σ)[M ]〉.
Open. The receiver receives 〈η, C〉 from the interaction phase. If b(a) = true, in other

words a = a′, the receiver computes σ′ = ηr−r′
, decrypts C using H(σ′), and

obtains M .

Observe that the computational cost of the above OCBE protocol is close to the
cost of the zero-knowledge proof sub-protocol. More specifically, suppose in the zero-
knowledge proof sub-protocol, the sender and the receiver need to perform �s and �v

modular exponentiations, respectively; then in the OCBE protocol, the sender and the
receiver need to perform at most �s+2 and �v+1 modular exponentiations, respectively.
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4.2 Security Proofs

Our OCBE protocol invokes the zero-knowledge proof protocol
PK{(a, r) : c = gahr ∧ b(a) = true} as a sub-protocol. We here need to exam-
ine the security properties of this zero-knowledge proof protocol, before we prove the
security of the OCBE protocol. The security definition of a zero-knowledge proof of
knowledge protocol derives from Bellare and Goldreich [4].

Given a commitment c and a predicate b as input. Let R be a polynomially com-
putable relation defined as, given a and r, R(a, r, c, b) = 1 if and only if c = gahr

and b(a) = true. A zero-knowledge proof of knowledge of witness (a, r) such that
R(a, r, c, b) = 1 is a probabilistic polynomial-time protocol between a prover P and a
verifier V with the following properties:

1. Completeness: For all possible a and r such that R(a, r, c, b) = 1

Pr [P (a, r, c, b)↔ V (c, b)→ x : x = accept] = 1− μ(k),

where μ(k) is a negligible function.
2. Zero-knowledge: Intuitively, the verifier should not learn any information about

a and r other than the fact that R(a, r, c, b) = 1. Formally speaking, there ex-
ists a probabilistic, expected polynomial-time simulator S such that, for every
probabilistic polynomial-time verifier Vk, for all (a, r, c, b) ∈ R, the distribution
P (a, r, c, b) ↔ Vk(c, b) and S(c, b) � Vk(c, b) are computationally indistinguish-
able, where S � V means S has black-box access to algorithm V .

3. Soundness: Intuitively, if the prover does not know (a, r) such that R(a, r, c, b) =
1, the probability that the prover can convince the honest verifier is negligible. More
formally, for all (c, b), for all probabilistic polynomial-time prover Pk, if there is a
function ε(k) such that

Pr [Pk(c, b)↔ V (c, b)→ x : x = accept] = ε(k);

then there exists a polynomial-time extractor E and a negligible function μ(k) such
that

Pr [Pk(c, b) � E(c, b)→ (a, r) : R(a, r, c, b) = 1] = ε(k)− μ(k).

In other words, if the prover can convince the verifier with probability ε(k), then
the extractor can compute (a, r) with probability close to ε(k).

Theorem 1. The OCBE protocol in Section 4.1 is sound.

Proof. To show the OCBE protocol is sound, we consider two cases. In the first case,
suppose for any a ∈ S ⇒ b(a) = false, then both the sender and the receiver know that
the receiver should not receive M , as the receiver’s input will never satisfy the predi-
cate b. Therefore, the sender and the receiver simply quit the protocol on step 1 of the
interaction phase. In the second case, there exists some a ∈ S such that b(a) = true. In
this case, steps 2-4 of the interaction phase will be executed. By the completeness prop-
erty of the zero-knowledge proof protocol, the zero-knowledge proof protocol almost
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always succeeds. If the value a committed by the receiver satisfies the predicate b, then
a′ = a. It follows that

σ = (c/c′)y = (ga−a′
hr−r′

)y = (hr−r′
)y = (hy)r−r′

= ηr−r′
= σ′.

The sender and the receiver share the same symmetric key that is used to encrypt the
message M . Therefore, if b(a) = true, the receiver can obtain the message M .

Theorem 2. The OCBE protocol in Section 4.1 is oblivious.

Proof. An OCBE scheme is oblivious if the sender learns nothing about the value the
receiver committed. Let us first see which messages the sender receives during the ini-
tialization and interaction phases. In the initialization phase, the sender receives c, the
commitment of a, from the receiver. In the interaction phase, the sender receives from
the receiver c′, the commitment of a′. The sender also involves in the zero-knowledge
proof protocol PK{(a′, r′) : c′ = ga′

hr′ ∧ b(a′) = true} as the verifier.
More formally, an OCBE scheme is oblivious if we can show that the view of the

sender can be simulated. We build a simulator S as follows: Given a set S of integers
and a predicate b, S chooses a random number a0 ← S and computes the commitment
c0 = commit(a0). Then S chooses another value a′

0 ← S such that b(a′
0) = true

and computes the commitment c′0 = commit(a′
0). Finally, S calls the simulator for the

zero-knowledge proof protocol. As the commitment scheme is statistically hiding, the
joint distribution of (c, c′) is statistically indistinguishable from the joint distribution
of (c0, c

′
0). By the zero-knowledge property of the zero-knowledge proof protocol, it

is easy that the transcripts generated by the sender when interacting with the receiver
is computationally indistinguishable with the transcripts generated by the simulator S.
Therefore, the OCBE protocol is oblivious.

Theorem 3. The OCBE protocol in Section 4.1 is secure against the receiver.

Proof. The preceding OCBE protocol uses a semantically secure symmetric encryp-
tion algorithm. Suppose H is modeled as a random oracle, the OCBE protocol is secure
against the receiver when no receiver, whose committed value does not satisfy the pred-
icate b, can compute with non-negligible probability the secret that the sender uses to
derive the encryption key.

More precisely, the OCBE protocol is secure against the receiver if no polynomial-
time adversary wins the following game against the challenger with non-negligible
probability: The challenger runs the setup phase and sends 〈P, S, B〉 to the adversary,
where P = (n, g, h) is the public parameter of the integer commitment scheme. The
adversary picks integers a ∈ S and r ∈ Z, computes the commitment c = gahr, and
sends a, r, and c to the challenger. The challenger responds by picking a predicate b ∈ B
such that b(a) = false. The adversary chooses a value a′ such that b(a′) = true, chooses
r ∈ Z, and computes c′ = ga′

hr′
. The adversary sends c′ to the challenger and also

runs PK{(a′, r′) : c′ = ga′
hr′ ∧ b(a′) = true} to prove that the value committed in c′

satisfies the predicate b. The challenger then picks y ← Zn and sends to the adversary
hy . The adversary then outputs σ, and the adversary wins the game if σ = (c/c′)y .
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By the soundness property of the zero-knowledge proof protocol, the challenger can
extract a′ and r′ from the zero-knowledge proof using the standard rewinding technique.
That is, we can replace the zero-knowledge proof protocol in the above game with that
the adversary sends a′, r′, and c′ to the challenger. Note that, as b(a) = false and
b(a′) = true, it follows that a �= a′. Also note that, since the challenger runs the setup
program of the integer commitment scheme, she knows how to factorize n.

Given an attacker A that wins the above game with probability ε, we construct an-
other attacker B that can solve the computational Diffie-Hellman problem in 〈h〉, the
group generated by h, with the same probability. B does the following:

1. B, when given p, q, h, hx, hy where n = pq is a special RSA modulus used in the
commitment scheme and h is an element in QRn, gives P = (n, hx, h), S = Z,
and B to A. We use g to denote hx.

2. B receives a, r, and c from A, and verifies that c = gahr. B chooses a predicate
b ∈ B such that b(a) = false and sends b to A.

3. B receives a′, r′, and c′ fromA. B verifies that c′ = ga′
hr′

and b(a′) = true. Then
B sends hy to A.

4. B receives σ from A, computes τ = σh(r′−r)y and outputs τ (a−a′)−1 mod φ(n).
If A wins the game, we get

σ = (c/c′)y = (ga−a′
hr−r′

)y = (gy)a−a′
h(r−r′)y

τ = σh(r′−r)y = (gy)a−a′
= (hxy)a−a′

B outputs τ (a−a′)−1 mod φ(n) = hxy.

B succeeds in solving the computational Diffie-Hellman problem if and only if A
wins the above game, i.e., successfully compute (c/c′)y . Therefore, under the CDH
assumption, the OCBE protocol is secure against the receiver.

4.3 Comparison with Previous OCBE Protocols

To compare the OCBE protocol with the OCBE protocols proposed by Li and Li [20],
we first list all families of predicates that our OCBE protocol supports. All the zero-
knowledge proof protocols listed below are summarized in Section 3.3; and they have
constant computation and communication costs.

– Equality Predicates: Let B be the family of equality predicates. Each predicate b in
B takes a0 as a parameter, and b(a) is equal to true if and only if a = a0. As there
exists an efficient zero-knowledge proof protocol

PK{(a, r) : c = gahr ∧ a = a0},

we can build an efficient OCBE protocol for this family of predicates. In this OCBE
protocol, the receiver can open the sender’s message if and only if her committed
number a is equal to a0.
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– Greater-Than-Or-Equal-To Predicates: Let B be the family of Greater-Than-Or-
Equal-To predicates. Each predicate b in B takes a0 as a parameter, and b(a) is
equal to true if and only if a ≥ a0. As there exists an efficient zero-knowledge
proof protocol

PK{(a, r) : c = gahr ∧ a ≥ a0},
we can build an efficient OCBE protocol for this family of predicates. In this OCBE
protocol, the receiver can open the sender’s message if and only if her committed
number a is greater than or equal to a0.

– Other Comparison Predicates: Besides = and ≥, the other comparison operations
include <, >,≤, �=. Since there exists efficient zero-knowledge protocols for these
comparison operations, the corresponding OCBE protocols can be built.

– Range Predicates: Let B be the family of range predicates. Each predicate b in B
takes a0 and a1 as parameters, and b(a) is equal to true if and only if a0 ≤ a ≤ a1.
As there exists an efficient zero-knowledge proof protocol

PK{(a, r) : c = gahr ∧ a0 ≤ a ≤ a1},

we can build an efficient OCBE protocol for this family of predicates. In this OCBE
protocol, the receiver can open the sender’s message if and only if her committed
number a is in the range of (a0, a1).

– Square Predicate: Given an input a, this predicate outputs true if and only if a is a
square, i.e., a = x2 for some integer x. Note that

PK{(a, r, x) : c = gahr ∧ a = x2}

can be constructed using the zero-knowledge proof that a committed value is the
product of two other committed values as

PK{(a, r, x, rx) : c = gahr ∧ cx = gxhrx ∧ a = x · x}

Therefore, we can build an efficient OCBE protocol for the square predicate. In
this OCBE protocol, the receiver can open the sender’s message if and only if her
committed number a is a square number.

– Modular Equality Predicates: Let B be the family of range predicates. Each pred-
icate b in B takes z0 and z1 as parameters, and b(a) is equal to true if and only if
a ≡ z0 (mod z1). For example, if z0 = 0 and z1 = 2, this predicate tests whether
a is an even number. Note that

PK{(a, r) : c = gahr ∧ a ≡ z0 (mod z1)}

can be constructed using the zero-knowledge proof that a committed value has a
linear relation with another committed value as

PK{(a, r, x, rx) : c = gahr ∧ cx = gxhrx ∧ a = z0 + xz1}

Therefore, we can build an efficient OCBE protocol for this family of predicates.
In this OCBE protocol, the receiver can open the sender’s message if and only if
her committed number a is equal to z0 modulo z1.
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In Table 1, we give a detailed comparison between our OCBE protocols and the
OCBE protocols developed by Li and Li [20]. For equality predicates, the OCBE pro-
tocol in [20] is slightly better than ours, although they have the same complexity. For
other comparison predicates and range predicates, the OCBE protocols in [20] are more
expensive than ours, i.e., their protocols have linear cost whereas ours require only con-
stant computation. Also note that the OCBE protocols for the square predicate and the
modular equality predicates are first developed in this paper.

Table 1. Comparison between the OCBE protocols in [20] with our OCBE protocol in terms
of computation and communication costs. In the table, � is the length of the committed value,
∗ denotes that such predicates are not supported in the OCBE protocols.

OCBE Protocols in [20] Our OCBE Protocols
Equality Predicates O(1) O(1)
Other Comparison Predicates O(�) O(1)
Range Predicates O(�) O(1)
Square Predicate ∗ O(1)
Modular Equality Predicates ∗ O(1)

5 Applications of Our OCBE Protocol

In this section, we discuss the applications of OCBE to attribute-based access control,
right after we present how the OCBE protocol is used in access control systems.

5.1 How to Use the OCBE Protocol

Recall that in the initialization phase of an OCBE scheme, the receiver sends the com-
mitment of her attribute to the sender. To use OCBE in attribute-based access control,
the sender needs to make sure that the commitment from the receiver is indeed the com-
mitment of the receiver’s attribute. In other words, the receiver needs to show that the
attribute committed to the sender is certified by a certificate authority. This can be done
using either OACerts [20] or anonymous credentials [24,8,11].

OACerts. OACerts is a certificate scheme developed by Li and Li [20]. In the OACerts
scheme, instead of storing attribute values directly in the certificate, a certificate author-
ity stores the commitments of these values in the certificate. These commitments are
computed by the certificate authority. When the receiver interacts with the sender, she
first reveals her OACerts; then she runs the OCBE protocol with the sender based on
the commitments in the certificates.

Anonymous Credentials. An anonymous credential system [24,8,11] is a credential
system in which the transactions carried out by the same user cannot be linked. In
the anonymous credential system proposed by Camenisch and Lysyanskaya [8], the
attributes of a user are signed by a certificate authority using a specially designed sig-
nature scheme. To show an attribute, the user commits the attribute and proves that the
attribute in the commitment is the same as the attribute in the anonymous credential.
When the receiver interacts with the sender, she first commits her attribute, then proves
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that the committed attribute is the same as in the anonymous credentials. In the end, the
receiver runs the OCBE protocol with the sender based on that commitment. Note that
the attribute is committed by the receiver, instead of by the certificate authority. That is
the reason that, in the new definition of OCBE, the receiver chooses r and computes the
commitment.

5.2 Applications to Attribute-Based Access Control

We list two applications of OCBE to attribute-based access control. The ideas of these
applications come from [20]; we only sketch here.

Oblivious Access Control. Suppose Alice is a client and Bob is a server. Alice wants
to access some resources from Bob whose policy is based on Alice’s attribute. Alice
can first show her OACerts or anonymous credentials, then based on commitment of
her attribute, she runs an OCBE protocol with Bob. In the OCBE protocol, Bob sends
Alice an encrypted envelope such that Alice could open the envelope only if her attribute
satisfies Bob’s policy. That is, Bob can perform access control based on Alice’s attribute
values while being oblivious about Alice’s attribute information.

Breaking Policy Cycles. OCBE can be used to break policy cycles (see [23] for defini-
tion) in automated trust negotiation [29,28,30]. Consider the following scenario: Alice’s
policy is based on Bob’s attribute and Bob’s policy is based on Alice’s attribute. As a
result, none of them wants to reveal their attributes. Alice and Bob can run an OCBE
protocol to break such cycles. See [22] for detailed discussions on how OCBE can be
integrated into automated trust negotiation.

6 Related Work

An OCBE scheme can be seen as a special oblivious transfer. The oblivious transfer
protocol was first introduced by Rabin [26]. In an oblivious transfer between Alice and
Bob, Alice wants to send a message to Bob in such a way that with half probability Bob
will receive the message, and with half probability Bob will receive nothing. Further-
more, Alice does not know which of the two events really happened.

Crescenzo, Ostrovsky, and Rajagopalan [13] introduced a variant of oblivious trans-
fer called conditional oblivious transfer; in which Alice has a private input xa and Bob
has a private input xb, they and shares with each other a public predicate b that evalu-
ates over xa and xb. In the conditional oblivious transfer of a message M from Alice
to Bob, Bob receives M only when the predicate holds, i.e., b(xa, xb) = true; further-
more, Alice learns nothing about xb or b(xa, xb). OCBE is different from conditional
oblivious transfer in that, in OCBE, Bob’s private input is committed to Alice. Besides,
the conditional oblivious transfer protocol for great-than-or-equal-to predicates [13] has
the computation cost linear to the size of xa and xb, whereas our OCBE protocol for
great-than-or-equal-to predicates has constant time performance.

Crépeau [12] introduced the notion of committed oblivious transfer. In committed
oblivious transfer, Alice commits two bits: a0 and a1, and Bob commits a bit b. All three
commitments are shared by Alice and Bob. In the end, Bob learns ab without learning
anything else, and Alice learns nothing. Garay, MacKenzie, and Yang [18] gave an
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efficient construction of committed oblivious transfer under the universal composability
framework. OCBE differs from committed oblivious transfer in that Bob’s input is an
arbitrary integer rather than a single bit.

Our work is also somewhat related to several cryptographic schemes that have been
recently proposed for attribute-based access control. For example, oblivious signature
based envelopes [23], hidden credentials [7,19], secret handshakes [2,9], pairing-based
cryptography [27], anonymous identification [15], certified input private policy eval-
uation [21], hidden policies with hidden credentials [16], and policy-based cryptogra-
phy [1] were proposed to address the privacy issues in access control, in particular, these
schemes can be used to protect the requester’s identities or attributes.

7 Conclusion

The OCBE scheme has been proved to be a useful primitive for privacy protection in
attribute-based access control. In this paper, we improved the OCBE protocols in [20]
and gave an efficient and general construction of OCBE. Our construction replies on
the existence of efficient zero-knowledge proof of knowledge protocols that prove a
committed value satisfying certain predicate. Our construction is secure under the CDH
assumption and the strong RSA assumption in the random oracle model.
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Abstract. To facilitate managing access control in a system, security officers
increasingly write access control policies in specification languages such as
XACML, and use a dedicated software component called a Policy Decision Point
(PDP). To increase confidence on written policies, certain types of policy testing
(often in an ad hoc way) are usually conducted, which probe the PDP with some
typical requests and check PDP’s responses against expected ones. This paper de-
velops a first step toward systematic policy testing by defining and measuring pol-
icy coverage when testing policies. We have developed a coverage-measurement
tool to measure policy coverage given a set of XACML policies and a set of
requests. We have developed a tool for request generation, which randomly gen-
erates requests for a given set of policies, and a tool for request reduction, which
greedily selects a nearly minimal set of requests for achieving the same coverage
as the originally generated requests. To evaluate coverage-based request reduction
and its effect on fault detection, we have conducted an experiment with mutation
testing on a set of real policies. Our experimental results show that the coverage-
based test reduction can substantially reduce the size of generated requests and
incur only relatively low loss on fault detection. We also conduct a study on the
policy coverage achieved by manually generated requests.

1 Introduction

Access control is one of the most fundamental and widely used security mechanisms.
It controls which principals (users, processes, etc.) have access to which resources in a
system. To better manage access control, systems often explicitly specify access con-
trol policies using policy languages such as XACML [1] and Ponder [14]. Whenever a
principal requests access to a resource, that request is passed to a software component
called a Policy Decision Point (PDP). PDP evaluates the request against access control
policies, and grants or denies the request accordingly.

The specification of access control policies is often a challenging problem. It is com-
mon that a system’s security is compromised due to the misconfiguration of access con-
trol policies instead of the failure of cryptographic primitives or protocols. This problem
becomes increasingly severe as software systems become more and more complex, and
are deployed to manage a large amount of sensitive information and resources that are
organized into sophisticated structures.
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Formal verification is an important means to ensuring the correct specification of
access control policies. Recently, several tools have been developed to verify XACML
access control policies against user-specified properties [16, 22, 42]. However, it is of-
ten beyond the capabilities of these tools to verify complex access control policies in
large-scale information systems. Furthermore, user-specified properties are often not
available [16].

Like in software development, errors in access control policies may also be discov-
ered through testing. In fact, once access control policies are specified, they are often
tested with some access requests so that security officers may manually check the PDP’s
responses against expected ones [6]. However, current policy testing practice tends to
be ad hoc. Although there exist various coverage criteria [43] for software programs,
there are no criteria or good heuristics to guide systematic generation of high-quality
policy test suites. With an ad hoc policy testing, it is questionable that high confidence
could be gained on the correctness of access control policies.

This paper presents a first step toward systematic policy testing. We propose the
concept of policy coverage to measure the quality of policy test suites, which are sets of
request-response pairs. Intuitively, the more policy rules (as well as their components
such as subjects, resources, and conditions) are involved when evaluating a test suite,
the more likely it is to discover errors in access control policies. We have developed a
coverage-measurement tool to measure the coverage of XACML policies achieved by a
set of access requests. We have also developed a request-generation tool that randomly
generates policy test suites for a given set of policies.

Although the randomly generated test suites can achieve high policy coverage, and
are effective in detecting a variety of policy specification errors, it may potentially in-
clude a huge number of requests, which makes it difficult to efficiently inspect and
verify the correctness of responses from the PDP. To mitigate this problem, we further
propose a request reduction technique to significantly reduce the size of a test suite
while maintaining its policy coverage.

Previous experiments [35] showed that test reduction based on program code cover-
age can severely compromise the fault-detection capabilities of the original test suite. To
evaluate the impact of the proposed request reduction technique on the quality of policy
testing, we conduct an experiment on a set of real policies with mutation testing [15],
which is a specific form of fault injection that consists of creating faulty versions of
a policy by making small syntactic changes. In the experiment, we compare the fault-
detection capabilities of the reduced set and original set of requests. Our experimental
results show that our coverage-based request reduction technique can substantially re-
duce the size of generated requests but incur only relatively low loss in fault detection
capabilities. We also conduct a study that measures the policy coverage of an XACML
conformance test suite as well as a conference reviewing system’s policy. Our results
show that the measurement of policy coverage can effectively identify uncovered parts
of policies. Such results can be used to guide the development of further test cases,
significantly improving the quality of policy testing.

The rest of the paper is organized as follows. Section 2 presents background informa-
tion on XACML, a widely used and standardized meta policy language for expressing
domain-specific access control requirements. Section 3 proposes the concept of policy
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testing and policy coverage based on a general access control model. In Section 4, we
instantiate the concept of policy coverage in the context of XACML. We also present
the design of a coverage measurement tool. Sections 5 and 6 describe the request-
generation tool and our request reduction technique, respectively. Section 7 presents
a set of initial mutation operators developed for policies. Section 8 presents the experi-
ment conducted to assess request reduction and its effect on fault detection capabilities.
Section 9 illustrates the study of measuring the policy coverage achieved by manually
generated requests. Section 10 discusses related work and Section 11 concludes the
paper with future directions.

2 XACML

XACML (eXtensible Access Control Markup Language) is a language specification
standard designed by OASIS. It can be used to express domain-specific access con-
trol policy languages as well as access request languages. Besides offering a large set
of built-in functions, data types, and combining logic, XACML also provides standard
extension interfaces for defining application-specific features. Since it was proposed,
XACML has received much attention from both the academia and the industry. Many
domain-specific access control languages have been developed using XACML [32,30].
Open source XACML implementations are also available for different platforms
(e.g., Sun’s XACML implementation [2] and XACML.NET [3]). Therefore, XACML
provides an ideal platform for the development of policy testing techniques that can be
easily applied to multiple domains and applications.

The basic concepts of access control in XACML include policies, rules, targets, and
conditions. A single access control policy is represented by a policy element, which
includes a target element and one or more rule elements. A target element contains a
set of constraints on the subject (e.g., the subject’s role is equal to faculty), resources
(e.g., the resource name is grade), and actions (e.g., the action name is assign)1. A target
specifies to what kinds of requests a policy can be applied. If a request cannot satisfy the
constraints in the target, then the whole policy element can be skipped without further
examining its rules.

We next describe how a policy is applied to a request in details. A policy element
contains a sequence of rule elements. Each rule also has its own target, which is used to
determine whether the rule is applicable to a request. If a rule is applicable, a condition
(a boolean function) associated with the rule is evaluated. If the condition is evalu-
ated to be true, the rule’s effect (Permit or Deny) is returned as a decision; otherwise,
NotApplicable is returned as a decision. If an error occurs when a request is applied
against policies or their rules, Indeterminate is returned as a decision.

More than one rule in a policy may be applicable to a given request. To resolve
conflicting decisions from different rules, a rule combining algorithm can be specified
to combine multiple rule decisions into a single decision. For example, a deny overrides
algorithm determines to return Deny if any rule evaluation returns Deny or no rule
is applicable. A first applicable algorithm determines to return what the evaluation of

1 Conditions of “AnySubject”, “AnyResource”, and “AnyAction” can be satisfied by any subject,
resource, or action, respectively.
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1<Policy PolicyId="demo" RuleCombinationAlgId="first-applicable">
2 <Target>
3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources>
5 <Resource>
6 <ResourceMatch MatchId="equal">
7 <AttributeValue>demo:5</AttributeValue>
8 <ResourceAttributeDesignator AttributeId="objectid"/>
9 </ResourceMatch>

10 </Resource>
11 </Resources>
12 <Actions> <AnyAction/></Actions>
13 </Target>
14 <Rule RuleId="1" Effect="Deny">
15 <Target> <Subjects><AnySubject/></Subjects>
16 <Resources> <AnyResource/> </Resources>
17 <Actions>
18 <Action>
19 <ActionMatch MatchId="equal">
20 <AttributeValue>Dissemination</AttributeValue>
21 <ActionAttributeDesignator AttributeId="actionid"/>
22 </ActionMatch>
23 </Action>
24 </Actions>
25 </Target>
26 <Condition FunctionId="not">
27 <Apply FunctionId="at-least-one-member-of">
28 <SubjectAttributeDesignator AttributeId="loginid"/>
29 <Apply FunctionId="string-bag">
30 <AttributeValue>testuser1</AttributeValue>
31 <AttributeValue>testuser2</AttributeValue>
32 <AttributeValue>fedoraAdmin</AttributeValue>
33 </Apply>
34 </Apply>
35 </Condition>
36 </Rule>
37 <Rule RuleId="2" Effect="Permit"/>
38</policy>

Fig. 1. An example XACML policy

the first applicable rule returns. In general, an XACML policy specification may also
include multiple policies, which are included with a container element called PolicySet.
When a request can also be applied to multiple policies, a policy combining algorithm
can also be specified in a similar way.

Figure 1 shows an example XACML policy, which is revised and simplified from
a sample Fedora2 policy (to be used in our experiment described in Section 8). This
policy has one policy element which in turn contains two rules. The rule composition
function is “first-applicable”, whose meaning has been explained earlier. Lines 2-13 de-
fine the target of the policy, which indicates that this policy applies only to those access
requests of an object “demo:5”. The target of Rule 1 (Lines 15-25) further narrows the
scope of applicable requests to those asking to perform a “Dissemination” action on
object “demo:5”. Its condition (Lines 26-35) indicates that if the subject’s “loginId” is
“testuser1”, “testuser2”, or “fedoraAdmin”, then the request should be denied. Other-
wise, according to Rule 2 (Line 37) and the rule composition function of the policy
(Line 1), a request applicable to the policy should be permitted.

2 http://www.fedora.info
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3 Access Control Policies and Policy Coverage

Besides XACML, a generic policy language, many access control policy languages have
been proposed for different application domains. Policies in these languages are usually
composed of a set of rules, which specify under what conditions a subject is allowed
or denied access to certain objects in a system. To discuss policy coverage criteria in
general, we model access requests and policies in this paper as follows.

Let S, O and A denote respectively the set of all the subjects, objects and actions
in an access control system. Each subject, object, or action is associated with a set
of attributes that may be used for access control decisions. For example, a subject’s
attributes may include a user’s role, rank, and security clearance. An object’s attributes
may include a file’s type, a document’s security class, and a printer’s location.

An access request q is a tuple (s, o, a), where s ∈ S, o ∈ O and a ∈ A. A request
(s, o, a) means that subject s requests to take action a on object o.

An access control policy P is a sequence of rules, each of which is of the
form (Conds, Condo, Conda, decision, Condg). Conds, Condo and Conda are con-
straints over the attributes of a subject, object, and action, respectively. Condg is a
general constraint that may potentially be over all the attributes of subjects, objects, ac-
tions, and other properties of a system (e.g., the current time and the load of a system).
A decision is either deny or permit. Given a request (s, o, a), if Conds(s), Condo(o),
Conda(a), and Condg are all evaluated to be true, then the request is either permitted
or denied, according to decision in the rule.

One may wonder that since Condg can be a general constraint over the attributes of
subjects, objects, and actions as well as other properties of a system, why do we still
need Conds, Condo, and Conda in a rule? The reason is that, although conceptually
those conditions can be merged with the general condition Condg , by separating them,
it makes it easy to quickly locate relevant rules to a request. For example, given a request
(s, o, a), if one of Conds, Condo and Conda is evaluated to be false, then we do not
need to further evaluate Condg that sometimes may be much more complex than the
former three. Such a form of access control rules is commonly supported in access
control policy languages. If a request satisfies Conds, Condo and Conda of a rule,
then we say the rule is applicable to the request.

A policy may have multiple rules that are applicable to a request. These rules may
in fact offer conflicting decisions. The final decision regarding the request depends on
application-specific conflict resolution functions. Commonly used conflict resolution
functions include denial overriding permission (where a request is denied if it is denied
by at least one rule), permission overriding denial (where a request is permitted if it
is permitted by at least one rule) and first applicable (where the final decision is the
same as that of the first applicable rule in a sequence of rules whose condition Condg

is evaluated true). We use PDP (Policy Decision Point) to denote the component of
a system where final decisions are made according to the decision of each rule and a
specific confliction resolution function. Conceptually, given a policy P and a request q,
a PDP returns the access control decision of q.

Since we are interested in capturing potential errors in policy specifications, we as-
sume that PDP is correctly implemented in the rest of the paper. In practice, generic
PDP implementations are often available, which have been scrutinized by the public.
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We next start our discussion on policy testing based on the preceding model. The
basic idea of policy testing is simple. Like software testing, given a policy, we would
like to generate a set of requests, and check whether the access control decisions on
these requests are expected. Any unexpected decision indicates potential errors in the
specification of the policy.

If no requests are evaluated against a rule during testing, then potential errors in
that rule cannot be discovered. Thus, it is important to generate requests so that a large
portion of rules are involved in the evaluation of at least one of the requests. In other
words, we are interested in requests that cause a rule’s conditions to be evaluated to be
true. Recall that if a request satisfies Conds, Condo, and Conda of a rule, then we say
the rule is applicable to the request.

Definition 1. Given a request q and a rule m in a policy P , we say q covers m if m
is applicable to q. Given a set of requests Q, the rule coverage of P by Q is the ratio
between the number of rules covered by at least one request in Q and the total number
of rules in P .

Intuitively, the higher the rule coverage of a set of requests, the better chance speci-
fication errors may be discovered. Like software testing, it is often infeasible to have
exhausted policy testing when the space of possible requests is large. Therefore, pol-
icy specification errors may still exist even after testing with requests that cover all the
rules.

To improve the quality of policy testing, it helps to further examine potential errors
in the specification of conditions in each rule, which can also be tested by requests.

Definition 2. Given a request q and a rule m(Conds, Condo, Conda, decision,
Condg), we say Condg is positively (negatively) covered by q if m is covered by q
and Condg is evaluated to be true (false). Given a set of requestsQ, the condition cov-
erage of P by Q is the ratio between the numbers of general conditions positively or
negatively covered by at least one request in Q and two times of the total number of
rules in P .

The intuition behinds the above definition is as follows. An error in the condition of a
rule may have two types of impacts on a request. Suppose Cond′g is the condition when
an error is introduced to the original condition Condg . Given a request q, Cond′g(q)
may be evaluated to be true while Condg(q) is false, or vice versa. That is why we con-
cern with both positive and negative coverage of a condition in the preceding definition.

Our definition of condition coverage corresponds to clause coverage or condition
coverage [33] in program testing. Note that there exist more complicated coverage
criteria for logical expressions. For example, in program testing, predicate coverage
(also called decision coverage or branch coverage) [33]requires to cover both true and
false of compound conditions in a logical expression. In policy testing, predicate cov-
erage requires that the whole compound condition for a rule needs to be evaluated to
be true and false, respectively. In program testing, combinatorial coverage (also called
multiple condition coverage) [33] requires to cover each possible combination of out-
comes of each condition in a logical expression. In policy testing, combinatorial cov-
erage requires to cover each possible combination of outcomes of each condition for
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a rule. In our existing approach, we use basic, simple criteria for conditions in rules; in
future work, we plan to investigate these more complicated alternatives in terms of their
effects on fault-detection capability.

4 Policy Coverage in XACML

In XACML languages, we can see there are three major entities: policies, rules for each
policy, and a condition for each rule. We define policy coverage as follows:

– Policy hit percentage. A policy is hit by a request if the policy is applicable to the
request; in other words, all the conditions in the policy’s target are satisfied by the
request. Policy hit percentage is the number of hit policies divided by the number
of total policies.

– Rule hit percentage. A rule for a policy is hit by a request if the rule is also applica-
ble to the request; in other words, the policy is applicable to the request and all the
conditions in the rule’s target are satisfied by the request. Rule hit percentage is the
number of hit rules divided by the number of total rules.

– Condition hit percentage. The evaluation of the condition for a rule has two out-
comes: true and false, which are called as the true condition and false condition,
respectively. A true condition for a rule is hit by a request if the rule is applicable to
the request and the condition is evaluated to be true. A false condition for a rule is
hit by a request if the rule is applicable to the request and the condition is evaluated
to be false. Condition hit percentage is the number of hit true conditions and hit
false conditions divided by twice of the number of total conditions.

Note that a policy has at least one rule but a rule can have no condition, indicat-
ing an implicit condition true, which is always satisfied when the rule is applicable.
Therefore, when there are no conditions defined within the policies under consideration,
the condition hit percentage is always the same as the rule hit percentage. Normally a
policy tester shall be able to generate requests to achieve 100% for all three types of
policy coverage. In other words, all the to-be-covered entities defined in the policy cov-
erage are feasible to be covered in principle; otherwise, those infeasible parts of policy
specifications could be removed like dead code in programs.

To automate the measurement of policy coverage, we have developed a measurement
tool by instrumenting Sun’s open source XACML implementation [2]. Sun’s implemen-
tation facilitates the construction of a PDP. We instrument several methods throughout
their implementation that collect policy, rule, and condition information when a policy
is loaded into the PDP. Then coverage information is collected and stored in a singleton
as requests are evaluated by a PDP against the policy under test.

After the PDP returns the decision, we output the coverage information into a text
file, whose name is determined by the names of given policies; if a text file with the
same name exists, the coverage information in the text file is updated by incorporating
the new coverage information. Therefore, when PDP receives several requests sepa-
rately against the same set of policies, the aggregated coverage information achieved
by these requests is collected. Besides the basic coverage information, we also output
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the details of covered entities and their covering requests as well as the details of uncov-
ered entities. The extra information can help developers or external tools in generating
or selecting requests for achieving higher policy coverage.

5 Request Generation

Because manually generating requests for testing policies is tedious, we have devel-
oped a technique for randomly generating requests given only the policy under test.
The random request generator analyzes the policy under test and generates requests on
demand by randomly selecting requests from the set of all combinations of attribute
id-value pairs found in the policy. A particular request is represented as a vector of bits.
The length of this vector is equal to the number of different attribute values found in
the policy set targets,policy targets, rule targets, and rule conditions of the policy under
test. Each attribute value appears in the request if its corresponding bit in the vector is 1;
otherwise, the value is not present.

More specifically, all possible combinations can be represented by integers from 0
to 2n where n is the number of attribute values found in the policy. Each request is
generated by setting each bit in the vector to 0 or 1 with probability 0.5. The number of
randomly generated requests can be configured by the user and the configured number
can be considerably smaller than the total number of combinations. To help achieve
adequate coverage with a small set of random requests, we modified the random test
generation algorithm to ensure that each bit was set to 1 and 0 at least once. In particular,
we explicitly set the ith bit to 1 for the first n generated requests where i = 1, 2, ...n.
Similarly, for the next n requests, we explicitly set the (i − n)th bit to 0 where i =
n + 1, n + 2, ...2n. This improved algorithm guarantees that each attribute value is
present and absent at least once as long as the number of randomly generated requests
is greater than 2n.

6 Request Reduction

The request reduction problem can be stated similar to the test minimization problem
for program testing [20]:

Given: request set QS, a set of requirements r1, r2, ..., rn that must be satisfied to
provide the desired test coverage of the policies, and subsets of QS, Q1, Q2,..., Qn, one
associated with each of the ris such that any one of the request qj belonging to Qi can
be used to test ri.
Problem: Find a representative set of requests from QS that satisfies all of ris.

In the problem statement, the ris can represent policy coverage requirements, such
as covering a certain policy, a certain rule, and a certain condition. In a representative
set of requests that satisfies all of the ris, at least one request satisfies each ri. We call a
representative set is minimal if removing any request from the set causes the set not to
be a representative set. Given a request set QS, there can be several minimal represen-
tative sets QS′ ⊆ QS. Among the minimal representative request sets, we could find
a request set that has the smallest possible number of requests. Finding such request
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tests reduces to optimization problems called “minimum set cover” and “minimum
exact cover”, respectively; these problems are known to be NP complete, and in practice
approximation algorithms are used [27].

In our implementation of coverage-based request reduction, we use a greedy algo-
rithm for selecting requests as they are generated by the random request factory if and
only if the generated request increases any of the coverage metrics described in Sec-
tion 4. More specifically, we iteratively generate a random request and add it to the
large set. We then evaluate that request against the policy in order to both compute the
response and measure the coverage. If the coverage increases due to the evaluation of
the request, then that request is added to the reduced request set.

We note that this greedy algorithm may not produce a minimal representative set.
In practice, it does, however, often produce a representative set whose size is near
the size of a minimal representative set. We call our reduced set as a nearly minimal
representative set.

7 Measuring Fault-Detection Capability

In order to investigate the effect of request reduction on fault-detection capabilities,
we can inject faults into the original policy thereby creating faulty policies. Since fault
detection is the central focus of any testing process, it provides an external measure of
the effectiveness of that process. We aim to demonstrate that reduced request sets based
on coverage can detect a large percentage of the faults detected by the original request
set. We use mutation testing [15] as a mechanism to compare request sets in terms of
fault detection.

Mutation testing [15] has historically been applied to general-purpose programming
languages. The program under test is iteratively mutated to produce numerous mutants,
each containing one fault. A test input is independently executed on the original pro-
gram and each mutant program. If the output of a test executed on a mutant differs from
the output of the same test executed on the original program, then the fault is detected
and the mutant is said to be killed. The fundamental premise of mutation testing as
stated by Geist et al. [17] is that, in practice, if the software contains a fault, there will
usually be a set of mutants that can only be killed by a test that also detects that fault. In
other words, the ability to detect small, minor faults such as mutants implies the ability
to detect complex faults. Because fault detection is the central focus of any testing pro-
cess, mutation testing provides an external measure of the effectiveness of that process.
The higher the percentage of killed mutants, the more effective the test set is at fault
detection.

In policy mutation testing, the program under test, test inputs, and test outputs cor-
respond to the policy, requests, and responses, respectively. We first define a set of
mutation operators shown in Table 1. Given a policy and a set of mutation operators, a
mutator generates a number of mutant policies. Given a request set, we evaluate each
request in the request set on both the original policy and a mutant policy. The request
evaluation produces two responses for the request based on the original policy and the
mutant policy, respectively. If these two responses are different, then we determine that
the mutant policy is killed by the request; otherwise, the mutant policy is not killed.
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Table 1. Index of mutation operators

ID Description

PSTT Policy Set Target True. The policy set is applied to all requests.
PSTF Policy Set Target False. The policy set is not applied to any requests.
PTT Policy Target True. The policy is applied to all requests.
PTF Policy Target False. The policy is not applied to any requests.
RTT Rule Target True. The rule is applied to all requests.
RTF Rule Target False. The rule is not applied to any requests.
RCT Rule Condition True. The condition always evaluates to true.
RCF Rule Condition False. The condition always evaluated to false.
CPC Change Policy Combining Algorithm. Each policy combining algorithm is tried in turn.
CRC Change Rule Combining Algorithm. Each rule combining algorithm is tried in turn.
CRE Change Rule Effect. The rule effect is inverted (e.g. permit for deny).

Unfortunately, there are various expenses and barriers associated with mutation test-
ing. The first and foremost is the generation and execution of a large number of mutants.
For general-purpose programming languages, the number of mutants is proportional to
the product of the number of data references and the number of data objects in the
program [34]. For XACML policies, the number of mutants is proportional to the num-
ber of policy elements, namely policy sets, policies, targets, rules, conditions, and their
associated attributes.

8 Experiment on Request Reduction and Its Effect on Fault
Detection

The objective of the experiment is to examine whether the reduced request set is as
effective at fault detection as the original request set. Similar to the goals of Hennessy
et al. [21] for grammar-based software, we wish to investigate the following hypotheses:

Hypothesis 1. We can achieve a significant reduction in request-set size for large ran-
domly generated request sets while maintaining equivalent policy, rule, and condition
coverage.

Hypothesis 2. Reducing a request set based on coverage will not proportionately de-
crease its fault detection capability.

8.1 Metrics

In order to investigate our hypotheses, we need to measure the reduction in request-set
size, the coverage metrics, and the reduction in fault detection capability. The following
metrics are measured for each policy under test, each request set, and each mutation
operator.

– Policy hit percentage. The policy hit percentage or policy coverage is the number
of applicable policies when evaluating the request set divided by the total number
of policies.
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– Rule hit percentage. The rule hit percentage or rule coverage is the number of
applicable rules when evaluating the request set divided by the total number of rules.

– Condition hit percentage. The condition hit percentage is the number of hit true
and hit false conditions when evaluating the request set divided by two times of the
total number of conditions.

– Test count. The test count is the size of the request set or the number of generated
tests. For testing access control policies, a test is synonymous with request.

– Reduced-test count. Given a policy and the generated set of requests, the reduced
test count is the size of the reduced request set based on policy coverage.

– Mutant-killing ratio. Given a request set, the policy under test, and the set of gener-
ated mutants, the mutant-killing ratio is the number of mutants killed by the request
set divided by the total number of mutants.

Intuitively a set of requests that achieve higher policy coverage are more likely to
reveal faults. This notion is easy to understand because a fault in a policy element that
is never covered by a request would never contribute to a response and thus a fault in
that element cannot possibly be revealed. There is a direct correlation between the test
count and the test evaluation time. Furthermore, a low test count is highly desirable
because the request-response pairs may need to be inspected manually to verify that the
policy specification exhibits the intended policy behavior. An ideal request set should
have a low test count, high structural coverage, and high fault-detection capability.

8.2 Results

We used 10 XACML policies collected from three different sources as subjects in our ex-
periment. Table 2 summarizes the basic statistics of each policy. The first column shows
the subject names. Columns 2-5 show the numbers of policy sets, policies, rules, and
conditions, respectively. Five of the policies, namely simple-policy, codeA, codeB,
codeC, and codeD are examples used by Fisler et al. [16,18]. The remaining policies are
examples of real XACML policies used by Fedora3. Fedora is an open source software
that gives organizations a flexible service-oriented architecture for managing and deliv-
ering digital content. Fedora uses XACML to provide fine-grained access control to the
digital content that it manages. The Fedora repository of default and example XACML
policies provides a useful resource of realistic subjects.

We preprocessed each policy to ensure unique policy element identifiers in order
to correctly measure structural coverage. Once each policy has been preprocessed, we
randomly generate requests for each policy as outlined in Section 5 (we configure that
50 requests are randomly generated for each policy). As these requests are generated
and evaluated, we greedily select a smaller set of requests with equivalent coverage as
outlined in Section 6. If we define the size of the entire request set as r and the size
of the reduced request set as r′ then we can define the reduction in request-set size,
SizeReduction, as follows:

SizeReduction = 1− r′

r

3 http://www.fedora.info
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Table 2. Policies used in the experiment

Subject # PolSet # Pol # Rule # Cond

codeA 5 2 2 0
codeB 7 3 3 0
codeC 8 4 4 0
codeD 11 5 5 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 13 13 12
simple-policy 1 2 2 0

Table 3. Structural coverage, number of requests, and size reduction for each policy

Subject Policy Hit Rule Hit Cond Hit #Req #Reduced Req Size Reduction

codeA 100.00% 100.00% - 50 2 0.96
codeB 100.00% 100.00% - 50 3 0.94
codeC 100.00% 100.00% - 50 6 0.88
codeD 100.00% 100.00% - 50 6 0.88

default-2 100.00% 92.31% 75.00% 50 6 0.88
demo-11 100.00% 100.00% 75.00% 50 2 0.96
demo-26 100.00% 100.00% 50.00% 50 1 0.98
demo-5 100.00% 100.00% 75.00% 50 3 0.94

mod-fedora 100.00% 84.62% 58.33% 50 7 0.86
simple-policy 100.00% 100.00% - 50 4 0.92

Columns 2-7 of Table 3 show the three structural coverage metrics, size of the gener-
ated request set, the size of the reduced request set, and the computed size reduction for
each policy, respectively. A dash indicates that there are no policy elements of that type
and thus coverage cannot be computed. The random request set achieves 100% policy
coverage for all subjects because it is the most coarse measure of structural coverage.
Rule coverage and condition coverage are a finer measure of structural coverage and
thus more difficult to achieve with randomly generated requests. The results show that
we can achieve an average 92% size reduction for the ten policies. The results suggest
that we can indeed greatly reduce the request set size of relatively large randomly gen-
erated request sets while maintaining equivalent policy, rule, and condition coverage.

The second objective of the experiment is to investigate if the reduced request set
can still effectively detect faults in policies compared to the full set. We perform the
experiment illustrated in Figure 2. The basic approach is to exploit mutation testing
as a mechanism to compare the fault-detection capability of various request sets. As
discussed in Section 7, we create several mutant policies using the mutation opera-
tors listed in Table 1 for each of the experimental subjects. Each request set is exe-
cuted against each mutant policy and their corresponding responses are recorded. If the
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Fig. 2. Overview of fault detection experiment

response for any request evaluated against the original policy differs from the response
for the request evaluated against the mutant policy, then the mutant is said to be killed.
We define the CapabilityReduction as a metric that quantifies the relative fault de-
tection capability of the reduced set compared to its original set. If we define the total
number of mutants detected by the original set as m and the total number of mutants
detected by the reduced set as m′, then we compute the reduction in fault detection as:

CapabilityReduction = 1− m′

m

Figure 3 illustrates the average mutant-killing ratios for each request set grouped by
subjects. We observe that the mutant-killing ratios across all subjects for the random
and reduced random request sets are quite similar. Unfortunately the mutant-killing ra-
tio is still low when considering the high structural coverage. The observation indicates
that a stronger criteria is needed. Specifically the average mutant-killing ratios for the
Random, and Reduced Random request sets are 51.8% and 42.1%, respectively. Table 4
lists the mutant-kill ratios in tabular format along with the computed capability reduc-
tion. In summary, we observe a 92% reduction in size of the requests while only a 23%
reduction in fault detection capability.

In summary, the results indicate that structural coverage is indeed correlated to fault-
detection capability. But structural coverage is still not strong enough to achieve an
acceptable level of fault detection. Note that the structural coverage investigated in this
experiment is essentially equivalent to statement coverage in general-purpose program-
ming languages. In future work, we plan to investigate stronger criteria that correspond
to path coverage. We expect these stronger criteria to be much more effective at achiev-
ing higher killing ratios.

8.3 Threats to Validity

The threats to external validity primarily include the degree to which the subject poli-
cies, mutation operators, coverage metrics, and test sets are representative of true
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Fig. 3. Mutant-killing ratios for all operators by subjects

Table 4. Mutant-killing ratios and capability reduction for each request set and each policy

Subject Random Reduced Random Capability Reduction

codeA 50.00% 31.25% 37.50%
codeB 50.00% 35.87% 28.26%
codeC 51.79% 44.64% 13.79%
codeD 43.92% 37.16% 15.38%
default-2 19.75% 6.37% 67.74%
demo-11 77.27% 72.73% 5.88%
demo-26 58.82% 52.94% 10.00%
demo-5 78.26% 73.91% 5.56%
mod-fedora 25.48% 22.29% 12.50%
simple-policy 62.50% 43.75% 30.00%

practice. These threats could be reduced by further experimentation on a wider type
and larger number of policies and an larger number of mutation operators. In particu-
lar, lower level mutation operators are needed to operate on the subject, resource, and
action attributes found in various policy elements. Currently the proposed mutation op-
erators operate only on higher level policy elements. The threats to internal validity are
instrumentation effects that can bias our results such as faults in Sun’s XACML imple-
mentation as well as faults in our own policy mutator, policy coverage measurement
tool, and request generator.

9 Empirical Study of Manually Generated Requests’ Policy
Coverage

We have applied the coverage-measurement tool on the whole set of the XACML com-
mittee specification conformance test suite [6] and a conference paper review system’s
policy and its requests developed by Zhang et al. [41].
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Table 5. Policy coverage of the XACML conformance test suite

type 100% 50% non-0% 0% total
all cond rule/cond rule/cond

policies 24 172 24 14 234

Permit 31 144 6 181
Deny 6 6
NotApp 13 28 6 10 57
Indet 1 2 6 4 13

The XACML conformance test suite includes 337 distinct policies4, 374 requests,
their expected responses from the application of the policies. Among these 337 distinct
policies, we show the results of 234 policies in this section because for the requests
of the remaining 103 policies, Sun’s XACML implementation [2] responded different
decisions than the ones specified in their expected responses. Applying the requests on
these 103 policies failed to conform with expected responses because Sun’s XACML
implementation does not support some optional features of XACML specifications.

The conference paper review system’s policy specified by Zhang et al. [41] has 11
requests and 15 rules, which have 10 conditions. These 10 conditions involve the exe-
cution of SQL statements that access an external database. Because it is not trivial to
adapt Sun’s XACML implementation to support these conditions, we simply remove
these 10 conditions as well as some attributes that are not parsed by Sun’s XACML im-
plementation, in order to allow us to focus on the measurement of rule hit percentage.

We fed 374 requests in the XACML conformance test suite to the coverage-
measurement tool. Table 5 shows the reported statistics of policy coverage. Note that
all policies in the conformance test suite are hit by the requests, achieving 100% policy
hit percentage. Column 1 shows the type of data and Columns 2-5 show the data for
different types of coverage. Row 2 shows the number of policies. Rows 3-6 show the
number of requests whose returned decisions are Permit, Deny, NotApplicable, and
Indeterminate, respectively. When a data entry has a zero value, we do not show the
zero value but leave the entry empty.

Column 2 shows the data for policies whose policy, rule, and condition hit percent-
ages reach 100%. These policies have achieved the optimal policy coverage. Column
3 shows the data for policies whose policy and rule hit percentages reach 100% but
condition hit percentage reaches 50%. Column 4 shows the data for policies whose rule
or condition hit percentage is less than 100% but not equal to 0% (but we do not in-
clude the cases shown in Column 3 here). The coverage of these policies needs to be
improved. Column 5 shows the data for policies whose rule or condition hit percentage
is equal to 0%. These policies are especially in need for improvement. The last column
shows the sum of all the data in Columns 2-5.

From the results shown in Table 5, we observed that a majority of policies fell
into the category of Column 3, where policy and rule hit percentages reach 100% but

4 In the XACML conformance test suite, there are 374 policies, each of which receives a single
request. We have reduced those policies with the same policy content into a single policy,
which can then receive multiple requests.
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condition hit percentage reaches 50%. Many polices in the XACML conformance test
suite contain single rules each of which has a condition. Often each of these policies
receives only one request, which basically cover the policy’s rule and the rule’s true
condition.

We took a close look at the details of 14 policies in Column 5. Two of them had
100% for rule hit coverage but 0% for condition hit percentage. Their coverage results
were against our expectation because if their conditions were applicable, we expected
that either a true or false condition would be hit. We inspected their requests and found
that a subject’s age was specified twice and their conditions access the subject’s age.
When evaluating the conditions, PDP encountered an error and returned a decision of
Indeterminate; therefore, neither true or false condition was hit.

Note that the XACML conformance test suite was not specifically constructed to
achieve high coverage of policies but the measurement results still give us some insights
of the common coverage distribution, reflecting policy portions that are commonly hit
by manually created requests.

After we fed to the coverage-measurement tool 11 requests for the conference paper
review system’s policy [41], 73% rule hit percentage was achieved: 4 out of 15 rules
were not hit. These four uncovered rules included the case of permitting a PC chair to
read papers and no request matched this case. Interestingly one of these uncovered four
rules was the last rule, which has the effect of Deny and this rule’s target can be matched
by any request. This rule is often used for the permit-overrides rule combination
algorithm [1]. Given the measurement results of the coverage-measurement tool, we
could construct new requests without much difficulty to cover these uncovered rules in
the policy of the conference paper review system as well as those uncovered rules or
conditions in many policies of the XACML conformance test suite.

10 Related Work

Much work has been done in the modeling and verification of access control poli-
cies. A variety of policy languages and models have been proposed. Some of them are
generic [1,25,26,14,37] while others are designed for specific applications [11,36,38,7]
or data models [8, 29, 9, 19].

One important aspect of policy verification is to formally check general properties of
access control policies, such as inconsistency and incompleteness [31,29,25,10]. In the
former case, an access request can be both accepted and denied according to the policy,
while in the latter case the request is neither accepted nor denied. Although efficient
algorithms have been proposed to perform such verification for specific systems [26,
24], this problem can be intractable or even undecidable when dealing with policies
that involve complex constraints.

Besides the verification of general properties, several tools have been developed
to verify properties for XACML policies [1]. Hughes and Bultan translated XACML
policies to the Alloy language [23] and checked their properties using the Alloy Ana-
lyzer. Fisler et al. [16] developed a tool called Margrave that uses multi-terminal binary
decision diagrams [13] to verify user-specified properties and perform change-impact
analysis. Zhang et al [42] developed a model-checking algorithm and tool support to



Defining and Measuring Policy Coverage in Testing Access Control Policies 155

evaluate access control policies written in RW languages, which can be converted to
XACML [41]. These existing approaches assume that policies are specified using a sim-
plified version of XACML. It is challenging to generalize these verification approaches
to support full-feature XACML policies with complex conditions. In addition, most of
these approaches require users to specify a set of properties to be verified; however,
policy properties often do not exist in practice. The systematic policy testing approach
proposed in this paper works on full-feature XACML policies without requiring prop-
erties, complementing the existing policy verification approaches.

A test adequacy or coverage criterion provides a stopping rule for testing and a mea-
surement of a test suite’s quality [43]. A test coverage criterion can be used to guide
test selection. A coverage criterion typically specifies testing requirements based on
whether all the identified features in a program or specification have been fully exer-
cised. Identified features in a program can be statements, branches, paths, or definition-
use paths. Identified features in a specification can be choices for categories [4, 5] or
conditions [12] in specifications.

The importance of test coverage criterion in fault detection can be shown through
a fault propagation model such as the PIE (Propagation, Infection, and Execution)
model [40]. For example, in order to expose a bug in a statement in a program, a test
needs to at least cover the buggy statement. Note that the coverage of a buggy statement
is not a sufficient condition to expose the buggy behavior in program outputs; addition-
ally the execution of the buggy statement needs to produce a wrong data state and the
wrong data state needs to have an effect on program outputs.

Within our knowledge, our approach is the first that proposes policy coverage and
develops an automatic measurement tool and a request reduction tool for it. But there
exist several approaches for defining and measuring coverage of rules for grammar-
based software or SQL statements for database applications. For example, Hennessy
and Power [21] defined rule coverage for context-free grammar and used rule coverage
to reduce a test suite for grammar-based software such as C++ compilers. Suarez-Cabal
and Tuya [39] defined coverage of SQL queries and developed a tool to automate the
measurement. Kapfhammer and Soffa [28] defined a family of test adequacy criteria for
database-driven applications based on dataflow information that is associated with enti-
ties in a database. Different from these existing coverage measurement approaches for
grammars, SQL queries, or database entities, our new approach defines and measures
coverage information for policies.

11 Conclusion

In this paper, we have developed a first step toward systematic policy testing by defin-
ing and measuring policy coverage. We have proposed the concept of policy testing and
policy coverage based on a general access control model. We further defined three levels
of specific policy coverage for XACML policies: policy hit percentage, rule hit percent-
age, and condition hit percentage. To support systematic policy testing based on policy
coverage automatically, we have developed a coverage-measurement tool, a request-
generation tool, and a request-reduction tool. By using mutation testing, we have con-
ducted an experiment that assesses the coverage-based request reduction and its effect
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on fault-detection capabilities. The experimental results showed that the coverage-based
request reduction substantially reduce the size of the request set but incur only relatively
low loss of fault-detection capabilities. We also conducted a study on the policy cover-
age achieved by manually generated requests for policies in a conformance test suite for
XACML specifications [6] and a conference reviewing system [41]. Our results showed
that our measurement results can pinpoint uncovered areas of policies and guide the de-
velopment of new requests to achieve higher policy coverage.

In future work, we plan to develop a comprehensive suite of techniques and tools
for systematic policy testing. In particular, we plan to extend our policy coverage to
consider cases that reflect the interactions of different rules or different policies, which
are not focused by our existing policy coverage. We also plan to conduct experiments
on a larger scope of policies.
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Abstract. Trust management (TM) is an approach to access control in decen-
tralized distributed systems with access control decisions based on statements
made by multiple principals. Li et al. developed the RT family of Role-Based
Trust-management languages, which combine the strengths of Role-Based Ac-
cess Control and TM systems. We present a distributed credential chain discovery
algorithm for RT C

1 , a language in the RT family that has parameterized roles and
constraints. Our algorithm is a combination of the logic-programming style top-
down query evaluation with tabling and a goal-directed version of the deductive
database style bottom-up evaluation. Our algorithm uses hints provided through
the storage types to determine whether to use a top-down or bottom-up strategy
for a particular part of the proof; this enables the algorithm to touch only those
credentials that are related to the query, which are likely to be a small fraction of
all the credentials in the system.

1 Introduction

In [1], Blaze, Feigenbaum, and Lacy coined the term “trust management” to group to-
gether some principles dealing with access control in decentralized distributed systems.
In the TM approach, access control decisions are based on the attributes (rather than the
identity) of the requester, such as citizenship, credit status, date of birth, employment,
group membership, security clearance, etc. These attributes need to be certified: they
are documented by digitally-signed credentials issued by appropriate authorities, which
may have their own attributes documented in other credentials. When one requests a
resource from a server, the access is granted if the requester’s attributes in its creden-
tials satisfy the server’s policy. TM systems allow the authority to certify attributes to
be delegated. Like attributes themselves, such delegation relationships are documented
in credentials. For example, a university can issue a credential to delegate to its registrar
the authority to certify who are students of the university. The process of making an ac-
cess control decision involves finding a chain of credentials that together prove that the
requester satisfies the server’s policy. Thus, a central problem in trust management is to
determine whether such a chain exists and, if so, to find it. We call this the credential
chain discovery problem.
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In a series of papers [12,11,10], Li et al. developed the RT family of Role-Based
Trust-management languages, which combine the strengths of Role-Based Access Con-
trol (RBAC) [16] and TM systems. Two central concepts in RT are principals and roles.
Each principal represents a uniquely identified entity in the system. A role is designated
by a principal and a role term. For example, HospB.physician is the physician role de-
fined by principal HospB and can be read as HospB’s physician role. In RT0, the most
basic language in the RT family, each role term is a string. Li et al. [12] introduced an
approach for doing distributed credential chain discovery in RT0. In credential chain
discovery, one needs to determine whether a requester has the attributes that satisfy the
policy. One approach is to use backward search, which starts with the policies that gov-
ern the requested resource and tries to enumerate all principals that are entitled to access
the resource. One difficulty of this approach is that because of recursive dependency in
policies, the search may never terminate. Clarke et al. [4] proposed an algorithm that
addresses the problem by doing a full-scale forward search, which tries to compute all
facts entailed by all the credentials and policies in the system. These approaches have
two drawbacks: First, using either forward or backward search alone, one may evalu-
ate a large number of credentials unrelated to the query. Second, when credentials are
stored in a distributed manner, one may not know the existence of some relevant cre-
dentials. The approach in [12] addresses these problems by using a goal-directed chain
discovery algorithm that combines goal-directed back search and goal-directed forward
search.

In [11,10], a number of other components of RT were introduced. In particular, RT1
adds parameterized roles to RT0. Parameterized roles can represent attributes that have
fields. For example, if HospB has a policy that allows the primary care physician (pcp)
of a patient to access the patient’s medical record, then HospB needs to define the pcp
role. Without parameterized roles, HospB needs to define a pcp role for each patient and
to grant access to each of these roles individually. In RT1, one can parameterize the role
HospB.pcp by patient id, and then use only one statement to express the policy. RT C

1
enhances RT1 with constraints. This enables one to succinctly express permissions re-
garding structured resources and potentially unbounded domains. For example, using
one statement, one can grant the permission to connect to any port over 1024 at any host
in the domain abc.dom. Clearly these are essential capabilities in a real-world policy
language.

While introducing parameterized roles and constraints greatly increases the expres-
sive power of the RT family, credential chain discovery was also made significantly
more challenging. In this paper, we present a distributed credential chain discovery
algorithm for RT C

1 . Our algorithm is a novel combination of goal-directed backward
search with tabling and goal-directed forward search, using a storage typing system and
a mechanism for communicating results between the two search directions and manag-
ing search in the two directions. We describe this algorithm in detail; in our specification
of the algorithm, we state logical invariants that ensure correctness.

The rest of this paper is organized as follows. Related work is discussed in Section 2.
We give a detailed example scenario in Section 3. In Section 4, we describe the syntax
and semantics of the RT C

1 language. Distributed credential chain discovery algorithms
are given in Section 5. We conclude in Section 6.
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2 Related Work

Clarke et al. [4] gave an algorithm for credential chain discovery in SPKI/SDSI 2.0 [5].
Their algorithm views discovery as a term-rewriting problem. Each certificate is viewed
as a rewriting rule. Determining whether there is a credential chain that proves a role
expression e has a member D is equivalent to whether there is a way to rewrite e into D.
In order to avoid potential nontermination caused by recursive definitions, the algorithm
in [4] computes a closure the member-sets of all roles in C. This may be suitable when
large numbers of queries are made about a slowly changing credential pool of modest
size. However, when the credential pool is large, or when the frequency of changes to
the credential pool (particularly deletions, such as credential expirations or revocations)
approaches the frequency of queries against the pool, the efficiency of the bottom-up
approach deteriorates rapidly. The algorithm in [4] also requires that evaluation begin
by collecting all credentials in the system at a single location, where the evaluation will
be carried out. This is a common problem with many evaluation techniques. In an open
system, it will typically be the case that a large number of credentials have nothing
to do with the current query. Evaluation methods should not require these irrelevant
credentials to be collected. However, because there are no restrictions on the delega-
tion of authority that credentials can specify, there is no simple means of determining
which credentials are relevant without examining the chains and partial chains in which
they participate. This is the principle our approach uses to avoid collecting irrelevant
credentials.

Jha and Reps [7] pointed out that SDSI string rewriting systems correspond exactly to
the class of string rewriting systems modeled using push-down systems [2], and there-
fore, one could use techniques for model checking pushdown systems to do credential
chain discovery. This approach, however, does not extend to parameters and constraints.

Query Certificate Managers (QCM) [6] and Secure Dynamically Distributed Datalog
(SD3) [8] also consider distributed storage of credentials. The approach in QCM and
SD3 assumes that issuers initially store all credentials and every query is answered by
doing a form of backward search.

Li et al. [12] gave a distributed credential chain discovery algorithm for RT0. Ex-
tending the algorithm in [12] to deal with parameterized roles and constraints turns out
to be quite challenging. One can compare RT0 to a propositional language, and RT C

1
to a first-order language.

As RT languages have a logic programming semantics, chain discovery in RT C
1 is

closely related to deduction in logic programming and deductive databases. Backward
search is top-down evaluation, which is used in Prolog engines; and forward search is
similar to bottom-up evaluation, which is used in deductive databases. Issues such as
tabling and goal-directed evaluation have been extensively studied. For example, top-
down evaluation with tabling is studied in [3], and goal-directed bottom-up evaluation
is studied in [13]. The uniqueness of our problem lies in the fact that it dictates a com-
bination of top-down evaluation and bottom-up evaluation, because of the distributed
storage of credentials. The search algorithm needs to be able to manage searches in both
directions and to pass solutions from the search in one direction to the search in the other
direction. Also, as RT C

1 has constraints; the search algorithm needs to incorporate ideas
from the evaluation algorithms for constraint datalog (e.g., [17]). On the other hand, our
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problem is simpler than the general problem in that our algorithm only needs to handle
four types of logical rules corresponding to the four types of statements in RT .

3 An Example

In this section, we describe an example scenario we will use throughout this paper to
illustrate credentials and policy statements in RT and the distributed credential chain
discovery process. This example is given in Figure 1 and explained below.

DC is a data center that maintains medical data about patients. The data maintained
by it includes patient’s personal information (such as name and birthdate), contact info,
as well as other medical data such as test results and images. These data are labeled with
category information, and the category information is organized in a hierarchy. Some
sample categories are shown in the Figure 1(a). There are 3 categories at the top level:
person, contact, and medical; each contains subcategories. For example, one’s blood
test result will be labeled with the category ‘medical.testresult.blood’ and one’s email
address will be labeled with the category ‘contact.online.email’.

In the discussions below, we distinguish between policy statements and credentials.
Policy statements are issued by DC and used by DC locally, thus they do not need
to digitally signed. On the other hand, credentials are digitally signed, and DC needs
to verify the signatures before accepting them. Other than the above difference, policy
statements and credentials can be handled in exactly the same way in the chain discov-
ery process. Note that credentials support the full generality of policy statements, and
typically must be collected from distributed storage during chain discovery.

Policies. DC’s policy about accessing the data includes the following two rules:

– The primary care physician (PCP) of a patient has access to all information about a
patient.

– The PCP of a patient is allowed to delegate access to medical info to another physi-
cian in an affiliated clinic or hospital.

These two rules are encoded using policy statements (p1) and (p2) in Figure 1(c).
The statement(p1) [ DC.access(pname=?x, data=?y)←−DC.pcp(pname=?x) ] states
that any principal that is the PCP of a patient X can access any data about the patient
X. In the statement ?x and ?y are two variables. DC.access(pname=?x, data=?y) is a
parameterized role. Note that the same variable ?x appears both in the head (the part to
the left of←−) and the body (the part to the right of←−).

The statement (p2) [ DC.access(pname=?x, data=?y)←− DC.delAcc(pname=?x,
data=?y) ∩DC.physician ; ?y  〈medical〉 ] states that if a principal is being delegated
access to certain medical data, and is a physician, then the principal is allowed to access
the data. The symbol ∩ denotes set intersection, if one views each role as the set of
principals who are members of the role; it can also be equivalently viewed as a logical
AND. Note that (p2) includes a constraint ?y  〈medical〉, which means that ?y must
be a subcategory of medical. This syntax for constraints will be explained in Section 4.
One cannot use (p2) to gain access to data other than those under the medical category;
for example, even if a physician is being delegated access to the contact information by
the PCP, the physician still cannot use this rule to gain access to the information.
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(a) The Category Hierarchy for the Patient Data

(b) Principals
DC a data center that maintains medical data
ClinicA a clinic that is affiliated with DC
HospB a hospital that is affiliated with DC
Alice a physician at ClinicA and the PCP of the patient ‘Paul’
Bob a physician at HospB, and is referred by Alice to access image data of ‘Paul’

(c) Policy Statements and Credentials
label statement stored by
(p1) DC.access(pname=?x, data=?y)←−DC.pcp(pname=?x). DC

where pname stands for “patient name”
(p2) DC.access(pname=?x, data=?y)←−

DC.delAcc(pname=?x, data=?y) ∩ DC.physician ; ?y � 〈medical〉. DC
(p3) DC.delAcc(pname=?x, data=?y)←−

DC.pcp(pname=?x).refAcc(pname=?x, data=?y). DC
(p4) DC.pcp(pname=?x)←−DC.affil.pcp(pname=?x). DC
(p5) DC.physician←−DC.affil.physician. DC
(c1) DC.affil←−ClinicA. ClinicA
(c2) DC.affil←−HospB. HospB
(c3) ClinicA.pcp(pname=?x)←−Alice ; ?x =‘Paul’. ClinicA
(c4) HospB.physician←−Bob. Bob
(c5) Alice.refAcc(pname=?x, data=?y)←−Bob ;

?x = ‘Paul’ ∧ ?y � 〈medical.image〉. Bob

(d) The Inference Process:
label conclusion using
(r1) DC.pcp(pname=?x) ; ?x =‘Paul’ � Alice (p4), (c1), (c3)
(r2) DC.physician � Bob. (p5), (c2), (c4)
(r3) DC.delAcc(pname=?x, data=?y) ;

?x = ‘Paul’ ∧ ?y � 〈medical.image〉 � Bob. (p3), (r1), (c5)
(r4) DC.access(pname=?x, data=?y) ;

?x = ‘Paul’ ∧ ?y � 〈medical.image〉 � Bob. (p2), (r3), (r2)

Fig. 1. A Running Example. This example is explained in detail Section 3.

Policies (p1) and (p2) refer to the three roles: DC.delAcc(· · · ), DC.pcp(· · · ), and
DC.physician. They are defined in (p3), (p4), and (p5), respectively. The policy (p3)
states that one can be delegated access to a patient’s data by the PCP of the patient; (p4)
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states that DC delegates the authority to certify the PCP relationship to members of the
role DC.affil; and (p5) is a similar delegation about physicians.

Credentials and Inferences. The data center DC may have many affiliated clinics and
hospitals, each of which may have hundreds of physicians and thousands of patients,
and there may be even more referring relationships. Therefore, in the whole system
there may be millions of credentials. In this example, we consider only the five creden-
tials in Figure 1(c).

Credential (c1) is issued by DC to ClinicA, and asserts that ClinicA is affiliated with
DC. Credential (c3) is issued by ClinicA and asserts that Alice the PCP of the patient
who has patient name1 ‘Paul’. From these two credentials and the policy (p4), one can
infer (r1): Alice is a member of the constrained role DC.pcp(pname=?x); ?x =‘Paul’.
(In Figure 1(c), this is denoted by the syntax DC.pcp(pname=?x); ?x =‘Paul’ �
Alice.) Similarly, from credentials (c2) and (c4), together with the policy (p5), one
can infer (r2): Bob is a member of the role DC.physician.

Credential (c5) is issued by Alice when Alice wants Bob to look at the medical
image date of patient ‘Paul’, maybe for a second opinion. From (p3), (r1), and (c5), one
can infer (r3): Bob is a member of the role DC.delAcc(pname=?x, data=?y); ?x =
‘Paul’ ∧ ?y  〈medical.image〉.

Finally, using (p2), (r3), and (r2), one can infer that Bob is able to get access to the
medical image data of the patient ‘Paul’. For example, if Bob requests to access the
MRI image, then the access should be allowed.

Credential Storage and Discovery. The first question that we need to address to enable
the above access is: Suppose that DC maintains all credentials that are issued by every-
one, when Bob requests access to the MRI image of patient ‘Paul’, how can one make
the authorization decision efficiently? We point out that there may be tens of thousands
of patients in the system, most of which are unrelated to the above access query; there-
fore, even if an algorithm runs in time linear in the total number of credentials, it is
still not efficient enough. We need an algorithm that touches only the small fraction of
credentials that are related to the query.

Furthermore, it is unreasonable to have DC maintain all credentials. For example,
credentials (c3), (c4), and (c5) do not even mention DC. It is illogical to have DC
store these credentials. The second question that we need to address is then how to
find these credentials that are needed. For example, credential (c4) is issued by HospB
and certify that Bob is a physician with HospB. Intuitively, it should be stored either
by HospB or Bob. When we say a principal stores a credential, it means that we can
find the credential once we know the principal. Some system, such as a directory, may
actually house the credential on the principal’s behalf. We require that one can find the
directory’s address once knowing the principal. One approach to do this is to require
the representation of a principal to include both the public key and the directory server
address. See [15] for more discussions on this.

In [12], a storage type system and a notion of well-typed credentials were presented
to address these problems. They guarantee that credential chains can be discovered

1 In practice, patient records are more likely to be identified with unique patient ids, rather than
names. We use patient names here to make the presentation smoother.
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even when credentials are stored in a distributed manner. The types also guide search in
the right direction, avoiding huge fan-outs. See [12] for description of the storage type
system.

4 An Overview of RT C
1

Constraints. RT C
1 uses constraints to support finite expression of authorizations over

infinite or unbounded domains, such as integer ranges or directory hierarchies. Each role
parameter has a data type, which is associated with a constraint domain. For example, in
the role DC.access(pname=?x, data=?y), ?x has the data type corresponding to patient
names and we can use equality constraints of the form ?x = ‘Paul’, and ?y has the data
type corresponding to patient data categories, and we can use constraints of the form
?y  〈medical〉.

Intuitively, a constraint domain is a domain of objects, such as numbers, points in
the plane, or files in a file hierarchy, together with a language for speaking about these
objects. The language is typically defined by a set of first-order constants, function
symbols, and relation symbols. See [10] for a formal definition of constraint domains.
For the purpose of this paper, it suffices to say that each constraint domain has a set of
primitive constraints, and these primitive constraints can be conjuncted to form more
complicated constraints. We now give several classes of constraint domains that have
been defined in RT C

1 .

Tree domains. Each constant of a tree domain takes the form 〈a1.a2. · · · .ak〉. Imagine
a tree in which every edge is labeled with a string value. The constant 〈a1. · · · .ak〉
represents the node for which a1. · · · .ak are the strings on the path from root to
this node. A primitive constraint is of the form x = y or xθ〈a1. · · · .ak〉, in which
x and y are variables and θ ∈ {=, <,≤,≺, }.

The primitive constraint x < 〈a1. · · · .ak〉 means that x is a child of the node
〈a1. · · · .ak〉, and x ≤ 〈a1. · · · .ak〉 means that either x = 〈a1. · · · .ak〉 or x <
〈a1. · · · .ak〉. Similarly, the primitive constraint x ≺ 〈a1. · · · .ak〉 means that x is
a descendant of 〈a1. · · · .ak〉 (i.e., the latter is a prefix of x), and x  〈a1. · · · .ak〉
means that either x = 〈a1. · · · .ak〉 or x ≺ 〈a1. · · · .ak〉.

Tree domains are used in the running example for the hierarchically organized
data categories.

Discrete domains with sets. Such a domain has a set of constants and one predicate
=. A primitive constraint has the form x = y, or x ∈ {c1, . . . , c�}, in which x and
y are variables, and c1, . . . , c� are constants.

In our running example, the patient name is a discrete domain with sets. In our
examples, we use the constraint ?x = ‘Paul’, which is a shorthand for ?x∈{‘Paul’}.

A constraint is a conjunction of primitive constraints, possibly from multiple con-
straint domains. Given a constraint φ(x), where x is a tuple of variables including
all variables that occur free in φ, and a tuple t of constants, we say that φ(t ) is sat-
isfied if each primitive constraint in φ(x) evaluates to true when the variables in it
are replaced with the corresponding constants in t . For example, given the constraint
φ(〈x1, x2〉) = x1 ≤ 〈a1.a2〉∧x2 ∈ (1, 10), and the tuple t = 〈〈a1.a2.a3〉, 2〉, we have
φ(t ) is satisfied, because 〈a1.a2.a3〉 ≤ 〈a1.a2〉 and 2 ∈ (1, 10) both evaluate to true.
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Syntax. In RT C
1 , a ground role is a role in which each parameter is constrained to be

equal to one constant. A ground role defines a set of principals who are members of this
ground role. Given a tuple of type-compatible constants t , we use members(A.r(t ))
informally in the following to refer to the set of principals that are member of A.r(t ).

Credentials define role membership. (Here we use “credentials” to refer to both un-
signed policy statements and to digitally signed credentials.) The variables that occur in
a credential are local to that credential in the sense that they are implicitly universally
quantified at the outermost level of the credential. In the following, x, y , x1, and x2 are
tuples of variables that are all distinct. We now describe the four kinds of credentials in
RT C

1 :

– Type-1: A.r(x)←−B; ψ(x)

A.r(x) is a role with each parameter being a variable, B is a principal, and ψ(x) is
a constraint over the variables in x.

This means that B ∈ members(A.r(t)), for any n-tuple of constants t such that
ψ(t) is satisfied.

– Type-2: A.r(x)←−B.r2(y); ψ(x, y)

A.r(x) and B.r2(y) are both roles, and ψ(x, y) is a constraint (over the vari-
ables in x and y).
This means that

members(A.r(t)) ⊇ members(B.r2(s)),

for every constant-tuple t and s such that ψ(t, s) is satisfied.
– Type-3: A.r(x)←−A.r1(y).r2(z); ψ(x, y , z)

A.r(x) and B.r1(y) are both roles, r2(z) is a role term, and ψ(x, y , z) is a
constraint. We call B.r1(y).r2(z) a linked role.

This means that

members(A.r(t )) ⊇ members(D.r2(w))

for all D ∈ members(B.r1(s)) for every t, s, and w such that ψ(t , s, w) is satis-
fied.

– Type-4: A.r(x0)←−A1.r1(x1) ∩A2.r2(x2);
ψ(x0, x1, x2)

A.r(x0), A1.r1(x1) and A2.r2(x2) are roles, and ψ(x0, x1, x2) is a constraint.
We call A1.r1(x1) ∩A2.r2(x2) a role intersection.

This means that

members(A.r(s0)) ⊇ (members(A1.r1(s1)) ∩ members(A2.r2(s2))),

for all constant-tuple s0, s1, s2 such that ψ(s0, s1, s2) is satisfied.

We use σ to denote a credential, Head(σ) to denote the role to the left of “←−” in
the credential σ, and Body(σ) to denote the list of roles and constraints to the right of
“←−”.
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Semantics. Given a set P credentials, its semantics is formally defined by translating
each credential into a constraint datalog clause [9,10,14,17]. We call the set of all re-
sulting clauses the semantic program of P .

Definition 1 (Semantic Program). Given a set P of policy statements, the semantic
program, SP(P), of P , has one predicate r of arity n + 2 for each n-ary role name r.
Intuitively, r(A, D, t) means that D is a member of the role A.r(t). SP(P) is the set
of all constraint datalog clauses produced from policy statements in P . The Semantic
Program SP(P) can be generated from P as follows.

For each A.r(x)←−D; φ(x) in P , add
r(A, D, x) :− φ(x) (m1)

For each A.r(x)←−B.r1(y); φ(x, y) in P , add
r(A, z1, x) :− r1(B, z2, y), z1 = z2, φ(x, y) (m2)

For each A.r(x)←−A.r1(y).r2(z); φ(x, y , z) in P , add
r(A, z′0, x) :− r1(A, y′

1, y), r2(y′
2, z

′
2, z), y′

1 = y′
2, z

′
0 = z′2, φ(x, y , z) (m3)

For each A.r(x)←−B1.r1(y) ∩B2.r2(z); φ(x, y , z) in P , add
r(A, z′0, z) :− r1(B1, z

′
1, y), r2(B2, z

′
2, z), z′0 = z′1, z

′
1 = z′2, φ(x, y , z) (m4)

An algorithm for evaluating a semantic program (which is a constraint Datalog pro-
gram) is given in [10]. The algorithm requires using existential quantifier elimination to
project constraints onto variables of interest. It is shown in [10] that existential quanti-
fier elimination can be done efficiently in the three constraint domains mentioned in
Section 4 and that the evaluation of constraint datalog programs such as SP(P) is
tractable when using these domains. However, the algorithm in [10] is a bottom-up
algorithm that computes all logical implications of a semantic program. The algorithm
is not goal-directed; thus, it is inefficient in practice and cannot deal with distributed
storage of credentials.

5 Description of the Algorithms

Given a set of RT C
1 credentials, the goal of our algorithms is to answer the next three

common kinds of queries:

1. Given a constrained role A.r(x); ψ(x), determine the set of principals that are
members of the given constrained role and the associated constraints. More pre-
cisely, this query asks for a set of principal/constraint pairs Θ such that
(a) 〈D, ϕ(x)〉 ∈ Θ implies ϕ(x)⇒ ψ(x) and,
(b) for each principal D and each tuple of constants t such that ψ(t ) is satisfied,

SP(P) |= r(A, D, t ) if and only if there exists 〈D, ϕ(x)〉 ∈ Θ such that ϕ(t )
is satisfied.

2. Given a principal D, determine a set of constrained roles that D is a member of.
This query asks for a set Λ of constrained roles such that
(a) A.r(x); ϕ(x) ∈ Λ implies ϕ(x) ⇒ ψ(x), and
(b) for each tuple of constants t , SP(P) |= r(A, D, t ) if and only if there exists

A.r(x); ϕ(x) ∈ Λ such that ϕ(t ) is satisfied.
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3. Given a constrained role A.r(x); ψ(x) and a principal D, determine the set of
constraints under which D is a member of A.r(x); ψ(x). More precisely, this query
asks for a set of constraints Ω such that
(a) ϕ(x) ∈ Ω implies ϕ(x)⇒ ψ(x), and
(b) for each tuple of constants t such that ψ(t ) is satisfied, SP(P) |= r(A, D, t )

if and only if there exists ϕ(x) ∈ Ω such that ϕ(t ) is satisfied.

To answer queries of the first form, we can apply a backward search algorithm start-
ing from the constrained role A.r(x); ψ(x). For queries of the second form, we can
apply a forward search algorithm starting from the principal D. For queries of the third
form, we can use either a backward search or a forward search. For queries of the third
form, we also have the alternative of using a bidirectional search algorithm, which si-
multaneously searches backwards from A.r(x); ψ(x) and forwards from D.

When credential storage is distributed, the bidirectional search algorithm can find
some chains that cannot be found by either forward or backward search alone.

5.1 The Backward Search Algorithm

The backward search algorithm constructs a proof graph, each node of which is given
by (and represents) a constrained role A.r(x); ψ(x). (The nodes in this proof graph are
called role nodes. This is the only kind of node constructed by the backwards search
algorithm; the forward search algorithm also uses “principal nodes,” which, as their
name suggests, represent principals.)

Role nodes. Each role node stores a set of solutions. A solution comprises a principal
and a constraint. The algorithm maintains the following invariant. If the
node A.r(x); ψ(x) has a solution 〈D, ϕ(x)〉, then ϕ(x) ⇒ ψ(x) and SP(P) |=
r(A, D, t ) for each t such that ϕ(t ) is satisfied. When the algorithm terminates,
it will also be the case that for each t such that SP(P) |= r(A, D, t ), the node
A.r(x); ψ(x) has a solution 〈D, ϕ(x)〉 such that ϕ(t ) is satisfied. Thus, queries
of type 1 can be answered by taking Θ to be the set of solutions associated with
A.r(x); ψ(x). Similarly, queries of type 3 can be answered by taking Ω to be the set
of constraints ϕ(x) such that 〈D, ϕ(x)〉 is a solution associated with A.r(x); ψ(x).
When there are certain kinds of edges between nodes, solutions can be propagated
through the edges. Whenever a solution is about to be added to a node, we first
check whether the solution is implied by a solution that already exists. A solution
〈D, ϕ1(x)〉 is implied by a solution 〈D, ϕ2(x)〉 if and only if ϕ1(x) ⇒ ϕ2(x). If
so, then we do not add the new solution. Otherwise, the new solution is added, and
the solution is propagated through outgoing edges.

The backward search algorithm maintains a queue of nodes that require further con-
sideration, called the backward processing queue. The algorithm removes nodes from
the queue one by one and processes them, repeating this until the queue is empty. Both
the proof graph and the queue initially contain just one node, which corresponds to the
query role. The algorithm also maintains a set of backward expanded nodes, which is
initially empty.
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To process a node η1 = A.r(x); ψ1(x), the algorithm does the following:

1. For each backward expanded node in the graph that has the form η2 = A.r(x)
ψ2(x), it checks whether ψ1(x) ⇒ ψ2(x). If so, we know that all solutions for η1
are also solutions to η2, in which case we say that the node η2 subsumes η1. The
algorithm adds a specialization edge from η2 to η1.

The effect of this edge is that each solution 〈D, ϕ2(x)〉 that is currently associ-
ated with or subsequently added to η2 is propagated to η1 as follows: let ϕ1(x) =
ψ1(x) ∧ ϕ2(x); if ϕ1(x) is satisfiable, then add the solution 〈D, ϕ1(x)〉 to η1.

2. If no backward expanded node subsumes η1 = A.r(x); ψ1(x), then the algorithm
adds η1 to the set of backward expanded nodes, and examines all credentials defin-
ing A.r(x). For each such credential, there are four cases.

– Case-1: The credential takes the form
A.r(x)←−B; ψ2(x)

Let ϕ(x)=ψ1(x)∧ψ2(x); if ϕ(x) is satisfiable, then add the solution 〈B, ϕ(x)〉
to the node η1.

– Case-2: The credential takes the form
A.r(x)←−B.r2(y); ψ2(x, y)

Let ψ3(y) = ∃x [ ψ1(x) ∧ ψ2(x, y) ]. If ψ3(y) is satisfiable (which can be
determined by the existential quantifier elimination procedures of the constraint
domains used in ψ3), create a node η2 = B.r2(y); ψ3(y), add it to the queue,
and add an implication edge from η2 to η1.

The effect of this edge is that each solution [D, ϕ2(y)] currently associated
with or subsequently added to the node η2 is propagated to η1 as follows. Let
ϕ1(x) = ∃y [ ψ1(x)∧ψ2(x, y)∧ϕ2(y) ]. If ϕ1(x) is satisfiable, then add the
solution 〈D, ϕ1(x)〉 to the node η1.

– Case-3: The credential takes the form
A.r(x)←−A.r1(y).r2(z); ψ2(x, y , z)

Let ψ3(y) = ∃x ∃z [ ψ1(x) ∧ ψ2(x, y , z) ]. If ψ3(y) is satisfiable, then cre-
ate a node η2 = A.r1(y); ψ3(y), add it to the queue, and create a backward
monitoring edge from η2 to η1.

The effect of the backward monitoring edge is that for each solution 〈B, ϕ1(y)〉
currently associated with or subsequently added to the node η2, the algorithm
does the following. Let ψ4(z) = ∃x ∃y [ ψ1(x) ∧ ψ2(x, y , z) ∧ ϕ1(y) ]. If
ψ4(z) is satisfiable, create a node η3 = B.r2(z); ψ4(z), add it to the queue,
and create a linked implication edge from η3 to η1 with ϕ1(y) attached to it.

The linked implication edge from η3 to η1 does the following. Whenever a
solution 〈D, ϕ3(z))〉 is added to the node η3, it is propagate to η1 as follows.
Let ϕ5(x) = ∃y ∃z [ ψ1(x) ∧ ψ2(x, y , z) ∧ ϕ3(z) ∧ ϕ1(y) ]. If ϕ5(z) is
satisfiable, then add the solution 〈D, ϕ5(x)〉 to the node η1.

– Case-4: The credential takes the form
A.r(x)←−B1.r1(y) ∩B2.r2(z); ψ2(x, y , z)

Let ψ3(y) = ∃x ∃z [ ψ1(x) ∧ ψ2(x, y , z) ], ψ4(z) = ∃x ∃y [ ψ1(x) ∧
ψ2(x, y , z) ]. If both ψ3(y) and ψ4(z) are satisfiable, then create two nodes
η2 = B1.r1(y); ψ3(y) and η3 = B2.r2(z); ψ4(z), add them to the queue,
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create an intersection edge from η2 to η1 with η3 attached to it, and create an
intersection edge from η3 to η1 with η2 attached to it.

The effect of the intersection edge from η2 to η1 is that for each solution
〈D, ϕ1(y)〉 currently associated with or subsequently added to the node η2,
the algorithm does the following. It examines the solutions of the node η3. For
each solution of η3 taking the form 〈D, ϕ2(z)〉, let ϕ5(x) = ∃y ∃z [ ψ1(x) ∧
ψ2(x, y , z) ∧ ϕ1(y) ∧ ϕ2(z) ]. If ϕ5(x) is satisfiable, the algorithm adds the
solution 〈D, ϕ5(x)〉 to the node η1.

5.2 The Forward Search Algorithm

The forward search algorithm constructs a proof graph that contains the following two
kinds of nodes.

Principal nodes. Each principal node corresponds to a principal; there is only one prin-
cipal node for each principal.

Each principal node has a set of solutions. Each solution in a principal node is a
constrained role. The invariant is that when the principal D has the solution A.r(x);
ϕ(x), then we have SP(P) |= r(A, D, t ) for all t such that ϕ(x) is satisfied.

Furthermore, when the algorithm terminates, it is also true that for each t such
that SP(P) |= r(A, D, t ), the node D has a solution 〈A.r(x); ϕ(x)〉 such that
ϕ(t ) is satisfied. Thus, queries of type 2 can be answered by taking Λ to be the
set of solutions associated with D. Similarly, queries of type 3 can be answered by
taking Ω to be the set of constraints ϕ(x) such that 〈A.r(x); ϕ(x)〉 is a solution
associated with D.

Role nodes. In the forward search algorithm, a role node is similar to that in the back-
ward search algorithm. Each such node represents a constrained role A.r(x); ψ(x)
and contains a list of solutions of the form 〈D, ϕ(x)〉. The invariant here is as fol-
lows: if the node A.r(x); ψ(x) has a solution 〈D, ϕ(x)〉, then ϕ(x) ⇒ ψ(x) and
SP(P) |= r(A, D, t ) for each t such that ϕ(t ) is satisfied.

Whenever a solution 〈D, ϕ(x)〉 is added to a role node A.r(x); ψ(x); it will
find the principal node for D (and create one if one does not already exist), and
add A.r(x); ϕ(x) as a solution to D. Notice that the invariant on the latter solution
follows from the invariant on the former.

The forward search algorithm maintains a forward processing queue and proceeds
by removing nodes from the queue and processing them one by one until the queue
is empty. Initially, both the proof graph and the queue contain just a principal node.
The forward search algorithm also maintains a set of forward expanded nodes, which is
initially empty. Nodes are process as follows:

Forward Processing a Principal Node D

1. Consider all Type-1 credentials with the principal D in their bodies. For each such
A.r(x)←−D; ψ(x), the algorithm creates a role node η1 = A.r(x); ψ(x), adds
η1 to the forward processing queue, and adds the solution 〈D, ψ(x)〉 to η1.

2. Each time a principal node D receives a new solution, the algorithm examines all
credentials of Type-4. For each such A.r(x)←−B1.r1(y)∩B2.r2(z); ψ1(x, y , z),
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if the node D has two forward solutions taking the forms {B1.r1(y); ϕ1(y)} and
{B2.r2(z); ϕ2(z)}, respectively, and one of these is the new solution received by
D, then the algorithm proceeds as follows. Let ψ2(x) = ∃y ∃z [ ψ1(x, y , z) ∧
ϕ1(y) ∧ ϕ2(z) ]. If ψ2(x) is satisfiable, the algorithm creates the node η =
A.r(x); ψ2(x), adds η to the forward processing queue, and adds the solution
〈D, ψ2(x)〉 to the node η.

Forward processing a role node η2 = B.r2(y); ψ(y).
In the following the effects of specialization, implication, and linked implication

edges are to propagate solutions from one role node to another just as they do in the
backward search algorithm.

1. If there exists a forward expanded node η1 = B.r2(y); ψ′(y) such that ψ(y) ⇒
ψ′(y), then add a specialization edge from η2 to η1. The node η2 is removed from
the queue.

2. If the node η2 is still in the queue, add it to the set of forward expanded nodes, and
examine all Type-2 credentials with B.r2 in the bodies. For each such credential
A.r(x)←−B.r2(y); ψ2(x, y), let ψ1(x) = ∃y [ ψ(y) ∧ ψ2(x, y) ]. If ψ1(x) is
satisfiable, create a role node η1 = A.r1(x); ψ1(x), add it to the forward processing
queue, and add an implication edge from η2 to η1.

3. Create a principal node η1 = B. Add a forward monitoring edge from η2 to η1.
The effect of the forward monitoring edge is such that whenever the node η1
receives a forward solution A.r1(x); ϕ1(x), the algorithm examines all creden-
tials of Type-3 with A.r1(·).r2(·) in their bodies. For each such A.r(z) ←−
A.r1(x).r2(y); ψ1(x, y , z), the algorithm proceeds as follows. Let ψ2(z) =
∃x ∃y [ ϕ1(x) ∧ ψ(y) ∧ ψ1(x, y , z) ]. If ψ2(z) is satisfiable, then create a node
η3 = A.r(z); ψ2(z), add it to the forward processing queue, and add a linked
implication edge from η2 to η3 with ϕ1(x) attached to it.

5.3 Bidirectional Search Algorithm

The bidirectional search algorithm integrates the backward and forward searches. The
backward search algorithm and the forward search algorithm are executed simultane-
ously, starting with the query role and the query principal, respectively. As these two
searches progress, they typically construct some identical or related nodes. When this
occurs, the bidirectional search transfers solutions between the backward proof graph
and the forward proof graph. We transfer the solutions as follows:

– Transfer solutions from the backward proof graph to the forward proof graph:
Whenever the role node η1 = A.r(x); ψ(x) in the backward proof graph receives
a solution, say 〈D, ϕ(x)〉, the algorithm creates the principal node η2 = D in the
forward search graph, and adds the forward solution A.r(x); ϕ(x) to the node η2.

– Transfer solutions from the forward proof graph to the backward proof graph:
For each pair of role nodes η1 = A.r(x); ψ1(x) in the forward graph and η2 =
A.r(x); ψ2(x) in the backward graph, if ψ3(x) = ψ1(x) ∧ ψ2(x) is satisfiable,
then add a bidirectional monitoring edge from η1 to η2.

The effect of the bidirectional monitoring edge is that whenever the node η1
receives a solution 〈D, ϕ1(x)〉, let ϕ2(x) = ϕ1(x)∧ψ2(x). If ϕ2(x) is satisfiable,
then add the solution 〈D, ϕ2(x)〉 to the node η2.
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Besides transferring the solutions between the backward proof graph and forward
proof graph, we need to handle the role intersection specially.

– In the backward proof graph, if there is an intersection edge from η2 to η1, whenever
the node η2 receives a solution, say 〈D, ϕ(x)〉, the algorithm adds the principal
node η3 = D to the forward processing queue.

– In the forward proof graph, whenever the principal node η1 = D receives a forward
solution, say B1.r1(y); ϕ(y), the algorithm examines all credentials of Type-4. For
each credential having either the formA.r(x)←−B1.r1(y)∩B2.r2(z); ψ1(x, y , z)
or the form A.r(x)←−B2.r2(z) ∩B1.r1(y); ψ1(x, y , z), the algorithm proceeds
as follows. Let ψ2(z) = ∃x ∃y [ ψ1(x, y , z) ∧ ϕ(y)]. If ψ2(x) is satisfiable, the
algorithm creates the role node η2 = B.r2(z); ψ2(z) in the backward proof graph
and adds η2 to the backward processing queue.

6 Conclusions

RT C
1 is a language in the RT family of Role-based Trust-management languages. It

features rich delegation structures, parameterized roles, and constraints. In this paper
we present a goal-directed distributed credential chain discovery algorithm for RT C

1 .
We describe this algorithm in detail and illustrate this algorithm with an example.

Comparing it with existing work on logic programming and deductive databases, our
algorithm is a combination of the logic-programming style top-down query evaluation
with tabling [3] (corresponding to our backward search) and the deductive database
style bottom-up evaluation (corresponding to our forward search). Our algorithm uses
hints provided through the storage types to determine which directions to use for a
particular part of the proof; this enables the algorithm to touch only those credentials
that are related to the query, which are likely to be a small fraction of all the credentials
in the system.
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Abstract. SAM is a processor extension used to protect execution of
dedicated programs by preventing data disclosure and program manipu-
lations in a multitasking environment. This paper presents an operating
system design based on the Linux kernel for SAM. The design splits the
kernel into a very small protected part and an unprotected part used
by drivers and high level functions. Using this kernel protected and un-
protected programs can be executed in parallel without diminishing the
protection. The protection mechanism does not slow down the execution
of unprotected programs, since it is only active during the execution of
protected programs.

Keywords: Secure Operating Systems, Certified Execution, Encrypted
Programs, Secure Processors.

1 Introduction

Protecting software is becoming more important for the future and, therefore,
efficient protection schemes are required. Ideally, these schemes should provide
a strong protection while keeping to a minimum the number of required mod-
ifications at the software layer (both operating system and user applications),
and in the hardware layer as well. Some processor extensions, such as AEGIS [1]
and SAM [2,3], have been so far proposed, providing a secure execution environ-
ment for programs. A program running inside a secure execution environment
is safe against both software attacks (originating, for example, from a system
administrator or even from a malicious kernel) and hardware attacks (for ex-
ample, hardware supported sniffing on memory bus to bypass operating system
protections).

A number of different applications can benefit from these extensions. One of
them is the implementation of efficient copy protection schemes, both for static
data and for instructions. Another important field is the case of remote execution
of programs such as in GRID computing, since then programs can be executed on
many different computers spread all over the world, and the submitter of these
programs may not trust all the remote systems. Using a security extension, the
GRID can be used even for sensitive simulation data or secret algorithms.

This paper presents an organized description of the modifications needed at
the operating system level in order to leverage the security capabilities provided
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c© Springer-Verlag Berlin Heidelberg 2006



An Operating System Design for the Security Architecture 175

by the SAM architecture. To test the performance of the complete system, a
simulation environment has been developed, and several simulations have been
conducted.

The paper is organized as follows: Section 2 provides a brief overview about
the SAM security architecture. Other security architectures are presented in
section 3. Section 4 presents a detailed description of the operating system mod-
ifications (based on a SPARC-Linux kernel). In sections 5 and 6, the simulation
environment and the computed results are presented. Last, some conclusions in
section 7 close the paper.

2 SAM Overview

SAM provides a secure execution environment for programs based on a standard
processor design and a standard operating system. SAM aims at preventing
tampering attempts as well as data and program disclosure.

The next paragraphs provide a brief description of SAM’s main attributes. A
more detailed architectural description can be found in [2] and the design of the
caches in [3].
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Fig. 1. Memory Layout

The current SAM processor design is based on a
SPARC V8 compatible CPU [4] and was intended to
be an optional extension. Hence, no secured boot-
strapping or persistent trusted operating system
core is required to run SAM protected programs.
Both protected and normal unprotected programs
can be executed in a multitasking environment and
small parts of the operating system are protected
only while executing protected programs. There-
fore, there is no overhead when only unprotected
programs are executed since then a SAM enhanced
processor behaves like a standard processor. As soon
as a protected program is started, SAM begins to
verify the program related data and the protected
part of the operating system.

Each verification error or security access viola-
tion results in an immediate program termination
and the deletion of all data, including program re-
lated keys. The processor then issues a special SAM
TRAP to inform the kernel about the fault and the
reasons.

The processor core consists of an enhanced ALU supporting additional se-
curity instructions, an L1 data and instruction cache as well as an L2 cache.
All data inside this core is trusted whereas all data outside is assumed to be
untrusted. As described in [3], the L2 cache is endowed with a checked context
dictionary to improve the access to shared protected memory. These dictionary
entries consists of dynamically assigned context numbers a cache line can be
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checked for. Each cache lines TAG memory has a corresponding bit for each en-
try in the dictionary to reduce the number of re-verifications for shared protected
memory.

SAM uses a per process fixed virtual memory layout (see figure 1) with two
partially overlapping virtual address ranges. In the protected region all data is
protected and verified by hash values; in the encrypted region, all data is ad-
ditionally encrypted. All user instructions located in protected memory regions
(protected instructions) are granted access permissions, so that they are sup-
plied with the decrypted values when they access an address located inside an
encrypted region. Any other unprotected instruction can not access the cleartext
data.

The status of a SPARC processor is maintained using a set of flags, grouped
together in a status register, such as the the supervisor flag (S), set when the
processor is in supervisor mode. SAM introduces a number of additional flags,
necessary to support the secure execution environment and to represent its cur-
rent protection status. These flags, which are only used when a program is exe-
cuting in protected mode, are the following:

– Protected Process (PP): Set for a protected process.
– Protected TRAP (PT): Set when executing instructions after a TRAP of a

protected program.
– Protected Data Valid (PV): Set if all data has been successfully verified.
– Protected Memory (PM): Set if the current instruction is located in protected

memory.
– Protected Instruction (PI): Set depending on the value of other flags, follow-

ing this boolean equation:

PI = PM ∧ (¬S ∨ PT).

This flag is passed to the cache to mark protected instructions and used to
control register access as described below.

On entering a TRAP, the processor sets the S flag and the PT flag, and resets
them on returning back to user mode with a RETT1.

The following two new instructions are intended to be executed in the pro-
tected area of a protected program2:

– Secure TRAP (ST): Set or clears the PT flag based on the register value of
the operand to request or drop additional privileges. It is used to mark the
end (STE) or the beginning (STS) of a secure TRAP and can be executed in
supervisor mode only.

– Register Protection (RPROT): Used to enable or disable register protection for
any register in the current register set by using a mask as an operand.

The SAM architecture described in [2] has been analyzed with regard to the
operating system needs. This analysis showed that the architecture could be
1 Return from TRAP.
2 Outside the protected area they behave like a NOP.
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simplified in many ways without affecting security. The following simplifications
have been assumed in the simulation environment: To begin with, the number
of additional instructions has been reduced from nine to two. Then, the register
protection has been simplified so that the current implementation uses only one
additional bit for each physical register. This bit is set to the current value of
PI on register write operations. For a register read operation to be successful,
both its associated bit and the PI flag must be equal. Otherwise, the processor
reports a security access violation.

The SPARC architecture stores the beginning of the TRAP table in the TRAP
table base register (TBR). SAM XORes this address with the secret program
key k [2] to bound the program to the location of the protected TRAP table.

A SAM executable is stored in an ELF file like any other executable. But
this executable is generated by a “security linker”. It reads a statically linked
file as input, encrypts it and stores the corresponding sparse hash tree ([5,6])
within the executable. The hash tree covers not only the program code and
data, but additionally a small lower part of the operating system. This part
contains the trap table and is responsible for basic trap handling like storing
or loading registers on or from the stack and saving the program state. The
processor ensures that these functions are located in protected memory. As a
result, a program is bound to a specific processor and operating system version.

3 Related Work

Intel released their preliminary architecture specification of the LaGrande tech-
nology in the year 2006 [7,8]. This technology is connected with Intel’s virtu-
alization attempts to provide a hardware protected operating system running
in parallel to an unprotected one. LaGrande consists of a processor extension
which works in conjunction with a modified chipset, input and output devices to
provide a secure execution environment, for example for the Next Generation Se-
cure Computing Base from Microsoft [9], with protected input and output paths.
The whole boot process including the BIOS and the bootloaders are protected
as well. This results in a very complex system with a huge protected codebase
which complicates code auditing. Memory contents are not encrypted, but the
chipset is used to control memory access.

Closely related to this architecture is the Trusted Platform Module (TPM) [10]
developed by the Trusted Computing Group [11]. The module itself is not able to
encrypt memory contents. This has to be done in software by the main proces-
sor. The module can only be used to store small amounts of information like
encryption keys. Additionally, a TPM provides cryptographic functions, which
can be used to protect the boot process and for identification purposes.

Another more related approach is the AEGIS architecture [1], a successor
of the XOM architecture [12]. As SAM, AEGIS provides transparent data and
instruction encryption, decryption and verification of memory contents.

In AEGIS, a program consists of unencrypted, encrypted and protected parts
and the architecture provides secure transitions between these parts. Variables
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and functions can be assigned to these regions at compile time by the program-
mer. Hence, the programmer needs a profound knowledge about possible attacks
to not leak secure data.

In order to prevent software based attacks, AEGIS requires a special boot-
strapping mechanism to load a security kernel that has access to the page table
and other sensitive information. Memory contents are protected by hash trees
based on their physical address. This requires free pages at subsequent physical
addresses and precludes paging of these data without reencrypting them.

Each time a new program is started, AEGIS first computes a hash over all
secured program related data. This hash is then used in conjunction with proces-
sor and operating system hashes to decrypt the program. The initial hashing of
a program is a time consuming and complex task, which has been implemented
by executing internal microcode instead of a direct hardware implementation.

In addition to the hash values, AEGIS suggests the usage of 32 bit counters
to encrypt data, which implies approx. 6 % additional memory consumption.
This potentially gives rise to more misses during memory operations. Depending
on the number of memory access, this counter can overflow resulting in a time-
consuming reencryption, using a new key, of all program related data. Longer
counters can prevent this for most programs, but they consume more memory.

Compared to the introduced security architectures SAM does not require a
fully protected boot process or modifications to other parts of a computer system
than the processor. SAM does require a partly protected operating system, but
this part is very small and the protection overhead is minimal, especially when
considering that there is no overhead for unprotected programs. -

4 Operating System Design

This section first gives an overview about the basic tasks of the Linux operating
system. The subsections point out possible threats and a description of the ad-
justments to the SPARC-Linux kernel to thwart these. These modifications are
kept to a minimum.

4.1 Tasks of Operating Systems

Loosely speaking, an operating system is required whenever resources of any kind
must be shared by several concurrently-running processes. In a time-sharing
scheme, the operating system scheduler assigns time slots to each runnable
process, during which the process is able to execute its own instructions. In
several instances (at the end of a time slot, whenever a hardware interrupt is
raised or each time the program wants to invoke a system call), the program is
interrupted and enters supervisor mode.

On SPARC computers the interrupts are called TRAP’s [4]. During a TRAP,
the CPU stores the program counters (PC and NPC) in registers and then the
operating system3 typically saves the interrupted program specific data —for
3 The following explanations are based on the Linux kernel.
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instance, the contents of a register sets— on the program stack and the current
CPU status in kernel structures. Then, the stack pointer is redirected from the
user space stack to the kernel stack so that the kernel can safely execute its own
code without affecting, or being affected by, the user program. Note that the
context remains the same, even when executing instructions in kernel memory
area. This allows the kernel to access arbitrary data from user space, which is
normally required for parameter passing between user space and kernel space.

After the kernel has finished its tasks, the scheduler selects the next process to
be executed. If the selected one is different from the previously executed process,
the kernel performs a context switch to change the memory mapping.

4.2 Threats

The SAM architecture provides a hardware based protection against external
attacks, such as memory modifications and bus sniffing [3]. Another class of
attacks are software based attacks originated by the operating system. As de-
scribed in the subsection 4.1 the operating system is involved in many tasks and
can harm the program, for example, in the following ways:

– Program counter manipulations : The kernel stores the program counters (PC
and NPC) on each TRAP to be able to return to the interrupted instruction.
A malicious kernel can modify these values to alter the program flow.

– Register manipulations : A modification of register values can alter the pro-
gram flow as well as resulting in wrong computations.

– Register value disclosure: Since the operating system has all access permis-
sions, it could disclose the contents of the register, which should really be
kept secret. This is all the more important for a Load/Store architecture,
such as SPARC, since then many operands are contained in registers.

– Register mapping manipulations: The SPARC architecture uses several phys-
ical registers mapped to a (normally much lower) number of logical registers.
If a malicious kernel is able to change these mapping, even without directly
changing the register values, the result is the same as for the register ma-
nipulations case.

– Forging of memory contents : There are several places where the kernel is
able to forge memory contents. For example:
• when passing return values to the user program after a system call,
• when accessing external devices,
• when setting up the environment variables and command line parame-

ters,
• by manipulating the page mapping.

– Manipulating system call return values: Most system calls return values ei-
ther in registers or in memory. These values can be tampered with by the
operating system to manipulate the program.

– Tracking the accessed memory area: The operating system can record all
accessed pages using a manipulated page table by forcing a page fault TRAP
for each executed instruction.
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Unlike a hardware-only approach, which would result in a more complex de-
sign and less flexibility, SAM exploits a combined hard- and software approach,
described in the following subsections. Note that the following sections only ap-
ply to protected programs.

4.3 Protected Kernel

Along with some changes in the hardware, SAM requires that a (small) part of
the operating system is protected and checked automatically by hardware. This
part resides in protected memory and, therefore, is protected by hash values, to
be provided by the protected program. The protected part has a size of roughly
a mere 64 kByte and is located directly over the user stack, at the beginning of
the kernel virtual address space. Its main purpose is to ensure a secure transition
between the protected user mode and the (mostly) unprotected kernel mode. Us-
ing this design, the major part of the operating system kernel, including drivers,
can remain unprotected. As a side effect, kernel upgrades, such as bug fixes or
additional drivers, are possible without affecting the protected part.

Besides these hash values, each protected program has to provide one addi-
tional page located in virtual user space directly before the protected kernel.
This page mostly consists of zeros and is used as a protected compartment for
the corresponding program by the kernel. All data written to this page is pro-
tected by SAM, since it belongs to the protected and encrypted area. For this
reason, the kernel must ensure that this page cannot be paged out. The “security
linker” creates this page before encrypting the program and initializes it with
the entry point of the program. Then, this page is encrypted along with the rest
of the program.

Each time a protected executable is to be started the kernel performs the
following steps (cf. [2,3] for more details):

1. Identification of the executable by reading the target architecture. If the
executable is not protected, it is loaded in the same manner as an unmodi-
fied kernel does. The following steps are performed only if the executable is
protected.

2. Assigning an unused secure context number to the new program.
3. Reading the encrypted program dependent secret key from the executable

and passing it to the RSA unit for decryption.
4. Loading of the protected program like any other unprotected program by

creating the page mappings. At this time the required parts of the sparse
hash tree are mapped to memory as well as the protected compartment. This
is done by the ELF loader in the Linux kernel.

5. When the RSA unit has successfully decrypted the key, the cache automat-
ically loads and decrypts the root hash.

6. Switching to the new secure context to execute an initialization routine, used
to check and copy command line parameters and environment variables to
the protected stack. A second call of this initialization routine is prevented
by setting a lock in the protected compartment.
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7. Now the new program is ready to be scheduled and will be started by dis-
patching to the instruction located at the program entry point stored at
program linking time.

These steps ensure that the kernel can call the protected initialization routine
only one time and the program is started at the intended position.

4.4 User-Supervisor Mode Transitions

As described in the last subsections, the operating system is involved in TRAP
handling. To prevent TRAP-based attacks, the SAM processor hardware verifies
the following conditions for all protected programs when invoking a TRAP and
terminates the program immediately, if anyone condition is not satisfied:

1. Protected TRAP table: The TRAP table must reside inside the protected
area of the program.

2. Protected TRAP instructions : All instructions executed in the kernel must
be protected, until the ST instruction clears the PT flag. Then, the protected
part of the kernel can be quit.

3. Protected S (supervisor) bit : This bit can be cleared only when the PI bit is
set. Hence, the RETT instruction has to be located in the protected part of
the operating system.

4. Base address of TRAP table: Write access to the TRAP base register is
prevented as long as protected programs are running.

These conditions are used to ensure secure transitions between user and kernel
space only. A TRAP for a protected program can be divided into the following
transitions:

1. User space to kernel space: This transition requires the TRAP table to be lo-
cated in protected memory. As a result, the executed kernel code is protected
and has full access to registers and memory contents.

2. Protected kernel to unprotected kernel instructions: This transition is pre-
luded with the execution of the STE instruction to clear the PT flag. Hence,
this instruction is to be called before leaving the protected area.

3. Unprotected kernel to protected kernel: With this transition the protected
part can be reentered by executing the STS instruction again, thus setting
the PT flag.

4. Kernel space to user space: This transition is performed by executing the
RETT instruction.

These transitions can prevent external manipulations only if the state of the
program can not be modified between the second and the third transition. To
prevent these modifications, all sensitive data is stored in protected and en-
crypted memory. This data consists, at least, of the program counters (PC and
NPC) of the next instructions to execute and the processor state registers. All
register values are stored on the stack located in protected and encrypted mem-
ory, too. In this way, SAM is able to prevent modifications of any of these values
while the program is interrupted and unprotected data is executed.
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As stated before, when the kernel has finished its tasks, the scheduler se-
lects the next process to execute. If the selected candidate is other than the
interrupted process, a context switch is performed. At each context switch all
remaining protected registers are deleted and the protection bits cleared. If the
newly selected process is protected, the kernel performs the third transition in
order to restore the program state and register values.

Another possible attack to alter the execution of protected programs would be
a direct execution of code by jumping into the user program or somewhere into
a protected kernel area. But this is prevented by the hardware, since protected
instructions in supervisor mode without the PT flag set have no privileges to
access encrypted memory or protected registers. Dropping privileges by clearing
the supervisor flag in the PSR or by executing a RETT instruction with a cleared
PT flag is also forbidden. Hence, a protected user program can only be resumed
by following the protected kernel path.

4.5 User Mode

SAM requires only small user mode changes. Compared to an unprotected pro-
gram, most parts of a program can remain unchanged. The only major difference
consists in the system call handling. With each system call, some parameters are
passed to the kernel in registers and memory mapped structures. Since major
parts of the kernel are located in unprotected areas, direct access to protected
registers and protected memory areas is impossible. Fortunately, all system calls
are covered by libraries, primarily the libc on Unix compatible systems. So, it
mostly suffices to adjust the libraries and the kernel to allow parameter passing,
leaving the user code unmodified.

Access to register values can be granted by executing the RPROT instruction
in the protected part of the kernel. Just before returning from a system call the
registers containing the unprotected return values can be re-protected using the
RPROT instruction again.

Data passed in memory to the kernel and vice versa needs a special handling
because this data has to be located in unprotected memory to be readable and
writable by the kernel. To achieve this, the libc can copy all data into protected
memory and adjust the pointers to it before executing the system call. This
works in most cases, but it performs poorly. A better solution, which requires
modifications to existing code, is the use of a special malloc function provided
by the libc returning a pointer to an unprotected memory area. Then, the user
program can use this memory area to store all data intended to be passed to the
kernel.

The new instructions introduced by SAM are not used in user space. Hence,
no modified compiler or assembler is required to write SAM programs.

4.6 Summary

This subsection summarizes how the threats listed in section 4.2 are prevented
by SAM :
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– Program counter manipulations : The program counter is stored in the pro-
tected compartment and cannot be modified by unprotected instructions.

– Register manipulations : Registers are stored on the user stack which is pro-
tected by hash values.

– Register value disclosure: The hardware register protection prevents reading
protected registers outside the protected kernel area.

– Register mapping manipulations: The register mapping is stored in the pro-
tected compartment as well.

– Forging of memory contents : SAM requires that a program verifies all data
read from unprotected sources. All data in protected regions is protected
by hashes (which prevent page table attacks) or written and verified by the
protected part of the kernel (such as the environment variables and command
line parameters).

– Manipulating system call return values: This kind of attack cannot be pre-
vented by the current design, because data from unprotected sources can
always be manipulated. Fortunately, the number of different system calls
used by most programs is fairly low and most direct attacks, such as forged
pointers or sizes of these system calls, can be detected by the libc.

– Tracking the accessed memory area: This attack cannot be prevented as well
but, since SAM does not protect the address bus, a prevention of this attack
at the operating system level is useless. An attacker could always get the
address information by sniffing on the address bus.

5 Simulation Environment

This section briefly describes the simulation environment used to compute the
results presented in section 6. The performance evaluation of different cache con-
figurations is based on the SPEC benchmark suite. All benchmarks are executed
in a virtual machine emulating a SPARC based computer with peripherals like
hard disk, framebuffer and keyboard. This virtual machine is based on the free
system emulator QEMU [13]. QEMU translates all instructions of the guest sys-
tem into native assembler instructions of the host system. Hence, all timing and
memory access information are lost. Therefore, QEMU has been extended to
add special monitoring instructions during the translation step. They are used
to log instruction fetches, read and write data and I/O accesses by the CPU and
memory access by simulated peripheral devices as well as context switches and
interrupts to a trace file.

This trace file is then used as an input file for the SAM cache simulator.
It simulates an L1 data and instruction cache as well as the L2 cache with all
security related extensions described in [3] to compute the number of simulated
clock cycles for these operations. Instruction and data access are passed to the
corresponding L1 cache and external device access is simulated by occupying
the memory bus. One limitation of using a trace file is a missing feedback from
the simulator to QEMU.

The cache simulator is fully configurable in terms of cache sizes, bus widths,
number of queue entries and their thresholds, clock divisors to simulate different
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Table 1. Cache properties

Cache property Value
L1 placement direct mapped
L1 line size 32 bytes
L2 placement LRU, 4-way-set
L2 line size 64 bytes

Bus Width Divisor
L1 ↔ L2 cache 128 bit 2
to memory 64 bit 5
L2 cache ↔ Queues 128 bit 2
to AES units 128 bit 2

Table 2. Cache configurations

Name L1 size L2 size
AES
units

Check Queue
entries

256-* 8k 256k 5 5
1024-* 16k 1024k 5 5
2048-* 32k 2048k 5 5

clock rates for buses and components like the caches, memory latencies or hashing
algorithms. The L1 cache runs always with maximum clock speed and all other
components are clocked with divisors based on this clock rate. Table 1 lists the
basic configuration used for all simulations.

For all simulations, all program data is located between the virtual addresses
0x70000000 and 0xefffffff and has been encrypted. The first 64 KByte of
the operating system (0xf0000000–0xf000ffff) are protected. The hash tree
starts at address 0x1aaaaab0. Beside the modifications described in the previous
sections, the Linux kernel has been modified to allocate memory for the heap
starting at address 0x80000000.

In this paper, the multitasking behavior of a SAM enabled system has been
analyzed. Therefore, for each simulation several benchmarks are executed in par-
allel. Some benchmarks have a huge memory footprint and paging of protected
programs is currently not supported by the modified Linux kernel. Hence, each
simulation consists of the execution of one instance of a primary benchmark
(out of the SPEC suite) and a number of instances of a secondary benchmark.
Due to its reasonable memory footprint, crafty has been selected as a secondary
benchmark.

After skipping the first 232 simulated instructions, which correspond basically
to the initialization routines of each benchmark, each of the started benchmarks
has been terminated after a given amount of instructions in user mode resulting
in a trace file containing a total of approximately 232 instructions.

Using this trace file, a set of different cache configurations has been simulated
to obtain the overall number of simulated cache clock cycles needed for all cache
operations. This set includes a configuration without security extensions which
is further used as a reference for the speedup computation.

6 Simulation Results

Table 2 gives an overview about the configurations used for all simulations. The
Figures 2 and 3 show the simulation results for different cache and benchmark
configurations. The results for a particular benchmark in each figure have been
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computed using the same trace file using different cache configurations. The
y-axis shows the speedup computed with respect to basically the same cache
configuration but without security extensions. Since the speedup is always less
than one it is denoted as slowdown in all figures.

To measure the influence of the protected part of the kernel, a benchmark
configuration with three protected and four unprotected parallel invocations of
the secondary benchmark has been started in parallel with the protected primary
benchmark.

Figure 2(a) shows the speedups for fully unprotected (user), fully protected
(kernel-all) and partly protected (kernel-64 ) kernel memory running with a
cache with four dictionary entries. The partly protected kernel memory cov-
ers the protected part of the Linux kernel described in this paper. It can be seen
that there is no or only a very small performance degradation for most bench-
marks when comparing the user and kernel-64 results. Only a fully protected
kernel area displays distinct performance degradation.

The figures 2(b), 3(a), and 3(b) are showing the results for dictionaries with 1,
2, 4, and 8 entries (D1 to D8). Figure 2(b) shows the speedups for two parallel
executed protected benchmarks. This figure shows the huge influence of the
dictionary, since two entries instead of one can improve the speedup by more
than 10 percent points (crafty, 256 configuration).

The figures 3(a) and 3(b) are showing the impact of the dictionary for more
parallel executed benchmarks. Each benchmark can take an advantage of more
dictionary entries up to the number of protected programs. The speedup grows
linearly for smaller caches whereas for larger caches the impact is reduced as
soon as the number of protected programs exceeds the number of dictionary
entries.

In another simulation the overhead of the newly written protected part has
been compared with an unmodified Linux kernel. For this comparison each of the
simulations listed in figure 3(b) has been started ten times with the unmodified
kernel and with the SAM -enabled kernel, respectively. Then, the mean values
of the number of executed instructions for both kernels have been compared.
The comparison proved an almost equal number of clock cycles for both kernels.
Hence, the SAM -enabled kernel does not result in a performance degradation
for unprotected programs.

As a result, SAM provides a reasonable performance with a speedup between
0.8 and 1 for most benchmarks.

7 Conclusion

In this paper an operating system kernel design based on Linux for the SAM
architecture has been introduced. SAM consists of a combined hardware and
software design providing a secure execution environment for sensitive programs
by preventing external modifications or data disclosure. The previous design
described in [2] has been optimized and simplified in terms of register protection
and the number of additional instructions to reduce the hardware overhead.
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For SAM, the kernel has to be divided into a small protected and an unpro-
tected part, respectively. Unlike other designs, SAM’s protected kernel is only
protected by the concurrently executed protected programs. When only unpro-
tected programs are executed, the protected part of the kernel is not protected
resulting in no additional overhead.

The protected part of the Linux kernel has been redesigned to support the
additional instructions of SAM. Using these instructions only a defined set of
transitions between a protected program, the protected and the unprotected
part of the kernel is allowed. During these transitions the execution within the
protected part follows only a predefined path. Each time before this path is left,
the kernel stores the current state of the program in a security compartment.
This is a page in protected and encrypted user space used by the kernel. Using
this compartment, sensitive data like the program counters are protected against
attacks while the kernel executes unprotected instructions.

SAM requires that the protected part of the kernel drops its privileges by
executing the STE instruction. After executing this instruction in kernel mode,
even instructions in protected memory areas lose their ability to access protected
registers or encrypted memory. These privileges can only be obtained again by
executing the STS instruction in the protected kernel part.

The simulation results show that the cache design of SAM with the context
dictionary supports the operating design. SAM is designed as an extension, used
by a limited number of programs. Hence, a limited number of dictionary entries
is sufficient to provide a good performance. Even if the number of protected
processes is larger than the number of dictionary entries the performance is
reasonable.

As a summary, compared to an unprotected kernel, the overhead of the SAM -
enhanced kernel is negligible and the overall performance of the SAM architec-
ture with a speedup between 0.8 and 1 for most configurations is very good.
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Abstract. This paper studies the notion of point-based policies for trust manage-
ment, and gives protocols for realizing them in a disclosure-minimizing fashion.
Specifically, Bob values each credential with a certain number of points, and
requires a minimum total threshold of points before granting Alice access to a
resource. In turn, Alice values each of her credentials with a privacy score that
indicates her reluctance to reveal that credential. Bob’s valuation of credentials
and his threshold are private. Alice’s privacy-valuation of her credentials is also
private. Alice wants to find a subset of her credentials that achieves Bob’s re-
quired threshold for access, yet is of as small a value to her as possible. We give
protocols for computing such a subset of Alice’s credentials without revealing
any of the two parties’ above-mentioned private information.

Keywords: Trust management, private multi-party computation, knapsack prob-
lem.

1 Introduction

A typical scenario for accessing a resource using digital credentials is for the client,
Alice, to send her request to Bob, who responds with the policy that governs access
to that resource. If Alice’s credentials satisfy Bob’s policy, she sends the appropriate
credentials to Bob. After Bob receives the credentials and verifies them, he grants Alice
access to the resource. Observe that, in this scenario, Alice learns Bob’s policy and Bob
learns Alice’s credentials. However, this mechanism is unacceptable if the credentials
or the access control policies are considered to be sensitive information.

The motivation for hiding credentials is individual privacy, e.g., if the credentials are
about one’s physical impairment or disability, financial distress, political or religious
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affiliation, etc. The motivation for hiding the policy is not only security from an evil
adversary, but simply the desire to prevent legitimate users from gaming the system —
e.g., changing their behavior based on their knowledge of the policy (which usually ren-
ders an economically-motivated policy less effective). This is particularly important for
policies that are not incentive-compatible in economic terms (they suffer from perverse
incentives in that they reward the wrong kinds of behavior, such as free-loading). In yet
other examples, the policy is simply a commercial secret — e.g., Bob has pioneered a
novel way of doing business, and knowledge of the policy would compromise Bob’s
strategy and invite unwelcome imitators.

It is also important to point out that a process that treats Alice’s credentials as con-
fidential is ultimately not only to Alice’s advantage but also to Bob’s: Bob can worry
less about rogue insiders in his organization illicitly leaking (or selling) Alice’s private
information, and may even lower his liability insurance rates as a result of this. Privacy-
preservation is a win-win proposition, one that is appealing even if Alice and Bob are
honest and trustworthy entities. This paper gives a trust management model that quan-
titatively addresses degrees of sensitivity. Moreover, the degree of sensitivity of a given
credential is private to each user, and can vary from one user to another.

1.1 Motivations

In a probing attack, Alice can engage in a protocol with Bob multiple times using dif-
ferent credential sets each time (all of which are subsets of her credentials) to gain in-
formation about Bob’s policy. In the case where Alice is requesting access to a service,
Bob will know whether she got access and can therefore also probe (by using different
policies and observing their effect) to gain information about Alice’s credentials.

One way of mitigating probing attacks is the one followed in the trust negotiation lit-
erature [5,37,38,44,45], in which the disclosure of a credential is governed by an access
control policy that specifies the prerequisite conditions that must be satisfied in order for
that credential to be disclosed. Typically, the prerequisite conditions are a subset of the
set of all credentials, and the policies are modeled using propositional formulas. A trust
negotiation protocol is normally initiated by a client requesting a service or a resource
from a server, and the negotiation consists of a sequence of credential exchanges: Trust
is established if the initially requested service or resource is granted and all policies for
disclosed credentials are satisfied [38,43].

Although mitigating probing attacks, the requirements of the trust negotiation litera-
ture have some practical limitations. (1) Probing is still possible when policies are not
treated as sensitive resources, and the client (or server) can game the system in many
ways. For example, if the client knows the access control policies for the server’s cre-
dentials then she will know the path of least resistance to unlock certain credentials. (2)
Premature information leaking is difficult to prevent in existing trust negotiation pro-
tocols including the recent framework using cryptographic credentials [32]. The pre-
mature information leaking refers to the situation when a negotiation is not successful,
however sensitive credentials are already disclosed. (3) The service model in trust ne-
gotiation is usually limited, that is, the requested service is fixed and independent of
the amount of information released by the client at the end of the negotiation session.
However, a client may end up disclosing more information than what is required for
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the initially requested service. The reward or service provided by the server should be
dynamically adjustable with the amount of information released from the client.

As will become clear soon, the approach presented in this paper mitigates the above-
mentioned problems. The computation for determining whether a user satisfies a policy
is privacy-preserving, where neither party needs to disclose sensitive information. Of
the multiple ways of satisfying the policy, Alice will tend to use the one that utilizes the
credentials whose privacy she values least.

1.2 Overview

Quantitatively addressing trust establishment problem has existed in several papers on
trust and reputation models [4,17,42,46]. These models have applications in open sys-
tems such as mobile ad hoc networks, Peer-to-Peer networks [17], and e-trade systems.

We consider a new point-based trust management policy (rather than a Boolean ex-
pression) that is private and should therefore not be revealed to Alice: Bob associates a
number of points with every possible credential, and requires the sum of the points of
those credentials that Alice uses to reach a minimum threshold before he grants her ac-
cess to the resource. The resource owner, Bob, defines an admissible threshold, and that
threshold is itself private and should not be revealed to Alice. Alice needs to satisfy the
threshold requirement to gain access by using a subset of her credentials that gives her
the required number of points, but there can be many such subsets: Alice is interested
in using the subset that has minimum privacy-value to her, according to her privacy-
valuation function; that valuation function is itself private and should not be revealed to
Bob. We give a protocol which determines which subset of Alice’s credentials optimally
satisfies Bob’s threshold, i.e., it has minimum privacy value to Alice among all subsets
that satisfy Bob’s threshold. Bob’s point-valuation of credentials, his thresholds, and
Alice’s privacy-valuation of her credentials are private and not revealed.

1.3 Applications

In the point-based model, credentials are mapped with point values defined by the re-
source owner, therefore the client’s reward or service can be dynamically adjusted ac-
cording to the amount of private information revealed. The flexibility makes the point-
based model attractive to the trust management in web-services and e-commerce ap-
plications in general, as users have the incentives to carry on the computation for trust
establishment, which facilitates business transactions.

Another important type of applications for point-based model is privacy-aware pres-
ence systems [27,39,42], where presence data such as the location of a user is collected
through devices such as GPS on a cellphone. The management of presence data is cru-
cial, because it concerns not only user privacy, but also safety: presence data can be
used to track and profile individuals. In the meantime, there may be emergency sit-
uations or extenuating circumstances when certain parties (like emergency workers)
should have access to this kind of information, and friends and relatives of a user might
be allowed to query his or her location information at any time. Therefore, a desirable
feature of a location query system is that it provides different levels of precision based
on the requester’s trustworthiness or the context of the query. This requires a flexible
authorization model for accessing the private location data, which can be offered by the
point-based authorization model.
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1.4 Our Contributions

1. We propose a point-based trust management model and we formalize the creden-
tial selection problem of the model into a knapsack problem. Our point-based
trust management model enables users to quantitatively distinguish the sensitivi-
ties of different credentials. It also allows a provider to quantitatively assign val-
ues to credentials held by clients. The point-based model has several features:
(i) Policy specification is simple and easily allows dynamic adjustment of ser-
vices provided based on released credentials; (ii) A user can proactively decide
whether the potential privacy loss is worth the service without disclosing any sen-
sitive information; (iii) To satisfy a policy, a user can select to disclose the opti-
mal credential set that minimizes the privacy loss, based on his or her personal
measure.

2. We give secure and private dynamic programming protocols for solving the knap-
sack problem. Our solution, consisting of a basic protocol and an improved proto-
col, allows the server and user to jointly compute the optimal sum of privacy scores
for the released credentials, without revealing their private parameters. The com-
plexity of our basic protocol is O(nT ′), where n is the total number of credentials
and T ′ is the (private) marginal threshold, which corresponds to the sum of the
points of the credentials that are not disclosed. The protocol uses homomorphic
encryptions, and is semantically secure against semi-honest adversaries.

Our improved protocol, the fingerprint protocol, is secure in an adversarial model
that is stronger than a semi-honest one (a.k.a honest-but-curious). The improved
protocol prevents a participant from tampering with the values used in the dynamic
programming computation. That is, while we cannot prevent a participant from ly-
ing about her input, we can force consistency in lying by preventing capricious use
of different inputs during the crucial solution-traceback phase. The complexity of
our fingerprint protocol is O(n2T ′).

3. One contribution of this paper that goes beyond the specific problem considered is
a general indexing expansion method for recovering an optimal solution from any
value-computing dynamic programming computation, while detecting cheating by
the participants. Using this method, a participant is not required to trust the other
party during the back-tracing phase. This is possible because the participant is able
to efficiently identify whether the other party has tampered with the computation.
For traceback in general dynamic programming problems, our algorithm not only
allows a participant to independently and easily recover the optimal traceback so-
lution, once the computed optimal value is given, but also enables the participants
to verify the integrity of the optimal value.

Organization of the Paper. Our point-based trust management model is presented
in Section 2. The basic protocol for privacy-preserving credential selection is given in
Section 3. Fingerprint protocol is given in Section 4. We analyze the security in Section
5. We present an extension to the fingerprint protocol in Section 6. Related work is
given in Section 7.
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2 Model

In this section, we describe a point-based trust management model, and define the cre-
dential selection problem in this model.

2.1 Point-Based Trust Management

In the point-based trust management model, the authorization policies of a resource
owner defines an access threshold for each of its resources. The threshold is the min-
imum amount of points required for a requester to access that resource. For example,
accessing a medical database requires fifty points. The resource owner also defines a
point value for each type of credentials, which denotes the number of points or cred-
its a requester obtains if a type of credential is disclosed. For example, a valid ACM
membership is worth ten points. This means that a client can disclose his or her ACM
membership credential in exchange for ten points. We call this a trust management
model as opposed to an access control model, because the resource owner does not
know the identities or role assignments of requesters a priori.

A requester has a set of credentials, and some of which may be considered sensitive
and cannot be disclosed to everyone. However, in order to access a certain resource, the
requester has to disclose a number of credentials such that the access threshold is met by
the disclosed credentials. Different clients have different perspective on the sensitivity
of their credentials, even though the credentials are of the same type. For example, a
teenager may consider age information insensitive, whereas a middle-aged person may
not be very willing to tell his or her age.

Therefore, in point-based trust management model, each client defines a privacy
score for each of their credentials. The privacy score represents the inverse of the will-
ingness to disclose a credential. For example, Alice may give privacy score 10 to her
college ID, and 50 to her credit card. The client is granted access to a certain resource
if the access threshold is met and all of the disclosed credentials are valid. Otherwise,
the access is denied. From the requester’s point of view, the central question is how to
fulfill the access threshold while disclosing the least amount of sensitive information.
In the next section, we define this as a credential selection problem. The credential se-
lection problem is challenging, because the requester considers his or her privacy scores
sensitive, and the server considers its point values and access threshold sensitive.

Where do point values come from? One approach to obtain point values is from repu-
tation systems [4,36,46]. Essentially the point value of a credential represents the trust-
worthiness of the organization that issues the credential. If a resource owner thinks
organization A is more reputable than organization B, the resource owner specifies a
higher point value for a credential issued by A than the one issued by B. This idea
has been explored in a recent paper that quantitatively studies the connections between
computational trust/reputation models with point values in point-based trust manage-
ment. The paper also discusses the application of such models in privacy-preserving
location systems. The work in trust models and reputation systems [4,36,46] serve as a
starting point for demonstrating the applicability of point-based trust management.
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2.2 Credential Selection Problem

Definition 1. The credential selection problem is to determine an optimal combina-
tion of requester’s credentials to disclose to the resource owner, such that the minimal
amount of sensitive information is disclosed and the access threshold of the requested
resource is satisfied by the disclosed credentials.

We formalize the credential selection problem as an optimization problem. Our model
assumes that the resource owner (or server) and the requester (or client) agree on a set of
credential types as the universe of credentials (C1, . . . , Cn). We define a binary vector
(x1, . . . , xn) as the unknown variable to be computed, where xi is 1 if credential Ci is
selected, and 0 if otherwise. Integer ai ≥ 0 is the privacy score of credential Ci. It is
assigned by the requester a priori. If the requester does not have a certain credential Ci,
the privacy score ai for that credential can be set to a large integer. Thus, the (knapsack)
algorithm avoids choosing that credential type, as the cost is high. The server defines T
that is the access threshold of the requested resource. Integer pi ≥ 0 is the point value
for releasing credential type Ci. The requester considers all of ai values sensitive, and
the server considers the access threshold T and all of pi values sensitive.

The credential selection problem is for the requester to compute a binary vector
(x1, . . . , xn) such that the sum of points

∑n
i=1 xipi satisfies T , and the sum of pri-

vacy scores
∑n

i=1 xiai is minimized. This is captured in the following minimization
problem. Compute a binary vector (x1, . . . , xn) such that the following holds:

min
n∑

i=1

xiai

subject to
n∑

i=1

xipi ≥ T

The above minimization problem can be rewritten into a knapsack problem with a
new variable yi = 1− xi ∈ {0, 1}. For i-th credential, yi = 1 represents not disclosing
the credential, and yi = 0 represents disclosing the credential.

We define the marginal threshold T ′, which coarsely correlates to the sum of the
points of the credentials that are not disclosed.

Definition 2. The marginal threshold T ′ of the credential selection problem is defined
as

∑n
i=1 pi − T , where pi is the point value for credential type Ci, T is the access

threshold for a requested resource, and n is the total number of credential types.

Let us first review the dynamic programming solution for the 0/1 knapsack problem [15].
Then, we describe our protocol for carrying out private dynamic programming compu-
tation of the knapsack problem. The 0/1 knapsack problem is defined as follows. Given
items of different integer values and weights, find the most valuable set of items that fit
in a knapsack of fixed integer capacity. The dynamic programming solution is pseudo-
polynomial: the running time is in O(nT ′).

In the dynamic programming of knapsack problem, a table is made to track the opti-
mal selection of items so far. A column indicates the range of values, which corresponds
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to the target weight of the knapsack. A row corresponds to each item. The last table en-
try has the maximum capacity of the knapsack. The first column and the first row are
initialized to zeros, i.e. M0,j and Mi,0 are zeros, for all i ∈ [1, n] and j ∈ [0, T ′]. The
table is filled from top to bottom and from left to right. Using the notations defined
earlier, the recurrence relation is formally defined as follows. Denote Mi,j as the value
at i-th row and j-th column, and i ∈ [0, n], j ∈ [0, T ′].

Mi,j = Mi−1,j if j < pi

max{Mi−1,j, Mi−1,j−pi + ai} if j ≥ pi

Each entry of the table stores the total value of a knapsack, which is determined as
either the value of a knapsack without the current item (expressed as the value directly
to the top of the current entry), or the value of the knapsack with the current item added
into it. At the end of the computation, the entry at the lower right corner of the table
contains the optimal value of the knapsack. The selections of items can be obtained by
bookkeeping the information of where the value of an entry comes from.

For our credential selection problem, the above recurrence relation can be interpreted
as follows. If the point value of credential type Ci exceeds j, which is a value in the
range of [0, T ′], then the i-th credential is not selected and the privacy score Mi,j is kept
the same as Mi−1,j . Otherwise, the algorithm compares the score Mi−1,j for not select-
ing the i-th credential with the score Mi−1,j−pi + ai for selecting the i-th credential.
The larger value is chosen to be the privacy score Mi,j .

The standard dynamic programming computation requires values ai and pi for all
i ∈ [1, n]. However, in our model, the requester considers ai sensitive, and the server
considers pi sensitive. We present a protocol that allows the completion of the dynamic
programming computation without revealing any sensitive information. In addition to
protecting sensitive ai and pi values, the entries in the dynamic programming table are
also protected from both parties.

Once the client has selected the set of credentials to disclose, she reveals them to the
server. The server then verifies the validity of the credentials by checking the credential
issuers’ signatures.

Privacy score of a credential set. In the current model, the privacy score of multi-
ple credentials is the sum of each individual privacy score. The summation is simple
to model, and represents the additive characteristic of privacy, i.e., the more personal
information revealed, the more privacy lost. Another advantage of the summation of pri-
vacy scores is the efficiency; the specification of privacy scores has a size linear in the
number of credentials. However, the client may want to explicitly specify an arbitrary
privacy score of a certain group of sensitive credentials. The group privacy score may
be higher or lower than the sum of individual privacy scores. The latter case can hap-
pen when one credential might subsume or include some information that is included
in the other credential(s). However, the dynamic programming solution is not clear for
the dynamic programming problem with arbitrary constraints. It remains an interesting
open question how to formulate the dynamic programming to support arbitrary privacy
score specifications.
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3 Basic Protocol

We present the basic protocol, which is a secure two-party dynamic-programming pro-
tocol for computing the optimal solution of the credential selection problem. The basic
protocol has two sub-protocols: recursion and traceback, which represent the two phases
of dynamic programming. The protocol maintains the secrecy of sensitive parameters
of both parties. Furthermore, neither the server nor the client learns any intermediate
result. The main technical challenge is that the server does not want to reveal point
values {pi} and the client does not want to reveal privacy scores {ai}. As shown by
the recurrence relation in Section 2, it seems difficult to compute entry Mi,j without
knowing pi and ai. We overcome the challenge by designing a protocol that hides the
conditional testing from the client. The basic protocol is efficient and is secure in the
semi-honest adversarial model.

3.1 Building Blocks

In our protocol, we store values in a modularly additively split manner with a large
base called L. The additively split manner means that the server and the client each
has a share of a value, and the value equals to the sum of their shares modular L. If
xS and xC represent the share of the server and the client, respectively, then the value
equals to xS + xC mod L. We use L − i to represent −i (and use i to represent i).
This implies that the range of the values is between −L

2 and L
2 , and L must be chosen

so that it is larger enough to prevent accidental wrap-around. Secure two-party private
protocols were given in [20] that allow comparison of above described values, in which
the comparison result is additively split between the server and the client. It is easy to
modify these protocols to compute the maximum of the values in additively split format,
which we refer to as the private two-party maximum protocol. We use the private two-
party comparison and maximum protocols in our paper as a black box.

Our protocols use homomorphic encryption extensively. Recall that a cryptographic
scheme with encryption function E is said to be homomorphic, if the following holds:
E(x) ∗ E(y) = E(x + y). Another property of such a scheme is that E(x)y = E(xy).
The arithmetic performed under the encryption is modular, and the modulus is part of
the public parameters for this system. Homomorphic schemes are described in [16,34].
We utilize homomorphic encryption schemes that are semantically secure. Informally,
a homomorphic scheme is semantically secure if the following condition holds. Given
the public parameters of a homomorphic scheme E, and the encryption of one of the
two messages m, m′ where m is from a specific message and m′ is chosen uniformly
random from the message space, then |(Pr(P (E(m))) = 1)− Pr(P (E(m′)) = 1)| is
negligible for any probabilistic polynomial time algorithm P .

3.2 Overview of Basic Protocol

The basic protocol consists of two sub-protocols: the basic recursion sub-protocol and
the basic traceback sub-protocol.

– Basic recursion sub-protocol: the client and server compute a (n+1)×(T ′+1) ma-
trix M in an additive split form. Let Mi,j denote the value stored at the i-th row and
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j-th column. Let EC be the public encryption function of the client’s semantically-
secure homomorphic encryption scheme. The server learns EC(Mi,j) values for
all i ∈ [1, n] and j ∈ [1, T ′]. From the security of EC , a computationally-bounded
server gains no information from the EC(Mi,j) values. The server computes (with
the client’s help) the value EC(Mi,j), when given EC(Mi′,j′) for all values (i′, j′)
that are dominated by (i, j), for all i ∈ [1, n] and j ∈ [1, T ′]. M0,j and Mi,0 are
zeros, for all i ∈ [0, n] and j ∈ [0, T ′].

– Basic traceback sub-protocol: once the dynamic programming table has been filled
out, the client discovers (with the server’s help) the set of credentials that have been
selected to disclose. The optimal selection is revealed to both parties.

Note that the basic recursion sub-protocol should unify the operations in the two
cases (j < pi and j ≥ pi) of the recurrence relation. Otherwise, the client can learn
pi from the computation. We solve this by designing a generic and private maximum
function and by additively splitting intermediate results between the two parties.

3.3 Basic Recursion Sub-protocol

The basic recursion sub-protocol is described in Figure 1.
When j > T ′ (recall that T ′ =

∑n
i=1 pi − T ), the server terminates the protocol.

The last entry Mn,T ′ of the dynamic programming matrix has been computed. The

Setup: The client has published the public parameters of a semantically secure homomor-
phic scheme EC . We will use the base of this scheme as the modulus for the additively split
values.
Input: The server has EC(Mi′,j′) for all values (i′, j′) that are dominated by (i, j), where
i ∈ [1, n] and j ∈ [0, T ′]. The sever also has point values p1, . . . , pn and the client has
privacy scores a1, . . . , an.
Output: The server learns EC(Mi,j).
Steps:

1. The server creates a pair of values α0 and α1, where α0 = EC(Mi−1,j), and α1 =
EC(−∞) if pi > j, and α1 = EC(Mi−1,j−pi) otherwise. Without loss of generality,
we assume that ai values defined by the client are always bounded by an integer B
that is known to the server, i.e. ai ≤ B for all i ∈ [1, n]. The server then uses −B − 1
as −∞. The server also chooses random values r0 and r1, and sends to the client
α0EC(r0) and α1EC(r1).

2. The client decrypts the values to obtain β0 and β1. The server sets its shares to −r0

and −r1 and the client sets its shares to β0 and β1 + ai. Note that the two candidate
values for Mi,j are additively split between the client and the server.

3. The client and the server engage in a private maximum protocol to compute the maxi-
mum of these two values in an additively split format. Denote the shares by xS and xC .

4. The client sends EC(xC) to the server, and the server computes EC(xC + xS) and
sets this value as his output.

Fig. 1. Basic recursion sub-protocol
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client knows the marginal threshold T ′, as she keeps her share of the matrix. Yet, the
client does not learn the individual point value pi and access threshold T from the
computation so far.

Lemma 1. The complexity of the basic recursion sub-protocol is O(nT ′), with O(1)
homomorphic encryptions or decryptions at each round, where n is the total number of
credentials and T ′ is the marginal threshold.

The proof of Lemma 1 is in the full version of the paper [41].
The basic recursion sub-protocol runs in O(nT ′), where marginal threshold T ′ or

the number of credentials n can potentially be large. We point out that an important
advantage of our protocol compared to conventional boolean-based policies lies in the
privacy-preserving functionality offered. Our protocol not only computes the optimal
selection of credentials, but also does it in a privacy-preserving fashion for both the
server and client. For conventional policies, the latter aspect cannot be easily achieved
without having the server to publish or disclose unfairly its policies.

The protocol presented here is secure in the semi-honest adversary model, which is
improved later by our indexing expansion method in Section 4. The detailed security
analysis is given in Section 5.

3.4 Basic Traceback Sub-protocol

To support the back-tracking of the optimal solution (i.e., the optimal credential set to be
disclosed), the basic recursion sub-protocol needs to be modified accordingly. At step 3
in the basic recursion sub-protocol, not only the maximum but also the comparison
result of the two candidate values for Mi,j are computed for all i ∈ [1, n] and j ∈
[1, T ′]. During the computation, neither the server nor the client knows the result of
the comparison tests, as the result is split between them. From the recurrence relation
in Section 2, it is easy to see that the comparison result directly indicates whether ai

is contained in Mi,j and thus whether credential Ci is selected. Denote F as a matrix
that contains the result of the comparisons, we modify the previous basic recursion sub-
protocol so that the server learns EC(Fi,j) for the entire matrix. In the basic traceback
sub-protocol, the server and the client work together to retrieve the plaintext comparison
results starting from the last entry of the table, following the computation path of the
optimal dynamic programming solution.

Figure 2 describes the basic traceback sub-protocol.

Lemma 2. The complexity of the basic traceback sub-protocol is O(n), with O(1) ho-
momorphic decryptions at each round, where n is the total number of credentials.

The following theorem states the overall complexity of the basic protocol.

Theorem 1. The complexity of the basic protocol is O(nT ′), where n is the total num-
ber of credentials and T ′ is the marginal threshold.

The proof of Theorem 1 is in the full version of this paper [41].
The basic traceback sub-protocol assumes that the server does not maliciously alter

the computation results. In the case of a malicious server, the server may send EC(0)
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Input: The server has matrix entries {EC(Mi,j)} and {EC(Fi,j)} encrypted with the
client’s public key, for all i ∈ [1, n] and j ∈ [1, T ′]. The client has her private key.
Output: The client learns the optimal value of the dynamic programming computation of
knapsack. The server and the client learn the optimal selection of credentials, or nothing.
Steps:

1. The server sends the client EC(Mn,T ′). The client decrypts the ciphertext to obtain
the result Mn,T ′ . Mn,T ′ represents the privacy score associated with the unselected
credentials. If this value is acceptable to the client according to some pre-defined pri-
vacy standard set by the client, then this sub-protocol continues. Otherwise, this sub-
protocol terminates.

2. The server reveals the entry EC(Fn,T ′) to the client.
3. The client decrypts EC(Fn,T ′) to obtain Fn,T ′ ∈ {0, 1}. The client sends the plain-

text value Fn,T ′ to the server (The server then knows whether Cn is selected or not.)
If Fn,T ′ = 1, then credential Cn will not be disclosed. Fn,T ′ = 1 also means
that entry Mn,T ′ is computed from entry Mn−1,T ′ . Therefore, the server next re-
veals EC(Fn−1,T ′ ) to the client. If Fn,T ′ = 0, then the server next reveals
EC(Fn−1,T ′−pn), as the entry Mn,T ′ is computed from entry Mn−1,T ′−pn .

4. The revealed entries represent the computation path of the optimal knapsack dynamic
programming solution. The above process is repeated until n reaches zero.

Fig. 2. Basic traceback sub-protocol

instead of the real values to mislead the client to disclose all credentials. Although
the attack might be caught by the client (as the client may find a subset of credentials
that still satisfies the threshold constraint), we give a stronger traceback algorithm that
proactively prevents this type of attacks in the next section.

4 Fingerprint Protocol

In this section, we give an alternative protocol for privacy-preserving knapsack com-
putation. The new approach is inspired by the subset sum problem, yet we stress that
this solution does not require the client to solve the general subset sum problem. The
main idea is to allow the client (not the server) to efficiently identify the selected cre-
dentials from the optimal privacy score. The new protocol, which we refer to as the
fingerprint protocol,1 is an important step towards a protocol that is secure against ma-
licious servers, because it can be extended to prevent the server from tampering the
computation during traceback.

In addition to solving our credential selection problem (and thus the knapsack prob-
lem), the fingerprint protocol can be generalized to solve the traceback problem in a
large variety of integer linear programming problems. It can be used for one party to se-
curely and privately trace the optimal solution from the final computed value, with very

1 The name is because of the similarities between fingerprinting in forensics and the indexing
technique that we use to uniquely identify a subset.
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little or no participation from the other party. The technique guarantees the correctness
of the traceback results, even though the other party cannot be trusted during traceback.

4.1 Fingerprint Protocol Description

The key idea of the fingerprint protocol is to convert the client’s privacy scores {ai} into
another set of scores {Ai}, such that the following two conditions hold. (1) The optimal
credential selection computed with {Ai} should be the same as the optimal credential
selection computed with {ai}. (2) The privacy score computed with {Ai} should reveal
which set of credentials are used to obtain that score. Thus, this transformation process
requires the following two properties:

Property 1. Ordering consistency: For two sets S and R in 2{1,...,n}, if
∑

i∈S Ai <∑
i∈R Ai, then

∑
i∈S ai ≤

∑
i∈R ai.

Property 2. Uniqueness: For any two distinct sets S and R in 2{1,...,n},
∑

i∈S Ai �=∑
i∈R Ai.

The ordering consistency property ensures that the set of revealed credentials com-
puted with the transformed scores is optimal even when the original scores are used. The
uniqueness property guarantees that traceback is possible, as only one set of credentials
can generate a specific score. Although the above properties do not imply that an effi-
cient traceback is possible, our transformation leads to an efficient traceback method.
Our indexing expansion method transforms a privacy score ai to Ai as follows.

Ai = ai ∗ 2n + 2i−1.

In binary representation, the indexing expansion shifts the binary form of ai to the
left by n positions, and gives zeros to n least significant bits except the i-th least sig-
nificant bit, which is given a one. For example, suppose there are four privacy scores 2,
3, 5, 8 or in binary form 010, 011, 101, 1000. Here n = 4. After the transformations,
the expanded scores have the binary form 010 0001, 011 0010, 101 0100, 1000 1000,
respectively. Readers can verify that the example satisfy the two required properties.
We now prove that the indexing expansion has the desired properties.

Lemma 3. The indexing expansion achieves the ordering consistency property.

Lemma 4. The indexing expansion achieves the uniqueness property.

Proofs of the above two lemmas are in the full version of this paper [41].
Hence, the indexing expansion method allows the client to compute the credentials

that are used to achieve a specific privacy score. Although the optimal value obtained
from the secure dynamic programming with the Ai scores is different from the one
with the original ai scores, the set of credentials corresponding to the optimal privacy
values are the same. We now describe the fingerprint protocol, which makes use of the
indexing expansion.

The indexing expansion of privacy scores requires n additional bits for each creden-
tial, where n is the total number of credentials. In Lemma 5 below, we prove that in
order to satisfy the uniqueness property, the number of bits required for the transformed
privacy scores is bounded by Ω(n).
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Input: The server has the marginal threshold T ′ and point values p1, . . . , pn. The client
has privacy scores a1, . . . , an.
Output: The client (not the server) learns the optimal selection of credentials.
Steps:

1. The client applies the indexing expansion to each of her privacy scores {ai} and ob-
tains the transformed scores {Ai}.

2. The server and the client carry out the basic recursion sub-protocol (in Figure 1) with
the transformed privacy scores {Ai}. Recall that at the end of the basic recursion
sub-protocol, the server has computed EC(Mn,T ′ ) in entry (n, T ′) of the dynamic
programming matrix.

3. The server sends the ciphertext EC(Mn,T ′ ) to the client.
4. The client decrypts EC(Mn,T ′) to obtain Mn,T ′ .
5. The client expresses the optimal value Mn,T ′ in binary form and identifies the non-

zero bits in the last n bits. The positions of such bits give the indices of credentials
that give the optimal solution2. Note that the i-th least significant bit of Mn,T ′ is true
if and only if credential i was used to obtain the optimal value.

Fig. 3. Fingerprint protocol

Lemma 5. For any transformation of index to satisfy the uniqueness property, the num-
ber of additional bits introduced for a privacy score is lower-bounded by Ω(n), where
n is the number of credentials.

Theorem 2. The complexity of the fingerprint protocol is O(n2T ′), where n is the total
number of credentials and T ′ is the marginal threshold.

The proofs of Lemma 5 and Theorem 2 are in the full version of this paper [41].

4.2 Detection of Value Substitution by the Server

In the method described above, although difficult, it is not impossible for a malicious
server to forge its share of the optimal value and thus mislead a client to disclose more
credentials. The probability of the server correctly guessing a credential’s privacy score
and its bit position in the indexing expansion may not be negligible. For example, the
server may have 1/n probability of correctly guessing the bit position of a credential,
where n is the total number of credentials. Also, it may have 1/ max{ai} probability
of correctly guessing the privacy score, where {ai} represents the set of untransformed
privacy scores. In Section 6, we describe a simple checksum technique for preventing
the server from tampering with the traceback computation. This is done by appending
randomized information to privacy scores.

5 Security

We define our security model as a semi-honest (a.k.a. honest-but-curious) model. In-
tuitively, this means that adversaries follow the protocol but try to compute additional
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information other than what can be deduced from their input and output alone. A proto-
col is defined as secure if it implements a function f , such that the information learned
by engaging in the protocol can be learned in an ideal implementation where the func-
tionality is provided by a trusted oracle. This definition follows the standard definitions
given by Goldreich [24] for private multi-party computation.

Let A be any one of the two parties in our protocol, we use viewA to represent
all of the information that A sees during the protocol. A protocol is secure against
a semi-honest A, if and only if there exists an algorithm that can simulate viewA

when given A’s inputs and A’s output. To be more precise, two probability ensem-

bles X
def= {Xn}n∈N and Y

def= {Yn}n∈N are computationally indistinguishable
(i.e., a polynomial bounded algorithm cannot distinguish the two distributions) if for
any PPT algorithm D, any positive polynomial p, and sufficiently large n it holds
that: |(Pr(D(Xn, 1n) = 1)) − (Pr(D(Yn, 1n) = 1))| < 1

p(n) . Let A’s input and
output be represented by AI and AO respectively. A protocol is secure in the semi-
honest model against adversary A, if there is an algorithm SIMA such that viewA and
SIMA(AI , AO) are computationally indistinguishable (i.e., SIMA simulates A’s view
of the protocol).

To prove the security of the basic protocol (in Figure 1), we state a lemma about the
security of the private two-party maximum protocol used in step 3 of the basic protocol.

Lemma 6. The private two-party maximum protocol is secure in the semi-honest model.

The above lemma states that there exists a private two-party maximum protocol such
that when given the client’s inputs aC and bC , there is an algorithm that simulates the
client’s view of the maximum protocol.

Given such a private two-party maximum protocol, we show that the basic recursion
sub-protocol in Section 3 is secure.

Theorem 3. The basic recursion sub-protocol is secure in the semi-honest adversarial
model.

We have shown that each individual round is secure in the above protocol. The compo-
sition follows from the composition theorem [9].

We show the basic traceback sub-protocol (in Figure 2) is secure. Note that the basic
traceback sub-protocol makes uses of a matrix F that is computed in the recurrence
phase. Each entry of matrix F contains the selection decision of a credential. The com-
putation of F is secure, which can be deduced from Theorem 3.

Theorem 4. The basic traceback sub-protocol is secure in the semi-honest adversarial
model.

Proofs of Theorem 3 and 4 are in the full version of this paper [41].
Given Theorem 3, the fingerprint protocol (in Figure 3) is secure, because once the

server gives EC(Mn,T ′) to the client, the client carries out the traceback computation
without any communication from the server.

Theorem 5. The fingerprint protocol is secure in the semi-honest adversarial model.
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6 Extension

The checksum technique has applications beyond the specific problem considered, and
is a general method for recovering an optimal solution from any value-computing dy-
namic programming computation, while detecting cheating by the participants. We dis-
cuss an extension to fingerprint protocol that is secure against an adversary who is
stronger than a semi-honest one. We consider an adversarial model as described fol-
lows. An adversary may tamper with private computation by modifying intermediate
results during the protocol, which is not allowed in a semi-honest model. An adversary
is curious as in a semi-honest model, in that she may store all exchanged data and try
to deduce information from it. An adversary is assumed to participate and follow the
protocol, which is a weaker assumption than a malicious model.

It is important to define the above adversarial model. While we cannot prevent a
participant from lying about her input, we can force consistency in lying by prevent-
ing capricious use of different inputs during the crucial solution-traceback phase. For
complex functions such as the one being studied, lying about one’s input wrecks the
worthiness of the answer for both participants, and the participant who does so would
have been better off not engaging in the protocol in the first place (this is not true for
simple functions where the lier can still get the answer by correcting for her lie).

Note that our extension does not support a full malicious model, which would re-
quire expensive Zero Knowledge Proofs [26]. However, we do raise the bar on common
things that a malicious server may try in our model. When the server is not semi-honest,
a significant problem with our protocols is that the server has EC(Mi,j) for all matrix
values. Thus, the server can replace any value of the matrix with another value EC(v)
for any value v. In the fingerprint protocol, the server has to guess the weights used for
each credential. The client can easily check if the proposed sum is created by a certain
set of credentials. However, as described earlier, the server may have a non-negligible
probability of successfully replacing these values. We now describe a technique that
reduces the probability of a successful replacement by the server to a negligible value
in terms of a security parameter.

The idea is that the client performs transformations on his or her privacy scores.
The client creates a new set of value Â1, . . . , Ân that satisfy the traceback properties
outlined in Section 4. For each value, Ai, the client chooses uniformly a ρ-bit value
(where ρ is the security parameter), which we call ri. The client sets Âi = Ai2lg n+ρ+ri

(where Ai is the already transformed value for traceback). It is straightforward to show
that these values satisfy the properties outlined in Section 4. Furthermore, for the server
to substitute a value, it would have to guess a ρ bit value, which it can guess successfully
with only negligible probability in the security parameter ρ.

Another attack that the server can launch is that it can send any intermediate value
of the matrix to the client, and claim that it is the final result. Because an intermediate
value is well-formed, it cannot be detected by the above technique. However, the server
does not gain from this type of attacks. If the server chooses a value from a higher row
(with a smaller row index), then this attack can be achieved by setting the point values
of some credentials to zero (i.e., they are useless to the client and are never used). If
a different column is chosen, then this attack can be achieved by increasing the access
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threshold T . If the intermediate value is from a different row and a different column,
then the effect of this attack can be achieved by increasing the threshold and setting the
point values of some credentials to zero at the same time. The server may attempt to
form linear combinations of row entries, but there is a non-negligible chance of being
caught by the client because a repeated entry may be found.

7 Related Work

In the access control area, the closest work to ours is the framework for regulating
service access and release of private information in web-services by Bonatti and Sama-
rati [5]. They study the information disclosure in open systems such as Internet using
a language and policy approach. In comparison, we design cryptographic solutions to
control and manage information exchange. In addition, we focus on solving the opti-
mality in selecting the set of credentials to disclose. Bonatti and Samarati considered
two data types in the portfolio of a user: data declaration (e.g., identity, address, credit
card number) and credential. Although we only consider credentials in the description
of our model, the protocols can be generalized to include data declarations as long as the
server and the client agree on their specifications. In general, credentials (e.g., driver’s
license and credit card) contain a set of data declaration information, which is usually
requested as a group. For example, the credit card number and the expiration date are
usually asked for at the same time. Using credentials to represent private information
may be sufficient in some cases.

Our point-based trust management model quantitatively treats memberships or cre-
dentials, which is conceptually different from most existing access control models. Our
approach aims to address the fact that different individuals or groups of people have
different privacy concerns in terms of protecting sensitive information. This goal dif-
fers from conventional access control models. The flexibility provided by the point-
based model enables users to proactively protect their private information. Furthermore,
thresholds specified by resource owners prevent unqualified users from accessing the
resource.

Anonymous credential and idemix systems have been developed [8,10,12] to allow
anonymous yet authenticated and accountable transactions between users and service
providers. Together with zero-knowledge proof protocols, they can be used to prove
that an attribute satisfies a policy without disclosing any other information about the
attribute. The work in this paper focuses on finding the optimal credentials to disclose,
and can be integrated with anonymous credential systems. A zero-knowledge proof
protocol can be used when the necessary information to satisfy a policy is discovered.
We can apply anonymous credential techniques to implement membership credentials
in the point-based trust management model. These credentials are then used to prove
user’s memberships without revealing individual identity.

In hidden credentials system [7,28], when a signature derived from an identity based
encryption scheme [6,14,35] is used to sign a credential, the credential content can be
used as a public encryption key such that the signature is the corresponding decryption
key. Hidden credentials can be used in such a way that they are never shown to anyone,
thus the sensitive credentials are protected. Frikken et al. [21] give a scheme that hides
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both credentials and policies. Most recently, a protocol [22] was proposed that allows
both the client and the server to define private access policies of their credentials.

The setup of hidden credential protocols does not allow the computation of the op-
timal selection of credentials. In addition, as explained in the recent work by Frikken,
Li, and Atallah [22], the server learns whether the client obtained access or not in some
environments even when hidden credential schemes are used. In this case, the server
can make inferences about the client’s sensitive credentials. For example, if the server’s
policy is one must have top secret clearance and be a FBI agent, then the server can
deduce a significant amount of information about the client when the access control
decision is made. Our proposed solution allows the client to estimate potential privacy
loss without leaking any sensitive information.

We have compared the trust negotiation protocols [37,38,44,45] with our point-
based trust management model in the introduction. Li, Li, and Winsborough introduce
a framework for trust negotiation, in which the diverse credential schemes and proto-
cols including anonymous credential systems can be combined, integrated, and used as
needed [32]. The paper presents a policy language that enables negotiators to specify
authorization requirements. The research on trust negotiation that is closest to ours is by
Chen, Clarke, Kurose, and Towsley [13]. They developed heuristics to find an approxi-
mation of the optimal strategy that minimizes the disclosure of sensitive credentials and
policies [13]. Using their methods, when negotiation fails, premature information dis-
closure is still a problem. Our protocols prevent premature information leakage, because
the computation does not disclose sensitive parameters. Because the selection computa-
tion is private, the minimization problem is simpler to define in our point-based model
than in trust negotiation frameworks. In addition, the solution computed by our basic
and fingerprint protocols, if exists, is the exact optimal solution, not an approximation.

Secure Multi-party Computation (SMC) was introduced in a seminal paper by Yao
[40], which contained a scheme for secure comparison. Suppose Alice (with input a)
and Bob (with input b) desire to determine whether or not a < b without revealing
any information other than this result (this is known as Yao’s Millionaire Problem).
More generally, SMC allows Alice and Bob with respective private inputs a and b to
compute a function f(a, b) by engaging in a secure protocol for public function f .
Furthermore, the protocol is private in that it reveals no additional information. This
means that Alice (or Bob) learns nothing other than what can be deduced from a (or
b) and f(a, b). Elegant general schemes are given in [3,11,23,25] for computing any
function f privately.

Besides the generic work in the area of SMC, there has been extensive work on
the privacy-preserving computation of various functions. For example, computational
geometry [1,18], privacy-preserving computational biology [2]. The private dynamic
programming protocol given by Atallah and Li [2] is the most relevant work to ours.
Their protocol compares biological sequences in an additively split format. Each party
maintains a matrix, and the summation of two matrices is the real matrix implicitly used
to compute the edit distance. Our protocols also carry out computation in an additively
split form. What distinguishes us from existing solutions is that we are able to achieve
efficiently a stronger security guarantee without using Zero-Knowledge Proofs [26].
Recently, there are also solutions for privacy-preserving automated trouble-shooting
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[29], privacy-preserving distributed data mining [30], private set operations [19,31], and
equality tests [33]. We do not enumerate other private multi-party computation work as
their approaches significantly different from ours.
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Abstract. When datasets are distributed on different sources, finding
out matched data while preserving the privacy of the datasets is a widely
required task. In this paper, we address two matching problems against
the private datasets on N (N ≥ 2) parties. The first one is the Privacy
Preserving Set Intersection (PPSI) problem, in which each party wants
to learn the intersection of the N private datasets. The second one is the
Privacy Preserving Set Matching (PPSM) problem, in which each party
wants to learn whether its elements can be matched in any private set
of the other parties. For the two problems we propose efficient protocols
based on a threshold cryptosystem which is additive homomorphic. In a
comparison with the related work in [18], the computation and communi-
cation costs of our PPSI protocol decrease by 81% and 17% respectively,
and the computation and communication costs of our PPSM protocol
decrease by 80% and 50% respectively. In practical utilities both of our
protocols save computation time and communication bandwidth.

Keywords: cryptographic protocol, privacy preservation, distributed
database, set intersection, set matching.

1 Introduction

For datasets distributed on different sources, data matching among these sets is
always required to gain useful information. Supermarkets need find out the same
card numbers which have consuming records in all of their databases, and then
provide better service for the card owners. This is a set intersection problem
among distributed datasets. The tenderees consider that duplicate submission
of tenders is a damage of their benefits, so they want to reject those tenderers
who have submitted duplicate tenders to any two of them. Such tenderers can
be found out by one tenderee by firstly set intersections between his tender set
and each set of the others, then a set union on all the intersections. This is a set
matching problem among distributed datasets.

Privacy may be a critical concern of the data owners, so they are reluctant to
directly publish their datasets. Specifically, one supermarket doesn’t want other
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supermarkets to know the card numbers in its database except those in the in-
tersection. One tenderee A even doesn’t like another tenderee B to know that
it is him that has a matched tender with B. Therefore, there should be some
privacy preserving techniques for them to determine the results of set intersec-
tion and matching, without the datasets being directly published. In this paper,
we address the two related problems: privacy preserving set intersection, and
privacy preserving set matching. Basically, both of them are solved by efficiently
constructing and evaluating polynomials whose roots are elements of the set in-
tersection and matching.

Problem Formulation: Suppose there are N (N ≥ 2) parties, each party
Pi (i = 1, ..., N) has a set (or multiset) of inputs of size S: Ti = {T (i, j)|j =
1, ..., S}. We also assume that all Ti for i = 1, ..., N are subsets of a common
set T, and S � |T|, such that given two arbitrarily selected subsets Ti and Ti′ ,
The probability that an input a ∈ Ti equals any input a′ ∈ Ti′ is negligible (i.e.,
S
|T| → 0). In the following we define our two problems:

1) Privacy Preserving Set Intersection (PPSI): All parties want to learn the
intersection of their private sets, i.e., TI = T1 ∩ ... ∩ TN , without gleaning
any information other than those computed from a coalition of parties inputs
and outputs.

2) Privacy Preserving Set Matching (PPSM): Each party Pi wants to learn
whether each element of its can be matched in any set of the other parties,
i.e., whether each element T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti∩Ti′), without gleaning

any information other than those computed from a coalition of parties inputs
and outputs.

Privacy Requirements: Firstly, in both problems, an honest party shouldn’t
be subject to the dictionary attack, in which an adversary may defraud the
honest party of inputs using the common set T. The dictionary attack can be
effectively resisted in assumption of S � |T| .

What’s more, without colluding with the other parties, an adversary-controlled
party Pi shouldn’t glean the following information:

1) For PPSI, Pi can’t know elements on Pi′ (i′ = 1, ..., N, i′ �= i) except TI.
2) For PPSM, if T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti ∩ Ti′), Pi can’t know the specific

matching times, i.e., how many parties T (i, j) has matches on, and the
matching originations, i.e., which party T (i, j) has a match on.

If Pi is in a coalition of c (1 ≤ c ≤ N −1) adversary-controlled parties, it may
get more information than above. We analyze these information in Section 6 of
this paper.

Our Contributions: Our main contributions in this paper include:

1) We propose an efficient PPSI protocol, which has lower computation and
communication costs than the PPSI protocols in [18] and [8].

2) To our knowledge there hasn’t been a direct solution for PPSM. Though
a PPSM solution can be derived from the techniques in [18], we propose a
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more efficient protocol in the computation and communication costs than
the derived one.

The remainder of the paper is organized as follows: Section 2 discusses some
related work. Section 3 lists the necessary preliminaries for our protocols. Sec-
tion 4 and Section 5 propose the PPSI protocol and PPSM protocol respectively.
In Section 6 we analyze the security of the two protocols. In Section 7 we com-
pare our two protocols with the related work considering the computation and
communication costs. Section 8 concludes the whole paper.

2 Related Work

PPSI and PPSM are specific problems belonging to the general Secure Multiparty
Computation (SMC) problem. There have been general solutions for the SMC
problem ([12], [24]). In general SMC, the function to be computed is represented
by a circuit, and every gate of the circuit is privately evaluated. However, when
this general solution is used for a specific problem, the large size of the circuit
and high cost of evaluating all gates will result in a much less efficient protocol
than the non-private protocol for this problem. Therefore, many efficient private
protocols for the specific problems have been proposed based on the specific
properties of these problems.

PPSI and PPSM can be traced back to the specific problem of private equality
test (PET) in two-party case, where each party has a single element and wants
to test whether they are equal without publishing the elements. The problem
of PET was considered in [1], [4], [19] and [20]. PET solutions can’t be simply
used for the multi-party cases of PPSI and PPSM, otherwise too much sensitive
information will be leaked, e.g., any two parties will know the intersection of
their private sets.

A solution for the multi-party case of PPSI was firstly proposed in [8]. The
solution is based on evaluating polynomials representing elements in the sets.
In [18], another solution for PPSI was proposed, in which each polynomial rep-
resenting each set is multiplied by a random polynomial which has the same
degree with the former polynomial. In this paper, to get a solution with lower
costs than [8] and [18], we multiply each polynomial representing each set by a
random polynomial which has a low enough degree without compromising the
security of the solution. We also multiply the randomized polynomials by a non-
singular matrix to improve the correctness of our solution. We will compare our
solution for PPSI with [8] and [18] in details in Section 7.

Though there hasn’t been a direct solution for the PPSM problem, it can be
considered as computing a function

⋃
i′=1,...,N,i�=i′(Ti∩Ti′) on Pi for i = 1, ..., N ,

and can be solved by the techniques of privacy preserving set intersection and set
union in [18]. Thus we can derive a solution from [18], and we name it “Solution
D1” in this paper. In [18] the way to securely construct Solution D1 wasn’t
provided. Solution D1 also requires high cost. We will compare our solution for
PPSM with Solution D1 in Section 7.
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Other related privacy preserving problems, such as set cardinality, set dis-
jointness, threshold set union, etc, can be found in [8], [18], [17] and [14]. They
are different problems from PPSI and PPSM, thus need different solutions.

3 Preliminaries

3.1 Adversary Model

Generally speaking there are two types of adversaries in SMC, depending on
whether they take active steps to disrupt the execution of the protocol, or merely
gather information. The latter adversary is referred to as semi-honest (or pas-
sive, honest-but-curious); the former one is referred to as malicious (or active).
A semi-honest party is assumed to follow the protocol exactly as what is pre-
scribed by the protocol, except that it keeps a record of all its intermediate
computations. A malicious party may arbitrarily deviate from the specified pro-
tocol, including refusing to participate in the protocol, substituting their local
inputs and aborting the protocol prematurely. For the security in the malicious
model, a general compiler is given in [11] to force each party to either effectively
behave in a semi-honest manner or be detected as cheating.

In this paper we assume the parties are semi-honest, and they may compose
any coalition of c (1 ≤ c ≤ N − 1) parties (Pi1 , ..., Pic). A multi-party protocol
is said to privately compute a function f, if whatever a coalition of semi-honest
parties can obtain after participating in the protocol could be essentially ob-
tained from the inputs and outputs of these very parties. By [10] and [11], a
formal definition of privacy with respect to semi-honest behavior is given in the
following:

Definition 1. Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-ary functionality, where
fi(x1, ..., xm) is the i-th element of f(x1, ..., xm). For I = {i1, ..., ic} ⊆ {1, ..., m},
fI(x1, ..., xm) = {fi1(x1, ..., xm), ..., fic(x1, ..., xm)}. Let Π be an m-party protocol
for computing f. The view of the i-th party (Pi) after participating in an execution
of Π on x = (x1, ..., xm), denoted V IEWΠ

i (x), is (xi, r, m1, ..., mt), where r are
the random bits generated by Pi, m1, ..., mt is a sequence of message received by Pi.
For I = {i1, ..., ic}, we let V IEWΠ

I (x) = (I, V IEWΠ
i1

(x), ..., V IEWΠ
ic

(x)).
We say that Π Privately Computes f if there exists a probabilistic polynomial-

time (PPT) algorithm, denoted S, such that for every I ⊆ {1, ..., m}, it holds that

S(I, (xi1 , ..., xic), fI(x))x∈({0,1}∗)m ≡c V IEWΠ
I (x)x∈({0,1}∗)m (1)

In the definition above, “≡c” denotes computationally indistinguishable, which
is also called indistinguishable in polynomial time. Given two ensembles X =
{Xw}w∈S′ and Y = {Yw}w∈S′ (S′ is a set of strings), they are indistinguishable
in polynomial time if for every PPT algorithm D, every positive polynomial
p(·), and all sufficiently long w ∈ S′, |Pr[D(Xw , w) = 1]|− |Pr[D(Yw, w) = 1]| <

1
p(|w|) .
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3.2 Homomorphic Encryption

Our protocols are based on an additive Homomorphic Encryption (HE) scheme.
Let ε be a probabilistic encryption scheme. Let M be the message space and
C the ciphertext space such that M is a group under operation ⊕ and C is a
group under operation %. ε is a (⊕,%)-HE scheme if for any instance ER(·) of
the encryption scheme, given c1 = Er1(m1) and c2 = Er2(m2), there exists an r
such that c1 % c2 = Er1(m1)% Er2(m2) = Er(m1 ⊕m2). ε is additive when it’s
a (+,%) scheme, and multiplicative when it’s a (∗,%) scheme.

The HE scheme in our protocols is also required to support secure (N, N)-
threshold decryption. The corresponding secret key is shared by a group of N
parties, and the decryption can’t be performed by any single party, unless all
parties act together.

Thus, we can use Paillier’s cryptosystem ([21]) for its following properties:
1) it’s an additive homomorphic encryption scheme. Given two encryptions
E(m1) and E(m2), E(m1 + m2) = E(m1) · E(m2); 2) given an encryption
E(m) and a scalar a, E(a · m) = E(m)a; 3) (N, N)-threshold decryption can
be supported (by [6],[7]). In this paper, N is the RSA-modulus which is the
multiplication of two large prime numbers, and ZN is the plaintext space of
Paillier’s cryptosystem.

3.3 Calculations on Encrypted Polynomials

In our protocols, we need do some calculations on encrypted polynomials. For
a polynomial f(x) =

∑m
i=0 aix

i, we use E(f(x)) to denote the sequence of en-
crypted coefficients {E(ai)|i = 0, ..., m}. Given E(f(x)), where E(·) is an ad-
ditive HE scheme (e.g., Paillier), some computations can be made as follows
(which have also been used in [8] and [18]):

1) At a value v, we can evaluate E(f(x)): E(f(v)) = E(amvm + am−1v
m−1 +

... + a0) = E(am)vm

E(am−1)vm−1 · · ·E(a0).
2) Given E(f(x)), we can compute E(c · f(x)) = {E(am)c, ..., E(a0)c}.

Table 1. Major Notations in This Paper

Notation Definition
N Total number of parties
Pi The i-th party
Ti The set or multiset on Pi

S Total number of elements on each party
T (i, j) The j-th element on Pi, j = 1, ..., S

c Total number of colluded parties, 1 ≤ c ≤ N − 1
I The index set of c colluded parties, {i1, ..., ic}
I ′ The index set of honest parties, {1, ..., N} \ I

fi The polynomial whose roots are elements in Ti. fi = S
j=1(x − T (i, j))

ZN The plaintext space of Paillier’s cryptosystem
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3) Given E(f(x)) and E(g(x)), g(x) =
∑m

j=0 bjx
j , we can compute E(f(x) +

g(x)) = {E(am)E(bm), ..., E(a0)E(b0)}.
4) Given f(x) and E(g(x)), we can compute E(f(x)∗g(x)). Suppose that g(x) =∑n

j=0 bjx
j , f(x) ∗ g(x) =

∑m+n
k=0 ckxk, then E(ck) = E(a0bk + a1bk−1 + ... +

akb0) = E(bk)a0 · · ·E(b0)ak . ai or bj are treated as zero if i > m or j > n.

3.4 Notations

The major notations in this paper are listed in Table 1.

4 Protocol for Privacy Preserving Set Intersection

4.1 Main Idea

Our protocol for PPSI is based on evaluating randomized polynomials represent-
ing the intersection, which is a similar way with [8] and [18], but achieves lower
cost.

Each Pi can compute a polynomial fi to represent its set Ti: fi = (x−T (i, 1))·
· · (x − T (i, S)). Then it randomizes fi to be fi ∗

∑N
j=1 ri,j by the help of other

parties, in which ri,j is generated by Pj , ri,j = ai,jx + bi,j, ai,j and bi,j are
uniformly selected from the plaintext space of the threshold HE scheme (for
Paillier’s scheme, it’s ZN ).

The N parties get a polynomial vector F = (f1∗
∑N

j=1 r1,j , ..., fN ∗
∑N

j=1 rN,j)
and compute G = FR, in which R is an N×N nonsingular matrix whose entries
Ruv (1 ≤ u, v ≤ N) are random numbers. The resulting G is another polynomial
vector (g1, ..., gN ) as following:

g1 = f1 ∗
N

j=1

r1,jR11 + ... + fN ∗
N

j=1

rN,jRN1

...

gN = f1 ∗
N

j=1

r1,jR1N + ... + fN ∗
N

j=1

rN,jRNN

(2)

Then, each Pi evaluates (g1, ..., gN) at the element T (i, j). If for k = 1, ..., N
gk(T (i, j)) = 0, then Pi determines T (i, j) ∈ TI. The correctness of this deter-
mination will be proved in Lemma 1.

In the computation of G, to protect the privacy of each fi, fi is encrypted by
Pi, and the encryption of fi ∗

∑N
j=1 ri,j is also computed. Then each party Pi

generates a random matrix Ri so that R =
∏N

i=1 Ri is nonsingular but no one
knows what R is without publishing all Ri. The encryptions of FR1, FR1R2, ...,
FR1 · · ·RN are computed respectively on P1, P2, ..., PN . Finally, the N parties
get the encryption of G = FR. After decryption, each Pi knows G, but not fi′

for i′ �= i.
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4.2 The Protocol

Protocol 1: Protocol for Privacy Preserving Set Intersection
Inputs: There are N (N ≥ 2) semi-honest parties. Each party has a private

set of S elements, denoted Ti. Each party holds the public key and it’s own
share of the secret key for the threshold Paillier’s cryptosystem.

Output: Each party Pi knows TI = T1 ∩ ... ∩ TN .
1) Computing E(F ): For i = 1, ..., N ,

1.1) Pi computes fi = (x− T (i, 1)) · · · (x− T (i, S)), encrypts the coefficients
to get E(fi), and sends E(fi) to all the other N − 1 parties.

1.2) on each Pj (j �= i), ri,j is generated as ai,jx + bi,j , in which ai,j and bi,j

are uniformly selected from ZN . Pj computes E(fi∗ri,j) by computation
4) in Section 3.3, and sends it to Pi.

1.3) Pi also generates ri,i and computes E(fi ∗ri,i). Then Pi computes E(fi ∗∑N
j=1 ri,j) by computation 3) in Section 3.3, and sends it to P1.
In the end, P1 gets E(F ) in which F =(f1∗

∑N
j=1 r1,j , ..., fN∗

∑N
j=1 rN,j).

2) Computing E(G) : For i = 1, ..., N ,
2.1) Pi generates a nonsingular N ×N matrix Ri which is uniformly distrib-

uted over ZN ( by the method in [22]).
2.2) Pi computes E(FR1 ···Ri) according to computation 2) and 3) in Section

3.3, and sends it to Pi+1 if i + 1 ≤ N .
In the end, PN gets E(G) = E(F

∏N
i=1 Ri) and sends it to all the

other parties.
3) Decryption and Evaluation :

3.1) The parties cooperatively decrypt E(G) and gets G = F (
∏N

i=1 Ri). Let
R =

∏N
i=1 Ri, and Ru,v (1 ≤ u, v ≤ N) is the (u, v)-th entry of R, G is a

polynomial vector (g1, ..., gN ) as described in the equation 2) of Section
4.1.

3.2) Every Pi evaluates T (i, j) in G for j = 1, ..., S by computation 1) in
Section 3.3. If G(T (i, j)) = ( g1(T (i, j)), ..., gN(T (i, j)) ) = (0, ..., 0), the
T (i, j) ∈ TI; otherwise, T (i, j) /∈ TI.

We prove the correctness of Protocol 1 in the following lemma:

Lemma 1. Protocol 1 is a correct protocol for the PPSI problem.

Proof: Protocol 1 determines whether T (i, j) ∈ TI by G(T (i, j)). If T (i, j) ∈ TI,
T (i, j) is a root of all fi for i = 1, ..., N , then F (T (i, j)) = (f1(T (i, j))

∑N
j=1 r1,j ,

..., fN (T (i, j))
∑N

j=1 rN,j) = (0, ..., 0), G(T (i, j)) = F (T (i, j))R = (0, ..., 0). That
is, if the evaluation G(T (i, j)) �= (0, ..., 0), T (i, j) /∈ TI.

Then we prove that if G(T (i, j)) = (0, ..., 0), overwhelmingly T (i, j) ∈ TI.
G = FR1 · · ·RN = F (

∏N
i=1 Ri) = FR. Because Ri for i = 1, ..., N are generated

to be nonsingular, R =
∏N

i=1 Ri is also nonsingular. If G(T (i, j)) = (0, ..., 0), a
linear system F (T (i, j))R = (0, ..., 0) can be made, and it has only one solution:
F (T (i, j)) = (0, ..., 0), i.e.,fl(T (i, j)) ∗

∑N
j=1 rl,j(T (i, j)) = 0 for l = 1, ..., N .
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The coefficients of rl,j are uniformly selected from ZN . Suppose
∑N

j=1 rl,j =
alx + bl, al and bl are also uniformly distributed over ZN . The probability that
any T (i, j) ∈ ZN is a root of alx + bl is 1/N . If ∃T (i, j), ∀l ∈ {1, ..., N},
fl(T (i, j)) ∗

∑N
j=1 rl,j(T (i, j)) = 0 , because fl(T (i, j)) must be 0 when l = i, so

the probability that ∀l (l �= i) fl(T (i, j)) = 0 is p = (1 − 1/N )N−1. N is the
number of parties and practically N � N . When N is large enough, p → 1,
then overwhelmingly T (i, j) is a root of all fl and T (i, j) ∈ TI. �

5 Protocol for Privacy Preserving Set Matching

5.1 Main Idea

The problem of PPSM can be considered as computing a function⋃
i′=1,...,N,i′ �=i(Ti ∩ Ti′) on Pi for i = 1, ..., N . On each Pi the polynomial fi

is computed whose roots are elements in Ti. Then we can use a polynomial
(fi ∗

∑N
k=1 ri′k + fi′ ∗

∑N
k=1 r′i′k) to represent elements in Ti ∩ Ti′ , in which

ri′k =
∑α

j=0 ajx
j , r′i′k =

∑α
j=0 a′

jx
j . The degrees of ri′k and r′i′k are both α and

α = & S
N−1'. The coefficients aj and a′

j for j = 0, ..., α are uniformly selected
from the plaintext space of the threshold HE scheme (for Paillier’s scheme, it’s
ZN ).

We can also use the multiplication of these polynomials to represent the ele-
ments in the union of all Ti∩Ti′ for i′ = 1, ..., N, i′ �= i. The resulting polynomial
is Fi as following:

Fi =
i′=1,...,N,i′ �=i

(fi ∗
N

k=1

ri′k + fi′ ∗
N

k=1

r′
i′k) (3)

The coefficients of Fi should be encrypted in the computations. We can use the
evaluation of Fi at T (i, j) to determine whether T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti∩Ti′).

The correctness of the determination will be proved in Lemma 2. For PPSM
defined in Section 1, E(Fi) can’t be decrypted before evaluations, otherwise
Pi will know T (i, j) can be matched by b parties if Pi finds there is a factor
(x−T (i, j))b in Fi, and this will breach the Privacy Requirement 2) in Section 1.

5.2 The Protocol

In the following Protocol 2, each party Pi computes its E(Fi) in N − 1 rounds.
For example, P1 firstly computes E(F12) = E(f1 ∗

∑N
k=1 r2k + f2 ∗

∑N
k=1 r′2k) in

Step 2) of Protocol 2, by summing E(f1 ∗
∑N

k=1 r2k) and E(f2 ∗
∑N

k=1 r′2k). Then
P1 repeats Step 2), computes E(F13) = E(F12(f1 ∗

∑N
k=1 r3k + f3 ∗

∑N
k=1 r′3k)),

by summing E(F12f1 ∗
∑N

k=1 r3k) and E(F12f3 ∗
∑N

k=1 r′3k). After N − 1 rounds
of Step 2), P1 gets E(F1) = E(F1N ) = E((f1 ∗

∑N
k=1 r2k + f2 ∗

∑N
k=1 r′2k) · · ·

(f1 ∗
∑N

k=1 rNk + fN ∗
∑N

k=1 r′Nk)). Finally, P1 evaluates each E(F1(T (1, j))),
and decrypts it to see whether it’s 0.
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Protocol 2: Protocol for Privacy Preserving Set Matching
Inputs: There are N (N ≥ 2) semi-honest parties. Each party has a private

set of S elements, denoted Ti. Every party holds the public key and it’s own
share of the secret key for the threshold Paillier’s cryptosystem.

Output: Each party Pi knows whether its tuples belong to
⋃

i′=1,...,N,i′ �=i(Ti ∩
Ti′).

Steps:

1) Each party Pi computes its fi = (x− T (i, 1)) · · · (x− T (i, S)).
2) P1 initializes E(F11) = E(1), and repeats the following for j = 2, ..., N .

2.1) P1 computes E(F1(j−1) ∗ f1) and sends it to all the other parties.
Each party Pk (k �= 1) randomly chooses rjk as described in Section
5.1, computes E(F1(j−1) ∗ f1 ∗ rjk) by computation 4) in Section 3.3,
and sends it back to P1. P1 also randomly chooses rj1 and computes
E(F1(j−1) ∗ f1 ∗

∑N
k=1 rjk) by computation 3) in Section 3.3.

2.2) P1 sends E(F1(j−1)) to Pj , Pj computes E(F1(j−1) ∗ fj), sends it to
all the other parties. Each of these parties Pk including Pj randomly
chooses r′jk, computes E(F1(j−1) ∗ fj ∗ r′jk) and sends it to P1. P1

computes E(F1(j−1) ∗ fj ∗
∑N

k=1 r′jk).
2.3) P1 computes E(F1j) = E(F1(j−1)(f1 ∗

∑N
k=1 rjk + fj ∗

∑N
k=1 r′jk)) by

summing E(F1(j−1) ∗ f1 ∗
∑N

k=1 rjk) and E(F1(j−1) ∗ fj ∗
∑N

k=1 r′jk).

At the end of j = N , P1 gets E(F1) = E(F1N ) = E(
∏N

j=2(f1∗
∑N

k=1 rjk+
fj ∗

∑N
k=1 r′jk)).

3) Each Pi other than P1 repeats Step 2) and gets E(Fi) = E(
∏

i′=1...N,i′ �=i

(fi ∗
∑N

k=1 ri′k + fi′ ∗
∑N

k=1 r′i′k)).
4) Each Pi evaluates E(Fi) at T (i, j) for j = 1, ..., S, using computation 1)

in Section 3.3.
5) Each party decrypts E(Fi(T (i, j))) in the collaboration of the other N−1

parties for j = 1, ..., S. If the evaluation Fi(T (i, j)) = 0, T (i, j) has a
duplicate on the other parties; otherwise, T (i, j) hasn’t any duplicate on
the other parties.

Lemma 2. Protocol 2 is a correct protocol for the PPSM problem.

Proof: Protocol 2 determines whether T (i, j) ∈
⋃

i′=1,...,N,i′ �=i(Ti ∩ Ti′) by the
evaluation Fi(T (i, j)). If there is a party Pi′ who has a duplicate of T (i, j), i.e.,
T (i, j) ∈

⋃
i′=1,...,N,i′ �=i(Ti∩Ti′), then both fi′(T (i, j)) and fi(T (i, j)) are 0, and

fi(T (i, j)) ∗
∑N

k=1 ri′k + fi′(T (i, j)) ∗
∑N

k=1 r′i′k = 0, then Fi(T (i, j)) = 0. That
is, if Fi(T (i, j)) �= 0, T (i, j) /∈

⋃
i′=1,...,N,i′ �=i(Ti ∩ Ti′).

If Fi(T (i, j)) = 0, T (i, j) is a root of at least one factor (fi ∗
∑N

k=1 ri′k + fi′ ∗∑N
k=1 r′i′k) in Fi. In this factor, fi(T (i, j)) = 0,

∑N
k=1 r′i′k is a polynomial of degree

& S
N−1' uniformly distributed over ZN [x]. Any T (i, j) ∈ ZN is a root of

∑N
k=1 r′i′k

with probability 1/N (by [13]). When N is large enough, overwhelmingly T (i, j)
is a root of fi′ , and the corresponding Pi′ has a duplicate of T (i, j). �
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6 Security Analysis

6.1 Security Analysis on Protocol 1

The Inferred Information by the Definition of PPSI. Suppose there are
c colluded parties PI , I = {i1, ..., ic}. It’s unavoidable for PI to combine their
inputs and outputs to infer information. However, by the definition of PPSI in
Section 1, they should know no more information than TI in each Ti′ , ∀i′ ∈ I ′,
I ′ = {1, ..., N} \ I. That is,

6.1.1) On Pi ∈ PI , if T (i, j) ∈ TI, they know each Ti′ has T (i, j).
6.1.2) On Pi ∈ PI , if T (i, j) /∈ TI, they don’t know whether T (i, j) ∈ Ti′ for

∀i′ ∈ I ′.

The Inferred Information after Participating in Protocol 1. In Protocol
1, each Pi gets G = (g1, ..., gN ), so PI may infer the roots of fi′ for ∀i′ ∈ I ′ by
analyzing the coefficients in G. By the following lemma, we prove that G resists
such kind of analysis.

Lemma 3. In Protocol 1, any Pi in the coalition of c (1 ≤ c ≤ N − 1) semi-
honest parties (PI) can know no more elements than TI in any Ti′ for ∀i′ ∈ I ′.

Proof: Due to the security of the threshold HE cryptosystem, PI can’t know
any information on the plaintexts of the encryptions unless they are decrypted.
We use Pi to denote any party in PI . Pi gets only the decryption of E(G). If
G(T (i, j)) = (0, ..., 0), by Lemma 1, Pi knows T (i, j) is a root for all fl (l =
1, ..., N) and each Ti′ has T (i, j). This accords with the case 6.1.1).

1) We firstly prove that, if G(T (i, j)) �= (0, ..., 0), Pi doesn’t know whether
T (i, j) ∈ Ti′ for ∀i′ ∈ I ′, that is, whether T (i, j) is a root of any fi′ .
From the view of Pi, G = F (

∏
i∈I Ri ·

∏
i′∈I′ Ri′),

∏
i∈I Ri is generated by

PI , and
∏

i′∈I′ Ri′ is generated by PI′ . Pi doesn’t know
∏

i′∈I′ Ri′ , thus if
G(T (i, j)) �= (0, ..., 0), Pi can’t compute F (T (i, j)). Then Pi can’t know any
fi′(T (i, j)) and whether T (i, j) ∈ Ti′ for ∀i′ ∈ I ′. This accords with the case
6.1.2).

2) Pi may also analyze the coefficients of a single gl (l = 1, ..., N). In Pi’s view,
gl = fTI(FI +FI′), in which fTI is the polynomial whose roots are TI, FI =∑

i∈I(fi/fTI ∗
∑N

j=1 ri,jRil), and FI′ =
∑

i′∈I′(fi′/fTI ∗
∑N

j=1 ri′,jRi′l). We
should also prove that Pi can’t know FI′ , otherwise he will know

⋂
i′∈I′ Ti′

by factoring FI′ .
From the view of Pi, in FI , ∀i ∈ I,

∑N
j=1 ri,jRil can be supposed as

bi,1x + bi,0, in which bi,1 and bi,0 are random numbers. Given fi/fTI =∑S−|TI|
k=0 ai,kxk, suppose fi/fTI ∗

∑N
j=1 ri,jRil =

∑S−|TI|+1
k=0 ci,kxk, then ci,k =

ai,kbi,0 + ai,k−1bi,1. Suppose FI =
∑S−|TI|+1

k=0 ekxk, then ek =
∑

i∈I ci,k.
Suppose FI′ =

∑S−|TI|+1
k=0 e′kxk, then the k-th coefficient of FI + FI′ : e

′′
k =

ek + e′k =
∑

i∈I(ai,kbi,0 + ai,k−1bi,1) + e′k.



220 Y. Sang et al.

Pi knows all e
′′
k from gl/fTI , and all ai,k from fi/fTI , but doesn’t know

all bi,1, bi,0, and e′k. Thus from e
′′
k =

∑
i∈I(ai,kbi,0 + ai,k−1bi,1) + e′k, Pi gets

a set of S − |TI|+ 2 linear equations with 2c + S − |TI|+ 2 unknowns. For
1 ≤ c ≤ N−1, Pi can’t compute the solutions for these unknowns. Therefore,
Pi can’t know e′k for k = 0, ..., S − |TI|+ 1, and can’t know any root of FI′ .
In each gl (l = 1, ..., N), Pi can’t know FI′ , which makes Pi fail to know any
fi′/fTI in FI′ .

In sum, in Protocol 1, Pi ∈ PI can know no more roots than TI in any Ti′ for
∀i′ ∈ I ′. �

Theorem 1. Protocol 1 is a privacy preserving protocol for the PPSI problem.

The proof of this theorem is postponed to the Appendix.

6.2 Security Analysis on Protocol 2

The Inferred Information by the Definition of PPSM. If there is any
coalition of c semi-honest parties PI (I = {i1, ..., ic}), by the definition of PPSM,
it’s unavoidable for Pi (∈ PI) to infer the following information by combining
inputs and outputs of its coalition parties:

6.2.1) if the determination is T (i, j) has a duplicate on the other parties, and Pi

knows T (i, j) also has a duplicate on PI , then it can’t know whether there
is any duplicate of T (i, j) on the remaining parties PI′ (I ′ = {1, ..., N}\I).

6.2.2) if the determination is T (i, j) has a duplicate on the other parties, and
Pi knows T (i, j) hasn’t any duplicate on PI , then it knows that T (i, j)
must have a duplicate on PI′ ; We denote these T (i, j) on PI′ as set T .
It’s easy to see that 0 ≤ |T | ≤ (N − c)S.

6.2.3) if the determination is T (i, j) hasn’t any duplicate on the other parties,
then Pi knows that T (i, j) hasn’t any duplicate on PI′ , that is, PI′ can’t
have T (i, j). We denote these T (i, j) as T ′.

Therefore, by the definition Pi (∈ PI) knows T and T ′ as above. We assume
this kind of information is harmless.

The Inferred Information after Participating in Protocol 2. In Step 3)
of Protocol 1, Pi (∈ PI) can’t directly know the coefficients of Fi because they
are encrypted. However, Pi knows S pairs of ( T (i, j), Fi(T (i, j)) ), and those
fi′ , ri′k and r′i′k generated by its collation parties. Thus, Pi can do an attack by
analyzing the coefficients of Fi. In the following lemma, we prove that Protocol
2 is robust against this attack.

Lemma 4. In Protocol 2, any Pi in the coalition of c (1 ≤ c ≤ N − 1) semi-
honest parties (PI) can get only the following information:

1) the same two sets as T and T ′ in the case 6.2.2) and 6.2.3).
2) guessing elements on PI′ other than T and T ′, after randomly choosing at

least 1 numbers.
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Proof: In this proof Pi is any party in PI . Due to the security of the threshold HE
cryptosystem, Pi can’t know any information on the plaintexts of the encryptions
they receive.

Pi gets S pairs ( T (i, j), Fi(T (i, j)) ) by evaluating Fi at T (i, j). Because
fi(T (i, j)) = 0, then Fi(T (i, j)) becomes F ′

i (T (i, j)) for which F ′
i =∏

i′=1...N,i′ �=i(fi′ ∗
∑N

k=1 r′i′k). If Pi can know all coefficients of F ′
i , it can know

all roots of F ′
i by polynomial factoring, but all coefficients are encrypted. For

Pi, there are (N − 1)S unknown coefficients in
∏

i′=1...N,i′ �=i fi′ excluding the
leading coefficient (= 1). Because

∏
i′=1...N,i′ �=i(

∑N
k=1 r′i′k) =

∑β
j=0 Rjx

j , β =
(N −1)& S

N−1', in this part there are at least S +1 unknown coefficients. Totally
there are at least (N − 1)S + S + 1 unknown coefficients in F ′

i . It’s easy to see
that Pi can’t find a unique F ′

i that fits S pairs ( T (i, j), F ′
i (T (i, j)) ).

However, Pi knows fit for it ∈ I, and r′i′k generated by PI . Then in Pi’s view,
F ′

i = fIfI′
∏

i′=1...N,i′ �=i(
∑

k∈I r′i′k +
∑

k∈I′ r′i′k), in which fI =
∏

it∈I,it �=i fit ,
fI′ =

∏
i′
t∈I′ fi′

t
,
∑

k∈I r′i′k is generated by PI ,
∑

k∈I′ r′i′k is generated by PI′ .

1) if F ′
i (T (i, j)) = 0, and fI(T (i, j)) = 0, then Pi can’t know any root of fI′ .

This accords with the case 6.2.1).
2) if F ′

i (T (i, j)) = 0, and fI(T (i, j)) �= 0, then Pi knows fI′(T (i, j)) = 0. All
these T (i, j) are the same as T in the case 6.2.2).

3) if F ′
i (T (i, j)) �= 0, Pi knows fI′(T (i, j)) �= 0, i.e., T (i, j) isn’t one root of fI′ .

All these T (i, j) are the same as T ′ in the case 6.2.3).

Suppose in 2), all PI know C1 roots of fI′ , then 0 ≤ C1 ≤ (N − c)S. Suppose
in 3), Pi knows C2 pairs ( T (i, j), F ′

i (T (i, j)) ) for F ′
i , then 0 ≤ C2 ≤ S. Because

Pi knows fI(T (i, j)), Pi can know C1 + C2 evaluations of F ′′
i : F ′′

i = F ′
i /fI =

fI′
∏

i′=1...N,i′ �=i(
∑

k∈I r′i′k+
∑

k∈I′ r′i′k). For Pi, there are (N−c)S unknown coef-
ficients in fI′ excluding the leading coefficient (= 1). In

∏
i′=1...N,i′ �=i(

∑
k∈I r′i′k +∑

k∈I′ r′i′k) =
∑β

j=0 R′
jx

j , β = (N − 1)& S
N−1', there are at least S + 1 unknown

coefficients. Therefore Pi still needs to arbitrarily guess t = (N − c)S + S + 1 −
(C1 + C2) coefficients in F ′′

i . It’s easy to see that t ≥ 1. That is, Pi should guess
at least 1 random number before inferring other roots in fI′ than T and T ′. �

Theorem 2. Protocol 2 is a privacy preserving protocol for the PPSM problem.

The proof of this theorem is postponed to the Appendix.

7 Comparisons with Related Work

7.1 Comparisons for Protocol 1

Complexity of Protocol 1

1) Computation Cost : Each Paillier’s encryption and decryption requires a cost
of 2lgN modular multiplications (mod N 2). Each exponentiation has the
same cost with the encryption. We compare our protocol with other related
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work regarding their computation cost on encryptions and multiplications
of ciphertexts, and consider modular multiplication (mod N 2) as a basic
computation.

Thus, for each party in Protocol 1, the total encryptions are (S + 2)(N −
1)2−2, and the total multiplications of ciphertexts are (S+2)(N2 +2N−3).
Then the total computation cost for each party is 2((S+2)(N−1)2−2)lgN+
(S + 2)(N2 + 2N − 3) modular multiplications.

2) Communication Cost : The length of each encryption is 2lgN . Then in Proto-
col 1, the total communication cost among all parties is 2N(N−1)(4S+5)lgN
bits.

Speeding up techniques can be employed in Protocol 1. If all parties ensure
that there is a coalition of c (1 ≤ c ≤ N − 1) semi-honest parties, in Step 1) of
Protocol 1 each E(fi) can be randomized as E(fi∗

∑c+1
j=1 ri,j) by sending E(fi) to

c parties. In Step 2) E(G) can be computed as E(F
∏c+1

i=1 Ri). What’s more, in
Step 1) the iterations i = 1, ..., N can be made in parallel. Then the computation
cost is 2(c(S + 2)(N − 1) − 2)lgN + c(S + 2)(N + 3) modular multiplications.
The communication cost is 2cN(4S + 5)lgN bits.

Kissner’s Protocol. In Kissner’s protocol for PPSI ([18]), a single polynomial
F =

∑N
l=1 fl ∗

∑N
k=1 rl,k is constructed and evaluated on each T (i, j). fl is a poly-

nomial representing elements on Pl, rl,k is a polynomial uniformly selected by Pk

and has the same degree with fl. In this protocol, it’s easy to see that T (i, j) ∈ TI
is a sufficient condition for the evaluation F (T (i, j)) = 0, but F (T (i, j)) = 0 is not
even a sufficient condition for ∀l ∈ {1, ..., N} fl(T (i, j))∗

∑N
k=1 rl,k(T (i, j)) = 0. In

Lemma 1 we have proved that if ∀l ∈ {1, ..., N} fl(T (i, j))∗
∑N

k=1 rl,k(T (i, j)) = 0,
the probability that T (i, j) ∈ TI is (1− 1/N )N−1. Therefore, in Kissner’s proto-
col, if F (T (i, j)) = 0, the probability that T (i, j) ∈ TI is less than the probability
achieved by our Protocol 1.

The major cost of this protocol is on computing the encrypted F . It’s also
based on Paillier’s cryptosystem. The computation cost for each party and com-
munication cost among all parties are shown in Table 2.

Freedman’s Protocol. Freedman’s protocol for PPSI ([8]) is quite different
from ours and [18]’s. In their protocol, each party Pi (i = 1, ..., N − 1) sends
the encrypted polynomial fi representing its elements to PN . PN evaluates its
elements T (N, j) for j = 1, ..., S on all these polynomials, randomizes the evalua-
tions and sends them to all the other parties. These parties decrypt and combine
the evaluations to determine whether T (i, j) ∈ TI. In this protocol each party
also generates a random matrix, but the matrices are used in a different way
from our Protocol 1 for they aren’t full rank and not for multiplications. The
XOR of each row of the matrices is required to be zero, and they are used to
randomize the decryptions on each party.

The major cost of this protocol is on the evaluations of encrypted polynomials
at all elements of PN . The protocol is also based on Paillier’s cryptosystem. The
average computation cost for each party and communication cost among all
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parties are shown in Table 2. In [8] only the protocol for the semi-honest model
is given.

Comparisons of 3 protocols. From Table 2, the computation costs of Protocol
1, protocols in [18] and [8] are respectively O(cSNlgN ), O(cS2lgN ), O(S(S +
N)lgN ) modular multiplications. Practically the size of a set, S, may be much
larger than the number of parties, N . Then it’s easy to see that Protocol 1 is more
efficient in computation than [18] and [8], and more efficient in communication
than [18].

For a quantitative analysis, we conservatively set S = 20, N = 5, and set
c = 3, lgN = 1024, then Protocol 1 saves 81% and 63% computation costs, 17%
and 20% communication costs in comparison with [18] and [8]. We also notice
that if c = 4, i.e., all of the N parties are semi-honest, then the communication
cost in Protocol 1 will increase by 6% in comparison with [8]. Thus Protocol 1
can utilize the knowledge on honest relationships among some of the N parties
to reduce the communication cost.

Table 2. Comparisons of solutions for the PPSI problem

Computation Cost Communication Cost
Our Protocol 1 2(c(S + 2)(N − 1) − 2)lgN + c(S + 2)(N + 3) 2cN(4S + 5)lgN
Protocol in [18] 2(c(S + 1)2 + 5S + 3)lgN + c(S2 + 4S + 2) 2cN(5S + 2)lgN
Protocol in [8] ((S + 1)(S + 2) + 3S(N − 1) − 1)2lgN + S(S + 1) 10S(N − 1)2lgN

7.2 Comparisons for Protocol 2

Complexity of Protocol 2. In Protocol 2, on each party the computation
on encryptions and multiplications of ciphertexts requires 2N2S2lgN + N3S
modular multiplications (mod N 2). The communication cost among all parties
is 4N(N − 1)2SlgN bits.

The complexity of Protocol 2 can be reduced if all parties ensure that there
may be a coalition of c (1 ≤ c ≤ N − 1) parties. In Step 2.1), P1 can send
E(F1(j−1) ∗f1) to c parties; in Step 2.2), Pj can send E(F1(j−1) ∗fj) to c parties;
At the end of Step 2), P1 gets E(F1) = E(

∏N
j=2(f1 ∗

∑c+1
k=1 rjk + fj ∗

∑c+1
k=1 r′jk)).

The iterations in Step 3) can also be made in parallel with Step 2). Then the
computation cost is 2cNS2lgN + cN2S modular multiplications, and the com-
munication cost is 4c(N − 1)2SlgN bits.

Solution D1 Derived from [18]. The main idea of the private set intersection
protocol in [18] is to plus the randomized polynomials representing the data
sets, and their private set union protocol is mainly to multiply the polynomials
representing the data sets. Therefore, Solution D1 (as described in Section 2)
should firstly compute (fi ∗

∑N
k=1 ri′k + fi′ ∗

∑N
k=1 r′i′k) for Ti ∩ Ti′ for i′ =

1, ..., N, i′ �= i, then compute Fi =
∏

i′=1...N,i′ �=i(fi ∗
∑N

k=1 ri′k + fi′ ∗
∑N

k=1 r′i′k)
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for
⋃

i′=1...N,i′ �=i(Ti ∩ Ti′), and evaluate it. In [18], the way to privately compute
the encryption of Fi wasn’t provided, and all ri′k and r′i′k are randomly chosen
polynomials with degree S. Because ri′k and r′i′k have the same degree with fi

and f ′
i , Solution D1 needs a high cost to compute the encrypted polynomial

multiplications and evaluations. The computation and communication costs of
Solution D1 are shown in Table 3.

Comparisons. From Table 3, it’s easy to see that Protocol 2 is more efficient
in computation and communication than Solution D1. Suppose N = 5, c = 4,
S = 20, lgN = 1024, then Protocol 2 saves 80% computation cost and 50%
communication cost.

Table 3. Comparisons of solutions for the PPSM problem

Computation Cost Communication Cost
Our Protocol 2 2cNS2lgN + cN2S 4c(N − 1)2SlgN
Solution D1 2cN2S2lgN + 2cN2S 8c(N − 1)2SlgN

8 Conclusions and Open Problems

We address two problems in privacy preserving matching against distributed
datasets: Privacy Preserving Set Intersection (PPSI) and Privacy Preserving Set
Matching (PPSM) among N parties. The two problems are solved by construct-
ing polynomials representing elements in the set intersection and set matching,
and evaluating the polynomials to determine whether an element is in the set
intersection and set matching, without publishing the datasets on each party.
The security of the two protocols are proved assuming there is a coalition of
c (1 ≤ c ≤ N − 1) semi-honest parties. In comparison with related work in [18]
and [8], our two protocols have less computation and communication costs.

In the future, we will extend the two protocols in the semi-honest model to the
malicious model employing some zero-knowledge proofs. We will also utilize the
two protocols to protect the privacy in some practical problems, e.g., internet
congestion control ([23]).

In the problem formulation of Section 1, we have assumed that the size of each
party’s set (S) is much less than the size of the common set T to prevent the
dictionary attack. There are many applications fitting for this assumption, e.g.,
the intersection among the sets of credit card numbers. It’s well known that the
common set T for credit card numbers is large enough, so that given a suitable S,
the probability that an adversary arbitrarily chooses a number which equals any
number of the honest party is S

|T| → 0. However, there are also some applications
where S

|T| can’t be negligible. Then how can the dictionary attack be prevented?
In these cases, our two protocols can effectively resist the semi-honest behaviors
of the adversary, and be extended to resist the malicious behaviors, but it’s also
an important problem to prevent the adversary from defrauding the honest party
of inputs using the common set T when S

|T| isn’t negligible.
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Appendix: Proofs of Theorems

Theorem 1. Protocol 1 is a privacy preserving protocol for the PPSI problem.

Proof: By the definition of PPSI, we actually should compute a multi-party
function f: f(T1, ..., TN) = f(T ) = {PPSI(T (i, j))|T (i, j) ∈ Ti, i = 1, ..., N, j =
1, ..., S}, with the i-th element fi(T ) = {PPSI(T (i, j))|T (i, j) ∈ Ti, j = 1, ..., S}
for the party Pi, where PPSI(T (i, j)) = 1 if T (i, j) ∈ TI, and PPSI(T (i, j)) = 0
if T (i, j) /∈ TI.

Given any coalition of c (c ≤ N − 1) semi-honest parties indexed by I =
{i1, ..., ic}, their views after participating in Protocol 1 are denoted by
V IEWΠ

I (T ) = (I, V IEWΠ
i1

(T ), ..., V IEWΠ
ic

(T )). We also let fI(T ) = (fi1(T ), ...,
fic(T )). From the definition in Section 3.1, we have to show that there exists a
PPT algorithm S such that S(I, (Ti1 , ..., Tic), fI(T )) and V IEWΠ

I (T ) are com-
putationally indistinguishable.

V IEWΠ
I (T )={V1, V2, V3, V4}: 1) V1 is I ={i1, ..., ic}. 2)V2 are Ti1 , ..., Tic . 3)V3

are E(G) and the intermediate encryptions received by PI . 4)V4 are G(T (it, j))
for any it ∈ I. With these views, the coalition can do the following two types of
analysis:

1) Cryptanalysis on (V1, V2, V3): Due to the semantic security of the threshold
HE cryptosystem, Pi can’t gain extra information from the encryptions in V3.
That is, supposing V3 has s encryptions, with only negligible probability, Pi

can distinguish V3 and ER1 = (E(r1), ..., E(rs)) by randomly choosing R1 =
(r1, ..., rs) over the plaintext space of the HE scheme. Thus, (V1, V2, V3) ≡c

(V1, V2,R1, ER1).
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2) Roots analysis on (V1, V2, V4): From Lemma 3, PI can’t know roots other
than TI in any fi′ for ∀i′ ∈ I ′. Thus, V4 = (A, T I). A = {ait,j|it ∈
{i1, ..., ic}, j = 1, ..., S} in which ait,j = 1 if G(T (it, j)) = (0, ..., 0), and
ait,j = 0 otherwise.

In sum, V IEWΠ
I (T ) ≡c (V1, V2,R1, ER1,A, T I).

fI(T ) also equals (A, T I) by the analysis of the cases 6.1.1) and 6.1.2) in
Section 6.1. Let R′

1 = {r′i|i = 1, ..., s} are randomly chosen by PI , and ER′
1

are the encryptions of the sequence in R′
1, then S(I, (Ti1 , ..., Tic), fI(T )) ≡c

(I, (Ti1 , ..., Tic),A, T I,R′
1, ER′

1) ≡c (V1, V2,A, T I,R1, ER1) ≡c V IEWΠ
I (T ).

Then Protocol 1 privately computes PPSI against the coalition of any c (c ≤
N − 1) semi-honest parties. �

Theorem 2. Protocol 2 is a privacy preserving protocol for the PPSM problem.

Proof: By the definition of PPSM, we actually should compute a multi-party func-
tion f: f(T1, ..., TN) = f(T ), with the i-th element fi(T ) = {PPSM(T (i, j))|T (i, j)
∈ Ti, j = 1, ..., S} for the party Pi, where PPSM(T (i, j)) = 1 if T (i, j) ∈⋃

i′=1,...,N,i′ �=i(Ti∩Ti′), and PPSM(T (i, j)) = 0 otherwise. Given any coalition of
c (c ≤ N−1) semi-honest parties indexed by I = {i1, ..., ic}, their views after par-
ticipating in Protocol 2 are V IEWΠ

I (T ). We also let fI(T ) = (fi1(T ), ..., fic(T )).
We show that there exists a PPT algorithm S such that S(I, (Ti1 , ..., Tic), fI(T ))
and V IEWΠ

I (T ) are computationally indistinguishable.
V IEWΠ

I (T ) = {V1, V2, V3, V4}: 1) V1 is I = {i1, ..., ic}. 2)V2 are Ti1 , ..., Tic .
3)V3 are E(Fi) and the intermediate encryptions received by PI . 4)V4 are
Fit(T (it, j)) for any it ∈ I. The coalition can do the following analysis:

1) Cryptanalysis on (V1, V2, V3): Due to the semantic security of the thresh-
old HE cryptosystem, supposing V3 has s encryptions, with only negligible
probability, Pi can distinguish V3 and ER1 = (E(r1), ..., E(rs)) by randomly
choosing R1 = (r1, ..., rs). Thus, (V1, V2, V3) ≡c (V1, V2,R1, ER1).

2) Roots analysis on (V1, V2, V4): From Lemma 4, V4 = (A, T , T ′,R2). A =
{aj

it
|it ∈ {i1, ..., ic}, j = 1, ..., S} in which aj

it
= 1 if Fit(T (it, j)) = 0, and

aj
it

= 0 otherwise. R2 = {Ri|i = 1, ..., t}, in which Ri is a random number
guessed by Pi, t ≥ 1.

In sum, V IEWΠ
I (T ) ≡c (V1, V2,R1, ER1,A, T , T ′,R2). fI(T ) = (A, T , T ′) by

the analysis of the cases 6.2.1), 6.2.2) and 6.2.3). Let R′
1 = {r′i|i = 1, ..., s},R′

2 =
{R′

i|i = 1, ..., t} are randomly chosen by PI , and ER′
1 are the encryptions of the

sequence in R′
1. Then S(I, (Ti1 , ..., Tic), fI(T )) = (I, (Ti1 , ..., Tic),A, T , T ′,R′

1,
ER′

1,R′
2) ≡c V IEWΠ

I (T ). Then Protocol 2 privately computes PPSM against
the coalition of any c (c ≤ N − 1) semi-honest parties. �
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Abstract. Radio Frequency Identification (RFID) systems promise large
scale, automated tracking solutions but also pose a threat to customer
privacy. The tree-based hash protocol proposed by Molnar and Wagner
presents a scalable, privacy-preserving solution. Previous analyses of this
protocol concluded that an attacker who can extract secrets from a large
number of tags can compromise privacy of other tags. We propose a new
metric for information leakage inRFIDprotocols alongwith a threatmodel
that more realistically captures the goals and capabilities of potential at-
tackers. Using this metric, we measure the information leakage in the tree-
based hash protocol and estimate an attacker’s probability of success in
tracking targeted individuals, considering scenarios in which multiple in-
formation sources can be combined to track an individual. We conclude
that an attacker has a reasonable chance of tracking tags when the tree-
based hash protocol is used.

1 Introduction

Radio Frequency Identification (RFID) systems provide more precise identifica-
tion (right down to the item-level) and superior reliability over existing tracking
systems, as well as the possibility of strong authentication. Their capabilities,
however, also pose a threat to individual privacy. Several schemes have been
proposed that preserve consumer privacy by obfuscating the tag identity from
rogue readers. Some proposed schemes, such as Weis et al.’s [13] and Ohkubo et
al.’s [8], provide strong privacy but cannot scale to large RFID systems because
the workload for the backend system scales linearly with the number of tags in
the system. Other schemes, such as the tree-based hash protocol first proposed
by Molnar and Wagner [5], provide scalability but sacrifice some privacy. We
focus on this protocol and describe it in Section 2.

Avoine et al. analyzed the degree to which privacy is scarified in the tree-
based protocol and concluded that a serious privacy threat exists [1]. In this
paper, we revisit their assumptions and derive a different attacker model that we
believe better captures possible capabilities and motives of real-world attackers.
In our model, the attacker wants to track a tag through the system and needs
to distinguish that tag from all other tags. We find that the threat to privacy is
even higher than Avoine et al.’s estimate.

We assume an active attacker who can send arbitrary messages to readers
and tags of the system, but cannot invert the hash function. We also assume our
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attacker can extract secrets from a limited number of tags. The attacker tries
to learn as many bits of information as possible about each tag’s identity with
the final goal of distinguishing among passing tags. The amount of information
that the adversary needs to successfully launch an attack depends on properties
of the system and environment. The attack becomes harder if the system has
more tags and also if more of these appear in the limited environment that the
attacker probes. Our attacker model is different from previous models in that
we consider the case in which the attacker sees only a subset of all tags in the
system and tries to distinguish among those. The probability an attack will be
successful increases with the amount of information that each tag leaks, and
with the number of tags that are likely to stay together as a group. Our model
does not make assumptions about how the attacker learns information about
the tags other than that the attacker can extract all the key material from a
number of captured tags. We focus on information leaked from the protocol
layer; information leaked through side channels may further increase the risk of
privacy compromise.

Our main contributions are an improved metric for information leakage that
allows us to combine different information sources and that better follows the
proposed attacker model (Section 3), an analysis of the tree-based protocol based
on this metric (Section 4), and an analysis of the relevance of our results o
realistic RFID systems 5. We conclude that the privacy risks associated with the
tree-based hash protocol are more severe than previously thought.

2 Private Authentication Protocols

Several protocols have been proposed through which a tag can identify itself to a
legitimate reader while preserving the customer’s privacy against rogue readers.

Public-key cryptography would provide a clear solution to the privacy prob-
lem, but is usually too expensive to implement on RFID tags. All the protocols
we consider employ symmetric cryptographic hash functions in which keys are
shared between the tag and legitimate readers.

Weis et al. proposed a privacy-preserving RFID protocol in which the tag
hashes a random value (nonce) with a secret key that is only known to the tag
itself and all legitimate readers [13]. This linear hash protocol provides strong
privacy (as defined in Section 3) but fails to provide the needed scalability for
large RFID systems. The reader stores one key per tag and has to try all possible
keys in the database. Every tag authentication requires O(N) hashing operations
where N is the number of tags in the system. Since RFID systems must scale to
millions of tags, this cost becomes excessive.

To achieve scalability, Molnar and Wagner [5] proposed a protocol that achieves
sub-linear workload in the backend system1. The main drawback is that secrets are
shared among several tags. Hence, an attacker who can extract secrets from a given
1 Other protocols have been devised that sacrifice reliability for better scalabil-

ity [8][12]. Since we believe that most RFID applications require high availability,
we do not consider these protocols viable solutions.



230 K. Nohl and D. Evans

tag also learns some of the secrets stored on other tags. The tags are structured
in a tree where each tree leaf is a tag. Secrets are assigned to each tree branch and
every leaf stores all secrets on the path from the root to itself. The tree has a depth
d. Each node in the tree (except for the leaves) has k children. Each tag holds d
secrets, one for each level of the tree. Using the notation from Avoine et al. [1]
we denote the ith secret on the j level of the tree as rj,i. The secrets on each tag
correspond to a unique path through the tree; hence, every tag has at least one
secret that is not shared with any other tag.

To authenticate a tag in the tree, the reader initiates the protocol by sending
a nonce, NR. The tag responds with a second nonce, NT , and one hash for each
level of the tree. The tag response is: NT , H (r1,i||NT ||NR) , · · · , H (rd,i||NT ||NR),
where H is a cryptographic hash function (our analysis assumes the attack can-
not compromise H). The nonce provided by the tag provides privacy by making
consecutive responses from the same tag unlinkable. The reader-supplied nonce
prevents replay attacks. On reception, the backend system generates hashes for
all possible secrets corresponding to the first-level branches with the two session-
specific nonces. The one hash that matches the transmitted hash on this level
points to a node on the next level. This step is repeated until a leaf is reached.

If the tree is balanced, it holds N = kd tags. On each of the d levels, up
to k hashing operations are needed to find the responding secret. Hence, the
database performs up to dk = d d

√
N hashing operations. The tag performs d

times the number of hash operations than were required with the linear hash
protocol, and the transmitted response is approximately d times larger (ignoring
the framing and protocol overhead that does not grow with d). The memory
needed to store and process the hashes grows with d. Therefore, it is necessary
to keep d small to minimize the tag processing and memory requirements. The
parameter k does not affect the tag, but determines the computational cost in
the backend database. When designing a tree it can be chosen more freely than
d. It can also be dynamically adapted to a changing system size.

Different tags can have different probabilities of being broken. Tags that are
more likely to be broken should have fewer secrets (i.e., be placed higher in the
tree) than tags that are know to be hard to break. The question of the optimal
number of secrets was answered by Poovendran and Baras [9] in the context of
multicast keys. If tag i has a probability of being broken of pi then the optimal
number of secrets for this tag is di = −logk(pi). Note that for the special case
in which all tags have the same probability of being broken (∀i : pi = 1

N ), this
resolves to a balanced tree as introduced earlier d = −logk( 1

N ) = logk(N). The
rest of this paper assumes equal probabilities of being captured for all tags and
a balanced tree.

3 Privacy Definition

Several different notions of RFID privacy have been developed. The first papers
that targeted RFID privacy [13][8] focused on the requirement that tags should
protect product information from being disclosed. This is a weak notion because
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it leaves tags traceable. A stronger property, unlinkability, means that an adver-
sary should not be able to differentiate between readings that originated from
the same tag and readings that originated from different tags.

A system achieves strong privacy when an adversary cannot distinguish be-
tween two tags with a probability better than random guessing [4]. Since scalable
protocols have to sacrifice strong privacy, we need a more flexible measure of pri-
vacy. Our notion captures shades of privacy where a tag can be distinguishable
from some tags but not from others.

Our notion of privacy is closely related to anonymity, which has been studied
in the context of mix-nets [10][3]. Mix-nets try to make sender and recipient of
a message anonymous. The anonymity set is defined as the set of all potential
senders of a given message. The degree to which anonymity is achieved depends
on the size of the anonymity set. Perfect anonymity is achieved if the set includes
all members capable of sending messages in the system. The metric used by
Serjantov and Danezis is similar to the metric we propose in this paper. Both
are based on Shannon’s information theory [11]. They use entropy to describe
the number of possible elements in a group (in our case, the set of RFID tags
in the system). Nohara et al. were the first to use entropy in the analysis of
the tree-based RFID protocols [6]2. They only considered the case of a single
compromised tag and concluded that almost no information is leaked if the
number of tags in the system is large enough. Our results are consistent with
this, but extend to the more likely scenario where multiple tags are compromised.

Buttyán, Holczer and Vajda recently published an analysis of the privacy of
tree-based hash protocols also employing an information-theoretic metric similar
to ours [2]. Their notion of privacy is different from ours in that they employ
the average anonymity set size as their metric. In this metric the impact of de-
creasing the anonymity set size is independent of the initial set size. We believe
that the attacker’s actual incentive is better modeled by a logarithmic measure.
Decreasing the size from 100 to 50 should have the same impact as from 2 to 1
since both advances help to distinguish tags twice as well.

Measuring Privacy. We define privacy as the degree to which two authen-
tication sessions of the same tag are not linkable. An authentication session is
the interaction between a reader (legitimate or rogue) and a tag at the pro-
tocol level. Sessions are unlinkable if an attacker cannot discover whether two
responses originated from the same tag with a probability better than random
guessing. The highest degree of unlinkability exits if any pair of tags is indistin-
guishable. The metric that we derive in this paper measures the unlinkability
as a value between zero (unlinkable) and log2(N) (all tags linkable). Our metric
closely follows our attacker model as described in Section 1.

We measure privacy as the degree to which a member of the group is indis-
tinguishable from other elements of the group. The degree to which elements
in the group are distinguishable can be measured in bits. If we have a group of
size N and the adversary can, with absolute certainty, divide our group into two

2 Poovendran and Baras use entropy to analyze multicast keys [9].
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disjoint subgroups of size N
2 each then we have disclosed 1 bit of information.

We can extend this to two arbitrarily sized subgroups, S1 and S2, where N
s tags

are placed into group S1 and the remaining
(
1− 1

s

)
Ntags are placed into S2.

The adversary can place every tag in either S1 or S2. We use I to denote average
amount of information disclosed (that is, the amount of information that can be
learned about all tags divided by the number of tags). The information disclosed
is: I = 1

s · log2 (s) + s−1
s · log2

(
s

s−1

)
.

In general, an attacker will be able to split the group of all tags, G, into k
disjoint groups, Si, of arbitrary size. Then, the information disclosed is:

I =
k∑

i=1

(
|Si|
|G| · log2

(
|G|
|Si|

))
. (1)

The amount of disclosed information increases when there are more groups
and is maximized when the groups are equal in size (This is consistent with
Shannon’s information theory that states that the entropy of a source grows
as the probabilities of possible symbols become more similar [11]). Information
theory also gives us that a log2(N)-bit identifier uniquely identifies elements in a
group of size N . The values of I range from I = 0 (strong privacy) to I = log2(N)
(no privacy). In the latter case we can identify each tag uniquely, which means
that we have N groups of size 1.

4 Information Leakage

The tree-based protocol shares secrets among tags, so extracting the secrets from
one tag compromises the privacy of other tags. This section analyzes the amount
of information that can be gathered by an adversary. The amount of information
depends on the tree-structure and the tree positions of broken tags. We first look
at the worst case in which the adversary can select the tags to compromise based
on their tree position in Section 4.1 and then at the random case in Section 4.2.

4.1 Selected Tags Scenario

In the selected tag scenario, the attacker can select which tags to compromise.
This enables the attacker to select tags such that the number of redundant
secrets is minimized, thereby maximizing the information leakage. We consider
the information leaked when an attacker breaks b tags, and denote the broken
tags as t1, t2, · · · , tb. The first broken tag, t1, always reveals d new secrets to the
adversary. The second through kth broken tags (recall that k is the number of
children of a node), can each reveal between 1 and d new secrets. The number
of new secrets depends on how many branches are shared between the broken
tag and previously broken tags. This can be as few as one new secret if the tags
are siblings in the tree. Assuming the worst case the tags t(ki+1) · · · tki+1 reveal
d− i new secrets each — that is, all secrets at level i are known to the attacker
and each newly broken tag adds one secret to each level below i.
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Stolen secret
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Fig. 1. Distinguishable groups of tags after 4 tags have been broken

For the purpose of our analysis we assume a completely filled k-ary tree with
depth d, containing N = kd tags. The secrets have been extracted from b tags.
The adversary always selects tags to break that maximize the number of secrets
learned. We define level j of the tree as the deepest level on which all secrets
are known: j = �logk(b)� On the next level of the tree, level j +1, the adversary
knows b secrets. Recall, that we are considering the worst case first in which
there exists as little redundancy among the secrets as possible. Each of these
secrets is the root to a subtree with height d − j with one known path from
the root to one of the leaves. Each of these subtrees split the leaves of the tree
into subgroups of size N ·(k−1)

kj+2 , N ·(k−1)
kj+3 , · · · , N ·(k−1)

kd , N
kd . Maximum information

is disclosed if the groups of tags are of similar size. Therefore, the remaining
tags cluster in groups of only two sizes. These sizes are the ones closest to the
average size.

Figure 1 shows an example of the maximal information leakage in a 3-ary tree,
in which 4 tags have been broken. For the subgroups in which one of the leaves
has been broken, the final level is either the broken tag, or one of two unbroken
tags. The remaining unbroken keys at level 2 correspond to tag groups of size 3
and 6. The next broken tag should be selected from one of the groups of size 6.

The unbroken level j keys correspond to tag groups of two sizes, c1 and c2,
where r1 and r2 are the numbers of times these groups appear. The overall
number of groups add up to the number of keys at level j (r1 +r2 = kj), because
each node on level j has exactly one group (potentially with size 0) below it.
Thus, r1 = b mod kj and r2 = kj − r1.

The number of nodes on the next level, kj+1, is equal to the number of groups
times their sizes plus the number of broken tags:

kj+1 = c1 · r1 + c2 · r2 + b

c2 = c1 + 1 and c1 = kj+1−b−r2
r1+r2

For the example in Figure 1, we get one group of size 3 (j = 1; r1 = 1;
c1 = 1 = 3

kj ), two groups of size 6 (r2 = 2; c2 = 2 = 6
kj ); in addition, there are

4 groups of size 2, and 4 groups of size 1 at level j + 1.
Using equation 1 we can compute the worst case average information leakage

as

I (k, d, b) = b ·

⎛⎝ d∑
i=j+2

(
Ψ

(
k − 1

ki

))
+ Ψ

(
1
kd

)⎞⎠+r1 ·Ψ
( c1

kj+1

)
+r2 ·Ψ

( c2

kj+1

)
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where the information leakage due to a group of size σ is Ψ (σ) = 1
σ · log2 (σ).

The first term quantifies the information leakage due to b subtrees, each of
which contains one broken tag. The second and third term denote the leakage
due to the groups of tags that are not part of these subtrees.

For the example in Figure 1, this formula resolves to I = 3.132 bits. After
just 4 of the 27 tags in the tree have been broken (which means that 11 of the
39 secrets have been revealed), a significant portion of the maximally achievable
information (= log2(27), approximately 4.75, bits) is disclosed.

The information leakage for a few example cases is shown in Figure 2(a).
The figure shows the amount of information leakage over the number of broken
tags for several different system sizes. An attacker who compromises 20 tags in a
system with 100,000 tags obtains 2.9 bits of information when a tree with depth
3 is used and 4.3 bits when a tree of depth 5 is used. These values are small
enough to only allow tracking of individuals in very limited environments.

The worst case scenario will only occur if the attacker can select tags that
maximize the number of different secrets compromised. This is entirely possible
if the attacker has access to many tags. The attacker could probe every tag for
secrets on the tag that match those that were already extracted from other tags,
thus identifying a tag to break that has a high number of unknown secrets.

4.2 Random Tags Scenario

The attacker in this scenario breaks tags that are chosen at random. The in-
formation disclosure of this scenario cannot be easily captured in a closed-form
equation. We choose to simulate this case instead.

We simulated the random case for systems with system sizes in between N =
103 and N = 107, and a tree depth d = 5, and number of broken tags up to b =
100. The results are shown in Figure 2(b). The difference between this simulated
random case leakage and the selected tag leakage (Figure 2(a)) is at most 34%
(for N = 107 and b = 25) and typically less than 10%. The average difference
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Fig. 2. Information leakage in the tree-based hash-protocol
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over all simulated cases is 9%. Simulations of trees with different heights lead to
similar results [7].

The information leakage in the random tags scenario is always upper-bounded
by the selected tags scenario. Our results suggest that the closed-form solution
for the selected tags scenario is tight enough, typically within a ten percent, for
cases where attackers have no control over which tags they break. Since a smart
attacker with access to many tags could obtain nearly the worst case information
leakage, the derived closed-form solution can be used to analyze the information
leakage in the tree-based protocol in nearly all scenarios.

5 Relevance

An attacker can only track people whose tags can be distinguished from all other
people’s tags. This definition is different from Avoine et al.’s [1]. They considered
an attack to be successful if an attacker can distinguish between two tags. In
our model an attacker needs to be able to distinguish a tag from all other tags
for a tracking attack to be successful which we believe better captures a realistic
attacker. In this section, we estimate the likelihood of a successful attack for
different key parameters.

Our threat model and the described tracking attack are not limited to infor-
mation disclosed at the protocol layer. The most notable additional source of
information is the physical layer of a tag. Different tags have different physical
characteristics3.

Few bits of information are encoded in the number of tags that an individual
carries. Additional information could be encoded in the timestamp of readings
(e.g. if the same tag was always read at around the same time of the day).

Our analysis in limited to the information leaked on the protocol layer. Privacy
on this layer can be seen as a required but not sufficient property of RFID privacy.

For simplicity of the analysis we assume that the tags are partitioned into
g = �2I� groups of equal size where I is the amount of information leakage.
A second parameter of our attack, η, is the number of tags in the focus of the
attacker (e.g. all the tags that have entered the subway system at a given day).
Note that this number is typically much smaller than the total number of tags
in the system. A tag can be uniquely identified if it is the only tag in one of the g
groups. First we look at the case where every individual carries exactly one tag
and then we consider the case in which multiple tags stay together as a group.

5.1 Tracking Single Tags

The probability that at least one tag can be uniquely identified (that is, this tag
can be distinguished from all other tags) is

3 Based on radio characteristics, several additional bits of information may be ex-
tracted from the tag. Our experiment and preliminary results are reported in an
extended version of this paper [7].
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P1(g, η) =
(

g − 1
g

)η−1

.

The probability that at least j tags of the η tags can be identified is

P (g, η, j) =
j∏

i=1

(
g − i

g − i + 1

)η−i

.

Given a system with 100,000 tags of which 20 have been broken, and a tree
with depth 5, we get 20 groups (g = 20). The probability that in small group of
tags (η = 10), half of the tags can be uniquely identified is 14%. As the number
of tags grows, this probability becomes smaller.

5.2 Tracking Collections of Tags

For many RFID applications, it is common for each individual to carry several
tags. Even if a given RFID application gives individuals only a single tag, other
tags they carry for different RFID applications are equally helpful to the attacker
in distinguishing the individual. We assume that these collections comprise ran-
domly selected tags. The number of ways in which l tags can fall into the g
groups is given by

(
g
l

)
. When combined with the earlier result, the probability

that in a group of η individuals who each carry l tags, at least j can be uniquely
identified is

P (g, η, l, j) =
j∏

i=1

( (
g
l

)
− i(

g
l

)
− i + 1

)η−i

.

Looking at the example from the last section with N = 105, d = 5, η = 10 but
now assuming two tags per individual (l = 2), the attacker can uniquely identify
5 individuals (j = 5) with a probability of 83%. If each individual carries 5 tags
(l = 5), this probability exceeds 99%. Looking at an example of larger attack, we
assume 50 compromised tags (b = 50 and l = 5); the probability of identifying
half of 1,000 individuals (η = 1000, l = 500) is 88%.

These results illustrate that tracking attacks on large groups of individuals
are practical under the assumption that each individual carries a fixed collection
of tags.

6 Conclusion

The resource constraints of RFID tags, combined with the strict requirements
for large-scale scalability and high availability, mean that strong privacy is not
possible. All proposed protocols that provide strong privacy fail to scale to large
systems or suffer from a degraded availability. The tree-based protocol provides
a trade-off between privacy and scalability, but raises the need to better quantify
the amount of privacy compromised.
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Privacy must be measured in a way that accounts for a realistic attacker’s
ability to combine partial information to compromise individuals’ privacy with-
out necessarily being able to uniquely distinguish tags. Our proposed metric for
information leakage provides useful guidance for estimating the privacy a system
provides. An attacker is not likely to distinguish between individuals that each
carry only a single tag, but is very likely to be successful in distinguishing in-
dividuals that carry several tags. If additional information sources are factored
into the attack tracking of very large tag populations becomes entirely possi-
ble. Our results indicate that protocol designs previously considered to provide
adequate privacy, may in fact be insufficient against more realistic threat mod-
els. Designers of RFID applications must be careful to balance the needs for
scalability with realistic assessments of the threats of privacy compromise.
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Abstract. This paper presents the concept of anonymous identification
card, a technique enabling a card holder to demonstrates his/her authen-
ticity without disclosing real identity. Anonymous identification card can
be used in settings in which people need to demonstrate their eligibil-
ity to do certain things, meanwhile they are sensitive to their privacy,
not hoping to disclose their identity information to a verifier. We pro-
posed an efficient anonymous authentication scheme for this anonymous
identification card, with the support of rogue card revocation. The most
advantage of our scheme is its simplicity and efficiency such that all com-
putation can be carried out by a resource-limited identification card. We
proved our scheme is secure under the strong RSA assumption and the
decisional Diffie-Hellman assumption.

Keywords: Privacy, Anonymous Identification, Identity Management,
Group Signature, Cryptographic Protocol.

1 Introduction

Consider the following scenarios: people carry identification cards to prove their
authenticity when accessing restricted buildings, using pay parking lots, or driving
through tollgates. This identification card is embedded with a cryptographic chip
that can carry out computation for authentication. If authentication is associated
with a unique identifier (e.g., person’s name), transactions by the same user at
different places can be tracked and analyzed. To protect a user’s privacy, it is de-
sirable to deploy anonymous authentication scheme in such scenarios. That is, a
system can verify a user holding a valid card without being able to obtain this
person’s identity information. A similar scenario happens in Trusted Computing
Platforms [18], in which a computer can attest that it holds an original crypto-
graphic chip, Trusted Computing Module (TPM), to a remote server without re-
vealing information for this special chip.

The underlying mechanisms of these applications are cryptographic protocols
related to so-called group signature schemes. A group signature is a privacy-
preserving signature scheme introduced by Chaum and Heyst [12]. In such a
scheme, there are two basic entities: the group manager and certain number
of group members. The group manager issues group membership certificate/
credential for each group member. Later, based on its own group membership
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certificate, a group member can sign a message on behalf of the group without
revealing its identity. That is, a third party can only identify the signature is
produced by one group member without being able to find which particular one.
Only the group manager can open a signature and reveal its originator. Besides,
signatures signed by the same group member cannot be identified as from the
same source, i.e, “linked”. Recently, the study of group signature schemes has
attracted considerable attention, and many solutions have been proposed in the
literature (e.g., [10,9,1,7,4,5]).

In our target application, an identification card has extremely limited re-
source, either computing capability, or memory space. It is desirable that a cryp-
tographic protocol should be lightweight. Trusted Computing Platforms deploy
an anonymous authentication technique called “Direct Anonymous Attestation”
(DAA), which has been introduced in [6]. The current solution for DAA is a
computing intensive construction. To complete all cryptographic calculations in
real time, the computation has to be distributed among the TPM and the its
host, typically a personal computer. DAA works fine for powerful computing
devices, however, it is a too expensive construction for an identification card.

The contribution of this paper includes two parts: (1) we propose a statis-
tical zero-knowledge proof of knowledge protocol, through which a prover can
convince a verifier that he knows two integers that are relatively prime with-
out revealing any knowledge for these two integers; (2) based on the result in
(1), we devised a lightweight anonymous authentication scheme for anonymous
identification card. The new scheme is simple and efficient. As a result, all cryp-
tographic computation can be completed by the card alone. Therefore, the new
scheme is more suitable for our target scenarios, i.e., identification card.

The rest of this paper is organized as follows. The next section introduces
a security model for our application. Section 3 reviews some definitions, cryp-
tographic assumptions, and building blocks of our proposed scheme. Section 4
presents proposed scheme. Security properties are considered in Section 5. Fi-
nally, we summarize and give conclusions in section 6.

2 The Model

In this section, we define a model which captures security requirements for our
target application.

Definition 1 (The Model). A trusted card issuer takes responsibility for is-
suing anonymous identification card (AID). The issuer and AIDs form a group
in which the issuer holds a group master key, while AIDs hold group member
keypairs. The system should satisfy the following security requirements.

1. (Forgery-resistance) The keypair in the AID can only be produced using the
issuer’s master key.

2. (Anonymous Authentication) The AID can anonymously attest its authen-
ticity to a verifier. It is infeasible to extract AID’s identity information, or
link transactions by the same AID.
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3. (Rogue AID Revocation) Under certain security policy, the issuer can recover
an AID’s identity and reveal all malicious behaviors associated with this AID.
The revoked keypairs should be published on the revocation list to exclude
rogue AIDs by all verifiers.

Our model could be seen as a simplified group signature model (e.g. [1]). How-
ever, we adjust the revocation mechanism in the original model to satisfy our
security requirement. In the classical group signature model, the revocation is
implemented by opening all anonymous signatures in the pool by the group
manager. Just as pointed out by Kiayias et al. in [16], this mechanism is either
inefficient (centralized operation by the group manager), or unfair (unnecessar-
ily identifying all innocent group member’s signatures). To overcome this short-
coming, they introduced a variant scheme of group signature called traceable
signature, which we refer to as the KTY scheme. However, the new revocation
mechanism in the KTY scheme violates a security requirement called “back-
ward unlinkability” in group signature: disclosing the secret of a group member
should not reveal all this group member’s previous behaviors. This conflicting
issue shows in anonymous authentication, suitability of certain feature is more
application oriented, and no sole definition could accommodate all conditions.
In this paper we adopt the revocation mechanism in the KTY scheme since it is
more appropriate for our target application.

3 Definitions and Preliminaries

This section reviews some definitions, widely accepted complexity assumptions,
and building blocks that we will use in this paper.

3.1 Number-Theoretic Assumption

Definition 2 (Special RSA Modulus [8]). An RSA modulus n = pq is called
special if p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers.
Special RSA modulus is also called safe RSA modulus in some literature [1].

Definition 3 (Quadratic Residue Group QRn). Let Z∗
n be the multiplicative

group modulo n, which contains all positive integers less than n and relatively
prime to n. An element x ∈ Z∗

n is called a quadratic residue if there exists an
a ∈ Z∗

n such that a2 ≡ x (mod n). The set of all quadratic residues of Z∗
n forms

a cyclic subgroup of Z∗
n, which we denote by QRn. If n is the product of two

distinct primes, then |QRn| = 1
4 |Z∗

n|.

We list two properties about QRn which will be be used in section 5 for the
security proof.

Property 1. If n is a special RSA modulus, with p, q, p′, and q′ as in Def-
inition 2 above, then |QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are
generators of QRn .
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Property 2. If g is a generator of QRn, then ga mod n is a generator of QRn

if and only if GCD(a, |QRn|) = 1.

The security of our techniques relies on the following security assumptions which
are widely accepted in the cryptography literature. (for example, [2,14,9,1]).

Assumption 1 (Strong RSA Assumption). Let n be an RSA modulus. The
Flexible RSA Problem is the problem of taking a random element u ∈ Z∗

n and
finding a pair (v, e) such that e > 1 and ve ≡ u (modn). The Strong RSA
Assumption says that no probabilistic polynomial time algorithm can solve the
flexible RSA problem with non-negligible probability.

Assumption 2 (Decisional Diffie-Hellman Assumption over QRn). Let
n be a special RSA modulus, and let g be a generator of QRn. For two distributions
(g, gx, gy, gxy), (g, gx, gy, gz), x, y, z ∈R Zn, there is no probabilistic polynomial-
time algorithm that distinguishes them with non-negligible probability.

3.2 Building Blocks

Our main building blocks are statistical honest-verifier zero knowledge proofs
of knowledge related to discrete logarithms over QRn [11,15,9]. They include
protocols for things such as knowledge of a discrete logarithm, knowledge of
equality of two discrete logarithms, knowledge of a discrete logarithm that lies
in an interval, etc. We introduce one of them here. Readers may refer to the
original papers for more details.

Protocol 1. Let n be a special RSA modulus, QRn be the quadratic residue
group modulo n, and g be a generator of QRn. α, l, lc are security parameters
that are all greater than 1. X is a constant number. A prover Alice knows x,
the discrete logarithm of T1, and x ∈ [X − 2l, X + 2l]. Alice demonstrates her
knowledge of x ∈ [X − 2α(l+lc), X + 2α(l+lc)] as follows.

1. Alice picks a random t ∈ ±{0, 1}α(l+lc) and computes T2 = gt (mod n).
Alice sends (T1, T2) to a verifier Bob.

2. Bob picks a random c ∈ {0, 1}lc and sends it to Alice.
3. Alice computes w = t − c(x −X), and w ∈ ±{0, 1}α(l+lc)+1. Alice sends w

to Bob.
4. Bob checks w ∈ ±{0, 1}α(l+lc)+1 and

gw−cXT c
1 =? T2 (mod n).

If the equation holds, Alice proves knowledge of the discrete logarithm of T1
lies in the range [X − 2α(l+lc)+1, X + 2α(l+lc)+1].

Remark 1. It should be emphasized that while Alice knows a secret x in [X −
2l, X + 2l], the protocol only guarantees that x lies in the extended range [X −
2α(l+lc)+1, X + 2α(l+lc)+1].
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Next, we propose a zero-knowledge protocol to show co-primality of two discrete
logarithms. That is, a prover demonstrates its knowledge of discrete logarithms
of two elements T1, T2 in QRn being relatively prime. The method is based on
the following theorem.

Theorem 1. Let n be an RSA modulus. For a random element u ∈ Z∗
n, if one

can find a tuple (T1, T2, x, y) such that T x
1 T y

2 ≡ u (mod n), then x, y must be
relatively prime.

Proof. By contradiction. If x, y are not co-prime, we assume GCD(x, y) = e,
x = k1e, y = k2e. Then we have T x

1 T y
2 ≡ (T k1

1 T k2
2 )e ≡ u (mod n). Thus, we find

a pair (v, e) such that ve ≡ u (mod n), where v ≡ T k1
1 T k2

2 (mod n), to solve a
flexible RSA problem. This contradicts the strong RSA assumption. Therefore
x, y must be relatively prime. ��

Protocol 2. (Knowledge of Co-Primality of Two Discrete Logarithms)
(Sketch) Suppose Alice knows a, c are relatively prime. She first uses GCD al-
gorithm to compute b, d, such that ab + cd = 1. Then Alice computes

T1 = gb (mod n), T2 = T a
1 (mod n),

T3 = gd (mod n), T4 = T c
3 (mod n).

Alice sends (T1, T2, T3, T4) to Bob, and proves she knows discrete logarithms of
T2, T4 with base T1, T3 respectively. Finally, T2T4 = g (mod n), this shows that
discrete logarithms of T2, T4 are relatively prime.

4 The Authentication Protocol for Anonymous
Identification Card

The card issuer, the producer of AIDs, sets various parameters, the lengths of
which depend on a security parameter, which we denote by σ.

4.1 System Parameter Setting

The system parameters are set by the issuer, these values are:

– n, g, h: n is a special RSA modulus such that n = pq, p = 2p′ + 1, and
q = 2q′ + 1, where p and q are each at least σ bits long (so p, q > 2σ), and
p′ and q′ are prime. g, h ∈R QRn are random generators of the cyclic group
QRn. n, g, h are public values while p, q are kept secret by the issuer.

– α, lc, ls: security parameters that are greater than 1.
– X : a constant value. X > 2α(lc+ls)+2.

4.2 Key Generation for the AID

The key generation method is straightforward. The card issuer picks a random
prime number s ∈R [X − 2ls , X + 2ls ] and computes
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E = gs−1
(mod n),

where s−1 is the inverse of s modulo |QRn| = p′q′. (E, s) is the keypair of the
AID. The issuer feeds (E, s) into the AID, and records (E, s) in its database.

4.3 Anonymous Authentication

The idea of our method to implement anonymous authentication is: the AID
generates a random blinding integer b, computes T1 = Eb (mod n), T2 =
gb (mod n). Then the AID sends (T1, T2) to a verifier. The AID proves that
T s

1 ≡ T2 (mod n) and s lies in the correct interval; T2 ≡ gb (mod n), and s, b
are co-prime.

Protocol 3. (Anonymous Authentication)

1. The AID picks random b ∈R [X − 2ls , X + 2ls ], t1, t2 ∈R ±{0, 1}α(ls+lc). It
uses GCD algorithm to solve sa + bd = 1. The AID computes (all computa-
tions done modulo n):

T1 = Eb, T2 = gb, T3 = T t1
1 ,

T4 = ha, T5 = T s
4 , T6 = T t1

4 ,

T7 = hd, T8 = T b
7 , T9 = T t2

7 , T10 = gt2 .

(T1, T2, T3; T4, T5, T6) are used to prove equality of discrete logarithms of
T2, T5 with base T1, T4 respectively. Also, they are served to prove s lies in
the correct range. (g, T2, T10; T7, T8, T9) are used to prove equality of dis-
crete logarithms of T2, T8 with the base g, T7, respectively. The AID sends
(T1, T2, T3, T4, T5, T6, T7, T8, T9, T10) to the verifier.

2. The verifier picks number c ∈ {0, 1}lc, and sends it to the AID.
3. The AID computes

w1 = t1 − c(s−X), w2 = t2 − c(b−X),

and sends (w1, w2) to the verifier.
4. The verifier checks w1, w2 ∈ ±{0, 1}α(ls+lc)+1, and checks (all computations

done modulo n):

T w1−cX
1 T c

2 =? T3, T w1−cX
4 T c

5 =? T6,

gw2−cXT c
2 =? T10, T w2−cX

7 T c
8 =? T9, T5T8 =? h.

If all these equations hold, this completes the AID’s anonymous authentication.

Remark 2. Using the Fiat-Shamir heuristic[13], the authentication scheme can
be turned into a non-interactive “signature of knowledge” scheme, which is secure
in the random oracle model [3].
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4.4 Rogue AID Revocation

If certain behaviors have been identified suspicious, the transaction transcripts
should be submitted to the card issuer to reveal the identity. The issuer checks
all s in its database

T si
1 =? T2 (mod n)

to reveal this AID’s identity. Then si is published on the revocation list for all
the verifiers.

Later, a verifier can check

T si
1 =? T2 (mod n)

for all si on the revocation list to identify a rouge AID.

4.5 Performance Analysis

Since the computation cost in the protocol is dominated by the modular squaring
and multiplication, we can estimate computation cost by counting total modular
squarings and multiplications. Let k1 be the bit length of the binary representa-
tion of exponent, and k2 be the number of 1’s in the binary representation, the
total computation cost can be treated as k1 squarings and k2 multiplications.
For example, if y = gx (mod n), and x ∈R {0, 1}160. We assume half of 160
bits of s will be 1. Then the total computation includes 160 squarings and 80
expected multiplications.

In practice, we can choose σ = 512, then n is 1024 bits long. Suppose we let
α = 9/8, lc, ls = 160, and X = 2367(46 bytes). Since s, b ∈ [X − 2ls , X + 2ls ].
We should notice that the actual random part of s, b is the lower 160 bits, and
the leading 268 bits are all 0′s except the first bit. This would save lots of
computation as well as memory space. Then computation related to exponents
b, s are 368 squarings and 81 expected multiplications. We treat other exponents
as 368-bit long. The AID needs at most 3680 (368 × 10) squarings and 1428
(81 × 4 + 184 × 6) multiplications. Therefore, total computation cost is 5108
modular multiplication, which can be completed by the AID alone according to
the experiment result for the TPM in Trusted Computing Platform [6].

5 Security Properties

We prepare two lemmas that will be used shortly. The first lemma is due to
Shamir [17].

Lemma 1. Let n be an integer. For given values u, v ∈ Z∗
n and x, y ∈ Zn such

that GCD(x, y) = 1 and vx ≡ uy (mod n), there is an efficient way to compute
the value z such that zx ≡ u (mod n).

Proof. Since GCD(x, y) = 1, we can use the Extended GCD algorithm to find
a and b such that ay + bx = 1, and let z = vaub. Thus

zx ≡ vaxubx ≡ uay+bx ≡ u (mod n). ��
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We introduce the second lemma for the security of the AID’s keypair.

Lemma 2. If X > 2α(ls+lc)+2, α, ls, lc > 1, then (X − 2α(ls+lc)+1)2 > X +
2α(ls+lc)+1.

Proof.
(X − 2α(ls+lc)+1)2 − (X + 2α(ls+lc)+1)

= X2 −X2α(ls+lc)+2 + 22α(ls+lc)+2 −X − 2α(ls+lc)+1

= X(X − 2α(ls+lc)+2 − 1) + 22α(ls+lc)+2 − 2α(ls+lc)+1

Since α, ls, lc > 1, and X > 2α(ls+lc)+2, the equation is greater than 0. ��
Now, we discuss the security of our scheme. First, we address the issue of keypair
forgery. We consider an attack model in which an attacker can obtain a set of
legitimate keypairs. A successful attack is one in which a new keypair is generated
that is valid and different from current keypairs. The following theorem shows
that, assuming the strong RSA Assumption, it is intractable for an attacker to
forge such a keypair.

Theorem 2 (Forgery-resistance). If there exists a probabilistic polynomial
time algorithm which takes a list of valid keypairs, (s1, E1), (s2, E2), . . . , (sk, Ek)
and with non-negligible probability produces a new keypair (s, E) such that s ∈
[X − 2α(ls+lc)+1, X + 2α(ls+lc)+1], Es = g (mod n) and s �= si for 1 ≤ i ≤ k,
then we can solve the flexible RSA problem with non-negligible probability.

Proof. Suppose there exists a probabilistic polynomial-time algorithm A which
computes a new legitimate keypair based on the available keypairs, and succeeds
with some non-negligible probability. We can construct an algorithm for solving
the flexible RSA problem, given a random input (u, n), as follows:

1. We pick random prime numbers s1, s2, . . . , sk in the required range [X −
2ls , X + 2ls ], and compute

r = s1s2...sk,

g = ur = us1s2...sk (mod n).

For a random input (u, n), the probability of u ∈ QRn is 1
4 . Due to Prop-

erty 1, u will be a generator of QRn with probability nearly 1
4 . Since the si

values are primes strictly less than either p′ or q′, it must be the case that
GCD(r, |QRn|) = 1. Property 2 says that g is a generator of QRn if and only
u is a generator of QRn. Then g is a generator of QRn with non-negligible
probability.

2. Next, we create k group keypairs, using the si values and Ei values calculated
as follows:

E1 = us2...sk (mod n)
E2 = us1s3...sk (mod n)

...
Ek = us1s2...sk−1 (mod n)

Note that for all i = 1, . . . , k, Esi

i = us1s2···sk = ur = g (mod n).
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3. We use the assumed forgery algorithm A for creating a new valid keypair
(E, s), where s ∈ [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1], and Es = g = ur (mod
n).

4. If the forgery algorithm succeeds, then s will be different from all the si’s.
By Lemma 2, s cannot be the product of si, sj , 1 ≤ i, j ≤ k. Therefore,
either GCD(s, s1s2 · · · sk) = 1, or GCD(s, s1s2 · · · sk) = si, 1 ≤ i ≤ k. In the
first case, due to Lemma 1, we can find a pair (y, s) such that

ys = u (mod n)

so the pair (y, s) is a solution to our flexible RSA problem instance. In the sec-
ond case, assume s = v×si, then v < X−2α(ls+lc)+1, and GCD(v, s1s2 · · · sk)
= 1 (or GCD(v, r) = 1). We then have

Es ≡ Evsi ≡ (Esi )v ≡ ur (mod n).

Again by Lemma 1, we can find a pair (y, v) such that

yv = u (mod n).

so the pair (y, v) is a solution to our flexible RSA problem instance.

Through the above steps, assuming the existence of algorithm A, we have
solved a random instance flexible RSA problem (u, n) with non-negligible prob-
ability. However, this is infeasible under the strong RSA assumption. Therefore,
such algorithm A should not exist under the same assumption. ��

Next, we address the security of anonymous authentication scheme which is
described as the following theorem.

Theorem 3. Under the strong RSA assumption, the anonymous authentication
protocol is a statistical zero-knowledge honest-verifier proof of a keypair (E, s)
such that Es ≡ g (mod n) and s lies in the correct interval.

Proof (Sketch). Our protocol directly deploys the standard building blocks to
accomplish anonymous authentication.

In the protocol, (g, T2, T10; T7, T8, T9) are used to prove equality of the discrete
logarithms of T2 with base g, and T8 with base T7. This is the statistical honest-
verifier zero-knowledge protocol that its security has been proved in the literature
under the strong RSA assumption.

(T1, T2, T3; T4, T5, T6) are used to prove equality of discrete logarithms of T2
with base T1, and T5 with base T4. Also, they are served to prove this discrete
logarithm s ∈ [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1]. This is a generalized version
of knowledge protocol of equality of discrete logarithms introduced in [16]. The
protocol is also secure under the strong RSA assumption.

Since T5T8 ≡ h (mod n), by Theorem 1, discrete logarithms of T5, T8, s and
b, respectively, are co-prime.

Putting the above together, the AID demonstrates that it knows s, b such that
T s

1 ≡ gb (mod n), and s, b are relatively prime. Due to Lemma 1, the AID can
solve this equation and obtain Es ≡ g (mod n), which is a valid keypair. ��
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Finally, we propose the theorem for anonymity property of the scheme. The
problem of linking two tuples (T1, T2), (T ′

1, T
′
2) is equivalent to deciding equality

of discrete logarithms of T2, T
′
2 with bases T1, T

′
1 respectively. This is infeasible

under the decisional Diffie-Hellman assumption over QRn. Therefore, we have
the following result.

Theorem 4 (Anonymity). Under the decisional Diffie-Hellman assumption,
the protocol implements anonymous authentication such that it is infeasible link
transactions by the same AID.

6 Conclusion

In this paper, we have presented an efficient protocol to implement authen-
tication for anonymous identification card (AID) with supporting rogue AID
revocation. The proposed scheme is simple and efficient enough to be deployed
in an identification card to protect user’s privacy. The new scheme is proved to
be secure under the strong RSA assumption and the decisional Diffie-Hellman
assumption.

Theorem 1 is an interesting result in the paper, which is a corollary of the
strong RSA assumption. Based on this result, we devised a knowledge proof
of co-primality of discrete logarithms. This theorem might be used in other
cryptographic construction.
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Abstract. Microprocessor devices, such as smart cards, are used more
and more to store and protect secret information. This development has
its advantages, but microprocessor devices are susceptible to various at-
tacks. Much attention has been devoted to side-channel attacks, exploit-
ing unintentional correlation between internal secret information, such
as cryptographic keys, and the various side channels. We present a wire-
less covert channel attack (WCCA) that intentionally correlates secret
information with the electromagnetic side channel. WCCA exploits sub-
versive code hidden on all cards during manufacture, to launch an attack,
without physical access, when infected cards are used. Experiments on
modern smart cards confirm that an insider with the opportunity to hide
subversive code can potentially broadcast the card’s internal secrets to a
nearby receiver. Security features against side-channel attacks will limit
the range but not prevent the attack.

Keywords: Smart Cards, EM Side-Channel, Subversion, Wireless Covert
Channel.

1 Introduction

Since the birth of modern side channel attack in the 90’s there has been an ex-
plosion of proposed attacks exploiting side channels to reveal secret information
within a smart card. Current research focuses on exploiting unintended corre-
lations between secret information (cryptographic key) and the side channel,
tailoring a specific implementation of a cryptographic algorithm. These attacks
often require a ”lost or stolen” card and experimental results are often obtained
on simple cards of older technology, not on modern smart cards equipped with
countermeasures.

By combining the efforts of different fields, electromagnetic side channel at-
tacks , covert channels and subversion, we propose a new attack: wireless covert
channel attack (WCCA). We believe that hiding subversive code on cards during
manufacture can manipulate the energy leakage from a smart card to create a
covert broadcast channel. The channel is activated when cards are used in a nor-
mal scenario and will give us access to secret information remotely (i.e. wireless),
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without the need for physical access to the target. The attack is tailored the mi-
croprocessor architecture rather than the actual cryptographic algorithm and
experiments confirm that the attack will work on modern smart cards equipped
with countermeasures against side channel attacks.

This article will explain how to collect and analyze electromagnetic emana-
tion from smart cards to build signatures of individual instruction executed by
the microprocessor. These signatures will form a symbol alphabet for a covert
communication channel. Subversive code hidden on the smart card will cre-
ate the covert channel and use it to broadcast secret information to a nearby
receiver. Practical result obtained on modern smart cards (identity withheld
due to a Non Disclosure Agreement) equipped with counter measures will be
shown.

2 Previous Work

The basis for side-channel attacks has been available for a long time. It is possible
to use the second law of thermodynamics to show that energy must escape from
devices in one way or another(e.g. heat) [1]. The laws of physics explain that it is
impossible for any operating device not to leak energy. The goal of side-channel
attacks is to look for dependencies between this unavoidable energy leakage and
the device’s secret parameters.

Exploiting this leakage is not new. Military and government organizations
have supposedly used them for a long time, with public interest beginning much
later. In 1985 Van Eck [2] published the article on how to eavesdrop video dis-
play units via radiation from a considerable distance that attracted much at-
tention. In 1996 Anderson and Kuhn published their work, ”Tamper Resistance
- A Cautionary Note” [3], which showed that trusting tamper resistant devices
can be problematic. That same year Kocher [4] published his work on exploiting
differences in execution time (Timing Attacks). This work was soon followed up
and in 1999 Kocher et al. [5] introduced some powerful attacks through mea-
surement of a device’s power consumption. Simple Power Analysis (SPA) and
Differential Power Analysis (DPA) received some attention from, among oth-
ers, the banking industry, and countermeasures were publicly announced. In
2000, Quisquater and Samyde [6,7] applied the analysis technique from SPA and
DPA to electromagnetic side-channels, thus introducing electromagnetic analy-
sis (EMA).

In recent years several papers have been published in an ongoing effort to sys-
tematically investigate electromagnetic side-channel attacks[8,9,10,11,12]. The
experiments have been extended to some distance from the target, implying
that physical access to the target may not be necessary. It has been shown that
EMA is at least as powerful as power analysis, and that EMA could circumvent
power analysis countermeasures [10,13]. At USENIX 2002 [14], Quisquater and
Samyde described an automatic method to classify instructions, carried out by a
simple CISC processor. The power and electromagnetic signature of instructions
were captured and then used to train a neural network. The neural network
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could automatically recognize, and thus reverse engineer, executed code based
on stored electromagnetic and power signatures.

Common for previous attacks is that they exploit unintentional correlations
between the side-channel and secret information, often a cryptographic key. Tak-
ing a more aggressive approach would be to manipulate the side-channel. It is not
difficult to imagine a situation were the code on the smart card is manipulated
to give specific results for the neural network of Quisquater and Samyde [14].

Covert communication was first introduced by Lampson in 1973 and was then
defined as

A communication channel is covert if it is neither designed nor intended
to transfer information at all

An example can be found in an encrypted packet switched network. An adver-
sary can monitor the packet flow, but can not read the encrypted content of each
packet. A covert channel can be created if the following is decided beforehand.

– Packet sent from address A to B - interpret as logic 0
– Packet sent from address A to C - interpret as logic 1

This traffic will appear as regular packet switch traffic (at least to the un-
trained eye) and hopefully not raise any suspicions, therefore it is covert.

Another example of a covert channel can be the running time of a program.
This means that the timing attack of Kocher [4] can be seen as exploiting an
unintentional covert channel. Unintentional in the way that the secret infor-
mation was not intentionally correlated with the timing information. Similarly,
other side-channel attacks can also be seen as exploiting unintentional covert
channels. Side-channels also fit Lampsons definition from 1973 as stated above.

Kuhn and Andersson [15] talk about attacking a system with malicious code
that will use a computer’s RF emission to transmit stolen information. The pos-
sibility to plant a virus to infiltrate a bank or certificate authority and broadcast
key material over an improvised radio channel is mentioned. Practical results are
shown with hidden messages in a recovered video signal. This can also be cat-
egorized as a covert channel where the electromagnetic side channel has been
deliberately manipulated. This approach will be used in WCCA. We introduce
the term wireless covert channel as a hidden electromagnetic communication
channel, detectable outside the system, as a result of intentional manipulation of
valid system parameters.

Creating a wireless covert channel can be viewed as subversion, described by
Myers [16] as

The subversion of computer systems is the covert and methodical un-
dermining of internal and external controls over a systems lifetime to
allow unauthorized and undetected access to system resources and/or
information.

In the next chapter the wireless covert channel attack (WCCA) is presented.
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3 Wireless Covert Channel Attack

The wireless Covert Channel Attack (WCCA) relies on a highly skilled insider to
undermine the security mechanisms by hiding subversive code in the smart card’s
software (SW). This is done during an early stage (design or implementation) of
its life cycle (figure 1) and will affect all cards produced. These infected cards
may be used e.g. in the banking industry as credit cards, loaded with personal
information (cryptographic key, PIN code, account number etc.) when issued to
a customer. The adversary is interested in retrieving the secret, personal infor-
mation and has an accomplice involved at the use stage of the life cycle. This
will be somebody with access to a smart card terminal, a store owner or main-
tenance personnel. When a manipulated card is inserted into any terminal, by
the owner, the subversive code exploits characteristic electromagnetic emana-
tion (signatures) from the microprocessor, during execution of instructions, to
broadcasting secret information over a wireless covert channel. The success of
this attack is ensured by the large number of cards infected. If a whole gener-
ation of smart cards to the banking industry is infected, there will be enough
cards randomly used in the rigged locations to make the attack worth the effort.

WCCA can be divided into a preparation phase, an implementation phase
and an exploitation phase.

Fig. 1. Scenario: The adversary hides subversive code during an early stage. Later,
secret information is loaded to the card. When the card is used, the subversive code is
activated and broadcasts secret information to the accomplice.

3.1 Preparation Phase

The preparation phase is used to build a library of characteristic electromagnetic
emanation from instructions executed by the microprocessor. WCCA uses the
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average power spectrum density (PSD) obtained from a spectrum analyzer to
characterize an instruction.

For every instruction of interest, a smart card is prepared with a test code.
The card inserted into a customized smart card reader will automatically start
executing the test code. A small coil is placed on top of the smart card reader,
as close as possible to the microprocessor, without any decapsulation. Using a
spectrum analyzer, no synchronization between the executed code and the instru-
ment is needed. The average PSD is stored on a computer for further analysis.
The test code is written in assembly language and executes one instruction in
a loop. The instruction is repeated several times within the loop to reduce the
effect of any unwanted instructions, such as ”goto”. Each instruction was mea-
sured several times, in random order, to enhance the reliability of the data. The
signature of an instruction is the mean of all these repetitions.

3.2 Implementation Phase

The implementation phase is used to design and hide the subversive code needed
to create the covert channel. A symbol alphabet for the channel, as well as a
carrier frequency, is obtained from analysis of the recorded signatures. The smart
card executing the subversive code can be considered a bandpass digital system
[17], where a carrier is modulated with binary data. In this work we restrict
the discussion to a binary system, and leave M-ary bandpass digital systems for
future work.

For two possible messages, m1 and m2, two possible waveforms s1(t) or s2(t)
are transmitted in a bit interval, Tb. The waveforms s1(t) and s2(t) cannot be
chosen freely, but are a result of emitted energy when executing instructions on
the smart card. Since the receiver makes the decision based on received energy, it
is natural to look for frequencies where the emitted energy can be controlled by
execution of different instructions. Given the right receiver it should be possible
to take advantage of the energy difference over a large frequency range, but in
order to demonstrate the feasibility of the attack a low cost narrow band receiver
was chosen. The approach is therefore to look for one carrier frequency, fc,
with a large difference in emitted energy between execution of two instructions.
Exploiting the energy emitted in a larger band is subject to work in progress.

Using the recorded signatures, a carrier frequency is easily found. Let diff(i,j)
be the spectral difference between signature i and j. Diff(i,j) is simply the magni-
tude of the difference at each sample of signature i and j. Calculating diff(i,j) for
all combinations of instructions, there will be two signatures i=A and j=B that
gives the maximum difference at a specific frequency. This frequency is chosen
as the carrier frequency, fc.

The emitted energy at carrier frequency fc can now be controlled by designing
a subversive code that transmits secret information using

– Instruction A - logic 0 - small energy emission at fc

– Instruction B - logic 1 - large energy emission at fc

Once the subversive code is designed, the task is to make sure it is hidden
on every card produced, undetectable. It is beyond the scope of this article to
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describe this in detail. However, if third party compilers and library files have
less stringent security requirements than the developed SW, and commercial
interest prohibits full insight into the source code of them, it could serve as an
excellent opportunity for the adversary.

3.3 Exploitation Phase

The success of the attack relies on the adversary or his accomplice placing a
receiver in the vicinity of where infected cards are used. The subversive code
will be executed during normal use and secret information broadcasted to any
receiver in the vicinity.

The range of the covert channel will have a great impact on how difficult this
will be. Given a range of several meters, the receiver can be placed somewhere
in the room and maybe in an adjacent room. It may also be possible to carry
a concealed receiver and stand nearby or be in the line behind the victim. If
the range is in order of cm, the probe of the receiver must be placed close
to the terminal. This may be possible if the accomplice is the store owner or
maintenance personnel with access to the terminal.

The receiver can be optimized to cost, range, channel capacity, probability of
error, size etc, but even a cheap commercial receiver used in this experiments
gives promising results. Due to the relative long exposure time, when the card is
used in a terminal (up to 30 sec) the bit rate does not need to be high. Assuming
that the covert channel use only 1% of the processor time, reduces the risk of
detection, and still gives 0.3 sec for the attack. Sending 1024 bits in 0.3 sec
requires a channel capacity of only 3.5 kbits/s.

4 Experiment

The experiments have been carried out on a modern smart card with several
security features against side channel attacks. The identity of the card and the
details about the security features are withheld due to a Non Disclosure Agree-
ment (NDA).

In the preparation phase, the electromagnetic signature of 25 instructions were
collected. None of the instructions activated the I/O interface of the smart card.
Signatures were collected with and without security features against side channel
attacks activated. Spectrum analyzer Advantest 3641 was used. Measurements
were done from DC to 60 MHz, with 100 averages, providing signatures of 4206
samples. Typical signatures can be seen in figure 2.

The object of the implementation phase is to analyze the 25 signatures col-
lected and to identify frequencies where the emitted energy can be controlled by
toggling between two instructions. Therefore, the spectral difference diff(i,j) is
of more importance than the shape of the signature, this is shown in figure 3.
The maximum amplitude difference for all combinations of instructions, when
security features are activated, has been plotted in figure 4.

These are potential carrier frequencies for the covert channel and the corre-
sponding instructions are used to create the subversive code. As an example,
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Fig. 2. Average power spectrum density as signatures of instructions. Instructions ex-
ecuted on card with and without security features activated.

using instruction A and B at frequency fc=11.5 MHz provides an amplitude
difference of 10.5 dB. It may be interesting to notice that the peaks around 53
to 57 MHz are introduced by one of the security features.

Three different subversive codes have been designed to test the covert chan-
nel and serves to illustrate the potential. It is assumed that the highly skilled
insider will be able to create more sophisticated codes. The first code was de-
signed to demonstrate that subversive code can manipulate the energy emitted
and that the channel is detectable by a receiver. For this purpose two instruc-
tions are executed n times alternately, to create a pulse train with fundamental
frequency dependent on n. With 1μs execution time of each instruction, choos-
ing n = 500, 250 and 125 results in a fundamental frequency of 1,2 and 4 kHz
respectively. This is in the audible range and serves well for a demonstration
with an AM receiver. The second code was designed to demonstrate that mes-
sages can be transmitted. A short or a long audible tone is used to send morse
code (SOS) to the receiver. The third code broadcasts the memory contents
of a smart card in an attempt to demonstrate how secret information can be
compromised.

Using the ICOM IR-20 receiver with the extendable rod antenna, the audible
tones and the morse code are easily detected. On a simple card the tone has been
detected 10 meter from the terminal. The modern card is detectable within 1
meter even with security features activated. The covert channel is also detectable
on the peaks introduced by one of the security features at 53-57 MHz. The same
procedure as with morse code can be used to broadcast the memory content of
a smart card to the AM receiver. This is a low rate transmission and work is in
progress to improve the transmission rate.
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5 Analysis

The feasibility of the attack has been confirmed through the use of a cheap AM
receiver. An important issue left is the rate of information leakage from the smart
card, the channel capacity of the covert channel.

The source rate, R, how fast the smart card (source) can transmit information,
is given by [18]:

R =
H

T
bits/sec (1)

where H is the average information (entropy) of the source , given by Shannon
[19], and T is the time required to send each message. For a binary system
with equal probability of sending zero and one, the entropy is H=1. Since each
message, m1 or m2, is represented with the waveform resulting from execution of
instructions, the execution speed of the microprocessor will set a lower limit on
T. Assume a microprocessor architecture that requires multiple of 4 clock cycles
per instruction. Choosing two, single cycle, instructions with clock frequency of
4 MHz gives T = 1μs. Using (1) a source rate of R = 1 Mbit/s is found. This is
an upper limit and not very realistic as it e.g. does not take into consideration
fetching the next message before sending it. By analyzing the flow chart of the
test code, designed to read and broadcast the memory contents of a smart card,
an average of 37 clock cycles (T = 9.25 μs) is required to send each message.
The source rate is then R = 1/9.25 μs ≈ 108 kbit/s.

The source rate , R, is important when designing a communication channel.
Shannon [19] has shown that, for the case of signal plus white gaussian noise,
it is theoretically possible to have the probability of error approach zero for a
channel capacity of C bits/sec, as long as R < C. The equation for C is then

C = B log2(1 +
S

N
) (2)

where B is the channel bandwidth in hertz (Hz) and S/N is the signal-to-noise
power ratio (watts/watts) at the input to the receiver.

Using the recorded signature we can estimate B and S/N. B should be the
lowest bandwidth in the communication chain. In our experiment this is the
receiver with B=15 kHz. Using the amplitude difference in dB from diff(i,j) as
the value for S/N can be justified since one of the signatures is close to the noise
floor at the chosen frequency. The experiment suggested a pair of instructions
with 10.5 dB difference. With a receiver bandwidth of 15 kHz this gives C=32
kb/s. This is an upper limit for error free communication that may be approached
using efficient coding. The adversary is limited to the waveforms emitted when
executing instructions and cannot hope to achieve this capacity. However, a
transmission rate of one tenth of C is realistic and can be sufficient. A key of
1024 bits is transmitted in 32 ms at 3,2 kb/s. Assuming 1 % processor load for
the covert channel requires the card to be turned on for 32 seconds, which is not
unreasonable in e.g. a bank terminal.

Care must be taken if the requirement of R < C is violated. This is not a
problem if handled properly, R can be decreased or C increased. Reducing the
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rate of transmission is not a problem and can be solved with different coding
techniques. A simple approach can be to represent each message m1 and m2
with n execution of an instruction, where n is chosen such that R < C. The
drawback is that the risk of exposing the subversive code increases as the size
and execution time of the code increases. Increasing C can be done by increasing
the bandwidth of the receiver or the S/N ratio at the receiver. An interesting
approach would be to exploit differences between signatures at several different
frequencies as opposed to one frequency.

The results in this experiment are believed to be moderate, as many improve-
ments are possible. One obvious improvement would be to use a receiver with
larger bandwidth. Work is in progress to calculate the potential channel capacity
when the transmitter and not the receiver is the limiting factor for bandwidth.

Finally, some remarks about countermeasures. It is beyond the scope of this
article to suggest new or improved countermeasures, but maybe it will serve as
a reminder that countermeasures should be considered for the entire life cycle
of the product and for the entire system, including third party SW, terminals
and locations of use. It is also important to remember that in a complex system,
introducing new functionality may have unwanted side effects. This has been
demonstrated in this experiment as one security measure against side-channel
attacks introduced a peak that could be exploited as a covert channel.

6 Conclusion and Future Work

This article presents a new attack on smart cards. The wireless covert channel
attack (WCCA) combines theory from subversion and covert channels with side
channel attack.

Experiments have shown that by manipulating the energy leakage from a
smart card can create a covert channel that will give access to secret informa-
tion when the card is used and that the attack will work on modern smart cards
equipped with countermeasures against side channel attacks. It has been esti-
mated that transmitting secret information at a rate of 108 kb/s is possible from
the tested card.

Work in progress include designing a receiver to match this transmission rate
by exploiting energy differences in a larger frequency range.

Acknowledgements. We would like to thank Arne Wold, at Gjovik University
College, for helpful discussion and guidance related to the analysis of the results.
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Abstract. Proxy encryption schemes transform cipher-text from one key to an-
other without revealing the plain-text. Agents that execute such transformations
are therefore minimally trusted in distributed systems leading to their usefulness
in many applications. However, till date no application of proxy encryption has
been deployed and used in practice. In this work we describe our efforts in de-
veloping a deployable secure mailing list solution based on proxy encryption
techniques. Securing emails exchanged on mailing lists requires that confiden-
tiality, integrity, and authentication of the emails be provided. This includes en-
suring their confidentiality while in transit at the list server; a functionality that
is uniquely supported by proxy encryption. In developing this solution we ad-
dressed the challenges of identifying requirements for deployability, defining a
component architecture that maximizes the use of COTS components to help in
deployment, developing the proxy encryption protocol to satisfy requirements
and to fit within the component architecture, implementing and testing the so-
lution, and packaging the release. As evidence of its deployability, the resulting
secure mailing list solution is compatible with common email clients including
Outlook, Thunderbird, Mac Mail, Emacs, and Mutt.

1 Introduction

Proxy encryption techniques enable the transformation of cipher-text from one pub-
lic key to another without revealing the plain-text to the transforming agent. These
techniques have been developed and studied for almost a decade since they were pro-
posed by Mambo and Okamoto [25] and Blaze et al. [4]. Since then researchers have
identified useful properties of proxy encryption schemes and developed several pro-
tocols that satisfy these properties [2], [18], [19], [33]. An important consequence of
this cipher-text transformation capability of proxy encryption is that the transformation
agent can participate in distributed protocols with minimal trust as it never gets access
to the plain-text while still providing useful processing capabilities. Centered around
this consequence of trust minimization several applications have been identified includ-
ing simplification of key distribution [4], key escrow [18], file sharing [2], security
in publish/subscribe systems [22], multicast encryption [10], and secure and certified
email mailing lists [20], [21]. Furthermore, [2], [20] demonstrate practical feasibility of
proxy encryption via prototype development and testing.

In this work we take on the task of building a deployable application that requires
proxy encryption. Doing so for any new cryptographic technique in general, and proxy
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encryption in particular, requires that several challenges be addressed. First, there is the
need to identify requirements of the security application geared towards deployability.
This involves a requirement analysis and an in-depth study of both the application do-
main (e.g., file systems, mailing lists) and, if available, the lessons learned from success-
ful security applications deployed in the domain. Second, the system design task must
be undertaken to satisfy these requirements. This effort should attempt to maximize
the use of COTS (Common-Off-The-Shelf) components in order to make deployment
easier. Third, the proxy encryption based protocol must be designed and implemented
using available cryptographic libraries. The protocol design must address the needs of
the security application and it is often the case that protocol and system design steps
are inter-linked and iterative. Fourth, the implemented components must be integrated
with the application and then tested for performance and presence of vulnerabilities and
errors. Finally, the integrated security application must be packaged and released along
with an identified maintenance process. The security application that we develop by
addressing these challenges is secure email mailing lists.

As more and more user communities are engaging in collaborative tasks, use of
Email List Services (or simply Mailing Lists - MLs) is becoming common; i.e., emails
exchanged with the help of a list server (examples of commonly used list server software
include Mailman (http://list.org) and Majordomo (http://www.greatcircle.
com/majordomo/)). Many tasks where MLs are used require exchange of private infor-
mation. For example, a ML of security administrators that manage critical infrastructure
would not want their emails publicly disclosed to prevent hackers from getting that in-
formation. Specific instances of this include the LHC Grid (http://lcg.web.cern.
ch/LCG/) and TeraGrid (http://security.teragrid.org/) systems where the In-
cident Handling and Response policies recommend the use of encrypted and signed
mailing lists. In general, use of encrypted and signed lists is recommended for incident
response by IETF [7] and CERT [29]. Additional examples include a list of (1) health-
care and pharmaceutical researchers would not the want their emails publicly disclosed
to protect patient privacy, and (2) corporate executives would not want their emails
disclosed to protect proprietary information. For such lists cryptographic solutions are
needed that provide adequate protection (i.e., confidentiality, integrity, and authentica-
tion) for the private content from threats at the client side, at the network paths where
the emails are in transit, and at the server side where the emails are processed for distrib-
ution to the list. That is, there is a need to develop Secure Mailing Lists (SMLs). Threats
to the server side are an important concern in practice and lack of good solutions today
has forced users to develop their own clunky ones; e.g., distribution of passwords to list
members out-of-band and requiring members to use password-based-encryption so that
the list server does not have access to email plain-text1. It is in addressing this threat
that proxy encryption provides a good solution by allowing the list server to transform
email cipher-text between list members without gaining access to the plain-text.

By addressing the outlined challenges for mailing lists we developed PSELS − a
Practical Secure Email List Service. Looking at the history of secure email develop-
ment and deployment as well as the needs of mailing lists, we identified requirements in

1 This particular approach has been adopted by several critical infrastructure security protection
groups today.
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the categories of security properties (i.e., confidentiality, integrity, and authentication),
infrastructure compatibility, key management and performance. A primary requirement
here is the minimization of trust in the list server. We then designed the architecture
to include several COTS components that minimize development effort and maximize
ease of deployment. In particular, we were able to use the OpenPGP message format
[8] and standard GnuPG plugins at the client side to eliminate the need for develop-
ing email client-specific plugins. We then developed the PSELS protocol to satisfy the
identified requirements and to fit with the system architecture and design. In particular,
PSELS uses proxy encryption to minimize trust in the list server. This proxy encryption
protocol is a modified version of that proposed in [20], however, unlike [20] it focuses
on deployment and practical use. We then implemented the protocol and the system
using the Mailman list server, GnuPG and BouncyCastle cryptographic libraries, and
standard GnuPG plugins and APIs. We then tested our implementation in a test-bed
environment for functionality, email client compatibility, and performance. Our results
show the viability of PSELS in enterprise settings, compatibility with Microsoft Out-
look, Emacs, Mac Mail, Mutt and Thunderbird, and satisfactory performance that scales
to support enterprise mail servers that process hundreds of thousands of emails per day.

An initial version of the software has been packaged and released for community
evaluation and is available at http://sels.ncsa.uiuc.edu . We plan to support the
release in terms of software patching and update as well as enhancing the software with
additional features.

The rest of this paper is organized as follows. In Section 2 we identify the require-
ments. In Section 3 we present the PSELS component architecture. In Section 4 we
present the PSELS protocol. In Section 5 we discuss the implementation and testing ef-
forts. In Section 6 we analyze the security of our design, protocol, and implementation.
In Section 7 we discuss related work and conclude in Section 8.

2 Requirements

In this relatively new area of Secure Mailing Lists (SMLs) there is both a need and an
opportunity to define a set of technical requirements such that the resulting tools and
solutions that satisfy these requirements have a high likelihood of being deployed and
used in practice. Fortunately, this area can benefit from the long history of solutions for
secure two-party email exchange (or simply, secure email). Though secure email is not
used nearly as commonly as the security research community would like, availability of
inexpensive tools and solutions based on the S/MIME [26] and OpenPGP [8] standards
bring us closer to this vision of ubiquitous secure email use with every passing year.
We identify three important lessons for SMLs from the history of secure email (i.e.,
history of standards and tools such as S/MIME and OpenPGP). First, a secure email so-
lution must provide the necessary security properties, namely, confidentiality, integrity,
and authentication. Second, a secure email solution will be adopted by users only if
it comes with support for easily obtaining, trusting, and managing public and private
keys. Third, a secure email solution is deployable only if it is compatible with existing
email infrastructure and if its hardware, software and administrative costs are reason-
able. These lessons form the basis of our design and implementation efforts geared
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towards deployability. We now define the various entities in SMLs and the technical
requirements for PSELS.

2.1 SML Entities

– List Moderator (LM). LM is a user (or process) that creates a list to be maintained
at the list server, authenticates users, and helps them subscribe to and unsubscribe
from the list.

– List Server (LS). LS creates lists, maintains membership information (e-mail ad-
dresses and key material), adds and removes subscribers based on information re-
ceived from LM, and forwards e-mails sent by a valid list subscriber to all current
subscribers of that list.

– Users/Subscribers. Users subscribe to lists by sending join requests to LM, and
send emails to the list with the help of LS.

2.2 Technical Requirements

Security Properties. A SML solution must provide confidentiality, integrity, and au-
thentication for all emails exchanged on the list. Confidentiality of emails means that
only authorized users (i.e. subscribers of the list) should be able to access the plain-text
contents. Note that this definition excludes the list server from being able to read emails
as it is not a valid subscriber. Example scenarios where the list server is not trusted to
have access to cleartext contents include: (1) when protecting a distributed critical in-
frastructure the system administrators may not trust the list server as it may be located
in a part of the network where most of the administrators have no control but, at the
same time, its compromise will affect the security of their own networks, and (2) in
military settings, the list server administrator may have a lower security clearance than
the list subscribers and, therefore, should preferably not have access to the cleartext con-
tents. In addition, this requirement also protects email content from an adversary that
compromises the list server. Arguably, an adversary can more easily compromise a list
subscriber to get access to email contents; however, if the email contents are available at
the list server then its compromise would allow the adversary access to all messages on
all lists managed by the server. Integrity of emails ensures that they cannot be modified
in transit without such modifications being detected. Authentication of emails means
that recipients can verify the identity of the sender.

Conceptually, by requiring a list server that provides message processing and for-
warding functions but does not have access to message contents, we essentially deem it
to be a semi-trusted third party. Such an approach minimizes trust liabilities in essen-
tial services for multi-party protocols and is often used; e.g., in fair exchange of digital
goods [15].

Infrastructure Compatibility. In order to enable the deployment and use of SMLs,
the protocols and tools must be compatible with existing email infrastructure. This in-
cludes the existing email servers, list servers, and email clients. All of this infrastructure
will typically comply with a subset of existing email standards (http://www.imc.org/
rfcs.html). While it is challenging to support all possible infrastructure systems and
configurations, the choice of supported ones greatly influences the spread of SML use.
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Key Management. To adopt SML solutions, users need to obtain, trust and manage
cryptographic keys. These key management functions should either be built into the
SML solutions or must be accessible through easily available, inexpensive means. In
contrast, consider the fact that subscribers of a ML can come from a large number of
domains. If, in order to use an SML solution, they need to obtain and trust CA certifi-
cates of all the domains then the key management becomes too complex.

Performance. Busy mail servers in medium-sized organizations today process more
than 50,000 emails a day on average. Since SMLs will depend on existing mail servers
for their delivery, it is essential that their performance not overburden them. Requiring
additional servers for SMLs would significantly increase their infrastructure deploy-
ment costs.

3 Component Architecture

In Figure 1 we illustrate the component architecture of PSELS. We identify compo-
nents on the server, the list moderator, and subscribers. Where appropriate we identify

Fig. 1. Component Architecture
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examples of COTS tools that can be used for the component functionality as is or with
suitable modifications. This architecture is based on the requirements identified earlier,
namely, security properties, infrastructure compatibility, key management, and perfor-
mance.

Server Components
We envisioned the use of public-key based proxy encryption schemes to address the
confidentiality requirements and the PSELS Transformation Agent provides that func-
tionality. The Agent needs to include Crypto Functions that execute proxy encryptions
as well as Key Management functions that provide generation, storage, and use of cryp-
tographic keying material. Standard libraries such as GPG and BC can be used to de-
velop the necessary crypto functions while for key management the use of COTS tools
such as GPG is appropriate. For infrastructure compatibility we envisioned the use of
COTS list servers and mail servers with a commonly used example of each being Mail-
man and Sendmail respectively. It is at the server side that performance is a major
concern (as opposed to list moderator or subscriber side) because of a potentially large
number of proxy encryption operations that may need to be executed. We study this
performance via extensive experimentation but as a design parameter we envisioned
the use of appropriate message passing interfaces (e.g., Mailman handlers) to connect
the transformation agent with the list server so that, if needed, the agent can run on a
separate machine or on multiple machines.

Subscriber Components
We observed that the development of new components on the client-side will greatly im-
pact the infrastructure compatibility requirement because (1) users have preference for
email clients (or, MUAs- Mail User Agents) so the new components must be compati-
ble with their existing MUAs and (2) users are reluctant to install new software as well
as updates to the software. At the same time, subscribers will need Key management
and Crypto Functions to use PSELS; e.g., to store encryption and signature verification
keys and to encrypt, decrypt, sign, and verify emails. To address this requirement we
envisioned the use of a COTS Interface component that (1) provides the necessary key
management and crypto functions for commonly used email clients and (2) complies
with standardized messaging formats to ensure interoperability. Two examples of such
a component are S/MIME tools for the S/MIME messaging format [26] and GPG tools
for the OpenPGP messaging format [8]. These components are available today either
as easy-to-install plugins or provided natively for many MUAs. S/MIME standards and
tools are RSA based and since our proxy encryption protocol is El Gamal based these
standards and tools cannot be used. Therefore, we chose to go with OpenPGP message
formats and GPG tools. Furthermore, we argue in later sections that developing RSA
based proxy encryption schemes for PSELS is especially challenging because it can
result in sharing of the RSA modulus, which is considered insecure. As a result of the
design choice of using a COTS Interface component, we require no development on the
client side and yet ensure compatibility with a large number of commonly used email
clients.
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List Moderator Components
LM helps in creating lists and subscribing users with capabilities provided by the List
Management and Key Management components. Since user subscription will require
generation and distribution of proxy keys, LM will need to access crypto functions
that are developed using appropriate crypto libraries (such as GPG and BC). Other LM
components include a MUA and an Interface that provides access to basic crypto and
key management functions for which tools such as GPG will suffice.

4 PSELS Protocol

For developing a protocol for PSELS that satisfies the outlined requirements and the
component architecture, we evaluated existing protocols for multi-recipient email en-
cryption and encrypted mailing lists [20], [28], and [32]. Of these SELS [20] offered
a good starting point. However, the protocol required several modifications for satisfy-
ing the infrastructure compatibility and key management requirements. For example,
SELS requires modifications to messaging formats and special processing capabilities
on the client-side making it impossible to satisfy our client-side infrastructure compat-
ibility requirements as well as the client-side component architecture. In this section,
we present the PSELS protocol, which is a modified version of SELS. After we present
the PSELS protocol we discuss the specific differences and improvements over SELS.

4.1 Proxy Encryption Scheme

We present the ElGamal public-key encryption scheme Eeg and the PSELS public-key
encryption scheme, E , which is based on the discrete log problem like El Gamal. E
specifies an encryption transformation function that enables LS to transform an e-mail
message encrypted with the list public-key into messages encrypted with the receivers’
public keys.

Let Eeg = (Gen,Enc,Dec) be the notation for standard ElGamal encryption [16].
Gen is the key generating function. Hence Gen(1k) outputs parameters (g, p,q,a,ga)
where g, p and q are group parameters, (p being k bits), a is the private key, and y =
ga mod p is the public key. The Enc algorithm is the standard El Gamal encryption
algorithm and is defined as e = (mgar mod p, gr mod p), where r is chosen at random
from Zq. To denote the action of encrypting message m with public key y, we write
EncPKy(m). Dec is the standard El Gamal decryption algorithm and requires dividing
mgar (obtained from e) by (gr)a mod p. We assume all arithmetic to be modulo p unless
stated otherwise.

We denote the PSELS encryption scheme by E = (IGen, UGen,AEnc,ADec,Γ).
Here IGen is a distributed protocol executed by LM and LS to generate group para-
meters g, p and q, private decryption keys KLM and KLS and public encryption keys
PKLM = gKLM , PKLS = gKLS , and PKLK = gKLM .gKLS . KLM is simply a random number
in Zq chosen by LM, and KLS is a random number chosen by LS. UGen is a distrib-
uted protocol executed by user Ui, LM, and LS to generate private keys for Ui and LS.
UGen(KLM,KLS) outputs private keys KUi , K′Ui

and the public keys PKUi = gKUi , PK′Ui
=

gK′Ui . K′Ui
is called user Ui’s proxy key and is held by LS. Furthermore, it is guaranteed
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that KUi + K′Ui
= KLM + KLS mod q. This protocol requires LM, and LS to generate ran-

dom numbers and add/subtract them from KLM and KLS. AEnc and ADec are identical to
Enc and Dec defined above for Eeg. ΓK′Ui

is a transformation function that uses user Ui’s

proxy key to transform messages encrypted with PKLK into messages encrypted with
user Ui’s public key. It takes as input an encrypted message of the form (grKLK M,gr)

and outputs (grKUi M,gr) = ((grK′Ui )
(−1)

grKLK M,gr). Once UGen has been executed for
users Ui and Uj, then sending a message between the users requires user Ui calling
AEncPKLK , LS calling ΓK′Uj

, and user Uj calling ADecKUj
. The encryption scheme E is

correct because ADecKUj
(ΓK′Uj

(AEncPKLK (m))) = m. In practice, hybrid encryption is

used for efficiency as illustrated in Figure 2.
The encryption scheme E is secure if it retains the same level of security as the stan-

dard El Gamal scheme against all adversaries A , and if LS cannot distinguish between
encryptions of two messages even with access to multiple proxy keys. The formal the-
orem and proof of E’s security is provided in [21].

Fig. 2. Sending Emails in PSELS

4.2 Protocol Steps

We now present the protocol steps for creating a list, subscribing users, sending e-
mails, and unsubscribing users. The step for sending emails is illustrated in Figure 2,
which follows standard secure email messaging formats of S/MIME and OpenPGP. In
the protocol description, EncPKi(m) denotes the encryption of message m with public-
key PKi, and SigKi

(m) denotes the message m along with its signature with private
key Ki. We distinguish between encryption/decryption keys and signature/verification
keys by placing a bar on top of signature/verification keys; i.e., (Ki, PKi) represents a
signature and verification key pair and (Ki, PKi) represents a decryption and encryption
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key pair. As illustrated in the figure, hybrid encryption is used in standard email message
formats as using bulk encryption with public key technologies is expensive. However,
to simplify the protocol description we do not include details of the hybrid encryption.
Therefore, EncPKi(m) is actually {Enck(m), EncPKi(k)} where k is a symmetric key
and Enck is a symmetric encryption function such as AES. That is, for simplicity of
representation we just use EncPKi(m).

Creating a List. To create a new list L, LM and LS execute the following steps:

1. LM begins the execution of IGen and generates parameters (g, p,q,KLM,gKLM ), and
associates the key pair (KLM , PKLM) with the list.

2. LM then sends LS a message with the values g, p, and q, and the new list ID L.
Formally, LM −→ LS: SigKLM

(“Create” List L, g, p,q).
3. LS then completes the execution of IGen by choosing a new private key KLS using

the group parameters sent by LM, computing public key PKLS = gKLS and associat-
ing the key pair with the list. LS then sends the computed public key back to LM.
Formally, LS −→ LM: SigKLS

( L, PKLS).

Both LM and LS implicitly agree that the sum KLK = KLM + KLS (mod q) is the list key
but neither knows its value since neither knows the other’s private key. The list is now
ready for subscription.

Subscribing and Unsubscribing Users. To subscribe user Ui to list L, Ui, LM and LS
execute the following steps. Here we distinguish between encryption keys generated by
PSELS and those that users get from an external PKI (e.g., GPG keys that they generate
themselves) with a superscript Ext on the external PKI keys; i.e., (K

Ext

i
, PK

Ext

i
) is an

external decryption/encryption key pair.

1. Ui sends a signed “join” request to LM. Formally, Ui −→ LM : SigKUi
(“Join” List

L, PK
Ext

Ui
), PKUi .

2. LM authenticates Ui and generates a random value r and then computes the user’s
private key KUi = KLM + r mod q. LM then sends this key to Ui encrypted with

his external encryption key PK
Ext

Ui
, along with the list encryption key PKLK . Users

then decrypt this message and store their decryption/encryption key pair. Formally,
LM −→Ui: Enc

PKExt
Ui

(SigKLM
(PKUi ,KUi ,PKLK )).

3. LM sends the value r to LS. Formally, LM −→ LS: EncPKLS(SigKLM
(“Join” L,Ui,

PKUi ,r)).
4. LS obtains r from LM, and computes and stores the proxy key K′Ui

= KLS - r mod q.

To unsubscribe from list L, user Ui, LM, and LS execute the following steps:

1. Ui sends a signed “leave” request to LM. Formally, Ui −→ LM : SigKUi
(“Leave”

List L).
2. LM authenticates Ui and, deletes Ui’s signature verification and external encryption

keys from its key ring, and sends a request to LS to delete the user’s proxy keys.
Formally, LM −→ LS: SigKLM

(“Leave” L,Ui,PKUi ).
3. LS verifies LM’s signature on the message and deletes users Ui’s proxy key K′Ui

from its keyring.
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Sending E-mails. To send an e-mail to the list L, sender Ui, LS, and all receivers Ub

(b �= i) execute the following steps:

1. Ui first signs the e-mail m with his private key KUi and then encrypts it with the
list public key PKLK . Ui then sends to LS the encrypted e-mail message: Formally,
Ui −→ LS : (X = EncPKLK (SigKUi

(m))
2. To forward the e-mail to every user Ub who is subscribed to list L, LS computes and

sends to Ub a transformation of X with Ub’s proxy key K′Ub
. Formally, LS −→Ub:

(Yb = ΓK′Ub
(X)).

3. Each recipient decrypts the e-mail message Yb from LS using his private key KUb

with algorithm ADec. The receiver can then verify the sender’s signature on the
decrypted e-mail.

4.3 Differences with the SELS protocol [20]

The PSELS protocol specified above differs from the one presented in [20] in three
ways and all of these changes were needed to enable satisfaction of the infrastructure
compatibility and key management requirements. First, the proxy encryption scheme
is modified to encrypt outgoing emails with the list public key, PKLK , as opposed to
the sender’s public-key. This simplifies the proxy re-encryption step and is also more
aligned with the manner in which email encryption is used today with standard crypto
interface components (like GPG); i.e., associating the list encryption key with the list
email address. Second, we simplify user subscription by allowing LM to compute and
send users’ decryption keys. In SELS a distributed protocol is used so that LM does
not have access to users’ decryption keys. We argue that this is not needed in practice
because LM anyway has access to all emails exchanged on the list and our simplification
allows us to satisfy the infrastructure compatibility requirement by not developing any
new software on the client side. Third, as opposed to SELS, we do not use keyed MACs
on email messages for authentication at LS. Such MACing capabilities will require
modifications on the client side and, therefore, were excluded from PSELS.

5 Implementation, Testing, and Experiments

5.1 Component Design and Development

Server Components
On the server side we were able to use COTS components for the Mail Server and the
List Server and then had to develop components for the PSELS Transformation Agent
along with the needed Crypto Functions and Key Management components. For the
List Server we chose the open source Mailman tool, which has extensible features and
is widely deployed today. Mailman works with most SMTP servers and we chose Send-
Mail in keeping with our open source approach. To connect the Transformation Agent
with Mailman we used Mailman handlers to allow for easy installation of developed
server components on new and existing Mailman setups. The handlers also allow for
the Transformation Agent to run on a different machine if needed; e.g., for reasons of
performance or security. The Transformation Agent was developed in C, Python and
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Java leveraging the GPG and BC crypto libraries for proxy key generation and encryp-
tion functions, the GPG key management component for key storage and access, and the
Python GnuPGInterface (http://py-gnupg.sourceforge.net/) for the interface be-
tween Mailman and GPG functions. Since the PSELS proxy encryption scheme is based
on El Gamal we decided to go with GPG tools and the standardized OpenPGP message
format. Both GPG and BC crypto libraries are open source and provide suitable capa-
bilities to implement the proxy key generation and encryption functions while the GPG
key management functions provide suitable capabilities for storing and accessing proxy
keys.

For each of the four protocol steps, namely, list creation, list subscription, email
sending, and list unsubscription, we define a unique Mailman handler that leads to an
execution of that step at LS. Most of the operations in executing these steps involve the
use of standard GPG functions with the following two exceptions: creating a proxy key
on user join and proxy transformation on email forwarding. To generate a proxy key on
user join the Agent uses a specialized crypto function developed using BC to extract
the random value r from the LM’s message and the private key, KLS, and compute the
user’s proxy key as specified in the protocol.

To send an email to list L, a user first signs the email and then encrypts it with the
list public key all using any email client that works with a GPG plugin. The resulting
email message is a standard OpenPGP message, which consists of one or more pack-
ets. Each encrypted message has a Public-Key Encrypted Session Key Packet followed
by a Symmetrically Encrypted Data Packet. The Public-Key Encrypted Session Key
packet contains the randomly generated session key (symmetric key) used to encrypt
a message and key IDs of public keys used to encrypt the session key. The Symmet-
rically Encrypted Data Packet contains email contents encrypted with the session key.
The data can further be compressed or signed. A handler at LS, extracts the Public-
Key Encrypted Session Key Packet and uses specialized crypto functions developed
using GPG libraries to parse the incoming GPG messages into packets. After correctly
locating Public-Key Encrypted Session Key Packet, the functions apply proxy trans-
formation to this packet. This process is repeated for every recipient and the resulting
messages are passed to MTA for delivery to list members.

Subscriber Components
On the Subscriber side we were able to use COTS tools for the MUA, Key Management,
Crypto Functions, and Interface components. In keeping with the approach discussed
above, we use GPG tools and ensure compatibility with all MUA’s for which GPG
plugins are available. Among others this includes popular MUAs like Outlook, Thun-
derbird, Eudora, Emacs, Mac Mail, and Mutt. GPG plugins provide all the necessary
key management and crypto functions needed by subscribers to use PSELS.

For subscribing to lists, users send signed GPG messages to LM and receive back
a set of necessary GPG keys and certificates. That is, users receive the list encryption
key, their individual decryption keys (encrypted with their external GPG public keys),
LM’s signature verification key, and their own signature verification key signed by LM.
Depending on the features of their GPG plugin they either automatically or manually
add all these keys and certificates to their GPG keyring. To send an email to the list,
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subscribers sign the email with their GPG signature keys and encrypt it with the list
public key (which is again a standard GPG key in their keyring). Since the list encryp-
tion key is associated it with the list email address, the GPG plugin automatically finds
and encrypts the email with this key. On receiving an email on the list, subscribers sim-
ply use their GPG plugins to automatically find the appropriate keys and decrypt and
verify the message.

List Moderator Components
For the List Moderator we were able to use COTS tools for the MUA, Key Management,
Crypto Function and Interface components, and had to develop the List Management
component. Similar to the reasons discussed above, we chose to use GPG tools for the
Interface component along with the provided crypto and key management functions.
The List Management component was developed in Python and Java using the GPG
and BC libraries. For storing and accessing keys, the standard GPG key management
functions were used.

To create lists, the List Management component uses standard GPG functions (via
the command-line interface) to generate an ElGamal key pair and then sends the public
key to LS via email in a GPG signed message. When LM receives LS’s public key back
via email, a special crypto function developed using BC computes the list public key,
PKLK , by multiplying LM’s and LS’s public keys.

To subscribe users, the List Management component executes the following steps
after receiving the user’s subscription request: (1) verify the user’s signature on the re-
quest, (2) use a special crypto function developed using BC to generate a private key
for the user as specified in the protocol, and (3) send signed and encrypted emails to the
user and to LS with the appropriate keying material. Once the emails have been sent,
LM deletes the user’s decryption keys for security reasons.

Additional Functions: Trust Management and Key Update
In addition to implementing the protocol steps as described above, PSELS components
also implement two additional features: Trust Management and Key Update. Trust man-
agement involves distribution of signature verification keys to allow subscribers to ver-
ify signatures on emails sent to the list. Key Update involves the distribution of an
updated set of decryption and proxy keys.

Subscribers in a mailing list may belong to different organizations, which make it
difficult for them to distribute and trust their signature verification keys. In PSELS we
address this problem by using LM as the trust anchor for the lists. Since LM is trusted to
distribute decryption keys and to help in generation of proxy keys at LS, it is an appro-
priate entity to enable the establishment of trust in subscribers’ signature verification
keys. To do so, LM signs every subscriber’s signature verification key in list subscrip-
tion step and stores this signed key in the list key ring (as noted above, LM also sends the
signed key back to the subscriber). Since subscribers already have LM’s signature key
in their key rings and trust this key, they can place transitive trust in other subscribers’
signature verification keys. Furthermore, LM can also distribute the signed verification
keys to subscribers on request by extracting them from the list key ring and sending it
to the subscribers as an email attachment.
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The PSELS solution works on the assumption that an adversary cannot get access to
the decryption key KLK by simultaneously compromising either LM and LS (as KLK =
KLM + KLS mod q) or any user Ui and LS (as KLK = KUi + K′Ui

mod q). Though unlikely,
such compromise is possible. To address this concern, the protocol includes a key up-
date step that allows LM to easily initiate and complete the process of changing all list
encryption/decryption keys. This key update step would be executed either on a peri-
odic basis for proactive security or when a compromise is detected. Key update can also
be used to change the LM for a given list. To initiate a key update, LM sends a “Update
L” message to LS, which includes a new key PKLM . On receiving this message, LS (via
a handler ‘UpdateL’) computes a new key pair (KLS, PKLS) and a new list key PKLK . LS
also deletes all proxy keys for this list. LM then generates a new encryption/decryption
key pair for each subscriber and sends it encrypted with the subscriber’s GPG encryp-
tion key stored in LM’s key ring (this is the external encryption key referred to as PK

Ext

Ui
in the protocol described in Section 4.2.2). On receiving the message from LM, a sub-
scriber simply adds the new certificates to his key ring and associates them with the
list. LM also sends a “Ui JOIN LIST L” message to LS for each subscriber, which is
processed as usual. The list has now been re-keyed.

5.2 Testing

We have tested the PSELS implementation for correct functionality and for compatibil-
ity with multiple platforms and MUAs. To do so, we have set up a test-bed that includes
a linux Debian server (which includes Sendmail and Mailman) and a set of client ma-
chines each of which have a different platform (including Windows, Mac, and different
flavors of *-nix). Since Mailman only works on *-nix platforms, which are similar in
nature, we felt that for initial testing on the server side using any one *-nix platform is
sufficient. (In the future, we will test other *-nix server platforms as well.) For the List
Moderator and Subscriber side, however, we needed to test compatibility with a variety
of platforms.

Functional Testing. We wrote scripts that automate all of the protocol steps, namely,
list creation, list subscription, email sending, and list unsubscription. We ran these
scripts on the test-bed to verify that the implementation works correctly. The scripts
use both correct and incorrect inputs and check whether the results are correspondingly
correct or incorrect. This process helped us identify several useful checks that were then
included in the implementation. For example, the scripts used incorrect list public keys
for encrypting emails. Initially, this resulted in undecipherable messages being deliv-
ered to the subscribers. To address this we included a check at LS to ensure that only
emails encrypted with the correct public key are delivered to subscribers.

Compatibility Testing. We’ve tested the combination of the COTS and developed List
Moderator components on three platforms successfully: *-nix (in particular, Debian,
Fedora, and Red Hat Linux), Mac, and Windows (XP). In each case a configuration file
is generated to allow the developed components access to installed GPG tools.

For the client side, we’ve successfully tested PSELS with five commonly used email
clients each of which has its own GPG plugin (http://www.gnupg.org/(en)/
related_software/frontends.html): (1) Thunderbird with Enigmail, (2) Microsoft



From Proxy Encryption Primitives to a Deployable Secure-Mailing-List Solution 273

Outloook with gpg4win, (3) Emacs with Mailcrypt, (4) Mutt with built-in GPG sup-
port, and (5) Mac Mail with MacGPG. Testing efforts resulted in a few changes at LS to
accommodate slight differences in email encryption between the various GPG plugins
(e.g., the gpg4win plugin adds an additional attachment to encrypted html messages).
We’ve documented the steps necessary to ensure correct configuration and setup with
each email client.

5.3 Experiments

In this section we evaluate the performance of the PSELS implementation. In most
organizations the ML software is co-located with the MTA in the mail server. The main
goal of the experiments is to observe how the addition of our security solution affects the
overall performance of the mail server. To evaluate the performance of these solutions
we use an insecure ML setup as a common baseline.

Experimental Setup
For all experiments shown in this paper, we run both Mailman and Sendmail on the
same machine. The mail server machine we use for our experiments is equipped with
two 3GHZ Dual Core Intel Xeon processors and 3GB RAM. The machine runs Debian
Linux with kernel version 2.6.8 (compiled with SMP option turned on). We use version
2.1.5 of Mailman, which was the most recent version when we started this research. For
the MTA, we use the Debian linux distribution of Sendmail version 8.13.4. For PSELS,
we have developed Mailman handlers and crypto functions using GPG 1.4.2 to perform
proxy transformations.

To gauge the overhead of PSELS we use throughput as our performance metric;
i.e., the maximum number of emails per unit time that the mail server can process
and deliver. We focus exclusively on MLs so we assume that the mail server does not
process any two-party email exchange. Since we are only interested in the through-
put of the mail server, we ignore networking delays by placing list subscribers on
the same server machine. In our setup the emails for the subscribers are delivered to
/var/spool/mail/userid. To estimate the throughput we measure the average delay
for processing one email message sent from a list subscriber and delivered to all list sub-
scribers. We then compute the normalized throughput = 1

delay ∗ list size where list size
represents the number of subscribers in the list. Here list size is the normalization factor
and is important for our experiments because PSELS executes cryptographic operations
per email per recipient. For a more detailed analysis of the results we measure the de-
lay in two cases: (1) for Mailman alone, and (2) for Mailman and Sendmail combined;
i.e., from receiving the message at Sendmail, its processing at Mailman via handlers, to
completing delivery for all subscribers. In the first case we use the Mailman log entries
to measure the delay. In the second case we use the wall clock time when the email is
sent by our test client as the start time and the log entry of Sendmail when it finishes
delivering the email to all subscriber inboxes as the end time.

Measurements
In order to get an idea of how PSELS affects throughput we vary both the list size (num-
ber of subscribers) as well as the size of the email message. We use 10, 25, 50, 100, and
200 as the different list sizes and 1KB, 10KB, and 100KB as the different email sizes.
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Fig. 3. Results

We limit the list size to 200 because we argue that any sensitive message that needs to
be encrypted is unlikely to be sent to a large number of recipients. (If the list has only
signed but otherwise cleartext contents then the list server need not do any additional
work.) Since in MLs subscribers usually do not send large attachments and most of the
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posted messages are text (including HTML, RTF formats), we believe that 100KB is a
reasonable maximum size.

To run the experiments we first populate the lists by generating user keys (stored in
GPG key rings) and subscribing users. The subscription process in PSELS also results
in generation of proxy keys for LS, which are stored using a GPG key ring. We also
pre-generate the signed and encrypted messages of the different sizes to be sent on
the lists. We then run the experiments as follows. For each of the two setups (Insecure
baseline and PSELS) we first fix the list size as well as the email size. We then execute
a script at the sender to send 20 emails (one at a time waiting for complete processing
and delivery) and measure the delays for Mailman as well as for Mailman and Sendmail
combined for email processing and delivery. We average the result over these 20 runs.
We then vary the email size and the list size and measure the delays similarly.

Figure 3 (a), (c), and (e) shows the measured throughput using Mailman, and Fig-
ure 3 (b), (d), and (f) shows the measured throughput using Mailman and Sendmail
combined. In all of the figures, the x axis represents list size and the y axis shows the
throughput in terms of messages per second (processed and delivered). Figures 3 (a),
(c), and (e) show the expected result of the baseline case having the better performance
with the throughput reaching up to 40 messages/sec regardless of list size. PSELS has
lower performance that degrades as the list size increases. Figures 3 (b), (d), and (f) are
similar in that the baseline case has better performance with one big difference being
that here the throughput of the two setups increases with list size and varies greatly.

Analysis
In all experiments the baseline insecure setup show the better performance, as expected,
since there are no cryptographic operations involved. Also, the performance of the base
case is not affected by list size because besides delivery to individual subscriber inboxes
there is no additional processing of an email message per recipient.

Mailman Throughput. We first discuss the throughput for Mailman, which is shown
in figures 3 (a), (c), and (e). In PSELS, across all measurements, throughput decreases
as the list size increases. This is because increase in list size leads to large key ring files
and our measurements indicate that the overhead of searching and reading through the
key ring files begins to dominate. A general observation for these set of experiments
is that as the email message size increases, the throughput decreases. The difference
is significant and owes to the overhead of managing larger sized buffers for the email
messages.

Combined Mailman and Sendmail throughput. Figures 3 (b), (d), and (f) indicate
that the throughput increases with list size and varies greatly. This is because Sendmail
has a constant overhead in processing an incoming mail message − about 3 sec in our
setup. The effect of this overhead reduces as the list size increases and, therefore, the
throughput increases with list size. This is true for both setups and the performance
of PSELS lags behind the Insecure case. Similar to the case above, as we increase the
email message size the throughput decreases.

Average throughput. In the case of Mailman, PSELS shows a 42.2% average through-
put degradation against the baseline. For combined Mailman and Sendmail throughput,
PSELS shows a 28.8% average throughput degradation. Overall, we see that even the
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worst throughput of 2.5 messages/sec for PSELS with list size 10 and message size
100KB corresponds to a throughput of more than 200,000 messages per day. Since
most mail servers in small and medium-sized organizations do not typically process
more than 100,000 messages per day (of which only a subset are ML messages) we
conclude that adding security to MLs will not impose an undue overhead on the mail
servers.

6 Security Analysis

After the functional, compatibility, and performance testing of the PSELS implementa-
tion, we analyzed the design and implementation and identified the following security
concerns.

List Key Compromise
If an adversary compromises either LM and LS or any user Ui and LS then he can com-
pute the list decryption key KLK . This is because KLK = KLM + KLS mod q = KUi + K′Ui
mod q. This would allow the adversary to read all emails encrypted with PKLK . Fur-
thermore, it would also allow him to compute every list subscribers decryption keys as
∀ j KUj = KLK−K′Uj

mod q. This latter capability is a known property of proxy encryp-
tion schemes sometimes referred to as the “collusion” property [2]. The consequence
of this attack is that recovery requires re-keying of the entire list rather than revoking
one member. However, note that this would not allow the adversary to arbitrarily im-
personate a list subscribers because all emails are signed with the subscribers’ signature
keys that are not compromised in this attack. In [2] they develop signcryption schemes
that provide combined signing and proxy encryption capability and provide similar pro-
tection against impersonation by ensuring that compromise of decryption key does not
imply compromise of signing capability.

To resolve this problem one can consider both a theoretical and a practical approach.
Theoretically, the design of collusion-resistant proxy encryption schemes is an open
problem. Designing such schemes to work with COTS components in a deployable ar-
chitecture compounds this problem further. In practice, one can argue that simultaneous
compromise of LS and LM (or Ui) is very unlikely. Furthermore, the provided key up-
date functionality provides a mechanism to (1) prevent KLK compromise by executing it
as soon any one entity is compromised and (2) limit the adversary’s access to email con-
tents in case of successful KLK compromise by executing it periodically to change list
encryption keys. However, there are cases where this risk may be unacceptable. In such
cases, additional security can be provided by splitting the list key, KLK , three or more
ways with the additional splits being hosted in different servers or by using threshold
cryptographic approaches such as the one proposed by Jakobsson [19]. Now, the adver-
sary would have to compromise multiple servers in order to get access to KLK . However,
this security comes at significant infrastructure costs of managing multiple servers that
execute appropriate distributed protocols for proxy transformation. We argue that these
costs would be unacceptable in most enterprises today, however, in the future world of
virtual machines it may be possible to split the key across multiple virtual machines on
the same physical server with lower costs.
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Denial of Service Against LS
A potential attack against our design that was also observed in initial testing efforts
is denial-of-service against LS. This attack would involve an adversary composing a
large number of encrypted messages and sending them to valid list aliases from valid
subscriber email addresses (which can be spoofed). In the PSELS protocol LS does not
cryptographically verify authenticity of emails sent by subscribers because the senders’
signatures are enveloped by the encryption. Consequently, LS may end up executing a
large number of cryptographic proxy transformation operations leading to a potential
denial-of-service attack.

In our current implementation we mitigate this attack by requiring LS to check
whether incoming emails are encrypted with the list encryption key, PKLK , using the
encrypted session key packet of OpenPGP. Though the adversary can spoof this packet,
it imposes an additional hurdle in the adversary’s path. SELS [20] addresses this prob-
lem by using HMAC based authentication at LS, which unfortunately requires funda-
mental changes to email message formats and is therefore not a deployable solution.
Fortunately, the S/MIME Extended Security Services [17] (ESS) include an additional
signature wrapping around encrypted envelopes that would enable LS to verify sender
signatures prior to the transformation. Since RSA signature verification is much cheaper
that proxy transformation, the denial-of-service threat would get significantly mitigated.
As these ESS services are deployed we will look at integrating them with PSELS.

LM Generated Decryption Keys
In the PSELS protocol and implementation LM generates every user’s decryption key,
KUi , and sends it to the user. As part of the protocol, LM then deletes the key. This can
be viewed as a weak security design because ideally only the true owner of the decryp-
tion key (in this case user Ui) should generate and have access to the key. In fact, in
the original SELS protocol, users added a random number in the proxy key generation
process to ensure a strong security design.

In PSELS LM generates the decryption keys so as to avoid the need for developing
new client-side software and achieve our deployability goals. We see three potential
consequences of this design choice: (1) a corrupt LM can choose to retain KUi and
decrypt messages intended for the user, (2) a corrupt LM can share KUi with users
outside of the list, and (3) a corrupt LM can retain KUi and attempt to avoid revocation
at a later point in time. For the first two consequences we argue that LM already has his
own decryption key, KLM , that allows him to decrypt all emails sent on the list and one
that he can share with adversaries if he chooses to do so. For the third consequence, the
key update protocol can be used whenever the list moderator changes to ensure that the
previous list moderator cannot continue to be a part of the list.

7 Related Work

Proxy Encryption. Previous proxy encryption schemes enable unidirectional and bidi-
rectional proxy transformations by first setting up a transformation agent that is given
the proxy key and then sending messages to the agent for transformation [4], [18] and
[25]. Unidirectional schemes only allow transformations from some entity A to an-
other entity B with a given proxy key while bidirectional schemes additionally allow
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transformations from B to A with the same proxy key. For PSELS we need a proxy
encryption scheme that allows for the transformation from one entity, LS, to many sub-
scriber entities (i.e., to all list subscribers). The El Gamal based unidirectional proxy
encryption scheme of Ivan and Dodis [18] is closest in nature to PSELS with the addi-
tional relationship between the proxy keys (i.e., ∀i K′Ui

+ KUi = KLK) imposed to allow
for a single list encryption key, PKLK , to suffice. Extending the RSA based unidirec-
tional scheme of [18] in a similar manner will not work because it would require the
sharing of the modulus across all list subscribers. Jakobsson [19] and Zhou et al. [33] al-
low for proxy transformation without the need for distributing proxy keys but use costly
threshold crypto-systems to ensure the necessary security. Ateniese et al. [2] extend
proxy encryption schemes with useful properties such as non-interactiveness, which for
PSELS might allow for generation of proxy keys without involving both LM’s and LS’s
decryption keys; however, their scheme uses proprietary message formats and bilinear
maps that are not easily available in standard cryptographic libraries or tools with inter-
faces to email systems making deployability very challenging.

Multi-recipient Email Encryption. The problem of sending confidential messages to
multiple recipients has been addressed in past via multi-recipient email encryption [28],
multi-party certified email [32], secure group communication and broadcast encryption.
A major difference between these approaches and ours is that by using a mailing list we
remove the user’s burden of managing recipient addresses and public keys while still
satisfying the confidentiality requirement. In these approaches the sender must man-
age the sender list and address all of the intended recipient’s directly. In multi-recipient
email encryption, Wei et al. [28] combine techniques from identity-based mediated
RSA and re-encryption mixnets to enable a sender to encrypt messages to multiple
recipients with only two encryptions (as opposed to one encryption for each recipi-
ent in the trivial case). To do so, they use a partially trusted demultiplexer that is akin
to LS in terms of its security properties but also use an additional fully trusted CA.
Their scheme is not intended for mailing lists and, furthermore, requires development
of client-specific plugins. In PSELS the sender needs to execute only one encryption
allowing compatibility with existing messaging formats and tools thereby avoiding the
need to develop client-specific plugins. In multi-party certified email [32], the sender
must maintain each recipient’s public key and encrypt the message individually to each
recipient. This overhead is avoided in PSELS via the use of mailing lists while still
providing confidentiality.

In secure group communication either a trusted group controller (e.g., LKH [30])
distributes session keys to group members or the group members generate session keys
in a distributed manner (e.g., TGDH [23]). In either case, list subscribers would have
to maintain state on current session keys and update them on every membership change
(in PSELS existing subscribers are not affected by the joins and leaves of other mem-
bers). This makes the use of secure group communication techniques impractical for
secure mailing lists as it goes against the nature of the largely offline email use. So-
called “stateless” broadcast encryption schemes (e.g., [14], [6]) allow for encryption
of messages to a dynamic set of group members without the members requiring to
maintain state and executing key updates on membership changes. However, they vary
the encryption key and cipher-text sizes depending on the group membership. This
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variation cannot be supported by today’s mailing lists making such solutions difficult to
implement. PSELS, on the other hand, addresses the confidentiality and deployability
requirements of secure mailing lists in a practical way.

Secure Mailing Lists. Simple approaches that extend security solutions for two-party
email to mailing lists have already been developed; e.g., (http://non-gnu.uvt.nl/
mailman-ssls). In these solutions, subscribers send emails to the list server encrypted
with the list server’s public key. The list server decrypts the emails and then re-encrypts
them for every subscriber using their registered public keys. Clearly, these solutions
do not satisfy the confidentiality requirement as they allow the list server access to de-
crypted emails. Previously we have developed a Secure Email List Service solution that
satisfies the confidentiality problem in mailing lists by using proxy encryption [20].
However, as we discussed in Section 4 this work is not practical for deployment in
today’s email systems. We have also developed a Certified Mailing List protocol that
uses proxy encryption techniques to provide certified delivery in mailing lists [21]. This
protocol provides confidentiality using proxy encryption similar to that in PSELS. How-
ever, since the primary motivation is a protocol for certified delivery, the protocol results
in modifications of messaging formats and special processing at client-side making it
impractical for deployment in today’s email systems.

8 Conclusions and Future Work

In this work we have described the process of going from the new cryptographic primi-
tive of proxy encryption to a deployable application that secures mailing lists. We chose
mailing lists because there is a need to secure sensitive messages in multi-party settings
for which email is a convenient, default method. In designing secure mailing lists we
identify the need to minimize trust liabilities in the list server for which proxy encryp-
tion provides the necessary capabilities. We then defined a component architecture and
a protocol geared towards deployability taking into account available COTS tools and
configurations of deployed email infrastructures. The resulting PSELS implementation
was then tested for functionality, compatibility, and performance.

The PSELS software is now available for community evaluation. We look forward to
supporting the software in terms of software patching and update as well enhancing it
with new features that the community desires. In addition, we will undertake usability
studies to understand the effectiveness of the solution and report the results back to the
community.
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Abstract. A low-rate DoS attack to iterative servers has recently ap-
peared as a new approach for defeating services using rates of traffic that
could be adjusted to bypass security detection mechanisms. Although
the fundamentals and effectiveness of these kind of attacks are known,
it is not clear how to design the attack to achieve specific constraints
based on the used rate and the efficiency in denial of service obtained.
In this paper1, a comprehensive mathematical framework that models
the behaviour of the attack is presented. The main contribution of this
model is to give a better understanding of the dynamics of these kind of
attacks, in order to facilitate the development of detection and defense
mechanisms.

1 Introduction

Recently, one of the most important problems in security are denial of service
(DoS) attacks. The primary goal of these attacks is to deny legitimate users
the access to specific resources [1]. This goal has been traditionally achieved by
following several possible strategies. One of them is to exploit some vulnerability
in a protocol or a service in such a way that an attacker, using a few resources,
can defeat a machine with much more capacity. Another strategy consists in
flooding the target service with a traffic that exhaust either the connectivity or
some resources of the server.

So important are these kind of attacks that many big companies have suffered
from their effects [2], reason for which much research has focused its activity
on the development of detection and defense mechanisms. This way, several
approaches have been proposed in the field of prevention, like egress [3] or ingress
filtering [4], disabling unused services [5], honeypots [6], and others, while many
efforts have been made in the field of detection through intrusion detection
paradigms (IDS) [7].

A low-rate DoS attack to iterative servers has been recently presented in [8]
as an attack capable of defeating an iterative server by using an adaptable traffic

1 This work has been partially supported by the Spanish Government through MYCT
(Project TSI2005-08145-C02-02, FEDER funds 70%).
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c© Springer-Verlag Berlin Heidelberg 2006



Mathematical Foundations for the Design of a Low-Rate DoS Attack 283

rate according to the desired level of denial that the attacker wants to afflict to
the server.

For other recently presented attacks, like the low-rate TCP targeted attack
[9], some solutions in the field of detection and response [10] [11] have appeared.
However, until now, neither defense nor prevention mechanisms have been pro-
posed for [8], mainly due its novelty. In this line, there is a necessity for a more
comprehensive analysis of the mechanisms that the intruder could use to carry
out the attack in order to facilitate the development of detection and preven-
tion measures. The goal of this study is to present such analysis, based on the
development of a mathematical framework. The proposed model establishes the
relation between the design parameters for the attack and the efficiency and rate
values obtained.

The rest of this paper is organized as follows. Section 2 recapitulates the
fundamentals of the attack introduced in [8]. In Section 3, some indicators to
measure the effectiveness of the attack are proposed. Section 4 presents the
mathematical models that support the design of the attack. Section 5 shows some
experimental results for the validation of the models. Finally, some conclusions
and future work are given.

2 Fundamentals of the Low-Rate DoS Attack

The scenario where the low-rate DoS attack [8] to iterative servers is analyzed
consists of a generic client-server configuration in which an iterative server is
going to receive aggregated traffic coming from both legitimate users and in-
truders. The server receives requests from the clients and responds to them after
doing some processing. The low-rate DoS attack focuses the effort in the task
of maintaining the destination service queue occupied with malicious requests
for as long a period as possible. Due to the functioning of an iterative server,
each time that a response or output to a request is generated, a position in the
queue is freed. So, to achieve the goal, when an output is given, the intruder
should occupy the new position in the queue as soon as possible. A vulnerability
present in iterative servers, that allows to forecast the instant at which the next
output is going to happen, is exploited for that purpose.

The fundamentals of the vulnerability and the attack are simple. By sending
the requests in such a way that all of them ask for the same resource at the server,
the time between consecutive answers or outputs, called the inter-output time
τ , will be determined by the required service time, ts, and so easily obtained.
However, despite the solicited resource being always the same, the inter-output
time is observed by the intruder as a random process, τint, because there are
some variations in the service time caused by the round trip time (RTT ), and
the fact that each request is processed in a multitasking operating system. This
random process is modelled by the authors in [8] as a normal variable with a
mean value ts and a variance of var[ts] + var[RTT ].

The intruder sends the requests in such a way that they arrive at the server
in the minimum possible time after a position is freed. Moreover, the traffic
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generated by the intruder should be low-rate. For the attainment of these two
objectives, an ON/OFF attack waveform, synchronized with the outputs from
the server, is used.

The attack waveform is characterized by the following parameters: (a) An
interval (Δ) that is the time elapsed between the sending of two consecutive
packets during the interval of activity; (b) an ontime interval (tontime) that con-
sists on an activity interval during which an attempt to seizure a freed position
in the service queue is made by emitting request packets at a rate given by
1/Δ; and also by (c) an offtime interval (tofftime), that is, an inactivity interval
previous to ontime in the period of attack, during which no attack packets are
transmitted.

The selection of different values for these defined parameters of the attack
yields in a variety of combinations between the denial efficiency achieved by the
attack, and the traffic rate generated against the server. Intuitively, a higher
rate will result in more denial efficiency and vice versa. However, this intuitive
conclusion does not fit the need of quantitative tools for the evaluation of the
effects of the attack.

To address this problem, a main task has to be afforded: that of defining a
formal model which allows to relate the performance of the attack (in terms of
efficiency and rate) with its operational parameters (Δ, tofftime, tontime) and the
target server and network characteristics. The following sections will deal with
this objective.

3 Indicators for Evaluating the Attack

The evaluation of the attack in terms of the efficiency obtained and the rate of
traffic involved leads, as a preliminary task, to the definition of some indicators
to measure these features.

The following indicators are defined:

– Effort (E): it is the ratio between the traffic rate generated by the intruder
and the maximum traffic rate accepted by the server (server capacity).

– User perceived performance (UPP ): it is the ratio between the number of
legitimate users requests processed by the server, and the total number of
requests sent by them.

– Mean idle time (T idle): this indicator is defined for a scenario where legit-
imate users send no traffic. In this environment, T idle is the percentage of
time during which the system has any free positions in the service queue,
related to the total duration of the attack.

As defined, the effort gives an idea about the traffic rate that the intruder
needs to generate for the attack to succeed. On the other hand, both UPP and
T idle specify how to measure the efficiency of the attack. The value of UPP
points out the DoS degree experienced by the legitimate users. Although it may
be a good indicator to compare attack configurations, it is dependent on the
characteristics of the legitimate users traffic. Because of this, the indicator T idle
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is also defined to measure the efficiency of the attack; by using it the probability
of seizure a position for a legitimate user can be deducted. As it is referred to a
scenario free of legitimate users traffic, there is no dependence on it.

The aim of the attack is thus to minimize UPP . This will be similar to minimize
T idle, because doing this, the probability of a legitimate user to seize a free
position in the queue is reduced. On the other hand, the intruder will also try
to minimize the effort needed to carry out the attack by choosing optimized
settings for the parameters. In this way, the attack will become less detectable
by intrusion detection systems based on high-rate detection.

Despite it seems that a reduction in the UPP value implies a higher effort as an
expense and vice versa, it is desirable to find a quantitative relation between the
setting of the parameters of the attack and the values obtained for the indicators
previously defined. In the following section, some mathematical models that
addresses this problem are discussed.

4 Mathematical Modelling for the Attack Behaviour

To address the issue of finding a quantitative relationship between a specific
setting of the parameters of the attack and the values for the indicators that
evaluate it, a mathematical framework is proposed in the following.

4.1 Mathematical Model for the Mean Idle Time

The mean idle time is defined as the percentage of the time during which at
least a free position is available. In the evaluation of this indicator, a period of
an attack, that is, an offtime interval followed by an activity interval (ontime)
is taken as the observation period.

Fig. 1 represents the observed attack period (ON/OFF pattern), along with
the curve of probability (normal distribution as proposed in [8]) for the gener-
ation of an output at the server. The instants for the arrival of attack packets
(during the ontime interval) are represented by vertical arrows. These arrivals
occur at the instants ai(i ≥ 1). We will refer, henceforth, to the instants ai at
which an attack packet arrives at the server as calculation points in the model.
A special calculation point, a0, which does not correspond to the instant of a
packet arrival is also defined. The position of this point is, by definition, at a time
RTT before the reception of the first attack packet in the observation period,
that is, a0 = a1 −RTT .

Although in the example shown in Fig. 1 there are only three attack packets
due to the chosen value for the interval Δ, it could be generically defined a set
of calculation points A =

{
a0, a1, . . . , an

}
, where n = floor[tontime/Δ]. These

calculations points will be used by the model as references for the mathematical
expressions.

The calculation points delimit a set of intervals at which we will calculate the
instantaneous values of idle time, Ti. Following, the values of Ti are specified for
each interval delimited by the calculation points.
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Fig. 1. Diagram of occurrence for an output: probability function and associated cal-
culation points

If the output occurs within the interval (−∞, a0), the value of Ti will be RTT .
In effect, when an answer is given by the server, it travels to the intruder and just
then a new request is generated as a response to the reception of the output.
This new request has to reach the server again. The whole process implies a
time equal to RTT . When the output rises at an instant t situated within the
interval (ai−1, ai), for all the possible values of ai in A, and assuming that the
intervals between two consecutive calculation points are short enough to keep
the condition Δ = ai − ai−1 ≤ RTT , the idle time will take the value (ai − t).
Finally, when the output occurs during the interval (an,∞), we have the same
case as in the first interval, and thus the value of the originated idle time is
RTT .

Thus, for the case in which Δ ≤ RTT is assumed, the mean idle time in
a period of attack can be obtained from the instantaneous values previously
deducted as:

T idle(Δ≤RT T )
=

1
Tp
·
[ ∫ a0

−∞
RTT · f(t)dt +

∫ a1

a0

(a1 − t) · f(t)dt +

+ . . . +
∫ an

an−1

(an − t) · f(t)dt +
∫ ∞

an

RTT · f(t)dt

]
(1)

where f(t) is the probability function for the generation of an output at the
instant t and Tp is the duration of an attack period, that is, Tp = tofftime+tontime.
As it can be seen, the model is independent of the proposed distribution. If a
normal distribution is taken and, for the sake of simplicity, a temporal translation
is considered to get a mean value for the distribution equal to zero, the resolution
of the equation leads to

T idle(Δ≤RT T )
=

1
Tp
·
[
RTT ·

(
F (a0) + 1− F (an)

)
+ (2)

+
n∑

i=1

ai ·
(

F (ai)− F (ai−1)
)

+
σ√
2π
· (e−

a2
n

2σ2 − e−
a2
0

2σ2 )
]
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where the operator F (t) means the value of the distribution function associated
to f(t) at the instant t.

In a common design of the attack, the value of Δ is low enough to accomplish
the condition Δ ≤ RTT . However, although expression (2) provides the value
of T idle for the previous condition, the model could be easily adapted to the
opposite condition, that is, Δ > RTT , considering that the intervals for which
the instantaneous idle time varies are only those within (a1, an). In effect, each
one of these intervals are now split into two parts where the value for Ti is
different.

This value is:

T
(ai−1,ai)
i(Δ>RT T )

=
{

ai − t if ai −RTT < t < ai

RTT if ai−1 < t < ai −RTT
(3)

And, as a consequence, a new expression for the evaluation of the mean idle
time is yielded:

T idle(Δ>RT T )
=

1
Tp
·
[∫ a0

−∞
RTT · f(t)dt +

n∑
i=1

(∫ ai−RTT

ai−1

RTT · f(t)dt +

+
∫ ai

ai−RTT

(ai − t) · f(t)dt

)
+

∫ ∞

an

RTT · f(t)dt

]
(4)

In the proposed model, the server characteristics are considered in the f(t)
term. Besides, the main network factor that affects the attack is the round trip
time, which is also included in the model through the mean value RTT , and
its variance, var[RTT ] (included in the distribution f(t)). Finally, the setting of
the attack is reflected on the calculation points of the expression. In effect, their
positions depend on the parameters of the attack, that is, tofftime, tontime, and
the considered value for Δ.

4.2 Mathematical Model for the User Perceived Performance

The legitimate users packet arrivals are modelled in [8] by a Poisson distribution.
This implies that the probability of packet reception from a legitimate user
during a period of time is given by the exponential distribution function of
mean value λ: F (T ) = 1− e−λT , that represents the arrival rate of packets from
the legitimate users.

The calculation of UPP implies the evaluation of the probability for a le-
gitimate user to capture a position in the service queue during a period of the
attack. Intuitively, this probability is derived from the originated mean idle time,
that is, an user will capture a position in the queue with more probability as
the position is free during more time. As T idle is given by the summing up of
contributions from the different intervals delimited by the calculation points (see
Fig. 1), the probability for the k-th interval, that is (ak−1, ak), is affected by the
idle time originated during this interval, T k

idle, that is
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T k
idle =

1
ak − ak−1

∫ ak

ak−1

T
(ak−1,ak)
i f(t)dt (5)

However, these terms, as defined above, does not consider the presence of traf-
fic coming from legitimate users. In effect, the mean idle time will take different
values depending whether the considered output corresponds to either a user or
the intruder. When the output is sent to a legitimate user, the intruder will not
receive it and consequently a new attack packet will not generated. Therefore,
the maximum value of Ti will not be RTT .

In considering the above effect, and for the sake of simplicity, two approxi-
mations are made. First, the condition Δ ≤ RTT is retained, as discussed in
the previous section, with the expression (1) being used to calculate the mean
idle time. Second, the effect of the variation of the mean idle time is not consid-
ered when the packets coming from legitimate users arrive at the server in the
intervals within a0 and an. This is not an unreasonable approximation, due to
the fact that the variation in the originated idle time for these intervals is up
to Δ, if the intervals (a1, an) are considered, and RTT for the interval (a0, a1).
However, the experimental results shown later in Section 5 confirm the goodness
of these approximations.

Thus, only the first interval (−∞, a0) and the last one (an,∞) are going to
be affected by the above effect, thus their expressions being:

T 0
idle = F (a0)

[
RTT · (1− Pu) + min

[
1
λ

, ts − tontime

]
· Pu

]
T n+1

idle = (1− F (an))
[
RTT (1− Pu) + min

[
1
λ

, ts − tontime

]
Pu

]
(6)

where Pu is the probability for a legitimate user to seizure a position in the
service queue during a complete period of the attack. It will be given by the sum
of the corresponding terms from the different intervals:

Pu =
n+1∑
k=0

(
1− e−λT k

idle
)

(7)

where n is the index of the last calculation point.
It is important to notice that the calculation of the expressions for T k

idle and Pu

should be made recursively, due to the fact that there is a crossed dependency
between them. In all the experiments made, the value of Pu converges in a
reduced number of iterations.

Once the value for Pu is obtained, the final expression for the UPP , for an
attack of duration T , with C seizures, is given by:

UPP =
Pu · C
T/λ

(8)

4.3 Mathematical Model for the Effort of the Attack

The effort is determined by the number of packets sent to the server during the
attack. Two factors contribute to the generation of attack packets. First, the
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activity period, ontime, during which these packets are generated at a rate 1/Δ.
Second, the new packet sent as a response to the reception of an output by the
intruder.

For the calculation of the effort an assumption will be made: the intruder
will receive the answers from the server after the sending of all the packets
corresponding to the ontime interval. This is similar to suppose that the attack
period is not going to be restarted during ontime, being the number of packets
generated floor(tontime/Δ) + 1.

As previously discussed, not all the outputs are received by the intruder, and
so no new attack packets are always sent. The percentage of attack periods at
which an output is not received from the server is given by UPP . Thus, in these
attack periods no additional attack packet is generated as a response to the
output.

Considering that during the observation period, that is, an attack period, only
one request is accepted by the server, the final expression for the effort is:

E =
(

floor(
tontime

Δ
) + 1

)
+ (1− UPP ) (9)

5 Conformance Analysis for the Mathematical Models

The purpose at this point is to validate the theoretical framework presented in
the above Sections with experimental results obtained from simulations made
within Network Simulator 2 (NS2) [12]. The values obtained from the proposed
mathematical models are contrasted with those obtained through some experi-
mental simulations to check their validity.

To check how accurate and precise are the expressions proposed for mean
idle time, effort and user perceived performance in the mathematical models, we
have evaluated the behaviour in a set of scenarios with different configurations for
both the attack and server parameters. The results from these experiments have
been compared to the values derived from the mathematical model, obtaining a
very good approximation between them. Fig. 2 shows the corresponding values
of mean idle time, UPP and effort for 13 simulations. The maximum variation
in T idle (see Fig. 2.a) given by the model is 3,77%, with a mean value of 1,71%,
what is a very good approximation. The results for UPP are showed in absolute
values (Fig. 2.b). The obtained values from the model approximate well to the
simulated ones, with a mean variation of 0,4% and a maximum of 1,46%. Finally,
it can be observed in the comparison for the effort (Fig. 2.c) that the model
approximates well the simulated values, with a mean variation of 1,42% and a
maximum of 4,02%.

As a conclusion, the approximations made in the mathematical model are
accurate enough to consider it as a tool to evaluate the potential effect of an
attack starting from the knowledge of its design parameters.
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0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13

M
e

a
n

Id
le

T
im

e

model

simulation

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

1 2 3 4 5 6 7 8 9 10 11 12 13

U
P

P

Model

Simulation

(a) (b)

0%

100%

200%

300%

400%

500%

600%

700%

1 2 3 4 5 6 7 8 9 10 11 12 13

E
ff

o
r
t

Model

Simulation

(c)

Fig. 2. Comparison between the values of (a) mean idle time, and (b) UPP from sim-
ulation and mathematical models, for 13 different scenarios

6 Conclusions and Future Work

This study is oriented to find the relationship between the design parameters of
the low-rate DoS attack to monoprocess servers in [8], and the results obtained
from this attack. A comprehensive study over the attack is made and some indi-
cators to measure both the efficiency and the rate involved in a specific setting
of the attack have been defined. But the main contribution of this work concerns
the mathematical models that allow to quantitatively obtain the values for these
defined indicators starting from a specific setting of the design parameters of the
attack.

As a consequence of this study, a deeper understanding of the fundamentals
of the attack is achieved. It should lead to the development of defense and
response mechanisms that protect the target systems. As a future work, we plan
to extend the mathematical models to concurrent systems attacked by the same
mechanisms. The preliminary results we have obtained in this field show that it
is possible not only to attack these systems with a similar mechanism but also
it is likely to find a mathematical framework to analyze these attacks.
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Abstract. A function-parallel network firewall is a scalable architecture
that consists of multiple firewalls. Rules are distributed across the array
such that each firewall implements a portion of the original policy. This
resutls in significantly lower delays than other parallel designs; however,
the design requires firewall intercommunication to coordinate the array
which is difficult to implement and introduces additional delay.

This paper describes how the performance of a function-parallel fire-
wall array can be increased if the individual firewalls can operate in-
dependently, without firewall intercommunication. By distributing rules
using accept sets, the independent firewall array and a traditional single
firewall will always arrive at the same decision (integrity is maintained).
Simulation results will show the system is significantly faster than other
designs and has the unique ability to provide service differentiation.

1 Introduction

Parallelization has been increasingly used as an approach for inspecting network
packets in a high speed environment [1,2,3]. As seen in figure 2(a), a parallel
firewall system consists of an array of firewalls connected in parallel. However as
depicted in the figure, the systems differ based on what is distributed, packets
(data-parallel) or policy rules (function-parallel).

Each firewall in a data-parallel system implements the complete security pol-
icy and arriving packets are distributed across the firewalls such that only one
firewall processes any given packet [1]. Although the data-parallel firewall de-
sign achieves a higher throughput than traditional firewalls [1], the performance
benefit is only evident under high traffic loads. Furthermore, stateful inspection
requires all traffic from a certain connection or exchange to traverse the same
firewall to maintain state information, which is difficult at high speeds [3].

As depicted in 2(b), a function-parallel design also consists of an array fire-
walls, however each firewall implements only a portion of the security policy [4].
When a packet arrives to the function-parallel system it is processed by every
firewall in parallel, thus the processing time required per packet is reduced. Fur-
thermore, maintaining state information is possible since a packet is inspected
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by every firewall. Once processing is complete for a packet, results from the in-
dividual firewalls are sent to a gate device that stores the packet and determines
the final action (accept or drop). The system can perform better than an equiv-
alent data-parallel firewall [4]; however, the gate device implementation requires
specialized hardware and introduces an additional delay.

This paper describes how function-parallel firewall array can operate indepen-
dently (without a gate device) which will yield better performance. Independence
can be achieved if firewall rules are distributed based on the security policy ac-
cept set, which describes the set of packets that will be accepted. Distribution
must be done such that the union of each local accept set equals the original
accept set (original and distributed policies accept the same packets), while the
intersection of the local accept sets is the empty set (a packet will be accepted
by only one firewall). By meeting these two requirements, it will be proven
that policy integrity is maintained. Simulation results will show the independent
function-parallel firewalls perform better under various conditions. In addition,
accept sets can be designed such that certain types of packets are only processed
on specific firewalls, yielding the ability to provide service differentiation which
is a key component for maintaining network QoS. Thus, the function-parallel
design has the most potential for successfully inspecting packets in a high-speed
environment.

The remainder of this paper is structured as follows. Section 2 reviews fire-
wall policy models that are used for rule distribution in the proposed parallel
system. Parallel firewall designs are described in section 3, including the inde-
pendent function-parallel design and rule distribution methods. Then section 4
will demonstrate the experimental performance of the parallel design. Section 5
reviews the parallel firewall design and discusses some open questions.

Source Destination
No. Proto. IP Port IP Port Action
1 UDP 190.1.1.* * * 80 deny
2 UDP 210.1.* * * 90 accept
3 TCP 180.* * 180.* 90 accept
4 TCP 210.* * 220.* 80 accept
5 UDP 190.* * * * accept
6 * * * * * deny

Fig. 1. Example security policy consisting of multiple ordered rules

2 Firewall Security Policies

A firewall rule r can be modeled as an ordered tuple, r = (r[1], r[2], ..., r[k]),
where each tuple r[l] is a set that can be fully specified, given as a range, or
contain wildcards ‘*’ in standard prefix format. For the Internet, firewall rules
are commonly represented as a 5-tuple consisting of: protocol type, source IP ad-
dress, source port number, destination IP address, and destination port number
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[5]. In addition to the prefixes, each filter rule has an action, which is to ac-
cept or deny. Security can be enhanced with connection state and packet audit
information [5].

Using the rule definition, a security policy can be modeled as an ordered
set (list) of n rules, denoted as R = {r1, r2, ..., rn}. State can be viewed as a
preliminary extension of the policy that contains a set of rules for established
connections [5]. Starting with the first rule, a packet p is sequentially compared
against each rule ri until a match is found, then the associated action is per-
formed. This type of packet processing is referred to as a first-match policy and
is typically the default for the majority of firewall systems including the Linux
firewall implementation iptables [6].

When designing or verifying a firewall security policy it is important to de-
termine the packets that will be accepted, denied, or not match any rule. Given
a policy R, let A be the set of packets that will be accepted, let D be the set of
packets that will be denied, and let U be the set of packets that do not match
any rule. If the set of all possible packets is C, then a policy R is comprehensive
if U = ∅ (i.e. A ∪ D = C). Therefore, policy R is comprehensive if for every
possible packet a match is found, which is an important objective. Furthermore,
assume R does not necessarily equal R′ in terms of the policy rules.

There are many ways to implement a given policy (e.g. using a single or
parallel firewall) or even modify it (e.g. reorder, combine, add, or remove rules);
therefore, it is important to determine equivalence and policy integrity. Consider
two comprehensive policies R and R′ that have accept sets A and A′ respectively.
The two policies are considered equivalent if A = A′. Therefore, if policy R is
replaced by an equivalent policy R′ then the integrity of R is maintained. There-
fore, it is important to maintain the precedence constraints with implementing
a firewall security policy.

3 Parallel Firewalls

As described in the introduction, parallelization offers a scalable technique for
improving the performance of network firewalls. Using this approach an array of
m firewalls processes packets in parallel, as seen in figure 2. However, the designs
depicted in the figure differ based on what is distributed: packets or rules. Using
terminology from parallel computing, distributing packets can be considered
data-parallel since the data (packets) is distributed across the firewall [7]. In
contrast, function-parallel designs distribute policy rules across the firewalls.

3.1 Data-Parallel Architecture

As shown in figure 2(a), data-parallel firewall architecture consists of an array
of identically configured firewalls [1]. Each firewall j in the system implements
a local policy Rj , where Rj = R. Arriving packets are distributed across the
firewalls for processing (one packet is sent to one firewall), allowing different
packets to be processed in parallel. Since the accept set for each firewall j equals
the accept set of the original policy, Aj = A, policy integrity is maintained.
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Distributing packets across the array allows a data-parallel firewall to in-
crease system throughput as compared to a traditional (single machine) firewall
[1]. However the data-parallel approach has three major disadvantages. First,
stateful inspection requires all traffic from a certain connection or exchange to
traverse the same firewall (where the stateful rule resides) or the constant dis-
tribution and management of stateful rules. As a result, successful connection
tracking is difficult to perform at high speeds using the data-parallel approach
[1,3]. Second, distributing packets is only beneficial when each firewall in the
array has a significant amount of traffic to process (firewalls are never idle). The
performance benefit (higher throughput) only occurs under high traffic loads. Fi-
nally, the design does not differentiate between traffic classes only load balancing.
Therefore efficiently maintaining different QoS requirements is not possible.

R1 = {r1, r2, r3, r4, r5, r6}

packet
distributor

•

R2 = {r1, r2, r3, r4, r5, r6}

(a) Data-parallel, packets distributed
across equal firewalls.

R1 = {r1, r3, r5}

packet
duplicator

• gate

controlR2 = {r2, r4, r6}

(b) Function-parallel with gate, rules dis-
tributed across firewalls.

R1 = {r2, r3, r4, r6}

packet
duplicator

•

R2 = {r1, r5, r6}

(c) Function-parallel, rules distributed across
independent firewalls.

Fig. 2. Various parallel designs for network firewalls. The original security policy con-
sists of six rules R = {r1, ..., r6} and each design consists of two firewalls (depicted as
solid rectangles, where local policies are given within each rectangle).

3.2 Function-Parallel Architecture

Unlike the data-parallel model which distributes packets, the function-parallel
design distributes policy rules across the firewall array [4]. The function-parallel
design consists of multiple firewalls connected in parallel and a gate device.
As seen in figure 2(b), when a packet arrives to the function-parallel system it
is forwarded to every firewall and the gate. Each firewall processes the packet
using its local policy, including any state information. Since the local policies
are smaller than the original, the processing delay is reduced as compared to a
traditional firewall. Once the firewall finishes processing a packet, it then signals
the gate indicating either no match was found, or provides the rule number and
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action if a match was found. The gate stores the results for the packet and
determines the final action to perform.

Since firewalls only implement a portion of the original policy, it is critical
that rule distribution is done to maintain integrity. The integrity of a policy R
is maintained if the rules are distributed such that every rule in R exists in the
system and if the precedence constraints of R are observed in each local policy
Rj . As a result, the accept set of the gate equals the accept set of the original
policy [4]. Several different distributions are possible that adhere the described
guidelines. Essentially the rule numbers (indexes from the original policy) in
each local policy must be in ascending order, as seen in figure 2(b).

The function-parallel design has several significant advantages over traditional
and data-parallel firewalls. First, the function-parallel design results in faster
processing since every firewall is utilized to process a single packet. Reducing
the processing time, instead of the arrival rate, yields better performance since
each firewall in the array processes packets regardless of the traffic load. Second,
unlike the data-parallel design, the function-parallel design can maintain state
information about existing connections. The new state rule can be placed in any
firewall since a packet will be processed by every firewall.

There are three disadvantages of the function-parallel design. First, there is
a possible limitation on scalability, since the system cannot have more firewalls
than rules. However, given the size of most firewall policies range in the thousands
of rules [8], the scalability limit is not an important concern. Second, the system
is unable to differentiate traffic. Thirdly the gate requires specialized hardware
and introduces an additional delay. It is preferable to eliminate the gate device
and allow the firewalls to operate independently.

3.3 Independent Function-Parallel Architecture

As described in the previous subsection, a function-parallel system consists of
an array of firewalls where arriving packets are duplicated and policy rules are
distributed. Each firewall processes an arriving packet using its local policy and
a gate device is required to ensure integrity is maintained. However, it is possible
to allow the firewalls to operate independently, thus eliminating the gate device
and any need for inter-firewall communications.

Consider a function-parallel system consisting of m firewalls that enforces a
comprehensive security policy R. Each firewall j in the array has a local com-
prehensive policy Rj that is a portion of the security policy R. Therefore, each
firewall has a local accept set Aj and a deny set Dj . Integrity will maintained
without a gate device if rules are distributed such that a packet d ∈ D is dropped
by all firewalls, while a packet a ∈ A is accepted by only one firewall. This is
more formally stated in the following theorem.

Theorem 1. An array of m firewalls arranged in a function-parallel fashion
enforcing a comprehensive policy R can operate independently and maintain in-
tegrity if policy rules are distributed such that: each local policy is comprehensive,⋃m

j=1 Aj = A, and
⋂m

j=1 Aj = ∅.
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Proof. The first requirement, comprehensiveness, ensures each local policy will
either accept or deny a packet (

⋃m
j=1 Uj = ∅). The second requirement

⋃m
j=1 Aj =

A indicates that collectively the system will accept only the packets accepted by
the policy R. The last requirement,

⋂m
j=1 Aj = ∅, ensures multiple firewalls will

never accept the same packet (no overlaps in the local accept sets), therefore
only one copy of a packet will be accepted. As such, the integrity of the policy
R is maintained by the parallel firewall.

An example distribution of the policy given in figure 1 across an array of two
independent firewalls is shown in figure 2(c). In this case, the local policy of
the upper firewall will accept only packets from the 210 and 180 address range,
while the lower firewall will only accept packets from the 190 address range.
Duplicating the deny all rule, r6, is required to make the local-policies com-
prehensive. Other distributions are possible, such as distributing rules based on
the protocol (R1 = {r1, r2, r5, r6} and R2 = {r3, r4, r6}) or destination ports
(R1 = {r1, r4, r5, r6} and R2 = {r2, r3, r6}). Policy distribution can be done to
balance the packet load (distribute popular rules across the array) or to achieve a
certain QoS objective. Of course the number of distributions will depend on the
original security policy, where fewer precedence edges allow more distributions.

Like the function-parallel system that relies on a gate device, the independent
function-parallel system can manage state information since a packet is sent to
every firewall. However, allowing the firewalls to operate independently has sev-
eral important unique advantages. First, the elimination of the gate device causes
the function-parallel design to be compatible with a variety of firewall devices
since specialized equipment is not needed. Second, the independent function-
parallel system will have lower processing delays than an equivalent data-parallel
system or a function-parallel system with a gate device. Third, local-policies can
be designed to process certain types of traffic on certain firewalls, yielding the
ability to provide service differentiation which is an important component for
maintaining QoS requirements.

Although the system has many significant advantages, it is not redundant.
Integrity will be lost if a firewall fails since a portion of the policy (local ac-
cept set) will not be available. Fortunately, loss of a firewall will only result in
a more conservative policy (fewer packets accepted), which is better than the
previous function-parallel design with gate device. Redundancy can be provided
by duplicating the local policy to another firewall. As done in [1], firewalls can
be interconnected to determine if redundant rules should be processed.

4 Experimental Results

The performance of a traditional single firewall, the data-parallel firewall, and
the function-parallel firewall (with gate device and independent) was measured
under realistic conditions using simulation. Firewalls were simulated to process
6× 107 rules per second, which is comparable to current technology.

For each experiment the parallel designs always consisted of the same number
of firewalls. The gate device delay was equivalent to processing three firewall
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rules. Short-circuit evaluation was simulated for the gated design, where the
firewalls in the array are notified to stop processing a packet once the appropri-
ate match was determined. No additional delay was added to the data-parallel
system for packet distribution (load balancing); therefore, the results observed
for the data-parallel design are better than what should be expected.

Packets lengths were uniformly distributed between 40 and 1500 bytes, while
all legal IP addresses were equally probable. Firewall rules were generated such
that the rule match probability was given by a Zipf distribution [9,8]. Rules were
distributed for the function-parallel design such that no inter-firewall dependency
edges existed, and if possible, more popular rules were located at the top of the
local-policies. This distribution ensures integrity is maintained.

Three sets of experiments were performed to determine the effect of increasing
arrival rates, increasing policy size, and increasing number of firewalls. For each
experiment 1000 simulations were performed, then the average and maximum
packet delay were recorded.
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Fig. 3. Packet delay as arrival rate increases. Parallel designs consisted of five firewalls.

The impact of increasing arrival rates on the four firewall designs is shown in
figure 3. In this experiment, each system implemented the same 1024 rule firewall
policy [8] and both parallel designs consisted of five firewalls. The arrival rate
ranged from 5×103 to 1×106 packets per second (6 Gbps of traffic on average).

As seen in figure 3, the parallel designs performed considerable better than
the traditional single firewall. As the arrival rate increased, the parallel designs
were able to handle larger volumes to traffic due to the distributed design. As
seen in figure 3(a), the function-parallel firewall had an average delay that was
consistently 4.0 times lower than the data-parallel design, while the indepen-
dent function-parallel design average delay was 4.3 times lower. This is expected
because each firewall in the function-parallel design is used to inspect arriv-
ing packets regardless of the arrival rate. The impact of the gate delay is more
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prominent as the arrival rate increases. Similar to the average delay results, the
function-parallel design had a maximum delay 34% lower than the data-parallel
design, while the independent function-parallel design was 38% lower.
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Fig. 4. Packet delay as rule number increases. Parallel designs consisted of five firewalls.

The effect of increasing the policy size (number of rules) for the four firewall
designs is given in figure 4. In this experiment, the arrival rate was again 1×105

packets per second (yielding more than 0.5 Gbps of traffic on average) and
both parallel designs consisted of five firewalls. Policies ranged from 60 to 3840
rules.

As seen in figure 4(a), the parallel designs performed considerable better than
the traditional single firewall once the policy contained more than 1000 rules. The
function-parallel firewall had an average delay that was 4.12 times lower than
the data-parallel design, while the independent firewall was 3.79 times lower.
This slight difference is primarily due to short-circuit evaluation, where the gate
informs firewalls to stop processing a packet once the appropriate match is found.
However this is only a marginal gain given the inter-firewall communication and
specialized hardware required for short-circuit evaluation.

Figure 5 shows the effect of increasing number of firewalls for the two parallel
firewall designs. The number of firewalls ranged from 2 to 256, the number of
rules was 1024, and arrival rate was 2× 105 packets per second (again, yielding
more than 1 Gbps of traffic).

As firewalls were added, the function-parallel system always observed a re-
duction in the delay. This delay reduction trend is expected until the number
of firewalls equals the number of rules. In contrast, the delay for data-parallel
design quickly stabilizes and the addition of more firewalls has no impact. This
is because after a certain point any additional firewalls will remain idle, thus
these additional firewalls are unable to reduce the delay. As additional firewalls
are added the performance difference between the function-parallel firewall and
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Fig. 5. Packet delay as number of firewalls increases. Policies consisted of 1024 rules.

theoretical limit becomes larger. The local policy delay becomes smaller as more
firewalls are added; however, the gate delay remains constant, thus more promi-
nent in the total delay experienced.

5 Conclusions

It is important that a network firewall acts transparently to legitimate users,
with little or no effect on the perceived network performance. This is especially
true in a high-speed environment or if traffic requires specific network Quality of
Service (QoS). Unfortunately, the firewall can quickly become a bottleneck given
increasing traffic loads and network speeds. Therefore, new firewall designs are
needed to meet the challenges associated with the next generation of high-speed
networks.

This paper introduced a scalable firewall architecture consisting of multiple
independent firewalls, where each firewall implements a portion of the security
policy. When a packet arrives to the system it is processed by every firewall
simultaneously, which significantly reduces the processing time per packet. In
addition, rule distribution guidelines that maintain policy integrity (the paral-
lel design and a traditional single firewall always reach the same decision for
any packet) and independence (no inter-firewall communication required) were
introduced. Simulation results showed the architecture achieved a processing de-
lay significantly lower than previous parallel firewall designs. Furthermore unlike
other designs, the proposed architecture can provide stateful inspections since
a packet is processed by every firewall and can be implemented with currently
available technology. Therefore, the function-parallel firewall architecture is a
scalable solution that can provide better performance and more capabilities.

While the function-parallel firewall architecture is very promising, several
open questions exists. For example given the need for QoS in future networks,
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it is important to develop methods for distributing rules such that traffic flows
are isolated. In this case a certain type of traffic would be processed by a cer-
tain firewall. Another open question is the optimization of local firewall policies,
including redundant policies. However, optimization can only be done if policy
integrity is maintained.
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Abstract. In order to resist an unauthorized use of the resources ac-
cessible through mobile terminals, masquerader detection means can be
employed. In this paper, the problem of mobile-masquerader detection is
approached as a classification problem, and the detection is performed by
an ensemble of one-class classifiers. Each classifier compares a measure
describing user behavior or environment with the profile accumulating
the information about past behavior and environment. The accuracy of
classification is empirically estimated by experimenting with a dataset
describing the behavior and environment of two groups of mobile users,
where the users within groups are affiliated with each other. It is assumed
that users within a group have similarities in their behavior and envi-
ronment and hence are more difficult to differentiate, as compared with
distinguishing between the users of different groups. From the practical
detection perspective, the former case corresponds to the “worst-case”
scenario where the masquerader has a rich knowledge of the user behav-
ior and environment and is able to mimic them, while the latter case
corresponds to the “best-case” scenario, where the masquerader makes
little or no attempt to mimic the behavior and environment of the user.
The classification accuracies are also evaluated for different levels of false
rejection errors. The obtained results indicate that, when smaller values
of false rejection errors are required, ensembles of few best-performing
classifiers are preferable, while a five-classifier ensemble achieves better
accuracy when higher levels of false rejection errors are tolerated.

1 Introduction

Nowadays, mobile terminals are often used to store and access sensitive private
and corporate information. The survey of Pointsec [1] reveals that smartphones
and PDAs are used to store personal and business names and addresses (respec-
tively 86% and 81% of users); to receive and view emails (45% of users), and
to store corporate information on them (27% of users), among other purposes.
Meanwhile, small-size terminals carried along are susceptible to loss or theft; for
instance, according to another survey by Pointsec [2], 24% of respondents have
experienced a loss or theft of their PDAs.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 302–321, 2006.
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Impersonating the legitimate user in order to obtain an unauthorized access
to sensitive data or services is referred to as the masquerade attack. In order to
spot this attack, the means of masquerader detection are employed. A number
of efforts have been devoted to the problem of detecting masquerade attacks
(e.g. [3,4,5,6,7,8]). These works are mainly targeted on networked laptops and
workstations as well as servers. The peculiarities of mobile terminals, such as the
limited battery power, memory and processing capabilities, the mobility of the
terminals and their personal use, are not taken into account in these works. Some
approaches assume a specific user interface, e.g. UNIX command-line interface
[3,6], which is not available on a majority of mobile terminals.

Some works also focus on resisting masquerader attacks in the context of mo-
bile terminals [9,10,11]. For instance, Sun et al. [11] study the applicability of
mobility patterns for detecting masqueraders; their results, however, lack em-
pirical evidence. In [9] and [10], respectively the keystroke dynamics and the
gait patterns are used to differentiate mobile-handset users from masqueraders.
However, these characteristics are available during a limited portion of time (e.g.
keystrokes can be monitored only when the user is typing), and the detection
accuracy achieved with these characteristics used alone may be insufficient (the
best reported average equal error rates are 12.8% and 7% respectively). Besides,
some of the solutions to the problem of fraud detection in telecommunication net-
works address the problem of mobile-masquerader detection, too [12,13,14,15].
Meanwhile, these approaches are focused on the use of services, and therefore,
are not able to detect masquerade attacks if the services are not used, e.g. while
the terminal is disconnected from the telecommunication network.

In this paper, the problem of mobile-masquerader detection is approached as
an anomaly detection problem [16] based on the assumption that the behavior
and environment of a masquerader is anomalous compared with those of the
legitimate user. In turn, the problem of anomaly detection is formulated in the
paper as a one-class classification problem [17], where the behavior and envi-
ronment of a claimant (the person interacting with the terminal) is classified as
belonging to the legitimate user or not.

In order to improve the detection accuracy, multiple behavioral and environ-
mental features are monitored and analyzed by an ensemble of base (one-class)
classifiers. Each classifier learns the norm of user behavior or environment as
manifested in previously observed values of these features, and then classifies
currently observed values as normal or anomalous. The final classification is
produced by fusing the classifications of base classifiers using a combining rule.

Different characteristics have been proposed as potentially useful in masquer-
ader detection. Among them are the peculiarities of typing rhythms [18,19,9],
the patterns of user mobility and calling activity [13,11], and the regularities in
the application usage [6]. A list of characteristics potentially useful in mobile-
masquerader detection has been suggested in [20]. In our earlier work [21], the
classification accuracies of several one-class classifiers based on these character-
istics were experimentally evaluated. The evaluation was based on the dataset
describing the behavior and environment of two groups of mobile users, where
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the users within groups were affiliated with each other. It can be assumed that
users within a group have similarities in their behavior and environment and
hence are more difficult to differentiate, as compared with distinguishing be-
tween the users of different groups. From the practical detection perspective,
the former case can be seen as the “worst-case” scenario where the masquerader
has a rich knowledge of the user behavior and environment and is able to mimic
them, while the latter case can be seen as the “best-case” scenario, where the
masquerader has little or no knowledge to attempt mimicking the user behav-
ior and environment. In [21], the classification accuracy was estimated only for
the worst-case scenario by letting the classifiers distinguish the legitimate user
from other users within these groups. Assuming that distinguishing between the
users inside the groups was challenging for the classifiers, the obtained accuracy
estimations can be seen as pessimistic.

This paper builds on earlier work in [21] and extends it in several ways. First,
the classification accuracy is estimated for the best-case scenario, i.e. by letting
the classifiers distinguish the legitimate user from the users of the other group.
Assuming that the classification task is easier in this scenario, the produced ac-
curacy estimates are referred to as optimistic. According to the obtained results,
indeed, the users from different groups can be distinguished with a significantly
higher accuracy than the users within one group.

Second, the classification accuracies are estimated for different levels of false
rejection (FR) errors indicating how likely the legitimate user is mistakenly clas-
sified as a masquerader. As a result, classifier ensembles are identified which
produce superior accuracy for different levels of the FR errors. The obtained re-
sults indicate that, when smaller values of the FR errors are required, ensembles
of few best-performing classifiers are preferable, while a five-classifier ensemble
achieves better accuracy when higher levels of the FR errors are tolerated.

Finally, the design of one of the base classifiers in [21] was found inappropriate
for the case when the users of distinct groups were distinguished. Therefore, the
design of this classifier had to be improved, and as a result, also the pessimistic
estimation of accuracy for this classifier and for the ensembles which include this
classifier have improved as compared with the results reported in [21].

The paper is organized as follows. In the next section, our approach to mobile-
masquerader detection based on combining one-class classifiers is described. The
design of individual classifiers and the employed combining rule are specified in
section 3. In section 4, the results of experiments are reported. Section 5 discusses
the resource consumption imposed by the proposed approach, and considers how
vulnerable to subversions the approach is. Finally, conclusions from the study
are provided in section 6.

2 Mobile-Masquerader Detection Based on Combining
One-Class Classifiers

An anomaly is often defined in intrusion detection in a probabilistic sense, i.e.
as the observations with a low probability to be invoked by the legitimate user.
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Various methods based on statistical probability modeling [22,23,3,24,5], outlier
detection [25], clustering [4,26], etc. have been proposed to estimate how proba-
ble the current behavior and environment is for the legitimate user. Most of these
techniques analyze the whole set of features simultaneously. However, substantial
disadvantages are inherited into this approach including difficulties with learning
when the features are lumped into a single high-dimensional vector [25,27]; and
difficulties with the normalization of features having different physical mean-
ing [27]. Besides, it may happen that the values of some features are not avail-
able at the time the classification is performed. All these arguments justify the
use of an alternative approach based on decision fusion and combining classi-
fiers [28,27]. Following this approach, the features can be divided into subgroups
processed by individual one-class classifiers referred to as base classifiers. Each
of them is aimed at classifying the current values of features as belonging to
either the user class, or the impostor class. By employing a combining rule, the
final classification is produced based on the classifications of the base classifiers.

In this approach, a set of R base classifiers are employed to classify the object
Z (claimant) represented by the values of nf features {x1, . . . , xnf

} from the
feature space X . The available feature values are used to initialize the observation
vector of each base classifier. For this, a sliding window [τ1, τ2] of the length
lτ = τ2 − τ1 (determining the time interval, within which the feature values are
collected) and the increment for the window δτ is used. Classifier i takes as input
the observation vector xi ≡ (x(i)

1 , . . . , x
(i)
nfi

) ⊂ {x1, . . . , xnf
}, x

(i)
j ∈ Xi ⊂ X .

The classification process consists of the learning phase and the classifica-
tion phase. In the learning phase, using the training set DST , the classifier i
learns to differentiate the user and the impostors by estimating the set of pa-
rameters Θi constituting the model of the classifier. The training data-set DST

includes the vectors of feature values of the user:DST = {((x1, . . . , xnf
)j , yj)|j =

1, . . . , |DST |}, where yj = CU is the class label.
In the classification phase, the learnt model is used to classify an unlabeled

observation vector from the unlabeled dataset DSC = {((x1, . . . , xnf
)j)|j =

1, . . . , |DSC |} into the user class or the impostor class. Given an unlabeled ob-
servation vector (x1, . . . , xnf

)j , each classifier for which the values of needed
features are available initializes and processes its vector xi, and outputs its in-
dividual classification ui = ui(xi, Θi) indicating how likely the claimant is the
user (Z ∈ CU ). Finally, once the outputs of base classifiers are available, the final
classification is produced by combining these classifications, using a functional
mapping γ(u, Θ) : u ,→ {CU , CI}. Due to unavailability of some of the feature
values, classifications of some base classifiers may not be available, and hence
the final classification needs to be made using a subset of base classifiers.

The accuracy of the final classification is described by the probability of cor-
rect detection PD and false rejection (FR) error rate PFR. The probability of
correct detection is the probability of an impostor being correctly classified as
belonging to the impostors; it can be defined as PD = P (γ = CI |Z ∈ CI), where
P (·) denotes probability. In turn, the FR error rate reflects the probability of
the legitimate user being classified as an impostor; it is defined as PFR = P (γ =
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CI |Z ∈ CU ). Besides, another related characteristic is the false acceptance (FA)
error rate which can be defined as PFA = P (γ = CU |Z ∈ CI) = 1− PD.

3 Individual Classifiers and Combining Scheme

In [20], human personality was assumed to be reflected in different aspects of
user behavior and environment, and a number of characteristics describing such
aspects were suggested. It was hypothesized that the superposition of these char-
acteristics is individual, and can be used to distinguish between the user and
masqueraders. To measure quantitatively these characteristics, appropriate ob-
servable variables, or measures, should be assigned to each of them. A list of
tentative measures has been proposed in [20]. Some of these measures are em-
ployed in the experiments reported in the paper; the choice of the measures to
use is based on the information available in the dataset which is described below.

3.1 Dataset

The dataset used in this work was obtained within the Context project at the
University of Helsinki and was gathered using the ContextPhone software plat-
form [29]. The data describes the users’ movements (GSM cell changes), phone
usage (phone profile, application use, idle and active time, charger), physical
social interaction (bluetooth environment) and mobile phone communication
(phone calls and text messages).

The data comes from two field studies conducted to test ContextContacts,
a social awareness service [30]. The first field study was done with a family of
four: mother and three children aged 10 to 16. The second group consisted of five
high-school students, aged 16 to 18, who ran a small company together. Both
studies lasted approximately three months. All subjects were Finns living in the
greater Helsinki area. The anonymized version of the dataset is available from
http://www.cs.helsinki.fi/group/context/data/.

The data was collected with the ContextLogger application of the Context-
Phone platform. The software runs in the background on Nokia Series 60 smart-
phones, collects data and sends it to a server automatically, and does not normally
interfere with the user’s actions (some crashes of the software may result in user-
visible alerts). The data was collected throughout the daily activities, not limited
to certain times, locations, or settings. Coverage of the data over the full study
periods ranges from 55 to 95%. Although the data collection software is fairly
reliable, the whole process may leave gaps as users may switch off the phone or
disable the software. The gaps are not random in respect to the phenomena stud-
ied: since missing data is often the result of user behavior, it correlates with the
usual/unusual distinction. On the other hand there are long periods, where the
data gathering has been continuous, and it can be reliably claimed that the data
covers also atypical behavior.

The data collection was done in a setting where the users were testing a novel
application on the phone. Additionally, for most users the phone was different from



Estimating Accuracy of Mobile-Masquerader Detection 307

their previous one. Some anomalies in the data related to this should be visible. On
the other hand the length of the studies means that the behavior should exhibit
a stationary pattern fairly quickly, compared to the full time period.

3.2 Design of Individual Classifiers

Values of some of the measures proposed in [20] are available in the dataset.
These measures are assigned as features to individual classifiers; to each type of
measures, an individual classifier is assigned. The design of these classifiers is
described below. It should be noted that similar classifiers were employed in [21].

Type of program or service evoked. Active applications evoked by the user
are registered in the dataset. This measure is referred to as active applications
(ACT APP ). The assigned classifier estimates the probability of an application
j being evoked out of m applications as P̂ (appj |U) = (aappj

+1)/(
∑

m aappm
+1),

where aappj
is the number of times the user evokes the application. Assuming the

independence of consequent application evocations, the probability of application
evocations within a time window [τ1, τ2] is approximated as

P̂ (appi−napp+1, . . . , appi|U) =
i∏

j=i−napp+1

P̂ (appj |U), (1)

where appi is the last application evoked within the time window, and napp is the
average number of applications evoked within the window. The application evoca-
tions within previous window(s) can be taken into account if needed (the same is
valid for the other classifiers, too). Given the current active applications to be clas-
sified, the classifier outputs the classification ui = P̂ (appi−napp+1, . . . , appi|U).

Sequence of cells traversed. The dataset records the identifiers of the cells
(Cell IDs) wherein the mobile terminal is registered. The information about
consecutive Cell IDs can be utilized in order to create the sequences of cells
traversed measure (MOV E). The model of the assigned classifier includes a
matrix, where each element acelli cellj is a counter that stores the number of
times the terminal’s Cell ID changed from cell i to cell j. The matrix values are
used in approximating the probability P̂ (cellj |celli, U) of a handover:

P̂ (cellj |celli, U) =
acelli cellj + 1∑

m acelli cellm + nneighbor i
, (2)

where cellm are the cells to which traversals from celli were registered, and
nneighbor i is the number of such cells. Given the parameters lτ and δτ of slid-
ing windows, the average number of handovers nho within a window is esti-
mated. Assuming the independence of consequent handovers, the probability
of a sequence of cell changes within a time window [τ1, τ2] is approximated
as P̂ (celli−nho

, . . . , celli|U) =
∏i−1

j=i−nho
P̂ (cellj+1|cellj , U), where celli is the

last cell registered within the time window. In the classification phase, given
the current route to be classified, the classifier outputs the classification ui =
P̂ (celli−nho

, . . . , celli|U).
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For the experiments reported in this paper, nneighbor i was assigned the value
of 40 whenever the number of cells to which traversals from celli were registered
is less than 40 (in [21], nneighbor i was set to 4). This decreases the value of
estimated probability of handovers between previously unseen cells. Due to this
slight modification, a substantial improvement in the accuracy of the MOV E
classifier is achieved, as will be reported in section 4.

Speed of move. Though the speed of move is not available in the dataset, the
timestamps of the Cell ID records can be used to estimate the time the terminal
spends in a cell, which, in turn, can be used to roughly estimate the terminal’s
speed in terms of “cell per second” referred as speed (SPEED) measure.

For each cell, the user speed is modeled separately by the assigned classifier
based on the empirical distribution of the user speed in this cell. The value
of the speed can be approximated as a ratio of the length of the user’s path
within the cell to the time the user spent in the cell. The time spent in the cell
τstay is estimated as the length of time interval [τho1, τho2] between consequent
handovers. Assuming that the user follows the same path within the cell, the
length of the path is omitted from speed calculation, i.e. the speed in the cell is
estimated as vcelli = 1/τstay (in “cell per second”). Only smaller values of τstay

(< 11 minutes) are processed by the speed-based classifier, while greater values
are assumed to indicate that the terminal is not moving. Using the accumulated
empirical distribution function (EDF) of vcelli , the probability density p(vcelli) of
the current speed for cell i is evaluated by using k-nearest neighbors method [31].
Assuming independence of the speed in subsequent cells, the likelihood of a user
speed within a time window [τ1, τ2] is approximated as

Lspeed(celli−nc+1, . . . , celli|U) =
i∏

j=i−nc+1

p(vcellj ), (3)

where celli is the last cell registered within the time window, and nc is the
average number of cell changes within a window. Given the current speed values,
the classifier outputs the classification ui = Lspeed(celli−nc+1, . . . , celli|U).

Locations where prolonged stops were made. The information about the Cell
IDs and the time spent in cells can be used to identify those locations (in terms
of Cell IDs) where the terminal stays for a relatively long period of time. This
measure is named places visited (PLACES). The design of the classifier based on
this measure is similar to the design of the classifier based on active applications.
The difference is that the locations (Cell IDs) of prolonged stops, as defined in
the description of the speed-based classifier, are taken as input instead of the
application identifiers.

Temporal lengths of actions. In the dataset, the durations of calls are recorded;
they are used as a call duration (DUR CALL) measure. The classifier analy-
ses the mean duration time τdur within a window [τ1, τ2]. The value of τdur

is calculated as τdur = 1
ndur

∑i
j=i−ndur+1 τdur

j , where τdur
i is the last call du-

ration registered within the window, and ndur is the average number of calls
finished within a window. Using the accumulated EDF of the τdur values, the
probability density p(τdur) of the current mean inter-arrival time is evaluated
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using k-nearest neighbors method. Given the current inter-arrival time values,
the classifier outputs the classification ui = p(τdur).

Address information of the people contacted. Phone numbers contacted via
calls or SMS are available in the dataset. This measure is referred to as contact
numbers (CONT NUM). Besides, the identifiers (MAC-addresses) of neighbor-
ing Bluetooth-devices are logged in the dataset and are employed as neighbor-
ing Bluetooth devices (BT DEV ) measure. The classifier based on the phone
numbers of contacted people, and the classifier based on the MAC-addresses of
neighboring Bluetooth devices are designed similarly to the classifier based on
active applications. The difference is that contact numbers or MAC-addresses,
respectively, are taken as input instead of the application identifiers.

In addition to the measures described above, the intervals between evoca-
tions of calls (arrival of calls measure) and SMSs (arrival of SMS measure)
are available in the dataset. However, according to [21], the classifiers built on
these measures, provide poor accuracy indicating that these two measures are
poor differentiators between mobile-terminal users. Therefore, these measures
and corresponding classifiers are excluded from consideration in this paper.

3.3 Combining Classifiers

Combining the classifications produced by several classifiers is often used as a
means to compensate the weaknesses of individual classifiers. Different combin-
ing rules have been investigated [27,32,33], and it has been shown that combining
may result in a significant reduction of classification errors [32,34]. However, for
combining one-class classifiers, where only the knowledge regarding one class is
available, relatively few rules can be used. Among them are different modifi-
cations of voting rules as investigated by Xu et al. [27]. Tax [17] reported the
applicability of the mean vote, the mean weighted vote, the product of weighted
votes, the mean of the estimated probabilities, and the product combination of
probabilities as combining rules for one-class classifiers. In [35], the mean of the
estimated probabilities (MP) rule was justified to be among the most suitable
ones in the context of mobile masquerader detection, and an improved version
of it (modified MP rule) was proposed. This modified MP rule is used in the
experiments in this paper as a scheme for combining individual classifications.
Below, the details of this rule are provided.

The modified MP rule assumes that each classifier i outputs its classification
as an estimation of the probability density function (pdf) for the user class
p(xi|CU ). Given R classifiers to be combined, the rule represents the average of
the classifier confidences uc

i :

umc(x1, . . . ,xR) = R−1
R∑

i=1

uc
i(p(xi|CU )), (4)

where uc
i reflects the degree of the classifier confidence in the hypothesis that

an object Z belongs to the user class. The confidence values can be calculated
as [35]:
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uc
i(p(xi|CU )) =

1

1 + exp (− ln p(xi|CU )
p(xi|CU ) )

=
p(xi|CU )

p(xi|CU ) + p(xi|CU )
, (5)

where p(xi|CU ) is the mean value of the estimated probability p(xi|CU ). This
mean value is equal to the probability of a random variable uniformly distributed
in the feature space Xi.

The final classification result is made by comparing the obtained umc value
with a threshold tmc:

Decide Z ∈ CU if umc ≥ tmc,

otherwise decide Z ∈ CI . (6)

4 Experimental Results

In this section, the results of experiments are presented. These experiments pur-
sue two goals. First, the classification accuracy of different ensembles of classifiers
is estimated, for both the worst-case and the best-case scenario. The obtained
pessimistic and optimistic estimates should provide respectively the estimates of
the lower and the upper boundary of the classification accuracy which can be
achieved with the available ensembles for the dataset used in the study. Second,
the classification accuracies are estimated for different levels of false rejection
errors. It is hypothesized that for different levels of FR errors, different ensem-
bles may provide better results. In order to test this hypothesis, the ensembles
of one, two, three, four, five, and seven classifiers were compared with respect to
their accuracy achieved at distinct levels of FR errors.

4.1 Experimental Settings and Evaluation Criteria

In order to evaluate the classification accuracy, the holdout cross-validation [36]
was used in the experiments. The model of each classifier was learnt using the
training data-set DST , and was subsequently used to classify the instances of a
classification data-set DSC1 or DSC2 . In general, a classification data-set should
include both the instances originated from the user and the instances originated
from masqueraders. However, since the data originated from masqueraders were
not available, the data from other users were employed as the masquerader data.

For each user, the data were split into two parts in the relation 2 : 1 commonly
used in classifier evaluation [36]. The first part formed the training data-setDSTi

employed for learning the model for user i only. The second part was included
into a classification data-set DSC1 or DSC2 . DSC1 included the data of users of
the first group (users 11 through 14 in the dataset), and DSC2 included the data
of users of the second group (users 21 through 25 in the dataset). The length
and the increment of sliding window were set to lτ = 1800 seconds and δτ = 900
seconds respectively.

The classification datasets DSC1 and DSC2 originated from distinct user
groups, and were employed in the experiments to estimate the pessimistic and
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optimistic classification accuracies. The users within groups were acquainted
with each other, had common interests, and therefore shared some of the char-
acteristics, such as visited places. As a result, at least for some classifiers and
ensembles, the task of distinguishing the users within groups is assumed to be
more difficult, thus representing the worst-case scenario from the detection view-
point. Therefore the obtained estimation of classification accuracy is referred to
as a pessimistic one. On the contrary, the task of distinguishing the users of
distinct groups is assumed to be less challenging for classifiers, and the obtained
accuracy estimation is referred to as an optimistic one.

The pessimistic accuracy is estimated by letting the classifiers distinguish the
legitimate user from other users of the same group, for example by letting the
classifiers of users 11 through 14 trained on DST11 , . . . ,DST14 distinguish these
users from other users within the same group represented by DSC1 . On the
contrary, the optimistic accuracy is estimated by letting the classifiers distinguish
the legitimate user from the users of the other group, for example by letting the
classifiers of users 11 through 14 distinguish these users from the users of the
second group represented by DSC2 .

In order to evaluate the accuracy of a classifier distinguishing between a user
and impostors, the values of the probability of correct detection PD and FR error
rates PFR are usually employed. Since the ideal accuracy, corresponding to the
values PD = 1 and PFR = 0 is extremely difficult, if at all possible, to achieve,
in practice, a trade-off between PFR and PD is set as a goal. The dependence
between PD and PFR values is represented by the so-called Receiver Operating
Characteristic (ROC) curve depicting the PD values as a function of PFR. The
area under the curve (AUC) [37] was employed in the experiments, as it reflects
the classifier accuracy; the greater area in general corresponds to the classifier
with the better accuracy.

Base ROC-curves, along with the corresponding AUCs, can be employed to
assess how accurate single classifications are, provided that these classifications
can be delivered by the base classifiers. However, they do not take into account
the observation vectors, for which no classification is made by the classifiers, due
to the absence of values of the features in a particular window. The number of
such non-classifications differs among base classifiers; therefore, their classifica-
tion accuracy cannot be compared using such base ROC-curves and AUCs.

Therefore, along with the base ROC-curve, a normalized ROC-curve
(Figure 1) and normalized AUC were used in the experiments. A normalized
ROC-curve depicts Pnorm

D as a function of Pnorm
FR , where Pnorm

D and Pnorm
FR

represent respectively the normalizations of PD and PFR, wherein the cases of
non-classifications are taken into account [21]. For classifier i, the values of Pnorm

D

and Pnorm
FR are calculated as:

Pnorm
Di

=
PDi nCi

nC max
, Pnorm

FRi
=

PFRi nCi

nC max
, (7)

where nCi denotes the number of classifications made by classifier i, and nC max

is the maximum number of classifications that can be made by individual clas-
sifiers or combinations thereof. nC max is defined as the number of windows, for
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PFRi
norm

PDi
norm

n Ci
n Cmax

Base ROC-curve

Normalized
ROC-curve

Fig. 1. Example of a base and normalized ROC-curve

which at least one base classifier is able to make a classification (in other words,
the number of windows, for which feature values are available for at least one
classifier).

In case a base classifier is required to deliver the classifications for the windows,
where the feature values are unavailable, the classifier may output classifications
for these windows randomly, thus making true detections and false rejections
equally likely, i.e. Pnorm

Di
= Pnorm

FRi
. The behaviour of such a classifier, randomly

guessing whenever it is unable to make a lassification, is represented in the
normalized ROC-curve by the diagonal line for the values of Pnorm

Di
and Pnorm

FRi

greater than nCi/nC max (as shown in the upper right part of Figure 1).
An example of the normalized AUC is shown in Figure 1 as a cross-hatched

area. Given the value of base AUC (AUCi), the normalized AUC (AUCnorm
i )

can be calculated as:

AUCnorm
i = 0.5 +

(nCi)2

(nC max)2
(AUCi − 0.5) (8)

Thus, the base AUC reflects how accurate a single classification is provided
that the classification can be made, while the normalized AUC reflects how
many accurate classifications can be made in general, taking into account both
classifications based on available features and random classifications.

Besides total AUC values, the values of a partial area under the curve, referred
to as the partial AUC or p-AUC [38], are as well employed. A partial AUC
reflects the classification accuracy for lower FR error values (lower than p), and
is evaluated as the area under a partial ROC-curve restricted by the values of
false rejections lower than p.

4.2 Pessimistic and Optimistic Estimation of Classification
Accuracy

In this subsection, for different ensembles, the pessimistic and optimistic ac-
curacy estimations are compared. Both base AUCs and normalized AUCs are
calculated for each user, and the produced values are averaged. The classifica-
tion accuracy has been estimated for a number of ensembles having different
number of base classifiers (R = 1, 2, 3, 4, 5, 7). For each number of classifiers R,
the ensembles providing the best classification accuracy are reported in Table 1.
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Table 1. Averaged total AUCs estimated within groups (the worst-case scenario, pes-
simistic estimations) and across groups (the best-case scenario, optimistic estimations)

Classifier ensemble Within Across
groups groups

(pessimistic) (optimistic)
Base AUC
MOVE 0.685 0.867
MOVE+BT DEV 0.709 0.876
MOVE+BT DEV+CONT NUM 0.685 0.804
MOVE+BT DEV+CONT NUM+PLACES 0.693 0.780
MOVE+BT DEV+CONT NUM+PLACES+ACT APP 0.685 0.771
MOVE+BT DEV+CONT NUM+PLACES+ACT APP+DUR CALL+SPEED 0.667 0.741
Normalized AUC
MOVE 0.615 0.728
MOVE+BT DEV 0.661 0.795
MOVE+BT DEV+CONT NUM 0.664 0.774
MOVE+BT DEV+CONT NUM+PLACES 0.671 0.753
MOVE+BT DEV+CONT NUM+PLACES+ACT APP 0.685 0.770
MOVE+BT DEV+CONT NUM+PLACES+ACT APP+DUR CALL+SPEED 0.667 0.741

In the upper half of the table, the averaged base AUCs are shown. As could
be seen, estimated accuracy is significantly higher when the ensembles are dis-
tinguishing between the users of distinct groups, as compared with the accuracy
estimation for the ensembles distinguishing between the users within the groups.
Thus, indeed, the accuracy estimation in the former case is the optimistic estima-
tion obtained for the best-case scenario, while in the latter case the accuracy is
estimated for the worst-case scenario and the produced estimation is pessimistic.

It should be noted that, in the optimistic accuracy estimation, the inclusion of
the SPEED classifier into the seven-classifier ensemble had no effect on the final
classifications. This classifier, when distinguishing users from distinct groups, was
not able to produce any classifications because little or no CellIDs in common were
registered for the users of different groups, even though they lived in the same area.

As can be seen in the bottom part of the table, the difference between pes-
simistic and optimistic estimations of accuracy is less substantial when normal-
ized AUCs are considered. The difference between the estimations evens-out due
to the fact that the cases of non-classification are taken into account in the
calculation of normalized AUCs.

As reflected in the normalized AUCs presented in the table, different trends
can be found in pessimistic and optimistic estimations of classification accuracy.
The pessimistic accuracy grows when the ensemble is produced by including into
it sequentially MOV E, BT DEV , CONT NUM , PLACES, and ACT APP
classifiers, and decreases when further classifiers are included. Thus, the best
pessimistic accuracy estimation is achieved by the ensemble of five classifiers.
Meanwhile, the optimistic accuracy improves when MOV E classifier is combined
with the BT DEV , but deteriorates when further classifiers are added to the
ensemble. Furthermore, as will be shown in the next subsection, other ensembles
may provide superior results, when lower levels of FR error are considered.
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The pessimistic estimations of accuracy were also reported in [21]. However,
the pessimistic estimations in Table 1 differ from the values reported in [21], due
to the fact that the design of the MOV E classifier is improved. As a result, its
normalized AUC has increased from 0.549 to 0.615; consequently, the accuracies
of the ensembles that include this classifier have improved, too.

4.3 Evaluating Accuracy for Different Values of FR Rate

Total AUC values describe the classification accuracy of classifiers or classifier
ensembles integrated over the range of all values of the FR error. However, in
many applications, the FR error rate needs to be kept low, or restricted to prede-
fined limit. Therefore, in this subsection, the classification accuracy is evaluated
in terms of partial AUCs (p-AUC) which reflect the classification accuracy for
the FR error lower than p. Four levels of p are investigated: 0.1, 0.2, 0.4, and
1.0 (in fact, for p = 1.0, p-AUC is identical to the total AUC). Similarly to the
experiments in the above subsection, for a variety of ensembles having different
number of classifiers, the pessimistic and optimistic accuracy estimations have
been calculated. The normalized partial AUCs have been calculated for each
user, and the produced values have been averaged. The best results (according
to pessimistic estimations) for each number of classifiers R are shown in Figure 2.

The four histograms in the figure illustrate the pessimistic and optimistic
accuracy estimations for four different levels of the FR error (as reflected in
values of p). Both the pessimistic and optimistic estimations indicate that the
best classification accuracy is achieved when a subset of available classifiers is
employed in the ensemble. Which ensemble provides the best accuracy, however,
depends on the value of p, as well as on whether the pessimistic or optimistic
estimation of accuracy is taken into account.

As could be seen, different ensembles provide superior results for different
levels of the FR error. In particular, in the case of the pessimistic accuracy es-
timation, the MOV E + BT DEV ensemble gives the best accuracy for p = 0.1
and p = 0.2, while the accuracy of a three-classifier ensemble (PLACES +
BT DEV + CONT NUM) is superior for p = 0.4, and the accuracy of a
five-classifier ensemble is superior for p = 1.0. In the case of the optimistic
estimation, the two-classifier ensemble MOV E + BT DEV achieves the best
accuracy in most cases (namely, for the values of p ≥ 0.2). Besides, a three-
classifier ensemble (MOV E + BT DEV + CONT NUM) achieves the best ac-
curacy for p = 0.1; yet, the achieved accuracy comes close to the accuracy of the
MOV E + BT DEV ensemble.

The selection of the most accurate ensemble as well depends on whether the
pessimistic or optimistic accuracy estimation is considered. Only for p = 0.2, the
MOV E + BT DEV ensemble provides the best accuracy when estimated both
pessimistically and optimistically. For p �= 0.2, the best optimistic accuracy is
achieved more often with the same two-classifier ensemble MOV E + BT DEV ,
while the best pessimistic accuracy is more often achieved by the ensembles with
greater numbers of classifiers.
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Fig. 2. Averaged normalized p-AUC values for individual classifiers estimated within
and across the user groups for different classifier ensembles: a) p = 0.1; b) p = 0.2;
c) p = 0.4; and d) p = 1.0

According to the optimistic estimations, the best accuracy is obtained when
the MOV E classifier is involved, in ensemble with BT DEV (for p = 0.2, p = 0.4
and p = 1.0) or in ensemble with BT DEV and CONT NUM (p = 0.1).
The MOV E classifier is also present in the most accurate ensembles accord-
ing to the pessimistic estimations (except p = 0.4). This contradicts the fact
that the individual classifications of the MOV E classifier have rather poor
accuracy – in terms of base AUC, its accuracy is lower than the accuracy of
PLACES, CONT NUM , or BT DEV , both when estimated within and across
user groups. However, this classifier produces a significantly greater number of
classifications than the other classifiers [21], and consequently, achieves the high-
est value of the normalized AUC. As a result, the ensembles including this clas-
sifier are able to produce more accurate classifications than others.

The better accuracy of the MOV E+BT DEV ensemble, especially in the case
of optimistic estimation, may be attributed to the facts that i) these classifiers
deliver more accurate classifications than the others, and ii) the outputs of these
classifiers, even when normalized by the modified MP combining rule, are in
average smaller than the outputs of the other classifiers. As a result, in the
process of combining, other less accurate classifications may distort the outputs
of these two classifiers. Such distortion becomes more influential in the case of an
optimistic estimation, since the difference between the accuracy of the MOV E
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and BT DEV classifiers and the others increases, as compared with the case of
the pessimistic estimation.

Overall, the results of the experiments suggest that no single ensemble pro-
vides the best accuracy for mobile-masquerader detection across all the range
of FR errors. Nevertheless, the results also suggest that for lower values of FR
errors (i.e. for p < 1), the best classification accuracy can be achieved with
the ensembles of two or three classifiers, with the ensemble of two classifiers
(MOV E + BT DEV ) being most accurate according to a majority of estima-
tions (for p = 0.1 and p = 0.2 according to pessimistic estimations and for
p > 0.1 according to optimistic estimations). In turn, the three-classifier en-
sembles (MOV E + BT DEV + CONT NUM and PLACES + BT DEV +
CONT NUM) less often provide the highest classification accuracy, while pro-
viding the second-highest accuracy estimate in several cases. Therefore, in the
applications requiring low levels of FR error, the MOV E + BT DEV ensem-
ble may be recommended as providing superior classification accuracy. On the
other hand, the advantage of the three-classifier ensembles is the involvement of
an additional characteristic into the decision-making process. Consequently, the
detection mechanism based on a three-classifier ensemble may be more difficult
to subvert, as an additional aspect of the user behavior or environment needs to
be mimicked by a masquerader.

5 Discussion

In section 2 above, our approach to mobile-masquerader detection based on com-
bining one-class classifiers was introduced, and in the previous section, some of
the classifier ensembles to be used for mobile-masquerader detection were evalu-
ated. In this section, the susceptibility of the proposed approach to subversions
is discussed, and the imposed resource consumption is analyzed.

5.1 Resisting Subversions

In the proposed mobile-masquerader detection approach, a limited number of
measures are monitored, and a situation can be envisioned, in which this ap-
proach would be subverted. It is possible, for instance, that none of the mea-
sures will be available when the masquerader uses the terminal, and therefore,
no alert will be triggered. In the experiments, the best results were achieved
with the monitoring of the terminal’s moves, the neighboring Bluetooth devices,
and possibly the dialed numbers. If the masquerader’s goal is the disclosure of
the information stored locally on the terminal (contact numbers, notes, etc.),
this goal can be achieved without triggering any of the abovementioned actions.
Therefore, the proposed approach can be said to be susceptible to the mimicry
attack, consisting in a modification of a traditional attack so that it would be-
come undetectable by the intrusion detection mechanism [39].

On the other hand, the involvement of several measures into the process of mas-
querader detection makes the detection more difficult to subvert, since several as-
pects of the legitimate user’s environment need to be mimicked simultaneously by
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a masquerader.As indicated by the experimental results presented in section 4, the
superiority of ensembles (in terms of accuracy) depends on the FR error level, and
according to the pessimistic estimation, the MOV E + BT DEV or PLACES +
BT DEV +CONT NUM are superior when lower levels of the FR errors are re-
quired. However, the latter is more difficult to subvert, as three characteristics are
involved in the detection; therefore, the PLACES + BT DEV + CONT NUM
ensemble might be prefered.

In order to avoid detection, a masquerader in principle can disable the mas-
querader detection software. In addition, the masquerader might gradually train
the detection mechanism to accept the masquerader’s behavior as normal. These
arguments suggest that the proposed detection mechanism does not represent a
comprehensive security solution, and should be used together with other security
mechanisms.

5.2 Resource Consumption

Several types of resources have to be taken into account when running a system
on a mobile terminal: storage, CPU usage, local I/O capacity, network capacity,
and battery consumption. In the case of collecting the above mentioned data and
running an on-line analysis algorithm on it, CPU usage as such tends not to be
the problem, but its effect on battery consumption may be. If the algorithm is run
on the terminal, network resources are not needed. The smartphone operating
system has been carefully built to allow concurrent file-system access without
adverse effects on other I/O resources; thus, I/O is not a real concern. Therefore,
the storage and the battery consumption represent the main constraints for the
deployment of the masquerader detection software.

The software involved in the masquerader detection can be divided into the
part responsible for monitoring and data collection (sensors), and the part re-
sponsible for processing collected data (classifiers and combining schemes). Fur-
thermore, the storage includes the code and data constituents.

The classifiers and combinations thereof, if implemented in Java, require
approximately 120–190kB, depending on the classifiers used. The sizes of user pro-
files vary between 163kB and 252kB (if the three-classifier ensemble PLACES +
BT DEV + CONT NUM is used). The generalized data collection software
requires about 1 megabyte of disk for installation and 1 MB (heap) + 0.75 MB
(code) = 1.75 MB of memory to run. Additional data stored on disk needs about
200k. This on its own fits even in the lowest-end smartphones, although it does re-
strict the ability to run other applications on the first generation devices (Nokia
7650) with around 3.5 MB of user memory and 3 MB of disk (the word ’disk’ here
is used to denote non-volatile memory, normally Flash). On second generation de-
vices (Nokia 6600) the user memory has been increased to about 12MB and disk
to 6MB, which basically means that running the software does not inhibit other
use of the device. The amount of disk and memory capacity for the code can be
reduced to about half of these figures, if a less generic framework is employed.

The battery consumption for data collection and analysis is difficult to es-
timate analytically. Mobile phones have complex power management schemes,
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with chips and buses running in different power modes depending on activity,
dynamically adjusted core voltages and heavy assumptions on typical use cases.
Adding constantly running background tasks evidently will adversely affect the
perceived battery consumption, the question is: how much?

Although the battery consumption is hard to calculate, it can be measured. In
actual use, the data collection, including Bluetooth scanning, and analysis will
reduce the stand-by time of a Series 60 phone to about three days (from 7-8 days
without). The Bluetooth scanning is the single most energy-consuming task in
this case. Changing the scanning frequency will affect the battery consumption.

In the experiments, the software implementing classifiers and ensembles was
run on a standalone PC, not on a smartphone. Therefore, the estimations above
exclude the battery consumption due to the classification routines. However,
the experience from running similar algorithms on a smartphone indicate that
slight additional processing after an event occurrence does not have a measurable
impact on battery life.

Based on the discussion above, the conclusion can be made that it is feasible
to deploy and run the proposed masquerader detection mechanism on available
smartphones, with the main limiting factor being the battery capacity.

6 Concluding Remarks

Due to the small size of mobile-terminals, they are easily subject to a loss or
a theft. As a result, the resources available through these terminals may be
accessed by an unauthorized person masquerading as a legitimate user of the
terminal.

In this study, the problem of mobile-masquerader detection is approached
as an anomaly detection problem, where the anomalies in user behavior and
environment are detected by an ensemble of one-class classifiers whose individual
classifications are subsequently combined. Some of the classifier ensembles to
be used for mobile-masquerader detection were experimentally evaluated on a
dataset describing the behavior of nine mobile users.

The accuracy was estimated by distinguishing between the users within the
groups of affiliated people, as well as by distinguishing the users not acquainted
with each other. In the former, worst-case scenario, the classification task was
more challenging for the classifiers, and the produced accuracy estimation is
rather pessimistic. On the other hand, in the latter, best-case scenario, the clas-
sification task was easier for the classifiers, since little or no commonalities in
the behavior and environment was registered for the users not acquainted with
each other. Consequently, the produced accuracy estimation is rather optimistic.
Therefore, the classification accuracy of the explored ensembles in real-world
masquerader detection scenarios may be usually expected to lie between the
boundaries represented by the pessimistic and the optimistic estimations above.

The classification accuracy was also evaluated for different levels of FR
errors. According to the obtained pessimistic accuracy estimation, for lower
values of the FR error, superior accuracy is achieved with the two-classifier
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ensemble MOV E + BT DEV or (for p = 0.4) with the three-classifier en-
semble PLACES + BT DEV + CONT NUM . The two-classifier ensemble
above has been also found superior according to the optimistic accuracy es-
timations. On the other hand, the three-classifier ensemble above grounds its
classifications on three characteristics of user environment, and hence is more
resistant to subversions than the two-classifier ensemble. Therefore, while the
PLACES + BT DEV + CONT NUM ensemble yields slightly to the two-
classifier ensemble in accuracy, the use of the former ensemble may be more
reasonable from the resistance to subversions point of view.

Due to the use of real data in the experiments, the results are likely to be
generalizable. On the other hand, the behavior of a limited number of users was
recorded in the dataset, and these users may reflect the behavior of mobile users
in general imperfectly. Therefore, the reported results may need to be refined
in further research, using larger datasets that account the behavior of a larger
population of mobile users.

Further work is needed also in other directions. First, the design of some of
the base classifiers may be subject to improvement. Second, in further work,
additional classifiers based on other characteristics and measures may be in-
vestigated. Finally, in the experiments, it was assumed that the behavior of
impostors may be approximated by the behavior of other users. Whether such
approximation is accurate enough remains a question for further study.
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Abstract. Cooperation between participants is essential to P2P appli-
cations’ viability. Due to obscure possibility to match peers’ needs and
supplies in pairs, the widely used pair-wise exchange-based incentive
schemes perform poorly. The N-way exchange-based incentive scheme
enlarges the matching possibility by introducing n person exchanges. But
some old problems remain and some new ones emerge with the N-way
design. In this paper we present an enhanced n-way exchange-based in-
centive scheme for P2P file sharing systems. By distributing extra tasks
to all the peers involved in an n-way exchange, the proposed scheme
eliminates prohibitive computation and communication cost on the co-
operators, resulting in greater efficiency, effectiveness, and security.

Keywords: Peer-to-Peer Security, Incentives for Cooperation, Incen-
tives for Enforcement, Exchange-Based Incentive Schemes, Fake Object
Attacks.

1 Introduction

As other distributed systems, peer-to-peer file sharing systems rely on the co-
operation of autonomous self-interested peers to achieve their global goals. The
symmetric relationship between these so-called servents (i.e. the combination of
server and client) dictates the traditional cooperative mode, in which the server
are motivated and trusted to provide the expected service to its clients, is not
applicable any more. Instead, there is an inherent tension between individual
rationality and collective welfare[1]. ”Free-riders”, users who attempt to use the
resources of others without contributing their own, manifest to be a severe prob-
lem: it was found in 2000, that in the Gnutella, approximately 70% of peers
were free-riding[2]; five years later, the number has increased to 85%[3]. Simi-
lar problems caused by the lack of incentive for cooperation pervade nearly all
the popular P2P file-sharing networks[4][5][6]. And the characteristics of P2P
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systems (e.g. large population and high turnover, asymmetry of interest, collu-
sion, zero-cost identity, and traitors[7]) call for an effective, efficient and secure
incentive mechanism to alleviate or overcome the free-rider problem.

The term ”incentive” can be seen as remuneration for peers’ transactional
behaviors[8]. According to remuneration type, existing incentive schemes fall
into three major categories: exchange-based, reputation-based and monetary
schemes. Exchange-based incentive scheme possesses several elegant features,
making it the most desirable alternative in a distributed environment without
a centralized authority[9]: It’s simple, no centralized authority or dedicated in-
frastructure is needed like the monetary schemes do; and it’s safer than the
reputation-based schemes for its immunity to collusion through direct object
exchanging. However, primitive pair-wise exchange schemes with the simple tit-
for-tat strategy[10][11], are performing unsatisfactorily[12], due to the difficulty
for the serving peer to predict which one he is serving to would be serving him
in the future. Thus he has to be unnecessarily generous in giving. And this extra
generosity can be exploited by tactful free-riders. The problem can be conquered
by extending the pair-wise exchange to an n-way pattern[13], where every coop-
erator gets from its directly upstream peer and gives to its directly downstream
peer along a n-way exchange ring. However, the burden of locating and verify-
ing candidate exchange rings, which is put entirely onto the responding peers’
shoulders, weakens the incentive for these serving but also rational peers to en-
force the n-way scheme, and ultimately erodes its effectiveness in suppressing
free-riding. Moreover, in exchange-based schemes there’s no explicit incentive
for rich peers not currently in need to cooperate.

In this paper we present an enhanced n-way exchange-based incentive scheme
for P2P file sharing systems. By distributing extra tasks to all the peers involved
in an n-way exchange, the proposed scheme eliminates prohibitive computation
and communication cost on the cooperators, resulting in greater efficiency, ef-
fectiveness, and security.

The rest of the paper is organized as follows. In Section 2 we describe re-
lated work on incentive mechanisms for P2P systems. In Section 3 we present
the existing design of exchange-based incentive scheme by[13], and analyze the
complexities of its locating procedure and the limited effectiveness of incentive
it provides. In Section 4 we describe the Distributed Exchange Ring Locat-
ing(DERL) procedure for our enhanced n-way exchange-based incentive scheme
in detail, highlighting several key design issues in terms of efficiency and security.
Finally, a conclusion is given in Section 5.

2 Related Work

In monetary schemes, the service consumer pays (real money or virtual cur-
rency) to the service provider[14][15]. Despite their flexibility and fine-grained
control, monetary schemes are the most expensive to deploy, for they require
some underlying accounting and micropayments infrastructure.
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Under exchange-based or monetary schemes, peers tend to be short-sighted,
for they require an immediate reward in return. If not currently in need, a rich
peer has little incentive to cooperate. While reputation-based schemes, featured
with delayed reward in return for the serving peer, are naturally immune to this
problem.

Under a reputation-based scheme, peers maintain records of the transactional
behavior history for others, and base their decision of cooperating or not on
these records. Two kinds of reputations are currently in use: private reputa-
tion and shared reputation. Private reputation is recorded by individuals, often
not shared with others. Private history-based schemes provide ample oppor-
tunities for reciprocation between peer-pairs in applications with long session
durations and relatively small population; e.g. the Tit-for-tat incentive mecha-
nism in BitTorrent[10]and eMule[11]. Private reputation scheme is cheat-proof,
since there is no incentive for a peer to modify its own private records of oth-
ers. But it does not scale well with the system population. In open file-sharing
P2P networks, it is likely that most of time, an individual would be dealing
with a total stranger, and their relationship does not last long enough for the
server to gain its benefit from the client[16]. Shared reputation addresses these
problems through a global reputation propagation procedure, either distributed
([16][18]) or centralized [17][19]. Besides the considerable computation and com-
munication overhead introduced, the sharing of reputation data leaves the hole
for collusion[7][20].

3 Exchange-Based Incentive Schemes

Pair-wise exchange incentive schemes based on tit-for-tat strategy have been
adopted by real-world P2P file-sharing systems[10][11]. But their performance is
limited in systems with large population and great diversity of interest, for it’s
relatively rare to match users in pairs. In [13], the authors conquer this limit
by extending exchanges into an n-way pattern. Incentive for cooperation here
is the priority given by the system to exchange over non-exchange transfers. If
the peer does not providing anything in return, it will not be included in any
exchange transfer.

The n-way scheme’s improved effectiveness comes at the expense of the pro-
hibitive ring locating procedure. Each peer maintains a Request Tree (RT ) and
sends it along with the object request to another peer. A’s RTA consists of itself,
as the root, and the set of RT s as the first-level sub-trees, each corresponds to
an entry in A’s Incoming Request Queue (IRQ). Then, A can initiate an n-way
exchange if any peer in the RTA owns an object desired by A. More specifically,
to locate a exchange ring including itself, A has to: 1) before issuing a request
for object oe, inspect the entire RTA to see if any peer provides oe; 2) when
receiving a request r, inspect its RTr, for any object that A still wants. If a ring
is located, A must also circulate a token along the ring to determine whether
everyone is still willing to serve.
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Fig. 1. Ring location in N-way Exchange [13]

For example, in Fig.1, peer A’s RTA is illustrated in (1). If C possesses o1
wanted by A, then there exists a candidate exchange ring of A, B and C, by
which A would get o1 from C, B gets o2 from A, and C gets o3 from A. To
locate a potential ring, before A ask others for o1, first, it will use the resource
locating mechanism provided by the system to find out a set of peers, S(o1), in
possession of o1; then, it inspects its RTA for any p ∈ S(o1) , if at this point the
RTB is included in RTA, it can find C and locate the ring; otherwise if nobody
in A’s RTA owns o1, A will put (o1, S(o1)) in its wanted list, WA, and sends a
request Req(A, o1, RT ′

A) to others. When the incoming request Req(B, o2, RT ′
B)

to A arrives, A will search in its RTB for every entry in WA, and finds out that
C ∈ S(o1), and locates the exchange ring.

While remaining the inherent weak incentive for non-exchange cooperation,
this extension from pair-wise to n-way exchange brings forward new issues on
efficiency and security. Despite that the authors have empirically determined that
it is sufficient to limit the search for cycles to chains of up to 5 predecessors, the
cost of communicating the full RT may still be prohibitive for peers with a large
number of incoming requests and their neighborhood in the request graph[21].
To make things worse, the above ring locating procedure puts all the burden of
searching and checking for exchange rings on the serving peer (i.e. the responding
peer). This design can be improved in the following aspects:

1. Efficiency. It is expensive, with the worst case overhead of O(N), in which
N represents the population of the system. In large open systems, this scale
of overhead for a single transaction is unbearable for a single peer. Since
for each ring locating operation, a resource locating operation (to find out
who owns the one you need)is required. There is additional communication
overhead weighing from O(N)(flooding) to O(logN) (DHT).

2. Effectiveness. It is ineffective as an incentive scheme. And it deduces an-
other kind of free-riding behavior. The more file it shares, the more extra
computation and communication tasks a peer has to fulfill. Thus, it is rea-
sonable to believe that it is irrational for the sharing peers to blindly enforce
the proposed n-way scheme. Being patient enough, a self-interested peer may
prefer to directly forward any incoming request with its RT , in the hope of
free-riding on its successor to perform all the task. The disincentive against
free-riding if ever provided will be very limited if most cooperative peers
behave rationally and refusing to follow the scheme.
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3. Security. It is insecure because the computation and communication burden
on the serving peers can easily be exploited by malicious peers to launch DOS
(Denial of Service) attacks against them, or even against the whole system
if most behaved peers do follow the scheme.

4 Enhancing the N-Way Scheme with DERL

In this section we present our enhanced exchange-based incentive scheme, based
upon the work of[13], for a file sharing system where every request is in the
form of a single object (a relatively large and fixed-size block), and peers can
download different parts of the same file concurrently. A candidate exchange ring
to be used by peers are located during a Distributed Exchange Ring Locating
procedure (DERL) by the cooperation of all the peers involved. The fact that no
one could depend on others to locate or search for exchange rings strengthens
the incentive for the peers to strictly enforce the proposed scheme.

4.1 DERL: The Basic Idea

A pair-wise DERL is straightforward (See Fig. 2) The requestor Bob issues a re-
quest for object o2, req(Bob, o2), to the responder Alice. Receiving req(Bob, o2),
Alice makes sure that she does own o2 at the moment, decides the object o1 she
wants currently in exchange for o2 and then acknowledges Bob’s request with
ack(o1 : Alice|o2 : Bob). If Bob owns o1, he then locates a pair-wise exchange
ring Ring(Alice : o2|Bob : o1).

Fig. 2. DERL: A 2-way Example

If Bob does not have o1 (see the first row in Fig. 3), he checks with his IRQB,
picks up a request req(Cindy, o3). After checking he has o3, Bob includes a
forwarded request for o1 on behalf of Alice in acknowledging Cindy, by sending
ack(o1 : Alice|o2 : Bob|o3 : Cindy) to her. This message informs Cindy that Bob
agrees to give her o3, if she delivers o1 to Alice. If Cindy owns o1, she locates
a 3-way exchange ring, Ring(Alice : o2|Bob : o3|Cindy : o1). Otherwise, Cindy
chooses some of its incoming requestors, and forwards them the acknowledge
message from Bob appended with some extra information about itself. And so
the recursive procedure goes on and on until some pre-set limit is reached (e.g.
the total number of participants in a single ring preset by the system designer),
or a candidate exchange ring is located.
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Fig. 3. Understanding DERL with VRTs: A 3-way Example

We argue that DERL covers every valid candidate exchange rings that the
Request Tree mechanism proposed in[13]can locate, except those invalid ones
whose participants are no longer in need. This fact is better understood if we
review DERL in the context of a ”virtual RT” (VRT) of the serving peer (see
Fig. 3).

4.2 DERL with Object Sets

Several candidate rings rooted at one peer can be located simultaneously by
DERL. For example, although in Fig. 3, a 3-way ring has been located already,
the DERL procedure on other independent branches of the ”virtual request tree”
rooted at Alice continues, and two more rings r2 = Ring(Alice : o2|David :
o3|Emily : o4|Fred : o1) ,r3 = Ring(Alice : o2|David : o3|Emily : o4|Harry :
o1) are located as well. These two rings share common edges from Alice to Emily
via David, and they are both independent (sharing no common edges) to the
previously r1 = Ring(Alice : o2|Bob : o3|Cindy : o1). DERL’s ability of locating
multiple rings can be used in two ways:

1. Provided with several candidate rings for a single object, Alice can choose
the best of them based on several carefully chosen metrics, e.g. the trustwor-
thiness of peers involved, the length of the exchange ring, etc.

2. Alice can benefit further by issuing a object set OA(o2) including all the
objects she wants in exchange of o2. This modification can be fruitful for
three reasons.
(a) It enables Alice to evaluate its cost of delivering o2 to Bob when forming

OA(o2), and maximize the benefit she could get in return by choosing to
participate in the exchange ring from which she gets the most desirable
one in OA(o2).
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Fig. 4. Multiple Rings Located in a Single Instance of DERL: An Example

(b) Bob now has much greater chance of locating an ring with Alice since he
would succeeds if he owns any ox ∈ OA(o2), and so does all his successors
(the peers located under Bob in its V RT ). If Bob owns several objects
in OA(o2), he can bargain with her by delivering the one with the least
cost.

(c) Different exchange rings can be located simultaneously for different ob-
jects in OA(o2), further benefiting Alice.

The pseudo-code description of DERL with object sets is given as follows:(For
any peer pi in the system, we use pic and pis to denote its dual identities par-
ticipating DERL, as the requestor and the server, respectively.)

1. As the requestor in a transaction: (pic)
(a) pic locates the desired object oic to its current provider ps, sends

req(pic, oic) to ps, and waits for the response.
(b) Upon receiving ack(Op1 (o2) : p1|o2 : p2| · · · |on−2 : pn−2|os : ps|oic : pic)

from ps, pic searches locally for any oix ∈ Op1(o2).
i. If pic finds a set of objects, it locates a set of candidate n-way ex-

change ring in the form of Ring(p1 : o2|p2 : o3| · · · |ps : oic|pic : o1x).
pic exits.

ii. Otherwise, pic searches its IRQ for any request from p1. If he finds
a local request set Soi(p1), Pic locates a set of candidate n-way ex-
change ring in the form of Ring(p1 : o2|p2 : o3| · · · |ps : oic|pic : o1y)
for each o1y ∈ Soi(p1). pic exits.

iii. Otherwise, pic selects a subset of requestors from its own IRQ,
Spi(Op1(o2), p1). To each pix ∈ Spi(Op1(o2), p1)requesting for ox, if
pic currently owns ox, pic sends ack(Op1(o2) : p1|o2 : p2| · · · |on−2 :
pn−2|os : ps|oic : pic|ox : pix). pic exits.
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2. As the responder in a transaction: (pis) Receiving req(px, ox) from px,
pis checks locally for ox. If it succeeds and is willing to exchange ox with pxfor
any osx ∈ Opis(ox), pis acknowledges px with ack(Opis(ox) : pis|ox : px).

4.3 Selecting Compatible Rings After DERL

Although three exchange rings have been located during the DERL procedure in
Fig. 4, only one of them will be put into real use, since normally Alice wouldn’t
want to download o1 more than once. In other words, these three are mutually
incompatible. We can define the compatibility relationship on R as follows:

Definition 1. Upon the set of candidate exchange rings R, the set of peers in
the system P, and the total set of exchangeable objects in the system O, We
define the function o : R× P ,→ O ∪ {null} as follows:

∀r ∈ R, ∀p ∈ P : o(r, p) =
{

ox , if p participates r to get ox

null , otherwise .

Definition 2. The compatibility relationship between any two candidate rings:

∀ri, rj ∈ R, ri �= rj :
Com(ri, rj) = False iff ∃p ∈ P : o(ri, p) = o(rj , p) �= null.

For example, the three rings illustrated in Fig. 3 and Fig. 4, r1, r2 and r3 are
mutually incompatible, since they all provides o1 to Alice if put to use.

Note that we assume a rational peer will never download an object twice.
Therefore, at any point of time, any two rings currently in use in the system
must be compatible. The compatibility relationship can be used by participants
when making decision in the exchange ring validating procedure following DERL
with candidate exchange rings. e.g. if Alice has chosen r1, then she would refuse
to participate r2 or r3.

4.4 Comparison and Analysis

First of all, DERL is a distributed procedure, involving all the peers along the
candidate ring. By distributing the burdensome locating task to the requestor
and its requestors recursively, DERL overcomes the prohibitive overhead on a
single peer of the original locating procedure in[13], without losing the capacity
to locate every possible candidate ring. DERL further improves its efficiency by
eliminating outdated braches (request made earlier but has become invalid by
the time the locating procedure is executed) in the VRT automatically since a
rational peer never submit a request to another peer for what he has already
obtained from a third peer.

Second, in [13]’s design, to locate an exchange ring, the requestor’s entire
RT tree (or a large part of it) is transferred along with every outgoing request.
This incurs a huge communication overhead for both parties involved. In our
design, this information is reduced to minimum as each peer only maintains
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its own Incoming Request Queue (IRQ) locally. However, during the DERL,
the responder’s request message as forwarded by the requestors recursively is
growing continuously until the preset ring length limit is reached. The average
communication overhead has been reduced from O(2L) to O(L), where L denotes
the average or preset ring length.

Third, DERL provides much stronger incentive for resource-sharing since the
requestor can no longer free-ride on the responder forring locating. On one hand,
it becomes more convenient for responders to share, encouraging more peers to
cooperate or the cooperating peers to cooperate more. On the other hand, since
DERL requires a consistent interaction for the requestors with others, it becomes
more energy-consuming to submit a request and participate into a exchange
transfer, discouraging lavish misbehavior.

Finally, DERL is more robust and efficient, for several rings rooted at one
peer can be located simultaneously during a single instance of DERL’s execu-
tion. While in the previous work, due to the prohibitive cost for full RT tree
searching, root peer exits searching for an given object as soon as one candi-
date exchange ring is located. In a dynamic environment like P2P networks,
where peers come and go frequently, DERL’s capacity to locate more candidates
may be the key to succeed. And more candidates indicates more flexibility for
the requestor in choosing the provider for a given object, which allows room for
more sophisticated security enhancement. For example, integrated with a proper-
designed reputation system, DERL can also be used to mitigate the impact of
fake object attacks, where dishonest peers try to spoof others into exchanging
with fake objects.

5 Conclusion

We presented our enhanced version of n-way exchange-based incentive scheme
for P2P file-sharing systems in this paper. Using the Distributed Exchange Ring
Locating procedure (DERL), the scheme distributes extra tasks to all the peers
in an exchange, eliminates the prohibitive cost on the cooperators, and results
in greater efficiency and effectiveness in terms of providing strong incentive to
rational peers both for cooperating and enforcing the proposed scheme.
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Abstract. Non-interference has become the standard criterion for en-
suring confidentiality of sensitive data in the information flow literature.
However, application of non-interference to practical software systems
has been limited. This is partly due to the imprecision that is inherent
in static analyses that have formed the basis of previous non-interference
based techniques. Runtime approaches can be significantly more accu-
rate than static analysis, and have often been more successful in practice.
However, they can only reason about explicit information flows that take
place via assignments in a program. Implicit flows that take place with-
out involving assignments, and can be inferred from the structure and/or
semantics of the program, are missed by runtime techniques. This paper
seeks to bridge the gap between the accuracy provided by runtime tech-
niques and the completeness provided by static analysis techniques. In
particular, we develop a hybrid technique that relies primarily on run-
time information-flow tracking, but augments it with static analysis to
reason about implicit flows that arise due to unexecuted paths in a pro-
gram. We prove that the resulting technique preserves non-interference,
while providing some of the traditional benefits of dynamic analysis such
as improved accuracy.

1 Introduction

Protecting the privacy of personal information has become one of the main chal-
lenges facing the Internet today. Although traditional access control mechanisms
can prevent information from being given to unauthorized principals, they don’t
address the central problem in privacy, namely, information flow control. The do-
main of information flow control begins at the point where sensitive information
is handed to a piece of software, and governs the manner in which this software
uses this information. The primary concern is whether sensitive information may
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flow into (or influence) data that may be read by unauthorized principals. In ad-
dition to privacy, information flow techniques can also address integrity concerns.
The term “taint” is used in place of “information flow” in the context of integrity,
and the techniques are concerned with ensuring that untrustworthy data does not
influence data whose trustworthiness needs to be preserved.

There are two basic approaches for dealing with information flows in a pro-
gram: static analysis and runtime-tracking. A static analysis technique has an
advantage over runtime-tracking in terms of runtime performance. However, sta-
tic analysis techniques need to reason about all possible executions of a program,
and reject programs that can potentially leak sensitive information in some runs.
In particular, the following weaknesses of static analysis techniques make it sig-
nificantly less accurate than runtime techniques:

– Approximations needed to ensure termination of static analysis. Like most
problems in program analysis, it is in general undecidable whether a program
contains a prohibited information flow. Approximations need to be made in
order to produce a decidable procedure, and these approximation will nega-
tively impact accuracy. In contrast, runtime techniques concern themselves
only with the execution path that was actually taken at runtime, and hence
can remain decidable without having to resort to approximations.

– Inability to support programs that occasionally leak information. Consider a
program that sends a crash report to its developer, and assume that this
report contains sensitive information. Under normal conditions, there may
not be any leak. Such a program can be supported by a runtime-tracking
technique by simply suppressing unacceptable flows at runtime, i.e., by dis-
allowing the crash report from being sent. A purely static analysis technique
would have to altogether disallow any use of such programs.

– Inability to support applications where data sensitivity is dynamically deter-
mined. Consider a web browser that interacts with a number of web sites,
some of which handle sensitive data and the others don’t. Thus, the sen-
sitivity of a piece of information received on a communication channel is
determined at runtime, based on the identity of the web site providing the
information. Naturally, purely static analysis techniques require sensitivity
information to be specified statically, and hence have a hard time coping
with such applications.

In fact, these precision issues are sufficiently problematic in the related domain of
access control so that static analysis is seldom used in these systems. Within the
domain of information flow, runtime techniques [7,26,22,8,34] have also enjoyed
more practical applications as compared to their static analysis counterparts.

In spite of these precision issues, static analysis has been the predominant
technique in recent information flow literature [20,23,2,31]. This is because run-
time techniques aren’t able to capture so-called implicit flows that do not involve
explicit assignments, but can be inferred from the structure of the program. For
instance, consider the following program, where h contains sensitive data but l

should not, since the latter is being printed to a public channel.
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1 l := 1;
2 if (h == 1) then l := 0;
3 print l;

Assume that h take only two values: 0 or 1. In this case, the value of h can be de-
termined from the value of l printed by the program. However, a runtime tracking
technique will not be able to infer this dependency, since there were no explicit ac-
tions that transfer information from h to l. Consequently, runtime techniques are
incomplete with respect to the notion of noninterference [14], which formed the
basis of all the above static information flow analysis techniques. Noninterference
states that the public outputs of a program should not be changed in any way by
changes to its sensitive inputs.

It has often been stated that runtime techniques cannot be expected to preserve
noninterference since the presence of information flow is dependent on program
paths not taken during an execution [24]. It seems natural to conclude that runtime
techniques, which make their decisions based on the actual execution trace taken
at runtime, cannot detect such flows. We present a result in this paper that, on the
surface, seems to contradict this “conventional wisdom.” In particular, we present
a runtime information-flow tracking technique that preserves non-interference.Our
technique first employs a program transformation approach to encode information
flows that take place due to unexecuted paths into other paths that are, in fact, exe-
cuted. This transformation itself is guided by a static analysis.This transformation
contains additional instructions in the programthat perform runtime information-
flow tracking. In this paper, we present the rules for such a transformation and for-
mally establish that this transformation technique preserves non-interference, i.e.,
it ensures that no information about the sensitive variables used by a program can
be inferred from public outputs of the program.

The nature of programs handled by this approach are those that are single-
threaded and deterministic. In this work, we do not address information leaks re-
sulting from timing, storage and termination channels [24]. The rest of the paper
is organized as follows. In Section 2, the details of the analysis and transforma-
tion are presented, including a small example of its use. In Section 3 the proof of
correctness with respect to the non-interference property is presented. Section 4
discusses practical issues in adoption of the runtime enforcement technique. Sec-
tion 5 discusses related work. Finally, Section 6 provides a summary of our results.

2 The Transformation

The Language. We use a simple imperative language with procedures for our
discussion. The syntax of expressions and statements in the language appear in
Figure 1. The language has basic arithmetic and logical expressions (composed
using binary operators (bop) and unary operators (uop)), assignments, condi-
tionals, loops, procedure call, sequencing and skip statements. For procedures,
a call-by-value semantics is assumed. Otherwise, the semantics of this language
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[expr] e ::= c | x | e1 bop e2 | uop e1

[stmt] S ::= x := e | if e then S1 else S2 endif | while e do S1 done |
call f(e) | S1; S2 | skip

Fig. 1. The syntax of expressions and statements in the language

is standard. Also, we focus on a simple presentation where the results of the
transformation are un-optimized; optimizations are discussed later.

The variables in the language can have security types high and low. For in-
stance, a high security variable can represent a sensitive channel from which
sensitive information is read by the program. A low security variable can rep-
resent a public input or output channel (such as an insecure network read or
a print statement), and hence any assignment of sensitive information to these
variables constitutes illegal flow of information. For the variables that are not
assigned with high or low security types based on the security policies, they
represent intermediate variables and can hold values from high or low security
variables because they are not publicly visible. Constants are always of type low.

Basic Idea. In our approach, information flow is tracked through the use of label
variables. The idea is simple: for each variable in the program, a new boolean la-
bel variable is created. At runtime, this label variable records the flow of sensitive
information into this variable. When execution reaches an assignment statement
that assigns to a low security variable, the corresponding label variable is exam-
ined for the presence of sensitive data. If such sensitive data is indeed present,
the execution of the program is terminated.

For any variable x, let L(x) denote the label variable that tracks flows to x at
any program point. The label variable is a boolean variable and the value stored
in a label variable reflects whether a variable contains sensitive information (in
which case it is 1), or not. A label value that is 0 denotes the absence of sensitive
information. For example, the execution of the statement x := y + z results in
updating L(x) to L(y)∨L(z). Furthermore, if either y or z contain sensitive data
read from a high security variable, then their corresponding label variable (L(y)
or L(z)) is set to true, and consequently, L(x) will be true after the assignment.
In addition, to simplify the notation, for any expression e, we also use L(e)
to denote the label value obtained by the disjunction of all the label variables
corresponding to variables appearing in the expression e. So, for the expression
x ∗ z + y, L(x ∗ z + y) is L(x) ∨ L(z) ∨ L(y).

The Analysis. The simple idea illustrated above would work only for explicit
flows through assignments. On entering a conditional branch, there is an implicit
flow of information from the conditional to all the variables assigned in both the
branches. To compute this set of variables a static analysis is used. The results of
this analysis (described below) are present in an environment, denoted by Ψ . The
transformation then makes use of the results of this analysis. (Our transformation
mechanism can make use of a variety of analysis mechanisms, and hence here
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[ASSIGN1]
Γ � x : τ where τ �= low

x := e →Γ,Ψ L(x) := L(e) ∨ L(pc);
x := e

[ASSIGN2]
Γ � x : τ where τ = low

x := e →Γ,Ψ L(x) := L(e) ∨ L(pc);
call policy check(L(x));
x := e

[IF]

pc1 is a fresh temporary variable
Ψ � x1, x2, . . . , xn ∈ Upd(S1) ∪ Upd(S2) S1 →Γ,Ψ S∗

1 S2 →Γ,Ψ S∗
2

if e then S1 else S2 endif →Γ,Ψ L(pc1) := L(pc);
L(pc) := L(pc) ∨ L(e);
if e then S∗

1 else S∗
2 endif;

L(xi) := L(xi) ∨ L(pc); (1 ≤ i ≤ n)
L(pc) := L(pc1)

[WHILE]

pc1 is a fresh temporary variable
Ψ � x1, x2, . . . , xn ∈ Upd(S) S →Γ,Ψ S∗

while e do S done →Γ,Ψ L(pc1) := L(pc);
L(pc) := L(pc) ∨ L(e);
while e do

S∗;
L(pc) := L(pc) ∨ L(e);

done;
L(xi) := L(xi) ∨ L(pc); (1 ≤ i ≤ n)
L(pc) := L(pc1)

[CALL]
x1 is a fresh temporary variable

call f(e) →Γ,Ψ L(x1) := L(e) ∨ L(pc);
call f(e, L(x1))

[SEQ]
S1 →Γ,Ψ S∗

1 S2 →Γ,Ψ S∗
2

S1; S2 →Γ,Ψ S∗
1 ; S∗

2
[SKIP]

skip →Γ,Ψ skip

Fig. 2. Transformation →Γ,Ψ , parameterized by Γ (initial type environment that en-
codes the security policy) and Ψ (results of the static analysis that are used to account
for implicit flows)

we only discuss the results that are required from the static analysis; we discuss
possible strategies for performing these analysis in a later section.)

The analysis computes the following: If S denotes a (possibly compound)
statement, the set Upd(S) denotes all the variables that get assigned in the
statement S. The analysis computes a conservative upper bound in case a precise
estimation of the set of variables that are updated is not possible.

Using the results of the analysis, the program is transformed such that, on
entering a conditional branch, the value of the label variable corresponding to the



Provably Correct Runtime Enforcement of Non-interference Properties 337

condition expression (associated with enclosing nested conditionals), is stored in
a global variable called L(pc) that is used to track implicit flows. For all the
assignments that happen inside both branches, the label variables of the left-
hand side expressions are updated with the value of the implicit flows. This is
done by a disjunction with L(pc). Thus, L(pc) includes the combined effect of
the enclosing conditionals and loops. When a conditional branch is exited, the
value of L(pc) is restored to its previous value that existed before entering the
branch.

The type environment Γ represents the initial type assignment of high and
low security variables. This environment is directly initialized from the security
policy. For all the variables that are typed high the label variables are initialized
to true. All the other label variables are initialized to false. When a procedure
is invoked, the local variables are initialized in a similar fashion.

The transformation. Figure 2 presents the transformation rules in an infer-
ence style formalism. The transformation is denoted by the symbol →Γ,Ψ , as it
takes as inputs the security-type environment Γ and the results from the static
analysis Ψ .

The transformation rules update the label variables to reflect the sensitivity
of the information that is contained in the corresponding program variables. In
the transformation rules, updates to the label variables according to the kind of
the statement are shown. These updates are present in the transformed program
and are executed at run-time. We point out that the policy check procedure
checks whether the current assignment (to be performed) is legal. It does so by
checking the sensitivity of the data being assigned to a low security variable (by
checking whether the boolean value corresponding to its argument is true). If
so, then the execution is terminated before the actual information leak occurs.
This procedure may be defined as follows:

policy check(var lab) { if (lab) then halt else skip; }

Below, we briefly explain the transformation rules.
The transformation rule SKIP for the skip statement is obvious. The rule

SEQ for the sequential composition statement of statements S1 and S2 defines
that the individual statements are transformed to S∗

1 and S∗
2 respectively.

ASSIGN1 involves assignment to a non-low security variable (which is not
observable). For this rule, the effect of all label variables of the expression is
computed and assigned to the label variable for the variable on the LHS. The
label variable L(pc) is used to account for implicit flows.

For the assignment rule ASSIGN2, the LHS is a low security variable. In
addition to performing actions similar to ASSIGN1, care should be exercised to
check whether there is an information leak from the expression in the RHS. For
this purpose, the procedure policy check is called, which checks the value of the
label of the RHS. If it is true, then there is a potential information leak, and
the program is halted.
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The transformation rule IF for the if-then-else statement is more compli-
cated. We explain each of the five steps in this transformation. First, the cur-
rent value of L(pc) is recorded in a fresh variable L(pc1) (for recovering and
restoring it after this statement). Secondly, the value of L(pc) is updated with
the value of the label variables of the variables involved in the condition. This
is done to account for implicit flows to any assignments to the body of the
then or else branches. In the third step, the transformation is applied further
to both branches of the statement. This is done by transforming the individ-
ual statements S1 and S2 to S∗

1 and S∗
2 respectively. In the fourth step, the

transformation accounts for implicit flows through assignments in both branches.
This is done by consulting the results of the analysis for the update sets of state-
ments S1 and S2. The union of these sets, represented by Upd(S1) ∪ Upd(S2),
denotes the set of variables that will carry information about the condition
expression as a result of implicit flows. We update their label variables with the
current value of L(pc) to account for implicit flows. (The transformation does
this for all the variables in the set, Upd(S1) ∪ Upd(S2). This is shown in the
transform rule for variables x1, x2, . . . , xn in this set.) Finally, in the fifth step,
the value of L(pc) is restored to the value it originally had before entering the
conditional (through the use of L(pc1)).

Notice that the transformation rule WHILE for the while statement is
similar to the if-then-else statement. To account for implicit flows into vari-
ables from the expression in the condition, the value of L(pc) is augmented
with the value of the expression e, before and during each iteration of the loop.
(The loop may modify the variables in the expression, and therefore the ex-
pression’s label value may change). The labels of variables assigned in the loop
(such as xi), are updated after the loop to account for implicit flows from e.
(Inside the body, the labels of such variables are updated in the correspond-
ing assignment statements). The body of the while statement is then trans-
formed. Note that L(pc) is restored after the execution of the while statement
to its original value. (Note that, for an external observer who could observe the
timing/termination effects of programs, this could leak one bit of information
about the condition. However, we do not address timing/termination channels
in this work.)

As shown in the transformation rule CALL, a call statement is transformed
as follows: A fresh label variable corresponding to the call argument expression
is created. Then the flows for each of the individual variables in the expression is
accounted for through L(e). Finally, a call to the transformed procedure (which
is explained below) is made with this additional argument.

The transformation of procedure definitions is done in a similar fashion (not
shown in figure). The procedure is modified to include an additional label vari-
able for the argument to the procedure. Further, label variables corresponding
to local variables are created. The statement body is then transformed according
to the above mentioned rules.

Figure 3 (a) & (b) show a program fragment and its transformed version
respectively. In the transformed program, a label variable L(x) is denoted by x′.
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1 x := 1;
2 y := 1;
3 if (h == 0) then
4 x := y − 1;
5 else skip;
6 endif;
7 l := x;

1 x′ := pc′; x := 1;
2 y′ := pc′; y := 1;
3 pc′

1 := pc′;
4 pc′ := pc′ ∨ h′;
5 if (h == 0) then
6 x′ := y′ ∨ pc′; x := y − 1;
7 else skip;
8 endif;
9 x′ := x′ ∨ pc′;
10 pc′ := pc′

1;
11 l′ := x′ ∨ pc′;
12 policy check(l′);
13 l := x;

(a) (b)

Fig. 3. (a) Example program and (b) its transformation

3 Formalization of Correctness Criteria

First, we claim the simple result that the transformation is semantics preserving,
providing that the call to policy check does not halt. This is clear as the transfor-
mation only makes updates to the label variables (such as L(x) and L(pc)). The
only construct in our transformation that has the ability to alter the execution is
policy check. Specifically, policy check acts as a halt instruction if the condition
check succeeds, and acts as a skip instruction if the check fails. All the additional
instructions in our transformation only make updates to label variables. Hence,
the following theorem is true.

Theorem 1 (Semantics preservation). Let P be any program, and P ∗ the
transformed program obtained applying the transformation →Γ,Ψ on P. Then,
P and P ∗ are semantically equivalent on all executions in which policy check
never halts P ∗.

Next, we show the correctness of the transformation with respect to the non-
interference property, which ensures that an attacker cannot learn confidential
information by observing only low security variables.

Definition 1 (Non-interference). A program is said to be non-interfering if
for any two sets of input values that differ only on their high security values,
their corresponding low security output values are the same.

To effectively compare two execution traces, the simple notion of program counter
(source line number) is not sufficient as the length of the traces will differ due to the
effect of loops andbranches.To illustrate this point, consider the program fragment
given below (assuming it is defined in a procedure named foo). Let h = 1 in the first
trace, and h = 2 in the second. Then, at program location 3, we cannot compare
the trace elements obtained in the first iteration (when h = 1 in the first trace), and
second iteration in the second trace (when h = 1 in the second trace).
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1 l := 0;
2 while (h > 0) do
3 l := l + 1;
4 h := h − 1;
5 done;

By the following definitions, we factor out the effect of loops by including the
loop counter in the value of the label variable of the program location.

Definition 2. A program counter is defined as a finite sequence 〈pname, �0 :
〈�1, i1〉 : 〈�2, i2〉 : . . . : 〈�n, in〉〉.

– pname is the name of the procedure that is currently being executed.
– �0 is the location (source line number) of the next statement to be executed.
– For all k such that 1 ≤ k ≤ n, �k is the location of the while statement

immediately enclosing �k−1.
– For the while statement at location �k (1 ≤ k ≤ n), ik is the current iteration

number (e.g., 1 the first time through the loop, 2 the second, and so on).

Here, �1 is the location of the most immediate (i.e., innermost) while statement
enclosing the statement at �0. Note that there may be no enclosing while, in
which case the entire program counter value is simply 〈pname, �0〉.

Definition 3. An extended program counter within a program P is defined as
a sequence of program counters.
〈pname1, �

1
0 : 〈�1

1, i
1
1〉 : 〈�1

2, i
1
2〉 : . . . : 〈�1〉m1 , i

1
m1
〉〉, 〈pname2, �

2
0 : 〈�2

1, i
2
1〉 :

〈�2
2, i

2
2〉 : . . . : 〈�2

m2
, i2m2

〉〉, . . . , 〈pnamen, �n
0 : 〈�n

1 , in1 〉 : 〈�n
2 , in2 〉 : . . . : 〈�n

mn
, inmn

〉〉

In this definition, �2
0 refers to the location (in procedure pname2) from which

the call to procedure pname1 was made. In general, �n
0 refers to the location in

procedure pnamen from which a call was made to procedure pnamen−1.

Example: Using the definition of extended program counter, in the first trace, at
source line number 3 for the first (and only) iteration of the loop, the extended
program counter is pc1 = 〈foo, 3 : (2, 1)〉. (program source line 3, and first
iteration of the loop rooted at program line 2). In the second trace, the program
location for the first iteration is pc2 = 〈foo, 3 : (2, 1)〉 and that for second
iteration of the loop is pc3 = 〈foo, 3 : (2, 2)〉. Since pc1 and pc2 are same for the
first iterations, the two trace elements can be compared, whereas the pc1 and
pc3 cannot be compared since they belong to different iterations of the loop.

Note that extended program counter values are unique within the same execu-
tion (due to the fact that we capture iteration counts and procedure in program
counters). Equality of extended program counters is defined as the equality of
the individual sequences. A trace itself is obtained by collecting program states
at various program points in an execution sequence of a program.

Definition 4. A program state is a pair 〈pc, env〉 where pc is an extended pro-
gram counter, and env : (V ar ∪ L(V ar) ∪ {L(pc)}) → Z is an environment
mapping all program variables and label variables to values.
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q1,p1 q2,p2 q3,p3 q4,p4
q5,-

-,p5

q6,- q7,- q8,-
q9,p6

Fig. 4. Example of an execution trace pair

We use the following notation in conjunction with a program state q:

– pcq the extended program counter value of q;
– envq the environment of q;
– stmtq the statement at location pcq.

Definition 5. A program execution trace is a sequence of program states
q0 q1 q2 . . . qn, where qi is the result of executing stmtqi−1 in state qi−1. Given
two traces T1 = q0 q1 q2 . . . qn and T2 = p0 p1 p2 . . . pm of the same program P
with different high security input values, the set of trace pairs, denoted by ΣT1,T2

is a subset of T1 × T2 and is the union of three sets:

– {〈qi, pj〉} when pcqi = pcpj

– {〈qi,−〉} when for all p ∈ T2, pcqi �= pcp

– {〈−, pj〉} when for all q ∈ T1, pcpj �= pcq

Note that, for every q ∈ T1 there is exactly one trace pair involving q and possibly
one state from T2. A symmetric property holds true for all p ∈ T2.

Definition 6. Given a set ΣT1,T2 of trace pairs from traces T1 = q0 q1 q2 . . . qn

and T2 = p0 p1 p2 . . . pm, the stepwise ordering relation � ⊆ Σ×Σ is defined by
the following rules:

– if 〈qi, X〉 ∈ ΣT1,T2 and 〈qi+1, Y 〉 ∈ ΣT1,T2 then 〈qi, X〉 � 〈qi+1, Y 〉 iff X =
− or Y = − or X = pj for some j and Y = pj+1

– if 〈Z, pk〉 ∈ ΣT1,T2 and 〈W, pk+1〉 ∈ ΣT1,T2 then 〈Z, pk〉 � 〈W, pk+1〉 iff Z =
− or W = − or Z = ql for some l and W = ql+1

By the above definition, the following trace pairs (if they are valid pairs) are re-
lated by the stepwise relation: 〈qi, pj〉�〈qi+1,−〉, 〈qi,−〉�〈qi+1,−〉, 〈−, pj〉�
〈−, pj+1〉, 〈−, pj〉� 〈qi, pj+1〉.

Note that for every element σ of Σ, there are at most two successors
(corresponding to branch entry points), and at most two predecessors (corre-
sponding to merge points). Also, the structure imposed on Σ by � is a linear
sequence of trace pairs, interrupted by diverging regions where there are exactly
two parallel trace pair sequences. At every point (defined by starting with σ0,
and following �) there are one or two active trace pairs, up until the point where
(possibly) both traces halt. Figure 4 shows a typical trace pair.
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Definition 7. We define the following utility functions/relations:

1. succ(σ) = {σ′ ∈ Σ | σ � σ′}, (successor)
2. pred(σ) = {σ′ ∈ Σ | σ′ � σ}, (predecessor)
3. �+ = the transitive closure of �,
4. gcai(i, j) = the largest k such that σk �∗ σi and σk �∗ σj ,
5. lcdi(i, j) = the least k such that σi �∗ σk and σj �∗ σk,
6. gca(σi, σj) = σgcai(i,j) (greatest common ancestor),
7. lcd(σi, σj) = σlcdi(i,j) (least common descendant).
8. for any Σ′ ⊂ ΣT1,T2 , prefix closed(Σ′) = true if a) 〈q0, p0〉 ∈ Σ′, and b)
∀σ ∈ Σ′ − {〈q0, p0〉}, pred(σ) ⊂ Σ′

Note that the set of trace pairs ΣT1,T2 , satisfies the prefix closed relation, and
so does the singleton trace pair {〈q0, p0〉}.

Lemma 1. Given two traces T1 and T2 of a transformed program P ∗ with inputs
that differ only on high security values, and with trace-pair set Σ, then exactly
one of the following properties holds true for every σ ∈ Σ (depending on the
form of σ):

(a) if σ = 〈qi, pj〉 then ∀x ∈ V ar,
envqi(x) �= envpj (x) ⇒ [envqi(L(x)) = envpj (L(x)) = 1]

(b) if σ = 〈qi,−〉 then envqi(L(pc)) = 1
(c) if σ = 〈−, pj〉 then envpj (L(pc)) = 1

The intuition behind this lemma is as follows. Since the two traces are executing
the same code with identical initial values except for one or more high security
variables, any divergence in values of variables must be due either to a direct
flow from one of the high security variables, or an indirect flow. In the case
of a direct flow, the transformation rules for assignment will update the label
variables so that the flow is noted by a true-valued label variable. In the case
of an indirect flow, the two execution traces must diverge. At the first point of
divergence, env(L(pc)) will be set to true, and it will remain true until the point
where the two traces converge (which might never happen).

Proof. By induction over the size of sets satisfying the prefix closed relation.

Base: For sets of size one, the only element is 〈q0, p0〉, which is the initial state
of every 〈Σ, �〉 structure and is the start state, where pcq0 = pcp0 , and envq0

agrees with envp0 on all low security input values. For all the high security input
values that may differ in the two traces, as all their label variables are initialized
to 1, branch (a) of lemma 1 is trivially satisfied.
Induction Hypothesis: Assume that for all sets Σ′ of size n that satisfy
prefix closed(Σ′), for all σ ∈ Σ′, σ satisfies Lemma 1.

Step: pick any σ /∈ Σ′, such that all its immediate predecessors are in Σ′

(pred(σ) ∩ Σ′ = pred(σ)). σ either has the form (Case 1) 〈qi, pj〉, or (Case 2)
〈qi,−〉, or (Case 3) 〈−, pj〉.
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Case 1: σ = 〈qi, pj〉. Consider pred(σ).
Either (Case 1.1) pred(σ) = {〈qi−1, pj−1〉}, or (Case 1.2) pred(σ) = { 〈qi−1,−〉,
〈−, pj−1〉}.

Case 1.1: σ = 〈qi, pj〉 and pred(σ) = {〈qi−1, pj−1〉}.
By the induction hypothesis, 〈qi−1, pj−1〉 satisfies Lemma 1(a). Consider the
form of stmtqi−1(= stmtpj−1). If stmtqi−1 is not an assignment statement, then
the env is the same in both σ and pred(σ), so σ satisfies Lemma 1(a).

If stmtqi−1 is an assignment statement, then it must have the form x := e;.
If envqi(x) = envpj (x), then σ satisfies Lemma 1(a). If envqi(x) �= envpj (x),
then we know that there was some y ∈ e such that If envqi−1(y) �= envpj−1(y).
By the induction hypothesis, envqi−1(L(y)) = envpj−1(L(y)) = 1. By the trans-
formation rule for the assignment statement, we know that L(x) is assigned
L(pc) ∨ (∨y∈eL(y)). This will result in env(L(x)) = 1 in both qi−1 and pj−1. In
all cases, σ satisfies Lemma 1(a).

Case 1.2: σ = 〈qi, pj〉. and pred(σ) = {〈qi−1,−〉, 〈−, pj−1〉}.
In this case, stmtqi must be the exit from a while or if statement. Let 〈ql, pm〉 =
gca(〈qi−1,−〉, 〈−, pj−1〉). By the induction hypothesis, 〈ql, pm〉 satisfies
Lemma 1(a). Also, by the induction hypothesis, in each state along the path
from 〈ql, pm〉 to qi satisfies Lemma 1(b), and each state along the path from
〈ql, pm〉 to to pj satisfies Lemma 1(c) (i.e., env(L(pc)) is 1 along these paths).
Because of the latter two facts, we show that for any variable x, env(L(x)) can
only go from 0 to 1 along either path (it can never become 0 from 1).

Pick any x ∈ V ar, by the induction hypothesis, if envql
(x) �= envpm(x), then

envql
(L(x)) = envpm(L(x)) = 1, and if x is not assigned anywhere between

〈ql, pm〉 to 〈qi, pj〉, then the same value of x and L(x) will propagate to 〈qi, pj〉,
so 〈qi, pj〉 will satisfy envqi(x) �= envpj (x) ⇒ envqi(L(x)) = envpj (L(x)) = 1.
The same is true if envql

(x) = envpm(x), and x is assigned to along both paths
(since env(L(x)) will become 1 as env(L(pc)) = 1 at the point of assignment
until the merge).

The only remaining case is where envql
(x) �= envpm(x), and x is assigned to

along on one path (without loss of generality assume it is the path from ql to
qi), and x is not assigned to along the other path (pm to pj). There are two ways
this could happen: a) execution flow follows two different paths of an if or b)
execution flow passes once through a while loop on ql . . . qi but not on pm . . . pj .

In both these cases, there will be implicit flows from all the variables in the
condition plus L(pc) to L(x) along the path where x is not modified (pm . . . pj).
Since, env(L(pc)) = 1, env(L(x)) will become one, (by the transformation
rules for assignment) and envpj (L(x)) = 1. The final result is that in 〈qi, pj〉,
envqi(x) �= envpj (x) ⇒ envqi(L(x)) = envpj (L(x)) = 1.

In every possible sub-case of case 1.2, for any x ∈ V ar, envqi(x) �= envpj (x) ⇒
envqi(L(x)) = envpj (L(x)) = 1, hence 〈qi, pj〉 satisfies Lemma 1(a).

Case 2: σ = 〈qi,−〉.
Consider pred(σ). Either (Case 2.1) pred(σ)={〈qi−1,−〉}, or (Case 2.2) pred(σ)=
{〈qi−1, pj〉}.
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Case 2.1: σ = 〈qi,−〉 and pred(σ) = {〈qi−1,−〉}.
By the induction hypothesis, envqi−1(L(pc)) = 1. Consider If qi−1 is not the
exit from (i.e., last state in the execution of) an if or while, then env(L(pc)) is
preserved in qi, and σ satisfies Lemma 1(b). If qi−1 is the exit from an if or while,
then stmtqi−1 must be embedded within an enclosing if or while (otherwise, the
second trace would reach the same extended program counter location and σ
would have the form 〈qi, pj+1〉. In the latter case, env(L(pc)) will still be 1 when
the if or while exits according to the transformation rules. So, in both cases, σ
satisfies Lemma 1(b).

Case 2.2: σ = 〈qi,−〉 and pred(σ) = {〈qi−1, pj〉}.
In this case, pred(σ) must be the beginning of an if or while with two successors
(due to trace divergence). That means that the expression e used to determine
the branch outcome evaluated differently in qi−1 and pj−1, which must be due
to some set of variables X whose values differ in envqi−1 and envpj−1 . By the
induction hypothesis, for each x ∈ X , L(x) evaluates to 1 in both envqi−1 and
envpj−1 . According to the transformation rules, L(pc) will be bound in envqi to
the result of or-ing the L(x) values together (along with some other values), so
the result will be envqi(L(pc)) = 1. Hence σ satisfies Lemma 1(b).

Case 3: σ = 〈−, pj〉.
By an argument symmetric to Case 2, σ satisfies Lemma 1(c).

Conclusion: In all cases, Lemma 1 is satisfied. By induction, all σ ∈ Σ
reachable by traversing � from 〈q0, p0〉 satisfy Lemma 1.

Theorem 2. The transformation →Γ,Ψ respects non-interference, i.e., if the
program P has two traces that differ on assignments to low security variables
(thus causing differing observable outputs) when only high security input val-
ues differ in the program, then the transformed program P ∗ exits before such an
assignment occurs.

Proof. Consider the differing assignment statement. Depending on whether the
assignment to the low security variable happened in both traces, two cases are
possible.

Case a) The assignment happens on both the traces with different values
assigned to the low security variable x(say). In this case, the trace pair is of
the form 〈qi, pj〉 which satisfies Lemma 1(a), since the values assigned to x are
different, then envqi(L(x)) = envpj (L(x)) = 1 before the assignment, and the
policy check procedure inserted before the assignment halts on inspecting this
value of L(x).

Case b) The assignment happens in only one trace. In this case, the trace
pair is of the form 〈qi,−〉 or 〈−, pj〉. envqi(L(pc)) = envpj (L(pc)) = 1 by Lemma
1(b) ( or by Lemma 1(c)). Hence by the transformation rule for the assignment
statement, for the variable x that is assigned, envqi(L(x)) and envpj (L(x)) will
become 1. The policy check procedure will halt the execution in a similar fashion.
Hence the proof.
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4 Practical Issues in Runtime Information Flow
Enforcement

Any approach for dealing with information flow must deal with several practical
issues involved with general purpose programs. We discuss the key issues related
to static analysis for the transformation, optimizations, variable aliasing, and
information declassification in this section.

4.1 Static Analysis for Transformation

Our transformation is parameterized by a static analysis that can compute the
set of variables Upd(S) that are updated in a compound statement S. For state-
ments that do not involve procedural calls, this analysis can simply collect all
the LHS variables of assignments in the compound statement S and return the
results as Upd(S). When procedural calls are involved, an inter-procedural side
effect analysis is needed to compute Upd(S). Many such analysis algorithms (e.g.
[9]) are found in the literature.

The precision of the static analysis for computing update sets will affect the
precision of runtime monitoring of the transformed program. When such a static
analysis is imprecise and conservative, the variables that never get assigned in
the statement S may be included in Upd(S). Updating the label variable of such
a variable with L(pc) can lead to false alarms on information leaks because the
implicit flows from the branch condition in S to the variable in question actually
do not present in the program. We note that our approach is conservative yet
sound in these cases and will not fail to detect the actual information leaks
happened in the program.

4.2 Optimizations

The transformation presented in Section 2 was kept simple, avoiding all possible
optimizations, for the sake of readability and clarity. In this section, we discuss
techniques to optimize the performance of the run-time approach.

– Optimizations to transformation rules (if-then-else and while). We
first note that the transformation for the if-then-else and while statements
include updates to all the variables in the update set (denoted in the figure
as Upd(S1) ∪ Upd(S2)), Note that it adds updates to label variables after
executing either branch. This is clearly redundant, as we need to only update
the label variables corresponding to the branch not taken (to account for
implicit flows). This simple optimization reduces the number of instructions
added for tracking implicit flows directly to one half of the original number.
A similar optimization can be done for the while statement to reduce the
number of instructions needed to track implicit flows.

– Optimizations based on information type inference results.As noted
earlier in the introduction, we note that our approach can be used to maintain
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safe information flows when the static type analysis checks do not declare the
program as safe. We can leverage on the results of such as type analysis to
further optimize the number of instructions added for runtime tracking. We
can first use static information flow analysis/inference to propagate the sen-
sitive types (only the high values) across the program. This propagation of
sensitive types will result in partitioning the set of program variables into two
pools: the sensitive pool, that denote potentially sensitive variables, and the
non-sensitive pool, that denote variables that do not receive sensitive infor-
mation. A key insight here is that variables from the non-sensitive pool do not
ever receive sensitive information throughout their lifetime in any execution of
the program. Hence runtime tracking is unnecessary for these variables. With
this information, label variables are not added for these variables, and no up-
dates are made (either for implicit or explicit flows) for these variables. This
second step further reduces the number of instructions added to the original
program. In addition, if the program counter label L(pc) is ever augmented
with this label variable (if the original variable is used in a condition), then
this update to L(pc) need not be performed at all. This will also mean that
L(pc) does not require to be saved and restored before and after the body of
this statement.

– Use of standard compiler optimizations for eliminating dead as-
signments to label variables. Modern compilers have several intra-
procedural optimizations that are built-in. These assignments optimize the
original program code. We note that when such optimizations happen, the
same optimizations can also be performed on the corresponding label vari-
ables, thereby reducing the number of additional instructions to the original
program. For instance, every dead assignment in the original program has
a corresponding dead label variable assignment and this can be eliminated.
This can be performed by a standard compiler that supports live variable
analysis followed by dead assignment elimination of the program, resulting
in code that is further optimized on label assignments. In a similar fash-
ion, other compiler optimizations such as copy propagation, constant folding
and loop optimizations can be applied to label variables as well, resulting in
reducing the number of such label assignments.

Analysis of the number of additional instructions introduced due to the trans-
formation. We now briefly discuss the additional number of instructions (label
variable updates) introduced by the transformation. The transformation intro-
duces label assignments for two cases (i) explicit flows and (ii) implicit flows. In
the case of explicit flows, there is exactly one assignment for each assignment to
a program variable. For the case of implicit flows, it may seem as if the number
of added assignments is equal to the number of branch assignment statements
in both branches. However, this is not true. The transformation adds only one
assignment for every updated variable in the branch not taken. Hence the num-
ber of added label assignments is bounded by the number of unique variables
updated in both branches. The effect of the above optimizations due to results
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from the type analysis and standard compiler optimizations reduces the number
of such label variable assignments even further.

4.3 Handling Aliasing

An alias of a variable refers to the same storage location of the variable through
a different name. Writes to the storage location through an alias variable will
affect the accesses through all other aliases. Variable aliasing is common in mod-
ern program languages such as Java and C++. An alias to a variable can be
generated by creating a pointer or reference to the variable (e.g. by passing an
object to another method in Java, or by using the reference operator & in C++).

In order to correctly track how the sensitive information flows in a program in
the presence of aliasing, our transformation should ensure that the label variables
of the aliased variables are also similarly aliased each other. However, it is rather
difficult to synchronize such an aliasing relationship of label variables with that
of program variables.

To solve this problem, we can use a pointer alias analysis (e.g. [33,11]) to
partition variables in a program into different sets, each of which contains only
the variables that are aliased each other. We then assign one single label variable
to each of such variable sets in the transformed program. This ensures that the
label variable for each set of aliased variables gets updated properly for both
explicit and implicit information flows into these variables.

4.4 Declassification

Declassification of information is required to downgrade sensitive information
intentionally to a low security value, when dictated by certain situations. A
classic example is a password program that accepts input (low) from a user,
and compares it to the stored (high) password. Such comparison is bound to
leak information, such leaks are generally considered acceptable for programs
that have to deal with disclosure of such small amounts of sensitive information.
Recent works in information flow analysis have looked at issues in safe uses of
such declassifications [19,17].

Declassification can be introduced either as part of the original language
through a special declassify operator, or as external specifications to the pro-
gram. The declassify operator takes an expression as parameter. The use of
an operator needs changes to the compiler framework for the language, as well
as changes to existing programs, while making the intent explicit in the source
code. The use of an external specification does not require both, but may have
readability issues for someone reading the program. Regardless of how the declas-
sification is specified, it is provided as input to our transformation framework,
and associated static analysis mechanisms.

The process of tracking flows with the presence of declassification is straight-
forward. On the instance of a declassify operator, say, the label value arising
out of the expression that is declassified is set to false. This has the net effect of
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downgrading, and no additional changes to the transformation rules are neces-
sary. On the other hand, static analysis mechanism used may benefit from such
specifications. As described earlier, they may possibly eliminate any variables
assigned out of such declassified expressions from the update sets.

5 Related Work

Approaches addressing the information flow problem broadly fall into three cat-
egories: runtime analysis approaches, static analysis approaches, and theorem
proving based approaches.

Runtime analysis approaches. Early work on protecting confidentiality of
data involved the use of runtime monitoring. This was mainly started with the
development of mandatory access control model in the context of multi-level
security by Bell and LaPadula [5]. Subsequent models, such as Fenton [13], fol-
lowed this approach in the context of programs, in which the sensitivity of the
output of a computation was calculated along with the computation. However,
this approach fails to protect implicit flows due to paths that are not taken. Since
then, most approaches started focusing on using static analysis techniques.

The scripting language Perl has a taint mode [32] that tracks data that arrives
from untrusted sources (such as the network). Perl also supports implicit down-
grading data from “tainted” to “untainted” through pattern matching. However,
Perl does not track implicit flows. Recently, several taint mechanisms have ap-
peared in the context of protecting system integrity [22,8,26,6] Similar to Perl,
none of these mechanisms handle implicit flows. The taint mechanism described
in [34] has some limited support for implicit flow. However, there are no guar-
antees about non-interference properties.

Static analysis checks have been considered out of EM enforcement mecha-
nisms [25]. While EM-enforceable properties are those over traces, information
flow properties are not EM- enforceable, as they are properties of trace sets[30].
Hence, a purely runtime mechanism will not be able to enforce information flow
policies. In this paper, we augment the execution trace with information about
other possible executions that relate to the current execution. By doing this, we
gain the ability to enforce information flow policies on programs.

Two other works use dynamic approaches in the context of the information
flow analysis problem to address some of the limitations that were discussed in
the introduction. The first is due to Zheng et al [35], which provides support for
dynamically providing the values of labels for data items (such as a file whose
access permission is not known). The second work by Tse et al [28] provides
similar support for unknown principals (that are only available at runtime) that
interact with the system. In both these works, the use of dynamic techniques
is to expand the scope of the static analysis based policy enforcement mecha-
nism. However, they still do not support programs that may occasionally leak
information such as the crash example discussed in the introduction.

Guernic and Jensen [15] have independently developed a similar approach that
provides non-interferences guarantees based on a single run of a program. They
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present their approach through an operational semantics, but do not provide a
proof. Our work [29] precedes their work.

Static analysis approaches. Various static analysis based approaches have
been used for information flow analysis. (We only discuss most representative
work here, a detailed survey article on various language based techniques for
tracking information flow is available [24]).

Denning’s approach [12] based on program certification was the first work that
used an augmented compiler to track information flows. Andrews and Reitman
[1] used an extended axiomatic logic with the secure flow certification of Denning.
The work of Volpano et al [31], is based on the use of type-analysis for detecting
information flows, and the approach is provably secure in handling implicit flows.

Myers presents a decentralized label model [21] for information flow where the
owner specifies the access rights of data owned by her and the language, Jif, uses
a type-analysis combined with runtime checks to detect illegal flows [20]. This is
the first work that addressed the problem of information flow in a real program-
ming language realm. Flow Caml [23], developed by Simonet and Pottier, is also
a high-level, realistic programming language aiming at support information-flow
controls. More recently, a certifying compiler for information flow policies was
described in Barthe [4]. Banerjee and Naumann [2] connect information-flow
policies and stack inspection (an access control mechanism) for static checking
of information flow policies in a Java-like language. Mclean [18] presents a spec-
ification of a program using trace semantics and develops a systematic theory to
enable reasoning about non-interference for such specifications.

As we pointed out in the introduction, static analysis based approaches have
drawbacks that may result in rejection of safe programs. Information leaks in
certain unusual cases are common in many useful programs. Static analysis based
approaches will reject such programs, while our runtime analysis based approach
will permit the execution of such programs and halt them only when the actual
information leak happens.

Theorem proving based approaches. Precise characterization of informa-
tion flow is inherently an undecidable problem. Static analysis based mechanisms
guarantee termination by providing a sound solution to the problem, with the
possibility of rejecting safe programs. The approach taken originally in Joshi et
al [16], and more recently by Darvas et al [10] and Barthe et al [3] use theorem
proving as a technique to make improve the precision of static analysis. This is
done by characterizing information flow as a safety problem (using a technique
called self-composition, summarized in a formulation by [27]) and using theorem
proving technology to certify programs as safe. Theorem proving certainly has
the ability to provide more precise results. However, in the case of all theorem
proving techniques, there is a risk of non-termination as exemplified by a simple
example discussed in [27]. Static analysis mechanisms, by definition, always ter-
minate. Our focus in this work is to occupy a position that is midway between
static analysis and theorem proving. We try to support execution of programs
that are rejected by static analysis by improving precision, and also by providing
a transformation approach that always terminates.
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6 Conclusion

As we have shown, runtime detection of implicit information flows are possi-
ble when information from a simple static analysis are combined with program
instrumentation which performs runtime flow tracking. Furthermore, we have es-
tablished the soundness of such an approach with respect to the non-interference
property. The contributions of this paper is mainly theoretical in nature. In fu-
ture work, we plan to implement this technique and evaluate its effectiveness
and performance in practice.

Although the presented approach ensures confidentiality of secure data, it
can easily be changed to ensure integrity as well. In this case, the objective is
to prevent the flow of information from untrusted variables to trusted ones. The
primary change that is required is in the initial labeling of variables; otherwise,
the propagation rules for labels are similar.
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Abstract. Self-modifying codes (SMC) refer to programs that inten-
tionally modify themselves at runtime, causing the runtime code to dif-
fer from the static binary representation of the code before execution.
Hence SMC is an effective method to obstruct software disassembling.
This paper presents a method which circumvents the SMC protection,
thus improving the performance of disassembling. By disabling the write
privilege to the code section, an access violation exception occurs when
an SMC attempts to execute. Intercepting this exception allows the at-
tacker to determine and thus compromise the SMC and generate equiv-
alent static code. Our experiments demonstrate that it is viable and
efficient.

1 Introduction

Currently, most commercial software (e.g., MicrosoftTM Office, AdobeTM Ac-
robat) are distributed in binary form to protect the software implementation,
particularly mechanisms preventing unauthorized distribution of the software.
However, attackers are able to reverse engineer the code in order to analyze and
circumvent these protection schemes. For example, the encryption mechanism
in Microsoft’s Windows Media Player was cracked [1] by reverse engineering,
allowing access to protected content in unauthorized environments. Such reverse
engineering is heavily dependent on the use of disassembling techniques.

1.1 Disassembly Technology

Disassembling aims to produce a higher-level representation of a program to
enable comprehension and possible modification to the software. A disassembler
enables a cracker to easily translate binary code into human-readable code. For
instance, IDAPro [2] translates a binary code into assembly code while RelogixTM

[3] further converts an assembly source into readable, structured, commented C
source - in a truly natural C style.

Disassembly methods can be distinguished as either static or dynamic disas-
sembly. Static techniques, including linear sweep and recursive traversal, analyze
the binary structure statically, parsing the instructions as they are found in the
binary image.

Linear sweeping (e.g. objdump [4]) scans the static code from start to end,
and decodes the instructions sequentially. Therefore linear sweep disassemblers
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are easy to implement but prone to errors resulting from data bytes that have
been interleaved with the code bytes, misleading the disassembler.

Recursive traversal (e.g., IDApro [2], and [5]) follows the control flow of the
program, thus avoiding incorrect disassembly of data bytes. However, certain
code sections may not be part of the control flow, particularly if the target
address is produced in real time (e.g., pointer functions). Hence, the recursive
disassembler will not reach and disassemble these regions. To overcome this
weakness, a linear sweep algorithm is typically used to analyze these sections.

Dynamic techniques (e.g., rordbg [6]) create a debug environment to run the
application. By monitoring the program’s execution, a dynamic disassembler is
able to identify the executed instructions and recover a disassembled version of
the binary. Nonetheless, dynamic techniques have several weaknesses: (1) they
only operate on the instructions that were executed in a particular set of runs.
Therefore, only partial codes are disassembled; (2) program execution in a debug
environment is slow and vulnerable to time-sensitive codes; (3) some instructions
(e.g., exception handling) can not be analyzed correctly.

1.2 Protection Method

As it is believed to be impossible to completely prevent software cracking, soft-
ware protection methods aim to make it sufficiently hard to understand the struc-
ture of a program. Hence, it is a practical challenge to protect the software from
analysis and tampering to protect the proprietary algorithms and/or security
critical codes. Presently, obfuscation, integrity verification and self-modifying
codes (SMC) are the major anti-disassembly means.

Obfuscation technology [7] converts an original software into an equivalent
form that crackers cannot easily understand. There are several software obfus-
cation methods such as fingerprinting [8], instruction occurrence [9], instruction
re-ordering [10] and class transform [11]. Particularly, in [12], with a one-way
tamper-proof permutation, a point-function/boolean function such as password
checking is obfuscated. These obfuscation technologies produce obfuscated soft-
ware that is equivalent to the original software for all input. Nonetheless, based
on control flow graph information and statistical methods, Kruegel et al. [13]
presented binary analysis techniques which can identify a large fraction of the
program’s instructions. These analysis techniques substantially improve the suc-
cess of the disassembly process when confronted with obfuscated binaries.

Integrity protection methods [14][15] verify the code in real-time so as to
prevent a tampered software from successfully running. Unfortunately, a substi-
tution attack [16] [17] is applicable to all the integrity protections by modifying
the underlying operating system. Although Giffin et al. [18] strengthened the
checksum method with SMC code, they acknowledge that their improvement is
vulnerable improvements in substitution attacks. Although control-flow integrity
[19] is a way to enforce security, it is also naturally vulnerable to substitution
attacks.

As a third protection method, SMC technology [21] alters software codes at
the target addresses to produce the dynamic codes. As a special case of SMC,
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code encryption [22] - [25] scrambles the software, protecting the software from
disassembling/tampering. Since the dynamic code generated by SMC technol-
ogy is unknown in advance, a static disassembler cannot output a good assem-
bly code. Thus it is difficult for the cracker to analyze and tamper the SMC-
protected binary. Maebe et al. [26] has previously proposed to detect memory
pages where SMCs occur utilizing the page protection mechanism of modern
processors. However their implementation works for code run by a just-in-time
compiler in a Linux environment, and hence reduces the performance of target
software dramatically.

1.3 Our Contribution

Since the SMC-enabled static code structure is different from the dynamic code,
the disassembled code may be incorrect if a static disassembler is used to ana-
lyze the static binary file. In order to produce a correct disassembly, the static
disassembler should have access to static code which is the same as the runtime
code. To this end, we remove the SMC protection using an exception mechanism
that may occur during the execution of a Windows program. The attack disables
the code modification attribute, triggering access violation exceptions each time
a code modification is attempted. By intercepting the exception, we can obtain
the modification’s target address and codes, allowing us to perform the code
modification. As a result, we can produce a static representation of the runtime
code, in effect enhancing a static disassembler with some functions of a dynamic
disassembler.

The outline of the present paper is as follows. Section 2 introduces the struc-
ture of the executable file and its mapping in the memory. Section 3 introduces
SMC technology. Section 4 elaborates our proposal of removing the SMC. Sec-
tion 5 proposes two implementations. Section 6 describes our experiments and
results. We conclude in Section 7.

2 Primitives

In this paper, we denote [X ] as the value stored in the address X and Yh as the
value Y in hexadecimal.

2.1 PE Structure

The Portable Executable (PE) format [27] is a standard format under Microsoft
Windows operating system. As a flat space structure, a PE-format executable
is segmented into sections. Each section is a continuous structure of unlimited
size but aligned along page1 boundaries. The PE header includes important in-
formation such as the address of the program entry point and the code section
starting address. Each section header includes section attributes, e.g., READ

1 A page is a continuous space of fixed size. For example, in Microsoft Windows XP,
a page is of 4K bytes in memory and 200 bytes in file.
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(40000000h), WRITE (80000000h), EXECUTE (20000000h).When a PE file is
loaded into memory by a program loader, it is mapped into a real-time ex-
ecutable format. The structure in the memory is shown in Fig.1, where the
sections are

– .text: codes generated by the compiler or assembler.
– .rdata: read-only data in run time.
– .data: initialization data.
– .idata: import table which includes other DLL (Dynamic Link Library) func-

tions and re-localization information.
– .rsrc: resource data such as icons, menus, bitmaps etc.

 

DOS Header  

PE  Header  

Section Table  

.text section  

.data  section  

Other  section s 

Unmapped   

DOS Header  

PE  Header  

Section Table  

.data  section  

.text  section  

Other  section s 

PE file  in disk  

In memory  

Header 0  Imageb ase 

VA( Virtual 
Address ) 

RVA  

Fig. 1. PE file structure and mapping in memory

With regard to Fig.1, each section in the memory maps to one section in the
file. Suppose the base address of code section is Bf in the file and Bm in memory,
then for any memory address Am, its disk file location Af is

Af = Bf + (Am −Bm) (1)

in the specific section. For the Microsoft Windows platform, the default base
address is Bm = 400000h for the code section.
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2.2 try-except Mechanism

The try-except statement is a Microsoft extension to the C and C++ lan-
guages. It is a structured exception handler enabling 32-bit target applications
to gain control when there are events that would normally terminate program
execution. Such events are called exceptions which can be either hardware-based
(e.g., access violation) or software-based (e.g., throw command). Exception han-
dlers which process these exceptions as they occur are declared in the syntax
shown in Fig.2, where the clause set S1 is the body or guarded section where an
exception might occur, and clause set H1 is the exception handler.

try{
clause set S1

}
except(expression E1){

clause set H1

}
clause set S2

Fig. 2. try-except syntax

In the try-except mechanism, if no exception occurs during execution of the
guarded section S1 or its sub-routines, execution continues at the statement after
the except clause, i.e., S2. Otherwise, how the exception is handled is determined
by the evaluation of the except expression E1:

– EXCEPTION CONTINUE EXECUTION (-1): Exception is dismissed. Pro-
gram execution resumes at the point where the exception occurred.

– EXCEPTION CONTINUE SEARCH (0): Exception is not recognized. The
program searches up the stack for a valid exception handler, first for con-
taining try-except statements, then for the handler with the next highest
precedence. If none is found, a system warning may occur as shown in Fig.3.

– EXCEPTION EXECUTE HANDLER (1): Exception is recognized. Program
control is transferred to the exception handler and the instructions in H1 are
executed to handle the exception. Thereafter program execution continues
at S2.

3 Self-modifying Code

3.1 SMC Instruction Syntax

In the following sections, we will illustrate the instructions with the x86 assem-
bler language. For simplicity, we will focus on memory-write SMC instructions
such as

A1 : opCode [A2], src
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Fig. 3. Access Violation warning without a proper handler, where C0000005h identifies
the access violation exception

where opCode is the instruction code, A1 is the address of the instruction, A2
is the target address whose value will be changed by the SMC, and src is the
target code to be written to address A2. A list of possible SMC instructions is
given in the Appendix. In this paper, we will use SMC to refer to the instruction
which modifies the software code, and to refer to the whole code if there is no
ambiguity.

Fig.4 illustrates an example where an instruction at address A1 changes the
code at address A2 at run-time. Since the SMC modifies the code section, the
instruction bytes present in the original executable is different from the actual
instruction bytes executed at run-time.

 MOV  ax, 9090h  

A 1:   M OV  word ptr [ A 2], ax  

A 2:   JMP  do  

 

JMP  exit  

        … 

do:   …  

exit:  … 

 

MOV  ax, 9090h  

A 1:  M OV  word ptr [ A 2], ax  

A 2:  NOP  

       NOP  

JMP  exit  

        …  

do:   … 

exit:  … 

 

Fig. 4. Self-modifying code and its equivalent. The left side is the original program
code, while the right side is the actual run-time code. Both sides are equal in function,
where 90h means ”NOP”( no operation).
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3.2 Violation by SMC

To generate an executable, the compiler transforms source code (e.g., C/C++
code test1.cpp) into an object file (e.g., text1.obj). Following that, an exe-
cutable (e.g., test1.exe) is generated with a linker. If the executable code is
an SMC-enabled program without the required write permission, an access vio-
lation warning will occur as shown in Fig.5. Therefore, it is necessary to assign
WRITE privilege to the target address to allow the SMC instruction to execute
without exception.

Fig. 5. Access violation warning when attempting a write to a non-writable code sec-
tion in IDAPro environment, where A1 = 40103Fh and A2 = 401045h

3.3 Assigning WRITE Attribute

In the Windows system, there are two ways to assign the WRITE attribute to
the code in memory. One is to statically enable the whole code section to be
writable with a linker. For instance, to generate a binary executable test1.exe
from a text1.obj, perform

c>link /nologo /section.text, RWE test1.obj
where RWE means READ| WRITE| EXECUTE. The second way is to dy-
namically assign the WRITE attribute in real time with the API functions
VirtualProtect() or VirtualProtectEX(). Since the second way enables us to
change the WRITE attribute dynamically so as to deal with the access violation
exception, we will elaborate the second method in Section 5.

4 Disassembling SMC-Enabled Executable

According to the PE structure in Subsection 2.1, a software includes several sec-
tions which may be assigned different access attributes. While an SMC-enabled
software may modify the code section as well as the data section, it is possible
to differentiate data modification from code modification if we change the page
attributes to produce access violation exceptions. From the data structure of the
resulting exception, we are able to obtain the target address A2 and target codes
in an SMC-enabled code so as to disassemble the original software.

4.1 Wrapping Original Software

To obtain the target address of an SMC instruction, we control the execution
of the target program P. To this end, we produced a monitoring software M
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whose structure is as Fig.6, where the program entry point (i.e., the address of
the first executed instruction) of P is oldEntry. Hence, program M wraps up
the original program P such that the original program P is the guarded code of
try-except syntax in M.

Denote the entire program as MP which includes M and P. Then the program
entry point of MP is the program entry point of M. When MP executes, M will
call P with call oldEntry. Since program M and P are in the same address
space, M can access the data/code of P such as the target address A2 and value
SMC.

Merged program MP

Monitoring program M Original program P

try{
call OldEntry OldEntry:

}
...

except(E1){ A1 : opCode [A2], src (SMC)

exception handler H1
...

}

Fig. 6. Wrapping the original program

4.2 Locating the SMC Code

As SMCs essentially perform write operations to a location in memory, an access
violation will occur if the SMC attempts to write bytes to a non-writable address
A2. Therefore if an adversary alters the entire code section to be non-writable,
access violation exceptions will occur whenever SMCs in MP are executed. From
the exception structure, the adversary can obtain the address where the violation
occurs and thus the target address and code, defeating the SMC protection.
Specifically, after program MP is started,

1. Program control is transferred to the guarded section, i.e., the program entry
point oldEntry. Program P will execute normally until an exception occurs.

2. If the exception is handled by P itself, execution continues without control
being transferred to M.

3. Otherwise, exception handling is passed to M. If the exception that oc-
curred is an EXCEPTION ACCESS VIOLATION exception, M will record
the SMC that attempted to execute, perform the SMC, then allow P to
resume at the next instruction.

4.3 Disassembling Target Code

After locating the SMC codes, the adversary obtains a log file containing the
SMC codes that P attempted to execute and their address in memory. Based on
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the mapping rule between memory and file locations, the adversary can mod-
ify the executable file with Eq.(1) to generate an equivalent executable with
the modifications that would have been performed by the SMC. From this exe-
cutable, a disassembler such as IDAPro can obtain an accurate static disassembly.

5 Implementations

This section describes two implementations using the Windows XP platform
with C++ programming language. The first implementation wraps the target
software to form a merged program, while the second one debugs the target
software. Both methods are able to extract the necessary data: the target address
and target code of the SMC. The following Subsections 5.1-5.5 elaborate the first
implementation, and Subsection 5.6 describes the second implementation.

5.1 Creating Program M

As shown in Fig.7, program M includes two modules: filter(·) which deter-
mines the SMC and clearWR(·) which performs the SMC so that P executes
properly.

try{
call OldEntry

}
except(filter(GetExceptionInformation()){}

Fig. 7. Structure of program M

filter When an exception occurs, filter receives an exception structure
from the OS which includes the exception code, exception address A1, etc. If
the exception code is EXCEPTION ACCESS VIOLATION (C0000005h), the
filter routine will:

– Extract the SMC address A1 from the exception structure, and read several
(e.g., 128) code bytes starting from A1 into a string S.

– Parse S to obtain the SMC instruction according to Table 1.
– Assign the pages including [A1, A1 + n) with the WRITE attribute, where

n is the size of of the SMC instruction.
– Save S into a buffer B.
– Replace the bytes in address [A1, A1 + n) with instruction code “call

clearWR”, filling any excess bytes with NOP instructions.
– Return the value -1, instructing the program to resume execution at the

point where the exception occurred.

For all other exception codes, filter returns the value 0 to instruct the
program to continue searching up the stack for an appropriate handler. We
assume n is at least the size of the call instruction. If not, we can always parse
the instruction following the SMC and save that instruction to B as well.
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clearWR clearWR operates as follows.

– Obtain the SMC from the saved buffer B and re-write it back to its original
location

– Parse the SMC instruction. Assume the region [A2, A2 + m) will be written
by SMC, where m is the size of written region.

– Assign WRITE attribute to the pages that cover address region [A2, A2+m)
exactly.

– Execute the SMC code in the address space of M.
– Disable the WRITE attribute of all the pages that cover address region

[A1, A1 + n) ∪ [A2, A2 + m) exactly.
– Record A2 and the new bytes in the region [A2, A2 + m) into a log file.
– Return program control to P.

filter cannot perform the SMC directly since by the exception handling mech-
anism, program execution will either continue at where the exception occurred,
i.e., the SMC code, or after the except clause, i.e., the end of the program M.
Thus by inserting the instruction call clearWR at the address A1, clearWR
will be performed instead of the SMC after filter returns. Subsequently after
clearWR returns, the instruction pointer can move to the next instruction.

In clearWR, the SMC is restored to its original location so that program P
can be run correctly even if the SMC is included in an iterative structure or
protected by a checksum-like mechanism.

SMC   

except   

New Entry   

Enable
Writing   

try   

Save SMC    

Overwrite
SMC with    

call Clear WR   

Return  - 1   

Old Entry   

Recover
SMC   

Exec SMC   

Return    

Disable
writing   

1 2

3

4 5 67

8

f
i
l
t
e
r c
l
e
a
r
W
R

Fig. 8. Program control flow when an SMC occurs
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5.2 Designing Program Structure

As mentioned in Section 4, we modify the original program P such that the
monitoring program M can control P. We generate the new program structure
as Fig.7. When an exception handling is passed to M, the program control will
be passed to the exception filter, and GetExceptionInformation(.) returns the
exception structure. The new program control flow will occur as shown in Fig.8.

5.3 Modifying WRITE Attribute

In a protected software, there may be several SMC instructions randomly located
in the program P. In order to detect all the SMC instructions, an adversary
will remove the WRITE attribute of the code section, but assign the WRITE
attribute to the target address so that the program P runs correctly. To this
end, the adversary adopts the attribute assignment functions:

VirtualProtect(
lpAddress, // start address of pages
dwSize, // size of the region
flNewProtect, // desired access attribution
lpflOldProtect // address of variable to get old attribution

);
or
VirtualProtectEx(

hProcess, // handle to process
lpAddress, // start address of pages
dwSize, // size of region
flNewProtect, // desired access attribution
lpflOldProtect // address of variable to get old attribute

);
These two functions assign the attribute flNewProtect=EXECUTE READ

WRITE to pages including the specified address [lpAddress, lpAddress+dwSize).
For each access violation exception, we change the page that includes the

target address to be writable with one of the above instructions. As a result, the
SMC can be executed properly.

5.4 Integrating Codes

After producing the monitoring program M, the adversary merges it with the
original program P. The integrating process is as follows.

– Change the attribute of the code section of P to EXECUTE READ only.
– Add a new section with address rva which is beyond the address space of

P.
– Execute the linker command as

c>link /base:rva M
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– Copy the code section of the monitoring program M into the new blank
section.

– Change the program entry AddressofEntryPoint to that of the new pro-
gram M.

– Insert functions such as VirtualProtect, VirtualQuery and Raise-
Exception into the import table.

5.5 Detecting Craft Code

If the original program P uses the same method to enable SMC, the present
method may not work since access violation exceptions are handled by program
P itself. To overcome this weakness, we can detect the function VirtualProtect
from the import table, and change the attribute parameter flNewProtect back
to non-writable such that P will not respond to access violation exceptions.

Additionally, in the Subsection 4.3, we only considered cases that SMC re-
places dummy code in region [A2, A2+m). If the code in the region is useful, (i.e.,
the same address is used for two more instructions, for example encrypted code),
we should enable the disassembler to disassemble both the old code and the tar-
get code. That is to say, the present method can be extended to disassemble
encrypted codes.

5.6 Alternative Implementation

Following Section 4, the task of the monitoring program includes the steps: dis-
abling WRITE attribute of the SMC’s target address, intercepting the SMC
instruction, restoring the WRITE attribute, and finally executing SMC. Hence,
if we build a debugging environment such that SMC can be executed by Single-
Step, we are able to find the target address and target code too. Fig.9 illustrates
this debugger-like implementation. In this alternative implementation, the mon-
itor program T

(1) Disables the WRITE attribute of the code section of P, then loads and runs
P.

(2) Wait for an access violation from P. When an access violation exception
occurs, the exception handler in T will parse the SMC and obtain the target
address.

(3) Enable the WRITE attribute of the target address, and initiate SINGLE
STEP interruption.

(4) Execute SMC in Single-step mode, and activate single-step exception.
(5) Remove WRITE attribute of target address via the EXCEPTION SINGLE

STEP exception handler.
(6) Recode the target address and target code.

In comparison with the previous wrapper implementation, this method can
process the craft code in Subsection 5.5 by intercepting access violation excep-
tions before the program’s own exception handling routine. However, this method
takes more computation time since an EXCEPTION SINGLE STEP exception
and debugging operation are processed for each SMC execution.
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Start   
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Writing   
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Single  Step   
for SMC     
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Wait   for  
except   

Disable
writing   

Fig. 9. Debugger-like implementation

6 Experiments

6.1 Improvement on Disassembler

In this experiment, we create a sample binary executable and used the disas-
sembler IDAPro for test tool. Fig.10(a) is the disassembly code generated with
IDAPro directly. With the proposed method, the monitoring program outputs
the target address and target code in the SMC instructions, and records them.
After modifying the SMC-enabled code with the recorded data, we disassem-
ble the modified code with IDAPro.exe again, the new disassembly code is
shown in Fig.10(b). Clearly, the wrapper-assisted disassembler outputs a better
assembly code in case of SMC.

6.2 Time Overhead

In our scheme, since the exception of P is processed in the monitoring programM,
the run time of P will be increased. To evaluate the time cost, the freeware gzip
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.text:0040820A mov ds:byte 408221, 75h
...

.text:00408221 db 74h

.text:00408222 adc al, 83h

.text:00408224 sti

.text:00408225 add [esi+0Fh], edi

(a) Output of original disassembler.

.text:0040820A nop
...

.text:00408210 nop
...

.text:00408221 jnz short loc 408237

.text:00408223 cmp ebx, 1

.text:00408226 jle short loc 408237

(b) Output of enhanced disassembler.

Fig. 10. Output difference between original disassembler and enhanced disassembler.
After detecting and accounting for the code modification performed at A1 = 40820A,
we can obtain an accurate disassembly shown in (b).

Fig. 11. Overhead of Execution time. The lower, middle and upper curves describe
the time used in original gzip, wrapper-monitored gzip and debugger-monitored gzip
respectively.

package [28] is used as a tested sample. We inserted a number of SMC instructions
into the protected program gzip, and calculated the time taken to compress a
16MB collection of text files. Fig.11 shows the time cost with regard to the number
of SMC instructions executed. Generally, the time cost is only increased 10%, or
35μs per SMC instruction using a Pentium IV 2.2GHz system. Analysis can also
be restricted to a targeted code subsection by disabling the WRITE attribute only
for that subsection. Hence, the proposed scheme can detect the SMC easily with
little time cost. According to Fig.11, the debugger-like implementation consumes
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more time. In fact, this observation is sound since an extra interruption and single-
step exception are executed for each SMC in a debug environment.

7 Conclusion and Future Work

SMC changes the software in real-time such that the dynamic code is different
from the static code, and hence provides an effective way to defeat static disas-
sembler. However, if a monitoring program identifies the target address of the
SMC codes and replaces the bytes in the target addresses with target bytes, it
will produce a corrected static code which is identical to dynamic code. This
paper presents a method which employs exception mechanism, and implements
the method in two implementations. Our experiments demonstrate that the pro-
posed method is effective in defeating SMC protection.

The program can counter this attack by regularly enabling the write privilege
for its code section using methods other than the functions mentioned in Sub-
section 5.3, though this would require additional execution time. However, we
should be able to determine these methods and devise similar counters.
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A SMC Instructions

Table 1 lists possible SMC instructions where A2 and/or src may be stated
implicitly in some instructions.
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Table 1. SMC instructions

Instruction opCode semantics size
ADD(ADC) mem, reg 01(11) /r Add (with CF) r32 to r/m32 6
ADD mem, imm 81 /0(2) id Add (with CF) imm32 to r/m32 10
SUB mem, reg 29 /r Subtract r32 from r/m32 6
SUB mem, imm 81 /5 id Subtract imm32 from r/m32 10
DEC(INC) mem FF /1(0) Decrement(increment) r/m32 6
AND mem, reg 21 /r AND r32 to r/m32 6
AND mem, imm 81 /4 id AND imm32 to r/m32 10
OR(XOR) mem, reg 09(31) /r OR(XOR) r32 to r/m32 6
OR(XOR) mem, imm 81 /1(6) id OR(XOR) imm32 to r/m32 10
NEG mem F7 /3 2’s complement negate r/m32 6
NOT mem F7 /2 Reverse each bit of r/m32 6
POP mem 8F /0 Pop stack into mem32 6
MOV mem, reg 89 /r Move r32 to r/m32 6
MOV mem, imm C7 /0 Move imm32 to r/m32 10
MOV mem16, segreg 8C /r Move segment reg to r/m16 2
MOVS/ /B/W/D A4(5) Move from DS:ESI to ES:EDI 1
STOS mem AB Store EAX at ES:EDI 1
XADD mem, reg 0F C1 /r Exchange r32 and r/m32 7

Store sum in r/m32
XCHG mem, reg 87 /r Exchange r32 with r/m32 6
RCL(RCR) mem, imm8 C1 /2(3) ib Rotate(CF) left(right) imm8 times 7
RCL(RCR) mem, CL D3 /2(3) Rotate(CF) left(right) imm8 times 6
ROL(ROR) mem, imm8 C1 /0(1) Rotate left(right) imm8 times 7
ROL(ROR) mem, CL D3 /0(1) Rotate left(right) imm8 times 6
SHL(SHR) mem, imm8 C1 /4(5) Mult(div) by 2, imm8 times 7
SHL(SHR) mem, CL D3 /4(5) Mult(div) by 2, imm8 times 6
SAL/SAR mem, imm8 C1 /4(7) Signed mult(div) by 2, imm8 times 7
SAL/SAR mem, CL D3 /4(7) Signed mult(div) by 2, imm8 times 6
SHLD(SHRD) mem, reg, CL 0F A5(D) Shift r/m32 CL places left(right) 7

and shift bits in from r32
SHLD(SHRD) mem, reg, imm8 0F A4(C) Shift r/m32 imm8 places left(right) 7

and shift bits in from r32



P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 369 – 378, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Modular Behavior Profiles in Systems with Shared 
Libraries (Short Paper) 

Carla Marceau and Matt Stillerman 

ATC-NY, 33 Thornwood Drive, Ithaca NY 14850, USA 
{carla, matt}@atc-nycorp.com 

Abstract. Modern computing environments depend on extensive shared 
libraries.  In this paper, we propose monitoring the calls between those libraries 
as a new source of data for host-based anomaly detection.  That is, we 
characterize an application by its use of shared library functions and 
characterize each shared library function by its use of (lower-level) shared 
libraries.  This approach to intrusion detection offers significant benefits, 
especially in systems such as Windows, much of which is implemented above 
the kernel as dynamically linked libraries (DLLs).  It localizes anomalies to 
particular code modules, facilitating anomaly analysis and assessment and 
discouraging mimicry attacks.  It reduces retraining after system updates and 
enables training concurrent with detection.  The proposed approach can be used 
with various techniques for modeling call sequences, including N-grams, 
automata, and techniques that consider parameter values.  To demonstrate its 
potential, we have studied how a DLL-level profiling IDS would detect two 
recent attacks on Windows systems. 

Keywords: Anomaly detection, intrusion detection, behavior profile, shared 
libraries, dynamic link libraries. 

1   Introduction 

After ten years of research on host-based anomaly detection systems, anomaly 
detection is still a remote dream for applications that run on most desk-top systems.  
One reason for this is that modern applications, especially Windows applications, are 
huge and exhibit a very wide range of behaviors; as the set of legitimate behaviors 
grows, the probability of false negatives increases, as does the time needed to train a 
behavior profile.  This problem is exacerbated by mimicry attacks [1], which imitate 
normal application behavior as seen by a given detector in order to defeat that 
detector.  Second, as applications grow, training the anomaly detector takes longer.  
Worse, Windows systems are subject to frequent patches and updates, any one of 
which can invalidate the current behavior profile of an application and provoke 
retraining.  Third, anomaly detectors indicate that something might be wrong, but they 
typically provide very little information for anomaly assessment and response.  In 
particular, they cannot localize the anomaly to a specific program module, which 
might provide further information for assessment.  For these reasons, most current 
approaches to application anomaly detection are unlikely to succeed for Windows 
applications. 
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In this paper, we propose a novel approach to application anomaly detection that 
addresses these difficulties.  The basic idea is to exploit the use of shared libraries by 
applications to create profiles for the exported functions of each shared library.  We 
model the behavior of the application by its calls to DLLs and the behavior of each 
DLL function by its calls to other DLLs.  The result is a localized profile of each 
module (application binary or DLL).  Figure 1 schematically represents this key idea.  
In the system of Figure 1, Application 1 is characterized by its calls to Kernel32.dll, 
AAA.dll, and BBB.dll.  BBB.dll is characterized by its calls to CCC.dll, kernel32.dll, 
and DDD.dll. 

It might seem that the use of shared libraries is too limited to profile applications.  
However, modern computing systems include extensive shared libraries that 
implement GUI components, display pictures, enable access to networks and 
databases, manage mail and other higher level protocols, and provide other reusable 
functionality.  Much of the Windows operating system is implemented in well over a 
thousand DLLs that execute in user space and mediate access to the kernel.  As one 
example, opening Outlook to open a single email exercises well over one hundred 
DLLs, of which up to five may be represented on the call stack at any one time.  
Furthermore, many vulnerabilities in Windows systems are located in DLLs, 
including a recently discovered vulnerability in the graphics rendering engine 
(gdi32.dll) that affects every Windows system shipped between 1990 and January 
2006 [2, 3].  It is not surprising that most published Windows system vulnerabilities 
occur in DLLs, since DLLs are available for attackers to study and the payoff for 
cracking them (a large number of potential victims) is high. 

Application 1 Application 2

AAA.dll BBB.dll

Kernel32.dll

CCC.dll DDD.dll

Ntdll.dll

kernel

Compromised 
DLL

 

Fig. 1. Structure of a Windows application 

This paper makes the following novel contributions: 

• It defines DLL profiles and a class of intrusion detection systems based on DLL 
profiles 

• It demonstrates that DLL profiles associate suspicious behavior with specific code 
modules 
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• It shows that identifying the locus of suspicious behavior opens new sources of 
data for analyzing anomalies 

• It provides evidence that DLL profiles reduce false negatives and resist mimicry 
attacks 

• It argues that DLL profiles can be used to minimize the burden of training and 
enable detection to proceed concurrently with retraining after updates 

The paper is organized as follows.  In Section 2, we review the structure of 
Windows processes and explain how DLL profiles can be used to detect anomalous 
program execution.  In Section 3, we discuss related work.  In Section 4, we briefly 
describe our experiments detecting two recent exploits on a small application.  In 
Section 5, we substantiate the claimed benefits of DLL profiles.  We conclude with 
suggestions for further research. 

2   An Intrusion Detection Model Based on DLL Profiles 

A Windows process comprises multiple (kernel-supported) threads, some of which 
are dedicated to GUI or system functions.  Windows applications make extensive use 
of DLLs that implement the operating system and supply additional functionality.  
The Windows kernel API is defined by ntdll.dll.  However, Windows applications 
rarely call ntdll.dll directly.  Indeed, the Microsoft Visual Studio development 
environment does not support calls to ntdll.dll.  Instead, kernel32.dll1 defines the 
standard interface to the operating system, although a few DLLs call ntdll directly.  
Many calls to kernel32 are mediated through higher-level DLLs.  As a result, the 
typical application cascades through layers of DLLs and results in multiple calls to 
ntdll and the kernel. 

Ground-breaking work by Forrest, et al. [4, 5] showed that kernel-call traces 
capture application behavior.  However, in systems and applications dominated by 
DLLs, much of the information in kernel-call traces characterizes the internal 
behavior of DLLs.  Therefore, a single N-gram in such a trace often reflects the 
behavior of multiple DLLs.  In the short execution of Outlook mentioned above, up to 
five DLLs at a time were represented on the call stack.  Other characterizations of the 
behavior of the application as a whole also describe the combined behavior of many 
shared libraries. 

In DLL profiling, we characterize each module (the application and the DLLs) by 
the calls it makes to other DLLs—not to the kernel.  When one DLL calls another, 
their combined state can be represented with a stack of traces of calls between 
modules, one for each current invocation of a module.  Figure 2 represents a snapshot 
of the stack.  Each box represents a separate sequence that is currently being 
accumulated.  In Figure 2, the most recent inter-module call by the application is to 
function f() in AAA, which in turn has called function c() in CCC.  When function c 
returns, the current inter-DLL sequence for function c() is complete.  If function f() 

                                                           
1 The name “Kernel32” suggests that this DLL defines an interface to the kernel.  Kernel32 

provides very basic operating system functionality, but it accesses the kernel only through 
ntdll, which implements the kernel API.  In this paper, we will commonly write DLL names 
without the .dll extension. 
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calls some other function in another DLL, a sequence for that function is pushed onto 
the stack.  Note that since DLLs are reentrant, the stack may include multiple 
instantiations of a single module.  

 

 

Fig. 2. (a) The stack of inter-DLL-call sequences in a thread.  Each stack element is a trace (b) 
of calls from an exported function of a DLL (or the application main) to other DLLs. 

DLL profiles support a new class of intrusion detection methods, depending on 
what information is recorded in the traces and the profile for each exported DLL 
function.  For example, if the profile focuses on control flow, training traces record 
the identity of the called functions.  N-grams, automata, or other methods may be 
used to represent the set of traces, as for kernel-call traces [4-11].  Alternatively, if the 
profile focuses on dataflow, the training traces can record not only the functions 
called, but also relations among the arguments to the function being profiled and the 
arguments of the functions it calls.  The experiments described in this paper used N-
grams, with N=6,2 but most of our results are more generally applicable. 

An IDS that uses the DLL stack model for intrusion detection can be realized in a 
straightforward way.  We posit that the IDS maintains a profile of each function 
exported by a Windows system DLL, in addition to a profile of each application 
module (binary or DLL) to be protected.  At run time, calls to each profiled DLL are 
captured, for example by mediating connectors [12, 13], and sent to the IDS.  For 
each thread, the IDS maintains a stack of currently executing modules (DLLs or the 
main application).  For each function in the stack, it records information about the 
external calls made by the function, as in Figure 2.  When an exported function of a 
DLL is called from another DLL, the instrumentation informs the IDS of the call.  
The IDS notes the call in the trace at the top of the DLL stack for that thread, checks 
for anomalies against the profile of the calling function, and pushes a trace for the 
called function onto the stack.  When the DLL function returns, its trace is popped off 
the DLL stack. 

                                                           
2 Although Forrest’s group used N=6 to model UNIX and Linux processes, a smaller value for 

N may be more appropriate for tracking behavior in terms of inter-DLL calls.   

Trace of application calls to DLLs 

Trace of inter-DLL calls by 
function c() in CCC.dll 

Trace of inter-DLL calls by 
function f() in AAA.dll 

(a) 

…;Kernel32.HeapAlloc();AAA.f() 

(b) 
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After an update to a DLL, the IDS continues to function but switches to training 
mode for the updated DLL.  When an exported function from the newly updated DLL 
is called, the IDS pushes the DLL onto the stack, but instead of comparing the trace of 
the DLL function to the old profile, it collects the trace for input into a new profile.  
When the DLL function returns, the completed trace is added to the collection of 
traces for that function, and the profile creation module of the IDS processes it.  At 
some point, the profile is deemed sufficiently mature to be used for detection.  At that 
point, the IDS switches back into detection mode for that DLL function.  Note that 
function profiles mature at different rates, depending on each function’s range of 
behavior and on how frequently it is exercised. 

3   Related Work 

Much work has been done on profiling programs by sequences of calls, analyzing 
such sequences, and evading detection based on such sequences.  The VtPath model 
of Feng et al. [14], who use much the same information as the process 
characterization of Figure 2.  They exploit the call stack at each system call to record 
calls and returns between successive system calls.  Like the VtPath model, DLL 
profiles are used to detect anomalies above the kernel-interface level.  Our model 
differs from theirs in that (1) it records the thread history per calling DLL, rather than 
for the application as a whole, and (2) it is sparser in that it includes only calls 
between modules.  At any one time, the expected number of functions on the DLL 
stack is much smaller than the number of functions on the call stack, because 
functions exported by a DLL are gateways to the DLL’s entire functionality, much of 
which may be implemented in other functions.  The exported function may make 
several calls within the DLL before some function makes a call to another DLL. 

We note the difference between our approach and that of Sekar [15]; that approach 
characterizes an application as a whole by the sequence of its kernel calls augmented 
by a notation of the origin of the kernel call in the application itself.  With Sekar’s 
approach, it is possible to avoid characterizing library functions and focus on the 
behavior of the application itself; our approach also characterizes the application per 
se.  However, by characterizing the intermediate shared library functions, we are able 
to identify attacks aimed precisely at these libraries.  Indeed, this accounts for a very 
large number of attacks on Windows systems.  Note that both [14] and [15] employ 
stack tracing in Linux to obtain data for the analysis.  In Windows systems, stack 
tracing is often infeasible because of stack optimization, in which the compiler may 
use idiosyncratic stack structures within a DLL. 

4   Experiments with DLL Profiles 

To investigate DLL profiles, we created a DLL profile for a small Windows 
application and used it to detect two recent exploits.  In this section, we describe the 
experiment.   

The first exploit, introduced in the Fall of 2004, exploits a vulnerability present in 
most versions of gdiplus [3] up to Windows XP, Service Pack 1.  It causes a heap 
overflow when gdiplus is used to display a malicious JPEG image.  To study the 
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exploit, we instrumented ImgViewer/32 [16], a freeware application for viewing 
pictures in GIF, JPEG, and other formats.  Like many image viewing applications, 
ImgViewer/32 relies on Microsoft’s graphics processing DLLs, gdi32 and gdiplus, 
and hence is vulnerable to the attack.   

The gdiplus attack, as described in [17], occurs in two stages.  In the first stage, a 
specially-crafted JPEG image header causes function GdipGetPropertyCount() to 
overwrite the heap with code contained in the “comments” section of the header.  
Later, during execution of the function GdiplusShutdown(), the overwritten code is 
executed.  The version of the exploit that we used [18] takes advantage of the heap 
overflow to create a new user with administrative privileges.   

Our experiment was conducted as follows.  We created a profile of normal behavior 
by exercising the ImgViewer application on harmless JPEG images in thirty training 
runs.  We then ran the application with a malicious image.  The exploit traces were 
compared with the profiles to find anomalies, and the anomalies were analyzed.  We 
obtained examples of harmless anomalies by exercising the ImgViewer application 
with JPEG comments against a profile that excluded images with comments.   

The ImgViewer application exercises the application binary and 24 DLLs in 
several threads; we monitored only threads that were governed by the application, 
which used 14 DLLs.  Using those threads, we constructed profiles as described in 
Section 2.  Individual profiles were expressed as sets of N-grams.   

We also profiled the effect of the recently discovered WMF exploit [19].  In 
January 2006, a vulnerability in gdi32.dll was discovered that had existed in all 
Windows systems since 1990.  The vulnerability, which lies in the part of gdi32 that 
displays WMF pictures, enables a picture to specify arbitrary code to be executed 
when the picture is displayed.  To exercise the vulnerability, we created a small WMF 
exploit that simply halts the process when invoked.  We then used DLL profiles based 
on a short training period to detect the WMF exploit.  Training consisted of the 
previous thirty executions of ImgViewer on JPEG images, followed by three 
executions of ImgViewer on benign WMF images. 

We discuss the first example in some detail in Section 5.  Results from the second 
example were similar. 

We used two types of instrumentation in our experiments.  Our first efforts were 
performed using mediating connectors [12, 13], which are wrappers placed at the 
point of entry into functions exported by a DLL.  These connectors are ideal for 
intercepting calls into ntdll, but using them to capture calls from modules requires that 
the signature of each exported function of each DLL be known in advance.  An 
alternative is to start with an application and automatically instrument each DLL as it 
is invoked; the result is a cascade of wrappers.  We have implemented such a cascade 
and used it for our experiments.  When the application or a DLL is linked, the 
instrumentation modifies its import table so that when a call is made, the 
instrumentation obtains control and writes a log entry. 

5   Benefits of DLL Profiles 

In this section, we claim several benefits for DLL profiles and illustrate them with 
experimental evidence from the gdiplus experiment. 
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Localization of anomalous behavior to code modules. The gdiplus exploit manifested 
in anomalies in traces of five exported DLL functions.  First, GdipGetPropertyCount, in 
which the heap overflows, exhibited many calls to five functions that were not in its 
profile.  Second, GdiplusShutdown, which executes the attack code, exhibited four 
anomalies—all to novel functions—as shown in Table 1.  Third, during the execution of 
GdipGetPropertyCount, the HeapAlloc() function of kernel32 exhibited a call to 
RtlUnwind, which unwinds the stack after an exception.  RtlUnwind() did not appear in 
the RtlUnwind’s profile. 

Table 1. Anomalous calls from GdiplusShutdown during the attack  

DLL Function Comment 

kernel32 LoadLibraryA Loads netapi32 

netapi32 NetUserAdd Adds a new user for the machine 

netapi32 NetLocalGroupAddMembers Gives the new user privilege 

kernel32 ExitProcess End application  

Two other functions—CoCreateInstance() in ole32.dll and NdrClientCall2() in 
rpcrt4.dll—also exhibited anomalies with respect to the available profiles.  However, 
the profiles of those functions had not converged by the end of training.  An IDS 
based on DLL profiles as described above would still be accumulating these two 
profiles.  Thus, it would not (yet) be using them for detection.   

False negatives and resistance to mimicry attacks. The DLL functions we have 
profiled typically have a narrow range of behavior.  90% of all traces are of length 6 
or less, and half call just one other function.  This dramatically reduces the chances of 
a false negative, since it is unlikely that attack behavior happens to fall into the 
narrow range of the function’s normal behavior.  For example, GdiplusShutdown() 
normally executes 10 functions in 2 DLLs, as shown in Table 2. 

The narrow range of normal behavior reduces the probability of false negatives and 
makes mimicry attacks infeasible by making the target much smaller: 2 DLLs instead 
of 14 and 10 functions instead of over 800.  Consider the gdiplus exploit, for example.  
Our exploit payload created a new user through calls to the netapi32 DLL.  A clever 
attacker will avoid such blatantly malicious behavior, but will find himself 
constrained by the normal profile of the vulnerable function, in our case 
GdiplusShutdown.  A mimicry attacker has to find a function that is not only 
vulnerable but also enables the desired functionality.  In the case of 
GdiplusShutdown, it is hard to imagine any malicious behavior (other than crashing 
the application) that an attacker could accomplish using the functions in Table 2. 

Anomaly analysis.  Localizing anomalies to one or more DLLs makes it possible to 
draw on knowledge about the DLLs to analyze anomalies.  Anomaly analysis in real 
time helps the IDS decide whether to treat the anomaly as novel application behavior 
or an attack.  For example, the WMF exploit, described earlier, was in operating 
system code that had been stable for fifteen years.  Suppose that an IDS based on 
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DLL behavior, as described here, had been in use for that whole time.  The behavior 
profiles for that DLL would have been stable for much of that time.  Thus, the 
anomalous behavior, when it appeared, would be very suspicious, in contrast with 
anomalies from a DLL whose profile has only recently converged. 

Table 2. Functions invoked by GdiplusShutdown 

DLL Function Comment 

EnterCriticalSection Wait for mutex object 

LeaveCriticalSection Release mutex object 

SetEvent Signal on (parameter) event 

WaitForSingleObject Wait on locked object 

CloseHandle Release object 

DeleteCriticalSection Release resources for mutex 

HeapFree Free block in heap 

Kernel32 

HeapDestroy Destroy user-created heap 

DeleteObject Delete object created by gdiplus 
Gdi32 

DeleteDC Delete gdi32 device context 

Anomaly analysis can also consider the distance of the anomaly from the profile.  
For example, the gdiplus exploit called two functions in netapi32, which creates new 
users; netapi32 does not appear in the profile.  Other factors of interest are the 
provenance and change history of the DLL.   

Anomaly analysis can sometimes use information about functions to estimate their 
potential harm.  A call to NetUserAdd() in the context of gdiplus is highly suspicious.  
We obtained examples of harmless anomalies by exercising the ImgViewer on JPEG 
images with comments against a profile based on images without comments.  This 
resulted in three anomalous calls to the two functions of Table 3.  An IDS armed with 
knowledge about common functions could guess that these two functions, which 
collect information about a device (the screen), are probably benign. 

Table 3. Harmless anomalies 

DLL Function Description 
user32 GetDC Retrieves a handle to a display device context (DC) for 

the client area of a specified window or for the entire 
screen. 

gdi32 GetDeviceCaps Retrieves device-specific information for the specified 
device, specified by a handle. 

Easing the burden of training (and retraining). In a system whose architecture is 
dominated by DLLs, when one DLL is updated the system-call profiles of all 
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applications that use that DLL are invalidated, and must be retrained.  In contrast,  an 
IDS based on DLL profiles can retrain just the profile of the one changed DLL, and 
can continue to use all other profiles mature profiles for detection.  Retraining a given 
DLL occurs less frequently and is quicker than training an entire application; it also 
allows detection of anomalies in other DLLs to continue while the updated DLL is 
being trained. 

The rate at which profiles converge is apt to vary from one DLL function to 
another.  In our experiments, the profiles for two functions never converged; we were 
nevertheless able to feel quite confident about anomalies detected in other functions 
whose profiles had converged quickly and unambiguously. 

6   Conclusion and Future Work 

We have presented a novel approach to host-based anomaly detection that relies on 
profiles of functions exported by shared libraries.  We have argued and shown 
evidence that such profiles reduce false negatives, localize anomalies to code modules 
and provide opportunities analyze them, and reduce the burden of training. 

Much research remains to be done to realize the potential benefits of DLL profiles.  
A major question is the performance cost of deploying various types of profiles and 
how to minimize that cost.  Our preliminary measurements with Outlook suggest a 
performance penalty of 5-10%.  This number assumes an IDS in which most anomaly 
checks are simple (like a table lookup) and the remainder represent state changes. 

In addition, an IDS system based on DLL profiles faces non-trivial “bookkeeping” 
and security challenges.  To make retraining practical, ways to base updated function 
profiles on the profiles for the previous version must be developed. 

Finally, DLL profiles open new possibilities for anomaly analysis.  Additional 
information about shared libraries and their functions, as well about connections 
between libraries (including static analysis of binaries) may lead to algorithms and 
heuristics for estimating the potential harmfulness of a large class of program 
anomalies. 
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Abstract. Bugs in dynamic memory management, including for in-
stance heap-based buffer overflows and dangling pointers, are an im-
portant source of vulnerabilities in C and C++. Overwriting the man-
agement information of the memory allocation library is often a source
of attack on these vulnerabilities. All existing countermeasures with low
performance overhead rely on magic values or canaries. A secret value
is placed before a crucial memory location and by monitoring whether
the value has changed, overruns can be detected. Hence, if attackers are
able to read arbitrary memory locations, they can bypass the counter-
measure. In this paper we present an approach that, when applied to a
memory allocator, will protect against this attack vector without resort-
ing to magic. We implemented our approach by modifying an existing
widely-used memory allocator. Benchmarks show that this implementa-
tion has a negligible, sometimes even beneficial, impact on performance.

1 Introduction

Security has become an important concern for all computer users. Worms and
hackers are a part of every day Internet life. A particularly dangerous technique
that these attackers may employ is the code injection attack, where they are able
to insert code into the program’s address space and can subsequently execute it.
Vulnerabilities that could lead to this kind of attack are still a significant portion
of the weaknesses found in modern software systems, especially in programs
written in C or C++.

A wide range of vulnerabilities exists that allow an attacker to inject code. The
most well-known and most exploited vulnerability is the standard stack-based
buffer overflow: attackers write past the boundaries of a stack-based buffer and
overwrite the return address of a function so that it points to their injected code.
When the function subsequently returns, the code injected by the attackers is
executed [1].

However, several other vulnerabilities exist that allow an attacker to inject
code into an application. Such vulnerabilities can also occur when dealing with
dynamically allocated memory, which we describe in more detail in Section 2.
Since no return addresses are available in the heap, an attacker must over-
write other data stored in the heap to inject code. The attacker could overwrite
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a pointer located in this memory, but since these are not always available in
heap-allocated memory, attackers often overwrite the management information
that the memory allocator stores with heap-allocated data.

Many countermeasures have been devised that try to prevent code injection
attacks [2]. Several approaches try and solve the vulnerabilities entirely [3,4,5,6].
These approaches generally suffer from a substantial performance impact. Oth-
ers with better performance results have mostly focused on stack-based buffer
overflows [7,8,9,10,11].

Countermeasures that protect against attacks on dynamically allocated mem-
ory can be divided into four categories. The first category tries to protect the
management information from being overwritten by using magic values that
must remain secret [12,13] . While these are efficient, they can be bypassed if
an attacker is able to read or guess the value based on other information the
program may leak. Such a leak may occur, for example, if the program has a
’buffer over-read’ or a format string vulnerability. A second category focuses on
protecting all heap-allocated data by placing guard pages1 around them [14].
this however results in chunk size which are multiples of page sizes (which is 4
kb on IA32), which results in a large waste of memory and a severe performance
loss (because a separate guard page must be allocated every time memory is
allocated). A third category protects against code injection attacks by perform-
ing sanity checks to ensure that the management information does not contains
impossible values[15]. The fourth category separates the memory management
information from the data stored in these chunks. In this paper we propose an
efficient approach which falls in the fourth category. It does not rely on magic
values and can be applied to existing memory allocators.

To illustrate that this separation is practical we have implemented a proto-
type (which we call dnmalloc), that is publicly available [16]. Measurements of
both performance and memory usage overhead show that this separation can
be done at a very modest cost. This is surprising: although the approach is
straightforward, the cost compared to existing approaches in the first category
is comparable or better while security is improved.

Besides increased security, our approach also implies other advantages: be-
cause the often-needed memory management information is stored separately,
the pages that only hold the program’s data, can be swapped out by the oper-
ating system as long as the program does not need to access that data [17]. A
similar benefit is that, when a program requests memory, our countermeasure
will ensure that it has requested enough memory from the operating system
to service the request, without writing to this memory. As such, the operating
system will defer physical memory allocation until the program actually uses it,
rather than allocating immediately (if the operating system uses lazy or opti-
mistic memory allocation for the heap [18]).

The paper is structured as follows: Section 2 describes the vulnerabilities and
how these can be used by an attacker to gain control of the execution flow using

1 A guard page is page of memory where no permission to read or to write has been
set. Any access to such a page will cause the program to terminate.
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a memory allocator’s memory management information. Section 3 describes the
main design principles of our countermeasure, while Section 4 details our proto-
type implementation. In Section 5 we evaluate our countermeasure in multiple
areas: its performance impact, its memory overhead and its resilience against ex-
isting attacks. In Section 6 we describe related work and compare our approach
to other countermeasures that focus on protecting the heap. Section 7 contains
our conclusion.

2 Heap-Based Vulnerabilities

Exploitation of a buffer overflow on the heap is similar to exploiting a stack-
based overflow, except that no return addresses are stored in this segment of
memory. Therefore, an attacker must use other techniques to gain control of the
execution-flow. An attacker could overwrite a function pointer or perform an
indirect pointer overwrite [19] on pointers stored in these memory regions, but
these are not always available. Overwriting the memory management information
that is generally associated with dynamically allocated memory [20,21,22], is a
more general way of exploiting a heap-based overflow.

Memory allocators allocate memory in chunks. These chunks typically con-
tain memory management information (referred to as chunkinfo) alongside the
actual data (chunkdata). Many different allocators can be attacked by overwrit-
ing the chunkinfo. We will describe how dynamic memory allocators can be
attacked by focusing on a specific implementation of a dynamic memory alloca-
tor called dlmalloc [23] which we feel is representative. Dlmalloc is used as the
basis for ptmalloc [24], which is the allocator used in the GNU/Linux operating
system. Ptmalloc mainly differs from dlmalloc in that it offers better support for
multithreading, however this has no direct impact on the way an attacker can
abuse the memory allocator’s management information to perform code injec-
tion attacks. In this section we will briefly describe some important aspects of
dlmalloc to illustrate how it can be attacked. We will then demonstrate how the
application can be manipulated by attackers into overwriting arbitrary memory
locations by overwriting the allocator’s chunkinfo using two different heap-based
programming vulnerabilities.

2.1 Doug Lea’s Memory Allocator

The dlmalloc library is a runtime memory allocator that divides the heap mem-
ory at its disposal into contiguous chunks. These chunks vary in size as the
various allocation routines (malloc, free, realloc, . . . ) are called. An important
property of this allocator is that, after one of these routines completes, a free
chunk never borders on another free chunk, as free adjacent chunks are coalesced
into one larger free chunk. These free chunks are kept in a doubly linked list,
sorted by size. When the memory allocator at a later time requests a chunk of
the same size as one of these free chunks, the first chunk of that size is removed
from the list and made available for use in the program (i.e. it turns into an
allocated chunk).
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Fig. 1. Heap containing used and free chunks

All memory management information (including this list of free chunks) is
stored in-band. That is, the information is stored in the chunks: when a chunk
is freed, the memory normally allocated for data is used to store a forward and
backward pointer. Figure 1 illustrates what a typical heap of used and unused
chunks looks like. Chunk1 is an allocated chunk containing information about
the size of the chunk stored before it and its own size2. The rest of the chunk
is available for the program to write data in. Chunk3 is a free chunk that is
allocated adjacent to chunk1. Chunk2 and chunk4 are free chunks located in an
arbitrary location on the heap.

Chunk3 is located in a doubly linked list together with chunk2 and chunk4.
Chunk2 is the first chunk in the chain: its forward pointer points to chunk3 and
its backward pointer points to a previous chunk in the list. Chunk3 ’s forward
pointer points to chunk4 and its backward pointer points to chunk2. Chunk4 is
the last chunk in our example: its forward pointer points to a next chunk in the
list and its backward pointer points to chunk3.

2.2 Attacks on Dynamic Memory Allocators

Figure 2 shows what could happen if an array that is located in chunk1 is
overflowed: an attacker overwrites the management information of chunk3. The
size fields are left unchanged (although these can be modified if an attacker
desires). The forward pointer is changed to point to 12 bytes before function f0’s
return address, and the backward pointer is changed to point to code that will
jump over the next few bytes and then execute the injected code. When chunk1

2 The size of allocated chunks is always a multiple of eight, so the three least significant
bits of the size field are used for management information: a bit to indicate if the
previous chunk is in use or not and one to indicate if the memory is mapped or not.
The last bit is currently unused.
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is subsequently freed, it is coalesced together with chunk3 into a larger chunk.
As chunk3 is no longer a separate chunk after the coalescing, it must first be
removed from the list of free chunks (this is called unlinking). Internally a free
chunk is represented by a datastructure containing the fields depicted in chunk3
in Fig. 2. A chunk is unlinked as follows:

chunk3−>fd−>bk = chunk3−>bk
chunk3−>bk−>fd = chunk3−>fd

As a result, the value of the memory location that is twelve bytes (because of
the location of the field in the structure) after the location that fd points to will
be overwritten with the value of bk, and the value of the memory location eight
bytes after the location that bk points to will be overwritten with the value of fd.
So in the example in Fig. 2 the return address will be overwritten with a pointer
to code that will jump over the place where fd will be stored and will execute
code that the attacker has injected. This technique can be used to overwrite
arbitrary memory locations [20,21].

A similar attack can occur when memory is deallocated twice. This is called
a double free vulnerability [25].

3 Countermeasure Design

The main principle used to design this countermeasure is to separate manage-
ment information (chunkinfo) from the data stored by the user (chunkdata).
This management information is then stored in a separate contiguous memory
regions that only contains other management information. To protect these re-
gions from being overwritten by overflows in other memory mapped areas, they
are protected by guard pages. This simple design essentially makes overwriting
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the chunkinfo by using a heap-based buffer overflow impossible. Figure 3 depicts
the typical memory layout of a program that uses a general memory allocator
(on the left) and one that uses our modified design (on the right).

Most memory allocators will allocate memory in the datasegment that could
be increased (or decreased) as necessary using the brk systemcall [26]. However,
when larger chunks are requested, it can also allocate memory in the shared
memory area3 using the mmap4 systemcall to allocate memory for the chunk.
In Fig. 3, we have depicted this behavior: there are chunks allocated in both the
heap and in the shared memory area. Note that a program can also map files
and devices into this region itself, we have depicted this in Fig. 3 in the boxes
labeled ’Program mapped memory’.

In this section we describe the structures needed to perform this separation
in a memory allocator efficiently. In Section 3.1 we describe the structures that
are used to retrieve the chunkinfo when presented with a pointer to chunkdata.
In Section 3.2, we discuss the management of the region where these chunkinfos
are stored.

3.1 Lookup Table and Lookup Function

To perform the separation of the management information from the actual
chunkdata, we use a lookup table. The entries in the lookup table contain point-
ers to the chunkinfo for a particular chunkdata. When given such a chunkdata
address, a lookup function is used to find the correct entry in the lookup table.

The table is stored in a map of contiguous memory that is big enough to
hold the maximum size of the lookup table. This map can be large on 32-bit
systems, however it will only use virtual address space rather than physical
memory. Physical memory will only be allocated by the operating system when
the specific page is written to. To protect this memory from buffer overflows in
other memory in the shared memory region, a guard page is placed before it. At
the right hand side of Fig. 3 we illustrate what the layout looks like in a typical
program that uses this design.

3.2 Chunkinfo Regions

Chunkinfos are also stored in a particular contiguous region of memory (called a
chunkinfo region), which is protected from other memory by a guard page. This
region also needs to be managed, several options are available for doing this. We
will discuss the advantages and disadvantages of each.

Our preferred design, which is also the one used in our implementation and
the one depicted in Fig. 3, is to map a region of memory large enough to hold a

3 Note that memory in this area is not necessarily shared among applications, it has
been allocated by using mmap.

4 mmap is used to map files or devices into memory. However, when passing it the
MAP ANON flag or mapping the /dev/zero file, it can be used to allocate a specific
region of contiguous memory for use by the application (however, the granularity is
restricted to page size) [26].
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predetermined amount of chunkinfos. To protect its contents, we place a guard
page at the top of the region. When the region is full, a new region, with its
own guard page, is mapped and added to a linked list of chunkinfo regions.
This region then becomes the active region, meaning that all requests for new
chunkinfos that can not be satisfied by existing chunkinfos, will be allocated in
this region. The disadvantage of this technique is that a separate guard page is
needed for every chunkinfo region, because the allocator or program may have
stored data in the same region (as depicted in Fig. 3). Although such a guard
page does not need actual memory (it will only use virtual memory), setting the
correct permissions for it is an expensive system call.

When a chunkdata disappears, either because the associated memory is re-
leased back to the system or because two chunkdatas are coalesced into one, the
chunkinfo is stored in a linked list of free chunkinfos. In this design, we have
a separate list of free chunkinfos for every region. This list is contained in one
of the fields of the chunkinfo that is unused because it is no longer associated
with a chunkdata. When a new chunkinfo is needed, the allocator returns one
of these free chunkinfos : it goes over the lists of free chunkinfos of all existing
chunkinfo regions (starting at the currently active region) to attempt to find
one. If none can be found, it allocates a new chunkinfo from the active region.
If all chunkinfos for a region have been added to its list of free chunkinfos, the
entire region is released back to the system.

An alternative design is to map a single chunkinfo region into memory large
enough to hold a specific amount of chunkinfos. When the map is full, it can
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be extended as needed. The advantage is that there is one large region, and
as such, not much management is required on the region, except growing and
shrinking it as needed. This also means that we only need a single guard page at
the top of the region to protect the entire region. However, a major disadvantage
of this technique is that, if the virtual address space behind the region is not
free, extension means moving it somewhere else in the address space. While the
move operation is not expensive because of the paging system used in modern
operating systems, it invalidates the pointers in the lookup table. Going over
the entire lookup table and modifying the pointers is prohibitively expensive. A
possible solution to this is to store offsets in the lookup table and to calculate
the actual address of the chunkinfo based on the base address of the chunkinfo
region.

A third design is to store the chunkinfo region directly below the maximum
size the stack can grow to (if the stack has such a fixed maximum size), and make
the chunkinfo region grow down toward the heap. This eliminates the problem of
invalidation as well, and does not require extra calculations to find a chunkinfo,
given an entry in the lookup table. To protect this region from being overwritten
by data stored on the heap, a guard page has to be placed at the top of the region,
and has to be moved every time the region is extended. A major disadvantage of
this technique is that it can be hard to determine the start of the stack region on
systems that use address space layout randomization [27]. It is also incompatible
with programs that do not have a fixed maximum stack size.

These last two designs only need a single, but sorted, list of free chunkinfos.
When a new chunkinfo is needed, it can return, respectively, the lowest or highest
address from this list. When the free list reaches a predetermined size, the region
can be shrunk and the active chunkinfos in the shrunk area are copied to free
space in the remaining chunkinfo region.

4 Prototype Implementation

Our allocator was implemented by modifying dlmalloc 2.7.2 to incorporate the
changes described in Section 3. The ideas used to build this implementation,
however, could also be applied to other memory allocators. Dlmalloc was chosen
because it is very widely used (in its ptmalloc incarnation) and is representative
for this type of memory allocators. Dlmalloc was chosen over ptmalloc because
it is less complex to modify and because the modifications done to dlmalloc to
achieve ptmalloc do not have a direct impact on the way the memory allocator
can be abused by an attacker.

4.1 Lookup Table and Lookup Function

The lookup table is in fact a lightweight hashtable: to implement it, we divide
every page in 256 possible chunks of 16 bytes (the minimum chunksize), which is
the maximum amount of chunks that can be stored on a single page in the heap.
These 256 possible chunks are then further divided into 32 groups of 8 elements.
For every such group we have 1 entry in the lookup table which contains a pointer
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to a linked list of these elements (which has a maximum size of 8 elements). As
a result we have a maximum of 32 entries for every page. The lookup table is
allocated using the memory mapping function, mmap. This allows us to reserve
virtual address space for the maximum size that the lookup table can become
without using physical memory. Whenever a new page in the lookup table is
accessed, the operating system will allocate physical memory for it.

We find an entry in the table for a particular group from a chunkdata’s address
in two steps:

1. We subtract the address of the start of the heap from the chunkdata’s ad-
dress.

2. Then we shift the resulting value 7 bits to the right. This will give us the
entry of the chunk’s group in the lookup table.

To find the chunkinfo associated with a chunk we now have to go over a linked
list that contains a maximum of 8 entries and compare the chunkdata’s address
with the pointer to the chunkdata that is stored in the chunkinfo. This linked
list is stored in the hashnext field of the chunkinfo (illustrated in Fig. 4).

4.2 Chunkinfo

A chunkinfo contains all the information that is available in dlmalloc, and adds
several extra fields to correctly maintain the state. The layout of a chunkinfo is
illustrated in Fig. 4: the prev size, size, forward and backward pointers serve the
same purpose as they do in dlmalloc, the hashnext field contains the linked list
that we mentioned in the previous section and the chunkdata field contains a
pointer to the actual allocated memory.
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4.3 Managing Chunk Information

The chunk information itself is stored in a fixed map that is big enough to hold a
predetermined amount of chunkinfos. Before this area a guard page is mapped,
to prevent the heap from overflowing into this memory region. Whenever a new
chunkinfo is needed, we simply allocate the next 24 bytes in the map for the
chunkinfo. When we run out of space, a new region is mapped together with a
guard page.

One chunkinfo in the region is used to store the meta-data associated with
a region. This metadata (illustrated in Fig. 4, by the Chunkinfo region info
structure) contains a pointer to the start of the list of free chunks in the freelist
field. It also holds a counter to determine the current amount of free chunkinfos
in the region. When this number reaches the maximum amount of chunks that
can be allocated in the region, it will be deallocated. The Chunkinfo region info
structure also contains a position field that determines where in the region to
allocate the next chunkinfo. Finally, the next region field contains a pointer to
the next chunkinfo region.

5 Evaluation

The realization of these extra modifications comes at a cost: both in terms of
performance and in terms of memory overhead. To evaluate how high the per-
formance overhead of dnmalloc is compared to the original dlmalloc, we ran the
full SPEC R© CPU2000 Integer reportable benchmark [28] which gives us an idea
of the overhead associated with general purpose programs. We also evaluated
the implementation using a suite of allocator-intensive benchmarks which have
been widely used to evaluate the performance of memory managers [29,30,31,32].
While these two suites of benchmarks make up the macrobenchmarks of this sec-
tion, we also performed microbenchmarks to get a better understanding of which
allocator functions are faster or slower when using dnmalloc.

Table 1 holds a description of the programs that were used in both the macro-
and the microbenchmarks. For all the benchmarked applications we have also
included the number of times they call the most important memory allocation
functions: malloc, realloc, calloc5 and free (the SPEC R© benchmark calls pro-
grams multiple times with different inputs for a single run; for these we have
taken the average number of calls).

The results of the performance evaluation can be found in Section 5.1. Both
macrobenchmarks and the microbenchmarks were also used to measure the mem-
ory overhead of our prototype implementation compared to dlmalloc. In Section
5.2 we discuss these results. Finally, we also performed an evaluation of the se-
curity of dnmalloc in Section 5.3 by running a set of exploits against real world
programs using both dlmalloc and dnmalloc.

Dnmalloc and all files needed to reproduce these benchmarks are available
publicly [16].
5 This memory allocator call will allocate memory and will then clear it by ensuring

that all memory is set to 0.
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Table 1. Programs used in the evaluations

SPEC CPU2000 Integer benchmark programs
Program Description malloc realloc calloc free
164.gzip Data compression utility 87,241 0 0 87,237
175.vpr FPGA placement routing 53,774 9 48 51,711
176.gcc C compiler 22,056 2 0 18,799
181.mcf Network flow solver 2 0 3 5

186.crafty Chess program 39 0 0 2
197.parser Natural language processing 147 0 0 145
252.eon Ray tracing 1,753 0 0 1,373

253.perlbmk Perl 4,412,493 195,074 0 4,317,092
254.gap Computational group theory 66 0 1 66

255.vortex Object Oriented Database 6 0 1,540,780 1,467,029
256.bzip2 Data compression utility 12 0 0 2
300.twolf Place and route simulator 561,505 4 13,062 492,727

Allocator-intensive benchmarks
Program Description malloc realloc calloc free
boxed-sim Balls-in-box simulator 3,328,299 63 0 3,312,113

cfrac Factors numbers 581,336,282 0 0 581,336,281
espresso Optimizer for PLAs 5,084,290 59,238 0 5,084,225
lindsay Hypercube simulator 19,257,147 0 0 19,257,147

5.1 Performance

This section evaluates our countermeasure in terms of performance overhead.
All benchmarks were run on 10 identical machines (Pentium 4 2.80 Ghz, 512MB
RAM, no hyperthreading, Redhat 6.2, kernel 2.6.8.1).

Macrobenchmarks. To perform these benchmarks, the SPEC R© benchmark
was run 10 times on these PCs for a total of 100 runs for each allocator. The
allocator-intensive benchmarks were run 50 times on the 10 PCs for a total of
500 runs for each allocator.

Table 2 contains the average runtime, including standard error, of the pro-
grams in seconds. The results show that the runtime overhead of our allocator are
mostly negligible both for general programs as for allocator-intensive programs.
However, for perlbmk and cfrac the performance overhead is slightly higher: 4%
and 6%. These show that even for such programs the overhead for the added
security is extremely low. In some cases (vortex and twolf ) the allocator even
improves performance. This is mainly because of improved locality of manage-
ment information in our approach: in general all the management information
for several chunks will be on the same page, which results in more cache hits
[29]. When running the same tests on a similar system with L1 and L2 cache6

disabled, the performance benefit for vortex went down from 10% to 4.5%.

6 These are caches that are faster than the actual memory in a computer and are used
to reduce the cost of accessing general memory [33].
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Table 2. Average macrobenchmark runtime and memory usage results for dlmalloc
and dnmalloc

SPEC CPU2000 Integer benchmark programs
Program DL r/t DN r/t R/t overh. DL mem DN mem Mem. overh.
164.gzip 253 ± 0 253 ± 0 0% 180.37 180.37 0%
175.vpr 361 ± 0.15 361.2 ± 0.14 0.05% 20.07 20.82 3.7%
176.gcc 153.9 ± 0.05 154.1 ± 0.04 0.13% 81.02 81.14 0.16%
181.mcf 287.3 ± 0.07 290.1 ± 0.07 1% 94.92 94.92 0%

186.crafty 253 ± 0 252.9 ± 0.03 -0.06% 0.84 0.84 0.12%
197.parser 347 ± 0.01 347 ± 0.01 0% 30.08 30.08 0%
252.eon 770.3 ± 0.17 782.6 ± 0.1 1.6% 0.33 0.34 4.23%

253.perlbmk 243.2 ± 0.04 255 ± 0.01 4.86% 53.80 63.37 17.8%
254.gap 184.1 ± 0.03 184 ± 0 -0.04% 192.07 192.07 0%

255.vortex 250.2 ± 0.04 223.6 ± 0.05 -10.61% 60.17 63.65 5.78%
256.bzip2 361.7 ± 0.05 363 ± 0.01 0.35% 184.92 184.92 0%
300.twolf 522.9 ± 0.44 511.9 ± 0.55 -2.11% 3.22 5.96 84.93%

Allocator-intensive benchmarks
Program DL r/t DN r/t R/t overh. DL mem DN mem Mem. overh.
boxed-sim 230.6 ± 0.08 232.2 ± 0.12 0.73% 0.78 1.16 49.31%

cfrac 552.9 ± 0.05 587.9 ± 0.01 6.34% 2.14 3.41 59.13%
espresso 60 ± 0.02 60.3 ± 0.01 0.52% 5.11 5.88 15.1%
lindsay 239.1 ± 0.02 242.3 ± 0.02 1.33% 1.52 1.57 2.86%

Microbenchmarks. We have included two microbenchmarks. In the first mi-
crobenchmark, the time that the program takes to perform 100,000 mallocs of
random7 chunk sizes ranging between 16 and 4096 bytes was measured. After-
wards the time was measured for the same program to realloc these chunks to
different random size (also ranging between 16 and 4096 bytes). We then mea-
sured how long it took the program to free those chunks and finally to calloc
100,000 new chunks of random sizes. The second benchmark does essentially the
same but also performs a memset8 on the memory it allocates (using malloc,
realloc and calloc). The microbenchmarks were each run 100 times on a sin-
gle PC (the same configuration as was used for the macrobenchmarks) for each
allocator.

The average of the results (in seconds) of these benchmarks, including the
standard error, for dlmalloc and dnmalloc can be found in Table 3. Although
it may seem from the results of the loop program that the malloc call has an
enormous speed benefit when using dnmalloc, this is mainly because our im-
plementation does not access the memory it requests from the system. This
means that on systems that use optimistic memory allocation (which is the de-
fault behavior on Linux) our allocator will only use memory when the program
accesses it.

7 Although a fixed seed was set so two runs of the program return the same results.
8 This call will fill a particular range in memory with a particular byte.
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Table 3. Average microbenchmark runtime results for dlmalloc and dnmalloc

Microbenchmarks
Program DL r/t DL r/t R/t Overh.

loop: malloc 0.28721 ± 0.00108 0.06488 ± 0.00007 -77.41%
loop: realloc 1.99831 ± 0.00055 1.4608 ± 0.00135 -26.9%
loop: free 0.06737 ± 0.00001 0.03691 ± 0.00001 -45.21%

loop: calloc 0.32744 ± 0.00096 0.2142 ± 0.00009 -34.58%
loop2: malloc 0.32283 ± 0.00085 0.39401 ± 0.00112 22.05%
loop2: realloc 2.11842 ± 0.00076 1.26672 ± 0.00105 -40.2%
loop2: free 0.06754 ± 0.00001 0.03719 ± 0.00005 -44.94%

loop2: calloc 0.36083 ± 0.00111 0.1999 ± 0.00004 -44.6%

To measure the actual overhead of our allocator when the memory is accessed
by the application, we also performed the same benchmark in the program loop2,
but in this case always set all bytes in the acquired memory to a specific value.
Again there are some caveats in the measured result: while it may seem that
the calloc function is much faster, in fact it has the same overhead as the malloc
function followed by a call to memset (because calloc will call malloc and then
set all bytes in the memory to 0). However, the place where it is called in the
program is of importance here: it was called after a significant amount of chunks
were freed and as a result this call will reuse existing free chunks. Calling malloc
in this case would have produced similar results.

The main conclusion we can draw from these microbenchmarks is that the
performance of our implementation is very close to that of dlmalloc: it is faster
for some operations, but slower for others.

5.2 Memory Overhead

Our implementation also has an overhead when it comes to memory usage: the
original allocator has an overhead of approximately 8 bytes per chunk. Our
implementation has an overhead of approximately 24 bytes to store the chunk
information and for every 8 chunks, a lookup table entry will be used (4 bytes).
Depending on whether the chunks that the program uses are large or small,
our overhead could be low or high. To test the memory overhead on real world
programs, we measured the memory overhead for the benchmarks we used to test
performance, the results (in megabytes) can be found in Table 2. They contain

Table 4. Results of exploits against vulnerable programs

Exploit for Dlmalloc Dnmalloc
Wu-ftpd 2.6.1 [34] Shell Continues

Sudo 1.6.1 [35] Shell Crash
Sample heap-based buffer overflow Shell Continues

Sample double free Shell Continues
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the complete overhead of all extra memory the countermeasure uses compared
to dlmalloc.

In general, the relative memory overhead of our countermeasure is fairly low
(generally below 20%), but in some cases the relative overhead can be very high,
this is the case for twolf, boxed-sim and cfrac. These applications use many very
small chunks, so while the relative overhead may seem high, if we examine the
absolute overhead it is fairly low (ranging from 120 KB to 2.8 MB). Applications
that use larger chunks have a much smaller relative memory overhead.

5.3 Security Evaluation

In this section we present experimental results when using our memory allocator
to protect applications with known vulnerabilities against existing exploits.

Table 4 contains the results of running several exploits against known vul-
nerabilities when these programs were compiled using dlmalloc and dnmalloc
respectively. When running the exploits against dlmalloc, we were able to exe-
cute a code injection attack in all cases. However, when attempting to exploit
dnmalloc, the overflow would write into adjacent chunks, but would not overwrite
the management information, as a result the programs kept running.

These kinds of security evaluations can only prove that a particular attack
works, but it can not disprove that no variation of this attack exists that does
work. Because of the fragility of exploits, a simple modification in which an extra
field is added to the memory management information for the program would
cause many exploits to fail. While this is useful against automated attacks, it
does not provide any real protection from a determined attacker. Testing exploits
against a security solution can only be used to prove that it can be bypassed.
As such, we provide these evaluations to demonstrate how our countermeasure
performs when confronted with a real world attack, but we do not make any
claims as to how accurately they evaluate the security benefit of dnmalloc.

However, the design in itself of the allocator gives strong security guarantees
against buffer overflows, since none of the memory management information is
stored with user data. We contend that it is impossible to overwrite it using
a heap-based buffer overflow. This will protect from those attacks where the
memory management information is used to perform a code injection attack.

Our approach does not detect when a buffer overflow has occurred. It is,
however, possible to easily and efficiently add such detection as an extension
to dnmalloc. A technique similar to the one used in [12,13] could be added to
the allocator by placing a random number at the top of a chunk (where the
old management information used to be) and by mirroring that number in the
management information. Before performing any heap operation on a chunk,
the numbers would be compared and if changed, it could report the attempted
exploitation of a buffer overflow. A major advantage of this approach over [12]
is that it does not rely on a global secret value, but can use a per-chunk secret
value. While this approach would improve detection of possible attacks, it does
not constitute the underlying security principle, meaning that the security does
not rely on keeping values in memory secret.
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Finally, our countermeasure (as well as other existing ones [15,12]) focuses
on protecting this memory management information, it does not provide strong
protection to pointers stored by the program itself in the heap. There are no ef-
ficient mechanisms yet to transparently protect these pointers from modification
through all possible kinds of heap-based buffer overflows. In order to achieve rea-
sonable performance, countermeasure designers have focused on protecting the
most targeted pointers. Extending the protection to more pointers without in-
curring a substantial performance penalty remains a challenging topic for future
research.

6 Related Work

Many countermeasures for code injection attacks exist. In this section, we briefly
describe the different approaches that could be applicable to protecting against
heap-based buffer overflows, but will focus more on the countermeasures which
are designed specifically to protect memory allocators from heap-based buffer
overflows.

6.1 Protection from Attacks on Heap-Based Vulnerabilities

Countermeasures that protect against attacks on dynamically allocated memory
can be divided into three categories. The first category tries to protect the man-
agement information from being overwritten by using magic values that must
remain secret. While these are efficient, they can be bypassed if an attacker is
able to read or guess the value based on other information the program may
leak. Such a leak may occur, for example, if the program has a ’buffer over-read’
or a format string vulnerability. A second category focuses on protecting all
heap-allocated data by placing guard pages around them. this however results
in chunk size which are multiples of page sizes, which results in a large waste of
memory and a severe performance loss. A third category protects against code
injection attacks by performing sanity checks to ensure that the management
information does not contains impossible values.

Robertson et al. [12] designed a countermeasure that attempts to protect
against attacks on the ptmalloc management information. This is done by chang-
ing the layout of both allocated and unallocated memory chunks. To protect the
management information a checksum and padding (as chunks must be of double
word length) is added to every chunk. The checksum is a checksum of the man-
agement information encrypted (XOR) with a global read-only random value,
to prevent attackers from generating their own checksum. When a chunk is allo-
cated, the checksum is added and when it is freed, the checksum is verified. Thus,
if an attacker overwrites this management information with a buffer overflow,
a subsequent free of this chunk will abort the program because the checksum
is invalid. However, this countermeasure can be bypassed if an information leak
exists in the program that would allow the attacker to read the encryption key
(or the management information together with the checksum). The attacker can
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then modify the chunk information and calculate the correct value of the check-
sum. The allocator would then be unable to detect that the chunk information
has been changed by an attacker.

This countermeasure is efficient, although other benchmarks were used to test
the performance overhead in [12], they report similar overhead to ours.

Dlmalloc 2.8.x also contains extra checks to prevent the allocator from writing
into memory that lies below the heap (this however does not stop it from writing
into memory that lies above the heap, such as the stack). It also offers a slightly
modified version of the Robertson countermeasure as a compile-time option.

ContraPolice [13] also attempts to protect memory allocated on the heap
from buffer overflows that would overwrite memory management information
associated with a chunk of allocated memory. It uses the same technique as
proposed by StackGuard [7], i.e. canaries, to protect these memory regions. It
places a randomly generated canary both before and after the memory region
that it protects. Before exiting from a string or memory copying function, a
check is done to ensure that, if the destination region was on the heap, the
canary stored before the region matches the canary stored after the region. If
it does not, the program is aborted. While this does protect the contents of
other chunks from being overwritten using one of these functions, it provides
no protection for other buffer overflows. It also does not protect a buffer from
overwriting a pointer stored in the same chunk. This countermeasure can also
be bypassed if the canary value can be read: the attacker could write past the
canary and make sure to replace the canary with the same value it held before.

Although no performance measurements were done by the author, it is rea-
sonable to assume that the performance overhead would be fairly low.

Recent versions of glibc [15] have added an extra sanity check to its allocator:
before removing a chunk from the doubly linked list of free chunks, the allocator
checks if the backward pointer of the chunk that the unlinking chunk’s forward
pointer points to is equal to the unlinking chunk. The same is done for the for-
ward pointer of the chunk’s backward pointer. It also adds extra sanity checks
which make it harder for an attacker to use the previously described technique
of attacking the memory allocator. However, recently, several attacks on this
countermeasure were published [36]. Although no data is available on the per-
formance impact of adding these lightweight checks, it is reasonable to assume
that no performance loss is incurred by performing them.

Electric fence [14] is a debugging library that will detect both underflows
and overflows on heap-allocated memory. It operates by placing each chunk in
a separate page and by either placing the chunk at the top of the page and
placing a guard page before the chunk (underflow) or by placing the chunk at
the end of the page and placing a guard page after the chunk (overflow). This
is an effective debugging library but it is not realistic to use in a production
environment because of the large amount of memory it uses (every chunk is
at least as large as a page, which is 4kb on IA32) and because of the large
performance overhead associated with creating a guard page for every chunk. To
detect dangling pointer references, it can be set to never release memory back to



Efficient Protection Against Heap-Based Buffer Overflows 395

the system. Instead Electric fence will mark it as inaccessible, this will however
result in an even higher memory overhead.

6.2 Alternative Approaches

Other approaches that protect against the more general problem of buffer over-
flows also protect against heap-based buffer overflows. In this section, we give a
brief overview of this work. A more extensive survey can be found in [2].

Compiler-based countermeasures. Bounds checking [3,4,5,6] is the ideal
solution for buffer overflows, however performing bounds checking in C can have
a severe impact on performance or may cause existing object code to become
incompatible with bounds checked object code.

Protection of all pointers as provided by PointGuard [37] is an efficient imple-
mentation of a countermeasure that will encrypt (using XOR) all pointers stored
in memory with a randomly generated key and decrypts the pointer before load-
ing it into a register. To protect the key, it is stored in a register upon generation
and is never stored in memory. However, attackers could guess the decryption
key if they were able to view several different encrypted pointers. Another attack
described in [38] describes how an attacker could bypass PointGuard by partially
overwriting a pointer. By only needing a partial overwrite, the randomness can
be reduced, making a brute force attack feasible (1 byte: 1 in 256, 2 bytes: 1 in
65536, instead of 1 in 232).

Operating system-based countermeasures. Non-executable memory [27,39]
tries to prevent code injection attacks by ensuring that the operating system does
not allow execution of code that is not stored in the text segment of the program.
This type of countermeasure can however be bypassed by a return-into-libc attack
[40] where an attacker executes existing code (possibly with different parameters).

Address randomization [27,41] is a technique that attempts to provide security
by modifying the locations of objects in memory for different runs of a program,
however the randomization is limited in 32-bit systems (usually to 16 bits for
the heap) and as a result may be inadequate for a determined attacker [42].

Library-based countermeasures. LibsafePlus [43] protects programs from all
types of buffer overflows that occur when using unsafe C library functions (e..g
strcpy). It extracts the sizes of the buffers from the debugging information of a
program and as such does not require a recompile of the program if the symbols
are available. If the symbols are not available, it will fall back to less accurate
bounds checking as provided by the original Libsafe [9] (but extended beyond
the stack). The performance of the countermeasure ranges from acceptable for
most benchmarks provided to very high for one specific program used in the
benchmarks.

Execution monitoring. Program shepherding [44] is a technique that will
monitor the execution of a program and will disallow control-flow transfers9 that
9 Such a control flow transfer occurs when e.g. a call or ret instruction is executed.
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are not considered safe. An example of a use for shepherding is to enforce return
instructions to only return to the instruction after the call site. The proposed im-
plementation of this countermeasure is done using a runtime binary interpreter,
as a result the performance impact of this countermeasure is significant for some
programs, but acceptable for others.

Control-flow integrity [45] determines a program’s control flow graph before-
hand and ensures that the program adheres to it. It does this by assigning a
unique ID to each possible control flow destination of a control flow transfer.
Before transferring control flow to such a destination, the ID of the destination
is compared to the expected ID, and if they are equal, the program proceeds
as normal. Performance overhead may be acceptable for some applications, but
may be prohibitive for others.

7 Conclusion

In this paper we presented a design for existing memory allocators that is more
resilient to attacks that exploit heap-based vulnerabilities than existing allo-
cator implementations. We implemented this design by modifying an existing
memory allocator. This implementation has been made publicly available. We
demonstrated that it has a negligible, sometimes even beneficial, impact on per-
formance. The overhead in terms of memory usage is very acceptable. Although
our approach is straightforward, surprisingly, it offers stronger security than
comparable countermeasures with similar performance overhead because it does
not rely on the secrecy of magic values.
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Abstract. Password authentication is an important mechanism for re-
mote login systems, where only authorized users can be authenticated
via using their passwords and/or some similar secrets. In 1999, Yang and
Shieh [14] proposed two password authentication schemes using smart
cards. Their schemes are not only very efficient, but also allow users to
change their passwords freely and the server has no need to maintain
a verification table for authenticating users. However, their schemes are
later identified to be flawed. To overcome those security flaws, Shen et
al. [9] and Yoon et al. [17] proposed further improvements and claimed
their new schemes are secure. In this paper, we first point out that Yang
et al.’s attack [15] against Shen et al.’s scheme is actually invalid, since
we can show that in a real implementation it is extremely difficult to
find two hash values such that one is divisible by the other. After that,
we show that both of Shen et al.’ scheme and Yoon et al.’s scheme are
insecure by identifying several effective impersonation attacks. Those at-
tacks enable an outsider to be successfully authenticated and then enjoy
the resources and/or services provided by the server.

Keywords: password authentication, smart card, attack, hash function.

1 Introduction

Password authentication is an important mechanism for remote login systems to
implement remote authentication through a public and insecure network, such as
Internet. In such a system, it is required that only authorized users can be authen-
ticated by the server, and then are granted to access the resources and/or services
provided by the server. Since in this environment users usually hold portable but
capability-limited devices such as smart cards with passwords, it is highly desir-
able that only simple and efficient operations, rather than complicated crypto-
graphic techniques, are exploited to implement the authentication procedure.

The first remote authentication scheme is proposed by Lamport in 1981 [6].
After that, a number of password authentication schemes [14, 5, 3, 4, 9] have
been proposed and analyzed due to the facts that those schemes are both po-
tentially important in practical applications and amazingly attractive in their
simple structures. In 1999, Yang and Shieh [14] proposed two password authen-
tication schemes using smart cards, one is timestamp-based and the other is

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 399–409, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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nonce-based. Compared with previous schemes, their schemes are very interest-
ing since the following two features are achieved: (a) All legal users are allowed
to set and change their passwords freely; and (b) The server has no need to
maintain a verification table for authenticating users. Later, Chan and Cheng
[3], and Fan et al. [4] pointed out that the Yang-Shieh scheme is vulnerable to
impersonation attacks if the users’ identities IDs are not carefully formatted or
encoded. To thwart those attacks, Shen, Lin, and Hwang [9] improved the Yang-
Shieh scheme. However, Yang, Yang and Wang [15] recently presented a simple
attack against Shen at al.’s scheme by finding two hash values so that one is
a multiple of the other. In another direction, Yang, Wang, and Chang [16] also
enhanced the Yang-Shieh scheme. However Yoon et al. [17] showed that Yang et
al.’s schemes in [16] are also insecure and further proposed improvements.

In this paper, we present a cryptanalysis of two above mentioned timestamp-
based password authentication schemes, i.e., the SLH scheme [9] and the YKY
scheme [17]. We show that both of those two authentication schemes are vulner-
able to impersonation attacks, and that the YYW attack [15] against the SLH
scheme is invalid. In more detail, this paper has the following contributions. We
first point out that the YYW attack against the SLH scheme is actually invalid,
since we can show that in a real implementation it is extremely difficult to find
two hash values such that one is divisible by the other. Precisely speaking, we
prove that if a hash function is modelled as a random function [1], then the
probability that one hash value is divisible by another is less than (1 + k)/2k,
where k is the fixed output length of the hash function. In real applications,
however, k should be set as 128 at least. Then, on the other hand, we show that
Shen et al.’s password authentication scheme is indeed insecure by successfully
identifying two effective impersonation attacks. By exploiting our attacks, the
attacker as an outsider can impersonate a legitimate user to access the resources
and/or services provided by the server. Finally, we demonstrate that the YKY
scheme is also insecure, contrary to the authors’ claim in [17], since it suffers a
similar impersonation attack.

The rest of the paper is organized as follows. We first review the SLH scheme
in Section 2, discuss the invalidity of the YYW attack in Section 3, and present
our impersonation attacks against the SLH scheme in Section 4. Then, we turn
to review and analyze the YKY scheme in Section 5. Finally, the conclusion is
given in Section 6.

2 Review of the SLH Scheme

The SLH timestamp-based password authentication scheme [9] consists of three
phases: registration, login, and authentication. We now review each phase as
follows.

2.1 Registration Phase

It is assumed that the server has an RSA cryptosystem [8] with key material
(n, e, d), where n = pq is the product of two large primes p and q, e is a prime
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number, and d = e−1 mod (p− 1)(q − 1). Furthermore, g is a primitive element
in both GF (p) and GF (q), and f(·) is a secure hash function. Except (d, p, q)
are kept as secrets, (n, e, g, f(·)) are publicly published.

When a user Ui wants to register with the server, he/she first submits his/her
identity IDi and a chosen password PWi to the server through a secure channel.
Then, the server computes three values of (Si, hi, CIDi) as follows:

Si = IDd
i mod n, hi = gPWi·d mod n, and CIDi = f(IDi ⊕ d), (1)

where ⊕ denotes the exclusive operation, and CIDi is treated as the card iden-
tity.

Finally, the server writes (n, e, g, f, IDi, CIDi, Si, hi) into a smart card, and
then delivers this smart card to the user Ui.

2.2 Login Phase

When the user Ui wants to login into the server, he/she inserts his/her smart
card into a card reader and enters his/her identity IDi and password PWi. If
both IDi and PWi are valid, the smart card selects a random number ri, and
then computes values Xi and Yi by1

Xi = gri·PWi mod n and Yi = Si · hri·f(CIDi,T1)
i mod n, (2)

where the timestamp T1 denotes the current date and time when this login
occurs. Finally, the login request message M = {IDi, CIDi, Xi, Yi, n, e, g, T1} is
sent to the server.

2.3 Authentication Phase

Upon receiving M = {IDi, CIDi, Xi, Yi, n, e, g, T1}, the server checks the valid-
ity of this login request message according to the following procedures:

– CIDi ≡ f(IDi ⊕ d).
– Y e

i ≡ IDi ·Xf(CIDi,T1)
i mod n.

– T2−T1 ≤ ΔT , where T2 denotes the date and time when the server received
the request M , and ΔT is a predefined time interval to balance the reasonable
transmission delay and potential replay attack.

If any of the above verifications fails, the login request is rejected. Otherwise, the
server first calculates R = f(CIDi, T2)d mod n, and then sends back message
N = {R, T2} to the user Ui. After receiving message N , the user Ui accepts the
server’s service if and only if both of the following checks hold:

– Re ≡ f(CIDi, T2) mod n.
– T3−T2 ≤ ΔT , where T3 denotes the date and time when Ui received message

N .
1 Note that in [15], the value Xi is calculated by Xi = gri·f(CIDi,T1) mod n. However,

this formula is incorrect since it is inconsistent with the original specification of the
SLH scheme [9]. Therefore, this typo is corrected here.
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3 The YYW Attack and Its Invalidity

Under the assumption that an attacker can find two hash values such that one
is a multiple of the other, Yang et al. [15] identified the following attack on the
SLH scheme.

1. The attacker first intercepts a login request message M ={IDi, CIDi, Xi, Yi,
n, e, g, T1} over the communication channel.

2. Then, the attacker finds a value a such that a · f(CIDi, T
′
1) = f(CIDi, T1),

where T ′
1 is the attacker’s login time.

3. Finally, the attacker sends a forged login request message M ′ = {IDi, CIDi,
X ′

i, Yi, n, e, g, T ′
1} to the server, where X ′

i is computed by

X ′
i = Xa

i mod n (= gri·PWi·a mod n).

It is easy to know that this attack is correct, since both (IDi, CIDi) and
(X ′

i, Yi) are valid pairs, i.e.,

CIDi = f(CDi ⊕ d) and Y e
i = IDi ·X ′f(CIDi,T

′
1)

i mod n.

However, we notice that the YYW attack is actually invalid in practice, be-
cause it is extremely difficult to find a login time T ′

1 such that f(CIDi, T
′
1) is a

factor of f(CIDi, T1). Formally, we have the following theorem.

Theorem 1. Let X and Y be two random inputs of a hash function f(·) with
k-bit output. Then, under the assumption that the outputs of hash function f(·)
can be considered as random numbers, the probability that f(Y ) is divisible by
f(X) is at most (k + 1)/2k. That is, we have

P
	
= Pr[f(X)|f(Y )] ≤ (1 + k)/2k. (3)

Proof: Let x = f(X) and y = f(Y ). Since the outputs of hash function f(·)
are assumed to be random numbers with k bits, x and y can be treated as two
random integers independently chosen from interval [0, 2k−1]. More specifically,
pair (x, y) could be any element of set S = {(a, b)|∀a, b ∈ [0, 2k − 1]} with equal
probability 2−2k.

To compute probability P , we need to count how many pairs (a, b) in set S
satisfying a|b, i.e., there exists an integer t such that b = a · t. That is, we have
to compute or estimate the cardinality of subset T = {(a, b)|(a, b) ∈ S ∧ a|b}.
Actually, we can estimate |T |, i.e., the numbers of pairs in subset T , according
to the value of a as follows:

– a = 0: there is only one pair in T , i.e., (0, 0);
– a = 1: there are 2k pairs in T , i.e., all (1, b) for any b ∈ [0, 2k − 1];
– a = 2: there are at most (1 + 2k

2 ) pairs in T ;
– a = 3: there are at most (1 + 2k

3 ) pairs in T ;
– ......;



Cryptanalysis of Timestamp-Based Password Authentication Schemes 403

– a = i: there are at most (1 + 2k

i ) pairs in T ;
– ......;
– a = 2k − 1: there are at most (1 + 2k

2k−1 ) pairs in T .

Therefore, we have the following estimate for the upper bound of |T |:

|T | ≤ 1 + 2k + (1 + 2k

2 ) + (1 + 2k

3 ) + · · ·+ (1 + 2k

i )
+ · · ·+ (1 + 2k

2k−1 )
≤ 2k + 2k + 2k

2 + 2k

3 + · · ·+ 2k

i + · · ·+ 2k

2k−1
≤ 2k · [2 + (1

2 + 1
3 ) + (1

4 + · · ·+ 1
7 ) + · · ·+ ( 1

2j +
· · ·+ 1

2j+1−1 ) + · · ·+ ( 1
2k−1 + · · ·+ 1

2k−1 )]
≤ 2k[2 +

∑k−1
j=1 2j · 1

2j ]
≤ 2k[1 + k].

As |S| = 22k, we consequently get the following upper bound for probability
P :

P = Pr[f(X)|f(Y )] = |T |/|S| ≤ (1 + k)/2k. (4)

This is what we want to prove. �
In a real system, the output length of hash function f(·) is at least 128-bit. In this
case (|f(·)| = 128), according to Proposition 1 we know that that for any ran-
domly chosen T ′

1, the probability that f(CIDi, T1) is a multiple of f(CIDi, T
′
1)

is at most (1 + 128)/2128 < 2−120, a negligible quantity. As specified in Propo-
sition 1, this statement holds under the assumption that the outputs of hash
function f(·) can be treated as random integers with fixed length [1]. Naturally,
a real-world hash function cannot be completely treated as a random function.
However, as one of cryptographic requirements on hash functions they should
be very close to a random function. In fact, this treatment is a popular method
exploited in modern cryptography research, called random oracle model, first
introduced by Bellare and Rogaway in [1].

Note that just due to the fact that probability P = (1 + k)/2k is negligible
in security parameter k, i.e., the fixed output length of hash function f(·), an
attacker can neither run the YYW attack by polynomial times (in k) to get
an successful login with a non-negligible probability. For example, in the case
k = 128, to get a successful login by using the YYW attack the attacker have
to try about 2120 times. If one try needs one second to finish, this means the
attacker have to cost over than 295 years to succeed one impersonating login.
This is the exact reason why we say the YYW attack is invalid or infeasible in
practice. However, as shown in next section, the SLH authentication scheme is
truly weak and can be attacked by an outsider without much cost.

4 New Attacks Against the SLH Scheme

In this section, we show that the SLH authentication scheme [9] is indeed insecure
by presenting two effective attacks, though the YYW attack is invalid as we just
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discussed. The first attack can be mounted if the RSA public exponent e is a
small prime number, while the second attack works without any assumption on
the size of public RSA exponent e.

4.1 Impersonation Attack A

The SLH authentication scheme [9] just requires the RSA public exponent e
should be a prime number but did not specify the size of e. In other words,
one may implement the SLH authentication scheme by selecting a small prime
number as the value of e, for example, 3, 7, 13, 17 etc. Actually, this is likely to
happen due to two reasons: (1) Some standards, e. g. PKCS #1 [7], recommend
to use small exponent e such as 3 to speed up the RSA signature verification;
and (2) Small exponent e can reduce the computational cost of smart cards,
which are employed in the SLH scheme as the authentication devices for users.

However, if the exponent e is truly set as a small prime number, the SLH
authentication scheme is vulnerable to the following impersonation attack A.

1. The attacker first intercepts a login request message M ={IDi, CIDi, Xi, Yi,
n, e, g, T1} over the communication channel.

2. Then, the attacker checks whether f(CIDi, T1) is divisible by e or not, i.e.,
e|f(CIDi, T1). If not, intercept more login request messages. Otherwise, con-
tinue.

3. Let f(CIDi, T1) = eb for some integer b ∈ Z. Then, compute Si by

Si = Yi ·X−b
i mod n. (5)

4. For any timestamp T ′
1, the attacker selects a random number r ∈ Zn, and

then compute X ′
i and Y ′

i as follows:

X ′
i = re mod n and Y ′

i = Si · rf(CIDi,T
′
1) mod n. (6)

5. Finally, the attacker can impersonate user Ui to access the server by sending
out a forged login request message M ′ = {IDi, CIDi, X

′
i, Y

′
i , n, e, g, T ′

1}.

Note that in the above attack, we have CIDi ≡ f(IDi ⊕ d) and Y ′
i

e ≡ IDi ·
X ′

i
f(CIDi,T

′
1) mod n. The latter formula is justified by the following equalities:

Y ′
i

e = [Si · rf(CIDi,T
′
1)]e mod n

= Se
i · (re)f(CIDi,T

′
1) mod n

= (Yi ·X−b
i )e ·X ′

i
f(CIDi,T

′
1) mod n

= (Y e
i ·X−be

i ) ·X ′
i
f(CIDi,T

′
1) mod n

= (Y e
i ·X

−f(CIDi,T1)
i ) ·X ′

i
f(CIDi,T

′
1) mod n

= IDi ·X ′
i
f(CIDi,T

′
1) mod n.

(7)

Therefore, our attack A is successful if the forged login request message M ′ =
{IDi, CIDi, X

′
i, Y

′
i , n, e, g, T ′

1} can be delivered to the server before T ′
1+ΔT . This
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is not a problem for the attacker, since this condition applies to all legal users
too. The only concern is the probability of e|f(CIDi, T1). Under the assumption
that the outputs of hash function f(·) are random numbers, it is easy to know
e|f(CIDi, T1) for a random timestamp T1 with probability of 1/e. This implies
that to successfully amount attack A, the attacker only needs to intercept a
dozen of valid login messages on average if e is an odd prime less than 20.
Actually, even if e = 65537 = 216 + 1 attack A remains feasible in practice if an
attacker eavesdrops thousands of valid login messages (not limited to one single
legitimate user).

However, note that if |e| ≥ 80 it seems infeasible to amount attack A since
each single run of the attacking algorithm with success probability only about
2−80, a negligible quantity. This is the reason why we have to assume that e
should be a small number in attack A. However, attack B described in the next
section does not rely on this assumption any more.

4.2 Impersonation Attack B

In this attack, to access the server by impersonating the user Ui an attacker
as outsider just needs to know user Ui’s identity IDi and smart card iden-
tity CIDi. That is, to mount our attack it is sufficient to intercept one valid
login request message M = {IDi, CIDi, Xi, Yi, n, e, g, T1}, made by user Ui.
After that, to login the server at timestamp T ′

1 the attacker checks whether
gcd(e, f(CIDi, T

′
1)) = 1, i.e., whether the integers e and f(CIDi, T1) are rela-

tively prime to each other. Note that for two randomly selected integers u and
v, gcd(u, v) = 1 happens with probability 6/π2 ≈ 0.6 [10, 11]. Since the hash
function f(·) is usually considered as a random function with k-bit outputs,
gcd(e, f(CIDi, T

′
1)) = 1 should occur with a similar probability. However, due

to the fact that the RSA public exponent e is required to be a prime number
in the SLH scheme, it is not difficult to see that for arbitrary timestamp T ′

1
gcd(e, f(CIDi, T

′
1)) = 1 holds with probability 1 − 1/e, if the outputs of hash

function f(·) are assumed to be random numbers with k bits. Therefore, to get a
value f(CIDi, T

′
1) such that gcd(e, f(CIDi, T

′
1)) = 1, the attacker only needs to

try one or two timestamps. Once such a timestamp T ′
1 is obtained, the attacker

can complete the following impersonation attack B:

1. Since gcd(e, f(CIDi, T
′
1)) = 1, the attacker can use the Extended Euclidean

algorithm to compute two integers a and b such that

a · e + b · f(CIDi, T
′
1) = 1 (in Z). (8)

2. Then, the attacker computes X ′
i and Y ′

i by

X ′
i = (IDi)−b mod n, Y ′

i = (IDi)a mod n. (9)

3. Finally, the attacker sends the forged login request message M ′={IDi, CIDi,
X ′

i, Y
′
i , n, e, g, T ′

1} to the server.
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Again, the above attack is successful since we have CIDi ≡ f(IDi ⊕ d) and
Y ′

i
e ≡ IDi ·X ′

i
f(CIDi,T

′
1) mod n. The latter expression is justified as follows:

Y ′
i

e = [(IDi)a]e mod n
= IDae

i mod n

= ID1−b·f(CIDi,T
′
1) mod n

= IDi · (IDi
−b)f(CIDi,T

′
1) mod n

= IDi ·X ′
i
f(CIDi,T

′
1) mod n.

(10)

Remark 1: Note that neither of the attacks from Chan and Cheng [3] and Fan
et al. [4] can apply to the SLH scheme, since in the SLH scheme user’s identity
IDi is validated by checking CIDi ≡ f(IDi ⊕ d). Therefore, without the secret
d anybody cannot forge a valid smart card identity CIDi for an identity IDi. In
addition, it is also infeasible to derive the secret d from CIDi = f(IDi ⊕ d) via
off-line attacks, since d should be a large number [2]. In the case of |n| = 1024,
this means we are supposed to select d such that |d| ≥ 300.

5 The YKY Scheme and Its Security

Since the YKY authentication scheme [17] is also an enhancement of the Yang-
Shieh scheme [14], it has a similar structure as the SLH scheme [9]. In this
section, we briefly overview the YKY scheme and analyze its security.

5.1 Review of the YKY Scheme

The three phases of the YKY scheme are recalled as follows.
1. Registration Phase: As in the SLH scheme, the server sets an RSA cryp-
tosystem with key material (n, e, d), where n = pq and ed = 1 mod (p−1)(q−1)),
and makes (n, e, g, f(·)) public, while keeping d secret. To be registered, a user Ui

securely delivers his/her identity IDi and a chosen password PWi to the server.
After that, the server issues user Ui a smart card which contains information
(n, e, g, f(·), IDi, CIDi, S

∗
i , hi), where

S∗
i = IDCIDi·d

i mod n, hi = gPWi·d mod n, and CIDi = f(IDi ⊕ d). (11)

2. Login Phase: To access the server, user Ui inserts his/her smart card into
a card reader and types the password PWi. If the password PWi is correct, the
smart card sends a login request message M = {IDi, CID∗

i , Xi, Y
∗
i , n, e, g, T1}

to the server by computing

CID∗
i = CIDe

i mod n, Xi = gri·PWi mod n, and Y ∗
i = S∗

i ·hri·T1
i mod n. (12)

Here, ri is a randomly chosen number and T1 is the current date and time.
3. Authentication Phase: Once M is received, the server accepts user Ui’s
login request if and only if all of the following verifications hold:
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– Check the validity of IDi.
– Check T2 − T1 ≤ ΔT , where T2 denotes the date and time when the server

received M , and ΔT is a appropriately predefined time interval.
– Compute CIDi = (CID∗

i )d mod n, and check that CIDi ≡ f(IDi ⊕ d).
– Check (Y ∗

i )e ≡ IDCIDi

i ·XT1
i mod n.

In contrast, the values of (S∗
i , CID∗

i , Y ∗
i ) in the YKY scheme are used to

replace (Si, CIDi, Yi) in the SLH scheme. Especially, the smart card identifier
CIDi contained in M is transferred as a ciphertext CID∗

i rather than plaintext.
This reason is that by using a valid smart card identifier CIDi, Yoon et al.
[17] launched an impersonation attack against the YWC scheme [16]. So, in
their improvemed YKY scheme CIDi is not transferred in plaintext anymore.
In addition, note that the YKY scheme only enables the server to authenticate
a user, while the SLH scheme provides both directions of authentication service.

5.2 Security of the YKY Scheme

In [17], Yoon et al. claimed that the YKY scheme can resist impersonation attack,
password guessing attack, smart card loss attack, and replay attack. They argued
that their scheme is immune to impersonation attack, since an attacker without
the server’s secret d cannot derive CIDi from its RSA ciphertext CID∗

i . Without
the card identifier CIDi, however, the attacker cannot forge a pair (X ′

i, Y
′
i ) such

that (Y ′
i )e ≡ IDCIDi

i ·X ′
i
T1 mod n.

We notice that to amount a personation attack in the YKY scheme, an at-
tacker does not need to get the value of CIDi at all. The attacking strategy is
analogous to Attack B against the SLH scheme. To this end, an attacker first
intercepts a valid login request message M = {IDi, CID∗

i , Xi, Y
∗
i , n, e, g, T1},

which is sent to the server by some legitimate user Ui. Due to the validity of M ,
we have (Y ∗

i )e ≡ IDCIDi

i ·XT1
i mod n. Therefore, the attacker gets the following

value A by computing

A = (Y ∗
i )e ·X−T1

i mod n (= IDCIDi

i mod n). (13)

After that, the attacker computes a timestamp T ′
1 such that gcd(e, T ′

1) = 1
(This even happens with probability about 1 − 1/e, as e is a prime). So, the
attacker can use the Extended Euclidean algorithm to compute two integers a
and b such that

a · e + b · T ′
1 = 1 (in Z). (14)

Finally, the attacker sends the forged login request message M ′={IDi, CID∗
i ,

X ′
i, Y

′
i , n, e, g, T ′

1} to the server, where

X ′
i = A−b mod n and Y ′

i = Aa mod n. (15)

It is easy to know that the above attack is successful, since we have CIDi ≡
f(IDi ⊕ d) ≡ (CID∗

i )e mod n and Y ′
i

e ≡ IDCIDi

i · X ′
i
T ′
1 mod n. The latter

expression is justified by

Y ′
i

e =Aae mod n = A1−b·T ′
1 mod n = A·(A−b)T ′

1 mod n = IDCIDi

i ·X ′
i
T ′
1 mod n.
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Remark 2: Interestingly, we note that similar impersonation attack cannot
apply to Yoon et al.’s nonce-based password authentication scheme (See Section
4.2 of [17]). In this scheme, to access the server a user Ui needs to send a
request message M = (Xi, Yi, n, e, g) such that Y e

i ≡ IDCIDi

i · XN
i mod n,

where N = f(CIDi, rj) and rj is a random number selected by the server. Since
both values of CIDi and N are unavailable to an attacker, it seems really hard
to amount an impersonation attack.

6 Conclusion

Password authentication is an important mechanism for remote login systems
that enables the server to authenticate its users. In this paper, we first pointed
out that Yang et al.’s attack [15] against Shen at al.’s timestamp-based password
authentication scheme [9] is actually invalid, since we showed that in a real
implementation it is extremely difficult to find two hash values such that one is
divisible by the other. Then, we showed that Shen et al.’s authentication scheme
is really insecure by demonstrating two effective impersonation attacks. Finally,
we illustrated that Yoon et al.’s timestamp-based authentication scheme [17] is
also suffers to a similar personation attack. In our security analysis, we employed
the following two facts on hash functions: (1) If the outputs of a hash function
can be modelled as random numbers with fixed length k, the probability that one
hash value is a multiple of another is less than (1+k)/2k, a negligible quantity in
k; and (2) The probability that one hash value is relatively prime with another
hash value (or a fixed integer), however, is certainly high, about 0.6. Actually,
we notice that those two facts on hash functions are potentially useful in other
scenarios, such as analyzing the security of digital signatures [13].

In addition, we notice that our analysis presented in this paper also applies
to Wang et al.’s attack [12] against Fan et al.’s password authentication scheme
[4]. In other words, Wang et al.’s attack is also invalid since they exploited the
same attacking strategy as Yang et al. did in [15]; but Fan et al.’s scheme is
also insecure because it is vulnerable to similar attacks as we identified in this
paper. As the future work, we are considering to design password authentication
schemes using smart cards with formal security.
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Abstract. Recently, a number of ID-based authenticated key agreement
protocols from bilinear pairings have been proposed. In this paper we
present security analysis of four ID-based authenticated key agreement
protocols from pairings proposed in [11, 12, 7, 18]. These results demon-
strate that no more ID-based authenticated key agreement protocols
should be constructed with such ad-hoc methods, i.e, the formal design
methodology as in [1, 2, 3, 10] should be employed in future design.

1 Introduction

In ID-based cryptography [14], the main idea is to simplify public-key and cer-
tificate management by using a user’s identity (e.g., its email address) as its
public key. For this to be possible, the ID-based system requires a trusted third
party, typically called a Private Key Generator, to generate user private keys
from its master secret and the user’s identity. Such cryptosystems alleviate the
certificate overhead and solve the problems of PKI technology: certificate man-
agement including storage, distribution and the computational cost of certificate
verification. Since Boneh and Franklin’s ID-based encryption scheme based on
Weil pairing [6], bilinear pairings of algebraic curves have initiated some com-
pletely new fields in cryptography, making it possible to realize cryptographic
primitives that were previously unknown or impractical.

At first, Joux [9] proposed a one round tripartite Diffie-Hellman key agree-
ment protocol based on Weil pairings. However, like the basic Diffie-Hellman
key agreement protocol [8], Joux’s protocol also suffers from man-in-the-middle
attacks because it does not attempt to authenticate the communicating entities.
Smart [15] proposed an ID-based two-party authenticated key agreement (AK)
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protocol which combines the idea of Boneh and Franklin with that of Joux.
But, Shim [16] pointed out that Smart’s protocol does not provide full forward
secrecy and proposed a new protocol which provides full forward secrecy. How-
ever, it turns out the protocol is insecure against man-in-the-middle attacks
[17]. Recently, Kim et al [11], Kim et al [12], Choi et al [7] and Xie [18] proposed
two-party or three-party ID-based authenticated key agreement protocols from
pairings. The authors argued that the protocols satisfy all the required security
attributes for authenticated key agreement protocols described in [5]. In this
paper we show that the four protocols do not achieve some attributes of them.

The rest of this paper is organized as follows. In the following Section, we
introduce admissible pairings and ID-based public key infrastructures. In Section
3, we point out that Kim et al [11], Kim et al [12], Choi et al [7] and Xie [18]
protocol are vulnerable to key-compromise impersonation attacks, unknown key-
share attacks, signature forgery attacks and impersonation attacks, respectively.
A concluding remark is given in Section 4.

2 Preliminaries

Admissible Pairings. Let G1 and G2 be two cyclic groups of a large prime
order q. We write G1 additively and G2 multiplicatively. We assume that the
discrete logarithm problems in both G1 and G2 are hard. We call ê an admissible
pairing if ê : G1 ×G1 → G2 is a map with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and for all a, b ∈ Z.
2. Non-degeneracy: There exists P ∈ G1 such that ê(P, P ) �= 1. In other words,

the map does not send all pair G1 ×G1 to the identity in G2.
3. Computability: There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

The Weil and Tate pairings associated with supersingular elliptic curves or
abelian varieties can be modified to create such admissible pairing, as in [6].

ID-based Public Key Infrastructures. An ID-based public key infrastruc-
ture involves a Private Key Generatior (PKG) and users. It consists of Setup
and Private Key Extraction algorithms. Let P be a generator of G1. Let
H : {0, 1}∗ → Zq and H1 : {0, 1}∗ → G1 be two cryptographic hash functions.

[Setup]: PKG chooses a random s ∈ Z∗
q and set PPub = sP . PKG publishes

the system parameters 〈G1, G2, q, ê, P, PPub, H or H1〉 and keep s as a master
secret.

[Private Key Extraction I]: For a given string ID ∈ {0, 1}∗, compute the
user’s public key as QID = H1(ID) ∈ G1 and set the private key SID to be
sQID, where s is a master secret.

[Private Key Extraction II]: For a given string ID ∈ {0, 1}∗, compute α =
H(ID) ∈ Zq and set the private key dID to be 1

α+sP , where αP + sP is the
public key corresponding to ID.
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In the following section, Kim et al’s protocol [11], Kim et al’s protocol [12],
Choi et al’s protocol [7] use the Private Key Extraction I algorithm, while
Xie’s protocol [18] adapts the Private Key Extraction II algorithm.

3 Cryptanalysis of Four ID-Based AK Protocols

3.1 Kim et al’s Tripartite AK Protocol with Multiple PKGs

Recently, Kim et al [11] proposed ID-based AK protocols among entities whose
private keys were issued by different PKGs. We show that the 3PAK-MPE pro-
tocol for tripartite key agreement of their protocols is insecure against key-
compromise impersonation (K-CI) attacks.

[Different PKGs Setup]. Let A, B and C be legitimate entities who have
gotten their private keys from PKG1, PKG2 and PKG3, respectively. The three
different PKGs do not share the system parameters;

– PKGi (1 ≤ i ≤ 3) chooses its system parameters 〈Gi
1, G

i
2, q

i, êi, P i, P i
Pub, H

i〉,
where Gi

1 and Gi
2 are groups with prime order qi, P i is a generator of Gi

1, êi :
Gi

1×Gi
1 → Gi

2 is the bilinear pairing and Hi : {0, 1}∗ → Gi
1 is a cryptographic

hash function.
– PKGi chooses a random si ∈ Z∗

qi and set P i
Pub = siP i.

– Assume that all users agree on the hash function H3 : {0, 1}∗ → {0, 1}k used
to compute the resulting session key, where k is the length of the session key.

Consequently, the public/private key pairs of A, B and C are (Q1
A = H1(IDA),

S1
A = s1Q1

A), (Q2
B = H2(IDB), S2

B = s2Q2
B), and (Q3

C = H3(IDC), S3
C =

s3Q3
C), respectively.

� 3PAK-MPE Protocol

[The First Round]. Users A, B and C choose ephemeral private keys {ai}3i=1,
{bi}3i=1 and {ci}3i=1, respectively, where ai, bi, ci ∈ Z∗

qi , 1 ≤ i ≤ 3. Then they
compute {W i

A = aiP i}3i=1, {W i
B = biP i}3i=1 and {W i

C = ciP i}3i=1 and broadcast
these values.

(1) A −→ B, C : W 1
A = a1P 1, W 2

A = a2P 2, W 3
A = a3P 3,

(2) B −→ A, C : W 1
B = b1P 1, W 2

B = b2P 2, W 3
B = b3P 3,

(3) C −→ A, B : W 1
C = c1P 1, W 2

C = c2P 2, W 3
C = c3P 3.

After receiving the messages from the other entities, each entity computes the
partial session keys. In detail, A computes partial keys KAB and KAC as follows;

KAB = H3(ê1(S1
A, W 1

B)||a1W 1
B||ê2(Q2

B, a2P 2
Pub)||a2W 2

B)),

KAC = H3(ê1(S1
A, W 1

B)||a1W 1
C ||ê3(Q3

C , a3P 3
Pub)||a3W 3

C)).

Similarly, B computes partial keys KBA and KBC as follows;

KBA = H3(ê1(Q1
A, b1P 1

Pub)||b1W 1
A||ê2(S2

B, W 2
A)||b2W 2

A)),
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KBC = H3(ê2(S2
B, W 2

C)||b2W 2
C ||ê3(Q3

C , b3P 3
Pub)||b3W 3

C)).

C also computes partial keys KCA and KCB as follows;

KCA = H3(ê1(Q1
A, c1P 1

Pub)||c1W 1
A||ê3(S3

C , W 3
A)||c3W 3

A),

KCB = H3(ê2(Q2
B, c2P 2

Pub)||c2W 2
B ||ê3(S3

C , W 3
B)||c3W 3

B).

Then KAB = KBA, KAC = KCA and KBC = KCB.

[The Second Round]. A, B, and C choose random numbers RA, RB , RC

and broadcast 〈{RA}KAB , {RA}KAC 〉, 〈{RB}KBA , {RB}KBC 〉, and 〈{RC}KCA ,
{RC}KCB 〉, respectively, where {M}K denotes a symmetric encryption under
the key K.

(1) A −→ B, C : {RA}KAB , {RA}KAC ,
(2) B −→ A, C : {RB}KBA , {RB}KBC ,
(3) C −→ A, B : {RC}KCA , {RC}KCB .

The definition of key-compromise impersonation resilience attribute described
in [5] 2 is originally defined on a two-party setting. But, the definition is eas-
ily extended to a multi-party setting as follows; Let {A1, · · · , An} ba a set
of communicating entities. Suppose that m (m < n) long-term private keys
of Ai (i = 1, · · · , m) are compromised to an adversary. Then the K-CI re-
silience implies that the adversary can neither impersonate the other entities
Aj (j = m+1, · · · , n) to Ai (i = 1, · · · , m) nor obtain the session keys computed
by Ai (i = 1, · · · , m). Now, we show that the 3PAK-MPE protocol is insecure
against a K-CI attack in the three-party setting.

� K-CI Attacks on the 3PAK-MPE Protocol

Suppose that long-term private keys S1
A and S2

B of A and B, respectively, are
compromised to an adversary E and E wants to impersonate C to A and B.

1. First, E chooses random numbers ci, ui, vi ∈ Z∗
qi , i = 1, 2, 3 and computes

W i
C = ciP i, U i

A = uiP i, V i
B = viP i, i = 1, 2, 3.

2. When A and B broadcast {W i
A}3i=1 and {W i

B}3i=1, respectively, E replaces
them with {U i

A}3i=1 and {V i
B}3i=1, respectively, and simultaneously broadcast

{W i
C}3i=1 impersonating C. E(C) denotes E masquerades as C.

(1) A −→ B, C : W 1
A, W 2

A, W 3
A =⇒ U1

A, U2
A, U3

A,
(2) B −→ A, C : W 1

B, W 2
B, W 3

B =⇒ V 1
B , V 2

B , V 3
B ,

(3) E(C) −→ A, B : W 1
C , W 2

C , W 3
C .

After receiving the messages, A computes the partial session keys KAB and
KAC from {V i

B}3i=1 and {W i
C}3i=1 as follows;

KAB = H3(e1(S1
A, V 1

B)||a1V 1
B ||e2(Q2

B, a2P 2
Pub)||a2V 2

B),

KAC = H3(e1(S1
A, W 1

B)||a1W 1
C ||e3(Q3

C , a3P 3
Pub)||a3W 3

C)).

From S1
A, S2

B and vi (i = 1, 2), E also computes K ′
AB as follows;

K ′
AB = H3(e1(S1

A, V 1
B)||v1W 1

A||e2(S2
B, W 2

A)||v2W 2
A)).
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Then, KAB = K ′
AB. However, E cannot obtain KAC since E, who does

not know S3
C , cannot compute the term e3(Q3

C , a3P 3
Pub) of KAC Also, B

computes KBA and KBC from {U i
A}3i=1 and {W i

C}3i=1 as follows;

KBA = H3(e1(Q1
A, b1P 1

Pub)||b1U1
A||e2(S2

B , U2
A)||b2U2

A)),

KBC = H3(e2(S2
A, W 2

C)||b2W 2
C ||e3(Q3

C , b3P 3
Pub)||b3W 3

C)).

Similarly, from S1
A, S2

B and ui (i = 1, 2), E can compute K ′
BA as follows;

KBA = H3(e1(S1
A, W 1

B)||u1W 1
B ||e2(S2

B, U2
A)||u2W 2

B)).

Then, KBA = K ′
BA. However, E cannot obtain KBC since E, who does not

know S3
C , cannot compute the term e3(Q3

C , b3P 3
Pub) of KBC .

3. In the second round, when A and B broadcast 〈{RA}KAB , {RA}KAC 〉 and
〈{RB}KBA , {RB}KBC 〉, E replaces 〈{RA}KAB , {RA}KAC 〉 and 〈{RB}KBA ,
{RB}KBC〉 with 〈{RB}KBA , {RA}KAC〉 and 〈{RA}KAB , {RB}KBC 〉, respec-
tively, and simultaneously broadcast 〈{RA}KAC , {RB}KBC 〉 to A and B, im-
personating C.

(1) A −→ B, C : {RA}KAB , {RA}KAC =⇒ {RB}KBA , {RA}KAC ,
(2) B −→ A, C : {RB}KBA , {RB}KBC =⇒ {RA}KAB , {RB}KBC ,
(3) E(C) −→ A, B : {RA}KAC , {RB}KBC .

4. After receiving {RA}KAB and {RA}KAC intended to A, A can obtain RA

by decrypting {RA}KAB and {RA}KAC under KAB and KAC , respectively.
Then A computes the session key SKA = H3(RA||RA||RA) from the de-
crypted messages and its own choice RA. Similarly, B also obtain RB by de-
crypting {RB}KBA and {RB}KBC under KBA and KBC , respectively. Then
B computes the session key SKB = H3(RB||RB ||RB) from the decrypted
messages and its own choice RB. E also obtains RA and RB by decrypt-
ing {RA}KAB and {RB}KBA under K ′

AB and K ′
BA, respectively, because

KAB = K ′
AB and KBA = K ′

BA. Therefore, E can compute the session keys
SKA and SKB calculated by A and B from RA and RB. Finally, E succeeds
in impersonating C to both A and B as well as in obtaining the session keys
SKA and SKB.

In the attack, E, can compute neither {RA}KAC nor {RB}KBC in the second
round because E knows neither KAC nor KBC . But, E can obtain {RA}KAC

and {RB}KBC from the messages sent by A and B, respectively and so replay
them to A and B impersonating C as C’s second message. Since the messages
themselves cannot contain any information on the receivers, they can be reused
as messages intended to other entities. Its weakness against the K-CI attacks
are the lack of explicitness in messages transmitted. Thus, the attacks can be
prevented by adding the ordered pair of identities in messages being signed,
for example, {RA}KAB is replaced with {RA||QB||QC}KBA as described in [11].
But, in their paper, it is not mandatory but optional. Such a misused optional
condition opens the door to the attacks.
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3.2 Kim et al’s ID-Based Multiple AK Protocol

Kim et al [12] proposed an ID-based authenticated multiple-key agreement pro-
tocol (KRY protocol) which allows two entities to establish multiple session keys
in a protocol run. We show that the KRY protocol is insecure against an un-
known key-share (UK-S) attack and does not achieve forward secrecy in the case
of the compromise of additional secret information.

� KRY Protocol

(1) A −→ B : PA = aP, P ′
A = a′P, TA = H(PA)H(P ′

A)SA + (a + a′)PPub,
(2) B −→ A : PB = bP, P ′

B = b′P, TB = H(PB)H(P ′
B)SB + (b + b′)PPub.

Assume thatA andB want to agree to four session keys. First,A sends (PA, P ′
A, TA)

to B. On the receipt of the message from A, B verifies

ê(TA, P ) = ê(H(PA)H(P ′
A)QA + PA + P ′

A, PPub).

If the equation holds, B sends (PB , P ′
B, TB) to A and then computes four session

keys as K
(1)
B = ê(PA, PPub)b, K

(2)
B = ê(PA, PPub)b′

, K
(3)
B = ê(P ′

A, PPub)b, K
(4)
B =

ê(P ′
A, PPub)b′

. After receiving the message, A verifies

ê(TB, P ) = ê(H(PB)H(P ′
B)QB + PB + P ′

B , PPub).

If the equation holds, A computes the session keys K
(1)
A = ê(PB , PPub)a, K

(2)
A =

ê(P ′
B, PPub)a, K

(3)
A = ê(PB, PPub)a′

, K
(4)
A = ê(P ′

B , PPub)a′
. Each entity takes the

four values Ki (i = 1, · · · , 4) as the final session keys K(1) = ê(P, P )abs, K(2) =
ê(P, P )ab′s, K(3) = ê(P, P )a′bs, K(4) = ê(P, P )a′b′s.

� UK-S Attacks on the KRY Protocol

Suppose that an adversary E, who is a legitimate entity, has gotten her own
long-term private key SE . Then attack on the protocol is mounted as follows;

1. When A sends {PA = aP, P ′
A = a′P, TA, IDA} to B, an adversary E

intercepts it and computes (PE , P ′
E , TE) as follows;

– First, E chooses a random r ∈ Z∗
q and let r = a + r′. Then E can obtain

r′P by computing rP − aP .
– Next, E takes PE and P ′

E as aP and r′P , respectively and computes
her own signature on {PE , PE′} as TE = H(PA)H(P ′

E)SE +rPPub. Note
that E knows neither a nor r′, while she knows aP, r′P and r.

Next, E sends (PE , P ′
E , TE) together with her identity IDE to B.

2. On the receipt of the message, B thinks that the protocol run is initiated
by E. Then B verifies E’s signature. In fact, the verification always holds,
because TE is E’s valid signature on {PE , P ′

E}. B sends {PB, P ′
B, TB, IDB}

to E which forwards to A. Next, B computes four session keys as follows;

K
(1)
B = ê(PE , PPub)b = ê(P, P )abs, K

(2)
B = ê(PE , PPub)b′

= ê(P, P )ab′s,

K
(3)
B = ê(P ′

E , PPub)b = ê(P, P )r′bs, K
(4)
B = ê(P ′

E , PPub)b′
= ê(P, P )r′b′s.
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3. After receiving the message, A verifies B’s signature and computes

K
(1)
A = ê(PB, PPub)a = ê(P, P )abs, K

(2)
A = ê(P ′

B , PPub)a = ê(P, P )ab′s,

K
(3)
A = ê(PB, PPub)a′

= ê(P, P )a′bs, K
(4)
A = ê(P ′

B , PPub)a′
= ê(P, P )a′b′s.

4. Finally, A and B share the same two of four session keys, K(1) = ê(P, P )abs,
K(2) = ê(P, P )ab′s. A thinks that the session keys are shared with B, while
B mistakenly believes that he shares the keys with E.

Finally, the UK-S attack on two of four session keys is successfully mounted. If
A and B use the former two session keys for a subsequent encryption, serious
consequences stated in [4] will be happened. Its weakness against the UK-S
attack is due to the fact that an adversary E, who knows neither a and r′, can
generate its signature on {PE = aP, PE′ = r′P}. In fact, it is known that all types
of UK-S attacks can be prevented by adding identities of the communicating
entities in inputs of a key derivation function [4]. However, to avoid the attack
without using additional functions such as a key derivation function, the adapted
signature should be designed so that only one, who knows both a and a′, can
generate its signature on {aP, a′P}.

� Forward Secrecy of the KRY Protocol

Now, we show that the KRY protocol does not satisfy forward secrecy in the
case of the compromise of additional secret information. Suppose that the long-
term private keys, SA and SB of A and B, respectively, are compromised to an
adversary E. Then E can obtain some equations related to each user’s ephemeral
private keys. Indeed, E, who knows SA, can compute (a + a′)PPub from TA =
H(PA)H(P ′

A)SA + (a + a′)PPub by computing TA−H(PA)H(P ′
A)SA. Similarly,

E, who knows SA, can compute (b + b′)PPub from TB = H(PB)H(P ′
B)SB +

(b + b′)PPub by computing TB −H(PB)H(P ′
B)SB. Finally, E can compute the

following equations;

ê((a + a′)PPub, bP ) = ê(P, P )(a+a′)bs (1)
ê((a + a′)PPub, b

′P ) = ê(P, P )(a+a′)b′s (2)
ê((b + b′)PPub, aP ) = ê(P, P )(b+b′)as (3)
ê((b + b′)PPub, a

′P ) = ê(P, P )(b+b′)a′s (4).

These relationships lead to serious consequences in the case of the compromise of
additional secret information. If one session key of the past session, say K(1) =
ê(P, P )abs, is compromised then the other three session keys, K(2), K(3) and
K(4) are revealed, i.e., E can recover K(2) = ê(P, P )ab′s from the equation (3)
by calculating (3) × K−1

1 = ê(P, P )ab′s, K(3) = ê(P, P )a′bs from the equation
(1) by calculating (1) × K−1

1 = ê(P, P )a′bs, and K(4) = ê(P, P )a′b′s from the
equation (2) by calculating (2) × K−1

2 = ê(P, P )a′b′s. Thus, it does not satisfy
forward secrecy in the case of the compromise of additional secret information.
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In general, we note the compromise of long-term secret keys does not neces-
sarily mean that they are obtained via an inversion of the long-term public key.
Long-term secrets are in practice vulnerable secrets in the system; in a typical
setting, they are stored on disk, perhaps protected by a password. Since users
must store their secret keys for use in key computation, the secret keys may also
be obtained through lack of suitable physical measures. An adversary is also able
to obtain the session key used in any sufficiently old previous run of the protocol.
In some environments (e.g., due to implementation and engineering decisions),
the probability of compromise of session keys may be greater than that of long-
term keys. In particular, when using cryptographic techniques of only moderate
strength, the possibility exists that over time extensive cryptanalytic effort may
uncover past session keys. These properties may be attractive for the robustness
of the security in most commercial applications where customers does not always
protect their key sufficiently. Thus, a secure protocol design will minimize the
effects of such events.

3.3 Choi at al’s ID-Based AK Protocol

Choi et al [7] proposed two ID-based AK protocols satisfying the forward se-
crecy. Their protocol I uses a signature scheme to provide authentication; the
authenticity of the ephemeral public keys in the protocol is assured by each
user’s signature. We show that the protocol I does not achieve authentication as
intended, i.e., anyone can forge each user’s signature.

� Protocol I
(1) A −→ B : UA = aPPub, VA = aSA

(2) B −→ A : UB = bPPub, VB = bSB.

First, A sends (UA, VA) to B. On the receipt of the message from A, B verifies
ê(VA, P ) = ê(QA, UA). If the equation holds, B sends (UBVB) to A and com-
putes KB = bUA. After receiving the message from B, A verifies ê(VB , P ) =
ê(QB, UB). If the equation holds, A computes KA = aUB. The resulting session
key is K = kdf(KA, QA, QB) = kdf(KB, QA, QB) = kdf(absP, QA, QB), where
kdf is a key derivation function.

� Signature Forgery Attack on the Protocol I

In the protocol I, anyone can generate a valid pair (UA, VA) satisfying ê(VA, P ) =
ê(QA, UA) as follows; an adversary chooses a at random and then computes
UA = aP and VA = aQA. Then the pair satisfies the verification equation;

ê(VA, P ) = ê(aQA, P ) = ê(QA, aP ) = ê(QA, UA).

Therefore, an adversary, who does not know the corresponding long-term private
key, can forge each user’s signature on the ephemeral public key. In fact, the
adversary cannot obtain the session key established in this session involved in
this forgery attack. However, the signature scheme adapted to the cryptographic
protocols should be secure against forgery attacks.
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3.4 Xie’s ID-Based AK Protocol with Escrow

Recently, Xie [18] showed that McCullagh and Barreto’s AK protocol [13] is in-
secure against impersonation attacks. Then he proposed an improved protocol to
defeat the attacks and argued that its protocol satisfies all the security attributes.
We show that the protocol satisfies neither the implicit key authentication nor
the K-CI resilience.

� Xie’s Protocol
This protocol uses the Private Key Extraction II algorithm. Let H1(IDA) =
a and H1(IDB) = b. First, A and B exchange the ephemeral public keys AKA

and BKA.
(1) A −→ B : AKA = x(bP + sP )
(2) B −→ A : BKA = y(aP + sP ).

Then, A and B compute KA = ê(BKA, dA)x+1ê(P, P )x and KB =
ê(AKA, dB)y+1 ê(P, P )y, respectively. The resulting session key is K = KA =
KB = e(P, P )xy+x+y.

Now we show that Xie’s protocol is insecure against impersonation attacks,
i.e., an adversary can impersonate A to B at any time. The attack on the protocol
is mounted as follows;

� Impersonation Attacks on Xie’s Protocol

Suppose that an adversary E wants to impersonate A to B. E(A) denotes E
masquerade as A. First, E(A) sends AKA = −(bP + sP ) to B impersonating
A. After receiving the message, B sends BKA = y(aP + sP ) and computes the
session key

KB = ê(−(bP + sP ), dB)y+1ê(P, P )y = ê(P, P )−y−1ê(P, P )y = ê(P, P )−1.

By bilinearity of ê, the value ê(P, P )y disappears in the resulting session key.
Thus, E is able to compute KB = ê(P, P )−1 from known value. Finally, E
succeeds in impersonating A to B as well as in obtaining the session key KB.

In above attack, an adversary can generate an ephemeral public key to confine
the shared secret to a predictable value. Thus, Xie’s protocol does not provide
implicit key authentication attribute. From the attack, we can easily see that it is
insecure against man-in-the-middle attacks and key-compromise impersonation
attacks. The same attacks can be applied to Xie’s ID-based AK protocol without
escrow and AK protocol between members of distinct domains.

4 Conclusion

We have shown that four ID-based AK protocols are insecure against several
active attacks including unknown key-share attacks and key-compromise imper-
sonation attacks. Our results demonstrate that no more ID-based AK protocols
should be constructed with such ad-hoc methods and the formal design method-
ology in [1, 2, 3, 10] should be employed in future design.
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Abstract. Seifert (ACM CCS 2005) recently described a new fault at-
tack against an implementation of RSA signature verification. Seifert’s
attack differs from the seminal work of Boneh, DeMillo and Lipton (EU-
ROCRYPT 1997) in that it targets a public-key rather than a private-key
operation. Here we give a simplified analysis of Seifert’s attack and gauge
its practicality against RSA moduli of practical sizes. Our intent is to
give practice-oriented work estimates rather than asymptotic results. We
also suggest an improvement to Seifert’s attack which has the following
consequences: If an adversary is able to cause random faults in only 4
bits of a 1024-bit RSA modulus stored in a device, then there is a greater
than 50% chance that they will be able to make that device accept a sig-
nature on a message of their choice. For 2048-bit RSA, 6 bits suffice.

Keywords: hardware faults, fault analysis, signature verification, RSA
signatures.

1 Introduction

Recently, Seifert described a novel attack against an implementation of the RSA
signature verification operation [8]. His attack is based on the following assump-
tions:

– An adversary has a device which contains an RSA public key, (N, e), stored
in protected read-only memory (e.g., in EEPROM).

– The values N and e are known to the adversary.
– On input m, s, the device transfers the values N and e from protected mem-

ory to working memory, and then proceeds to check if s is a valid signature
for m.

– As the device transfers the value N from protected memory, the adversary
can induce data faults.

The attacker’s goal is to create a message-signature pair which the device will
accept as valid. Seifert describes a probabilistic algorithm which does this. More-
over, Seifert’s attack is a selective forgery; that is, an adversary is able to select
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an arbitrary message, compute a “signature” on it and have the device accept
these as a valid message-signature pair. This is all done without factoring N and
without learning the private key, d.

Seifert’s attack uses an incredibly simple strategy: If forging RSA signatures
using the modulus N is too difficult, then modify some bits of N and create a
new modulus, N̂ , where it is easy to forge signatures. Seifert points out that it is
very easy to create signatures when N̂ is prime, since then we can simply com-
pute the private exponent, d̂, as e−1 mod (N̂ − 1), assuming that e is relatively
prime to N̂ − 1. In the off-line part of Seifert’s attack, the adversary modifies
some of the least significant bits of N to create N̂ . In the on-line part of the
attack, the adversary repeatedly queries the device with a specially constructed
message-signature pair and causes data faults until this particular N̂ is used as
the modulus in the signature verification algorithm.

To put a practical perspective on Seifert’s attack, imagine that the device is
a “locked” computer that will only execute code if it can validate a signature on
that code. This is exactly what Microsoft had hoped to implement in its Xbox
game-console [10]. Microsoft attempted to design the Xbox so that only software
signed by Microsoft would run on it. However, a number of Xbox enthusiasts
found ways to circumvent Microsoft’s software authentication techniques [5].
In fact, Seifert credits Andy Green and Franz Lehner’s Xbox “hack” [5, page
143] as the inspiration for his attack. However, there is an important distinction
between the two techniques. Green and Lehner’s attack involves a deterministic
change to an internal parameter; Seifert’s attack involves a random change to
an internal parameter. If an attacker has the ability to change bits of (N, e)
deterministically, then it is much easier to unlock the device. In this case, it is
possible to defeat the authentication procedure by just setting e to equal 1.

After the publication of Seifert’s attack, one of the most pressing questions
concerning it involved its practical consequences (e.g., What is the estimated
work factor and success probability for an adversary who mounts the attack
against a 1024-bit public RSA key?). The analysis provided in [8] gives a num-
ber of asymptotic expressions for the work factor and success probability of the
attack, but extracting practical information from them is nontrivial. For exam-
ple, the main result (Thm. 1) in [8] says that if an adversary can cause faults
in the least significant O(lg lg N) bits of N , then, assuming that the Riemann
Hypothesis is true, they can make the device accept a signature on an arbitrary
message with probability Θ(1/ lg N) in lgO(1) N time. Clearly, the real-world
implications of this result for 1024-bit RSA depend on the constants hidden in
the asymptotic terms. It turns out that it is possible to give a more precise and
straightforward analysis of Seifert’s attack. With this analysis it is possible to
make statements like the following: If an adversary can cause faults in only 4
bits of an RSA modulus, then there is a greater than 50% chance that they will
be able to make the device accept a signature on an arbitrary message after 24

on-line queries.

Our contributions. Our main contribution is a simplified analysis of Seifert’s
attack. The work estimates we present are practice-oriented and can be easily
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interpreted. We verify our analysis against some computational trials which use
RSA public keys of practical sizes (i.e., 1024 bits and 2048 bits). In addition,
we offer two straightforward generalizations to Seifert’s attack. We demonstrate
that we do not need to restrict ourselves to errors only in the least significant bits
of the modulus. Also, we show that we do not need to limit ourselves to moduli,
N̂ , that are prime – what we really want is moduli that have easily computed
factorizations.

Outline. In §2 we describe the fault model which we use throughout the paper.
In §3 we review Seifert’s attack and adapt it to our fault model. An analysis
and some computational results are presented in §3.1 and §3.2. In §4 we give an
improvement to Seifert’s attack; analysis and computational results are provided
in §4.1 and §4.2. We briefly discuss some open problems related to fault attacks
on discrete log based signature schemes in §5. We end with some remarks in §6.

2 Fault Model

Suppose that the target device (i.e., the locked computer) implements Algo-
rithm 1. In this algorithm, the operator “�” denotes an assignment operation

Algorithm 1. Faulty RSA Signature Verification
Input: m ∈ {0, 1}∗, s ∈ ZN .
Output: “accept” or “reject”.

1: (N, e)� (N, e)
2: h ← H(m)
3: h′ ← se mod N
4: if h = h′ then return “accept”
5: else return “reject”

that is subject to bit-faults; we will make this more precise in a moment. The
function H denotes a message encoding function which typically incorporates
some cryptographic hash function. For example, H might be a full-domain hash
function constructed from a concatenation of SHA-256 hashes [2].

The bit-faults which affect the public key are instigated by the adversary.
In our model, we only consider bit-faults in the RSA modulus, N . These faults
change N to N̂ non-deterministically while e remains unchanged. This assump-
tion – that faults can be localized to a particular parameter of a cryptographic
computation – is commonly used in the theory of fault analysis (cf. [3]).

Recently, Naccache, Nguyen, Tunstall and Whelan [7] presented a key recov-
ery attack on DSA which requires that an adversary zeroize some of the least-
significant bits of the nonce k used in signature generation. What’s more, they
successfully implemented their attack against a smartcard and demonstrated
that it is possible for an adversary to engineer the required data faults. However,
despite the physical experiments conducted by Naccache et al., the practicality of
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the assumption that bit-faults will affect N but not e depends upon the charac-
teristics of a specific target device and the tools and skills of a specific adversary
(the fact that the bit-length of e is much shorter than N may be of some help).
So let us state plainly that the validity of our assumptions for any particular
target device are untested; however, experience shows that often attacks can be
modified minorly to adapt to different situations, and thus we believe this fault
model is important to consider as a starting point. For example, if an adversary
can localize faults to N only 20% of the time, this may suffice to carry out the
attack.

Concerning bit-faults in e, it seems unlikely that an adversary would be able
to take advantage of such errors. But, if by randomly flipping bits of e, we could
obtain a value ê for which it is easy to compute ê-th roots modulo N , then this
type of attack would certainly be worth exploring. However, unless the adversary
has a way to set ê = 1 with high probability, this would seem to happen very
rarely. In practice, e is usually taken to be 3 or 65537 since these values help
make signature verification more efficient.

An excellent survey of techniques for inducing computational faults in a device
is presented in [1]. For example, a random-data fixed-location fault (i.e., random
data appears at a fixed location within N) can be induced by illuminating one
of the device’s registers or data buses with a strong light source. Alternately, a
fixed-data random-location fault (i.e., constant data appears at a random location
within the modulus) can be initiated by varying the device’s supply voltage.

We model the effect of faults on the modulus using an error function, ξ. This
function takes two parameters: the first is N and the second is a nonce, Δ. Both
ξ and Δ determine how N is transformed. One possible definition of ξ is the
following

ξ(N, Δ) = N ⊕ 0n−b−c‖Δ‖0c, where Δ ∈ {0, 1}b. (1)

Here, N is considered as an n-bit array; its value is changed by xoring it with a
b-bit string, Δ, which is offset according to the value c. The values b and c are
fixed non-negative integers that satisfy 0 ≤ b+c ≤ n. This error function models
random-data fixed-location faults.

Another possible definition of ξ is

ξ(N, Δ) = N & 1n−b−Δ‖0b‖1Δ, where Δ ∈ {0, 1, 2, . . . n− b}. (2)

The symbol “&” denotes a bit-wise “and”. Now, the bits of N are changed by
zeroing a block of b bits offset according to the parameter Δ (which is now an
integer). This error function models fixed-data random-location faults.

In general, we can consider

ξ : {0, 1}n × S → {0, 1}n

where S is a finite set. The nonce Δ is drawn uniformly from S (we denote this
as Δ ∈R S). In Algorithm 1, after the operation (N̂ , ê)� (N, e), we have that

N̂ = ξ(N, Δ), for some Δ ∈R S, and ê = e.
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When Algorithm 1 is executed, the adversary initiates faults but they cannot
control the value of Δ.

For the sake of clarity, we continue our exposition assuming that ξ is defined
as in (1). Thus, we have

N̂ = N ⊕ 0n−b−c‖Δ‖0c, for some Δ ∈R {0, 1}b.

Δ is b-bits wide; we sometimes refer to Δ as an error vector. The value of b might
be influenced by the size of the device’s data-bus or registers; for example, many
smart cards have 8-bit registers while typical desktop PCs have 32-bit registers.
The bit-length of the modulus is n, so we have n = �lg N�+ 1.

Using the parameters b, c, Δ, we can rewrite the signature verification opera-
tion like so:

Algorithm 2. Faulty RSA Signature Verification
Input: m ∈ {0, 1}∗, s ∈ ZN .
Output: “accept” or “reject”.

1: Δ ∈R {0, 1}b

2: N ← N ⊕ 0n−b−c‖Δ‖0c

3: e ← e
4: h ← H(m)
5: h′ ← se mod N
6: if h = h′ then return “accept”
7: else return “reject”

3 Seifert’s Attack

In Algorithm 3 we present a simplified description of Seifert’s attack which is
adapted according to our fault model. Note that the title “Algorithm” is applied
loosely. To turn the description into a true algorithm, we would need to bound
the number of times that the second iterative loop (lines 11-13) is executed.

Essentially, what is happening in Algorithm 3 is that we randomly flip bits of
N until we find a value N̂ such that N̂ is prime and e−1 exists modulo N̂ − 1.
If we find such a value, then we use it to construct a new private exponent d̂
by computing the inverse of e modulo N̂ − 1. This can be done efficiently using
the extended Euclidean algorithm or Fermat’s Theorem. Next, we generate a
signature for m, using d̂, which will verify against the public key (N̂ , e). All
of this work so far is done off-line (i.e., it does not require any interaction
with the device). The attack finishes with an on-line phase where we repeatedly
query the device with our selected message and the signature we constructed
for it. Each time we query the device, we hope that the bit-faults we initiate
will cause the device to use the modulus N̂ when it checks our message and
signature.
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Algorithm 3. Seifert’s Fault Attack
Input: An arbitrary message m ∈ {0, 1}∗, the device’s RSA public key (N, e).
Output: “success” or “fail”.

1: S ← {0, 1}b \ {0b}
2: repeat
3: Δ ∈R S
4: S ← S \ {Δ}
5: N ← N ⊕ 0n−b−c‖Δ‖0c

6: until (N is prime and gcd(e, N − 1) = 1) or (S = ∅)
7: if S = ∅ then return “fail”
8: d ← e−1 mod (N − 1)
9: h ← H(m)

10: s ← hd mod N
11: repeat
12: output ← the output of Algorithm 2 on input m,s.
13: until output = “accept”
14: return “success”

Note that Algorithm 3 generalizes Seifert’s original attack model in an obvious
way. The original model did not consider the parameter c as bit-faults were
always restricted to the b least-significant bits of N . We will see that the value
of c has no effect on the running time or success probability of the attack;
however, the value of b does.

3.1 Analysis

Algorithm 3 contains two iterative loops. The first loop (lines 2-6) is executed
during the off-line portion of the attack:

repeat
Δ ∈R S
S ← S \ {Δ}
N̂ ← N ⊕ 0n−b−c‖Δ‖0c

until (N̂ is prime and gcd(e, N̂ − 1) = 1) or (S = ∅)

Note that the error space S = {0, 1}b\{0b} may be traversed in other ways (e.g.,
it might be more convenient to enumerate the elements of S in lexicographic
order).

The off-line portion of the attack succeeds if we can find a value of N̂ that
causes the loop to exit before we exhaust the error space. The probability of this
happening for a particular value of N̂ is

Pr(N̂ is prime) · Pr(gcd(e, N̂ − 1) = 1).

In practice, e is usually equal to 3 or 65537 which are both prime numbers. We
will make the simplifying assumption that e is prime. Thus,

Pr(gcd(e, N̂ − 1) = 1) = Pr(e � | N̂ − 1) =
e− 1

e
.
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A consequence of the Prime Number Theorem is that the probability that a
random odd positive integer x is prime is roughly 2/ lnx. Using this fact, and
the bound 2n−1 ≤ N̂ < 2n, we have

Pr(N̂ is prime) ≈ 2

ln N̂
>

2
ln 2n

=
2

n ln 2
.

The reader who carefully examines the definition of Algorithm 3 may notice that
there are some values of N̂ that are not necessarily odd. This happens only when
c = 0. However, in the off-line phase of the attack, since we are searching for N̂
that are prime, when carrying out our search we would simply modify the error
space, S, so that N̂ is always odd.

Now we can estimate the probability that N̂ meets our criteria as

2(e− 1)
e · n ln 2

.

Thus, the expected number of N̂ values we need to consider before we find one
that suits our needs is e·n ln 2

2(e−1) . The probability that there is no good value of N̂

inside our search space can be estimated as(
1− 2(e− 1)

e · n ln 2

)2b−1

.

This represents the probability that the off-line stage of the attack fails.
The on-line portion of the attack is described in the second iterative loop

(lines 11-13):

repeat
output← the output of Algorithm 2 on input m, s, (N, e).

until output = “accept”

This portion of the attack is much simpler to analysis. We want the RSA verifi-
cation algorithm to be affected by a particular error vector; assuming that each
error vector from {0, 1}b is equiprobable, this happens with probability 1

2b . Thus,
the expected number of faulted signature verification operations needed before
the desired error occurs is 2b.

Some of the important characteristics of Algorithm 3 are summarized in
Figure 1. Notice how the parameter b affects the success probability and run-
ning time of the attack. By increasing b we can increase the probability that the

off-line stage worst case running time O(2b − 1)
expected running time O e·n ln 2

2(e−1)

probability of success 1 − 1 − 2(e−1)
en ln 2

2b−1

on-line stage expected running time O(2b)

Fig. 1. Characteristics of Algorithm 3
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off-line stage of the attack succeeds. However, this also increases the expected
number of steps in the on-line stage of the attack. Depending on how quickly the
target device processes and responds to on-line queries, the expected number of
on-line queries required can present a major obstacle to attack implementors.

3.2 The Off-Line Search in Practice

We constructed two RSA public keys by pairing the RSA challenge numbers
RSA-1024 and RSA-2048 [12] with the exponent e = 65537. For each public
key, we examined the search space used in the off-line stage of Algorithm 3 for
various values of b and c (recall that b is the error-width and c is its offset). All
our numerical computations (i.e., probabilistic primality testing and gcd’s) were
done using the C++ library NTL [9].

For each public key, we took b ∈ {4, 6, 8, 10, 12, 14, 16}. For each value of b,
we set c to equal each multiple of b in the interval 0 . . . n− b− 1; so, c takes on
1 +

⌊
n−b−1

b

⌋
different values. In theory, the offset, c, could take any value in the

interval 0 . . . n− b; our reason for limiting c to multiples of b was that we wanted
the c values to define disjoint search spaces.

We illustrate our experiments with an example. Suppose b = 4 and n = 1024.
For these parameters, the error offset c takes on 255 different values; namely,
0, 4, 8, 12, . . . , 1016. Each value of c defines a search space which is disjoint from
all the others. We found that 3 of the 255 search spaces contained N̂ values for
which the off-line stage of the attack succeeds. The ratio 3/255 can be compared
to our estimate of the probability that the off-line stage of the attack succeeds
when b = 4 (see below). Across the 255 search spaces, we examined 255·(24−1) =
3825 values of N̂ . Of these 3825 values, 3 had the desired properties. The ratio
3/3825 can be compared to our estimate of the probability that N̂ is prime and
N̂ − 1 is relatively prime to e = 65537. The same methodology was used for the
other values of b. Our experimental results are summarized in Figure 2.

From our analysis in the previous section, for the 1024-bit public key, we
estimate the probability that a value of N̂ has the desired properties as

2 · 65536
65537 · 1024 · ln 2

≈ 0.00282.

The empirical values listed for RSA-1024 in column 5 of Figure 2 appear to con-
verge toward this estimate. From the probability above, we see that the expected
number of values of N̂ we must examine before we find one that meets our crite-
ria is 1/0.00282 = 355. If the architecture of a device permits the attacker some
control over the size of b, then they might choose b so that their search space
contains at least 355 values (but, of course, this does not guarantee that the
search space will contain a good value of N̂). In practice, it would seem prudent
to first find lots of good values of N̂ , for various values of b and c, and then pick
one that has a short error-width which is easy to instantiate in the device.
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b good N ’s total # of N ’s ratio good c’s total # of c’s ratio

RSA-1024 4 3 3825 0.00078 3 255 0.0118
e = 65537 6 24 10710 0.00224 23 170 0.135

8 68 32385 0.00210 53 127 0.417
10 264 104346 0.00253 97 102 0.951
12 969 348075 0.00278 85 85 1
14 3354 1195959 0.00280 73 73 1
16 11658 4128705 0.00282 63 63 1

RSA-2048 4 11 7665 0.00144 11 511 0.0215
e = 65537 6 44 21483 0.00205 41 341 0.120

8 106 65025 0.00163 80 255 0.314
10 332 208692 0.00159 164 204 0.804
12 1018 696150 0.00146 169 170 0.994
14 3433 2391918 0.00144 146 146 1
16 11601 8322945 0.00139 127 127 1

Fig. 2. Experimental results for the off-line stage of Algorithm 3

Using the probability above, we can estimate the probability that the off-line
stage of the attack will succeed for different values of b:

b = 4, 1− (1 − 0.00282)2
4−1 ≈ 0.0415

b = 6, 1− (1 − 0.00282)2
6−1 ≈ 0.163

b = 8, 1− (1 − 0.00282)2
8−1 ≈ 0.513

b = 10, 1− (1 − 0.00282)2
10−1 ≈ 0.944.

These estimates are quite close to the empirical values listed for RSA-1024 in
column 8 of Figure 2.

Similar comparisons can be made for RSA-2048. We estimate the probability
that a 2048-bit value of N̂ has the desired properties as

2 · 65536
65537 · 2048 · ln 2

≈ 0.00141.

And, we estimate the probability that the off-line stage of the attack will succeed
for different values of b as:

b = 4, 1− (1 − 0.00141)2
4−1 ≈ 0.0209

b = 6, 1− (1 − 0.00141)2
6−1 ≈ 0.0851

b = 8, 1− (1 − 0.00141)2
8−1 ≈ 0.302

b = 10, 1− (1 − 0.00141)2
10−1 ≈ 0.764.

These estimates are quite close to our empirical results.
Although our fault model and method of analysis greatly simplify many of the

arguments from Seifert’s paper, these experiments demonstrate that our analysis
does give an accurate picture of what can be expected in practice.
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4 Improving Seifert’s Attack

The criteria that Seifert uses for his off-line search can be relaxed. When we
examine various values of N̂ , what we really want is an integer that has an
easily computed prime factorization. If N̂ is prime, then this is certainly true.
However, there are many other integers which have this property. If we know
the prime factorization of N̂ , then we can easily compute ϕ(N̂ ) and then use the
extended Euclidean algorithm to obtain d̂ = e−1 mod ϕ(N̂).

Deciding whether or not the prime factorization of a random integer can be
easily computed is a subjective task. It depends upon what factorization method
you are using, how efficiently it is implemented and how much time you are
willing to invest. The strategy we used was this: given N̂ , divide out any prime
factors ≤ 210, and then check whether the quotient is equal to 1 or is prime.
We chose a small bound of 210 since we did not want to invest much time in
attempting to factor each N̂ in our simulations. Adversaries who are willing to
invest more time into attempting to factorize a few values of N̂ might utilize,
say, the elliptic curve factoring method since it tends to find small prime factors
of N̂ first.

The off-line stage of the attack now becomes

S ← {0, 1}b \ {0b}
repeat

Δ ∈R S
S ← S \ {Δ}
N̂ ← N ⊕ 0n−b−c‖Δ‖0c

N̂0 ← N̂ with any prime factors ≤ 210 divided out.
until (N̂0 is prime or equal to 1 and gcd(e, ϕ(N̂ )) = 1) or (S = ∅)

Obviously, the bound 210 can be replaced with one larger or smaller according
to the preference of the implementor. There is a convenient data structure in
NTL which can be used to generate all primes less than 230 in sequence1.

4.1 Analysis

The probability that a value of N̂ causes the loop above to exit is

Pr(N̂0 is prime or equal to 1) · Pr(gcd(e, ϕ(N̂)) = 1) =

Pr(the second-largest prime factor of N̂ is ≤ 210) · Pr(gcd(e, ϕ(N̂)) = 1).

The distribution of the second-largest prime factor of random integers ≤ x as
x→∞ was investigated by Knuth and Trabb Pardo [6]. Following their discus-
sion, we define

1 Actually, during our experiments, we found that the largest prime generated by
NTL’s PrimeSeq class to be 230 − 216 − 1 which is not the greatest prime ≤ 230;
there are 3184 more primes which are larger.
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F2(β) := lim
x→∞

Pr(a random integer ≤ x has its 2nd-largest prime factor ≤ xβ).

Knuth and Trabb Pardo showed that this limit exists, and also presented a
method for approximating its value. Over the interval 0 ≤ β ≤ 1/2, F2(β)
increases monotonically from 0 to 1; for β ≥ 1/2, F2(β) = 1. Since n is the
bit-length of the modulus, N , we have N̂ ≤ 2n. Setting x and β equal to 2n and
10/n, respectively, we obtain

F2 (10/n) ≈ Pr(a random integer ≤ 2n has its 2nd-largest prime factor ≤ 210).

Assuming N̂ behaves like a random integer ≤ 2n, this is the probability that
we want to approximate. Using our assumption that e is prime, we estimate the
probability that N̂ meets our criteria as

(e− 1)F2(10/n)
e

.

Unfortunately, F2(β) does not have a simple closed form so it is not immediate
what sort of improvement this achieves. However, we can quantify the difference
by plugging in some numbers.

A table of values for F2(β) is provided in [6]. From this table, we build a
polynomial approximation to F2(β) in the interval 0 ≤ β ≤ 1/2. This gives us

F2(10/1024) ≈ 0.0175, F2(10/2048) ≈ 0.00872,

F2(30/1024) ≈ 0.0538, F2(30/2048) ≈ 0.0264.

Now, for a 1024-bit public key with e = 65537, the probability that a random
value of N̂ ends our search when we cast out prime factors ≤ 210 is roughly

65536 · 0.0175
65537

≈ 0.0175.

So, our chances, which we calculated in §2.4, have increased from 0.282% to
1.75%. If we cast out primes less than 230, we get 5.38%. Some more comparisons
are made in Figure 3. The most dramatic difference appears in the number of
values of N̂ we expect to consider before the search ends.

4.2 The Improved Off-Line Search in Practice

We repeated the experiments from §2.4 using our new on-line search criteria. For
various error widths and offsets, we exhausted the resulting search spaces and
determined which N̂ ’s could be easily factorized after casting out prime factors
≤ 210. Our results are summarized in Figure 4. Our empirical results are close
to what our analysis predicts.

Although we have considered only random-data fixed-location faults in our
experiments, it is just as easy to treat fixed-data random-location faults. An
interesting demonstration of this is presented in Appendix A.
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off-line search using off-line search using
Seifert’s off-line search primes ≤ 210 primes ≤ 230

b
expected
iterations

probability
of success

expected
iterations

probability
of success

expected
iterations

probability
of success

RSA-1024 4 355 0.041 57 0.233 19 0.564
e = 65537 6 355 0.084 57 0.421 19 0.820

8 355 0.513 57 0.989 19 0.999

RSA-2048 4 710 0.021 115 0.123 38 0.331
e = 65537 6 710 0.043 115 0.238 38 0.564

8 710 0.302 115 0.893 38 0.999

Fig. 3. Comparison of off-line search strategies

b good N ’s total # of N ’s ratio good c’s total # of c’s ratio

RSA-1024 4 63 3825 0.0165 54 255 0.212
e = 65537 6 191 10710 0.0178 111 170 0.653

8 545 32385 0.0168 126 127 0.992
10 1843 104346 0.0177 102 102 1
12 6018 348075 0.0173 85 85 1
14 20861 1195959 0.0174 73 73 1
16 72711 4128705 0.0176 63 63 1

RSA-2048 4 63 7665 0.00822 60 511 0.117
e = 65537 6 203 21483 0.00945 155 341 0.455

8 598 65025 0.00920 228 255 0.894
10 1863 208692 0.00893 204 204 1
12 6259 696150 0.00899 170 170 1
14 20910 2391918 0.00874 146 146 1
16 72968 8322945 0.00877 127 127 1

Fig. 4. Experimental results of searching for easily factorable N ’s

5 Further Work

An interesting lesson that can be taken from Seifert’s attack is that public-key
authentication systems based on the integer factorization problem are somewhat
fragile with respect to bit-faults; that is, if you randomly flip a few bits of the
public-key then there is a non-negligible probability that you end up with an
integer that is easy to factor. It would be interesting to determine if similar fault
attacks exist for discrete log based authentication systems. We briefly consider
some problems related to the ElGamal signature scheme [4].

In the ElGamal signature scheme

– the private key is x ∈R [1, p− 2].
– the public key is (y, g, p) where y = gx mod p, p is a large prime (say, 1024

bits) and g is a generator of Zp
∗.
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The signature verification algorithm is presented in Algorithm 4.

Algorithm 4. ElGamal Signature Verification
Input: m, (r, s), (y, g, p)
Output: “accept” or “reject”

1: if r �∈ [0, p − 1] or s �∈ [0, p − 2] then
2: return “reject”
3: h ← H(m)
4: u ← gh mod p
5: u′ ← rsyr mod p
6: if u = u′ then return “accept”
7: else return “reject”

To forge a signature on a message m, we must find (r, s) such that

gH(m) ≡ rsyr (mod p). (3)

It is well-known that the forgery problem is no harder than computing discrete
logs in Z∗

p (to see this, choose r at random and then solve a discrete log to obtain
s). Now, if we are able to randomly flip bits in one of p, y, g, it may be that the
forgery problem becomes tractable.

For example, if we change p to p̂, where p̂ is easily factorable, then we can
apply the CRT to Zp which may reduce our work in solving gH(m) ≡ rsyr

(mod p̂) using, say, an index-calculus method. Also, if ϕ(p̂) is smooth, then the
Pohlig-Hellman algorithm can be utilized; however, we ideally want an attack
that has a high probability of success.

One tempting possibility to consider is replacing g with ĝ where the order of ĝ
is small (as in a small subgroup attack). However, the probability that randomly
flipping bits of g moves us into a small subgroup of Z

∗
p seems to be negligible.

It is possible that computing logg ŷ might be easier than computing logg y.
This motivates the following relaxation of the discrete log problem: given y, find
ŷ and x̂ such that ŷ = gx and y ⊕ ŷ has low weight.

6 Remarks

Our analysis and computational trials show that if an adversary is able to cause
random faults in only 4 bits of a 1024-bit RSA modulus stored in a device, then
there is a greater than 50% chance that they will be able to make that device
accept a signature on a message of their choice; for 2048-bit RSA, 6 bits suffice.

These percentages do not take into account any of the practical difficulties that
might be involved in a real-world implementation of the attack. For example, it
might be difficult to limit the effect of faults to a particular block of bits within
the modulus. Our examination was limited to a mathematical model and so we
did not deal with these issues. Presently, there is no record of anyone successfully
or unsuccessfully carrying out this attack in the open literature. Whether this is
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because the assumptions of the attack are too strong or that simply no one has
yet attempted to implement it remains to be seen.

One way to defend against this attack is to have the device check the integrity
of its public key. This might be done by computing a cryptographic hash of the
public key and then comparing it to some stored value. However, care must
be taken in when this comparison is done. If an integrity check is done before
a signature is verified, this will not stop attackers who cause bit-faults in the
public key after the check. Other countermeasures, against fault analysis attacks
in general, are discussed in [1].
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A Fixed-Data Faults

Some of the techniques for inducing faults explained in [1] can be used to zeroize
bytes of data. An off-line search for an easily factorable modulus with respect



434 J.A. Muir

to this fault model is easy carry out. Here, we present an interesting example of
this.

The 2048-bit modulus from the public RSA key that Microsoft stores inside
the Xbox can be found in publicly available source code [11]. Here is the modulus
in hexadecimal:

A44B1BBD7EDA72C7143CD5C2D4BA880C7681832D5198F75FCAB1618598E2B3E4
8D9A47B0BFF6BC967CAE88F198266E535A6CB41B470C0A38A19D8F57CB11F568
DB52CF69E49F604EEA52F4EB9D37E80C60BD70A5CF5A67EC05AA6B3E8C80C116
819A14892BFA7603BECE39F09C42724EE9F371C473AAA09FEDA34F9EA1019827
BD07CA52A80013BE9471E46FCF1CA4D915FB9DF95E9344330B6AAE0B90526AD1
BE475D10797526075C9206FF758A3EB3BAF7C0A22E51645BB9F13FE129A22F2E
1BEDDA95D68AFC6D46585B01FBB5737273C6AEE399148C5B8E77B479DE8B05BD
EEC27FEFFF7B349C64F51002D2F6522ED43617F2A1A3D4C2E6D73D66E54ED7D3

This modulus consists of 256 bytes. If we index the bytes from least significant
(byte 0 = D3) to most significant (byte 255 = A4), then the smallest index, i, such
that when we zeroize byte i we obtain an easily factorable number is i = 16. The
method of factorization we used was to cast out all prime factors ≤ 230 and then
apply a probabilistic primality test. The factorization is 3 · 13 · 199 · 856469 · p0
where p0 is a large prime. The smallest index, j, such that when we zeroize byte
j we obtain a prime number is j = 104.
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Abstract. In Eurocrypt 2004, Chen, Kudla and Paterson introduced
the concept of concurrent signatures, which allow two parties to produce
two ambiguous signatures until the initial signer releases an extra piece
of information (called keystone). Once the keystone is publicly known,
both signatures are bound to their true signers concurrently. In ICICS
2004, Susilo, Mu and Zhang further proposed perfect concurrent signa-
tures to strengthen the ambiguity of concurrent signatures. That is, even
if the both signers are known having issued one of the two ambiguous
signatures, any third party is still unable to deduce who signed which
signature, different from Chen et al.’s scheme. In this paper, we point out
that Susilo et al.’s two perfect concurrent signature schemes are actually
not concurrent signatures. Specifically, we identify an attack that enables
the initial signer to release a carefully prepared keystone that binds the
matching signer’s signature, but not the initial signer’s. Therefore, their
schemes are unfair for the matching signer. Moreover, we present an ef-
fective way to avoid this attack so that the improved schemes are truly
perfect concurrent signatures.

Keywords: Concurrent signature, fair exchange, security protocol.

1 Introduction

The concept of concurrent signatures was introduced by Chen, Kudla and Pa-
terson in Eurocrypt 2004 [11]. Such signature schemes allow two parties to pro-
duce and exchange two ambiguous signatures until an extra piece of information
(called keystone) is released by one of the parties. More specifically, before the
keystone is released, those two signatures are ambiguous with respect to the iden-
tity of the signing party, i.e., they may be issued either by two parties together
or just by one party alone; after the keystone is publicly known, however, both
signatures are bound to their true signers concurrently, i.e., any third party can
validate who signed which signature.

As explained below, concurrent signatures contribute a novel approach for
the traditional problem of fair exchange of signatures: Two mutually mistrustful
parties want to exchange their signatures in a fair way, i.e., after the completion
of exchange, either each party gets the other’s signature or neither party does.
Fair exchange of signatures is widely useful in electronic commerce, like contract
signing and e-payment.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 435–451, 2006.
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According to whether a trusted third party (TTP) is needed in the exchange
procedure, there are two essentially different approaches in the literature for
the problem of fair exchanging signatures: (a) Gradual exchange without TTP;
and (b) Optimal exchange with TTP. Though without the help of a TTP, the
first type solutions (e.g., [21,15,13]) impractically assume that both parties have
equivalent computation resources, and inefficiently exchange signatures “bit-by-
bit” for many interactive rounds. There are many efficient implementations be-
longing to the second approach, such as verifiably encrypted signatures [6,5,9],
escrowed signatures [3,4], convertible signatures [8], and verifiable confirmation
of signatures [10] etc. However, all those schemes require a dispute-resolving
TTP whose functions are beyond that of a CA (certification authority) in PKI
(public key infrastructure). The point is that such an appropriate TTP may be
costly or even unavailable to the parties involved.

In [11], Chen et al. remarkably observed that the full power of fair exchange is
not necessary in many applications, since there exist some mechanisms that pro-
vide a more natural dispute resolution than the reliance on a TTP. In particular,
concurrent signatures can be used as a weak tool to realize practical exchanges,
if one of the two parties would like to complete such an exchange. Chen et al.
presented several such applications, including one party needing the service of
the other, credit card payment transactions, secret information releasing, and
fair tendering of contracts. In the following, we only review a concrete example
of the first kind application.

Consider a situation where a customer Alice would like to purchase a laptop
from a computer shop owned by Bob. For this purpose, Alice and Bob can first
exchange their ambiguous signatures via the Internet as follows. As the initial
signer, Alice first chooses a keystone, and signs her payment instruction ambigu-
ously to pay Bob the price of a laptop. Upon receiving Alice’s signature, Bob
as the matching signer agrees this order by signing a receipt ambiguously that
authorizes Alice to pick one up from Bob’s shop. However, to get the laptop from
the shop physically, Alice has to show both Bob’s signature and the keystone,
because Bob’s ambiguous signature alone can be forged by Alice easily. But the
point is that once the keystone is released, both of the two ambiguous signatures
become bound concurrently to Alice and Bob respectively. Therefore, Bob can
present Alice’s signature together with the corresponding keystone to get money
from bank.

In the above example, Alice indeed has a degree of extra power over Bob, since
she controls whether to release the keystone. Actually, this is the exact reason
why concurrent signatures can only provide a somewhat weak solution for fair
exchange of signatures. In the common real life, however, if Alice does not want
to buy a laptop (by releasing the keystone), why she wastes her time to order
it. At the same time, by adding a time limit in the receipt, Bob could cancel
Alice’s order conveniently like the practice in booking air-tickets nowadays. The
advantage is that those solutions using concurrent signatures [11,27] can be
implemented very efficiently in both aspects of computation and communication,
and do not rely on any TTP. Therefore, the shortcomings in traditional solutions
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for fair exchange of signatures are overcome in a relatively simple and natural
way.

In ICICS 2004, Susilo, Mu and Zhang [27] pointed out that in Chen et al.’s
concurrent signatures, if the two parties are known to be trustworthy any third
party can identify who is the true signer of both ambiguous signatures before
the keystone is released. To strengthen the ambiguity of concurrent signatures,
Susilo et al. further proposed a strong notion called perfect concurrent signatures,
and presented two concrete constructions from Schnorr signature and bilinear
pairing. That is, in their schemes even a third party knows or believes both
parties indeed issued one of the two signatures, he/she still cannot deduce who
signed which signature, different from Chen et al.’s scheme.

In this paper, we shall point out that Susilo et al.’s perfect concurrent signa-
tures are actually not concurrent signatures. Specifically, we identify an attack
against their two schemes that enables the initial signer Alice to release a care-
fully prepared keystone such that the matching signer Bob’s signature is binding,
but not her. Therefore, both of their two perfect concurrent signature schemes
are unfair for the matching signer Bob. At the same time, we also address an-
other weakness in their keystone generation algorithm. To avoid those flaws, we
present an effective way to improve Susilo et al.’s schemes [27] so that the re-
sults are truly perfect concurrent signatures. Moreover, our improvement from
Schnorr signature obtains about 50% performance enhancement over their orig-
inal scheme. In addition, we notice that a similar attack applies to a generic
construction of identity-based perfect concurrent signatures, which is proposed
by Chow and Susilo in ICICS 2005 [12].

For simplicity, we call PCS1 and PCS2 for Susilo et al.’s two perfect concurrent
signatures from Schnorr and bilinear pairing, respectively. Sections 2 presents the
security model for perfect concurrent signatures. In Section 3, we review PCS1
and analyze its security. In Section 4, we discuss PCS2 and its security. In Section
5, we present and analyze the improved schemes. Finally, Section 6 concludes
the paper.

2 Security Model and Definitions

This section presents a formal model for perfect concurrent signatures, which is
adapted from [11,27]. Specifically, a perfect concurrent signature (PCS) scheme
works just as a usual concurrent signature scheme but achieves stronger security.
That is, besides the requirements of unforgeability and fairness for standard
concurrent signatures, a PCS scheme is supposed to satisfy perfect ambiguity
(see below) rather than (usual) ambiguity specified in [11].

Definition 1 (Syntax of Concurrent Signatures). A concurrent signa-
ture scheme consists of the following five algorithms.

SETUP: On input a security parameter �, this probabilistic algorithm outputs
the descriptions of a tuple (U ,M,S,K,F), where U is the set of users,M the
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message space, S the signature space, K the keystone space, F the keystone
fix space. The algorithm also outputs the public keys {Xi} of all users, while
each user keeps the corresponding private key xi.

KGEN: This is a mapping from K to F , which is called the keystone generation
algorithm. Note that KGEN should be a one-way function, i.e., it is difficult
to derive k from KGEN(k).

ASIGN: On inputs (Xi, Xj , x, f, m), where Xi and Xj are two distinct public
keys, x is the private key corresponding to Xi or Xj (i.e. x = xi or x =
xj), f ∈ F , and m ∈ M, this probabilistic algorithm outputs an ambiguous
signature σ = (c, s1, s2) ∈ S×F×F on message m, where s1 = f or s2 = f .

AVERIFY: On input S = (σ, Xi, Xj , m), where σ = (c, s1, s2) ∈ S × F × F ,
Xi and Xj are two different public keys, and m ∈ M, this deterministic
algorithm outputs accept or reject. We also require AVERIFY should have the
symmetry property, i.e., AVERIFY(σ, Xi, Xj, m) ≡ AVERIFY(σ′, Xj , Xi, m),
where σ′ = (c, s2, s1) is derived from σ = (c, s1, s2).

VERIFY: On inputs (k, S), where k ∈ K and S = (σ, Xi, Xj, m), this deter-
ministic algorithm outputs accept if AVERIFY(S)=accept and the keystone k
is valid. Otherwise, it outputs reject.

Please refer to Section 2.2 of [11] for a framework how the concurrent signatures
can be generated and exchanged between two mutually mistrustful parties, i.e.,
their general concurrent signature protocol.

Now, we describe the security requirements for perfect concurrent signatures,
i.e., correctness, unforgeability, perfect ambiguity, and fairness. Correctness re-
quires that (a) every anonymous signature σ properly generated by ASIGN will
be accepted by AVERIFY, and every pair (k, σ) properly generated by KGEN
and ASIGN will be accepted by VERIFY. Since this is just a simple and basic
requirement, we do not mention it any more. The other three security require-
ments should be considered under a chosen message attack in the multi-party
setting, extended from the existential unforgeability given in [22]. The purpose is
to capture an adversary who can simulate and/or observe concurrent signature
protocol runs between any pair of users, as noticed in [11]. Informally, unforge-
ability requires any efficient adversary with neither of the corresponding two
secret keys cannot forge a valid concurrent signature with non-negligible proba-
bility under chosen message attacks. Since this paper focuses on the fairness and
perfect ambiguity of concurrent signatures, we just mention the following formal
definition of unforgeability without specifying the details of the game between a
challenger and an adversary.

Definition 2 (Unforgeability). A concurrent signature scheme is existen-
tially unforgeable under a chosen message attack in the multi-party model,
if the success probability of any polynomially bounded adversary in the game
specified in Section 3.2 of [11] is a negligible function of the security parameter �.

In [11], ambiguity means that given a concurrent signature without the keystone,
any adversary cannot distinguish who of the two signers issued this signature.
This notion is strengthened by Susilo et al. (See Definition 5 in [27]) to capture
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that there are four cases (not only three cases) for the issuers of two signatures.
We call this strengthened notion perfect ambiguity, and refine its definition here
by providing a full formal specification. That is, the perfect ambiguity of a
concurrent signature scheme is formally defined via the following game between
an adversary E and a challenger C.

Setup: For a given security parameter �, C runs SETUP to obtain all descrip-
tions of the user set U , the message space M, the signature space S, the
keystone space K, the keystone fix space F , and the keystone generation
algorithm KGEN : K → F . SETUP also outputs the public and private key
pairs {(Xi, xi)} for all users. Then, E is given all the public parameters and
the public keys {Xi}, while C retains the private keys {xi}.

Phase 1: E makes a sequence of KGen, KReveal, ASign and Private Key Extract
queries. These are answered by C as in the unforgeability game (Refer to
Section 3.2 of [11]).

Challenge: E selects a challenge tuple (Xi, Xj, m1, m2) where Xi and Xj are
public keys, and m1, m2 ∈ M are two messages to be signed. In response,
C first selects keystones k, k′ ∈R K, computes f1 = KGEN(k) and f2 =
KGEN(k) + KGEN(k′) mod q. Then, by randomly selecting b ∈ {1, 2, 3, 4}, C
outputs ambiguous signatures σ1 = (c, s1, s2) and σ2 = (c′, s′1, s

′
2) as follows:

- If b = 1, σ1 ← ASIGN(Xi, Xj , xi, f1, m1), σ2 ← ASIGN(Xi, Xj , xi, f2, m2);
- If b = 2, σ1 ← ASIGN(Xi, Xj , xj , f1, m1), σ2 ← ASIGN(Xi, Xj, xj , f2, m2);
- If b = 3, σ1 ← ASIGN(Xi, Xj, xi, f1, m1), σ2 ← ASIGN(Xi, Xj, xj , f2, m2);
- If b = 4, σ1 ← ASIGN(Xi, Xj, xj , f1, m1), σ2 ← ASIGN(Xi, Xj , xi, f2, m2).

Phase 2: E may continue to make another sequence of queries as in Phase 1;
these are handled by C as before.

Output: E finally outputs a value b′ ∈ {1, 2, 3, 4} as its guess for b. We say E
wins the game if b′ = b and E has not made a KReveal query on any of the
following values: s1, s2, s′1 − f1, and s′2 − f1.

Definition 3 (Perfect Ambiguity). A concurrent signature scheme is called
perfectly ambiguous if no polynomially bounded adversary can win the above
game with a probability that is non-negligibly greater than 1/4.

Fairness intuitively requires that (1) a concurrent signature scheme should be
fair for the initial signer Alice, i.e., only Alice can reveal the keystone; and
(2) a concurrent signature scheme should be fair for the matching signer Bob,
i.e., once the keystone is released, both signatures are bound to their signers
concurrently. This concept is formally defined via the following game (adapted
from [11]) between an adversary E and a challenger C:

Setup: This is the same as in the game for perfect ambiguity.
Queries: KGen, KReveal, ASign and Private Key Extract queries are answered

by C as in the unforgeability game (Section 3.2 of [11]).
Output: E finally chooses the challenge public keys Xc and Xd, outputs a

keystone k ∈ K and S = (σ, Xc, Xd, m) such that AVERIFY(S) = accept,
where m ∈M and σ = (c, s1, s2) ∈ S×F×F . The adversary wins the game
if either of the following two cases holds:
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1. (k, S) is accepted by VERIFY so that s2 = KGEN(k) is a previous output
from a KGen query but no KReveal query on input s2 was made.

2. E additionally produces S′ = (σ′, Xc, Xd, m
′) along with another key-

stone k′ ∈ K, where m′ ∈ M and σ′ = (c′, s′1, s
′
2) ∈ S ×F×F , such that

AVERIFY(S′) = accept and s′1 = s2 + H1(k′). Furthermore, (k, k′, S′) is
accepted by VERIFY, but (k, S) is not accepted by VERIFY.

Definition 4 (Fairness). A concurrent signature scheme is fair if the success
probability of any polynomially bounded adversary in the above game is negligible.

Definition 5. We say that a correct concurrent signature scheme is secure,
if it is existentially unforgeable, perfectly ambiguous, and fair under a chosen
message attack in the multi-party setting.

3 PSC1 and Its Security

3.1 Review of PSC1

We now review PCS1 [27], which is a concurrent signature scheme derived from
Schnorr signature [26]. Susilo et al. constructed PCS1 by using some techniques
from ring signatures [24,1], as did by Chen et al. in [11].

– SETUP. On input a security parameter �, the SETUP algorithm first ran-
domly generates two large prime numbers p and q such that q|(p − 1), and
a generator g ∈ Zp of order q, where q is exponential in �. Then, the SETUP
algorithm sets the message space M, the keystone space K, the signature
space S, and the keystone fix space F as follows: M = K = {0, 1}∗, and
S = F = Zq. It also selects a cryptographic hash function H1 : {0, 1}∗ →
Zq, which is used as the message digest function and the keystone gener-
ation algorithm. In addition, we assume that (xA, yA = gxA mod p) and
(xB , yB = gxB mod p) are the private/public key pairs of Alice and Bob,
respectively.

– ASIGN. The algorithm ASIGN takes input (yi, yj , x, s, m), where yi and yj

are two public keys (yi �= yj), x is the private key corresponding to yi or yj

(i.e. x = xi or x = xj), s ∈ F is a keystone fix, and m ∈ M is the message
to be signed. By picking a random number α ∈R Zq, the algorithm outputs
an ambiguous signature σ = (c, s1, s2) as follows:
• If x = xi: c = H1(m, gαys

j mod p), s1 = (α− c) · x−1
i mod q, s2 = s;

• If x = xj , c = H1(m, gαys
i mod p), s1 = s, s2 = (α− c) · x−1

j mod q.
– AVERIFY. Given an ambiguous signature-message pair (σ, yi, yj , m), where

σ = (c, s1, s2), yi and yj are two public keys, the AVERIFY algorithm outputs
accept or reject according to whether the following equality holds:

c ≡ H1(m, gcys1
i ys2

j mod p). (1)

– VERIFY. The algorithm takes input (k, S), where k ∈ K is the keystone and
S = (σ, yi, yj, m), and σ = (c, s1, s2). The algorithm VERIFY outputs accept
if AVERIFY(S)=accept and the keystone k is valid by running a keystone
verification algorithm. Otherwise, VERIFY outputs reject.
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Note that the above are just the basic algorithms for generating and verifying
concurrent signatures. In the following concrete concurrent signature protocol, it
explicitly describes how to generate and verify keystones, and how to exchange
concurrent signatures between two parties without the help of any TTP.

PCS1 Protocol: Before running the protocol, we assume that the SETUP
algorithm is executed and the public keys yA and yB are published. Here we also
assume that Alice is the initial signer and Bob is the matching signer and they
want to exchange their signatures on messages mA and mB. Symmetrically, one
can get the protocol description for the case where the roles of Alice and Bob
are changed.

1. Alice sends Bob (σA, t̂, mA), which are computed as follows.
– Choose a random keystone k ∈R K and set s2 = H1(k).
– Run σA = (c, s1, s2)← ASIGN(yA, yB, xA, s2, mA).
– Pick a random t ∈R Zq and compute t̂ = yt

A mod p.
2. Upon receiving (σA, t̂, mA), where σA = (c, s1, s2), Bob checks whether

AVERIFY(σA, yA, yB, mA) ≡ accept. If not, then Bob aborts. Otherwise,
he sends (σB , mB) to Alice by performing as follows.
– Compute r = t̂xB mod p, r′ = r mod q, and set s′1 = s2 + r′ mod q.
– Run σB = (c′, s′1, s′2)← ASIGN(yA, yB, xB , s′1, mB).

3. After (σB, mB) is received, where σB = (c′, s′1, s′2), Alice performs as follows.
– Check whether AVERIFY(σB, yA, yB, mB) = accept. If not, Alice aborts.

Otherwise, continue.
– Compute r′ = s′1 − s2 mod q, r = yxAt

B mod p, and check whether
r′ ≡ r mod q. If not, then Alice aborts. Otherwise, continue.

– Issue the following signature proof Γ to show that r and t̂ are properly
generated by using the knowledge of his private key xA (Refer to Section
2.2 in [27] for details):

Γ ← SPKEQ(γ : r = ytγ
B ∧ t̂ = gtγ ∧ yA = gγ)(k). (2)

– Release the keystone κ = {k, r, t, t̂, Γ} publicly to bind both signatures
σA and σB concurrently.

4. VERIFY Algorithm. After the keystone κ = {k, r, t, t̂, Γ} is released publicly,
σA = (c, s1, s2) and σB = (c′, s′1, s′2) are validated as Alice’s and Bob’s signa-
ture w.r.t. messages mA and mB respectively, iff all the following verifications
hold.
– Check whether H1(k) ≡ s2;
– Check whether r′ = r mod q, where r′ = s′1 − s2 mod q;
– Check whether Γ is a valid signature proof;
– Check AVERIFY(σA, yA, yB, mA) ≡ accept and AVERIFY(σB , yA, yB, mB)
≡ accept.

In a summary, by using two pieces of keystone Susilo et al. strengthened the
ambiguity of concurrent signatures so that there are four cases of authorship for
two ambiguous signatures σA and σB. Due to this reason, their schemes achieves
perfect ambiguity. As pointed in [27], in such schemes even an outsider knows
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(or believes) that Alice and Bob signed exactly one of two signatures σA and
σB, he/she still cannot deduce whether Alice signed σA or σB . In Chen et al.’s
scheme, however, this is very easy for an outsider. Based on the similarity of
PCS1 and Chen et al.’s scheme, the unforgeability of PCS1 can be established
in the random oracle model under the discrete logarithm assumption in subgroup
〈g〉, as stated in [27]. This reason is that one can incorporate the forking lemma
[23] to provide a proof as did by Chen et al. in [11]. For the fairness, however, it
is a different story.

3.2 On the Fairness

The authors of [27] argued the fairness of PCS1 protocol by the following two
claims:

Claim 1. Before κ = {k, r, t, t̂, Γ} is released, both signatures σA and σB are
ambiguous (Theorem 1 in [27]).

Claim 2. After κ = {k, r, t, t̂, Γ} is released, both signatures σA and σB are
bound to the two signers concurrently (Theorem 2 in [27]).

Claim 1 is correct, but Claim 2 may be false if the initial signer Alice is
dishonest. To illustrate this point, we now present a concrete attack against
PCS1 protocol such that once κ is released, (σA, mA) is not binding to Alice, but
(σB , mB) is indeed binding to Bob. Moreover, if necessary Alice can issue another
signature-message (σ̄A, m̄A) to binding herself, where message m̄A is chosen at
her will. From the view point of Bob, he is cheated by Alice, because what he
expected is to exchange his signature on message mB with Alice’s signature
on message mA. But the result is that Alice indeed obtained his signature on
message mB, while Bob did not get Alice’s signature on message mA (though he
may get Alice’s signature on a different message m̄A). Naturally, this is unfair for
the matching signer Bob. Because fairness implies that the matching signer Bob
cannot be left in a position where a keystone binds his signature to him while
the initial signer Alice’s signature is not bound to Alice (See the last paragraph
of page 296 in [11]). In the example of purchasing laptop given in Section 1, due
to this attack Bob may be unable to get money from Alice, but Alice can pick
up one laptop from Bob’s shop.

The following is the basic idea of this attack. It is truly a natural and in-
teresting method to construct perfect concurrent signatures by exploiting two
keystones instead of one. However, we notice that in step 2 of PCS1 proto-
col no mechanism is provided for Bob to check the validity of the keystone
fix s2. Based on this observation, dishonest initial signer Alice can set s2 =
H1(k) + r′ − r̃′ mod q, i.e., s2 + r̃′ = H1(k) + r′ mod q, where r′ and r̃′ are
some properly generated values. Then, Alice generates an ambiguous signature
on mA by using value s2 (though she does not know the keystone for s2). After
receiving Bob’s ambiguous signature on mB, Alice can issue her signature on
m̄A by using the value s̄2 = H1(k) at her will. The detail follows.
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Attack 1 on PCS1 Protocol. In this attack, we assume that the initial signer
Alice is dishonest, but the matching signer Bob is honest, i.e., he follows each
step of PCS1 protocol properly.

1. The dishonest initial signer Alice performs in the following way.
1.1) Pick t, t̃ ∈R Zq, and compute values t̂, r, r′, t̂′, r̃, and r̃′ by

t̂ = yt
A mod p, r = yxAt

B mod p (= t̂xB mod p), r′ = r mod q,

t̂′ = yt̃
A mod p, r̃ = yxAt̃

B mod p (= t̂′xB mod p), r̃′ = r̃ mod q.
(3)

1.2) Choose a keystone k ∈R K and set s2 = H1(k) + r′ − r̃′ mod q. So
Alice has the following equality

s2 + r̃′ = H1(k) + r′ mod q. (4)

1.3) Run σA = (c, s1, s2)← ASIGN(yA, yB, xA, s2, mA).
1.4) Send (σA, t̂′, mA) to the matching signer Bob.

2. Since AVERIFY(σA, yA, yB, mA) ≡ accept, honest Bob sends Alice (σB , mB)
by
2.1) Compute r̃ = t̂′xB mod p, and r̃′ = r̃ mod q;
2.2) Set s′1 = s2 + r̃′ mod q;
2.3) Run σB = (c′, s′1, s

′
2) ← ASIGN(yA, yB, xB , s′1, mB).

3. Since (σB , mB) is properly generated by honest Bob, it is easy to know that
AVERIFY(σB , yA, yB, mB) ≡ accept and that r̃′ ≡ s′1 − s2 mod q. That is,
(σB , mB) is Bob’s valid signature. Now, Alice selects a message m̄A at her
choice and performs as follows.
3.1) Set s̄2 = H1(k).
3.2) Run σ̄A = (c̄, s̄1, s̄2)← ASIGN(yA, yB, xA, s̄2, m̄A).
3.3) Retrieve (t, t̂, r, r′) from Step 1.1 (recall Eq. (3)).
3.4) Issue a proof Γ ← SPKEQ(γ : r = ytγ

B ∧ t̂ = gtγ ∧ yA = gγ)(k).
3.5) Output (σ̄A, m̄A), (σB , mB), and the keystone κ = {k, r, t, t̂, Γ}.

On the validity of attack 1, we have the following proposition:

Proposition 1. After the keystone information κ = {k, r, t, t̂, Γ} is released, the
two signature-message pairs (σ̄A, m̄A) and (σB , mB) are bound to Alice and Bob,
respectively. However, (σA, mA) is not bound to Alice.
Proof: This proof is almost self-evident, so we just mention the following main
facts:

– H1(k) ≡ s̄2 (recall Step 3.1).
– r′ ≡ s′1 − s̄2 mod q ≡ r mod q (recall Eqs. (3), (4)).
– Γ is a valid signature proof for SPKEQ(γ : r = ytγ

B ∧ t̂ = gtγ ∧ yA = gγ)(k),
since it is properly generated by Alice in Step 3.4.

– AVERIFY(σA, yA, yB, mA) ≡ accept and AVERIFY(σB , yA, yB, mB) ≡ accept,
since both σB = (c′, s′1, s′2) and σ̄A = (c̄, s̄1, s̄2) are properly generated by
running algorithm ASIGN in Steps 3.2 and 2.3, respectively.
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Therefore, according to the specification of algorithm VERIFY reviewed in
Section 2, (σ̄A, m̄A) and (σB, mB) are truly binding to Alice and Bob. However,
the same keystone information κ = {k, r, t, t̂, Γ} cannot be used to bind (σA, mA)
to Alice. In fact, even Alice is unable to reveal a keystone k′ such that s2 =
H1(k′). Otherwise, this implies Alice can find a pre-image of hash value s2 =
H1(k) + r′ − r̃′ mod q. ��

3.3 On the Keystone Generation

In PCS1 protocol, a variant of Diffie-Hellman key exchange technique [14] is used
to derive keystone fix r′. In summary, r′ is generated as follows. By selecting a
random number t ∈ Zq, Alice first sets t̂ = yt

A mod p and sends t̂ to Bob. Then,
Bob computes r = t̂xB mod p, r′ = r mod q, and sets s′1 = s2+r′ mod q. Finally,
Alice issues a signature proof Γ ← SPKEQ(γ : r = ytγ

B ∧ t̂ = gtγ ∧ yA = gγ)(k),
and releases keystone information κ = {k, r, t, t̂, Γ}. Hence, from the public

information κ any third party can derive the value yAB
	
= gxAxB mod p by

calculating
yAB = rt∗

mod p, where t∗ = t−1 mod q. (5)

A problem is that the value of yAB is the crux for some other cryptosystems,
such as the strong designated verifier signature (SDVS) of Saeednia et al. [25],
and the signcryption scheme of Huang and Cheng [19]. That is, if yAB is available
to an adversary those cryptosystems are broken (Check [18] for more discussions
on SDVS). This implies that one user cannot use the same key pair to run
PCS1 protocol and those cryptosystems, even though all of them work in the
discrete logarithm setting with the same parameters. In other words, this is an
example showing that the simultaneous use of related keys for two cryptosystems
is insecure (See [17] for some positive results).

4 PCS2 and Its Fairness

This section briefly reviews and analyzes PCS2, which is a perfect concurrent
signature constructed from bilinear pairing.

– SETUP: This algorithm first selects an admissible bilinear pairing (Sec 2.1 of
[27]) e : G1 ×G1 → G2, where G1 and G2 are two cyclic (additive and mul-
tiplicative, respectively) groups with the same prime order q. It also selects
two cryptographic hash functions H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zq.
Alice and Bob have private/public key pairs (xA, PA = xAP ) and (xB , PB =
xBP ), where xA, xB ∈ Z∗

q , and P is a generator of group G1. System para-
meters {G1, G2, e, q, P, H0, H1} are publicly known.

– ASIGN: The ASIGN algorithm takes inputs (Pi, Pj , x, f, m), where x is the
secret key associated with public keys Pi or Pj (i.e., x = xi or x = xj), f ∈ F
is a keystone fix, and m ∈ M is the message to be signed. By selecting a
random number a ∈R Zq, the algorithm outputs an ambiguous signature
σ = (c, s1, s2) as follows:
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• If x = xi: c = H1(Pi||Pj ||e(aH0(m), P ) · e(fH0(m), Pj)), s1 = (a −
c)x−1

i mod q, s2 = f ;
• If x = xj : c = H1(Pi||Pj ||e(aH0(m), P ) · e(fH0(m), Pi)), s1 = f , s2 =

(a− c)x−1
j mod q.

– AVERIFY: Given σ = (c, s1, s2), AVERIFY(σ, Pi, Pj , m) = accept iff the fol-
lowing equality holds.

c ≡ H1(Pi||Pj ||e(H0(m), P )c · e(H0(m), Pi)s1 · e(H0(m), Pj)s2 ).

– VERIFY: Given a concurrent signature (k, S), where k ∈ K and S = (σ =
(c, s1, s2), Pi, Pj , m), VERIFY(k, S) = accept iff k is a valid keystone by
executing the keystone verification algorithm, and AVERIFY(S) = accept.

PCS2 Protocol. Without losing generality, we assume that the initial signer
Alice and the matching signer Bob want to exchange their signatures on messages
mA and mB, respectively.

1. Alice first sends (σA, Z) to Bob by performing as follows
– Select a random keystone k ∈R K and set s2 = H1(k);
– Pick a randomness α ∈ Z∗

q and compute Z = αP ;
– Run σA = (c, s1, s2)← ASIGN(PA, PB, xA, s2, mA).

2. Upon receiving (σA, Z), Bob checks whether AVERIFY(σA, PA, PB , mA) ≡
accept. If not, Bob aborts. Otherwise, he returns the following value σB to
Alice.
– Compute r = e(PA, Z)xB , and set s′1 = s2 + r mod q;
– Run σB = (c′, s′1, s′2)← ASIGN(PA, PB, xB , s′1, mB).

3. Once σB = (c′, s′1, s
′
2) is received, Alice first computes r = e(PB, Z)xA ,

then checks whether both AVERIFY(σB , PA, PB, mB) ≡ accept and s′1 ≡
s2 + r mod q. If any of those two verifications fails, Alice aborts. Otherwise,
she releases the keystone (k, α) so that both signatures σA and σB are binding
concurrently. With (k, α), the validity of σA and σB is validated if all the
following verifications hold:
– s2 ≡ H1(k) and s′1 ≡ s2 + r mod q, where r = e(PA, PB)α;
– AVERIFY(σA, PA, PB, mA) ≡ accept;
– AVERIFY(σB , PA, PB, mB) ≡ accept.

Attack 2 on PCS2 Protocol. Compared with PCS1, PCS2 protocol is more
efficient since the 2nd keystone fix r is exchanged between Alice and Bob in a
more effective way (thanks to the bilinear pairing). However, PCS2 protocol is
also unfair for the matching signer Bob, since a dishonest initial signer Alice
can cheat Bob in an analogous way as in PCS1. More precisely, dishonest Alice
can first select three random numbers k, α, α′ ∈R Z

∗
q , and compute Z = αP ,

Z ′ = α′P , r = e(PA, PB)α, and r′ = e(PA, PB)α′
. Then, Alice further sets

s2 = H1(k) + r − r′ mod q, i.e., the following equality holds:

s2 + r′ ≡ H1(k) + r mod q. (6)

After that, Alice runs σA ← ASIGN(PA, PB , xA, s2, mA), and sends (σA, Z ′) to
Bob. Once getting Bob’s valid signature σB = (c′, s′1, s

′
2) on message mB, where
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s′1 = s2 + r′ mod q and r′ = e(PA, Z ′)xB , Alice releases (k, α) so that (σB , mB)
is bound to Bob. However, the same keystone information (k, α) does not bind
(σA, mA) to Alice. Moreover, if needed Alice can generate her signature σ̄A on
a different message m̄A of her choice by using value s̄2 = H1(k). Due to Eq. (6),
the keystone (k, α) shall bind (σ̄A, m̄A) to Alice as well as (σB , mB) to Bob.

5 The Improved Schemes

5.1 Description of the Improved Schemes

We observe that the attacks against the fairness of PCS1 and PCS2 result from
the following fact: The initial signer Alice sets both two pieces of keystone alone.
This privilege allows Alice to choose two pairs of keystone fixes so that the sums
of them have the same value (recall Eqs. (4) and (6)). However, this sum de-
termines the matching signer Bob’s signature. Therefore, to avoid this attack
we shall improve PCS1 and PCS2 as iPCS1 and iPCS2 by letting Bob choose
the second keystone. At the same time, our improved protocols are designed to
achieve a symmetry for both keystones. That is, both keystones can be values in
the same domain and have the same verification algorithm. Moreover, the signa-
ture proof Γ is totaly removed in our iPCS1 to get a more efficient concurrent
signature protocol (Check Table 1). The reason is that in the iPCS1 protocol
(see below), the authenticity of H1(k′) can be checked by Alice in Step 3 as
follows: s′1 ≡ s2 + H1(k′) mod q, where k′ = (t̂xA mod p) mod q and (t̂, s′1) is
received from Bob.

In the following description, we just specify the two improved concurrent
signature protocols iPCS1 and iPCS2, while the corresponding algorithms are the
same as in PCS1 and PCS2, respectively. In addition, note that iPCS1 protocol
also works well for Chen et al.’s concurrent signature scheme [11].

iPCS1 Protocol: As in PCS1, we assume that the SETUP algorithm is already
executed, and that the initial signer Alice and the matching signer Bob want to
exchange their signatures on messages mA and mB, respectively.

1. Alice sends Bob (σA, mA), where σA = (c, s1, s2) is calculated as follows:
– Choose a random keystone k ∈R K and set s2 = H1(k);
– Run σA = (c, s1, s2)← ASIGN(yA, yB, xA, s2, mA).

2. Upon receiving (σA, mA), Bob checks whether AVERIFY(σA, yA, yB, mA) ≡
accept. If not, Bob aborts. Otherwise, Bob returns back (σB , mB, t̂) to Alice
by
– Pick a random t ∈R Zq and compute t̂ = yt

B mod p;
– Compute r = yxBt

A mod p, and k′ = r mod q;
– Set s′1 = s2 + H1(k′) mod q;
– Run σB = (c′, s′1, s

′
2)← ASIGN(yA, yB, xB , s′1, mB).

3. Upon receiving (σB , mB, t̂), where σB = (c′, s′1, s
′
2), Alice performs as follows:

– Compute r = t̂xA mod p, and k′ = r mod q;
– Test whether s′1 ≡ s2 + H1(k′) mod q;
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– Check whether AVERIFY(σB , yA, yB, mB) ≡ accept;
– If σB is invalid, abort. Otherwise, release the keystone (k, k′) publicly to

bind both signatures σA and σB concurrently.
4. VERIFY Algorithm. With the keystone (k, k′), anybody can check the validity

of σA = (c, s1, s2) and σB = (c′, s′1, s
′
2) as follows.

– Alice signs σA iff s2 ≡ H1(k) and AVERIFY(σA, yA, yB, mA) ≡ accept.
– Bob signs σB iff s′1≡H1(k)+H1(k′) mod q and AVERIFY(σB , yA, yB, mB)
≡ accept.

iPCS2 Protocol: Again, we assume that the initial signer Alice and the match-
ing signer Bob want to exchange their signatures on messages mA and mB,
respectively.

1. Alice first sends Bob (σA, mA), where σA is computed as follows.
– Select a random keystone k ∈R K and sets s2 = H1(k);
– Run σA = (c, s1, s2)← ASIGN(PA, PB, xA, s2, mA).

2. Upon receiving (σA, mA), Bob checks that AVERIFY (σA, PA, PB, mA) ≡
accept. If not, Bob aborts. Otherwise, he returns back (σB , Z) to Alice by
performing below.
– Pick a random α ∈ Z∗

q , compute Z = αP and r = e(PA, PB)α;
– Set the second keystone k′ = r mod q;
– Compute s′1 = s2 + H1(k′) mod q;
– Run σB = (c′, s′1, s

′
2)← ASIGN(PA, PB, xB , s′1, mB).

3. Once σB = (c′, s′1, s′2) is received, Alice acts in the following way:
– Compute r = e(Z, PB)xA , and k′ = r mod q.
– Test whether s′1 ≡ s2 +H1(k′) mod q. If not, abort. Otherwise, continue.
– Check whether AVERIFY(σB , PA, PB , mB) ≡ accept.
– If σB is invalid, Alice aborts. Otherwise, Alice releases the keystone

(k, k′) to bind both signatures σA and σB concurrently.
4. VERIFY Algorithm. With the keystone (k, k′), anybody can check the validity

of σA = (c, s1, s2) and σB = (c′, s′1, s
′
2) as follows.

– Alice signs σA iff s2 ≡ H1(k) and AVERIFY(σA, yA, yB, mA) ≡ accept.
– Bob signs σB iff s′1≡H1(k)+H1(k′) mod q and AVERIFY(σB , yA, yB, mB)
≡ accept.

Table 1 gives the efficiency comparison for all concurrent signature protocols
discussed in this paper. As the main computational overheads, we only consider
multi-exponentiations (denote by E), scalar multiplications (denote by M), and
bilinear mappings (denote by e). As in [5], we assume that simultaneous expo-
nentiations are efficiently carried out by means of an exponent array. Namely,
the costs for ax1

1 ax2
2 and ax1

1 ax2
2 ax3

3 are only equivalent to 1.16 and 1.25 single ex-
ponentiation, respectively. Note that our iPCS1 outperforms the original PCS1
by about 50%, while iPCS2 is a little more efficient than PCS2.
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Table 1. Efficiency Comparison

Comp. Cost Comp. Cost Comp. Cost Signature Keystone
Protocol of Alice of Bob of Verifier Size Size

CS [11] 2.41E 2.41E 2.5E 3|q| |q|
CPS1 [27] 9.41E 3.41E 7.98E 3|q| 4|q| + 2|p|
iCPS1 3.41E 4.41E 2.5E 3|q| 2|q|
CPS2 [27] 6e+3.41E+1M 6e+3.41E 7e+3.5E 3|q| 2|q|
iCPS2 6e+3.41E 6e+3.41E+1M 6e+2.5E 3|q| 2|q|

5.2 Security Analysis of the Improved Schemes

Based on the results in [11,27] and the discussions previously provided, it is not
difficult to see that both iPCS1 and iPCS2 are truly perfect concurrent signature
protocols. Formally, we have the following theorem.

Theorem 1. The above iPCS1 is a secure perfect concurrent signature protocol
in the random oracle model under the discrete logarithm assumption. That is,
iPCS1 is perfectly ambiguous, fair, and existentially unforgeable under a chosen
message attack in the multi-party setting.

Proof. First of all, unforgeability holds due to the facts that all basic algorithms
in our iPCS are the same as in PCS1, and PCS1 is unforgeable (Theorem 4 in
[27]). Second, perfect ambiguity is almost evident. The reason is that in the
game of perfect ambiguity, to guess the signer of σ1 = (c, s1, s2) the adversary
E has to distinguish whether either s1 or s2 is a random number from Zq or an
output of H1(·) for some keystone k. However, this is impossible in the random
oracle model, since the hash function H1(·) is treated as a truly random function
with the range of Zq. Similarly, E cannot determine the authorship of σ2 better
than guessing. Therefore, the adversary E cannot guess correctly the value b ∈
{1, 2, 3, 4} selected by the challenger C at random with an advantage that is
non-negligibly greater than 1/4. Now, we turn to prove fairness in detail.

We suppose that there exists an algorithm E that with non-negligible probability
wins the fairness game, under the assumption that H1(·) is a random oracle.
Then, based on E’s output we derive some contradictions.

To initialize the fairness game for a given security parameter �, the challenger
C runs the SETUP algorithm to generate the public parameters (p, q, g) as usual,
where q is exponential in �, choose all the private keys xi ∈R Zq, set the public
keys as yi = gxi mod p, and give these public keys to the adversary E. Then, C
responds to E’s different kinds of queries as follows.

H1-Queries: E can query the random oracle H1 at any time. C simulates the
random oracle by keeping a list of pairs (mi, ri), which is called the H1-List.
When an input m ∈ {0, 1}∗ as H1-query is received, C responds as follows:
1. If the query m is the first component for some pair (mi, ri) in the H1-List,

then C outputs ri.
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2. Otherwise, C selects a random number r ∈R Zq, outputs r as the value
of H1(m), and adds the pair (m, r) to the H1-List.

KGen Queries: E can request that the challenger C properly generate a keystone
fix. To this end, C maintains a K-List of pairs (ki, fi), and answers such a
query by choosing a random keystone k ∈R K and computing f = H1(k).
C outputs f and adds the tuple (k, f) to the K-List. Note that K-List is a
sublist of H1-List, but is required to answer KReveal queries later.

KReveal Queries: E can request that the challenger C reveal the keystone k for
any keystone fix f which is produced for answering a previous KGen Query.
If there exists a pair (k, f) on the K-List, then C returns k, otherwise it
outputs invalid.

ASign Queries: E can also make any signature query of the form (yi, yj , s, m),
where s ∈ Zq, yi and yj (yi �= yi) are two public keys, and m ∈ {0, 1}∗ is
the message to be signed. To answer E’s query, C computes the signature
as normal and outputs σ = (c, s1, s2) = ASIGN(yi, yj, xi, s, m).

Private Key Extract Queries: E can request the private key for any public key yi.
Since it is C that sets up all the private keys, C just returns the appropriate
private key xi as its answer.

In the final stage, E finally outputs S = (σ, yA, yB, m) and a keystone k ∈ K
with non-negligible probability η, where yA and yB are two public keys, m ∈M,
and σ = (c, s1, s2) ∈ S × F × F , such that AVERIFY(S) = accept and either of
the following two cases holds:

1. (k, S) is accepted by VERIFY so that s2 = KGEN(k) is a previous output
from a KGen query but no KReveal query on input s2 was made.

2. E additionally produces S′ = (σ′, yA, yB, m′) along with another keystone
k′ ∈ K, where m′ ∈ M and σ′ = (c′, s′1, s

′
2) ∈ S × F × F , such that

AVERIFY(S′) = accept and s′1 = s2 + H1(k′). Furthermore, (k, k′, S′) is
accepted by VERIFY, but (k, S) is not accepted by VERIFY.

Since the adversary E produces the above output with non-negligible proba-
bility η, either case 1 or case 2 must occur with non-negligible probability. We
now analyze those two cases separately and then derive contradictions.

Case 1. Suppose E’s outputs satisfy the conditions in case 1 with non-negligible
probability. Namely, E has found a keystone k and an output of a KGen query s2
such that s2 = H1(k), but without making a KReveal query on input s2. Since
H1(·) is a random oracle, E’s probability of producing such a k is at most μ1μ2/q,
where μ1 is the number of H1 queries made by E and μ2 is the number of KGen
queries made by E. Both μ1 and μ2 are polynomially bounded in the security para-
meter � and q is exponential in �, so this probability is negligible. This contradicts
our assumption that case 1 occurs with non-negligible probability.

Case 2. Suppose case 2 occurs with non-negligible probability, i.e., the adver-
sary E’s outputs satisfy all conditions in case 2. Since S′ = (σ′, yA, yB, m′) is
accepted by AVERIFY, s′1 = s2+H1(k′), and (k, k′, S′) is accepted by VERIFY, we
must have s2 = KGEN(k) = H1(k). At the same time, since S = (σ, yA, yB, m)
is also accepted by AVERIFY and we already have s2 = KGEN(k) = H1(k), this
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implies that (k, S) is also accepted by VERIFY. This contradicts to the condition
in case 2 that (k, S) is not accepted by VERIFY. ��

Theorem 2. The above iPCS2 is a secure perfect concurrent signature protocol
in the random oracle model under bilinear Diffie-Hellman assumption. That is,
iPCS2 is perfectly ambiguous, fair, and existentially unforgeable under a chosen
message attack in the multi-party setting.

Theorem 2 can be proved analogously as Theorem 1. That is, unforgeability
and perfect ambiguity essentially follow from the results in [27] since all basic
algorithms in iPCS2 are the same as in PCS2, while fairness can be obtained in
a similar way as we do in Theorem 1.

6 Conclusion

For the applications with somewhat weak requirement of fairness, concurrent sig-
natures [11] provide very simple and natural solutions for the traditional prob-
lem of fair exchange signatures without involving any trusted third party. To
strengthen the ambiguity of concurrent signatures, two perfect concurrent sig-
natures are proposed in [27]. This paper successfully identified an attack against
those two perfect concurrent signatures by showing that they are actually not
concurrent signatures. Consequently, those two schemes are unfair in fact. To
avoid this attack, we presented effective improvements to achieve truly perfect
concurrent signatures. Moreover, our improvement from Schnorr signature ob-
tains about 50% performance enhancement over the original scheme in [27]. We
also addressed another weakness in their keystone generation algorithm. In ad-
dition, we remarked that a similar attack can apply to an identity-based perfect
concurrent signature scheme proposed in [12]. As the future work, it is interest-
ing to consider how to improve the efficiency of perfect concurrent signatures,
and how to construct concurrent signature schemes in multi-party setting.
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Abstract. A wide variety of powerful cryptographic tools have been
built using RSA, Diffie-Hellman, and other similar assumptions as their
basis. Computational security has been achieved relative to complexity
assumptions about the computational difficulty of a variety of number
theoretic problems. However, these problems are closely related, and it
is likely that if any one of them turns out to be efficiently solvable with
new mathematical advances or new kinds of computational devices, then
similar techniques could be applicable to all of them. To provide greater
diversity of security assumptions so that a break of one of them is less
likely to yield a break of many or all of them, it is important to expand the
body of computational problems on which security systems are based.
Specifically, we suggest the use of hardness assumptions based on the
complexity of logic problems, and in particular, we consider the well
known Boolean 3Sat problem.

In this paper, we consider the use of the 3Sat problem to provide a
cryptographic primitive, secure set membership. Secure set membership
is a general problem for participants holding set elements to generate
a representation of their set that can then be used to prove knowledge
of set elements to others. Set membership protocols can be used, for
example, for authentication problems such as digital credentials and some
signature problems such as timestamping.

1 Introduction

The most popular computational foundation for cryptographic security is based
on number-theoretic problems such as factoring, discrete logarithm, and elliptic
logarithm [12,26,7]. These problems are all related, so if one is broken it is likely
that they all will be broken [11]. Their security is not proven and is likely to either
remain unproven or be broken. They are also vulnerable to quantum attacks [27].
It would be desirable to have many kinds of cryptographic primitives whose
security is based on a wide array of unrelated assumptions. This would mean
that if one system is compromised, they are not necessarily all compromised.
In this paper, we present a system based on an alternative logic-based assumption
that does not appear to be closely related to these other assumptions.
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Specifically, we consider the use of the well known Boolean satisfiability prob-
lem to provide a very general cryptographic primitive, secure set membership.
Secure set membership can be used to provide digital credentials, with or with-
out identification, as well as for some signature problems such as timestamping.
For example, consider a system for maintaining encrypted PINs for credit cards.
Each credit card may have multiple PINs (for multiple users); any solution should
hide the PINs in such a way that the system accepts valid PINs, but nobody can
determine any valid PIN that he does not already know. If the system is used in
a setting in which it is reasonable for the system to be able to determine which
user it is talking to, then it is possible for the system to simply store hashes of
all the valid PINs and compare a received hashed PIN with this list to determine
if it is valid. This is an example of credentials with identification. However, if
the users of the credit card do not want to identify themselves, or if the credit
card issuer prefers to have users not identify themselves, except as a valid user
of the credit card in question, when they make a purchase, then this results in
the goal of anonymous credentials. For anonymous credentials, the user wants
to prove that he has valid credentials without giving the credentials away.

In this paper, we provide a means for constructing a secure set membership
system that can be used both for credentials with identification and for anony-
mous credentials. Secure set membership can be used as an alternative to digital
signatures for some applications including timestamping [6]. We note that our
system has the desirable property that each participant can choose her own set
elements. In the setting of digital credentials, this allows participants to choose
their credential values (rather than having them determined by a third party
or as an output of a distributed credential generation algorithm), thus making
the system suitable for use with credentials that are determined by user-chosen
passwords or biometrics.

Our solution is based on the Boolean satisfiability problem (Sat), which has
not previously been used for digital credentials. We are aware that the use of
the problem of finding witnesses for 3Sat instances as a security assumption is
unusual and the practice of basing cryptographic hardness on NP-completeness is
shaky in general, because the worst case hardness required for NP-completeness
does not say anything about most cases or the expected case. However, we think
it is of interest nonetheless. First, algorithmic advances and new computing
models threaten many of the commonly used cryptographic assumptions, such
as the hardness of factoring. Secondly, Sat is perhaps one of the most studied
NP-complete problems, and a fair bit is known about how to choose instances
that appear to be hard. We discuss this further in Section 3.4 and Section 5 in
the context of our proposed solution.

1.1 Related Work

The set membership problem was first addressed by Benaloh and de Mare with
one-way accumulators in 1993 [6]. A number of schemes based on one-way ac-
cumulators were developed including schemes for digital credentials [10,3]. The
schemes for credentials typically differ from the other schemes, which tend to
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concentrate on the idea of a distributed signature, in several ways. These include
central authorities in the credential scheme, as well as support of additional prop-
erties such as revocation. All these schemes depend on the difficulty of the RSA
problem for their security.

Another approach to set membership is to use Merkle trees or similar tree-
based methods to store the elements of the set [23,24,5]. In these methods, each
participant retains a certificate and her own set element. In effect, each element
of the set is signed by a central authority. However, these methods are either
not storage-efficient or require more than a constant amount of time to check
relative to the number of entries [28].

In a credential system, members of the credentialed group have, or are given,
credentials that they can use to prove their membership in the set of authorized
persons, without revealing which of the members they are. Biometric data may
be used to prevent transferability of credentials, together with zero knowledge
proofs of knowledge, for a group member to prove to a verifier that she holds a
valid credential without revealing it. Anonymous credentials have been widely
studied and solutions based on various cryptographic assumptions have been
given (e.g. [9,10,1,21]).

Several approaches have been taken to digital credentials. Most of these ap-
proaches require a central authority (such as [6,10]), though some approaches
based on one-way accumulators do not require a central authority. In contrast,
our approach can work with or without a central authority. The combination of
one-way accumulators and zero-knowledge proofs was introduced by Camenisch
and Lysyanskaya [10]. Other credential systems allow revocation of anonymity
such as a different system by Camenisch and Lysyanskaya [9].

Our work makes use of the assumed computational difficulty of finding sat-
isfying assignments to certain kinds of satisfiable 3Sat instances. A related use
of the hardness of Sat for achieving security has been recently proposed for
hiding information in anomaly detection applications [14,15,16,13]. Their work
is concerned with maintaining lists of information that, if compromised, will not
compromise the larger system for applications such as intrusion detection. The
central idea of our system is to represent an element of a set by an assignment to
a set of variables, and the set of elements by a 3Sat instance that is satisfied by
the corresponding assignments. In comparison, the work of Esponda et al. uses
a Sat instance to represent a database; in their case, they represent the values
not in the database by satisfying assignments.

We note that both our use of 3Sat and Esponda et al.’s use of Sat do not have
the same difficulties as with earlier use of NP-complete problems for cryptogra-
phy, such as the knapsack problem [25], because it is not necessary to embed a
trapdoor to be used for operations such as decryption.

1.2 Our Contribution

Our contribution includes three protocols with applications to anonymous
credentials, credentials with identification, accounts with multiple users, and
digital timestamping.
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Our protocols propose a solution to the set membership problem. Specifically,
we provide a method for generating representations of sets of provided elements.
We also provide a method of using a resulting representation to prove a partic-
ular element was in the set at the time the representation was generated, and
a method of using the representation to show a party holds a valid set element
without revealing the element itself. Our representations are random 3Sat in-
stances of a particular form which accept the chosen witnesses. Theorem 1 shows
that among 3Sat instances that accept the selected witnesses and have the se-
lected number of clauses, the algorithm chooses one uniformly at random. The
security of the scheme relies on the computational difficulty of finding satisfying
assignments to such 3Sat instances. Our system has the following properties:

– It generates instances of 3Sat that are satisfied by a given set of strings.
– It generates any suitable instance of 3Sat with equal probability. This is

shown in Theorem 1.
– In combination with zero knowledge proofs for 3Sat, it provides interactive

proofs that can be used for anonymous credentials.
– Assuming the 3Sat instances generated are appropriately hard, it provides

security against an attacker either finding a participant’s element from the
information needed to verify set membership or finding other bit strings that
satisfy the set membership problem.

We define the set membership problem in Section 2. We present our system in
Section 3. In Section 4, we discuss applications, including anonymous credentials
and digital timestamping. We conclude with further discussion in Section 5.

2 Preliminaries

In this section, we define the secure set membership problem. A secure set mem-
bership system consists of two parts. First, the set must be established. Later,
holders of set elements can prove their elements’ set membership to others.
Depending on the application, it may be desirable for the proof to reveal the set
element or to keep it secret. Specifically, we have the following definitions.

Definition 1. A set establishment protocol is a protocol carried out by some
number m of participants P1, . . . , Pm. Each Pi holds as input set element wi.
The output of the protocol is a set representation T = T (w1, . . . , wm).

Definition 2. A set membership protocol is a protocol carried out by a partic-
ipant P holding a set element w and a verifier V holding a set representation
T . An honest verifier accepts if and only if the representation T was generated
from a set of elements including w, even if P is cheating. The verifier learns w.

Obviously, the set membership protocol is unsuitable for credential systems in
which the set elements are reusable credentials, because it allows both V (and
possibly eavesdroppers) to learn w and thereby to masquerade as P in the fu-
ture to others. The protocol is also unsuitable for anonymous credential systems
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unless further measures are taken because it allows V to distinguish between dif-
ferent provers because they have differing credentials. Fortunately, both of these
difficulties can be eliminated by using a proof of possession protocol, defined
below, instead of a set membership protocol.

Definition 3. A proof of possession protocol is a protocol carried out by a par-
ticipant P holding a set element w and a verifier V holding a set representation
T . An honest verifier accepts if and only if the representation T was generated
from a set of elements including w, even if P is cheating. The verifier V does
not learn w, even if V is cheating.

These definitions can be formalized according to the standard definitions of zero
knowledge and simulatability.

In the sequel, we assume all participants are computationally bounded. In
particular, our solutions depend on the computational infeasibility of finding
witnesses for certain 3Sat expressions (also called instances). We discuss the
validity of this assumption further in Section 3.4.

When we discuss a 3Sat instance, we pay attention to two parameters. These
are the number, �, of variables and the number, n, of clauses, also called the
size of the instance. We also consider the clause density α = n

� , which is an
important parameter for determining the difficulty of a 3Sat instance [2].

In our solution, the elements of the set are interpreted as assignments to a set of
variables, also called witnesses . We refer to a 3Sat instance that represents the set
of elements as a set representation or, when clear from context, simply as a set .

3 Secure Set Membership

In this section, we describe our secure set membership protocols. We first de-
scribe in Section 3.1 a centralized process for a trusted party to establish a set
representation for a set of given elements. In Section 3.2, we describe a dis-
tributed version of the set establishment protocol, which can be carried out by
the participants holding set elements and does not require a centralized trusted
party. In Section 3.3, we describe how to show set membership for elements of
the established set. We discuss the security of our solutions in Section 3.4.

3.1 Centralized Set Establishment Protocol

Let W = {w1, w2, · · · , wm} be a set of assignments to � variables V = {v1, . . . , v�}.
Each wi represents an individual element. The trusted party, say T , generates
a set representation for W—that is, a 3Sat instance satisfied by each wi ∈ W .
To do this, T repeatedly generates random clauses that are the conjunction of
3 literals over variables in V . He checks each clause he generates to determine
whether it is satisfied by every wi ∈ W . If there is some wi ∈ W that does not
satisfy the clause, then T discards the clause and randomly selects a replacement
clause which goes through the same test. Once n satisfied clauses are found,
where n is a security parameter representing the desired size of the expression,
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Input: A set of variable assignments W = {w1, w2, · · · , wm}, the number � of
variables to be used, and the target number n of clauses.
Output: A 3Sat instance satisfied by all w ∈ W .

While there are fewer than n clauses do:

1. Select three different random numbers {v1, v2, v3} ∈ {1, . . . , �}.
2. Select three random bits n1, n2, n3. For each bit, if the bit is set, the corresponding

random number is considered to be a negation of the variable.
3. If another clause has the same three numbers and corresponding negations discard

v1, v2, v3 and n1, n2, n3 and return to Step 1.
4. For each wj do

If, for all i ∈ {1, 2, 3} ((ni is true and vi is set in wj) or (ni is false and vi

is not set in wj)) then delete v1, v2, v3, n1, n2, n3 and goto Step 1.
5. Add the clause represented by {(n1, v1), (n2, v2), (n3, v3)} to the instance.

Algorithm 1. A centralized protocol for establishing a set

their conjunction forms the desired set representation T , which is output by T .
The complete algorithm is given in Algorithm 1.

Note that the output T is an instance of the 3Sat problem satisfied by the
assignments that the participants have specified as elements. It may also be
satisfied by some other unknown assignments. However, even if there are such
spurious witnesses, that does not mean they are easy for an attacker to find.
Nonetheless, it seems desirable to avoid having many such spurious witnesses.
One can reduce the number of spurious witnesses by choosing a large n, because
the probability of a given assignment satisfying a 3Sat instance decreases ex-
ponentially with the size of the instance. Specifically, n should be chosen to be
large enough to satisfy three security criteria:

– The conjunction of the clauses should be satisfied by very few assignments
that are not valid elements.

– The size of the conjunctive normal form (CNF) expression that is made by
the clauses should be large enough that there is high probability that it is
not an instance of Sat for which an efficient solution is known.

– The size of the CNF expression should be large enough that it can potentially
be computationally infeasible to find satisfying assignments.

In general, this can be accomplished by choosing a suitably large number of
variables and setting the clause density to a suitable value. The security of the
scheme is discussed further in Section 3.4.

We now turn our attention to the computational complexity of this algorithm.
We note that there is some chance that the algorithm might not even terminate,
if there are not a sufficient number of available clauses that satisfy the given
witnesses. However, if � is chosen relatively large in comparison to m, and � is
sufficiently large compared to m and n, there should be a sufficient number of
clauses that satisfy the witnesses. Further analysis or experiments are needed in
order to determine appropriate values to use.
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Assuming that there is a large number of clauses that satisfy the given wit-
nesses, consider a particular witness representing one set element and consider
a single randomly chosen 3Sat clause. There are three variables in a clause, all
of which are given some assignment in the witness. Each variable in the clause
can appear as a literal in either positive or negative form, so there are eight
possible cases. Of these, seven are satisfied by the witness; it is only not satisfied
(and therefore not accepted) in the case where none of the three literals is sat-
isfied. Thus, the probability of a clause satisfying one witness is 7

8 . If there are
m witnesses, then the probability of a clause satisfying all of them is (7

8 )m. It
follows that the expected number of tries required to generate a clause in the set
representation is (8

7 )m. It takes O(log �) bits to represent a clause and the clause
must be checked against m witnesses, each of which can be done in constant
time. Therefore, it takes O(m log �) time to test a clause to determine whether
it is satisfied by all the witnesses.

In order to generate n clauses, it is necessary to find n distinct clauses that
are satisfied by W . As each clause is found, it becomes slightly harder to find
the next clause, as duplicates will sometimes be chosen. However, as long as n
is very small relative to the total number of clauses that satisfy W , this has
a negligible effect. If the probability that a random chosen clause passes both
tests (satisies W and is not a duplicate) were fixed at (7

8 )m, then the expected
running time to generate a set representation would be O(n((8

7 )m)m log �). We
note that in cases where n is a significant fraction of the total number of clauses
that satisfy W , then this would not be the case.

In practice, this means that it is only computationally efficient to generate
an instance for at most up to around a hundred witnesses. A hundred witnesses
leads to an expectation of 629,788 rejected clauses per accepted clause, easily
doable with current computers. When the number of witnesses reaches a hundred
and fifty, there is an expectation of about five hundred million rejected clauses
for each accepted clause, probably infeasible for a typical modern computer when
the number of clauses is considered.

3.2 Distributed Set Establishment Protocol

We now discuss the distributed protocol for establishing T , which is given in
Algorithm 2. This algorithm works for honest-but-curious participants, who are
assumed to follow their specified protocols. It also has some resilience against
cheating participants; for example, cheating parties can cause an easy instance of
3Sat to be chosen, but in some cases the other participants can detect that this
may be happening. At a high level, the protocol executes as follows: the partici-
pants locally generate local copies of the same random clause. Each determines
if the clause is satisfied by her own witness and communicates this information
to the others. If the clause is satisfied by all the witnesses, it is kept. Otherwise,
it is discarded.

In order to protect the participants’ witnesses from being disclosed, we use
a verifiable secret-ballot election scheme by Benaloh [4]. The scheme is based
on homomorphic encryption and secret sharing. It operates by designating some
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participants as tellers. Participants give secret shares of their votes to the tellers.
The tellers then use the homomorphic properties of the secret-sharing scheme to
compute shares of the tally. They then collaborate to compute the actual tally
and provide a proof to the participants that the tally was computed correctly.

In order to detect cheating of individual participants in our scheme, the tellers
count the number of times that any participant votes “no” for any given clause.
This can be accomplished without revealing the votes to the tellers by using the
homomorphic property of the election scheme. The tellers maintain a running
sum of each participant’s votes and collaborate to determine that sum after a
clause is chosen. If this sum exceeds a threshold value maxreject , then the in-
stance is discarded and the protocol restarted from the beginning. Depending on
the application setting for the protocol, it may be desirable to exclude partic-
ipants who have exceeded the maxreject threshold some number of times from
further participation. We note that even if a cheating participant succeeds in
influencing the outcome of the protocol, she can neither learn another partici-
pant’s witness nor cause another participant’s witness to not satisfy the resulting
3Sat instance.

The goal is to choose maxreject high enough so that it detects cheating at levels
that could lead to malicious participants being able to break the security of the
result, but low enough so that it does not unnecessarily restart the protocol when
no participants are cheating. As a somewhat arbitrary threshold, we suggest:

maxreject =

( 8
7

)m

8
− n

log 7
8

− 2
log 7

8

,

which is derived as follows. As mentioned previously, the probability of a random
clause satisfying a given witness is 7

8 . The first term of the formula for maxreject
is the inverse of the probability of all the witnesses being satisfied for a single
clause divided by the number of them that a single witness rejects. This is not
sufficient to give a useful probability of an honest run not being rejected because
there are n clauses yielding a probability that all n is satisfied of 2−n. The
second term of the formula for maxreject brings the probability of an honest
run being rejected to 1/2 by being the solution to the equation: (7

8 )f(n) = 2−n.
By adding f(n) to the number of elections, we are dividing the probability by
2−n for probabilities not approaching one. The third term further increases the
probability that all terms are satisfied to 7

8 by dividing the probability by 1
4 .

Further analysis or experiments are needed in order to determine how effective
this or any choice of maxreject is.

To ensure termination and also to provide some protection against multiple
cheating participants colluding and “spreading out” their “no” votes in order
not to individually exceed the maxreject threshold, it would also be a good idea
to have a check in each iteration of the while loop that the loop has not been
executed too many times, and to abort the protocol if this occurs.

In our set establishment protocol, the participants have a public shared source
R of random or pseudorandom numbers. Using R, each participant generates a
clause as the disjunction of three elements. Since the same random source is
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Input: A set of variable assignments W = {w1, w2, · · · , wm}. Each wi is known to
participant Pi. All participants also know the number � of variables to be used and
the target number n of clauses, as well as a sufficiently long random string R.
Output: An instance of 3Sat that is satisfied by all participants’ witnesses.

– set

maxreject =
8
7

m

8
− n

log 7
8

− 2
log 7

8

– While there are fewer than n clauses do:
1. Using R, select three different variables v1, v2, v3 and three flags n1, n2, n3.
2. Construct the clause where the flags denote the negation of variables.
3. If the clause is equivalent to a clause already generated, discard it and return

to Step 1.
4. Hold a verifiable secret-ballot election (see [4]) using “yes” if the clause is

satisfied by the witness and “no” otherwise. If the tally is unanimously “yes”,
then add the clause to the instance. Otherwise, delete it. Each teller should
maintain a running sum of each participant’s shares of votes.

5. return to Step 1.
– Use the homomorphic property to compute the number of “no” votes for each

participant. If one exceeds maxreject , discard all the clauses.

Algorithm 2. A distributed algorithm

used, all the participants generate the same clause. The participants hold a
verifiable secret-ballot election. If the tally is unanimously “yes”, the clause is
kept; otherwise, it is rejected. If a participant votes “no”, then the clause is
discarded. This process is repeated until the target number n of clauses has
been generated.

It is easy to verify that the output T is satisfied by all the inputs w1, . . . , wm,
so Algorithm 2 meets the definition of a set establishment protocol. Assuming
that parties behave honestly, the expected number of tries to find a clause is
(8
7 )m as in the centralized protocol of Section 3.1.

3.3 Set Membership

Our set representations lend themselves easily to both set membership and proof
of possession protocols.

Set membership involves a participant P , who knows his element w, and a
verifier V , who knows T . P wants to convince V that T was generated as a
set representation that included the element w. In our case, then, P wants to
convince V that w satisfies T .

A straightforward set membership protocol (in which V is allowed to commu-
nicate w to P , as per the definitions in Section 2), is for P to communicate w
to V , who can then easily check in polynomial time whether w satisfies T . If it
does, V accepts; otherwise, V rejects.
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For proof of possession, it is important that the verifier never learns the cre-
dentials and cannot impersonate the prover. Fortunately, in our solution, it is
not necessary to present the element to show set membership, but rather it is
sufficient to show that one knows a satisfying string. This can be done with a
zero knowledge proof. Assuming trapdoor one-way functions exist, then such
zero knowledge proofs are possible for 3Sat using a generic construction that
applies to any NP-complete problem [17]. Additionally, this can be made secure
against quantum computers [29], in keeping with our motivation to avoid reliance
on number-theoretic assumptions. If one is willing to rely on such assumptions,
there are also simple examples of zero knowledge proofs for 3Sat that rely on
factoring [8,4].

3.4 Security

The security of the set membership protocol and the proof of possession protocol
depends on the difficulty of finding witnesses that satisfy a set representation
T constructed by the set establishment protocol. We show below in Theorem 1
that the representation T is random among all instances of 3Sat with n clauses
and � variables satisfied by the specified assignments W = {w1, . . . , wm}. The
instance T may possibly be satisfied by some other assignments. That is, given a
set of witnesses and a specified number of clauses, there is an equal probability
that our algorithm produces any instance that is satisfied by the witnesses and
has the proper number of variables and clauses. The probability that T is hard
is the same as the probability that it is hard to find a witness for a random such
instance of 3Sat. Unfortunately, it is not known what this probability is. (In
fact, if P = NP, then the probability is zero.)

Our system rests on the assumption that a sufficiently large random instance
of 3Sat satisfying a given set of witnesses and having an appropriately chosen
clause density has a high probability of being hard to solve. If this assumption
holds, then it is hard for anyone to find a witness which is not an element. It is
also hard for a party who does not already know an element of T to find one.
These two properties provide the security for both the set membership proto-
col and the proof of possession protocol. In particular, for the set membership
protocol, the ability for an adversary to succeed in forging a witness without
overhearing one is precisely the adversary’s ability to determine a satisfying as-
signment to T , because this property can be exactly checked by the verifier. In
the case of the proof of possession protocol, the security additionally relies on
the soundness of the zero knowledge proof. An adversary who cannot find a valid
witness has only negligible probability of convincing the verifier to accept.

Theorem 1. Algorithms 1 and 2 generate with equal probability any 3Sat in-
stance consisting of n different clauses that is satisfied by all the assignments
in W .

Proof (sketch). The same argument applies to both Algorithm 1 and Algo-
rithm 2. This is because Algorithms 1 and 2 save or reject clauses for the same
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reasons. The only difference is whether the checking is handled by the partici-
pants or by a centralized authority.

Consider the “random algorithm,” which simply has a list of all the possi-
ble instances consisting of n distinct 3-literal clauses over � variables that are
satisfied by all w ∈ W and selects one instance uniformly at random.

First, we show that our algorithm generates the same set of instances as the
random algorithm. Suppose a possible 3Sat instance (in the random algorithm’s
list) cannot be generated by our algorithm. Then a clause in it must be rejected
by our algorithm either because it is a duplicate or because some assignment does
not satisfy the clause. It cannot be a duplicate, as this violates the requirement
for the random algorithm’s list that the clauses be distinct. If some assignment
does not satisfy the clause, then no instance including that clause is satisfied
by the assignment. Therefore, including it would violate the condition for the
random algorithm’s list that it must be satisfied by W . Hence, all instances in
the list drawn on by the random algorithm are candidates for generation by our
algorithm.

Conversely, suppose a 3Sat instance generated by our algorithm cannot be
generated by the random algorithm. Then there are two possible reasons. The
first is that there is a duplicate clause resulting in the number of unique clauses
being less than n. This instance cannot be generated by our algorithm because
the duplicate clause will be suppressed. The other possible reason is that it is not
satisfied by one of the witnesses. In this case, one of the clauses is not satisfied by
that witness (as the instance is a conjunction of the clauses). This clause will be
rejected by our algorithm, so this instance cannot be generated. Therefore, the
set of instances selected by the random algorithm is exactly the set of instances
that our algorithm can generate. Call the size of this set N .

Finally, we show that our algorithm generates each instance with the same
probability as the random algorithm. The random algorithm has probability 1/N
of choosing each of the N instances that it can generate. Our algorithm also
generates each of these instances with equal probability. To see this, note that in
our algorithm, each clause has a constant probability depending on how many
clauses have already been chosen. The product of a fixed number of constants is
a constant. Therefore all of the instances have the same probability. It follows
that, for our algorithm, each clause has probability 1

N , as desired.

Theorem 1 states that, given � and n, the system can generate any 3Sat instance
of � variables with n clauses that is satisfied by the specified witnesses. We make
some observations and propose some heuristic recommendations for selecting the
security parameters:

– Beyond a certain threshold, increasing the number of variables without in-
creasing the number of clauses actually reduces security because there are
not enough instantiations of the variables.

– Recall that the clause density of an instance is defined as α = n
� . Alekhnovich

and Ben-Sasson [2] show that if α ≤ 1.63, then the instance can be solved in
linear time. They also demonstrate empirically that α < 2.5 seems to be easy
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to solve. We recommend taking α ≥ 8 (i.e., choosing n ≥ 8�) for security. For
example, � = 128 and n = 1024. If one is concerned about quantum attacks,
then we suggest � = 256 and n = 2048 due to the quadratic advantage given
by Grover’s algorithm [18].

– A certain number of variables are trivial in any particular instance (i.e.,
because they either do not appear in positive form or in negative form, and
therefore it is clear how to set them in a satisfying assignment). This can
reduce the security of the system, by making it easier for an adversary to find
satisfying assignments. Additionally, once the trivial variables are assigned,
an adversary can then “remove” those clauses, potentially resulting in more
trivial variables.

If our instances were random among all 3Sat instances with n clauses and
� variables, then the expected number of trivial variables could be limited
by taking the clause density sufficiently large. However, as noted before, our
instances are random only among those 3Sat instances that are actually
satisfied by the set W of witnesses. Further study is needed to determine
how many trivial variables our instances are likely to have and whether this
can be reduced.

The phase boundary of 3Sat is the clause density at which instances go
abruptly from being mostly satisfiable to mostly unsatisfiable. The 3Sat de-
cision problem—determining whether a 3Sat instance is satisfiable or not—is
believed to be hardest when instances are just above the phase boundary [20].
However, our problem is a little different. Our set representation instances are
always satisfiable (since they are specifically chosen to satisfy a particular set
of witnesses). The problem at hand for an attacker is to find a satisfying as-
signment. We conjecture that the problem of finding satisfying assignments for
instances that are known to be satisfiable gets harder as the probability of a
random instance of the same parameter being satisfiable gets smaller—i.e., well
above the phase boundary.

SATLIB contains resources for experimental research on Sat and 3Sat, in-
cluding the results of competitions in solving random Sat instances. The litera-
ture on SATLIB suggests that progress has not been made on high clause density
instances [20]. We also note that there is an optimization variant of the Sat prob-
lem called MaxSat [20,19,22]. Specifically, it is possible to approximate 3Sat
by finding assignments that satisfy most, but not all clauses. Known algorithms
are polynomial time for finding a 7/8 assignment, but become exponential in the
worst case when trying to do a full assignment.

Multiple cheating participants might collude to try to “spread out” their
cheating rejections so that they can influence the outcome without exceeding
maxreject . This can be compensated for by decreasing maxreject or by limiting
the total number of rejections allowed cumulatively for all participants rather
than for individual participants. However, this also increases the chance of “false
positives,” in which the protocol is restarted even without cheating behavior, so
it is only likely to work well for a small number of colluding participants. It
remains open to address other types of cheating and collusions.
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4 Applications

There are a number of applications of the set membership problem, including
credentials and document timestamping.

4.1 Digital Credentials

Our system applies to anonymous credentials in a fairly straightforward manner.
The credentials are the elements. They are generated using either the centralized
protocol or the distributed protocol and they are verified using the proof of
possession protocol. In this way, the credentials are all generated at once and
then the instance is distributed to the verifiers. Verifiers use the instance to
anonymously determine whether a member is credentialed. If credentials with
identification are desired, then the member can present his witness; the verifier
can check that the witness satisfies the instance.

4.2 Accounts with Multiple Users

The system is also useful in situations where there need to be multiple authenti-
cation strings for a single account. An example is accounts with multiple users.
Suppose there are three debit cards issued on one bank account and they all have
the same number but each has a different PIN. The PINs can then be used as
witnesses in constructing an instance. When a user wants to demonstrate that
she is an authorized user of the account, she runs the proof of possession proto-
col using her PIN. This way, joint holders of an account can access the account
without giving away their PINs (which might also be used for other accounts
that are not shared).

Other applications of multiple user accounts include the use of RFID tags
as witnesses in an access control system based on proximity sensors and other
access control situations where it is not desirable to uniquely identify the user.

4.3 Document Timestamping

Document timestamping [5,6] may require a little more explanation. In document
timestamping applications, we think of the distributed protocol as a distributed
signature. All the parties participating in the protocol are attesting that one of
their number knew each witness at the time the protocol was run by accepting
the set that results from the protocol. It would not be possible for the protocol
participant to execute the protocol and then choose a satisfying witness at some
later date.

The timestamping system proceeds in rounds. All documents submitted dur-
ing the same round are considered to be simultaneous, like patent applications
arriving at the patent office on the same day. Each participant’s witness is a
hash of the document(s) she would like to timestamp. The distributed protocol
is run, and everyone remembers the round’s set, which is the timestamp. The
parties may jointly publish it if they wish to allow anyone to verify a timestamp.
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To verify that a document was submitted during a given round, the verifier
merely needs to run the set membership protocol. The security of this system
does not depend on computational security, in that if a cheating prover wishes to
make his specific document appear to be timestamped and it does not satisfy the
3Sat instance, there is nothing he can do to change that. (We note, though, that
in most practical settings, the adversary may be able to change his document in
ways that do not affect its meaning, but do affect its encoding into a bit string,
so this guarantee is not absolute.)

Digital timestamping can be used for intellectual property disputes, among
other applications. In the intellectual property application, a consortium gen-
erates a timestamp with each company using a hash of the hashes of all of
its documents. Each company retains the daily timestamp and publishes it for
other interested parties. In a patent dispute, for instance, a party can get all the
other honest participants to attest to its possession of a document on or before
a certain date. This could also be used to prevent backdating in stock or other
business transactions.

5 Discussion

We have presented a general solution to the set membership problem whose se-
curity depends on the difficulty of finding witnesses to random 3Sat instances
satisfying a given set of witnesses. We have also presented applications to ac-
cess control, digital credentials, and timestamping. We have shown a distributed
protocol for establishing a set.

A strong justification for considering security based on 3Sat is the increased
worry that advances in conventional or quantum computing may one day yield
efficient algorithms for problems such as factoring and discrete logarithms typ-
ically used as a source of hardness in cryptography. It is therefore important
to investigate cryptographic algorithms based on alternate (plausible) hardness
assumptions to provide resilience against “breaking” of any one assumption or
class of assumptions.

Further work includes analysis and experiments to determine the probability
distribution of the output of our set establishment protocol with respect to all
3Sat instances. In particular, it should be investigated experimentally whether
a randomly generated instance of 3Sat of size n that is satisfied by the chosen
witnesses falls into one of the patterns whose solution is known to be easy, as
well as determining whether all such instances can be specifically avoided.

Our protocol can be used for digital credentials including anonymous cre-
dentials, timestamping, and other set membership applications. It can also be
used for applications where multiple users share an account. These include some
access control and financial applications. For set membership applications like
timestamping, the set representation can be thought of as a distributed sig-
nature. It can be proven to any honest participant or observer using the set
membership protocol that a document was used for inclusion in the set. These
applications have broad applicability to problems in cryptography and security.
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The advantages of this method over one-way accumulators include not needing to
remember a second string and not being dependent on the factoring problem [6].

As previously discussed, the expected number of clauses that must be tried
to generate a clause in the set representation is ( 8

7 )m, where m is the number of
witnesses to be represented. We note that this probability depends on the number
of elements and is independent of n and �. In contrast, the security of the system
is based on the adversary’s difficulty of finding an element as a function of n
and �, so it may be possible to limit m so as to have efficient solutions for the
participants without making the adversary’s task solvable. As described earlier
in Section 3.1, we believe that one hundred witnesses can be dealt with easily,
but that as the number of witnesses begins to reach one hundred fifty, it becomes
infeasible to generate an instance. For the distributed protocol, the limits may be
slightly lower to compensate for communication overhead. This can be countered
by replacing 3Sat with k-Sat where k is Θ(m). This eliminates the exponential
complexity for the participants. However, in this case, it is necessary to make α
significantly greater than the phase boundary for k-Sat. It is an open problem
to determine the phase boundary of k-Sat for k > 3.

The space complexity for a set based on 3Sat is Θ(� log �). For instance, a
system with 128 variables requires 1024 clauses. Altogether, this requires three
kilobytes of storage. This space complexity is independent of the number of set
elements. However, if k-Sat is used instead of 3Sat, then the space complexity
grows both in the number of bits required to represent a clause and in the number
of clauses required to be above the phase boundary.

Directions for future research include developing a better understanding of
the expected hardness of the 3Sat instances generated by our algorithm and
extending the distributed set establishment protocol to efficiently handle general
malicious behavior.
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Abstract. Koblitz curves are often used in digital signature schemes
where signature verifications need to be computed efficiently. Simultane-
ous elliptic scalar multiplication is a useful method of carrying out such
verifications. This paper presents an efficient alternative to τ -adic Joint
Sparse Form that moves left-to-right for computations involving two
points. A generalization of this algorithm is then presented for generat-
ing a low joint weight representation of an arbitrary number of integers.

Keywords: Koblitz curves, elliptic curve cryptography, digital signa-
tures, joint sparse form, simultaneous elliptic scalar multiplication.

1 Introduction

Elliptic curve digital signatures are attractive due to the reduced size of keys
and signatures. The main group operation is elliptic scalar multiplication and is
generally considered to be the most efficient on Koblitz curves. This paper deals
only with these types of curves, particularly with speeding up simultaneous scalar
multiplication on these curves involving two or more points. This is a common
computation for signature verification.

Related work. Solinas [1] showed that scalar multiplication on Koblitz curves
is very efficient. He also developed [2] a representation for a pair of integers with
minimal joint weight called Joint Sparse Form (JSF). Ciet [3], et. al developed a
τ -adic JSF for use with Koblitz curves. A generalization of JSF to an arbitrary
number of integers has been developed [4,5]. There is also an alternative [6] to
the generalized JSF.

Contributions. An efficient alternative to τ -adic JSF is presented in Sect. 3,
which works left-to-right, in-line with Shamir’s Trick, and requires less memory.

� This work was supported by the project “Packet Level Authentication” funded by
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support. Additionally, the author gratefully acknowledges those involved in the PLA
project.
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A generalization of this algorithm to an arbitrary number of integers is presented
in Sect. 4, based on the algorithm in [6].

Applications. These contributions make simultaneous scalar multiplication on
Koblitz curves more efficient. This is a common method for signature verifica-
tions (sum of two terms), as well as self-certified signature verifications (three
terms [7]). Scalar multiplication using combing [4,8] can also be improved using
these results.

2 Background

2.1 Elliptic Scalar Multiplication

Elliptic scalar multiplication computes k multiples of the point P = (x, y). A
binary signed-digit representation known as Non-Adjacent Form (NAF) [8] of
the �-bit integer k = 〈k�−1 . . . k0〉, ki ∈ {1,−1, 0} is commonly used, as point
addition has the same cost as point subtraction (as opposed to multiplicative
groups where multiplication is much cheaper than inversion). NAF is generated
by repeatedly dividing k by 2, choosing a remainder such that the quotient is
divisible by 2. Then k multiples of P can be computed as

kP =
�−1∑
i=0

ki2iP. (1)

The average number of non-zero digits in �-bit k is �/3, so (1) is executed at the
average cost of (�/3)A + �D operations, where A and D denote point additions
and doublings, respectively.

2.2 Koblitz Curves

Koblitz curves [9] are anomalous binary curves of the form

Ea : y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1} (2)

The Frobenius map τ : Ea(F2m) → Ea(F2m) is a mapping such that (x, y) ,→
(x2, y2). Squaring a binary field element is a very cheap operation1. It can be
shown from the point addition formula that for all (x, y) ∈ Ea

(x4, y4) + 2(x, y) = μ(x2, y2) , where μ = (−1)1−a , or,

(τ2 + 2)P = μτP , from where

τ2 + 2 = μτ. (3)

Using elliptic scalar multiplication along with the Frobenius map, it is possible
to obtain multiples of a point by using complex multiplication by an element
1 The cost depends on the representation of the field elements of F2m . When using a

normal-basis representation, squaring a field element is only a rotation of the bits.
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of the ring Z[τ ]. More specifically, instead of representing integer k as distinct
powers of 2 as in (1), k is represented as the sum of distinct powers of τ , called a
τ -adic expansion of k. Analogous to NAF, τ -adic NAF is generated by repeatedly
dividing k by τ , choosing a remainder such that the quotient is divisible by τ
[1]. Analogous to (1), multiples of the point P are then computed as

kP =
�−1∑
i=0

kiτ
iP . (4)

Since no point doublings are required, it is executed at the cost of (�/3)A oper-
ations, which is a large improvement over the binary NAF case.

2.3 Joint Sparse Form

Given n integers in a joint representation, the joint weight (JW) is defined as
the number of columns with at least one non-zero entry. Joint Sparse Form
(JSF) [2] is a generalization of NAF for a pair of integers used to speed up the
computation of a sum of integer multiples of two points. JSF has minimal JW
among all joint signed-binary digit representations for a pair of integers, yielding
an average of �/2 non-zero columns.

A τ -adic analogue of JSF [3] exists, which moves right-to-left (as does the
original JSF). Table 1 continues the example provided therein. The first entry
demonstrates that simply using τ -adic NAF on both integers is not optimal with
regards to the JW. The second entry is the τ -adic JSF representation with lower
JW. The third entry is related to Alg. 1 and will be explained in Sect. 3. Note
that these are all different representations of the same integers.

Table 1. τ -adic JSF representations

Form Representation JW Length
τ -NAF [1] 〈101010101〉

〈010100010〉 8 9
τ -JSF [3] 〈100110011〉

〈010100010〉 6 9
Alg. 1 〈011010011〉

〈010100010〉 6 8

2.4 Shamir’s Trick

Shamir’s Trick [10] or Straus’s Algorithm [11] is useful for speeding up compu-
tations of the form k0P + k1Q, which a common computation for elliptic curve
signature verification primitives. It works by precomputing all possible values
of a column in a joint representation, then moves left-to-right as in the elliptic
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computing: 13P + 7Q
precomp: (P + Q), (P − Q)
NAF(13) = 10101 (24 − 22 + 20 = 13)
NAF(7) = 01001 (23 − 20 = 7)
R ← ∞

i = 4 R ← 2R = ∞
R ← ∞ + P = P

i = 3 R ← 2P
R ← 2P + Q

i = 2 R ← 2(2P + Q) = 4P + 2Q
R ← 4P + 2Q − P = 3P + 2Q

i = 1 R ← 2(3P + 2Q) = 6P + 4Q
R ← 6P + 4Q + ∞ = 6P + 4Q

i = 0 R ← 2(6P + 4Q) = 12P + 8Q
R ← 12P + 8Q + (P − Q) = 13P + 7Q

Fig. 1. Small example of Shamir’s Trick, computing 13P + 7Q (1 = −1)

scalar multiplication methods shown previously. A small example appears
in Fig.1.

Given the average density of JSF as �/2, Shamir’s Trick (for two points) re-
quires on average (�/2+2)A+�D operations (including precomputation), whereas
processing these computations separately then adding the results requires on av-
erage (2�/3 + 1)A + 2�D operations. The same method can be used with τ -adic
JSF by simply replacing the point doublings with applications of τ . However,
the gains are less as there are no point doublings to be performed (as shown
with the NAF and τ -NAF case).

3 An Efficient Alternative to τ -Adic Joint Sparse Form

As shown, Shamir’s Trick moves left-to-right through the expansions of (k0, k1).
Therefore, a method of generating a low-weight joint τ -adic representation that
moves left-to-right would work in-line with Shamir’s Trick and also be more mem-
ory efficient, as separate storage for the joint representation would not longer be
needed. This is presented as Alg. 12. The strategy is to create more zero-columns
given the fact that τ2 + 1 = τ − 1. The first for loop generates the digits and
the bottom while loop performs he elliptic curve arithmetic. It is known that
τ -adic JSF lacks optimality; the optimality (or lack thereof) of Alg. 1 has not
been examined.

The third entry in Table 1 is the output from Alg. 1, which happens to demon-
strate how moving left-to-right can also decrease the length of the representation
by one if substitutions can be made in the first column (meaning up to one point
addition and one application of τ can be saved).

2 Assumes μ = 1. For μ = −1, only small modifications are needed.
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Algorithm 1. Left-to-right τ -adic simultaneous scalar multiplication

Input: �-bit integers k0, k1 in τ -NAF, points P, Q ∈ E(F2m)
Output: k0P + k1Q
Precompute xP + yQ ∀ x, y ∈ {0, −1, 1}
R ← ∞, i ← � − 1
while i ≥ 0 do

j ← 1 /* number of columns to process */
for n ← 0 to 1 do

if i > 1 and kn,i + kn,i−2 = ±2 and k1−n,i = 0 then
kn,i−1 ← kn,i , kn,i−2 ← −kn,i , kn,i ← 0 /* replace the bits */
j ← 2 /* two columns can be processed */

end
end
while j > 0 do

R ← τR /* square the coordinates of R */
R ← R + (k0,iP + k1,iQ)
i ← i − 1 , j ← j − 1

end
end
return R

4 Generalizing to n Integers

A generalization of JSF [4,5] provides a method for generating a representation
of n different integers with low joint weight. One alternative [6] to these methods
moves left-to-right and is based on the fact that for all n > 0

2n − 1 =
n−1∑
i=0

2i . (5)

However, when using τ -adic representations each digit represents a power of τ ,
not a power of 2. Hence, the same replacements cannot be made. τ -adic analogues
are usually constructed by finding the equivalent operation when working with
powers of τ , as demonstrated previously with NAF and τ -adic NAF.

Unfortunately, when working with powers of τ the τ -adic analogue of (5) is not
immediately apparent as opposed to the NAF case. To produce a τ -adic analogue
of the algorithm in [6], for all n > 1 the task is to find a solution to one of

τn ± 1 =
n−1∑
i=0

xiτ
i where xi ∈ {1,−1, 0}. (6)

It turns out that one has four different cases to consider with respect to the
value of n (mod 4). Given (3) and assuming μ = 1, the following solutions are



474 B.B. Brumley

obtained to (6) for the initial cases of n = 2, 3, 4, or 5, leading to Theorem 1.
Appendix A.1 contains solutions when μ = −1.

τ2 + 1 = τ − 2 + 1 = τ − 1

τ3 + 1 = τ(τ2) + 1 = τ2 − 2τ + 1 = τ − 2− 2τ + 1 = −τ − 1

τ4 − 1 = (τ2 + 1)(τ2 − 1) = (τ − 1)(τ2 − 1) = τ3 − τ2 − τ + 1

τ5 − 1 = τ(τ4)− 1 = τ4 − τ3 − τ2 + 2τ − 1 = τ4 − τ3 + τ + 1

Theorem 1. Given an arbitrary n > 1 and assuming μ = 1, one of τn ± 1 can
be expressed by the equation below depending on the value k = n (mod 4)

τn + Sk =
n−1∑
Ik

τ i −
n−2∑
Jk

τ i , where (7)

k Sk Ik Jk

0 −1 i = 0 | i ≡ 0, 3 (mod 4) i = 0 | i ≡ 1, 2 (mod 4)
1 −1 i = 0 | i ≡ 0, 1 (mod 4) i = 3 | i ≡ 2, 3 (mod 4)
2 1 i = 0 | i ≡ 1, 2 (mod 4) i = 0 | i ≡ 0, 3 (mod 4)
3 1 i = 3 | i ≡ 2, 3 (mod 4) i = 0 | i ≡ 0, 1 (mod 4)

Proof. Only the case n ≡ 0 (mod 4) is proved here, as the other cases are similar.
The proof will be by induction. The base case of n = 4 holds as

τ4 − 1 = τ3 − τ2 − τ + 1 .

Assume that, for an arbitrary k > 1 satisfying k ≡ 0 (mod 4), the following
formula holds:

τk =

⎛⎝ k−1∑
i=0|i≡0,3 (mod 4)

τ i

⎞⎠−

⎛⎝ k−2∑
i=0|i≡1,2 (mod 4)

τ i

⎞⎠ + 1

Then the inductive step of k + 4 yields⎛⎝ k+3∑
i=0|i≡0,3 (mod 4)

τ i

⎞⎠−

⎛⎝ k+2∑
i=0|i≡1,2 (mod 4)

τ i

⎞⎠ + 1

=

⎛⎝ k−1∑
i=0|i≡0,3 (mod 4)

τ i

⎞⎠−

⎛⎝ k−2∑
i=0|i≡1,2 (mod 4)

τ i

⎞⎠+1+τk+3−τk+2−τk+1 + τk

=τk + τk+3 − τk+2 − τk+1 + τk

=τk(τ3 − τ2 − τ + 2) = τk(τ4) = τk+4 .

Therefore, the inductive step also holds. Since the base case and the inductive
step are both true, the theorem holds. ��
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Now that solutions are known for (6), a generalized left-to-right algorithm for
generating a low-weight signed-bit τ -adic joint representation of n integers is
presented as Alg. 2. Note that Alg. 1 is the explicit case of n = 2. This algorithm
assumes μ = 1. For the μ = −1 case, modifications to steps 1c, 2b, and 2c should
be made corresponding to Theorem 2 in Appendix A.1.

Algorithm 2. Generating a τ -adic joint representation of n integers

Input: n �-bit integers kn in τ -NAF expansion
Output: Low-weight signed-bit τ -adic joint representation of kn

1. Scan the � columns × n rows from left to right. For each non-zero entry in the
column, determine if that row is reducible.
(a) Count the number of consecutive zeros (denoted C) rightward from the

non-zero entry (x). Examine at most n bits. Since all kn are n τ -NAF,
note that C ≥ 1. If C ≥ n, then the row is not reducible.

(b) Check the C columns of the n rows rightward from x. If there already
exists at least one all-zero column in the next C columns, then the current
non-zero column is not reducible.

(c) Determine reducibility as follows:
i. C + 1 ≡ 2, 3 (mod 4). If the bits from x to the next non-zero entry

(x′) are of the form x0...0x (same sign), the row is reducible.
ii. C + 1 ≡ 0, 1 (mod 4). If the bits from x to x′ are of the form x0...0x

(opposite sign), the row is reducible.
2. If all rows with non-zero entries are determined to be reducible, then perform

the replacement in each of the rows to zero-out the column as follows.
(a) Replace x with 0.
(b) Replace the bit to the right of x with x.
(c) For the next C bits (meaning up to and including x′), repeat the pattern

xxxxxxxx...xxxx (two x of opposite sign, two x of same sign, two x of
opposite sign . . .).

(d) If C is even, replace the bit two to the left of x′ with 0 (e.g., xxx → 0xx).
3. If replacements were made, continue scanning again from step 1 after skipping

C + 1 columns (start scanning again from bit x′). All of the column between
are not reducible due to the consecutive bits inserted above. If replacements
were not made, check the next column (rows in the current column were not
reducible or already zero).

5 Results and Conclusions

In this section, estimated efficiency gains when using Alg. 2 are given. A com-
parison of the probabilities of a non-zero column given n different integers is
presented in Table 2. These values correspond to the number of point additions
needed (not including precomputation). Values in the Alg. 2 column are esti-
mates from [4]; values for n = 1, 2, 3 have been verified by simulation, while
simulation results for n > 3 are forthcoming.
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Table 2. Probabilities of a non-zero column given n terms

n τ -adic τ -NAF Alg. 2
1 .5 .3333 .3333
2 .75 .5555 .5
3 .875 .7037 .5897
4 .9375 .8025 .6425
5 .9688 .8683 .6727
6 .9844 .9122 .6999

Table 3 shows a comparison of the number of operations needed3 for the
common 163-bit standardized Koblitz curve K-163 [12] for computing the sum
of n scalar multiplications using simultaneous and separate scalar multiplica-
tions (including precomputation). There are also methods for speeding up this
precomputation [13].

Table 3. Average operations needed for K-163

n Method A Field Mult. Gain
2 τ -NAF (separate) 111 888
2 Alg. 2 (simul) 84 672 24.3 %
3 τ -NAF (separate) 167 1336
3 Alg. 2 (simul) 107 856 35.9 %

These figures suggest that using Alg. 2 leads to much lower joint weight than
other hybrid methods. Because of the lower joint weight, when using simultane-
ous scalar multiplication the number of point additions is significantly reduced.
The lower joint weight will also lead to less point additions for popular single
fixed-point combing methods [4,8].

5.1 Future Work

The properties of the representation that Alg. 2 generates need to be well-defined.
The average joint weights need to be proved, and the question of optimality needs
to be explored. A straight analogue of the generalized JSF [4] would be nice, but
it is not immediately clear if such an analogue can be constructed. In the signed-
binary case, it is easy to “push up” ones. In the τ -adic case, Theorems 1 and 2
show that the same strategy is not always possible.

As Solinas mentioned [2], looking at coefficients other than ±1, 0 could also
be future work in this area. It is unclear what coefficients could lead to the most
efficient method.
3 The number of field multiplications is an estimate based on the usage of mixed

coordinates (affine and López-Dahab), where the cost of one point addition is eight
field multiplications.
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A Appendix

A.1 The μ = −1 Case

Given (3) and assuming μ = −1, the following solutions to (6) are obtained for
the initial cases of n = 2, 3, 4, or 5, leading to Theorem 2.

τ2 + 1 = −τ − 2 + 1 = −τ − 1

τ3 − 1 = τ(τ2)− 1 = −τ2 − 2τ − 1 = −(−τ − 2)− 2τ − 1 = −τ + 1

τ4 − 1 = (τ2 + 1)(τ2 − 1) = (−τ − 1)(τ2 − 1) = −τ3 − τ2 + τ + 1

τ5 + 1 = τ(τ4) + 1 = −τ4 − τ3 + τ2 + 2τ + 1 = −τ4 − τ3 + τ − 1
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Theorem 2. Given an arbitrary n > 1 and assuming μ = −1, one of τn ± 1
can be expressed by the equation below depending on the value k = n (mod 4)

τn + Sk =
n−3∑
Ik

τ i −
n−1∑
Jk

τ i + Tk , where (8)

k Sk Tk Ik Jk

0 −1 0 i = 0 | i ≡ 0, 1 (mod 4) i = 2 | i ≡ 2, 3 (mod 4)
1 1 −τ2 i = 1 | i ≡ 1, 2 (mod 4) i = 0 | i ≡ 0, 3 (mod 4)
2 1 0 i = 2 | i ≡ 2, 3 (mod 4) i = 0 | i ≡ 0, 1 (mod 4)
3 −1 τ2 i = 0 | i ≡ 0, 3 (mod 4) i = 1 | i ≡ 1, 2 (mod 4)

The proofs are similar to those of Theorem 1.
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Abstract. In Asiacrypt 2003, the notion of the universal designated
verifier signature (UDVS) was put forth by Steinfeld, Bull, Wang and
Pieprzyk. In the new paradigm, any signature holder (not necessarily the
signer) can designate the standard signature to any desired designated
verifier (using the verifier’s public key), such that only the designated
verifier will believe that the signature holder holds a valid standard sig-
nature, and hence, believe that the signer has indeed signed the message.
When the signature holder is the signer himself, the UDVS scheme can be
considered as a designated verifier signature (DVS) which was proposed
by Jakobsson, Sako and Impagliazzo in Eurocrypt 1996. In the recent pa-
per published in ICALP 2005, Lipmaa, Wang and Bao introduced a new
security property, called “non-delegatability”, as an essential property of
(universal) designated verifier signature. Subsequently, Li, Lipmaa and
Pei used this new property to “attack” four designated verifier signa-
tures in ICICS 2005 and showed that none of them satisfy the required
property. To date, there is no UDVS scheme that does not suffer from
the delegatability problem. In this paper, we propose the first provably
secure UDVS without delegatability, which can also be regarded as an-
other DVS scheme without delegatability. We also refine the models of
the UDVS schemes and introduce the notion of the strong universal des-
ignated verifier signature (SUDVS). We believe that the model itself is
of an independent interest.

Keywords: Universal Designated Verifier Signatures, Designated Veri-
fier Signatures, Non-delegatability, Bilinear Pairings.

1 Introduction

Digital signatures, introduced in the pioneering paper of Diffie and Hellman [3],
allow a signer with a secret key to sign messages such that anyone with access
to the corresponding public key can verify the authenticity of the message. A
signature verifier can convince any third party about this fact by presenting
a digital signature on a message. The ease of copying and transmitting digital
signatures in some implementations is of great convenience, but it is unsuitable
for many other applications in the real world where a verifier does not want to

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 479–498, 2006.
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present the publicly verifiable signatures to other parties, such as certificates for
hospital records, income summary, etc.

The notion of the designated verifier signature (DVS) was proposed by Jakobs-
son, Sako and Impagliazzo in [4]. In a DVS, the signature provides authentication
of a message without providing a non-repudiation property of traditional signa-
tures. A DVS can be used to convince a single third party, i.e. the designated
verifier, and only the designated verifier who can be convinced about its validity
or invalidity. This is due to the fact that the designated verifier can always create
a signature intended for himself that is indistinguishable from an original sig-
nature. In the same paper, Jakobsson, Sako and Impagliazzo also introduced a
stronger version of designated verifier signatures called strong designated verifier
signatures (SDVS). In this concept, no third party can even verify the designated
verifier signature as the designated verifier’s secret key is required during the ver-
ification phase. Saeednia, Kremer and Markowitch firstly formalized the notion
of strong DVS [15] and proposed an efficient scheme in the same paper. Some
other recent papers discussing both DVS and SDVS include [5,6,8,9,10].

Universal designated verifier signature, which was introduced by Steinfeld,
Bull, Wang and Pieprzyk [16] in Asiacrypt 2003, is a variant of DVS, in the
sense that, given a standard signature from the signer, a signature holder (not
necessarily the signer) can convert it to a UDVS which is designated to a veri-
fier, such that only this designated verifier can believe that the message has been
signed by the signer. However, any other third party cannot believe it since this
verifier can use his secret key to create a valid UDVS which is designated to
himself. Thus, one cannot distinguish whether a UDVS is created by the signa-
ture holder or the designated verifier himself. When the signature holder and the
signer are the same user, a universal designated signature will form a designated
verifier signature. Therefore, UDVS can be viewed as an application of general
designated verifier signatures where the signer designates a non-interactive proof
statement to a designated verifier.

From BLS short signature[2], Steinfeld, Bull, Wang and Pieprzyk [16] pro-
posed the first UDVS scheme in Asiacrypt 2003. Steinfeld, Wang and Pieprzyk
continued to show how to obtain a UDVS scheme from the Schnorr/RSA sig-
nature scheme in PKC 2004 [17]. Zhang, Susilo, Mu and Chen [21] extended
this notion to the Identity-based setting and proposed two Identity-based UDVS
schemes. The first UDVS scheme without random oracle was proposed by Zhang,
Furukawa and Imai [20] in ACNS 2005, where a variant of BB’s [1] short signa-
ture scheme without random oracle is used as the building block. Very recently,
Vergnaud proposed two extensions of pairing-based signatures into universal
designated verifier signatures [19].

Recently, Lipmaa, Wang and Bao introduced a new security notion for DVS
schemes called non-delegatability [10]. They argued that this notion is necessary
in many applications such as hypothetical e-voting protocol provided in [10].
They also showed that Saeednia-Kremer-Markowitch’s scheme [15], Steinfeld-
Bull-Wang-Pieprzyk’s scheme [16] and Steinfeld-Wang-Pieprzyk’s [17] are dele-
gatable. In ICICS 2005, Li, Lipmaa and Pei presented an “attack” to another
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four schemes, namely Susilo-Zhang-Mu’s scheme [18], Ng-Susilo-Mu’s scheme
[11], Laguillaumie-Vergnaud’s scheme [6] and Zhang-Furukawa-Imai’s scheme
[20], and show that they are delegatable [9]. Together with the analysis in [10]
and [9], there are only two known provably secure DVS schemes without delegata-
bility: one is the scheme proposed in [4] and the other one is in [10]. Nonetheless,
there is no provably secure UDVS without delegatability. Therefore, whether the
delegatability is an inherent problem of UDVS is an open research problem.

Our Contribution
In this paper, we firstly show that the two UDVS schemes which are very re-
cently proposed by Vergnaud in ICALP 2006 [19] are delegatable. Then we refine
the definitions of the UDVS and introduce the notion of the strong universal
designated verifier signature (SUDVS). We proceed by proposing the first con-
struction of non-delegatable UDVS scheme with formal security analysis in the
random oracle model.

Organization of The Paper
In the next section, we will review some preliminaries required throughout the
paper. In Section 3, we review the definition of the delegatability by analyzing
two UDVS schemes which are very recently proposed in ICALP 2006. We provide
the security models of UDVS in Section 4. In Section 5, we propose the first
construction of UDVS without delegatabiity together with its security analysis.
Finally, Section 6 concludes this paper.

2 Preliminaries

In this section, we will review some fundamental backgrounds used through-
out this paper, namely bilinear pairing, complexity assumptions and the formal
models of the universal designated verifier signature.

2.1 Bilinear Pairing

Let G1 and GT be two groups of prime order p and let g be a generator of G1.
The map e : G1 × G1 → GT is said to be an admissible bilinear pairing if the
following three conditions hold true:

– e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ ZZp.
– e is non-degenerate, i.e. e(g, g) �= 1GT .
– e is efficiently computable.

We say that (G1, GT ) are bilinear groups if there exists the bilinear pairing
e : G1 ×G1 → GT as above, and e, and the group action in G1 and GT can be
computed efficiently. See [2] for more details on the construction of such pairings.

2.2 Complexity Assumptions

Definition 1. Computational Diffie Hellman(CDH) Problem in G1
Given g, ga, gb ∈ G1 for some unknown a, b ∈ ZZp, compute gab ∈ G1.
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The probability that a polynomially bounded algorithm A can solve the CDH
problem is defined as:

SuccCDH
A,G1

= Pr[gab ← A(G1, g, ga, gb)].

Definition 2. Computational Diffie-Hellman(CDH) Assumption in G1
Given g, ga, gb ∈ G1 for some unknown a, b ∈ ZZp, SuccCDH

A,G1
is negligible.

2.3 Formal Model of Universal Designated Verifier Signature

There are three parties in the universal designated verifier signature: the Signer
S, the Signature Holder SH and the Verifier V where

1. S is the one who uses his/her secret key to generate a standard signature
σSS on the message m.

2. SH is the one who owns S’s standard signature σSS on the message m and
will generate a universal designated verifier signature σDV to convince V that
S has signed the message m and he owns σSS.

3. V is the designated verifier of the signature σDV and is convinced that S has
signed the message m. However, V cannot convince anyone else that S has
signed the message m, even V sharing his secret key with the one who wants
to be convinced.

The universal designated verifier signature scheme UDVS consists of the fol-
lowing algorithms: (CPG, KG, SS, SV,DS, DS, DV)

1. Common Parameter Generation CPG: a probabilistic algorithm, on input
a security parameter k, outputs a string cp ← CPG(k) which denotes the
common scheme parameters.

2. Key Generation KG: a probabilistic algorithm, on input a common parameter
cp, outputs a secret/public key-pair (sk, pk) ← KG(cp) for the signer S and
verifier V , respectively.

3. Standard Signing SS: a probabilistic (deterministic) algorithm, on input the
common parameter cp, S’s secret key sks and the message m, outputs S’s
standard signature σSS ← SS(cp, sks, m).

4. Standard Verification SV: a deterministic algorithm, on input the common
parameter cp, S’s public key pks, the signed message m and S’s standard sig-
nature σSS, outputs verification decision d ∈ {Acc, Rej} where {Acc, Rej} ←
SV(cp, pks, m, σSS).

5. Designation by Signature Holder DS: a probabilistic (deterministic) algo-
rithm, on input the common parameters cp, S’s public key pks, V ’s public
key pkv, S’s standard signature σSS of the message m, outputs the designated
verifier (DV) signature σDV ← DS(cp, pks, pkv, σSS, m).

6. Simulation by Verifier DS: a probabilistic (deterministic) algorithm, on input
the common parameter cp, S’s public key pks, V ’s secret key skv and the mes-
sage m, outputs the designated verifier(DV) signature σDV ← DS(cp, pks, skv,
m) which is designated to himself.
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7. Designation Verification DV: a deterministic algorithm, on input the common
parameter cp, S’s public key pks, V ’s secret/public key pair (skv, pkv), the
signed message m and the DV signature σDV, outputs the verification decision
d ∈ {Acc, Rej} where {Acc, Rej} ← DV(cp, pks, skv, pkv, m, σDV).

Consistency:
In addition to the above algorithms, we also require three obvious consistency
of the UDVS schemes.

1. SV Consistency: this property requires that the standard signature produced
by the SS algorithm is accepted as a valid signature by the SV algorithm,
i.e. Pr[SV(cp, pks, m, SS(cp, sks, m)) = Acc] = 1

2. DV Consistency of DS: this property requires that the DV signature produced
by the DS algorithm is accepted as a valid signature by the DV algorithm,
i.e.

Pr[DV(cp, pks, skv, pkv, m, DS(cp, pks, pkv, σSS, m)) = Acc] = 1.

3. DV Consistency of DS: this property requires that the DV signature produced
by the DS algorithm is accepted as a valid signature by the DV algorithm,
i.e.

Pr[DV(cp, pks, skv, pkv, m, DS(cp, pks, skv, m)) = Acc] = 1.

3 Delegatability of Universal Designated Verifier
Signature Schemes

Let (sks, pks), (skv, pkv) denote the secret/public key pairs of the signer and the
designated verifier, respectively. Delegatability of a UDVS [10] refers the case
where the signer delegates the UDVS signing rights to A by disclosing some side
information ysv = fs(sks, pkv) that will help A to generate valid signatures.
Analogously, the designated verifier might delegate this signing rights by sim-
ulating capability by disclosing some side information ysv′ = fv(skv, pks). The
implication of the delegatability of UDVS schemes will confuse the designated
verifier, when he/she sees a valid universal designated verifier signature that is
not generated by himself/herself, then he/she can only conclude that the sig-
nature is generated by someone who knows either ysv or ysv′ . To explain the
delegatability more clearly, we analyze the following two UDVS schemes which
are recently proposed by Vergnaud [19] in ICALP 2006. For the delegatability
of other UDVS schemes [11,16,17,20], please refer to [9,10].

3.1 Vergnaud’s UDVS-BB [19]

In [19], the author proposed two UDVS schemes which are designed for the de-
vices with constrained computation capabilities since the SS and DS algorithms
are pairing-free. The first UDVS scheme in [19] combines the BB short signature
scheme without random oracle [1] to obtain a UDVS scheme without random or-
acle. The UDVS-BB [19] consists of the following algorithms. (We rewrite their
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scheme with different notations in order to keep the consistence of the whole
paper)

CPG: Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, k be the system
security number and g be the generator of G1. e denotes the bilinear pairing
G1 × G1 → GT . The message space DM = ZZ∗

p. The system parameter
cp = {G1, GT , p, k, e, g, DM} which is shared by all the users in the system.

KG: The Signer S picks two secret numbers ua, va ∈R ZZ∗
p and sets the secret key

sks = (ua, va). Then S computes the public key pks = (Ua, Va) = (gua , gva).
Similarly, the verifier V ’s secret/public key-pair is skv = (ub, vb), pkv =
(Ub, Vb) = (gub , gvb) where ub, vb are randomly chosen in ZZ∗

q .
SS: For a message m ∈ DM to be signed, S chooses r ∈ ZZ∗

p and computes the
standard signature σSS = (σSS1 , σSS2) = (r, g

1
ua+m+var ).

SV: Given a message m, the standard signature σSS = (σSS1 , σSS2) and S’s
public key pks, one can check whether e(σSS2 , Ua · gm · V σSS1

a ) ?= e(g, g). If
the equality holds, outputs Acc, otherwise, Rej.

DS: Given the standard signature signature σSS = (σSS1 , σSS2) = (r, g
1

ua+m+var )
and the verifier’s public key pkv, the signature holder SH selects t ∈R ZZ∗

p and
computes Q1 = g

t
ua+m+var , Q2 = (Ub)t and Q3 = gt. The signature holder

sends the universal designated verifier signature σDV = (r, Q1, Q2, Q3) to
the verifier V .

DS: Given the signer’s public key pks and the message m, the verifier V chooses
t, r ∈R ZZ∗

p and computes R = (Ua·gm·Va
r)t. The universal designated verifier

signature generated by the verifier is σDV = (r, Q1, Q2, Q3) where Q1 = gt,
Q2 = Rub and Q3 = R.

DV: Given the designated verifier signature (r, Q1, Q2, Q3), the verifier checks
whether e(Q1, Ua · gm · Va

r) ?= e(Q3, g) and e(Q3, g
ub) ?= e(Q2, g). If both

equalities hold, output Acc, otherwise, Rej.

Delegatability:
We will show that the knowledge of ysv := (gubua , gubva) is sufficient to generate
a valid signature of Vergnaud’s UDVS-BB scheme. Given a message m and ysv,
anyone can choose t, r ∈R ZZ∗

q and compute R = (Ua ·gm ·V r
a )t. Then he computes

Q1 = gt, Q2 = (gubua · Um
b · (gubva)r)t and Q3 = R. Note that (r, Q1, Q2, Q3) is

a valid signature of Vergnaud’s UDVS-BB since

e(Q1, Ua · gm · Va
r) = e(gt, Ua · gm · Va

r)
= e(gt(ua+m+rva), g) = e((Ua · gm · V r

a )t, g)
= e(R, g) = e(Q3, g).

and

e(Q3, g
ub) = e(R, gub) = e(Rub , g)

= e((Ua · gm · V r
a )tub , g)

= e((guaub · Um
b · (gubva)r)t, g) = e(Q2, g).
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Note that both the signer and the verifier can compute ysv. The signer can
use his secret key ua, va to compute ysv = ((Ub)ua , Uva

b ) where Ub is a part of
the verifier’s public key pkv = (Ub, Vb). Similarly, the verifier also can use his
secret key (ub, vb) to compute ysv = (Uub

a , V ub
a ) where (Ua, Va) is the public key

of the signer. Therefore, a valid message signature pair (m, σDV) of UDVS-BB
can not convince the verifier that S has signed this message.

3.2 Vergnaud’s UDVS-BLS [19]

The seconde UDVS scheme UDVS-BLS in [19] combines the BLS short signature
[2] to obtain a UDVS with shorter signature length compared with UDVS-BB.
It consists of the following algorithms. (We rewrite their scheme with different
notations in order to keep the consistence of the whole paper)

CPG: Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, k be the
system security number and g be the generator of G1. e denotes the bilinear
pairing G1 × G1 → GT . Let h : {0, 1}∗ → G∗

1 be a secure cryptographic
hash function. The message space DM = {0, 1}∗. The system parameter
cp = {G1, GT , p, k, e, h, DM} which is shared by all the users in the system.

KG: The Signer S picks a secret value xs ∈R ZZ∗
p and sets the secret key sks =

xs. Then, S computes the public key pks = gxs . Similarly, the verifier V ’s
secret/public key-pair is (skv, pkv) = (xv, gxv) where xv is randomly chosen
in ZZ∗

p.
SS: For a message m to be signed, S computes the standard signature σSS =

h(m)sks ∈ G1.
SV: Given a message m, the standard signature σSS and S’s public key pks,

one can check the equation e(σSS, g) ?= e(h(m), pks). If the equality holds,
outputs Acc, otherwise, Rej.

DS: Given the standard signature signature σSS and the verifier’s public key
pkv, the signature holder SH selects t ∈R ZZ∗

p and computes Q1 = σt
SS

and Q2 = pkt−1

v . Then SH sends the universal designated verifier signature
σDV = (Q1, Q2) to the verifier V .

DS: Given the signer’s public key pks and the message m, the verifier V chooses
t ∈R ZZ∗

p and computes Q1 = h(m)t−1
and Q2 = (pkskv

s )t The universal
designated verifier signature generated by the verifier is σDV = (Q1, Q2).

DV: Given the designated verifier signature (Q1, Q2), the verifier checks whether
e(Q1, Q2)

?= e(h(m), pkskv
s ). If the equality holds, outputs Acc, otherwise,

Rej.

Delegatability:
We will show that the knowledge of ysv := gsksskv is sufficient to generate a
valid signature of Vergnaud’s UDVS-BLS. Given a message m and ysv, anyone
can choose t ∈R ZZ∗

p and compute Q1 = h(m)t, Q2 = yt−1

sv . Note that (Q1, Q2) is
a valid signature of Vergnaud’s UDVS-BLS since e(Q1, Q2) = e(h(m)t, yt−1

sv ) =
e(h(m), gsksskv ) = e(h(m), pkskv

s ).
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Note that both the signer and the verifier can compute ysv. The signer can use
his secret key sks to compute ysv = pksks

v . Similarly, the verifier also can use his
secret key skv to compute ysv = pkskv

s . Therefore, a valid message signature pair
(m, σDV) of UDVS-BLS can not convince the verifier that the signature holder
holds the signer S’s signature on this message.

4 Security Models of Universal Designated Verifier
Signature

In this section, we will define the security models of our UDVS scheme. Compared
with the known security models of UDVS defined in [16,17,20], an important
refinement of our model is that we allow the adversaries to adaptively corrupt the
users in the system and adaptively choose the target signer and the designated
verifier. In the defined models, we allow adversaries to adaptively submit Key
Register (KR) queries to register the users in the system and obtain all the
public keys he has registered. He can also submit the SS queries to obtain the
standard signature of the message under the signer he chooses. In addition,
the adversary can choose the message m, the signer S and the verifier V and
submit (m, S, V ) as DS or DS query to obtain the designated verifier signature.
If necessary, the adversary can also submit DV queries to decide whether σDV is
a valid designated verifier signature under the signer S and the verifier V 1. We
also allow the adversary to submit SecretKey (SK) queries adaptively to obtain
the secret keys of some users, thus the adversaries can corrupt some users and
adaptively choose the target signer and designated verifier, which reflects more
essence of real world adversaries.

Unforgeability
Actually, there are two types of unforgeability properties that can be used [16].
The first property, standard signature unforgeability (SS-Unforgeability), is just
the usual existential unforgeability notion under chosen message attacker [7]
for the standard signature scheme SS, which states that no one should be able
to forge a standard signature of the signer S. The second property, designated
verifier signature unforgeability (DV-Unforgeability), requires that it is difficult
for an attacker to forge a DV signature σ∗

DV on a new message m∗, such that the
pair (M∗, σ∗

DV ) passes the DV algorithm with respect to a signer’s public key pk∗
s

and a designated verifier’s public key pk∗
v , which states that for any message,

an adversary without the standard signature should not be able to convince
a designated verifier of holding such a standard signature. DV-Unforgeability
always implies the SS-Unforgeability [16]. Thus, it is enough to consider only
DV-Unforgeability. The existential unforgeability of UDVS is defined via the
following game between the simulator S and the adaptively chosen message and
chosen public key adversary FCMA, CPKA

EUF, UDV S :

1 Such queries are only needed when the execution of DV algorithm needs the secret
key of the verifier. Otherwise, F can use the public keys of signer S and the verifier
V to verify whether a σDV is valid.
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– Setup: The simulator S runs the CPG to generate the common parameter
cp. He then returns cp to F .

– Key Register (KR) queries: F can register for the users in the system. In
response. S runs the KG algorithm to generate the secret/public key pair for
this user. S returns the public key to F .

– SS queries: F can ask the standard signature of the message m under the
public key pks he chooses. In response, S runs the SS algorithm to generate
the signature σSS and returns to F as the answer.

– DS queries: F can ask the universal designated verifier signature σDV which
is generated by the algorithm DS on the message m under the public keys
(pks, pkv), where pks denotes the signer and pkv denotes the verifier chosen
by F . In response, S firstly runs SS to generate the standard signature σSS on
this message. Then S runs DS algorithm to generate the universal designated
verifier signature σDV. S returns σDV to F as the answer.

– DS queries: F can ask the designated verifier signature σDV which is gen-
erated by the algorithm DS on the message m and under the public keys
(pks, pkv), where pks denotes the signer and pkv denotes the verifier chosen
by F . In response, S runs DS algorithm to obtain the designated verifier
signature σDV. S then returns σDV to F as the answer.

– DV queries: F can ask whether σDV is a valid universal designated verifier
signature on the message m under the public keys (pks, pkv), where pks

denotes the signer and pkv denotes the verifier chosen by F . In response, S
will run DV algorithm and return the decision d ∈ {Acc, Rej} to F .

– SK queries: F can request the secret key of the public key pk. In response,
S returns corresponding secret key sk to F .

We say F wins the game if F outputs a forged messgae/signature pair(m∗, σ∗
DV)

under the public keys (pk∗
s , pk∗

v) if:

1. Acc← DV(cp, pk∗
s , sk∗

v , pk∗
v, m∗, σ∗

DV).
2. (m∗, pk∗

s) has never been submitted as one of the SS queries.
3. (m∗, pk∗

s , pk∗
v) has never been submitted as one of the DS or DS queries.

4. Neither pk∗
s nor pk∗

v has been submitted as one of the SK queries.

The success probability of an adaptively chosen message and chosen public key
attacker F wins the above game is defined as Succ FCMA, CPKA

EUF, UDV S .

Definition 3. We say FCMA, CPKA
EUF, UDV S can (t, qH , qKR, qSS, qDS, qDS, qDV, qSK, ε)-

break the UDVS scheme if FCMA, CPKA
EUF, DV S runs in time at most t, makes at

most qH queries to the random oracle, qKR key registration queries, qSS SS
queries, qDS DS queries, qDS DS queries, qDV DV queries, qSK SK queries and
Succ FCMA, CPKA

EUF, UDV S is at least ε.

Non-delegatability
A universal designated verifier signature can be regarded as a kind of non-
interactive system of proofs of knowledge of the signer S’s standard signature
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σSS or the verifier’s secret key skv. Thus, both the signature holder and the
designated verifier can generate this proof. However, as pointed out by Lipmaa,
Wang and Bao in [10], the definition of the unforgeability does not cover the case
when the signer (the verifier) is dishonest. Namely, without disclosing sks(skv),
the signer(verifier) can delegate the signing rights to some party A by disclosing
some “side information” which helps the latter to produce valid universal des-
ignated verifier signatures on any message, as we have shown in Section 3. One
can see a lot of concrete instances in [9,10].

Definition 4. Let (sks, pks), (skv, pkv) be the secret/public key-pair of signer
S and verifier V . Let A be an algorithm, who does not necessarily know the
signer’s SS signature σSS of the message m or the secret key skv, can produce
a valid UDVS on the message m with non-negligible probability ε, we say that
a UDVS scheme is (τ, κ) non-delegatable if in time τ , there exists a knowledge
extractor K who can use A to obtain σSS or skv with probability greater than κ.

Non-transferability
Roughly speaking, the Non-Transferability of UDVS requires that: (1) Only the
designated verifier can be convinced by the UDVS, even if he shares all the secret
information with entities that want get convinced. (2) Even an entity can see
many universal designated verifier signatures σDV’s on the same message m but
with different designated verifiers, which is generated by the signature holder us-
ing the same standard signature σSS, he can not be convinced that the signer has
signed on this message. In other words, universal designated verifier signatures
of the message m with different designated verifiers must be independent. We
define the existential Non-Transferability of the UDVS against adaptively chosen
message and chosen public key distinguisher DCMA, CPKA

TRANS, UDV S via the game with
the simulator S. The model is divided into two phases.

– Phase 1: D can submit KR, SS, DS, DS, DV and SK queries as defined in
the model of Unforgeability, the simulator S responses to these queries as
same as defined in the Unforgeability model.

– Challenge: When the distinguisher D decides the first phase is over, he sub-
mits m∗, pk∗

s , pk∗
v to S as the challenge with the constraints that

1. pk∗
s can not be submitted as one of the SK queries during Phase 1.

2. (m∗, pk∗
s) can not be submitted as one of the SS queries during Phase 1.

3. (m∗, pk∗
s , pk∗

v) has never been submitted as one of the DS during Phase 1.
As response, the simulator S chooses a random bit b ∈ {0, 1}. If b = 0, S runs
DS algorithm and returns σDV to D. Otherwise b = 1, S runs DS algorithm
and returns σDV to D.

– Phase 2: On receiving the challenging signature, the distinguisher can submit
more queries except that:
1. pk∗

s can not be submitted as one of the SK queries during Phase 1.
2. (m∗, pk∗

s) can not be submitted as one of the SS queries during Phase 1.
3. (m∗, pk∗

s , pk∗
v) has never been submitted as one of the DS during Phase 1.
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– Guessing: Finally, the distinguisher D outputs a guess b′. The adversary wins
the game if b = b′.

The advantage of an adaptively chosen message and chosen public key distin-
guisher D has in the above game is defined as Adv DCMA, CPKA

TRANS, UDV S = |Pr[b′ =
b]− 1/2|.

Definition 5. We say a UDVS scheme is Non-Transferable against a (t, qH ,
qKR, qSS, qDS, qDS, qDV, qSK) adaptively chosen message and chosen public key dis-
tinguisher DCMA, CPKA

TRANS, UDV S if Adv DCMA, CPKA
TRANS, UDV S is negligible after making at

most qH queries to the random oracle, qKR key registration queries, qSS SS
queries, qDS DS queries, qDS DS queries, qDV DV queries and qSK SK queries in
time t.

4.1 Strong Universal Designated Verifier Signature: Privacy of
Signer

Given a UDVS scheme satisfies the security requirements defined above, one
can not decide who generates the universal designated verifier signature. Both
the signature holder SH and the designated verifier V can generate valid uni-
versal designated verifier signatures. However, in order to protect the privacy
of the signer S in some cases as described in [4], the algorithm DV cannot be
executed publicly. Therefore, an additional strong notion: Privacy of Signer
is introduced into the universal designated verifier signature.

Informally speaking, this property requires that given a message m and a V
designated UDVS σDV, without the secret keys of the designated verifier V and
the possible two original signers S0, S1, one can not decide which original signer
S0 or S1 generates the standard signature σSS. It is defined using the following
games between the distinguisher DCMA,CPKA

Privacy,SUDV S and the simulator S:

– Phase 1: D can submit KR, SS, DS, DS, DV and SK queries as defined in the
model of Unforgeability, the simulator S responds to these queries in the
same way as defined in the model of Unforgeability.

– Challenge: When the distinguisher D decides the first phase is over, he sub-
mits (m∗, pk∗

s0
, pk∗

s1
, pk∗

v) to S as the challenge with the constraints that
1. Neither pk∗

s0
, pk∗

s1
nor pk∗

v has been submitted as one of the SK queries
during Phase 1.

2. Neither (m∗, pk∗
s0

) nor (m∗, pk∗
s1

) has been submitted as one of the SS
queries during Phase 1.

3. Neither (m∗, pk∗
s0

, pk∗
v) nor (m∗, pk∗

s1
, pk∗

v) has been submitted as one of
DS and DS queries during Phase 1.

In response, the simulator S chooses a random bit b ∈ {0, 1}. If b = 0, S
firstly runs SS(m, sk∗

s0
) to obtain S0’s standard signature σSS0 on message

m∗, then he runs DS algorithm and sets σ∗
DV = σDV0 . Otherwise b = 1, S runs

SS(m, sk∗
s1

) to obtain S1’s standard signature σSS1 on message m∗, then he
runs DS algorithm and sets σ∗

DV = σDV1 .
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– Phase 2: On receiving the challenging signature σ∗
DV, the distinguisher can

submit more queries except that:
1. pk∗

s0
, pk∗

s1
and pk∗

v can not be submitted as one of the SK queries during
Phase 2.

2. (m∗, pk∗
s0

) and (m∗, pk∗
s1

) can not be submitted as one of the SS queries
during Phase 2.

3. (m∗, pk∗
s0

, pk∗
v) and (m∗, pk∗

s1
, pk∗

v) can not be submitted as one of the
DS or DS queries during Phase 2.

4. (m∗, σ∗
DV, pk∗

s0
, pk∗

v) and (m∗, σ∗
DV, pk∗

s1
, pk∗

v) can not be submitted as one
of the DV queries during Phase 2.

– Guessing: Finally, the distinguisher D outputs a guess b′. The adversary wins
the game if b = b′.

The advantage of an adaptively chosen message and chosen public key distin-
guisher D has in the above game is defined as Adv DCMA, CPKA

Privacy, UDV S = |Pr[b′ =
b]− 1/2|.

Definition 6. We say a UDVS scheme satisfies the property: privacy of signer
against a (t, qH , qKR, qSS, qDS, qDS, qDV, qSK) adaptively chosen message and cho-
sen public key distinguisher DCMA, CPKA

Privacy, UDV S if Adv DCMA, CPKA
Privacy, UDV S is negligible

after making at most qH queries to the random oracle, qKR key registration
queries, qSS SS queries, qDS DS queries, qDS DS queries, qDV DV queries and
qSK SK queries in time t.

As we call DVS with Privacy of Signer as Strong DVS (SDVS), we call that
UDVS with this property as Strong UDVS (SUDVS).

5 Proposed Scheme

In this section, we will firstly describe our universal designated verifier signature
scheme without delegatability. Then we provide the formal security analysis of
our scheme in the random oracle model. Our scheme consists of the following
algorithms:

CPG: Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, for some prime
number p ≥ 2k, k be the system security number and g be the generator of
G1. e denotes the bilinear pairing G1×G1 → GT . Let h0 : {0, 1}∗ → G∗

1, h1 :
{0, 1}∗ → ZZp be two secure cryptographic hash functions.

KG: The Signer S picks a secret value xs ∈R ZZ∗
p and sets the secret key sks :=

xs. Then S computes the public key pks = gxs . Similarly, the verifier V ’s
secret/public key-pair is (skv, pkv) = (xv, gxv) where xv is randomly chosen
in ZZ∗

p.
SS: For a message m to be signed, S computes the standard signature σSS =

h0(m)sks .
SV: Given a message m, the standard signature σSS and S’s public key pks,

one can check the equation e(σSS, g) ?= e(h0(m), pks). If the equality holds,
output Acc, otherwise, Rej.
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DS: Given the standard signature σSS and the verifier’s public key pkv, the
signature holder SH selects r, cv, dv ∈R ZZp and computes
1. zs = e(g, g)r, zv = gdvpkv

cv

2. c = h1(m, pks, pkv, zs, zv)
3. cs = c− cv (mod p), ds = gr

(σSS)cs

Then, SH sends the universal designated verifier signature σDV =
(cs, cv, ds, dv) to the verifier V .

DS: Given the signer’s public key pks and the message m, the verifier V selects
r, cs ∈R ZZp, ds ∈ G1 and computes
1. zs = e(ds, g)e(h0(m), pks)cs , zv = gr

2. c = h1(m, pks, pkv, zs, zv)
3. cv = c− cs (mod p), dv = r − cvskv (mod p)

The universal designated verifier generated by the verifier is σDV =
(cs, cv, ds, dv).

DV: Given the designated verifier signature (cs, cv, ds, dv), anyone can check
whether

cs + cv
?= h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gdvpkv

cv ) (mod p)

If the equality holds, output Acc, otherwise, Rej.

Consistency:

– SV Consistency: If σSS is generated by the algorithm SS, then σSS =h0(m)sks .
Therefore e(σSS, g) = e(h0(m)sks , g) = e(h0(m), pks). That is: Pr[SV(cp, pks,
m, SS(cp, sks, m)) = Acc] = 1

– DV Consistency of DS: If σDS is generated by the algorithm DS, then σDV =
(cs, cv, ds, dv) where cv, dv ∈R ZZp and

cs =h1(m, pks, pkv, e(g, g)r, gdvpkv
cv)−cv (mod p), r∈ZZp and ds =

gr

(σSS)cs
.

Therefore,

h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gdvpkv
cv)

= h1(m, pks, pkv, e(g, g)r, gdvpkv
cv) = cs + cv (mod p)

That is: Pr[DV(cp, pks, pkv, m, DS(cp, pks, pkv, σSS, m)) = Acc] = 1.
– DV Consistency of DS: If σDS is generated by the algorithm DS, then σDV =

(cs, cv, ds, dv) where cs ∈R ZZp, ds ∈R G1 and

cv = h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gr)− cs (mod p), r ∈ ZZp

and dv = r − cvskv (mod p). Therefore,

h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gdvpkv
cv )

= h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gr) = cs + cv (mod p)

That is: Pr[DV(cp, pks, pkv, m, DS(cp, pks, skv, m)) = Acc] = 1
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5.1 Security Analysis

Theorem 1. If there exists an algorithm FCMA, CPKA
EUF, DV S can (t, qh0 , qh1 , qKR, qSS,

qDS, qDS, qDV, qSK, ε)-break our UDVS scheme, then there exists a simulator S who
can solve a random instance of the Computational Diffie Hellman problem on
G1 with probability SuccCDH

S,G1
≥ 1

9
1

(qSS+qSK)2 , after running F by 12
ε + 56qh1

ε times
with assumption ε ≥ 56qh1

1
2k (qDS + qDS)(qh1 + qDS + qDS) + 1, where k is the

system security number.

Proof: See Appendix.

Theorem 2. Let (pks, sks) ← KG(k), (pkv, skv) ← KG(k). If A is an algo-
rithm, who can produce a valid UDVS on the message m with probability ε in
time t, then our scheme UDVS scheme is (τ, κ) non-delegatable in the random
oracle where κ ≥ 1

9 , τ ≤ 16tqh1
ε if h1 is regarded as the random oracle, A asks

at most qh1 queries to the random oracle and ε ≥ 7qh1
2k , where k is the system

security number.

Proof: See Appendix.

Theorem 3. The proposed UDVS scheme is non-transferable against a (t, qh0 ,
qh1 , qKR, qSS, qDS, qDS, qDV, qSK) adaptively chosen message and chosen public key
distinguisher DCMA, CPKA

TRANS, UDV S.

Proof: See Appendix.

6 Conclusion

Non-delegatability is a property recently introduced by Lipmaa, Wang and Bao
as an essential property of (universal) designated verifier signature. In this paper,
we propose the first universal designated verifier signature scheme without dele-
gatability. Additionally, we refine the security models of the universal designated
verifier signature and introduce the notion of the strong universal designated ver-
ifier signature. However, as there is no secure non-delegatable strong designated
verifier signature, the scheme proposed in this paper is not a strong universal des-
ignated verifier signature. How to construct a non-delegatable strong (universal)
designated verifier signature remains as an open research problem.

Acknowledgement. The authors would like to thank the anonymous referees of
International Conference on Information and Communications Security (ICICS
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Appendix

Proof of Theorem 1: Suppose there exists a forger F who can (t, qKR, qh0 , qh1 , qSS,
qDS, qDS, qDV, qSK, ε) break our UDVS scheme. We will show there exists a simu-
lator S who can use F to solve the Computational Diffie Hellman problem. In
the proof, we assume that when F requests the signature of the signer pk or asks
the secret key corresponding to the public key pk, F has obtained the public
key pk from KR queries. We will regard hash functions h0, h1 as the random
oracles.

Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, for some prime
number p ≥ 2k, k be the system security number, g be the generator of G1 and e
denote the bilinear pairing G1 ×G1 → GT . Let (g, ga, gb) be a random instance
of the computational diffie hellman problem on G1.

– Setup: S returns cp = (G1, GT , g, p, e) to the forger F .
– KR queries: At any time, F can register for the ith user. In response, S will

maintain a pk-list which stores his responses to such queries. For a new
query, S chooses a number ei ∈ {0, 1} such that Pr[ei = 1] = 1

qSS+qSK
. If

ei = 0, S sets ski = fi ∈R ZZ∗
p, pki = gski . Otherwise, ei = 1 and S sets

pki = (ga)fi , where fi ∈R ZZ∗
p. For either case, S adds (pki, ei, fi) into the

pk-list and returns pki to F as the answer.
– h0 queries: F can issue h0 queries for the message mi. In response, S will

maintain an h0-list which stores his responses to such queries. For a new
query, S chooses a number xi ∈ {0, 1} such that Pr[xi = 1] = 1

qSS+qSK
.

Firstly, S chooses yi ∈R ZZ∗
p. If xi = 0, sets h0(mi) = wi = gyi . Otherwise,
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S sets h0(mi) = wi = (gb)yi . S then adds (mi, xi, yi, wi) to the h0-list and
returns wi to F .

– h1 queries: F can issue h1 queries with the query Qi = (mi, pks, pkv, zs, zv).
In response, S will maintain an h1-list which stores his responses to such
queries. For a new query Qi, S chooses ui ∈ ZZp and adds (Qi, ui) to h1-list.
Then S returns ui to F as the answer.

– SS queries: On a standard sign query (mi, pkj), S firstly checks h0-list to
obtain wi = h0(mi). If mi has not been submitted by F as one of the h0
queries, S generates the value of h0(mi) as he responds to h0 queries and
adds (mi, xi, yi, wi) into the h0-list. By assumption, (pkj , ej, fj) has been
in the pk-list. (1) If ej = 1, xi = 1, S reports failure and aborts. (2) Else
ej = 1, xi = 0, S can compute the standard signature σSS = (pkj)yi . (3) Else
ej = 0, S can compute the standard signature σSS = (wi)fj .

– DS queries: F can request a designated verifier signature σDV of the message
mi under the public key (pks, pkv), where pks denotes the signer and pkv

denotes the designated verifier. S firstly tries to compute σSS of this message
m. If mi has not been submitted by F as one of the h0 queries, S generates
wi = h0(mi) as its response to h0 queries and adds (mi, xi, yi, wi) into the
h0-list. By assumption, (pks, es, fs), (pkv, ev, fv) have been in the pk-list.
If xi �= 1 or es �= 1, B can generate the signature σSS as its response to
the SS queries, then he runs DS algorithm as defined in Section 5. If xi =
1, es = 1, S chooses cs, cv, dv ∈R ZZp and ds ∈R G1 and computes zs =
e(ds, g)e(wi, pks)cs , zv = gdv(pkv)cv . Then S sets Qi = (mi, pks, pkv, zs, zv)
and adds (Qi, cs + cv) into the h1-list. If query Qi has been requested by F ,
S reports failure and aborts.

– DS queries: F can request designated verifier signature σDS of the message
mi under the public key (pks, pkv), where pks denotes the signer and pkv

denotes the designated verifier. In response, S firstly generates the value of
h0(mi) as its response to h0 queries and adds (mi, xi, yi, wi) into the h0-list.
By assumption, (pks, es, fs), (pkv, ev, fv) have been in the pk-list. If ev = 0,
then skv = fv. S can run the DS algorithm as defined in the Section 5.
Otherwise, ev = 1. In this case, pkv = (ga)fv and S does not know the secret
key skv. Similarly as its response to DS queries, S chooses cs, cv, dv ∈R ZZp

and ds ∈R G1 and computes zs = e(ds, g)e(wi, pks)cs , zv = gdv(pkv)cv . Then,
S sets Qi = (mi, pks, pkv, zs, zv) and adds (Qi, cs + cv) into the h1-list.
Similarly, if query Qi has been requested by F , S reports failure and aborts.

– DV queries: F can execute the DV algorithm by himself since DV algorithm
does not need the secret keys of the signer and the designated verifier.

– SK queries: F can request the secret key corresponding to the public key pki.
By assumption, (pki, ei, fi) has been in the the pk-list. If ei = 0, S returns
fi to F . Otherwise, if ei = 1, B reports failure and aborts.

Finally, F outputs a forged messgae/signature pair (m∗, σ∗
DV) (σ∗

DV =
(c∗s, c

∗
v, d∗s, d

∗
v)) under the public keys (pk∗

s , pk∗
v) such that:

1. Acc← DV(cp, pk∗
s , pk∗

v , m∗, σ∗
DV).

2. (m∗, pk∗
S) has never been submitted as one of the SS queries.
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3. (m∗, pk∗
s , pk∗

v) has never been submitted as one of the DS or DS queries.
4. Neither pk∗

s nor pk∗
v has been submitted as one of the SK queries.

Therefore, if S does not abort during the simulation, F can output a valid forgery
with probability greater than ε. Now it remains to compute the probability that
S does not abort:

1. The probability S does not abort during the SS queries is greater than
(1− ( 1

qSS+qSK
)2)qSS .

2. The probability S does not abort during the SK queries is greater than
(1− 1

qSS+qSK
)qSK .

3. The probability that there is no collision happens during the DS or DS queries
is greater than (1− qh1+qDS+qDS

2k )qDS+qDS .

Therefore, the probability S does not abort during the simulation is

(1 − (
1

qSS + qSK
)2)qSS(1− 1

qSS + qSK
)qSK(1− qh1 + qDS + qDS

2k
)qDS+qDS

≥ (1 − 1
qSS + qSK

)qSS+qSK(1− (qDS + qDS)(qh1 + qDS + qDS)
2k

)

Since h1 is regarded as a random oracle, the probability that F succeeds and
has not submitted Q∗ = (m∗, pk∗

s , pk∗
v , z∗s , z∗v) (z∗s = e(d∗s, g)e(w∗, pk∗

s)c∗
s , z∗v =

gd∗
v(pk∗

v)c∗
v ) to the random oracle h1 is less than 1

2k . Therefore, F can output
a valid forgery (m∗, pk∗

s , pk∗
v , σ∗

DV) such that Q∗ has been submitted to the ran-
dom oracle with probability ε′ ≥ ε(1− 1

qSS+qSK
)qSS+qSK(1− (qDS+qDS)(qh1+qDS+qDS)

2k )−
1
2k ≥ ε(1 − 1

qSS+qSK
)qSS+qSK − (qDS+qDS)(qh1+qDS+qDS)+1

2k ≥ ε
7 . (with assumption

ε ≥ 56qh1

(qDS+qDS)(qh1+qDS+qDS)+1
2k ). Therefore, the probability F succeeds with

no collision happens is more than ε
7 . Now, we apply the forking lemma [13].

Let F begins with the the random tape Ω and h1 is regarded as the random
oracle Θ. If S runs F 12/ε times with the random oracle Ω and Θ, S gets a
least one pair (Ω, Θ) with success probability 1 − e−12/7 ≥ 4

5 such that Q∗ has
been requested as one of the h1 queries. Let the βth queries Qβ = Q∗ and the
response is u∗

β1. If S replays forger F with different response u∗
β2 to Qβ and

the same responses to Qi, i ≤ β, S can obtain another forged signature on the
same message with probability more than ε′

4qh1
−1/2k ≥ ε

56qh1
(with assumption

ε ≥ 56qh1

(qDS+qDS)(qh1+qDS+qDS)+1
2k ).

Due to the forking lemma, after running F 12
ε + 56qh1

ε times, S can ob-
tain two valid universal designated verifier signatures (m∗, c∗s1, c

∗
v1, d

∗
s1, dv1∗) and

(m∗, c∗s2, c
∗
v2, d

∗
s2, d

∗
v2) with probability greater than 1/9 and

e(d∗s1, g)e(w∗, pk∗
s)c∗

s1 = e(d∗s2, g)e(w∗, pk∗
s)c∗

s2 (1)
gd∗

v1(pk∗
v)c∗

v1 = gd∗
v2(pk∗

v)c∗
v2 (2)

but c∗s1 + c∗v1 �= c∗s2 + c∗v2 (mod p).
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1. If c∗s1 �= c∗s2
(mod p), with probability 1

qSS+qSK
, w∗ = (gb)y∗

. Additionally,
with probability 1

qSS+qSK
, pk∗

s = (ga)f∗
s . Therefore, with probability ( 1

qSS+qSK
)2,

the following equation holds from equation (1): d∗s1(g
ab)f∗

s y∗c∗
s1 =

d∗s2(gab)f∗
s y∗c∗

s2 . Therefore gab = (d∗s1/d∗s2)(f
∗
s y∗)−1(c∗

s2−c∗
s1)

−1

2. Otherwise, c∗v1 �= c∗v2
(mod p), then sk∗

v = (c∗v2 − c∗v1)
−1(d∗v1 − d∗v2) (due to

the equation (2)). With probability 1
qSS+qSK

, pk∗
v = (ga)f∗

v , therefore, a =

(f∗
v )−1(c∗v2 − c∗v1)

−1(d∗v1 − d∗v2) and gab = (gb)(f
∗
v )−1(c∗

v2−c∗
v1)

−1(d∗
v1−d∗

v2).

In either way, S can compute gab with probability 1
9 ( 1

qSS+qSK
)2 after running F

by 12
ε + 56qh1

ε times. ��

Proof of Theorem 2: In the extraction, K will act as the random oracle to re-
ply A’s qh1 h1 queries. Let pks = gsks , pkv = gskv be the public keys of the
signer and the verifier. For each h1 query Qi = (mi, pks, pkv, zs, zv), K chooses
a random number ui ∈ ZZ∗

p and sets h1(Qi) = ui. If A can produce a valid uni-
versal designated verifier signature with probability ε ≥ 7qh1

2k , due to the forking
lemma, K can use A to obtain two valid signatures on the same message m with
probability κ ≥ 1

9 after running A by 2
ε + 14qh1

ε times. Let (m, cs, cv, ds, dv) and
(m, c′s, c

′
v, d′s, d

′
v) be these two valid signatures, then e(ds, g)e(h0(m), pks)cs =

e(d′s, g)e(h0(m), pks)c′
s , gdvpkcv

v = gd′
vpk

c′
v

v but cs + cv �= c′s + c′v (mod q). Then
the following two equations hold:

e(h0(m), pks)cs−c′
s = e(

ds

d′s
, g), skv(cv − c′v) = d′v − dv.

If cs �= c′s, then e(h0(m), pks) = e(ds

d′
s
, g)(cs−c′

s)−1
. Therefore K can compute

σSS = (ds

d′
s
)(cs−c′

s)
−1

. Otherwise, cs = c′s, cv �= c′v. K can compute skv = (d′v −
dv)(cv − c′v)−1. Therefore, K can extract σSS or skv with probability κ ≥ 1

9 in
time τ ≤ 16tqh1

ε . ��

Proof of Theorem 3: In the proof, the simulator S runs KG algorithm to generate
all the secret/public keys. He then sends the public keys to the distinguisher D
and keep the secret keys only known to himself. Because S has the knowledge of
all secret keys, he can run SS, DS and DS to response D’s queries. Neither will he
abort during D’s SK queries. For each h0 queries, S chooses a random element in
G∗

1 as the response. Similarly, S chooses a random number in ZZp as the response
to each h1 queries. Therefore, S will not abort during the simulations.

Firstly we show that the distribution of signature σDV generated by the al-
gorithm DS is uniform in ZZp × ZZp × G1 × ZZp. Let σDV = (cs, cv, ds, dv) is the
universal designated verifier signature generated by the DS algorithm,

σDV = (cs, cv, ds, dv) :

⎧⎨⎩
cs = h1(m, pks, pkv, e(g, g)r, gdvpkv

cv )− cv (mod p),
where r, cv, dv ∈R ZZp and
ds = gr

(σSS)cs , r ∈R ZZp
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Therefore, for a randomly chosen signature σ∗ = (c∗s, c
∗
v, d

∗
s , d

∗
v), the probability

Pr[σDV = σ∗] = 1
p4 .

Then we show that the distribution of signature simulated by the algorithm
DS is also uniform ZZp × ZZp ×G1 × ZZp.

σDV = (cs, cv, ds, dv) :

⎧⎨⎩
cv = h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gr)− cs

(mod p), where r, cs ∈R ZZp, ds ∈R G1 and
dv = r − cvskv (mod p), r ∈R ZZp

Therefore, for a randomly chosen signature σ∗ = (c∗s, c∗v, d∗s , d∗v), the probability
Pr[σDV = σ∗] = 1

p4 .
Therefore, given a valid universal designated verifier signature, one can not

distinguish whether it is generated by DS algorithm or DS algorithm. Hence, our
proposed scheme satisfies the untransferability property.



P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 499 – 506, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Tracing HTTP Activity Through Non-cooperating  
HTTP Proxies (Short Paper)* 

Richard J. Edell, Peter Kruus, and Uri Meth 

SPARTA, Inc. 
7110 Samuel Morse Drive 

Columbia, MD  21046 
{Richard.Edell, Peter.Kruus, umeth}@sparta.com 

Abstract. Tracing nefarious HTTP activity to its source is sometimes extremely 
difficult when HTTP (and/or SOCKS) proxies are used for origin obfuscation.  
This paper describes a technique for tracing HTTP traffic through one or more 
non-cooperating HTTP (and/or SOCKS) proxies.  The technique uses only pas-
sive observations of TCP/IP headers.  Furthermore, the technique need only ob-
serve a single direction of the underlying TCP flows, i.e. the technique is 
asymmetric-route-robust.  The technique represents a set of HTTP transactions 
as an activity profile.  These profiles may be either distilled from passive net-
work observations, or logged by a cooperating web server.  Using statistical 
correlation techniques, we can trace both end-to-end SSL-encrypted HTTP, and 
unencrypted HTTP despite the source obfuscation methods employed by many 
contemporary proxies.  The technique may be used to narrow the search space 
before applying other more resource intensive traceback techniques. 

1   Introduction 

Identifying the origin of Hypertext Transfer Protocol (HTTP) activity is sometimes 
extremely important.  HTTP activity may be the direct transport mechanism of a net-
work-borne attack.  For example, an attacker may attempt a brute force password 
cracking attack against a web server; or, attempt to exploit vulnerabilities within a 
web server’s software.  Other times the HTTP activity is a client accessing an other-
wise legitimate web service, but for illegitimate purposes.  For example, a spy may 
exchange stolen data through a web-based file sharing service; a terrorist may com-
municate using a web-based email service; or, a criminal may fraudulently access a 
banking web site. 

Identifying the origin of HTTP activity can be difficult when technologies de-
signed to obscure the source are employed.  Among these technologies are HTTP 
proxies.  HTTP proxies can be configured to obfuscate the origin of HTTP activity by 
removing easily traceable information such as IP source addresses.  Furthermore, 
HTTP proxies can be “chained” together effectively creating multiple layers of origin 
obfuscation.  There are thousands of publicly available HTTP proxies on the Internet 
(see, for example, http://www.proxy.org).  Furthermore, remotely compromised hosts 
                                                           
* Approved for Public Release; distribution unlimited. 
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can be configured to operate as private HTTP proxies that can then be used to obfus-
cate the origin of nefarious activity. 

This paper describes our HTTP traceback technique for tracing HTTP activity 
backwards, from the destination server, through some non-cooperating HTTP proxies, 
and toward the origin of the activity.  Our technique requires only passive network 
observations of TCP/IP headers.  Furthermore, the technique requires only unidirec-
tional observations and as such is robust in the presence of asymmetric routing.  The 
technique works with end-to-end SSL-encrypted HTTP.  The technique also works 
with unencrypted HTTP traffic that is transformed by some HTTP proxies.  The tech-
nique relies upon the variability of message sizes and timing within HTTP sessions.  
The technique further relies upon proxies applying repeatable transformations to the 
HTTP messages.  Generally, aspects of the technique can be applied to traceback of 
other remote procedure call (RPC)-like protocols such as Common Object Request 
Broker Architecture (CORBA), Microsoft RPC/Distributed Component Object Model 
(MSRPC/DCOM), Lightweight Directory Access Protocol (LDAP), etc. 

Several studies [1], [2], [3], [6] have explored a related problem – the weaknesses 
of using SSL for cloaking the content of HTTP communication.  In general, these 
studies suppose a prior catalog of fingerprinted web content; SSL-encrypted HTTP 
traffic is observed and fingerprinted; by correlating the traffic and cataloged finger-
prints, the observer can infer the web pages accessed.  In these studies, HTTP session-
specific variable factors such as browser software, browser cache state, web content 
changes, etc. partially confound the comparison of observed traffic with the separately 
cataloged web content.  Detection thresholds are adjusted appropriately.  Conse-
quently, false-positives and false-negatives are a recurring issue.   

Our approach utilizes similar methods for extracting features from HTTP connec-
tions, it relies partially upon the same variability of object sizes documented in those 
studies, and it is sensitive to many of the same countermeasures.  However, because 
we have different objectives, we frame our problem differently and make different as-
sumptions.  We seek to trace HTTP activity backward from the HTTP server, past 
non-cooperating proxies, and toward the client.  We suppose multiple simultaneous 
network traffic observations from various points within the Internet.  Our approach 
functions in both online-distributed traceback [4], [5] and offline-centralized trace-
back environments. When we compare traffic observations, we are trying to find the 
same HTTP session.  And so the same session-specific variation that confounds the 
alternative perspective (matching traffic to web pages) tends to assist us in distin-
guishing HTTP sessions. 

In this paper, we first describe the HTTP traceback problem in abstract terms.  
Next, we outline the traceback technique, noting two key observations about HTTP 
traffic and proxy behavior, and commenting on the correlation method.  We then pre-
sent an initial evaluation where we confirm our key observations. 

2   Problem Statement 

Fig. 1, below, depicts a reference network topology.  The figure shows three web 
servers ( 1S , 2S , and 3S ), two proxies ( 1P , and 2P ), and two clients ( 1C , and 2C ).  

The lines connecting clients, proxies, and web servers indicate who communicates  
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directly with whom.  The lines hide the complexity of network switches, routers, and 
links; in other words, the lines are like the typical “network cloud”.  While this com-
munication often occurs over multiple parallel TCP connections, this figure does not 
show that detail.  Each HTTP transaction consists of a request sent by a client to a 
server, and a response sent by the server back to the client.  A single TCP connection 
carries one or more HTTP transactions.  Discrete HTTP transactions are indicated in 
the figure by iv , jw , and kx  with various accent marks.  When a transaction has been 

transformed by a proxy, its indication is changed by changing the accent mark (“¯”, 
“^”, or “~”). 

4211
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23132
~,~,~,~,~ wxxvv
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Fig. 1. Reference Network Topology. Targeted servers ( 1S , 2S , and 3S ), HTTP proxies 
( 1P , and 2P ), and HTTP clients ( 1C , and 2C ) are shown. 

The reference network figure shows client-server communication paths via two 
proxies in tandem, i.e. proxy chaining.  This may  occur either by proxy configura-
tion, or by a client tunneling requests through proxies.  A client can tunnel requests by 
using an HTTP proxy’s “CONNECT” method, or by using a SOCKS proxy. 

We now offer some concrete examples using Fig. 1.  We first frame these exam-
ples as if there were an omniscient traceback oracle to illustrate the types of traceback 
requests that can be answered positively.  Suppose 3S  determined HTTP traceback 

was needed for a transaction set { }31, xx .  It would describe that transaction set in 

some way, and query the oracle.  The oracle would respond positively and indicate 
the path 3121 SPPC ↔↔↔ .  Had 3S  instead requested traceback of { }321 ,, xxx  

(i.e., transactions mixed from different clients), the oracle would respond negatively 
as there is no single client-server path that contains that entire transaction set.  Alter-
natively, 3S  could request traceback of { }41,vv  or { }32 ,vv  and receive positive re-

sponses.  Other combinations of iv , jw , and kx  would not yield positive responses 

either because they would mix client transactions, or represent too small of a transac-
tion set. 

We now reframe the preceding examples by replacing the omniscient oracle with 
more realistic passive network listening posts.  These listening posts are deployed at 
discrete points within the network.  A listening post can only detect similar transac-
tion sets that happen to appear at its discrete observation point; furthermore, when it 
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does detect a similar transaction set, it can only identify the immediate transport layer 
endpoints within the proxy chain.  For example, listening posts that happen to observe 
the 21 PC ↔  segment of the 3121 SPPC ↔↔↔  path can detect the { }31, xx  trans-

action set (appearing on that segment as { }31
~,~ xx ) and identify 1C  and 2P  as end-

points of a segment of the path.  Listening posts that do not observe any segment of 
the 3121 SPPC ↔↔↔  path cannot detect the { }31, xx  transaction set. 

3   HTTP Traceback Technique 

For the purposes of this technique, we define an HTTP session as a set of HTTP 
transactions between a client and a server.  An HTTP transaction is an operation  
such as “GET /pathname/objectname.type.”  It is communicated by a request mess-
age sent from a client to a server and the resulting response message sent by  
the server back to the client.  A transaction profile (TP) is a three-tuple 
( )erequestTimzeresponseSierequestSiz ,,  that represents a transaction’s messages.  A 

transaction set profile (TSP) is a set of TPs.  A session profile (SP) is a set of TPs that 
represent transaction messages from a single HTTP session.  We redefine HTTP 
traceback in these terms as follows:  Given an SP observed near a server, determine 
whether a corresponding set of TPs exists within a TSP observed near a client. 

Fig. 2, below, shows some sample TSP data1, and diagrams how the source data 
was collected, processed into TSPs, and then correlated.  The plot in the left side 
shows the erequestSiz  and zeresponseSi components of selected TSPs; the schematic  
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Fig. 2. Example Transaction Set Profile and Session Profile. Note, the filled vs. empty box 
indications within the Transaction Set Profile (TSP) are not actually indicated within the TSP.  
We have indicated them here to show how the Session Profile (SP) and TSP correlate. 

 
                                                           
1 The data shown here is from an initial evaluation of our traceback technique.  Later in this pa-

per, we will discuss that evaluation further. 
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in the top-right diagrams how the data was collected.  We configured an HTTP client 
(Firefox) to use an HTTP proxy (Squid, see http://www.squid-cache.org), and then 
browsed an HTTP server.  Simultaneously, we captured packets using tcpdump at two 
points depicted in the figure by magnifying glasses.  The TCP/IP headers going from 
“Proxy” to “Server” were processed to create a TSP, and that TSP is presumed to be 
an SP (triangles) because there was only one proxy client.  Similarly the TCP/IP 
headers going from the “Client” to “Proxy” were processed to create another TSP 
(filled and empty boxes).  The plot within the figure shows seven seconds of this data. 

Our traceback technique is based on two key observations: 

1. Non-trivial HTTP sessions can be fingerprinted by their SPs.  In Fig. 2, the pat-
tern of triangles is an example fingerprint.  Previous studies [3], [6] have estab-
lished the variability in object lengths, across large sets of web pages.  Our SPs 
include additional information from the HTTP session ( erequestSiz  and 

erequestTim ) thus yielding even greater variability. 

2. Today’s common HTTP proxies transform request and response messages in 
predicable ways.  Within an HTTP session, these transformations share common 
properties.  Therefore, a session’s SPs as observed on opposite sides of a proxy 
share distinctive characteristics.  In Fig. 2 the TSP subset indicated with filled-
boxes has the same pattern as the SP indicated with triangles.  In this example, 
each filled-box is offset by -88 bytes in the erequestSiz  dimension, and +51 

bytes in the zeresponseSi  dimension from its corresponding triangle.  In other 

words, in this example the proxy added 88 bytes to the client’s HTTP requests 
before forwarding them to the server, and the proxy added 51 bytes to the 
server’s HTTP responses before forwarding them to the client.2 

 

Note that the plot in Fig. 2 does not represent the erequestTim  components of ei-

ther the SP or TSP.  That temporal component does contribute to the uniqueness of 
any given SP.  Additionally, HTTP proxies are expected to slightly delay HTTP re-
quests and that delay is expected to vary slightly.  Therefore, the temporal component 
can be used when correlating SPs against TSPs.  Elements of the figure’s triangular 
SP and filled-box TSP can be paired in a way that yields a constant erequestSiz  and 

zeresponseSi  difference.  That pairing yields a small erequestTim  difference and that 

difference varies slightly. 

4   Initial Evaluation 

We have begun evaluating this traceback technique using a limited dataset.  Fig. 2, intro-
duced above, diagrams the data collection arrangement.  Network traffic was recorded at 
two points: (1) between the proxy and the far-end web servers, and (2) between the client 
and the proxy.  The client and proxy were specifically setup for this evaluation; the net-
work and far-end servers were uncontrived. We recorded approximately 8 minutes of 

                                                           
2 More precisely, the proxy server added/removed/modified headers having the net effect of 

changing the request/response message sizes.  In this example, the net effect of the changes 
added bytes. 
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network traffic.  Five different web-based services were accessed and eight different web 
sites were identified as providing those five services. 

Working only from TCP/IP headers in the “forward” direction, 734 transactions were 
identified and profiled between the client and the proxy (i.e., a TSP); similarly, 520 
transactions were identified and profiled between the proxy and the eight web servers 
(i.e., eight SPs).  Therefore, for each of the eight SPs, we expect to find the entire SP 
within the TSP with some constant difference in erequestSiz  and zeresponseSi , and a 

small slightly varying difference in erequestTim .  However, in the course of attempting 

to correlate those eight SPs against the TSP, we discovered two minor difficulties.3   
These difficulties are a direct consequence of our limited perspective (unidirectional 
TCP/IP headers), and are limited to the last transaction of each TCP connection.  There-
fore, we have excluded the last transaction of each TCP connection from our SPs.  We 
call the remaining transactions the “Non-FIN” transactions. 

Table 1, below, lists the eight websites, the length of their SPs, and data showing 
how well their SPs correlated with the TSP.  The correlation method considers hypo-
thetical offsets in erequestSiz  and zeresponseSi , seeking to identify the “best” hy-

pothesis.  We define the best hypothesis as one that matches the largest portion of the 
SP within the TSP.   The first four servers’ SPs were found entirely within the TSP.  
That is, all Non-FIN SP elements were found within the TSP by applying a fixed off-
set to erequestSiz  and zeresponseSi .  The next two servers’ SPs were only partially  

 

Table 1. Initial Evaluation Data. Eight SPs and correlation with TSP are shown. 

 Number of 
Transactions 

Number of  Matching 
Transactions 

Best Hypoth. 
Delay 

Web Server All Non-
FIN 

Best 
Hypothesis 

Next Best 
Hypothesis 

Avg. 
(ms) 

S.D. 
(ms) 

www.washingtonpost.com 58 50 50 2 14 46 

media.washingtonpost.com 47 44 44 3 22 79 

mail.google.com 88 62 62 3 12 15 

cdn.mapquest.com 117 113 113 10 18 64 

www.box.net 140 127 117 11 14 79 

www.mapquest.com 20 17 11 5 45 85 

web.mapquest.com 6 0 N/A (no non-FIN transactions) 

x.y.hotmail.msn.com 7 0 N/A (no non-FIN transactions) 

                                                           
3 First, we use TCP acknowledgement numbers to infer data flow in the unobserved direction.  

That works well except for the ambiguous connection close sequence. That ambiguity leads to 
an occasional off-by-one error in the inferred zeresponseSi  for that last transaction over 

each TCP connection.  Second, an HTTP server usually signals within a transaction’s headers 
that it intends to close the TCP connection after completing that connection. We have ob-
served, however, that the presence of such signaling is sometimes dependent on the HTTP re-
sponse message body’s content-type.  Since the header size is based upon something we do 
not observe, we can’t easily correlate the last transaction of a TCP connection observed be-
tween a proxy and a web server.   
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found within the TSP.  In all cases, the “next best” hypothesis matched a significantly 
smaller portion of the SP.  Considering the first server, all SP subsets of three or more 
elements will correlate with precisely the correct elements of the TSP.  This precision 
gives us hope that the traceback technique will have a low false-positive rate. 

Each of the “best” hypothetical offsets implies a particular pairing of most (and 
sometimes all) SP elements to TSP elements.  From those implied pairings we can 
evaluate the differences in erequestTim , i.e. the implied transit delays.  Table 1 

shows the average and standard deviation of the delays implied by the best hypothe-
ses.  Note that these hypothetical matches were formed without regard to time, yet the 
resulting delays implied are all small in average and with small standard deviation.  
Evidently, the correlation method’s best hypotheses did not mismatch SP elements 
with TSP elements. 

Note, we expected to find, but did not find, all elements of each SP within the TSP.  
In the case of the www.box.net, ten SP elements were inconsistent with the best hy-
pothesis.  Those ten elements, however, were all consistent with the next best hy-
pothesis.  That is, the entire SP can be found within the TSP by applying one of two 
offsets to each SP element.  In the case of www.mapquest.com, six SP elements were 
inconsistent with the best hypothesis.  However, in this case two additional hypothe-
ses are necessary to locate all SP elements within the TSP.   By inspecting the packet 
contents, we have determined why these additional hypotheses are necessary.  For 
www.box.net, a particular hop-by-hop header in the server response messages (“keep-
alive”) had one length in 117 transactions, and another length in ten transactions.  For 
www.mapquest.net, the client included an atypical cache-control directive in five re-
quests, and the server added extraneous whitespace to the “content-length” header in 
one response.  Evidently, a small number of intra-session behavioral variations, by 
both clients and servers, do sometimes occur.  We will consider enhancing our corre-
lation method to consider a small set of hypothetical offsets that match the largest 
portion (or the entirety) of the SP within the TSP. 

5   Conclusion 

Our initial evaluation is intended to motivate design, and to validate the observations 
underlying the traceback technique.  From that evaluation, we believe that the trace-
back technique shows promise.  We have noted some difficulties and will explore the 
enhancement we suggested.  Furthermore, we are planning a more comprehensive 
evaluation that involves a greater variety of websites accessed, simultaneous users ac-
cessing the same websites, and considers additional proxy implementations.  That 
more comprehensive evaluation is expected to reveal instances of false-positives, i.e. 
of TSPs incorrectly identified as bearing an SP’s fingerprint.  Hopefully the unique-
ness of HTTP activity profiles will result in low false-positive rates.  The characteris-
tics of those false-positives may yet motivate new traceback techniques. 

The widespread availability of HTTP proxies (both publicly available with many 
users, and privately setup on compromised hosts) offers hackers, spies, terrorists, and 
even rote criminals opportunities to hide their true location while using the Internet.  
The HTTP traceback technique outlined in this paper is a valuable tool in tracking 
their location. 
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Abstract. We show the fastest implementation result of RSA on Itanium 2. For
realizing the fast implementation, we improved the implementation algorithm of
Montgomery multiplication proposed by Itoh et al. By using our implementation
algorithm, pilepine delay is decreased than previous one on Itanium 2. And we
implemented this algorithm with highly optimized for parallel processing. Our
code can execute 4 instructions per cycle (At maximum, 6 instructions are exe-
cuted per cycle on Itanium 2), and its probability of pipeline stalling is just only
5%. Our RSA implementation using this code performs 32 times per second of
4096-bit RSA decryption with CRT on Itanium 2 at 900MHz. As a result, our
implementation of RSA is the fastest on Itanium2. This is 3.1 times faster than
IPP, a software library developed by Intel, in the best case.

Keywords: RSA, Montgomery multiplication, software implementation, Ita-
nium 2.

1 Introduction

The RSA [13] is one of the standard public-key cryptosystems. The security of RSA
relies on a fact that factoring huge integers, which is used as a public-key in RSA, is
infeasible. Thus the key-length of RSA is chosen so as to avoid such factorization. In
the past, 1024-bit was enough. However, with a remarkable development of semicon-
ductor technologies, we need longer RSA keys in the near future. For example, NIST
recommends using 2048-bit or 3072-bit RSA keys after the year 2010 [16] [17]. If the
key-length of RSA becomes longer, its computational cost grows with the cube of the
bit length. Therefore, realizing a high-speed RSA with longer-keys is more important
than ever.

Most of the RSA processing time is spent in modular multiplications. For performing
modular multiplication effectively, several types of primitive algorithms was proposed
by Montgomery [1], Barrett [14], Kaihara-Takagi [15] and so on. Currently, the most
popular algorithm is the Montgomery’s one (Montgomery multiplication). In addition,
many improvements on this algorithm have been proposed. Dusse and Kaliski trans-
formed a multiplication and reduction for long bit integers into an effective integration
of multiplication and reduction for small bit integers [18]. Related with hardware ar-
chitecture for scalable Montgomery multiplication, many results are known [7] [8] [9]
[10] [11] [12]. Related with software implementation, Koc et al. [2] presented several
effective software implementation algorithms of the Montgomery multiplication (e.g.
SOS, CIOS, FIOS and more), and evaluated the required resources of these implemen-
tation algorithms. Furthermore, FIOS, one of the improvement by Koc et al. [2], was

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 507–518, 2006.
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improved by Itoh et al [3]. This improved algorithm (Itoh’s algorithm) is very suitable
for pipelining, and allows high-performance RSA implementation on a DSP [3].

Our objective of this paper is to realize a fast implementation of RSA on Itanium 2,
because it has attractive features for establishing high-performance RSA. That is, it can
operate a 64-bit × 64-bit multiply instruction with very low latency (4 cycles) and low
delay (1 cycle), and can execute 6 instructions in parallel at 1 cycle. Our strategy has 2
steps as follows.

In the first step, we analyzed the dependency between data calculations in a Mont-
gomery multiplication in the Itoh’s algorithm. By considering the specific conditions
for Itanium 2 pipeline scheduling, the pipeline delays are evaluated. However, we found
that a naive application of the Itoh’s algorithm causes heavy overheads on Itanium 2.
Thus we enhanced the Itoh’s algorithm so as to avoid such overheads, which is one of
our contributions of this paper.

In the second step, based on the pipeline scheduling found in the first step, we estab-
lished an optimized code in parallel processing in assembly language of Itanium 2 by
trial and errors. Our code can execute 4 instructions per cycle, while Itanium 2 can ex-
ecute at maximum 6 instructions. Since the probability of pipeline stalling of our code
is just only 5%, we think our code is optimal. These results show the high-performance
in parallel processing for software implementation. In fact, our code performs 32 times
4096-bit RSA decryptions with CRT per second on Itanium 2 at 900MHz. Compared
with IPP, an RSA software library developed by Intel, our code is 3.1 times faster in the
best case.

As far as the authors know, this is the first paper which analyzes the optimizing
process and presents performance results for RSA software implementation specified
for Itanium 2.

The rest of this paper is organized as follows. We describe primitives of the Mont-
gomery multiplication and previous implementation algorithms in chapter 2, our pro-
posed algorithm in chapter 3, implementational results of our proposed algorithm in
chapter 4 and a conclusion in chapter 5.

2 Montgomery Multiplication and Itoh’s Algorithm

In this chapter, we briefly introduce the Montgomery multiplication method for modular
multiplications and its implementation algorithm.

The Montgomery method allows efficient modular multiplications [1]. The most cru-
cial part of this method is the Montgomery multiplication (REDC) shown in Algorithm
1. Let N be an integer is greater than 1, and R be an integer greater than N and rel-
atively prime to N. Also let N′ be an integer such that 0 < N′ < R and N′ = −N−1

(mod R). Under these notations, Algorithm 1 calculates a Montgomery multiplication
REDC(A, B) = A × B × R−1 (mod N) for integers A and B with 0 ≤ A × B ≤ R × N.

To compute a modular multiplication A × B (mod N) with the Montgomery multi-
plication, we covert A and B to so-called the Montgomery domain in which the Mont-
gomery multiplications are effectively computed (this conversion is done by applying
an appropriate constant R). After a Montgomery multiplication, a result is re-converted
to the previous domain and output. An outline is shown in Algorithm 2.
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-input: A, B, R, N. 

-output: REDC(A,B) = A×B×R
-1

 (mod N) 

-algorithm 

N’ := -N
-1

 (mod R) 

Y := AB 

M := ( Y (mod R) ) × N’ (mod R) 

Y := Y + MN 

Y := Y/R 

if Y ≥ N then Y := Y – N 

return Y 

Alg. 1. Montgomery Multiplication (REDC)

-input: A, B, R, N. 

-output: A×B (mod N) 

-algorithm 

A’ = A×R (mod N) 

B’ = B×R (mod N) 

C’ = REDC(A’,B’ ) = A×B×R×R×R
-1

 (mod N) = A×B×R (mod N) 

C �REDC(C’, 1) = A×B×R×R
-1

 (mod N) = A×B (mod N) 

return C 

Alg. 2. Structure of “CORE loop of REDC” in Algorithm 3

In typical implementations of REDC, input integers A, B and output integer Y are
represented with multi-precision, namely an s × w-bit integer A is represented as
(as−1, as−2, . . . , a0) where every ai(0 ≤ i ≤ s − 1) is a w-bit word data. (Here, R = 2s×w

is used). So, in these implementations, all integers are represented with multi-precision
and looped calculations for every word data are required. Thus such implementations
are not efficient.

In 1996, Koc et al. presented some implementation algorithms of REDC [2]. FIOS
(Finely Integrated Operand Scanning) algorithm was among these implementations and
further improved by Itoh et al [3] so as to suitable for pipelining [3]. We focus on this
algorithm (Itoh’s algorithm) in the rest of this paper. An outline of the Itoh’s algorithm
is shown in Algorithm 3. And “Core loop of REDC” structure in Algorithm 3 is shown
in Fig 1. Here, “Upper Computation” in Fig 1 is corresponding to the first equation
of “Core loop of REDC” in Algorithm 3. And “Lower Computation” is corresponding
to the second equation. To handle carries of each equation to the next loop, the first
equation in the (i + 1)-th loop does not refer to a result of the second equation in the
i-th loop. Thus Itoh’s algorithm can compute the first and second equations in parallel,
which is an improvement in comparison with the original FIOS algorithm. This is why
the Itoh’s algorithm is suitable for pipelining.

3 Enhancement on the Itoh’s Algorithm

Our objective of this paper is to realize a fast implementation of RSA on Itanium 2. To
do so, our strategy has 2 steps. As the first step, we analyze the dependency between data
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Fig. 1. Structure of “CORE loop of REDC” in Algorithm 3

calculations in the Itoh’s algorithm in this chapter. Also, an enhanced Itoh’s algorithm,
which avoids heavy overheads on Itanium 2 are proposed in this chapter.

3.1 Analysis of “Core Loop of REDC” in the Itoh’s Algorithm

For improving the Itoh’s algorithm, analyzing “Core loop of REDC” part in Algorithm
1 is required. Figure 2 shows our dependency analysis of “Core loop of REDC” in
which the i-th and the (i+1)-th loops are discussed. Here “Upper MAA” corresponds to
“Upper Computation” in Fig. 1 and “Lower MAA” to “Lower Computation” in Fig. 1
(MAA means one multiplication and two additions).

In Fig.2, “Lower MAA” needs a temporal result of “Upper MAA” before starting its
computation. We call this relation “dependency” and represent as directions in Fig.2.
Similarly, three following dependencies can be found Fig.2. Here a representation X →
Y means that Y needs a result of X to start its computation. We call this relation as “Y
depends to X”.

(1-i) Upper MAA→ Lower MAA
(1-ii) i-th Upper MAA→ (i + 1)-th Upper MAA
(1-iii) i-th Lower MAA→ (i + 1)-th Lower MAA

REDC implementations with FIOS cannot avoid a dependency between the i-th Lower
MAA and the (i + 1)-th Upper MAA. On the other hand, the Itoh’s algorithm computes
i-th Lower MAA and (i + 1)-th Upper MAA in parallel, because there is no dependency
between them. Thus, the Itoh’s algorithm is very suitable for pipelining.

For implementing the Itoh’s algorithm on Itanium 2, some specific conditions for
Itanium 2 pipeline scheduling shold be considered. As the first condition, Itanium 2
cannot operate one multiplication and two additions (multiply-add-add) within 1 in-
struction, but can operate one multiplication and one addtion (multiply-add) within 1
instruction. By taking this restriction into account, a pipeline scheduling of the Itoh’s
algrithm is modified as in Fig.3, where a symbol MA represents a multiply-add opera-
tion and a symbol A′ represents an add operation. Note that MA can be operated within
1 instruction, while A′ cannot within 1 instruction.
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-input: A, B, R, N.

-output: REDC(A,B) = A�B�R
-1

(mod N)

-Multi-precision integers

A=( a
s-1

, . . . , a
0

)

B=( b
s-1

, . . . , b
0 

)

N=( n
s-1

, . . . , n
0

)

Y=( y
s
,  . . ., y

0
)

N' = ( n'
s-1

, . . . , n'
0

)

-w-bit word data.

tmp, C1,C2, m

- algorithm

Y := 0

for j=0 to s-1

(C1, tmp) := y
0

+ a
0
�b

j

m := tmp � n'
0

(mod r)          /* r is 2
w

*/

(C2, tmp) := tmp + m � n
0

for i=0 to s-1

(C1, tmp) := y
i
+ C1 + a

i
� b

j

(C2, y
i-1

) := tmp + C2 + m �n
i

next i

(C2,C1) := C1 + C2 + y
s

y
s-1

:= C1

y
s

:= C2

next j

if Y >= N then Y := Y - N 

return Y

Core loop of REDC

Alg. 3. Itoh’s algorithm for REDC

In the pipeline scheduling of Fig.3, there are three dependencies shown in the fol-
lowing (2-i)–(2-iii).

(2-i) Upper A′ → Lower MA
(2-ii) i-th Upper MA→ (i + 1)-th Upper MA
(2-iii) i-th Lower A→ (i + 1)-th Lower A′

In Fig.3, MA can be operated within 1 instruction (XMA instruction of Itanium
2). However, there is another specific condition of Itanium 2 that XMA instructions
are executed only to floating-point registers for input and output data. Since Upper A’
(integer addition) is executed to general registers, not to floating-point registers, we
require a trick like follows:

(a1) One idea is to operate an Upper A′ by an XMA instruction. This can be done by
substituting integers in general registers to floating-point registers and by executing
an XMA instruction with a dummy multiplication (namely, a multiplication with
1). In total, two XMA instructions are required, which cause overheads because
XMA instructions are heavy operations compared to integer addition instructions
to general registers.
(a2) Another idea is to operate an Upper A′ as integer addition. This can be done by
converting from general registers to floating-point registers before an XMA instruc-
tion, and by converting floating-point registers to general registers after the instruc-
tion. Again, this idea causes performance overheads due to two data-conversion
instructions, which are much heavier than XMA instructions on Itanium 2.

In the next section, we enhance the Itoh’s algorithm and propose an efficient algo-
rithm for “Core loop of REDC” based on (a2) rather than (a1). This is because integer
additions are very light instructions on Itanium 2.
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Fig. 3. Pipeline scheduling of “Core loop of REDC” in the Itoh’s algorithm (optimized to Ita-
nium 2)

3.2 Proposed Algorithm

As described in the previous section, two approaches (a1) and (a2) have heavy over-
heads. A main reason of these overheads is a pipeline delay of Lower MA by the de-
pendency (2-i). Especially in (a2), a pipeline delay caused by Upper A′ is large enough,
because it consists of 1 conversion instruction (floating-point registers to general reg-
isters), 1 addition instruction for general registers and another 1 conversion instruction
(general registers to floating-point registers).

Our approach for this problem is to break the dependency between Upper A′ and
Lower MA. Since this dependency is a result of the Itoh’s algorithm, we go back to the
Itoh’s algorithm and enhance it so as to break the dependency. In fact, we established an
enhanced version of the Itoh’s algorithm in Fig.4 and Fig.5, in which Lower MA does
not depend on Upper A′ anymore but Lower MA depends on that of the previous loop.
By this enhancement, overheads by the pipeline delay are eliminated.

In Fig.4, two symbols MA and A′′ are used, where a symbol MA is same as in Fig.3
while a symbol A′′ represents an addition of 4 values, the carry (C3), data stored on
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Fig. 4. Pipeline scheduling of “Core loop of REDC” in our enhanced Itoh’s algorithm (optimized
to Itanium 2)

memory (yi) and calculated results by Upper and Lower MA (tmp1 and tmp2). The
dependencies of Fig.4 are shown in the following (3-i)–(3-iv).

(3-i) i-th Upper MA→ i-th Lower A′′
(3-ii) i-th Upper MA→ (i + 1)-th Upper MA
(3-iii) i-th Lower MA→ (i + 1)-th Lower MA
(3-iv) i-th Lower A′′ → (i + 1)-th Lower A′′

By changing the dependency (2-i) to the dependency (3-iii), we succeeded to cancel
the pipeline delay by Upper A′ in Fig.3.

4 Implementation of Our New Algorithm on Itanium 2

In this chapter, as the second step for realizing fast RSA implementation, we describe
implementational aspects of our new algorithm proposed in section 3.2 including the
experimental performance results of RSA decryptions on Itanium 2.

4.1 Characteristics of Itanium 2

Itanium 2 belongs to a processor family called IPF (Itanium Processor Family), which
is developed by Intel and Hewlett Packard, and its architecture is based on that of IA-64.
The greatest characteristic of IPF is the EPIC (Explicitly Parallel Instruction Comput-
ing) technology, which does not support out-of-order executions unlike IA-32 architec-
ture processors. In the out-of-order executions, instruction scheduling was dynamically
done by a processor. But in IPF, instruction scheduling is done by the compiler. So
the effectiveness of the compiler is directly reflected to the performance of software
implementation. Other characteristics of Itanium 2 are listed in followings:

– Executes 6 instructions within 1 cycle at maximum. In other words, maximum IPC
(Instruction Per Cycle) is 6.

– Provides many ports for executing various types of instructions (4 ports for mem-
ory, 2 ports for general, 2 ports for floating-point and 3 ports for blanch)
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– Has 128 of 64-bit general registers.
– Has 128 of 82-bit floating-point registers.
– Provides software pipelining by CPU (MSL, Modulo Schedule Loop).
– Provides instructions for 64-bit fixed-point multiply-add instructions with 4 cycles

latency and 1 cycle delay.

4.2 Implementation Environment

We used an hp workstation zx 2000 for implementation, whose specifications are sum-
marized in the followings:

– CPU and frequency: Itanium 2 at 900 MHz
– Size of DRAM : 2 Gigabytes of memory
– Size of L1 cache: 16 K byte (Instruction) / 16K byte (Data)
– Size of L2 cache: 256 K byte
– Size of L3 cache: 1.5 M byte
– OS: Red Hat Enterprise Linux 4
– Compiler: gcc 3.4 and icc 9.0

In the following sections, we implemented REDC and RSA based on our enhanced
Itoh’s algorithm described in the previous sections. At the optimization, the perfor-
mance of 1-time calculation of 4096-bit REDC is mainly considered. Our analys is
used three factors, namely the number of total instructions, the probability of pipeline
stalling and averaged IPC of total instructions. These factors are measured by the “per-
formance monitoring counter” provided for Itanium 2. In this counter, the number of
total instructions does not include NOP instructions, and averaged IPC of total instruc-
tions are obtained with dividing the number of total instructions by total cycles. We did
not consider cache hit-miss here because its occasion is hard to be monitored.

4.3 Implementation and Optimization of REDC

In this section, we describe implementation aspects of REDC with C language and
assembly language.



A Fast RSA Implementation on Itanium 2 Processor 515

Implementation with C language. At the first step of the optimization, we imple-
mented our new algorithm with C language. Here, instructions to operate multiply-add
(XMA instruction) cannot be directly used with C language. So we used intrinsic func-
tion of Intel C Compiler 9.0 (icc 9.0) to operate XMA instruction. Grammar of the
intrinsic function is represented as follows:

__int64 _m64_xmalu(__int64 a, __int64 b, __int64 c)

__int64 _m64_xmahu(__int64 a, __int64 b, __int64 c)

We show the evaluation result for optimization of our C language code in table 2.
We obtained probability of pipeline stalling comes up to 14, most of which are waiting
cycles to execute XMA instrutions. We found we can eliminate some instructions of
assemble codes output by icc 9.0. An example of this elimination is shown in Table 1
which shows the assemble code of D=_m64_xmalu(A,B,C); by icc 9.0 and its elimi-
nated result by hand-assembled code. We note grA, grB and grC represent the interger
registers and frA, frB and frC represents the floating-point registers.

Table 1. Assembly list output by icc 9.0 (left column) and result of elimination by hand-
assembled code (right column)

ld8 grA = [&A]; ldf8 frA=[&A];

ld8 grB = [&B]; ldf8 frB=[&B];

ld8 grC = [&C]; ldf8 frC=[&C];

setf.sig.frA = grA; xma.lu.frD=frA,frB,frC;

setf.sig.frB = grB; stf8[&D] = frD;

setf.sig.frC = grC;

xma.lu.frD=frA,frB,frC;

getf.sig.grD=frD;

st8[&D]=grD;

Implementation with hand-assembled code. In section 4.3.1, we implemented our
new REDC algorithm with C language and found out we can eliminate some instruc-
tions. So we optimized the code with extreme technique of hand-assembling by elim-
inating the total number of instructions, tuning the software pipeline schedule based
on the instruction latencies. Finally, we attained the result that average IPC of REDC is
4.02. Especially, average IPC in the “Core loop of REDC” of is 5.25 which is extremely
good result because maximum IPC of Itanium 2 is 6. In table 2, we show the result of
the evaluation for optimization of the hand-assembled code with comparison that of C
language for 4096-bit our REDC algorithm.

4.4 Implementation of RSA

We measured the performance of RSA decryption with CRT by using the hand-
assembled optimized code of our new REDC algorithm described in section 4.3.2. At
the implementation of RSA modular exponentiation, we used the technique of sliding-
window method with 5-bit window size. Our result showed very fast performance, that
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Table 2. Comparison of evaluation results for two types of implemented code for 4096-bit REDC
of our proposal, one is with C language and another is with hand-assembled code

C language Hand-assembled code
Total cycles 65,111 18,801

Total instructions
(NOT including NOP instruction) 177,199 75,560

Probability of pipeline stalling 14% 5%
Average IPC of total instructions 2.57 4.02

Table 3. Measured total time of the 1-time execution of our REDC algorithm in our environment

Bit length Total time on our environment (μ sec)
512 0.62
768 1.15

1024 1.81
2048 5.88
3072 12.24
4096 20.87

is, our implementation attained 1,090 times of 1024-bit RSA CRT decryptions on Ita-
nium 2 at 900MHz.

We compared our result of performance measurement with that of Intel Performance
Primitive (IPP) which is software RSA library developed by Intel. This library is well
known as fast library on Intel processors series. Especially, it is the fastest RSA library
of marketed products on Itanium 2. We show the comparison in Table 4. In this table,
results of IPP are obtained by our measurement. Our results are 1.19 – 3.1 times faster
than IPP, and are the fastest on Itanium 2.

Table 4. Measured total time of the 1-time execution of our REDC algorithm in our environment

Bit length INTEL (μ sec) Our Implementation Ratio
4096 95,482 30,829 3.09
3072 44,383 14,277 3.10
2048 5,984 4,759 1.25
1024 1,099 917 1.19
768 659 512 1.28
512 313 237 1.32

5 Concluding Remarks

In this paper, we proposed new implementation algorithm of the primitive of Mont-
gomery multiplication (REDC) by improving the Itoh’s algorithm. Our new algorithm
is suitable for pipeline scheduling on Itanium 2 which has an instruction to operate
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multiply-add (XMA instruction). And we implemented our new algorithm on Itanium
2. In the implementation, we optimized for parallel processing of REDC with extremely
technique of hand-assembled code. By using our optimized code, average IPC of REDC
is 4.02. Especially, average IPC in the “Core loop of REDC” is 5.25, which is an ex-
tremely good result because maximum IPC of Itanium 2 is 6, and its probability of
pipeline stalling of our implementation is just only 5%. We also implemented RSA
decryption with CRT based on our optimized code of REDC and technique of sliding-
window method with 5-bit window size. Our implementation result attained 32 times
of 4096-bit RSA decryption of CRT on Itanium 2 at 900MHz. Our REDC and RSA
implementation can process variable bit length of RSA. And our RSA implementation
performs 3.1 times faster than Intel’s library in the best case.

A motivation of this paper is to realize fast implementation of RSA with long (say
4096-bit) keys. For such keys, Karatsuba and/or FFT algorithms may work better than
conventional Montgomery’s approach. Comparing such implementations (especially on
Itanium 2) will be our future work.
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Abstract. We report our implementation of the RSA and ECC public-
key cryptosystem on Berkeley Motes. We detail the implementation of
1024-bit RSA and 160-bit ECC cryptosystems on MICA mote sensors.
We have achieved the performance of 0.79s for RSA public key operation
and 21.5s for private operation, and 1.3s for ECC signature generation
and 2.8s for verification. For comparison, we also show our new ECC
implementation on TelosB motes with a signature time 1.60s and a ver-
ification time 3.30s. For the detailed description of the implementation,
we refer to our technical report[13].

1 Introduction

Public-key cryptography has been used extensively in data encryption, digital
signature, user authentication, access control[12,14], etc. Compared with the
symmetric key based schemes proposed for sensor networks, public-key cryptog-
raphy is more flexible requiring no complicated key pre-distribution and no pair-
wise key sharing negotiation. It is a popular belief, however, in sensor network re-
search community that public-key cryptography, such as RSA and Elliptic Curve
Cryptography (ECC), is not practical because the required computational inten-
sity is prohibitive for sensors with limited computation capability and extremely
constrained memory space. The nascent exploration has already disabused of
this misconception. The recent progress in ECC and RSA implementation on
Atmel ATmega128[3], a CPU of 8Hz and 8 bits, shows that public-key cryp-
tography is feasible for sensor network security related applications. This paper
describes our implementation of 1024-bit RSA cryptosystem and 160-bit ECC
cryptosystem on Motes of MICA2 family with a comparison of our new ECC
implementation on TelosB motes.

The major operations in RSA and ECC cryptosystems are large integer arith-
metics over the finite field. To efficiently perform RSA and ECC exponentiations
on the low-power CPU of sensor motes, it is essential to optimize the expen-
sive large integer operations, especially multiplication and reduction. Since most
CPU cycles are consumed in these two integer operations, the efficiency of these
two integer operation modules directly determines the performance of the en-
cryption and decryption. Low-power sensor microcontroller usually has a very
limited number of registers (32 8-bit registers in ATmega 128). Thus the time
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for long integers to be loaded from or stored to memory is not negligible and
the memory accesses have to be optimized for better performance. In this paper,
we adopt the hybrid multiplication method [4], which is a very effective way
to reduce the number of memory accesses. To precisely control the register and
memory operations, we implement this module in assembly language. Our ex-
periments demonstrate that the hybrid multiplication is at least 7 times faster
than the conventional multi-precision multiplication programmed in C language.
The modular reduction can also be optimized under certain conditions. For ex-
ample, when the modulus is a pseudo-Mersenne number, the reduction can be
greatly optimized and be finished more than 10 times faster than the classic long
division method.

In addition to the optimization of the big integer operations, RSA and ECC
can be further optimized. In RSA, Montgomery reduction can be applied to
efficiently calculate the RSA exponentiation, and Chinese Remainder Theorem
(CRT) can be used to reduce the exponent sizes and speed up the RSA exponen-
tiation for up to 4 times. In ECC, we apply a mixed coordinate, the combination
of Affine coordinate and Jacobian coordinate, to accelerate ECC exponentiation
by avoiding operations such as inversions or reducing the amount of operations
such as multiplication and squaring.

Our experiments show that both RSA and ECC can efficiently run on MICAz
motes. For RSA, it takes 0.79 second to do a public key operation, and 21.5
seconds to perform a private key operation. For ECC, it takes 1.3 seconds to
generate a signature, and 2.8 seconds to perform a signature verification. For
our new ECC implementation on TelosB, the signature time and verification
time are 1.60s and 3.30s respectively. It is possible to further reduce the com-
putation time by using extended instruction set adopted in [4]. Our experiment
results demonstrate that most operations in RSA and ECC are feasible for sensor
network security applications.

2 Implementation

We have implemented RSA and ECC cryptosystems on MICAz motes, pow-
ered by ATmega128 microcontroller. The ATmega128 incorporates an 8MHz,
8-bit RISC CPU, 128K bytes programmable flash memory (ROM) and 4K bytes
SRAM. This architecture provides 133 powerful instructions and 32 × 8 gen-
eral purpose registers. Besides, ATmega128 also features an on-chip multiplier.
In this section, we first describe the optimized large integer operation modules,
which can be used for both RSA and ECC cryptosystems. Then we focus on
the protocol related optimizations specifically for RSA and ECC, respectively.
For ECC implementation, without further clarification, we concentrate on SECG
recommended 160-bit elliptic curve: secp160r1.

2.1 Large Integer Operations

We have implemented a suite of large integer arithmetic operations, including
addition, subtraction, shift, multiplication, division and modular reduction.
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Among three different multiplication implementations [4,8,7], we have cho-
sen to use Hybrid Multiplication proposed in [4]. We have implemented Hybrid
multiplication in assembly language with column width d = 4, which requires
9 accumulator registers, 5 operand registers, 6 pointer registers, and others for
temporary storage and loop control. For the comparison purpose, we also im-
plement a standard multi-precision multiplication program in C language. Our
experiments show the standard C program needs 122.2ms to finish the multipli-
cation between two 128-byte integers, while it only takes 17.6ms for our Hybrid
multiplication to do the same computation, which is more than 7 times faster.

Squaring is a special case of the multiplication, which has the same the mul-
tiplicand and the multiplier. Given an m-bit large integer A = (A1, A0), where
A1, A0 are two halves, A2 = A1A1 × 2m + 2A1A0 × 2m/2 + A0A0. Therefore,
we can take advantage of the fact that A1A0 only needs to be calculated once.
Compared with the multiplication, the optimized squaring can reduce the com-
putational complexity up to 25%.

For Modular Reduction, We choose the classic long division method to imple-
ment this operation. Fortunately, the number of this type of modular reduction is
very limited, it does not affect the overall performance much. The long division
producer reduces the remainder by one byte in each iteration. In ECC cryp-
tosystem, we choose to use pseudo-Mersenne primes as specified in NIST/SECG
curves, the modular reduction can be optimized by conducting a fixed number
of integer additions.

Modular inversion is used in both ECC and RSA. For ECC operation, we
adopt an efficient Great Divide scheme [11]. For RSA operation, we use the
classic Extended Euclidean Algorithm.

2.2 RSA Operations

In our first RSA implementation, it takes 4.6 seconds to finish the public key
operation and 389 seconds to do a private key operation. To reduce the compu-
tational time, we have implemented the following two optimizations.

Montgomery Reduction. Montgomery reduction [9] is a method to efficiently
perform the modular reduction without doing expensive division. For example,
suppose we want to compute T modulo N , the algorithm says it is easy to
compute TR−1 (mod N) (without any division), where R is a radix (R > N) and
co-prime to N . We do not validate this algorithm in this paper. Interested reader
may refer to [9] for details. Having implemented the Montgomery reduction
module, the performance of RSA public key and private key operations have
been improved significantly to 1.2s and 82.2s, respectively.

Chinese Remainder Theorem (CRT). The complexity of the exponentia-
tion in RSA largely depends on the the size of modulus n and the exponent
(either public key or private key). Chinese Remainder Theorem (CRT) can be
used to effectively reduce the computational complexity of exponentiation by
reducing the size of both n and the exponent. With CRT implemented, the
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public key operation has been reduce to 0.79s. Correspondingly, the private key
operation is reduced to 21.5s, approximately 1/4 of the time before doing CRT.

2.3 ECC Operations

Here we briefly discuss our optimizations for ECC operations.

ECC Addition and Doubling. The fundamental ECC operation is point
addition and point doubling. The point multiplication can be decomposed to
a series of addition and doubling operations. As discussed in previous section,
point addition and doubling in Affine coordinate require integer inversion, which
is considered much slower than integer multiplication. Cohen et al. showed that
these operations in Projective coordinate and Jacobian coordinate yield better
performance [1]. They further found addition and doubling in mixed coordinate,
with the combination of Modified Jacobian coordinate and Affine coordinate,
lead to the best performance [2]. As the result, point doubling operation reduces
to 4 multiplications and 4 squaring, and the computational complexity of the
point addition reduces to 8 multiplications and 3 squaring. Our experiments show
that the performance of point multiplication improves around 6% compared with
our previous implementation in Jacobian coordinate.

Modular Reduction on ECC Curve. Recall that modular reduction has
to be applied after every large integer multiplication, it is also a performance
critical operation. By taking advantage of pseudo-Mersenne primes specified in
SECG curves, the complexity of the modular reduction operation can be reduced
to a negligible amount.

Further Optimization. Examining the computational complexity, we notice
that point addition is more expensive than point doubling. We adopt Non-
adjacent forms (NAFs) [10] and sliding window method [5] in our implementa-
tion. According to our experiments, point multiplication with NAFs contributes
at least 5% performance improvement. For sliding window, we select window
size s = 4. Correspondingly, there are 16 entries in the partial result table. Our
experiments show sliding window method is more effective than NAFs for fixed
point multiplication, the performance of sliding window method is more than
10% better than that of NAFs.

3 Experiments and Performance Evaluation

We have implemented the 1024-bit RSA and the 160-bit ECC security primitive
on MICAz motes, the latest sensor motes of the MICA family from Crossbow.
Our experiments show that the public key operation (17-bit public key) only
takes 0.79s and private key operation takes 21.5s. For the ECC operations, it
takes 1.3 seconds to generate a signature and 2.8 second to do a signature verifi-
cation. Considering that RSA verification normally happens at sensor side, and
expensive signature generation is done by powerful devices, such as PDAs, we
conclude both RSA and ECC are practical for small sensor nodes.
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3.1 RSA Evaluation

In this subsection, we describe the experimental performance of 1024-bit RSA on
our MICAz motes. We first present our experimental results and related issues
during the implementation. We then give the performance analysis to quantify
the computational complexity.

Experimental Results and Implementation Challenge. In the experi-
ment, we randomly select two 512-bit prime number as p and q. For the public
key operation, we choose a small exponent of e = 216 + 1, which is commonly
used value for e. Our program uses 15,832 byte code size and 3,224 byte data
size. Compared with RSA implementation in [4], our code size is much larger
because of the assignments of precomputation values during initialization stage.
Our implementation spends 0.79s to finish a publick key operation and 21.5s to
do a private key operation.

The biggest challenge in implementing 1024-bit RSA on MICAz motes is the
memory constraint. MICAz mote only has 4KB RAM, which is the total space
for data and program stack. Since the operands in 1024-bit RSA are mostly
128 integers, the subroutines, such as modular reduction, Extended Euclidean
Algorithm and Montgomery reduction, have to reserve considerable amount of
memory space for storing temporary results. In addition, for optimization pur-
pose, a number of pre-computations are required. In our program, 1152 bytes
of memory are used for storing system parameters, such as p, q and n, and pre-
computation results, such as Rp, Rq in CRT. Therefore, attentions need to be
paid not to waste any memory usage. In practice, we have adopted two methods
to save the memory space. First, we declare more global variables. The idea is
to share the memory space among different subroutines in each module. Note
this method is only good for those subroutines do not call each other. Oth-
erwise the intermediate data will be lost. Second, we conduct every possible
precomputation so that some modules may not be required during the RSA
operation in the real time. For example, the Extended Euclidean algorithm is
only used to find the public/private key pairs and to precompute the parame-
ters used in Montgomery reduction. Removing this module saves us 1K data
space.

Performance Analysis. To analyze the computational complexity distribution
among the components in RSA exponentiation, we profile the execution time of
multiplication, squaring, and modular reduction modules, the three most time
consuming operations in RSA exponentiation. The profiling information is shown
in Table 1.

Our analysis assumes that all optimization schemes have been applied in RSA
exponentiation. To simplify the presentation, we denote “MUL” as, large integer
multiplication, and let “SQR” be large integer squaring, and let “MOD” be large
integer modular reduction. An ”m/n” MOD means a MOD operation for a m-
byte integer over a modulus with n-bytes. For example, 128/64 MOD denotes a
modular reduction of a 128 byte integer with a 64 byte modulus.
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Table 1. Execution time profiles of some important modules

Module Operand Sizes (bytes) Execution Time (ms)
MUL. 128 by 128 17.1
MUL. 64 by 64 4.48
SQR. 128 by 128 14.1
SQR. 64 by 64 3.87
MOD. 256/128 132
MOD. 192/128 74
MOD. 128/64 40

Let us consider an example of RSA operation to calculate M = Cx (mod n),
where x can be either public key or private key. Following the CRT algorithm, we
first do two MODs to calculate Cp and Cq. Then, we conduct two Montgomery
reductions to get Mp and Mq. Finally, two MULs, one MODs and one addition
are required to compute M . Note the last two steps in CRT, which requires 2
MODs, can be simplified by doing addition first and then only one MOD. Except
the Montgomery reduction, both public key and private key operation need to
do two 128/64 MODs, two 128 × 128 MULs, one 192/128 MODs operations,
which totally account for 2× 40 + 2× 17.1 + 74 = 188.2ms.

The difference of execution time between public key and private key operations
is at exponentiation part. Each Montgomery reduction requires two 64 × 64
MULs, one 128-byte addition and possible another 128-byte subtraction. The
cost of addition and subtraction can be ignored. Therefore, the execution time
of each Montgomery reduction is 2× 4.48 = 8.96ms. Since we choose the public
key to be 216 + 1, there are totally 16 64 × 64 SQRs and 1 64 × 64 MUL in
the exponentiation. According to Table 1, the total time for SQRs and MUL
with Montgomery reduction should be 16×3.87+4.48+17×8.96 = 218.7ms. In
addition, two 128/64 MODs are needed to convert operands between integer and
N -residue before and after each exponentiation. For CRT optimization, we need
to do two 512-bit exponentiations. Therefore, the exponentiation execution time
for public key operation is 2×(218.7+2×40) = 597.4ms. Combined with the rest
operations in CRT, the public key operation consumes 594.4+188.2 = 782.6ms,
which matches our test result very well.

For the private key operation, the number of SQRs is 511 (after CRT) in
each reduced exponentiation. The number of MULs depends on the Hamming
weight of the exponent. Our experiment shows the average Hamming weight
of Dp and Dq of our private key is 278. Hence, there are 277 MULs required
in each exponentiation. Therefore, the execution time for each exponentiation is
511×3.87+277×4.48+788×8.96 = 10279ms. Since the exponentiation execution
time in private key operation overwhelmingly dominates other operations, we
only need to consider the execution time of exponentiations only. Two such
exponentiations consumes 20.5 seconds, closely matching our experiment result
of 21.5s.



Efficient Implementation of Public Key Cryptosystems on Mote Sensors 525

3.2 ECC Evaluation

In this subsection, we first present the performance of our implementation. Then
we give an overall analysis to quantify the computation complexity.

The Performance of ECC Implementation. In experiments, we measure
execution time and code size of our implementation. We choose secp160r1 as the
elliptic curve in all experiments. We use the embedded system timer (921.6kHz)
to measure the execution time of major operations in ECC, such as point mul-
tiplication, point addition and point doubling.

We first test point multiplication operation, which is comprised of point ad-
dition and doubling. We consider two cases in point multiplication. One is mul-
tiplying large integer with a fixed point(base point), and the other one is with
a random point. Fixed point multiplication allows for optimization by precom-
puting. We apply sliding window technique[6] and set window size to 4, i.e.,
precomputing 24 − 1 = 15 points. In experiments, we randomly generate 20
large integers to multiply with the point and take the average execution time as
the result.

Since ECC point multiplication consists of addition and doubling operations,
we further evaluate these two operations separately. We generate random points
and large integers for tests. Since a single operation takes very little time, to
reduce the error of clock inaccuracy, we measure 100 operations every round
and take the average value.

Table 3 shows the experimental results of execution time. Point addition and
doubling of our implementation is superior to the other two implementations,
which results in a faster point multiplication.

Next, we implement ECDSA signature scheme. The experimental results are
shown in Table 3. In fact, signing a message is mainly a fixed point multiplication.
As we can see, the signature time is very close to the time consumed in fixed
point multiplication. On the other hand, verification of ECDSA consists of one
fixed point multiplication and one random point multiplication. Therefore, the
performance of the verification is roughly the summation of one fixed point
multiplication and one random point multiplication.

Table 2 presents the code size of the ECC implementation. The ECC library
itself only uses 18.8KB ROM and 1.36KB RAM. However, ECDSA consumes
56.4KB ROM and 1.7KB RAM. The reason is that we add SHA1 hash func-
tion and radio communication module in the ECDSA package, where SHA-1,
occupying more than 30KB memory space, takes a large portion of the code
size.

Table 2. ECC implementation code sizes

ECC library ECDSA
ROM RAM ROM RAM

ECC 18.8k 1.36k 56.4k 1.7k
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A Performance Anatomy of ECC Point Multiplication on MICAz.
Since ECC point multiplication dominates the computational complexity in ECC
signature and verification, we are curious to learn the performance anatomy in
ECC point multiplication.

This analysis is based on 160-bit ECC curves. We use secp160r1 as the exam-
ple. We also assume 4-bit sliding window method is used, and partial results are
precomputed. The computational cost for each window unit is 4 point doubling
and 1 point addition. Given a 161 bit private key, there are 41 window units.
Totally , 164 point doubling and 41 point additions are required to finish 1 point
multiplication.

Large (160-bit) integer multiplication, squaring and reduction are the most ex-
pensive operations in point doubling and point addition. To learn the amount of
time contributed by the above three operations in a fix point multiplication. We
first individually test the performance of large integer multiplication, squaring
and reduction. Our results show that it takes 0.47ms, 0.44ms and 0.07ms to per-
form a 160× 160 multiplication, squaring and reduction, respectively. Next, we
count the the number of each operation required in a point multiplication. Since
we adopt the mixed coordination (the combination of Jacobian coordinate and
Affine coordinate), each point addition requires 8 large integer multiplications
and 3 large integer squaring, and each point doubling requires 4 large integer
multiplications and 4 large integer squaring. In addition, each multiplication,
squaring or shifting operation has to be followed by a modular reduction. Our
program shows the point addition requires 12 modular reductions, and the point
doubling requires 11 modular reductions. In total, each point multiplication costs
164× 4+41× 8 = 984 large integer multiplications, 164× 4+41× 3 = 779 large
integer squaring and 164 × 11 + 41 × 12 = 2, 296 large integer modular reduc-
tions. Plugging in the results of the individual tests, we get the total amount
of time consumed on the three operations is 0.97s, roughly 78.2% of the total
time to do a fix point multiplication. The rest of 21.8% of the time is spent on
various operations, including inversion operation (to convert the Jacobian coor-
dinate to Affine), addition, subtraction, shifting and memory copy, etc. Based
on above analysis, we believe the performance of ECC operations on MICAz can
be further improved by more refined and careful programming.

Performance Comparison. In the last part of the evaluation, we first investi-
gate the performance difference of our cryptosystem implementation on different
sensor platforms. Then we compare the performance of our implementation with
existing research result [4] and give the possible explanation of the performance
gap.

To learn the performance of the public key cryptosystems on different sen-
sor platforms, we have revamped our previous ECC implementation on TelosB
mote[14]. We summarize the performance comparison in Table 3. It clearly shows
that the performance of ECC operation on MICAz is slightly better than that on
TelosB, even though TelosB is equipped with a 8MHz, 16-bit CPU. After a care-
ful and tedious investigation, we found the performance degradation on TelosB
is due to the following two reasons. First, the 8MHz CPU (MSP430) frequency
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Table 3. The comparison of ECC execution Time on both mote platform operations,
including fixed point multiplication (FPM), random point multiplication (RPM), point
addition (PAdd) and point doubling (PDbl) and ECDSA signature generation (SIGN),
verification (VERIFY) time

FPM RPM PAdd PDbl SIGN VERIFY
MICAz 1.24s 1.35s 6.2ms 5.8ms 1.35s 2.85s
TelosB 1.44s 1.60s 7.3ms 7.0ms 1.60s 3.32s

on TelosB is just a nominal value. In reality, the maximum CPU clock rate is
actually 4MHz. Second, the hardware multiplier in MSP430 CPU uses a group
of special peripheral registers which are located outside of MSP430 CPU. As the
result, it takes MSP430 eight CPU cycles to perform an unsigned multiplication,
while it at most takes four cycles to do the same operation in Atmega CPU. The
above two reasons explain why TelosB cannot perform better than MICAz.

We also compare our ECC performance with the result in [4]. Gura et al.
implemented the ECC (the same curve) on Atmega128 CPU, which is the same
CPU used on MICAz mote. Their result, 0.81s for a random point multiplica-
tion, is about 40% faster than 1.35s of our result. We notice that the time for
their 160× 160 multiplication is 0.39ms, roughly 17% faster than our 0.47ms. In
general, we believe their code is more polished and optimized in many aspects
than our code. Furthermore, Our code is implemented in TinyOS, and mostly
written with NesC (except several critical large integer operations), which could
introduce additional CPU cycles.

4 Conclusion

In this paper, we present a number of optimization schemes to efficiently im-
plement the public key cryptosystems in small, less-powerful sensor devices. We
implement 1024-bit RSA and 160-bit ECC on Mica motes. Our experiments
demonstrate that the public key cryptography is promising for sensors. Our ex-
periments show that the times for ECC signature generation and verification
are 1.3s and 2.8s respective for Mica motes, and 1.6s and 3.3s for TelosB motes.
For RSA implementation, we have achieved 0.79s for public key operation and
21.5s for private operation on Mica motes. We believe the performance can be
improved by more careful programming or using more powerful sensors.
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1 Introduction

Several approaches to design circuits that counteract side-channel attacks, have
been published recently. A popular approach is to make the intermediate results
of the cryptographic algorithm being executed independent of the secret key.
This can be done both at the algorithm level [2,5,10,18] and at the gate level
[12,25]. These approaches have in common that they require the use of random
values in order to mask the data that is being processed. A common feature of
all these approaches is that in order to implement nonlinear circuits, they require
the introduction of additional (fresh) random values. Among other reasons, these
additional random values are needed in order to mask the intermediate results
computed by the circuits. Without the fresh random values, these intermediate
results would cause leakage of information. Additionally, it has been shown that
the occurrence of glitches can lead to side-channel information in circuits that
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were previously believed to be secure [15,16]. Recently, also other ways to break
gate level masking schemes have been devised [24].

In terms of software implementations, in [19], it is shown that many existing
masking proposals are not secure against higher-order attack. A first proposal
to secure AES software implementations against higher-order attacks is given in
[22]. Gate-level solutions are proposed in [9,20]. Our method addresses this issue
at the circuit level.

In this paper we describe a new approach to mask, based on secret sharing
[3,23], threshold cryptography [8] and multi-party computation protocols [27].
The main contributions of this paper are the following. Firstly, we show circuits
that resist side-channel attacks, even in the presence of glitches. Secondly, we
achieve provable security against first-order side-channel attacks. Thirdly, our
circuits also resist higher-order attacks that are based on a comparison of mean
power consumption.

Compared to traditional masking approaches, our approach uses more random
values during the setup. A related approach was presented in [6]. It requires
new random values for remasking during the computation, which is costly in
many environments. Furthermore, remasking can be effective only if the delays
of all the circuits are fully controlled and if there are no glitches [15,16,18]. An
alternative approach to avoid the generation of fresh random values is presented
in [2]: they derive new masking values from the old ones by applying linear
functions. Another related approach was presented in [11]. Also there, the effect
of glitches is not considered.

We introduce notation and terminology in Section 2. In Sections 3–5 we
present the main contribution of this paper: a new theory for designing im-
plementations that are provably secure against first-order side-channel attacks,
even in the presence of glitches. In Section 6 we illustrate our approach by
discussing an important application: the implementation of the multiplicative
inverse in the field GF(2m). We briefly discuss the resistance of our schemes
against template attacks in Section 7 and conclude with suggestions for future
work in Section 8.

2 Notation and Terminology

We use ⊕,
⊕

to denote addition in the field GF(2m) (XOR) and +,
∑

to denote
addition of real numbers. A vector (x1, x2, . . . , xn) is also denoted by x, and the
reduced vector (x1, x2, . . . , xi−1, xi+1, . . . , xn) by xi. We denote by Pr(t(x) = T )
the probability that the variable t takes value T , i.e. the number of times that
t(x) = T divided by the number of values the input of the circuit can take.

In our approach, the data is not masked by only one random value, but by
two or more. Hence, during setup we need typically more random values than
with traditional approaches. Our approach is inspired by methods used in secret
sharing and threshold computing systems. We say that a variable x is split into
n shares xi if
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x =
n⊕

i=1

xi . (1)

We will only use (n, n) secret sharing schemes, hence all n shares are needed in
order to determine x uniquely. In a perfect (n, n) secret sharing scheme, knowl-
edge of up to n−1 shares doesn’t give any additional information on the value of
x. Observe that a (2, 2) secret sharing scheme corresponds to a traditional mask-
ing scheme. In a (k, t, n) ramp scheme [4], t honest parties are needed to recover
the secret, but more than k malicious parties can already obtain information
about the secret. In this paper, we use (1, n, n) ramp schemes and secret sharing
schemes where the conditional probability distribution Pr(X|X) is uniform and
hence:

∀X : Pr(x = X) = c Pr(x =
n⊕

i=1

Xi), (2)

with c a normalization constant, which ensures that
∑

X Pr(x = X) = 1.

3 Basic Principle

We introduce our approach to implement linear and non-linear transformations
in a secure way. We point out how this idea is related to threshold cryptography
and we give an example that we will use in the remainder of this paper.

3.1 Linear Transformations

Consider a transformation z = L(x) over GF(2m), which is linear over GF(2).
The easiest way to implement a linear transformation securely is to process the
n shares independently. Indeed, if

zi = L(xi), 0 ≤ i < n, (3)

then by definition of a linear transformation, we have

z =
n⊕

i=1

zi =
n⊕

i=1

L(xi) = L

(
n⊕

i=1

xi

)
= L(x) . (4)

Linear transformations taking more inputs can be treated in the same way. For
a linear transformation z = LL(x, y, . . . ), we take all fi = LL.

Such an implementation of a linear transformation doesn’t leak information
that can be used in a side-channel attack, even if presence of glitches is taken into
account [15,16]. A typical property of this implementation is that each output
share zi depends only on one input share of each variable (xi, yi, . . . ).

3.2 Non-linear Transformations

Our idea is to construct circuits for non-linear transformations having a similar
property as the secure circuits for linear transformations discussed in the previ-
ous section. Intuitively, it is clear that if a share zi doesn’t depend on the value
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of an input share xi, yi, . . . , then zi can’t be correlated to x, y, . . . Neither will
the computation of zi leak information about the value of x, y, . . . By imposing
additional constraints, we will also ensure that no correlation to the output z
exists. In this section, we introduce two properties. In the next section, we will
show that with functions satisfying these properties, we can construct secure
circuits.

Let z = N(x, y, . . . ) denote a transformation over GF(2m) which is not lin-
ear over GF(2). Let f1, f2, . . . , fn be a set of functions satisfying the following
properties:

Property 1 (Non-completeness). Every function is independent of at least one
share of each of the input variables x, y, . . .

z1 = f1(x2, x3, . . . , xn, y2, y3, . . . , yn, . . . ) = f1(x1, y1, . . . )
z2 = f2(x1, x3, . . . , xn, y1, y3, . . . , yn, . . . ) = f2(x2, y2, . . . )

. . .
zn = fn(x1, x2, . . . , xn−1, y1, y2, . . . , yn−1, . . . ) = fn(xn, yn, . . . )

(5)

Property 2 (Correctness). The sum of the output shares gives the desired output.

z =
n⊕

i=1

zi =
n⊕

i=1

fi(. . . ) = N(x). (6)

Property 1 and 2 impose a lower bound on the number of shares n.

Theorem 1. The minimum number of shares required to implement a product
of s variables with a realization satisfying Property 1 and 2 is given by

n ≥ 1 + s .

Proof. Multiplying s factors with n shares each can be done in the following
way. Collect in the first output share all terms that don’t contain the first share
of any of the inputs. Collect in the second output share all terms that contain
the first share of any of the inputs, but not the second share of any of the inputs.
Continuing in this way, collect in output share i all the terms containing input
shares 1, 2, . . . and i− 1, but not input share i. Finally, collect in output share
n the terms containing the terms with input shares 1, 2, . . . and n − 1 but not
input share n. Only if n− 1 ≥ s, there are no terms left after step n. ��

It follows that we need at least 3 shares in order to implement a non-linear
function. The construction used in the proof of Theorem 1 can also be used
to implement more general monomials. For instance, the monomial x3y can
be implemented as a product of four variables. Because not all variables are
independent, it might be that there exist other solutions with a lower number
of shares. Hence, we have the following corollary.
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Corollary 1. The maximum number of shares required to implement a function
N of u variables over GF(2m), equals 1 + 2mu.

Proof. Since ∀x ∈ GF(2m) : x2m

= x, it is always possible to describe N as
a multi-variate polynomial of degree at most 2mu. For instance, we can use the
Lagrange interpolation formula. We construct the functions fi for each separate
monomial of N by applying the same method as in the proof of Theorem 1. Sum-
ming up the functions for each monomial, we obtain the functions for N. ��

3.3 Effects on the Power Consumption

By definition, knowledge of up to n − 1 shares of an input variable, doesn’t
reveal any information on this input variable. In a circuit satisfying Property 1,
each share zi of the output z is independent of at least one share of each input
variable. Consequently, we have that the output shares are uncorrelated to the
input variables. Such a circuit has the following advantages:

1. Each intermediate result of the computation is uncorrelated to the input
variables. Hence, no additional random values are needed for masking the
intermediate results of the computation.

2. Even the presence of glitches doesn’t result in the leakage of information,
provided that we can restrict an attacker to look at only one fi at a time. We
will discuss in Section 4.2 what we can do in case an attacker can measure
the consumption of more than one fi simultaneously.

We generalize now condition (2) in the following way:

Pr(x = X, y = Y , . . . ) = c Pr(x =
⊕

i

Xi, y =
⊕

i

Yi, . . . ). (7)

In words, this means that any bias present in the joint distribution of x and y is
due to biases in the joint distribution of x and y. Under this condition, we can
prove the following.

Theorem 2. In a circuit implementing a set of functions satisfying Property 1
and Property 2, when the input satisfies (7), all the intermediate results are
independent of the inputs x, y, . . . and the output z. Also the power consumption,
or any other characteristic of each individual function fi are independent of x,
y, . . . and z.

The proof is given in Appendix A.

Example 1. Consider the multiplication of two operands in a finite field with
characteristic 2: z = N(x, y) = xy. Let the number of shares n = 3 and define
the 3 functions fi as follows:

z1 = f1(x2, x3, y2, y3) = x2y2 ⊕ x2y3 ⊕ x3y2
z2 = f2(x1, x3, y1, y3) = x3y3 ⊕ x1y3 ⊕ x3y1
z3 = f3(x1, x2, y1, y2) = x1y1 ⊕ x1y2 ⊕ x2y1

(8)
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The functions fi satisfy Property 1. Furthermore, since

z1 ⊕ z2 ⊕ z3 = (x1 ⊕ x2 ⊕ x3)(y1 ⊕ y2 ⊕ y3) = xy = z, (9)

also Property 2 is satisfied and the functions fi form a secure realization of
N(x, y).

Example 2. The following example illustrates why we need condition (7). Con-
sider the linear transformation z = L(x, y) = x⊕ y. The realization

zi = f(xi+1, yi+1) = xi+1 ⊕ yi+1 (10)

satisfies Properties 1 and 2. If x = y, then z =
⊕

i zi = 0. Suppose now that
Pr(x = X, y = Y ) = Pr(x = X) if X = Y , and zero otherwise. With this
dependency between x and y, we get always zi = 0, ∀i, and each zi is perfectly
correlated to z.

3.4 Relation to Multi-party Computation and Threshold
Cryptography

Multi-Party Computation (MPC) protocols enable a set of players to securely
evaluate an arbitrary function on their private inputs, but some of the players
could be corrupted by an adversary. Consider n players, each player holding an
input xi. The players want to compute a function F (x1, . . . , xn) = z in a secure
manner, which informally implies two things. The adversary cannot interrupt the
computation, hence the computed value is correct. Additionally the adversary
cannot learn any information about the inputs of the honest players, except
of course what can be inferred from the function value. The results can be
easily extended to more general types of functionality e.g. computing a function
F (x1, . . . , xn) = (z1, . . . , zn).

A (t, n) threshold system allows n parties to do secure computations when
at least t parties are honest. We equate each function fi with a party, thus we
have an (n, n) threshold system. Our situation differs from the typical MPC
case, because each input xi is used by several parties (functions). Since each two
functions together (possibly) use all inputs, we have an (1, n, n) ramp scheme.

The functions are corrupt by means of side-channel attacks. A corrupt function
still produces correct results, hence we have passive corruption. In a first-order
attack, the attacker can corrupt at most one function at a time. Theorem 2
shows we achieve perfect security against first-order attacks.

If the attacker can corrupt several functions simultaneously, then the attack
is called a higher-order attack [13,17]. We discuss issues that arise in this setting
in Section 4.2.

4 Glitches

In this section, we first illustrate how glitches can cause leakage of information.
Subsequently, we examine one traditional masking scheme and we show that our
approach leads to improved security.
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CMOS circuits consume very low amounts of power. Consequently, the power
consumption caused by glitches is relatively large compared to the power con-
sumption caused by the “normal” operation of CMOS circuits. Most masking
schemes1 presented in the cryptographic literature don’t take the presence of
glitches into account [5,18,25]. It has been shown that for many of these tra-
ditional masking schemes the presence of glitches or delays in logical circuits
causes side-channel leakage in the power consumption [15,16].

Firstly, consider a simple AND gate, with inputs x, y and output z. Assume
now that a glitch occurs in x, or that input x becomes stable significantly later
than input y. If input y equals 1, then a variation or glitch in input x will cause
the AND gate to temporarily change state, because z = x. However, if y = 0,
then z = 0 and changes at input x will not affect the output. Consequently, the
power consumption caused by glitches in input x depends on the value of input
y. In the next subsection, we will study the effect of glitches in a masked AND
gate.

4.1 Glitches in a Traditionally Masked AND-Gate

We consider a typical implementation of a masked AND gate [25], illustrated in
Figure 1. To make the analysis easier, we assume here that XOR gates exist as
basic primitives: we don’t decompose them into smaller building blocks.

The circuit takes 5 inputs: the two random masks a, b, the two masked inputs
x̃ = a⊕x, ỹ = b⊕y, and a new random value c to mask the output z = x AND y.
The circuit outputs the output mask and the masked output, which is computed
as follows:

z̃ = x̃ỹ ⊕ (bx̃⊕ (aỹ ⊕ (ab⊕ c))) . (11)

Note that the order in which the XOR gates are evaluated, is not arbitrary. If
the circuit would compute at any time the sum of any of the products, then
there would be leakage. For instance, x̃ỹ ⊕ b · x̃ = yx̃, which leaks information
about y. This is one of the reasons why the new random value c is introduced
in the beginning and why all the products are added one by one to it.

Consider now what happens if a glitch occurs in input x̃. The propagation of
this glitch will depend on the values of b and ỹ. The power consumption caused
by the glitch is related to the number of gates that “see” the glitch. It is clear
from Table 1 that the energy consumption depends on the values of b and ỹ.
Since the mean power consumption is different for y = 0 and y = 1, the power
consumption leaks information on the value of y. Similar results can be obtained
by analyzing the effect of a glitch in one of the other inputs, and the cases where
some of the inputs arrive delayed with respect to the other inputs [15,16].

We conclude that switching characteristics of logical circuits may invalidate
some of the assumptions commonly made in proofs of security against side-
channel attacks. A slightly frustrating aspect of the findings in [15] is that it
remains unclear how to construct security proofs that do take into account the

1 In this section we use the terms “mask” and “masked gate” in order to stay close to
the original description of the schemes.
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Fig. 1. Glitch propagation through a masked AND gate

Table 1. Number of affected gates in the circuit of Figure 1, when a glitch occurs in
input x

b y AND XOR
0 0 0 0
0 1 1 1
1 0 1 2
1 1 2 2

presence of glitches. In order to avoid exhaustive analysis of all the possible
combinations of signal arrival times, it seems beneficial to use a circuit that has
Property 1.

4.2 Glitches in a Shared AND-Gate

The realization (8) can be used to implement multiplication in a finite field
with characteristic two. Multiplication in GF(2) corresponds to the logical AND
operation. Hence, the circuit can be used as a masked AND gate in order to
implement arbitrary Boolean functions.

Theorem 3. If the distributions of the input shares x, y satisfy (7), then the
mean power consumption of a circuit implementing realization (8) is independent
of x, y and z, even in the presence of glitches or the delayed arrival of some
inputs.

Proof. Theorem 2 states that all characteristics of the circuits implementing one
of the functions fi are independent of x, y, and z. Since no assumption is made on
the behavior of the circuit and/or the presence of glitches, the theorem also holds
in this case. Consequently, also the mean power consumption of each individual
circuit is independent of x, y, z, even in the presence of glitches. Since the mean
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power consumption of the whole circuit equals the sum of the mean power con-
sumptions of the individual functions, it is also independent of x, y, z. ��

Theorem 3 only applies to the mean power consumption of the circuit. We don’t
achieve indistinguishable distributions of the power consumption as demanded
in [5]. Nevertheless, since the mean power consumption of the circuit is always
the same, it resists the type of higher-order attacks that are based on the mean
value of the addition or subtraction of the power consumption traces of the
different circuits [17]. Although one can theoretically devise side-channel attacks
that don’t require a difference in the mean power consumption, such attacks
have not been demonstrated in practice yet.

If the used logic style prevents the occurrence of glitches, then not only the
mean power consumption, but also the variance are independent of the values of
x, y, z. This can be shown by simply going through all possible state transitions.

5 Implementing Arbitrary Functions

Theorem 1 shows that implementing more complicated functions typically leads
to an increase in the number of shares required, as well as an increase in the
number of gates required. As a rough rule of thumb, going from 1 share to n
shares will increase the number of gates with a factor n2. This should’t come as
a big surprise, because introducing resistance gainst power attacks always comes
at a price. For instance, in [20], the authors report an increase in area with a
factor 5, for a decrease in performance with factor 0.6. The software solution
proposed in [22] doubles the code size, multiplies the RAM requirements with
a factor of 20 and decreases the performance with a factor 50. Other proposals
add more complexity for the same security level. Nevertheless, for functions with
large numbers of inputs, it is better to adopt pipelining.

Pipelining is often used to speed up hardware implementations. In order to
allow large clock frequencies, combinatorial logic circuits shouldn’t be many
levels deep. Pipelining is an implementation technique where a logical circuit
with l levels is divided into two circuits with l/2 levels, separated by a register,
which stores the intermediate result of the first stage until the active phase of the
next clock cycle. As an example, the AES implementation of [26] uses a pipeline
with two stages to implement the S-boxes.

Dividing a combinatorial circuit into separate pipelining stages, can also re-
duce the number of shares and the number of gates required for a secure imple-
mentation. By definition, a register is insensible to glitches. The registers storing
the intermediate results at the end of stage bound the propagation of glitches
and delays. When considered individually, each of the pipeline stages represents
a mathematical function that is less complex than the full circuit: the nonlinear
degree will be lower and/or the number of monomials that needs to be summed.
This will typically reduced the required number of shares and gates.

If the mean power consumption of each pipeline stage is constant, then also
the mean of the total power consumption is constant, and the circuit is secure
against first-order differential power attacks. Note that condition (7) needs now
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to be fulfilled at the input of each pipeline stage in order for Theorem 3 to hold.
Since the input of the next pipeline stage is formed by the output of the previous
pipeline stage, we can achieve this goal by demanding that the circuits satisfy
an additional balance property.

Property 3 (Balance). A realization of z = N(x, y, . . . ) is balanced if for all
distributions of the inputs x, y, . . . , and for all input share distributions satisfying
(7) the conditional probability

Pr(z = Z|z =
⊕

i

Zi)

is constant.

If the function N is invertible, then Property 3 is satisfied by invertible real-
izations. In an invertible realization of z = N(x), every vector z is reached for
exactly one input vector x. This condition is stricter than the requirement that
every value z is reached for exactly one input x.

Example 3. The realization (8) of the multiplication in Example 1 doesn’t have
Property 3. In fact, there is no realization for multiplication satisfying this prop-
erty with 3 shares only. The following realization with 4 shares satisfies Prop-
erty 1, 2 and 3:

z1 = (x3 ⊕ x4)(y2 ⊕ y3)⊕ y2 ⊕ y3 ⊕ y4 ⊕ x2 ⊕ x3 ⊕ x4
z2 = (x1 ⊕ x3)(y1 ⊕ y4)⊕ y1 ⊕ y3 ⊕ y4 ⊕ x1 ⊕ x3 ⊕ x4
z3 = (x2 ⊕ x4)(y1 ⊕ y4)⊕ y2 ⊕ x2
z4 = (x1 ⊕ x2)(y2 ⊕ y3)⊕ y1 ⊕ x1.

(12)

Property 1 and 2 can be verified with pen and paper. Property 3 was verified by
direct computation of all conditional probabilities.

6 Example: Inversion over Finite Fields

Finite field inversion is an important map, for instance because of its use in the
AES. As illustration, we study here inversion in GF(16).

Firstly, let GF(4) be represented as GF(2)[t]/(t2 + t+1). Operations in GF(4)
then correspond to:

(at⊕ b)⊕ (ct⊕ d) = (a⊕ c)t ⊕ (b ⊕ d)
(at⊕ b)× (ct⊕ d) = (ad⊕ bc⊕ ac)t ⊕ (bd⊕ ac)
(at⊕ b)−1 = at ⊕ (a⊕ b)
(at⊕ b)3 = ab⊕ a⊕ b.

(13)

Secondly, let GF(16) be represented by GF(4)[s]/(s2⊕s⊕α). Inversion in GF(16)
then becomes:

(as⊕ b)−1 = a(a2α⊕ ab⊕ b2)−1s⊕ (a⊕ b)(a2α⊕ ab⊕ b2)−1.
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Defining c = a⊕ b, we obtain:

(as⊕ (c⊕ a))−1 = a(a2α⊕ ac⊕ c2)−1s⊕ c(a2α⊕ ac⊕ c2)−1

= (a2α2 ⊕ a3c2 ⊕ ac)s⊕ (acα2 ⊕ a2c3 ⊕ c2). (14)

Combining (13) with (14) and choosing α = t, we obtain

((xt ⊕ y)s⊕ (zt⊕ v))−1 = (ft⊕ g)s⊕ (ht⊕ k),

where f , g, h, and k are Boolean functions defined as follows:

f = x⊕ y ⊕ xv ⊕ xyz

g = y ⊕ xv ⊕ yz ⊕ xyz ⊕ xyv

h = y ⊕ xv ⊕ yv ⊕ xzv

k = z ⊕ v ⊕ xz ⊕ yz ⊕ yv ⊕ xzv ⊕ yzv.

Theorem 1 predicts we need at least 4 shares to implement these functions. Ex-
haustive search revealed that no realization with 4 shares can satisfy Property 3.
We give a realization with 5 shares for f, g, h and k in Appendix B.

7 Considering Template Attacks

In the previous sections of this paper, we ignored the possibility of simple power
attacks [14]. We assumed that an attacker can’t use a single measurement to
obtain a meaningful signal. Provided that a few basic rules are followed during
the implementation, this is usually a realistic assumption, which is commonly
made when discussing masking schemes. However, more sophisticated methods
have been developed since then.

7.1 Template Attacks

Template attacks were introduced in [7], as an extension of simple power at-
tacks. A template attack starts with a profiling phase, during which the attacker
has at his disposal a freely programmable device which is identical to the tar-
geted device. This device is used to build a model (templates) of its state while
performing different operations on (parts of) the secret key. Afterwards, in the
hypothesis-testing phase, these templates are used to classify the single trace
of the targeted device which in turn reduces the entropy of the key. In order
to improve classification results, multivariate instead of univariate statistics is
employed to yield practical classification results.

Recent advances in template attacks highlight the importance of this topic
in the context of masking schemes [1]. These results are summarized as follows.
Using single-bit templates even masked implementations can be broken. The
new, but in many practical circumstances reasonable setting is that an attacker
can get hold of a device with a biased RNG which is generating the used masks.
Using templates generated from such a card, it is shown that even devices with
perfectly unbiased masks can be attacked.
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7.2 Resistance Against Template Attacks

Our proposal to protect implementations does not prevent this type of attack if
a biased RNG is in the hands of an attacker. However it makes it more difficult
to implement the attack, because the parallel computation of the n shares lowers
the signal-to-noise ratio. For example, consider a Hamming weight based leakage
model. Let w denote the bit-width of a share. Ignoring noise, the relative leakage
l is given by:

l =
nw − log2(

∑nw
i=0

(nw
i )2

2n·w )
nw

. (15)

Since we assume that all shares are uncorrelated, the number of shares n effec-
tively multiplies the bit-width. As a consequence the number of samples needed
in the profiling step is greatly increased. If this number of samples can’t be taken,
then the classification results will get worse. In turn, the gain for the attacker,
namely the reduction of the key entropy, is less.

8 Conclusions and Open Problems

We presented a new method to design implementations that counteract side-
channel attacks. The big advantages are that we don’t need fresh random val-
ues after every nonlinear transformation and that we achieve provable security
against first order attacks, even in the presence of glitches. The scheme also re-
sists certain types of higher-order attacks. To illustrate the design method, we
applied it to the computation of the multiplicative inverse over GF(24).

Disadvantages are the increased data storage requirements due to the higher
number of shares, and the corresponding increase in computational complexity.

Investigating whether other attacks are feasible and how to protect against
them is proposed as topic of further research. Future work also includes the
design of more complicated circuits. Clearly, implementing more complex circuits
in one go, will increase the complexity of our circuits dramatically. We propose
to employ techniques from proactive secret sharing schemes [21] in order to
reduce the circuit complexity. This has the added benefit to limit an attacker’s
possibilities even further, but has as disadvantage that now fresh random values
are required.
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10. Jovan D. Golić, Christophe Tymen, “Multiplicative masking and power analysis”,
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cation method”, Ç. Koç, Ch. Paar, Eds., CHES ’99, LNCS 1717, Springer-Verlag,
1999, pp. 158–172.

12. Yuval Ishai, Amit Sahai, David Wagner, “Private circuits: securing hardware
against probing attacks”, D. Boneh, Ed., CRYPTO 2003, LNCS 2729, Springer-
Verlag, 2003, pp. 463–481.

13. Marc Joye, Pascal Paillier, Berry Schoenmakers, “On second-order differential
power analysis,” J.R. Rao, B. Sunar, Eds., CHES 2005, LNCS 3659, Springer-
Verlag, 2005, pp. 293–308.

14. Paul Kocher, Joshua Jaffe, Benjamin Jun, “Differential Power Analysis”, M.
Wiener, Ed., CRYPTO ’99, LNCS 1666, Springer-Verlag, 1999, pp. 388–397.

15. Stefan Mangard, Thomas Popp, Berndt M. Gammel, “Side-channel leakage of
masked CMOS gates”, A.J. Menezes, Ed., CT-RSA 2005, LNCS 3376, Springer-
Verlag, 2005, pp. 351–365.

16. Stefan Mangard, Norbert Pramstaller, Elisabeth Oswald, “Successfully attacking
masked AES hardware implementations,” J.R. Rao, B. Sunar, Eds., CHES 2005,
LNCS 3659, Springer-Verlag, 2005, pp. 157–171.

17. Thomas S. Messerges, “Using second-order power analysis to attack DPA resistant
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A Proof of Theorem 2

For sake of readability, we give the proof for the case of two input variables. The
general case follows straightforwardly.

Let t(x1, y1) be any intermediate result or any physical characteristic of the
circuit implementing f1. The only assumption we make about t is that it doesn’t
depend on the values of x1 and y1. Let δ(X, Y ) be the function that is equal to
1 if X = Y and 0 otherwise. Let A, A1 denote the following sets:

A = {(X, Y ) | t(X1, Y 1) = T }
A1 = {(X1, Y 1) | t(X1, Y 1) = T } .

and let B denote the set of possible values for (x1, y1). Since t doesn’t depend
on the values of x1 and y1, we have A = B ×A1. By definition and using (2):

Pr(t = T ) =
∑
X∈A

Pr(x = X) =
∑

(X,Y )∈A

c Pr(x =
⊕

i

Xi, y =
⊕

i

Yi)

Splitting up the summation results in

Pr(t = T ) =
∑

(X1,Y 1)∈A1

c
∑

(X1,Y1)∈B

Pr(x =
⊕

i

Xi, y =
⊕

i

Yi) .

Since the shares X2, . . . , Xn, Y2, . . . , Yn give no information on X, Y , the latter
summation equals 1 and hence:

Pr(t = T ) =
∑

(X1,Y 1)∈A1

c (16)

Similarly, we obtain:

Pr(t = T, x = X, y = Y )

=
∑

(X1,Y 1)∈A1

Pr(x = (X ⊕
n⊕

i=2

Xi, X1), y = (Y ⊕
n⊕

i=2

Yi, Y 1))

=
∑

(X1,Y 1)∈A1

c Pr(x = X, y = Y )
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Using (16), we obtain:

Pr(t = T, x = X, y = Y ) = Pr(t = T ) Pr(x = X, y = Y ).

Hence t is independent of x and y. Let C(Z) denote the set

C(Z) = {(X, Y ) | N(X, Y ) = Z} = {(X, Y ) | δ(N(X, Y ), Z) = 1} .

Then, we can write for z:

Pr(z = Z) =
∑

(X,Y )∈C(Z)

Pr(x = X, y = Y ) .

Pr(t = T, z = Z)

=
∑

(X,X)∈A

δ(N(
⊕

i

Xi,
⊕

i

Yi), Z) Pr(x = X, y = Y )

=
∑

(X1,X1)∈A1

∑
(X1,Y1)∈B

δ(N(
⊕

i

Xi,
⊕

i

Yi), Z)c Pr(x =
⊕

i

Xi, y =
⊕

i

Yi) .

Since the shares X2, . . . , Xn, Y2, . . . , Yn give no information on X ,Y , we can
rewrite this as follows:

Pr(t = T, z = Z) =
∑

(X1,Y 1)∈A1

c
∑

(X,Y )∈C(Z)

Pr(x = X, y = Y )

= Pr(t = T ) Pr(z = Z) .

B Realization of Inversion in GF(16) with 5 Shares for
f, g, h, k

f1 = x2 ⊕ y2 ⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

f2 = x3 ⊕ y3 ⊕ x1(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1

⊕ x1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5) ⊕ y1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5) ⊕ x1y1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(y3 ⊕ y4 ⊕ y5)

⊕ y1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1z1

f3 = x4 ⊕ y4 ⊕ x2v1 ⊕ x1v2 ⊕ x1y1z2 ⊕ x1y2z1 ⊕ x2y1z1 ⊕ x1y2z2 ⊕ x2y1z2 ⊕ x2y2z1

⊕ x1y2z4 ⊕ x2y1z4 ⊕ x1y4z2 ⊕ x2y4z1 ⊕ x4y1z2 ⊕ x4y2z1 ⊕ x1y2z5 ⊕ x2y1z5

⊕ x1y5z2 ⊕ x2y5z1 ⊕ x5y1z2 ⊕ x5y2z1

f4 = x5 ⊕ y5 ⊕ x1y2z3 ⊕ x1y3z2 ⊕ x2y1z3 ⊕ x2y3z1 ⊕ x3y1z2 ⊕ x3y2z1

f5 = x1 ⊕ y1
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g1 = (x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5) ⊕ y2

g2 = x1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5) ⊕ y1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5) ⊕ x1y1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(y3 ⊕ y4 ⊕ y5)

⊕ y1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1z1 ⊕ x1(y3 ⊕ y4 ⊕ y5)(v3 ⊕ v4 ⊕ v5)

⊕ y1(x3 ⊕ x4 ⊕ x5)(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5)

⊕ x1y1(v3 ⊕ v4 ⊕ v5) ⊕ x1v1(y3 ⊕ y4 ⊕ y5) ⊕ y1v1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1v1

⊕ x1(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1 ⊕ y1(z3 ⊕ z4 ⊕ z5)

⊕ z1(y3 ⊕ y4 ⊕ y5) ⊕ y1z1 ⊕ y3

g3 = x1y1z2 ⊕ x1y2z1 ⊕ x2y1z1 ⊕ x1y2z2 ⊕ x2y1z2 ⊕ x2y2z1 ⊕ x1y2z4 ⊕ x2y1z4

⊕ x1y4z2 ⊕ x2y4z1 ⊕ x4y1z2 ⊕ x4y2z1 ⊕ x1y2z5 ⊕ x2y1z5 ⊕ x1y5z2 ⊕ x2y5z1

⊕ x5y1z2 ⊕ x5y2z1 ⊕ x1y1v2 ⊕ x1y2v1 ⊕ x2y1v1 ⊕ x1y2v2 ⊕ x2y1v2 ⊕ x2y2v1

⊕ x1y2v4 ⊕ x2y1v4 ⊕ x1y4v2 ⊕ x2y4v1 ⊕ x4y1v2 ⊕ x4y2v1 ⊕ x1y2v5 ⊕ x2y1v5

⊕ x1y5v2 ⊕ x2y5v1 ⊕ x5y1v2 ⊕ x5y2v1 ⊕ x2v1 ⊕ x1v2 ⊕ y2z1 ⊕ y1z2 ⊕ y4

g4 = x1y2z3 ⊕ x1y3z2 ⊕ x2y1z3 ⊕ x2y3z1 ⊕ x3y1z2 ⊕ x3y2z1 ⊕ x1y2v3 ⊕ x1y3v2

⊕ x2y1v3 ⊕ x2y3v1 ⊕ x3y1v2 ⊕ x3y2v1 ⊕ y5

g5 = y1

h1 = (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)(z2 ⊕ z3 ⊕ z4 ⊕ z5) ⊕ y3 ⊕ v2

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)

h2 = x1(v3 ⊕ v4 ⊕ v5)(z3 ⊕ z4 ⊕ z5) ⊕ v1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(v3 ⊕ v4 ⊕ v5) ⊕ x1v1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(v3 ⊕ v4 ⊕ v5)

⊕ v1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1z1 ⊕ x1(v3 ⊕ v4 ⊕ v5) ⊕ v1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1

⊕ y1(v3 ⊕ v4 ⊕ v5) ⊕ v1(y3 ⊕ y4 ⊕ y5) ⊕ y1v1 ⊕ y4 ⊕ v1 ⊕ v5

h3 = x1v1z2 ⊕ x1v2z1 ⊕ x2v1z1 ⊕ x1v2z2 ⊕ x2v1z2 ⊕ x2v2z1 ⊕ x1v2z4 ⊕ x2v1z4

⊕ x1v4z2 ⊕ x2v4z1 ⊕ x4v1z2 ⊕ x4v2z1 ⊕ x1v2z5 ⊕ x2v1z5 ⊕ x1v5z2 ⊕ x2v5z1

⊕ x5v1z2 ⊕ x5v2z1 ⊕ x2v1 ⊕ x1v2 ⊕ y2v1 ⊕ y1v2 ⊕ y5 ⊕ v1 ⊕ v2 ⊕ v5

h4 = x1v2z3 ⊕ x1v3z2 ⊕ x2v1z3 ⊕ x2v3z1 ⊕ x3v1z2 ⊕ x3v2z1 ⊕ y1 ⊕ v1

h5 = y2 ⊕ v1

k1 = (x2 ⊕ x3 ⊕ x4 ⊕ x5)(v2 ⊕ v3 ⊕ v4 ⊕ v5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (v2 ⊕ v3 ⊕ v4 ⊕ v5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5)

⊕ (y2 ⊕ y3 ⊕ y4 ⊕ y5)(v2 ⊕ v3 ⊕ v4 ⊕ v5) ⊕ z2 ⊕ v2
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k2 = x1(v3 ⊕ v4 ⊕ v5)(z3 ⊕ z4 ⊕ z5) ⊕ v1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(v3 ⊕ v4 ⊕ v5) ⊕ x1v1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(v3 ⊕ v4 ⊕ v5)

⊕ v1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1v1z1 ⊕ v1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5)

⊕ y1(v3 ⊕ v4 ⊕ v5)(z3 ⊕ z4 ⊕ z5) ⊕ z1(v3 ⊕ v4 ⊕ v5)(y3 ⊕ y4 ⊕ y5)

⊕ v1y1(z3 ⊕ z4 ⊕ z5) ⊕ v1z1(y3 ⊕ y4 ⊕ y5) ⊕ y1z1(v3 ⊕ v4 ⊕ v5) ⊕ v1y1z1

⊕ x1(z3 ⊕ z4 ⊕ z5) ⊕ z1(x3 ⊕ x4 ⊕ x5) ⊕ x1z1 ⊕ y1(z3 ⊕ z4 ⊕ z5)

⊕ z1(y3 ⊕ y4 ⊕ y5) ⊕ y1z1 ⊕ y1(v3 ⊕ v4 ⊕ v5) ⊕ v1(y3 ⊕ y4 ⊕ y5) ⊕ y1v1

⊕ z3 ⊕ v3

k3 = x1v1z2 ⊕ x1v2z1 ⊕ x2v1z1 ⊕ x1v2z2 ⊕ x2v1z2 ⊕ x2v2z1 ⊕ x1v2z4 ⊕ x2v1z4

⊕ x1v4z2 ⊕ x2v4z1 ⊕ x4v1z2 ⊕ x4v2z1 ⊕ x1v2z5 ⊕ x2v1z5 ⊕ x1v5z2 ⊕ x2v5z1

⊕ x5v1z2 ⊕ x5v2z1 ⊕ v1y1z2 ⊕ v1y2z1 ⊕ v2y1z1 ⊕ v1y2z2 ⊕ v2y1z2 ⊕ v2y2z1

⊕ v1y2z4 ⊕ v2y1z4 ⊕ v1y4z2 ⊕ v2y4z1 ⊕ v4y1z2 ⊕ v4y2z1 ⊕ v1y2z5 ⊕ v2y1z5

⊕ v1y5z2 ⊕ v2y5z1 ⊕ v5y1z2 ⊕ v5y2z1 ⊕ x2z1 ⊕ x1z2 ⊕ y2z1 ⊕ y1z2 ⊕ y2v1

⊕ y1v2 ⊕ z4 ⊕ v4

k4 = x1v2z3 ⊕ x1v3z2 ⊕ x2v1z3 ⊕ x2v3z1 ⊕ x3v1z2 ⊕ x3v2z1 ⊕ v1y2z3 ⊕ v1y3z2

⊕ v2y1z3 ⊕ v2y3z1 ⊕ v3y1z2 ⊕ v3y2z1 ⊕ z5 ⊕ v5

k5 = z1 ⊕ v1
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Abstract. Implementing IP security in broadband router without sacrificing the 
performance is main work we focused on. To meet the need of protecting wire 
speed forwarding data passing through fast path of the router, security module 
implemented with encryption chip was adopted; to protect non real time data 
passing through slow path of the router, the scheme of implementing IP security 
inside kernel of Master control module with software was introduced. Security 
architecture and several testing architectures were finely designed and depicted 
in the paper. Testing of security architecture was undergone in SR1880s router, 
which was developed by National Digital Switching System Engineering & 
Technological R&D Center of China (NDSC). Testing results show that the two 
schemes work well together. 

Keywords: IP security (IPsec),   Security architecture,   Security module, IPsec 
module. 

1   Introduction 

With fast development of Next Generation Internet (NGI), routers are required to 
support IPsec as essential function. Owning to relatively mature technology of router 
manufacture, implementing IPsec in routers without changing the original framework 
is the recent work being focused on.  

General security architecture shown in Fig. 1 has two main disadvantages. First, 
each Network processing unit with one Encryption chip will lead every packet 
passing through Network processing unit also passing Encryption chip, yet there is 
small part of traffic that needs to be protected by Encryption chip. Second, N 
Encryption chips together will aggravate the problems of power waste, heat 
dissipation, and electromagnetic compatibility in single-shelf 

Comparing with the general security architecture, we put forward universal 
security architecture and adopted it in SR1880 series to make the testing. SR1880 
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series has breakthrough in system architecture of router, high-speed forwarding 
engine [4][6], switch fabric, and scheduling algorithm [5]. All of these innovations 
have been implemented successfully in SR1880 series routers. We designed universal 
security architecture and implemented it in SR1880 series, which are called SR1880s.  

We will introduce system architecture of SR1880s router in section II, and discuss 
designing and implementing of IPsec in SR1880 series in section III. Section IV will 
present several test architectures for testing and section V will give the conclusion. 

 

Fig. 1. General security architecture of broadband router 

2   System Architecture of SR1880S 

SR1880s router adopts decentralized module architecture shown in Fig. 2. Totally 
there are six main modules of the router, which are Line card interface module, 
Forwarding module, Photonic switching network, Security module, Inner 
communication module and Master control module. 

Line card interface module includes 2.5G Packet over SONET/SDH (POS) 
interface, 155M Asynchronous Transfer Mode (ATM) interface and Gigabit Ethernet 
interface to process the packet in layer 1 and layer 2. Forwarding module is designed 
to forward the packet in layer 3, including wire speed forwarding, filtering and 
security checking, classification according to priority, identification of multicast and 
tagging, and inner packet forming. Photonic switching network provides service of 
exchanging packet according to different operation levels. Security module performs 
encryption and decryption of inbound and outbound packets. Master control module 
manages routing calculation, network management, device configuration and control, 
and IPsec module inside kernel. Inner communication module is the hinge to 
complete exchanges between every function board and Master control module.  

Security module is consisted of Encryption adaptive board with dynamic 
Encryption chips to avoid the problems existed in general security architecture of the 
router. Security module is an independent part which has two outer interfaces, one is 
with Photonic switching network and the other is with Master control module. The 
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number of Encryption chips in one Encryption adaptive board is changeable 
according to anticipated traffic passing through router. When one adaptive board full 
loaded can not meet the need, more Encryption adaptive boards can be added. 

 

Fig. 2. System Architecture of SR1880s 

3   Security Architecture of SR1880S 

The architecture of SR1880S can be partitioned into two planes, data plane (fast path) 
and control plane (slow path), according to the design of separating the routing and 
forwarding data. Forwarding data are processed and forwarded in high speed through 
Line card interface module, Forwarding module, and Photonic switching network. In 
slow path, Master control module, Inner communication module, and local CPU 
cooperate together to fulfill the maintenance, control and management of the router 
through processing non-real time tasks. To provide protection for entire traffic 
passing through router, we put forward two schemes of implementing IPsec working 
together. One scheme uses hardware to process high-speed forwarding data in fast 
path, and the other scheme uses software inside Master control module to process 
non-real time data in slow path.  

3.1   Security Architecture of Implementing IPsec with Security Module 

This architecture is implemented using Encryption adaptive board with specific 
encryption chip, which is in the primary place in providing security protection. When 
system is powered on, Command line interface begins to add Security Policy (SP) to 
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IPsec engine. Then IPsec engine adds this SP to Forwarding module via Inner 
Ethernet and this SP is stored in the content-addressable memory (CAM) of 
Forwarding module. In the condition of manual key configuration, security 
association (SA) is also added to IPsec engine by Command line interface and then 
transferred to Security module. SA is a set of policy and keys used to protect traffic. It 
is stored in the CAM and static random access memory (SRAM) of Security module. 
Fig. 3 shows the security architecture and Fig. 4 shows the flow chart. 

 

Fig. 3. Secure Architecture of Implementing IPsec with Security Module 

For packet passing through the router, it is received by Line card interface module. 
Packet whose destination is not local router is transferred to Forwarding module. 
When receiving the packet, Forwarding module executes lookup in its security policy 
database (SPD) to see whether there has SP for this packet. If it has, the packet will be 
labeled encryption or decryption tag and forwarded to Security module. Receiving the 
packet, Security module looks up its security association database (SAD) for SA. If 
Command line interface didn’t add SA manually or this is the first packet of an 
application, there wouldn’t be any SA. In this case, Security module disposes the 
packet and asks IPsec engine to waken Internet Key Exchange (IKE) for negotiating 
SA. A major function of IKE is the establishment and maintenance of SAs. The 
process of IKE for negotiating SA is according to [2]. Otherwise Field Programmable 
Gate Array (FPGA) performs packet disassembly and controls encryption chip for 
encryption or decryption. For packet needs encryption, FPGA gets encryption type 
and encryption key from SAD according to source and destination addresses and 
protocol type to control Encryption chip for encryption. After encryption, the packet 
is assembled with packet header by FPGA to construct IPsec packet and the IPsec 
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packet is sent out through Photonic switching network and Line card interface 
module. For packet needs decryption, FPGA gets decryption type and decryption key 
from SAD according to source and destination addresses, protocol type, and security 
parameter index (SPI), and then control Encryption chip for decryption. After 
decryption, the packet is assembled again with packet header to construct the original 
IP packet. Then the decrypted IP packet is also sent out through Photonic switching 
network and Line card interface module. 

 

Fig. 4. Flow chart of processing packet with Security module 

3.2   Security Architecture of Implementing IPsec Inside Master Control Module 

Implementing IPsec inside kernel of Master control module is to deal with the case 
that data passing through slow path need encryption or decryption, such as the source 
or the destination address of data is local router. Because these data are almost control 
messages and are non-real time tasks, they can be encrypted or decrypted inside 
kernel of Master control module, which is relatively slower. Fig. 5 shows the security 
architecture. 

Flow chart of processing inbound packet is shown in Fig. 6. For inbound packet 
whose destination is local, it is transferred to IPsec interface of Master control module 
by Line card interface module. When receiving packet, IPsec interface checks the next 
header of the packet. If the next header is Authentication Header (AH) or 
Encapsulating Security Payload (ESP), the packet will be delivered to IPsec inbound 
processing module. Then IPsec inbound processing module communicates with IPsec  
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Fig. 5. Security Architecture of Implementing IPsec in Master Control Module 
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Fig. 6. Flow chart of processing inbound 
packet with Master Control Module 

Fig. 7. Flow chart of processing outbound 
packet with Master control module 
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engine to get SA and to perform decryption. If SA for this packet does not exist, the 
packet will be disposed and IPsec engine will send acquire message through PF_KEY 
socket to IKE to waken IKE for negotiating SA. The Inbound packets destined to the 
local router but without an AH or ESP header are checked by the other parts of the 
Master control module, which is not the task of IPsec inside Master control module. 

Flow chart of processing outbound packet is shown in Fig. 7. For outbound 
packets, the packet is first delivered to IPsec outbound processing module to check 
whether the packet needs encryption. When receiving packet, IPsec outbound 
processing module communicates with IPsec engine to see whether there has SP for 
this packet. If it has, IPsec outbound processing module communicates with IPsec 
engine again for SA to perform encryption. If this SA does not exist, the packet is 
disposed and IPsec engine asks IKE to negotiate SA. If SP does not exist, the packet 
is sent back and processed in routine flow. Otherwise the packet is encrypted and sent 
out through Line card interface module. 

4   Testing Architecture 

Because security module is processing data passing through the router and IPsec 
module inside Master control module is processing data that the source or destination 
is router, we designed two main modes to test both schemes. One mode is using one 
router, manual SP, and manual SA, and the other is using two routers, manual SP, and 
automatic SA. 

4.1   Test of Security Module with One Router 

This mode is used to test correctness of encryption and decryption of Security module 
with one router and two computers. Testing architecture is shown in Fig. 8. Two 
computers, acted as Client and Server, were connected to two of Gigabit Ethernet 
interfaces of SR1880s router, respectively. Data sent from Client to server are 
encrypted by Security module of the router when passing through SR1880s, and data 
sent from Server to Client are decrypted by Security module of the router. Manual SP 
and manual SA are used in this test. 

 

Fig. 8. Architecture of Testing Security Module with One Router 

At the beginning of the test, SP and SA were added to Forwarding module and 
Security module by Command line interface respectively. To validate correctness of 
encryption, client ran program which sends raw IPv6 packet. Packet client sent was 
first received by interface 0 of Line card interface module, was transferred to 
Forwarding module, and then was forwarded to Security module for encryption. After 
encryption, the packet was sent out through interface 1 and was finally received by 
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server. File Client sent was stored in server in advance, so we encrypted the file in 
server and compared it with received cipher text. 

The way to validate correctness of decryption had the similar flow as above. Server 
encrypted the file and sent it to Client with raw IPv6 packet. The encrypted packet 
was received by interface 1 of Line card interface module and was forwarded to 
Security module for decryption. Then the decrypted packet was sent out through 
interface 0. The packet received by client was in the form of plain text and was 
compared with the original file saved in advance. 

We verified the correctness of encryption and decryption of Security module 
through testing architecture listed above. 

4.2   Test of Security Module with Two Routers 

This mode is designed to test the whole IPsec system, including IPsec engine, IKE, 
and Security module. Testing architecture, with two routers and two computers, is 
shown in Fig. 9. Two SR1880s were connected with Gigabit Ethernet interfaces and 
two computers were connected to one of Gigabit Ethernet interfaces of two SR1880s 
routers, respectively. SP was added to Forwarding module at the beginning of the test. 
The first packet passing the router would waken IKE to negotiate SA and this SA 
would be transferred to Security module. We have two methods to validate Security 
module. The first is using raw IPv6 socket program and the second is using ping. 

 

Fig. 9. Architecture of Testing Security Module with Two Routers 

For the first method, Client sent the file using raw IPv6 socket program and server ran 
the reception program. The first packet wakened IKE to negotiate SA and was disposed 
by Security module of SR1880s 1. The rest packets were first encrypted by SR1880s 1, 
then were decrypted by SR1880s 2, and finally were received by server, where we stored 
the original file in advance to have comparison, in the form of plain text.  

For the second method, Client pings server, Internet Control Message Protocol 
(ICMP) request packet sent by Client was encrypted by Security module of SR1880s 
1, and then was decrypted by Security module of SR1880s 2. When server received 
the ICMP request packet, it sent the ICMP echo packet as reply. The reply packet was 
first encrypted by Security module of SR1880s 2, then was decrypted by Security 
module of SR1880s 1, and was finally accepted by client. 

We tested the whole IPsec system using two methods listed above with the security 
architecture shown in Fig. 9. The whole system worked well together. 

4.3   Test of IPsec Module Inside Master Control Module with One Router  

Implementing IPsec inside Master control module is to process the data that the 
source or the destination address is local router. To test this module, architecture 
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shown in Fig. 10 was adopted. Client was connected to one of Gigabit Ethernet 
interfaces of SR1880s, while server connected to SR1880s using telnet to manipulate 
the operation in the router. Manual SP and manual SA are also used in this mode. 
Packet sent from Client to SR1880s was decrypted in Master control module and 
packet sent from SR1880s to Client was encrypted in Master control module. 
Encrypted packet Client sent was first received by interface 0 of Line card interface 
module, and then was transferred to Master control module since the destination 
address is local. Then the packet was decrypted by IPsec inbound processing module 
in kernel and was received by reception program ran in application layer. Plain text 
Client sent was also stored in SR1880s in advance, so we compared the original file 
with received packet to check the correctness of decryption. Packet SR1880s 1 sent 
was first encrypted by IPsec outbound processing module in kernel, and then was sent 
out by Line card interface module through interface 0. Packet, in the form of cipher 
text, was finally received by Client to check the correctness of encryption. 

 

Fig. 10. Architecture of testing IPsec inside Kernel with One Router 

We verified correctness of encryption and decryption of IPsec module inside 
Master control module through this test. Due to perform encryption and decryption 
with software, the speed of processing is relatively slower. 

4.4   Test of IPsec Module Inside Master Control Module with Two Routers 

We also used two methods similar with Fig. 9 to test the whole IPsec module, 
including IKE, IPsec engine, IPsec inbound processing module, and IPsec outbound 
processing module. Test architecture is shown in Fig. 11. Client and server were 
connected to two routers respectively using telnet to manipulate the operation in the 
routers. Manual SP was added to SPD of IPsec engine in advance. The first packet 
SR1880s 1 sent would waken IKE to negotiate SA. 

 

Fig. 11. Architecture of Testing IPsec inside Kernel with Two Routers 

For the first method, we ran send program in SR1880s 1 and reception program in 
SR1880s 2. Packet sent by SR1880s 1 was encrypted by IPsec outbound processing 
module in kernel of Master control module, and then was sent out through interface 0 
of Line card interface module. When interface 0 of SR1880s 2 received the encrypted 
packet, Line card interface module sent it to Master control module. Then Master 
control module called IPsec inbound processing module to execute decryption. After 
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decryption, the packet was finally accepted by reception program ran in SR1880s 2, 
where stored the original file for checking.  

The second method using ping method had the similar flow as in Fig. 9. Internet 
Control Message Protocol (ICMP) request packet sent by SR1880s 1 was encrypted by 
IPsec outbound processing module of SR1880s 1, and then was decrypted by IPsec 
inbound processing module of SR1880s 2. When SR1880s 2 received the ICMP request 
packet, it sent the ICMP echo packet as reply. The reply packet was first encrypted by 
IPsec outbound processing module of SR1880s 2, then was decrypted by IPsec inbound 
processing module of SR1880s 1, and was finally accepted by SR1880s 1. 

We also tested the whole IPsec module using two methods above. Testing results 
show that the whole IPsec module works well together.  

5   Conclusion 

We presented security architecture which uses two schemes to implement IPsec and 
adopted it in SR1880s router. One scheme is implementing IPsec with hardware, 
which processing the data passing through fast path; the other is implementing IPsec 
inside kernel of Master control module of the router with software to process the data 
passing through slow path. Two schemes working together will process data in time 
with encryption chip and will also protect non-real time tasks in slow path. Testing 
results show that two schemes work well together and protect the traffic passing 
through the router.  

Problem we still facing is the mismatch of processing speed between Security 
module, known as 2.5Gbps to 10Gbps, and Forwarding module, usually known as 
10Gbps up to 40Gbps. How to improve the processing speed of Security module 
while not sacrificing the security is the next work we will research. 
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Acıiçmez, Onur 112
Atallah, Mikhail J. 190

Bao, Feng 399, 435
Beznosov, Konstantin 50
Brumley, Billy Bob 469

Chui, Tian Wei 352

de Mare, Michael 452
Deng, Lingli 322
Deng, Xiaotie 82
Dı́az-Verdejo, Jesús E. 282
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Garćıa-Teodoro, Pedro 282
Ge, He 238
Gu, Xiaozhuo 546

He, Yeping 322
Heo, Jin 260
Huang, Xinyi 479

Imai, Hideki 92
Itoh, Kouichi 507

Joosen, Wouter 379

Khurana, Himanshu 260
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